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Abstract 

Organisms often employ non-classical crystallisation mechanisms to create the 

remarkable materials that are biominerals.  These materials often surpass their 

synthetic counterparts in terms of physical properties, morphologies and structural 

organisation.  The non-classical mechanisms employed include the controlled 

formation, transition and release of amorphous precursor material, and the oriented 

attachment/ nucleation of nano sized particulates.  Combined, these strategies are 

capable of generating hierarchically ordered superstructures.  Both of these 

mechanisms operate under ambient conditions in a physically delimited 

environment of body fluids, which enables precise regulation of the solution 

composition.   

This thesis describes a range of biomimetic studies which have investigated key 

aspects in the formation and structural organization of calcium carbonate.  Of 

interest were the influence of additives and physical confinement on the formation 

and transformation of amorphous calcium carbonate (ACC).  The studies revealed 

that both of these factors play key roles in controlling ACC crystallisation.  Additives 

which inhibit crystallisation in solution can accelerate transformation of ACC in the 

solid state.  This effect was observed for all of the larger molecules examined, while 

the small molecules retarded crystallisation in both solution and the solid state.  

Investigation of ACC crystallisation in confinement, in turn, demonstrated that ACC 

dehydrates prior to crystallizing even in solution, and that nucleation of the first 

crystal phase in solution must occur by dissolution/ reprecipitation.   

Studies were also performed to characterise the “ammonia diffusion method” which 

is widely used in the precipitation of calcium carbonate.  Despite this, virtually 

nothing is known about the changes in solution conditions which occur during this 

process.  The analysis showed that the supersaturation remains relatively high and 

constant throughout most of the process, which potentially enables multiple 

nucleation events to occur in a single experiment.  These results were then used to 

develop a one pot method which offers comparable reaction conditions.  
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Finally, Bragg coherent diffraction imaging (BCDI) was used to characterise calcite 

crystals precipitated on self-assembled monolayers (SAM), where these provide a 

mimic of the organic matrices used to control crystallisation in organisms.  Initial 

observations of the growth and dissolution of calcite by BCDI allowed the 

visualization of the 3D dislocation network present within a single crystal. 

Examination of crystals grown on SAMs, in contrast, showed that a build-up strain 

causes the formation of a single dislocation loop, where this is correlated with the 

morphological development of the crystal.  
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Figure 3 - 1:  Characterization data of “high pH” ACC using (a) IR-, (b) Raman 

spectroscopy, (c) TEM and (d) SED, where the inset in (c) shows the electron 

micrograph corresponding SEAD pattern.  Finally given in (e) is a PXRD pattern collect 

from an ensemble of “high pH” ACC.(152) ................................................................. 100 

Figure 3 - 2:  (a) Plotted is the transmittance recovery as a function of time after mixing two 

solutions of 1 M CaCl2 and 1 M Na2CO3/ 30 mM NaOH containing 200 ppm of the 

additives, poly(styrene sulphonate) (PSS), Aspartic acid (Asp), poly(aspartic acid) 

(PAsp), bis(2-ethylhexyl)sulfosuccinate (AOT) or 10 mM of Mg
2+
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2-
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into 3 discreet stages of precipitation - (i) formation of ACC, (ii) onset of transmittance 

recovery and associated crystallisation of ACC and (iii) complete transmittance 

recovery as crystallisation and sedimentation progresses.  Presented in (b) and (c) are 

IR spectra aquired of isolated precipiate at distinct stages (i to iii) of pure ACC and 

addive incorporating/ occluding ACC.  Stage (i) coresonds to the initall ACC formation 

– broad band at 711 cm
-1

.  (ii) crystallisation of pure ACC to vaterite -emerging band at 

743 cm
-1

, no crystalline phases of calclium carbonate were observe at this stage for 

the addtive containing ACC.  (iii) detection of calcite (711 cm
-1

) and vaterite across all 
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Figure 3 - 3:  Dissolution behaviour of “high pH” ACC samples prepared in the presence of 

different types and amounts of additives: Mg
2+

, SO4
2-

,Asp, PAsp, PSS and AOT.  

Presented are averaged dissolution profiles of three repeats given with positionally 

selected standard deviation.(152) ............................................................................... 105 

Figure 3 - 4:  Shown are dissolution progress – time profiles of calcium carbonate 

precipitates prepared by different methods.  Dissolution profiles were recorded in an 

undersaturated solution of 250 ml with respect to the most stable polymorph (calcite 

~10 mgl
-1

) given added mass of 1 mg.  Profiles are shown for ammonia diffusion 

method (ADM calcite) (5-10 μm in diameter), ACC precipitated by direct precipitation 

(direct ACC), ACC precipitated at high pH (“high pH” ACC), ACC precipitated using the 

ammonia diffusion method (ADM ACC) and commercial nano-sized calcite (nano 

calcite) all with an apparent diameter of 50-150 nm.  Presented are averaged 

dissolution profiles of three repeats given with positionally selected standard 
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Figure 3 - 5:  Electron micrographs and SEAD pattern of (a) pure ACC after heating at 10
o
C 

min
-1

 to 70
o
C followed by an annealing period of 12 hours at 70

o
C and (b) pure ACC 

after heating at 10
o
C min

-1
 to 350

o
C followed by an annealing period of 3 hours at 

350
o
C.  (c) ACC formed in the presence of 200 ppm PSS (25°C) and (d) after heating 

at 10
o
C min

-1
 to 70

o
C followed by an annealing period of 12 hours at 70

o
C.(152) ..... 109 

Figure 3 - 6:  Given are IR spectra of (a) pure ACC and (b) ACC prepared in the presence of 

PSS and AOT before and after heating. The samples were heated at a rate 10
o
C min

-1
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to 70
o
C or 350

o
C, followed by an isothermal annealing period at 70

o
C for 12 hours or 

350
o
C for 3 hours.(152) ...............................................................................................111 

Figure 3 - 7:  TGA (a)/ DSC (b) profiles of ACC synthesized by mixing 1 M CaCl2 with 1 M 

Na2CO3 / 30 mM NAOH in the presence or absence of selected additives.  The profiles 

were obtained at a heating rate of 25°C min
-1

 under nitrogen flow.  Additive spiked 

samples reveal a shift in crystallisation temperature.  Identical amounts of sample ( 

10 mg) were used in all runs.  A tabular overview of key parameter and starting 

additive concentration is given in Table 5. ..................................................................113 

Figure 3 - 8:  Shown are sections of DSC scans obtained from the analysis of pure and 

additive retaining “high pH” ACC samples showing the peak corresponding to the 

transition from ACC to calcite.  DSC scans were obtained at a heating rate of 15
o
C 

min
-1

.(152, 205) ...........................................................................................................117 

Figure 3 - 9:  Plotted is recorded crystallisation progress of ACC samples formed in the 

presence of Mg
2+

, SO4
2-

, Aspartic acid (Asp), poly(aspartic acid) (PAsp), poly(styrene 

sulphonate) (PSS), poly(aspartic acid) (PAsp) and bis(2-ethylhexyl)sulfosuccinate 

(AOT), versus temperature as obtained by DSC.  Crystallisation progress was 

calculated by crystallisation associated exothermic peak integration and following 

normalisation (0-1).  DSC scans were performed with an applied heating rate of 15
o
C 

min
-1

.(152) ...................................................................................................................118 

Figure 3 - 10:  Plotted are the progress of crystallisation versus temperature of ACC 

prepared by mixing 1 M CaCl2 with 1 M (NH4)2CO3/ 30 mM NaOH in the absence or 

presence of PAsp, PSS and Mg
2+

.  The progress of crystallisation was estimated 

based or recorded intensity changes of the [104] peak of calcite (I0) with respect to the 

maximum intensity measured after complete crystallisation (Imax) measured by PXRD 

analysis of samples heated in situ.(152) .....................................................................121 

Figure 3 - 11:  Characterisation of prepared silica-coated ACC (ACC-SiO2).  Given in (a) and 

(b) are transmission electron micrographs of ACC-SiO2 encapsulates as formed and 

after dissolution of the calcium carbonate core.  (c) IR spectrum and (d) TGA of ACC-

SiO2 encapsulates as prepared.  Further provided are PXRD pattern acquired from of 

ACC-SiO2 encapsulates after heating to (e) 220
o
C and (f) 550

o
C. B-Belite.(95) ........132 

Figure 3 - 12:  TGA of silica shells formed by leaching the calcium carbonate from ACC-

SiO2 particles.  Dissolution of the calcium carbonate core was realized by immersing 

~500 mg of prepared ACC-SiO2 encapsulates in 250 mM HCl (50 ml) for 24 hours.  A 

heating rate of 15°Cmin
-1

 was applied.(95) .................................................................133 

Figure 3 - 13:  Summary detailing the crystallisation/ dehydration of ACC-SiO2 encapsulates 

upon re-suspension.  Given in (a) and (b) are scanning electron micrographs of ACC-

SiO2  after incubation in solution for 0 mins and 500 mins.  (c) IR spectra and (d) TGA 

of ACC-SiO2 encapsulates, showing the structural and compositional changes in 

encapsulates with incubation in solution.(95) .............................................................135 
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Figure 3 - 14:  Characterization of pure ACC particles coated with a porous silica shell, 

formed by the delayed addition of sodium silicate and their dehydration in solution.  

Scanning electron micrographs collected with increasing time in solution (a-d) 

demonstrate clearly that the silica shell is not completed on all ACC particles allowing 

a rapid dissolution and formation of calcite.  (a) Initially prepared particles identical in 

appearance to ACC-SiO2 encapsulates.  (b) Silica-coated ACC by delayed addition 

after 180 minutes in solution, showing the presence of (c) empty silica shells and (d) 

calcite.  Observations are supported by ex-situ collected IR spectra.  Formed calcite 

presents a constant background in IR spectra (e).  Collected TGA profiles show a 

similar dehydration behaviour as seen for ACC-SiO2 encapsulates (f).(95) ............... 136 

Figure 3 - 15:  Shown is the observed crystallisation and dehydration of ACC-Asp-SiO2 

encapsulates prepared by combining equal volumes of 10 mM Na2CO3/ 6 mM Na2SiO3 

and 10 mM CaCl2/ 5 mM aspartic acid in comparison with Asp-ACC and pure ACC-

SiO2 encapsulates.  (a) TGA and (b) IR spectra of ACC-Asp-SiO2 after different 

incubation times in solution.  Performed identical to ACC-SiO2 encapsulates.  

Emerging vibrational band at  714 cm
-1

 is selective to crystalline calcium carbonate 

observed in given IR spectra after 18 hours, with the first hint of crystallinity appearing 

after  5 hours.  Provided in (c) and (d) are IR spectra of ACC-SiO2 ( ̶ ), ACC-Asp ( ̶ ) 

and ACC-Asp-SiO2 ( ̶ ) after incubation in solution for (c) 0 mins and (d) 60 mins.  

Revealing the emergence of vibrational bands of vaterite and or calcite selective for 

the ACC-Asp particles after 60 mins of incubation, while coated ACC specimen still 

remain amorphous at this time.(95) ............................................................................ 138 

Figure 3 - 16:  Summary detailing the crystallisation of ACC particles coated with lipid 

bilayers upon re-suspension.  Provided in (a) and (b) are laser scanning confocal 

micrographs of ACC bilayer aggregates taken directly after preparation and after 4 

days of re-suspension in water respectively.  (c) IR spectra and (d) TGA profiles of 

ACC coated with lipid bilayers isolated and characterized after certain incubation 

periods in solution.(95) ................................................................................................ 140 

Figure 3 - 17:  Overview showing the crystallisation of uncoated ACC particles with 

increasing temperature exposure.  Given in (a) is the total observed change in weight 

percent of water (Total wt%) and corresponding molecular composition of ACC 

(CaCO3: xH2O) upon heating to and isothermal storage at a predefined temperature as 

obtained by TGA shown for a temperature range of 25ºC to 400ºC.  Provided in (b) 

and (c) are electron micrographs of uncoated ACC after isothermal annealing at 30°C 

and 200°C respectively.  (d) IR spectra of ACC particles after the exposure to a 

heating procedure involving a ramp (15°C min
-1

), followed by isothermal annealing 

(100 min) and a second ramp (15°C min
-1

) step.(95) ................................................. 143 

Figure 3 - 18:  TGA (a) and DSC (b) profiles obtained from uncoated ACC particles 

undergoing a full heating cycle i.e. from dehydration to anhydrous ACC, crystallisation 
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(b) and eventual decomposition to calcium oxide.  Uncoated ACC was prepared by the 

direct combination and immediate isolation of formed precipitate of equal volumes of 

(0.5-1.5 ml) of 1 M (NH4)2CO3 (pH 9.15) with 1 M CaCl2 (pH ~6.8) at 4
o
C.  A heating 

rate of 15°C min
-1

 with a single isothermal annealing period (for 100 min at 55, 95 or 

115°C) was used.(95) .................................................................................................144 

Figure 3 - 19:  Profiles provided in (a) detail the crystallisation progress of uncoated ACC 

samples under heating with an intermediate annealing period (135°C for 100 min), as 

derived from DSC scans performed with applied heating rates of 10, 15, 20
 
and 25

o
C 

min
-1

.  Stated progress of crystallisation, 0-1, is obtained by integration of the 

crystallisation associated exothermic peak area in obtained (b) Corresponding Boswell 

plot.(95) .......................................................................................................................145 

Figure 3 - 20:  Given are scatter plots presenting calculated dehydration activation energies 

(EA) as a function of the degree of dehydration (α) (bottom scale) and molecular 

composition of ACC CaCO3: xH2O (all water) (top scale).  (a) uncoated ACC and (b) 

ACC-SiO2 encapsulates.  The standard deviation of measurements is represented in 

the error bars given.(95) ..............................................................................................148 

Figure 3 - 21:  Categorizing the progress of ACC dehydration.  Presented are dehydration 

cures of ACC and ACC-SiO2 encapsulates as a function of temperature (T) or time (t) 

(Single data points).  Presented alongside with best fits to the common solid state 

reaction models given in Table 1 (continuous lines).  Given in (a) is the general 

dehydration profile of uncoated ACC upon heating shown over the range of 20 - 

220ºC, freed from kinetic drag as a result of constant heating.  (b) and (c) provided 

specific, normalized ranges of this dehydration process.  (b) representing the range 40 

- 140ºC, fitted by a geometric contraction model and (c) shows the range 140 - 220ºC, 

fitted by a second order nucleation model.  Depicted in (d) is the dehydration of 

uncoated ACC by isothermal annealing (40
o
C).  Provided in (e) the dehydration of 

ACC-SiO2 encapsulates as a function of time on incubation in solution (25
o
C).  

Experimental dehydration curves – each given point corresponds to average observed 

weight loss during a series (x3) of separate isothermal/solution annealing experiments.  

Stated weight loss was obtained from the end point of isothermal/ solution annealing 

periods.  α is equal to the total fraction of water (Figure 3-20); αN refers following to the 

normalized weight fraction of water lost over a specified temperature range (0 - 1).(95)

 ....................................................................................................................................152 

Figure 3 - 22:  Depicted in given schematic are the idealized succeeding stages of ACC 

dehydration.  Starting from hydrated, wet ACC (a) to the loss of surface-bound water 

(b).  Continuing from (b) to (c) water is lost from the inner of the ACC concurring with 

particle compaction.  Further dehydration leads to the expulsion of deeply located 

water and hydroxyl ions (d) and the crystallisation to calcite (e).(95) .........................153 
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Figure 3 - 23:  Provided are 
1
H solid state NMR spectra of (a) uncoated ACC particles and 

(b) ACC -SiO2 particles isolated from the process at specific known degrees of 

dehydration as determined in reference by TGA.  ACC-SiO2 particles were isolated 

from solution, uncoated ACC particles were prepared by means of isothermal heating.  

Samples for SSNMR were kept at 40°C for one hour prior to the 

measurements(175).(95) ............................................................................................ 155 

Figure 3 - 24:  Schematic representation of the production of ACC by freeze concentration.  

Illustrated in (a) are the particular phase changes of used solvent during the 

production process from liquid to solid upon freezing (red arrow) and solid to gas 

during sublimation i.e. vacuum application (blue arrow).  (b)  Illustrates the formation 

process of ACC upon the selective crystallisation of present solvent.  (1) Saturated 

CaCO3 solution is (2) plunged into LN2 (3) upon which the solvent begins to freeze, 

creating localized environments of increasing supersaturation, (4-5) leading to ACC 

precipitation and (6) followed by final solvent solidification and ACC stabilization.  (c) 

provides line plots with suggested changes in supersaturation and solution volume 

accompanying the freezing of present solution.  Reproduced and altered after (175).

 .................................................................................................................................... 162 

Figure 3 - 25:  (a) TEM, and (b) SEM images of ACC produced via freeze-drying.  The inset 

in (a) provides an EDX spectra of formed ACC.  TEM - sample is supported by a nickel 

grid.  (c) Particle size distribution of produced ACC measured using DLS of particles 

suspended in ethanol.(175) ........................................................................................ 164 

Figure 3 - 26:  (a) Raman-, (b) IR spectra,(c) PXRD pattern and (d) TGA acquired of ACC 

obtained via freeze concentration and by direct combination.  The inset in (a) shows a 

comparison of the peak widths of both samples 1088 cm
-1

.(175) .............................. 166 

Figure 3 - 27:  Raman spectra of ACC obtained via freeze concentration, held under 

ambient atmospheric conditions.  Shown is a series of spectra collected over a time 

frame of 6 weeks.(175) ............................................................................................... 167 

Figure 3 - 28:  IR spectra of ACC obtained via freeze concentration, held under ambient 

atmospheric conditions.  Shown is a series of spectra collected over a time frame of 6 

weeks. ......................................................................................................................... 168 

Figure 3 - 29:  Electron micrograph and example EDX spectra of ACP obtained via freeze 

concentration of saturated calcium phosphate solution.(175) .................................... 169 

Figure 3 - 30:  (a) Raman and (b) IR spectra of ACP obtained via freeze concentration and 

by direct combination of 200 mM CaCl2 and 200 mM Na2HPO4 7H2O.  (c) PXRD of ACP 

obtained via  freeze concentration.  (d) TGA of ACP obtained via freeze concentration. 

(175) ............................................................................................................................ 170 

Figure 3 - 31:  (a-c) Examples of calcium oxalate crystals used as active defence structures 

in plants.  (a) A living raphide idioblast, (b) an idioblast after pressure is applied, the 

cell tip is cracked and the raphide crystals are forcibly expelled.  (c) SEM of the 
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raphide crystals displaying the sharp tips and grooves (→).(122)  (d) Schematic 

depicting the idealized formation of calcium oxalate crystals in idioblasts.  Calcium is 

actively accumulated with the xylem and is distributed among cells in the leaf via the 

cell wall, crystal idioblasts accumulate Ca via ion pumps.  Oxalate can be generated 

from ascorbate in crystal idioblasts directly and transferred to the vacuole along with 

imported calcium.  In this particular model, calcium and oxalate are transferred across 

the crystal chamber membrane and added to the growing facets.  Crystals of particular 

length do no longer add Ca and oxalate, proteins interacting at the growing crystal 

facet may regulate precipitation or shape in this regard.  The “mechanisms for transfer 

of Ca and oxalate to the vacuole and into the crystals have not been identified”(122).  

Reproduced after (122). ..............................................................................................174 

Figure 3 - 32:  Electron micrographs of calcium oxalate precipitates extracted from 

bulk experiments.  Samples were obtained by the direct equimolar combination 

of 10 ml CaCl2 and 10ml Na2C2O4.  Starting concentrations are given on the left 

hand side.  Samples prepared by Yun-Wei Wang. ...............................................176 

Figure 3 - 33:  (a-d) Electron micrographs of calcium oxalate precipitates extracted 

from bulk experiments in the presence of PAA fixed at 50 μg ml
-1

.  Samples 

were obtained by the direct equimolar combination of 10 ml CaCl2 and 10ml 

Na2C2O4.  Stating concentrations are given on the left hand side. .....................177 

Figure 3 - 34:  Micrographs of calcium oxalate thin films formed on the crystallisation 

substrate (glass).  Presented in (a) is an optical micrograph of found film.  Given 

in the inset is the sample under cross polarizers.  (b) the film after heating to 

180°C for 3 hours under crossed polarizer.  Presented in (c) and (d) are electron 

micrographs of thin films as found present and after heating to 180°C for 3 

hours.  Precipitates were prepared by the direct combination of equimolar (5 mM) 

combination of 10 ml CaCl2 and 10ml Na2C2O4/ 50 μg ml
-1

 PAA. ..............................178 

Figure 3 - 35:  Calcium oxalate precipitation in wedge geometry.  Provided is a schematic of 

experimental set-up, depicting the increasing surface separation/ decreasing 2D 

confinement away from the contact point of TEM grid and half cylinder. ...................179 

Figure 3 - 36:  Calcium oxalate precipitation in wedge geometry.  (a-f) provide electron 

micrographs of precipitates present at decreasing surface separation between the 

TEM grid and the cylinder.  The surface separation for a given precipitate is provided 

on the left hand side of the respective image.  Further provided is an electron 

diffraction pattern as inset in (f), which demonstrates the amorphous nature of 

present precipitates close to the contact point of TEM grid and crossed 

cylinders.  Starting concentrations of 2 mM CaCl2 and Na2C2O4 were used.  

Experiment was performed by Yun-Wei Wang. ........................................................181 

Figure 3 - 37:  Calcium oxalate precipitated in track-etch membranes.  (a) schematic 

of experimental set-up used.  Further provided are (b) scanning – and (c) 
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transmission electron micrographs.  (d) TEM corresponding electron diffraction 

patterns obtained from rod shaped precipitate after 12 hours (i) in solution and 

after 2 weeks (ii).  (ii) Diffraction pattern is corresponding to COM.  Starting 

concentrations of 2mM CaCl2 and Na2C2O4/ (PAA 50 μg/ml) were used. ......... 183 

Figure 3 - 38:  Amorphous calcium oxalate prepared by rapid freezing of saturated 

solutions.  Presented in (a) are scanning and transmission micrograph of the obtained 

ACO.  (b) SEAD diffraction pattern.  Further given are structural and compositional 

information of the formed ACO.  The acquired Raman and IR spectra are given in (c) 

and (d) respectively, together with their spectra after atmospheric crystallisation to 

COM  (ACO in red, COM in black).  Raman spectra were collected on a glass 

substrate.  TGA is presented in (f), a heating rate of 15°C min
-1

 was used.  Data was 

collected under N2 flow. .............................................................................................. 186 
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Figure 4 - 1:  Schematic diagram of the experimental set-up and methods used to determine 

the concentrations of aqueous Ca
2+

 and CO3
2-

 ions.  Aliquots were removed with time 

and quenched with ethanol, the [Ca
2+

] was determined using atomic absorption (AA), 

and the [CO3
2-

] using ion-chromatography (IC).  Image taken from (169). ................. 195 

Figure 4 - 2:  Time-resolved profiles of calcium carbonate precipitation using the ADM, with 

reaction conditions: 25 mM CaCl2, 70 ml, 3 g ammonium carbonate, 2.6 l reaction 

chamber, no additional diffusion boundaries.  The data shown are averages of three 

experiments, and the error bars show the standard deviation in the values. (a) 

Transmission, (b) pH, (c) supersaturation, (d) calcium activity, (e) carbonate activity, (f) 

crystallisation progress.  Image taken from(169). ....................................................... 199 

Figure 4 - 3:  (i) Time-resolved transmittance profile showing the change in transmittance 

occurring during CaCO3 precipitation using the ammonia diffusion method (70 ml, 25 

mM CaCl2, A = 48 cm
2
, 3 g ammonium carbonate, 2.6 l head space, no additional 

diffusion boundaries).  (ii) IR analysis of samples isolated at key times in the reaction 

were (a) ACC, (b) vaterite and (c) calcite.  Here, the peak at 748 cm
-1 

is a fingerprint 

for vaterite, while the peak at 712 cm
-1

 identifies calcite.  Image taken from (169). ... 200 

Figure 4 - 4:  A typical pH profile for an ADM experiment (70 ml, 25 mM CaCl2, A = 48 cm
2
, 3 

g ammonium carbonate, 2.6 l head space, no additional diffusion boundaries) which 

shows the establishment of a constant solution pH (9.25) after 20 hours.  Image taken 

from (169). ................................................................................................................... 200 

Figure 4 - 5:  Surface plot of the equilibrium pH=f(P[NH3], P[CO2]) in a calcium-carbonate-
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Figure 4 - 6:  Comparison of Total Carbon addition rates, (a) experimental, (b) theoretical (c) 

theoretical k1 only, (d) experimental pure diffusion no calcium chloride.  Image taken 

from (169). ...................................................................................................................206 

Figure 4 - 7:  Time-resolved profiles of calcium carbonate precipitation experiments using 

the ammonia diffusion method, studying the influence of changes in initial amounts of 

ammonium carbonate added (1.5g, 3g and 5g). Experimental conditions 70 mL of 25 

mM CaCl2, 48 cm
2
 surface area,

 
2.6 l head space, no additional diffusion barriers). ― 

1.5 g, --- 3 g, -•- 5g, ▲ 1.5g, •3g, ■ 5g (NH4)2CO3.  Image taken from (169). ............209 

Figure 4 - 8:  Time-resolved profiles of calcium carbonate precipitation experiments using 

the ammonia diffusion method studying the influence of initial CaCl2 concentration (10 

mM, 25 mM and 50 mM). Experimental conditions 70 mL of x mM CaCl2, 3 g (NH4)2CO3, 

48 cm
2
 surface area,

 
2.6 l head space, no additional diffusion barriers). ―10mM, --- 

25mM, -•- 50mM, ▲ 10mM, • 25mM, ■ 50mM CaCl2.  Image taken from (169). ..........211 

Figure 4 - 9:  (i) SEM images and corresponding (ii) Raman spectra of calcium carbonate 

precipitates obtained via the ADM after 100 minutes under reaction conditions of 70 

ml, 3 g ammonium carbonate, 48 cm
2
, 2.6 l head space, no additional diffusion 

boundaries and (a) 25 mM CaCl2, no agitation (Calcite+Vaterite), (b) 25 mM CaCl2 and 

100 rpm agitation (Calcite+Aragonite), (c) 50 mM CaCl2, no agitation (Calcite), (d) 10 

mM CaCl2, no agitation (Vaterite+Calcite).  The CaCO3 polymorphs can be identified 

based on characteristic peaks, where peaks at 1085, 711, 281 and 155 cm
-1

 identify 

calcite, peaks at 1085, 705, 208 and 155 cm
-1

 aragonite and peaks at 1093, 1066, 

753, 713 and 300 cm
-1

 vaterite.(169, 309) ..................................................................212 

Figure 4 - 10:  Time-resolved profiles of calcium carbonate precipitation experiments using 

the ammonia diffusion method studying the influence of solution surface areas (13 

cm
2
, 48 cm

2
, 58 cm

2
).  Experimental conditions 70 ml of 25 mM CaCl2, 3 g (NH4)2CO3, 

x cm
2
 surface area,

 
2.6 L head space, no additional diffusion barriers). ―13cm

2
, --- 

48cm
2
, -•- 58cm

2
, ▲ 13cm

2
, • 48cm

2
, ■ 58cm

2
.  Image after (169). ...........................213 

Figure 4 - 11:  Time-resolved profiles of calcium carbonate precipitation experiments using 

the ammonia diffusion method studying the effect of solution agitation (100 rpm).  

Reaction conditions 70 ml of 25 mM CaCl2, 48 cm
2
 surface area,

 
3g ammonium 

carbonate, 2.6 liter head space, no additional diffusion barriers).  ― Stirring 100 rpm, -

-- Stagnant, ■ Stirring 100 rpm, •Stagnant. Image taken from (169). .........................216 

Figure 4 - 12:  Schematic of the mechanically driven slow addition setup used for 

mesocrystal and thin film replication. ..........................................................................218 

Figure 4 - 13:  Electron micrographs of produced mesocrystal.   (a) 1.25 mM CaCl2 ADM, (b) 

1.25 mM CaCl2 Slow Addition, (c) 5 mM CaCl2 ADM, (d) 5 mM CaCl2 Slow Addition.  

Image taken from (169). ..............................................................................................219 

Figure 4 - 14:  Characterization data of pseudo-octahedral CaCO3 mesocrystals obtained in 

the presence of PSS-MA, and spectra of rhombohedral calcite crystals as reference.  
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(a) Raman and (b) IR spectra.  (c) TGA spectra of pseudo-octahedral CaCO3 

mesocrystals produced in the presence of PSS-MA by slow addition of reagents.  A 

heating rate of 5°C min
-1

 was applied.(169) ............................................................... 220 

Figure 4 - 15:  CaCO3 thin film formed via (a) ADM (80ml 10 mM CaCl2, 50 mgml
-1

 PAA, 48 

cm
2
 and 0.6 cm

2
 diffusion boundary pore surface area.) and via (b) via slow addition 

(20ml 175 mM (NH4)2CO3, 0.0148mlmin
-1

, 80ml 10 mM CaCl2, 50 after heat treatment 

(400°C, 300min). ......................................................................................................... 221 

Figure 4 - 16:  (a) Typical conductance urea/ urease calibration curve.  Stated are final 

conductance values recorded, a urease/ urea ratio of 0.178 mg/mM was used 

throughout.  (b) Michaelis-Menten and (c) Hanes–Woolf plot of urea/ urease hydrolysis 

obtained at 24°C a fixed amount of 22 μg ml
-1

 urease was used. .............................. 224 

Figure 4 - 17:  (a) Theoretical total inorganic carbon (CT) addition rates required for the 

production of CaCO3-PSS MA mesocrystals based on mechanical reagent addition (-- 

- -) and CT addition rates based on enzymatic hydrolysis of urea at 24°C and free pH 

drift with varying urease/ urea ratios (continuous).  (b) Experimentally obtained pH - 

time profiles of mechanical slow addition -20 ml of 250 mM (NH4)2CO3) added at 

0.0057 ml/min to a 80 ml of solution containing 325 ppm PSS-MA and 5 mM CaCl2 -, 

and enzymatic hydrolysis of urea from a 70 ml solution of 5 mM CaCl2, 40 mM urea, 1 

mg urease and 325 ppm PSS MA. ............................................................................. 225 

Figure 4 - 18:  (a) Scanning electron micrograph of CaCO3-PSS MA mesocrystals obtained 

after 48 hours of incubation from a 70 ml solution of 5 mM CaCl2, 40 mM urea, 1 mg 

urease and 325 ppm PSS MA.  (b) Raman and (c) IR-spectra of CaCO3-PSS MA 

mesocrystals obtained by the controlled enzymatic hydrolysis of urea. ..................... 226 

Figure 4 - 19:  (a) Scanning electron micrographs of CaCO3 PSS-MA mesocrystals retrieved 

from the mineralizing solution after 12 hours, 14 days and 28 days given from left to 

right. (b) Measured surface area, (c) polymer “occlusion” and (d) fractal index changes 

with aging in solution.  Mesocrystals were prepared by adding a carbonate containing 

reagent solution (20 ml of either 250 mM (NH4)2CO3) at 0.0057 mlmin
-1

 to a 80 ml of 

solution containing 325 ppm PSS-MA and 5 CaCl2, under agitation at 70 rpm. ......... 229 

  

Chapter 5 

Figure 5 - 1:  Principle of Bragg Coherent Diffraction Imaging.  1. Experimental acquisition of 

coherent 3D diffraction pattern.  Diffracted beams (aqua) emitted by an isolated 

specimen (green) exited by a spatially coherent wave (blue) exceeding the specimen 

size and undergoing rocking motion are collected by an area detector (2D) and are 

then stacked (3D).  2. The collected 3D pattern (1) is passed to a phase retrieval 

algorithm moving between real space and reciprocal space (1 ↻ 4) till autocorrelation 

between measured amplitude and retrieved amplitude with an evolving phase is 
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established.  This yields a complex function of amplitude (electron density) and phase 

(lattice displacement) as a product of scattering vector Q (h,k,l) and lattice 

displacement field u.  (3) Fourier transformation of the now known phase and 

amplitude returns a 3D, tomographic representation of the crystal.  An example is 

shown of a calcite rhombohedron nucleated in solution 1 µm in diameter.  Schematic 

reproduced and extended after (197) and (196). ........................................................242 

Figure 5 - 2:  Illustration of a basic phase retrieval algorithm.  This starts from a collected 3D 

CDX pattern to which a phase is guessed and inverse Fourier transformed (F
-1

).  A 

support constraint (opaque box) is then applied and a Fourier transformation carried 

out.  A modulus constraint with the measured intensity is enforced next.  The process 

is then repeated under evolution of guessed phase till a self-consistent solution is 

found.  Image taken from (196). ..................................................................................246 

Figure 5 - 3:  Illustration highlighting the relationship between the local lattice displacement 

and the alteration in real space phase carried over into the CXD pattern.  Shown is a 

generic lattice arrangement (blue) in which a block of material is displaced from its 

ideal position (pink) by a vector or u(r).  The phase of X-rays scattered by the 

displaced block is therefore shifted relative to the material in perfect register 

(highlighted in green), with the total amount given by ϕ(r) = kf ∙ u(r)-ki ∙ u(r) = Q ∙ u(r).  

ϕ(r) is equal to the phase.  k the incoming and scattered wave vector and Q the 

scattering vector, set to a Bragg condition.  In the Bragg condition every part of the 

perfect crystal scatters in phase – with areas of displacement and phase shift 

becoming a region of complex density with the same amplitude as the rest of the 

crystal but with a phase ϕ(r).  The scattering vector Q is given by Q = 4πsinθ/λ.  2θ 

the angle between the incident wave and the detector.  Illustration reproduced after 

(196, 340). ...................................................................................................................248 

Figure 5 - 4:  Schematic illustrating the formation (a), overgrowth (b) and repeated partial 

dissolution (c) of calcite formed on hydroxyl terminated SAMs.  From left to right given 

in (a) is the urea-urease hydrolysis based nucleation and deposition of calcite 

rhombohedra.  (b) Overgrowth of the formed rhombohedra is achieved by addition of 

calcium bicarbonate solution and subsequent solvent evaporation.  (c) Repeated 

partial dissolution of the calcite crystals is achieved by the repeated addition of acetic 

acid solution onto the substrate, followed by its removal and a washing step. ..........254 

Figure 5 - 5:  Summary of BCDI observations.  Presented are separately reconstructed 

images of a calcite rhombohedra sitting on a (104) facet as formed (i), after secondary 

overgrowth (ii), and (iii & iv) after consecutive dissolution steps.  Shown are from left to 

right, top - down, side and bottom - up perspectives.  Given in (a) is the electron 

density (reconstructed amplitude) and in (b) projected displacement (phase).  These 

highlight the shape transition during growth (prominent surface advance,→) towards 

steady state and equilibrium shape adoption - dissolution (→).  The primary screw 
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dislocation identified is marked (→).  The beam enters along the z - axis, with the y 

axis vertical to z.  Crystal and substrate are located at a set scattering angle towards 

the beam direction (z) and spanned plane (x-z).(199) ................................................ 258 

Figure 5 - 6:  Electron micrographs of calcite rhombohedra as deposited (i), after secondary 

overgrowth (ii), and (iii & iv) after consecutive dissolution steps.  Evident is the initial 

increase in particle volume with crystal overgrowth (ii).  This is followed by shrinkage, 

etch pit formation, surface roughening (iii) and a porous “spherical” isometric 

appearance of the calcite crystal (iv).(199) ................................................................. 259 

Figure 5 - 7:  Central cut slices through the imaged crystal’s electron density (amplitude) – 

top row - and projected displacement – bottom row.  Central sections are shown of the 

initial crystal after growth (ii) and repetitive dissolution steps (iii & iv).  Provided are two 

viewing directions top down (a) and side (b) not corrected for the set scattering angle.  

Pointed out are the initially detected regions, possessing both a low-amplitude core 

(white arrows) and spiral deformation (circular blue arrow).(199) .............................. 261 

Figure 5 - 8:  Provided is a comparison between a simulated screw dislocation at atomic 

resolution (top) and a simulated screw processed by BCDI scripts applied (bottom). (a) 

simulated screw, (b) simulated screw Fourier transformed and BCDI processed.  (c) 

and (d) simulated screw with given resulting displacement respectively rendered on 

top.  (e) and (f) secondary viewing angle revealing the retention of both hollow core 

and spiral displacement after BCDI processing of the simulated screw.(199) ........... 262 

Figure 5 - 9:  Given are iso-surface renderings of defects within calcite.  Presented are 

dislocations (hollow core + spiral displacement) identified by BCDI in deposited calcite 

(i) after growth (i-ii) and dissolution (ii-iv) within overall crystal shape – transparent 

electron density. From left to right given are top-down, side and bottom up 

perspectives.  Dislocations are primarily identified near crystal surfaces, observed to 

actively grow in addition to one predominant screw dislocation present.  Later being 

substrate normal present across the whole crystal height (o).  Falsely identified 

dislocation (o).(199) .................................................................................................... 264 

Figure 5 - 10:  The total displacement measured over the course of an applied growth/ 

dissolution cycle (i-iv) vs fractional crystal size.  The centre of the crystal is equal to 0 

and the crystal surfaces are equal to 1.  The total displacement was calculated based 

on measured mean root means square displacement over increasing shell sizes.  The 

presented line plot highlights the diminishing/ increasing relevance of surface effects 

with growth and dissolution with respect to the crystal size/ volume.  Notable are the 

unequal starting strain percentages at low fractional sizes (centre of the crystal).  

These can be explained by the anisotropic growth of the crystal, which induces a shift 

in the centre of mass i.e. fractional size 0 shifts.(199) ................................................ 266 

Figure 5 - 11:  Electron micrographs of the inner nacreous layer of an Atrina rigida mollusc 

shell.  (a) Cross-sectional view of oriented aragonite tablets, (b) top – down view of 
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stacked layers.  Images taken from (372).  (c) Schematic illustrating the formation of 

sheet nacre.  (i) This starts from the formation of an organic scaffold and initial 

oriented nucleation of aragonite tablets.  (ii) Growth of aragonite tablets is limited in the 

c-axis direction by secondary layers of organic matrix.  (iii) Continued lateral growth of 

tablets.  (iv) Primary nacre layer completion.  (v) Nucleation of secondary tablet layer 

directed by mineral bridges connecting primary and secondary layer.  Schematic after 

(386). ...........................................................................................................................271 

Figure 5 - 12:  (a) Schematic showing an Organothiol molecule adsorbed on gold (111) in 

upright configuration.  (b) SAM monolayer formation (i) “physisorption” of Organothiol 

on gold, (ii) lying down phase, (iii) standing up process, (iv) completed monolayer.  

Schematics after (387).  (c) Scanning tunnelling microscope image of a 2D hexanethiol 

lattice- SAM on Au.  The bright spots indicate the position of the thiol molecules.  

Image taken from (387). ..............................................................................................273 

Figure 5 - 13:  Texture of calcium carbonate (calcite) precipitated onto carboxylate 

terminated organothiol SAMs supported on a thin gold film (111) deposited on glass.  

Presented are pole figures derived from powder diffraction data sets with a (113), 

(012), and (104) substrate normal (ND - normal direction, RD – rolling direction, TD – 

transverse direction).  Evident is the presence of two highly oriented populations (012) 

and (113) exposing homoionic substrate facing facets.  No crystals oriented with ({104} 

faces parallel to the substrate could be detected.  Difftractograms were collected for 

samples deposited on glass substrates -in contrast to the silicon waver supported 

crystals used in BCDI experiments - in order to avoid interference related to silicon or 

gold scattering . ...........................................................................................................277 

Figure 5 - 14:  Morphological progression of calcite nucleated on COOH terminated SAMs.  

Given are schematic (top), experimental observation –micrographs- (centre) and 

expected equilibrium morphologies (bottom) depicting the formation of preferentially 

oriented calcite nucleated on carboxylate-terminated SAM supported by a thin gold 

film.  (a) Diffusion of CO2 and NH3, into CaCl2(aq) causes ACC formation (●) and 

deposition onto the substrate in inverted droplets.  (b) Precursor depletion yields 

oriented tetrahedral calcite exposing three smooth 104 facets.  (c) Further growth 

leads to long axis vertex truncation and development of an additional facet.  (d) 

Further crystal growth, results in the complete transition of calcite tetrahedron to 

rhombohedral calcite.  Winterbottom reconstructions are of identical volume with 

stepwise increasing relative surface energy (γs; 0.1 - 0.9).  Crystal/ water interfacial 

energy values used were taken from Duffy.(110)  Further provided is a geometrical 

overview of terms used throughout. ............................................................................278 

Figure 5 - 15:  Summary of BCDI reconstructions.  Presented are 3 reconstructions obtained 

form 3 different crystals of calcite (i-iii) nucleated on a carboxylate-terminated SAM.  

(a) Reconstructed crystal shapes from BCDI amplitude measurements, and (b) the 
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projected displacements (–d/2 blue lattice dilation and +d/2 red contraction).  Substrate 

normal central cut slices through retrieved electron density (c) and projected 

displacement (d).  Given are cuts along the short axis (top) and the long axis truncated 

vertex direction through the isoperimetric point.  Surface cusps are highlighted (ο).  

The beam direction is along the z - axis, with the y axis oriented vertically.  The 

sample/ substrate is located at a set scattering angle towards the beam direction (z) 

and plane (x-z). ........................................................................................................... 280 

Figure 5 - 16:  Atomic force micrographs of gold film deposited on silicon wafer.  AFM 

measurements returned surface roughness of 1.4 nm (Rq) / 6.61 (Rmax). ............... 282 

Figure 5 - 17:  Electron micrographs of a sample prepared using FIB.  (a) SEM of oriented, 

“tetrahedral” calcite nucleated on a gold film supported SAM eventually cut.  (b) 

Selectively thinned tip of prepared lamella, morphologically originally located central 

beneath the long axis directly under the truncated vertex onset.  (c)  Presents a higher 

magnification of the front end of the tip.  Apparent is an area of peculiar phase contrast 

difference (decreased electron density) ~85 x 15 nm. ................................................ 283 

Figure 5 - 18:  Iso-surface rendering of defects present within oriented calcite crystals.  

Highlighted are defects present in oriented calcite which display both a low electron 

density core and surrounding spiral deformation field.  Evident is the defect 

accumulation (i) and singular dislocation loops (ii & iii) in the direction of the initial, 

elongated pyramidal axis (→). .................................................................................... 285 

Figure 5 - 19:  Projected displacement in the direction of the truncated vertex.  Shown is the 

recorded increase in projected displacement present on the substrate facing facet, 

with increasing fractional distance away from the suspected nucleation site (0) towards 

the newly-formed 104 facet (1) i.e. in the direction of thet dislocation loop.  The 

recorded increase in projected displacement is shown for all three reconstructions 

presented previously (i-iii).  The stars indicate the approximate location of the major 

dislocations (helical – black, dislocation loops – red and blue). ................................. 287 
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Introduction to the Thesis  

 

This thesis investigates the formation and structural evolution of calcium carbonate 

in consideration of biomineralization strategies.  Biomimetic studies revealed how 

changes in physical and chemical environment can not only influence the resulting 

mineral but also regulate the crystallisation pathway.  Results are discussed in view 

of classical and non-classical crystallisation theories.   A special emphasis is placed 

on the crystallisation of amorphous calcium carbonate (ACC).  

This thesis consists of six chapters.  Chapter 1 introduces the concepts of classical 

and non- classical crystallisation in reflection to biomineralization and calcium 

carbonate.  Chapter 2 provides an overview of cleaning, experimental and 

analytical techniques used throughout the thesis.  This is followed by three 

experimental chapters.   

Chapter 3 investigates the crystallisation behaviour of ACC and is divided into five 

parts.  First given is the current stand on the matter e.g. importance, formation, 

transitioning mechanism along with general characterisation and structural 

composition of ACC.  Followed by a study examining the effect a range of additives 

have on the crystallisation behaviour in solution and atmosphere.  The amorphous 

to crystalline transition in physical confinement in solution and its similarities to solid 

state transition are discussed next.  Concluded by the development of a one-step 

synthesis method for ACC and its successful translation to secondary mineral 

systems.   

Chapter 4 focuses on the characterisation of commonly used vapour diffusion 

methods in the biomimetic synthesis of calcium carbonate.  Further discussed is its 

relevance to CaCO3 based mesocrystal formation.  Lastly given is an enzymatically 

driven true one pot synthesis alternative to common diffusion methods.  Allowing in 

situ inquiries into the formation process of CaCO3 based mesocrystal and polymer 

induced liquid precursor phases.  

Chapter 5 concentrates on the utilization of Bragg coherent diffraction imaging 

(BCDI) in visualisation and analysis of morphology corresponding strain motives in 

calcite.  After introducing the fundamental concept and limitations of coherent 

diffraction 2 case studies are presented.  First study highlights the fundamental 

notion of strain energy towards crystal growth and dissolution, following the growth 

and dissolution of a single crystal of calcite.  The second study investigates the 

effect of interfacial strain during mineral templating of calcite on functionalized self-

assembled monolayer.   

Chapter 6 Concludes presented body of work briefly summarizing important 

aspects, addressing open questions and future challenges. 
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1.1:  Biomineralization  

 

The controlled assembly of materials at the nanoscale and their integration/ 

translation into macroscopic devices is considered to be one major bottleneck in the 

advancement of material science and technology.  Harnessing properties emerging 

from the assembly on the nanometre level, enhanced surface and confinement 

effects and the “geometric” freedom in the design of crystalline materials among 

others bears great potential.  As of yet material scientist struggle with the necessary 

level of control and understanding of assembly process to make use of this 

potential at the necessary length scales.  That such levels of control are feasible is 

known, as set by the many examples found in nature.  

Biominerals in particular are a great example of this, where they are formed at 

ambient conditions in vertebrates and invertebrates alike.  By gentle manipulation of 

their constituents, they can produce oriented arrays of small crystallites purposely 

tuned for a particular function that are in combination harder and more fracture 

resistant than their synthetic mineral cousins.(1)  The prime example of an 

organism exerting this level of control down to the nano-scale and nucleation of the 

mineral phase can be found in any ocean.  Sea urchins are capable of forming 

“single crystalline” spicules from the larval stage, making up their endoskeleton, in a 

way that defies the common physical constraints imposed on single crystals.  The 

spicules are flexible, with curved facets, their axes are not crystalline axes and their 

outer morphology does not resemble any crystal structure.  Yet, on a macroscopic 

level they behave as a single crystal.(2-4)  

Biomineralization is a process where living organisms convert elementary building 

units actively taken from the environment into a solid mineral phase.  It occurs in all 

6 taxonomic kingdoms and dates back to the Neoproterozoic age.(5, 6)  One of the 

earliest scientific advances in the area was D’Arcy Tompson’s work “On Growth 

and Form” which was first published in 1917.  Using a geometrical approach 

Tompson described the beauty of shape and functionality of biominerals down to a 

microscopic level.(4)  

Biominerals are known to serve a wide range of functions in organisms, 

such as skeletal support in vertebrates and invertebrates, cutting and grinding in 

teeth and environmental protection.(7, 8)  Biominerals further supply the structures 

organism use to orient in gravitational or magnetic fields or even provide the actual 

optical lens as for example in brittle stars.(9, 10)  The latter represents an immense 
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feat in crystal orientation as each single crystal lens is aligned along its 

crystallographic c-axis to generate a lens which minimizes spherical aberration and 

birefringence.   

That biominerals can adopt this breadth of functionality and show an 

assortment of shapes and physical properties which exceeds what is synthetically 

possible, is not only based on their specific compositions.  Biominerals are 

intrinsically composite materials of an inorganic mineral phase and an organic 

matrix.  It is the tremendous level of control that an organism exerts during crystal 

formation and growth which is seen to be the key factor in generating this degree of 

versatility. 

Control is generally achieved through mineralization in localized zones in the 

organism.  Those zones provide the ability to maintain high enough levels of 

supersaturation to induce nucleation through physical delimitation (cellular vesicles) 

or diffusion limitations found on an extra-, inter- and intra-cellular level.  In all cases, 

biomineralization needs active promotion from the organism in the form of uphill 

diffusion or modifications in ion activity or pH in those compartments to induce, or 

temporarily prevent the mineralization process.  The actual control of the process 

can generally be divided into (i) biologically induced and (ii) biological controlled 

mineralization.  Biologically induced mineralization refers to heterogeneous 

nucleation due to interactions between biological activity with its environment; cell 

surfaces act as nucleation promoters.  Biological controlled mineralization relies on 

organic matrix mediated cellular activity to direct nucleation, growth and transport, 

such that the assembly of mineral units can create the observed complex shaped 

hierarchically ordered materials.(11)   

In the course of deriving this knowledge, four non-exclusive overarching 

mechanisms were identified.  These are the (i) oriented nucleation/ growth, through 

the interaction with templates and or other developing entities, (ii) the use of spatial 

confinement, (iii) the time resolved incorporation/ removal of additives present in the 

mineralizing solution and most central to the work presented here, (iv) the utilization 

of non-classical crystallisation mechanism such as oriented attachment of 

nanoparticles and the use of amorphous precursor phases.(12-14)  In combination, 

these mechanisms allow the creation of the purpose-optimised properties of 

biominerals, where these are influenced by their composition at the atomic scale 

and structural orientation from the nano scale, to the macro scale. 

Biomimetic crystallisation studies try to capture the essence of biomineralization 

mechanisms and apply the obtained knowledge to the synthesis of novel functional 
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materials.  On a first level physical and chemical approaches are used to mirror the 

structure, shape and orientation obtained in biominerals.  Crystallisation in 

confinement reproduces the small volumes in which biominerals are formed, and 

chemical assisted templating can be used to mimic the effect of surface 

functionalized cell and membrane surfaces.  The mirroring of chemical composition 

of biominerals, using additives, can generate similar composite structures and 

induce changes in morphology.(15-18)  This thesis follows in the footsteps of those 

studies and nurtures our understanding of how biomineralizing organisms achieve 

those levels of control in their mineral formation mechanism.  More specifically - 

what are the factors contributing to mineralisation control?  Are the proposed 

mechanisms really the ones that operate?  A special interest is placed on the 

crystallisation of amorphous calcium carbonate and oriented attachment.  On a 

fundamental level these studies allow us to take a step closer to answering the 

question “how do crystals grow?”  
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1.2:  Amorphous and Crystalline Solids  

 

Crystalline materials are a continuous presence in our everyday lives.  They 

traverse the disciplines of physics, chemistry, biology and material science.  They 

find applications as pharmaceuticals, life science products, ceramics and 

electronics.   

Crystallography - the study of the geometric arrangement of a crystals primary 

building blocks, has led to many scientific breakthroughs and Nobel laureates over 

the last century and will continue to do so.  As for amorphous materials, it is the 

renewed promise to obtain crystalline materials free from their geometrical confines 

that drives studies and inspiration forward.   

 

1.2.1:  Crystalline Solids  

 

1.2.1.1:  A Crystal 

A crystal is a finite body exhibiting periodic order in its elementary building blocks 

(atoms, molecules), i.e. conserving a long range order across its building blocks.  

Building blocks are positioned in a repetitive three-dimensional pattern, with each 

block bonded to his nearest-neighbour.(19)  The smallest unit of repeated 3D 

structural motive is defined as the unit cell.  Amplification of the former under 

certain symmetry operations (translation, rotation and reflection) will always return 

the crystal structure in its entirely. 

 On exploitation of this concept the position of each building block in any 

crystal can be defined according to Equation 1, given a particular structural motive, 

where r is equal to the translational vector of a building block.  a, b and c are the 

basis vectors of the unit cell and α, β and γ the angles of a structural motive.  In 

combination, this makes up the basic crystallographic reference system, Figure 1a, 

where u, v and w are natural integers.   

𝒓⃗ = (𝒓𝟎) + 𝒖 ∙ 𝒂⃗⃗ + 𝒗 ∙ 𝒃⃗⃗ + 𝒘 ∙ 𝒄⃗  ( 1 ) 
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1.2.1.2:  Crystallographic Reference System   

Seven distinct crystallographic reference or symmetry classes exist, where these 

are defined by their symmetry axes and unit cell vectors, listed in Table 1.  On a 

fundamental level only those 7 classes can possibly achieve the highest packing 

density of considered building blocks (atoms, molecules).  This is tangible - imagine 

the possible shapes that a milk carton can possess while achieving simultaneously 

the maximum number of milk cartons stored in a fridge. 

On a smaller level each unit cell can and will have a distinct arrangement of 

its building blocks.  In combination with symmetry classes, this makes up the 14 

unique structural arrangements of building blocks given by Bravais.(20, 21)  

Crystal System Lattice System Axial Length and Angles 

Cubic Cubic a=b=c     α=β=γ=90° 

Tetragonal Tetragonal a=b≠c     α=β=γ=90° 

Orthorhombic Orthorhombic a≠b≠c     α=β=γ=90° 

Monoclinic Monoclinic a≠b≠c     α= γ=90°; β>90° 

Triclinic Triclinic a≠b≠c     α≠β≠γ≠90° 

Hexagonal Hexagonal a=b≠c     α=β=90°; γ=120° 

Trigonal Rhombohedral a=b=c     α=β=γ≠90° 

Table 1:  The seven crystal systems 

 

1.2.1.3:  Indexing Crystal Faces and Directions    

Application of Equation 1 with a given atomic motif (Axial Length and Angles) 

creates a perfect crystal structure.  “A deduced geometric property of such a 

structure is that any straight line of arbitrary direction passing through the crystal 

will be divided by the atoms/spheres that it cuts through, or is tangent to, into finite 

segments recurring endlessly at regular intervals.  In the special case when such 

lines coincide with the directions of the vectors, a ,b or c  the lines are referred to as 

the lattice.”(22)   The plane a particular set of lattice intercepts spans – a lattice 

plane – is commonly used to describe crystallographic directions, set or family of 

planes or the morphologically expressed crystal facet.  The facets are the outer 

morphologically represented flat surfaces.  Miller indices are conventionally used to 

do this.  Miller indices h, k, and l are the fractional reciprocal intercepts that the 

plane in question creates with the crystallographic axis a, b and c.(21)  A notation of 

Miller indices in round brackets (h, k, l) refers to the specific plane while notation in 

square brackets [h, k, l] refers to the specific direction normal to the lattice plane.  
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For a family of symmetry related planes {h, k, l} or a family of directions <h, k, l> the 

notation is extended as given.  If one or more of these indices (h,k,l) is equal to 0 it 

means this particular plane does not intersect the crystallographic axis.  An 

illustration based on the cubic structure of sodium chloride (Halite) is given in 

Figure 1. 

 

Figure 1 - 1:  (a) Illustration of a generic cubic unit cell (a).  Given in (b) is the 
idealized equilibrium shape expression of a single crystal of halite (NaCl, cubic).  
Shown in (c) are the crystal structure and relative atomic position of Na (●), Cl (●) in 
halite.  A cubic unit cell is outlined in red.  

 

1.2.1.4:  Types of Crystalline Material  

A further distinction between two types of crystalline material, with identical crystal 

structures and compositions, is generally made.  Materials can be either single 

crystalline or polycrystalline.   

Single crystalline materials are defined by the absence of any grain boundaries 

or secondary grains in what on the outside appears to be, and ultimately is, a single 

finite body.  These materials exhibit a coherence length equal to macroscopic 
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dimensions and diffract as a perfect three-dimensional alignment of its building 

blocks (molecules, ions), Chapter 2.9.(23) 

Perfect single crystal materials rarely exist, due to crystallographic defects and 

impurities in the crystal structure.  The arrangement of building block is as a result 

distorted.  If the distortion moves past a critical threshold, a polycrystalline material 

is obtained.  Polycrystalline materials - in contrast to a single crystal are 

composed of a number of smaller crystals referred to as grains or crystallites.  

Grain boundaries are the interfaces between two grains.  The particular degree of 

miss-orientation in lattice planes between adjoining grains is what results in the 

analytical distinction from single crystal materials, and the grains diffract as 

separate entities.  It has to be said what is and what is not considered a single 

crystal is somewhat fluid depending on degree of miss-orientation between grains/ 

crystallites and the method of observation.  

1.2.1.5:  Polymorphism 

Polymorphism describes the ability of a material of identical composition to occupy 

a different crystal structure depending on the crystallisation conditions.  Each 

possibility is referred to as a polymorph and has its own set of physical parameters 

including thermodynamic stability and formation kinetics.  Since most solution 

crystallisation processes are governed by precipitation kinetics it is common to 

observe the successive formation and dissolution of multiple polymorphs.  This 

polymorphic cascade start with the least stable or metastable polymorphs and ends 

eventually in the most stable polymorph given certain constrains.  This is highly 

dependent on the given precipitation pressure, where this concept is summarized in 

Ostwald’s rule of stages, as shown schematically in Figure 1-2.(24)  
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1.2.2:  Amorphous Solids 

 
Amorphous matter – a material without defined shape and structure – is 

characterized by the absence of any long range order and mostly the absence of 

translational symmetry of its components.  This basically implies that the ideal 

amorphous material can be imagined to be a body in which all of its components 

are “ordered” in complete randomness.   

 Due to physical constrains we know that the ideal case seldom reflects what 

is commonly considered an amorphous material.  Most glasses, polymers, forms of 

iron oxides, carbonates, phosphates, ice and most liquids have been considered 

amorphous in the past.(16, 22, 25-27)  This comes with good reason - they do not 

possess any long range order.  But are they totally randomly arranged?  No. Short 

range order does exist, but is frequently limited to the second coordination shell. 

From a material science perspective an amorphous material is defined by the 

absence of any crystallinity.  This is confirmed through calorimetric techniques, with 

X-ray diffraction producing an “amorphous halo” and spectroscopic methods 

determining the present/ absence of specific bond correlations.(22)  With this in 

mind, it is obvious that determination of whether a particular material is amorphous 

is method-dependent and the distinction between amorphous matter or nano-

crystalline (defect rich) particles can therefore be blurry (Chapter 2.9.2.1).  
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Figure 1 - 2:  Schematic illustration of Ostwald’s rule of stages.  That details the 
possible crystallisation pathways under either thermodynamic control route A 
(Without any intermediate phases, high activation energy and slow reaction kinetics 
-red) or kinetic control route B (Sequential precipitation via metastable polymorph 
occurrence and associated lower activation barriers and faster reaction kinetics -
blue).  Which route is followed depends on the degree of precipitation pressure 
present, the activation energy associated with the formation of a polymorph (ΔG) 
and formation kinetics.  Intermediate amorphous precipitates as a potentially 
precipitating phase have been added for coherence reasons.  It is noted that 
amorphous phases do not represent an additional polymorph.  Reproduced from 
(28).  
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1.3:  Solution Crystallisation  

 

Solution crystallisation is a first order phase transformation process describing the 

abrupt phase transformation of solutes, which can be dissolved ions or molecules, 

to a long range ordered crystalline structure – a crystal.  Crystallisation can be 

described in wider terms as the one-sided competition of a system in minimizing its 

free energy or chemical potential (Δc), while retaining a maximal state of entropy.  It 

occurs only under the prerequisite of a thermodynamically unstable solution state.  

Crossing the phase boundary from liquid to solid occurs to return the system back 

to an equilibrium state.   

 Classically, crystallisation is considered to be a two-step process consisting 

of nucleation and crystal growth.  Nucleation, the primary step in the formation of a 

new solid phase, is followed by crystal growth – the amplification of the formed 

nuclei by addition of basic building blocks (atoms, molecules).(29)    

The following presents current and classical concepts describing the formation 

and growth of crystals.   

 

1.3.1:  Supersaturation and Metastable Solutions  

 

Any crystallisation or precipitation process is driven by the fact that the original state 

of the system is thermodynamically unstable.  The degree of this instability is 

determined by how far the present chemical potential of the system (μi) deviates 

from its equilibrium position (μequ), Equation 2.  

∆𝝁 = 𝝁𝒊 − 𝝁𝒆𝒒𝒖 ( 2 ) 

For solution crystallisation this is equal to the difference between the Activity 

Product (AP) present – the actual solute concentration – and the equilibrium solute 

concentration given by a phase or polymorph specific solubility product (Kspi
).  This 

difference in solute concentrations is commonly referred to as supersaturation 

(S).(30)  Equations 3-6 highlight those relationships for the example of calcium 

carbonate crystallisation. 

𝑨𝑷 = [𝑪𝒂𝟐+] [𝑪𝑶𝟑
𝟐−] ( 3 ) 
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𝑲𝒔𝒑𝒊
=
[𝑪𝒂𝟐+] [𝑪𝑶𝟑

𝟐−]

[𝑪𝒂𝑪𝑶𝟑]
 

( 4 ) 

𝑺 =
𝑨𝑷

𝑲𝒔𝒑𝒊
=
[𝑪𝒂𝟐+] [𝑪𝑶𝟑

𝟐−]

𝑲𝒔𝒑𝒊
 

( 5 ) 

∆𝝁𝒊 = −𝒌𝑩𝑻 𝒍𝒏(𝑺) = −𝒌𝑩𝑻 𝒍𝒏 (
[𝑪𝒂𝟐+] [𝑪𝑶𝟑

𝟐−]

𝑲𝒔𝒑𝒊
) ( 6 ) 

 

The supersaturation – the amount of solute exceeding equilibrium concentration - 

determines the rate of crystallisation, the first phase or polymorph formed, and 

nucleation and growth mechanism of any crystallisation.  It also provides a 

quantification of the chemical potential of a solution.  

