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Abstract

This thesis details the design and development of an intelligent prosthetic hand

based on hybrid DC and Shape Memory Alloy (SMA) actuation and controlled by

only two myoelectric sensors.

A prosthesis as a tool makes no pretence of trying to replace the lost limb physio-

logically but it works as an aid to help provide some of the lost functions and is an

interchangeable device worn and used as needed.

Much research has been carried out to develop artificial prosthetic hands with capa-

bilities similar to the human hand. The human hand is a very complex grasping tool,

that can handle objects of different size, weight and shape; however, they are far

from providing its manipulation capabilities. This is for many different reasons, such

as active bending is limited to two or three joints and user-unfriendliness. These

limitations are present in commercial prosthetic hands, together with others always

complained about by patients and amputees, such as inability to provide enough

grasping functionality and heavy weight. Several robotic and anthropomorphic

hands may have sufficient active degrees of freedom to allow dexterity comparable

to that of the human hand. Unfortunately, they cannot be used as prostheses due to

their physical characteristic that poses several serious limitations on human-hand

interaction.

Hence, the motivation for this research is to investigate the use of a hybrid actuation

mechanism in the design and development of an intelligent prosthetic hand. This

work highlights user-friendliness and involves a proper mechanical design with

more active degrees of freedom and incorporating an intelligent control system.

A system with a finger prototype is considered. Testing through simulation and

physical models reveals a number of limitations. A hybrid actuation system, to in-

crease the finger active degrees of freedom is therefore developed, with a mecha-

nism consisting of DC and SMA actuators. Besides, only two myoelectrodes chan-

nels (enhancing the user-friendliness of the device) are used for the system control

input signal.
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Two novel features are developed in the new prosthetic hand. Firstly, its hybrid ac-

tuation mechanism has the advantage of increasing the active degrees of freedom;

secondly, using only two myoelectric sensors has potential for controlling more than

three patterns of fingers movements.

By using artificial neural network patterns classification technique, three and five

patterns of wrist joint movement corresponding to finger movement can be recog-

nised as more than 85% correct and furthermore, seven as 70% correct.
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CHAPTER 1

Introduction

1.1 Background

The prosthesis as a tool makes no pretence of trying to replace the lost limb’s

physiological appearance. As a matter of fact, it works as an aid to help provide

some of the functions that were lost due to accident, war or congenital condition.

Moreover, the prosthesis is an interchangeable device that can be used only when

needed. Much effort in the field of upper-extremity prosthesis research is directed

towards the development of prostheses as true limb replacements.

Prostheses were developed for function, cosmetic appearance, and a psycho-spiritual

sense of being entire, but not necessarily in that order. These needs have existed

from the past until today. Early prosthetic principles that were developed exist to

this day and are amazingly efficient in function [1]. The earliest example of a pros-

thesis for which we have visual evidence is the cosmetic wooden hallux prosthesis

found in Egypt about 1000 BCE. A transtibial (above foot but below knee) prosthe-

sis with a wooden socket reinforced with bronze sheets was built by Romans in

around 300 BCE. On the other hand, the earliest example of an upper limb prosthe-

sis was designed to allow knights to firmly hold or lock onto a sword or shield in

battle in the 15th century. However, this device was usually heavy, cumbersome, and

could only function in battle [1].

Circa 1790, a conceptual progress in upper limb prosthetic design continued with

Gavin Wilson’s artificial hand, capable of holding a knife, fork, or pen. Peter Baliff,

a Berlin dentist developed the first body-powered prosthetic hand activated by elbow

and shoulder motion in circa 1816 [1]. The concept of using the remaining muscles

of a limb to operate terminal device remained central to all development in upper

limb prosthetics until the practical introduction of myoelectrically controlled pros-

thetics in the beginning of 1958 [1].
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The electrical activity naturally generated by contracting muscle in a residual limb is

amplified, processed and used to control the flow of electricity from a battery to a

motor, which operates an artificial limb [2]. However the design of a clinically use-

ful myoelectric prosthesis is extremely difficult. The prosthesis must be comfort-

able, work reliably and have a natural appearance both at rest and during functional

activities. Otto Bock in Germany began the development of a myoelectric prosthesis

and introduced its first system for clinical use in 1967. Myoelectric control was in-

corporated into the system using two-channel agonist-antagonist myoelectric signals

to provide amplitude-modulated control [2].

In fact, most patients or amputees feel uncomfortable when using the current com-

mercial prosthetic hands, because they are usually heavy and unable to provide

enough grasping functionality and lack of degree of freedom [3, 4]. Commercially

available devices, such as the Otto Bock Sensor Hand [1, 4, 5] and Touch Bionic’s i-

Limb [11] are far from providing the manipulation capabilities of the human hand.

For example, their active bending is restricted to two or three joints, which are actu-

ated by a single heavy motor drive acting simultaneously on the metacarpopha-

langeal (MCP) joint of the thumb, index and middle finger, while other joints can

bend only passively or can not bend at all. The most commonly used myoelectric

hand has one degree of freedom, opening and closing. It uses only two myoelec-

trodes sensors in order to increase training efficiency and practical reliability of the

device. If there is need to increase the functionality of prosthetic devices, more

myo-electrode sensors can be added, however at the expense of training efficiency.

Several robotic and anthropomorphic hands may have sufficient active dof, such as

the Shadow Hand with up to twenty DOF as in [4], MIT Hand, NASA’s Robonaut

Hand, etc., allowing them to have dexterity comparable to that of the human hand.

Unfortunately though, these types of hands cannot be used as prostheses due to their

physical characteristic (e.g. pneumatic actuator) that pose several serious limitations

on human-hand interaction [6].

Due to the limitations of electric motor actuators being used in commercial pros-

thetic devices, some researchers have found some potential in using a new genera-

tion of small, smart material-based, high powered, biomimetic actuators to replace
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electric motors [7] in order to improve the functionality and reduce the weight of

these prosthetic devices. These artificial muscle actuators include Shape Memory

Alloys (SMAs), Electroactive polymers (EAPs) [7, 8] and McKibben pneumatic

artificial muscles. EAP materials have higher response speeds and lower densities

when compared to SMAs; however their generated actuation force is extremely

lower than SMAs [9]. The big advantages of SMAs are their incredible small size,

volume and weight, their high force-to-weight ratio, their low cost and human mus-

cle-like behaviour. However, they also have some limitations, such as the large

length of wire required to create significant motion, limited life cycle and non-linear

effects such as hysteretic phenomena [3].

In the light of the historical background and those problems encountered in current

devices, further research and development is warranted.

1.2 Aim and objectives

The aim of this work is to investigate the use of a hybrid actuation mechanism in the

design and development of an intelligent prosthetic hand. This work highlights user-

friendliness in usage and involves a proper mechanical design in more active de-

grees of freedom incorporating an intelligent control system.

The aim of this work will be associated with the objectives stated below.

1.2.1 Objectives

A number of objectives specified in this work allow the realisation of the main aim.

These are as follows:

1. Prosthetic Finger Design

To propose and vigorously study a prosthetic finger. In order to avoid com-

plexity in hand design and control, a prosthetic finger design is proposed and

vigorously studied. It is postulated that the hand design and control would be

similar to a single prosthetic finger. This finger design is used as a prototype
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to allow the hybrid actuation mechanism to be implemented in order to pro-

vide some functionality of a real hand, such as coarse and fine grasping.

2. Hybrid Actuation System Design

The actuation mechanism used is a hybrid system consisting of a DC actuator

and a Shape Memory Alloy (SMA) actuator. This hybrid actuation system will

allow to increase the degree of freedom of the prosthetic finger.

3. Hybrid Actuation Control System Design

A control system is a device to manage, command, direct or regulate the be-

haviour of other devices or systems. The system is designed to control the

hybrid actuation mechanism in order to ‘bring’ the finger, especially finger-

tip, in to a correct position.

4. Control Input Signal Consideration

The electrical activity generated by contracting muscles in forearm will be

used as a control input signal for the prosthetic fingers. The electrical activity

of the muscle is called a myoelectric signal and is monitored using surface

Electromyography (sEMG) sensors (myoelectrodes). Only two myoelectrodes

will be used in order to facilitate the amputees’ or users’ training and use.

5. Control Input Signal Processing

The raw surface EMG (sEMG) signal contains valuable information in a par-

ticularly useless form. This information is useful only if it can be quantified by

a signal processing method to achieve an accurate and actual sEMG signal that

we would like to use.
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6. Control Input Signal Pattern Recognition

The pattern recognition will be considered using pattern classification tech-

nique to train and test the varying patterns of the human finger’s movement

(thumb is not considered).

1.3 Thesis outline

The remainder of this thesis is divided into eight chapters and the content of each is

summarised below.

Chapter 2: Literature Review

Prior to presenting the design, analysis and experimental aspects of this research, it

is useful to have a historical perspective or a literature review. This chapter provides

the background history on the two major components of this research: actuation and

control. The actuation components include the mechanical hand/finger design and

the control includes sEMG signal processing techniques.

Chapter 3: Design of a Prosthetic Finger

This chapter begins by discussing the preliminary finger design and development,

which allow the hybrid actuation mechanism to be implemented in order to provide

some functionality of a real hand, such as coarse and fine grasping. In order to avoid

complexity in hand design and control, a prosthetic finger design is proposed and

vigorously studied. It is postulated that the hand design and control would be similar

to a single prosthetic finger.

Chapter 4: Hybrid Actuation Mechanism

Development of a hybrid actuation system applied to the mechanism finger design of

Chapter 3 will be discussed. A selection of appropriate gears or other additional

mechanism parts of the system will also be presented. The main task of this chapter

is to show that our design of the prosthetic finger closely resembles the functionality

of the human finger.
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Chapter 5: Control System Design of Actuation Mechanism

This chapter is presented to describe mathematical tools and algorithms that build

dynamical models from input-output data. The input data of the DC and SMA actua-

tors are the value of input voltage and the output data are the pulse of the encoder in

the DC actuator and the stroke change in the SMA actuator.

Chapter 6: Electromyography Signal and its Processing Technique

This chapter will discuss the electromyography signal and its signal processing tech-

nique. Electromyography (EMG) is an analytical tool used to record the electrical

activity of muscles. It can be used for clinical/biomedical applications. The raw data

from surface EMG (sEMG) signals contain valuable information in a particularly

useless form. This information is useful only if it can be quantified by a signal

processing method to achieve accurate and actual sEMG signal.

Chapter 7: Pattern Recognition

This chapter will discuss the development of a control system for finger pattern clas-

sification by using an artificial neural network (ANN). This will involve the funda-

mental of the neural network and the result of how many finger movement patterns

can be trained.

Chapter 8: Summary and Conclusions

In this final chapter, the work of the thesis is summarised. It discusses the current

work, summarises the results and proposes ways to overcome the limitations and

issues to be encountered in future development of the prosthetic hand configuration.

Recommendations are also made for future work.



Page | 7

CHAPTER 2

Literature Review

2.1 Introduction

The loss of limb can severely affect the quality of life of an amputee and thus render

the most common every day tasks difficult if not impossible. Over the last few dec-

ades, major progress has been made in the development of intelligent prostheses,

which can at least partially fulfil the requirements of the missing limb. The hand is

viewed as one of the most important parts of the human body as it allows for adapta-

tion, exploration, prehension, perception and manipulation.

The concept of using the remaining muscles of a limb to operate a terminal device

remained central to all development in upper limb prosthetics until the practical in-

troduction of myoelectrically controlled prosthetics in the beginning of 1958 [1]. The

myoelectric prosthesis is controlled by the action potential of the muscle that devel-

ops as a secondary to the excitation of the central nervous system. The articulated

hand of the myoelectric prosthesis is usually activated through at least two sets of

electrodes over an opposing muscle group, such as extensors and flexors. The elec-

trical potential of the muscle is detected on the skin by the electrodes incorporated

into the socket of the prosthesis. This potential, picked up by the electrodes, then

controls the opening and closing action of the prosthesis, powered by a battery usu-

ally incorporated within the prosthesis [10]. Figure 2.1 shows the current commer-

cial myoelectric prosthetic hand for children manufactured by Otto Bock.
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Figure 2.1: Myoelectric prosthetic hand for children.

Prior to presenting the design, analysis, and experimental aspects of the work of

myoelectrical prosthetic hand, it is useful to have an historical perspective or a litera-

ture review. This chapter provides the background history on the two major compo-

nents of this research: actuation and sEMG control input signal. The actuation com-

ponents are pneumatic, hydraulic, SMA, etc., which is discussed in Section 2.2. The

sEMG control input signal includes the digital signal processing and sEMG pattern

recognition discussed in Section 2.3.

Myoelectrodes Sensor 2---
Signal from muscle of Exten-
sor Carpi Radialis Longus,

used to ‘open’ hand.

Myoelectrodes Sensor 1---
Signal from muscle of Flexor
carpi ulnaris used to ‘Close’

hand.
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2.2 Actuation System Design

An actuator is a mechanical device for moving or controlling a mechanism or sys-

tem. It is typically a mechanical device that takes energy, usually created by air, elec-

tricity or liquid, which it converts into some kind of motion. In engineering, actua-

tors are frequently used as mechanisms to introduce motion or to clamp an object so

as to prevent motion. In electronic engineering, actuators are a subdivision of trans-

ducers and are devices which transform an input signal that is mainly an electrical

signal into motion. Specific examples include electrical motor, pneumatic actuators,

electroactive polymers (EAP), shape memory alloy (SMA), etc..

Electrical motors, pneumatic actuators, hydraulic actuators and SMA actuators are

typically used in prosthetic limb design [1, 3, 6, 7, 11-15]. Current commercial

myoelectric prosthetic limbs mostly use electrical motors, such as Otto Bock [1] and

Touch Bionics’ i-limb [11].

2.2.1 Review of Actuators

Traditionally, artificial hand designs have tended to be bulky, heavy and noisy due to

use of electro-mechanical actuators [16]. Besides, the electro-mechanical actuators’

heavy weight, size, and shape have been restrictive and uncomfortable to the users

[3, 12, 16]. As a result of the problems inherent with this type of actuation, designers

have been adapting various other actuation techniques for use in their place.

Typically, electric motors are not small enough and can only be placed remotely, like

ahead of the wrist joint of the hand, such as in the Otto Bock prosthetic hand (Figure

2.1). This positioning increases the complexity of the mechanical designs, since all

the tendons driving the fingers have to pass through the wrist joint. Due to these

constraints, the design and development of most of the current commercial pros-

thetic hands have failed to provide enough grasping functionality and have few ac-

tive DOF restricting their effectiveness [15].

Several robotic and anthropomorphic hands may have sufficient active DOF, such as

the Shadow Hand with up to 20 DOF [17], allowing them to have dexterity compa-
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rable to that of the human hand, though unfortunately these types of hands cannot be

used as prostheses due to their physical characteristics.

Constrained by these limitations of the electric motor or electro-mechanical actuator,

some researchers have used pneumatic, hydraulic or SMA actuation to replace the

motor.

First, among the pneumatic actuators, the McKibben Artificial Muscle [14] is one of

the most excellent examples. Its properties are found to be similar to the real muscle

in the sense of its physical flexibility and light weight. We can refer to the Anthro-

form Biorobotic Arm [18] for an idea of the application. The force-to-weight ratio of

this device is one of the best attributes, reaching 400:1, which is absolutely critical

for mobile robot applications. This technology was commercialised for robotic ap-

plications in the 1990s by the Shadow Robot Group in the UK. A rubber tube cov-

ered in tough plastic netting which shortens in length constituted in their air muscle,

which looks like a human muscle when inflated with compressed air at low pressure

and contracts by up to 40% of its original length when actuated. The air muscle has

smooth and neural movement because it has no "stiction" and it has an immediate

response. According to the Shadow Robot Group Company’s, their Air Muscle di-

ameter is just 6mm, with the strength, speed and fine stroke of a finger muscle in a

human hand, as shown in Figure 2.2. It is also able to lift more than 70 kg at a pres-

sure of four bars (60 psi) when its Air Muscle diameter is 30mm.

(a) (b)

Figure 2.2: Pneumatic muscle from Shadow Robot Group Company: (a) Muscle extending,
(b) Muscle contraction.

Secondly, the hydraulic actuator [13] presents a powerful miniaturised hydraulic sys-

tem of compact design used for the actuation of artificial hands. These hydraulic

prostheses have advantages in construction, design and performance, including adap-
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tivity during grasping and holding of an object. This hydraulic system consists of

one hydraulic pump, one fluid reservoir, five electric valves, an electronics unit,

eight flexible fluidic actuators, plus one battery for power supply and two myoelec-

tric electrodes placed in the socket. Figure 2.3 shows this miniaturised hydraulic ac-

tuator for artificial hands, the maximum grasping force of which is 110N.

Figure 2.3: Miniaturised hydraulic actuator for artificial hands [13].

This prosthetic hand prototype may accomplish up to five grasping patterns, which

are power, precision, tripod and hook grasp, and stretching of an index finger. The

grasping patterns are pre-assigned in the hand’s control unit and are accomplished as

follows. Firstly, the electronics control unit receives the control signals from the

user’s upper limb muscle via the two myoelectrodes. The control unit is responsible

for the analysis of control signals, selection of pre-programmed grasping patterns

and operation of the hydraulic pump and valves. Afterwards, the hydraulic pump

generates the fluid pressure to the actuators and electric valves control the actuator

action. Depending on the grip type selected, the corresponding actuators will be
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filled and the joint will move. However, it has a total of just five active DOF (one at

each finger) due to use of five electric valves and three passive DOF on the PIP joint

of thumb, index and middle fingers.

Third, SMA allows crystalline phase and shape changes when heated or cooled [7].

Heating is enabled by passing an electric current through the wire. As the wire cools,

it expands back to its original length. Although they are sometimes considered slow

for demanding robotic applications, recovery rates can be increased significantly by

using various heat sinks [7]. There are a lot of types of memory alloys, but compared

with corrosion-resistant nickel-titanium alloy (Ni-Ti), Cu-Zn-Al and Cu-Al-Ni are

the worst in their chemical, physical and mechanical characteristics. As for Ni-Ti, it

creates direct linear motion by contraction up to the 10% of its length when heated.

A lot of researchers prefer using SMA attached to tendon wires as their prosthesis

actuator due to its operational similarity to human muscles [8]. Besides, the big ad-

vantages of the SMA are their incredibly small size and volume, their high force-to-

weight ratio and their low cost [3, 19]. However, the one drawback with SMA is that

in prosthetic devices large lengths of SMA are needed [3].

A new biomimetic tendon-driven actuation system is presented in [6] for prosthetics

based on the combination of compliant tendon cables and SMA wires that form a set

of agonist-antagonist artificial muscle pairs for the required flexion/extension or ab-

duction/adduction of the finger joint (Figure 2.4). The performance of the proposed

actuation system is demonstrated using three active and one passive DOF of each

finger. The three active dof are positioned on the MCP joint flexion/extension, MCP

joint abduction/adduction and PIP joint flexion/extension. One passive DOF is lo-

cated on the DIP joint, coupled with the PIP joint.
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Figure 2.4: Differential spring-biased SMA joint actuation mechanism [6].

In Figure 2.4, one end of the tendon cable is attached to the artificial finger structure,

mimicking the attachment of the natural tendon to the finger bones, while the other

end of the cable is tied to the SMA actuator. The actuators are placed remotely to the

finger joint, similar to the natural finger’s extrinsic musculature. Joint rotation is

produced by the contractile action of two SMA actuators, placed in opposition to

each other in a double spring-biased fashion. As shown in the lower inset of Figure

2.4, passive compliance is introduced in the tendon cables of the artificial finger by

connecting a spring in parallel to a slack portion of each tendon cable, such that, as

the SMA actuator contracts, the spring in the corresponding tendon elongates until

the slack is absorbed and the tendon is tight. At this point, the tendon cable can be

considered to have ‘infinite’ stiffness and further SMA actuator contraction causes

tension to be transferred to the finger for link rotation. This simple spring-slack arti-

ficial tendon effectively mimics the nonlinear stiffness of the natural tendon which

tends to infinity as it approaches its natural limit of extension. The dual spring-

biased configuration permits the two SM actuators to work as an agonist-antagonist

pair, enabling both active extension and flexion of the joint.

As an SMA actuator contracts, the spring in the tendon cable to which the actuator is

connected expands, absorbing the slack in the active tendon until the cable is fully

stretched and tight. While the finger can rotate simultaneously during the absorbing

of the slack, any further contraction of the SMA actuator at this point acts directly on

the finger, rotating it about the joint axis. Simultaneously, as the finger flexes or ex-

tends, the spring in the opposing tendon expands and the slack in the passive tendon

is also absorbed. Figure 2.5 shows the artificial finger with six tendon cables routed
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through the finger core and attached to the corresponding six remotely placed SMA

actuators.

Figure 2.5: Artificial finger with six tendon cables routed through finger core and attached
to six corresponding remotely placed SMA actuators [6].

Electroactive Polymers (EAPs) are another type of actuator to replace the electric

motor or hydraulic/pneumatic one, being operationally similar to the SMA and hu-

man muscles. It is a lightweight and direct-driven actuator able to provide ways to

increase the functionality of artificial hands without adding mechanical complexity

[8]. However, EAPs have low actuation forces, mechanical energy density and lack

of robustness compared to the SMA [9]. Hence, a lot of researchers refer more to

use of SMA than EAP.

Even though the pneumatic, hydraulic and SMA actuators have achieved some suc-

cess, sometimes they are not ideal in use. For example, pneumatic and hydraulic ac-

tuators need electric valves and a compressed air generator or pump too, which are

neither light nor small. As for SMA, its thermal to mechanical energy conversion has

proved difficult in practical applications and just a small amount of absolute force is

obtained from one SMA wire.

Considering the above advantages and limitations of some actuators, we finally de-

cided to combine DC and SMA actuators. The DC actuator is small and light enough

and is placed in the palm to control the flexion/extension movement of the MCP

joint. The SMA is placed in the palm but at a different level from the DC actuator

and to control the flexion/extension movement of the PIP joint. This combination

can not only increase the finger’s active dof but also can create a light enough pros-
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thetic hand. Besides, it will save spare in the prosthetic socket as we are trying to

position these two actuator inside the palm.

2.3 sEMG Control Input Signal

An electromyograph (EMG), is also referred to as a myogram is an analytical tool

used to record the electrical activity of muscles. Basically, the EMG produces an

electrical current which is proportional to the level of muscle activity. As it can also

be used to detect any abnormal electrical activity in the muscle, it plays an important

role in the diagnosis of many diseases and conditions, for example muscular dystro-

phy, inflammation of muscle, pinched nerves or even peripheral nerve damage [20,

21].

There are two types of EMG: intramuscular or invasive EMG and surface or non-

invasive EMG [22, 23]. The intramuscular EMG is actually a needle electrode in-

serted through the skin into the muscle. Its activity is displayed on an oscilloscope.

Several needle electrodes may be placed at various points in the muscle to obtain an

informative EMG. The information (size and shape of the waveform) produced on

the oscilloscope enables the muscle to respond to nervous stimulation. The size of

the muscle fibre affects the frequency and the amplitude of the action potential [22,

24]. Surface EMG (sEMG) is obtained by placing the electrodes just on and not into

the skin to detect the electrical activity of the muscle. Therefore the sEMG does not

involve piercing the skin and does not hurt [22]. The current state of sEMG provides

many important and useful applications but it has many limitations, which must be

understood, especially the factors which influence the EMG signal [21, 25].

From [25], it is known that there are some typical disturbances for myoelectric pros-

theses. These are motion artefacts caused by movement or detachment of myoelec-

trodes, low frequency electrical interference and radio frequency interference, e.g. by

mobile phones or radio sets.