Solutions can be classified into 3 distinct states according to the 

concentration of the solutes present.  A solution can be either unstable-

supersaturated, metastable or unstable- undersaturated.  Undersaturated 

solutions have a negative chemical potential with respect to the crystallizing 

compound and will not form any new material.  Rather, they will  attempt to 

assimilate species of the crystallizing compound or dissolve any present 

crystallizing compound until an equilibrium solubility is reached.   

If a system exceeds the metastable chemical potential through temperature 

or pH variation, solvent removal or compositional changes (Δc) the solution 

becomes unstable- supersaturated and crystallisation starts to occur rapidly.  

Alternatively, it may freeze temporarily in an amorphous state if the increase in 

supersaturation is relatively large and too abrupt.(31)   

In the metastable region, crystallisation can and does occur, but is time 

delayed.  The delay or the induction time – that is the time taken to form the first 

“detectable” nuclei as compared to an unstable supersaturated solution, is much 

longer and depends on variables such as species, solvent and most prominently 

heterogeneous nucleators.(32)  Heterogeneous nucleators can shorten the meta-

stability of a solution such that a potential spinodal decomposition mechanism is 

rarely observed (Chapter 1.3.5.1).  Figure 1-3, visualizes the above described 

solution states. 
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Figure 1 - 3:  Solution states as a function of ion activity product and temperature.  
Outlined are stable solution/ undersaturated solution areas bounded by the 
solubility curve (- - - -), the metastable solution state/ zone - crystallisation is 
activated externally and the unstable supersaturated solution state – crystallisation 
occurs spontaneously(- - - -).  Shown is the system response of crystallising an 
equilibrium solubility determined amount (Δc) of a solution compound, upon the 
increase of solute concentration (Δci) exceeding the equilibrium concentration of 
said compound.  Modified from (33). 
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1.3.2:  Classical Crystallisation Theory 

 

1.3.2.1:  Nucleation 

Nucleation is the first irreversible step in the formation of a new phase.  A nucleus is 

the smallest possible stable entity of the forming phase.  The classical nucleation 

theory (CNT) was in part formulated by Volmer and is based on his observations of 

vapour condensation.(34)   

CNT states that nucleation occurs as a result of stochastically addition/ aggregation 

of elemental building blocks (cluster) and is based on collision theory and local 

concentration fluctuations in an otherwise homogeneous supersaturated medium.   

Concentration fluctuations are inherently unstable and “dissolve” rapidly 

beneath a critical cluster size in solution.  Past this critical spatial dimension, the 

addition of elementary units to the formed “nuclei” is energetically more favourable 

than the subtraction of one.(34)  Fluctuations can be imagined to be a result of 

Brownian motion or random walks of solutes in a solution.  These occur 

independently of solution state.  The probability of such fluctuations leading to a 

nucleus exceeding the critical size, naturally increases the more solutes are present 

and are out on a walk.  Hence, nucleation is dependent on supersaturation.(35)  

Josiah Willard Gibbs laid the mathematical and physical foundations for such a 

description.  He defined the free energy change associated with cluster formation 

as the sum of decreasing free energy as a new phase of volume x and decreased 

chemical potential (∆μ) is formed (𝐺𝑉(𝑟
3)) and the increase in surface free energy 

owing to the creation of the solid-liquid interface surrounding the formed cluster 

(𝐺𝑆(𝑟
2)), Equation 7-12.  Here n is equal to the number of atoms associated with a 

cluster, Ω the atomic volume of solute inside the cluster, A the surface area and γ 

the interfacial energy of a cluster.(36)  

∆𝑮 = 𝑮𝑽 + 𝑮𝑺 ( 7 ) 

𝑮𝑽 =  𝒏 ∆𝝁  ( 8 ) 

𝑮𝑺 =  𝜸 𝑨 ( 9 ) 

∆𝑮 =  𝒏 ∆𝝁 + 𝜸 𝑨 ( 10 ) 

Spherical cluster of radius (r).   
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∆𝑮 =
𝟒𝝅𝒓³

𝟑𝜴
∆𝝁 + 𝟒𝝅𝒓²𝜸 ( 11 ) 

Substituting (∆𝜇) with Equation 6. 

∆𝑮 = −
𝟒𝝅𝒓³

𝟑𝜴
𝒌𝑩𝑻 𝒍𝒏(𝑺) + 𝟒𝝅𝒓²𝜸 ( 12 ) 

From Equation 12, which is graphically represented in Figure 1-4 two observations 

spring to mind.  The volumetric term drives the reaction towards its energy 

minimum and scales with the degree of supersaturation.  The interfacial term 

destabilizes the forming cluster / nuclei increasing the total Gibbs free energy solely 

depended on cluster radius.   

 Based on geometrical constraints, as cluster volume is proportional to r3 and 

surface area to r2 there has to exist a supersaturation dependent critical cluster 

radius (rcrit) above which the volume associated gain in free energy outweighs 

surface - associated cost.  Beyond this point, nuclei growth is self-perpetuating until 

a solution equilibrium state is re-established.  The growth of nuclei can be 

controlled through either growth kinetics, or diffusion limitations rather than the 

thermodynamic driving force.(30) 
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Figure 1 - 4:  Total free energy change as a function of nucleation cluster size.  
Interfacial energy (GS) opposes nucleation and nuclei formation whereas the 
secondary phase formation (GV) promotes nucleation.  As the cluster increases in 
size the interfacial term is outweighed by the volumetric term (r ≥ rcrit) leading to the 
formation of a stable nucleus.(36) 

 

The above describes the general concept of homogeneous nucleation.  This refers 

to nucleation in the absence of any secondary interfaces, such as substrate 

surfaces or suspended particles, that reduce the activation barrier for nucleation.  

Of course this rarely occurs in practice.  Nucleation in the presence of a catalysing 

interface is termed heterogeneous nucleation.(36)  The reduction in activation 

energy or barrier for heterogeneously formed nuclei compared to homogenous 

formed nuclei is a result of the stronger interaction between the nucleating phase 

with the secondary interface than the bonds of solvation.  As a result, a distinction 

has to be made between surfaces based on the degree of interaction with the 

nucleating phase, being either heterogeneously nucleating or crystallisation inert 

surfaces.  On a macroscopic scale this is relatable to the wetting capability and 

contact angle of a solvent on specific substrates.  Substrates that wet are likely to 

be good heterogeneous nucleators, whereas substrates with high contact angles 

are not expected to be.  
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1.3.2.2:  Crystal Growth 

Crystal growth is defined as the addition of elementary building blocks to an existing 

lattice structure after a crystalline nucleus has been formed.  The conditions (most 

prominently the present degree of supersaturation, and agitation) under which 

crystal growth occurs determine not just the final particle size and/ or the number of 

crystals formed.  Conditions may alter the limiting reaction steps and potentially 

change the underlying growth process altogether.  This can have a direct influence 

over the final crystal morphology (Chapter 1.3.4).  

The overall growth process can be broken down into the following successive 

steps. 

 

I. Transport to and diffusion of building blocks through the diffusion boundary 

layer surrounding the growing crystal.  The diffusion layer thickness is 

determined by the system’s Reynolds number. 

II. Adsorption of building blocks onto the crystal surface (partial desolvation). 

III. Building block surface diffusion to energetically favourable incorporation 

sites, from face to step to kink sites if kinetically feasible.  

IV. Integration into the existing lattice structure, including complete desolvation 

of the building blocks. 

V. Removal of the heat of crystallisation. 

 

Each of these steps (I-V) has its own specific activation energy and kinetic factor, 

and is strongly dependent on the local surface and bulk supersaturation levels.  As 

a general rule of thumb, the slowest process – which is generally associated with 

the highest activation energy - defines the growth rate, mechanism and type of 

crystal formed.  In this manner, a distinction can be made between growth based on 

bulk kinetic limitations (i.e. a “shortage” of material supply to the crystal from the 

solution, where this takes place at low supersaturation levels and leads to steady-

state crystal morphologies) and growth limited by building block integration and 

diffusion along the crystal surface (this occurs at high supersaturation levels and 

results in morphologies resulting from the imperfect incorporation of building blocks 

as material is supplied too fast from the solution).  At even higher supersaturation 

values, crystal growth is offset by further nucleation events and polycrystalline 

materials can be obtained.(30) 
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On a crystal surface not all incorporation sites for new building blocks are equal.  A 

differentiation between favourable and less favourable incorporation sites is based 

on the deduction that a 3D crystal can present up to 3 distinct environments to an 

incoming building block.  Environments are based on the degree of interaction of a 

building bock with the crystal surface.  These are in increasing order of accessible 

neighbouring lattice units - “unsaturated bonds” - face, edge and kink sites.  See 

Figure 1-5 for a graphical illustration.  As systems tend towards a state of lowest 

free energy, sites that maximize the interaction between elementary building blocks 

(offering the highest number of unsaturated bonds -kink sites) are energetically 

most favourable and will therefore be filled first, if reaction kinetics are sufficiently 

slow.  In turn, those positions require the least amount of energy (supersaturation) 

to be filled and on this basis the differentiation between occurring growth 

mechanism is made.  

In order of increasing supersaturation these crystal growth mechanism are: 

 

I. Layer by layer or 1D growth.  Growth units are added to a surface layer one 

by one.  During the integration process blocks move from their original 

points of adsorption to energetically favourable position till a layer is 

completed and a new layer is nucleated by (III). 

II. Screw dislocation driven growth.  Dislocation provides self-perpetuating new 

kink sites for the integration of building blocks.  Bypassing the need of 

nucleating a new layer by (III).   

III. 2D island nucleation or birth and spread model.  New layers are created on 

top of each other.  Nucleation occurs on face sites, where this requires an 

elevated level of activation energy/ supersaturation.  New layers are formed 

before the layer beneath is completed (insufficient surface diffusion 

kinetics).  

 

The switch in the dominant crystal growth mechanism at a given supersaturation is 

similar to the formation of metastable polymorphs, and is a result of kinetic 

limitations in relaxing the supersaturation.   
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Figure 1 - 5:  Possible building block adsorption sites on a growing crystal surface.  
In order of decreasing free energy (i) face, (ii) step and (iii) kink site.  Highlighted in 
grey are the connecting “surfaces” of elementary building blocks (pink) to a crystal 
surface (blue).  Reproduced after (37). 

Oswald ripening, the growth of a larger crystal at the expanse of smaller ones is 

another option of crystal growth.  The presence of fewer larger crystal as compared 

to an equal volume of smaller crystals provides an energetically lower state of the 

system.  This originates from the increasing surface to volume ratio as particles 

decrease in size, and the corresponding increasing number of unsaturated bonds 

across a given particle interface.  If placed in equivalent solution the smaller 

particles dissolve while the already larger particles increase in volume by common 

crystal growth mechanisms.  

 

1.3.2.3:  Crystal Dissolution  

Dissolution, the gradual release of elementary building blocks back into the solution 

in the form of solutes only occurs if a particular solution is unstable – 

undersaturated with respect to the dissolving phase.  This originates from a 

negative state in chemical potential (Δμ).  In analogy to the criterion for crystal 

growth, dissolution can be described as a direct reversal of crystal growth.(38)  This 

also applies to the actual dissolution mechanism as seen in Figure 1-6.  With 

increasing undersaturation the dissolution mechanism changes from 1D step (layer) 

retreat to etch pit formation above, or in the vicinity of, crystallographic defects/ 

dislocations.  A further increase in undersaturation results in the 2D nucleation of 

vacancy islands.  This is analogous to the growth mechanism – dissolution 

mechanisms requiring an enhanced degree of undersaturation are associated with 

faster reaction kinetics.   
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Figure 1 - 6:  AFM images of SiO4 demonstrating the dominating growth and 
dissolution mechanism as function of super/ undersaturation.  Scale bars 1μm.  
Taken from (38).  

 

1.3.3:  Crystal Defects  

 

Most crystals do not possess a perfect repetitive atomic or molecular arrangement, 

and are defined by their defects.  A detailed description of the myriad of 

crystallographic defects known can be found elsewhere (39).  The formation of 

screw dislocations due to their inherent importance to crystal growth and dissolution 

is described below.  The detection of screw dislocations single handidly reconciled 

experimental deviations from the above stated growth theory as offering a “low 

cost” option for crystal growth which avoids the need of 2D nucleation altogether. 

A screw dislocation is one form of line defect.  Quite literally, this means that one 

part of the crystal lattice is dislocated with respect to the rest of the crystal, due to 

an applied sheer stress.  On an elementary scale, a line of building blocks are out 

of their ideal lattice position.  The lattice is therefore strained and the degree of 

strain is equal to the displacement of building blocks from their ideal positions.  

For edge dislocations, which are another form of line defect, the 

displacement of building blocks from their ideal positions is commonly visualized by 

an extra half plane of blocks parallel to the applied shear stress.  The dislocation 

moves one step at a time with the shear stress, which allows for the plastic 

deformation of crystalline material beneath its theoretical strength.   
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In a screw dislocation the displacement and hence the dislocation 

propagates perpendicular to the applied shear stress.  An exposed end is created 

when the end of a screw dislocation intersects a crystal surface.  Crystal growth 

now occurs preferentially on this step, due to the increased number of unsaturated 

bonds.  This continuously self-propagates as a new displaced step relative to bulk 

lattice is created throughout, as shown in Figure 1-7.  This results in the formation 

of a growth spiral with a displacement of one lattice spacing (d) per 360°.  The 

displacement is naturally maximal at the centre of the dislocation line – the 

dislocation core – and has a lower bulk density.  The displacement takes the form 

of a propagating, decaying spiral, which is maximal at the core and traverses into 

the ideal lattice position with increasing radial distance from the core.   

 

Figure 1 - 7:  Illustration of spiral growth by screw dislocation.  Shown is the 
progression form dislocation surface outcrop (a) to complete growth spiral (d).  
Orange arrow shows the direction of applied sheer dress, Black arrow the direction 
of lattice displacement and Blue arrow the step direction.  d (I) is equal to one lattice 
spacing.  Reproduced after (40).  
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1.3.4:  Crystal Morphology and Additives 

 

The morphology a crystal adopts i.e. the sum of crystal habit (area ratio of faces 

present) and Kristalltracht (external facets presented by the crystal) is controlled 

either thermodynamically according to Wulff’s rule or kinetically (high precipitation 

pressure). 

1.3.4.1:  Thermodynamic Morphology 

Wulff’s rule basically states that crystals of the same polymorph and of equal 

volume possess one equilibrium shape under thermodynamic constrains, 

corresponding to the minimal Gibbs free energy (ΔGmin).  This is achieved through 

the minimization of the total free surface energy across a crystal.  This law and the 

associated ΔGmin can be expressed as the product of crystal facet area (Ai) and 

interfacial energy (γi) across all crystal faces, Equation 13.  See also Chapter 2.10. 

∆𝑮 =∑𝑨𝒊 𝜸𝒊
𝒊

 ( 13 ) 

Different facets which exhibit different atomic arrangements do possess different 

surface energies.  This is a result of the number of available surface bonds and the 

interaction of solvent and facet terminating atomic arrangement.  In the case of 

calcite, for example, polar facets have higher interfacial energies.  Hence, the 

addition of growth units is favourable and faster in polar crystallographic directions.  

Polar facets therefore reduce in size over time, leaving the developing morphology 

to be dominated by slow growing non-polar, lower interfacial energy facets.(41) 

This balance in interfacial energies in not set in stone and relative interfacial 

energy changes between facets do occur for numerous reasons.  With them the 

expressed crystal morphology adjusts.  Factors include the type of solvent, 

environmental conditions and chemical potential.  Most importantly for the work 

discussed, the crystal morphology adjusts based on crystallographic defects and 

due to the presence of additives (impurities) in solution or if the crystal is grown on 

a nucleating template.(42) 

A range of different mechanisms have been proposed to describe how additives 

affect crystal growth and nucleation.  The most reported (which is independent of 

the particular type of additive be it ionic, low or high molecular weight compounds) 

is the change in interfacial energies and growth kinetics due to selective surface 

adsorption and blockage of incorporation sites on specific crystallographic facets.  It 
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is also possible that additives become incorporated into or occluded in the 

crystal.(43, 44) 

Additives also have a significant effect on the polymorphic transition of 

minerals, where they display not just facet selective interactions but also 

preferential interaction between different polymorphs.  As a result they can stabilize 

a metastable phase either directly against the polymorphic transition or indirectly by 

retarding/ inhibiting the formation of the next stable polymorph.  An example of the 

former is the stabilization of vaterite by the delayed addition of poly(acrylic 

acid).(45)  The latter includes the hindrance of calcite formation at elevated levels of 

magnesium ions present in solution, which results in the formation of aragonite at 

room temperature.(46-48) 

Other means of morphological control involve, for example, the restriction of crystal 

habit development to a physically confined geometry.  This has been demonstrated 

to be synthetically successful by confining crystal morphology in the pore space of 

track etch membranes or colloidal templates.(49, 50)  

 

1.3.4.2:  Kinetically Governed Crystal Morphologies 

That crystal morphologies can be governed by precipitation kinetics is primarily a 

result of increased precipitation pressure/ supersaturation.  This is fundamentally 

determined by the insufficient velocity of one or more crystal growth steps (Chapter 

1.3.2.2) in achieving the lowest possible free energy minimum and is consistent 

with the change in governing crystal growth mechanism with supersaturation.  

Figure 1-8, shows the general trend in morphological development with increasing 

supersaturation.  These change from thermodynamic single crystal morphologies at 

low supersaturation levels to diffusion limited polycrystalline dendritic structures at 

high supersaturation level.  Diffusion - limited here refers to the surface diffusion of 

growth units into the most favourable positions.  Kinetic - limited describes when the 

supply of growth units to the growing crystal surface is the rate determining 

factor.(36) 
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Figure 1 - 8:  Changes in crystal morphology and rate determining step with 
increasing supersaturation.  Shown is the transition from kinetic control at low 
supersaturation (thermodynamic morphology) to diffusion controlled conditions 
(kinetic oriented morphology) at high supersaturation.  From left to right single 
crystal near equilibrium, hopper crystal, single-crystalline ordered symmetric 
dendrite, partially disordered dendrite having a single-crystalline ordered trunk and 
disordered polycrystalline side branches, polycrystalline dendrite.  Reproduced after 
(51). 
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1.3.5: Non Classical Crystallisation 

 

1.3.5.1:  Multi Step Nucleation Theories  

The classical theory proposed by Gibbs describes nucleation on a 

phenomenological level.  Its goal is to describe the phase transition or nuclei 

formation by means of macroscopic properties e.g. surface tension and density.  

Local, short-lived temperature fluctuations induce the formation of nucleation 

clusters in a stochastic manner.  At a given point, a cluster or fluctuation overcomes 

a certain size at which point energy is gained by forming a secondary phase.  This 

outweighs the associated interfacial cost which limits the stability of smaller 

cluster.(33)   

Over the years various shortcomings of this theory have come to light.(52)  These 

include the overestimation of nucleation rates at low and high supersaturation and 

more troublesome inconsistencies between the formation of local periodic structure 

and density were detected.  New microscopic nucleation theories were therefore 

proposed, including the density fluctuation theory (DFT).  DFT basically 

describes a nucleus as a function of two structural parameters, namely a critical 

structured size and coinciding density.  It does so by treating any nucleating system 

as having an inhomogeneous structure.(53)   

Two Step nucleating theories work on those postulations.  Here, density 

changes occur first, before a periodic structure develops in the crystallizing unit.(54)  

This can be imagined as a combination of two distinct steps, (1) the formation of 

short- lived, highly dense, disordered liquid droplets/ nucleation clusters and (2) 

internal rearrangement of those clusters to form the actual nuclei.  The short-lived, 

liquid droplets formed in solution, with their high density of solute molecules and 

elevated local supersaturation levels therefore present a more favourable 

environment for nucleation to occur.  The actual formation of a nucleus is 

concomitantly occurring through a reorganization of the cluster entities to give a 

structured object.(13, 55)  Further, it is clear that we have here a process involving 

two energy barriers, corresponding to cluster formation and rearrangement.  The 

critical free energy requirement for the phase transformation is divided into two 

quantities.  The total energy requirement for a reaction can be assumed to be route-

independent and is thus equal in both scenarios.  The two-step nucleation theory 

should therefore predict higher nucleation rates than the CNT on a thermodynamic 

basis, and a cascading or catalytic effect can be imagined considering that a time 

deferred energy requirement is present.  Experimental evidence for this theory on a 
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macroscopic scale was provided by Zang and Liu (56-58) who used an alternating 

electric field to induce colloidal particle precipitation via a two-step mechanism.  

Going one step further, in recent experimental history two observations were made 

in mineralizing solutions of calcium carbonate - the detection of stable pre-

nucleation clusters (PNC) and polymer induced liquid precursor phases (PILP) - 

which suggest that further alterations to, or a better description of the governing 

nucleation mechanism behind calcium carbonate nucleation is required.(59, 60)  

The reported existence of stable pre-nucleation clusters (PNC) compared to the 

short-lived clusters described above is currently suggested for a variety of organic 

and inorganic systems.(55, 59, 61-63)  PNC refer to amorphous clusters of atoms ~ 

1-2 nm in diameter, which are present in any solution prior to any nucleation event, 

even in undersaturated solutions.  They are different to ion pairs in that they exhibit 

a particular meta-stability in solution, and sit in an ambiguous potential well.  A 

refined view in the case of calcium carbonate mineralizing solutions refers to PNC 

as dynamically-ordered liquid-like oxyanion polymer (DOLLOP).  These undergo 

constant change and thus remain in thermodynamic equilibrium with the 

surrounding solution, which suggests meta stability.(64)  It has been suggested that 

PNC may provide a starting point in the formation chain of amorphous and 

crystalline calcium carbonate, Figure 1-9.  Direct evidence of this or the 

involvement in any form of crystallisation has not as yet been obtained.   

PNC and applicable experimental techniques for phase identification and 

compositional analysis are necessary limited in their ability to resolve short-lived 

species.  Future studies will have to provide a conclusive answer as to the 

significance of the observations made. 
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Figure 1 - 9:  An idealized sequential overview of calcium carbonate phase 
precipitation from supersaturated solution prior to crystalline calcium carbonate 
formation in the context of non-classical multi step nucleation theory.  Shown is the 
position of PNC / DOLLOP and following liquid crystalline phases (LCP) e.g. PILP 
or liquid amorphous phases as a result of two phase segmentation of the 
crystalizing solution in the context of non-classical nucleation mechanism.  The 
formation of secondary solid amorphous and crystalline phases is omitted.  Further 
given are assumed relative activation barriers for phase transition.  Reproduced 
from (64). 

 

The detection of a polymer induced liquid precursor phases (PILP), and the 

subsequent identification of liquid–liquid phase separation in the absence of 

polymers brings a 2-step nucleation mechanism by means of spinodal 

decomposition into the picture.(25, 26, 33, 64, 65)  

 Spinodal decomposition.  For reasons of entropy, a solution at a given 

composition is thermodynamically stable only at a particular composition.  Away 

from this the solution splits into coexisting phases.  Spinodal decomposition 

describes that process.  Figure 1-10 provides a schematic representation of this, 

and shows the decomposition into a low and high density phase from an unstable 

solution past the bionodal or coexistence curve (- - - -) and the region of 2 phase 

liquid-liquid coexistence between spinodal (- - - -)  and binodal.  The area in which 

the nucleation of liquid CaCO3/ PILP is thought to occur is highlighted.  Detailed 

formation of crystalline or solid amorphous phases following spinodal 

decomposition is omitted here for simplicity.  See Figure 1-2 for the eventual phase/ 

polymorph transformations. 
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Figure 1 - 10:  Schematic phase diagram of the CaCO3-H2O system assuming 
spinodal decomposition and liquid-liquid phase coexistence e.g. two or multi step 
nucleation.  The olive line represents a constant temperature slice through the 
phase diagram as the saturation is increased.  (SL) single solubility line for a given 
solid phase (calcite, aragonite, vaterite, and ACC).  Blue undersaturated region.  
“Indirect nucleation of the solid phases occurs to the high supersaturation of the 
dashed black liquid-liquid coexistence line (L-L).  The bright yellow phase field 
bounded by the L-L line and the dashed red spinodal line (SP) indicates the 
conditions in which nucleation of the dense liquid phase is possible.  In the region 
bounded by the spinodal line, the solution is unstable to fluctuations, and liquid-
liquid separation proceeds.”(33)  Image taken from (33). 
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1.3.5.2:  Crystal Growth by Oriented Attachment and Mesocrystal Formation 

Over the last two decades numerous crystal growth studies have revealed that 

certain observations of the growth mechanism were not reconcilable with the 

classical ion by ion crystal growth mechanism, Figure 1-11 (a).  This eventually 

lead to the proposition of two alternative, yet somewhat interchangeable, growth 

mechanisms in the formation of what commonly appear to be single crystals, (b) 

oriented attachment, or (c) polymer guided self-assembly of crystallites - 

Mesocrystals.(28, 66)  The latter has recently been modified to refer to a structure 

classification rather than a formation mechanism per se.(67)  

 

Figure 1 - 11:  Classical and non-classical crystal growth mechanisms.  Given are 
growth mechanism alternatives after nucleation of the primarily nanoparticles (~10-
100 nm).  (a) Represents the classical ion by ion growth pathway of nanoparticle 
amplification.  (b) Oriented attachment of primary nanoparticles to form an oriented 
crystal, where the nanocrystalline building units can lock and fuse.  (c) Mesocrystal 
formation primary nanoparticles covered by an additive (assembly enhancer/ 
enabler) undergo a mesoscale assembly (mesocrystal).  The nucleation step may 
or may not involve the formation of an amorphous precursor liquid or solid and 
utilization of pre-existing nucleation cluster.  Reproduced from (12). 

 

The oriented attachment driven crystal growth mechanism is founded on 

observations made by Banfield of the self-assembly of iron oxide and titania 

nanoparticles in solution.(66, 68)  Growth by oriented attachment describes the 

spontaneous self-assembly of amorphous and/ or crystalline nuclei (primarily 
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nanoparticles) into superstructures with a common crystallographic orientation.(69)  

The result are “iso-oriented crystals” – which on the macroscopic level diffract 

ideally as single crystals, such as those found in biominerals such as nacre or sea 

urchins spines.(67, 70)  Observations of such assembly at the nano-scale are 

currently limited to two dimensional observations synthetically.(71)  A study of iron 

oxyhydroxide nanoparticle self-assembly revealed that particles undergo a 

continuous rotation and interaction until they find a corresponding lattice match.  At 

this point direct interfacial contact is established and solidified via ion by ion 

addition around the contact point between the two nanoparticles. 

 Oriented attachment depends foremost on the existence of a metastable 

period of the nanoparticles in solution, which is sufficient to allow assembly to take 

place.  The assembly process in itself can be a result of intra-molecular forces such 

as van-der-Waals forces, the isotropic structure of nanoparticles and statistical 

particle collision, and subsequent grain rotation.(72)  The ultimate driving force 

underlying oriented attachment is assumed to be the minimization of surface free 

energy, as inferred from the phenomenon of Ostwald ripening.  During oriented 

attachment, two particles/ nuclei fuse together causing two high energy crystal 

faces to disappear.  In common with Ostwald ripening, oriented attachment must 

not be limited to supersaturated solutions, but can potentially also occur in 

saturated solutions.  

 

Mesocrystals and the idea of mesocrystal formation is itself a sub classification of 

the oriented attachment growth mechanism.(37, 56)  The initially, idealized 

mesocrystal formation concept introduced for calcium carbonate relied on the 

presence of nanoparticle stabilizing and self-assembly enabling factors such as 

dipole-dipole interactions, epitaxial growth (mineral bridge formation between two 

adjoining particles) or a constrained volume mediated by surface absorbed polymer 

species such as poly(styrenesulfonate) or poly(styrenesulfonate) maleic acid.  The 

latter introduced the structural classification of a mesocrystal,(67) and states that 

mesocrystals are colloidal crystals made up of many particles which are ordered in 

a common crystallographic register.  They therefore behave as highly ordered 

single crystals.(73-75) 

So far, the only quantities used to define a mesocrystal are the total free 

surface area and scattering coherence length.  The surface area should be 

significantly lager for a mesocrystal than for a single crystal of identical volume due 

to the internal surfaces between the singular building units.  The coherence length 
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is expected to be much smaller than for a single crystal.  Differentiation between 

iso–oriented crystals, mesocrystals and true single crystals is difficult as 

determination of crystalline coherence length is error prone and often not even 

considered, leaving judgement to be based on appearance and increased surface 

area. 
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1.4:  Calcium Carbonate  

 

1.4.1  General Information 

Calcium carbonate (CaCO3) was selected as the principal material for investigation 

for multiple reasons.  Firstly it is of geological importance.  CaCO3 mineral deposits 

make up to 7% of earth crust.  Deposits play a key role in the global carbon dioxide 

cycle and hence global warming.(76)  Secondly, CaCO3 has many industrial 

applications.  Currently, CaCO3 is used as a filler and coating pigment in the 

manufacturing of paint and paper.  Other uses include CaCO3 as a tableting and 

carrier material in life science products.  Most interesting for us here is the fact that 

CaCO3 is the most abundant and documented of all biominerals.  It seemingly 

indulges in most non-classical crystallisation concepts and assembly/ incorporation 

strategies.  This ranges from the utilisation of “solid” amorphous precursor and 

polymer induced liquid precursor phases to the shaping of complex morphologies 

by means of oriented attachment.(2, 3, 14, 67, 77, 78)  Preferred orientation and 

enhanced structural properties occur as a result of mineral facet specific template 

interactions and preferential impurity incorporation.(15, 23, 79-83)  This width and 

associated spread in morphologies and applications make it the ideal model system 

to increase our understanding of mechanisms guiding nucleation, growth, 

orientation and polymorph selection.   

 

1.4.2:  Calcium Carbonate Polymorphism and Morphology 

Calcium carbonate is a rock-forming mineral which exhibits 3 known polymorphs, 

multiple hydrates and multiple amorphous phases under ambient conditions.(42, 

84, 85)  In order of decreasing solubility these are amorphous calcium carbonate 

(ACC), calcium carbonate hexa-hydrate, calcium carbonate monohydrate, vaterite, 

aragonite and calcite.  A summary of the structural parameters of the 3 most stable 

polymorphs and ACC is given in Table 2 alongside their utilization in particular 

biomineralizing organisms. 
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Phase   ACC Vaterite Aragonite Calcite 

      

Composition 
 

CaCO3 : H2O CaCO3 CaCO3 CaCO3 

Crystal System 
 

- Hexagonal Orthorhombic Trigonal 

Lattice a - 4.13 4.95 4.99 

Constants [Å] b - 4.13 7.96 4.99 

 
c - 8.48 3.73 17.06 

Angles [°] α - 90 90 90 

 
β - 90 90 90 

 
γ - 120 90 120 

Density  [g/cm3] 
 

2.59 2.66 2.93 2.71 

Habit 
 

- 
Needle 

Disk 
010,011 104 

Solubility Product  

pKsp  
6.22-6.60 7.60-7.91 8.22-8.34 8.42-8.48 

Organism 
 

Crustaceans Gastropods Molluscs Molluscs 

Utilisation 
 

Mechanical 

Strength 
Exoskeleton Exoskeleton Exoskeleton 

Organism 
 

Plants Ascidians Fish Mammals 

Utilisation 
 

Calcium Store Protection Gravity Sensor 
Gravity 

Sensor 

Organism 
    

Trilobites 

Utilisation 
    

Optical 

Focus 

Table 2:  Properties of the anhydrous crystalline calcium carbonate and ACC, and 
their utilization in biomineralizing organism. Reproduced from (1, 42, 86, 87). 

 

The most common polymorph of calcium carbonate in biominerals by mass is 

calcite.  Control over the precipitated polymorph is determined either by kinetic or 

thermodynamic constrains.  The transition of polymorphs in solution follows 

Ostwald’s empirical rule of stages.(24)  In the case of calcium carbonate a phase 

transition can occur from ACC via vaterite to aragonite and/ or calcite.(88)  

However, not all intermediates will necessarily be exhibited.  The relative 

thermodynamic stabilities of these polymorphs can be modified using additives or 

changes in environmental conditions as shown by Nan (89) who used PAM and 

CTAB to transform calcite, the commonly thermodynamically most stable 

polymorph to aragonite at elevated temperatures.  That the higher solubility 

polymorph is precipitated before a less soluble polymorph can be based on drastic 

differences in precipitation kinetics between the respective polymorphs.(9, 90)   
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An overview of the activation energy and corresponding solid state activation 

temperatures for the non-hydrated polymorphs was given by Wolf and Radha.(91, 

92)  The latter also includes data concerning ACC phase transformations.  The 

transformation mechanism between the crystalline species is thought to occur 

through dissolution and reprecipitation, where the reprecipitation process is thought 

to be rate-limiting in most cases.(88) The transformation mechanism of ACC to a 

crystalline polymorph is not particularly clear at this moment.(93-97)  

The dedicated experimental precipitation of a particular polymorph of calcium 

carbonate is more hit and miss, despite certain ground rules.  This is due to the 

myriad of experimental procedures, environmental conditions, additives used 

throughout the literature and the varying metastable polymorph stabilizing 

mechanism under this multitude of conditions.  

Vaterite, for example, is found to be stabilized by the use of surfactant 

mixtures.(98, 99)  Surfactants are believed to hinder a particle-mediated growth 

mechanism.  Similar observations were made in the presence of ammonia which 

seemingly also extends the existence of vaterite in solution.  Another route to gain 

control over the precipitating polymorph is through simple variation of the ethanol/ 

water ratio used as a precipitating solvent.(100-102)  As the ratio increases, a 

transition from rhombohedral calcite via spherical vaterite to dentritic vaterite is 

observed.  An explanation for this transition can be found in the energetically more 

favourable interaction of the calcium carbonate surface with ethanol than with the 

water molecules present.  This leads to an increased kinetic stability of the 

polymorphs present in solution,(103, 104) which can be utilized in the stabilization 

of ACC. 

Aragonite is seldom precipitated under atmospheric crystallisation 

conditions, and generally forms at elevated temperatures (>50°C) and under slow 

precipitation kinetics.(105)  If precipitated at room temperature, the presence of 

magnesium ions as a crystallisation additive is commonly involved.  Magnesium 

ions bind/ incorporate preferably into certain crystal faces present only in calcite not 

aragonite.  This elevates the solubility of calcite and thus induces a shift in 

thermodynamic stability from calcite to aragonite.   

The morphologies of the calcium carbonate polymorphs precipitated varies greatly 

depending on the crystallisation conditions, and therefore cannot always be used as 

a reliable indicator of particular polymorphs.  A range of techniques have therefore 

been used to identify CaCO3 polymorphs and secondary co-precipitated minerals.  

The most simple and therefore the most used here include Powder X-ray diffraction 

(PXRD), Raman and IR-Spectrometry.  Examples of the polymorph specific spectra 
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can be found in Appendix A.  Common precipitates of calcite display as 

rhombohedra, aragonite as single crystalline bundles of needles and vaterite as 

spherical objects.(106)  ACC is composed at the primary level of non-crystalline 

spherical particles, 50-400 nm in diameter.(86) 

An overview of CaCO3 polymorph crystallography can be found in (107).  Provided 

below and extended in experimental chapters are structural information regarding 

calcite and ACC. 
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1.4.3:  Calcite  

The most stable polymorph of calcium carbonate is calcite.  It is commonly 

described using an elementary hexagonal unit cell for simplicity, but actually 

possesses a rhombohedral unit cell.  This is well reflected in the macroscopic 

rhombohedral shape of synthetic calcite crystals.  The unit cell can be further 

imagined as a modification of the face centred cubic unit cell of sodium 

chloride,(108) where Na+ and Cl- ions are replaced by groups of Ca2+ and CO3
2-.  

Due to the size difference and anisotropy of the CO3
2- anion compared to the Cl- 

anion, the unit cell distorts.  This gives rise to a face-centred rhombohedral unit cell, 

where a stretch in the c axis occurs to accommodate the carbonates. 

The spatial arrangement of ions in a calcite crystal is given in Figure 1-12, 

which provides a side view (a) and top down projection (b) of the atomic 

arrangement with respect to the crystallographic c axis.  The alternating, homoionic 

layers of CO3
2-

 (royal, orange) and Ca2+ (turquoise) can be seen normal to the 

crystallographic c axis.  The carbonate groups adopt an equilateral triangular shape 

within the plane and are rotated in the plane by 60° from one layer to the next.  6 

alternating layers form a hexagonal unit cell – encircled in red –  and each calcium 

ion is surrounded by 6 carbonate groups with each oxygen being paired to two 

calcium ions one in the layer above and one in the layer below.(109) 

Also shown here are common crystallographic directions and planes seen in 

the research presented in this thesis (c).  Important is the distinction between 

homoionic and heteroionic facets/ directions.  Homoionic or polar crystallographic 

facets such as (001) or (012) consist only of carbonate or calcium ions in one layer.  

They are therefore high energy facets and possess relatively high interfacial 

energies as compared to heteroionic facets.  They thus grow fastest and are 

present as smaller facets (if at all) in the final morphology.(110)  Polar or 

heteroionic facets such as {104} possess an alternating structure of carbonate or 

calcium ions in the same layer.  These ultimately determine the idealized 

equilibrium shape expected of a growing calcite rhombohedron.   
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Figure 1 - 12:  Illustration of the calcite crystal structure and its morphological 
expression.  Shown is a side view (a) and top down projection (b) of relative atomic 
positions and crystallographic directions in relation to the crystallographic c axis.  
Calcium (●), Carbonate (●) and Oxygen (●).  A hexagonal unit cell is outlined in red.  
Presented in (c) are Wulff reconstructions highlighting the morphological expression 
of homo – and hereto ionic facets of interest.(111-113)   
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1.4.4:  Amorphous Calcium Carbonate 

1.4.4.1:  Amorphous Calcium Carbonate and Biominerals  

Amorphous calcium carbonate (ACC), the amorphous precursor to the crystalline 

CaCO3 polymorphs, was first mentioned in the literature over 100 years ago, where 

it was reported as a mineral deposit that did not diffract X-rays.  However, it 

became forgotten soon afterwards.(114)  A particular interest in this phase arose 

much later and is founded in the observations of how biomineralizing organisms 

utilize such amorphous precursor to form their respective biominerals.(14) 

The prime example of such control is the formation of spicules in sea urchin 

larvae.(18)  Formation of ACC and subsequent utilization in biomineral formation is 

postulated to occur in membrane-delineated compartments which may be further 

functionalized and contain soluble organic additives.(97, 115, 116)  

This process is shown in detail, Figure 1-13a.  Precipitating ions are actively 

taken up from the environment (seawater) by the organism/ cell and are 

subsequently sequestered and actively transported inside the cell and pumped 

against a concentration gradient into specialized delimited vesicles in which the 

formation of ACC occurs.  Precursor bearing vesicles are next transported to the 

site of utilization.  In the case of a sea urchin spicule this is the syncytium which is a 

multicellular compartment with minimal water and space between the growing 

spicule mineral and the syncytial membrane.  Once delivered, the precursor ACC 

undergoes an amorphous to crystalline transformation.  The spicule therefore grows 

one step at a time.(117)  Visual evidence of the latter stages of this mechanism has 

been provided by photo emission electron microscopy (PEEM), Figure 1-13b, 

which shows the presence of ACC at the growth fringes of the calcitic spicule.(118, 

119)    

ACC in general appears to fulfil three major roles in biominerals.  It can act as a 

transient, shapeable precursor to crystalline CaCO3 biominerals as discussed 

above,(120) as a dense ion storage phase which readily dissolves upon request to 

meet e.g. calcium deficiencies.(121, 122)  It can also act as a structural material 

due to its ability to incorporate high concentrations of trace elements and its 

isotropic nature.(23)  Saying that, it has been shown that ACC is not ultimately 

required for the formation of complex-shaped, single crystalline structures.(50)  
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Figure 1 - 13:  (a)  Scheme of ACC formation in the course of sea urchin spine 
mineralization. (1) Uptake of precipitating ions. (2) Ion-sequestering and (3) 
transport to specialized vesicles.  (4) ACC formation inside of vesicles. (5) 
Transport of ACC vesicles into the syncytium and to the crystallisation fringes(6).  
(7 & 8) Transformation of ACC into more ordered phases and attachment to / 
growth of the crystalline spicule.  Taken from (117).  (b)  Component micrographs of 
developing spicules.  (i) XANES-PEEM image at  the Ca L-edge.  (ii) RGB map 
displaying the results of component mapping corresponding to a particular mineral 
phase.  (iii)  Zoomed section of (ii).  (iv)  XANES spectral differences between 
calcite and ACC used for colour component mapping.  Taken from (118). 

 

The formation and transformation of biogenic ACC occurs as a result of intricate 

control and complex interactions.  There are many open questions, some of which 
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will be touched upon in Chapter 3.  These include; ”how is the inherently unstable 

amorphous phase stabilized?” “What is the role of the physical environment and the 

organic soups it’s mineralizing in”, and finally, “what is driving force behind the 

amorphous to crystalline transition, what is the mechanism?” 

 

1.4.4.2:  Structure and “life-cycle” of Amorphous Calcium Carbonate 

ACC, having the highest solubility, precipitates before any polymorphs at high 

supersaturation levels according to Ostwald rule of stages.(93)  Potential reasons 

for this have been discussed and include a decrease in activation barrier for 

“nucleation” and an increase in growth rates, as was postulated by Gale, 

2010.(123)  ACC exhibits fewer spatial constraints than the crystalline polymorphs 

benefitting its “nucleation” and has rough atomic surfaces.  The latter reduces the 

activation barrier for ACC growth/ coalescence due to easier disturbance of the 

solvation layers.  Altogether, this results in faster precipitation kinetics as compared 

to polymorphs, even at nominal supersaturations.  

How ACC forms is still a question of interest, especially in consideration of the pre-

nucleation steps introduced earlier.  Faatz (65, 124) tried to visualize the process 

using a hypothetical phase diagram based on Gower’s observations of the 

formation of a polymer induced liquid CaCO3 precursor phase (PILP) prior to ACC 

formation.(60)  He suggested that the mineralizing solution undergoes a spinodal 

liquid-liquid phase segregation (i.e. the solution splits into two separate phases with 

different physical characteristics and unequal chemical potential spread uniformly 

throughout the solution; this does not require specific nucleation sites) – Chapter 

1.3.5.1.  The formation of the spherical amorphous particles occurs as the 

carbonate/ calcium concentrations in solution exceeds a certain threshold 

concentration.  The system then divides into a bulk phase of low calcium and 

carbonate concentration and a minor highly concentrated liquid droplet phase 

(liquid ACC).  Finally, the liquid ACC phase eventually undergoes “gelation”/ water 

expulsion and subsequently forms a solid amorphous phase in the form of spherical 

droplets, for energy minimization reasons, Figure 1-9.  The diameter of these 

spheres was also later found to depend on experimental variables such as 

temperature, and pH.  Therefore, a generalized size range cannot be given as 

literature values vary from 10-400 nm and information regarding early stage 

investigations i.e. the initial liquid ACC, is limited.(64, 121)  
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 This scheme was experimentally confirmed by Wolf and Wallace,(26, 33) 

who investigated the formation of various carbonate metal complexes.  They 

reported the formation of a liquid-liquid phase separation in the absence of any 

polymer additives, where this leads to liquid-like amorphous intermediates that 

behave like classical emulsions.  It is believed that the stabilization of the liquid-like 

amorphous intermediates can be explained through ideas from classical emulsion 

theory including steric, electrostatic- and depletion stabilization.  This in turn implies 

that liquid-liquid phase segregation may be the general way ACC forms in solution.  

Consequently, the presence in solution of a polymer such as poly(acrylic acid) in 

the initial work of Gower does not induce phase separation, but it rather facilitates 

access to/ extends the lifetime of the liquid precursor as a precursor to solid ACC, 

as found in biominerals.  A follow-up study (Gower (64)) proposed that stable 

CaCO3 pre-nucleation clusters might be the starting point of the ACC formation 

chain.(59) 

Structure wise, ACC is often described as a family of phases which exhibit various 

degrees of short range order (<15 Å) and hydration levels, depending upon the 

formation conditions e.g. pH-level, additives present, precipitation method and 

confinement.(14, 121, 125-127)  In this sense, it was discovered that ACC phases 

exhibit short-range atomic order around the calcium ion in the first and second 

coordination shells, which appears to reflect the structure of the eventually formed 

polymorph.(84)  Proto calcite and proto vaterite short range structures were 

reported in ACC by Gebauer.(85)  Michel (128) opposes this view and reported that 

similarities exist, but that no short range structure comparable to other polymorphs 

was observed.  As far as an experimental review of this topic goes, it seems that 

ACC formed at low supersaturation levels and/ or in the presence of additives has 

“more order” at atomic length scales comparable to crystalline polymorphs, than 

ACC formed at high supersaturation.  This goes hand-in-hand with Koga’s (129) 

thermo-gravimetric observations of ACC precipitated at different pH and 

supersaturation levels.  This study showed an increase in the atomic disorder as pH 

and supersaturation were increased, as shown by the shift in crystallisation 

temperature (330-370°C) and exothermic release.  Consistent with this, a range of 

differing activation energies required to induce the solid state transformation of ACC 

can be found in the literature.(91) 

Synthetic ACC is commonly obtained experimentally in hydrated form 

(exceptions noted,(95, 96, 130)) with a composition of CaCO3:H2O.  A general 

distinction can be made in the case of biogenic ACC, containing additives, which is 

either hydrated (CaCO3:H2O) and stable or transient and non-hydrated.(131, 132)   
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Various structural models of solid ACC have been considered where these 

range from an array of disordered unit cells,(133) to a porous, charge-separated 

calcium ion rich framework.  The latter, Figure 1-14, is the currently most accepted 

one, and states that ACC in its hydrated or thermally induced dehydrated state 

consists of a calcium ion rich framework (red) containing channels in which water, 

carbonate and small additives are embedded (violet).(96, 134)  Since the calcium 

ion packing density in this model for hydrated ACC is similar to crystalline CaCO3 

the rearrangement to a crystalline polymorph is likely to occur via relocation of the 

carbonate ions from the channels into the calcium framework.  Structural water is 

concomitantly expelled from the framework.  This first dehydration step in the 

transformation process of ACC is readily observed in biominerals (Figure 1-13) but 

was previously elusive in solution in experimental investigations.(97, 126)  

 

Figure 1 - 14:  (a) Monte Carlo refined X-ray total scattering based structural model 
of hydrated ACC.  Ca-rich framework is given in red.  Calcium deficient channels in 
blue (4 Å  separation from any Ca centre).  A box dimension of ~ 40 Å is presented.  
Taken from (127). 

 

The “life-cycle” of ACC seems to progress stepwise from the gelation of the liquid 

ACC to solid hydrated ACC.  This then undergoes dehydration and structural 

rearrangement to give anhydrous ACC.(87, 91, 135)  The final transformation of the 

anhydrous ACC into a crystalline polymorph (representing the most exothermic step 

in the transition series) is not completely understood.  It is known from thermo 

gravimetric analysis and differential scanning calorimetry that a solid-state 

transformation of ACC is clearly possible upon heating to ~ 310-370°C (depending 
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on experimental conditions).  However, whether a solid state transformation is also 

the dominating mechanism in solution, rather than a dissolution/ reprecipitation 

mechanism similar to the transformation of vaterite into calcite (93) or a particle-

mediated agglomeration process, has not yet been answered.  All mechanisms 

have been considered in the literature e.g. (86, 136) for dissolution and 

reprecipitation and (93, 94, 137, 138) for an internal structural reorganization of 

ACC.  The latter presents compelling visual evidence for a combination of both 

mechanisms.(93)  The initial nuclei of vaterite/ calcite may well form via the solid 

state transformation of ACC, while subsequent growth certainly occurs via 

dissolution/ reprecipitation of the surrounding ACC, as ACC depletion zones are 

observed around the crystalline vaterite and calcite nuclei (139). 

It is to be noted that a full dissolution/ reprecipitation of ACC to calcite would 

run counter to the discussion of the short-range structure of ACC acting as a 

blueprint for the structure of the transformation polymorph, as clearly all order would 

be lost on dissolution.  The presence of short range order similar to the 

subsequently formed polymorph might just be coincidental in this regard.  

The growth of ACC particles is another topic of interest.  Does it occur by 

ion addition? Or does growth occur solely through particle-mediated pathways i.e. 

aggregation/ coalescence of basic spherical units until the critical stability diameter, 

~100nm, is exceeded.(137)  The stated critical size limit of the metastable ACC 

spheres can be thought to result from the offset of the entropic penalty at such a 

size scale, which can reverse the order of the thermodynamic stability of the 

polymorphs.  The defining factor in determining the transformation is the Gibbs free 

energy, which is the sum of the changes in enthalpy and entropy.  The entropy is 

negligibly small at that size scale, so the phase stability is only determined by 

changes in the enthalpy and following surface free energy.  That becomes smaller 

as the phase decreases in density, due to a lower packing density of surface atoms 

and increasing hydration.  This leads to a lower density of uncompensated charge 

which results in the observed stabilization of ACC (91, 140).  

 

1.4.4.3:  The Stabilization of ACC or Polymorph Growth Retarder  

The fact that impurities/ additives, even if present at low concentrations, have a 

dramatic effect on crystallisation and crystal morphology is well known.  Additives 

do not necessarily retard or inhibit crystallisation.(138, 141)  In fact, it has been 

shown that aspartic acid assists anion desolvation on specific calcium carbonate 

crystal faces at low concentrations.(142)  The reported effects of some of the 
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principal additives associated with biogenic ACC, or used experimentally to control 

ACC crystallisation are described below.  

Magnesium is found in nearly all biogenic ACC and crystalline biominerals.(131)  It 

is thought to promote aragonite formation through calcite growth retardation, based 

on adsorption to specific calcite faces, followed by eventual incorporation.  This 

results in a higher solubility of calcite due to differences in cation solvation 

energies.(46, 143, 144)  Biogenic calcite can contain up to 40 % mol magnesium, 

which far exceeds the thermodynamically stable value of 10 % mol.  This has been 

explained through calcite formation via ACC which incorporates Mg2+ ions much 

more easily.(145).  How this occurs is as yet unknown, but what is observed is that 

magnesium containing ACC is much more crystallisation resistant.(145-147)  The 

mechanism by which magnesium kinetically stabilizes ACC in solution has yet to be 

fully determined.  

Molecules containing phosphate and aspartic acid groups have also been 

identified as having an effect on the formation of different calcium carbonate 

polymorphs, including ACC.(90, 148)  The stabilization or growth retardation effects 

observed are not limited to macromolecules rich in these groups as commonly 

found in biominerals.(80, 82)  Ions or short molecules containing phosphate or 

aspartic acid can also have a similar effect.  Over the last decade, evidence has 

been obtained which shows that low molecular weight compounds can have a more 

pronounced effect than single ions or macromolecules at similar concentrations.(7, 

149)  This stabilizing effect of ACC is similar to magnesium and is only of a 

temporary nature.(150)  Reviewing the literature, the effects of phosphates and 

aspartic acid on crystallisation inhibition or ACC stabilization may well be a 

combination of surface adsorption onto ACC and retardation/ inhibition of the 

formation of the crystalline polymorphs.  Which of those is the dominating 

mechanism is not yet known.  Further, the degree of stabilization also clearly 

depends on the type of phosphates or amino acids present in solution.(7, 137, 148, 

151, 152)  

The specific interest in macromolecules rich in anionic groups as additives/ 

inhibitors of calcium carbonate crystallisation is rooted in their similarity to many 

bio-macromolecules found within CaCO3 biominerals.  Taking nacre as an example, 

acidic macromolecules are required in addition to the insoluble organic matrix 

framework to induce the formation of an oriented crystalline layer.  Crystal formation 

is believed to occur via an amorphous precursor depositing on the organic matrix 
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present.  The ACC layer then transforms into a specific polymorph depending on 

the active groups (e.g. hydroxyl, primary amine groups) on the organic matrix and 

the soluble macromolecules present in solution.(153, 154)  Macromolecules are 

apparently more effective in the latter stages of crystallisation e.g. retarding 

inhibiting crystallisation rather than stabilizing the ACC.(90, 152, 155)  

The spatial confinement of a forming mineral has been identified as another factor 

assisting the stabilization of metastable phases, such as vaterite (156) and ACC 

(157) in the case of calcium carbonate.  It is also been seen for amorphous calcium 

phosphate, (16) – sulphate (158) and oxalate (Chapter 3.6).  As for carbonates, a 

range of different physical confinement strategies were proven to successfully 

extend the lifetime of a metastable phase.  These include the precipitation in 

between angular geometries,(157) in isolated small volumes e.g. pico-litre droplets 

(159) or liposomes (160).  Growth arrest in the pore space of track etch 

membranes,(49) in silica (161) or ATP shells (162) come to mind for direct spatial 

confinement methods leading to a temporary stabilization of ACC.   
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1.4.5:  Calcium Carbonate in Aqueous Solution  

 

The composition of a calcium carbonate mineralizing solution, the supersaturation 

and the solubility can be controlled by several external factors such as the addition 

of an anti-solvent, actively directing reaction kinetics, pH adjustments and 

temperature regulation.   

The aqueous solution chemistry of calcium carbonate is rather simple, and 

yet distinct.  First of all, it is a multi-component precipitation system, unlike for 

example simple sugar systems (undergoing mutarotation of its enantiomers), and 

precipitation limitations are either based on carbonate and/ or calcium ion shortage.  

Secondly, carbonate or total inorganic carbon (TIC) is a diprotic species present 

either in the form of carbon dioxide (CO2), bicarbonate (HCO3
-) and carbonate 

(CO3
2-), depending on solution pH, Figure 1-15.  Precipitation of calcium carbonate 

(CaCO3) “only” occurs by the direct reaction of calcium with carbonate ions.  That 

means precipitation only occurs above a certain pH level as indicated by the dotted 

line.  

 

Figure 1 - 15:  Carbonate species distribution in solution as a function of solution pH 
from 0 to 1. 

 

Thirdly, the reaction involves a soluble gas in the form of carbon dioxide, as we can 

see from Equations 14-19.  Knowledge of the exerted partial pressure (PCO2) in 

addition to knowledge of equilibrium constants (K), Henry (kH) and carbonic acid-

dissociation constants (KA) is sufficient to determine the equilibrium composition of 
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a calcium carbonate solution.  Equilibrium constant expressions and solubility 

products are provided in Appendix C.(86, 163-167).  This is possible as the partial 

pressure directly dictates the solution pH and in turn with it the carbonate species 

distribution.  A graphical representation of this relationship is found in Bohn and is 

presented in Figure 1-16.(168) 

The equilibrium solution composition is calculated using the underlying charge 

balance, Equation 14, and solved via Newton’s method for pH as a function of PCO2.  

2[Ca2+]+[H+]+[HCaCO3
+]=[OH-]+[HCO3

-]+2[CO3
2-]+[Cl-] ( 14 ) 

𝟎 = [𝐇+]𝟒 ∙ (
𝟐 ∙ 𝐊𝐬𝐩 ∙ 𝐤𝐇𝐂𝐎𝟐
𝐊𝐀𝟏 ∙ 𝐊𝐀𝟐 ∙ 𝐏𝐂𝐎𝟐

)+[𝐇+]𝟑 + [𝐇+]𝟑 ∙ (
𝐊𝐬𝐩 ∙ 𝐊𝐂𝐚𝐇𝐂𝐎𝟑

𝐊𝐀𝟐
) − [𝐇+]𝟐 ∙ [𝐂𝐥−] − [𝐇+] 𝐊𝐖 − [𝐇

+]

∙
𝐏𝐂𝐎𝟐 ∙ 𝐊𝐀𝟏
𝐤𝐇𝐂𝐎𝟐

− 𝟐 ∙ (
𝐊𝐀𝟏 𝐊𝐀𝟐 𝐏𝐂𝐎𝟐

𝐤𝐇𝐂𝐎𝟐
) 

( 15 ) 

[𝐇𝟐𝐂𝐎𝟑
∗] =

𝐏𝐂𝐎𝟐
𝐤𝐇𝐂𝐎𝟐

  ( 16 ) 

[𝐇𝐂𝐎𝟑
−] =

𝐏𝐂𝐎𝟐 𝐤𝐇𝐂𝐎𝟐
𝐊𝐀𝟏

[𝐇+]
 ( 17 ) 

[𝐂𝐎𝟑
𝟐−] =

𝐏𝐂𝐎𝟐 𝐤𝐇𝐂𝐎𝟐
𝐊𝐀𝟏 𝐊𝐀𝟐

[𝐇+]𝟐
 ( 18 ) 

[𝐂𝐚𝐢
𝟐+] =

𝐊𝐬𝐩𝐢 

[𝐂𝐎𝟑
𝟐−]

 ( 19 ) 

In the case of an unknown partial pressure or determining the present 

supersaturation i.e. obtaining knowledge the dynamic state of the system, 

secondary expressions need to be considered.  These compromise of solution pH, 

calcium concentration and total inorganic carbon (TIC), Equations 20-23.  (169) 

[𝐂𝐓𝐒] = [𝐂𝐎𝟑
𝟐−] + [𝐇𝐂𝐎𝟑

−] + [𝐇𝟐𝐂𝐎𝟑] ( 20 ) 

[𝐂𝐎𝟑
𝟐−] =

[𝐂𝐓𝐒]  𝐊 𝐀𝟏𝐊𝐀𝟐
[𝐇+]𝟐 + 𝐊𝐀𝟏[𝐇

+] + 𝐊𝐀𝟏𝐊𝐀𝟐
 

( 21 ) 
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[𝐇𝐂𝐎𝟑
−] =

[𝐂𝐓𝐒] 𝐊𝐀𝟏[𝐇
+]

[𝐇+]𝟐 + 𝐊𝐀𝟏[𝐇
+] + 𝐊𝐀𝟏𝐊𝐀𝟐

 
( 22 ) 

[𝐇𝟐𝐂𝐎𝟑
∗] =

[𝐂𝐓𝐒][𝐇
+]𝟐

[𝐇+]𝟐 + 𝐊𝐀𝟏[𝐇
+] + 𝐊𝐀𝟏𝐊𝐀𝟐

 
( 23 ) 
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Figure 1 - 16:  Solution concentrations of calcium and carbonate species as a 
function of carbon dioxide partial pressure.  Reproduced from (168). 
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From Figure 1-16 it can be clearly seen that a decrease in PCO2 will result in an 

increase in pH.  This will result in a gradual reversal in the bicarbonate/ carbonate 

ion ratio, and an increased availability of carbonate ions at elevated pH levels.  This 

explains the more rapid precipitation of CaCO3 at elevated pH levels under 

equivalent starting concentrations.(129, 170)  
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This chapter provides information on the preparation of glass and gold substrates 

and crystallisation dishes.  In addition, brief descriptions of precipitation methods 

used are provided.  This is followed by basic information regarding sample 

characterisation and analysis techniques.  A certain overlap with experimental 

chapters is intended for clarity.   

2.1:  Glassware and Substrate Preparation   

2.1.1:  Cleaning Procedures 

Two cleaning procedures were employed, depending on the subsequent use of the 

glassware.  These were primarily performed to ensure that no or a minimal quantity 

of heterogeneous nucleator or impurities were introduced into mineralising 

solutions.  Reagent-containing glassware e.g. ball flasks, Shott bottles, volumetric 

cylinders were soaked overnight with 10 w/v% sodium hydroxide.  They were then 

rinsed with diluted hydrochloric acid and were finally washed with water (Milli-Q 

Standard 18.2 MΩcm at 25°C).   

Crystallisation substrates e.g. microscope slides or silicon wafers were cut to size 

(1 cm2) and were then placed in Piranha solution (70:30 %wt sulphuric acid : 

hydrogen peroxide) for two hours.  They were then washed with Milli-Q water and 

dried under nitrogen.  Substrates were either used directly or stored in Milli-Q water.  

The cleaning effect due to immersion into Piranha solution is twofold.  Hydrogen 

peroxide is a strong oxidizer by itself, removing oxygen and hydrogen from the 

organic residues present.  The vigorous reaction of hydrogen peroxide with 

sulphuric acid, and the associated release of elemental oxygen, enhances this 

oxidizing capability, promoting the removal of elemental carbon.  A secondary 

cleaning effect is due to piranha solution’s acidic nature, which allows the 

dissolution of certain mineral deposits, Equation 24.  

H2SO4 + H2O4 = O+ H3O
+ + HSO4

− ( 24 ) 

 

2.1.2:  Substrate Preparation  

The templating work described in Chapter 5 required the heterogeneous nucleation 

of calcite on functionalized self-assembled monolayers (SAM).  Functionalized 

organothiol self-assembled monolayers were prepared on freshly deposited noble 

metal films.(171)  Thin films were deposited either on Piranha cleaned silicon 
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wafers or glass slides using a Mantis Qprep 250 deposition system at a base 

pressure below 10-6 mbar.  2 nm of Cr were initially deposited to promote substrate 

adhesion, followed by the evaporation of 30-50 nm of Au or Ag at ≤ 0.1 nms-1.  

Monolayer formation on the metal substrate was initiated by immersion in 1 mM 

thiole/ ethanol solution (11-Mercaptoundecanoic acid, 11-Mercapto-1-undecanol).  

The prepared SAMs were thoroughly rinsed with ethanol and Milli-Q water, and 

were subsequently dried under nitrogen.   
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2.2:  General Precipitation Methods   

The principal methods used for the precipitation of calcium carbonate, calcium 

phosphate and calcium oxalate are discussed here with further information being 

given in subsequent chapters where necessary.  

 

2.2.1:  Direct Combination of Reagents  

2.2.1.1:  Precipitation in the Presence and Absence of Soluble Additives 

In this method, precipitation is induced by the rapid combination of equimolar 

solutions of two highly soluble reagents (for example CaCl2 and Na2CO3 or 1 M 

(NH4)2CO3 (0.01-1 M)).  This results in the precipitation of a sparingly soluble 

species, here CaCO3 based on the common ion effect or Le Chatelier's principle.  A 

new equilibrium is re-established by precipitating CaCO3 due to the shift in chemical 

potential upon combination of both reagents.  This method is generally employed to 

obtain bulk sample quantities of crystalline CaCO3 or to obtain ACC if employing 

starting reagent concentrations greater than 10 mM.(172)  Slight variations in 

experimental procedures involve the adjustment of the initial solution pH and/ or 

ionic strength by the addition of sodium hydroxide and sodium chloride respectively.  

The resulting slurry is either filtered directly through a 0.45-μm membrane filter and 

washed with ethanol before being left to dry, or left to incubate for certain periods of 

time in the mineralizing solution.  Additives studied were added either to the calcium 

(Mg, Asp, PSS-MA and Poly-Asp) or carbonate solution (PAA, SO4, PO4 and SiO4).  

 

2.2.1.2:  Precipitation in the Presence of Sodium Silicate 

Calcium carbonate, specifically ACC, was encapsulated in silica shells based on 

the methodology given by Kellermeier et al.(161)  Here, 125 ml of 10-50 mM CaCl2 

was mixed with 125 ml of 10-50 mM Na2C2O4/ 10-25  mM Na2SiO3 solution, and the 

precipitates generated were incubated in the reaction solution for 20 min to allow 

the formation of a silica shell around the initially formed ACC units.  The solution 

was then filtered using a 0.45-μm membrane filter and washed with ethanol before 

being left to dry.  Confirmation of encapsulation was obtained by leaching the 

calcium carbonate from the silica shell by immersing ~500 mg of encapsulates in 

1 M HCl (50 ml) for 24 h.(95)   
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2.2.1.3:  Coating of Precipitates with Phosphatidylcholine 

Synthesis of ACC particles coated with lipid bilayers (95) was achieved by 

precipitating ACC particles according to 2.2.1.1, and then covering them with 

bilayers of L-α phosphatidylcholinee (PC) and dihexadecyl phosphate (DHP) 

according to the method of Bugni.(173)  5-25 mg of ACC were dispersed in 1 ml of 

ethanol and briefly sonicated, before depositing them on a glass slide and leaving 

them to dry at 40 °C.  Approximately 0.2 ml of a lipid stock solution (100 mg PC & 

10 mg DHP per ml chloroform) was then applied drop-wise to the ACC film, before 

rapidly evaporating the solvent under nitrogen.  Subsequently, the resulting ACC-

bilayer aggregates were placed in 100 ml of Milli-Q Water and were gently agitated 

to displace them from the glass support.  The lipid-bilayer coating on the ACC was 

confirmed using confocal fluorescence microscopy, where particles were coated 

using a lipid stock solution containing PC labelled with a fluorescent group  

- (1 wt% NBD labelled PC(1-Oleoyl-2-[12-[(7-nitro-2-1.3-benzoxadiazol-4-

yl)amino]dodecanoyl]-sn-glycero-3 phosphocholine). 

 

2.2.2:  Kitano Method   

The term Kitano Method refers to a precipitation method publicised by Kitano, Park 

and Hood.(105)  Here, CaCO3 is precipitated from an enriched solution of 

“CaHCO3” open to the atmosphere.  Calcium bicarbonate solutions are prepared by 

adding an excess amount of solid CaCO3 (~100 mg) to one litre of Milli-Q water 

through which CO2(g) is then bubbled for three hours.  The slurry is then filtered 

through a 200 nm membrane to remove any undissolved species.  The resulting 

solution is slightly acidic with a pH of ~6.4 compared to the natural basic pH of a 

solution saturated in calcium carbonate.  Enriching a solution with CO2 reduces the 

pH of the solution in question and subsequently shifts the species distribution away 

from the Ca2+ reactive CO3
2- towards HCO3

- and CO2(g), thereby creating a 

temporarily enhanced solubility of initially present solid calcium carbonate.  This 

enhanced solubility slowly decreases as the CO2 source is removed and CO2 starts 

outgassing from the solution.  This is due to the enforced CO2 partial pressure 

imbalance between the atmosphere and the liquid, which ultimately leads to a pH 

shift back to its original position.  This in turn forces a reversal in species 

distribution back towards CO3
2- and the original solubility, creating a gradual 

increase in supersaturation.  The main advantage of the method and the reason 

why it is often used is the absence of secondary “counter-ions” in the precipitate.  

Further precipitation occurs at a low pH.  
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2.2.3:  Diffusion Methods and Alternatives  

2.2.3.1:  Ammonia Diffusion Method   

Please refer to Chapter 4 for a detailed description.(169)  In brief, the ammonia 

diffusion method (ADM) is based on a slow increase in supersaturation in a 

crystallizing calcium solution, through vapour diffusion of NH3 and CO2 into the 

crystallizing solution.   The vapours of NH3 and CO2 are a result of the 

decomposition of solid (NH4)2CO3, which is located separately with the crystallizing 

solution in a hermetically sealed environment.  The diffusing ammonia initial raises 

the solution pH up to ~9.25 and subsequently works as a buffer, stabilizing the pH 

thereafter.  This enables the transformation of infusing carbon dioxide to 

bicarbonate and eventually carbonate, creating the required supersaturation with 

calcium ions present.   

 

2.2.3.2:  Slow Addition of Reagents  

The mechanically driven addition of a concentrated reagent (either ammonium- or 

sodium carbonate) to a diluted reservoir of calcium chloride solution (47, 169) was 

primarily employed to mimic the gradual increase in supersaturation present in 

diffusion methods, Chapter 4.2.  In detail, carbonate solutions were drawn into 

glass syringes and were transferred at a fixed rate via mechanical syringe pumps 

into an atmospherically sealed calcium solution, which was kept under constant 

agitation by means of an orbital shaker.  

 

2.2.3.3:  Enzymatically Driven Precipitation  

A second way to mimic the ADM was investigated, Chapter 4.3, which utilizes the 

enzymatic hydrolysis of urea by urease in aqueous calcium solution.(174)  The 

controlled hydrolysis of urea by urease into carbonate and ammonium – with 

variation of substrate (urea) and enzyme (urease) concentrations – allows the direct 

replication of the ADM.  This provides also a slow increase in supersaturation, as is 

required to obtain unstrained calcite crystals with sufficient high number densities, 

where this occurs by providing a homogenous diffusional spread in solution.  The 

primary advantage was deemed to be the fact that it is a true one pot method.  This 

can facilitate studies concerning the formation of either CaCO3 - based mesocrystal 

or polymer-induced liquid precursor phases (PILP) in situ, using techniques such as 
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DLS, SAXS and or liquid cell TEM without manually interfering with the ongoing 

formation process. 

 

2.2.4:  Precipitation in Track-etch Membranes 

Precipitation of calcium oxalate within the 200 nm pore space of polycarbonate 

track-etch membranes was employed as a strategy to temporarily stabilize any 

potentially present amorphous precursor phase as demonstrated in the case of 

calcium carbonate and phosphate, Chapter 3.5.(16, 49)   

Membranes were degassed in water at reduced pressure to ensure complete 

filling of the membrane pores with solution.  In the Double Diffusion (U-tube) 

method, wetted membranes are mounted between two U-tube arms which are then 

filled with solutions of CaCl2 (2-10 mM) and Na2C2O4 (2-10 mM) / PAA (50 μgml-1).  

Intra-membrane particles are isolated either after 12 hours or 2 weeks by 

dissolution of the membranes in dichloromethane.  Previous to dissolution, the 

membranes are rinsed with ethanol and their surfaces are scraped with a cover 

glass to remove the majority of surface-bound crystals.  After brief sonication of the 

membranes in ethanol, the membranes are then subjected to 3 cycles of sonication 

in dichloromethane, centrifugation and exchange of the solvent.  The isolated 

precipitates were finally washed with methanol to remove residual dichloromethane, 

and were then washed with ethanol before being pipetted onto a TEM grid/ glass for 

analysis. 

 

2.2.5:  Precipitation from Saturated Solutions by Freeze Concentration 

Please refer to Chapter 3.4 for a detailed description.(175)  In brief, precipitation by 

means of freeze concentrating a saturated solution of the precipitate in question 

relies on the selective solvent removal during plunge freezing of a saturated 

solution in liquid nitrogen.  The subsequent continuous decrease in free solution 

volume as more and more liquid is transformed into crystalline ice results in the 

“molecular crowding” of the ions present into the remaining, shrinking solvent 

pockets.  This in turn leads to an increasing precipitation force.  The product 

precipitate is then stabilized against possible transformation as the solution 

completely solidifies and is returned for sample analysis upon solvent sublimation. 

Precipitates produced by freeze concentration require the production of 

“counter-ion free”, saturated solutions and hence pure bulk precipitate as starting 
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material.  This is either obtainable by repeated precipitation and dissolution, 

Chapter 2.2.1, or by commercial acquisition.  Saturated solutions are then prepared 

by adding, e.g. 20 mg of “pure” CaC2O4 to 500 ml H2O, stored for 24 hours at room 

temperature, before centrifuging to remove the majority of any remaining un-

dissolved calcium oxalate.  This saturated solution is then either heated (CaC2O4) 

or cooled (CaCO3) to remove possible ghost nuclei, and filtered through a 200 nm 

filter membrane.  Freezing of the prepared saturated solutions is achieved by 

plunge immersion into a liquid nitrogen bath, followed by a 10 minute annealing 

period to strengthen the ice structure.  Subsequent sublimation (Labcono 

FreezeZone 1, 50 mBar, -49°C) of the excess solvent delivers the freeze-dried 

precipitate. 
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2.3:  Microscopy 

Microscopy is the use of a microscope to magnify objects beyond the resolution 

limit of the human eye.  Microscopes can broadly be cast into 3 categories based 

on signal acquisition and or resolution: Optical, Electron and Scanning Probe 

Microscopy.  Microscopy was utilized in the presented work to determine the 

morphological effects that additives and crystallisation conditions had on formed 

minerals. 

 

2.3.2:  Optical and Florescence Microscopy  

2.3.2.1:  Visible Light Microscopy  

A visible light microscope (VLM) uses the interaction of a sample with visible light 

(390 to 700 nm), either by transmission through or reflectance by the sample to 

magnify and resolve smaller morphological features.  In simple compound 

microscopes the magnification is achieved in two separate successive steps.  The 

illuminated sample transmits or reflects light towards a static objective lens of a 

magnification factor x.  The objective gathers and focuses the beam into the 

microscope column by a single lens or a set of lenses.  Focused light is 

subsequently passed through an ocular (~ 10 fold magnification) or a secondary 

readout for observation.  Due to the static position of the objectives used, varying 

the focal depth is achieved by modifying the distance between lens and sample.  

The magnification achievable for a single lens is determined by the distance of the 

lens to the sample (d0) and the focal depth (f) according to Equation 25.  Focal 

depth is the distance at which collimated light is brought into focus.  

𝑴𝒂𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 =
𝒇

𝒇 − 𝒅𝟎
 ( 25 ) 

Most commonly, the bottleneck is not the magnifying capability of a microscopy 

technique but rather its inherently limited resolution capabilities, which is the 

minimal distance (d) between two objects that can identified as separate objects.  

The fundamental resolution limit of light microscopes was determined by Abbe and 

Zeiss, Equation 26.(29, 176)  The maximal obtainable resolution is given by the 

ratio of the wavelength of electromagnetic radiation, used for illumination, and the 

numeral aperture (NA).  NA is the product of the refractive index (N) of the immersion 

medium (1 for Air) and alpha is the apparent half opening angle of the lens with 

respect to the focal point.  The resolution limit of VLM is ~200 nm.  
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𝒅 =
𝝀

𝟐 𝑵𝑨
 ( 26 ) 

𝑵𝑨 =  𝑵 𝐬𝐢𝐧 (𝜶) ( 27 ) 

Due to the many interaction possibilities of light with matter VLM was extended to 

identify if precipitates formed were crystalline or amorphous in character.  This is 

made possible by placing precipitates in-between two crossed polarizers.  A 

polarizer blocks all but “one orientation” of light passing through.  Two, successive 

crossed polarizers hence block all incidental light towards an observation piece.  As 

amorphous matter is isotropic in comparison to, for example, crystalline anisotropic 

calcite (material with different properties in different directions) the observed image 

of amorphous matter between cross polariser remains dark.  Calcite, on the other 

hand, re-scrambles initial uniaxial oriented light upon transmission, letting a certain 

fraction pass through the second polarizer.  This makes it visible in the observed 

image, where this is due to different relative travelling velocities in the anisotropic 

material, due to different refractive indices.(177) Optical microscope images were 

collected using a Nikon eclipse LV100 microscope at 20, 50 or 100 fold 

magnification.  

 

2.3.2.2:  Fluorescence Microscopy  

Fluorescence describes the combined process of atoms or molecules becoming 

excited by absorption of electromagnetic radiation and the relaxation of species 

back to their ground states.  Relaxation leading to the emission of light commonly 

occurs at a longer wavelength than the excitation radiation.(178) 

In contrast to VLM, Fluorescence microscopy detects radiation that is directly 

emitted by a sample when it is irradiated with primary radiation.  Fluorescence 

microscopy is generally used to highlight particular areas of interest in a complex 

sample by specifically labelling objects of interest with a fluorophore.  Objects of 

interest can be specific ions or, as studied here, phospholipids, Chapter. 3.3.   

Fluorescence microscopy and in-situ crystal growth observations were made using 

an Inverted Olympus IX-70 confocal microscope equipped with a 60x magnification 

lens.  Image analysis was performed using Zeiss Zen lite or Image J software 

packages.(179)  
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Confocal microscopy refers to an extension of the general VLM and removes the 

detrimental effect of stray light on image resolution.  This is achieved by specific 

area illumination and the blockage of stray light.   

 

2.3.3:  Electron Microscopy   

2.3.3.1:  Scanning Electron Microscopy  

Scanning electron microscopy (SEM) returns magnified images of the specimen, 

currently up to 1 nm resolution, by scanning the specimen with a high energy beam 

of electrons.  Electrons are accelerated in a field emission gun using electric current 

and are focused on a sample spot by the use of condenser lenses.  A vacuum is 

commonly required to avoid air scattering of the electrons.  The bombarding 

electrons (primary electrons) interact in a multitude of ways with the specimen.  

Here, mostly of interest is the inelastic scattering of primary electrons by the sample 

atoms.  This leads to the emission of secondary electrons from specified locations 

in the sample as scanning with the primary electrons progresses.  The secondary 

electrons are then amplified and directed to a scintillation detector for signal 

readout.  The obtained image is reconstructed by integration of the scanned 

position intensities, which results in a surface topographical sample representation.  

The obtained image is a surface topographical representation of the sample as the 

intensity per scanned area is “equal” to the measured electron density.  The 

particular magnification is dependent on two factors, namely the applied raster size 

and the resolution on screen, Equation 28.  

𝑴𝒂𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 =
𝑺𝒄𝒓𝒆𝒆𝒏 𝑹𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏

𝑹𝒂𝒔𝒕𝒆𝒓 𝑺𝒊𝒛𝒆
 ( 28 ) 

Secondary and tertiary interactions provide further sample information.  

Backscattered primary electrons are electrons reflected by atoms at the sample 

surface, and provide information regarding elemental sample composition.  Heavier 

elements provide a better reflection “mirror” for backscattered primary electrons, 

due to increased electron density.  Reflection from those areas will therefore appear 

brighter due to the increased intensity registered by the detector.  A tertiary 

interaction involves the release of element specific x-rays as discussed in Chapter 

2.5.3.(180) 

Samples for SEM investigation were initially dried (desiccator filled with moisture 

adsorbent) for 30-60 minutes before they were sonicated (~3 minutes) in ethanol.  
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Droplets of the ethanolic sample slurry were then placed onto cleaned glass slides 

or silicon wafers and were left to dry, before being mounted on a SEM stub covered 

with sticky carbon tape.  Finally, SEM samples were either used as prepared or 

coated with 10-15 nm of Pt/ Pd (80/ 20) prior to analysis. 

Scanning electron micrographs of uncoated specimens were obtained using a FEI 

Nova NanoSEM 650.  Micrographs of coated specimen were obtained using LEO 

1530 Gemini FEGSEM operating at 2 kV or a NeoScope JCM-5000 SEM operating 

at 10 kV. 

 

2.3.3.2:  Transmission Electron Microscopy  

Transmission electron microscopy (TEM) operates on the same principle as 

transmission VLMs, but provides an increased resolution (~0.1 nm) by utilizing 

electrons as an irradiation source, and imaging a thin specimen (<100 nm) in a 

vacuum.  The electron intensity is recorded by a CCD.  The increased resolution is 

thanks to the short wavelength (λ) of electrons at a particular energy (E), Equation 

29.(181)  The difference between ideal subatomic resolutions based on electron 

wavelength, at for example 100 kV (0.004 nm), and the practical resolution is 

partially a result of imperfect electron lenses.  

𝝀 =
𝟏. 𝟐𝟐

√𝑬
 ( 29 ) 

Basic image generation and acquisition proceeds as follows: electrons are 

generated from and accelerated by a field emission gun (FEG) towards the thin 

sample.  Intermediate electromagnetic lenses are used to focus the electrons onto 

the sample.  After specimen interaction, the electron beam is passed through an 

objective lens and finally projected onto the CCD for readout.  Sample visibility on 

the CCD is a result of electrons scattered by the atomic columns or electron cloud 

of the sample.  Thus thicker/ denser sample areas or areas composed of heavy 

elements will appear darker on screen as fewer electrons hit the CCD.  

A substantial problem associated with the use of electrons for microscopy is the 

possibility of beam damage to the sample.  To avoid the introduction of image 

artefacts of this origin, Cryo-TEM and low dose imaging procedures were 

developed.(181)  Imaging with a low electron dose was required for the work on 

calcium oxalates described in Chapter 3.5.  
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Samples for TEM investigations were prepared by depositing droplets of the 

prepared mineral/ ethanol slurry onto carbon-coated, formvar-coated copper or gold 

TEM grids.  Samples were used for microscopy after total solvent evaporation.  

Secondary investigation of thicker specimens was possible by preparing thin cut 

sections via focused ion beam milling (FIB).(182)  

Focused ion beam samples were prepared as follows.  In the first step, the sample 

region of interest (lamella) was covered with a protective film of platinum 50 nm 

thick and 200 nm wide and 2 µm long.  The second step involved the excavation of 

the lamella by creating two angular trenches into the substrate on each side of the 

protective layer.  This is achieved using a Ga+ beam operating at 5 nA.  The lamella 

was then welded onto a transportation tip before the remaining connection between 

substrate and lamella prepared was removed by ion milling.  The cut lamella was 

then lifted out and welded onto a TEM grid before undergoing a secondary milling 

step to ensure electron transparency.  FIB sample preparation was performed using 

an FEI Nova200 Dual Beam FIB/SEM.  The ion beam was operated at 30 kV and at 

beam currents between 0.1 and 5 nA.  Lift-out was performed in situ using a 

Kleindiek micromanipulator.   

TEM images and electron diffraction patterns were acquired using a FEI Tecnai F20 

-200 kV FEG-TEM fitted with an Oxford Instruments INCA 350 EDX system/80mm 

X-Max SDD detector and a Gatan Orius SC600A CCD camera.  Low dose TEM 

work was performed by P.H.H. Bomans and N.A.J.M. Sommerdijk at the Eindhoven 

University of Technology using a TU/e CryoTitan (FEI) -300 kv FEG-TEM.  Images 

were recorded on a 2k x 2k Gatan CCD camera.  

 

2.3.4:  Scanning Probe Microscopy  

2.3.4.1:  Atomic Force Microscopy 

Atomic force microscopy (AFM) was performed to obtain information regarding 

surface roughness and the gold island size of prepared thin films on silicon wafer 

substrates.  The latter were used as substrates for SAM deposition.  Surface 

roughness is either reported in terms of average measured surface roughness or in 

terms of the surface fractal dimension.  Fractal dimensions were obtained by 

applying the lake/ island perimeter-area method as given by Williams.(183)  

Substrates were characterized using a Bruker Dimensions 3100 AFM in tapping 
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mode (Brucker Tespa; resonance frequency 345-385 kHz, K 20-80 N/m) at a scan 

rate of 1.98 Hz with pixel dimension of 512 x512.    

In simplistic terms, basic AFM in tapping mode provides images of surface 

topography by “feeling” the surface with a mechanical probe.  In the used setup an 

“atomically” sharp tip is located at the free end of a cantilever and is scanned over 

the sample surface.  A feedback loop ensures that the “flexible” tip is maintained at 

a constant force during the scanning process of the surface.  During this process 

the cantilever is deflected by the sample contour.  An optical detection system is 

used to readout the degree of tip deflection and hence returns information 

concerning surface topology.  The optical detection system consists of a diode laser 

focused on the back side of the cantilever and a dual element photodiode collecting 

the reflected beam.  The degree of cantilever deflection and the resulting light 

intensity difference between the upper and lower photo detectors are subsequently 

reinterpreted as height displacements in the sample.  Tapping mode refers to the 

fact that the tip is not in constant contact with the surface.  Rather, the tip and 

cantilever is oscillated near the cantilever's resonant frequency where it is 

maintained during the scanning process.  The non-permanent surface contact 

inherently prevents the tip from sticking to the surface.  This reduces the risk of 

damaging the sample and or tip during scanning.  
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2.4:  Spectroscopy Techniques  

Spectroscopic characterisation techniques are based on the interaction of matter 

with radiation energy.  Recorded is the interaction degree (changes in intensity and 

or frequency) as a function of radiation frequency/ wavelength.  In the presented 

study this is based on changes in resonance frequency due to structural differences 

in molecular and or atomic order/ local environment/ excitation level.  Generally, 

changes in intensity provide quantitative information while shifts in the position of 

“resonance” frequencies are used for qualitative phase, element or species 

identification.  The techniques utilized are presented based on the particular type of 

interaction (Absorption, Emission, Inelastic scattering and coherent interaction) and 

subsequently the length scale of interaction (Atoms, Molecules, amorphous and 

crystalline materials).(178) 

 

2.4.1:  Ultraviolet–Visible Spectroscopy 

 

Ultraviolet–visible spectroscopy (UV-VIS) and secondary radiation absorption 

and emission techniques are based on the Beer-Lambert Law, Equation 30.  The 

Beer-Lambert law relates the absorption (A) of a certain molecular characteristic or 

ionic species at a specific wavelength to the analyte (c) concentration.  This is 

based on the absorbance intensity measured at a particular wavelength 

(Quantitative information) given a constant extinction coefficient (ε) and 

measurement path length (L).  A sweep across a certain wavelength (λ) interval and 

the obtained absorbance spectra give rise to qualitative information such as 

polymorph identification, level of hydration or elemental composition.  The 

difference between the analytical techniques is primarily based on the range of 

electromagnetic radiation used for probing.  This results in different physical 

interactions and consequently different information about the specimen studied.  

Probing of a liquid sample with a light source in the UV-VIS range (10-9-10-7m) leads 

to the excitation of “π-electrons or non-bonding electrons” from the ground state in 

the sample.  This is in contrast to fluorescence measurements, which register the 

transition from excited to ground states.  

𝐥𝐨𝐠𝟏𝟎 (
𝑰𝟎
𝑰
) = 𝑨 = 𝜺 ∗ 𝒄 ∗ 𝑳 ( 30 ) 

UV-Vis spectroscopy was performed here for kinetic studies of mineralization.  The 

mineralizing solution was irradiated at a constant λ and the “absorption” recorded 
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with time. Changes in measured “absorption” allowed the extraction of information 

regarding mineralization reaction progress and foremost onset of mineral formation 

(induction point) given certain resolution limitations.  This is based on the light 

scattering behaviour of formed mineral particles reducing the radiation intensity at 

the detector (I) compared to sample incoming radiation (I0) –“absorption”, Equation 

31.  A Perkin Elmer lambda 35 UV/VIS Spectrometer, λ= 500 nm, in time-drive 

mode was employed in transmission mode to estimate the induction point and the 

progress of the reaction.  

𝐥𝐨𝐠𝟏𝟎 (
𝑰𝟎
𝑰
) = 𝑨 ( 31 ) 

2.4.2:  Atomic Absorption Spectroscopy 

 

Atomic absorption (AA) refers to the absorption of radiation by free atoms in the 

gaseous state.  As stated above, absorption at a particular wavelength provides 

qualitative information, which are here element specific.  Absorption is 

fundamentally based on the electronic transition of outer shell electrons (valence 

electrons) to higher orbitals through the absorption of a defined energy quantity, 

which is specific to a particular electron transition.  Elements - specifically Ca and 

Mg - were transformed to an ionic gaseous state by first dissolving the mineral 

sample in 5 %wt nitric acid and then atomized using a Perkin Elmer AA Analyst 400 

spectrometer.  A second irradiation source sitting normal to the flame direction 

(“ionisation source”) supplies the transition-specific energy quantity.  Spectroscopy 

was performed at, λ =422.67 nm, Slit width 2.7/ 0.69 mm, Flow rate (Lmin-1) 

Oxidant/Acetylene =10/ 2.7 for Ca and λ =285.2 nm, Slit width 2.7/ 0.7 mm, Flow 

rate (Lmin-1) Oxidant/Acetylene =10/ 2.7 for Mg.   

 

2.4.3:  Energy-dispersive X-ray spectroscopy 

 

Energy-dispersive X-ray spectroscopy (EDX) utilized in scanning and 

transmission electron microscopes provides information regarding the elemental 

composition of the sample, and is studied in the microscope by means of emission 

spectroscopy.  This is achieved by exciting the sample with the electron beam.  

This causes core electrons to be expelled, created gaps which are then filed by 

electrons from a higher orbital.  The associated energy difference between changes 

in orbital is released in the form of X-rays.  Emitted X-rays are element-specific as 
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only a number of specific transitions are possible in consideration of unique atomic 

structures (as described by Moseley's Law Equation 32).  Recorded are intensity 

patterns with increasing energy, where a combinatorial match of peak positions 

provides information concerning the elements present.  The peak intensity (number 

of x-ray photons with a particular energy) is roughly equal to the abundance of the 

element in question.  

𝒇𝒌𝜶 = (𝟐. 𝟒𝟕 𝟏𝟎
𝟏𝟓) (𝒁 − 𝟏)𝟐 ( 32 ) 

In simplest terms, Moseley's law states that the frequency (𝒇𝒌𝜶) of emitted X-rays 

(i.e. the Kα(1 or 2), lines) are directly relatable to the elements specific atomic number 

(Z) in Bohr’s atomic model, where frequency (𝒇) is related to wavelength (λ) and 

energy (E) according to Equation 33. 

𝑬

𝒉
= 𝒇 =

𝒄

𝝀
 ( 33 ) 

 

2.4.4:  Fourier Transform Infrared Spectroscopy 

 

Fourier transform infrared spectroscopy (FTIR) which uses a lower energy, 

longer wavelength (10-6-10-4 m) as compared to UV-VIS, is another type of 

absorption spectroscopy.  Recorded is the absorption at structural or molecular 

resonant frequencies or vibrations.  For a vibrational mode to be IR active, the 

radiation must be able to induce a shift in the dipole moment.  The vibration 

frequencies of certain IR active bonds changes based on the local environment 

they are exposed to, and they resonate at a particular wavelength, according to 

their local environment.  This is important for the work undertaken here as it allows 

the identification of the polymorph or hydration state of the sample.  Polymorphs 

differ in crystal structure and local environments around the IR active group.  This 

results in a shift/ occurrence of polymorph specific absorption peaks.  Rather than 

utilizing a dispersive approach (scanning with monochromatic radiation) as the 

methods stated above, FTIR collects spectral data in a wide spectral range 

simultaneously.  The resulting interferogram is then subjected to a discreet Fourier 

transformation (FT).  FT returns the wavelength – intensity profile.  FTIR 

spectroscopy was carried out using a Perkin Elmer Spectrum 100 FT-IR 

Spectrometer equipped with a universal ATR sampling accessory.  ATR 
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accessories allow the direct sampling of the prepared powder.  The spectra are all 

presented after subtraction of the atmospheric background. 

 

2.4.5:  Raman Spectroscopy 

 

Raman spectroscopy was used in tandem with FTIR in compositional/ structural 

analysis of the formed precipitates.  Raman spectroscopy is based on the inelastic 

scattering of incoming coherent radiation by a “molecule”.  Incoming photons 

emitted from a monochromatic IR source induce a transition in vibrational states of 

molecules in the sample from their ground state to a virtual, non-discrete exited 

level.  The vibrational state transition is dependent on the local environment of the 

molecule, and can be sensitive to polymorph or structural changes.  The non-

discrete excitation results in a returning vibrational ground state which is different in 

energy as compared to the initial ground state.  The associated emitted photon from 

the sample has therefore a different frequency compared to the incoming radiation.  

This difference is reported as the Raman characteristic signal, from which the 

Raman spectrum is constructed in terms of vibrational or Raman shift.  The 

effective Raman vibration in crystals is only active when equivalent atoms e.g. a 

structure exhibiting long range order, are vibrating in phase.  Therefore, if a sample 

does not possess long range order, as in an amorphous or nano crystalline 

material, broadening of the signal peaks is observed due to the heterogeneity 

present in vibrational modes.  Raman spectroscopy was performed using a 

Renishaw invia Raman Microscope equipped with a 785 nm diode laser as 

excitation source, focused onto the sample using a 5 or 50 x (NA ¼ 0.75) objective.  
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2.4.6:  Solid-state Nuclear Magnetic Resonance Spectroscopy  

 

Solid State Nuclear Magnetic Resonance (SSNMR) spectra were obtained on a 

Bruker 9.4 Tesla Avance-400 wide bore spectrometer, at frequencies of 400.1 MHz 

(1H).  One-dimensional datasets were acquired on samples spun at 10 kHz using 

MAS (1H π/2 pulse length 2.5 μs, contact time 2.5 ms, at a 1H field strength of 100 

kHz) and a repetition time of 2 s was employed in all experiments.  The number of 

scans acquired depended on the quantity of available sample, and was generally 

between 256 and 512.   Experiments were performed by Wei Ching Wong at the 

University of Cambridge. 
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2.5:  Electrochemical Techniques  

Knowledge of the pH level in solutions was required to determine the distribution of 

carbonate species.  pH was measured using a Mettler Toledo S20 SevenEasyTm pH 

meter equipped with a 3 in 1 pH electrode InLab 431 Premium Metler Toledo and 

logged via serial port communication (RS-232) into a remote computer using a 

simple RS-232 data logger (Eltima Software 2.7).  The electrode used was 

calibrated before every run to correlate the voltage/ electromotive force (EMF) 

registered to the pH scale using pH 4 and pH 9 standards.  EMF arises from the 

potential difference between the hydrogen ion sensitive electrode and a reference 

electrode according to the Nernst equation, Equation 34 which basically, measures 

the galvanic cell potential (178).  

𝑬𝑪𝒆𝒍𝒍 = 𝑬
𝟎 +

𝑹𝑻

𝒛𝑭
∗ 𝐥𝐧 (𝒂𝑯+𝑯) ( 34 ) 

Conductivity (κ) was measured in solution to record the mineralization progress 

and secondly to determine the total fraction of carbonate present in an isolated 

solution.  A Metler Toledo MC 226 conductivity meter equipped with an InLab 731 

conductivity electrode was used for measurements.  The change in current (I) 

across the immersed “anode/cathode” was recorded as the ion concentration in 

solution decreases due to progressing mineralization, once a voltage is applied 

inducing an electric potential (U), Equation 35. 

𝑰 = (𝜿 +
𝑨

𝑳
)𝑼 ( 35 ) 

A Dionex Ion chromatography (IC) system was used to determine the total 

inorganic carbon content present in the mineralizing solution.  Inorganic carbon ions 

were separated from the remaining solution species using an Ion Pac AS 15 

column with KOH as eluent (pH >10), separating ions on the basis of their columbic 

charge.  KOH was used as an eluent in order to convert all of the present inorganic 

carbon in the solution to carbonate.  A conductivity detector (Dionex EG50) was 

used to derive the total activity of the carbonate present by measuring the change 

in conductivity in the mobile phase as the former passes into the solution.  

Knowledge of the initial solution pH in conjunction with the total inorganic carbon 

present allows the recalculation of carbonate species distribution present in a 

mineralizing solution.  
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2.6:  Dynamic Light Scattering 

Dynamic light scattering (DLS) was carried out using a Malvern Zetasizer Nano 

to obtain information regarding the particle size distribution of already formed 

precipitates or to monitor particulate growth.  Size determination is based on the 

dissimilar Brownian motion velocities of differently - sized particles (r).  Particle size 

measurement depends on the diffusion velocities (D) and is obtained according to 

the Stokes Einstein relationship, Equation 36 at low Reynolds numbers.  In 

simplified terms, two or more pictures are taken at a certain time interval (~10ms), 

from which the distance travelled by the imaged particles is evaluated to obtain the 

particle size. In reality, the subject is more complicated as we find a particle 

ensemble which scatters the incoming radiation ideally according to Mie theory 

which produces a scattering pattern.  Continuous fluctuations in intensity, position 

and size are used to evaluate the size distribution present.(184)  

𝑫 =
𝒌𝑩𝑻

𝟔𝝅𝜼𝐫
= 𝝁𝒌𝑩𝑻 ( 36 ) 
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2.7:  Surface Area Determination 

Surface area measurements (Micrometrics ASAP 2020, Nitrogen Sorption) were 

primary required to investigate the formation of mesocrystals.  The Brunauer–

Emmett–Teller theory (BET) used for surface area determination is in itself an 

extension of the Langmuir theory of monolayer adsorption to multilayer adsorption 

for gases onto solid surfaces.  The surface area is determined by measuring the 

gas quantity adsorbed onto a solid surface (V) over a certain vapour (P)/saturation 

pressure (P0 ) range, which results in an adsorption isotherm from which in turn the 

volume of a monolayer of adsorbed gas (Vm) can be extracted (1/(slope + 

intercept)), Equation 37.  A detailed derivation is given in Brunauer.(185)  The total 

sample surface area (ST) is obtained according to Equation 38 under consideration 

of molecular volume (Mv = 22, 414 ml) and specific surface area (Am = 0.162 nm2) 

of adsorbed gas molecules.  The specific surface area (Si) is obtained in relation to 

the sample mass (m) present after degassing, Equation 39.  Here, samples were 

degassed at reduced pressure for 2 hours at 100oC to remove any previous 

absorbed material, including pore water.  The surface area was calculated from the 

linear part of the BET plot (10 data points). 

𝟏

𝐕 [(
𝐏𝟎
𝐏 ) − 𝟏]

=
𝑪 − 𝟏

𝐕𝐦𝑪
(
𝐏𝟎
𝐏
) +

𝟏

𝐕𝐦𝑪
 ( 37 ) 

𝐒𝐓 =
𝐕𝐦𝐍𝐚𝐀𝐦
𝐌𝛎

 ( 38 ) 

𝐒𝐢 =
𝐒𝐓
𝐦

 ( 39 ) 

Acquired BET data sets could further be used to extract sample surface topography 

information by means of extracted surface fractal dimensions (Ds).  Fractal 

dimensions present a relative measurement of surface roughness, where this 

ranges from a perfectly smooth surface with a Ds = 2 to a totally rough surface Ds = 

3.  Fractal dimensions were extracted based on nitrogen absorption curves 

collected according to the Frankel–Halsey–Hill method,(186) and were calculated 

based on Equation 40-42.  Only data points in the region of statistical multilayer 

adsorption were considered for fractal analysis.  
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𝒍𝒏 (
𝑽

𝑽𝒎
) = 𝒄𝒐𝒏𝒔𝒕. +

𝟏

𝒔
𝒍𝒏 (𝒍𝒏 (

𝐏𝟎
𝐏
)) ( 40 ) 

𝒔 > 3;  
𝟏

𝒔
=
(𝟑 − 𝑫𝒔)

𝟑
 ( 41 ) 

𝒔 < 3;  
𝟏

𝒔
= 𝟑 − 𝑫𝒔 ( 42 ) 

  



Chapter 2:  Experimental Methods and Analysis 

76 

2.8:  Thermo Gravimetric Analysis and Differential Scanning 

Calorimetry 

Thermo gravimetric analysis (TGA) (TA Instruments STD Q600, 100ml min-1 Air/ 

N2) and Differential scanning calorimetry (DSC) (TA Instruments DSC Q200, 

100ml min-1 N2) were applied to determine sample composition and the activation 

energies of dehydration and crystallisation respectively.  TGA registers changes in 

sample mass as a function of time and/ or temperature.  A microbalance is used for 

TGA readout, from which thermal decomposition temperatures and molar 

compositions can be calculated based on externally - obtained knowledge of 

starting and end products.  DSC measures the change in heat flow compared to an 

internal standard as the sample undergoes incremental heating/ cooling cycles.  

The change in heat flow (dQ/dt or dQ/dT) is due to alterations in sample heat 

capacity (cp) upon temperature variation and or atmospheric decomposition.  

Changes in heat capacity occur for various reasons.  Firstly, they can occur due to 

sample decomposition and removal of volatile substances which alter the sample 

composition.  Secondly, changes can be a result of phase transformations, which 

can be endothermic e.g. water evaporation or exothermic e.g. crystallisation events.  

Recorded is the difference in energy supplied to the internal reference and the 

sample to maintain them at equal temperature.  The measured energy difference or 

equivalent temperature difference is then reinterpreted as the change in heat flow 

according to Ohm’s law, Equation 43 this is when a readout in the form of a 

thermocouple is used. 

𝚫𝑼 = 𝑹𝑰 = 𝑹
𝒅𝑸

𝒅𝑻
 ( 43 ) 

𝐜𝐩 =
𝒅𝑸

𝒅𝑻
 ( 44 ) 

Phase transformations and the associated “latent heat” results in peaks in the 

obtained heat flow profile which can be used to derive the associated enthalpy 

through peak area integration.  The integration of the present peak area also 

provides a secondary option of tracking the reaction progress (0-1).  

Crystallisation activation energies (Ea) can be obtained graphically from a series 

of experimental runs performed at distinct heating rates.(129)  The resulting shifts in 

the phase transition peak position associated with an applied heating rate can be 

related to crystallisation activation energies according to the method given by 
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Boswell, Equation 45.(187)  β is equal to the applied heating rate for a particular run 

and TP is the central peak position.  For a graphical representation please refer to 

Chapter 3.3. 

𝒍𝒏 (
𝛃

𝑻𝑷
) = −(

𝑬𝒂
𝑹𝑻𝑷

) + 𝒄 ( 45 ) 

The activation energies associated with liberation of different water fractions (Ea) 

were derived by iso-conversion methods based on sets of isothermal TGA curves 

collected at increasing isothermal hold temperatures (40 - 280°C in 5°C steps and 

hold times of 100- 200 minutes.).(188)  Dehydration activation energies are 

acquired according to Equation 46.  Here, α (as defined in Equation 47) represents 

the dehydration progress.  (dα/dt)T the reaction velocity at a given isothermal 

temperature (T), A is a pre-exponential factor and f(α) describes the underlying 

unknown reaction model.  Wmax, Wmin and Wt are the fractions of H2O present at the 

beginning, end and time (t) during an isothermal dehydration event. 

𝐥𝐧 (
𝒅𝜶

𝒅𝒕
)
𝑻
= 𝐥𝐧[𝑨𝒇(𝜶)] −

𝑬𝐚
𝑹𝑻

 ( 46 ) 

𝜶 =
(𝑾𝒎𝒂𝒙 −𝑾𝒕)

(𝑾𝒎𝒂𝒙 −𝑾𝒎𝒊𝒏)
 

( 47 ) 

The activation energy associated with the liberation of a particular water fraction 

can be obtained based on recorded overlapping α values present in experimentally 

flanking isotherms, such as runs performed with isothermal periods at 85, 90 and 

95°C.  A plot of ln(dα/dt)α versus 1/T, where the value of (dα/dt)α is determined for 

each isothermal dehydration event and temperature T, returns a straight line of 

gradient Ea/R for one particular dehydration step.(95) 
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2.9:  Diffraction  

2.9.1:  X-Ray Diffraction 

 

X-Ray diffraction (XRD) is a non-destructive elastic scattering technique which is 

used to analyse solid matter.  XRD is able to provide information regarding 

structural and physical properties of crystalline sample including but not exclusive to 

phase identification, crystal size (coherently scattering domains), lattice 

deformation, atomic arrangement and crystal orientation.  XRD utilizes atomic long 

rang order present in a crystal to extract this information based on the principles of 

destructive and constructive interference of X-rays scattered/ diffracted by the 

specimen. 

Father and son Bragg observed that crystals irradiated by X-rays only exhibited 

constructive interference at certain X-ray incident angles.(189)  From these 

observations they inferred that direct information of the crystal structure could be 

gained.  Bragg’s law, Equation 48, states the condition of constructive interference 

and a graphical illustration is given in Figure 2-1. 

𝟐𝐝 𝐬𝐢𝐧(𝚯) = 𝒏𝝀 ( 48 ) 

Coherent interference and in turn scattering of X–rays occurs only if the wavelength 

(λ) or a natural number multiple of the incident X-rays wavelength (nλ) is equal to 

2dsin(θ).  That is the distance (d) between two scattering planes of atoms at a set 

diffraction angle (θ).  In geometry terms, the path length difference marked red in 

Figure. 2-1 is equal to nλ.   

 

Figure 2 - 1:  Schematic to Bragg’s law of diffraction.  Given is the geometrical 
derivation for constructive interference from a crystal.  The lower X-ray beam must 
travel an extra distance AB + BC to continue to be in phase with the upper beam.  
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A change in effective scattering angle follows as a result of the interaction with 

different scatting planes/ directions of separation d.  This combined with knowledge 

of possible scattering angles eventually allows the reconstruction of the irradiated 

crystal’s atomic arrangement.  A list of the obtained scattering angles and lattice 

spacings is used for phase identification, where this is specific to a crystal of 

composition y and structure x.(189, 190)   

A one dimensional pattern obtained by PXRD is shown for calcite in Figure 2-2.  

Visible are the Bragg peaks as a function of 2θ (Cu source) and the lattice planes 

(hkl) d spacing in relation to the atomic arrangement of calcite normal to the c- axis.  

 

Figure 2 - 2:  1D PXRD Calcite diffraction pattern and its structural relation to 
atomic arrangement.  2 theta position are given in respect to cu radiation. 
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2.9.2:  Diffraction Techniques   

2.9.2.1:  Powder X-Ray Diffraction 

Powder X-ray diffraction (PXRD) is an extension of single crystal diffraction and 

structure refinement.  Instead of a single crystal, diffraction patterns are obtained 

from an ensemble or powder of crystals, where this avoids the difficulty of having to 

obtain large, defect free crystals for analysis.  In a general laboratory θ/ 2θ setup, a 

powder sample - located here on a low background holder - is placed between an 

X-ray source and a one dimensional detector.  X-rays are emitted from an X-ray 

tube, in which a tungsten filament/ cathode is subjected to a high voltage which 

accelerates electrons towards the anode.  When this electron beam hits the anode, 

the inner electrons of the anode material are ejected and an electron from the 

higher orbital falls back to fill the hole. As there is a difference between the 

energetic levels of these orbitals, X-rays specific to the anode material are emitted 

(2.4.3: Energy-dispersive X-ray spectroscopy).  The coherently scattered X-rays are 

detected by scintillating material which converts the number of X-ray photons 

detected at a particular irradiation angle to a displayed intensity.  

Data is collected while both the X-ray source and detector move around the 

sample at a rate of θ°/min in a uniaxial motion.  This generates a pattern as given in 

Figure 2.2., which can be used to extract several structural and physical 

parameters.  This is achieved by fitting the pattern with respect to a known “ideal” 

atomic structure of the phase in question by Rietveld refinement.(191) Singular 

Bragg peak profile fitting can also be performed.(192)  Given below are sample 

characteristics of interest for the work presented, and the methods used to derive 

them.  

Crystallite size (τ) or the coherently scattering domain size was obtained by profile 

fitting of the most prominent peak present in the given spectra or through the fitting 

of multiple peaks (Rietveld refinement – Pseudo Voigt Peak shape, size and strain).  

For single peak line profiles the extracted FWHM (B) was used to calculate the 

crystallite size using the Scherer equation, Equation 49 after subtracting 

instrumental broadening.  A shape factor (K) of 1 was used.   

𝝉 =  
𝑲𝝀 

𝑩 𝐜𝐨𝐬 𝜽
 ( 49 ) 
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For Rietveld, the following relationships were used (Equations 50-51), where (u) 

carries information regarding strain broadening and (w) information about size peak 

broadening.  

𝑭𝑾𝑯𝑴 = √(𝒖 𝐭𝐚𝐧𝟐 𝜽 + 𝒗 𝐭𝐚𝐧𝜽 + 𝒘) ( 50 ) 

𝝉 = (
𝟏𝟖𝟎

𝝅
) 
𝝀

√𝒘
 

( 51 ) 

Peak broadening is related to crystal size by means of the constructive inference/ 

diffraction criterion.  I.e. diffracted beams must be in phase which in a perfect 

infinite crystal ideally results in infinitely narrow sharp peaks as all atoms scatter at 

only this condition.  Now as crystals are limited in size a number of interfacial atoms 

are present which fulfil slightly different constructive interference criteria.  The peak 

therefore broadens with decreasing crystal size.(193)  Instrumental broadening is a 

result of imperfect optical devices among others.  

 

Strain or lattice distortions have to be further classified as either homogenous 

(global uniform strain) or inhomogeneous (microstrain).  Homogenously strained 

crystals are a result of, for example, a uniform applied stress field or due to the 

uniform incorporation/ lattice substitution in the crystal.  An example of the latter is 

the calcium ion substitution by magnesium in calcite crystals.  As internal or 

external stress and the resulting strain are uniform, the spacing between particular 

planes (direction and species dependent) changes to a certain degree.  The strain 

is therefore identified by a shift in scattering angle.  Tensile stress generally results 

in a shift to higher d spacing, while compressive stress leads to a lower d spacing.  

The associated changes in unit cell are expressed as given in Equation 52. 

% = 
𝚫𝒄 

𝒄𝒊𝒏𝒊𝒕𝒂𝒍 
=
(𝒄 − 𝒄𝒊𝒏𝒊𝒕𝒂𝒍 ) 

𝒄𝒊𝒏𝒊𝒕𝒂𝒍 
 ( 52 ) 

Micro strain (e) as a result of crystallographic defects is perceived by peak 

broadening (as for crystallize size).  Both factors can be separated as strain 

broadening is length-scale independent and therefore results in different peak 

shape profiles than size broadening.(192)  This was carried out here by Rietveld 

refinement according to Equation 53. 
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𝒆 =
√(𝒖 − 𝒘)

(
𝟏𝟖𝟎
𝝅 )𝟒√𝟐 𝐥𝐧𝟐

× 𝟏𝟎𝟎 ( 53 ) 

 

Knowledge of texture or the degree of crystal orientation with respect to a 

substrate, as required for the experimental work presented in Chapter 5, was 

obtained by collecting rocking curves or acquiring pole figures.   

 

Rocking Curves provide information about the degree of orientation present in a 

sample with respect to crystallographic directions or the substrate.  This is achieved 

by determining the changes in peak width of a Bragg reflection as the sample is 

gradually rocked through the reflection.  The rocking motion can be achieved in two 

ways.  The sample holder can be independently rocked from one side of the peak 

to the other while the detector and source are kept fixed at the peak maximum, 

corresponding to the 2 theta value.  Alternatively, the sample holder is fixed and the 

source/ detector are moved to emulate the sample holder rocking motion.  The 

width of the peak is correlated with the degree of orientation such that a range of 

constructive scattering conditions can be tested.  A sharper peak width correlates 

with a higher degree of orientation.(194) 

If applied to the measurement of single crystals, as used in Bragg coherent 

diffraction imaging, (Chapter 5) additional information can be gathered including the 

detection of secondary grains (peak shoulders) and dislocations where this is 

achieved by “sectioning” the crystal as in tomographic techniques.  

Pole Figures are acquired in a similar manner to rocking curves for powdered 

specimens.  That is, measurements are collected at fixed scattering angles (2θ) and 

differences in diffraction intensity are recorded as the sample is tilted (ψ 0- 90°) and 

rotated around the sample surface normal axis (φ 0-360°).  This is done step-wise, 

which means that the sample is rocked a certain degree in psi and the intensity is 

collected as phi is varied (0-360°).  This is repeated for further increments in psi.  A 

pole figure is generated from the obtained intensity profiles.  Pole figures are a 

stereographic projection of pole density (diffraction intensity) as a function of pole 

orientation.  ψ =0° is the centre of the pole figure e.g. the lattice plane to set 

scattering condition 2θ, is parallel to the substrate surface.  Intensities recorded at 

ψ =90° have then to come from a scattering plane normal to set scattering condition 

that is perpendicular to the sample surface, Figure 2-3.  The intensity variation in 
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the ψ direction at a fixed φ is due to the tilting motion while variation in the φ 

direction at fixed ψ corresponds to the in- plane distribution i.e. if the crystal sits 

epitaxially on the substrate or with preferred orientation.(195) 

 

Figure 2 - 3:  Schematic displaying the acquisition principle behind pole figures (a) 
and is translation to given pole figure representation.  Illustrated are rotating  
sample angle φ and tilt angle ψ.  Reproduced after Kagami, 2011.(195) 

 

PXRD data were collected using a Bruker D8 Advanced diffractometer equipped 

with an X-ray source emitting Cu Kα1 radiation.  XRD data were collected in an 

angular range between 10o and 120o in intervals of 0.033o with a scan rate of 2° 

min−1. Programmable divergence slits were used during the measurement, with an 

irradiated area of 10 x 10 mm. The data were subsequently corrected, utilizing the 

software HighScore Plus (Almelo, The Netherlands) for analysis.  Crystal 

orientation was inferred from the same equipment in pole configuration, with a step 

size of 1.5° at 2.5 seconds (Psi 0-90, Phi 0-360).   
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2.9.2.2:  Electron diffraction  

Electron diffraction (ED) as carried out in TEM provides fundamentally identical 

information as X-ray diffraction, but differs in 3 key aspects.  The use of electrons 

rather than X-rays allows the rapid on-screen readout of the diffraction pattern.  The 

second and third differences are a result of the TEM setup – from which it is easily 

possible to obtain 2D diffraction patterns and the third is due to the ease of focus 

and magnification variation.  It is therefore possible to extract diffraction patterns 

from a particular area of a specimen or a small single crystal as described by the 

term selected area electron diffraction (SAED).   
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2.9.2.3:  Bragg Coherent Diffraction Imaging  

Bragg Coherent Diffraction Imaging (BCDI) is a form of X-ray phase contrast 

microscopy, which generates strain-sensitive image reconstructions from 3D 

diffraction patterns collected from an isolated crystalline specimen illuminated by a 

spatial and temporal coherent light source.  Reconstructions are obtained by 

applying phase retrieval algorithms to the collected intensity patterns.(196)   

Experiments were performed in collaboration with Jesse N. Clark and Ian K. 

Robinson from University College London.  The former performed the image 

reconstructions presented in Chapter 5.  Presented below are in brief technical and 

experimental details of the data collection and analysis methods.  A general 

description of the working principle is given in Chapter 5.1.  Explicit details can be 

found here (197, 198), Chapter 5 and Appendix G.  

Experiments were conducted at Beamline I-16 at the Diamond Light Source (DLS) 

UK and at Beamline 34-ID-C of the Advanced Photon Source (APS) USA.  

Synchrotron radiation or “Bremsstrahlung” is electromagnetic radiation of high 

brilliance and broad spectral width, where this is emitted by charged particles at 

relativistic velocities under radial acceleration.  Synchrotron radiation in synchrotron 

sources is generated by previously accelerated electrons, which are kept in circular 

motion in a storage ring through application of bending magnets or undulators.  

These enforce a continued circular motion.  

 

BCDI Setup and Data Acquisition:  An undulator produced X-rays which were 

monochromatized using a silicon (111) double-crystal monochromator to an energy 

of 8 keV (APS) or 9 keV (DLS).  Calcite crystals on a substrate were placed on a 

diffractometer which had its rotation center aligned with the X-ray beam.  Slits were 

used to aperture the X-rays to reduce the illuminated area.  An X-ray sensitive 

charge-coupled device (Medipix3) with 256 x 256 square pixels of side length 55 

μm or a (Princeton instruments) with 1300 x 1300 square pixels of side length 22.5 

μm was positioned at the desired diffraction angle for an off-specular (104) 

reflection at a distance of 2.5 m from the sample.  To measure its full 3D diffraction 

patterns, the crystal was rotated by 0.3 degrees with 0.003 degrees step size.  At 

each rotation angle, a two-dimensional slice of the 3D far-field diffraction pattern 

was recorded.  By stacking all of these two-dimensional diffraction frames together, 

a complete 3D diffraction pattern was obtained, from which real-space images can 

be reconstructed (see Reconstruction Algorithm). Due to the small size of the 
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crystals, 1-2 μm, the illumination can be considered to be almost completely 

coherent.(199) 

 

Reconstruction Algorithm:  Images were obtained by performing iterative phase 

retrieval (200) on the three-dimensional coherent diffraction patterns.  Complete 

knowledge (both amplitude and phase) of the diffracted wavefield allows an image 

to be obtained via an inverse Fourier transform.  Provided that the diffraction data is 

oversampled, that is, the sample has its Fourier transform sampled at least twice 

the Nyquist frequency (or alternatively its auto-correlation is sampled at least at the 

Nyquist frequency) and the crystal is isolated, phase retrieval can be performed.  

The basic phase retrieval process begins with a guess for the diffracted phase 

before applying an inverse Fourier transform to yield a first estimate of the crystal.  

After enforcing the constraint that the crystal is isolated (the ‘support constraint’) 

this new crystal iterate is Fourier transformed to yield an estimate for the three-

dimensional diffracted wavefield.  Consistency with the measured intensity (the 

‘modulus constraint’) is enforced while retaining the current estimate of the phase.  

This process is repeated until a self-consistent solution is reached using 

combinations of current and previous estimates for the crystal. 

 

For this work, a novel approach was used which combined guided phase retrieval 

(201) with low to high resolution (or multi-resolution) reconstructions (202).  The 

combination of a guided approach with low to high resolution reconstructions allows 

objects with non-negligible phase to be reconstructed.  50 estimates were initially 

reconstructed using a combination of error reduction (ER) and hybrid input output 

(HIO) (alternating between 10 ER and 100 HIO for a total of 1000 iterations) at a 

reduced resolution, which was achieved by multiplying the data by a Gaussian 

function with standard deviation equal to 10% of the array size.  After this initial 

phase retrieval, 50 new low-resolution iterates were generated by combining the 

best estimate with the remaining 49 estimates.  Further reconstructions were then 

performed using the 50 low-resolution iterates as seeds for reconstructions at the 

full resolution of the diffraction pattern to yield 50 new estimates.  The 5 best 

estimates were then averaged to produce the final estimate.  The best iterates were 

selected based on their agreement with the data.  The final 50 estimates during the 

reconstruction were averaged to produce the output estimate which takes into 

account the slight variations in similar solutions.  Partial coherence was taken into 

account (198) with only a small departure from full coherence observed.(199) 
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2.10:  Winterbottom Reconstructions   

Winterbottom reconstructions are an extension of the Wulff reconstruction and are 

used to determine the shape of a crystal in thermodynamic equilibrium which is 

sitting on a hard substrate.  The shape which provides the minimal surface energy 

for a fixed volume is constructed by plotting the direction-specific surface energies 

as a function of the orientation normal and subsequently drawing the tangent 

though each end point of any given orientation.  The resulting enclosed body is 

equal to the equilibrium or Wulff shape.  Winterbottom reconstructions were 

obtained using Wulffmaker.(111) 
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Chapter 3 is a reproduction of the following publications.  Images are provided in 

reproduction in parts or total with the respective source acknowledged.  
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3.1:  Abstract  

 

The mechanisms by which amorphous precursors transform into crystalline 

materials are poorly understood.  One amorphous precursor of interest is 

amorphous calcium carbonate (ACC).  Its crystallisation is a key intermediate step 

in the formation of crystalline calcium carbonate in synthetic, biological and 

environmental systems.  By investigating this process in detail - studying the effects 

that additives, confinement and the synthesis method each have on the stability and 

transformation mechanism of ACC in solution and in the solid state – a number of 

contrasting and apparently contradictory views in the literature are unified.  This 

reveals that additives primarily affect the nucleation of a crystalline phase rather 

than stabilizing ACC and that this affect occurs in a “Janus-like” behaviour, where 

they retard the crystallisation of ACC in solution, but yet accelerate crystallisation in 

the solid state.  Confinement studies show that ACC can dehydrate prior to 

transforming to calcite, both in solution and in air.  This suggests that it is highly 

unlikely that ACC crystallizes by means of a solid state transition in solution, and 

that a catalyst in the form of surface water is required to overcome the high 

activation energy of full dehydration and crystallisation.  In recognition of the 

importance of water in ACC synthesis, methods and secondary treatment steps 

were evaluated to elucidate their influence.  This led to the development of a simple 

synthetic method based on freeze-drying saturated, counter ion free CaCO3 

solutions.  The developed method returns ACC with minimal surface water and 

extended atmospheric stability in a single step.  Finally, the developed synthesis 

method was applied to test the generality of amorphous precursor formation in 

solution across a range of known biominerals.  This proved successful in the 

preparation of amorphous calcium phosphate and amorphous calcium oxalate.  The 

latter provides the first evidence of an amorphous calcium oxalate precursor phase 

in aqueous solution. 
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3.2:  Additives and Amorphous Calcium Carbonate 

3.2.1:  Introduction  

 

Biominerals are single crystal composites with remarkable morphologies and 

properties, which are formed by living organisms.  The organisms exert an 

extraordinary control over the crystallisation processes in terms of regulating 

mineralisation and guiding the supersaturation profile, spatial dimensions and bodily 

fluid composition.(5)  All this is achieved under ambient reaction conditions and 

many studies have tried to identify the strategies employed by nature and then 

translate them to synthetic systems.(23)  The first and most readily identified of 

nature’s strategies is the use of soluble additives in controlling calcite, aragonite 

and vaterite crystallisation, and this has been particularly well-studied.  These 

studies demonstrated that organic macromolecules extracted from biominerals 

have a direct effect on the morphology, the polymorph precipitated and the 

mechanical properties of crystals obtained from bulk solution experiments.(203)  

While these studies have yielded valuable information on the interaction between 

bio-macromolecules and calcium carbonate crystals, the finding that many 

biominerals may form via amorphous precursor phases rather than by ion-by-ion 

growth, (Chapter 1.4.4),(117, 204) raises questions concerning the mechanisms by 

which additives participate in the crystallisation of the amorphous phase.   

 

The most studied among the amorphous precursor phases is amorphous 

calcium carbonate (ACC).  ACC will therefore be the focal point of our 

investigations in this chapter.  Across Chapter 3.2 we will introduce the general 

identification criteria of “pure” ACC and its structural variation with chosen synthesis 

method, while simultaneously tackling the question of “how do additives affect the 

stabilization of the amorphous phase?” 

 

ACC is typically very short-lived when precipitated in the absence of additives, while 

it can be indefinitely stable in biominerals.  As a transient precursor phase, ACC 

can and eventually will undergo a sequential transition from hydrated ACC, to 

anhydrous ACC, to the final crystal polymorph when crystallising.(78, 118)  The 

extended stability of biogenic ACC is commonly attributed to the organic and 

inorganic additives present within the mineral phase (occluded/ incorporated).  

Major organic and inorganic additives found associated with ACC and or the 

resulting crystalline biominerals include magnesium, phosphate, silicate and 
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glycoproteins rich in glutamic acid and hydroxyamino acids.(18, 205)  Further 

metabolic intermediates of crustaceans in the form of low molecular weight 

phosphoenolpyruvate and 3-phosphoglycerate, have also been identified to be 

effective in stabilizing the ACC.(7)   

 More and more additives, inspired from nature’s strategy, have been tested 

to determine whether they affect ACC, and in particular whether they stabilize it.  

Successful candidates in extending the lifetime of ACC in solution in synthetic 

systems include highly carboxylated species such as poly(acrylic acid),(206) a 

poly(ethylene oxide)-b- poly(acrylic acid) block copolymer,(207) poly(aspartic 

acid)(60, 78), poly(allylamine hydrochloride) (PAH),(208), poly(styrene sulfonate) 

(PSS),(206) and ovalbumin(25).  Others include the more biomineral relevant 

magnesium, phosphate and silicate ions.(147, 205, 209, 210) 

 

It is important to point out that prior research studies have predominantly focused 

on the effects of additives have on the crystallisation of ACC in solution.  However, 

this actually might not be the case for ACC crystallizing in biominerals.  The 

crystallisation of ACC may well occur via a solid-state transformation in biology as 

is demonstrated in the case of the sea urchin spine formation.(97, 211) The ACC 

precursor in this case is encapsulated within a membrane - bound compartment, 

such that it effectively crystallizes in the absence of bulk water.  This potentially 

prohibits any dissolution/ recrystallisation mechanism which would dominate if ACC 

was crystallising in solution, Chapter. 3.3.   