The myoelectrode should be placed on the thickest part of the muscle (position 1 of

Figure 2.6), in order to obtain the strongest signal. The differential inputs should be

in the muscle fibre direction. Positions 3 and 4 of Figure 2.6 are less suitable, as

there are fewer motor units in the pickup area of the myoelectrodes. Position 2
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should also be avoided, because interference of the motor unit action potentially re-

duces the signal strength in that area [21, 25].

Figure 2.6: Influence of myoelectrode position on signal strength[21, 25].

The purpose of the implanted myoelectric sensors (Figure 2.7) is to provide multi-

function prosthesis control [24]. The implantable sensor is small enough to be in-

jected into muscles, around 2mm diameter by 15mm long and is individually ad-

dressable and hermetically encapsulated.

Figure 2.7: Implanted myoelectric sensors (IMES) [24].

The implanted myoelectric sensors will receive their power, digital addressing and

command signals by forward telemetry from an external transmitter coil laminated

into the prosthetic socket. The implants will send their EMG data to the prosthesis

controller by reverse telemetry (Figure 2.8) [24].
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Figure 2.8: Implantable myoelectric sensor (IMES) concept. External coil laminated di-
rectly into prosthetic interface during socket fabrication and telemetry controller incorpo-

rated along with prosthesis controller in body of prosthesis [27].

2.3.1 Surface Myoelectrodes

The commercial prosthetics, such as Otto Bock Sensor Hand and Touch Bionic’s i-

Limb, use only two myoelectric electrodes [1, 4, 5]. However, some researchers such

as [26] suggest that this, as far as one can understand, offers no fine control over

single finger or over the required amount of force. Besides, the current commercial

devices are far from providing the manipulation capabilities of the human hand. For

example, their active bending is restricted to two or three joints, actuated by a single

heavy motor drive acting simultaneously on the MCP joint of the thumb, index and

middle fingers, while other joints can bend only passively or can not bend at all. The

most commonly used myoelectric hand has one DOF, opening and closing [4, 26,

27].

In order to have fine control and for the patients to be able to enforce the correct

grasping type, more than two myoelectric electrodes are needed [26, 28-31]. Some

researchers [28] use 64 channel of myoelectric electrodes for decoding twelve finger

movements, which are ten individuated finger movements (finger flexion and exten-

sion) and two middle, ring, and little fingers as group movements (flexion and ex-

tension). The electrodes are placed by dividing the posterior and anterior forearm

into five levels respectively, where the levels one to five are characterised by 32, 28,

24, 19 and 12 electrodes, respectively. The accuracy is above 80% for pattern classi-

fication. In another work [30] eight myoelectrodes are used to decode six gestures

patterns of hand movement and achieved accuracy up to 93.7%. Up to ten myoelec-

trodes has also been used [26] to decode five patterns: no action taken; grasp by op-

posing thumb and index finger, thumb and middle, thumb and ring, and thumb and
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all other fingers. Its accuracy is around 80% for pattern classification. Some re-

searchers [31], using up to fifteen myoelectrodes attempted to decode five patterns,

which are the MCP joint’s movement of thumb, index, middle, ring and little fin-

gers.

It is seen that these kinds of techniques can increase the number of hand/finger

movements and the functionality of a prosthetic hand. However, increasing the num-

ber of myoelectrodes also increases the complexity of learning by amputees. Be-

sides, the remaining limb of ‘real’ amputees has just limited space to allow the plac-

ing of so many of myoelectrodes.

2.3.2 Signal Processing Techniques

Generally, the processing of sEMG signals can be divided into three stages [32-34].

The first is data acquisition that includes amplification, analogue to digital conver-

sion and signal conditioning. Second, a signal processing stage to extract desired

features from the biosignal, and third, a feature selection stage by retaining informa-

tion important for the later application such as classification of signals using an Arti-

ficial Neural Network (ANN). A schematic diagram of the stages is shown in Figure

2.9.

Figure 2.9: Stages of sEMG signal processing.

2.3.2.1 Data acquisition

A signal is first detected at the intended biological site by using surface electrodes as

sensors. The electrodes also provide interface between an electrical recording device

and the biological system. After detection by the electrodes, the signal is usually am-

Data Acquisition

1. Amplification.

2. Signal Condition-
ing.

3. A/D Conversion.

Features Extraction

By analysis in

1. Time Domain

2. Frequency Do-
main.

3. Time-Scale Do-
main.

Feature Selection

Selecting Parameters
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plified, filtered and converted to a digital signal monitored on the screen. Amplifica-

tion is needed as muscle signal is generally weak and only generates in the microvolt

range [35]. Since the sEMG signals are small, their measurement is also susceptible

to interference from electrical equipment, such as movement of cable carrying sig-

nals from the body to the measuring instrument. Besides, in order to eliminate the

‘unwanted’ interference signal, typically a bandpass filter is used as first stage at the

electrode site which effectively cancels the ambient electrical noise.

2.3.2.2 Feature Extraction and Selection

Feeding a myoelectric signal presented as a time sequence directly to a classifier is

impractical, due to the large number of inputs and randomness of the signal. There-

fore, the sequence must be mapped into a smaller dimension vector, called a feature

vector [36, 37]. Information extracted from EMG signals represented in a feature

vector is chosen to minimise the control error [38, 39]. Features represent raw

myoelectric signals for classification, so the success of any pattern recognition prob-

lem depends almost entirely on the selection and extraction of features. A wide spec-

trum of features has been introduced in the literature for myoelectric classification.

Features fall into one of three domains: time, frequency and time-scale [20, 32, 36,

39-42].

2.3.2.2.1 Time Domain

Common procedures are used to detect muscle activation. These are basically de-

scribed by the observable lobes appearing in the sEMG time series. There are several

digital operations that can be performed to obtain the desired information.

1. Full-wave Rectification

One of the first operations performed on the sEMG signal is full wave rectifica-

tion. This can be done digitally by defining:

|)i(sEMG|)i(sEMG rec  (Equation 2.1)

where sEMG(i) is the ith sample of the discrete sEMG signal.
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2. Root Mean Square

This is used to calculate the amplitude of the sEMG and therefore also as a force

indicator. It is defined by:

N

A
RMS

n

0i

2
i

 (Equation 2.2)

where iA is amplitude in ith sample and N is total number of samples.

3. Mean Absolute Value

This is an estimate of the mean absolute value (MAV) of the signal ix in a seg-

ment i that is N samples in length.





N

1i
ii |x|

N

1
X (Equation 2.3)

4. Wilson Amplitude

This is the number of counts for each change of the sEMG signal amplitude that

exceeds a predefined threshold. It is given by:

)|xx(|fWAMP
N

1i
1ii


 (Equation 2.4)

where f(x) = 1 if x>threshold, 0 otherwise. This unit is an indicator of firing of

motor unit action potentials (MUAP) and, therefore, an indication of muscle con-

traction level.

5. Variance:

The variance is a measure of the signal power and is calculated as:





N

1i

2
ix

1N

1
VAR (Equation 2.5)

where xi is the ith sample and N is the total number of samples.
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6. Waveform Length:

This is the cumulative length of the waveform over the time segment. It is de-

fined as:

|x|l
N

1i
i0 



 (Equation 2.6)

where 1iii xxx  . This parameter gives a measure of waveform amplitude,

frequency and duration all in one.

7. Autoregressive Coefficients:

Using an autoregressive (AR) model, new samples are represented as linear

combination of earlier samples. The model can be represented as:





M

1k
i )i(w)ki(y)k(aŷ (Equation 2.7)

where y is the sEMG signal, a(k) is the coefficients of the model, w(i) is a ran-

dom white noise and M is the order of the model. M=4 is suitable for EMG sig-

nals [41].

2.3.2.2.2 Frequency Domain

Spectral (frequency domain) analysis is mostly used to study muscle fatigue [36, 41].

It is commonly used in applications where oscillators or repetitive patterns are in-

volved, for instance in the case of motor unit (MU) activation and pathological

tremor [41].

Power spectral density (PSD) plays a major role in spectral analysis. In wide-sense

stationary stochastic signals, PSD is defined as the Fourier transform of the autocor-

relation function of a signal. Its two characteristic variables, the mean and median

frequency, provide some basic information about signal spectrum and its change

over time. Fourier analysis is a mathematical technique for transforming a signal

from time domain to frequency domain by breaking down a signal into constituent
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sinusoids of different frequencies. Fourier transform is a generalisation of the Fou-

rier series where function is represented by the sum of sines and cosines. Instead,

Fourier transform uses exponentials and complex numbers.

The Fourier transform of input signal x(t) is defined as:






 tje)t(x)(F [43] (Equation 2.8)

where  is the angular frequency, f2 , f is the input frequency, x(t) is the time

domain signal and )(F  is its Fourier transform represented in frequency domain.

Equation 2.8, expressing the Fourier transform, calculates the frequency, amplitude

and phase of each sine wave needed to make up any given signal. It is a linear trans-

form from time to frequency domain and can be used to analyse the spectral compo-

nent of a signal [43].

1. Mean Frequency

Fatigue is related to the frequency of motor unit (MU) activation [41]. The evo-

lution of the mean frequency is used as a fatigue index. It is defined as:








n

0i

2
i

n

0i

2
ii

A

Af
F (Equation 2.9)

where F is mean frequency, if is frequency in ith sample, iA is amplitude in

ith sample and n is total number of samples.

2. Median Frequency

This is another parameter that can be used to assess muscle fatigue. The median

frequency is given by the frequency that divides the power spectrum into two re-

gions containing the same amount of power. The median frequency is the fre-

quency having 50% or half of the frequency distribution on each side.
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2.3.2.2.3 Time-Scale Domain

Fast Fourier Transforms (FFTs) are most commonly used to determine the frequency

spectrum of the sEMG signal. However, its analysis has a serious drawback. In

transforming to the frequency domain, time information is lost. When looking at a

Fourier transform of a signal, it is impossible to tell when a particular event took

place [36, 44, 45]. This is acceptable for stationary signals, as their properties do not

change over time. However, myoelectric signals contain numerous non-stationary

characteristics. Another Fourier Transform, Short Time Fourier Transform (STFT),

is a form to solve the FFT drawback and maps a signal into time and frequency func-

tions. Hence, it provides information telling ‘when’ and ‘at’ what frequencies a sig-

nal occurs [36, 44]. However, because it is using a technique called windowing to

analyse a small section of signal, the information is therefore obtained with limited

precision determined by the size of the window. Thus, narrow window has good

time resolution, but poor frequency resolution; while wide window has poor time

resolution, but good frequency resolution [32, 36, 44]. Besides, another drawback of

STFT is assuming the signal is stationary within the window size, therefore it is not

suitable to be used for non-stationary sEMG signal [46]. This resolution problem

suggests that there is a need to use variable lengths in analysing windows with short

ones for high frequencies and long ones for low frequencies. Wavelet transform is

the method able to accommodate this with the use of related time-scale analysis, thus

providing a flexible time-frequency resolution. The wavelet analysis does not use a

time-frequency region, but rather a time-scale region [44].

A wavelet transform (WT) enables local analysis, i.e. to analyse a localised area of a

large signal. Wavelet analysis reveals data aspects that other techniques miss, such

as trends, breakdown points, discontinuities in higher derivative and self-similarity

[44]. WT is an efficient mathematical tool for local analysis of non-stationary and

fast transient signals [20]. It does not use a time-frequency region, but rather a time-

scale region to analyse signals, as shown in Figure 2.10. Thus it provides a flexible

time-frequency resolution, unlike FFT and STFT, which are analysis in frequency

domain and Frequency-Time Domain [44].
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Figure 2.10: Different domains of signal analysis [44].

Wavelet analysis breaks up the signal into shifted and scaled versions of the original

or ‘mother’ wavelet. Wavelet transforms use basis function or mother wavelet with

time width adapted to each frequency band [44]. Wavelets are used to transform the

signal under investigation into time-scale representation which presents the signal

information in a more useful form. The idea of relative time-frequency resolution

allows the time-scale component to be considered as related by a time translation

and a time stretch [44].

There is a correspondence between scale and frequency in wavelet analysis: a low

scale shows the rapidly changing details of a signal while a high frequency and a

high scale illustrates slowly changing coarse features, with a low frequency [36, 44].

Figure 2.11 shows the relationship between scale and frequency.

Figure 2.11: Low and high scale signal [44].

Two types of wavelet transform can be defined: the continuous wavelet transform

(CWT) and the discrete wavelet transform (DWT).
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Due to the computational condition, real-world data signals have been processed at

discrete time to perform in discrete signals form. Hence, unlike the DWT, the ‘con-

tinuous’ character in CWT is marked by its ability to operate at a scale from that of

the original signal up to some maximum scale determined by the application needed

for detailed analysis with available computational power. The translation of CWT is

also ‘continuous’ during computation as the analysing wavelet is shifted smoothly

over the full domain of the analysed function [44]. Figure 2.12 shows the CWT in

terms of ‘continuous’ shifting.

Figure 2.12: CWT ‘continuous’ in terms of shifting [44].

The CWT is defined as the sum over all time of the signal multiplied by scaled,

shifted versions of the wavelet function, as shown in Equation 2.10 [44].





 dt)t()t(x),a(CWT ,a (Equation 2.10)

where x(t) is input signal, position  represents the translation diameter of time

shifting, a represent scale and the basic function  ,a is obtained by scaling the

mother wavelet )t( at position  and scale a.

The mathematical expression of a wavelet family which consists of members or

daughter wavelets  ,a is obtained by scaling and time-shifting of the mother wave-

let )t( , defined in Equation 2.11 [44]:
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When ‘a’ becomes large, the basic function  ,a becomes a stretched version of the

prototype, which emphasises the low frequency components. A small ‘a’ contracts

the basic function  ,a and stresses the high frequency components [44].

Substituting Equation 2.11 to Equation 2.10 gives the following [44]:





 







 









 dt

a

t
)t(x

a

1
),a(CWT ,a (Equation 2.12)

An example of a signal analysed by CWT is depicted in Figure 2.13. The darker and

brighter regions indicate larger coefficients and stronger transforms for the corre-

sponding scales and time of occurrence. The colour bar on the right side of the sca-

logram plot is the number of CWT coefficients. Large value of coefficient will

stretch the signal (low frequency) and low value of coefficient will compress the

signal (high frequency), as shown in Figure 2.14 [44].

Figure 2.13: Example of CWT.
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Figure 2.14: Coefficient of CWT [44].

DWT uses the multiresolution analysis based on multirate filter banks. The mul-

tiresolution theory was developed by Mallat in 1988 [44]. While the translation of

CWT is carried out in a smooth continuous fashion, DWT is in discrete steps. In

DWT, the ‘original’ signal S passes through two complementary filters and emerges

as two signals. One signal contains ‘approximations’ A, in high scale, low frequency

components of the signal, and another, ‘details’ D, in low scale, high frequency

components. The filtering process, at its most basic level, looks like Figure 2.15.

Figure 2.15: DWT basic filtering process [44].

If this operation is actually done with a real digital signal, in the end there is twice as

much data as at the start. Suppose, for instance, that the original signal S consists of
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1000 samples of data, then the resulting signals will each have 1000 samples, for a

total of 2000, as shown in Figure 2.16 (a).

Figure 2.16: Analysis filter bank (a) without down-sampling, (b) with down-sampling by
factor of two [44].

In order to avoid this, down-sampling the filtered sequences by a factor of two is

done, as shown in Figure 2.16 (b).

The decomposition process can be iterated, with successive approximations being

decomposed in turn, so that one signal is broken down into many lower resolution

components, as shown in Figure 2.17.

Figure 2.17: DWT multiple-level decomposition tree [44].

In DWT, for many signals, the low frequency content is the most important part as it

gives the signal its identity. The high frequency content, on the other hand, adds the

characteristics or details of the signal. Hence, in Multiresolution analysis, the low

pass filters are used to extract the dominant component of low frequency content.

Also in DWT, the term ‘approximations’ and ‘details’ are referred to as the compo-
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nents that can be used to reconstruct the signal. The approximations are the higher

scale that is the low frequency components of the signal; the details are the low scale

that is the high frequency components.

Mean absolute value (MAV) and root mean square (RMS) are two well-known time

domain features [36]. Theoretically, when a signal is modelled as a Gaussian ran-

dom process, RMS provides the maximum probability estimation of amplitude in a

constant force and non-fatiguing contraction. RMS is the better fit at high level of

contraction and MAV is well fit for low contractions and fatigued muscle [36].

Some researchers [28, 31] used MAV, VAR, WL and WAMP of time domain fea-

tures to represent their ‘original’ signal and import to neural network to classify 12

output patterns and 5 output patterns, respectively. A control system for powered

upper-limb prostheses has been devised [47] using time domain features, which are

MAV, MAV slope and WL, and a simple multilayer perceptron artificial neural

network as a classifier. This controller identified four types of muscular contraction

using signals measured from the biceps and triceps.

STFT frequency domain and DWT time-scale domain techniques have also been

used [48] to extract raw sEMG signal features and import to neural network to clas-

sify six output patterns. However, it is not reported which features were selected.

Another research work [42] shows that feature sets based upon the Short Time Fou-

rier Transform (frequency domain) and the wavelet transform provide an effective

representation for classification, provided that they are subject to an appropriate

form of dimensionality reduction. It also mentions that, given that transient MES

patterns have structure in both time and frequency, it is suggested that the signal en-

ergy which would discriminate amongst contraction types would be best concen-

trated in a dual representation.

2.3.3 Pattern Recognition

The field of pattern recognition is concerned with the automatic discovery of regu-

larities in data through the use of computer algorithms and with the use of these

regularities to take action such as classifying the data into different categories [49].

Pattern recognition aims to classify data or patterns based either on a priori knowl-
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edge or on statistical information extracted from the patterns. The patterns to be

classified are usually groups of measurements or observations, defining points in an

appropriate multi-dimensional space. This is in contrast to pattern matching, where

the pattern is rigidly specified. It is the last stage experiment of sEMG control input

signal, as shown in Figure 2.18. The selected features of the sEMG signal will be

imported to one of the techniques of pattern recognition for training and classifica-

tion.

Figure 2.18: Grasp or pattern recognition of raw sEMG signal.

To control more complex hands requires a more advanced human-machine interface

involving multiple sEMG electrodes and a suitable pattern recognition system to in-

terpret the raw signal. sEMG pattern recognition has been applied in controlling

prosthetic devices for amputees [50]. The main prosthesis control functions of inter-

est were flexion and extension of the forearm and pronation and supination of the

wrist, respectively. The hand actions, such as hand opening and grasping, and finger

bending were also of some interest.
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Many researchers have used different techniques to recognise sEMG, such as artifi-

cial neural networks (ANN), fuzzy logics (FL) and adaptive neuro-fuzzy inference

system (ANFIS) [48, 51].

2.3.3.1 Fuzzy Logic

Fuzzy logic (FL) using if-then rules provides a mathematical framework that allows

to model the uncertainties associated with approximate reasoning, especially for the

control systems where mathematical models are difficult to derive, including human

perceptual and information processing. The fuzzy system, initially fuzzifies inputs to

values at interval [0,1] using a set of membership functions (MF) [38].

Some researchers [50, 52-54] have used FL in three pattern recognition of myoelec-

tric signals for a hand prosthesis. The fuzzy logic controller consists of three mod-

ules: fuzzification / defuzzification module, fuzzy inference engine and fuzzy rule

base that allows the process of uncertainty in the human thinking. Such information

can be expressed with imprecise linguistic forms such as ‘low’, ‘medium’ and

‘high’. In a fuzzy system, the subjective judgments can be formulated through the

fuzzification module that transforms them into appropriate fuzzy linguistic variables

characterized by membership function in a specified universe of discourse.

FL pattern recognition techniques have also been used to train three output patterns,

with a correctly classified rate above 85% [52]. Six myoelectrodes collected sEMG

raw signal and the input features to the FL were 63Hz, 125Hz, and 250Hz bands of

Fast Fourier Transform (FFT). These three output patterns were palmar 3-finger

grasp, lateral grasp, and hook grasp, as shown in Figure 2.19 (a), (c) and (d).

In a research work [54] the sEMG similarities and differences have been quantified

for six major grasping patterns of the human hand, which are cylindrical, hook, pal-

mar, lateral, spherical, and tip, as shown in Figure 2.19 (a) to (f). They used twenty

needle myo-electrode sensor inserts in ten extrinsic hand muscles to collect

myoelectric raw signals of six patterns. Fuzzy c-means (FCM) were used in assess-

ing the extent to which the grasping patterns overlapped electromyographically. The

results show that no grasp is completely distinct from any other in transient or in
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steady-state and that the EMG patterns of the tip and palmar grasps, in particular,

overlap significantly.

Figure 2.19: Seven major categories of prehensile grasps: a1) palmar 3-finger-thumb op-
poses index and middle fingers; a2) palmar 2-finger; b) tip-thumb opposes index only; c)

lateral; d) hook; e) spherical; f) cylindrical [52, 54].

FL systems are advantageous in biomedical signal processing and classification [50].

Biomedical signals are not always strictly repeatable and may sometimes even be

contradictory. Furthermore, using trainable fuzzy systems, it is possible to discover

patterns in data which are not easily detected by other methods, as can also be done

with neural networks. The significant advantage of FL over ANN is that in FL sys-

tem it is possible to integrate this incomplete but valuable knowledge into the fuzzy

logic system due to the system’s reasoning style, which is similar to that of human

decision-making and more closely than ANN. It is reported that the fuzzy logic algo-

rithm can have recognition accuracy in the range of 80% to 97.5% [38, 50].

2.3.3.2 Artificial Neural Network

ANN systems are simplified mathematical models of the brain-like systems that

function as parallel distributed computing networks which can be trained to learn
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new associations, functional dependencies and new patterns. ANNs are adaptive,

that is they can automatically adjust to modify their behaviour in response to nonlin-

ear dynamics of their environment. Over the last few years, ANNs have been suc-

cessfully applied in medicine and biomedical studies [55].

Feedforward multilayer perceptrons with a varying number of hidden layer neurons

have been used [28] for classifying 12 output patterns. The authors used a continu-

ous transfer function for the hidden layer neurons, tan-sigmoid, and a logistic func-

tion for the output layer, log-sigmoid. Their classifier’s overall accuracy (averaged

across the 12 movement types) in decoding the individuated and combined finger

movements of the six subjects is around 80%.

Another researcher [31] described the features extracted that would serve as input to

an ANN. A simple feedforward network was used due to its success in traditional

classification and simple regression application. The neural network was constructed

with a single layer of tan-sigmoid hidden layer neurons and a layer of tan-sigmoid

output neurons. This network structure was chosen to provide an output vector con-

sisting of the approximate position of the MCP joint for each finger. Their classi-

fier’s overall accuracy (averaged across the 5 movement types) is above 90%.

In another research work [48] a three (input, hidden and output) layers network was

used with back propagation learning to train up to six output patterns. These six

output patterns are large and small cylindrical, large and small spherical, pinch and

key as illustrated in Figure 2.19 (f), (e), (c) and (a2). The mean values of the success

rates are around 75-80%.

Table 2.1 shows the typical EMG classification systems. ANN has the second high-

est correct rate compared to nonlinear discriminant, however, it has the fastest con-

trol [50] as its delay is less than 300ms.

Table 2.1: Typical EMG classification systems [50].
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2.3.3.3 Adaptive Neuro-Fuzzy Inference System

While fuzzy logic allows for an inference mechanism under uncertainty, ANN af-

fords system learning, adaptation, parallelism of information processing and gener-

alisation over time. A hybrid system, called adaptive neuro-fuzzy inference system,

combines the concepts of fuzzy logic and ANN . It uses a given input/output data set

to construct a fuzzy inference system (FIS) whose membership function parameters

are tuned or adjusted, using either a backpropagation algorithm alone or in combina-

tion with a least squares type of method. This adjustment allows the fuzzy system to

learn from the data modelled [56].