It is therefore surprising, given the importance of a solid-state crystallisation 

mechanism to the transformation of ACC to crystalline CaCO3 biominerals, that the 

ability of additives to direct this process has received such little attention.(49, 95, 

157, 161, 206, 212)  The following addresses this problem and compares the 

crystallisation/ stabilization profiles of ACC precipitated in the presence and 

absence of different additives, in solution and in the solid state.  This resulted in a 

surprising observation that some additives exhibit a “Janus-like” behavior in which 

they retard the crystallisation in solution yet accelerate a heat-induced solid-state 

crystallisation.  Explanations for this observation are sought by exploring the effects 

of the additives in detail, and making attempts to characterize the individual 

stabilization mechanism as either direct (altering the stability of the ACC) or indirect 

(suppressing/ retarding the formation of the emerging polymorph).  
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3.2.2:  Experimental  

The influence of a range of additives on the crystallisation of amorphous calcium 

carbonate (ACC), both in solution and in the solid state (i.e. when the ACC was dry) 

was investigated, where ACC was co-precipitated with the additives Mg2+, SO4
2-, L-

aspartic acid, poly(styrene sulphonate) (M.W. 70.000), poly-(α,β)-DL-aspartic acid 

sodium salt (M.W. 2.000-11.000) and sodium bis(2-ethylhexyl)sulfosuccinate (Na-

AOT).  Reference nano-calcite ( 100 nm in diameter) was obtained from American 

Elements.   

ACC synthesis.  ACC was synthesized using three methods based on those 

introduced in Chapter 2.2.  This was done to determine the effects that different 

synthesis methods have on the formed ACC.  Two direct precipitation methods, as 

described in Chapter 2.2.1, were used (direct ACC and high pH ACC), where these 

provide the bulk of the experimental observations.  Additionally, ACC was 

synthesized using the ammonia diffusion method, Chapter 2.2.3.1 (ADM-ACC).(93, 

169) 

  Direct ACC and high pH ACC were prepared by combining equal solution 

quantities of 1 M Na2CO3/ (30 mM NaOH,- high pH ACC only), and 1 M CaCl2 at 4oC 

(pH~6.8).  The resulting ACC slurry was immediately separated from the remaining 

solution by filtration (0.22 µm Isopore GTTP membrane filter), prior to washing with 

ethanol.  Selected additives were added either to the initially prepared calcium or 

carbonate solutions.  The addition of sodium hydroxide to the reacting carbonate 

solution leads to an increase in carbonate solution pH from 11.4 to 12.  This change 

in pH directly influences reaction kinetics and co-precipitate formation upon 

combination of calcium and carbonate solution. 

  ADM-ACC was prepared by placing a calcium chloride solution (10 mM, 25 

ml) into a hermetical sealed container which was previously loaded with 3 g of solid 

ammonium carbonate.  Precipitates were removed from solutions at appropriate 

times to obtain specific “polymorphs”.  ACC < 30 minutes, calcite > 120 minutes.  In 

this method, the initial neutral pH of the calcium solution is raised slowly by diffusing 

carbon dioxide and ammonia to a pH~ 9, providing thusly a low pH alternative, with 

even slower reaction kinetics in forming ACC then compared to either high pH or 

direct ACC.  

  Samples for analysis were isolated according to the description given for 

direct ACC and high pH ACC.  CaCO3 precipitates for TEM analysis were collected 

on formvar/ carbon-coated Cu TEM grids by immersing the grids in 10 ml of the 

ACC carrying solutions for two seconds before rinsing them with ethanol.   
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The ionic strength (I) of the combined solutions (no precipitation) was calculated 

using Visual MinteQ.  In the case of ACC prepared by direct precipitation methods, 

and in the absence of additives this returned a value of I= 1.21-1.22.  Only minor 

differences in ionic strength were calculated based on the addition of most additives 

under the conditions tested (PAsp,-Asp,-AOT,-PSS a 200 ppm; 10 mM Mg2+ or 2 

mM SO4
2-).  A notable exception is the difference in ionic strength which arises upon 

the addition of 200 mM Mg2+ or SO4
2-.  Reference experiments in which NaCl (2-200 

mM) was added to the initial solutions to achieve identical ionic strengths showed 

no difference in the observed trends in additive behaviour. 

 

A summary of the reaction space investigated, together with the measured starting 

solution pH values is given in Table 3. 
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Reagent 

1 

Reagent 

2 

Reagent 

3 

Concentration 

1   

Concentration 

2  

Concentration 

3  

Concentration 

1  

Concentration 

2  

Concentration 

3  
pH 

   
[ppm] [ppm] [ppm] [mM] [mM] [mM] [-] 

High pH ACC 

CaCl2 - - - - - 1000 - - 6.83 

CaCl2 MgCl2 - - - - 1000 200 - 6.25 

CaCl2 Na-Asp - - 200 - 1000 1.5 - 5.87 

CaCl2 Na-PAsp - - 200 - 1000 1.5 - 5.37 

CaCl2 Na-PSS - - 200 - 1000 0.97 - 5.78 

CaCl2 Na-AOT - - 200 - 1000 0.45 - 6.82 

Na2CO3 - NaOH  - - 
 

1000 - 30 11.98 

Na2CO3 Na2SO4 NaOH  - - 
 

1000 200 30 11.87 

ADM-ACC 

CaCl2 - - - - - 1000 
 

- 6.83 

CaCl2 MgCl2 - - - - 1000 200 - 6.25 

CaCl2 Na-PSS - - 200 - 1000 0.97 - 5.78 

CaCl2 Na-AOT - - 200 - 1000 0.45 - 6.82 

(NH4)2CO3 - NaOH  - - 
 

1000 
 

30 9.56 

Turbidity measurements 

CaCl2 MgCl2 - - - - 1000 10 -   

Na2CO3 - - - - - 1000 - -   

Na2CO3 Na2SO4 - - 
 

- 1000 2 -   

Polymer concentrations were calculated based on the number of functional groups and independent of given solution pH 

Table 3:  Reagent starting concentrations and pH as used for experiments.(152)  
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ACC stabilization/ crystallisation in solution.  The effect of additives on the 

crystallisation and stabilization of ACC in solution was investigated by means of 

turbidimetry and conductometry, where these provide estimates of the onset of 

crystallisation of the different ACC samples, and by determining their dissolution 

profiles from conductivity measurements.   

  Turbidity measurements were carried out as described in Chapter 2.4.1.  In 

detail, ACC was precipitated by direct combination of solutions (0.5 ml), 1 M 

CaCl2:2H2O with 1 M Na2CO3/ 30 at 4°C.  Experiments were performed directly in 

spectrophotometer cuvettes.  Additives were added to the calcium solution or 

carbonate solution prior to mixing, depending on the nature of the additive in 

question, with a final additive concentration of 100 ppm (Asp, PAsp, AOT, PSS) or 

1-5 mM (Mg2+, SO4
2-).  SO4

2-
 was added to the carbonate solution to avoid the 

precipitation of calcium sulphate.  

  The dissolution behaviour of ACC which had been precipitated in the 

absence, and in the presence of additives, was investigated below the calcite 

solubility limit of < 5.73 m gl-1, 25°C.(166)  Experiments were performed according 

to the procedure given by Meiron, 2011.(213)  Here 1 mg of dried ACC was added 

to a closed Schott bottle filled with 250 ml deionized water and equipped with a 

conductivity probe.  The dissolution progress was recorded, under constant 

agitation (100 rpm).  Working beneath the calcite solubility limit ensures that no 

precipitation of the crystalline polymorphs of CaCO3 can occur during dissolution.  

This allowed the direct stabilization of ACC by additives incorporated within its 

structure to be investigated. 
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ACC crystallisation in the solid state.  Solid state crystallisation was studied by 

annealing, through TGA and DSC, and by performing in situ PXRD analysis while 

heating the ACC precipitates.  This allows us to obtain direct information regarding 

the phase transformation.   

  TGA and DSC measurements provide information regarding crystallisation 

activation energy and the degree of additive incorporation.  Combined TGA/ DSC 

measurements were performed under air flow in the temperature range from 25°C 

to 400°C with heating rates of 10°C min-1, 15°C min-1 and 20°C min-1.  Identical 

amounts of sample ( 10 mg) were used in all runs. 

  PXRD was used to monitor the crystallisation progress and to determine the 

onset temperature of ACC crystallisation.  ACC samples were heated in situ on the 

diffractometer.  A heating rate of 5oC min-1 was applied, and scans were carried out 

over the interval 2 = 28 - 32° (Cu source), monitoring the emergence of the [104] - 

calcite or [112] – vaterite selective reflections.   
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3.2.3:  Results 

3.2.3.1:  Characterisation of “Pure” Amorphous Calcium Carbonate  

Before describing the effects the additives magnesium, sulfate, aspartic acid (Asp), 

poly(styrene sulphonate) (PSS), poly(aspartic acid) (PAsp) and sodium bis(2-

ethylhexyl)sulfosuccinate (Na-AOT) have on the crystallisation/ stabilization of ACC 

in both solution and in the solid state, the properties and appearance of pure ACC 

will be described.  Most of the ACC in this study was synthesized by mixing equal 

volumes of solutions of 1 M Na2CO3 / 30 mM NaOH and 1 M CaCl2 at 4oC, where 

this is termed “high pH” ACC.  ACC samples prepared were characterized using a 

combination of IR- and Raman spectroscopy, TGA, DSC, PXRD, SAED and SEM 

or TEM to confirm their amorphous character and general characteristics.   

Typical data of prepared “high pH” ACC is shown in Figure 3-1.  IR spectroscopy of 

this ACC (a) showed broad vibrational bands centred around 1476 / 1414 cm-1 (ν3), 

1075 cm-1 (ν1) and 865 cm-1 (ν2), which, in addition to peaks due to the vibration of 

water molecules at 1651 cm-1 ~3300 cm-1 are characteristic of ACC.  The absence 

of a ν4 vibrational band centred around 750-700 cm-1 in acquired spectra is the 

ultimate descriptor of ACC.  The ν4 vibrational band is specific to crystalline calcium 

carbonate.(214)   

Raman spectroscopy (b) yields a more plain spectrum.  Only a very broad 

peak at 1085 cm-1 is visible, where this corresponds to the internal CO3
2- symmetric 

stretch.  Notable in the spectra obtained is the absence of any secondary peaks, 

and in particular the ν4 peak centred around 700 cm-1, which is similar to the IR ν4 

and is unique to crystalline calcium carbonate.(215)   

The obtained TEM (c) and SEM (d) images presented in Figure 3-1 

demonstrate that the prepared ACC consists of spherical particles of approximately 

50 - 80 nm in diameter.  A range of synthesis and extraction time dependent sizes 

from 10 - 500 nm have been reported.(94, 216)  Presented in the inset (d) is a 

SAED pattern corresponding to the presented electron micrograph.  This confirms 

the amorphous character of the ACC prepared through the complete absence of 

any bright spots or rings, and the presence of the classic amorphous halo.  The 

acquired PXRD pattern (e) supports this observation by showing an amorphous 

background of low intensity and the absence of any sharp peaks.  An overview of 

the IR-, Raman- and PXRD spectra/ pattern obtained from amorphous and 

crystalline calcium carbonate is provided in Appendix A-C.  
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Figure 3 - 1:  Characterization data of “high pH” ACC using (a) IR-, (b) Raman 
spectroscopy, (c) TEM and (d) SED, where the inset in (c) shows the electron 
micrograph corresponding SEAD pattern.  Finally given in (e) is a PXRD pattern 
collect from an ensemble of “high pH” ACC.(152)  
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3.2.3.2:  Effect of Additives in Solution 

The effect of additives on the stabilization and crystallisation of ACC in solution was 

investigated first.  This was achieved by recording the changes in the solution 

turbidity with time using UV-Vis spectroscopy in the presence and absence of 

selected additives.  The chosen method provides an effective yet simple method for 

observing the early stages of calcium carbonate precipitation in solution.  This is 

achievable as the recorded changes in light transmission/ turbidity with time 

can be related to either the formation and aggregation of ACC (decrease in 

transmission) or its subsequent crystallisation and sedimentation of the growing 

crystals (increase in transmission).(217)  

Presented in Figure 3-2a are the acquired transmittance - time profiles in the 

absence and in the presence of the additives studied.  As a result of the highly 

concentrated starting solutions (1 M), ACC formation occurs instantaneously upon 

the combination of reagents, where this drops the transmittance to 0% across all 

experiments (i).  This decrease and the resulting baseline in transmittance, are 

solely associated with the formation of ACC (Figure 3-2b i), and was taken as the 

starting point of our observations.  The graphs then show a S-shaped transmission 

recovery.  The observed increase in transmittance with time, which is seen in all 

samples, is associated with the crystallisation of the ACC and the subsequent 

sedimentation of the crystalline particles (ii & iii).(217)  These regions therefore 

provide us with information regarding the stability of the formed ACC, when 

comparing profiles obtained in the presence and absence of additives.   

Figure 3-2a shows that all of the additives studied retarded the onset of 

crystallisation (onset of transmission increase), thereby increasing the lifetime of 

ACC in solution.  Pure “high pH” ACC samples showed a measured induction time 

of  300 sec, while crystallisation onsets between 320 and 500 sec were recorded 

for ACC precipitated in the presence of additives.  The measured retardation effect 

was in the order AOT > PSS > PAsp > Asp for 200 ppm additives.  The profiles 

shown for Mg2+ and SO4
2- correspond to concentrations of 10 mM Mg2+ and 2 mM 

SO4
2-.  These deviate from the additive concentration used for ionic additives 

throughout the study as 200 mM Mg-ACC failed to crystallize within 1 day, and 

CaSO4 co-precipitated with the ACC.  

Confirmation that the decrease and increase in turbidity corresponds to the 

formation of ACC and calcite respectively was obtained by ex-situ IR 

measurements on precipitates isolated at different time-points on the turbidity 

curves (i-iii).  Acquired IR spectra are shown for pure ACC in Figure 3-2b (i-iii) and 

of Mg-ACC and PSS-ACC in Figure 3-2c (ii).  The spectra presented in (b) show the 

transformation of ACC to calcite and vaterite as the transmittance recovers.  This is 
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evident by the emergence of the v4 band.  The spectra given in (c) highlights the 

extended lifetime of ACC prepared in additive presence when compared to pure 

ACC.  This is again evident from the emergence of the v4 band, which is delayed in 

the presence of the additives. 
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Figure 3 - 2:  (a) Plotted is the transmittance recovery as a function of time after 
mixing two solutions of 1 M CaCl2 and 1 M Na2CO3/ 30 mM NaOH containing 200 
ppm of the additives, poly(styrene sulphonate) (PSS), Aspartic acid (Asp), 
poly(aspartic acid) (PAsp), bis(2-ethylhexyl)sulfosuccinate (AOT) or 10 mM of Mg2+, 
2 mM SO4

2- divided into 3 discreet stages of precipitation - (i) formation of ACC, (ii) 
onset of transmittance recovery and associated crystallisation of ACC and (iii) 
complete transmittance recovery as crystallisation and sedimentation progresses.  
Shown is the average transmittance recovery of 3 repeats.  Presented in (b) and (c) 
are IR spectra aquired of isolated precipiate at distinct stages (i to iii) of pure ACC 
and addive incorporating/ occluding ACC.  Stage (i) coresonds to the initall ACC 
formation – broad band at 711 cm-1.  (ii) crystallisation of pure ACC to vaterite -
emerging band at 743 cm-1, no crystalline phases of calcium carbonate were 
observe at this stage for the addtive containing ACC.  (iii) detection of calcite (711 
cm-1) and vaterite across all samples.(152)     
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Having seen that additives can stabilize ACC in solution, the next obvious question 

to address is,”how do additives induce this increased stability?”  Is the extended 

lifetime a result of ACC with enhanced stability i.e. do additives directly stabilize the 

formed ACC?  Or is the extended lifetime a side-effect of mere growth poisoning i.e. 

the stabilization is indirect, where additives retard the formation of the crystalline 

calcium carbonate?   

To test this, experiments in bulk solution were performed, taking direct 

advantage of ACC’s meta-stability.  In bulk solution, the formation of ACC and its 

subsequent crystallisation is commonly accompanied by dissolution of the 

ACC.(139, 209, 218-220)  To gain insight into whether the additives affect this 

process by directly stabilizing the ACC in solution, or via an indirect effect, 

dissolution profiles of ACC formed in the presence and absence of additives 

beneath the calcite solubility limit were measured and compared.  By staying far 

beneath the solubility limit, the re-precipitation of added ACC in the form of vaterite, 

aragonite or calcite can be excluded, and with it the option of indirect stabilization 

can be discarded.  Any difference in acquired dissolution profiles has therefore to 

result from a direct stabilization mechanism.  

The time-resolved, normalized dissolution profiles for “high pH” ACC samples 

precipitated with and without additives are presented in Figure 3-3.  Dissolution 

progress refers to the normalized measured conductivity difference between the 

point of ACC addition and complete dissolution of ACC i.e. final constant 

conductivity value.  The dissolution profiles reveal only minor differences in the 

dissolution behaviour of the different samples.  Complete dissolution of all ACC 

samples was accomplished after  300 seconds.  Magnesium was quite distinct 

from all other additives and displayed a tendency to increase the dissolution rate of 

ACC in agreement with the higher solubility of Mg-calcite as compared with pure 

calcite.(221)  Considering the minor differences observed in acquired dissolution 

profiles it seems that the stabilization of ACC in solution is a result of indirect 

stabilization. 
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Figure 3 - 3:  Dissolution behaviour of “high pH” ACC samples prepared in the 
presence of different types and amounts of additives: Mg2+, SO4

2-,Asp, PAsp, PSS 
and AOT.  Presented are averaged dissolution profiles of three repeats given with 
positionally selected standard deviation.(152) 
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The applied methodology of recording dissolution profiles of a known, added 

sample quantity, was further used to highlight differences in the stability of ACC 

produced by a number of synthesis methods.  This was realized by collecting the 

dissolution profiles of ACC prepared by a number of different methods, and 

comparing them with nano- and micron- sized calcite crystals.  ACC was 

precipitated by a direct precipitation route (direct ACC – combining 1 M NaCO3 with 

1 M CaCl2), at high pH (“high pH” ACC – combining 1M NaCO3/30 mM NaOH with 1 

M CaCl2) and using the ammonia diffusion method.  Nano - calcite was ≈100 nm in 

size and calcite precipitated using the ammonia diffusion method was 10 μm in 

size.  

The obtained dissolution profiles are shown in Figure 3-4, and clearly reveal 

differences in the dissolution behaviour of the samples according to the ACC 

synthesis method and the size of the calcite crystal.  As intuitively expected, the 

more thermodynamically stable calcite dissolved slower than the prepared ACC 

samples.  The nano-calcite dissolved faster than the micron-sized calcite crystals.  

Interestingly, however, the ACC precipitated using the ammonia diffusion method 

dissolved significantly more slowly than that precipitated using any of the other 

methods (all ACC had a similar size 50-150 nm).  ACC obtained by the ammonia 

diffusion method approached full dissolution after  700 seconds, while other ACC 

samples achieved a similar level after  300 seconds.  The high pH ACC dissolved 

slightly faster than the direct ACC formed in the absence of sodium hydroxide.   

The increasing dissolution rates with decreasing particle size, as seen for the two 

types of calcite tested, can be easily explained by the increase in surface to volume 

ratio as particles decrease in size.  The increase in dissolution rate with increasing 

pH/ supersaturation (solution pH determines the carbonate species distribution), as 

observed for ACC of similar sizes but of different methodology, has to have a 

different origin.  ACC formed at the lowest pH (ADM-ACC) dissolves the slowest 

and thus has to have the highest stability among formed ACC.  The origin of this 

stability can potentially be related to a more rigid “ordered” structure of ACC formed 

at low pH levels.  An argument that can be raised at this point is that all ACC is not 

equal.  Rather, ACC which does not diffract X-rays is best described as a family of 

phases, such that direct comparison of the behaviour of ACC prepared by different 

methods should be made with caution.(129)   
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Figure 3 - 4:  Shown are dissolution progress – time profiles of calcium carbonate 
precipitates prepared by different methods.  Dissolution profiles were recorded in an 
undersaturated solution of 250 ml with respect to the most stable polymorph (calcite 
~10 mgl-1) given added mass of 1 mg.  Profiles are shown for ammonia diffusion 
method (ADM calcite) (5-10 μm in diameter), ACC precipitated by direct 
precipitation (direct ACC), ACC precipitated at high pH (“high pH” ACC), ACC 
precipitated using the ammonia diffusion method (ADM ACC) and commercial 
nano-sized calcite (nano calcite) all with an apparent diameter of 50-150 nm.  
Presented are averaged dissolution profiles of three repeats given with positionally 
selected standard deviation.(152) 
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3.2.3.3:  The Effect of Additives in the Solid State 

After observing a uniform behavioural trend in the crystallisation/ stabilization of 

ACC precipitated in the presence of additives in solution (they all retard ACC 

crystallisation),  now turn to  original query - how do additives affect the solid-state 

transition of ACC to crystalline calcium carbonate?  This question was again 

evaluated using a number of different approaches, including annealing samples at 

moderate temperatures, through thermal analysis, and by performing in situ PXRD 

analysis in air while heating the ACC precipitates. 

We started with the examination of ACC samples by electron microscopy and 

SAED after annealing at 70°C for 12 hours.  Pure ACC, Figure 3-5a, did not 

crystallize under these conditions as is evident by the presence of an amorphous 

halo in the SAED pattern.  The same behaviour was observed for ACC precipitated 

in the presence of 200 mM Mg2+, SO4
2− or 200 ppm Asp.  “Pure” ACC and ACC 

precipitated in the presence of the stated additives only crystallised after continued 

heating and above a temperature of 250°C.  Evidence of this crystallisation is 

presented in Figure 3-5b, which shows an electron micrograph and the 

corresponding SAED pattern of pure ACC heated to a temperature of 350°C.  The 

SAED pattern is recognizable as calcite.   

In contrast to pure ACC and ACC prepared in the presence of low molecular 

weight additives, ACC formed in the presence of 200 ppm AOT, PSS or PAsp 

crystallized readily after heating to 70°C and isothermal storage.  This is shown for 

the example of PSS in Figures 3-5 c and d.  The SAED pattern inset in Figure 3-

5(c) was acquired from ACC formed in the presence of PSS at 25°C and shows an 

amorphous halo, while the SAED pattern in Figure 3-5 (d), which was  acquired 

after heating to 70°C, presented a diffraction pattern of calcite.  Examination of the 

ACC particles before and after heating further revealed that while the pure ACC 

particles sintered together on heating to 70°C and after crystallisation at 350°C, 

there was little change in the original spherical form of the particles.  Additives-

containing ACC, in contrast, transformed to partially sintered singular rhombohedral 

calcite crystals on annealing at 70oC.   
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Figure 3 - 5:  Electron micrographs and SEAD pattern of (a) pure ACC after heating 
at 10oC min-1 to 70oC followed by an annealing period of 12 hours at 70oC and (b) 
pure ACC after heating at 10oC min-1 to 350oC followed by an annealing period of 3 
hours at 350oC.  (c) ACC formed in the presence of 200 ppm PSS (25°C) and (d) 
after heating at 10oC min-1 to 70oC followed by an annealing period of 12 hours at 
70oC.(152) 
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The differences seen in additive behaviour in the “solid state” crystallisation of ACC, 

where some additives accelerate crystallisation (200 mM Mg2+, SO4
2− or 200 ppm 

Asp) while others either do not affect it, or retard it (200 ppm AOT, PSS or PAsp), is 

somewhat perplexing.  Indeed, they all showed a crystallisation retarding effect of 

ACC in solution.  To ensure that the observations made were not a result of the 

small sample size analysed or technique introduced, IR spectroscopy on a heated, 

larger sample mass was performed.  The acquired IR spectra are presented in 

Figure 3-6a (pure ACC) and b (PSS-ACC and AOT-ACC).  These spectra show a 

behaviour which is consistent with the observations made by TEM and SAED 

analysis, where the ACC formed in the presence of PSS and AOT showed bands at 

875 cm−1(ν2) and 713 cm−1(ν4), confirming the formation of crystalline precipitates 

upon heating to and storage at 70°C, while pure ACC only showed those bands 

upon heating to 350°C.(214)   

  



Chapter 3:  Amorphous Calcium Carbonate 

111 

 

Figure 3 - 6:  Given are IR spectra of (a) pure ACC and (b) ACC prepared in the 
presence of PSS and AOT before and after heating. The samples were heated at a 
rate 10oC min-1 to 70oC or 350oC, followed by an isothermal annealing period at 
70oC for 12 hours or 350oC for 3 hours.(152)    
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In search of an explanation for these observations (contrasting behaviour in solid 

state) the crystallisation of ACC prepared in the presence of a range additives was 

studied by TGA and DSC.  This was done in particular to determine if there are any 

changes in the hydration of the ACC and to assign a specific crystallisation 

temperature/ activation energy to each additive.  

 

The graphs shown in Figure 3-7 are typical TGA (a) and DSC (b) profiles obtained 

for pure ACC and ACC prepared in the presence of additives.  The weight or 

sample mass loss profiles given in (a) obtained by TGA show a gradually 

decreasing release of “surface bound” water and the subsequent loss of structural 

water, upon heating to ~ 200°C.  The identification of two distinct water 

environments is made possible thanks to the simultaneously acquired DSC profiles 

(b), which show two endothermic events present beneath 200°C, as highlighted in 

pink. 

 The total water loss accumulates to ~ 22-24 wt% of the total sample weight.  

“Surface bound” water accounts to ~ 4-6 wt% of the total weight loss, lost upon 

heating to ~ 50-70°C.  Structural water accounts for the remaining 14-18 wt% and is 

lost until about 200°C.  This amount of structural water corresponds to a 

composition of ~ 1 H2O : 1 CaCO3.  Past this water loss, at temperatures >200°C, a 

weight stabilization sets in, demonstrating the transition from hydrated ACC to 

stable anhydrous ACC, which is still amorphous as the subsequently recorded 

exothermic peak at ~ 330°C in the DSC profile demonstrates.  This is particularly 

evident for pure ACC. The recorded exothermic peak is characteristic of an 

amorphous to crystalline transition and results from the latent energy or the heat of 

crystallisation.  If heated further, above 550°C, the now crystalline calcium 

carbonate decomposes into calcium oxide and carbon dioxide.   

The final weight ratio between the amount of dry CaCO3 in the sample and 

the formed CaO after decomposition, can be used to calculate the purity of the ACC 

prepared.  More specifically, it allows us to determine the amount of additive 

occluded/ incorporated within the ACC.   
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Figure 3 - 7:  TGA (a)/ DSC (b) profiles of ACC synthesized by mixing 1 M CaCl2 
with 1 M Na2CO3 / 30 mM NAOH in the presence or absence of selected additives.  
The profiles were obtained at a heating rate of 25°C min-1 under nitrogen flow.  
Additive spiked samples reveal a shift in crystallisation temperature.  Identical 

amounts of sample ( 10 mg) were used in all runs.  A tabular overview of key 
parameter and starting additive concentration is given in Table 5. 
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Turning now our attention to the effect that additives have on the transformation of 

ACC in the solid state, as revealed in the TGA/ DSC profiles. 

TGA in a first instance provides us with estimates of the amount of additives 

occluded/ incorporated within the ACC.  This information can be obtained from the 

TGA profiles in two ways.  This information is obtainable by looking at the sample 

weight lost in the region of 250°C - 550°C;  the organic additives associated with 

the ACC decompose across this temperature range.  A second more precise option 

is a comparison of the recorded final weight ratio of the sample before 

decomposition and after decomposition.  This can be compared with the idealized 

or expected ratio of calcium carbonate decomposition to calcium oxide if a pure 

sample was analysed.  Any discrepancy between these two ratios can be directly 

related to either, the sample contained “fully” decomposable matter – organic 

additives - (the experimental ratio is higher) or the sample contained non 

decomposable matter – inorganic additives – (the experimental ratio is lower). 

The latter method was applied here and demonstrated that small quantities (≈ 1–2 

wt%) of the organic additives Asp, PAsp, PSS, and AOT were associated with ACC, 

while the inorganic additives SO4
2- and Mg2+ were retained to a higher degree of 3 

wt% and 6 wt% respectively.  TGA further revealed no significant difference in the 

total amount of water associated with the ACC samples, with values ranging 

between 19.4 and 21.3 wt% H2O. Mg-ACC contained the somewhat higher amount 

of 23.6 wt% H2O.  A tabular summary of these observations is provided in Table 4. 
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Additives Pure ACC 

Group 1 Mw < 400 g mol-1 Group 2 Mw > 400 g mol-1 

Mg SO4 Asp AOT PAsp PSS 

Additive Conc. at Formation a) [mM] 200 200 1.5 0.5 1.5 0.9 - 

wt% Additives 6 3 1.5 0.9 1.4 1.7 - 

wt% H2O 23.6 20.7 19.4 20.5 19.4 21.3 20.2 

10 °C min-1  TP [°C]  332.66 330.49 328.66 325.98 324.86 323.57 328.10 

15 °C min-1 - TP [°C]  344.63 339.49 336.97 332.85 331.02 326.39 335.63 

25 °C min-1 TP [°C]  351.22 342.67 339.27 334.80 334.83 332.26 337.48 

Approximate EA [kJ mol-1]  351 291 271 228 207 206 246 
a)Additive concentrations based on functional group  

Table 4:  Activation energies, crystallisation peak temperatures (TP) given heating rate and water/ additive percentage of ACC samples 
precipitated in the presence and absence of selected additives: Mg2+, SO4

2-, Aspartic acid (Asp), poly(aspartic acid) (PAsp), poly(styrene 
sulphonate) (PSS) and bis(2-ethylhexyl)sulfosuccinate (AOT) obtained by DSC and TGA.(152)  
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The DSC profiles aquired, Figure 3-7b, reveal the major influences that additives 

have on the crystallisation/ stabilization of ACC in the solid state, where these are 

shifts in the crystallistion temperature as given by the crystallisation associated 

exothermic peak position, and the variation in peak shape.  

Figure 3-8 provides a closer examination of the region surrounding the 

crystallisation of ACC (exothermic peak), shown for all additives tested.  A change 

in peak shape and most prominently a change in peak position can be seen, with 

crystallisation peak temperatures (TP) ranging between 326°C and 344°C for ACC 

precipitated in the presence of 200 ppm (<2 mM) of the organic additives or 200 mM 

of the “inorganic ions”.   

Pure ACC had a crystallisation peak temperature of 336°C.  DSC profiles 

were collected at a heating rate of 15oC min-1.  Moreover, the most-significant 

increase in crystallisation temperature occurred with magnesium ions (344°C), 

while PSS lowered the crystallisation temperature the most (326°C).  This is in 

agreement with the observations made earlier using low temperature annealing.  

Considering that crystallisation occurs from an anhydrous state, we can further 

exclude now that water or the hydration state of the ACC plays a critical role in this 

behavioural trend in the solid state crystallisation of ACC.  Some additives retard 

the crystallisation, while others accelerate it. 

In making this statement, however, we emphasize that the concentrations of the 

additives employed necessarily affect the magnitude of their effect on the 

crystallisation temperature, but not the direction of the temperature change.  On a 

simple mole-per-mole basis, the functional groups on the polymers have much 

larger effects on ACC crystallisation than the inorganic ions.  Recorded 

crystallisation peak temperatures are within the wide variety of reported 

crystallisation temperatures of pure ACC (320 – 350oC).(91, 100, 129)  Indeed, the 

pH at which the ACC is formed has been recognized to alter the crystallisation 

temperature, with a value as low as ~210oC having been reported for ACC 

precipitated at pH 11.2.(129)  The crystallisation temperature of ACC is therefore 

synthesis and isolation dependent, Chapter 3.4.   

 

Closer examination of the effect additives have on the crystallisation of ACC, as is 

evident in the given DSC profiles, showed that it was possible to separate them into 

two categories: those which increase the crystallisation temperature (Mg2+, SO4
2−, 

and, to a lesser, extent Asp) as compared with pure ACC, and those which lower it 

(AOT, PSS, and PAsp).  With the most obvious shared attribute being “similar” 



Chapter 3:  Amorphous Calcium Carbonate 

117 

molecular weights, high-molecular-weight additives lower the apparent 

crystallisation temperature, whereas the smaller additives exhibit the reverse 

behaviour.   

However, although similarity in molecular weight is one possible 

commonality (the most obvious) across additives in each category, this does not 

say that changes in the molecular weight of additives is the source of them acting 

as either crystallisation inhibitors or promoters for ACC in the solid state. 

 

 

Figure 3 - 8:  Shown are sections of DSC scans obtained from the analysis of pure 
and additive retaining “high pH” ACC samples showing the peak corresponding to 
the transition from ACC to calcite.  DSC scans were obtained at a heating rate of 
15oC min-1.(152, 205) 
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Crystallisation peaks as seen in the DSC profiles can further be used to extract 

information regarding the crystallisation progress with increasing temperature.  

This is achieved by replotting the obtained peak profiles, assuming Johnson-Mehl-

Avrami transformation behaviour, Chapter 2.8.(222)  Doing this, one obtains plots of 

crystallisation progress versus temperature.  Figure 3-9, presents such plots 

generated from the DSC profiles shown in Figure 3-8.  The trends seen in the 

crystallisation progress plots are largely in keeping with the recorded crystallisation 

temperature trends, such that the curve for the Mg-ACC sample appeared at the 

highest temperature and the PSS-ACC sample the lowest. The curves for the ACC 

precipitated with the three high-molecular-weight additives were shifted to lower 

temperatures as compared with the ACC associated with the low molecular weight 

additives. 

 

 
Figure 3 - 9:  Plotted is recorded crystallisation progress of ACC samples formed in 
the presence of Mg2+, SO4

2-, Aspartic acid (Asp), poly(aspartic acid) (PAsp), 
poly(styrene sulphonate) (PSS), poly(aspartic acid) (PAsp) and bis(2-
ethylhexyl)sulfosuccinate (AOT), versus temperature as obtained by DSC.  
Crystallisation progress was calculated by crystallisation associated exothermic 
peak integration and following normalisation (0-1).  DSC scans were performed with 
an applied heating rate of 15oC min-1.(152) 
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Final bits of information that can be extracted from the acquired TGA and DSC 

profiles are a number of thermodynamic quantities, such as estimates of the 

enthalpies of crystallisation (ΔHcryst) and the activation energy of crystallisation (EA). 

 

Estimates of the enthalpies of crystallisation (ΔHcryst) of the different ACC 

samples can be obtained by crystallisation peak area integration (DSC), given the 

known sample mass (TGA).(91)  All ΔHcryst values, except the Mg-ACC, fell within 

the range −18 to −31 kJ mol−1 where the errors in the data were such that no 

statistical difference was recorded as compared with the value of ΔHcryst = −21.93 ± 

6.13 kJ mol−1 for the pure ACC.  The analysed Mg-ACC sample exhibited a higher 

enthalpy of crystallisation ΔHcryst = –58.59  6.44 kJ mol-1. 

 

The activation energy (EA) associated with the transformation of anhydrous ACC 

to calcite was derived from multiple DSC scans carried out at different heating 

rates, Chapter 2-8.  Heating rates of 10°C min−1, 15°C min−1, and 25°C min−1 were 

applied.  The calculated activation energies (207-352 kJ mol-1) were in agreement 

with those of Koga et al. (129) for pure ACC precipitated at different pH values 

(152-304 kJ mol-1) and followed the same trend as seen for the shift of 

crystallisation peak temperatures.  A summary of calculated activation energies is 

given in Table 4.  High molecular weight additives decrease the crystallisation 

temperature and activation energy, while magnesium and sulphate or low molecular 

weight additives increase the crystallisation temperature and activation energy. 
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To ensure that the observed classification of additives as either crystallisation 

promoters or retarders in the solid state was based on the molecular weight of the 

additive, further analysis was performed using PXRD.  

 

PXRD patterns of ACC samples prepared in the presence and absence of additives 

were collected during in situ heat treatment.  This was achieved by performing rapid 

scans around the angular range of 2 = 28-32° to monitor the emergence of the 

[104] calcite reflection from the amorphous background, while the sample was 

continuously heated.  

Although the trends in the crystallisation temperature shifts as determined 

by DSC are maintained for all ACC samples by PXRD analysis, the observations 

made vary slightly in numerical terms - a result of the increased sensitivity of PXRD 

and the “direct ACC” used for PXRD analysis as compared to the “high pH” ACC 

used for DSC studies, Figure 3-10.  All samples showed a broad crystallisation 

event, which took place over a temperature range of 150°C with a typical onset 

temperature of ~ 220°C.    
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Figure 3 - 10:  Plotted are the progress of crystallisation versus temperature of ACC 

prepared by mixing 1 M CaCl2 with 1 M (NH4)2CO3/ 30 mM NaOH in the absence or 

presence of PAsp, PSS and Mg2+.  The progress of crystallisation was estimated 

based or recorded intensity changes of the [104] peak of calcite (I0) with respect to 

the maximum intensity measured after complete crystallisation (Imax) measured by 

PXRD analysis of samples heated in situ.(152) 
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3.2.4:  Discussion  

 

This study investigated the effects that a range of additives incorporated/ occluded 

within ACC have on the crystallisation of this phase, depending on whether 

crystallisation occurred in solution or via a heat-induced solid state phase transition.  

The differences observed in the crystallisation behaviour of ACC in solution and the 

solid state, due to the presence of additives, clearly demonstrate that additives can 

display different patterns of behaviour in directing crystallisation in these two 

contrasting environments.  These different patterns of behaviour provide some 

insight into the possible mechanisms of ACC crystallisation, and, in doing so, 

challenge some common ideas regarding the role of additives in stabilizing ACC.  

 

Sets of experiments following the crystallisation of additive incorporating/ occluding 

ACC in solution revealed that all of the studied additives retarded the 

crystallisation of ACC  to some degree.  The formation of a new crystalline phase in 

solution from ACC follows a two-step process – the nucleation of the new phase 

and its subsequent growth.  The latter step, crystal growth, is generally 

accompanied by the dissolution of the ACC.  Thus, zones depleted of ACC particles 

have often been observed adjacent to calcite crystals growing on solid substrates 

from suspensions of ACC.(139, 219)  Based on combined SAXS/ WAXS studies of 

the transformation of ACC we also know that dissolution of ACC as a result of 

polymorph formation and growth also occurs in the bulk solution.(220)  During this 

process (ACC dissolution to vaterite/ calcite formation) it was further shown that the 

solution composition i.e. the ion activity product of calcium and carbonate remains 

at the solubility level of ACC.(86, 209)  The solution is therefore supersaturated with 

respect to calcite and vaterite during crystallisation of the ACC to these phases, 

which demonstrates that the rate-determining step is the growth of the crystalline 

phases rather than dissolution of the ACC.  In simple terms, the formation of the 

crystalline phase drives the process.  This observation is supported by the 

dissolution studies performed here, which tested the stabilization of additive 

incorporating/ occluding ACC in reference to pure ACC.  The obtained dissolution 

experiments show that there was negligible change in the ACC dissolution profile 

when additives were occluded within the ACC. 

This indicates that in solution, rather than directly stabilizing the ACC, the additives 

either retard the growth of the new crystalline phase, and/ or they inhibit nucleation 
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of the new polymorph altogether.  That additives can retard the growth of crystalline 

calcium carbonate above a certain threshold concentration is well-documented and 

is kinetic and thermodynamic in origin (Mg,(143, 223, 224) phosphate,(224, 225) 

Asp,(226) poly(aspartic acid),(227) sulfate,(224, 228) and poly(styrene 

sulfate)(206)).  No structural or compositional change occurs in the ACC which 

inhibits its dissolution, a process which occurs concomitantly with the formation of 

the new crystal phase. 

Magnesium and sulfate ions are incorporated within the calcite lattice, which causes 

a change in lattice parameters, an increase in solubility, and a reduction in 

thermodynamic stability as compared with pure calcite.(143, 147, 229)  The effect 

of additives on growing crystals can also be considered in terms of their interaction 

with step edges and kink sites, where, for example, blocking of a kink site by an 

additive would give rise to kinetic inhibition of growth.(230)  The influence of ACC 

occluded additives on nucleation would depend on whether nucleation of the 

polymorph occurs from solution i.e. by dissolution of the ACC and reprecipitation or 

if it takes place within the existing ACC particles.  This is still under debate and the 

mechanism is likely to vary according to the experimental conditions,(93, 137, 160, 

218) - as further discussed in Chapter 3.3.  Arguments and experimental evidence 

for both mechanisms is in part provided in Chapter 1.4.4.  
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A different, and interesting, pattern of behaviour was seen for the crystallisation of 

ACC in the solid state.  Unlike in solution, where all additives retarded the 

crystallisation of ACC, additives in the solid state either retarded or accelerated the 

crystallisation, depending on the type of additive.  This trend was first evident on 

annealing pure ACC samples at moderate temperatures (70°C) for 12 hours.  No 

crystallisation was observed in this case, while in contrast, ACC co-precipitated with 

200 ppm AOT, PSS, and PAsp crystallized under the same conditions.  These 

additives therefore effectively promoted crystallisation of ACC in the solid state, 

while inhibiting it in solution.   

 

More detailed analysis of this observation was carried out by heating the respective 

samples at different rates up to and past the phase transformation temperature and 

confirmed this behaviour.  This again showed that the additives could be divided 

into two distinct groups based on their action.  The low molecular weight 

compounds (Mg, Asp and SO4) stabilized the ACC against crystallisation in the 

solid state, while the high molecular weight compounds (Na-AOT, PSS and PAsp) 

promoted crystallisation.  It is noted that PSS has been reported -in one instance- to 

stabilize ACC against crystallisation in the solid state, as shown by an increase in 

crystallisation temperature registered by DSC.(206)  The origin of this discrepancy 

is unknown and could lie in differences in the polymer.   

The data therefore suggests that additives with low and high molecular weights may 

affect ACC crystallisation by different mechanisms.  Assuming that additives are 

truly occluded in the ACC such that they are mixed at a molecular level and not 

occluded in the void space of a larger ensemble of ACC particles, the larger 

additives may increase the free volume present in the ACC, enhancing the 

molecular mobility of the ACC constituents i.e. the system internal diffusivity.  This 

would reduce the activation barrier and increase the crystallisation kinetics.  This is 

consistent with the reduced activation energies derived from the DSC analyses.  

The recorded destabilisation may also be due to the concentrated number of 

functional groups in high molecular weight additives compared to “smaller” 

additives.  This may induce the formation of short-range order in the ACC, reducing 

the number of assessable conformations required until the perfect crystal structure 

is obtained.(216, 231) 
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The introduction of short range order around occluded additives could also, of 

course, apply to smaller additives.  These may also induce local ordering in the 

ACC on a smaller scale, and maybe even provide nucleation sites.  This has been 

in part confirmed experimentally through the observation (using EXAFS) of short-

range order resembling vaterite in PAsp-ACC.  The same technique also suggests 

that Mg-ACC may have short range structures most similar to aragonite.(126)  

Indeed, a range of studies using techniques including NMR(85) and EXAFS(116, 

232) have indicated that ACC can exhibit different short-range orders according to 

the presence of occluded additives, and the precipitation conditions.  

Magnesium ions were the most effective in raising the crystallisation activation 

energy as compared to pure ACC, an effect which may derive from the higher 

hydration energy of Mg2+ as compared with Ca2+, as the water must necessarily be 

lost before crystallisation can occur.(147)  As an additional effect, the product Mg-

calcite is also thermodynamically less stable than pure calcite.  Sulfate ions again 

retarded the crystallisation, where the reduction in thermodynamic stability of calcite 

on incorporation of sulfate is likely to be a significant factor.(164)  

Given the experimental uncertainties in studying nucleation phenomena is it not 

possible to determine conclusively the origin of additive induced changes in the 

crystallisation behaviour of ACC in the solid state.  Frankly, we don’t know the origin 

of the observed behavioural trend between low and high molecular weight additives 

in the solid state. 

 

Disregarding the origin of this behaviour, if nucleation of the product crystalline 

phases is indeed homogeneous, and occurs within ACC particles in solution and 

in the solid state, the influence of the additives on nucleation would be expected to 

be identical in the solid state and solution.  The fact that it is not and a different 

pattern of behaviour was observed in the solid state as compared with solution for 

the larger additives (PAsp, AOT, and PSS) demonstrates that the additives must 

also significantly affect the growth of the new crystalline phase in solution.  We 

suggest that additives are released from ACC particles into solution during their 

dissolution, which inhibits the growth of the new crystalline phase and that this is 

the main stabilization mechanism for the remaining ACC in solution. 
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The relevance of these observations to biological calcification via an ACC 

precursor phase is intriguing.  Referring again to the formation of the sea urchin 

larvae, crystallisation of ACC effectively occurs in an aqueous environment, in the 

absence of bulk water.  This suggests that the ACC crystallises by a solid state 

transition via sequential ACC dehydration and secondary nucleation.(97, 118, 211)  

With no water access what is then the role of the macromolecules associated with 

this mineral phase?  The experiments performed to-date have all examined the 

effects of organic molecules extracted from biogenic ACC phase on the 

crystallisation of ACC in solution.  In contrast, our results show that this does not 

necessarily provide a good test for their behaviour in the solid state, where they can 

actually promote crystallisation, depending on their size.  Notably, however, 

biogenic ACC also typically contains magnesium ions, which significantly inhibit the 

crystallisation of ACC both in solution and in the solid state.  It is therefore 

foreseeable that biomineralizing organisms utilize a combination of organic 

macromolecules and magnesium to tailor the stability of the ACC, which would 

allow control over its lifetime, and crystallisation pathway.  That is – of course – if 

crystallisation does indeed proceed via a solid state transformation 

mechanism.(146)   
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3.2.5:  Conclusion 

 

In conclusion, the experiments performed show that the additives investigated can 

display a “Janus behaviour”, retarding the crystallisation of ACC in solution while 

promoting the solid state transition.  This was observable for all larger molecules 

explored here (poly(aspartic acid), poly(styrene sulfonate) and Na-AOT).  Smaller 

additives (magnesium and sulfate ions) hampered the crystallisation both in solution 

and the solid state.  This potentially provides insight into the different stabilization 

mechanisms of ACC in the presence of the selected additives.  In solution, the 

stabilization of ACC due to additives is dominated by an inhibition of the growth of 

the crystalline phase by additives present in solution, or additives newly released 

into the solution as the ACC dissolves.  This is supported by the observation that 

the dissolution of ACC itself is little affected by the composition of the ACC.  This 

implies an indirect stabilization mechanism rather than a direct stabilization based 

on additive induced changes in the structure/ stability of the ACC itself.  The solid 

state transformation of ACC to calcite on the other hand is apparently dominated by 

the effects that additives have on the nucleation of the new phase.  As additives 

may induce a change in the structure of the resulting ACC, this is consistent with 

suggestions that the short-range structure of ACC can determine the structure of its 

crystalline transformation product, both in synthetic and biogenic systems.(85, 232)  

Future work could investigate the effects a range and/ or combination of additives 

have on the crystallisation of ACC, by means of high throughput screening 

procedures.  Screening procedures utilizing automated, sample preparation, % 

additive inclusion determination, reaction kinetic acquisition and resulting particulate 

imaging are currently being developed in a project which is using high throughput 

screening to determine the incorporation of amino acids into a range of minerals.  A 

goal of this project is to obtain an understanding of how individual additives (type 

and concentration) affect ACC, and indeed, how they affect mineralisation 

itself.(233, 234)  
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3.3:  Dehydration and Crystallisation of ACC 

3.3.1:  Introduction  

 

Having established an understanding of the effects additives have on the 

stabilization and crystallisation of ACC.  The focus of our studies turned towards a 

second effect contributing to the stabilization of ACC - confinement.  How does 

confinement stabilize ACC? 

That this question is asked is thanks to observations which showed that biogenic 

ACC can be indefinitely stable in a biomineralizing organism.(14)  The next 

question is obvious, “how does the biomineralizing organism achieve this stability?” 

and this is the point where confinement comes into play.  The crystallisation/ 

transport of ACC in biominerals (sea urchin embryo) occurs in membrane-bound 

vacuoles.  These vacuoles provide an environment of limited size (confinement) 

that is virtually free of bulk water.  The phase transition of ACC in this specialized 

environment proceeds from hydrated ACC to anhydrous ACC, before subsequently 

crystallizing via a “solid state” mechanism.(17, 97, 118, 120, 211)  

The necessity to understand this phase transition in solution, from hydrated, 

amorphous precursor to crystalline phase, resembling a solid state transition at 

room temperature, is not due to the fact that it is not well understood.  It is more that 

we need an understanding of this transformation process to force mineralization to 

occur by this option.   

Biomineralizing organisms show us that ACC can be used as a mouldable, 

space-filling starting material, which can be delivered on-demand for the rapid, yet 

controlled production of structurally and morphologically-complex crystalline 

materials.(14, 23, 78, 235, 236)  There are some success stories in which ACC has 

been used in synthetic systems in this fashion (78, 155, 208, 237-241), but most 

attempts end up with the carefully prepared ACC simply dissolving.  
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Bio-inspired strategies were therefore employed here to study the crystallisation of 

ACC encapsulated in a porous silica shell or coated by a lipid bilayer membrane in 

aqueous environments.  This was carried out in an effort to mimic the specialized, 

spatially-confined environments found in biomineralizing organisms.  The results 

were then compared to the crystallisation behaviour of ACC in the solid state.  

When heated, ACC shows a comparable stepwise transformation as found in 

nature, from hydrated to anhydrous precursor to the crystalline phase.(91, 129, 132, 

152, 242) 

The encapsulation of ACC particles within porous silica shells did indeed provide an 

effective inorganic mimic of the spicule environment of the sea urchin in solution, 

which retarded the crystallisation of ACC sufficiently to allow characterization of the 

transformation process.  In combination with the analysis of ACC samples with well-

defined water contents, which were generated by annealing at different 

temperatures, this revealed that an identical dehydration processes does occur 

both in air and in solution.  Despite this, nucleation must differ between these 

environments as ACC crystallisation in solution must be initiated by a local 

dissolution – reprecipitation mechanism, considering the here measured high 

activation barrier for ACC dehydration.  
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3.3.2:  Dehydration and Crystallisation of ACC in Solution 

 

3.3.2.1:  Synthesis and Dehydration of ACC – Silica Coated Particles 

ACC was encapsulated in silica shells using a procedure given by Kellermeier, 

2010.(161)  This encapsulation creates isolated environments analogous to the 

environments present during biomineral formation.  The stability and crystallisation 

of the silica-coated ACC particles was investigated.  This was achieved by re-

suspending these particles in solution and analysing the changes in structure that 

occur with progressing incubation time.  

Specifically, ACC silica encapsulates (ACC-SiO2) were obtained by the direct 

combination of 125 ml of 10 mM CaCl2 with 125 ml of 10 mM Na2C2O4/ 6  mM 

Na2SiO3 solution, and the formed precipitates were incubated in the reaction 

solution for 20 minutes to allow the formation of a silica shell around the initially 

formed ACC units.  Silica shell formation is postulated to occur as a result of the 

formation and subsequent growth of ACC particles in an alkaline solution, which 

induces a pH gradient at their surfaces due to the consumption of free carbonate 

ions and the subsequent conversion of the bicarbonate ions present.  The reduction 

in pH is then assumed to cause the precipitation of amorphous silica via the 

condensation of silanol groups between saturated Si(OH)4 molecules, forming 

siloxane bonds on the surface of the particles ACC.  This creates a porous 

membrane covering the ACC particle. 

  



Chapter 3:  Amorphous Calcium Carbonate 

131 

The successful formation of a porous silica shell around each of the ACC 

particles was determined by TEM (Figure 3-11).  Presented in (a) are the ACC-

SiO2 particles as prepared, which are ~100 nm in diameter,  while (b) shows the 

ACC-SiO2 particles after leaching out the calcium carbonate core by immersion in 

HCl.  This demonstrates the presence of a continuous 5 - 10 nm thick silica shell 

around each ACC particle.   

 

IR spectra of the ACC-SiO2 particles (c) confirmed the formation of ACC and an 

amorphous silica shell based on the presence/ absence of vibrational bands at 

1425 cm-1 (ν3), 1075 cm-1 (ν1) and 863 cm-1 (ν2) which are due to the carbonate 

groups.  Bands at ~3300 cm-1  and 1641 cm-1 (vH2O) are associated with water in the 

encapsulate and the silica at 1038 cm-1 (vSiO2).  Notable is the absence of the (ν4) 

bands at 747 cm-1 and 714 cm-1, which are characteristic of vaterite and calcite 

respectively.  Surface area (BET) measurements of the ACC-SiO2 particles both 

before and after removal of the ACC yielded values of  40 m2 g-1 and  400 m2 g-1.   

TGA of ACC-SiO2 particles (d) showed that the encapsulates exhibited 

different TGA profiles from the regular ACC.  This can be related to the change in 

sample composition.  The TGA profile shows an 18 – 20 wt% loss below 200°C due 

to the  dehydration of the ACC and SiO2.  This is similar in magnitude to pure ACC.  

An additional 7 – 10 wt% loss between 200°C – 550°C is then seen for the ACC-

SiO2 particles, where this is as a result of CO2 release on reaction of the SiO2 shell 

with the CaCO3.   

The PXRD patterns acquired during in-situ heating of ACC-SiO2 particles, 

helped to clarify this secondary weight loss.  The amorphous encapsulates (e) 

transformed upon heating to Ca2SiO4 (Belite) (f), which was readily detectable 

above a temperature of 400°C.   

The formation of calcium silicate also explains the gradual weight loss of 18 

– 20 wt% above 550°C in the TGA profile.  A sharp transition is typically observed 

in uncoated, regular ACC on conversion of CaCO3 to CaO. 
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Figure 3 - 11:  Characterisation of prepared silica-coated ACC (ACC-SiO2).  Given 
in (a) and (b) are transmission electron micrographs of ACC-SiO2 encapsulates as 
formed and after dissolution of the calcium carbonate core.  (c) IR spectrum and (d) 
TGA of ACC-SiO2 encapsulates as prepared.  Further provided are PXRD pattern 
acquired from of ACC-SiO2 encapsulates after heating to (e) 220oC and (f) 550oC. 
B-Belite.(95)  
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TGA of the silica shells alone (that is, after leaching out the ACC) revealed that they 

comprise ~20 wt% water, Figure 3-12.  Considering then the formation of 

encapsulates of 100 nm in diameter with a 5 nm thick silica shell, and taking the 

densities of ACC and hydrated silica (SiO2∙H2O) to be 1.62 gcm-3,(243) and ~1.9 

gcm-3 respectively, the ACC-SiO2 particles have compositions of ~22 wt% SiO2: 

H2O and ~78 wt% CaCO3:H2O.  Given that the unheated ACC-SiO2 particles 

comprise 20 wt% water, ~4-6 wt% H2O is associated with the SiO2 component and 

~14-16 wt% with the ACC.  

 

 

 
Figure 3 - 12:  TGA of silica shells formed by leaching the calcium carbonate from 
ACC-SiO2 particles.  Dissolution of the calcium carbonate core was realized by 
immersing ~500 mg of prepared ACC-SiO2 encapsulates in 250 mM HCl (50 ml) for 
24 hours.  A heating rate of 15°Cmin-1 was applied.(95) 
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Having established the formation and characterisation of ACC-SiO2 encapsulates, 

their stability and transition behaviour in solution was observed.  15 mg of ACC-

SiO2 particles were transferred to 100 ml Milli-Q water and were analysed with time, 

for changes in their structures and compositions.  A summary of the observations 

made is provided in Figure 3-13.   

Electron micrographs (a) of the ACC-SiO2 particles as prepared and after 500 

minutes in solution, demonstrate the structural stability of the particles and show 

that they aggregate during incubation.  The collected IR spectra (c) and TGA 

profiles (d) demonstrate a negligible change in the silica content of the 

encapsulates.  The latter is evident in the IR spectra, when comparing the relative 

silica band intensities across spectra.  Compared are the ratios of ν3/vSiO2 with 

increasing time in solution. 

Addressing changes that occur in the ACC during their incubation in water, time-

dependent IR measurements (c) revealed a structural rearrangement, as was 

apparent from a narrowing of the ν3 band, a reduction in intensity of the ν1 band and 

a shift in the ν2 band.  Importantly, this was accompanied by dehydration of the 

ACC, which occurs before any evidence of crystalline phases is detected.  The 

onset of crystallisation occurs after ~8 hours, as shown by the appearance of a 

characteristic calcite peak at 714 cm−1 (ν4). 

TGA confirms the detected dehydration and structural reorganisation.  TGA of ACC-

SiO2 particles incubated in solution for different times clearly showed a decrease in 

the water-associated weight loss under 200°C from 20 wt% to a constant 6 wt% 

(SiO2:H2O phase).  The structural reorganisation with time in solution is observable 

by the gradual appearance of a sharp CaCO3 to CaO transition above 550 °C and a 

reduction in the weight loss in the intermediate range (200 – 500°C) for longer 

incubation times.  Both of these phenomena demonstrate reduced calcium silicate 

formation in ACC samples with greater degrees of dehydration.  The decreased 

calcium silicate formation can be explained by the fact that co-precipitation of ACC 

in the presence of silicate also results in the occlusion of the silicate ions within the 

ACC, which results in an increase in its thermal stability.  During dehydration/ 

restructuring of the ACC, silicate ions are likely to be expelled, resulting in reduced 

calcium silicate formation.  The expelled silicate ions might subsequently support 

the aggregation behaviour observed by electron microscopy.   
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Figure 3 - 13:  Summary detailing the crystallisation/ dehydration of ACC-SiO2 

encapsulates upon re-suspension.  Given in (a) and (b) are scanning electron 
micrographs of ACC-SiO2  after incubation in solution for 0 mins and 500 mins.  (c) 
IR spectra and (d) TGA of ACC-SiO2 encapsulates, showing the structural and 
compositional changes in encapsulates with incubation in solution.(95)    
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While the degree to which occluded silica ions contribute to the extended stability in 

ACC is difficult to judge, that they do contribute has been clearly shown.(205)  

Confirmation that the presence of silicate ions within the ACC does not change the 

pathway by which it crystallizes (dehydration) was obtained by monitoring the 

crystallisation in water of ACC particles, which were precipitated in the absence of 

silicate, and then coated with a silica shell, Figure 3-14.  Silica shell formation on 

the preformed ACC particles (direct combination of 0.5 ml of 20 mM CaCl2·2H2O 

with 0.5 ml of 20 mM Na2CO3) was possible by the delayed addition of sodium 

silicate, four seconds after initiating ACC precipitation (1 ml of 12 mM NaSiO2).  This 

method never succeeded in coating all of the ACC particles present completely (a 

to d), such that there was a constant calcite background during analysis (e, v4).  

However, the data clearly demonstrates that the pure ACC particles (ie not 

containing any silica) also dehydrate before recrystallisation (f).   

 

 

 

Figure 3 - 14:  Characterization of pure ACC particles coated with a porous silica 
shell, formed by the delayed addition of sodium silicate and their dehydration in 
solution.  Scanning electron micrographs collected with increasing time in solution 
(a-d) demonstrate clearly that the silica shell is not completed on all ACC particles 
allowing a rapid dissolution and formation of calcite.  (a) Initially prepared particles 
identical in appearance to ACC-SiO2 encapsulates.  (b) Silica-coated ACC by 
delayed addition after 180 minutes in solution, showing the presence of (c) empty 
silica shells and (d) calcite.  Observations are supported by ex-situ collected IR 
spectra.  Formed calcite presents a constant background in IR spectra (e).  
Collected TGA profiles show a similar dehydration behaviour as seen for ACC-SiO2 

encapsulates (f).(95)    
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Realizing that the occlusion of silicate ions in the ACC-SiO2 particles, on a basic 

level, is nothing else than the combined use of a soluble additive and 

confinement in directing mineralisation, we explored this route further.  It is well 

recognized that soluble macromolecules and ions, such as magnesium, silicate, 

sulphate and phosphate, contribute to the extended lifetime of biogenic ACC.(7, 17, 

244)  However, this alone cannot provide the stability observed for biogenic ACC.  

As we’ve just seen above, the environment of the ACC also makes a significant 

contribution to its stability. 

We therefore precipitated ACC as before with a silica shell, but also in the presence 

of the crystallisation inhibitor aspartic acid. Its crystallisation behaviour was then 

studied.  ACC-Asp-SiO2 particles crystallized by an identical pathway to ACC-SiO2  

(dehydration followed by crystallisation) where a small band at ≈700 cm−1 

corresponding to crystalline CaCO3 was observed in the IR spectra after 18 hours.  

This compares with the appearance of an equivalent peak at 8 hours for ACC-SiO2 

and under 1  hour for uncoated ACC-Asp.(152)  The soluble additive and 

confinement therefore appear to act synergistically in retarding ACC crystallisation. 

 

Viewing the system now from a slightly more abstract angle, what we actually have 

is a potentially non-toxic core-shell particle, in which the core can be loaded with an 

active ingredient.  The release rate of this encapsulated active ingredient upon re-

suspension can be controlled simply by changing the initial sodium silicate 

concentration.  This has a direct influence on the resulting silica shell porosity.  