A research work [38] proposes a hybrid method for training a fuzzy system consist-

ing of backpropagation (BP) and least mean square (LMS). The authors extract four

features of the raw sEMG signal in order to train six patterns, which are hand open-

ing and closing, wrist radial flexion and extension, pinch (Figure 2.19 (b)) and

thumb flexion, based on two channels of differential surface electrodes. The average

system accuracy for the combined approach is 96%. They described that the differ-

ence between the FL and ANFIS is that FL is adjusting membership function pa-

rameters in order to minimise the output of each fuzzy rule and estimating the num-

ber of rules. The ANFIS adapts the parameters of a Sugeno type inference system

using neural network [56]. For training the fuzzy system, ANFIS employs back-

propagation for the parameters associated with the input membership functions and

LMS estimation for those associated with the output membership functions. Figure

2.20 shows the basic ANFIS structure.

Figure 2.20: Basic adaptive neuro-fuzzy inference system structure [38, 56].
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Although the ANFIS system can have a high rate of pattern recognition, it is re-

ported [53] that fuzzy logic combined with more complex algorithms, such as ANN,

has slow update rates and has not been assessed on individuals who have experi-

enced limb-loss.

2.4 Summary and Contribution of this Project

The prosthesis as a tool makes no pretence of trying to replace the lost limb’s

physiological appearance. In fact, it works as an aid to help provide some of the

functions that were lost due to accidents, war or congenital conditions. Moreover,

the prosthesis is an interchangeable device that can be used only when needed.

Much effort in the field of upper-extremity prosthesis research is directed towards

the development of prostheses as true limb replacements.

In reality, most patients or amputees feel uncomfortable when using the current

commercial prosthetic hands, because they are usually heavy, are unable to provide

enough grasping functionality and lack degree of freedom [3, 4]. Commercially

available devices, such as Otto Bock Sensor Hand [1, 4, 5] and Touch Bionic’s i-

Limb are far from providing the manipulation capabilities of the human hand. For

example, their active bending is restricted to two or three joints, which are actuated

by a single heavy motor drive acting simultaneously on the Metacarpophalangeal

(MCP) joint of the thumb, index and middle finger, while other joints can bend only

passively or can not bend at all. The most commonly used myoelectric hand has one

degree of freedom, opening and closing. It uses only two myoelectrode sensors in

order to increase training efficiency and practical reliability of the device. A number

of researchers [26, 28-31] have suggested that if there is a need to increase the func-

tionality of prosthetic devices, to have fine control, and that if the patients must be

able to enforce the correct grasping type, more than two myoelectrodes sensors can

be added, however at the expense of training efficiency.

Consequently, the motivation for this research is to investigate the use of a hybrid

actuation mechanism in the design and development of an intelligent prosthetic

hand. This work highlights user-friendliness in usage and involves a proper me-

chanical design in more active degree of freedom incorporating an intelligent control
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system. Besides, based on the Section 2.2.1, we are going to use both SMA and DC

actuators to form the hybrid actuation mechanism. The reasons for using SMA are

its operational similarity to human muscles [8], its incredible small size and volume,

its high force to weight ratio and its low cost [3, 19], and the reasons for using the

small size and light in weight DC actuator are its high torque and easiness to control.

The motivation for this research was turned into the aim of this project and will be

associated with the objectives described in the Chapter 1.

The electrical activity generated by contracting muscle in forearm will be used as a

control input signal for the prosthetic fingers. The electrical activity of the muscle,

the myoelectric signal (Section 2.3), is monitored by using sEMG sensors (myoelec-

trodes). Only two myoelectrodes will be used in order to make the system more

user-friendly for the amputees or users to easily train and use (Section 2.3.1). The

sEMG signal contains valuable information in a particularly useless form. This in-

formation is useful only if it can be quantified by a signal processing (Section 2.3.2)

method to achieve the accurate and actual sEMG signal that we would like to use.

Pattern recognition aims to classify data or patterns based either on a priori knowl-

edge or on statistical information extracted from the patterns. The patterns to be

classified are usually groups of measurements or observations, defining points in an

appropriate multi-dimensional space (Section 2.3.3). This is in contrast to pattern

matching, where the pattern is rigidly specified. Hence, the control system of the

sEMG signal will be considered using pattern classification technique to train and

test the varying patterns of human fingers’ movement (thumb not included).

The main contribution of this research work can be summarised as:

1. Work in the area of a hybrid actuation mechanism for powered prosthetic hands

to provide more dexterity.

2. An extension of research in the area of signal processing and ANN when only

two myoelectrodes are used to increase the number of extracted features to con-

trol more movement in a prosthetic hand.
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CHAPTER 3

Design of a Prosthetic Finger

3.1 Introduction

This chapter turns to discussing the preliminary finger design and development to

allow the hybrid actuation mechanism to increase the number of active DOF to pro-

vide the functionality of a real hand in order to mimic movements such as coarse and

fine grasping. The chapter covers just the mechanical design of the finger, such as

the size, shape, joint and degrees of freedom. Other characteristics, such as force and

torque, follow in the next chapter.

To avoid complexity in hand design and control, a prosthetic finger design is pro-

posed and rigorously studied. It is postulated that the hand design and control would

be similar to that of a single prosthetic finger. In order to design a proper prosthetic

finger to mimic the human finger, the human upper limb anatomy and movement are

investigated in Section 3.2. This gives an insight into finger geometry and movement

range of each finger segment. After human anatomy, section 3.3 presents the me-

chanical design of the three DOF prosthetic finger. Due to large variations in the

sizes of human hands and fingers, the author has decided to use his own middle fin-

ger as the design model. Section 3.4 explains the structure strength in relation to the

material used in rapid prototyping so that the material used in the prosthetic finger

will not fracture in grasping an object. Section 3.5 covers the forward and inverse

kinematics of the designed finger.

3.2 Hand and Finger Anatomy

This section presents a brief overview of human hand anatomy and a description of

the joint articulation during movement in order to design a biomechanically correct

prosthetic finger. The force and torque of the hand/finger are discussed in the follow-

ing chapter.

Figure 3.1 shows an illustration of hand anatomy. The human hand consists of a

broad palm (metacarpals and carpals) with five digits (thumb and four fingers: index,
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middle, ring, and little finger), attached to the forearm by a wrist joint. The thumb is

located on the lateral side of the palm and is connected to the carpals.

Each finger consists of three bones or phalanges (proximal, PP; middle, MP; distal,

DP phalanxes) and three joints (metacarpophalangeal MCP, proximal interpha-

langeal PIP and distal interphalangeal DIP)

The MCP joint has 2 DOF, abduction-adduction and flexion-extension. The PIP and

DIP joints have 1 DOF, flexion-extension. The MCP joint abduction-adduction an-

gle is around 200 and flexion-extension is 900. The flexion-extension movement of

the PIP and DIP joints is 1000 ~ 1100 and 800 ~ 900, respectively [6, 8, 15, 57].

(a)

Figure 3.1: Anatomy of human left hand (a) Bones and joints [57], (b) Palm.

(a)

(b)

Palm
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3.3 Finger Design

The general overall design concept for the prosthetic finger presented here is de-

scribed in mechanical terms and related to human anatomy. The finger prototype is

used to allow the hybrid actuation mechanism to provide some functionality of a real

hand, such as coarse and fine grasping. To avoid complexity in hand design and con-

trol, a prosthetic finger design is proposed and rigorously studied. It is postulated

that the hand design and control would be similar to that of a single prosthetic finger.

The ultimate goal is to develop a prosthetic finger for an adult. Hence, it is designed

to replicate as closely as possible the size of an adult’s finger. The proposed finger

design is a three DOF hybrid actuation mechanism, which mimics the kinematics

and functionality of the human finger. Its force/torque will be presented in the next

chapter.

3.3.1 Dimensions

The dimensions of the design in Figure 3.2 and Table 3.1 are based on the size of the

author’s middle finger and it is custom-made as a result of large variations in the

size of human hands and fingers. The abduction-adduction movement of the MCP

joint is just 200 and does not contribute significantly to its functionality. For this rea-

son, it is ignored, leaving the design of the finger with 3 DOF (1 DOF at each of the

joints).

Figure 3.2: Prosthetic middle finger design.
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Table 3.1: Dimensions of middle finger phalanges.

Lengths of the PP, MP and DP are 58.59mm, 36.03mm and 23.93mm, respectively.

Hence, the total length of the middle finger is 118.55mm. The width of each pha-

lange is 17mm, 15mm and 13mm, respectively. The length of the finger’s palm

housing, in which is to place DC and SMA actuators, is 33mm, the height is 29.50

mm and the width 30mm (see Figure 3.3). The central point of MCP joint to the end

of the finger’s palm housing is 47.37mm. Consequently, the total length of the mid-

dle finger and the finger’s palm housing is 165.92mm. It is slightly shorter than the

author’s middle finger (including palm). The total length of the author’s middle fin-

ger (including palm) is 182mm. Therefore, 16.08mm length can still be add to the

finger’s palm housing. Further discussion of this 16.08mm will be in Chapter 4.

Figure 3.3: Finger’s palm housing design (in mm)
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3.3.2 Joints and Degrees of Freedom

In this design, a total of three revolute joints are used, connected in each joint or

each DOF, as shown in Figure 3.4. Each phalanx consists of one head and one tail.

The fixed axis (with a stopper) of rotation in each phalanx is called the head and

each rotational axis is called the tail. The head of the finger’s palm is connected to

the tail of the proximal phalanx (PP), forming the MCP joint (see Figure 3.4), which

provides 900 of movement, i.e. flexion-extension. The head of the PP is connected to

the tail of the middle phalanx (MP), forming the PIP joint, which provides 1100, and

the head of the MP to the tail of the distal phalanx (DP), forming the DIP joint,

which provides 800 of flexion-extension. The degree of angular movement for the

PIP and DIP joints are selected based on the largest and smallest values of the range

in normal human finger, as reported on page 38. These two values are also achieved

from the author’s middle finger movement measurements.

Figure 3.4: Finger joint.

3.3.3 Material Selection

Material selection is very important in order to design a safe grasping functionality

of the hand/finger. Before the finger design is manufactured by rapid prototype ma-
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chine, some relevant calculation is needed, such as the stopper on the fixed head (see

Figure 3.4), and the contact surface between the finger for the palm housing and the

finger palm housing fixed head. According to [58], the Maximum Voluntary Con-

traction (MVC) force in the proximal phalanx of the middle finger is around 40N for

the 1-finger tasks of adult. Hence, this 40N will be used as reference in choosing a

suitable material for the prosthetic finger design.

The finger, shown in Figure 3.2, was manufactured using a Vanguard HS HiQ SLS

(Selective Laser Sintering) rapid prototype machine.

Firstly, the author decided to use the material called Duraform PA plastic, which is

the Nylon 12 material, to construct the finger. The tensile (Young’s) modulus and

the specific gravity of this material are 1586MPa and 1.00g/cm3, respectively [59].

According to Equation 3.1, and some relevant values shown in the Tables 3.2 and

3.3, we know that the displacement StopperL , on the stopper of the fixed head, and the

displacement, SurfaceL , on the surface between the palm and the palm’s fixed head,

are 0.2113 mm and 0.0192 mm, respectively.

Table 3.2: Relevant values to evaluate displacement of stopper.

Value for counting the displacement, StopperL , of the stopper.

Torque transmission from DC actuator to
the stopper, 0FL

4.2624Nm*

Original cross-section area, 0A 510272.1  m2

(* DC motor stall torque (1.48mNm) x DC actuator gear head (1:64) x Number of teeth of work gear
(45)).

Table 3.3: Relevant values to evaluate displacement of surface between finger palm housing
and palm fixed head.

Value for counting displacement SurfaceL of surface between palm and palm fixed

head.

Original length 0L , for PP to the area 0.07296 m

Maximum force F applied to area 40N **

Original cross-section area 0A 510584.9  m2

(* Maximum Voluntary Contraction (MVC) force in PP of middle finger = 16.769.39  N in 1-
finger tasks of Young [58]).
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
 (Equation 3-1)

where: E = Tensile (Young’s) Modulus,

F = Force applied to object,

0A = Original cross-section area through which force applied,

L = Amount by which length of object changes,

0L = Original length of object.

Since the displacement on the stopper StopperL , was considered a very large value,

the second material was changed to Duraform GF plastic, which is a glass-filled ny-

lon based on nylon 12. The tensile (Young’s) modulus is 4068MPa, and its specific

gravity is 1.49g/cm3 [60]. Consequently, this material was make the displacement on

the stopper StopperL and the displacement on the surface between the palm and the

palm’s fixed head SurfaceL , became 0.0823 mm and 0.00749 mm.

Nylon was preferred over aluminium because it has a lower friction coefficient,

0.15~0.25 and 1.05~1.34, respectively. An additional drawback of using aluminium-

based bearing designs would increase the overall complexity of the system without

any benefits.

3.4 Prosthetic Finger Kinematics

The kinematic model of the hand is designed to form the basis of a controller rather

than to be a comprehensive anatomical model. A compromise is needed between

model accuracy and computational complexity, particularly regarding the inverse

kinematics solution.

The kinematics model plays an important role in the work as it provides the geo-

metric constraints on the x-y plane positions of hand features. Using the D-H (De-

navit-Hartenberg) representation, we start by solving the forward kinematic problem

where individual link transforms are concatenated to yield a single transform that

fully describes the position and orientation of the fingertip with respect to the base
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reference frame (finger palm housing). After that, the inverse kinematics equations

are analysed from the quadrilateral.

The purpose of the finger kinematics analysis is to determine the final fingertip posi-

tion relationship between the angular position of each joint. The finger design can be

modelled as a robot hand fixed to the finger’s palm housing, its schematic of a robot

hand lying in the X-Y plane based on a prosthetic finger is shown in Figure 3-5.

Figure 3.5: (a) Prototype of prosthetic finger, (b) Schematic of prosthetic finger lying in X-
Y plane.

Kinematics is the study of the motion of robots. In a kinematic analysis, the position,

velocity and acceleration of all the links are calculated without considering the

forces causing this motion. The relationship between motion and associated forces

and torque is studied in robot dynamics. For the kinematic analysis, there are two

fundamental questions for the finger kinematics to evaluate the fingertip position

[61]:

1. Given the desired position and orientation of the end-effectors of the manipu-

lator and the geometric link parameters with respect to a reference coordinate

system, one can calculate the desired joints angles. This fundamental prob-

lem is called inverse kinematics.

2. The second fundamental problem contrasts with the first. Given each joint

angles and the geometric link parameters, one can find the position and ori-

Y

X

Z

1

2

3

PP

MP

Fingertip

X

Y

DP

(a) (b)
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entation of the end-effectors of the manipulator with respect to a reference

coordinate system. This fundamental problem is called forward kinematics.

A simple block diagram indicates the relationship between these two problems in

Figure 3.6.

Figure 3.6: Forward and inverse kinematics problems [61].

3.4.1 Forward Kinematics

In our kinematics model, the prosthetic finger consists of three links corresponding

to the three phalanges of the human finger (see Figure 3.5). The finger is equipped

with two active DOF and one passive. The two active DOF are at the MCP and PIP

joints and the one passive DOF is at the DIP joint coupled with the PIP joint.

Denavit-Hartenberg’s (D-H) is the most commonly used method to solve the for-

ward kinematics problem, where the transformations of links connected in series are

used to produce a single transformation showing the position or direction of the fin-

gertip with respect to the palm or to the reference base [8, 61]. The finger kinematics

can be considered in 2D kinematics and lying in the X-Y plane, as shown in Figure

3.5, because the abduction-adduction movement of the MCP joint was ignored, as

previously explained.

Forward

Kinematics

Inverse

Kinematics

Position and ori-

entation of the

end-effectors

Joints

Angles

Joints

Angles

Forward

Links Parameters

Links Parameters
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The D-H theorem consist of four parameters, these being the joint angle i , the

link/phalanx offset id , the link/phalanx length iL , and the link/phalanx twist i [61].

These four variables are used to calculate the position or direction of the fingertip.

The abduction-adduction movement of the MCP joint was ignored and makes no

movement in the z-axis (Figure 3.5) to cause the link/phalanx offset id and the

link/phalanx twist i can be eliminated. The finger link/phalanx coordinate parame-

ters are shown in Table 3.4.

Table 3.4: Finger joints and links/phalanges coordinate parameters.

Once the D-H coordinate system has been established for each link, a homogeneous

transformation matrix can easily be developed relating the ith coordinate frame to

the (i-1)th coordinate frame [61].


  ,xl,xd,z,zi
1i TTTTT (Equation 3.2)
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(Equation 3.3)

Since the link/phalanx offset id and the link/phalanx twist i are zero, then Equation

3.3 can be simplified to Equation 3.4.

Joint i Twist i Angle i Length iL Offset id Joint Angle
Range

1 0
1

(MCP)

58.59 mm
(PP)

0 00~900

2 0
2

(DIP)

36.03 mm
(MP)

0 00~1100

3 0
3

(DIP)

23.93 mm
(DP)

0 00~800
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0 T.....TTTT  (Equation 3.5)

Equation 3.5 is used to connect each individual link to a single transform that shows

the position or direction of the fingertip with respect to the palm or reference base. In

our case, Equation 3.6 will be derived from Equation 3.5 [61].

3
2

2
1

1
0

3
0 TTTT  (Equation 3.6)
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
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1000

pzyx
T iiii

3
0 (Equation 3.8)

where:

123c = )cos( 321 

123s = )sin( 321 

12c = )cos( 21 

12s = )sin( 21 

1c = 1cos

1s = 1sin 

[xi, yi, zi] = Orientation matrix of ith coordinate system established at link i with re-

spect to base coordinate system. Upper left 3x3 partitioned matrix of iT0

[61].

pi = Position vector pointing from origin of base coordinate system to origin

of ith coordinate system. Upper right 3x1 partitioned matrix of iT0 [61].

Substituting parameter values given in Table 3.4 into Equation 3.4, together with

Equation 3.6 to Equation 3.8, the solution for the fingertip position can be found as

given in Equation 3.9.
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(Equation 3.9)

where:

In our finger mechanism design, the angle of the DIP joint, 3 , is coupled with the

PIP joint 2 , by using 8/11 ratio pulley.

23
11

8
  (Equation 3.10)

By Equation 3.9 together with Equation 3.10, the working envelope for the fingertip

position can be plotted as in Figure 3.7. The plot shows all the X-Y data points gen-

erated by cycling through different combinations of 1 and 2 ( 3 was coupled

with 2 ) and predicting the fingertip position in x and y co-ordinates for each.

FingertipFingertipFingertip ZYX P,P,P =
Position of fingertip in x, y and z co-
ordinate, (mm).

321 ,, LLL =

 =

Lengths of 1st link (PP), 2nd link (MP)
and 3rd link (DP), (mm).

Angle between reference or orienta-
tion frame and fingertip.

321 ,,  = Joint angle of 1st joint (MCP), 2nd joint
(PIP), and 3rd joint (DIP), radian
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(a)

(b)

Figure 3.7: (a) Fingertip working envelope of MCP joint ( 1 ) in 450 interval with three fin-

ger links, (b) Fingertip working envelope of MCP joint ( 1 ) in 10 interval.

Figure 3.7(b) illustrates that Y position ranges from 118.55mm0 
FingerTipYPmm ,

while X position ranges from 118.55mm80.54 
FingerTipXPmm . Tables 3.5 and 3.6

show the corresponding joint angles with respect to minimum and maximum of

(
FingerTipXP ,

FingerTipYP ). An important conclusion is that the prosthetic fingertip working

envelope has the same range of movement as the author’s middle finger, upon which

the finger design was based (in this research, the small movement of abduction-

adduction of the MCP joint is neglected). Therefore, it can be claimed that it pro-

vides a level of functionality close to that of an actual human middle finger.

1 =900

1 =450

1 =00
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Table 3.5: Min. and Max. of
FingerTipXP values.

FingerTipXP 1 2 3

Min. -54.8mm 900 650 470

Max 118.55 0 0 0

Table 3.6: Min. and Max. of
FingerTipYP values.

FingerTipYP 1 2 3

Min. 0 0 0 0
Max 118.55mm 900 0 0

3.4.2 Inverse Kinematics

Inverse kinematics is the process of determining the parameters of the joint angle in

order to achieve a desired position. From the 1st fundamental problem of finger

kinematics above, the values of the
FingerTipXP ,

FingerTipYP and Fingertip are given, in order

to evaluate the value of the desired angle, such as angle of MCP joint 1 , PIP joint

2 , and the DIP joint 3 , are to be solved.

Figure 3.8: Schematic solution for 2 .

Fingertip

s

r

X

C

D

B

A

s

3L

2

3
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2L

1L

Y
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By analysis of the quadrilateral, shown in Figure 3.8 above, the following equations

are obtained:

2s )cos(2 221

2

2

2

1   LLLL (Equation 3.11)

ACDcos )cos( 3 ACB  (Equation 3.12)

1

cos ACB

2

2

1

2

2
2

2sL

LLs 
 (Equation 3.13)

1

sin

L

ACB

s

)sin( 2 
 (Equation 3.14)

2r ACDsLLs  cos2 3

2

3
2 (Equation 3.15)

where:

1L ,
2L , and

3L = Lengths of PP, MP and DP, respectively.

2r 22

yx PP 

PIP and DIP Joint Angle

By using the trigonometric identities laws of sine and cosine to derive Equation 3.11

to Equation 3.15, and together with Equation 3.10, the following can be found:

2

3

2

2

2

1
2 LLLr   8cos211cos219cos2 322131 LLLLLL  (Equation 3.16)

where:


2

11

1
 (Equation 3.17)

By using binomial analysis technique, shown in Equation 3.18 below, to expand and

derive Equation 3.16 to Equation 3.19.
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where:

k = 0, 1, 2, …., n










k

n
= k

nC

0234567891113151719  onxmxlxkxjxqxhxgxfxexdxcxbxax

(Equation 3.19)

where:

x cos (Equation 3.20)

:19x a 31
192 LL

:17x b 31
17219 LL

:15x c 31
18219 LL

:13x d 31
132665 LL

:11x e 21
11

31
11 221729 LLLL 

:9x f 21
9

31
9 21122717 LLLL 

:8x g 32
82 LL

:7x h 21
9
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92 LL
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2

1 2 rLLLLL 

From Equation 3-19, nineteen solutions for variable x can be obtained, containing

real and imaginary values. Only one real value can be selected by recalculating
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Equations 3.13 and 3.14, and requiring that all angles are positive. Besides, the value

is also needed to recalculate Equation 3.17 and the value of 2 must be less than or

equal to 1100.

After the x value of Equation 3.19 was chosen, then the value of  was obtained

from Equation 3.20. The PIP joint angle 2 is obtained by applying the value of 

into Equation 3.17. After the value 2 was known, then the value of the DIP joint

angle, 3 , could be derived from Equation 3.10.

MCP Joint Angle

According to the quadrilateral of Figure 3.8, the angle of the MCP joint 1 can be

obtained as:

1 CABDACFingertip  (Equation 3.21)

where:

Fingertip )Px,Py(2tana

By using the trigonometric identities law of cosine, the value of DAC and

CAB can be obtained by analysing the two equations below.

2

3L DACcosrs2sr 22  (Equation 3.22)

2

2L CABcossL2sL 1
22

1  (Equation 3.23)

By reconstructing the Equations 3.21 to 3.23, the following is obtained.