Current investigations are encapsulating water soluble fluorescent molecules, 

quantum dots and gold nano crystals into the ACC-SiO2 particles, by simply adding 

the “active ingredient” to the calcium solution prior to the formation of ACC-SiO2 

particles.  
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Figure 3 - 15:  Shown is the observed crystallisation and dehydration of ACC-Asp-
SiO2 encapsulates prepared by combining equal volumes of 10 mM Na2CO3/ 6 mM 
Na2SiO3 and 10 mM CaCl2/ 5 mM aspartic acid in comparison with Asp-ACC and 
pure ACC-SiO2 encapsulates.  (a) TGA and (b) IR spectra of ACC-Asp-SiO2 after 
different incubation times in solution.  Performed identical to ACC-SiO2 

encapsulates.  Emerging vibrational band at  714 cm-1 is selective to crystalline 
calcium carbonate observed in given IR spectra after 18 hours, with the first hint of 

crystallinity appearing after  5 hours.  Provided in (c) and (d) are IR spectra of 
ACC-SiO2 ( ̶ ), ACC-Asp (  ̶) and ACC-Asp-SiO2 ( ̶ ) after incubation in solution for (c) 
0 mins and (d) 60 mins.  Revealing the emergence of vibrational bands of vaterite 
and or calcite selective for the ACC-Asp particles after 60 mins of incubation, while 
coated ACC specimen still remain amorphous at this time.(95)   
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3.3.2.2:  Synthesis and Dehydration of ACC – Bilayer Coated Particles 

Having demonstrated that encapsulation of ACC within a porous silica shell reduces 

the rate of ACC crystallisation in solution, we extended our approach to explore 

whether ACC encapsulation within a lipid membrane - as in biological systems - 

may act in an analogous way.(120, 211)  ACC particles were coated with 

phosphatidylcholine-dihexadecyl phosphate (DHP) membranes using standard 

methods (Chapter 2.2.1.3) (173), and their stability in Milli-Q water was investigated 

by isolating and characterizing the coated particles at different times.  

Laser scanning confocal microscopy, made possible by addition of a fluorescent 

phosphocholine (PC) molecule to the lipid mixture, demonstrated that the ACC 

particles were coated by lipid membranes and that they agglomerated with time, 

Figure 3-16a.  Figure 3-16 a and b provide laser scanning confocal micrographs 

(LSCM) of the formed encapsulates directly after formation and after 4 days of 

incubation. 

Notably, structural changes in the ACC comparable to those seen during the 

transformation of ACC-SiO2 were observed on incubation in solution, as shown by a 

reduction in intensity of the v1 absorption band and a shift in the v2 band, IR spectra 

Figure 3-16c.  No bands at 714 cm-1 (calcite) or 747 cm-1 (vaterite) were detected 

even after day 4 of re-suspension.  Noteworthy is also the reduction in the intensity 

of the bands associated with the PC membrane,(245) (2923 cm-1 (νCH) and 1234 

cm-1 (νPO2
-)).  This indicates that the membrane coatings are unstable over longer 

incubation times.   

TGA of freshly prepared samples showed a weight loss due to lipid 

decomposition of ~30 wt% between 230 and 530 oC Figure 3-16 d.  This compares 

with ~20 wt% loss, estimated for 100 nm ACC spheres coated with single 

bilayers,(246) which suggests the presence of multilamellar coatings or additional 

vesicles.  Importantly, the TGA analysis also demonstrated that the coated ACC 

particles underwent a very slow dehydration during incubation in solution, as shown 

by the loss of water below 230ºC.  Indeed, the water content decreased from an 

initial ~18–20 wt% to 10–13 wt% after two days, although the particles were still 

ACC, as judged by IR.  The mass loss associated with decomposition of organic 

materials, which occurs at 230–530oC, also decreases from ~30 wt% to 16 wt% 

over 2-4 days incubation.  The TGA data are in agreement with IR and therefore 

indicate that the lipid coating of the ACC particles is lost/ reorganizes with time in 

solution.   
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Figure 3 - 16:  Summary detailing the crystallisation of ACC particles coated with lipid 
bilayers upon re-suspension.  Provided in (a) and (b) are laser scanning confocal 
micrographs of ACC bilayer aggregates taken directly after preparation and after 4 
days of re-suspension in water respectively.  (c) IR spectra and (d) TGA profiles of 
ACC coated with lipid bilayers isolated and characterized after certain incubation 
periods in solution.(95)  
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3.3.3:  Dehydration and Crystallisation of ACC in the Solid State 

 

After observing the gradual dehydration of ACC-SiO2 particles in solution and 

bearing in mind our goal of comparing its apparent solid state transition in solution 

with a known solid state transition - to elucidate the underlying mechanism - we 

studied a known solid state transition of ACC.  Detailed studies of the 

transformation from hydrated ACC to anhydrous ACC to crystalline calcite were 

therefore carried out by annealing ACC samples at specific temperatures.  

Annealing ACC samples at specific temperatures leads to the formation of ACC 

with different hydration levels, thereby allowing us to gain some insight into the 

reaction mechanism.  

 

ACC containing different amounts of structural water was obtained by the simple 

heating and subsequent isothermal storage of ACC particles.  Samples were 

heated in a nitrogen atmosphere at a rate of 15°C min−1 and were then maintained 

at the desired temperature until the weight stabilized, as judged by <1 wt% change 

over 100 minutes.  The isothermal annealing was carried out at 5 °C intervals in the 

temperature range 25 – 200°C.  It is important to stress that these steps were 

carried out in a TGA/ DSC system, such that data concerning the structural 

transition are recorded constantly.  The annealing is important as it removes the 

kinetic drag from the TGA profiles, which occurs when the sample temperature is 

ramped up continuously. 

The ACC used for analysis was prepared by combining equal volumes (0.5-

1.5 ml) of 1 M (NH4)2CO3 (pH 9.15) with 1 M CaCl2 (pH ~6.8).  TGA/ DSC revealed 

the formation of ACC containing ~20 wt% water.  ~15 wt% water is structurally 

associated with the ACC, which is consistent with the commonly reported molecular 

composition of ~CaCO3:H2O. 
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Following the transformation of ACC while annealing at specific temperatures by 

TGA and DSC proved to be hugely informative.  This provided information 

regarding the amount of water lost at each temperature, the water fraction 

remaining and the crystallisation onset temperature.  Figure 3-17a, shows 

representative TGA profiles that clearly demonstrate that ACC can be 

systematically dehydrated by application of defined heating cycles.  Extended TGA 

profiles showing the decomposition to calcium oxide and DSC detected 

crystallisation are provided in Figure 3-18.   

Figure 3-17 b & c , provides electron micrographs of ACC particles before 

(30°C) and after heating (200°C).  Aggregation of ~50 nm sized ACC particles 

occurs during dehydration/ heating.  Figure 3-17 d presents IR spectra which were 

acquired ex-situ.  These show that the ACC particles remain amorphous after 

isothermal annealing up to 250°C.  This is evident by the absence of the v4 

vibrational band.  The dehydration of ACC as observed by TGA and IR (decreasing 

vH2O), was accompanied by a structural rearrangement of the ACC.  The structural 

rearrangement is apparent based on a reduction in intensity of the ν1 absorption 

band, and a slight shift in the ν2 band to higher frequencies, in common with 

observations made for ACC samples undergoing dehydration/ crystallisation in 

solution.  DSC showed that the crystallisation of ACC only occurred above a 

temperature of 290ºC, regardless of whether samples were continuously heated or 

annealed at different temperatures.  
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Figure 3 - 17:  Overview showing the crystallisation of uncoated ACC particles with 
increasing temperature exposure.  Given in (a) is the total observed change in 
weight percent of water (Total wt%) and corresponding molecular composition of 
ACC (CaCO3: xH2O) upon heating to and isothermal storage at a predefined 
temperature as obtained by TGA shown for a temperature range of 25ºC to 400ºC.  
Provided in (b) and (c) are electron micrographs of uncoated ACC after isothermal 
annealing at 30°C and 200°C respectively.  (d) IR spectra of ACC particles after the 
exposure to a heating procedure involving a ramp (15°C min-1), followed by 
isothermal annealing (100 min) and a second ramp (15°C min-1) step.(95)  
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Figure 3 - 18:  TGA (a) and DSC (b) profiles obtained from uncoated ACC particles 
undergoing a full heating cycle i.e. from dehydration to anhydrous ACC, 
crystallisation (b) and eventual decomposition to calcium oxide.  Uncoated ACC 
was prepared by the direct combination and immediate isolation of formed 
precipitate of equal volumes of (0.5-1.5 ml) of 1 M (NH4)2CO3 (pH 9.15) with 1 M 
CaCl2 (pH ~6.8) at 4oC.  A heating rate of 15°C min-1 with a single isothermal 
annealing period (for 100 min at 55, 95 or 115°C) was used.(95) 
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The DSC data could further by used to calculate the crystallisation activation 

energies of the ACC to calcite transition, and its reaction progress with increasing 

temperature.  This was done using the method developed by Boswell, which was 

introduced in Chapter 2.8.  Crystallisation activation energies of ~100 kJ mol−1 were 

derived in all cases.(187)  Figure 3-19 (a) shows example crystallisation progress 

profiles, which were obtained from ACC annealed 135°C for 100 minutes and 

heated at different rates.  Presented in (b) is the corresponding Boswell plot used to 

calculate the crystallisation activation energy (Ea) of ACC annealed 135°C for 100 

minutes (a).  β is the applied the heating rate, and TP corresponds to the 

temperature at crystallisation peak maximum in the DSC profile.  

 

 

Figure 3 - 19:  Profiles provided in (a) detail the crystallisation progress of uncoated 
ACC samples under heating with an intermediate annealing period (135°C for 100 
min), as derived from DSC scans performed with applied heating rates of 10, 15, 20 

and 25oC min-1.  Stated progress of crystallisation, 0-1, is obtained by integration of 
the crystallisation associated exothermic peak area in obtained (b) Corresponding 
Boswell plot.(95)    
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From the DSC scans we know that the systematic dehydration of ACC does not 

affect the activation energy of ACC crystallisation.  A question that is still open, 

however, is “what is the cost of dehydrating the ACC?”   

The acquired TGA profiles, help us to answer this question.  The activation 

energies associated with the liberation of different water fractions occurring in the 

ACC, were derivable by iso-conversion methods (Chapter 2.8).  This was archived 

by calculating the activation energies as averages of at least six isothermal 

measurements using Equation (22).(188)   

Here, α (as defined in Equation (23)) represents the degree of dehydration, 

A is a pre-exponential factor, f(α) describes the reaction model and Wmax, Wmin and 

Wt are the fractions of H2O present at the beginning, end and time t during an 

isothermal dehydration event.  T is the temperature of an isothermal dehydration 

event. 

𝐥𝐧 (
𝒅𝜶

𝒅𝒕
)
𝑻
= 𝐥𝐧[𝑨𝒇(𝜶)] −

𝑬𝐚
𝑹𝑻

 ( 22 ) 

𝜶 =
(𝑾𝒎𝒂𝒙 −𝑾𝒕)

(𝑾𝒎𝒂𝒙 −𝑾𝒎𝒊𝒏)
 

( 23 ) 

The average dehydration activation energy of all of the structural water in ACC can 

be calculated by plotting the dehydration rate ln(dα/dt) of the different isothermal 

dehydration events versus 1/T.  T is equal to the annealing temperature of the 

corresponding dehydration event.  The average dehydration activation energy can 

then be obtained from the slope of the generated line, Equation 22.  

More informative is the dehydration activation energy of a particular water fraction 

i.e. the energy required to partially dehydrate the ACC, say from a composition of 

CaCO3 : 0.8 H2O to CaCO3 : 0.4 H2O.  This information can be obtained as 

neighbouring isothermal dehydration events, i.e. ACC annealed at “near identical” 

temperatures, contain both information of the same degree of dehydration.  This 

allows us to plot the measured dehydration rate of the same degree of dehydration 

across multiple annealing temperatures.  A plot of ln(dα/dt)α versus 1/T, where the 

value of (dα/dt)α is determined for each isothermal dehydration event and 

temperature T, then returns a straight line of gradient—Ea/R for a particular degree 

of dehydration α.    
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Repeating this process in incremental steps of α, i.e. from fully hydrated ACC α=0 

to anhydrous ACC α=1, allows us then to generate a plot of dehydration activation 

energy vs the degree of dehydration.  

Such plots for pure ACC and ACC-SiO2 particles are presented in Figure 3-20 a 

and b respectively.  The plots show a general increase in the activation energy with 

increasing dehydration.  Further, they indicate the existence of three apparent 

dehydration regimes.  The first shows an increase in Ea up to α ~ 0.2 – 0.3, which 

corresponds to the loss of the surface water, while the second corresponds to a 

plateau regime from 40°C to ~ 85°C (0.3 ≤ α ≤ 0.6).  The Ea then increases further 

to a regime from 140–260°C (0.85 ≤ α ≤ 1) which is characterized by high activation 

energies of 245 kJ mol-1 (a).  Estimates of the weight loss and activation energies 

(Ea) of each of the dehydration regimes are summarized in Table 5.  The 

dehydration of the silica-coated ACC particles in air also shows the activation 

energies to increase as dehydration progresses.  The derived activation energies 

were somewhat higher than for the uncoated ACC in air, which demonstrates that 

the silica coating can retard ACC crystallisation by providing a barrier to water loss. 
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Figure 3 - 20:  Given are scatter plots presenting calculated dehydration activation 
energies (EA) as a function of the degree of dehydration (α) (bottom scale) and 
molecular composition of ACC CaCO3: xH2O (all water) (top scale).  (a) uncoated 
ACC and (b) ACC-SiO2 encapsulates.  The standard deviation of measurements is 
represented in the error bars given.(95) 
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 ~Wt% Range        α CaCO3:xH2O 
Ea 

[kJ mol-1] 

Dehydration Model 

Type f(α)=kT  R2 k [°C-1] 

25-40°C 20-14 0.0-0.3 ~1.4-0.98 80 2ed order reaction [1/(1- α)]-1 0.98 0.153* 

40-140°C 14-3 0.3-0.85 ~0.98-0.25 140 Contracting volume 1-(1- α)1/3 0.92 0.0042 

140-260°C 3-0.5 0.85-0.95 ~0.25-0.08 245 2ed order nucleation α1/2 0.85 0.0031 

25-260°C - - - 125 Contracting volume 1-(1- α)1/3 0.92 0.0038 

 ;  degree of dehydration 
CaCO3:xH2O ; number of moles of water associated with 1 CaCO3 formula unit 
Ea ; average activation energy associated with water loss for a given temperature range  
Dehydration Model ; best-fit solid state reaction models (f(α)=kT) , coefficient of determination R

2 
, rate constant k 

* f(α)=k[min
-1

]t 

Table 5:  Key information extracted from the thermal analysis of uncoated ACC.(95) 
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3.3.4:  Mechanism of ACC Dehydration 

 

Provided in Figure 3-21 are scatter plots of the gradual dehydration of ACC 

observed over a temperature range 25 – 220oC.  Plots were derived using α values 

obtained at the end of each annealing period.  By doing so we remove the kinetic 

drag of continuous heating experiments, such that the plots provide a true reflection 

of the dehydration profile with temperature.  Kinetic drag refers to the 

underestimation of weight/ mass lost  at a particular temperature, where the latter is 

due to mass loss being slower than commonly applied heating rates.  

Figure 3-21, shows that the rate of dehydration decreases at higher temperatures, 

which demonstrates that it becomes increasingly difficult to remove water as the 

limit of anhydrous ACC is reached.  This is in keeping with the activation energy 

measurements.  The dehydration curve also provides further insight into the 

mechanism of dehydration of ACC in air by considering fits to common solid-state 

reaction models (f(α)) (247).  The insights gained are summarized in Table 5.  It 

should be noted that the validity of such analysis is still debated due to the 

mathematical interdependence between activation energy, pre-exponential factor 

and chosen model.(248, 249)   

The full dehydration curve (Figure 3-21a) is best described by a geometric 

contraction model, in which the reaction rapidly initiates on the particle surface and 

then proceeds towards its centre.  The intermediate temperature range (40 – 

140°C), which represents ~ 65 % of the total water fraction, can also be described 

by the same model (b).  In both cases, a contracting sphere provided a slightly 

better fit than a contracting cylinder, with R2 values of 0.92 and 0.89, respectively, 

as compared with 0.90 and 0.85.  The final dehydration at 140 – 220°C, which 

represents less than 15 wt% of the initial water content, is in contrast best 

described by a second-order nucleation model (c).  Removal of the last water is 

therefore not diffusion limited but is determined by the barriers to water release.   

The dehydration regime from 0 ≤ α ≤ 0.3 (~ 40°C) is best described by an 

isothermal process following a second-order rate equation, as is consistent with 

loss of surface water and common adsorption isotherms (d).    
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The dehydration of the ACC-SiO2 particles in solution as a function of time (Figure 

3-21 e) showed that the overall behaviour from 0.3 ≤ α ≤ 1 obeys an identical three-

dimensional model (contracting sphere, R2=0.94) as for the dehydration of 

uncoated ACC in air.  A graphical summary of those observations is presented in 

Figure 3-22. 
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Figure 3 - 21:  Categorizing the progress of ACC dehydration.  Presented are 
dehydration cures of ACC and ACC-SiO2 encapsulates as a function of temperature 
(T) or time (t) (Single data points).  Presented alongside with best fits to the 
common solid state reaction models given in Table 1 (continuous lines).  Given in 
(a) is the general dehydration profile of uncoated ACC upon heating shown over the 
range of 20 - 220ºC, freed from kinetic drag as a result of constant heating.  (b) and 
(c) provided specific, normalized ranges of this dehydration process.  (b) 
representing the range 40 - 140ºC, fitted by a geometric contraction model and (c) 
shows the range 140 - 220ºC, fitted by a second order nucleation model.  Depicted 
in (d) is the dehydration of uncoated ACC by isothermal annealing (40oC).  
Provided in (e) the dehydration of ACC-SiO2 encapsulates as a function of time on 
incubation in solution (25oC).  Experimental dehydration curves – each given point 
corresponds to average observed weight loss during a series (x3) of separate 
isothermal/solution annealing experiments.  Stated weight loss was obtained from 
the end point of isothermal/ solution annealing periods.  α is equal to the total 
fraction of water (Figure 3-20); αN refers following to the normalized weight fraction 
of water lost over a specified temperature range (0 - 1).(95)   
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Figure 3 - 22:  Depicted in given schematic are the idealized succeeding stages of 
ACC dehydration in the form of a cross section through an ACC particle.  Starting 
from hydrated, wet ACC (a) to the loss of surface-bound water (b).  Continuing from 
(b) to (c) water is lost from the inner of the ACC concurring with particle compaction.  

Further dehydration leads to the expulsion of deeply located water and hydroxyl ions (d) and 

the crystallisation to calcite (e).(95) 

  



Chapter 3:  Amorphous Calcium Carbonate 

154 

Further insight into the nature of the water environments in hydrated ACC was 

gained from 1H solid-state NMR (SSNMR) measurements of ACC samples that 

had been isothermally annealed to different levels of dehydration. 

The measured spectra are given in Figure 3-23.  Analysis of the uncoated samples 

presented in (a) reveal the presence of five different proton environments in its fully 

hydrated state.  These are a rigid structural phase associated with Ca2+ (two types 

of OH- at 0.9 and 3.4 ppm), two partially mobile phases due to H2O (4.9, 5.7 ppm) 

and a signal due to CO3
2- (H+) framework components (7 ppm).(250)  With 

progressing dehydration, little change is observable in the OH- signal, while the 1H 

signal from H2O and HCO3
- decrease progressively.   

Heating of the samples resulted in coalescence of the 1H signals, which 

gave a broader signal centred at 5.2 – 5.5 ppm.  This is a weighted average of the 

4.9 and 5.7  ppm signals and is due to the exchange of protons between the two 

environments.  This shows that they are in physical contact.  The 1H signal from 

HCO3
2− shifts downfield (~6.7  ppm) when the dehydration temperature is 

increased, suggesting that the 1H in these sites also exchange with water 1H.  Its 

chemical shift therefore becomes a weighted average of that for the HCO3
− site (~7  

ppm) and the water sites (4.9, 5.7  ppm). 

(b) ACC-SiO2 particles, with different water contents were also characterized 

(dehydrated in solution).  This revealed the presence of different proton 

environments within the ACC, as in the case of uncoated ACC, which behaves 

similarly with dehydration.  In addition, signals originating in the hydrated SiO2 shell 

were detected.(251)  
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Figure 3 - 23:  Provided are 1H solid state NMR spectra of (a) uncoated ACC 
particles and (b) ACC -SiO2 particles isolated from the process at specific known 
degrees of dehydration as determined in reference by TGA.  ACC-SiO2 particles 
were isolated from solution, uncoated ACC particles were prepared by means of 
isothermal heating.  Samples for SSNMR were kept at 40°C for one hour prior to 
the measurements(175).(95)  
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3.3.5:  Discussion  

 

By employing a bio-inspired strategy, where encapsulation of ACC particles within 

silica shells retards crystallisation, we here show that in common with 

biomineralization processes and the transformation of ACC in air, synthetic ACC 

also dehydrates at room temperature in an aqueous environment.  This process is 

driven by the generation of a more stable, low water content ACC phase.(91)   

Characterisation of this dehydration process demonstrated a strong dependence of 

the activation energy required to remove water on the degree of dehydration.  The 

activation energies required to remove the first water fractions (up to 0.3 H2O) are 

close to the hydration energy of calcite crystal faces.(252)  This is as expected if the 

first stage of dehydration removes more accessible water of hydration.  Note that 

this is far more than monolayer coverage of water on the outer surface of the ACC 

particles, and undoubtedly includes water condensed around the contact points of 

adjacent particles as well as some more deeply located water.(253)  The higher 

activation energies measured for the remaining fractions may reflect the 

increasingly hindered escape of water molecules in low humidity environments. 

 

The mechanistic interpretation of the magnitudes of activation energies for solid-

state reactions is open to some debate.(248, 249, 254)  Nevertheless, the obtained 

results are in good agreement with current modelling studies of ACC dehydration.  

These predict an increasing hydration energy with progressing dehydration.  This is 

explained by the formation of stronger hydrogen-bond network interactions with 

surrounding/ neighbouring Ca2+ and CO3
2- ions.(87)  The latter is potentially 

reflected in the experimentally-observed structural reorganization of the ACC 

towards calcite-like fingerprint spectra during heating.  

One particular model of ACC dehydration obtained from combined computer 

simulations and structural studies of synthetic ACC (CaCO3:H2O) suggests that the 

water molecules in hydrated ACC are located, along with carbonate ions, within a 

network of nanoporous channels in a Ca2+-rich framework.(134)  It is those 

channels that are foreseen to facilitate the loss of water during dehydration, where 

this process would also be accompanied by a structural rearrangement in which 

CO3
2- ions relocate from the channels into the calcium framework.    
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Focusing on the actual crystallisation process, the crystallisation of dry ACC (i.e. 

out of solution and in the absence of any surface water) is only observed at 

temperatures of ~ 300oC, where this is triggered by/ coincides with the loss of the 

final water fraction of the initially hydrated ACC.  In the absence of any water the 

phase transition of anhydrous ACC to calcite must proceed by a solid-state 

transformation.  This is supported by the measured high activation energy of  245 

kJmol–1 of the final dehydration step and the subsequent crystallisation activation 

barrier of 100 kJmol–1.  The final high dehydration energy associated with the last 

water fraction is more likely to be associated with the removal of hydroxyl ions and 

trapped water as activation energies of dehydration of crystalline solids are typically 

of the order of 100 kJmol-1, which corresponds to the intermediate fraction of water 

lost from the ACC.(96, 254)   

Bearing in mind the magnitude of the measured activation barriers, while 

recollecting the fact that ACC crystallizes very rapidly in solution or when wet, an 

alternative mechanism with a lower energy barrier must occur.  Indeed, when 

isolated, ACC only shows extended stability when washed with solvents such as 

ethanol which can substitute for much of the surface water or by the direct removal 

of the latter in the form of freeze drying.(104, 175)  Even then, the rate of 

crystallisation is dependent on the ambient humidity.   

These data, and in particular the observations made in confined volumes 

here, strongly suggest that while ACC can certainly dehydrate at room temperature 

in and out of solution, the energy barrier to nucleation is such that the formation of 

the first crystalline nuclei can only occur via a partial dissolution/ reprecipitation.  It 

needs to be to stressed that it is not proposed that the ACC particles fully dissolve 

and then re-precipitate.  Rather, it appears more likely that this occurs locally within 

a domain on the surface of an ACC particle, or within aggregates of ACC particles 

which may contain pockets of entrapped water.(162)  The progressing 

crystallisation of the ACC particle can therefore occur by a “solid state” 

transformation, which has previously been termed secondary nucleation (255).  The 

crystal nucleus then induces structural changes in its adjacent surrounding,(97)  

catalysing the further dehydration of the ACC.  Such a transformation is supported 

by the observed structural changes which accompany dehydration of the ACC 

observed here and during biomineral formation.(119) 
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The transition of ACC to calcite at room temperature therefore seems to be defined/ 

decided by a balance between the rates of dehydration and dissolution/ 

reprecipitation.  ACC in bulk solution would therefore be predicted to transform via a 

full dissolution/ reprecipitation route, while ACC with limited water access or 

minimal surface water would be anticipated to convert via a “solid state” 

mechanism. 

As stated in the discussion of the effects additives have on ACC crystallisation 

(Chapter 3-2), the suggested mechanisms are consistent with the data presented in 

the literature.  Studies investigating the precipitation of calcium carbonate from 

concentrated solutions by in-situ SAXS/WAXS have suggested that initial 

dehydration and subsequent reorganization of ACC is followed by a direct 

transformation to vaterite, before changing to a dissolution/ reprecipitation 

mechanism which leads to calcite formation.(93, 256)  Further evidence for a “solid 

state” transition comes from cryo-TEM studies of ACC.  These have reported the 

direct transformation of ACC into vaterite as well, revealed by the development of a 

crystalline nucleus within the ACC particles.(94)  Further evidence for nucleation of 

the new crystal phase within ACC comes from observations that ACC typically 

aggregates prior to direct transformation into a crystal,(218) that ACC particles 

crystallize more slowly in small volumes with few particles present,(157, 160) and 

that small ACC particles show greater stability.(137)  Once initial nuclei of vaterite 

or calcite are established, further growth principally occurs by dissolution of the 

surrounding ACC.(86, 93, 139, 209, 219, 220, 256)  

Moving away from calcium carbonate, observations of stepwise transformation 

mechanisms in solution have been made in many other natural and synthetic 

instances including the transformation of amorphous titania to anatase or rutile, or 

ferrihydrite to goethite or haematite.(257)  These hydrated, metastable, amorphous 

or nano-crystalline phases have been shown to transform only after an initial 

dehydration.(258)  In particular, the transformation of ferrihydrite to haematite or 

goethite has been considered analogous to calcium carbonate, and may occur via a 

dissolution/ recrystallisation mechanism or a solid-state transformation.(257)  Other 

examples include the dehydration of crystal hydrates, where these often proceed 

via an intermittent amorphous phase which dehydrates i.e. the removal of structural 

water often destroys the pre-existing crystal lattice.(254)  As in the case of ACC, the 

nature of the transformation mechanisms are still debated. 
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3.3.6:  Conclusions 

 

Thermal analysis combined with solid-state NMR spectroscopy following the 

transformation of ACC to crystalline calcium carbonate in air and in solution by 

application of bio-inspired strategies provides a first insight into the mechanism of 

ACC transformation.  It demonstrates that ACC undergoes parallel dehydration and 

structural changes both in air and in solution prior to crystallisation, if dissolution/ 

recrystallisation processes are hindered.  In both cases, the water in ACC – which 

exists in different environments - is gradually lost.  Mobile water is lost first, followed 

by rigid water, and hydroxyl ions and trapped water are lost last.  The loss of the 

final component then appears to trigger or coincide with the crystallisation of the 

dehydrated ACC.  This last step was determined to be associated with a high free 

energy barrier > 150 kJmole-1, which implies that at room temperature and in 

solution the first crystal nucleus can only form via a dissolution/ reprecipitation 

mechanism, mediated by water present on particle surfaces or in solution.   

Through application of bio-inspired strategies, we further reveal that confinement 

stabilizes ACC by retarding dissolution/ reprecipitation based nucleation, and by 

limiting ACC aggregation in solution.  This is further enhanced in the presence of 

crystallisation inhibitors, which primarily affect the formation of a crystalline phase at 

this stage.  This suggests that nature employs both biomacromolecules and 

confinement to tailor the stability of ACC in organisms.   

The majority of the structural water in ACC seems of little importance to the stability 

of ACC itself.  However the water present plays a key role in the initial precipitation 

of ACC, where this lowers the energy barrier towards the formation of this hydrated 

phase as compared with the anhydrous polymorphs.   
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3.4:  ACC by Freeze Concentration 

3.4.1:  Introduction  

As established in the discourse above, ACC, and to some extent, amorphous 

calcium phosphate (ACP) are widely utilized in biomineralizing organisms to 

produce their intricate structures.(14, 117, 120, 236)  The most prominent examples 

of amorphous precursor utilization include the collagen/ hydroxyapatite composite 

that is bone (ACP) and by the controlled, and yet rapid crystallisation of spicules in 

sea urchins.(259, 260)  To fully utilize the enormous potential of amorphous 

precursor phases in material synthesis, with their promise of superior control over 

nucleation, crystal growth, and the access to rapid growth rates and “non-

crystalline” morphologies, there is a requirement to obtain pure amorphous 

precursors.(49, 239)   

As yet, we have not discussed the challenges associated with the 

production of pure ACC in a reproducible way using common synthesis methods.  

This will be done here, where I describe a synthesis method that can produce 

exactly this – pure, dry ACC.  Currently, the principal methods used to prepare ACC 

are the ammonia diffusion method (261), synthesis at high pH, as introduced by 

Koga and co-workers (129, 261) and the rapid mixing of highly concentrated (1M) 

calcium and carbonate solutions (93),(172).  Further, ACC appears to represent a 

family of phases whose structures and compositions are dependent on the 

particular synthesis method and solution conditions (e.g. temperature, pH).(129, 

152)  Treatments following precipitation such as drying or washing with agents such 

as ethanol can also make significant changes to the ACC and its crystallisation 

behaviour.(104)  Consequently, synthetic ACC can vary considerably in terms of 

stability,(161, 212), co-precipitated ions, and the amount of structural and surface 

water,(130) which makes characterization of the mechanism of its crystallisation 

difficult.  Indeed, synthetic ACC with long-term stability in air or solution is only 

typically reported on precipitation from ethanol,(104) or in the presence of 

Mg2+.(210) 

A method was therefore developed based on freeze concentration of saturated 

counter ion free calcium carbonate solutions, where this avoids some problems 

associated with the common ACC synthesis methods.  The ACC is generated in the 

absence of any counter-ions, contains little surface-bound water and shows an 

extended atmospheric stability. The generality of this approach for the synthesis of 

amorphous phases is then demonstrated by extension to ACP. 
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3.4.2:  Experimental  

 

The production of ACC by freeze concentration of an aqueous, saturated, “counter 

ion” free calcium carbonate solution, is possible, thanks to the selective 

crystallisation of water during a freezing process.  The gradual transformation of 

water to ice during freezing creates local environments (water pockets) which 

gradually decreases in free volume but simultaneously increase in the 

concentration of the reacting ions.  This eventually leads to the formation of ACC, in 

a very similar way to the method by which fruit juices are concentrated.  

A schematic diagram of the experimental process and the idealized formation and 

stabilisation process of ACC is given in Figure 3-24.  In the developed method, 

ACC is suggested to form during the freezing process of a saturated solution (a, red 

arrow).  Subsequent application of a vacuum leads to sublimation of the ice 

(solvent), which frees the ACC formed during the freezing process (a, blue arrow) 

Figure 3-24 (b and c).  On placing a solution of calcium carbonate into liquid 

nitrogen, rapid freezing occurs,  During this process the reacting ions, calcium and 

“carbonate”, are pushed away from the ice front into smaller and smaller liquid 

reservoirs as freezing progresses, creating highly supersaturated environments in 

which ACC ultimately precipitates.  The ACC is stabilised against crystallisation due 

to the low temperature and complete solidification of the solvent.  The subsequent 

sublimation of the frozen solvent then releases the as-formed ACC.(262, 263)   That 

ACC is formed during the freezing process itself is supported by the fact that if slow 

freezing rates are employed, calcite is obtained rather than ACC.   

To obtain pure ACC, the synthesis method necessitates the use of a counter ion 

free starting solution.  This solution is ideally prepared by the dissolution of pure 

CaCO3(S) in double distilled water.  “Pure” solid CaCO3 was obtained by the 

repeated dissolution and re-precipitation of CaCO3 which had been obtained by 

combining 1 M CaCl2 and 1 M Na2CO3.  Saturated solutions were then prepared by 

adding 25 mg of “pure” CaCO3 to 500 ml doubled distilled water and they were then 

stored for 24 hours before the bulk of the remaining un-dissolved calcium carbonate 

was removed.  The prepared saturated solution was then cooled to 4°C to remove 

any possible ghost nuclei, and was then filtered through a 0.2 µm membrane.  

Freezing of the prepared, saturated solutions (1 – 400 ml) was achieved by 

immersion into a liquid nitrogen bath, followed by a 10 minute annealing period to 

strengthen the ice structure.  Specifically, 30 ml of saturated CaCO3 held in a 

10x2.5 x 2.5 cm Teflon holder was immersed into LN2 at a fixed rate, visual 
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solidification was achieved in ≤ 15 min.  Subsequent sublimation of the excess 

solvent (3 days) under vacuum delivers the pure, dry ACC.   

 

Figure 3 - 24:  Schematic representation of the production of ACC by freeze 
concentration.  Illustrated in (a) are the particular phase changes of used solvent 
during the production process from liquid to solid upon freezing (red arrow) and 
solid to gas during sublimation i.e. vacuum application (blue arrow).  (b)  Illustrates 
the formation process of ACC upon the selective crystallisation of present solvent.  
(1) Saturated CaCO3 solution is (2) plunged into LN2 (3) upon which the solvent 
begins to freeze, creating localized environments of increasing supersaturation, (4-
5) leading to ACC precipitation and (6) followed by final solvent solidification and 
ACC stabilization.  (c) provides line plots with suggested changes in 
supersaturation and solution volume accompanying the freezing of present solution.  
Reproduced and altered after (175).  
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3.4.3:  Results  

 

3.4.3.1:  Characterisation 

Confirmation that the precipitate obtained by freeze concentration of a saturated 

solution is indeed ACC was established by characterising it using a range of 

techniques.  The obtained spectra were compared with references from the 

literature (Appendix A) and standard ACC produced here by the direct mixing of 

equimolar (1 M) solutions of CaCl2 and Na2CO3, Chapter 2.2.1.  The latter standard 

ACC was isolated after 5 minutes of incubation by filtration and was washed with 

ethanol and air-dried.   

Presented in Figure 3-25 are electron micrographs (a) and (b) of ACC obtained by 

freeze concentration which demonstrates the formation of spherical particles ~100 

nm in diameter.  This was further confirmed using dynamic light scattering (c).  The 

inset in (a) provides an EDX spectra of ACC obtained by freeze concentration, 

which demonstrates the major absence of secondary ions commonly present in 

ACC including Na+ and Cl- when precipitated from a high solution pH <12.  
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Figure 3 - 25:  (a) TEM, and (b) SEM images of ACC produced via freeze-drying.  
The inset in (a) provides an EDX spectra of formed ACC.  TEM - sample is 
supported by a nickel grid.  (c) Particle size distribution of produced ACC measured 
using DLS of particles suspended in ethanol.(175)   
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Analysis of the prepared ACC is presented in Figure 3-26.  (a) Comparison of the 

Raman spectra of the ACC samples prepared by freeze-drying and direct 

precipitation showed an increase in peak broadening of the ν4 (1088 cm-1) band of 

>20 % at full width half maximum (FWHM) for the freeze-dried ACC, which is 

indicative of a higher degree of disorder between the two.(264)  More importantly, 

no secondary peaks could be detected and only a very broad peak centred at the ν4  

position (corresponding to the internal CO3
2- symmetric stretch) could be detected 

in both spectra.  This confirmed the successful formation of ACC in both cases.   

  (b) The acquired IR spectra support this conclusion, where the freeze-dried 

ACC exhibits a much stronger symmetric-stretch ν1 peak.(14)  IR spectroscopy 

yielded spectra characteristic of ACC with broad peaks centred around 1473/ 1406 

cm-1 (ν3), 1130 cm-1 (ν1) and 868 cm-1 (ν2), in addition to peaks due to the vibration 

of water molecules at 1651 cm-1.  The notable absence of the ν4 peak around 700 

cm-1 further demonstrated the formation of ACC.(214)  (c) PXRD of CaCO3 

precipitated by freeze-drying revealed the presence of a broad amorphous 

background and the complete absence of any sharp peaks.  (d) TGA was used to 

investigate the composition of the ACC produced.  The heating/ weight profile of 

freeze-dried ACC which had been stored in a laboratory atmosphere for 2 weeks 

demonstrated a loss of 10 wt% below 200ºC, where this corresponds to adsorbed 

surface and structural water.  This was followed by a continuous weight loss due to 

CO2 release, before decomposition to CaO above 550°C.  This suggests a 

composition of ~1 CaCO3 : 0.7 H2O.  This can be compared with the ACC produced 

by direct combination which exhibits a loss of ~20 wt% below 200ºC and a 

composition of ~ CaCO3:H2O, which is typical of ACC synthesised in aqueous 

solution.(152, 172) 
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Figure 3 - 26:  (a) Raman-, (b) IR spectra,(c) PXRD pattern and (d) TGA acquired of 
ACC obtained via freeze concentration and by direct combination.  The inset in (a) 
shows a comparison of the peak widths of both samples 1088 cm-1.(175) 
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3.4.3.2:  Crystallisation of Freeze Dried ACC in Atmosphere 

Based on the reduced water content of ACC prepared by freeze concentration and 

the observation of ACC dehydration in the case of coated ACC particles (Chapter 

3.3.2), the structural transition of ACC prepared by freeze concentration under 

atmospheric conditions was investigated by IR and Raman spectroscopy.  TGA was 

not possible due to the low sample quantities produced per experiment.  ACC 

obtained after solvent sublimation was transferred onto glass slides, and analysed 

at regular intervals.  In between analyses the sample was stored in a petri dish 

sealed with punctured Parafilm.  

In the first instance, ACC obtained by freeze concentration showed a notable 

stability against crystallisation in ambient atmospheric conditions, crystallizing only 

after 6 weeks of storage (precipitation) as evident from Raman spectra in Figure 3-

27.  This is remarkable given that the reaction was not quenched using an ethanol 

wash, which partially replaces the surface water.  ACC prepared by the direct 

combination of 1 M CaCl2/ Na2CO3 and washed with isopropanol generally 

crystallizes within 24-48 hours.(93) 

  

 

Figure 3 - 27:  Raman spectra of ACC obtained via freeze concentration, held under 
ambient atmospheric conditions.  Shown is a series of spectra collected over a time 
frame of 6 weeks.(175)    
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Figure 3-28, shows IR spectra which were in agreement with the observation made 

by Raman spectroscopy.  They clearly show the transition of hydrated ACC to 

anhydrous ACC and eventually calcite/ vaterite.  Importantly, they provide evidence 

of a gradually decreasing intensity in the vibrational band at 1641 cm-1 (highlighted 

in grey) which is associated with water, a shift in the ν2 band and the appearance of 

calcite and vaterite selective (ν4) bands with increasing storage time in atmosphere. 

 

 

Figure 3 - 28:  IR spectra of ACC obtained via freeze concentration, held under 
ambient atmospheric conditions.  Shown is a series of spectra collected over a time 
frame of 6 weeks.  
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3.4.4:  Translation to Amorphous Calcium Phosphate 

 

Having established that ACC can be obtained by freeze concentration of saturated 

solutions, experiments were performed to test the generality of the developed 

method to form amorphous precursor phases.  Studies were conducted to 

precipitate amorphous calcium phosphate and amorphous calcium oxalate (Chapter 

3.5) by freeze concentration of saturated, aqueous solutions.  Calcium phosphate 

was chosen as the primary target due to its importance and because the existence 

of an amorphous precursor phase (ACP) is well known and “structurally” 

defined.(236, 265, 266) 

The required saturated “counter ion free” solution of calcium phosphate was 

generated by processes analogous to those used for calcium carbonate.  The 

saturated solution of calcium phosphate was prepared by repeated dissolution and 

re-precipitation of calcium phosphate formed by mixing 200 mM CaCl2.2H2O with 

200 mM Na2HPO4:7H2O. 

Figure 3-29, provides an electron micrograph and an example EDX spectra of the 

precipitate generated by freeze-drying of the prepared calcium phosphate solution.  

Elementary units have an apparent diameter of ~50 nm, and consist primarily of 

calcium and phosphate.  

 

Figure 3 - 29:  Electron micrograph and example EDX spectra of ACP obtained via 
freeze concentration of saturated calcium phosphate solution.(175)    
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Figure 3-30, shows Raman- (a), IR-spectra (b) and PXRD (c) patterns obtained 

from the generated calcium phosphate precipitate by freeze concentration.  These 

confirm the formation of ACP based on comparison with the literature, and 

reference spectra of ACP prepared by a direct precipitation method (combination of 

equimolar of 200 mM CaCl2 and Na2HPO4:7H2O).(266, 267)  These comparisons 

confirm the formation of ACP by the presence of a single broad peak in the Raman 

spectra and the absence of bands associated with crystalline calcium phosphate in 

the IR spectra (Appendix A).  The PXRD pattern reveals that the prepared sample 

is not 100% amorphous calcium phosphate.  (d) The TGA of the obtained 

precipitate revealed a Ca/P ratio of ~1.70 which suggests a precipitate of 

composition Ca1.7(PO4)1(OH)0.4 which resembles hydroxyapatite.(268) 

 

Figure 3 - 30:  (a) Raman and (b) IR spectra of ACP obtained via freeze 
concentration and by direct combination of 200 mM CaCl2 and 200 mM Na2HPO4 
7H2O.  (c) PXRD of ACP obtained via  freeze concentration.  (d) TGA of ACP 
obtained via freeze concentration. (175) 
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3.4.5:  Discussion and Conclusion  

 

In conclusion, a method was developed based on the freeze concentration of a 

counter-ion free solution of a mineral to reproducibly produce “pure”, amorphous 

mineral phases.  The developed method was used here to produce amorphous 

solids of calcium carbonate, phosphate and oxalate (Chapter 3.5) which exhibited 

low levels of physisorbed and structural water.   

  In the case of ACC, this was shown to extend the atmospheric stability of 

the otherwise short-lived ACC.  This indicates that the rapid atmospheric 

crystallisation observed for ACC precipitated from aqueous solution derives from 

excessive surface water, and that routine variations in the amounts of bound water 

and ethanol (from washing) may be the origin of many of the problems in obtaining 

ACC with reproducible properties.   

  The “one touch” procedure developed here overcomes some of the 

problems associated with common amorphous precursor syntheses, and may 

provide an effective route for determining the existence of amorphous precursor 

phases.  The method has some downsides, which include the fact that the 

formation mechanisms of the amorphous precursor phase cannot be studied.  

Secondly, due to the inherently low starting concentration – which is equal to the 

solubility of the most stable polymorph – the method has a fixed maximal yield.  The 

excessive volume to product ratio makes the process prone to the introduction of 

impurities if not handled carefully.  Despite these negatives, however, the method is 

currently used by two independent research groups in the production of amorphous 

reference compounds.  

Future work utilizing the developed method might include the combination of 

counter-ion free ACC with the general idea of ice templating/ freeze casting to form 

structured porous scaffold materials.(269-271)  Here, freeze casting/ unidirectional 

freezing of an ACC precursor solution could be envisioned to provide a new route to 

the formation of minerals with complex shapes, and an alternative to existing 

methods such as negatively templated polymer structures.(50)  Particularly 

interesting is that the amounts of secondary constituents e.g. occluded additives 

can be controlled based on alteration of the starting concentration.  If successful in 

producing porous scaffold materials, the procedure could be used in the production 

of layered complex hereto-structures, where this could eventually result in the 

formation of composite materials currently generated using gel approaches.(272)  

Frist trials in this direction are currently under way.  
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3.5:  Amorphous Calcium Oxalate 

3.5.1:  Introduction  

 

The use of amorphous precursor phases of calcium carbonate and calcium 

phosphate by bio-mineralizing organism is now commonly accepted.(14, 23, 236, 

265, 273)  Utilized in vertebrates, invertebrates and embryophytes alike,(235, 274, 

275) precursor phases offer themselves as dense ion storage phases and foremost 

as a transient, shapeable precursor to crystalline biominerals.  Calcium oxalate 

biominerals, the next prominent biomineral within some plants (Embryophyta or 

Metaphyta) fulfil identical functions as to those seen for carbonates and phosphates 

and are shaped and assembled by similar mechanisms.(276)  This starts from the 

active accumulation of reacting ions in specified cells, to the formation of mineral 

deposits in confined spaces to the transport and release at a particular 

destination.(122, 276, 277)  Vascular bundles and epidermal cells use calcium 

oxalate deposits to harden protective tissues or to provide structural support as 

calcium carbonate is used in the sea urchin spine.(260, 278, 279)  Another example 

is the exploitation of the mineral for simple protection against predators by means of 

calcium oxalate styloid and raphide crystals, whose functions resemble those of the 

protective spines in sea urchins.  Figure 3-31, shows these raphide crystals (a-c) 

and the suggested mechanisms by which they form (d).  This closely resembles sea 

urchin spine formation Chapter 1.4, Figure 1-13  In view of those similarities, the 

question arises as to whether calcium oxalate biomineralization follows the same 

path as calcium carbonate and phosphate – taking advantage of an amorphous 

precursor phase. 

The mechanism of calcium oxalate precipitation in aqueous solution was 

investigated here, with the goal of determining whether an amorphous precursor 

phase is present in the early stages of precipitation.  A range of methods that are 

known to kinetically stabilize amorphous precursor phases in solution (including the 

freeze-concentration method of saturated solutions and precipitation within the 

confines of track etch membrane pores and wedge geometries) were used to 

stabilize any possible amorphous phase formed, and thus aid its identification and 

characterization.(49, 157, 175)  
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In common with recent experiments which generated amorphous calcium oxalate 

(ACO) in ethanolic solution,(280) the confinement methods used here 

demonstrated that ACO particles ~10 - 50 nm in diameter can be formed in 

aqueous solution.  ACO has an apparent composition of Ca2C2O4:H2O.  When 

crystallised in confinement, ACO or more specifically the resulting calcium oxalate 

crystal adopts to the confinement geometry.  Studies of the precipitation of calcium 

oxalate in bulk solution and in the presence of crystal growth inhibitors rich in 

anionic groups preformed here have indicated the presence of an amorphous 

precursor in solution.(157, 158, 281-284)  It was not however not possible to isolate 

a homogenous amorphous precipitate from bulk experiments.  These results 

suggest that organisms may use a combination of strategies to stabilize amorphous 

calcium oxalate in vivo, relying on limited contact of the ACO with bulk water and 

the presence of soluble crystallisation additives. 
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Figure 3 - 31:  (a-c) Examples of calcium oxalate crystals used as active defence 
structures in plants.  (a) A living raphide idioblast, (b) an idioblast after pressure is 
applied, the cell tip is cracked and the raphide crystals are forcibly expelled.  (c) 
SEM of the raphide crystals displaying the sharp tips and grooves (→).(122)  (d) 
Schematic depicting the idealized formation of calcium oxalate crystals in idioblasts.  
Calcium is actively accumulated with the xylem and is distributed among cells in the 
leaf via the cell wall, crystal idioblasts accumulate Ca via ion pumps.  Oxalate can 
be generated from ascorbate in crystal idioblasts directly and transferred to the 
vacuole along with imported calcium.  In this particular model, calcium and oxalate 
are transferred across the crystal chamber membrane and added to the growing 
facets.  Crystals of particular length do no longer add Ca and oxalate, proteins 
interacting at the growing crystal facet may regulate precipitation or shape in this 
regard.  The “mechanisms for transfer of Ca and oxalate to the vacuole and into the 
crystals have not been identified”(122).  Reproduced after (122). 
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3.6.2:  Results and Experimental  

 

3.6.2.1:  Bulk Precipitation 

Calcium oxalate was initially precipitated in bulk across a range of supersaturation 

levels by the direct combination of equimolar solutions of NaC2O4 and CaCl2 (0.25 - 

100 mM).  Solutions were degassed with nitrogen for 2 hours prior to usage to avoid 

the possible formation of calcium carbonate.  Initial experiments were performed in 

the expectation of obtaining a homogeneous, nano-sized amorphous precipitate 

within 5 - 45 min of incubation in solution.  This procedure is consistent with those 

used in the preparation of ACC and ACP.(172)  

This was not achievable here for calcium oxalate.  Analysis of isolated samples 

prepared at different supersaturation levels after 15 minutes of incubation revealed 

the presence of a mixture of calcium oxalate polymorphs.  At elevated 

supersaturation levels, the prominent polymorph in the sample was calcium oxalate 

monohydrate (COM), where this formed at starting concentrations greater than 10 

mM.  With decreasing supersaturation the prominent polymorph in the sample 

shifted towards calcium oxalate dihydrate (COD).  Closer examination of the lower 

supersaturation range employed (which used starting concentrations of 5-0.25 mM), 

by scanning and transmission electron microscopy, Figure 3-32(a-d), emphasizes 

this transition in polymorph precipitation.   

The interesting aspect in the provided figure, where the goal was to identify 

and characterise ACO, is magnified in the inset in Figure 3-32(b).  Visible in the 

inset are nano-sized precipitates of ill-defined shape, sitting on top a COD surface.  

The known amorphous precursor phases of calcium carbonate and calcium 

phosphate look exactly like this, a nano-sized precipitate of ill-defined shape.  

Sadly, due to sample heterogeneity - nano-sized precipitate sitting on top of 

crystalline calcium oxalate – characterisation techniques e.g. PXRD, IR - and 

Raman spectroscopy were inconclusive in determining the presence of an 

amorphous calcium oxalate phase (ACO).   
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Figure 3 - 32:  Electron micrographs of calcium oxalate precipitates extracted 
from bulk experiments.  Samples were obtained by the direct equimolar 
combination of 10 ml CaCl2 and 10ml Na2C2O4.  Starting concentrations are 
given on the left hand side.  Samples prepared by Yun-Wei Wang.  
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3.5.2.2:  Precipitation in the Presence of Additives  

In an effort to stabilize ACO in bulk experiments, poly acrylic acid (PAA) was added 

to the Na2C2O4 solution.  PAA was chosen as an additive due to its similarity to the 

macromolecules present in biomineralizing organisms, in this it is rich in anionic 

groups and is a proven crystal inhibitor for calcium oxalate.(283, 285, 286)  

Provided in Figure 3-33 are micrographs obtained from precipitates generated from 

solutions of composition 0.5-5 mM CaCl2/ Na2C2O4/ (50μg ml-1) PAA).  Evident is a 

particular change in precipitate morphology compared to the calcium oxalate 

formed in the absence of PAA.   

 

Figure 3 - 33:  (a-d) Electron micrographs of calcium oxalate precipitates 
extracted from bulk experiments in the presence of PAA fixed at 50 μg ml-1.  
Samples were obtained by the direct equimolar combination of 10 ml CaCl2 
and 10ml Na2C2O4.  Stating concentrations are given on the left hand side.   
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Pure ACO could not be extracted from experiments performed in the presence of 

PAA.  Instead, amorphous thin films, Figure 3-34, were detected on the 

mineralizing substrate in addition to small single crystals of calcium oxalate.  The 

amorphous character was recognised as they were not visible under cross 

polarizers, inset (a).  Upon heating the sample to 180°C, polycrystalline films are 

observable (b).  Electron micrographs are provided in (c) and (d) respectively.  The 

thin films of calcium oxalate obtained resemble thin films identified in calcium 

carbonate/ PAA precipitates.(60)  These are generally associated with polymer 

induced liquid precursor phases, which are suggested to provide a precursor step 

to solid amorphous precursor formation.(33, 64, 208)  

 

 

Figure 3 - 34:  Micrographs of calcium oxalate thin films formed on the 
crystallisation substrate (glass).  Presented in (a) is an optical micrograph of 
found film.  Given in the inset is the sample under cross polarizers.  (b) the 
film after heating to 180°C for 3 hours under crossed polarizer.  Presented in 
(c) and (d) are electron micrographs of thin films as found present and after 
heating to 180°C for 3 hours.  Precipitates were prepared by the direct 
combination of equimolar (5 mM) combination of 10 ml CaCl2 and 10ml Na2C2O4/ 50 
μg ml-1 PAA.   
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3.5.2.3:  Precipitation in Confined Volumes 

In further efforts to temporarily stabilize ACO, calcium oxalate precipitation was 

confined to small volumes, which were previously shown to be successful in 

stabilizing ACC and ACP.  

Initial confinement studies kinetically arrested the precipitation of calcium oxalate 

within 20 µl droplets of 2 mM CaCl2/ Na2C2O4 placed in the confines of an annular 

wedge,(157) formed around the contact point of two crossed half cylinders (Glass 

tubes with diameters of 25 mm were cut to produce half-cylinders).  Experimentally, 

the cylinders were mounted on Teflon holders to hold them in place.  A TEM grid 

was placed between the two cylinders before they were brought into contact with 

the curved surfaces facing each other, a schematic of the experimental set-up is 

given in Figure 3-35.  As is evident from the schematic, the set-up used provides a 

mean of investigating how 1D confinement affects crystallisation.  This is achieved 

given the annular wedge configuration, which provides a continuously decreasing 

surface separation between the TEM grid and the half cylinder towards their contact 

point.  The particular surface separation (h) or 1D confinement between the crossed 

cylinder and TEM grid or crossed cylinder halves can be estimated according to 

Equation 54.(157)  R is equal to the radius of the half cylinder used and x equal to 

the distance away from the contact point at surface separation (h). 

𝐡 = 𝐑 −√𝐑𝟐 − 𝐱𝟐 ≈  𝐱𝟐/𝟐𝐑 ( 54 ) 

 
Figure 3 - 35:  Calcium oxalate precipitation in wedge geometry.  Provided is a 
schematic of experimental set-up, depicting the increasing surface separation/ 
decreasing 2D confinement away from the contact point of TEM grid and half 
cylinder.    
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Observations for the calcium oxalate experiments in wedge geometry are 

summarized in Figure 3-36.  The 3 previously detected precipitate types COM, 

COD and ACO were detected here as well, where these appeared at different 

distances away from the contact point of the crossed cylinders (equivalent to 

different surface separations).  Up to a surface separation of 1.5 μm COM is 

observed (a) where this is replaced by ill-defined COD as the surface separation 

decreases to 0.2 μm (c).  Below this value, small spherical “amorphous” particles ~ 

10-50 nm are detected (d) where these decrease in number density towards the 

contact point (e). 

The occurrence of only one type of precipitate at a given surface separation 

allowed the analysis of individual precipitate types.  Analysis was carried out by 

means of TEM and SAED.  Electron diffraction patterns obtained from precipitates 

close to the contact point at a surface separation of < 0.1 μm (f) returned an 

amorphous halo indicative of ACO.  Continued beam exposure led to specimen 

decomposition rather than yielding a crystalline electron diffraction pattern.  The 

radiation sensitivity of calcium oxalate is well known,(287) where this contributes to 

the fact that despite the extensive literature of calcium oxalate, the presence of an 

amorphous calcium oxalate precursor (ACO) was until recently not explicitly stated.   
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Figure 3 - 36:  Calcium oxalate precipitation in wedge geometry.  (a-f) provide 
electron micrographs of precipitates present at decreasing surface separation 
between the TEM grid and the cylinder.  The surface separation for a given 
precipitate is provided on the left hand side of the respective image.  Further 
provided is an electron diffraction pattern as inset in (f), which demonstrates 
the amorphous nature of present precipitates close to the contact point of 
TEM grid and crossed cylinders.  Starting concentrations of 2 mM CaCl2 and 
Na2C2O4 were used.  Experiment was performed by Yun-Wei Wang.  
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To avoid the problems associated with artefacts generated by continued beam 

exposure, calcium oxalate was precipitated in confinement within the pores of a 

track etch membrane to stabilize the ACO. 

In the U-tube set-up used, (Figure 3-37a) solutions of CaCl2 (2 mM) and Na2C2O4 (2 

mM/ PAA (50 μg ml-1) were added separately, each to one arm, of a U-tube 

between which a track etch membrane of 200 nm pore size (polycarbonate track-

etch membranes Isopore, Millipore) had been mounted.  In this way it was possible 

to force the precipitation of calcium oxalate to occur inside the pore spaces by cross 

diffusing ions from the respective U-tube arms.   

 Experimentally, membranes were initially plasma cleaned and were then 

degassed in water at reduced pressure to ensure complete filling of the membrane 

pores with solution.  The wetted membranes were mounted between two U-tube 

arms which were then filled with solutions.  Intra-membrane particles were then 

isolated either after 12 hours or 2 weeks by dissolution of the membranes in 

dichloromethane.  After precipitation, membranes were rinsed with ethanol, their 

surfaces were scraped with a cover glass and they were then wiped with filter paper 

to remove the majority of surface-bound crystals. After brief sonication of the 

membranes in ethanol, they were subjected to at least 3 cycles of sonication in 

dichloromethane/ centrifugation and exchange of the solvent for fresh. The isolated 

precipitates were rinsed with methanol to remove residual dichloromethane, and 

were finally washed with ethanol before being pipetted onto a TEM grid/ glass piece 

for analysis. 

The resulting rod-shaped calcium oxalate crystals were removed from the 

membrane pores by dissolution of the membrane material either after 12 (i) hours 

or after 2 weeks (ii).  SEM and  low dose TEM images, of the calcium oxalate “rods” 

are presented in Figure 3-37 (b) and (c) respectively. 

Confining the precipitation of calcium oxalate to a fixed location, as done here, 

offers one great advantage as compared to confinement in an annular wedge 

geometry.  One can be sure that the “same” precipitate can be located at the same 

place, independent of incubation time.  The extraction of such an “immobile” deposit 

after various incubation times in solution, and the subsequent comparison of initially 

obtained SAED pattern with a pattern obtained at a later time (d), allows the 

differentiation between what was an initially amorphous deposit (ACO) (i) and is 

now crystalline calcium oxalate (ii).  These analyses clearly demonstrated that the 

“mature” rods were single crystals of COM.  The initial amorphous calcium oxalate 

rods (i) displayed an apparent average length of ~2 μm, while the crystalline rods 

(ii) were slightly longer on average ~4 μm.   
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Figure 3 - 37:  Calcium oxalate precipitated in track-etch membranes.  (a) 
schematic of experimental set-up used.  Further provided are (b) scanning – 
and (c) transmission electron micrographs.  (d) TEM corresponding electron 
diffraction patterns obtained from rod shaped precipitate after 12 hours (i) in 
solution and after 2 weeks (ii).  (ii) Diffraction pattern is corresponding to 
COM.  Starting concentrations of 2mM CaCl2 and Na2C2O4/ (PAA 50 μg/ml) 
were used. 
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3.5.2.4:  Precipitation via Freeze Concentration 

Having established that ACO can form in an aqueous mineralizing solution, an 

effort was made to obtain structural and compositional information.   

Pure ACO was obtained by rapid freezing and sublimation of saturated, counter ion 

free calcium oxalate solutions, Figure 3-38.(175)  Selective solvent removal during 

plunge freezing of a saturated solution in liquid nitrogen forces the precipitation of 

ACO and/ or crystalline polymorphs to occur (depending on the freezing rate).  

Precipitation occurs as a result of increasing superstation as the free solution 

volume decreases.  Total solution solidification temporarily stabilizes the formed 

precipitate, while subsequent ice sublimation releases formed precipitate for 

analysis. 

The experimentally-required counter-ion free, saturated CaC2O4 solutions were 

produced from solid CaC2O4 (Sigma, 99.999 % trace metals basis).  Saturated 

solutions were then prepared by adding 20 mg of “pure” CaC2O4 to 500 ml DI water, 

and were stored for 24 hours at room temperature before centrifuging to remove the 

majority of any remaining un-dissolved calcium oxalate.  This saturated solution 

was then heated to remove possible ghost nuclei, and was then filtered through a 

0.2 μm membrane filter.  Freezing of the prepared statured solutions (5-40 ml) was 

achieved by plunge immersion into a liquid nitrogen bath, followed by a 10 minute 

annealing period to strengthen the ice structure.   

Electron micrographs of the precipitate, after sublimation are given in Figure 3-38 

(a).  The precipitate appears similar in appearance and size (~40 nm) to ACO 

obtained by mineralisation in bulk and the ACO found in annular wedge 

experiments.  Presented in (b) is a featureless electron diffraction pattern obtained 

from ACO prepared by this method.  This confirms the amorphous nature of the 

precipitate.   

Provided in (c) are Raman spectra of ACO as prepared and after 2 weeks 

stored in air.  Evident is the transformation of the initially present ACO to COM.  

The spectra of ACO is different from COM based on peak broadening and the 

resulting peak amalgamation of asymmetric and symmetric stretching modes (C=O) 

located around ~ 1475 cm-1 and ~ 505 cm-1 (deformation of CO2), as recently 

observed for ethanolic ACO.(280)  Both broadening and peak mergence are 

indicative of increased structural disorder.  
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Presented in (d) are IR spectra of the produced ACO and COM, which 

reveal a transition from structurally disordered H2O (~3300 cm-1) present in the 

ACO, to ordered H2O as COM is formed.  The re-organisation of H2O molecules 

into a structured order is evident in the more defined appearance of the ~3300 cm-1 

“peak”, which reveals the presence of multiple vibration bands.  Reference “spectra” 

of calcium oxalate are also provided in Appendix A.   

Thermo gravimetric analysis of prepared ACO (e) revealed a stepwise 

decomposition of the formed precipitates.  The decomposition starts with the 

gradual loss of structural and surface water (~ 14.4 wt%) up to 220°C, beyond 

which the classical sequential decomposition of calcium oxalate to calcium 

carbonate (470°C - 15.5 wt%) and calcium oxide (630°C – 29.2 wt%) is 

observed.(288)  Based on the amount of calcium carbonate formed and the 

observed weight loss associated with H2O, a molecular composition of ~ 

CaC2O4:H2O was calculated.  It has to be noted that simultaneously performed 

differential scanning calorimetry (DSC) did not register an amorphous to crystalline 

transition of ACO upon heating.  Further, the observed weight loss associated with 

the transition of calcium oxalate to calcium carbonate formation does not 

correspond to the theoretical value of this transition.  One reason for this 

discrepancy may be the presence of impurities in the sample.  A second reason 

could be that formed ACO has a different stoichiometry, different from a 1 to 1 ratio 

(Ca:C2O4). 
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Figure 3 - 38:  Amorphous calcium oxalate prepared by rapid freezing of saturated 
solutions.  Presented in (a) are scanning and transmission micrograph of the 
obtained ACO.  (b) SEAD diffraction pattern.  Further given are structural and 
compositional information of the formed ACO.  The acquired Raman and IR spectra 
are given in (c) and (d) respectively, together with their spectra after atmospheric 
crystallisation to COM  (ACO in red, COM in black).  Raman spectra were collected 
on a glass substrate.  TGA is presented in (f), a heating rate of 15°C min-1 was 
used.  Data was collected under N2 flow.  
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3.5.3:  Discussion  

 

The detection and characterisation of ACO in mineralizing solutions is not 

unexpected.  It also suggests that an amorphous phase may play a role in the 

formation of calcium oxalate kidney stones or oxalate bodies in certain plants.(276, 

289)  A question that needs addressing, however, is why ACO is so difficult to 

observe and isolate from solution as compared with ACC and ACP.   

One factor clearly associated with the difficulty of ACO observation is its beam/ 

radiation sensitivity.  Despite similarities in the reacting anion (C2O4
2- vs CO3

2-) and 

final solubility (~10 mgl-1 for Calcite, ~6 mgl-1 Whewellite (COM)) a second factor 

contributing to the difficulty in observation can be that the solubility of ACO and its 

formation kinetics are much closer to the next polymorph than they are for ACC and 

vaterite, for example.  The system therefore has less to gain by forming an 

amorphous precursor phase (the driving force for forming a more stable crystalline 

force is similar)..  A third explanation could lie in the apparent size limit of the 

particles, which is < 50 nm for ACO and >100 nm for ACC.(137, 216)  Assuming 

these size limits are defined by the particles’ surface energy, species with a smaller 

critical size relative to the next stable phase nucleating in solution will destabilize 

faster as the particle continues to growth.  This results in a faster dissolution of 

particles with a smaller critical size.(140)   

The observed stabilization of ACO within membrane pores and a wedge geometry 

can be thought to arise due to kinetic factors.  Limited access to the bulk water 

delays a potential dissolution/ reprecipitation mechanism.(95, 162)  Why ACO forms 

in the first place in confined volumes is a completely different question and this is 

currently under investigation.(156)  
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3.5.4:  Conclusion 

 

The work presented here provides initial evidence for the existence of amorphous 

calcium oxalate in aqueous solution.  Amorphous precursor units of ~10-50 nm with 

an apparent composition of ~ CaC2O4:H2O could be kinetically stabilized in confined 

geometries < 200 nm.  A pure phase in bulk or in the presence of additives has not 

yet been isolated.  Despite this, isolated ACO could be detected together with 

crystalline polymorphs at reagent concentrations of 1 mM.  This is indicative of a 

reduced kinetic precipitation advantage and a size-dependent stability of ACO.  

Continuing investigations will try to confirm the presence of ACO in biominerals. 
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Chapter 4 is primarily a reproduction of the following publication.  

Ihli J, Bots P, Kulak A, Benning LG, Meldrum FC. Elucidating Mechanisms of 

Diffusion-Based Calcium Carbonate Synthesis Leads to Controlled Mesocrystal 

Formation. Adv Funct Mater 2013, 23(15): 1965-1973.  

 

Supplemented by results obtained from a succinctly published study and work 

performed concurrently. 

 

Kim Y-Y, Schenk AS, Ihli J, Kulak AN, Hetherington NBJ, Tang CC, Schmahl WW, 

Griesshaber E, Hyett G, Meldrum FC. A critical analysis of calcium carbonate 

mesocrystals. Nat Commun 2014, 5. 
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4.1:  Abstract  

 

Calcium carbonate is arguably the most-studied inorganic mineral, due to its 

environmental and industrial importance and because it provides an excellent 

model system for developing methods for controlling nucleation and crystal growth.  

However, despite being widely studied, CaCO3 is frequently precipitated using 

diffusion-based techniques which are poorly-characterized and offer low 

reproducibility.  Utilization of these methods is founded on the observation that 

diffusion methods give rise to crystals with complex morphologies thought to be 

built on aggregation-based crystal growth.  These morphologies are supposedly not 

attainable by other means, particularly for crystals grown in the presence of organic 

additives.   

In the following work, advantage was taken of this feature of diffusion methods to 

develop a one-pot method capable of generating crystal morphologies that are 

considered characteristic of aggregation-based growth.  This was achieved by 

characterization of the widely used ammonia diffusion method (ADM) currently used 

as a “black box”.  Identifying the solution and supersaturation conditions which 

accompany CaCO3 precipitation allowed us to gain insight into the nucleation and 

growth processes which generate those morphologies.  The study reveals a 

number of features that are specific to the method studied.  This includes a 

prolonged period of “constant” supersaturation past the initial nucleation event, 

which is at levels well above the threshold for amorphous calcium carbonate 

formation.  New material is therefore potentially nucleated over the entire course of 

an experiment, a feature which appears to be fundamental to the formation of 

complex morphologies.  The power of this understanding is then demonstrated by 

using the identified carbonate and supersaturation profiles to successfully replicate 

the formation of CaCO3 “mesocrystals”, which had previously been limited to the 

ADM method, through slow addition of reagents to a bulk solution and the 

enzymatic hydrolysis of urea.  These approaches overcome many of the inherent 

problems of the ADM by offering excellent reproducibility, enabling the synthesis of 

such CaCO3 structures in large-scale and continuous-flow systems, and ultimately 

facilitating in situ studies of assembly-based crystallisation mechanisms.  Initial 

studies using this method revealed - in conjunction with high resolution PXRD 

studies - that the classification of CaCO3 “mesocrystals” may be incorrect.   
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4.2:  Introduction 

 

Significant efforts have been made to synthesize crystals with defined sizes, 

morphologies and structures for applications in areas as wide-ranging as 

pharmaceuticals, biomaterials and nanomaterials.(23)  In order to achieve control 

over these features it is necessary to understand the mechanisms by which crystals 

form.  At one end of the spectrum, the classical picture of crystallisation from 

solution envisages crystal growth to occur via ion-by-ion, or molecule-by-molecule 

addition to an established nucleus to give a single crystal product.(290)  At the 

other, if growth of the individual nuclei is slow, then aggregation can dominate, 

leading to the formation of polycrystalline particles.  Importantly, such aggregation-

based processes often lead to crystalline particles with unusual morphologies, such 

as fibers,(291, 292) and “microtrumpets”(293) which cannot be accessed through 

classical growth processes.  

 Aggregation-based crystal growth is currently receiving considerable 

interest.(290, 294-296)  While the formation of polycrystalline particles based on 

non-oriented aggregation of nanoparticles has been recognized for a long time, 

single crystal formation through the oriented aggregation of precursor nanoparticles 

is a rather new finding.(297)  One prominent example of this is the work of Banfield 

and co-workers which showed the formation of single crystal titania through 

nanoparticle aggregation,(298) a phenomenon they also observed in iron oxide 

systems,(66) and recently in the calcium sulfate system.(299)  It is now well-

established that many crystals grow by aggregation under appropriate experimental 

conditions, and that a number of mechanisms can operate, ranging from the 

oriented aggregation of crystalline nanoparticles to the aggregation and then 

subsequent crystallisation of amorphous nanoparticles.(294)  While these 

processes can lead to single crystals indistinguishable from those formed by 

classical growth mechanisms, the crystals produced can also retain a memory of 

the precursor particles from which it forms.  In this case, the crystal is classified as 

a mesocrystal, which ideally comprises a 3D array of iso-oriented single crystal 

particles of size 1–1000 nm.(67)  The ultrastructure of such a mesocrystal clearly 

contributes to defining its properties, as exemplified by sea urchin spines.  These 

calcium carbonate single crystal biominerals have recently been classified as 

“mesocrystals”, where the nanoparticulate sub-structure and residual amorphous 

calcium carbonate may contribute to their remarkable mechanical properties.(67, 

300) 
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 Although aggregation-based growth promises the ability to produce crystals 

with unique morphologies and internal structures, this can only be achieved by 

elucidating the mechanisms by which aggregation occurs.  Moving towards this 

goal, we here focus on calcium carbonate as an important mineral,(23, 78) which 

grows apparently by aggregation under appropriate experimental conditions.  Our 

approach is based upon the common observation that diffusion-based methods, 

including the double diffusion,(49, 136) the Kitano(105) and the ammonium 

carbonate diffusion method(301, 302) often generate unusual crystal morphologies 

which cannot be accessed by other methods.  This appears to be particularly true 

for additive-directed crystal growth, as exemplified by polymers such as 

poly(styrene sulfonate) or poly(4-styrenesulfonate- maleic acid) (PSS-MA), which 

have to-date only yielded calcium carbonate mesocrystals when using diffusion 

methods.(303-305)  

 This work characterizes the physico-chemical changes in solution which 

accompany CaCO3 precipitation by the most widely used of these diffusion-based 

methods – the ammonium diffusion method (ADM) – where CaCO3 precipitation is 

induced by exposing a solution of calcium ions to the vapor released on the 

decomposition of solid ammonium carbonate in a hermetically-sealed container 

(Figure 4-1).(301, 302)  This was achieved by performing time-resolved 

measurements of solution pH, carbon and calcium ion concentrations, and 

identifying how these are determined by key variables including the Gas-Liquid 

interfacial area, the CaCl2 concentration, the initial mass of ammonium carbonate, 

the stirring rate and the presence of a secondary diffusion barrier.  A unique insight 

into the ADM is therefore generated by (i) identifying the variables which principally 

dictate the precipitation products and (ii) determining for the first time the carbon 

addition rates, the supersaturation and reaction profiles.  

 To demonstrate the power of this understanding, we then use the identified 

carbon addition rates to reproducibly precipitate CaCO3 mesocrystals in the 

presence of PSS-MA, by secondary and tertiary means.  The ability to prepare such 

CaCO3 mesocrystals using alternative synthetic methods opens the door to 

industrial scale and potentially one-pot syntheses,(65) and will ultimately facilitate in 

situ studies of mesoscale assembly.  A first step in this direction was taken here, 

which revealed that the bulk analysis of formed CaCO3 mesocrystals may not be 

the way to go.  This work ultimately questioned the validity of CaCO3 mesocrystals, 

and more specifically the measured characteristics which can be used to distinguish 

mesocrystals from classical crystals. 
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Figure 4 - 1:  Schematic diagram of the experimental set-up and methods used to 
determine the concentrations of aqueous Ca2+ and CO3

2- ions.  Aliquots were 
removed with time and quenched with ethanol, the [Ca2+] was determined using 
atomic absorption (AA), and the [CO3

2-] using ion-chromatography (IC).  Image 
taken from (169).   
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4.3:  Characterising the ADM: Experimental and Results 

4.3.1:  General Description of the Ammonia Diffusion Method 

The ammonium diffusion method is characterized by two distinct steps, the first 

being the rapid saturation of the gas phase with CO2
 and NH3 and the subsequent 

diffusion of the CO2
 and NH3 molecules across the gas-liquid interface into the 

solution.  In the slower, second step, the aqueous carbon dioxide reacts with the 

solution water to form carbonic acid, which in turn deprotonates to give both 

carbonate and bicarbonate ions, where the ratio of these species is defined by the 

solution pH.  The dissolved NH3, in turn, increases the pH of the solution.  In 

combination with the calcium ions present, a solution that is supersaturated with 

respect to CaCO3 is generated.  The equations describing the solution equilibria are 

given in Equation 55--62.  

(𝐍𝐇𝟒)𝟐𝐂𝐎𝟑𝐬 = 𝐇𝟐𝐎𝐠 + 𝐂𝐎𝟐𝐠 + 𝟐𝐍𝐇𝟑𝐠 ( 55 ) 

[𝐍𝐇𝟑]𝐠 = [𝐍𝐇𝟑]𝐚𝐪 ( 56 ) 

[𝐍𝐇𝟑]𝐀𝐐 + 𝐇𝟐𝐎 = [𝐍𝐇𝟒
+] + [𝐎𝐇−] ( 57 ) 

[𝐂𝐎𝟐]𝐆 = [𝐂𝐎𝟐]𝐀𝐐 ( 58 ) 

[𝐂𝐎𝟐]𝐀𝐐 + 𝐇𝟐𝐎 = [𝐇𝟐𝐂𝐎𝟑] ( 59 ) 

[𝐇𝟐𝐂𝐎𝟑] = [𝐇𝐂𝐎𝟑
−] + [𝐇+] ( 60 ) 

[𝐇𝐂𝐎𝟑
−] = [𝐂𝐎𝟑

𝟐−] + [𝐇+] ( 61 ) 

[𝐂𝐎𝟑
𝟐−] + [𝐂𝐚𝟐+] = 𝐂𝐚𝐂𝐎𝟑𝐬 ( 62 ) 

The ADM was initially characterized from a standard set-up using 70 ml of 25 mM 

CaCl2, with an air/solution surface area of 48 cm2, 3 g of uncovered (NH4)2CO3s and 

2.6 L free volume in the reaction chamber.  Time-resolved measurements were 

made of the key solution variables (namely the pH and the calcium and carbonate 

concentrations), which together yielded the carbon addition rates and underlying 

supersaturation profiles.  Typical graphs showing the time-resolved changes in (a) 

turbidity (transmittance), (b) pH, (c) supersaturation, (d) calcium activity, (e) 

carbonate activity and (f) crystallisation progress are presented in Figure 4-2.  The 

turbidity measurements show a rapid decrease at ~15 mins (Figure 2A). This is 

likely caused by the formation of detectable amounts of calcium carbonate 
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precipitate, which reveals an induction period of 15 mins.  The rapid drop in 

transmission after 15 min is associated with the formation of amorphous calcium 

carbonate (ACC) which subsequently transforms to vaterite and ultimately calcite, 

as confirmed by Raman and IR spectroscopy (Figure 4-3).  The small increase in 

transmission at around 20 mins is observed in almost all experiments, and may 

result from the transition of ACC to a crystalline phase.(136, 256) 

The turbidity measurements are also consistent with the pH data (Figure 4-

2b).  Knowledge of the solution pH is critical to understanding the ammonia 

diffusion method as it governs the distribution of aqueous carbonate speciation, and 

is required to determine the fraction of carbonate in the total carbon content 

measured.(168)  A higher pH is associated with an increase in the concentration of 

carbonate at the expense of bicarbonate, and also promotes the dissolution of 

gaseous carbon dioxide into the CaCl2 solution, through its conversion to 

bicarbonate or carbonate.(306)  This process is reflected in the jump in 

supersaturation observed between 10 and 20 minutes (Figure 4-2c).  Nucleation of 

CaCO3 therefore only occurs after a critical pH/ supersaturation has been reached 

(at pH 8.5), which marks the partial transformation of bicarbonate to carbonate.  

As shown in the data, this pH value is coincident with the induction point recorded 

using turbidity measurements.  The pH then continues to increase until it reaches a 

value of ~9.8, where it remains rather constant (CO3
2-/ HCO3

-≈ 0.38) until the 

crystallisation is almost complete.  It then decreases very slowly to a constant value 

of ~9.2 after about 20 hours (Figure 4-4). 

 These data therefore indicate that in the ammonia diffusion method, initial 

ACC nucleation (at the induction point of  15 minutes) occurs above an ACC 

supersaturation threshold of > 10.  Further, initial crystallisation takes place under 

an excess of calcium ions, such that the ratio of calcium to carbonate ions is ~2.2.  

Comparison with alternative CaCO3 precipitation methods therefore shows that the 

ADM results in initial ACC precipitation at relatively low supersaturation levels.  

Indeed, precipitation of ACC using the direct precipitation method,(307) (where 1 M 

calcium and carbonate solutions are combined and precipitation occurs after an 

induction period) occurs at SACC > 100, while supersaturations of SACC > 30 at pH > 

12 are associated with Koga’s method,(129) (where calcium and high pH carbonate 

solutions are combined giving immediate precipitation).  These supersaturation 

values were calculated using Visual MINTEQ (Software to model the chemical 

equilibrium composition of a solution.) based on experimental parameters provided 

in these papers.  As a further distinction between these different precipitation 

methods, the direct and Koga’s method remove up to 90% of the total precipitation 

pressure via the initial burst of ACC formation.  In contrast, in the ADM, the calcium 

and reaction profiles tend toward classical S shapes. 
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 Following the onset of nucleation, the calcium ion profile undergoes an 

extended linear decrease due to its consumption in CaCO3 precipitation (Figure 2d), 

while continued release of fresh ammonium carbonate vapour into the reaction 

chamber (which continues until equilibrium is reached after  20 hrs) supports an 

increase in the solution carbonate concentration (Figure 2e). Consequently, the 

supersaturation continues to increase after the induction point until it peaks at its 

maximum value of ~180 between 60-80 mins under these reaction conditions. The 

supersaturation then decreases only very slowly, due to the continued introduction 

of carbonate into the solution.  High supersaturation levels, which are well above 

the critical value for ACC, are therefore maintained even when a significant 

proportion of Ca2+ ions have been consumed. This prolonged period of high 

supersaturation is a key feature of the ammonia diffusion method and would be 

expected to support multiple nucleation events. 
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Figure 4 - 2:  Time-resolved profiles of calcium carbonate precipitation using the 
ADM, with reaction conditions: 25 mM CaCl2, 70 ml, 3 g ammonium carbonate, 2.6 l 
reaction chamber, no additional diffusion boundaries.  The data shown are 
averages of three experiments, and the error bars show the standard deviation in 
the values. (a) Transmission, (b) pH, (c) supersaturation, (d) calcium activity, (e) 
carbonate activity, (f) crystallisation progress.(169).   
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Figure 4 - 3:  (i) Time-resolved transmittance profile showing the change in 
transmittance occurring during CaCO3 precipitation using the ammonia diffusion 
method (70 ml, 25 mM CaCl2, A = 48 cm2, 3 g ammonium carbonate, 2.6 l head 
space, no additional diffusion boundaries).  (ii) IR analysis of samples isolated at 
key times in the reaction were (a) ACC, (b) vaterite and (c) calcite.  Here, the peak 
at 748 cm-1 is a fingerprint for vaterite, while the peak at 712 cm-1 identifies calcite.  
Image taken from (169).   

 

 

 

 
Figure 4 - 4:  A typical pH profile for an ADM experiment (70 ml, 25 mM CaCl2, A = 
48 cm2, 3 g ammonium carbonate, 2.6 l head space, no additional diffusion 
boundaries) which shows the establishment of a constant solution pH (9.25) after 
20 hours.  Image taken from (169).   
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4.3.2:  Experimental  

The preceding and following descriptions were made possible given the 

experimental procedure below.  A crystallisation dish with a solution surface area of 

13-58 cm2 and containing 70 ml of calcium chloride solution (15-50 mM) was placed 

in a 2.6 L desiccator.  A pH electrode, a temperature recorder and a tube through 

which sample aliquots could be removed were inserted into the crystallisation 

solution.  Solid ammonium carbonate (1.5-5 g), thinly spread in a glass dish, was 

added to the chamber.  This dish was either uncovered, or was covered with 

Parafilm to provide a diffusion barrier, where the Parafilm was perforated to different 

degrees to give free surface areas of 0.6, 2 or 4 cm2. The chamber was then 

sealed. 

 The changes in the reaction solution accompanying precipitation of CaCO3 

were evaluated by taking samples of 0.5 ml from the solution at intervals of 10 min.  

These were immediately diluted with 19.5 ml ethanol to replace water molecules 

adsorbed to the calcium carbonate surfaces and to prevent the solid from 

dissolving.(101, 103, 104)  Next, 10.5 ml of Milli-Q water was added to prevent 

further precipitation.  5 ml of the obtained mixture was centrifuged at 140 rpm for 90 

seconds to separate the solution from the solid matter.  The concentrations of 

aqueous calcium and carbon in the prepared solution were determined using 

atomic absorption spectroscopy (AA) and Ion chromatography (IC), respectively.  

The total carbon content in the solution was determined by diluting 0.5 ml of the 

treated reaction solution with 1 ml of Milli-Q water.  The resulting solution was then 

analysed using a Dionex DX600 Ion chromatograph.  The experimental run time 

was limited to 100 min when no additional diffusion barriers were used and 200 min 

when further diffusion barriers were in place.  The reaction was terminated by 

opening the reaction chamber, and the remaining solid ammonium carbonate was 

weighed.  The weight loss of the ammonium carbonate (Δ(NH4)2CO3) and its 

molecular weight (MW) were then used in combination with the measured final 

carbon concentration in solution (CT), the solution volume (VL), the carbon 

concentration in the gas phase (VGP), the expected equilibrium carbon dioxide 

vapour pressure (PCO2) and the measured decrease in calcium concentration (ΔCa), 

to setup a carbon mass balance as a control indicator, Equation 63. 

∆((𝐍𝐇𝟒)𝟐𝐂𝐎𝟑)𝐬
𝐌𝐖(𝐍𝐇𝟒)𝟐𝐂𝐎𝟑

= [∆𝐂𝐚 + 𝐂𝐓] ∗ 𝐕𝐋 +
𝐏𝐂𝐎𝟐
𝐑 ∗ 𝐓

∗ 𝐕𝐆𝐏 ( 63 ) 
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In a second set of experiments, the above setup was extended to determine the 

induction point by circulating the crystallizing solution through the beam path of a 

UV/VIS spectrophotometer in transmission mode set at λ= 500 nm using a closed 

flow cell.  Liquid transport to and from the flow cell/ desiccator was performed using 

a double channel peristaltic pump. 

 

The solution carbonate concentrations (CO3
2-, HCO3

- and H2CO3) were 

calculated, based on the total inorganic carbon concentration (CTS) and pH 

measurements,(168) using a simplified carbon mass balance and carbonic 

dissociation constants (KA), as detailed in Chapter 1.4.6 and Appendix C, Equations 

64-67.  The required activity coefficients were calculated using the Davies equation 

and were found to be close to unity in diluted samples prior to analyses.(308) 

[𝐂𝐓𝐒] = [𝐂𝐎𝟑
𝟐−] + [𝐇𝐂𝐎𝟑

−] + [𝐇𝟐𝐂𝐎𝟑] ( 64 ) 

[𝐂𝐎𝟑
𝟐−] =

[𝐂𝐓𝐒] 𝐊𝐀𝟏  𝐊𝐀𝟐
[𝐇+]𝟐 + 𝐊𝐀𝟏 ∗ [𝐇

+] + 𝐊𝐀𝟏  𝐊𝐀𝟐
 ( 65 ) 

[𝐇𝐂𝐎𝟑
−] =

[𝐂𝐓𝐒] 𝐊𝐀𝟏  [𝐇
+]

[𝐇+]𝟐 + 𝐊𝐀𝟏  [𝐇
+] + 𝐊𝐀𝟏  𝐊𝐀𝟐

 ( 66 ) 

[𝐇𝟐𝐂𝐎𝟑
∗] =

[𝐂𝐓𝐒] [𝐇
+]

[𝐇+]𝟐 + 𝐊𝐀𝟏  [𝐇
+]𝟐 + 𝐊𝐀𝟏  𝐊𝐀𝟐

 
( 67 ) 

The calculated supersaturation (S) with respect to a specific polymorph (x), is 

expressed as the ratio of ionic activity product to solubility product (Ksp), as 

presented in Equation 69.   

𝐊𝐬𝐩𝐱 = 𝐚𝐂𝐚𝟐+   𝐚𝐂𝐎𝟑𝟐−  ( 68 ) 

𝐒𝐱 =
𝐚𝐂𝐚𝟐+   𝐚𝐂𝐎𝟑𝟐−

𝐊𝐬𝐩𝐱
 

( 69 ) 

Calcium concentrations in the mineralizing solution and their ion activities were 

recalculated from AA measurements of diluted sample aliquots, taking into account 

all aqueous forms of the calcium ions (e.g. CaOH-, CaHCO3
+) in solution, Figure 1-

16, and Appendix C.  Carbonate concentrations were similarly recalculated based 
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on the CTS concentration determined by IC.  For rigour, calcium and carbonate 

activities were also calculated with respect to calcium chloride ion pairs using Visual 

MINTEQ. 

The precipitation progress (ξ) was determined by recording the change in total 

calcium concentration with progressing precipitation, as described in Equation 70.  

[Ca]0 was set equal to the initial / starting calcium concentration and [Ca]t the 

calcium concentration in solution at experimental time (t) 

𝛏 = (
[𝐂𝐚]𝟎 − [𝐂𝐚]𝐭

[𝐂𝐚]𝟎 − [𝐂𝐚]𝐞𝐪𝐮𝐢𝐥𝐢𝐛𝐢𝐫𝐮𝐦
) 

( 70 ) 

To provide an appropriate estimate of the precipitation progress, (Equation 46) the 

final equilibrium solubility of the calcium ions under the given partial pressure of 

ammonia and carbon dioxide ideally needs to be known. 

As established in Chapter 1.4, the equilibrium composition of a calcium 

carbonate precipitating system is determined by the partial pressure of carbon 

dioxide alone.  In the case of the ADM, this is extended by the two solution terms 

which describe the conversion of ammonia into ammonium ions, Appendix C – A.7 

and A.8.  This affects the solution pH and with it the fraction of precipitating 

carbonate in solution.  Unfortunately, it was not possible to measure the partial 

pressures of the two gases.  In the case presented, the final equilibrium calcium 

concentration used for the calculation of reaction/ crystallisation progress was 

based on the constant measured pH of 9.25, Figure 4-4, and a fixed total carbon 

concentration of 250 mM.  

Considering the existing knowledge of the given combination of partial pressures, 

the equilibrium solution composition can be calculated using Equation 71. 

2[Ca2+]+[H+]+[NH4+]+[HCaCO3+]=[OH-]+[HCO3-]+2[CO32-]+[Cl-] ( 71 ) 

Re-writing this using the previously given solubility products, it is then possible to 

derive the equilibrium concentration of the major solution species, as a function of 

partial pressures of carbon dioxide and ammonia.  An example is shown in Figure 

4-5 in the form of a pH surface plot as a function of P[NH3] and P[CO2].   
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Figure 4 - 5:  Surface plot of the equilibrium pH=f(P[NH3], P[CO2]) in a calcium-
carbonate-ammonia system. 
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4.3.3:  Carbonate Addition Rate  

 

Having potentially identified the key features of the ADM, methods were developed 

to test this hypothesis and to achieve identical results using highly reproducible 

titration-based methods.  This was achieved based on determination of the carbon 

addition rate (dCT/dt).  Here, CT corresponds to the total inorganic carbon added to 

the system (CT = [H2CO3] + [HCO3
-] + [CO3

2-]), which equals the sum of carbon lost 

to CaCO3 precipitation and the total free inorganic carbon present in the solution 

(CTs).  The total carbon which has been added to the solution at any point in time 

(CTst) can be calculated from the reduction in the calcium ion concentration (ΔCa = 

Ca0 - Cat), as determined by AA, and from the total carbon content in the solution 

(ΔCTs = CTst - CTs0), as measured using IC, Equation 72.  

𝑪𝑻𝒕 = (𝑪𝑻𝒔𝒕 − 𝑪𝑻𝒔𝟎) + (𝑪𝒂𝟎 − 𝑪𝒂𝒕) ( 72 ) 

The carbon addition rate i.e. the rate at which carbon dioxide diffuses into the 

solution (dCT/dt) is then obtained by differentiating Equation 72 with respect to time, 

Equation 73.  

𝐝𝐂𝐓
𝐝𝐭

= [𝑪𝑻𝒔 −  𝑪𝒂]
𝐝

𝐝𝐭
 

( 73 ) 

The experimental data (Figures 4-2 and 6) shows that at times up to  100 minutes 

(when the reaction is almost complete and the Ca concentration depleted) both the 

Ca and CTS vary linearly with time, and that the pH is almost constant during the 

region of interest.  The change in calcium and carbon concentration in solution can 

therefore be approximated using first order rate constants, CTs = k1t, and Ca = k2t, 

where t is the experimental time in minutes and k1 and k2 are rate constants 

corresponding to the carbon addition rate and the crystallisation rate respectively.  

Equation 73 can thus be expressed as Equation 74, where k1 = 0.000634 mol l-1 

min-1 and k2 = - 0.000228 mol l-1 min-1, based on the data presented in Figure 2.  

𝐝𝐂𝐓
𝐝𝐭

= 𝐤𝟏 − 𝐤𝟐 
( 74 ) 

Graphs of the experimentally-obtained carbon addition profiles under the given 

“standard condition” are presented in Figure 4-6, where (a) is the experimentally-

obtained addition rate, (b) is theoretical, calculated using the derived rate constants 

k1 and k2, (Table 6) (c) is theoretical, calculated using k1 only and (d) is 

experimental, based on diffusion of ammonium carbonate decomposition products 
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into water rather than calcium chloride solution.  The curves show that there is 

indeed a linear increase in the total carbon content until crystallisation is virtually 

complete (at  100 minutes).  Further, this comparison demonstrates that the 

analysis made in Equation 74 well-describes the reaction in the first 100 minutes 

under these standard conditions.  

 Rate constants and the carbon addition rate are dependent on the given 

environmental conditions.  Modification of these conditions, for example by 

changing the surface area, the initial calcium concentration, and introducing 

diffusion barriers, necessarily causes a change in the total carbon addition rate.   

 

 

Figure 4 - 6:  Comparison of Total Carbon addition rates, (a) experimental, (b) 
theoretical (c) theoretical k1 only, (d) experimental pure diffusion no calcium 
chloride.  Image taken from (169).  
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Experimental Condition 
k1 k2 dCT/dt dCO3/dt tInd SInd Polymorph Distribution† 

[mM/ min] [mM/ min] [mM/ min] [mM/ min] (min) [*] Primary Secondary 

Base Condition*  0.634±0.045 -0.228±alcite  Vaterite 

Mass (NH4)2CO3  

5g 0.650±0.012 -0.224±0.038 0.864 0.140  16 30 Calcite  Vaterite  

1.5g 0.654±0.095 -0.243±0.012 0.881 0.126 14 32 Calcite  Vaterite 

CaCl2 Concentration  

50mM  0.554±0.049 -0.464±0.025 1.019 0.090 20 150 Calcite  - 

10mM 0.694±0.023 -0.120±0.008 0.814 0.225 10 13 Vaterite  Calcite  

Solution Surface Area  

58cm2 0.685±0.034 -0.320±0.001 1.034 0.176 10 40 Calcite - 

13cm2 0.139±0.007 -0.072±0.011 0.223 0.050 33 10 Vaterite Calcite 

Sec. Diffusion Barrier  
Free Cross Sectional Area‡  

 

4cm2 0.089±0.003 -0.056±0.006 0.156 0.063 35 40 Calcite Vaterite 

2cm2 0.070±0.014 -0.037±0.005 0.107 0.014 47 50 Calcite  Vaterite 

0.6cm2 0.025±0.006 -0.008±0.002 0.0261 0.008 93 30 Vaterite Calcite 

Agitation   

100 rpm  1.047±0.080 -0.324±0.018 1.261 0.208 15 160 Calcite Aragonite  

*Base Condition (25 mM M CaCl2, 70 ml, 48 cm
2
, 3g (NH4)2CO3, 2.6 l overhead space, no secondary diffusion boundaries) – Supersaturation in respect to 𝐾𝑆𝑃𝐴𝐶𝐶  

† Primary and Secondary Polymorph Constituent after 100min/ ‡ 200min estimated based on SEM Images, Raman- and IR-Spectra 

Table 6:  Summary of ADM crystallisation parameters under different experimental conditions, where (k1) is the carbon accumulation rate in 
solution, (k2) is the crystallisation rate, (dCT/dt) the total carbon addition rate, (dCO3/dt) the carbonate addition rate, (tInd) the induction time and 
(SInd) is the supersaturation with respect to ACC at the induction point.(169)   
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4.3.4:  Influence of Reaction Variables  

 

In describing the use of the ammonia diffusion method in the literature, a great 

weight is placed on precisely defining the crystallisation setup including such 

variables as the initial amount of solid ammonium carbonate, the starting calcium 

concentration, the solution surface area, the presence of secondary diffusion 

barriers and solution agitation.  The particular effect each variable has on the 

precipitation process is rather undefined.  As a result, the effect of these variables 

were investigated by measuring induction time, pH supersaturation, reacting 

species concentration, total carbon addition rate and reaction progress.  This was 

done taking the above discussed condition as the baseline for evaluation of singular 

parameter/ variable changes.  

4.3.4.1:  Initial Mass of Ammonium Carbonate 

Initial mass of ammonium carbonate.  Provided that the initial amount of solid 

ammonium carbonate was in excess, the precise mass used in an experiment had 

no influence on the precipitation profile.  This is reflected in the fact that the total 

carbon addition rates, dCT/dt, were identical when either 1.5 g, 3 g or 5 g of 

ammonium carbonate were employed (Table 6 and Figure 4-7).  This result 

confirms that a near-constant vapour pressure is present or at least that the 

decomposition of ammonium carbonate is the fastest reaction step. 
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Figure 4 - 7:  Time-resolved profiles of calcium carbonate precipitation experiments 
using the ammonia diffusion method, studying the influence of changes in initial 
amounts of ammonium carbonate added (1.5g, 3g and 5g). Experimental conditions 
70 mL of 25 mM CaCl2, 48 cm2 surface area, 2.6 l head space, no additional 
diffusion barriers). ― 1.5 g, --- 3 g, -•- 5g, ▲ 1.5g, •3g, ■ 5g (NH4)2CO3.  Image 
taken from (169).   
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4.3.4.2:  Calcium Concentration 

Altering the starting calcium concentration had an effect on the precipitation 

profile, although the crystallisation progress was little affected.  Increasing the initial 

calcium concentration from 10 mM to 50 mM unexpectedly resulted in shifts in the 

induction point to longer times, Figure 4-8.  This can be attributed to the 

corresponding retardation in pH increase as the initial calcium concentration is 

increased, which in turn delays the conversion of bicarbonate to carbonate ions.  

This effect may be founded on the increased association of calcium ions with 

hydroxide ions, which originate from the ammonia to ammonium ion conversion. 

 The most significant effect of changing the calcium concentration was on the 

supersaturation.  The supersaturation levels at induction decreased with decreasing 

calcium concentration due both to the lower calcium concentration and the lower 

levels of bicarbonate present at induction.  On progression of the reaction, 

significantly higher supersaturation levels of  230 are reached in the 50 mM 

solution, as compared with  75 in the 10 mM solution, which can be associated 

with a higher nucleation density as the calcium concentration is raised. 

Characterization of the reaction products sampled after 100 minutes using SEM 

and Raman spectroscopy showed that the calcium concentration also influenced 

the polymorph produced, and that a greater proportion of vaterite to calcite was 

obtained at 10 mM as compared with 50 mM, Figures 4-9.  The carbon addition rate 

also increased with the initial calcium concentration due to increased CaCO3 

precipitation, resulting in an extended period of high CO2 diffusion into the solution, 

as shown in Table 1.  
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Figure 4 - 8:  Time-resolved profiles of calcium carbonate precipitation experiments 
using the ammonia diffusion method studying the influence of initial CaCl2 
concentration (10 mM, 25 mM and 50 mM). Experimental conditions 70 mL of x mM 
CaCl2, 3 g (NH4)2CO3, 48 cm2 surface area, 2.6 l head space, no additional diffusion 
barriers). ―10mM, --- 25mM, -•- 50mM, ▲ 10mM, • 25mM, ■ 50mM CaCl2.  Image 
taken from (169).   
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Figure 4 - 9:  (i) SEM images and corresponding (ii) Raman spectra of calcium 
carbonate precipitates obtained via the ADM after 100 minutes under reaction 
conditions of 70 ml, 3 g ammonium carbonate, 48 cm2, 2.6 l head space, no 
additional diffusion boundaries and (a) 25 mM CaCl2, no agitation (Calcite+Vaterite), 
(b) 25 mM CaCl2 and 100 rpm agitation (Calcite+Aragonite), (c) 50 mM CaCl2, no 
agitation (Calcite), (d) 10 mM CaCl2, no agitation (Vaterite+Calcite).  The CaCO3 
polymorphs can be identified based on characteristic peaks, where peaks at 1085, 
711, 281 and 155 cm-1 identify calcite, peaks at 1085, 705, 208 and 155 cm-1 
aragonite and peaks at 1093, 1066, 753, 713 and 300 cm-1 vaterite.(169, 309) 

 

4.3.4.3:  Solution Surface Area  

Variation of the solution surface area, while maintaining a constant volume, 

resulted in significant and systematic changes in all of the parameters investigated, 

indicating that this provides an excellent and straightforward method for controlling 

the diffusion process, Figures 4-10.  The induction time of calcium carbonate 

precipitation decreased when the solution surface area was increased.  Similar a 

more rapid increase in solution pH and nucleation rates were observed at higher 

surface areas.  This is expected due to the more uniform supersaturation profiles in 

solutions with larger surface areas as the diffusion cross section increases.  The 

total carbon addition profiles given in Figure 4-10 confirm the linearity of this 

relationship, which is in agreement with Fick’s first law,(310) i.e. doubling the 

surface area leads to a twofold increase in carbon addition rate.  Similarly, the 

reaction progress increased with increasing surface area, and the supersaturation 

peaked at earlier times in the more rapid (larger surface area) reactions.  Therefore, 

larger surface areas are associated with shorter induction and overall reaction 

times, higher peak supersaturations, and nucleation rates.  In contrast, the lower 

surface area provides conditions where supersaturations are maintained at 

constant values for long periods. 
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Figure 4 - 10:  Time-resolved profiles of calcium carbonate precipitation 
experiments using the ammonia diffusion method studying the influence of solution 
surface areas (13 cm2, 48 cm2, 58 cm2).  Experimental conditions 70 ml of 25 mM 
CaCl2, 3 g (NH4)2CO3, x cm2 surface area, 2.6 L head space, no additional diffusion 
barriers). ―13cm2, --- 48cm2, -•- 58cm2, ▲ 13cm2, • 48cm2, ■ 58cm2.  Image after 
(169).    
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4.3.4.4:  Secondary Diffusion Barrier  

Introduction of an additional diffusion barrier (typically in the form of Parafilm 

perforated with needle-holes) is widely used as a method of regulating the ADM.  

Experiments were therefore conducted where the dish containing the reaction 

solution was covered with Parafilm punctured with 3, 10 or 20 holes, corresponding 

to a total free area of 0.6, 2 and 4 cm2 respectively.  A decrease in the rate of 

calcium loss and in the reaction progress was observed with a reduction in the free 

area, and the induction time increased from ~ 15 minutes in the absence of a 

diffusion barrier to ~ 100 minutes when there was only 0.6 cm2 free area.  However, 

in both of these cases, nucleation occurred at supersaturation levels above the 

ACC solubility limit, (Table 6).  The total carbon addition rate was found to 

exponentially decrease with a decrease in the free area, in contrast to the linear 

relationship recorded with respect to the liquid surface area.  Thus, in common with 

a reduction in the solution surface area, reduction in the free area through 

introduction of a diffusion barrier leads to longer reaction times, where 

supersaturation remains at elevated levels for longer periods. 
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4.3.4.5:  Solution Agitation  

The effect of agitation on the ADM was studied by addition of a magnetic stirrer to 

the CaCl2 solution. An influence on the crystallisation was only observed at stirring 

rates of 100 rpm and above, where a higher crystallisation rate was recorded as 

compared with unstirred solutions (Figure 4-11).  The effect of stirring was more 

pronounced in the later stages of crystallisation, and no significant change in the 

induction time was observed, despite there being a more rapid initial increase in the 

pH.  This is consistent with a faster build-up of ammonia and carbonate in the 

solution, and nucleation occurring at higher supersaturation levels in the stirred 

solutions.  The increase in reaction rate in the later stages of the reaction can be 

explained by an increase in secondary nucleation events which occurs due to an 

increased frequency of particle collisions, the generation of additional nucleation 

sites through attrition processes, and the increased kinetic energy in the system. It 

is also supported by the presence of aragonite as well as calcite under stirred 

conditions, while only calcite is present under stagnant conditions (Figure S4). The 

formation of aragonite due to agitation has been reported elsewhere,(311) and may 

relate to the increase of kinetic energy in the system. 
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Figure 4 - 11:  Time-resolved profiles of calcium carbonate precipitation 
experiments using the ammonia diffusion method studying the effect of solution 
agitation (100 rpm).  Reaction conditions 70 ml of 25 mM CaCl2, 48 cm2 surface 
area, 3g ammonium carbonate, 2.6 liter head space, no additional diffusion 
barriers).  ― Stirring 100 rpm, --- Stagnant, ■ Stirring 100 rpm, •Stagnant. Image 
taken from (169).   
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4.4:  Reproduction of the Ammonia Diffusion Method 

 

Reproducing the ammonia diffusion method using the derived addition rates and 

supersaturation profiles was necessary not only to validate the obtained results, but 

also to make products previously limited to diffusion processes available through 

other methods.  This allows the scale up of produced material and in-situ 

investigations of the formation process.  

CaCO3 mesocrystals formed in the presence of PSS-MA were chosen as the 

primary model system to test the translation of the obtained reaction 

conditions.(303)  PSS-MA CaCO3 mesocrystals were chosen due to their distinctive 

morphologies and properties (in particular their high surface areas of 60-100 m2g-1).  

CaCO3 thin film structures associated with a PILP formation process were also 

reproduced due to their distinct morphological appearance.(60)  Two alternatives 

were considered in reproducing these products, (i) a mechanically - driven slow 

addition of a regent i.e. a titration-based system and (ii) a true one-pot synthesis 

facilitated by enzymatic hydrolysis of urea.  Success in the replication of 

mesocrystals is important in that it suggests that a prolonged, steady 

supersaturation promotes the continuous formation of new material, which supports 

aggregation-based crystallisation.  

 

4.4.1:  Mechanically Driven Slow Addition of Reagents  

Replication of CaCO3 PSS-MA mesocrystals was achieved using a slow addition 

process (schematic given in Figure 4-12), in which a carbonate-containing reagent 

solution (20 ml of either 250 or 175 mM (NH4)2CO3) is added at a rate of 0.0057 ml 

min-1 to a 80 ml of solution containing 325 ppm PSS-MA and either 5 mM or 1.25 

mM CaCl2, under agitation at 70 rpm.  The experimental conditions were selected to 

mimic the carbon addition rate during the crystallisation zone (the first 100-200 

minutes of reaction) of an ammonium carbonate diffusion experiment with the 

following conditions: 5 mM / 1.25 mM CaCl2, 325 ppm PSS-MA, 70 ml, 48 cm2 and 

0.6 cm2 diffusion boundary pore surface area.  Focus on the early stage was set in 

agreement with the reaction progress profile.  Agitation was required to disperse the 

highly concentrated ammonium carbonate solution, thereby preventing uncontrolled 

instantaneous precipitation.  The ammonium carbonate solution addition rate (kS) 

and concentration ([C](NH4)2CO3) added to a certain volume of calcium solution (VCa) 
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were determined according to Equation 75 such that they mimicked the carbon 

addition rate (d[C]T/dt) obtained experimentally from characterization of the ADM. 

𝐤𝐒 [𝐂](𝐍𝐇𝟒)𝟐𝐂𝐎𝟑
𝐕𝐂𝐚 + 𝐤𝐋𝐭

=
𝐝𝐂𝐓
𝐝𝐭

 ( 75 ) 

 

 
Figure 4 - 12:  Schematic of the mechanically driven slow addition setup used for 
mesocrystal and thin film replication. 

 

Analysis of the product crystals demonstrated that CaCO3 PSS-MA mesocrystals 

could be obtained by the mechanically-driven slow addition of ammonium 

carbonate, Figure 4-13.  These were identical in morphology to CaCO3 

mesocrystals produced using the ADM (70 ml of a solution of 1.25 - 5 mM CaCl2, A 

48 cm2, 0.6 cm2 of free surface area), as a comparison of electron micrographs 

demonstrates.  Mesocrystal pseudo-octahedral (1.25 mM CaCl2/ 325 ppm PSS-MA) 

or dodecahedra (5 mM CaCl2 325 ppm PSS-MA) obtained by the ADM are given in 

(a) and (c).(303)  Mesocrystals obtained by slow addition are shown in (b) and (d).  

Figure 4-14, provides an analysis of pseudo-octahedral mesocrystals produced by 

slow addition and removed from the reaction solution after 12 hr, by Raman (a) and 

IR (b) spectroscopy.  This demonstrated that the product crystals were calcite with 

little or no evidence of an amorphous phase.(67)  (c) TGA of the “replica” 

mesocrystals revealed that they comprised 2-4 wt% polymer.  Confirmation of 

mesocrystal structure was obtained by measurement of the surface areas of the 

crystals prepared.  Analysis of pseudo-octahedral mesocrystals produced by slow 

addition revealed a typical surface areas of ~ 97 m2g-1.  This value is consistent with 

the corresponding crystals produced using the ADM,(303) (~82 m2g-1) and is 

considerably larger than the 1-2 m2g-1 recorded for rhombohedral calcite crystals of 
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comparable sizes.  Identical observations were made by adding sodium carbonate 

as the carbonate solution into a buffered Ca-polymer solution (pH 9 Tris buffer).  

 

 

Figure 4 - 13:  Electron micrographs of produced mesocrystal.   (a) 1.25 mM CaCl2 
ADM, (b) 1.25 mM CaCl2 Slow Addition, (c) 5 mM CaCl2 ADM, (d) 5 mM CaCl2 Slow 
Addition.  Image taken from (169).   
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Figure 4 - 14:  Characterization data of pseudo-octahedral CaCO3 mesocrystals 
obtained in the presence of PSS-MA, and spectra of rhombohedral calcite crystals 
as reference.  (a) Raman and (b) IR spectra.  (c) TGA spectra of pseudo-octahedral 
CaCO3 mesocrystals produced in the presence of PSS-MA by slow addition of 
reagents.  A heating rate of 5°C min-1 was applied.(169)    



Chapter 4:  Characterisation of Diffusion Methods 

221 

Replication of CaCO3 Polymer-Induced-Liquid-Precursor films have also been 

carried out which focus on the later stages of the carbon addition profile i.e. higher 

addition rate.  Under the presence of PAA it was possible to obtain crystalline films 

which resemble films obtained using the ammonia diffusion method when PAA is 

present as an additive.  Figure 4-15 provides a comparison of thin films obtained by 

the ADM (a) and slow addition (b) after heating to 400°C (300 min).  

 

 

Figure 4 - 15:  CaCO3 thin film formed via (a) ADM (80ml 10 mM CaCl2, 50 mgml-1 
PAA, 48 cm2 and 0.6 cm2 diffusion boundary pore surface area.) and via (b) via 
slow addition (20ml 175 mM (NH4)2CO3, 0.0148mlmin-1, 80ml 10 mM CaCl2, 50 after 
heat treatment (400°C, 300min).  



Chapter 4:  Characterisation of Diffusion Methods 

222 

4.4.2:  Enzymatic Hydrolysis of Urea  

As a further development of the slow addition method, a true one-pot CaCO3-PSS 

MA mesocrystal synthesis method was realized through the enzymatic hydrolysis of 

urea by urease in aqueous solution.  By variation of substrate (urea) and enzyme 

(urease) concentrations the rate of carbonate and ammonium produced can be 

controlled, where this results from the enzymatic hydrolysis of urea released into a 

solution containing calcium chloride and PSS-MA.(174)  The key underlying 

reactions in precipitating calcium carbonate by urea hydrolysis are given in 

Equations 76 to 82.  The controlled release allows the reproduction of the pH and 

total carbon concentration profiles, where these are required for the formation of 

calcium carbonate mesocrystals analogous to those generated using the original 

ADM.  The advantage of a true one pot synthesis method compared to the 

diffusion(67) and slow addition methods(169) is that it allows the direct observation 

of the formation process in situ by techniques such as DLS, SAXS and liquid cell 

TEM without manually interfering with the formation process.  It also removes 

changes which occur due to the presence of a gas-liquid interface.(169)  This 

allows the formation of crystals at a controlled increase in supersaturation, 

independent of the solution volume, Chapter 5. 

[(𝐍𝐇𝟐)𝟐𝐂𝐎] + 𝟐𝐇𝟐𝟎
𝐔𝐫𝐞𝐚𝐬𝐞 
→     𝟐[ 𝐍𝐇𝟒

+] + [ 𝐂𝐎𝟑
𝟐−] ( 76 ) 

[(𝐍𝐇𝟐)𝟐𝐂𝐎] + 𝐇𝟐𝟎
𝐨𝐫 
→   𝟐[𝐍𝐇𝟑] + [𝐂𝐎𝟐] 

( 77 ) 

[𝐍𝐇𝟑] + 𝐇𝟐𝐎 = [𝐍𝐇𝟒
+] + [𝐎𝐇−] ( 78 ) 

[ 𝐂𝐎𝟐 ] + 𝐇𝟐𝐎 = [𝐇𝟐𝐂𝐎𝟑] ( 79 ) 

[𝐇𝟐𝐂𝐎𝟑] = [𝐇𝐂𝐎𝟑
−] + [𝐇+] ( 80 ) 

[𝐇𝐂𝐎𝟑
−] = [𝐂𝐎𝟑

𝟐−] + [𝐇+] ( 81 ) 

[𝐂𝐎𝟑
𝟐−] + [𝐂𝐚𝟐+] = 𝐂𝐚𝐂𝐎𝟑𝐬 ( 82 ) 

In realising the replication of the ADM, a re-evaluation of the enzymatic activity of 

the urease purchased (canavalia ensiformis, subunit molecular weight: ~90.770 

kDa) was necessary as precipitation experiments are performed in buffer-free 

solutions, and variations in urease activity are expected based on the continuous 

release of ammonia into the solution until an equilibrium between the ammonia and 

ammonium ions at a pH of ~9.15 is established.  Assuming Michaelis Menten 
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enzyme kinetics, hydrolysis rates of urea solutions (0-140 mM) at fixed urease 

concentrations (22 μgml-1) were subsequently measured via time resolved 

conductometry in free pH drift experiments at 24°C. 

Conversion of the obtained conductance (µs cm-1) to hydrolysed urea (mM) 

was made possible by measuring the final conductance of urea/ urease solutions 

with known starting concentrations shown in Figure 4-16a.  Enzyme-specific 

parameters given in Table 7 were subsequently obtained following linearization in 

the form of a Hanes–Woolf plot, (b) → (c).(312)  As is evident from (b) we find a 

substrate inhibition at urea concentrations above 94 mM in this particular case. 
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Figure 4 - 16:  (a) Typical conductance urea/ urease calibration curve.  Stated are final conductance values recorded, a urease/ urea ratio of 0.178 
mg/mM was used throughout.  (b) Michaelis-Menten and (c) Hanes–Woolf plot of urea/ urease hydrolysis obtained at 24°C a fixed amount of 22 
μg ml-1 urease was used. 

 

Parameter Value Units 

Vmax 0.0072 mM urea/sec 

Km 0.0607 mM urea 
Activity 17.6254 µM urea/min mg urease 

Table 7:  Key enzymatic parameter of urea-urease hydrolysis obtained at 24°C in a free drift pH setup. 
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The derived urease activity then allowed the reproduction of the required total 

carbon and ammonia addition rates stated in Chapter 4.2. and 4.3 to form CaCO3-

PSS MA mesocrystals by varying the mass of enzyme present, provided that a 

sufficiently large reservoir of substrate (urea) is present.  Figure 4-17 provides a 

comparison of the theoretical carbonate addition rates by hydrolysis to the predicted 

addition rate by slow reagent addition (a).  It is evident that in an ideal case the 

rates can be matched.  (b) By comparing the experimental pH – time profile of slow 

addition with the pH profile obtained from enzymatic hydrolysis, it is evident that the 

profiles do not completely converge.  The observed discrepancy can be seen to 

arise due to changes in enzyme activity with solution pH and the fact that an 

average enzyme activity across the whole pH range was used in prediction.  

 

Figure 4 - 17:  (a) Theoretical total inorganic carbon (CT) addition rates required for 
the production of CaCO3-PSS MA mesocrystals based on mechanical reagent 
addition (-- - -) and CT addition rates based on enzymatic hydrolysis of urea at 24°C 
and free pH drift with varying urease/ urea ratios (continuous).  (b) Experimentally 
obtained pH - time profiles of mechanical slow addition -20 ml of 250 mM 
(NH4)2CO3) added at 0.0057 ml/min to a 80 ml of solution containing 325 ppm PSS-
MA and 5 mM CaCl2 -, and enzymatic hydrolysis of urea from a 70 ml solution of 5 
mM CaCl2, 40 mM urea, 1 mg urease and 325 ppm PSS MA.    
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Despite the recorded discrepancy in the measured pH profiles, scanning electron 

micrographs of precipitates prepared by enzymatic hydrolysis were in general 

morphological agreement with CaCO3 PSS-MA mesocrystals obtained by the ADM 

(Figure 4-18a).  Crystals were retrieved from the solution 48 hours after the urease 

was added.  BET surface area measurements were also performed on the isolated 

crystals to confirm the formation of mesocrystals.  The recorded measurements 

(80-45 m2g-1) are in fair agreement with the areas reported in the literature.  

Thermogravimetric analysis confirmed the presence of the block copolymer (~6 

wt%) associated with the mesocrystals.  Raman (b) and IR spectroscopy (c) 

showed that only calcite is present as the crystalline phase.  The presence or 

absence of amorphous content in the mesocrystal structure could not be confirmed. 

 

Figure 4 - 18:  (a) Scanning electron micrograph of CaCO3-PSS MA mesocrystals 
obtained after 48 hours of incubation from a 70 ml solution of 5 mM CaCl2, 40 mM 
urea, 1 mg urease and 325 ppm PSS MA.  (b) Raman and (c) IR-spectra of CaCO3-
PSS MA mesocrystals obtained by the controlled enzymatic hydrolysis of urea.  
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4.5:  CaCO3 Mesocrystals  

4.5.1:  Introduction - What Characterizes a Mesocrystal 

 

Over the recent decades, observations of solution–based crystallisation processes 

have challenged and are still challenging our understanding of crystal growth.(59, 

63, 313) At the core of those observations lies the concept of crystallisation via 

oriented attachment and its sub-classification of mesocrystals.(66, 314)  The term 

mesocrystal was first used to described calcite and vaterite crystals with intriguing 

morphologies, which were precipitated in the presence of polymer additives.(69, 

305, 315-319)  It is nowadays used to describe a vast number of different crystals, 

organic and inorganic, which are believed to form by particle-based assembly 

mechanisms.(294, 303, 304, 320-325)  

So what exactly describes a mesocrystal?  Initially, the concept was used as 

an extension of oriented attachment and was applied to the formation of larger, 3D 

crystals via the oriented assembly of polymer-stabilised crystalline nanoparticles 

(Chapter 1.3).  This was later extended such that the term mesocrystal refers to a 

structural classification rather than a formation mechanism.  The term mesocrystal 

describes any structure that “comprises a 3D array of iso-oriented single crystal 

particles of size 1–1000 nm” that behave as one “single crystal”.(67)   

A problem in this definition of a mesocrystal is how we classify a crystal as a 

mesocrystal by means of structural analysis.  Two primary identifiers, from the 

structural analysis of the formed crystals were used in combination in the initial 

studies to make this separation, of ion-by-ion grown single crystals and 

mesocrystals.  Those primary identifiers are an elevated surface area compared to 

the surface area expected for an ion-by-ion grown single crystal, and the presence 

of a crystalline substructure as determined by diffraction.  A second, and more 

subjective identifier, is the morphological appearance of the crystals i.e. they 

appear to be composed of smaller subunits.  The two primary identifiers of 

mesocrystal structure – surface area and crystalline substructure - were studied 

here for the case of CaCO3 PSS-MA mesocrystals.   
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4.5.2:  Elevated Surface Area  

One of the primary mesocrystal identifiers is the elevated surface area of the 

mesocrystal as compared to what is measured for a single crystal of equal size.  In 

this respect, the change in surface area of CaCO3 PSS-MA mesocrystals with 

increasing incubation time in solution was measured by BET.  These studies were 

initiated based on microscopic observation of an apparently decreasing surface 

roughness with time spent in solution, Figure 4-19a. 

For BET analysis, 200 mg of pseudo-octahedral CaCO3 PSS-MA mesocrystals 

were prepared by mechanically-driven slow addition, as stated in Chapter 4.4.1.  

Multiple reactions were set up simultaneously, and were terminated/ transferred for 

BET analysis after 12 hours to 14 days.  The BET determined surface areas were 

again in fair agreement with the values for calcite mesocrystals reported in the 

literature.(305, 326)  The measured surface area decreased significantly with the 

time spent in solution.  From values of 97 m2 g-1 measured 12 hours after the 

reaction had been initiated, the measured surface area decreased to 22 m2 g-1 after 

28 days of storage in solution (b).  This decrease in surface area was enhanced if 

the mesocrystals were aged in air for 2 days, when a reduction from 85 m2 g-1  to 10 

m2 g-1 was observed  The faster reduction in air than in solution may be due to 

stabilization conferred by the residual polymer in the crystallisation solution.  

TGA was also performed of CaCO3 PSS-MA mesocrystals after certain incubation 

times in solution.  This revealed a decrease in polymer “occlusion” from ~ 4 wt% (12 

hours) to 1 wt% polymer (28 days) (c).  The calculated fractal indices from the 

absorption measurements made were in agreement with the decrease in surface 

roughness observed in electron micrographs (d).(186) For a detailed analysis 

please refer to Kim, Schenk, Ihli, Kulak, Hetherington, Tang, Schmahl, Griesshaber, 

Hyett and Meldrum (327).   

A number of explanations can be given for the measured decrease in surface area 

with aging in and out of solution.  In the first place, mesocrystal theory has 

suggested that the crystalline subunits can fuse, resulting in a loss of the void 

space responsible for the enhanced surface area.  Secondly, simple Ostwald 

ripening and associated surface recrystallisation may provide a sufficient decrease 

in surface roughness to explain the decrease in measured surface area.  The latter 

is proposed under the assumption that surface roughness is the primary factor in 

determining the measured surface area and not any pre-existing crystallite 

substructure and associated void space between particles.(327)  With no particular 
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evidence for either of those explanations, this suggests that enhanced surface area 

is not a definitive indicator of a mesocrystal. 

 

 

Figure 4 - 19:  (a) Scanning electron micrographs of CaCO3 PSS-MA mesocrystals 
retrieved from the mineralizing solution after 12 hours, 14 days and 28 days given 
from left to right. (b) Measured surface area, (c) polymer “occlusion” and (d) fractal 
index changes with aging in solution.  Mesocrystals were prepared by adding a 
carbonate containing reagent solution (20 ml of either 250 mM (NH4)2CO3) at 0.0057 
mlmin-1 to a 80 ml of solution containing 325 ppm PSS-MA and 5 CaCl2, under 
agitation at 70 rpm.  
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4.5.3:  Crystallinity 

If an elevated surface area cannot be used to reliably identify mesocrystal 

structures, the identification of an ordered crystalline substructure remains the sole 

identifier.   