1 )DACcosaCABcosa(Fingertip  (Equation 3.24)

The value of s can be obtained from Equation 3.11 since the angle value of DIP

joint
2 was obtained from Equation 3.19, and the value of distance r is given by

22

yx PP  . If the value of
Fingertip is negative, it means that the fingertip is located

on the right hand side of Figure 3.8, because )Px,Py(2tanaFingertip  .
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3.4.3 Verification of Closed Form Formula of Inverse Kinematics

This section is to verify how well the deduced closed form formulas of 1 , 2 and 3

of inverse kinematics compare to the predicted value in forward kinematics. Figure

3.10 shows the error between the closed form value in inverse kinematics and pre-

dicted value in forward kinematics. This error was measured by a chain of transfor-

mations using a variety of upper limb configurations (see Figure 3.9).

Figure 3.9: Configuration to validate the equation deduced in inverse kinematics.

The verification is needed to know how well the formula in inverse kinematics,

which was deduced from the quadrilateral (see Figure 3.8). The verification is used

to verify the formula deduced from inverse kinematics with the predicted formula in

forward kinematics.

Figure 3.10 is to validate the error values of the close form formulas of inverse

kinematics and forward kinematics by using Equations 3.25 to 3.27. The angles D1 ,

D2 and D3 are the variables holding the values of 1 , 2 and 3 , deduced using

the inverse kinematics Equations 3.24, 3.19, and 3.10, respectively. The P1 , P2 ,

P3 are the variables’ values predicted by the forward kinematics.

P1D1Error1  (Equation 3.25)

PDError 222   (Equation 3.26)

PDError 333   (Equation 3.27)

The maximum errors in Error1 , Error2 and Error3 , shown in Figure 3.10, are in the

1x10-4 rad (0.005730) range, which is a very low error. This means that the formulas

deduced in inverse kinematics are correct.

Forward Kinematics Inverse Kinematics Forward Kinematics
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Figure 3.10: Error between the closed form D1 , D2 , D3 and predicted P1 , P2 , P3 .

3.5 Summary

A bio-mimetic prosthetic middle finger designed to mimic the kinematics architec-

ture of the natural middle finger has been presented in this chapter. This finger de-

sign is according to the human hand and finger anatomy in order to allow the hybrid

actuation mechanism to be found to increase the number of active DOF, and it is

custom made due to large variation of every single human hand/finger.

The prosthetic finger has 3 DOF in contrast to 4 DOF of the human finger, since the

movement of abduction-adduction in the MCP joint is not necessary for the middle

finger to accomplish grasping functionality.

The material used to manufacture by rapid prototyping also presented in this chapter.

Material selection is very important in order to design a safe grasping functionality

of the hand/finger.

Kinematic analysis of the prosthetic finger was carried out to determine the relation-

ship between the angular positions of each joint with the fingertip position. The

analysis showed that the requirements of the DC actuator number of cycle turns and

the requirement of SMA contraction will be achievable. The finger design is mod-

elled as a robot hand fixed to the finger palm. Denavit-Hartenberg (D-H) theorem
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and homogeneous transformation matrix are used to describe the fingertip position

with respect to the base reference or orientation frame. The fingertip working enve-

lope is plotted after the fingertip position formula is achieved. This fingertip work-

ing envelope shows all the X-Y data points generated by cycling through different

combinations of joint angles and predict the fingertip position in x and y co-ordinates

for each for each of them and it also illustrates finger tip position range.

A quadrilateral method associated with trigonometric identities and binomial are

used to evaluate the angle of each joint given a desired position and orientation of

the end-effectors of the manipulator and the geometric link parameters with respect

to a reference coordinate system (inverse kinematics) is also presented.

The simulation carried out shows that the errors between the deduced formula in in-

verse kinematics and the predicted value in forward kinematics are very small for the

application it is being used in.
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CHAPTER 4

Hybrid Actuation Mechanism

4.1 Introduction

The purpose of a prosthetic hand/finger is to imitate the grasping capabilities of the

human hand/finger, with obvious improvements in the quality of life of amputees.

Hence, to be effective it should allow holding and grasping of objects with sufficient

force/torque, as these two are important functions of a human hand.

The force/torque of each joint and each phalanx needed to maintain grasp is pre-

sented in this chapter. Section 4.2 provides an overall specification for the main pa-

rameters of the hybrid actuation system under consideration as well as an overview

of the hybrid actuation design. Section 4.3 briefly considers the background informa-

tion on some actuators used in prosthetic hands. The design of the DC actuator, such

as the torque/force analysis, based on the relevant gears is discussed in Section 4.4.

Section 4.5 presents the SMA actuator design together with its torque/force analysis.

4.2 Specification

In the past, electric motors were the primary actuators used in prosthetic devices as

they have a high torque and are easy to control. However, their heavy weight, size

and shape have been restrictive and uncomfortable to the users [3]. Due to these

limitations, some researchers have used Shape Memory Alloys (SMAs), or Electro-

active Polymers (EAPs) to replace the electric motor and the pneumatic actuator, as

they are operationally similar to human muscles [8]. Both are lightweight and direct-

driven actuators able to provide ways to increase the functionality of artificial hands

without adding mechanical complexity [8]. EAP materials have higher response

speeds and lower densities compared to SMAs [9]. However, they have low actua-

tion forces, mechanical energy density and lack of robustness compared to the SMAs

[9]. Furthermore, the big advantages of SMAs are their incredible small size and

volume, their high force to weight ratio and their low cost [3, 19]. One drawback
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with SMAs is that in prosthetic devices large lengths of SMAs are needed, some-

thing that limits their life cycle [3].

Hence, this chapter presents the actuation mechanism used which is a hybrid system

consisting of a DC actuator and an SMA actuator.

The hybrid actuation mechanism must be designed so that it is as light and compact

as possible, placing all actuators into palm in order to leave the prosthetic socket

empty for other components such as battery and electronics cable. The list of specifi-

cations for the actuation mechanism is presented in Table 4.1.

Table 4.1: Specifications of hybrid actuation mechanism design.

Weight It must fit into150 ~ 200 gram

Force The output actuation force must fit of:

40N or above on the end of PP [59], and

32N or above on the fingertip (middle of DP) [59]

Volume / Size Two actuators must fit into a volume of palm, that
is 47mm length x 22mm width x 30mm height, in
order to empty the volume of the socket for some

other purpose, such as power cable, etc..

Cost The cost of the actuation mechanism design as low
as possible. Manage in £500 for one finger.

Time response Time to fully open the finger/hand: 1.5 second [62].

Time to fully close the finger/hand: 2 seconds [62].

4.3 DC Actuator

The movement of the flexion-extension in the MCP joint is controlled by a DC ac-

tuator because the proximal phalanx(PP) of the middle finger in one finger tasks can

create a higher force than the distal phalanx (DP), which is about 40N in the PP of

an adult male‘s middle finger [58].

Maxon DC motor RE10 1.5Watt was used in the design. This motor is extremely

light weight and small in size, just around 20g, 10mm diameter and 57mm total

length. All these parameters are including metal gearhead and encoder, as shown in

Figure 4.1. The absolute reduction of the metal gearhead is 64 and the counts per
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turn of the encoder is 256, as shown in the Table 4.2. It is placed in the palm to con-

trol the flexion-extension of MCP joint, as this joint needs more force than the PIP

and DIP joints [58].

Figure 4.1: DC actuator and dimensions.

Table 4.2: Specification of DC actuator.

Nominal Voltage 5V

No Load Speed 12800rpm (1340rad/s)

Nominal Torque 1.48mNm

Reduction of Gearhead 64:1

Encoder Count per Turn 256 pulse
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Figure 4.2: DC actuator and finger housing.

The result of applying the DC actuator of Figure 4.1 into the finger design of Chap-

ter 3 (Figure 3.3), is shown in Figure 4.2. The DC actuator is 14.5mm (B to C) out-

side/away from the finger palm housing due to the finger’s need to be ‘hang up’ with

a rob, as shown in Figure 4.3(a).

Consequently, the total length of the finger palm design from 33mm, as shown in

Figure 3.3, to 47.5mm, as shown in A to C of the depicted finger (Figure 4.3(b)).

This length is the same as that of the author’s palm. Therefore, the total length of the

finger design (including palm) is 181.57mm.

4.2.1 Force/Torque of the MCP Joint and Proximal Phalanx

The driving gear selection is of crucial importance as it not only converts the rotation

of the DC actuator to flexion-extension of the finger but it also needs to have high

enough transmission torque to the MCP joint.

At first, 21:12 bevel gear was used. However, the torque of the MCP joint is just

0.166Nm and the force transmission to the end of the PP, ppF , (see Figure 4.2) is just

B C
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2.83N, as shown in Equations 4.1 and 4.2. It is extremely low compared to the force

one adult male finger can generate [58].

ratio_GearDCactuatorintMCPjo  (Equation 4.1)

where:
Gear_ratio = External Gear ratio

DCactuator = Torque of DC actuator

intMCPjo = Torque of MCP joint

PP

intMCPJo
PP

L
F


 (Equation 4.2)

where:

ppF = Force at end of proximal phalanx (PP)

intMCPJo = Torque of MCP joint

ppL = Length of PP
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Figure 4.3: DC actuator, finger palm housing and rod, (a) Isometric view, (b) Top view.

Hence, a higher gear ratio of worm gear is used instead of a bevel gear. This is be-

cause the gear ratio is directly proportional to the torque of the MCP joint, as illus-

DC Actuator

Rod
Finger Palm Housing

A

C

(a)

(b)
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trate in Equation 4.1. The maximum transmission torque in the MCP joint is

4.26Nm by using a 45:1 worm gear, and the force at the end of the Proximal Pha-

lanx, ppF (see Figure 4.4) is 72.71N.

The design shown in Figure 3.2 was computed based on a worm gear. Room for the

placement of the DC actuator is found on the metacarpal bone (palm).

Figure 4.4: Transmission force at PP.

4.4 SMA Actuator

The SMA actuator design is the most challenging part in order to produce the small-

est size possible to achieve a large linear stroke or displacement for large angular

motion and to produce enough grasping force. We propose a mechanism associated

with SMAs wire in order to create large linear displacement through a small change

of SMAs wires. The SMA actuator associated with a spring is used to control the

flexion-extension of the PIP joint.

4.3.1 Linear Displacement of SMA Actuator

The displacement/stroke of the SMA actuator is very important and challenging, as it

serves to pull the PIP joint sufficiently from 00 to 1100.

ppF

Proximal Phalanx
Length 58.59mm
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Before designing the SMA actuator, the limited dimension to place the SMA actua-

tor is the crucial issue to be considered. The limited dimensions for the SMA actua-

tor are 47.50mm (A to C of Figure 4.3(b)) length  37mm width, as shown in Figure

4.3(b).

The second crucial issue to be considered is the way to connect the tendon cable

within the finger and the SMA actuator, as shown in Figure 4.8. The tendon cable of

the finger as shown in Figure 4.5 is 10mm from the centre of the PIP joint, and the

other end of the cable will connect to the SMA actuator. The SMA actuator is posi-

tioned on the palm (as shown in Figure 4.5). The tendon cable of the SMA actuator

will be in between 85mm (A to D of Figure 4.5) to 130mm (A to E of Figure 4.5).

Figure 4.5: Dimension to position SMA actuator.

The purpose of Figure 4.6 is to evaluate the linear displacement L needed for the

SMA actuator in order to rotate the PIP joint from 00 to 1100, where ‘O’ is the PIP

joint, A is the tendon cable connector on the finger when the PIP joint is at 00. C1

and C2 are the tendon cable connectors on the SMA actuator before and after SMA

actuator activation. B is the final position of A after PIP joint turns 1100 circular mo-

tion and L1 is the length of the tendon cable. The circular distance â is 19mm.

Tendon cable con-
nector 10mm from
centre of PIP joint.

Position of

SMA actuator

A

D

E
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Figure 4.6: Schematic solution for linear displacement L .

Using law of cosine, the values of AB and OAB are 16.38mm and 350, respec-

tively. After that, using law of cosine again, yield:

BAOcos)AB)(LL(2)AB()LL(L 1
22

1
2
1  (Equation 4.3)

There are two answers for Equation 4.3; however, only positive value will be cho-

sen.

According to the properties of Flexinol’s nickel-titanium (Ni-Ti) SMA wire contract

length is typically just 5% of its length, therefore it is impossible to directly connect

the SMA wire to the limited dimensions of Figure 4.3. For example, if the length of

L1 is 100mm, then the linear displacement L for the PIP joint to rotate from 00 to

1100 is 12.98mm, which is evaluated by using Equation 4.3.This means 259.6mm of

SMA wire is needed. It is extremely long and impossible to connect to the position

of the SMA actuator, as shown in Figure 4.3(b).

Consequently, the principle of leverage, as shown in Figure 4.7, is applied in order to

deduce the total length of the SMA wire. The purpose of using Figure 4.7 is to

achieve large linear displacement from a small linear displacement change.

â

10mm

10mm

L1

L1

1100

O

B

C1 C2
L

A
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Figure 4.7: Principle of leverage.

Using law of cosine, the relationship between the tionSMAContracL and L is ob-

tained as.

L
d

d
L

2

1
tionSMAContrac  (Equation 4.4)

Equation 4.4 can be extended by applying the total length of the SMA;

L
d

d
xRL

2

1
ncontractioSMA  (Equation 4.5)

where: SMAL is the total length of the SMA wire and ncontractioR is the SMA defor-

mation/contraction rate.

45mm length of SMAL (length of the SMA actuator location), 5% SMA deforma-

tion/contraction rate and L =13mm are used to design an SMA actuator. According

to Equation 4.5, the ratio of the 21 d/d is 0.174, and the length of d1 and d2 can be

evaluated and achieved in 4.00mm and 23mm, respectively. The design of the SMA

actuator is shown in Figure 4.8.

The design of the SMA actuator functions as follows: When the SMA actuator is un-

activated or the SMA wire is unheated or cooled after heating, the actuator looks like

Figure 4.8 (a). If the SMA wires heat up, they contract and pull the output lever in

the opposite direction to that of the SMA wire contraction, as shown in Figure 4.8

(b), due to the pivot used. This pulls the tendon wire, connected on one side to the

‘tendon cable connector’ and on the other to the MP of the finger, as shown in Fig-

O

O
d1d1

d2 d2

tionSMAContracL

L
tionSMAContracL

L

d2d1
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ure 4.9, to allow the PIP joint to make an angular motion. The purpose of the spring

S1 in Figures 4.8 (a) and 4.9 is to bring the output lever back when the SMA wire is

cooled or released after being heated. It also can reduce the recovery time so that the

finger can be released faster.
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Figure 4.8: SMA actuator wire (a) before contraction, (b) after contraction.

(b)

(a)

Pivot

Output lever

SMA wires

Tendon cable connector, C1

Spring S1

Tendon cable connector, C2

Lever

Board
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Figure 4.9: DC and SMA actuators on finger.

In order to know the relationship between the linear displacement L and the PIP joint

angle, Equation 4.3 can be extended to:








 


2
cos)cos1()LL)(AOAO2()cos1)(AOAO()LL(L 2

212
222

1
2
1

(Equation 4.6)

where 1L is the length of the tendon cable and AO is the distance between the tendon

cable connector on the finger and PIP joint.

Equation 4.6 shows the relationship between the linear displacement of SMA actua-

tor L and angular motion of PIP joint 2 . Six solutions for variable 2 can be ob-

tained; however, only one in the range 1800 2  can be selected.

Applying 100mm to the value of 1L and 10mm to the value of AO, the relationship

between the linear displacement of SMA actuator L and angular motion of PIP

joint 2 is shown in Figure 4.10. Since Equation 4.6 contains a cosine function,

therefore Figure 4.10 shows the relationship between L and 2 as non-linear rela-

tionship.

Tendon cable path SMA Actuator

DC Actuator

Tendon Cable Connector

Spring
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Figure 4.10: Relationship between linear displacement of SMA actuator and angle move-

ment of PIP joint 2 .

4.3.2 Force/Torque of SMA Actuator

The force/torque is the second challenging part for designing the SMA actuator in

order for it to be sufficient for grasping. The previous section has just evaluated the

linear displacement of the SMA actuator based on a single SMA wire according to

the principle of leverage. However, this principle will reduce the SMA wire force

SMAF for the lever output force oF of the SMA actuator.

0M  (Equation 4.7)

0dFdFdF 2o31S1SMA  (Equation 4.8)

where: M : Summation moment of output lever in SMA actuator,

SMAF : Summation force of SMA wire,

1SF : Summation force of spring S1 in SMA actuator,

oF : Summation output force of output lever / force of tendon cable

(Figure 4.11),

1d : Distance between SMA and pivot (Figure 4.11),

2d : Distance between tendon cable connector of SMA actuator and

pivot (Figure 4.11),
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3d : Distance between spring of SMA actuator and pivot (Figure 4.11).

Assuming no load is connected to the tendon cable connector of the SMA actuator,

maximum force and 5% deformation will be produced by the SMA wire and without

friction between the output lever and board, the maximum oF in Figure 4.11 is

obtained as:

0dFd)24.4cosF(d))18.8cos17.2(cosF( 2o31S1SMA  (Equation 4.9)

2

31S1SMA
o

d

d)24.4cosF(d))18.8cos17.2(cosF(
F




(Equation 4.10)

From the Flexinol wire properties given by Milford Instruments, the 0.010”

( m250 ) maximum force is 9.12N. The S1 spring constant is 0.3N/mm and the lin-

ear displacement is 5.44mm from the original position (Figure 4.8(a)) to where the

SMA wire of the SMA actuator was fully contracted (Figure 4.8(b)). Therefore, ap-

plying all of the values to Equation 4.10, the value of oF is 2.48N.

Figure 4.11: Static equilibrium of SMA actuator.

oF

1SF

SMAF

SMAF

SMAF

1SF

d1

d2

d3

Board

+V

Ground

Output Lever
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Applying this tendon force oF to the finger, as shown in Figure 4.12, and to Equa-

tion 4.11, the torque of the PIP joint 2 is 7.50e-3Nm (7.5Nmm) (The centre of

mass of the MP and DP is 18.44mm from the PIP joint and the total mass of the MP,

DP and some mechanism (such as pulley, round belt, etc.) is 0.017kg (17gram), the

spring constant of the spring S2 is 0.1N/mm and the displacement from 00 to 1100 is

29mm).

Figure 4.12: Static equilibrium of finger.

2
ML)20sinF(L)70cosmg(L)20cosF( 2S2Scmco 

(Equation 4.11)

where:
2

M : Moment or torque of PIP joint 2 (Nmm)

2SF : Spring S2 force (N)

cL : Distance between ‘tendon cable connector’ on finger and PIP joint 2

(mm)

cmL : Distance between centre of mass of MP and DP and PIP joint 2

(mm)

2SL : Distance between spring S2 connected to PIP joint 2 (mm)

Since the DIP joint is coupled with PIP joint by the 8/11 ratio pulley, the torque of

the DIP joint 3 is hence 0.01Nm and the force of the middle of the DP is 0.836N. It

is extremely low compared to [58], because it can give 32N for an adult male 1-

finger task in the DP of the middle finger. Assuming this 32N is applying in the

mg

oF

2SF



Page | 73

middle of DP which design in Chapter 3, a 0.38Nm flexor torque is needed in DIP

joint 3 .

Consequently, in order to increase the flexor torque of the DIP joint 3 to 0.38Nm,

the torque of the PIP joint 2 must be increased from 7.50e-3Nm (7.5Nmm) to

0.278Nm (278.46Nmm). In order to increase the torque of the PIP joint, it can in-

crease the number of SMA wires connected in parallel [63]; however the electric

flow must be connect in series in order to have the same linear stroke, which evalu-

ate from the section 4.3.1.

The Equation 4.10 can be Reformed to Equation 4.12:

2

31S1SMA
o

d

d)24.4cosF(d))18.8cos17.2(cosnF(
F




(Equation 4.12)

where: n is the number of layers of SMA wire in SMA actuator

Substitute Equations 4.12 to 4.11, the
2

M derived to Equation 4.13.

2S2Scmc

2

31S1SMA L)20sinF(L)70cosmg(20cosL
d

d)24.4cosF()d)18.8cos17.2(cosnF(








 

(Equation 4.13)

Substitute the torque of the PIP joint 2 in Equation 4.13, the number of layers n of

SMA wire in SMA actuator is 10. Figure 4.11 shows only a single layer with 1

loop/route SMA wire and Figure 4.13 shows two layers with 1 loop/route.
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Figure 4.13: Two layers of SMA wires on SMA actuator.

4.3.3 Experiment of Result

The experimental result is based on the preliminary SMA actuator design (Figure

4.14) of a single layer with one loop/route 0.012” ( m300 ) SMA wire. The maxi-

mum deformation of the SMA wire in Figure 4.14 is 4.5%, and the distance between

the tendon cable connector and SMA wire to the pivot is 17.83mm (d2) and 4.5mm

(d1), respectively. It also means that the maximum linear displacement L of the

output lever is 8.0mm.

This SMA actuator is connected to a frame, as shown in Figure 4.15, and different

bias load will ‘hang’ on the ‘bias load connector’. The experimental results are

shown in Figures 4.16 to 4.20.
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Figure 4.14: Preliminary design of single layer SMA wire actuator.

Figure 4.15: Frame for Preliminary experiment.

Spring

SMA wire

PivotGround

5V
PC board

Tendon cable connector
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d1

d2
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Different supply voltages from 0.1volt to 2.1volt and different bias loads from 0g to

350g will be used in order to get their relationship between the linear displacement

of the output lever of the SMA actuator.

Due to the Flexinol SMA wire property, the safety range for using 0.012” SMA wire

is below 1.75amp. Therefore, the maximum voltage is set to 2volts (total length of

SMA wire used in Figure 4.14 is 90mm (45mm x 2) and total resistance is 1.2ohm

before contraction and 1.13ohm after contraction).

Figure 4.16: Relationship between linear displacement of output lever of SMA actuator and
different supply loads for 1.1V supply voltage (0.92amp).

Figure 4.17: Relationship between linear displacement of output lever of SMA actuator and
different supply loads for 1.3V supply voltage (1.08amp).
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Figure 4.18: Relationship between linear displacement of output lever of SMA actuator and
different supply loads for 1.5V supply voltage (1.25amp).

Figure 4.19: Relationship between linear displacement of output lever of SMA actuator and
different supply load for 1.8V supply voltage (1.50amp).

Figure 4.20: Relationship between linear displacement of output lever of SMA actuator and
different supply loads for 2.0V supply voltage (1.67amp).
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Three trials are carried out in Figures 4.16 to 4.20. These figures illustrate if the sup-

ply voltage is constant, higher bias load supplied will achieve lower linear displace-

ment of SMA actuator. If bias load is constant, higher linear displacement of SMA

actuator achieved in higher voltage supplied. However, the supply voltage or current

cannot be over the limit recommended for the Flexinol wire properties, in order to

avoid SMA wire destruction or reducing the number of cycles. (Note: The dis-

placement is achieved at Austenite finish (Af) phase and the displacement from

0.1volt to 1.0volt for different load is zero).

Figure 4.21 shows the linear displacement relationship between single layer and

double layer SMA wire used for 50g (0.49N) and 350g (3.43N), respectively. The

linear displacement of the output lever of SMA actuator can reach up to 7mm in

double layer SMA wire even higher than the single layer. As shown in Figure 4.21

(b). The reason for the SMA wire force’s being increased that the wires are con-

nected in parallel. The maximum displacement still stick on 8mm, as shown in Fig-

ure 4.21 (a), because of the current flow is connected in series.
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Figure 4.21: Linear displacement relationship between single and double layer for (a) 50g
and (b) 350g bias load in different supply voltage.