Table 8 and 9, describe results extracted from the paper Kim, Schenk, Ihli, Kulak, 

Hetherington, Tang, Schmahl, Griesshaber, Hyett and Meldrum (327), which show 

that PXRD is often miss-analysed using the Scherrer equation to demonstrate the 

sub-structure characteristic of mesocrystals.  PXRD data provided in Tables 8 and 

9 were collected in a high resolution synchrotron PXRD study of single crystal 

calcite and “mesocrystal calcite”.  The results show that the peak broadening 

previously associated with the presence of an ordered crystalline substructure 

alone cannot be used as proof of mesocrystal structure when lattice strain was also 

present.  This is highlighted in the provided tables by the underestimate of apparent 

crystallite size if strain is disregarded.  It is also noted that no analysis gives an 

average crystallite size that would account for a, “typical” mesocrystal surface area. 
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 Control 10 mM PSS-MA PSS-MA Seeded PS-MA 

Rietveld 

(pseudo-voigt) 

Size only (nm) 817 380 319 485 

Strain only (%) 0.0010 0.030 0.039 0.022 

Size (nm) and strain (%) 870/0.004 553/0.024 612/0.035 622/0.016 

Williamson-Hall 

plot 

Size only (nm) 446.4 141 109 243 

Strain only (%) 0.017 0.057 0.074 0.0325 

Size (nm) and strain (%) 678/0.006 1014/0.049 3228/0.072 647/0.021 

Scherrer Eq (104) Size only (nm) 825 321 278 368 

Scherrer Eq (001) Size only (nm) 798 228 185 435 

Table 8:  “Strain parameters and coherence lengths derived from line profile analysis of powder synchrotron XRD spectra of calcite crystals.”(327) 

 

  Sample 1 Sample 2 Sample 3 

Fresh In situ heating 300 
o
C Fresh Ex situ heating 400 

o
C Fresh Aged in air 24hrs 

Rietveld  

(pseudo-voigt) 

Size only (nm) 224 223 388.4 295.2 299.8 322 

Strain only (%) 0.046 0.050 0.029 0.040 0.034 0.032 

Size (nm) and strain (%) 446/0.041 519/0.046 707.9/0.025 1493/0.039 642.5/0.030 666/0.029 

Williamson-Hall 

plot 

Size only (nm) 82.6 74 141.2 102.2 112 114 

Strain only (%) 0.099 0.109 0.057 0.079 0.072 0.070 

Size (nm) and strain (%) 2344/0.10 -/0.11 1335/0.051 - /0.084 1011/0.064 1036/0.063 

Scherrer Eq (104) Size only (nm) 224.6 223.2 368 299 319 319 

Scherrer Eq (001) Size only (nm) 191.6 188.6 319.3 257.5 266 266 

Table 9:  “Strain parameters and coherence lengths derived from line profile analysis of powder synchrotron XRD spectra of three different 
batches of calcite PSS-MA mesocrystal after in situ heating to 300oC, ex situ heating to 400oC and aging in air.” (327) Altered after (327)  
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4.6:  Discussion  

 

A number of studies have previously attempted to either modify, or characterize 

features of the ammonia diffusion method in order to achieve greater reproducibility.  

These have included substitution of solid ammonium carbonate with a liquid 

reservoir of ammonium carbonate,(261, 328) or estimation of pH and 

supersaturation changes (while neglecting precipitation) for precipitation in µL 

droplets in a so-called crystallisation mushroom.(261)  A general comparison of the 

ammonia diffusion and double diffusion methods has also been made by studying 

the pH profile.(329)  By comparison, we have here provided a very detailed picture 

of the changes in solution which accompany the precipitation of CaCO3 using the 

ADM.  

The results presented here demonstrate that the ADM can be controlled using a 

range of variables including the introduction of a diffusion barrier, and change of the 

solution surface area, which leads to modification of the reaction profile.  When 

conditions are used which lead to a rapid reaction rate, the reaction profile and 

solution conditions approach those achieved in other techniques.  This is 

characterized by a burst of nucleation which depletes a large proportion of the 

available calcium ions, followed by a steady drop in the supersaturation as the 

nuclei grow in solution.  In contrast, when the ADM conditions are controlled to give 

slow growth, a unique profile can be generated where nucleation occurs in an initial 

burst.  This initial burst in nucleation consumes only a relatively small proportion of 

the available ions.  The supersaturation then remains relatively constant, at a level 

well above the threshold for ACC precipitation, until the calcium ions have been 

depleted.  It is the precipitation of CaCO3 crystals under the latter conditions that 

can lead to the generation of unique and often complex crystal morphologies when 

organic additives such as block copolymers are also present in the reaction 

solution. 

Identification of the solution conditions which lead to these complex crystal 

structures – which determine the nucleation and growth processes which could 

feasibly occur – therefore provides a unique insight into the processes which may 

generate such crystals.  As the precipitation occurs under conditions where the 

supersaturation remains rather constant, but at a level above the ACC threshold for 

the vast majority of the reaction, it is possible for new nuclei to form throughout the 

reaction, probably as ACC.  This may occur homogeneously or heterogeneously on 
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pre-existing precipitates in solution.  If further nucleation does not occur, the nuclei 

formed in the original nucleation event will simply continue to grow.   

In the absence of polymer additives, calcite rhombohedra are the typical products of 

the ADM both under slow and rapid growth regimes.  Studies of ACC precipitation in 

bulk solution (achieved by mixing solutions or calcium and carbonate ions) have 

shown that ACC particles form in a nucleation burst, and then continue to grow 

without aggregation.(220, 243, 330)  The mechanism by which they crystallize is 

less clear.  It has been suggested that nucleation of the latter crystalline phases 

occurs within existing ACC particles,(218, 331) and there is strong evidence that 

these crystalline nuclei then grow via dissolution/ reprecipitation of other ACC 

particles in solution.(139, 209, 219)  Further, an ACC particle cannot start to 

crystallize until it reaches a critical size.(137, 160)  Crystallisation of ACC to vaterite 

in bulk solution via a solid state transformation has also been suggested, based on 

cryo TEM techniques and SAXS/WAXS studies.(307)  In the latter study the ACC 

nanoparticles were believed to first dehydrate, then undergo a structural 

rearrangement to vaterite, and finally aggregate to form micron-scale vaterite 

particles.  

 This process will obviously be modified in the presence of polymers.  Some 

studies have attempted to characterize the mechanism of formation of CaCO3 

mesocrystals in the presence of polymer additives.  These have analysed the 

reaction solutions at early times using transmission electron microscopy (TEM), 

analytical ultracentrifugation and dynamic light scattering,(305, 318, 332) and have 

shown the presence of amorphous nanoparticles at early reaction times.  As a 

particular feature of polymer-controlled growth, which distinguishes it from additive-

free reactions, these ACC particles rapidly form aggregates, which then ultimately 

crystallize.  Given the challenging nature of these early-time studies, they present 

only a broad picture of the reaction processes, and little is known about the growth 

of the aggregates or their crystallisation mechanism.  

Our results are therefore fully in keeping with these observations, but importantly 

also demonstrate that under slow growth in the ADM – which is the regime where 

mesocrystals are observed – new material is continually produced after the initial 

nucleation of ACC.  This then distinguishes it from rapid growth conditions where 

there is a single nucleation event, followed by growth.  The most probable scenario 

is therefore that new particles nucleate on the existing polymer-stabilized ACC 

aggregates, or on crystalline particles at later stages of the reaction, giving rise to 

more complex morphologies.   
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The formation of so-called CaCO3 “mesocrystals” would therefore appear to be 

based on the crystallisation of an assembly of ACC nanoparticles rather than the 

oriented assembly of precursor crystalline nanoparticles as was originally 

suggested.(318) Indeed, nanoparticulate calcite and vaterite are very hard to 

synthesize due to their rapid growth in solution.  In this way, synthetic CaCO3 

mesocrystals would appear to have many similarities to biogenic calcite 

mesocrystals, where the ultrastructure derives from a memory of the ACC precursor 

phase.(67, 305)  It is also stressed that Ostwald ripening processes are active 

during CaCO3 precipitation, such that large crystals grow at the expense of smaller 

ones.  It is also noted that even under the slowest reaction times used here, the 

reaction is almost complete and the calcium ions depleted after 6-8 hours.  

Therefore, while a number of articles describe the precipitation of CaCO3 crystals 

using the ADM using prolonged incubation periods (days to weeks), any 

morphological changes reported in crystals after  12 hours are simply due to 

Ostwald ripening/ recrystallisation processes.  Given that polymer remains in the 

solution, rough crystal surfaces, as seen in CaCO3 “mesocrystals”, would be 

expected.  Further, the replication of these “mesocrystals” by the enzymatic 

hydrolysis of urea, and the inherently homogeneous concentration profile of the 

reacting species in solution, point to the fact that the formation of mesocrystals and 

PILP-associated thin films is fundamentally independent of the macroscopic 

concentration profiles as suggested previously.(333)  Rather, local concentration 

profiles seem to be responsible for aggregation-based crystal growth.   
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4.7:  Conclusion 

 

Despite the wide utilisation of the ADM in precipitating calcium carbonate the 

method had remained a “black box”.  For the first time, this study reports 

concentration and supersaturation profiles of the precipitation of calcium carbonate 

using the ADM.  Rigorous characterization of the ADM under varying experimental 

conditions revealed several key aspects which distinguish the method from 

common direct precipitation methods.  These are potentially responsible for the 

crystal morphologies which are characteristic of diffusion methods.  The main 

difference is that the initial nucleation burst consumes only a relatively small 

amount of the available calcium ions, and the supersaturation then remains 

relatively constant, and well above the threshold value for ACC, until the majority of 

the calcium ions have been consumed.  As a result, new material can be generated 

and deposited throughout the course of the precipitation reaction i.e. multi-

nucleation character of the reaction is a possibility, a feature which we believe to be 

fundamental to the formation of complex, aggregation-based morphologies.  The 

reaction progress profiles show a short phase in which the crystal morphologies 

would be developed, and also suggest that the often unique calcite morphologies 

which are produced using the ammonia diffusion method are most likely a result of 

Oswald ripening or attachment phenomena, rather than being determined by the 

initial nucleation conditions.  This fact was later confirmed by the overgrowth of 

seed crystals to near identical morphologies.(327)   

 The obtained reaction profiles were then used to develop a one pot 

synthesis that can replicate CaCO3 mesocrystal morphologies.  This can enable the 

scale-up of the process and allow in situ investigations.  Lastly, investigation of the 

characterisation of CaCO3 mesocrystals puts into question our understanding of 

how we identify a crystal as a mesocrystal.  The primary identifiers used to 

characterise mesocrystals could either not be confirmed (crystalline sub units) or 

were time-dependent (elevated surface area).  
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Chapter 5 is a reproduction of manuscripts accepted or in preparation for 

publication.  Images are provided in reproduction in part or total with the respective 

source acknowledged.  It is stressed that the candidate did not perform the image 

reconstructions provided in this Chapter.  The presented work was executed in 

collaboration with Jesse N. Clark, performing image reconstruction and in parts 

their analysis.  FEM studies were carried out by Alexander S. Côté.  The following 

discussion focuses particularly on the observations made and their interpretation 

rather than the underlying reconstruction and phasing procedures.  The latter are 

provided in Appendix D for coherency and are in reproduction of (199).   
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5.1:  Abstract 

The structural organization of a crystalline material, where this includes atomic level 

defects such as dislocations or the presence of macromolecular occlusions, 

contribute enormously not only to the physical properties of a material (including 

hardness and chemical reactivity) but also determines its growth mechanism and 

ultimately its morphology.  Dislocations and the structural organization of materials 

have therefore been studied extensively using techniques such as XRD, TEM and 

AFM.  However, these techniques have not been able to generate a combined 3D 

image of a crystal’s gross morphology, internal structure, lattice deformations and 

dislocation network.  In this chapter, Bragg Coherent Diffraction Imaging is used to 

provide exactly this, a combined image of the gross morphology of a single crystal, 

the 3D strain fields and defects present within it.  This directly allows us to visualize 

the dislocation network present within a single crystal with nanometer resolution.   

Two case studies are then presented, the first of which provides a demonstration of 

how the dislocation network and strain within a calcite rhombohedron guides crystal 

growth and dissolution.  The second study addresses how a “soft” organic substrate 

guides the morphological development of a heterogeneously nucleated calcite 

crystal due to strain accumulation in the direction of preferred crystal growth.   
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5.2:  Fundamentals of Bragg Coherent Diffraction Imaging   

5.2.1:  Introduction  

 

Bragg coherent diffraction imaging (BCDI) is a novel form of phase contrast X–ray 

microscopy in which the common imaging optics are replaced with iterative phase 

retrieval algorithms.(196, 334)  In BCDI, oversampled diffraction patterns collected 

from an isolated crystal illuminated by a coherent wavefield across a Bragg 

reflection are inverted into a complex valued 3D image of the specimen illuminated. 

The required 3D patterns are acquired under the Shannon constraint i.e. the 

crystal’s Fourier transform is sampled at least twice the Nyquist frequency.  The 

illumination of a crystal that is smaller than the coherence volume of the beam 

generates a coherent X-ray diffraction (CXD) pattern due to scattering from all parts 

of the crystal.  Both conditions combined with the successful application of phase 

retrieval algorithms returns a tomographic image of the crystal morphology 

generated from the intensity of the CXD pattern and the recovered phase.  

The reconstructed amplitude contains information about the electron density 

distribution, (r).  Phase shifts ϕ(r) in the reconstructed complex amplitude, in turn, 

arise from strain (internal deformation) in the crystal lattice, where these are 

apparent in the asymmetric part of the diffraction pattern at each Bragg reflection. 

The sensitivity of the returned phase to lattice displacements is due to the 

fact that the phase is proportional to the projected displacement field,  𝑢(𝑟) of the 

atoms from their ideal lattice points and to the scattering vector Q via (r) = Q  u(r).  

This makes BCDI a unique method for providing combined information on 

morphology, strain and crystallographic defects in a single crystal with nanometre 

resolution.  Previous applications of BCDI have shown, for example, phonon 

movement in gold nanoparticles,(197) the evolution of strain with increasing 

physical load,(335) and the introduction of surface stress by surface absorption of 

thiols on gold nanocrystals. 
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A schematic illustration of the “imaging” process from experiment to reconstructed 

image is presented in Figure 5-1.  The example presented is of a calcite 

rhombohedron 1 μm in diameter and nucleated in solution by the ammonia diffusion 

method.  This is used as the reference sample for the subsequent investigations.  

The 3D far-field diffraction pattern was collected from the off-specular (104) 

reflection.  The given diffraction pattern shown are for demonstration purposes only 

and do not correspond to the collected 3D patterns.   

Reconstructed electron density distributions (amplitude) of the imaged 

calcite crystals compare well with the common morphology of calcite rhombohedra 

present in the sample.  The projected lattice displacement (phase) is visualized in 

colour, where the deviation is shown from a homogenous phase condition ranging 

from – π (lattice dilation) to + π (lattice contraction).  The specimen can be seen to 

be largely unstrained, with local areas of surface stress accumulated at the crystal 

edges.  It has to be stated that with current experimental facilities available it is not 

possible to obtain images of one and the same crystal by means of BCDI and for 

example electron microscopy.  This is due to the problems associated with locating 

a specific crystal across different imaging platforms.   
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Figure 5 - 1:  Principle of Bragg Coherent Diffraction Imaging.  1. Experimental acquisition of coherent 3D diffraction pattern.  Diffracted beams (aqua) emitted by 

an isolated specimen (green) exited by a spatially coherent wave (blue) exceeding the specimen size and undergoing rocking motion are collected by an area 

detector (2D) and are then stacked (3D).  2. The collected 3D pattern (1) is passed to a phase retrieval algorithm moving between real space and reciprocal 

space (1 ↻ 4) till autocorrelation between measured amplitude and retrieved amplitude with an evolving phase is established.  This yields a complex function of 

amplitude (electron density) and phase (lattice displacement) as a product of scattering vector Q (h,k,l) and lattice displacement field u.  (3) Fourier 

transformation of the now known phase and amplitude returns a 3D, tomographic representation of the crystal.  An example is shown of a calcite rhombohedron 

nucleated in solution 1 µm in diameter.  Schematic reproduced and extended after (197) and (196).



Chapter 5:  Bragg Coherent Diffraction Imaging of Calcite Single Crystals 

243 

5.2.2:  Experimental  

 

BCDI measurements were carried out at third generation synchrotron sources 

(Diamond  Light Source DLS and the Advanced Photon Source APS), where these 

provide x-ray beams with sufficient brightness and coherence for the experiments 

performed.   

In a simple BCDI experiment, a crystalline sample located on a 6 axis 

diffractometer, aligned with the beam and centred in the selected Bragg condition is 

illuminated by a spatially coherent beam of X-rays that have been produced by an 

“undulator device” and monochromatized (Chapter 2.9.2.3).  A coherence length 

greater than the dimensions of the crystal ensures that scattering from all parts of 

the crystal interfere in the far-field diffraction pattern collected upon illumination.  

Diffraction patterns are recorded using a charge-coupled area detector, which is 

positioned at the desired diffraction angle and at a distance far enough from the 

sample to resolve the finest fringes and speckle patterns.  To acquire the full 3D 

CXD pattern required for BCDI, a rocking curve central to the selected Bragg 

reflection is performed.  For that purpose the crystal is rocked step-wise through its 

Bragg peak, such that the oversampling constraints are met.  Here, the crystal was 

rocked by 0.3 degrees in total with a step size of 0.003 degree.  For each 

incremental “rocking“ step, a two-dimensional slice of the 3D far-field diffraction 

pattern was recorded.  Upon stacking, this yields a complete 3D diffraction pattern, 

from which real-space images could be reconstructed (Chapter 5.2.3).  This 

stacking of 2D slices collected in the rocking curve yields a 3D representation of the 

crystal imaged, where this is analogous to electron tomography and is based on the 

central Fourier section theorem.  This states that the Fourier transform of a 2D 

“slice” of a 3D object is a central section of the 3D Fourier transform of the sample/ 

crystal.  A collection of 2D slices through the entirety of the 3D sample/ crystal can 

then be stacked in reciprocal space to yield the 3D structure in reciprocal space and 

real space by inverse Fourier transformation.(336) 

In this regard, the importance of a coherent illumination source must be stressed.  

“The beam itself has a point-to-point phase correlation that is preserved throughout 

the interaction with the sample.  The x-rays scattered from different regions of the 

sample reach a camera with a fixed relative phase to each other and constructively 

or destructively interfere accordingly.”(337)  This enables the imaging of crystals 

smaller than the coherence length of the illumination source.  Subsequently, the 
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measured squared modulus of the Fourier transform of the sample structure can be 

transformed back onto the spatial domain by said phase retrieval algorithms.(337)   

Examples of CXD patterns collected across a Bragg reflection are given in Figure 

5-1 and 5-2.  These consist of modulated streaks or fringes and airy speckle 

patterns, which rapidly decline in intensity away from the Bragg centre of the 

diffraction pattern.  Fringes and speckles are a result of the coherent beam 

illuminating the entirety of the sample; the diffraction spots are strongly modulated 

by the interference between waves scattered by the crystal surfaces.  The 

modulated fringes are a result of the interference between two major, “fully 

developed”, opposing facets.  The airy speckle pattern in Figure 5-2 originates 

accordingly from the spherical particle shape.  The modulated fringes are then used 

in the determination of the imaged crystal size.  The fringe spacing is inversely 

proportional to the spacing in real space dimensions.(338) 

The real space resolution of a BCDI experiment is determined by the radial cut-off 

value in detecting X-rays away from the centre.  This parameter is limited by the 

sample, the detection equipment and the brilliance of the X-ray source.  A typical 

real space resolution of 10-50 nm is currently achievable.  Experimental details are 

provided in Chapter 2.9.2.3 and expanded in the case studies discussed below.  
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5.2.3:  Retrieving the phase information from a BCDI pattern   

 

Phasing the acquired 3D CXD pattern correctly is the critical step in BCDI imaging.  

This is achieved by processing the 3D CXD pattern with iterative phase retrieval 

algorithms, where these effectively replace the imaging optics in traditional 

microscopes.  The complete knowledge of both the amplitude and phase of the 

diffracted wavefield eventually allows for a quantitative real-space image to be 

obtained via an inverse Fourier transform. 

The applicability of phase retrieval algorithms and the delivery of unique solutions 

are founded on multiple imaging and process constrains during the collection of 3D 

CXD patterns.  The applied phase retrieval works on the basis of internal 

redundancies in the collected patterns.  These redundancies are sufficient in 

quantity as long as the diffraction data meets the oversampling, or Shannon 

constraint.(200)  That is the “number of measurement points be at least twice the 

number of unknown density values within this support”(196) or the sample has its 

Fourier transform sampled at least twice the Nyquist frequency.  This is sufficient to 

determine the unique phase sets in two or three dimensions.  The second 

constraint, the support constraint, states that the imaged crystal needs to be 

isolated or sufficiently separated from others in terms of spatial or orientational 

distance.  This ensures that the recorded diffraction data can be ascribed to only a 

single crystal in a so-called support volume which contains all of the complex 

sample density (Chapter 5.2.4.).   
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Figure 5-2 illustrates a basic phase retrieval process.  The procedure begins with a 

guess for the lost phase information associated with a particular diffraction data set.  

An inverse Fourier transformation (F-1) is then applied, which yields a first real 

space estimate of the crystal shape (Fourier transforms connect the generated real 

space images (left column) with the reciprocal space data sets.).  Having ensured 

that the crystal is indeed isolated (yellow box – indicating the support volume), the 

generated first estimate of the actual “crystal shape” is Fourier transformed (F) to 

yield an the three-dimensional diffracted wavefield of this first estimate.  A modulus 

constraint is then applied i.e. the differences between the experimentally 

measured and calculated intensity of the first estimate are minimized.  This is 

achieved by evolving the guessed phase iteratively, i.e. the process is repeated in 

an iterative round - robin manner with each side repeatedly updated until a self-

consistent solution is reached (Chapter 2.9.2.3 and Appendix D).(196) 

 

 

 

Figure 5 - 2:  Illustration of a basic phase retrieval algorithm.  This starts from a 
collected 3D CDX pattern to which a phase is guessed and inverse Fourier 
transformed (F-1).  A support constraint (opaque box) is then applied and a Fourier 
transformation carried out.  A modulus constraint with the measured intensity is 
enforced next.  The process is then repeated under evolution of guessed phase till 
a self-consistent solution is found.  Image taken from (196). 
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5.2.4:  Sensitivity of the Method to Lattice Deformation   

 

A detailed explanation of the origin of lattice deformation sensitivity in BCDI is given 

in Appendix D.  In brief, the lattice displacement present in an imaged crystal 

results in a distinct asymmetry in the collected CXD pattern.  This carryover of 

information into the recorded coherent 3D diffraction pattern is used in BCDI, and in 

particular the phase retrieval algorithms, to rebuild the lost phase information and 

with it the information on lattice displacement.  This is analogous to the geometrical 

phase analysis used in electron microscopy.(197, 339) 

Considering the Fourier transform of an ideal crystal – which is finite in dimensions 

and has a 3D lattice in perfect register - the observable intensity distribution in 

reciprocal space is periodic and the pattern correlates with the crystal shape as 

determined by its expressed facets.  The intensity distribution is symmetric about 

the origin of reciprocal space and with it the intensity will be symmetric about the 

reciprocal lattice points.  This ultimately results in a symmetric diffraction intensity 

pattern when recorded across a Bragg peak.  However, since real crystals possess  

defects the recorded diffraction is generally not symmetric and possesses both a 

symmetric and anti-symmetric parts.   

The symmetric parts can be ascribed to the crystal’s electron density distribution, 

given that these interact with the incoming X-rays.  The anti-symmetric part in a 

CXD pattern can be directly related to variations in the real space phase when 

measuring under the Bragg condition i.e. coherent scattering conditions.  In this 

case the real space phase changes are a result of local displacements of atoms 

from their ideal lattice position projected onto the Q vector of the Bragg peak.  In 

simple terms, the lattice displacement changes locally the scattering condition, 

which induces a change in phase and therefore a distortion in the collected 

diffraction pattern.  Having reconstructed a 3D CXD pattern due to scattering from 

all parts of the crystal, the displacement is visualized as a real space phase map at 

each position in the crystal.  This is returned and separated by a phase retrieval 

algorithm.(196)  Figure 5-3, illustrates this argument.  
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Figure 5 - 3:  Illustration highlighting the relationship between the local lattice 
displacement and the alteration in real space phase carried over into the CXD 
pattern.  Shown is a generic lattice arrangement (blue) in which a block of material 
is displaced from its ideal position (pink) by a vector or u(r).  The phase of X-rays 
scattered by the displaced block is therefore shifted relative to the material in 
perfect register (highlighted in green), with the total amount given by 𝜙(𝑟) = 𝑘𝑓 ∙

𝑢(𝑟) − 𝑘𝑖 ∙ 𝑢(𝑟) = 𝑄 ∙ 𝑢(𝑟).  𝜙(𝑟) is equal to the phase.  𝑘 the incoming and 
scattered wave vector and Q the scattering vector, set to a Bragg condition.  In the 
Bragg condition every part of the perfect crystal scatters in phase – with areas of 
displacement and phase shift becoming a region of complex density with the same 
amplitude as the rest of the crystal but with a phase 𝜙(𝑟).  The scattering vector Q 

is given by 𝑄 = 4𝜋 sin(𝜃) /𝜆.  2𝜃 the angle between the incident wave and the 
detector.  Illustration reproduced after (196, 340).  
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5.2.5:  Data Visualisation  

 

After successful phasing of the 3D CXD patterns and inverse Fourier transformation 

the data was saved in a VTK format.  Data sets were visualised using the Mayavi2 

data visualizer.(341, 342)  The obtained complex density can be separated into 

amplitude and phase.  As stated above, this is interpretable as the physical density 

(electron density distribution) and lattice displacement present in the sample.  

These are presented either in the form of iso-surfaces and central cut slices through 

a given electron density representation, or in the form of colour maps projected onto 

generated iso-surfaces. 
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5.3:  Crystal Growth, Dissolution and Dislocations 

5.3.1:  Introduction  

 

Dislocations, and the resulting areas of atomic displacement play a significant role 

in the mechanisms by which crystals grow and dissolve.  They also have a 

significant effect on the properties of crystalline materials,(343, 344) altering the 

chemical reactivity of rock forming minerals,(345, 346) and the mechanical strength 

of skeletal and construction materials.(112, 347-350)  Our initial knowledge 

concerning strain and crystallographic defects was primarily derived from indirect 

observations such as changes in the growth rates and strength of materials.  

Optical microscopy revealed dislocation pile-ups.(351)  With the development of 

microscopy techniques, it is now possible to directly visualize individual 

dislocations.  AFM has enabled the dynamic study of single dislocations in 2D.(143)  

TEM, which was initially limited to presenting 2D projections of 3D thin 

specimens,(352) is nowadays capable of visualizing dislocations and strain fields in 

3D with near atomic resolution in vacuum.(339, 353-356)  However, due to the 

inherent shortcomings in these methods, 3D imaging of the formation or movement 

of dislocations during dynamic processes such as crystal growth and dissolution 

has still not been achieved.  

Utilizing Bragg coherent diffraction imaging (BCDI),(196) we here study the 

response of individual calcite rhombohedra (CaCO3, triclinic) to cycles of crystal 

growth and dissolution.  This work provides a first step in the imaging of the 

formation and movement of dislocations in 3D.  This is rendered possible as BCDI 

provides combined 3D information regarding morphology and localized lattice 

deformation of the growing and dissolving calcite rhombohedra at a resolution of 

~50 nm.   

For the past century, crystal growth and dissolution studies focused on the 

mechanisms underlying experimental observations.(357)  This eventually led to 

descriptions applicable to both crystal growth and dissolution, Chapter 1.3.2.3.(38)  

Fundamental to this was the early recognition of crystallographic defects, and most 

prominently the importance of screw dislocations for crystal growth.(358)  The 

lattice deformation (strain) surrounding a defect not only governs the internal 

energy of a finite crystalline body,(359) but also locally alters the activation barrier 

towards external stimuli at a crystal surface.  These stimuli include crystal growth, 

dissolution, catalysis, mechanical impact and charge transport.   
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The study presented here directly examines the fundamental idea that strain energy 

and dislocations can alter a crystal’s (calcite rhombohedron) response to external 

stimuli in the form an supersaturated (crystal growth) and undersaturated 

(dissolution) solution.  BCDI allows for a direct visualisation of changes in the 

localized strain fields associated with dislocations during the growth (and 

dissolution) of single crystals from the nano- to the micron-scale in their native 

state.  It thus provides a unique insight into these processes, where this is currently 

not possible using any other means.(197, 360) 
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5.3.2:  Experimental  

 

5.3.2.1:  Mineralisation 

Calcite crystals to be analysed were nucleated by placing 100 µl droplets of a 

solution containing CaCl2, urea and urease on hydroxyl terminated SAMs, 

supported on gold thin films.  The added solution was prepared by combining 350 µl 

urease (1 mgml-1) with 1 ml of 5 mM CaCl2/ 20 mM urea.  Details regarding 

substrate preparation are given in Chapter 2.2.1.  Precipitation of calcium carbonate 

occurs on enzymatic hydrolysis of urea to ammonium and carbonate, Chapter 

4.4.2.(174)  Figure 5-4a illustrates the formation mechanism.    

This precipitation procedure was selected for multiple reasons.  The enzymatic 

hydrolysis of urea creates a supersaturation profile similar to that of the ADM 

(Chapter 4), which results in a large number of majorly unstrained crystals.  The 

use of hydroxyl terminated SAMs ensures that we obtain a population of (104) 

oriented calcite (Chapter 5.4.2).  These two factors, combined with the restricted 

solution volume used (droplets of 100 µl), limit the final crystal size and generate a 

sample of predominantly (104) oriented,(361) largely unstrained, calcite 

rhombohedra with average diameters of  1.25 μm of sufficient density.(219)  The 

prepared crystallisation setup was kept at 100% r.h. to avoid droplet evaporation.   

This methodology satisfies four critical constraints for BCDI imaging.  Firstly it 

generates crystals with spatial dimensions smaller than the coherence length of the 

illumination source.  Secondly, the crystals imaged are not overly strained, and thus 

are suitable for current generation phase retrieval algorithms to handle.  Thirdly, a 

high enough numerical density of crystals on the substrate allows the localisation of 

a suitable crystal in a timely manner.  Finally, nucleation on hydroxyl terminated 

SAM fixes the crystal in place, which ensures that there is no movement of the 

imaged crystal during image acquisition.  
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Overgrowth of deposited calcite rhombohedra was carried out in-situ on 

samples which had previously been imaged by BCDI and centred into the Bragg 

condition.  Overgrowth was achieved by introducing Kitano solution (Chapter 2.2.2.) 

and simple solvent evaporation.  A 50 µl volume of  1 mM calcium bicarbonate 

solution was placed on the still-aligned sample, where evaporation and CO2 out-

gassing results in a supersaturation increase, which induces the deposition of new 

material.  After complete evaporation of the droplet, the selected crystals were then 

re-imaged, Figure 5-4b.  Calcium bicarbonate solutions were prepared by adding 

100 mg of CaCO3 to one litre of Milli-Q water, through which CO2(g) was bubbled for 

three hours. 

Partial dissolution of BCDI imaged calcite crystals was achieved by depositing 50 

µl of 0.1 wt% acetic acid solution onto the aligned substrate, which carried an 

estimated number density of 0.1 crystals µm-2 (Appendix D).  The solution was then 

removed after 60 seconds.  This was followed by addition and removal of a drop of 

ethanol to wash the sample, and a further diffraction pattern was collected.  This 

process was then repeated to obtain successive dissolution stages of the same 

single crystal, Figure 5-4c. 
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Figure 5 - 4:  Schematic illustrating the formation (a), overgrowth (b) and repeated 
partial dissolution (c) of calcite formed on hydroxyl terminated SAMs.  From left to 
right given in (a) is the urea-urease hydrolysis based nucleation and deposition of 
calcite rhombohedra.  (b) Overgrowth of the formed rhombohedra is achieved by 
addition of calcium bicarbonate solution and subsequent solvent evaporation.  (c) 
Repeated partial dissolution of the calcite crystals is achieved by the repeated 
addition of acetic acid solution onto the substrate, followed by its removal and a 
washing step.    
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5.3.2.1:  Coherent Diffraction Imaging  

BCDI experiments were carried out at beamline I16 at the Diamond Light Source.  

Calcite crystals of sizes 1 - 4 µm were imaged by BCDI at different stages of an 

applied growth and dissolution cycle.  BCDI experiments, phase retrieval and 

dislocation analysis were performed as outlined in Chapter 2.9.2.3/ Appendix D.   

In brief, calcite rhombohedra < 2 µm in diameter were illuminated individually with 

monochromatic X-rays (8 keV), whose coherence volume is larger than that of the 

investigated crystal.(198)  A series of 2D diffraction patterns, separated by 0.003 

degrees under Shannon constraints were then collected, (200) by rocking an 

isolated calcite crystal through its off-specular (104) reflection.(200)  The collected 

coherent 3D diffraction pattern, which was formed by scattering from all parts of the 

crystal, is then passed to a phase retrieval algorithm to yield a complex-valued 3D 

image.  A novel phase retrieval algorithm was used, which employs a combination 

of guided phase retrieval with low to high resolution reconstructions.(201, 202)  This 

allows objects with non-negligible phase to be reconstructed from the now complete 

knowledge of both amplitude and phase under consideration of partial 

coherence.(198)  This in turn provides a 3D image of the specimen’s electron 

density distribution via the amplitude, and information regarding atomic 

displacement via the phase.  As stated, dissolution was achieved by depositing 

dilute acetic acid solution on the crystal, while growth was achieved by adding a 

drop of calcium bicarbonate solution.  Alignment of the crystal was maintained 

throughout, as the X-rays were nominally unfocussed and defined by slits with a 

square opening of 200 μm placed 0.3 m before the sample.   
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5.3.3:  Results 

 

5.3.3.1:  Crystal Growth and Dissolution 

Shown in Figure 5-5 are iso-surface renderings of the reconstructed amplitudes 

(electron density) (a) and phase (projected displacement) (b) of the initial crystal (i), 

after growth (ii) along with successive dissolutions steps (iii and iv). 

 

The reconstructed electron density of the initial crystal (i) i.e. as deposited, returned 

the expected calcite rhombohedra exposing five {104} facets towards the solution.  

This is in agreement with electron micrographs recorded of the sample prior to 

analysis, Figure 5-6.  Crystal overgrowth (i to ii) results in an increase in size and 

smoothing of solution facing facets, which leads to a more steady state 

appearance.  The face in contact with the SAM remains unaffected.  Preferred 

growth directions are indicated with blue arrows in the figure.  It is immediately 

evident that 2 of the 5 facets grow more rapidly than the other 3.  This can only be 

explained by the presence of more reactive sites at these two facets i.e. a non-

uniform distribution of defects.  A defect-free rhombohedron would display a 

completely isotropic growth behaviour of solution-facing facets.   

Images of the corresponding projected displacements (strain) are shown in 

Figure 5-5 b, where this is mapped onto an iso-surface with red and blue 

representing lattice contraction or expansion respectively by half a lattice spacing.  

Comparing the projected displacements before (i) and after crystal growth (ii) it is 

seen that displacements do not grow significantly with the crystal but remain 

maximal at the edges.  This is characteristic of active growth fronts.(362)  The 

projected displacement (strain) is visualized here in colour deviation from a 

homogenous lattice condition ranging from –d/2 (lattice dilation, blue) to +d/2 

(contraction, red).  One colour cycle is equal to the displacement of one unit cell. 
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Figure 5-5 also displays two crystal dissolution steps (ii to iii and iii to iv).  In 

contrast to the observed crystal growth, dissolution results in a global surface 

retreat, more strongly in polar crystallographic directions (red arrows) (iii and iv).  

With the first partial dissolution step (iii) also visible are signs of shape deformation 

and the onset of etch-pit formation.  This ultimately results in an increase in the 

relative surface area and in particular roughness of the crystal, with pits displaying 

enhanced degrees of deformation in their direct vicinity.  This is expected 

considering that etch pit formation commonly occurs in the vicinity of 

crystallographic defects and thus enhanced levels of strain.  The second dissolution 

step (iii to iv) under an effectively enhanced level of undersaturation (the sample 

mass has decreased, but the amount of acid added remained constant) results in a 

pronounced change of the overall morphology.  The crystal bears no resemblance 

to its initial form, and now has a porous, spherical appearance.(363)  This change 

in morphology can be explained by the applied undersaturation, which favours the 

production of a “spherical”, equilibrium shape.  The porosity seen can be in part 

attributed to the removal of defect outcrops at the crystal surface and coincident 

etch pit formation.(364, 365)  This is confirmed further when examining the lattice 

deformation (Figure 5-5 b), which reveals an overall reduced deformation on crystal 

surfaces with progressing dissolution.  The “least stable” (strained) regions 

apparently dissolve first, leaving behind a more stable core region (Supporting 

Movies 1, Appendix F).(366)  
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Figure 5 - 5:  Summary of BCDI observations.  Presented are separately reconstructed images of a calcite rhombohedra sitting on a (104) facet as 
formed (i), after secondary overgrowth (ii), and (iii & iv) after consecutive dissolution steps.  Shown are from left to right, top - down, side and 
bottom - up perspectives.  Given in (a) is the electron density (reconstructed amplitude) and in (b) projected displacement (phase).  These 
highlight the shape transition during growth (prominent surface advance,→) towards steady state and equilibrium shape adoption - dissolution (→).  

The primary screw dislocation identified is marked (→).  The beam enters along the z - axis, with the y axis vertical to z.  Crystal and substrate are 
located at a set scattering angle towards the beam direction (z) and spanned plane (x-z).(199)  
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Figure 5 - 6:  Electron micrographs of calcite rhombohedra as deposited (i), after 
secondary overgrowth (ii), and (iii & iv) after consecutive dissolution steps.  Evident 
is the initial increase in particle volume with crystal overgrowth (ii).  This is followed 
by shrinkage, etch pit formation, surface roughening (iii) and a porous “spherical” 
isometric appearance of the calcite crystal (iv).(199)  
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5.3.3.2:  Screw Dislocations and Dislocation Network   

An initial puzzle offered in the data was the nature of a single feature present in 

both the projected displacement and the electron density, throughout the growth 

and dissolution cycle (i-iv).  This is indicated by the grey arrows in Figure 5-5.  

Closer examination of this region by means of central cut slices through the 

amplitude and displacement, Figure 5-7, revealed the combined presence of a 

hollow core (white arrows) and a surrounding spiral displacement (arrowed blue 

circle).  In combination, these features are characteristic of a dislocation.(351, 367)  

It is emphasized that each data set (i-iv) was reconstructed independently and the 

continued presence of this feature throughout showed that it was not a 

reconstruction artefact.  
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Figure 5 - 7:  Central cut slices through the imaged crystal’s electron density 
(amplitude) – top row - and projected displacement – bottom row.  Central sections 
are shown of the initial crystal after growth (ii) and repetitive dissolution steps (iii & 
iv).  Provided are two viewing directions top down (a) and side (b) not corrected for 
the set scattering angle.  Pointed out are the initially detected regions, possessing 
both a low-amplitude core (white arrows) and spiral deformation (circular blue 
arrow).(199)  
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In an effort to confirm the possibility that BCDI can identify individual dislocations, a 

simulated screw dislocation at atomic resolution was processed by BCDI scripts.  

Both the hollow core and spiral displacement are retained after BCDI processing 

the simulated screw dislocation, which indicates that BCDI is truly capable of 

imaging dislocations, Figure 5-8.  Details of this procedure are provided in 

Appendix D.   

Figure 5-8 a, presents the simulated screw dislocation.  (b) the Fourier transformed 

and subsequent BCDI processed simulated screw dislocation.  The resulting 

displacement of atoms from their ideal lattice positions is given in (c) for the 

simulated screw and (d) the BCDI processed screw.  Figures 5-4 e, provides a 

secondary viewing angle of (c) and (d) down the dislocation line.  From this 

perspective it is evident that both the hollow core and spiral displacement were 

retained after BCDI processing.   

 

 

Figure 5 - 8:  Provided is a comparison between a simulated screw dislocation at 
atomic resolution (top) and a simulated screw processed by BCDI scripts applied 
(bottom). (a) simulated screw, (b) simulated screw Fourier transformed and BCDI 
processed.  (c) and (d) simulated screw with given resulting displacement 
respectively rendered on top.  (e) and (f) secondary viewing angle revealing the 
retention of both hollow core and spiral displacement after BCDI processing of the 
simulated screw.(199) 
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By specifically examining regions that possess a spiral deformation and also have a 

low-amplitude core, several additional dislocations in the imaged crystal can be 

identified, Figure 5-9 and Supporting Movies S1 (Appendix D and F).  

In simple terms, the crystal is screened for areas that show both of these features 

by repeatedly taking the gradient of electron density and projected displacement.  

The gradual decline in electron density towards the dislocation core makes this 

selective, which results in an increasing gradient value at this point, while declining 

everywhere else.  The procedure can be problematic in that there is a possibility of 

falsely identifying regions that are just outside of the crystal as dislocations.  One of 

these falsely identified regions is highlighted in Figure 5-9 (orange circle). 

 

The calcite rhombohedra imaged (i) possess several dislocations located close to a 

crystal surface.  The dislocation cores are approximately oriented normal to the 

expressed 104 facets, and extend to crystal surfaces.  Dislocations are preserved 

during the structural transition (i-iii), and increase in length (ii), commensurate with 

the overall crystal growth.  Crystal growth introduces new dislocations in areas of 

prominent crystal growth.  No information regarding the change in supersaturation 

during growth and dissolution is available and hence no statement regarding its role 

in changing the operating growth mechanism can be made.   

Following the first dissolution cycle, the dislocations retreat with further 

etching of the crystal.  Prominent etch pits are located on top of the initially present 

dislocation outcrops.  This is in consistent with the opening of the dislocation.(38)  It 

is notable that a new dislocation can be identified after the initial dissolution (iii) on 

the top surface where etch-pit formation is occurring (iv).  The origin of this 

dislocation is as yet unexplained, but it is possible that it was not initially detectable 

due to the limited resolution of BCDI.  The final stage possesses a significantly 

reduced amount of dislocations.  The etch pit profiles end mostly in “sharp tips” or 

are flat-bottomed, which potentially provides information regarding the type of 

defect initially present.(365)  Loss of faceting and dislocation retreat near the 

surface supports the postulation given above, such that the least stable regions 

dissolve first, leaving behind a more stable core.   
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Figure 5 - 9:  Given are iso-surface renderings of defects within calcite.  Presented 
are dislocations (hollow core + spiral displacement) identified by BCDI in deposited 
calcite (i) after growth (i-ii) and dissolution (ii-iv) within overall crystal shape – 
transparent electron density. From left to right given are top-down, side and bottom 
up perspectives.  Dislocations are primarily identified near crystal surfaces, 
observed to actively grow in addition to one predominant screw dislocation present.  
Later being substrate normal present across the whole crystal height (o).  Falsely 
identified dislocation (o).(199) 
  



Chapter 5:  Bragg Coherent Diffraction Imaging of Calcite Single Crystals 

265 

5.3.3.3:  Overall Strain Effect   

An assessment of the overall effect of dislocations, and their associated strain fields 

on the growth/ dissolution behaviour of the crystals was made by determining the 

root-mean-square (RMS) displacement as a function of fractional crystal size, 

Figure 5-10.  The RMS values given were calculated over increasingly larger shells 

for each reconstruction separately.  These start from the centre of the crystal - 

fractional size 0 – and radiate towards crystal surfaces - fractional size 1. 

The crystal as deposited experiences strain which linearly increases with the 

fractional crystal size, from the centre outwards.  This behaviour changes after its 

overgrowth (ii) revealing a plateau region up to a fractional size of ~ 0.6, before 

exponentially increasing.  The strain progression that occurs with increasing 

distance from the core (i.e. edging towards the crystal surfaces) directly implies that 

(i) is under the effect of surface stress, which propagates almost to the centre of the 

crystal.  The penetration depth of the surface stress then diminishes after crystal 

growth and the associated increase in size (ii) leading to the observed inner, 

plateau region.  It has to be noted that the presented line plots do not have a 

common start point in terms of displacement.  This is a result of the shift in the 

centre of mass that occurs as a result of the observed asymmetric growth.  the 

given line plots can therefore only be used to see qualitative data trends.  

Considering the first dissolution phase (iii) the increased roughness and etch-pit 

formation that occurs leads to a significantly higher total displacement.  The profile 

of strain progression with fractional size nearly levels out across the whole size 

regime.  This shows that the increased number of surface defects and the 

associated increase in free surface area, due to etch pit formation, affects the entire 

crystal, giving rise to the increase in overall displacement.  After the final dissolution 

(iv) and the major removal of dislocations and surface defects, the overall 

displacement drops significantly, becoming almost horizontal.  This is in agreement 

with the BCDI visualizations given above.  It also suggests that the surface effects 

are less pronounced than after crystal growth, despite the increase in relative 

surface area to volume. 
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Figure 5 - 10:  The total displacement measured over the course of an applied 
growth/ dissolution cycle (i-iv) vs fractional crystal size is shown.  The centre of the 
crystal is equal to 0 and the crystal surfaces are equal to 1.  The total displacement 
was calculated based on measured mean root means square displacement over 
increasing shell sizes.  The presented line plot highlights the diminishing/ increasing 
relevance of surface effects with growth and dissolution with respect to the crystal 
size/ volume.  Notable are the unequal starting strain percentages at low fractional 
sizes (centre of the crystal).  These can be explained by the anisotropic growth of 
the crystal, which induces a shift in the centre of mass i.e. fractional size 0 
shifts.(199) 

  



Chapter 5:  Bragg Coherent Diffraction Imaging of Calcite Single Crystals 

267 

5.3.4:  Discussion 

 

With its ability to simultaneously generate 3D images of the strain within a crystal, 

and of its gross morphology and internal structure, BCDI provides an extremely 

powerful tool in the visualization of single dislocations or the entire network of 

dislocations present within an individual crystal.  This is particularly impressive 

when considering the limited real space resolution of BCDI in this case (~50 nm) as 

compared with the size of crystallographic defects.   

The capability of BCDI to do so – visualizing the dislocation network – can 

be explained when it is recalled that the real-space phase seen in images obtained 

by BCDI are achieved by mapping the projection of the lattice displacement onto 

the Bragg peak.  As a dislocation is a line defect characterized by a Burgers vector 

which measures the topological shift of the crystal lattice along the dislocation line, 

it acts as one entity in the lattice (the hollow core observed here).  This means that 

in order for the crystal to remain uninterrupted at long range, the Burgers vector is 

usually equal to a lattice vector of the crystal (Chapter 1.3.3).(368)  Whenever there 

is a component of the Burgers vector parallel to the dislocation line, it has a screw 

dislocation character, which causes the lattice to spiral around the dislocation (In 

this way growth and dissolution can be facilitated).  Because of the lattice potential 

energy associated with this long-range strain field, line defects are visible to BCDI, 

“the dislocation/ strain field in its entirety is just bigger than the real space 

resolution”.   

 

Dislocations, with their hollow cores, are stabilized near free surfaces of crystals, as 

found in this work.  In this way, dislocation motion can be used to transport material 

(ions, clusters etc.) into and out of crystals from the solution.(369)   
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The BCDI experiments performed here directly visualize the effect of several 

fundamental factors governing the growth and dissolution behaviour of a crystal.  

The importance of surface energy minimisation is seen in the observed shape 

transitions towards steady state (growth) and equilibrium shape adoption 

(dissolution).  The minimization of the total surface energy in both cases highlights 

the effects of relative changes in interfacial energy, where this comes into play here 

as the crystal is brought into contact with a supersaturated and an undersaturated 

solution.  This drives low energy facet formation during growth while high energy 

facets are preferentially expressed during dissolution.(363)   

The 3D visualization of the dislocation network present within a micron sized 

single crystal achieved here,(370) is the first identification of the dislocation network 

present within a mineral crystal under atmospheric conditions (this was previously 

limited to colloid systems.(371)).  What makes this special is that this will now make 

it possible to image the dynamics of a dislocation network (studies watching 

dislocation movement in composite crystals are currently pursued.).  By applying 

growth and dissolution we here show the increased reactivity of strained surfaces.  

Further, the preferential dissolution and etch pit formation on top of/ within receding 

screw dislocations can be taken as direct evidence of the strain energy stored 

within dislocations affecting the crystal’s response to external stimuli.(366) 

The changes seen in RMS displacement upon crystal growth and dissolution 

are indicative of the decreasing/ increasing significance of surface effects with 

respect to particle size and volume.  This is shown as the imaged crystal transits 

between sizes of hundreds of nanometres and microns during growth and 

dissolution. 
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5.4:  Heterogeneous Nucleation on a Soft Interface 

5.4.1:  Introduction  

 

Biominerals are characterised by unique morphologies, hierarchical ordering and 

properties unsurpassed by their synthetic equivalents.(23)  One key strategy by 

which organisms create such structures is the use of insoluble organic matrices to 

regulate crystal nucleation and growth.  There, it is widely considered that oriented 

crystal growth is the product of nucleation on an organized soft substrate whose 

chemical structure dictates the orientation of a growing crystal.   

The default example of this behaviour is Nacre, or mother of pearl.  Nacre is an 

inorganic–organic composite which is present in many molluscs as an iridescent 

inner shell layer.  The inorganic–organic composite matrix consists of thin layers of 

organic materials, around 30 nm in thickness, sandwiched between hexagonal 

tablets of aragonite.  A particularly intriguing feature of this structure is that each of 

the aragonite tablets is oriented such that the c-axis of the mineral lattice is tilted 

about 12º perpendicular to the organic layer.  An electron micrograph of this 

arrangement in provided in Figure 5-11a and b.  The inner aragonitic layer in 

combination with the outer calcitic, prismatic layer, which is also highly oriented, 

provides a hard and fracture resistant protection for the organism.  In simple terms, 

the created brickwork in the aragonitic nacre layer hinders crack propagation in the 

c-axis direction.(80, 372, 373)  

A question that remains unanswered, however, is how the organic, self-

assembled matrix is able to dictate not just the morphology of each tablet but also 

this level of orientational control over thousands of tablets.  It is currently believed 

that it is the chemical functionality of the organic template that provides orientational 

control while the morphology is confined by the insoluble organic matrix.  A 

schematic illustrating this proposed mechanism of formation of nacre is provided in 

(c). 

Despite a continued emphasis on the use of self-assembly strategies to produce 

organized materials similar to Nacre, the ability to use soft interfaces to control 

crystal nucleation and growth is still poorly understood.(374)  The manner by which 

biomineralizing organisms control crystallisation at interfaces has been mimicked by 

precipitating CaCO3 on a range of synthetic organic matrices.  There, control over 

nucleation has been attributed to three mechanisms: epitaxy, electrostatic 

interaction, and stereochemical matching.(42)  Organothiol self-assembled 
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monolayers (SAMs) on coinage metals(171) have been particularly well-studied in 

this regard and in the case of calcite can select a variation of nucleation planes as a 

function of chain length,(375) packing geometry/ tilt,(219) the end group of the thiol 

exposed to the mineral solution,(376) functional group ionization,(377, 378) and 

metal substrate (Au or Ag).(361, 376)  The initial reasoning for the observed 

substrate-dependent orientation was based on stereochemical matching between a 

particular crystal “nucleation” plane and the 2D lattice and stern layer of the 

monolayer.(376)  Subsequent studies refined this view and suggested that the 

dynamic order and flexibility of the interface was a pre-requisite for orientational 

control.(379)  This was postulated based on observations that amorphous precursor 

deposits of the mineral induced monolayer disorder.(219)  This suggests a mutual, 

cooperative ordering process,(219, 380, 381) which creates local, critically-sized 

crystalline domains in the monolayer on which nucleation occurs.  These then direct 

subsequent crystal growth(382) such that oriented nuclei form based on charge 

epitaxy or average charge density in those domains.(383-385)   

Here, we use Bragg Coherent Diffraction Imaging (BCDI)(196) to study the growth 

of calcite crystals on a soft interface (SAM of 11-Mercaptoundecanoic acid on Au 

(111)/Si (001)).  BCDI uniquely allows us to visualize the lattice deformation (strain) 

present within oriented single crystals at a spatial resolution of 30 nm3, and to 

observe how this is related to the crystal morphology  This provides the first direct 

information about how a soft structure can generate lattice deformation in 

heterogeneously nucleated single crystals and how this strain then informs the 

growth and final morphologies of the crystal.  Patterns extracted from single crystals 

with a polar nucleation plane exposing alternating Ca2+ and CO3
2- layers supported 

the notion of dynamic surface reorganization as no increased level of strain 

surrounding the suspected nucleation site could be detected.  The accumulation of 

interfacial strain in the direction of preferred planar growth ultimately results in the 

formation of stress relief sites in the form of dislocation loops, which cause a 

morphological instability.  This in turn leads to an accelerated shape transition from 

the initial calcite tetrahedron to thinned calcite rhombohedra.   
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Figure 5 - 11:  Electron micrographs of the inner nacreous layer of an Atrina rigida 
mollusc shell.  (a) Cross-sectional view of oriented aragonite tablets, (b) top – down 
view of stacked layers.  Images taken from (372).  (c) Schematic illustrating the 
formation of sheet nacre.  (i) This starts from the formation of an organic scaffold 
and initial oriented nucleation of aragonite tablets.  (ii) Growth of aragonite tablets is 
limited in the c-axis direction by secondary layers of organic matrix.  (iii) Continued 
lateral growth of tablets.  (iv) Primary nacre layer completion.  (v) Nucleation of 
secondary tablet layer directed by mineral bridges connecting primary and 
secondary layer.  Schematic after (386). 
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5.4.2:  Experimental  

 

Preferentially oriented calcite was obtained by diffusion methods.  200 µl of 5 mM 

CaCl2 was deposited on an inverted, functionalized substrate, which was placed in 

a sealed container (2l) in the presence of (NH4)2CO3(s) (2g).  The inverted substrate 

prevented “homogeneously” formed calcite settling onto the surface.  (NH4)2CO3(s) 

decomposition into CO2(g) and NH3(g) created the required supersaturation for 

CaCO3 precipitation and provided a gradual increase in supersaturation, which 

ensures a sufficient number density of single crystals.  Samples were removed after 

< 30 minutes of incubation.  Arrays of iso-oriented calcite crystals of 1-4 µm in 

diameter were obtained.   

 

Functionalized self-assembled monolayers (SAM) were prepared on freshly-

deposited noble metal films.  Thin films were deposited on silicon wafers using a 

Mantis Qprep 250 deposition system at a base pressure below 10-6 mbar.  2 nm of 

Cr were initially deposited to promote substrate adhesion, followed by the 

evaporation of 30-50 nm of Au at ≤ 0.1 nms-1.  Monolayer formation on metal 

substrates was initiated by immersion in 1mM thiol ethanol solution (11-

Mercaptoundecanoic acid).   

Organothiol self-assembled monolayers on noble metals were chosen as 

the “soft” substrate due to their reported ability to orient calcite crystals and their 

ease of preparation.(15)  The spontaneous formation of molecular assemblies on 

noble metals is a result of the strong interaction between the thiol group and the 

metal substrate and the interaction of neighboring alkyl chains.  This introduces a 

2D close packing order of the SAM on the substrate.  Alkyl thiol SAM units were 

employed here and have a basic structure of a surface active head group, an alkyl 

chain and a functionalized tail group, Figure 5-12a.  The surface active head is a 

mercapto SH group which interacts strongly with the noble metal substrate.  In fact, 

the reaction is so favorable that all available bonding sites will be utilized.  This 

results in a close packing across the substrate which is further enhanced by the 

“coalescence” of neighboring alkyl chains via van-der Waals forces (b).  This 

ultimately creates small, defect free areas of a 2 dimensional “crystalline” 

lattice.(21)  In the case of alkyl thiols adsorbed on gold (111), a lattice of a = 4.97 Å, 

α = 22-32º and β = 50-55º has been reported (c).(387)  The size of ordered, 

potentially defect-free domains is essentially dependent on the quality of the gold 

substrate used i.e. roughness and gold island size.(388)  The functionalized tail 

group determines the surface properties, and in the case of calcite can select one 



Chapter 5:  Bragg Coherent Diffraction Imaging of Calcite Single Crystals 

273 

or more preferential nucleation planes.  A general distinction between “non-polar” 

(uncharged) functional tail groups (OH), which induce non-polar orientations or 

nucleation planes (104) and a polar functional tail group (COOH) which induces 

polar orientations or nucleation planes ((012), (113)) can be made.  Why are SAMs 

considered a soft substrate?  SAMs provide a “crystalline” sub lattice - yet they can 

deform and supposedly absorb a significant amount of stress upon interfacial 

nucleation and adapt in structure to the nucleating phase. 

 

 

Figure 5 - 12:  (a) Schematic showing an Organothiol molecule adsorbed on gold 
(111) in upright configuration.  (b) SAM monolayer formation (i) “physisorption” of 
Organothiol on gold, (ii) lying down phase, (iii) standing up process, (iv) completed 

monolayer.  Schematics after (387).  (c) Scanning tunnelling microscope image of 

a 2D hexanethiol lattice- SAM on Au.  The bright spots indicate the position of the 

thiol molecules.  Image taken from (387).    
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BCDI experiments, and the subsequent phase retrieval and dislocation analysis 

were performed as described in Chapter 2.9.2.3/ Appendix D. 

 

The Winterbottom reconstructions shown are of identical volume with stepwise 

increasing relative surface energies (γs; 0.1 - 0.9).  The crystal/ water interfacial 

energy values used were taken from Duffy.(110)  The interfacial energy for the 

solution-facing {104} facets was kept constant, while the interfacial energy between 

the suspected nucleation plane (012) and substrate (hard interface) was 

varied.(111)  

Crystal orientation was inferred using a diffractometer in pole configuration, with a 

step size of 1.5° at 2.5 sec (Psi 0-90, Phi 0-360).  Substrates were characterized 

using atomic force microscopy in tapping mode at a scan rate of 1.98 Hz with pixel 

dimension of 512 x 512.  Images of the internal structure of oriented calcite were 

obtained using high resolution TEM (HRTEM) imaging of thin sections prepared by 

Focused Ion Beam Milling (FIB) (Chapter 2).  
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5.4.3:  Results  

 

5.4.3.1:  Nucleation and Growth of Calcite on SAMs    

Oriented calcite crystals were precipitated on 11-Mercaptoundecanoic acid SAMs 

on Au (111)/ Si (001) using a hanging drop setup in which 200 µl drops of 5 mM 

CaCl2 solution were deposited on the prepared substrate, and then inverted.  

Samples were then exposed to ammonium carbonate vapour in a sealed 

environment for 30 minutes.(169)  This method was chosen as it limits the crystal 

size and prevents homogeneously nucleated calcite settling onto the SAM.  

Characterization of the crystal orientations was achieved using pole measurements, 

which showed that the majority were oriented with the (012) plane parallel to the 

SAM, while a minor fraction were (113) oriented, Figure 5-13.  Investigations 

regarding the formation and growth of oriented calcite on 11-Mercaptoundecanoic 

acid are summarized in the schematic presented in Figure 5-14.  The process 

starts with the diffusion of CO2 and NH3 into hanging droplets of CaCl2 solution, 

where this results from the decomposition of ammonium carbonate ((NH4)2CO3),.  

(a) This causes the formation of amorphous calcium carbonate (ACC), which 

subsequently deposits onto the substrate.  (b) The transformation of ACC yields 

oriented tetrahedral - pyramidal - calcite with three {104} facets in contact with the 

solution.  (c) Further growth of the emerging pyramids leads to the truncation of the 

long axis vertex and the expression of one additional solution facing {104} facet in 

its place.  (d) This culminates in the complete structural transition from initially 

present tetrahedra to rhombohedra as growth (preferentially normal to substrate) 

commences.   

Electron micrographs of the morphological development of the crystals 

provide support for this statement, Figure 5-14.  These demonstrate that the initial 

form is roughly pyramidal and appears to comprise an aggregate of smaller 

particles; this is consistent with growth via an amorphous calcium carbonate (ACC) 

precursor phase.(218, 219)  These particles then convert to an irregular tetrahedron 

and eventually truncate on the long axis vertex, generating an additional {104} 

facet.  As growth normal to the substrate begins to dominate, the crystals then 

undergo a morphological transition to rhombohedral morphologies. 

The formation of additional facets is readily explained, in terms of surface 

free energy minimization.  As crystal growth continuous, the crystal surface-to-

volume ratio decreases, and at some point the volume term becomes dominant, 

which leads to the formation of the energetically more favourable rhombohedral 
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morphology of calcite.  Winterbottom reconstructions, which provide a 

phenomenological probability of the equilibrium shape of a crystal sitting on a solid 

substrate, were performed with a fixed crystal volume and orientation of (012).  The 

obtained Winterbottom reconstructions agree with the morphological development 

of the crystals observed experimentally, when the degree of interaction between the 

nucleation facet and the substrate was systematically decreased, Figure 5-14.  The 

agreement deviates in the latter growth stages, Winterbottom reconstructions end in 

regular corner - standing rhombohedra as compared to the thinned, surface 

elongated calcite rhombohedra found experimentally.(111)   

Calcite crystals with sizes 1-4 µm were then investigated at different stages of 

morphological development using BCDI, where this provides a simultaneous 

visualization of the crystal morphology and strain.  BCDI image reconstructions 

were performed as outlined in Chapter 2.9.2.3 and Appendix D. 
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Figure 5 - 13:  Texture of calcium carbonate (calcite) precipitated onto carboxylate 
terminated organothiol SAMs supported on a thin gold film (111) deposited on 
glass.  Presented are pole figures derived from powder diffraction data sets with a 
(113), (012), and (104) substrate normal (ND - normal direction, RD – rolling 
direction, TD – transverse direction).  Evident is the presence of two highly oriented 
populations (012) and (113) exposing homoionic substrate facing facets.  No signal 
attributed to crystals oriented with {104} faces parallel to the substrate could be 
detected.  Difftractograms were collected for samples deposited on glass substrates 
-in contrast to the silicon waver supported crystals used in BCDI experiments - in 
order to avoid interference related to silicon or gold scattering . 