The supply voltage in the experiment for double layer SMA wires used is from 0.1 to

3.6v as the resistance of the SMA wire was increased due to increasing the length of

the SMA wire from 90mm to 180mm, as shown in Figure 4.22. The figure shows

two layers with two loop/route SMA wires, and each layer is 90mm (45mm x 2) be-

fore contracted. It means the SMA wire is connected in parallel but the current sup-

ply is in series.

(a)

(b)
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Figure 4.22: Preliminary design of double layer SMA wire actuator.

The double layer SMA wire actuator is connected to the finger, as shown in Figures 4.23

and 4.24 and defines the linear displacement of the SMA actuator and the rotational dis-

placement of the finger PIP joint 2 .

3v supply voltage is supplied to the double layer SMA wire actuator (Figure 4.22), which

means 1.25amp current will flow to the 2.4ohm SMA wire. The 3v supply will bring the

linear displacement of the SMA actuator from 13.5mm to 14.3mm ( L =8mm), as shown

in Figures 4.23 (b) and 4.24(b). This displacement will bring the PIP joint 2 from 00 to

800, as shown in Figures 4.23 (a) and 4.24 (b). By Equation 4.6 and Figure 4.10, it is proved

that the results achieved are reasonable and correct.
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Figure 4.23: Double layer SMA wire actuator connected to finger at start position, (a) fin-
ger, (b) SMA actuator.

(a)

(b)
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Figure 4.24: Double layer SMA wire actuator connected to finger at final position, (a) fin-

ger, (b) SMA actuator.

4.5 Summary

This chapter has focused on the forces/torques of each joint and phalanx needed to

maintain enough grasping force by using hybrid actuation mechanism. The specifica-

tion for designing this hybrid actuation mechanism prosthetic finger has been pre-

sented.

A suitable DC motor was used in our design and placed in the palm to control the

flexion-extension of the MCP joint, as this joint needs more force than the PIP and

(a)

(b)
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DIP joints [58]. From the design, it is known that the DC actuator can produce

enough torque for the MCP joint through a suitable worm gear.

The SMA actuator is associated with a tendon cable and a spring to control the flex-

ion-extension of PIP joint. Two challenges for designing this actuator were:

Design the smallest size possible to achieve a large linear stroke or displace-

ment for large angular motion. Principle of leverage was used for this applica-

tion.

Produce sufficient output pull force for grasping, at least 10 layers of SMA

wire was used and connected in 1-loop. The current supplied is in series but the

SMA wire pull force is in parallel.

From the experimental results for the SMA actuator, a higher supply voltage or

current will give larger linear displacement of the SMA actuator; however, the sup-

ply voltage or current must be in the range of the recommended range. If the supply

voltage is too large, it will reduce the number of cycles for which SMA wire can be

used and possibility it will destroy the wire.
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CHAPTER 5

Control System Design of Actuation Mechanism

5.1 Introduction

A control system is a device to manage, command, direct or regulate the behaviour

of other devices or systems. The system is designed to control the hybrid actuation

mechanism in order to position the finger, especially fingertip, correctly. A PID al-

gorithm was used to control the movement of the DC actuator to ‘bring’ the MCP

joint to the correct position. A simple open loop with the value of the input voltage

and the output linear displacement change of the SMA actuator was used to control

movement of the PIP joint.

Sections 5.2 and 5.3 will briefly discuss the design of the control for the DC and

SMA actuators. Section 5.2 contains three subsections, which are actuator’s plan es-

timation by using system identification, PIP control design, and DC actuator de-

ployment. The time response and simple open loop control are the two subsections

for section 5.3.

5.2 DC Actuator

There are three processes used to design the DC actuator control system. Firstly,

modelling is used to identify a mathematical representation of the ‘plant’, the real-

world, physical system that is to be controlled. The process of determining the equa-

tions governing the model’s dynamics is called system identification. This is one of

the techniques used to identify a mathematical representation of the plant based on a

set of real-world stimulus (input signal) and response (output signal) data samples

[64]. Control design is the second process and involves choosing a method of con-

trol and designing a controller. Deployment is the last stage in designing a control

system that implements the finalised system. The general block diagram of the DC

actuator control system is shown in Figure 5.1. The input and output of the figure

can be any parameter, such as position, speed, etc..



Page | 85

Figure 5.1: General block diagram of closed loop control system.

A DC actuator is placed in the palm to control the 900 flexion-extension movement

of the MCP joint. Positioning the finger accurately needs a controller. In the initial

phase of the design process, a mathematical model of the plant to be controlled must

be obtained. One way to do this is by using a numerical process known as system

identification. This involves acquiring data from a plant followed by numerical

analysis of stimulus and response data to estimate the plant parameters.

5.2.1 Modelling – System Identification

System identification is a tool used to model a plant mathematically for control sys-

tem design. The general system identification process might include the following

stages [65] and Figure 5.2 demonstrates the typical system identification flowchart

(Full programming except stage 1 is shown in Appendix A, Figure A.1):

1. Experimental design and data acquisition/collection.

2. Data analysis and pre-processing, including plotting data, removing offsets, fil-

tering and selecting regions of interest.

3. Estimation and validation of models.

4. Model transformation and analysis, such as linear analysis, reducing model order

and converting between discrete-time and continuous-time representations.

Controller Plant+

-

Input Output



Page | 86

Figure 5.2: Typical system identification flowchart.

5.2.1.1 Acquiring and Pre-processing Data

The first step in identifying an unknown system is data acquisition. The raw input

voltage and output angular velocity of the model are collected using a NI DAQ_mx

card (NI PCI-MIO-16E-4) and a program developed in a LabView environment. The

plant model is DC actuator connected to the MCP joint of the finger. In order to cre-

ate a linear model, the output signal is choosing angular velocity to identify the

model. Figure 5.3 shows the relationship between the input voltage and output angu-

lar velocity.

Since the output angular velocity contains some noise, as in Figure 5.4 (Left), a 2Hz

lowpass cut-off frequency of Butterworth 1st order is used to filter out the noise, as

Model Analysis
and

Transformation

Data collected

Data pre-processing

Model Estimation

Modelling
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Model Transformation
and Analysis

Correct?
Stable?
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in Figure 5.4 (Right). The stimulus and respond signals (to identify the model) use

the input filtered voltage and the output filtered angular velocity shown in Figure

5.4(Left).

Figure 5.3: Input voltage versus output angular velocity (three trials).

Figure 5.4: (Left) Input voltage and output angular velocity, (Right) Input filtered voltage
and output filtered angular velocity.
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5.2.1.2 Estimation and Validation of Model

After the stimulus and response signals are collected and pre-processed, the paramet-

ric model estimation method is used to estimate the model. One of the biggest chal-

lenges in model estimation is selecting the correct model. There are two categories

of parametric models in a LabView system identification toolkit, polynomial and

state-space.

1. Choosing Model

Polynomial category is used rather than state-space as the control system is single-

input-single-output (SISO). The polynomial category is simpler and easier than state-

space, but state-space models are often preferable to polynomial, especially in mod-

ern control applications that focus on multivariable systems [64].

The following equation describes a general-linear polynomial model and Figure 5.5

shows the signal flow.
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nz defines the number of delay samples between the input and output and the ak ,

bk , ck , dk , and fk are the model orders.
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Figure 5.5: Signal flow of general-linear polynomial model [64].

The general-linear polynomial model is a combination of the deterministic and sto-

chastic parts of the system. The former specifies the relationship between the output

and the input signal and the latter specifies how the random disturbance affects the

output signal. Often these parts of a system are referred to as system dynamics and

stochastic dynamics, respectively [64].

When )z(C , )z(D and )z(F settings are equal to 1, it can create simpler models,

such as an autoregressive with exogenous (ARX) model. When )z(D and )z(F are

equal to 1, it can create an autoregressive-moving average with exogenous

(ARMAX) model. When )z(A , )z(C and )z(D are equal to 1, it can create an output-

error model. When )z(A is equal to 1, it can create a Box-Jenkins Model. When

)z(B , )z(C , )z(D and )z(F are equal to 1, it can create an autoregressive (AR)

model [64]. Table 5.1 describes the characteristics of each different model and

ARMAX model is decided to choose. Figure 5.6 and Equation 5.2 show the model

of the ARMAX.

Figure 5.6: ARMAX model [64].

)(zBz n

)z(A

1

)z(C

+

e(k)

u(k) y(k)

)(

)(

zF

zBz n

)z(A

1

)z(D

)z(C

+

e(k)

u(k) y(k)

deterministic

stochastic



Page | 90

)k(e)z(C)nk(u)z(B)k(e)z(C)k(u)z(Bz)k(y)z(A n   (Equation 5.2)

Table 5.1: Characteristics of different models.

Model Parameters equal

to 1

Characteristics

ARX

(Autoregressive

with exogenous

terms)

C(z), D(z) & F(z) Transfer function of deterministic and

stochastic parts of system has same set of

poles. This coupling can be unrealistic.

System and stochastic dynamics of a sys-

tem do not share same set of poles all the

time.

ARMAX

(Autoregressive-

moving average

with exogenous

terms)

D(z) & F(z) Useful when dominating disturbance en-

tering early in the process, for example at

the input. More flexible than ARX

model in handling models containing

disturbances. Prediction error is identifi-

cation method of output-error model.

Output-Error A(z), C(z) & D(z) Describes system dynamics separately

from stochastic dynamics. Does not use

any parameters for simulating distur-

bance characteristics.

Box-Jenkins A(z) Represents disturbance properties sepa-

rately from system dynamics. Useful

when disturbances enter late in the proc-

ess, such as measurement noise on the

output.

AR

(Autoregressive)

B(z), C(z), D(z) &

F(z)

Does not include dynamics between in-

put and output. Therefore, more suitable

for representing signals rather than a sys-

tem because a system typically has input

and an output.
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2. Order of Plant Model

Since an ARMAX model was chosen in the previous section, another challenge in

model estimation is the correct model order selection. This requires two data sets,

one for estimation and one for validation. These two data sets can partition the origi-

nal set of data into two, using the SI split signal VI. The VI divides the pre-processed

stimulus-response (input-output) data samples into two portions, one for model es-

timation and the other for model validation, shown in Figure 5.7.

The data of the estimation portion are used to create the model of the plant whereas

the data of the validation portion are used to predict 1-step or multi-step mean square

error (mse). Figure 5.8 shows the current and 1-step ahead validated prediction sig-

nal, with mse value 5.0835e-06.

Figure 5.7: Stimulus and response signal splitter.

Estimation Validation

Estimation Validation
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Figure 5.8: 1-Step predict signal.

There are three steps to help to choose the correct model order. The first step is to set

a range of numbers for A(z), B(z), C(z), and delay the estimation portion of data, as

shown in Figure 5.9. Figure 5.10 shows a prediction error plot generated by the SI

Estimate Order of System Model VI for an ARMAX model. The y-axis is the predic-

tion error and the x-axis is the model dimension.

Figure 5.9: Number of range for A(z), B(z), and C(z).

Current Validation Signal 1-Step ahead Validation Signal
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Figure 5.10: Prediction error plot.

The SI VI generates the prediction error plot for the ARMAX model and the optimal

A, B, C and delay orders, which is on the lowest prediction error, as shown in the

colour bar in Figure 5.10 for dimension 9. Hence, the number of parameters in the

optimal order are A=5, B=3, C=1 and delay=1.

After determining the order of the model, the results must be verified to ensure the

model describes the plant model with accuracy and stability. The second step to

identify the correct model order is to plot a pole-zero map. This step is verified if the

model created is stable [64]. If a pole and zero overlap, they cancel out each other,

indicating that the estimated optimal order is too high, as shown in Figure 5.11 (pole

and zeros at real axis 1). If the pole is out of the unit circle, the model created is con-

sidered unstable [64]. The red colour is zero and the green colour is pole.
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Figure 5.11: Pole-Zero map of A=5, B=3, C=1 and delay=1.

The last step is to choose the correct model order by plotting a residual analysis. This

step is to verify whether the model created is accurate [64, 65] and the residual

analysis tests whether the prediction error correlates to the stimulus signal. Figure

5.12 shows the model created at the parameters A=5, B=3, C=1 and delay=1, with

cross-correlation of prediction error. The whole error signals are inside the confi-

dence level of cross-correlation, which is 0.1423. This value is auto-achieved from

the SI Model Residual Analysis VI. The confidence level corresponds to the range of

residual values with a specific probability of being statistically insignificant for the

system [64, 65].

Pole and Zero
Overlapping
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Figure 5.12: Residual analysis for A=5, B=3, C=1 and delay=1.

From the second and third steps above, we can conclude that the model created in

parameters A=5, B=3, C=1 and delay=1 is accurate, but unstable.

Consequently, another model is created with parameters A=2, B=1, C=1 and delay =

1. This plant’s model is accurate and stable since the pole is inside the unit circle

with no overlapping and the whole error signal is inside the confidence level, as

shown in Figure 5.13. Figure 5.14 shows the prediction plot at 99-step and its MSE

is 1.5792e-6.
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Figure 5.13: Pole-zero and residual analysis for A=2, B=1, C=1 and delay=1.
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Figure 5.14: Prediction plot at 99-step (Note: overlap of estimation and prediction).

5.2.1.3 Model Transformation and Analysis

Since we are using polynomial, the transfer function formed is a discrete transform:

)k(e)z9716.01()k(uz0022.0)k(y)z8095.0z7882.11( 1121   (Equation 5.3)

Referring to Equations 5.1 and 5.2, we know the values of

21 z8095.0z7882.11)z(A   , of 0022.0)z(B  and of 1z9716.01)z(C  .

Using the SI ‘convert discrete to continuous model’ VI, convert Equation 5.3 to con-

tinuous transfer function of the plant model. The continuous transfer function is

shown in Equation 5.4. The value of )s(y is the output angular velocity and the value

of )s(u is input voltage.

4.23617s387.211s

04.2486s2016.1

)s(u

)s(y
2 


 (Equation 5.4)
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This model plant clearly is a second order underdamped system, as shown in Figure

5.15, step response.

Figure 5.15: Step response of plant model.

The DC gain k, natural frequency n , and damping ratio  can be found in the bode

plot (Figure 5.16) and following Equations 5.5 to 5.7.

20

)0(M

10)k(Gain_DC  (Equation 5.5)

090n )(Frequency_Natural


 (Equation 5.6)

)
20

M
(

090

10*2

k
)(Ratio_Damping



 (Equation 5.7)

where: M(0) = Magnitude of bode plot when j =0,

090
 = Frequency at which phase plot is at -90 degrees,

090
M


= Magnitude of bode plot when the phase is -90 degrees.

Hence, the values of DC gain k, natural frequency n and damping ratio  of the

created plant model are 0.1047, 163rad/s and 0.7310, respectively. Since the damp-
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ing ratio  is below 1, the created plant model is underdamped second order. The

plant model has one zero and two poles, as shown in Figure 5.17.

Figure 5.16: Bode plot of plant model.

Figure 5.17: Pole-zero plot of plant model.
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ee

5.2.2 Control Design – Proportional Derivative

The PID control algorithm is used for the control of almost all loops in the process

industries and is also the basis for many advanced control algorithms and strategies.

To control the position of the finger, an integrator is needed to transform the angular

velocity to an angular position, as shown in Figure 5.18. Since an integrator was

used, the control algorithm of the system will become PD algorithm. In order for

control loops to work properly, the PD loop must be properly tuned. The plant model

of the Figure 5.18 is the DC actuator connected to the MCP joint of the finger.

Figure 5.18: Block diagram of closed-loop system.

From Figure 5.18, the variable, e, represents the tracking error, the difference be-

tween the desired input value (Target Position) and actual output (Actual Position).

This error signal, e, is sent to the PD controller, and the controller calculates the de-

rivative of error signal. The output of the PD controller is now equal to the propor-

tional gain PK , multiplied by the magnitude of the error plus derivative gain DK ,

times the derivative of the error, as shown in Equation 5.8 and Figure 5.19 [66].

dt

de
KeKOutputPD DP _ (Equation 5.8)

Figure 5.19: PD Controller.

PD Output
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The voltage of the PD output voltage is sent to the plant and the new output – actual

position, is obtained. The new output is sent back to the sensor again to update the

value of error e. The controller takes this updated signal and calculates its derivative

and its integral again.

The characteristics of the proportional gain PK and derivative gain DK are manu-

ally tuned based on Table 5.2.

Table 5.2: Characteristics of P, I, and D controllers [67].

Rise Time Overshoot Settling Time Steady-State

Error

PK Decrease Increase Small Change Decrease

IK Decrease Increase Increase Eliminate

DK Small Change Decrease Decrease Small Change

The proportional gain PK , will have the effect of reducing the rise time, but never

eliminating the steady-state error. A derivative gain DK will have the effect of in-

creasing the stability of the system, reducing the overshoot and improving the tran-

sient response. Effects of each PK and DK of controllers on a closed-loop system

are summarised in Table 5.2.

The control closed loop system’s aims are: minimum rising time, minimum settling

time, steady state error less than 1% and No overshoot.

The value of PK and DK are manually tuned until the above aims are reached. A

typical procedure to turn a PID controller would be [66]:

1. PK to 1, and IK , DK to zero. Keep increasing/decreasing PK until response has

some overshoot.

2. Modify DK to make system faster and compensate overshoot.

Finally, the values of PK and DK are 450 and 3.5, respectively. Applying these val-

ues into the LabView programming, as shown in Appendix A (Figures A.2 and A.3),

the transfer function of the desired closed-loop system is:
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11187203.32859593.215

111872086.924120556.4
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




sss

ss

su

sy
(Equation 5.9)

where the value of )s(y is the actual angular position of the MCP joint and the value

of )s(u is its target angular position.

From the step response (Figure 5.20) of the Equation 5.9 closed loop transfer func-

tion, the rise time, setting time, overshoot and steady-state error are 0.0438s,

0.0838s, 0.0000469% and 0, respectively.

Figure 5.20: Step response of closed loop system.

Using Equations 5.5 to 5.7 and Figure 5.21 bode plot, the DC gain k, natural fre-

quency n and damping ratio  of the position control closed loop system are 1,

128 rad/s, and 1.02, respectively. The closed loop system is critically damped, since

 =1.

The closed loop system has three pole and two zero on the left sides of the pole-zero

map (Figure 5.22). Since, the pole and zero are located on the left sides of the pole-

zero map, then it means the system is stable.
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Figure 5.21: Bode plot of closed loop system.

Figure 5.22: Pole-zero plot of plant model.
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5.2.3 Deployment

Once a control system is designed, the algorithm can be deployed to control a real

physical system. This is implemented in the finalised control system, which is de-

ployed to the control algorithm on real hardware that controls the angular position of

the DC actuator. As a result, it replaces the plant model with real hardware shown in

Figure 5.23 and the full programming is shown in Appendix B.

Figure 5.23: Block diagram of desired closed-loop system with real hardware.

When the target angular position is set to 1.57 rad, it will then compare to the actual

angular position and send an error e to the PD controller (Figure 5.23). The PD con-

troller will automatically adjust the PD output value based on PK and DK (Equation

5.8). After that, the PD output will send to the DAQ_mx to generate a signal to the

DC actuator (which is connected to the MCP joint). When the DC actuator is acti-

vated, the encoder will start reading the number of pulses and use the Equation 5.10

to evaluate the actual angular position of the DC actuator. This process is iterative

until the actual angular position is equal to the target angular position.

45*64*256

pi*2
xN)rad(Position_Angular pulse (Equation 5.10)

where: pulseN = Number of pulses.

256 = Pulses per revolution

64 = Gear head reduction absolute

45 = External gear ratio (45:1 worm gear)

Figure 5.24 shows the front panel of LabView VI for real time DC actuator position

control. When the target angular position was set to 1.57rad, the final actual angular

was 1.56827rad. It is meant the steady state error is 0.00173rad (0.11%) compared to
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the target angular position. The 0.00173rad error is the DC actuator error, due to

backlash, etc., in the joint.

Figure 5.24: Real time DC actuator position control.

Figure 5.25: Experiment time response.

The experiment time response between the target and actual position is shown in

Figure 5.25. The settling time takes around 1.9s and is longer than for the simulation

1.9s
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result as shown in Figure 5.20 (0.0838s). The reason is that a voltage saturation was

set on the experiment, which is from -5v to +5v, and no saturation was set in the

simulation result of Figure 5.20, which means the range of the voltage (output of PD

controller) can exceed +5v or go below -5v.

Figure 5.26 shows the simulation time response (1.8s) by using Simulink when the

saturation voltage is set between -5v to +5v, and it is close to the experiment time

response result (1.9s), as shown in Figure 5.25 with saturation voltage. The Simulink

program is shown in Figure 5.27.

Figure 5.26: Simulation time response with a saturation voltage.

Figure 5.27: PD controller with a saturation.

PD Output

1.8s
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5.3 Shape Memory Alloy Actuator

The SMA actuator is placed in the palm but different lever with the motor, as shown

in Figure 4.9, to control the 1100 flexion-extension movement of the PIP joint. In

order to control the SMA accurate location, a understanding of SMA effects, its ap-

plications and the various consideration to be taken into account when using SMA.

Shape memory alloys display two distinct crystal structures or phases, which are

martensite exits at lower temperatures and austenite exists at higher temperatures.

When a SMA is in martensite form at lower temperatures, the metal can easily be

deformed into any shape and when the SMA is heated it goes through transformation

from martensite to austenite [62]. However, when the SMA is heated then cooled,

the phases of the SMA will not straight away from austenite to martensite without

any external load or bias force, it will change to a structure called twinned marten-

site, which is the configuration shown in Figure 5.28.

Figure 5.28: SMA crystal structure [68].

In Figure 5.28, in the twinned martensite structure, although the crystal structure has

changed, its shape has not. From this point the material can be easily deformed by

adding an external load.
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Figure 5.29 illustrates a simple experiment using the structure/test-rig of Figure 4.15.

The upper end is fixed and a weight or a bias load is attached to the other end. Start-

ing the experiment with the material in its 700 Celsius austenite phase, one can ex-

pect the wire to show its original length (70mm). By increasing the temperature rises

above Af, the SMA wire will fully contract to 67mm and then by steadily decreasing

the temperature, the material will enter the twinned martensite state and the tensile

load will elongate the wire. The transformation from one state to another does not

occur at the same temperature on heating and cooling but follows a hysteresis cycle.

This hysteresis gap is described by the transformation temperatures Ms (Martensite

start), Mf (Martensite finish), As (Austenite start) and Af (Austenite finish).

Figure 5.29: Changes of shape under constant load conditions.

5.3.1 Time Response

Since the myoelectric signal will be collected based on the nine wrist joint move-

ments in order to control nine different movements of fingers only open and closed

(for full details, see Chapters 6 and 7), therefore the position control of the SMA ac-

tuator just to control PIP joint 2 has 0 and 110 degrees.

The full contraction times for the 0.012” ( m300 ) SMA single and double layer

wire in the actuator are shown in Figures 5.30 and 5.31. These two figures are con-
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nected to 350g bias load to bring the SMA wire from Af back to Mf and the given

voltage s are 2volt and 3.6volt, respectively. The heating started at 0 sec and the

cooling at 3 sec. These experiment were contain three trials.

Figure 5.30: Time response for 0.012” SMA single layer wire actuator.

Figure 5.31: Time response for 0.012” SMA double layer wire actuator linear displacement.

This experiment is based on the preliminary SMA actuator design of Figures 4.14

and 4.22, due to the SMA wire used just 4.5% contraction rate, therefore the maxi-

mum linear displacement did not reach 13mm (that is 110 degrees of PIP joint). The
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cooling time from Af to Mf for the single layer SMA wire is faster than the double

layer, averaging1.1sec and 1.4sec, respectively. The full contraction (As to Af) time

is averaging 1.9sec and 2.1sec for the single and double layer SMA wire. It means

the full contraction time takes longer than the fully cooled time. The time for start

austenite (As) is take longer in double layers than single layer SMA wire, i.e. averag-

ing 1.1 sec and 0.9 sec, respectively. The reason is because the length of double lay-

ers SMA wire is longer than single layer SMA wire.