 



Chapter 5:  Bragg Coherent Diffraction Imaging of Calcite Single Crystals 

278 

 

Figure 5 - 14:  Morphological progression of calcite nucleated on COOH terminated SAMs.  Given are schematic (top), experimental observation –
micrographs- (centre) and expected equilibrium morphologies (bottom) depicting the formation of preferentially oriented calcite nucleated on 
carboxylate-terminated SAM supported by a thin gold film.  (a) Diffusion of CO2 and NH3, into CaCl2(aq) causes ACC formation (●) and deposition 
onto the substrate in inverted droplets.  (b) Precursor depletion yields oriented tetrahedral calcite exposing three smooth 104 facets.  (c) Further 
growth leads to long axis vertex truncation and development of an additional facet.  (d) Further crystal growth, results in the complete transition of 
calcite tetrahedron to rhombohedral calcite.  Winterbottom reconstructions are of identical volume with stepwise increasing relative surface energy 
(γs; 0.1 - 0.9).  Crystal/ water interfacial energy values used were taken from Duffy.(110)  Further provided is a geometrical overview of terms used 
throughout.  
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5.4.3.2:  BCDI Reconstructions of Calcite Nucleated on SAMs    

BCDI reconstructions from three different calcite crystals, all of which nucleated 

from the carboxyl-terminated SAM, are shown in Figures 5-15 (i-iii).   

The images shown are top-down and bottom-up projections of the iso-surface 

renderings of (a) the reconstructed electron densities or gross crystal morphology 

and (b) the projected atomic displacements (phase).  The displacements are 

represented by a cyclic colour map projected onto the recorded electron density. 

The crystal shown in Figure 5-15 (i) is 2.5 µm in diameter, and has a rough 

appearance.  Two explanations for this appearance can be imagined.  Remaining 

residual reaction solution on the sample which crystallized during drying or 

secondly the crystal was too strained, such that phasing algorithms returned a 

morphology that is unlikely to reflect the crystals true morphology. 

The crystals shown in (ii) and (iii), in contrast, correspond well to the stages 

in morphological development observed by SEM, with new facets forming, and 

facets becoming smoother during growth.  Crystal (ii) is 1.4 µm in size, and 

approximately tetrahedral in shape, with three well-defined 104 faces directed into 

the solution, and one new truncation beginning to form.  At 2 µm in diameter, crystal 

(iii) is at a further stage of development, and has smooth faces and an additional 

104 truncation at a vertex.  The “top edge” of the crystal has also moved on growth 

from (ii) to (iii) such that it becomes almost parallel with the substrate. 
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Figure 5 - 15:  Summary of BCDI reconstructions.  Presented are 3 reconstructions obtained form 3 different crystals of calcite (i-iii) nucleated on a 
carboxylate-terminated SAM.  (a) Reconstructed crystal shapes from BCDI amplitude measurements, and (b) the projected displacements (–d/2 
blue lattice dilation and +d/2 red contraction).  Substrate normal central cut slices through retrieved electron density (c) and projected 
displacement (d).  Given are cuts along the short axis (top) and the long axis truncated vertex direction through the isoperimetric point.  Surface 
cusps are highlighted (ο).  The beam direction is along the z - axis, with the y axis oriented vertically.  The sample/ substrate is located at a set 
scattering angle towards the beam direction (z) and plane (x-z). 
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The BCDI reconstructions also provide a unique opportunity to examine the 

influence of the SAM on the crystal.  In all three crystals, the face adjacent to the 

SAM exhibits a degree of roughness that is consistent with AFM measurements of 

the substrate, Figure 5-16.  While schematic diagrams of SAMs invariably present 

a SAM/Au substrate as planar, evaporation of Au onto Au or Si actually generates 

substrates with roughnesses in the order of 1-10 nm.(388)  That the nucleation face 

of the calcite crystals are themselves roughened suggests that the crystal grows in 

a way to preserve interfacial contact.   

Closer examination of the nucleation faces of crystals (ii) and (iii) also 

reveals the presence of two adjacent surface cusp-like cavities of sizes ~70-100 nm 

on each crystal face.  These intriguing features can be seen more clearly in cross 

sections of the crystals (Figure 5-15 a and c ο), which show that they lie in the 

same plane, which lies approximately parallel to the truncated vertex.  The pair of 

cusps are also located closely beneath the truncated vertex.  Crystal (i), in contrast, 

shows numerous cusps, where these are particularly concentrated around the 

“truncated” vertex.  

 

Turning to the strain present in the imaged crystal (as derived from the projected 

atom displacements), Figure 5-15b shows that lattice deformation/ strain is 

concentrated at the edges and corners of each of the crystals (i-iii).  This becomes 

centred on the corners as facets develop (ii-iii).  The images of the cross sections of 

the crystals (Figure 5-15d) reveal how far surface stress induced strain penetrates 

into the crystal.  Surface normal penetration depth was measured to be of <200 nm.  

Substrate – SAM - facing facets share one common strain feature, namely a 

highly localized strain field concentrating around the surface cusps (ii & iii).  This 

radiates from the substrate far into the crystal (ii) and subsequently decreases in 

penetration depth with development (iii).  The displacement surrounding the cusps 

is not evenly distributed around the cusps but is highly concentrated in the direction 

of the newly forming 104 facets.  
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Figure 5 - 16:  Atomic force micrographs of gold film deposited on silicon wafer.  
AFM measurements returned surface roughness of 1.4 nm (Rq) / 6.61 (Rmax).   
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5.4.3.3:  Surface Cusps and Dislocation Loops  

Confirmation that the observed cusps correspond to a physical feature in the 

crystals was obtained by transmission electron microscopy (TEM) of thin sections 

prepared by focussed ion beam (FIB) milling.  Electron micrographs of the prepared 

section and its location with respect to the original crystal are shown in Figure 5-17.  

Figure 5-17a shows the original crystal with the cut direction highlighted in blue.  In 

Figure 5-17b, the prepared lamella is shown, which was originally located beneath 

the long axis at the truncated facet, highlight in yellow.  An area adjacent to the tip 

is then thinned for TEM examination (Figure 5-17c).  Imaging of this section by TEM 

clearly shows a linear feature of lateral size 10 - 20 nm (arrowed) whose location is 

commensurate with the surface cusps observed using BCDI (Figure 5-15 a and c). 

 

Figure 5 - 17:  Electron micrographs of a sample prepared using FIB.  (a) SEM of 
oriented, “tetrahedral” calcite nucleated on a gold film supported SAM eventually 
cut.  (b) Selectively thinned tip of prepared lamella, morphologically originally 
located central beneath the long axis directly under the truncated vertex onset.  (c)  
Presents a higher magnification of the front end of the tip.  Apparent is an area of 
peculiar phase contrast difference (decreased electron density) ~85 x 15 nm.    
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Having established that the surface cusps visualized within crystals (ii) and (iii) by 

BCDI are not artefacts, closer examination of BCDI images revealed that each of 

these cusps are associated with localized strain fields which radiate from the 

substrate into the crystal.  These regions possess both a hollow core and a spiral 

phase, where this combination of features identifies them as dislocations.(368)  

Further examination of the strain fields in the vicinity of these cusps then 

demonstrates that each pair of surface cusps actually form part of a single 

dislocation loop, Figure 5-18 ii and iii and supplementary Movies Appendix F.  The 

cusps are not surface cusps but are the physical expression of the dislocation loop.  

As shown in Figure 5-15d, the displacements associated with these dislocation 

loops are not evenly distributed, but are concentrated towards the new “truncation” 

faces.  Identical examination of the first reconstruction (i) revealed an entirely 

different internal structure.  While crystals (ii) and (iii) were each remarkably 

dislocation-free (with the exception of the single dislocation loops), crystal (i) 

contained numerous smaller dislocations and two larger helical dislocations.  

Helical dislocations reach upwards from the centre of substrate facing facet towards 

the upper active growth front of the truncated vertex.  By comparison, crystals (ii & 

iii) exhibit homogenous strain fields around the centre of the nucleation face.   
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Figure 5 - 18:  Iso-surface rendering of defects present within oriented calcite 
crystals.  Highlighted are defects present in oriented calcite which display both a 
low electron density core and surrounding spiral deformation field.  Evident is the 
defect accumulation (i) and singular dislocation loops (ii & iii) in the direction of the 
initial, elongated pyramidal axis (→). 
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5.4.3.3:  Overall Strain Effect   

To further elucidate the effect of the substrate-induced interfacial strain on the 

growth of the crystal, the displacement present on the nucleation facets was plotted 

against the fractional crystal size (0-1) for all 3 reconstructions (i-iii), Figure 5-19.  

Plotted is the interfacial projected displacement (50 nm inwards) from the base of 

the isoperimetric point (highest point of the crystal) (0), past the dislocation 

outcrops, towards the additional (104) facet (1).  The base of the isoperimetric point 

was considered as potentially reflecting the original nucleation centre.  This was 

done on a purely geometrical basis under the assumption that the smallest 

crystalline nucleus is present in the form of a tetrahedron.  Evident in Figure 5-19 is 

the general increase in projected displacement with distance away from the 

isoperimetric base towards the “truncated” crystal facet.  Crystal (i) shows an 

approximately linear increase in the projected displacement, although good 

correspondence exists between two sections at which there are greater changes in 

displacement (at ~ 0.3 and 0.5) and the positions of the helical dislocations.  Crystal 

(ii) and (iii) show an increase in the rate of change of the projected displacement at 

positions 0.8 and 0.5 - 0.6 respectively, where these positions correspond to the 

positioning of the observed dislocation loops.   
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Figure 5 - 19:  Projected displacement in the direction of the truncated vertex.  
Shown is the recorded increase in projected displacement present on the substrate 
facing facet, with increasing fractional distance away from the suspected nucleation 
site (0) towards the newly-formed 104 facet (1) i.e. in the direction of the dislocation 
loop.  The recorded increase in projected displacement is shown for all three 
reconstructions presented previously (i-iii).  The stars indicate the approximate 
location of the major dislocations (helical – black, dislocation loops – red and blue).   



Chapter 5:  Bragg Coherent Diffraction Imaging of Calcite Single Crystals 

288 

5.4.4:  Discussion  

 

Putting the observations made here into perspective, several suggestions 

concerning the mineralization on soft interfaces can be raised.  The discernible 

absence of interfacial strain discontinuities at the base of isoperimetric points (base 

of the top vertex), combined with the radiating “homogeneous” strain field or plateau 

shown in Fig. 5-19, can be taken as evidence of reorganization (382) between the 

monolayer and nucleating mineral on a given gold island.  The fact that the 

measured substrate normal lattice displacement at the base of the isoperimetric 

points is comparable to that of facets in contact with the solution further supports 

this.  The slightly increased displacement in the substrate-facing facet can be 

thought to arise from the chemical interaction between the SAM acidic end group 

and the mineral.(389, 390)   

 

The continued increase in lattice displacement in the direction of the truncated 

vertices is consistent with the detected dislocations, Fig. 5-18.  This is especially 

obvious in the case of reconstructions (ii) and (iii).  There is a gradual to exponential 

strain accumulation in the direction of the elongated vertices/ truncated vertex.  This 

direction has the highest relative growth rate as is evident by its uniaxial elongation.  

This can potentially be traced back to an increasingly imperfect alignment between 

the monolayer and the developing crystal.   

Arguments along this line, and based on the unidirectional, preferential 

lattice matching between a nucleation plane and the 2D-lattice of the SAM has 

been suggested before.(385)  An indirect confirmation of strain build-up was 

obtained in the referenced work by decreasing the flexibility of the monolayer, 

(longer backbone chains), which leads to a decreased shape anisotropy of the 

crystal.(385)   

The results obtained here can be seen as a direct confirmation of this.  The 

measured directional increase in lattice displacement culminates in the formation of 

dislocations at the growth anisotropy edge.  The identified dislocation loops can 

therefore be seen as stress relief sites for the otherwise increasing surface stress 

and lattice mismatch.  This effect is widely reported in thin film epitaxy.(391-393)  

The detected helical dislocations in (iii), combined with their orientation towards the 

active growth front, also follow this hypothesis.  Helical dislocations may simply 

present an alternative response to strain accumulation.    
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The resulting higher lattice “misfit” in this region then has a profound effect on the 

morphological development of the crystal.  The misfit hinders the growth in this 

direction, which causes a morphological instability.  The strain present increases 

the surface energy and subsequent cost for in-plane growth in this direction.  This 

eventually leads to the expression of an additional (104) facet normal to the 

substrate, and is followed by preferred growth in perpendicular directions, in an 

effort to minimize the high energy surface.  This is ultimately the reason for the 

difference in shape, Figure 5-13, between the regular rhombohedra predicted by 

the Winterbottom reconstructions, and the thinned, surface elongated calcite 

rhombohedra observed experimentally.  A second effect of this strain-induced 

morphological instability is seen in the maximal size of the tetrahedral calcite size.  

Oriented calcite grown at the gas/ liquid interface repeatedly shows tetrahedral 

calcite up to 20 µm in size while here a maximum of ~ 2 µm was observed.(394, 

395)  A change in equilibrium shape with increasing size of the crystal is common 

and independent of interfacial strain.(396)  The strain present here seemingly 

accelerates this tendency, which not only causes the deviation from the predicted 

Wulff shape but also may impose a critical size limit on the tetrahedral calcite as 

compared with crystals grown on a truly soft interface.  

These arguments, of course, are based on the existing literature describing calcium 

carbonate nucleation on functionalized SAMs.  Moving away from these, the 

premature shape transition and the maximum crystal size observed may simply be 

explained by a difference in interfacial energy and elasticity between a soft solid 

support (SAM on thin gold film) and truly soft support (gas/ liquid interface).

 Further, the above made casualization of increasing misalignment between 

the SAM and the crystal, leading to strain accumulation, dislocation loop formation, 

and eventually “vertex” truncation, can be questioned when abandoning the SAM 

as a truly soft interface.  Yes, the SAM determines the nucleation plane and “forces” 

the crystal to grow in continuous contact with the substrate, but the truncation and 

the dislocation loop formation might be independent of each other, and simply 

present a different response to a common underlying cause.  This cause may be 

the surface roughness/ curvature of the gold islands on the substrate, where an 

interfacial stress may build when the crystal tries to adapt to this roughness.  This 

could then lead to both shape transition and dislocation loop formation.  
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5.4.5:  Conclusion 

 

In summary, the results shown demonstrate the value of BCDI in generating high-

resolution (spatial resolution ~30 nm3) 3D reconstructions of individual crystals 

nucleated on interfaces.  Unique strain and structural information is obtained which 

is not accessible using any other technique.  Study of calcium carbonate 

precipitated on carboxylate terminated SAMs identified an in-plane homogenous 

interfacial strain field surrounding the proposed nucleation site, which may well be 

in agreement with surface reorganization during nucleation.  Increasing 

misalignment between the crystal and substrate leads to strain accumulation in the 

preferential growth direction, which causes a premature morphological instability 

and the formation of dislocation loops.  This induces morphologies which differ from 

the predicted Wulff shape.  

 

The applied methodology can be considered quite general, and can facilitate a 

greater understanding in the interfacial relationship between a template and 

supported crystal.  This is essential to a variety of processes including biological 

templating, epitaxial growth and thin film deposition processes.   

  



Chapter 5:  Bragg Coherent Diffraction Imaging of Calcite Single Crystals 

291 

5.5:  Outlook 

 

The case studies presented here clearly demonstrate the unique insight that BCDI 

can provide of the structural organization and physical properties of single crystals.  

In contrast to other high resolution imaging techniques such as AFM and TEM, it 

yields three dimensional structural information while little or no sample preparation 

is required.  Considering that BCDI and indeed general coherent imaging methods 

are still in their infancy, the current limitations encountered here (i.e. a sample size 

smaller than 10 μm, spatial resolution of 10-50 nm, maximum strain resolvable) are 

expected to be overcome rapidly.  The continued progress in phasing algorithms, 

the current construction of dedicated beamline/ End stations with secondary optics 

(integrated electron microscopy) and spectroscopy equipment support this belief.  

Further, the emergence of brighter X-ray sources that already allow picosecond 

observations will enable real-time observations in solution.(196, 197)   

In order to analyse inorganic–organic composite materials in particular, additional 

imaging advances will be required.  Current microscopy techniques are suited to 

the structural analysis of the inorganic host (high electron density) but are rarely 

able to provide local information regarding the lighter organic guest.  They thus 

provide data dominated by the host.  In most cases, this is adequate but fails for 

example, when considering the composite behaviour under load conditions.  Super-

resolution microscopy and coupled spectroscopy techniques can potentially provide 

insight into inorganic-organic composites from the perspective of the organic guest 

species.(397-399)  We are currently anticipating investigations into the distribution 

and physical state of fluorescent guests – small molecules to nanometre sized 

occlusions - in inorganic single crystals.  
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6.1:  Conclusions  

 

This thesis investigated the formation and structural evolution of synthetic calcium 

carbonate in aqueous solution, where the relevance to biomineralization processes 

was considered. 

 

Chapter 3 followed in detail the amorphous to crystalline transition of ACC either in 

the presence of additives or under spatial confinement.  Observations of the 

stabilization and transition mechanisms of ACC, both in the solid state and in 

solution, allowed the primary stabilization factors and the transition mechanism to 

be determined.  The primary factor governing the stability of ACC in solution is the 

spatial confinement of the ACC particles and the associated limited access to bulk 

water.  Additives play a secondary role in stabilizing the amorphous precursor in 

solution, inhibiting the nucleation of crystalline calcium carbonate rather than 

directly stabilizing the ACC.  Atmospheric investigations showed that the effect of 

additives during solid state transition is more subtle.  Additives either act as 

crystallisation promoters or inhibitors based on their molecular weights.  In both 

“confined” solution and atmospheric crystallisation, a common continuous 

dehydration process in the ACC is observable before crystallisation occurs.  In 

combination with the dehydration activation energies determined for the solid state 

transformation, this puts the previously stated solid state crystallisation of ACC in 

solution in question.  This indicates that an additional catalysing factor is necessary 

in solution for ACC to transform to crystalline calcium carbonate by a “solid state” 

mechanism.   

A general method for producing amorphous precursors was also developed, 

based on the freeze-concentration of “counter-ion free” saturated solutions of the 

amorphous precursor constituents.  The method developed not only allows the 

production of stable, amorphous precursors of calcium phosphate and calcium 

carbonate, but also provides a potential way of identifying the presence of 

amorphous precursor phases in new mineral systems.  Initial studies allowed the 

identification of a previously unknown amorphous calcium oxalate phase which 

precedes crystalline calcium oxalate in aqueous solution.  The existence of this 

phase was subsequently confirmed by confinement and additive studies, which 

retard the transformation of the amorphous precursor to crystalline calcium oxalate.  
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Chapter 4, focused on the characterisation of the ammonia diffusion method used 

for calcium carbonate precipitation.  This was done as the ammonia diffusion 

method (ADM) was previously the “only” option to obtain calcium carbonate crystals 

of “extraordinary morphology”.  These crystals of “extraordinary morphology” had 

previously been classified as mesocrystals, inspired by the fact that they appear in 

images to be composed of amorphous and/ or nano-crystalline units, i.e. they have 

a crystal “structure” resulting from the oriented attachment of nanoparticles.  

Characterisation of the ADM was expected to provide insight into the formation 

mechanisms of crystals with such “extraordinary morphologies”. 

The characterisation of the ammonia diffusion method allowed us to identify 

and quantify factors that govern the method underlying supersaturation/ time profile.  

Knowledge of the supersaturation/ time profile, that leads to the production of 

“mesocrystals” in the ammonia diffusion method, enabled the derivation of an 

enzymatically driven one pot synthesis method.  This method will be used for future 

in-situ investigations on the formation mechanism of “mesocrystals”.  The 

supersaturation/ time profile in itself showed a prolonged increase in 

supersaturation over the course of mineral formation, which potentially enables the 

occurrence of multiple nucleation events.  

Mesocrystals were first introduced for calcium carbonate, where this 

structural assignment was primarily made on the basis of their high surface areas 

and single crystal diffraction.  Structural investigations of the validity of these 

mesocrystal identifiers revealed that both factors are insufficient to distinguish a 

mesocrystal (array of smaller oriented units) from a single crystal formed by ion-by-

ion growth.  
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Chapter 5, applied BCDI to image the response of calcite to external stimuli such 

as supersaturation (crystal growth) and undersaturation (dissolution), and the 

presence of a heterogeneously nucleating substrate.  The presented study on the 

interfacial nucleation of calcite on functionalized self-assembled monolayers 

supported on thin gold films, revealed that the SAM does indeed guide the selection 

of a nucleation plane.  The actual morphology of the heterogeneously nucleated 

and growing crystal is defined by the accumulation of strain in a preferential growth 

direction parallel to the substrate.  The accumulation of strain above a certain 

threshold then causes the formation of stress relief sites in the form of a single 

dislocation loops and crystal growth preferentially occurs normal to the substrate.  

Observations on the growth and dissolution of calcite by BCDI allowed the 

direct visualization of the 3D dislocation network present within a micron sized 

single crystal.  Future studies will help us to understand how strained surfaces and 

defects affect crystal growth and dissolution processes.   
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6.2:  Outlook 

 

Amorphous precursor phases.  The accumulated knowledge concerning the 

transformation mechanism of amorphous precursor phases to crystalline phases 

could potentially be sufficient to start the manufacture of crystals with pre-defined, 

complex shapes.  If we could fulfil the promise of shapeable, amorphous precursors 

in the formation of single crystalline materials with complex structures and 

morphologies, this would be amazing.  

First steps in this direction are being taken, here and elsewhere. For 

example, the production of single crystalline lenses of calcium carbonate with 

concave and convex shapes are currently being trialled.(237)  Current challenges 

include control over crystal orientation and the volume change which occurs on 

conversion of an amorphous particle to a crystalline one.  The latter is particularly 

problematic as it creates voids in the product crystal or the crystal does not adapt 

completely to the template that it should entirely fill.(400)  The development and 

application of 3D templates with a controllable structural elasticity could solve this 

problem.  

The above are relatively minor problems when one wants to manufacture a 

“big” single crystal out of a lot of smaller amorphous particles, which are inherently 

metastable and crystallize very fast.  The big problem is “how do we induce only 

one nucleation event?”  In an ideal scenario, one even wants to induce nucleation 

in one particular area and prevent the amorphous particles from nucleating 

anywhere else.  This is a challenging endeavour and we are currently exploring 

potential solutions to this problem.   

Most research on amorphous precursor phases which has been directed at 

producing crystals with complex shapes is driven by the examples provided by 

biominerals.  Therefore, most studies focus on carbonates, phosphates and 

silicates, which are not the most interesting choices for new functional materials.  

To even consider the translation of amorphous precursor based crystallisation to 

functional material synthesis, we have to ask “do the materials we consider for 

functional material synthesis even possess an easily accessible amorphous phase 

which we can utilize?”  In view of this, a number of studies will commence trying to 

identify potential material candidates.   
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The investigations of mesocrystals and oriented attachment crystallisation 

pathways are, in the author’s opinion, only at the beginning.  The ammonia diffusion 

method characterisation and the subsequently developed one pot synthesis method 

may provide a starting point for an in-depth, in-situ analysis of the formation 

process of calcium carbonate mesocrystals. 

 

“Bragg” coherent diffraction imaging studies.  The inherent potential of 

coherent diffraction imaging in supplying unique information is impressive.  The 

BCDI applied here which provided localized information about strain and 

dislocations within a single crystal, is just one of a range of coherent imaging 

techniques which are currently emerging.  Ptychography, which is another coherent 

imaging technique, is changing the way we address X-ray tomography limitations.   

The methodology used in the interfacial nucleation study presented here is 

easily transferred to any thin film system.  More sophisticated crystal growth 

experiments can be easily accommodated in a BCDI set up as Beamlines become 

dedicated to coherent diffraction imaging.  Given time, coherent imaging techniques 

will be capable of imaging dynamic processes in any environment, and they will 

have the possibility of not just providing localized information about strain, 

dislocations, elemental composition and the structural organization of a single 

crystal but they will provide information concerning many other physical 

characteristics.  Mapping magnetic domains in relation to lattice displacements and 

dislocations, and the origin of composite material strength are at the forefront of 

current investigations.   
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Nomenclature 

 

Abbreviations 
 

AA Atomic Absorption  

ACC Amorphous Calcium Carbonate 

ACO Amorphous Calcium Oxalate 

ACP Amorphous Calcium Phosphate 

ACS Amorphous Calcium Sulphate 

ADM Ammonium Diffusion Method 

AFM Atomic Force Microscopy 

AP  Activity Product 

APS Advanced Photon Source  

Asp Aspartic Acid 

ATR Attenuated Total Reflectance 

BCDI  Bragg Coherent Diffraction Imaging 

BET  Surface Area Measurement Technique 

CCD Charge Coupled Device  

CXD Coherent 3D X-ray Diffraction Pattern  

CNT Classical Nucleation Theory 

COD Calcium Oxalate Dihydrate  

COM Calcium Oxalate Monohydrate 

DHP Dihexadecyl Phosphate  

DI Deionized 

DLS  Diamond Light Source  

DLS Dynamic Light Scattering 

DOLLOP Dynamically Ordered Liquid-Like Oxyanion Polymer 
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DSC Differential Scanning Calorimetry 

ED Electron Diffraction  

EDX Energy-dispersive X-ray Spectroscopy 

ER  Error Reduction 

ER Error Reduction Phase Retrieval Algorithm  

FEG Field Emission Gun 

FIB Focused Ion Beam (milling) 

FT Fourier Transformation  

FTIR Fourier Transformed Infrared Spectroscopy 

FWHM Full Width Half Maximum  

HIO Hybrid Input Output  

HIO Hybrid Input-Output Phase Retrieval Algorithm 

IC Ion Chromatography 

LCP Liquid Crystalline Phase 

LSCM Laser Scanning Confocal Microscopy 

Lys Lysine  

PAA Polyacrylic Acid 

PAH Poly(allylamine hydrochloride) 

PC Phosphocholine 

PEEM  Photo Emission Electron Spectroscopy 

PILP Polymer Induced Liquid Precursor 

PNC Pre Nucleation Cluster  

PSS-MA Polystyrene Sulfonate Maleic Acid 

PXRD  Powder X-ray Diffraction  

SAED Selected Area Electron Diffraction   

SAM Self-Assembled Monolayer  

SEM Scanning Electron Microscopy 

SSNMR Solid State Nuclear Magnetic Resonance Spectroscopy 



Nomenclature 

326 

TEM Transmission Electron Microscopy 

TGA Thermo Gravimetric Analysis 

UV-VIS Ultraviolet–Visible Spectroscopy 

VLM Visual Light Microscopy 

XANES X-ray Absorption Near Edge Structure 

XRD  X-ray Diffraction  
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Symbols  
  

α [/] Reaction Progress 

β °C/min Heating Rate 

γ J/m2 Surface Energy 

ε l/mol m Absorption Coefficient 

Θ ° Scattering Angle  

κ S/m Conductivity 

λ m Wavelength  

µ [10^-2*g/(cm*s)] Dynamic Viscosity 

µ kJ/mole Chemical Potential  

τ m Crystallite Size 

φ ° Sample Rotation  

Ψ ° Sample Tilt 

Ω m3 Volume of Nucleolus Constituent 

A m2 Area 

A [/] Preexponential Factor 

A [/] Absorbance  

Am 
m2 Gas Molecule Specific Surface 

Area 

B - Full Width Half Maximum 

c m/s Speed of Light  

c [/] BET Constant 

ci mol/l Concentration  

cp J/K Heat Capacity  

cT mol/l Total Amount of Carbon 

cTs mol/l Total Amount of Carbon in 

Solution 

D [/] System Coefficient 
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d m Resolution  

d m Lattice Plane Spacing  

D cm2/s Diffusion Coefficient  

d0 m Distance Lens to Sample 

Da cm2/s Diffusion Coefficient Gas Phase 

dQ/dt J/s Heat Flow 

Ds [/] Fractal Dimension 

Dw cm2/s Diffusion Coefficient Liquid 

E kJ - eV Energy  

e % Microstrain 

EA kJ Activation Energy 

Ecell V Cell Potential 

f [/] Volume Fraction Transformed 

f [/] Activity Coefficient  

f Hz Frequency  

f m Focal Depth 

F C/mol Faradays Constant 

G J/mol Gibbs Free Energy 

h eV/s Planck Constant 

H kJ Heat of Adsorption 

I lux Light Intensity 

I C/s Current  

I mol/l Ionic Strength 

J #/min*ml Nucleation Rate (nuclei) 

jc #/L Cluster Formation Rate 

kB J/K Boltzmann Constant  

K [/] Shape Factor  

ka (mol/l)x Acid Dissociation Constant 
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kh l*atm/mol Henry Constant 

kh
‘ [/] Henry Constant 

ksp (mol/l)x Solubility product  

kα [/] X-ray Emission Lines 

L cm Path Length 

M g/mol Molecular Mass 

m g Sample Mass 

Mv cm3/mol Molecular Volume 

n [/] Natural Number  

N [/] Index of Refraction 

Na 1/mol Avogadro’s Number  

Na [/] Numerical Aperture  

NT mol/l Total Amount of Nitrogen 

P atm Pressure (Partial) 

P0 atm Saturation Pressure 

Q J Heat  

r m Radius 

R Ω Resistance  

R atm*l /K*mol Gas Constant 

S [/] Supersaturation (relative) 

Si m2 Specific Surface Area  

ST m2 Total Surface Area  

t min Time 

T °C Temperature 

TP °C Peak Temperature  

u [/] Strain Broadening Factor  

U J/c Voltage  

v cm/min Growth Rate Cluster 
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V m3 Volume 

V cm3 Adsorbed Gas Quantity 

Vm cm2 Monolayer Adsorbed Gas 

W [/] Weight Fraction  

w [/] Size Broadening Factor  

x nm Radial Size Increase 

x m Vertical/horizontal Travel 

Distance 

z  # mol e Transferred (Cell 

Reaction) 

z e Electric Charge 

Z [/] Atomic Number  

Τ min Induction Time 
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Appendix A:  Reference FTIR- , Ramen- and PXRD Spectra 

 

Phase identification of minerals can be achieved based on the presence or absence 

of polymorph specific peaks in acquired IR-, Raman- and powder X-ray diffraction 

spectra.  Given below is a tabular summary of the most prominent spectral features 

present in the minerals studied.  PXRD peak positions are given with reference to 

Cu radiation.  
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Principal Peak Positions in FTIR Spectra   
Wavenumber cm

-1
 

Water  
      

1641 3350 

Ethanol  
     

1680 2962 3300 
Silicon dioxide 
amorphous SiO2 782 

 
1036 

 
1643 

  
Phosphate  PO4 

    
1070 

  

         Calcium Carbonate  

Mineral Name  Composition ν4 ν2 
 

ν1 ν3 
  

         
ACC (CaCO3-1H2O) 

 

862 
-873 

 

1065 
-1075 

1396 
-1425 1641 3350 

Vaterite  (CaCO3) 747 868 
 

1085 
   

Aragonite  (CaCO3) 713 866 
 

1090 1430 
  

Calcite  (CaCO3) 
712 

-714 
868 

-876 
  

1395 
-1420 

  
Magnesium Calcite  ((Ca,Mg) CO3) 

 

855 
-872 

1020 
-1160 1084 

 
1801 

 

         Calcium Oxalate 

Mineral Name  Composition 
       

         
Caoxite  (CaC2O4-3H2O) 

   
775 1313 1600 

3476 
+3429 

Weddellite (CaC2O4-2H2O) 
491 568 

  
1313 1600 

3700 
-3100 

Whewellite (CaC2O4-1H2O) 
493 572 649 777 1313 1600 

3018 
+3413 

         Calcium Phosphate  

Mineral Name  Composition 
       

         
ACP 

(Ca1.7(PO4)1OH0.4-
3H2O) 

 
650 950 

 
1050 

  
Hydroxyl apatite (Ca5(PO4)3OH) 

561 602 962 
1046 

-1032 1084 
  

Octacalcium phosphate (Ca8H2(PO4)6-5H2O) 560 601 917 1055 1121 1642 
 

         

Source:  Downs R T (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and 
infrared spectroscopy of minerals. Gueta, Natan, Addadi, Weiner, Refson and Kronik (133), (161), Echigo, Kimata, 
Kyono, Shimizu and Hatta (401). 

Table A. 1:  Selected FTIR-spectra peak positions of calcium 
carbonate, calcium oxalate and calcium phosphate 

  

https://rruff.info/about/about_general.php
https://rruff.info/about/about_general.php
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Principle Peak Positions in Raman Spectra 

   

   

         Calcium Carbonate  
    

Raman Shift cm
-1
 

Mineral Name  Composition 
       

         
ACC (CaCO3-1H2O) Single broad peak at 1085 

Vaterite  (CaCO3) 
 

300 713 752 1066 1093 
 

Aragonite  (CaCO3) 155 208 701 705 
 

1085 
 

Calcite  (CaCO3) 154 281 711 
  

1085 1434 

         Calcium Oxalate 
        

Mineral Name  Composition 
       

         
Weddellite (CaC2O4-2H2O) 506 

 
912 

 
1477 

 
1632 

Whewellite (CaC2O4-1H2O) 508 898 
 

1465 
 

1491 1631 

         Calcium Phosphate  
        

Mineral Name  Composition 
       

         ACP (Ca1.7(PO4)1OH0.4-3H2O) Weak shoulder at 952 & broad peak 1040 

Hydroxyl apatite (Ca5(PO4)3OH) 433 447 594 
 

961 1046 1076 

Octacalcium phosphate (Ca8H2(PO4)6-5H2O) 413 450 591 957 966 1010 1079 

         

Source: Downs R T (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and 
infrared spectroscopy of minerals. 

Table A. 2:  Selected Raman spectra peak positions of calcium 
carbonate, calcium oxalate and calcium phosphate 

 

  

https://rruff.info/about/about_general.php
https://rruff.info/about/about_general.php
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Principal PXRD Peak Positions 
    

      
 

       Calcium Carbonate  
   

 

Mineral Name  Composition Crystal Symmetry 
2theta °/  
d spacing 

       
ACC (CaCO3-1H2O) - 

    
       

hkl 
  

110 113 116 300 

Vaterite  (CaCO3) Hexagonal 
24.42 26.64 32.47 42.98 

3.645 3.345 2.757 2.104 

hkl 
  

111 012 102 112 

Aragonite  (CaCO3) Orthorhombic 
26.23 33.16 36.13 37.91 

3.395 2.700 2.484 2.371 

hkl 
  

012 104 113 116 

Calcite  (CaCO3) Hexagonal 
23.07 29.42 39.44 48.54 

3.855 3.035 2.284 1.875 

       
Calcium Oxalate 

     

Mineral Name  Composition Crystal Symmetry 
2theta °/  
d spacing 

       hkl 
  

001 100 011 210 

Caoxite  (CaC2O4-3H2O) Triclinic 
11.25 16.06 16.19 31.49 

7.865 5.519 5.475 2.840 

hkl 
  

200 121 130 400 

Weddellite (CaC2O4-2H2O) Tetragonal 
14.32 20.08 22.73 28.87 

6.185 4.421 3.912 3.092 

hkl 
  

100 021 040 023 

Whewellite (CaC2O4-1H2O) Monoclinic 
14.94 15.3 24.42 30.68 

5.930 5.792 3.645 2.914 

       
Calcium Phosphate  

     

Mineral Name  Composition Crystal Symmetry 
2theta °/  
d spacing 

       ACP (Ca1.7(PO4)1OH0.4-3H2O) - 
    

       

hkl 
  

100 002 211 300 

Hydroxyapatite (Ca5(PO4)3OH) Hexagonal 
10.81 25.89 31.72 32.72 

8.210 3.442 2.829 2.736 

       

Source: Downs R T (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and 
infrared spectroscopy of minerals. 

Table A. 3: Selected PXRD spectra peak positions of calcium 
carbonate, calcium oxalate and calcium phosphate 

  

https://rruff.info/about/about_general.php
https://rruff.info/about/about_general.php
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Appendix B:  Solution Activity Coefficients 

Solution activity coefficients (f) of the ionic species present (i) at concentration (c) 

were calculated using the Davies equation (A. 1), based on the measured ionic 

strength (I) (A.2).(308)  This is shown here for the dissociation of a simple 

electrolyte e.g. NaCl.   

 

− 𝑙𝑜𝑔10(𝑓) = 0.5 𝑧1 𝑧2 (
√𝐼

1 + √𝐼
− 0.30 𝐼) A. 1 

 

𝐼 =
1

2
∙∑𝑐𝑖  𝑧𝑖

2 A. 2 

 

zi  = charge of ionic species considered  
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Appendix C:  CaCO3 Equilibrium Constants and Solubility 

Products 

CaCO3 Equilibrium Constants  

The solution supersaturation, calcium and carbonate concentrations given in 

Chapter 3 and 4 were determined using the temperature (T)-dependent equilibrium 

constants (K), Henry (kH) and carbonic acid-dissociation constants (KA) given 

below.(86, 163-167) 

 

 

𝐾𝑊 = [𝑂𝐻
−][𝐻+] = 10−(−0.0261∙(𝑇−273)+14.583) A. 3 

𝑘𝐻𝐶𝑂2
=

𝑃𝑐𝑜2
[𝐶𝑂2](𝑎𝑞)

= 10
−(108.386+0.0198507𝑇−

6919.53
𝑇

−40.4515 𝑙𝑜𝑔10(𝑇)+(
669365
𝑇2

))
 

A. 4 

𝐾𝐴1 =
[𝐻+][𝐻𝐶𝑂3

−]

[𝐻2𝐶𝑂3
∗]

= 10
(
−356.3094 − 0.06091964𝑇 + 21834.37

𝑇
 + 126.833 𝑙𝑜𝑔10(𝑇)− 

1684915
𝑇2

)
 

A. 5 

𝐾𝐴2 =
[𝐻+][𝐶𝑂3

2−]

[𝐻𝐶𝑂3
−]

=  10(−171.9065 − 0.077993𝑇 + 
2839.319

𝑇
 + 71.595 𝑙𝑜𝑔10(𝑇)) 

A. 6 

𝑘𝐻𝑁𝐻3
=

𝑃𝑁𝐻3
[𝑁𝐻3](𝑎𝑞)

= 𝑒(−8.09694+(
3917.507

𝑇
)−0.00314𝑇)

 
A. 7 

𝐾𝑁𝐻4 =
[𝐻+][𝑁𝐻3]

[𝑁𝐻4
+]

= 10
−(14+∙𝑙𝑜𝑔10(𝑒

−16.97−(
4411.025

𝑇 )−0.044𝑇
))

 

A. 8 

𝐾𝐶𝑎𝐻𝐶𝑂3  
=

[𝐶𝑎𝐻𝐶𝑂3
+]

[𝐶𝑎2+][𝐻𝐶𝑂3
−]
= 10(−1209.12 + 0.31294𝑇 − (

34765.05
𝑇

)− 478.782 𝑙𝑜𝑔10(𝑇)) 
A. 9 

𝐾 𝐶𝑎𝐶𝑂3𝑎𝑞 =
[𝐶𝑎2+][𝐶𝑂3

2−]

[𝐶𝑎𝐶𝑂3]
0

= 10−(−1228.732−0.299444𝑇+
35512.75

𝑇
+485.818 𝑙𝑜𝑔10(𝑇)) 

A. 10 

𝑙𝑜𝑔10 𝐾𝐶𝑎𝑂𝐻 = 25.12 A. 11 

𝑙𝑜𝑔10 𝐾𝐶𝑎(𝑂𝐻)2 = 22.80 A. 12 

Temperature-Dependence of the Solubility Products of the CaCO3 Polymorphs (Ksp) 
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𝐾𝑠𝑝𝐶𝑎𝑙𝑐𝑖𝑡𝑒
= 10

(−171.9065 − 0.077993𝑇 +
 2839.319

𝑇
 + 71.595 𝑙𝑜𝑔10(𝑇)) 

A. 13 

𝐾𝑠𝑝𝐴𝑟𝑎𝑔𝑜𝑛𝑖𝑡𝑒 = 10
(−171.9773 − 0.0779931𝑇+

2903.293
𝑇

 +71.595 𝑙𝑜𝑔10(𝑇)) 
A. 14 

𝐾𝑠𝑝𝑉𝑎𝑡𝑒𝑟𝑖𝑡𝑒 = 10
(−172.1295 − 0.0779933𝑇 +

 3074
𝑇

 + 71.595 𝑙𝑜𝑔10(𝑇)) 
A. 15 
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Appendix D:  BCDI Image Reconstruction Details 

Given below is a detailed description of the image reconstruction methods 

used in Chapter 5.  Detailed descriptions of the phase retrieval procedure used, 

the pre-processing steps of the diffraction patterns, the sensitivity to lattice 

deformation, dislocation network identification and screw dislocation simulation are 

provided.  The descriptions given are reproduced from Clark JN†, Ihli J†, Schenk 

AS, Kim Y-Y, Kulak AN, Campbell JM, Nesbit G, Meldrum FC, Robinson IK.  Three-

dimensional imaging of dislocation propagation during crystal growth and 

dissolution.(199)   

Descriptions are provided for completeness.  The novel methods employed here 

were developed by Jesse Clark and are not attributable to the candidate.   

 

Phase Retrieval Procedure 

An adjusted guided phase retrieval algorithm was applied to produce the image 

reconstructions presented in Chapter 5.(201)  Guided phase retrieval algorithms are 

initiated by means of generating an initial population of iterates.  Here, random 

arrays of numbers were used to provide a population of iterates, ρn, where n is 

equal to the count of differing iterates.  One by one the iterates are processed by 

one or a combination of phase retrieval algorithms (error reduction (ER) or hybrid 

input-output (HIO)) iteratively to enforce agreement with the recorded diffraction 

intensity (modulus constraint).  This is done under the experimental constraint that 

the sample is isolated i.e. the recorded diffraction pattern is obtained from a “single” 

crystal (isolation constraint).(200)   

Following a pre-set number of iterations, a set of n potential solutions is 

obtained from which a group of winners or the “best” iterate is selected.  A number 

of selection criteria can be applied to determine the best iterate, where the most 

common is agreement with the data (Modulus constraint).  The best iterate or group 

of winners is then used to generate a new set of iterates.  This is analogous to 

genetic algorithms in that the winning iterates/ seeds drives all of the subsequently 

generated iterates/ next generation seeds towards a better solution.  Specifically if 

ρα is chosen as the best iterate, then new iterates are generated by 𝜌′𝑛 = √𝜌𝑛𝜌𝛼.  

The new improved iterate populations are used as inputs to the phase retrieval 

algorithm, which produce a set of winning iterates which are ideally closer to the 

desired solution than the previous generation of iterates.  The described process 

(selection of the ’best’ iterate, combination/ mutation, iteration) is then repeated a 

given pre-set number of times or generations.   
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The given procedure runs into one particular problem when applied directly to the 

reconstruction of objects that have a non-negligible phase i.e. having a highly 

distorted diffraction pattern.  This is not finding the “right” solution.  To circumvent 

this, low-resolution data are used for the first generation of iterates.  The resolution 

is then increased over the successive generations back to the original.  The 

resolution is defined in this particular case as the data’s in reciprocal space.  

Reducing the resolution is then simply achieved by multiplying the given input data 

set by a Gaussian 𝐺.  This means that the given input data 𝐼, is transformed to a 

“low”  reduced resolution diffraction pattern 𝐼† by 𝐼† = 𝐼𝐺.  An ideal Gaussian 𝐺 has 

the form of 𝐺 = 𝐻2 with 𝐻 such that is has a Fourier transform that is finite.  Since a 

reduced resolution diffraction pattern has to have a smaller number of solutions, 

𝜌† = 𝜌⊗ h, where ρ is the original resolution object, h is the inverse Fourier 

transform of the previously defined 𝐻.  𝜌† will now have smoother and less 

pronounced phase features than the original, which becomes easier to reconstruct 

i.e. finding a right solution for a given low resolution data set is possible.  The 

process is then repeated at increased resolution based on the initially determined 

low resolution result.(202, 402) 

The initial procedure was then modified in terms of how to select the best 

iterate.  Instead of selecting iterates with the best measured data agreement, they 

were selected as the one that has the smallest value of ∑|𝜌†|
4
.  This gives a better 

representation of iterates that have a flatter amplitude.  A flatter amplitude is 

advantageous here as objects with non-negligible phase(imaged here) do possess 

a diffraction pattern that is broader than its real-valued counterpart is in spatial 

dimension.  This is as broadening of a diffraction pattern can also be due to a 

reduction in size of the object (Chapter 2 peak broadening in PXRD).  This false 

identification would lead to the effect that that during the iterative procedure 

solutions, that are smaller than the original object falsely occur since the 

broadening in the diffraction pattern can be accommodated this way.  This results in 

potential solutions that are far from the actual solution but that are a good 

agreement with the data. 

 

In summary, 50 iterates, 3 generations and best iterate selection based on selecting 

the ’flattest’ were used to obtain the image reconstructions.  During the 3 

generations, the input data was masked with a Gaussian that had 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 =

10% of the array size in the first generation, which was increased to 𝜎𝑥 = 𝜎𝑦 =

 𝜎𝑧 = 100% of the array size by generation 3.  1000 iterations were used per 
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generation, cycling between 10 ER and 90 HIO.  

 

CDX Pattern Pre-Processing  

Miss-centering of the data before phase retrieval results in a ’phase ramp’ in the 

real-space reconstruction.  This is similar to a uniform expansion/ contraction of the 

lattice.  To avoid this artefact, the phase ramps were removed, leaving just the 

inhomogeneous deformation (departures from the average lattice) behind in 

reconstructed images.  To remove any real space phase ramp in 𝜌(𝑟), its Fourier 

transform, 𝜓̂(𝑞), needs to be re-centred.  This is a simple operation for real - valued 

objects with negligible phase, as the centre of mass of |𝜓̂(𝑞)| is commonly equal to 

the well-defined central maxima of the collected centro-symmetric diffraction 

pattern.  Non-negligible phase objects do not necessarily possess a centre of mass 

equal to a defined central maxima (intensity) as |𝜓̂(𝑟)| may contain multiple peaks.  

Here, where we were primarily investigated non-negligible phase objects, any real 

space phase ramps were removed by centring 𝜓̂(𝑟) based on the center of mass of 

|𝜓̂(𝑟)|
4
.  Sub pixel shifting of the diffraction pattern was made possible by 

multiplying 𝜌(𝑟) by the appropriate phase ramp, as determined from the center of 

mass.  

 

Origins of Lattice Deformation Sensitivity  

BCDI’s sensitivity to lattice deformation, and hence the capability to provide 

projected displacement images, is a result of information regarding the 

displacement field being carried over into recorded diffraction patterns.  Analysis 

and retrieval of the displacement field is achieved in the derivation of the 

geometrical phase analysis used in electron microscopy.(197, 339)  

 

In brief; starting from the representation of a sample crystal 𝜌(𝑟), as the product of 

an infinite lattice 𝑙(𝑟) and a given shape function 𝑠(𝑟).  The latter defines not only 

the shape of crystal but further also its dimension as following A. 16.   

𝜌(𝑟) = 𝑠(𝑟)𝑙(𝑟)  A. 16 

 

r is the real space-position vector.  The lattice function 𝑙(𝑟) can further be 

expressed in the form of a Fourier series A. 17.  Where 𝑄 is the reciprocal lattice 

vector giving the location of Bragg peaks and C𝑄  the complex coefficients.   
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𝑙(𝑟) =∑C𝑄 𝑒𝑥𝑝 [𝑖𝑄 ∙ r]

𝑄

 A. 17 

 

Considering a deformed lattice possessing local displacements i.e. atomic 

displacement from ideal lattice positions (r), the given lattice function 𝑙(𝑟) is 

additionally defined by a displacement field 𝑢(𝑟); 𝑟 → 𝑟 + 𝑢(𝑟);  𝑙(𝑟 + 𝑢(𝑟)).  The 

describing Fourier series A. 18 transforms accordingly.   

𝑙(𝑟 + 𝑢(𝑟)) =∑𝐶′𝑄 𝑒𝑥𝑝 [𝑖𝑄(𝑟 + 𝑢(𝑟))]

𝑄

  A. 18 

                                       = ∑𝐶′𝑄 𝑒𝑥𝑝 [𝑖𝑄 ∙ 𝑢(𝑟)] 

𝑄

𝑒𝑥𝑝 [𝑖𝑄 ∙ 𝑟]  A. 19 

             = ∑G𝑄 (𝑟)

𝑄

𝑒𝑥𝑝 [𝑖𝑄 ∙ r] A. 20 

 

The Fourier transform of the deformed lattice, 𝐿̂(𝑞), is given by;  

    𝐿̂(𝑞) = ∫ 𝑙(𝑟 + 𝑢(𝑟)) 𝑒𝑥𝑝 [−𝑖𝑞 ∙ 𝑟] 𝑑𝑟  A. 21 

                                 = ∑∫GQ (r) exp [iQ ∙ r] 

Q

exp [−iq ∙ r] dr  A. 22 

  = ∑    ĜQ(q)

Q

⊗δ(q − Q) A. 23 

The given Fourier transform shows how the original lattice is altered as a result of 

the displacement field presence.  In considering the experimental parameters used, 

recording far field diffraction patterns using quasi-monochromatic and spatially 

coherent X-rays, the diffracted wavefield  𝜓̂(𝑞) can be described by a Fourier 

transform of the electron density of the sample crystal.  The diffracted wavefield 

expressed for a crystal with an associated non-negligible displacement field (not 

considering constant pre-factors) can be described as stated in A. 24-28.  

                                   𝜓̂(𝑞) = ∫𝑝(𝑟) 𝑒𝑥𝑝 [−𝑖𝑞 ∙ 𝑟] 𝑑𝑟  A. 24 

                                                                   = ∫𝑠(𝑟) 𝑙(𝑟 + 𝑢(𝑟)) 𝑒𝑥𝑝 [−𝑖𝑞 ∙ 𝑟] 𝑑𝑟  A. 25 

                      = 𝑆̂(𝑞) ⊗ 𝐿̂(𝑞) A. 26 

 

Inserting A.28 for the deformed lattice term, 𝐿̂(𝑞). 



Appendix 

343 

                                       𝜓̂(𝑞) = 𝑆̂(𝑞)⊗∑ 𝐺𝑄(𝑞)

𝑄

⊗𝛿(𝑞 − 𝑄) A. 27 

                                               = ∑ 𝑆̂(𝑞)⊗ 𝐺𝑄(𝑞)

𝑄

⊗𝛿(𝑞 − 𝑄) A. 28 

 

The recorded intensity 𝐼(𝑞) from the diffracted wave field  𝜓̂(𝑞) in the vicinity of a 

Bragg peak at reciprocal lattice point 𝑄, is then composed of a Fourier transform of 

the shape function, 𝑆̂(𝑞) of the sample, and an additional term 𝐺𝑄(𝑞) as a result of 

the displacement field present.  

 

    𝐼(𝑞) = |  𝜓̂𝑄(𝑞)|
2
  A. 29 

                      = |∑   𝜓̂𝑄(𝑞)

𝑄

|

2

   A. 30 

                                                         = |∑ 𝑆̂(𝑞)⊗ 𝐺𝑄(𝑞)⊗ 𝛿(𝑞 − 𝑄)

𝑄

|

2

 A. 31 

Again, this can be simplified in the case of the performed experiments as we are 

only interested in diffraction centered around one particular reciprocal lattice point 

𝑄.  

    𝐼(𝑞) = |  𝜓̂𝑄(𝑞)|
2
  A. 32 

                                                    = | 𝑆̂(𝑞)⊗ 𝐺𝑄(𝑞)⊗ 𝛿(𝑞 − 𝑄)|
2
   A. 33 

 

Particular real space representations of the diffracted wavefield  𝜓̂(𝑞)- i.e. inverse 

Fourier transformed- as ultimately given in BCDI image reconstructions and 

obtained using phase retrieval, is given by  

     𝜌𝑄(𝑟) = ∫   𝜓̂𝑄(𝑞) 𝑒𝑥𝑝 [𝑖𝑞 ∙ 𝑟] 𝑑𝑞  A. 34 

                                                   = ∫  𝑆̂(𝑞) ⊗ 𝐺𝑄(𝑞)⊗ 𝛿(𝑞 − 𝑄) 𝑒𝑥𝑝 [𝑖𝑞 ∙ 𝑟] 𝑑𝑞 A. 35 

                                  = 𝑠(𝑟) 𝐶′𝑄 𝑒𝑥𝑝 [𝑖𝑄 ∙ 𝑢(𝑟)] 𝑒𝑥𝑝 [𝑖𝑄 ∙ 𝑟] A. 36 

  = |𝜌(𝑟)| exp  [𝑖𝜙(𝑟)] A. 37 

where 𝜙(𝑟) is the phase of the real space function 𝜌𝑄(𝑟), and is given by 

                     𝜙(𝑟) = 𝜙𝐶′ + 𝑄 ∙ 𝑢(𝑟) + 𝑄 ∙ 𝑟 A. 38 

 

𝑄 ∙ 𝑟 being the phase ramp introduced earlier and removed by setting the average 
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phase across the crystal to 0 and state procedure re-centering, the only component 

left in the phase will be the 𝑄 ∙ 𝑢(𝑟) term hence the sensitivity of lattice deformation 

and following obtained by looking at the phase of the reconstructed quantity in a 

BCDI experiment.  

 

Identifying the dislocation network  
 

Automated determination of the defect/ dislocation network present within the 

crystals was achieved by taking the gradient of the phase and then looking at the 

absolute value.  Since dislocations possess a low electron density core the phase 

has to have a discontinuity at the core.  Successive calculations of the gradient 

results in the values at the core growing in amplitude whereas every other area 

reduces in value.  

The calculation of the discrete gradient of the phase , 𝜙(𝑎, 𝑏, 𝑐) (𝐹(𝑎, 𝑏, 𝑐) ≔

(𝐹𝑥(𝑎, 𝑏, 𝑐), 𝐹𝑦(𝑎, 𝑏, 𝑐), 𝐹𝑦𝑧(𝑎, 𝑏, 𝑐))), for a 3D array indexed by pixels a, b and c was 

achieved by means of A. 39, where 𝑔(𝑎, 𝑏, 𝑐) = exp(𝑖𝜙(𝑎, 𝑏, 𝑐)), ∗ denotes complex 

conjugation and ℎ is a step size.  Other constituents follow accordingly and we will 

denote the calculation of the discrete gradient as given in A. 40. 

                     𝐹𝑥(𝑎, 𝑏, 𝑐) = (
1

ℎ
) arg  [𝑔(𝑎 + ℎ/2, 𝑏, 𝑐)𝑔(𝑎 − ℎ/2, 𝑏, 𝑐)∗] A. 39 

                  𝐹(𝑎, 𝑏, 𝑐) = ∇𝜙(𝑎, 𝑏, 𝑐) A. 40 

 

This calculation A. 45 avoids ambiguities that would arise if the gradient of the 

phase was calculated directly from taking the difference of the phase when 

calculated in the usual way of; 

   𝐹𝑥(𝑎, 𝑏, 𝑐) = (
1

ℎ
) [tan−1  (𝑒𝑥𝑝[𝑖𝜙(𝑎 + ℎ/2, 𝑏, 𝑐)]) − tan−1  (𝑒𝑥𝑝[𝑖𝜙(𝑎 − ℎ/2, 𝑏, 𝑐)])] A. 41 

 

The ambiguities arise because of the 2π periodicity in the tan function and is a well-

known problem (’phase unwrapping’).  However, discontinuities will still arise if the 

phase changes from one pixel to the next by at least π.  Equation A. 45 offers a 

convenient way to begin to determine the locations of defects since in certain 

directions, the defects will be where the phase changes from one pixel to the next 

by π (or greater), leaving a large value in F (compared to defect free regions).  To 

isolate the effect of the defects a second step is performed where the gradient is 
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computed again on each component of the original phase gradient to give 9 

components given by; 

      𝐾𝑥,𝑤(𝑎, 𝑏, 𝑐) = ∇𝐹𝑥(𝑎, 𝑏, 𝑐) A. 42 

      𝐾𝑦,𝑤(𝑎, 𝑏, 𝑐) = ∇𝐹𝑦(𝑎, 𝑏, 𝑐) A. 43 

      𝐾𝑧,𝑤(𝑎, 𝑏, 𝑐) = ∇𝐹𝑧(𝑎, 𝑏, 𝑐) A. 44 

 

where 𝑤 = 𝑥, 𝑦, 𝑧.  This second step helps to suppress the background relative to 

the defect locations.  The following function is formed via; 

 

                      𝑁(𝑎, 𝑏, 𝑐) =  𝑎,𝑏,𝑐
𝑚𝑎𝑥 [|∏   𝐾𝑥(𝑎, 𝑏, 𝑐),∏  𝐾𝑦(𝑎, 𝑏, 𝑐),∏  𝐾𝑧(𝑎, 𝑏, 𝑐)

𝑤𝑤𝑤

|] A. 45 

 

where ∏  is the product and  𝑎,𝑏,𝑐
𝑚𝑎𝑥

 selects the maximum value for each pixel a, b, c 

from the vector (A(a, b, c), B(a, b, c), C(a, b, c)).  Although the use of A. 50 

eliminates almost all ambiguities related to phase wrapping, defects can be falsely 

determined if there close to π (or −π) close to the edge of the crystal (since outside 

the crystal the phase is zero).  However, the presence of false defects near the 

edge is dependent on a phase offset (𝜙0, since an offset will exist that makes the 

transition smooth), whereas real defects are independent of this (the core always 

has an abrupt change).   
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Screw dislocation simulation at atomic resolution.  

 

A given displacement field of u(r) = (ux(r), uy(r), uz(r)) was used to model the 

difference in the displacement of atoms from their ideal lattice positions, where r is 

equal to the real space positioning of a given atom given by r ≔ (x, y, z).  For the 

case of a screw dislocation, which has one non-zero component of the vector 

displacement field, we set; 

uy(r) = b/2(π)tan
−1(z/x) A. 46 

           = b/2(π)tan−1(𝜃) A. 47 

 

where b is the Burgers vector.  To simulate the defect, a lattice spacing was 

selected (equal to 4 pixels) and a set of positions was generated (assuming a 

primitive cubic system) which would make up the ideal ’atom’ positions given by 

𝐶′𝑄 .  These positions were then perturbed by the addition of the term in A. 52 (with 

b set to one lattice spacing) to give a perturbed lattice, now given as 𝑙(𝑟 + 𝑢(𝑟)).  

The size of the ’crystal’ was 96, 96 and 48 pixels for the x, y and z directions 

respectively and this was embedded into an array of size 128,128 and 64 pixels (x, 

y and z).  A 3D Gaussian (σx = σy = σz = 0.75 pixels) was centered at each 

perturbed lattice position to give the “atoms” and simulate the defect.  This 3D array 

of Gaussians was then Fourier transformed to provide a 3D diffracted wave 𝜓̂(𝑞), 

where 𝑞 is a reciprocal space coordinate.  In the BCDI experiment a detector is 

placed at a Bragg peak and diffraction is recorded in this vicinity.  To simulate the 

BCDI experiment we masked (filtered) the diffracted wave by centring a 3D 

Gaussian (σx = 8, σy =  8, σz = 5.3 pixels) at the (0 1 0) peak.  This masked 

diffracted wave was then inverse Fourier transformed to provide a real space 

complex density, as is obtained by BCDI.  The amplitude and phase are then 

related to the projected ’electron’ density and projected displacement respectively. 
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Appendix E:  Calcite Dissolution by Acetic Acid 

 

 

Dissolution by Acetic Acid addition (403) 

[𝐶𝐻3CO2𝐻] + H2O = [𝐶𝐻3CO2
−] + [H+] A. 48 

[CaCO3]s + 2[𝐶𝐻3CO2𝐻] = 𝐶𝑎(𝐶𝐻3𝐶𝑂2)2(aq) + H2O + [CO2]g A. 49 

Undersaturation in H2O  

[CaCO3]s + H(aq)
+ = Ca(aq)

2+ + HCO3
−
(aq)

 A. 50 

[CaCO3]s + H2CO3 (aq) = Ca(aq)
2+ + 2HCO3

−
(aq)

 A. 51 

[CaCO3]s + H2O(aq) = Ca(aq)
2+ + HCO3

−
(aq)

 A. 52 
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Appendix F:  Supporting Movie Captions 

 

Supplementary Movies Chapter 5.3:  The lattice deformation and morphological 

evolution of a single calcite crystal during growth and successive dissolution is 

shown.  Iso-surface renderings of the reconstructed electron density, projected 

displacement and iso-surface renderings of defects in the initial crystal, after growth 

and successive dissolution steps are shown in sequence.  The defects which 

display a low amplitude core and spiral deformation field set in the background of 

reconstructed electron density are highlighted. 

 

Supporting Movies Chapter 5.4:  A sequence of iso-surface renderings of the 

reconstructed electron density, projected displacement and iso-surface renderings 

of defects present within a (012) oriented calcite crystal are given.  The defect-rich 

reconstruction and transitional stages of the forming calcite crystals can be seen.  
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