Apply the relationship in Figure 5.31 to the Equation 4.6 and Figure 4.10 and the

time response of the PIP joint angular motion is shown in Figures 5.32.

Figure 5.32: Time response for 0.012” SMA double layer wire actuator of PIP joint angular
motion.

An assumption was made in Figure 5.32 that the mass of the finger (especially MP

and DP) plus the spring S2 has 350g (3.43N) when the PIP joint turns to around 750

of PIP joint.

5.3.2 Control Design

Since the SMA transformation occurs as a continuous change over a temperature

range, as shown in Figure 4.21, the latter is controlled by the input current, and the

input current is controlled by the input voltage due to the resistance of the SMA be-
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ing based on its length. By controlling the input voltage of the SMA, to control the

rate of contraction/deformation in a continuous fashion.

However, the design of a control system for SMA actuators can be a very complex

task if the device requires precise control. Many factors contribute to this problem,

such as the contraction/deformation rate not precisely at 5%, spring response, differ-

ent weight of object grasped, etc..

Due to no position sensor being connected on the PIP joint 2 , the position control

of the SMA actuator can not control similarly to the DC actuator in section 5.2.

Therefore, a simple open loop control, as shown in Figure 5.33, was used.

Figure 5.33: Open loop control system of SMA actuator.

Ideally, the open loop control associated with the inverse kinematics formula evaluated in

Chapter 3 is good enough to control the middle finger. For example, from the inverse kine-

matics, we know that the MCP joint 1 is 900 (1.57rad) and the PIP joint 2 should be

650 (1.13rad) for position Px = -54.8 and Py = 64.75mm and 1 is 450 (0.785rad), the 2

should be 100 (0.1745rad) for position Px = 73.23mm and Py = 92.13mm. After the value

of 2 is achieved, it will substitute this value to the Equation 4.6 to evaluate the

value of linear displacement of the SMA actuator which should be performed. Then

after that, based on Figure 4.21, to evaluate what input voltage needs to be supplied

to the SMA actuator.

5.4 Summary

This chapter discussed the control system of the actuation mechanism of the pros-

thetic hand. Two main sections were covered in this chapter:

1. The control system of the DC actuator

Three processes have been used to design the control system:

Amplifier PIP joint 2Input voltage SMA
actuator
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i) System Identification: to identify a mathematical representation of the

plant based on a set of real-world stimulus and response data samples.

ii) Control design: A PD control algorithms was used for the control, due to

its being the basis for many advanced control algorithms and strategies.

Manually tuned technique was applied.

iii) Deployment: Once a control system is designed, the algorithm can be de-

ployed to control a real physical system. This is implemented in the final-

ised control system, which is deployed to the control algorithm on real

hardware that controls the angular position of the finger. As a result, it

replaces the plant model with real hardware.

The experiment time response between the target and actual position

is shown in Figure 5.25. The setting time takes around 1.85s.

2. The control system of the SMA actuator.

a. In order to control the SMA actuator, an understanding of SMA ef-

fects, its applications and the various considerations had to be taken

into account.

b. The time response of a single and double layer SMA wire actuator

was presented in section 5.3.1. The cooling time from Af to Mf and

full contraction time from As to Af of the single layer SMA wire is

faster than the double layer due to double layer SMA wire’s having

longer SMA wire. Besides, from the time response, the full contrac-

tion time takes longer than the full cooling time when a large bias

load is applied.

c. Without any position sensor connected on the PIP joint, the position

control of the SMA actuator cannot be controlled similar to the DC

actuator. Therefore, a simple open loop control was used in this case.
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CHAPTER 6

Surface Electromyography and its

Signal Processing Techniques

6.1 Introduction

The concept of harnessing the remaining part of a limb to operate a terminal device

remained central to all development in upper limb prosthetic until the practical in-

troduction of myoelectrically controlled external power, beginning in 1958 [1].

Myoelectric control is the control of a prosthesis through the use of ‘muscle electric-

ity’. Muscle electricity is a by-product of muscle action and is picked up with elec-

trodes on the surface of the body. The surface method of detection of muscle activity

is appropriately illustrated in the standard electromyography (EMG) [1]. Many ef-

forts have been to implement effective control algorithms based on the processing of

EMG signals

The scope of this chapter is as follows. In Section 6.2, the definition of the EMG

signals and their acquisition and processing techniques are presented. The specifica-

tion of the myoelectrodes used in this research work are listed and elaborated in the

Section 6.3. In Section 6.4, the author defines the methodology of EMG acquisition

of the healthy human forearm based on rigorous literature review. Section 6.5 illus-

trates the sEMG signal features’ extraction by the continuous wavelet transform, fol-

lowing their features’ selection criteria. An example of sEMG acquisition and proc-

essing is illustrated in Section 6.6.

6.2 Electromyography

Electromyography (EMG) is an analytical tool used to record electrical activity of

muscle for clinical or biomedical purposes [20]. There are two kinds of EMG in

common use: surface EMG (non-invasive) and needle or intramuscular EMG (inva-

sive) [20, 25]. Surface EMG (sEMG) is capable of providing information about neu-

romuscular activity in a non-invasive manner through electrodes placed on the skin

surface and has thus become an important and effective control input for powered
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prostheses [25, 68]. Needle or intramuscular EMG on the other hand measures elec-

trical activity by using electrodes inserted through the skin directly into the muscle.

This application can cause a considerable amount of discomfort to the patient and

thus it is not practicable in powered prostheses [25].

The main prosthesis control functions of interest are flexion and extension of the

forearm to control the hand opening and grasping actions. In order to differentiate

these control functions, investigators have developed various EMG features which

include EMG signal amplitude, EMG frequency characteristic, etc. [50]. In any case,

the myoelectric signal without any processing just permits the control of no more

than one or two active DOFs, such as one for the gripper and one for the wrist.

Hence, in order to be able to control more than two active DOFs, sEMG signal proc-

essing is needed. The raw signal contains valuable information in a particular form,

which is not readily usable. This information however, can be made useful only if it

is quantified by signal processing methods to achieve the accurate and relevant struc-

tures in the data, which could be utilised for further tasks, such as pattern classifica-

tion.

Figure 6.1 shows the usual processing of sEMG signalS, which can be divided into

three stages:

1) Data Acquisition

This includes amplification, signal conditioning and analogue to digital con-

version. More details will be discussed in Section 6.2.

2) Features Extraction

Signal Processing stage to extract desired features from the sEMG signal.

Further details will be covered in Section 6.3.

3) Feature Selection

Selecting and retaining information that is important for the later application

such as classification of signals using ANN. More details will be discussed in

Section 6.3.
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Figure 6.1: Stages of sEMG signal processing.

6.3 Myoelectrodes Sensor

Surface electrodes are currently the only practical way to receive myoelectric signals

for prosthesis control because the electrodes are used for a long time every day and

hence must be benign to skin and tissue.

The muscle electricity is monitored using the surface pre-amplifier type No. SX 230

(Biometric Ltd) with integral surface electrodes placed on the skin to measure poten-

tials originating from muscle electrical activity. Its specifications are listed on the

Table 6.1.

Table 6.1: Specifications of myoelectrodes.

Supply Voltage +4.5Vdc to +5.0Vdc single sided
Gain Factor 1000
Current 10mA
Accuracy +/- 2% full scale
Low Pass Filter 450Hz
High Pass Filter 20Hz
Noise < 5 V

Electrodes Integral dry reusable material stainless steel

The high-pass filter is used to remove DC offsets due to membrane potentials and to

minimise low frequency interference caused by the movement of the pre-amplifier

on the skin surface and the low-pass filter to remove the unwanted frequencies above

450Hz. It is very importance to remove these high frequencies when interfacing to a

computer sampling the signal since they would be converted to a lower frequency

and mixed with the original signal.

Amplification.

 Signal Condi-
tioning.

A/D Conversion.

 By analysis
scheme of Continu-
ous Wavelet Trans-
form (CWT)

Feature SelectionData Acquisition Features Extraction

 Parameters Select-
ing
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Only two myoelectrodes were used in order to create a user-friendly system. These

are placed on the skin over the muscles of the extensor carpi radialis longus and

flexor carpi ulnaris, as shown in Figures 6.2 and 6.4. These two muscles are the

thickest in the human hand.

Figure 6.2: (a) Posterior, and (b) Anterior of left forearm muscles.

6.4 Data Acquisition

This section describes the equipment used, and a methodology that covers move-

ment or exercise procedures to obtain forearm muscle maximum contraction.

6.4.1 Equipment and Programming Setups

In order to achieve correct or precise signal, free from any excessive noise or alias-

ing effect, equipment and programming setups are of crucial importance.

The raw sEMG signals in time domain were collected using NI DAQ_mx card (NI

PCI-MIO-16E-4) and a program developed in LabView environment (see Appendix

C). The sEMG signals obtained and monitored on a computer screen were filtered by

a 20Hz - 450Hz bandpass filter and amplified by a factor of 1000, as these two func-

tions were integrated in the myo-electrode sensors. In all experiments the sampling

rate was set to 1024Hz and 1024 number were recorded. According to the Nyquist

Theorem, to avoid signal aliasing, the sampling rate must be set at least two times
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the bandwidth, hence, considering sEMG signal characteristics, 1024Hz sampling

rate was high enough to avoid signal aliasing.

6.4.2 Methodology for Collecting sEMG Signal

In order to achieve correct pattern recognition on the further use (Chapter 7), the

methodology for collecting sEMG signal is very crucial since the ways for collecting

them correspond to multiple fingers movement.

Only one subject was enrolled during signal collection in this study because different

subjects would have different muscle strength, shapes and power. These variations

could potentially cause problems in pattern classification when using the neural net-

work. The pattern classification result of different subjects is shown in Appendix F.

One subject (the author) with healthy left forearm participated in this study. Signals

were collected when the wrist moved in the direction of nine different wrist joint

movements shown in Figures 6.3 to 6.12, without load and with relaxed grasp. These

nine wrist joint movements correspond to nine different finger movement patterns.

The direction of the centre point in Figure 6.3 is the left forearm‘s front midpoint of

the fist and the signs ‘+450’ and ‘-450‘represent the degrees of forearm turn in prona-

tion and supination rotation, respectively. Fully up and fully down represent the fist

moved vertically up and down when the forearm was at the central point of supina-

tion-pronation (see Figure 6.3). In the full extension and full flexion movements,

when the forearm was in neither supination nor pronation rotation, the fist was fully

‘bend’ out from and towards the body, respectively. The shoulder and forearm had to

be perpendicular, shown in Figure 6.4.
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Figure 6.3: Nine different wrist joint movements (Positions A to I).

Figure 6.4: Placement of myo-electrode sensors, and subject showing position A – Centre
Point.

PronationSupination

F. +450 Fully UpD. Fully Up

E. Fully Down
G. +450 Fully Down I. -450 Fully Down

H. -450 Fully Up

C. Full FlexionB. Full Extension

Myo-Electrode

Sensor 2: Flexion

Flexor carpi ulnaris

Myo-Electrode

Sensor 1: Extension

Extensor carpi ra-
dialis longus

Forearm

Fist

Shoulder

Perpendicular

800 - 900
800 - 900

A. Central Point
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Figure 6.5: Position B, Full extension.

Figure 6.6: Position C, Full flexion.
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Figure 6.7: Position D, Fully up.

Figure 6.8: Position E, Fully down.
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Figure 6.9: Position F, +450 fully up.

Figure 6.10: Position G, +450 fully down.
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Figure 6.11: Position H, -450 fully up.

Figure 6.12: Position I, -450 fully down.

Figures 6.4 to 6.12 show the position of the subject’s hand corresponding to the nine

patterns of wrist joint movements, Centre Point, Full Extension, Full Flexion, Fully

Up, Fully Down, +450 Right Up and Down, -450 Left Up and Down. These nine

wrist joint movements will be used to control the nine different finger movement

patterns. The corresponding of these nine different types of wrist joint movement
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and the multiple finger movement patterns is separated into four groups is show in

Tables 6.2 to 6.5. The purpose of this is to try to investigate how many pattern can

be recognised based on use of only two myoelectrodes.

Table 6.2: Relationship between three movements of wrist joint and prosthetic fingers.

Patterns Wrist Joint Movements Prosthetic Hand

A Wrist Joint Centre Point No Fingers Movement

B Wrist Joint Fully Ex-
tended

Four Fingers extended (Thumb is not in-
cluded)

C Wrist Joint Fully Flexed Four Fingers flexed (Thumb is not in-
cluded)

Table 6.3: Relationship between five movements of wrist joint and prosthetic fingers.

Patterns Wrist Joint Movements Prosthetic Hand

A Wrist Joint Centre Point Original Position (All Fingers extended)

B Wrist Joint Fully Extended Index Finger flexed

C Wrist Joint Fully Flexed Index and Middle Fingers flexed

D Wrist Joint Fully Up Index, Middle and Ring Fingers flexed

E Wrist Joint Fully Down Index, Middle, Ring and Little Fingers
flexed

Table 6.4: Relationship between seven movements of wrist joint and prosthetic fingers.
(Consider ring and little fingers as one digit).

Patterns Wrist Joint Movements Prosthetic Hand

A Wrist Joint Centre Point Original Position (All Fingers extended)

B Wrist Joint Fully Extended Index Finger flexed

C Wrist Joint Fully Flexed Index and Middle Fingers flexed

D Wrist Joint Fully Up Index, Middle, Ring and Little Fingers
flexed

E Wrist Joint Fully Down Middle Finger flexed

F Wrist Joint +450 Right Up Middle, Ring and Little Fingers flexed

G Wrist Joint +450 Right
Down

Ring and Little Fingers flexed
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Table 6.5: Relationship between nine movements of wrist joint and prosthetic fingers.

Patterns Wrist Joint Movements Prosthetic Hand

A Wrist Joint Centre Point Original Position (All Fingers ex-
tended)

B Wrist Joint Fully Extended Index Finger flexed

C Wrist Joint Fully Flexed Index and Middle Fingers flexed

D Wrist Joint Fully Up Index, Middle and Ring Fingers flexed

E Wrist Joint Fully Down Index, Middle, Ring and Little Fingers
flexed

F Wrist Joint +450 Right Up Middle Finger flexed

G Wrist Joint +450 Right
Down

Middle and Ring Fingers flexed

H Wrist Joint -450 Left Up Middle, Ring and Little Fingers flexed

I Wrist Joint -450 Left Down Ring and Little Fingers flexed

6.4.3 Initial sEMG Data Collection

Eighteen sets of data were collected from a subject (author) in the initial sEMG data

collection stage. Each wrist joint movement was performed ten trials for every set

and the time for data collection was set to 3 sec in each trial. After the 3 sec data re-

cording, the subject was asked to relax around 3 to 4 sec in order to avoid muscle

fatigue (see Figure 6.13). Consequently, for each set of data, a maximum of 180

blocks of data were recorded for nine types of wrist joint movement (nine wrist joint

movements x 10 trials x 2 channel of sEMG sensors). Hence, the total number of

samples in four different groups is shown in Table 6-6.
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Figure 6.13: Flowchart for data acquisition from wrist joint movement B to wrist joint
movement C.

Table 6.6: Total number of samples and data blocks in four different groups of patterns.

Patterns No. of Wrist
movements

No. of Myoelec-
trodes

No. of
Trials

No. of
samples

Total No. of
data blocks

Three 3 2 10 18 1080
Five 5 2 10 18 1800

Seven 7 2 10 18 2520
Nine 9 2 10 18 3240

6.5 Feature Extraction and Selection

The second and third steps of the sEMG signal processing is feature extraction and

features selection.

During feature extraction, the measured sEMG signal was processed in order to em-

phasize the relevant structures in the data, while rejecting noise and irrelevant data,

producing the so-called ‘original feature’ set. Sometimes a reduction of the dimen-

sionality is needed to simplify the task of the classifier.

NO

YES

Position B

Subject is asked for Full Extended

Data record for 3 sec

Subjects relaxed for 3 to 4 sec

10 Trials?

Position C
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The role of the feature selection is to retain information important for application

such as signal classification. Their work on feature selection involved methods at-

tempting to determine the best subset of the original feature set, and feature projec-

tion to determine the best combination of the original features. Their overall aim for

dimensionality reduction is to have classifier a with fewer inputs and fewer adaptive

parameters which should lead to a classifier with better generalisation properties.

The signal features were extracted using Continuous Wavelet Transform (CWT).

Five different scales indeces of CWT will be used to extract the features. These five

different scales indeces are 8, 16, 32, 64, and 128. Low scale number contains com-

pressed wavelet, rapidly changing details and high frequency; High scale number

contains stretched wavelet, slowly changing details and low frequency. Figure 6.16

shows the signal differences with respect to different scales.

The features selection was aimed to determine the RMS values of the signals, mean

and median frequencies from the average power spectrum for each signal at differ-

ence scales of CWT. These features are selected as they are commonly used in most

EMG research using the conventional Fourier analysis method [21, 41, 69, 70]. The

RMS value is to provide useful measurement of the signal power or amplitude and is

obtained by Equation 6.1. The power spectrum of the total signal reveals the compo-

nent of the individual motor unit properties[21]. The area under the power spectral

curve equals the signal power. The mean and median frequencies are two reliable

measures of the power spectrum. The mean frequency is the average of all frequen-

cies from the power spectrum and is obtained by Equation 6.2. The median fre-

quency is the frequency with 50% or half of the frequency distribution on each side.

By conclusion, the mean and median frequencies are used to assess muscle fatigue.

The results of [70] illustrate the significant increase in sEMG amplitude (contraction

force) and mean power frequency was higher, which meant that during muscle fa-

tigue, the power spectrum of sEMG shows a shift to lower frequencies. Median fre-

quency is used to quantify this shift.

After values of features are extracted, these will be stored in a table, such as Table

6.7, for Artificial Neural Network (ANN) pattern classification.
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where:

RMS : Root Mean Square,

iA : Amplitude in ith sample,

n : Total number of samples.
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where:

F : Mean Frequency,

if : Frequency in ith sample,

iA : Amplitude in ith sample,

n : Total number of samples

The flowchart of the MatLab program developed to carry out the required calcula-

tions is shown in Figure 6.14. The full program is enclosed in Appendix D. The de-

tailed specification of settings used to process on this stage 6.3 is listed in Table 6.8.
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Table 6.7: Feature extraction from raw sEMG signal for sensor 1 or sensor 2.

No Features Data Set 1

1st Trial … nth Trial … 10th Trial

Position
A

…. Position
I

Position A
….

Position
I

Position
A

….
Position

I

Median Frequency at Scale:

1 8

2 16

3 32

4 64

5 128

Mean Frequency at Scale:

6 8

… …..

10 128

RMS at Scale:

11 8

… …..

15 128
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Figure 6.14: Flowchart of MatLab Program developed for final analysis, displaying and
storing result of sEMG signal using CWT.

Start

Read collected signals

Signals filtering using 20Hz – 450Hz
bandpass filter.

Continuous Wavelet Transform (CWT)
technique to reconstruct signal in differ-

ent numbered scales:

8, 16, 32, 64, and 128

Setting for FFT analysis for different

numbered scales’ signal

Display for scale numbers 8, 16, 32,
64 and 128

1. Analysis Graph

2. Average power spec-
trum

Store following for each scale num-
ber 8, 16, 32, 64 and 128

1.Median Frequency,

2.Mean Frequency,

3.RMS.

End
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Table 6.8: List of specifications for signal processing using CWT.

Sampling Frequency 1024Hz
Filter 5th order Butterworth 20Hz – 450Hz

Bandpass filter
Total Time of raw Signal 3 seconds

Total no. of Samples 3072
Features Extraction Technique Continuous Wavelet Transform (CWT)

Scales 8, 16, 32, 64, 128
Mother Wavelet Db05

Features Selection RMS, Mean and Median Frequency in
Difference Scales

6.6 Result of One Typical Signal

This section shows the result of one typical data obtained from one of the eighteen

sets of data. This includes the presentation of the original filtered signal, the scalo-

gram by the CWT and the signal reconstruction in different scale selection. The re-

sult contains determined values of the RMS and the mean and median frequencies

for each of the selected scales.

The CWT scalogram shows the scales from 1 to 257, and the scales selected are 8,

16, 32, 64 and 128. For every one of these scales, the values of the RMS, the mean

and median frequencies are obtained, corresponding to one of the nine different

types of wrist joint movement, i.e., either Central, Fully Extension, Fully Flexion,

Fully Vertical Up, Fully Vertical Down, +450 Up and Down or -450 Up and Down.

These nine different types of wrist joint movement samples are obtained from

maximum voluntary contraction (MVC) on the left hand by placing two myoelec-

trodes on the skin over the muscles of extensor carpi radialis longus and flexor

carpi ulnaris.

Table 6.9 shows the values of the RMS, the mean and median frequencies in five

different scales for one of the nine types of wrist joint movement. Figures 6.15 and

6.16 show the CWT scalogram of the original filtered signal and the signal recon-

struction in different selected scales, respectively.
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Table 6.9: Features value of the left forearm extensor carpi radialis longus muscles from
one data set and trail at fully extension (Pattern B) scheme.

Scales Median Frequency
(Hz)

Mean Frequency
(Hz)

RMS (mV)

8 95 90.1049 0.1829
16 57 56.3854 0.1479
32 26 24.1891 0.0929
64 16 15.9622 0.0577
128 11 12.0299 0.0074

Figure 6.15: Filtered signal and CWT colour scalogram plot from scales 1 to 129 (colour
bar on right of scalogram plot is number of CWT coefficients).
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Figure 6.16: (a) Original filtered signal and signal reconstruction in scales of 8, 16, 32, 64,
128, (b) The power spectrum corresponding to each scale.

6.7 Summary

This chapter presented the technology of the Electromyography (EMG) used in this

research. A simple understanding of EMG signal and its effect have been described.

The processing of sEMG signals can be divided into a three stage process.

1. The first step is data acquisition, including amplification, analogue to digital

conversion and signal conditioning. A factor of 1,000 is used in amplification

(a) (b)
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and 20Hz – 450Hz band pass filter was used to filter out the noise of the

sEMG signal.

a. Only two myoelectrode sensors were placed on the skin of the left

forearm muscles, which are extensor carpi radialis longus and flexor

carpi ulnaris. These two muscles are the thickest muscles of the hu-

man forearm.

b. One subject with healthy left forearm muscle participated in this ex-

periment and eighteen sets of data were collected according to the

nine different types of wrist joint movement.

c. The relationship between the nine different types of wrist joint

movement and the multiple finger movement patterns is separated

into four groups. The purpose of this task was to investigate the num-

ber of patterns that can be recognised based on use of only two

myoelectrodes.

2. Secondly, to extract desired features from the sEMG signal, Continuous

Wavelet Transform (CWT) technique was used in five different scales, i.e.

scales number 8, 16, 32, 64 and 128.

3. Thirdly, a features selection stage is important for Artificial Neural Network

(ANN) pattern classification. The features selected are RMS values, mean

and median frequencies of power spectrum in scales number 8, 16, 32, 64

and 128.

After the signal pre-processing and features selection stage, a total of 15 columns of

features and 180 rows of every set data for nine patterns were used as the input data

of Neural Network pattern classification, 15 columns of features and 140 rows of

every set data for seven patterns, 15 columns of features and 100 rows of every set

data for five patterns, and 15 columns of features and 60 rows of every set data for

three patterns.
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The result of sEMG signal processing in full extension (Pattern B) for one particular

set of data and one particular trial for one myo-electrode sensor was also presented

in this chapter.
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CHAPTER 7

Pattern Recognition

7.1 Introduction

Study in the past has used Surface Electromyography (sEMG) pattern recognition to

control prosthetic devices in amputees [50]. The main prosthesis control functions of

interest were flexion and extension of the forearm to control hand opening and

grasping actions. Artificial Neural Network (ANN) is the most popular classification

tool which is commercially available and it may be defined as structures comprised

of densely interconnected adaptive simple processing elements (called artificial neu-

rons or nodes) capable of performing massively parallel computations for data proc-

essing and knowledge representation [71]. Figure 7.1 shows the flow of the sEMG

signal.

The objective of this chapter is to execute the last stage of the sEMG signal pattern

classification by using ANN. Section 7.2 shows the fundamental principles of neural

network and gives a picture of the functionality of neural network and of the back-

propagation algorithm. Subsequently, Section 7.3 will show the data assembling and

array management for the input and output-target data of the neural network in order

to train three, five, seven and nine patterns. The methodology for designing the net-

work is shown in the Section 7.4, with parameters’ setting of the neural network and

the number separation for training, validating and testing, etc. Lastly, Section 7.5

shows the results, such as the correct percentage and the analysis of the pattern rec-

ognition.
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Figure 7.1: Flow chart of sEMG signal for pattern classification.

7.2 Fundamentals of Neural Network

This section aims to explain the fundamental principles of the neural network so that

a better understanding of its functions can be established. Artificial Neural Network

(ANN) is a computational modelling tool that has recently emerged and found ex-

tensive acceptance in many disciplines for modelling complex real-world problems

[71, 72]. ANN can be defined as a structure consisting of compactly interconnected

adaptive simple processing elements, called artificial neurons or nodes, capable of

performing extremely parallel computations for data processing and knowledge rep-

Start

sEMG signal features se-

lected and extracted.

Input Data Assembly
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Patterns
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Movement

END

Targets Set
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resentation [71]. The knowledge is stored in the interneuron connection strengths

known as synaptic weights.

During the training process, the weights are tuned to the correct values, where a set

of examples of input-output pairs flow through the model as well as being adjusted

to minimise the error between the given network and the desired outputs. Once the

weights have been set, the model is able to produce answers for input values which

are not included in the training data [72].

ANN is a powerful tool that appeals to many researchers because it is able to solve

complex problems such as non-linearity, high parallelism, robustness, fault and fail-

ure tolerance. In addition that it can handle imprecise and fuzzy information [71].

In this research, the features extracted from the sEMG muscle signals were trained or

put through neural network as inputs (Figure 7.1). These inputs created an environ-

ment which had its own typical features or patterns in the layer called the hidden

layer of the network. Every time a new input was trained, the hidden layer read-

justed the previous features to become the output layer of the network. This process

is iterated until all the data are trained and the output target is reached [55, 71]. The

iteration process was shown in ‘epochs’ in Matlab’s Artificial Neural Network tool-

box. This type of iterate process is referred to as backpropagation (BP) [71] [55].

Input vectors and the corresponding target vectors are used to train a network until it

can approximate a function, associate input vectors with specific output vectors or

classify input vectors in an appropriate way as defined by users. Feedforward back-

propagation is the most common neural network. The term ‘feedforward’ describes

the process in which neurons in each layer are flowing forward through to the next

connection layer and there is no backward connection. Figure 7.2 describes a simple

three layer (one input layer with 6 neurons, one hidden layer with 4 neurons, and one

output layer with 2 neurons) of ‘feedforward’ network.

A layer of ‘input’ unit is connected to a layer of ‘hidden’ unit, which is connected to

a layer of ‘output’ unit, as shown in Figure 7.2. The activity of the input units repre-

sents the raw information that is fed into the network. The activity of each hidden

unit is determined by the activities of the input unit and the weights on the connec-

tions between the input and hidden units. The behaviour of the output units depends
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on the activity of the hidden unit and the weights between the hidden and output

units [73].

Figure 7.2: Example of simple ‘FeedForward’ network [73].

There are five general steps in the training process:

1. Assembling training data

a. Already gathered in Chapter 6, Table 6.7.

b. Data pre-processing, such as data normalisation in between-1 to 1.

2. Creating network object

a. Designing output target.

b. Designing and Initialising neural network.

3. Training network

a. Also called batch training.

b. Data splitting for training, such as 80%.

4. Simulating network

a. Simulating output of trained network.
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5. Validating and testing

a. To compare results of the computed output of the network with the

20% new data or which have never been seen or used in training.

b. Purpose of validating is to avoids data over-fitting problems.

c. Purpose of testing is to simulate trained network.

After understanding the training process of the neural network, the transfer functions

used in the hidden layer and output layer are also of paramount importance as they

are widely used in multilayer network. The transfer function of the backpropagation

has log-sigmoid (logsig), tan-sigmoid (tansig) and linear transfer function (pureline)

[55]. The function logsig generates outputs between 0 and 1 as the neuron’s net in-

put goes from negative to positive infinity (Figure 7.3). Alternatively, multilayer

networks can use the function tansig, generating output between -1 and 1, as shown

in Figure 7.4. Occasionally, the linear transfer function purelin is used in backpropa-

gation networks, generating output between negative infinity value to positive infin-

ity value (Figure 7.5).

Figure 7.3: Log-sigmoid (logsig) transfer function (where n is input to transfer function and
a is output data) [55].

MATLAB notation a = logsig(n)

Mathematical expression
ne

a



1

1
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Figure 7.4: Tan-sigmoid (tansig) transfer function (where n is input to transfer function and
a is output data) [55].

Figure 7.5: Linear transfer function (purelin) (where n is input to transfer function and a is
output data) [55].

7.3 Data Assembling and Array Management

Before importing the number of samples to the neural network, data assembling and

array management are essential. For example, the array of the input data must have

some matrix form with the array of the output-target. The data in Table 6.7 will need

to be organised according to the nature or architectural structure of the neural net-

work program. The ANN requires the structure of the target to be set in the form of

output vector based on Boolean notation. The input data of the ANN and the target

are set depending on the data gathered and how they can be classified.

The data assembled for the training of the neural network were collected from one

subject making three, five, seven, and nine different types of wrist joint movements

from the left forearm muscles (see Chapter 6). The extracted features from these

MATLAB notation a = tansig(n)

Mathematical expression
n

n

e

e
a










1

1

MATLAB notation a = purelin(n)
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three, five, seven and nine different types of wrist joint movement became the target

vector or the main output vector formed as Equations 7.1, 7.2, 7.3 and 7.4, respec-

tively.

7.3.1 Three Patterns of Movement

Each target column consisted of 15 features from each set of data, which included

the mean and median frequencies from the power spectrum and the RMS values of

the wavelet coefficients at different scales of 8, 16, 32, 64 and 128. The structure of

the network input array corresponding to the network output/target array is shown in

Figure 7.6. The output target 3t in Equation 7.1 will iterate 360 times to represent

overall eighteen sets of samples, as two channels of sEMG sensors were used and

each pattern in each set of data had to do ten trials (18 sets of samples x two channel

of myoelectrodes x number of trials).



















100

010

001

3t (Equation 7.1)

where the first column is the target for the central point of wrist joint movement and

the second and third for the full extension and full flexion, respectively, of the wrist

joint. The wrist joint movement is illustrated in Figures 6.3 to 6.6.
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Figure 7.6: Array of input data corresponding to three output targets, t3, vector.

7.3.2 Five Patterns of Movement

The array arrangement for five targets, t5, vector is:

























10000

01000

00100

00010

00001

5t (Equation 7.2)
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where:

1st Column: Central point. Figures 6.3 & 6.4.

2nd Column: Full extension. Figures 6.3 & 6.5.

3rd Column: Full flexion. Figures 6.3 & 6.6.

4th Column: Fully up. Figures 6.3 & 6.7.

5th Column: Fully down. Figures 6.3 & 6.8.

Figures 6.4 to 6.8 illustrate these five patterns. Each target column consisted of 15

features from each data set, which included the mean and median frequencies from

the power spectrum and the RMS values of the wavelet coefficients at different

scales of 8, 16, 32, 64, and 128. The structure of the network input array correspond-

ing to the network output target array is shown in Figure 7.7. The output target 5t in

Equation 7.2 will iterate 360 times to represent overall eighteen sets of data, due to

use of two channels of sEMG sensors and each pattern in each set of data having to

do ten trials.
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Figure 7.7: Array of input data corresponding to five output target, t5 , vector.
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7.3.3 Seven Patterns of Movement

The seven targets vector t7 is:































1000000

0100000

0010000

0001000

0000100

0000010

0000001

7t (Equation 7.3)

where:

1st Column: Central point. Figures 6.3 & 6.4.
2nd Column: Full extension. Figures 6.3 & 6.5.

3rd Column: Full flexion. Figures 6.3 & 6.6.

4th Column: Fully up. Figures 6.3 & 6.7.

5th Column: Fully down. Figures 6.3 & 6.8.

6th Column: +450 fully up. Figures 6.3 & 6.9.

7th Column: +450 fully down. Figures 6.3 & 6.10.

Figures 6.4 to 6.10 illustrate these seven patterns. Each target column consists of 15

features from each data set, including the mean and median frequencies from the

power spectrum and the RMS values of the wavelet coefficients at different scales of

8, 16, 32, 64, and 128. The structure of the network input array corresponding to the

network output target array is shown in Figure 7.8. The output target 7t in Equation

7.3 will iterate 360 times to represent overall eighteen sets of data, due to use of two

channels of sEMG sensors and each pattern in each set of data having to do ten tri-

als.
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Figure 7.8: Array of input data corresponding to seven output target t7 vector.
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7.3.4 Nine Patterns of Movement

The nine targets t9 vector is:





































100000000

010000000

001000000

000100000

000010000
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000000100
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000000001

9t (Equation 7.4)

where:

1st Column: Central point. Figures 6.3 & 6.4.

2nd Column: Full extension. Figures 6.3 & 6.5.

3rd Column: Full flexion. Figures 6.3 & 6.6.

4th Column: Fully up. Figures 6.3 & 6.7.

5th Column: Fully down. Figures 6.3 & 68.

6th Column: +450 fully up. Figures 6.3 & 6.9.

7th Column: +450 fully down. Figures 6.3 & 6.10.

8th Column: -450 fully up. Figures 6.3 & 6.11.

9th Column: -450 fully down. Figures 6.3 & 6.12.

Figure 6.4 to 6.12 illustrate these nine patterns. Each target column consists of 15

features from each data set, including the mean and median frequencies from the

power spectrum and the RMS values of the wavelet coefficients at different scales of

8, 16, 32, 64 and 128. The structure of the network input array corresponding to the

network output target array is shown in Figure 7.9. The output target 9t in Equation

7.4 will iterate 360 times to represent overall eighteen sets of data, two channels of

sEMG sensors being used and each pattern in each set of data having to do ten trials.
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Figure 7.9: Array of input data corresponding to nine output target t9 vector.
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7.4 Methodology for Designing and Training Neural Network

After the input and target data assembling, a unique methodology for designing a

suitable neural network was created, based on understanding the fundamentals of

neural network.

The method for designing and using ANN is shown in Figure 7.10. It is includes five

general steps in the training process described in section 7.2.

Figure 7.10: Methodology for Designing ANN.

Target array(t), described in section 7.3.

Network Creation

1) Network Choose, e.g. newff, newelm, etc.

2) Number of Neurons in Hidden Layer Choose.

3) Number of Hidden Layer Choose.

4) Transfer Function in Hidden Layer and Output Layer Choose.

4) Training Function Choose.

5) Data division/splition.

Network Training

Import series of Features, shown in Table 6.7, to network.
These are network input samples (p).

Network Simulation

Accuracy of Simulated Network

Compute target output with simulated output.

Normalise input values to -1 to 1
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7.4.1 Network’s Inputs Samples and Target’s Array

The first and second stages of the methodology for designing an ANN were dis-

cussed in Section 7.3. For three patterns, each feature contains 1080 data from two

sEMG sensors; for five, each feature contains 1800 data from two sEMG sensors;

for seven, each feature contains 2520 data from two sEMG sensors; and for the nine

patterns, each feature contains 3240 data from two sEMG sensors. Figure 7-11

shows the schematic diagram of ANN inputs data.

Figure 7.11: Methodology for Designing ANN.
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7.4.2 Network Creation

In network creation, five factors need to be taken into consideration. The first factor

is choosing a suitable network, such as Feedforward Backpropagation (Matlab nota-

tion newff), Elman Backpropagation (newelm), Hopfield Network (newhop), etc.

Feedforward Backpropagation was chosen in this project due to its popularity.

The second and third factors are the number of hidden layers chosen and number of

hidden nodes used in each chosen hidden layer. Nodes (neurons) can exhibit com-

plex global behaviour determined by the connections between the processing ele-

ments and element parameters. In the central nervous system, nodes (neurons) con-

tain the most significant information processing elements [71].

These two factors cannot be derived from any mathematical or theoretical method

and thus are obtained only by trial and error. As mentioned above [71, 72], the nodes

of the hidden layer are very important; a network with too few hidden nodes would

be incapable of differentiating between complex patterns leading to only a linear es-

timate of the actual trend. In contrast, if the network has too many hidden nodes it

will follow the noise in the data due to over-parameterisation leading to poor gener-

alisation for untrained data. The most popular approach to finding the optimal num-

ber of hidden nodes is by trial and error. As a result, to find the suitable number of

nodes in our network, trial and error technique will use by a loop in the program-

ming, as shown in Appendix E.

According to [72, 74], one hidden layer is sufficient to solve a lot of problems, such

as function consisting of a finite collection of points. Function is continuous and is

defined on a compact domain. By using trial and error, all three layers, i.e. one input,

one hidden and one output layer, are already sufficient for our case.

The third factor is the transfer function on hidden and output layers chosen. Because

the input values of the network will be pre-possessed to normalise the inputs values

to in between -1 to 1, the transfer function of the hidden layer will use tan-sigmoid

(tansig). Apart from that, according to the value of outputs targets, the transfer func-

tion of the output layer must be set to log-sigmoid (logsig).
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The fourth factor is training function, which is used to train the network. Once the

network weights and biases are initialised, the network is ready for training. During

training, the weights and biases of the network are iterately adjusted to minimise the

network performance function, such as mean square error (mse). The mse is the av-

erage squared error between the network output y and the target output t. There are

several different training algorithms for feedforward networks. All of these algo-

rithms use the gradient of the performance function to determine the way to adjust

the weights to minimise performance [55]. The gradient is determined using a tech-

nique called backpropagation, which involves performing computations backwards

through the network. A proper training function choice is dependent on their training

parameters, such as learning rate, number of epochs, mse goal, training time, etc.

The fifth factor of the network creation is the division of the input data for training,

validating and testing. In our case, 80% of the input samples are separated for train-

ing, 10% for validation, and the last 10% for testing. Table 7.1 shows the number of

samples for training, validating and testing.

Table 7.1: Samples for training, validating and testing in four different groups of patterns.

Patterns Total no. of

samples

No. of samples

for training

No. of samples

for validating

No. of samples

for testing

Three 1080 864 108 108

Five 1800 1440 180 180

Seven 2520 2016 252 252

Nine 3240 2592 324 324

7.4.3 Network Simulation and Accuracy of Simulated Network

The trained neural network can now be tested with the testing samples partitioned

from the main dataset. The testing data are not used in training in any way and hence

provide a dataset on which to test the network. This will give us a sense of how well

the network will do when tested with data which are untrained.

After network training, 10% of the testing data, which are untrained, were used to

simulate the trained network. After simulation, the target output, which is corre-
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sponds to the 10% untrained testing data to find the accuracy of the simulated output

respond. The matlab notation for simulation is out=sim(net, tstS.P). Because the

log-sigmoid transfer function was used in the output layer, the value of out is in be-

tween 0 to 1.

To determine the accuracy of the simulated output, [y_out, i_out] = max(out) in

matlab notation was used to find the maximum simulated value and return the indi-

ces in vector i_out (see Appendix E). In fact, the vector i_out can be classed into the

vector ‘position’ of the maximum value. The output value of simulated, out, has 108

columns and 3 rows of values during the classification of the three patterns; 180 and

5 during the classification of the five; 252 and seven during the classification of the

seven; and 324 and 9 row of values during the classification of the nine patterns.

Besides, we also need to evaluate the vector ‘position’ for the target vector of the

testing data by using [y_t, i_t] = max(tstS.T). The value of the target vector contains

just the value of either 1 or 0. Hence, y_t only has a value of 1, and the i_t is the vec-

tor ‘position’ of the y_t.

If the value of i_out and i_t is the same, then it is stored as ONE. If it is not, then it is

stored ZERO. A simple example for counting the percentage correction value for the

three target patterns is illustrated in Figure 7.12.
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Figure 7.12: Example for counting percentage correction value for three patterns.

Column

1

Column

2

Column

3

…. Column

118

Column

119

Column

120

0.2606 0.1980 0.0434 …. 0.1967 0.0805 0.0129

0.2946 0.2323 0.4140 …. 0.2313 0.3142 0.6625

0.2177 0.4718 0.5821 …. 0.4667 0.5792 0.4436

Row Position of the Maximum simulated output value out :

Column

1

Column

2

Column

3

…. Column

118

Column

119

Column

120

2 3 3 …. 3 3 2

Column

1

Column

2

Column

3

…. Column

118

Column

119

Column

120

0 0 0 …. 0 0 0

1 1 1 …. 1 0 0

0 0 0 …. 0 1 1

Row Position of the Maximum target value t3:

Column

1

Column

2

Column

3

…. Column

118

Column

119

Column

120

2 2 2 …. 2 3 3

Compare between I_out and I_t. If I_out - I_t =0, then store in value ONE. If

I_out - I_t  0, then store in value ZERO:

Column

1

Column

2

Column

3

…. Column

118

Column

119

Column

120

ONE ZERO ZERO …. ZERO ONE ZERO

Percentage Correction for Pattern Classification (%) =

100
''

x
ColumnrofTestingTotalNumbe

ONElueNumberofVa

Simulated

Output

value, out:

I_out:

Target

value, t3,

corre-

sponding

to out:

I_t:



Page | 155

7.5 Results and Analysis of Pattern Classification

This section will discuss the total number of patterns which can be recognised by

using neural network based on just two myoelectrodes. Table 7.2 shows the parame-

ters which can perform the highest correct percentage of pattern recognition in four

different groups, such as three, five, seven and nine patterns.

Table 7.2: Parameters/factors in three, five, seven and nine patterns.

The recognition results in Table 7.3 show the number of correct recognitions. The 1st

set of samples contains 60 samples for three patterns, 100 for five, 140 for seven and

180 for nine. The 2nd set of samples contains the current and previous groups of

samples, hence, the 2nd set of samples, contains 120 samples for three patterns, 200

samples for five patterns, 280 patterns for seven patterns, and 360 samples for nine

patterns. The 3rd set of samples contains the current sample and the 2nd set of sample,

the 4th set of sample contain the current sample and the 3rd set of samples, and so on.

It means that the final total number of samples, which is shown in Table 7.1 are the

samples in 17th set.

From the results shown in Table 7.3, the average correct recognition rate is above

95% for three patterns and above 85% for five. However, the correct recognition

rates less than 80% are 70% for seven and 60% for nine patterns.

Based on the literature review and application complexities, recognition rates above

70% (usually in the range of 70-90) will be acceptable. The desirable correct recog-
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nition rate is to be as high as possible to minimise the errors involved. For example,

80% correct recognition rate means that there is a possible two-trial error in each ten

trials. Hence, to set a threshold it was considered that the correct recognition rate of

80% or higher is acceptable for the current application. However, the rate between

70% to 79% could be considered as good, and below 70% as poor.

Table 7.3: Correct pattern recognition percentage in four different groups of patterns by
different sets of samples.

Set No.
3 Patterns

(%)
5 Patterns

(%)
7 Patterns

(%)
9 Patterns

(%)

1 100.00 80.00 71.43 50.00

2 100.00 90.00 60.71 55.56

3 100.00 83.33 66.67 57.41

4 100.00 82.50 67.86 58.33

5 100.00 90.00 61.43 57.78

6 94.44 90.00 67.86 58.33

7 97.62 88.57 71.43 58.73

8 100.00 90.00 73.21 59.03

9 98.15 88.89 71.43 64.20

10 96.67 92.00 72.14 65.00

11 96.97 89.09 72.73 63.13

12 98.61 90.83 74.40 63.43

13 96.15 89.23 73.63 62.82

14 98.81 93.57 75.51 62.70

15 97.78 90.00 76.19 64.07

16 95.83 90.00 72.77 63.89

17 95.10 88.82 73.95 64.05

18 97.22 87.22 72.22 62.65

Average 97.96 88.56 70.86 60.62

The lines in Figure 7.13 are not straight due to different timing of the collection of

the 18 sets of data. For example, the 2nd times data collected (include in 2nd set of

data) and the 1st times data colleted were taken on different days, and the 3rd times

data collected (include in 3rd set of data) and 4th times data collected (include in 4th

set of data) were taken on the same day but different time. Owing to the difficulty in

placing the same myoelectrodes at the same precise desired position throughout the

whole process, variation in the location and variation in the strength of muscle, pos-

sibly caused by overuse, leads to variation in the results.
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The seven patterns line (yellow) shows that the rate of correct recognition increased

from set 1 to set 15 of the samples, due to the increasing number of samples for

training. However, it also cannot prove that increasing the number of training sam-

ples will increase the rate of pattern recognition, such as for sets 15 to 18. The same

problem occurred with the nine patterns (cyan colour line) as well.
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Figure 7.13: Correct pattern recognition rate from Table 7.3.

Patterns F, G, H and I shown in Figures 6.9 to 6.12 are very hard to control in pre-

cise 450 of supination-pronation rotation and sometimes because their signals are

similar to the signals of Patterns D and E (Figures 6.7 and 6.8). All these problems

can also cause the seven and nine patterns not to have a high rate of correct recogni-

tion. These types of problems also occurred in [75].

7.6 Summary

The objective of this chapter was to execute the last stage of the sEMG’s signal pat-

tern classification by using ANN in order to discuss the total number of patterns,

which can be recognised by using just two myoelectrodes.

The fundamentals of the Artificial Neural Networks were presented in order to dis-

cuss and understand the factors/parameters used, such as number of hidden layers,

number of nodes, activation functions, learning algorithm, etc.. Based on this, the

methodology for designing the required neural network was created and presented.

The management of the arrays of the input samples and the output-targets is of cru-

cial importance. The total output-target and input sample arrays of the four groups of

patterns are presented.
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The first group of wrist joint movement patterns is classified into three: the wrist

joint at central point, fully extended and fully flexed. The correspondence between

the wrist joint movements and the fingers’ movements are also presented in this

chapter.

The second group of patterns is classified into five wrist joint movements, which are

wrist joint at central point, fully extended, fully flexed, fully up and fully down. The

correspondence between the wrist joint movements and the fingers’ movements are

discussed.

The third group of patterns to classify the seven different types of wrist joint move-

ments, which are wrist joint at central point, fully extended, fully flexed, fully up,

fully down, fully +450 up and fully +450 down. The correspondence between the

wrist joint movement and the fingers movements are presented.

The last group of patterns is classified into nine different types of wrist joint move-

ment. The correspondence between the wrist joint movements and the fingers’

movements are covered.

The last section of this chapter discusses the recognition results for the above four

groups of pattern. Only the three and five patterns’ groups achieved up to 85% accu-

racy. The seven and nine patterns’ groups achieved on average just 70% and 60%

accuracy rate, respectively. This could be improved by using more complex ANN.

The factors affecting the rate of correct recognition in seven and nine patterns’

groups are the sitting of the myoelectrodes, muscle fatigue, the 450 wrist joint turn

and the problems of similar signal.
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CHAPTER 8

Summary and Conclusions

8.1 Assessment of Research Objectives

In chapter one a set of five research objectives were defined. This section evaluates

the extent to which the objectives were achieved.

1. Prosthetic Finger Design

This objective was addressed in Chapter 3. A preliminary prosthetic adult middle

finger was designed and developed and rapid prototyped to allow the hybrid ac-

tuation mechanism, comprising DC and SMA actuators, to increase the number of

active DOF to provide the functionality of a real hand in order to mimic move-

ments such as coarse and fine grasping. To avoid complexity in hand design and

control, a prosthetic finger design was proposed and rigorously studied. It was

postulated that the hand design and control would be similar to that of a single

prosthetic finger. The dimensions of the finger design were based on the author’s

middle finger and it was custom-made because of large variations in the size of

human hands and fingers.

2. Hybrid Actuation System Design

The actuation mechanism used was a hybrid system consisting of a DC and a

SMA actuator. This hybrid actuation system would not only allow increasing the

DOF of the prosthetic finger but also allow the prosthetic finger to have sufficient

grasping force of an object. All of this was presented in Chapter 4. However, the

adult middle finger PIP joint needed to have up to 0.28Nm torque to produce up

to 32N force in the fingertip, which required it to have up to ten layers with one

loop/route of SMA wire actuator and it was extremely difficult to find a small di-

mension material and non-conductivit mechanism strong enough (especially the

multi-layer pulley) to hold the force of the SMA wires.
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3. Hybrid Actuation Control System Design

A control system is a device to manage, command, direct or regulate the behav-

iour of other devices or systems. The system is designed to control the hybrid ac-

tuation mechanism in order to position the finger, especially fingertip, correctly. A

PID algorithm was used to control the movement of the DC actuator to ‘bring’ the

MCP joint to the correct position. A simple open loop with the value of the input

voltage and the output linear displacement change of the SMA actuator was used

to control movement of the PIP joint. This objective was addressed in Chapter 5.

4. Control Input Signal

This objective was covered in Chapter 6. The electrical activity generated by con-

tracting muscle in the forearm was to be used as a control input signal for the

prosthetic fingers. The electrical activity of the muscle is called a myoelectric sig-

nal and is monitored using surface Electromyography (sEMG) sensors (myoelec-

trodes). Only two myoelectrodes were to be used to facilitate the amputees’ or us-

ers’ training and end-use. These two myoelectrodes sensors were placed on the

skin of the left forearm muscles, which are extensor carpi radialis longus and

flexor carpi ulnaris. These two muscles are the thickest muscles of the human

forearm.

5. Control Input Signal Processing

The raw surface EMG (sEMG) signal contains valuable information. However,

this information is useful only if it can be quantified by a signal processing me-

thod to achieve the accurate and actual sEMG signal to be used for control.

The processing of sEMG signals can be divided into a three-stage process. The

first step is data acquisition, including amplification, analogue to digital conver-

sion and signal conditioning. One subject with healthy left forearm muscle took

part in this experiment and eighteen sets of data were collected according to the

nine different types of wrist joint movement. The purpose was to investigate the

number of patterns that can be recognised, based on use of only two myoelec-

trodes.



Page | 161

Secondly, for features extraction of the sEMG signal, a technique called Continu-

ous Wavelet Transform (CWT) with its five different scales was used, the five

different scales number were 8, 16, 32, 64 and 128.

Thirdly, a features selection stage is important for Artificial Neural Network

(ANN) pattern classification. The features selected were RMS values, mean and

median frequencies of the power spectrum in scales number 8, 16, 32, 64 and 128.

6. Control Input Signal Pattern Recognition

The control input signal pattern recognition was considered using ANN pattern

classification technique to train and test the varying patterns of human finger

movement (thumb not considered), and this was addressed in Chapter 7. From the

experimental results, the three and five patterns’ groups achieved up to 85% accu-

racy. The seven and nine patterns’ groups achieved on average just 70% and 60%

accuracy rate, respectively using the simple ANN configuration.

8.2 Conclusions

The research work reported in this thesis proposes the design and development of an

intelligent prosthetic hand using novel actuation and control.

The two areas to which the research has contributed in the field of prosthetic hands

are:

1. A novel hybrid actuation system where both DC motors and SMAs could be used

to provide a prosthetic hand with more degrees of freedom and dexterity to get

closer in functionality to a natural hand. This feature could particularly be more

attractive for small prosthetic hands where there is limited space available for the

actuators.

2. The second aspect is a research on myoelectric signals to be used for control. It is

proposed in this research that two myoelectrodes to be used but the signal proc-

essing and ANN to be further explored to improve the number of features that

could be successfully extracted from the two myoelectrodes and used in control.
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The results have shown promising outcomes for controlling up to nine independ-

ent movements.

For the proof of concept, a system with a middle finger prototype was considered.

Testing through simulation and physical models revealed a number of limitations.

The prosthetic finger had 3 DOF in contrast to 4 DOF of the human finger, since the

movement of abduction-adduction in the MCP joint was not necessary for the mid-

dle finger to accomplish grasping functionality.

In order to verify the first novel actuation approach, which aimed to increase the

number of DOF, a hybrid actuation system consisting of DC and SMA actuators was

used and applied into the middle finger prototype. The DC actuator was placed in

the palm associated with a suitable worm gear to control the flexion-extension

movement of the metacarpophalangeal (MCP) joint. The SMA actuator was also

placed in the palm but at a different level from that of the DC actuator and was at-

tached to tendon cable in order to control the PIP joint and DIP joint flexion move-

ment. A spring is connected to the bottom side of the MP to control extension

movement. The movement of the DIP joint is coupled with the PIP joint through a

pulley.

The control input signal used the electrical activity of the muscle i.e. the myoelectric

signal and was monitored using surface Electromyography (sEMG) sensors

(myoelectrodes). Only two myoelectrodes were used in order to facilitate to enhance

the user-friendliness of the device.

8.3 Future Works

Future work will primarily concern further testing and development of the research.

From the conclusions a number of areas have been identified:

1. Integrating and modelling of the developed system

Since the control of the hybrid actuation was analysed in a single individual in

Chapter 5, it was not correlated to the sEMG pattern recognition. Hence, in future

work, integration and modelling of the hybrid actuation and sEMG pattern recog-
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nition are needed. Besides, in order to connect the hybrid actuation in one power

supply, voltage regulators are needed to split the supply voltage into two different

voltages for the DC and SMA actuators.

2. SMA actuator design and control

Preliminary experimental results in Chapter 4 are based on single and double

layer SMA wire of the actuator. That is because suitable material and small non-

conductive mechanisms, such as brass or multi-layers pulley, could not be found

to be readily available. Furthermore, since there was no position sensor for the

PIP joint, an open-loop control was used. Therefore, in future work, finding a

suitable position sensor connected on the PIP joint is needed for close-loop con-

trol.

3. Prosthetic finger design

Reconstruction of the finger design is needed to allow the DIP joint to be in fact

passively connected to the PIP joint with pulleys without any other external

mechanism. Besides, the new finger design must allow positioning of the tendon

cable and a new worm gear and position sensor on the PIP joint.

4. Force sensor

A force sensor connecting on the fingertip is needed to define accurately the

grasping force based on the hybrid actuation mechanism.

5. Self-organising map

A self-organising map (SOM) is needed; the purpose of which is to define the

quality of the features extracted from the myoelectric signal. The meaning of

‘quality’ is defined as whether the features extracted are useful/meaningful,

whether they overlap and whether they have good clustering. This can probably

improve the pattern recognition of the nine patterns.
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APPENDIX A
DC Actuator System Identification Modelling and PID Control Design

Figure A.1: Block diagram of modelling-system identification for DC actuator
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Figure A.2: Block diagram of PID control design for DC actuator
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Figure A.3: Front panel of PID control design for DC actuator
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APPENDIX B
Deployment Programming of DC Actuator Control System
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Figure B.1: Programming of DC actuator control system deployment
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Figure B.2: PID Programming for DC actuator (Initialise the error and integrator)
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Figure B.3: PID Programming for DC (evaluate the value of dt)
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Figure B.4: PID Programming for DC (evaluate the value of error e)
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Figure B.5: PID Programming for DC (evaluate the value of proportional gain Kp)
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Figure B.6: PID Programming for DC (evaluate the value of derivative gain Kd)
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Figure B.7: PID Programming for DC (evaluate the value of integration gain Ki and PID output)
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APPENDIX C
LabView Environment for sEMG Data Acquisition

in Time Domain

Figure C.1: Front Panel

Figure C.2: Block Diagram
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APPENDIX D
MatLab Programming for Features Extraction

This programming just show Pattern I, which is -45 supination turn down.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%first part of file name (Type of movement, should be got 9 types)
str11='D:\My Documents\MATLAB\Beng\Time_Domain18\Beng-45down';
%increment number of file name (The maximum value is 10 as 10 times per one movement)
str12 ='1';
str13 ='.xls'; %extension of file name

;%file name to save to
savename ='D:\My Documents\MATLAB\Beng\Features\10Trial18\S1-45down'
fileS1 = strcat(str11,str12,str13);%combining 3 parts of file name to a string
[ndata1, headertext,raw] = xlsread(fileS1);
t1=ndata1(:,1); %Time
s1=ndata1(:,2); %Data get on Sensor 1

%Construct a bandpass filter of a cut off frequency 20Hz-450Hz
%Sampling frequency is 1024Hz, and use the 5th order butterworth filter.
[b,a]=butter(5, [20 450]/1024);
emgfl=filter(b,a,s1);

%%%%% Continuous Wavelet Transform Scalogram (using db5,No of Scales 1-128) %%%%%%

y1=cwt(emgfl,8,'db5');%Continuous Wavelet Transform using db5 in scales 8
y2=cwt(emgfl,16,'db5');%Continuous Wavelet Transform using db5 in scales 16
y3=cwt(emgfl,32,'db5');%Continuous Wavelet Transform using db5 in scales 32
y4=cwt(emgfl,64,'db5');%Continuous Wavelet Transform using db5 in scales 64
y5=cwt(emgfl,128,'db5');%Continuous Wavelet Transform using db5 in scales 128

%%%%%%%%%%%%%%%% Root Mean Square (RMS) %%%%%%%%%%%%%%%%%%%

RMS1=sqrt(sum(y1.*y1)/length(y1)); %Root Mean Square Value in scales 8
s1=['RMS at Scale=', num2str(RMS1)];
RMS2=sqrt(sum(y2.*y2)/length(y2)); %Root Mean Square Value in scales 16
s2=['RMS at Scale=', num2str(RMS2)];
RMS3=sqrt(sum(y3.*y3)/length(y3)); %Root Mean Square Value in scales 32
s3=['RMS at Scale=', num2str(RMS3)];
RMS4=sqrt(sum(y4.*y4)/length(y4)); %Root Mean Square Value in scales 64
s4=['RMS at Scale=', num2str(RMS4)];
RMS5=sqrt(sum(y5.*y5)/length(y5)); %Root Mean Square Value in scales 128
s5=['RMS at Scale=', num2str(RMS5)];

a=1024;%Sampling Rate

%%%%%%%%%%%%%% Mean and Median Frequency %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% Scales 8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

FS1 = fft(y1,a);
PS1 = FS1.*conj(FS1)/a; %Power Spectrum
f1 = a*(0:(a/2))/a; %Frequency
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m1=PS1(1:((a/2)+1));

m1Sq=m1.*m1;
m1Sum=sum(m1Sq);
topsum=0;
for i=1:((a/2)+1)

top(i)=f1(i)*m1Sq(i);
end
for k=1:513

topsum=top(k)+topsum;
end
mn1=topsum/m1Sum; %Mean Frequency
r=0.5*sum(m1);
for n=1:((a/2)+1)

if sum(m1(1:n))>=r
i=n;
break

end
end
med1=f1(i); %Median Frequency

%%%%%%%%%%%%%%%%%%% Scales 16 %%%%%%%%%%%%%%%%%%%%%%%

FS2 = fft(y2,a);
PS2 = FS2.*conj(FS2)/a; %Power Spectrum
f2 = a*(0:(a/2))/a; %Frequency
m2=PS2(1:((a/2)+1));

m2Sq=m2.*m2;
m2Sum=sum(m2Sq);
topsum=0;
for i=1:((a/2)+1)

top(i)=f2(i)*m2Sq(i);
end
for k=1:513

topsum=top(k)+topsum;
end
mn2=topsum/m2Sum; %Mean Frequency
r=0.5*sum(m2);
for n=1:((a/2)+1)

if sum(m2(1:n))>=r
i=n;
break

end
end
med2=f2(i); %Median Frequency

%%%%%%%%%%%%%%%%%%% Scales 32 %%%%%%%%%%%%%%%%%%%%%%%

FS3 = fft(y3,a);
PS3 = FS3.*conj(FS3)/a; %Power Spectrum
f3 = a*(0:(a/2))/a; %Frequency
m3=PS3(1:((a/2)+1));

m3Sq=m3.*m3;
m3Sum=sum(m3Sq);
topsum=0;
for i=1:((a/2)+1)

top(i)=f3(i)*m3Sq(i);
end
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for k=1:513
topsum=top(k)+topsum;

end
mn3=topsum/m3Sum; %Mean Frequency
r=0.5*sum(m3);
for n=1:((a/2)+1)

if sum(m3(1:n))>=r
i=n;
break

end
end
med3=f3(i); %Median Frequency

%%%%%%%%%%%%%%%%%%% Scales 64 %%%%%%%%%%%%%%%%%%%%%%%

FS4 = fft(y4,a);
PS4 = FS4.*conj(FS4)/a; %Power Spectrum
f4 = a*(0:(a/2))/a; %Frequency
m4=PS4(1:((a/2)+1));

m4Sq=m4.*m4;
m4Sum=sum(m4Sq);
topsum=0;
for i=1:((a/2)+1)

top(i)=f4(i)*m4Sq(i);
end
for k=1:513

topsum=top(k)+topsum;
end
mn4=topsum/m4Sum; %Mean Frequency
r=0.5*sum(m4);
for n=1:((a/2)+1)

if sum(m4(1:n))>=r
i=n;
break

end
end
med4=f4(i); %Median Frequency

%%%%%%%%%%%%%%%%%%% Scales 128 %%%%%%%%%%%%%%%%%%%%%%%

FS5 = fft(y5,a);
PS5 = FS5.*conj(FS5)/a; %Power Spectrum
f5 = a*(0:(a/2))/a; %Frequency
m5=PS5(1:((a/2)+1));
m5Sq=m5.*m5;
m5Sum=sum(m5Sq);
topsum=0;
for i=1:((a/2)+1)

top(i)=f5(i)*m5Sq(i);
end
for k=1:513

topsum=top(k)+topsum;
end
mn5=topsum/m5Sum; %Mean Frequency
r=0.5*sum(m5);
for n=1:((a/2)+1)

if sum(m5(1:n))>=r
i=n;
break
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end
end
med5=f5(i); %Median Frequency

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

b={med1,med2,med3,med4,med5,mn1,mn2,mn3,mn4,mn5,RMS1,RMS2,RMS3,RMS4,RMS5};
s=xlswrite(savename,b,'Signal Feature','A1');%The features store in A1 column of Excel

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

REPEAT THE WHOLE PROGRAMING FOR TEN TIMES for 10 trial of every

movement, hence, change the str12=’2…..10’

And change the s=xlswrite (savename, b, ‘Signal Feature’, ‘A2…..A10’).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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APPENDIX E
MatLab Programming for Neural Network Pattern

Recognition

This programming just show the three patterns, which are from patterns A to C, and

just three data sets are in used.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 80% Trainning
% 10% Validating
% 10% Testing
% Transfer Function 'tansig' for Hidden Layer, 'logsig' for output Layer
% 'trainlm' used for Backpropagation network training function

%%%%%%%%%%%%%%%%% Import data %%%%%%%%%%%%%%%%%%%%%%

p = fopen('D:\My Documents\MATLAB\Beng\CSV_File\3S12Input123.csv');
M = textscan(p,'%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%s','delimiter',',');
fclose(p);

features = [M{1} M{2} M{3} M{4} M{5} M{6} M{7} M{8} M{9} M{10} M{11} M{12} M{13}
M{14} M{15}]; % inputs to neural network

A = strncmpi(M{16}, 'A', 1);
B = strncmpi(M{16}, 'B', 1);
C = strncmpi(M{16}, 'C', 1);

position = double([A B C]);% targets for neural network

% The neural network object in the toolbox expects the samples
% along columns and its features along rows.
% Our dataset has its samples along rows and its features along
% columns.Hence the matrices have to be transposed.

features = features';
position = position';

% The input data, |features|, is normalized to the range -1 and +1.
% The target data, |position|, is not normalized since it already
% has only |1| or |0| values.

[features,ps] = mapminmax(features);

% The variable |ps| contains the information neccessary to
% normalize new data in the same way the inputs have been
% normalized and also to un-normalize the normalized data if necessary.

%%%%%%%%%%%%% Building the neural network classifier %%%%%%%%%%%%%%
% The next step is to create a neural network that will learn to
% identify the movement position of left forearm wrist.

k=1;

% Number of Hidden Node increasable from 1 to 70
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for i=1:1:70

% Since the neural network starts with random initial weights, the results of this demo will differ
% slightly every time it is run. The random seed is set to avoid this randomness.

rand('seed', 491218382)

% A one-hidden layer feed forward network is created with increasable hidden neurons in the
% hidden layer.

nout = size(position,1); %Searching for number of outputs

net=newff(minmax(features),[i 3],{'tansig' 'logsig'},'trainlm');
net.trainParam.show=10; %Each time run show 100 epochs in figure
net.trainParam.epochs=1000; %Maximum epochs show in figure
net.trainParam.goal=0.001; %train till the data hit the goal

% The dataset is now divided into training, validation and testing datasets. The training dataset is
% presented to the network for learning. Validation dataset is used to measure the training
% performance during training and stop training if necessary. The testing dataset is not used in any
% way during training and hence provides an independent measure of training performance.

[trS, cvS, tstS] = dividevec(features, position, 0.1, 0.1);

% |trS| represents the training samples, |cvS| represents the
% validation samples and |tstS| represents the testing samples.
% Now the network is ready to be trained. It is trained with the
% training,validation and testing samples

net = train(net, trS.P, trS.T, [], [], cvS, tstS);

%%%%%%%%%%%%%%%%%% Testing the classifier %%%%%%%%%%%%%%%%%%%
% The trained neural network can now be tested with the testing samples we partitioned from the
% main dataset using |dividevec|. The testing data is not used in training in any way and hence
% provides an "out-of-sample" dataset to test the network on. This will give us a sense of how well
% the network will do when tested with data from the real world.

out = sim(net, tstS.P); %Get response from trained network

% The network response can now be compared against the desired target response to build the
% classification matrix which will provides a comprehensive picture of a classifiers performance.

MeanSquareError(k)=mse(tstS.T-out); % Define the mean square error of testing samples

[y_out,I_out] = max(out);
[y_t,I_t] = max(tstS.T);

diff = [I_t - 3*I_out];

A_A = length(find(diff==-2));
A_B = length(find(diff==-1));
A_C = length(find(diff==0));
B_A = length(find(diff==-5));
B_B = length(find(diff==-4));
B_C = length(find(diff==-3));
C_A = length(find(diff==-8));
C_B = length(find(diff==-7));
C_C = length(find(diff==-6));

N = size(tstS.P,2);% Number of testing samples
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fprintf('Total testing samples: %d\n', N);

cm = [A_A A_B A_C; B_A B_B B_C; C_A C_B C_C] %classification matrix

% The classification matrix provides a comprehensive picture of the classification performance of
% the classifier. The ideal classification matrix is the one in which the sum of the diagonal is equal
% to the % number of samples. It can also be understood in terms of percentages. The following
% matrix provides the same information as above but in terms of percentages.

cm_p = (cm ./ N) .* 100; %classification matrix in percentages

correct(k)=100*(cm(1,1)+cm(2,2)+cm(3,3))/N;
icorect(k)=100*(cm(1,2)+cm(1,3)+cm(2,1)+cm(2,3)+cm(3,1)+cm(3,2)) / N;

fprintf('Number of Node: %f%%\n', i);
fprintf('Percentage Correct classification: %f%%\n', 100*(cm(1,1)+cm(2,2)+cm(3,3))/N);
fprintf('Percentage Incorrect classification: %f%%\n',
100*(cm(1,2)+cm(1,3)+cm(2,1)+cm(2,3)+cm(3,1)+cm(3,2))/N);

k=k+1;
end

correct=correct(:);
MeanSquareError=MeanSquareError(:); %define mean square error for testing in every hidden nodes
b=[correct MeanSquareError];
s=xlswrite('D:\My Documents \ MATLAB \ Beng \ Result \
3PatternsResultforBeng123.xls',b,'Sheet1','A1')

[Maxvalue Pos]=max(correct) %define maximum percentage in which hidden nodes

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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APPENDIX F
Neural Network Pattern Recognition for Different

Subjects

The results shown in this appendix is just for three patterns, which are patterns A to

C. The data are contain seven different subjects, and it is taken on the year 2006.

The subject 1 is author, and the rest (subjects 2 to 6) of six are author’s friend and

colleagues. Every subject contain 60 rows (2 sensors x 10 trial for each movement

position) and 15 column (features extracted).

The ‘1234567’ in the Table F.1 is meant the all seven subjects’ data are put together.

Table F.1: Correct pattern recognition rate in seven different subject for three patterns

(pattern A to C).

Subject No.
3 Patterns

(%)

1 100.00 at 17 number of hidden nodes

2 83.33 at 7 number of hidden nodes

3 83.33 at 18 number of hidden nodes

4 83.33 at 10 number of hidden nodes

5 83.33 at 7 number of hidden nodes

6 83.33 at 22 number of hidden nodes

7 83.33 at 47 number of hidden nodes

1234567 66.67 at 12 number of hidden nodes
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ABSTRACT

The purpose of a prosthetic hand/finger is to imitate the grasping capabilities of the human
hand/finger, with obvious improvements in the quality of life of amputees. This paper presents the
mechanical design of a 3-DOF prosthetic middle finger, which closely resembles in physical charac-
teristic and functionality that of a male adult. The actuation mechanism used is a hybrid system con-
sisting of a DC actuator and a Shape Memory Alloy (SMA) actuator. The DC actuator is placed in
the palm and it controls the flexion-extension movement of the Metacarpophalangeal (MCP) joint.
The SMA actuator is also placed in the palm but at a different level from that of the DC actuator, and
it is attached to tendon wires, which are similar to the natural tendons and muscles. The tendon wire
in turn, is attached to the upper side (grasping side) of the Middle Phalanx in order to control the
Proximal Interphalangeal (PIP) joint and Distal Interphalangeal (DIP) joint flexion movement. A
spring is connected to the bottom side of the Middle Phalanx to control extension movement. The
movement of the DIP joint is coupled with the PIP joint through a pulley. The static, and kinematic
analysis of the system, presented in this paper, shows that our design of the prosthetic finger closely
resembles the functionality of a human middle finger.

Keywords: Prosthetic Finger, Hybrid Actuation System, Shape Memory Alloy, Mechanical Design,

Forward Kinematics

1. Introduction

The main aim of an artificial limb is to re-establish the lost functionality of the amputated organic
limb. A prosthesis as a tool makes no pretence of trying to replace the lost limb physiologically
but it works as an aid to help provide some of the functions that were lost. The prosthesis is an
interchangeable device that is worn and used as needed. Much effort in the field of upper-
extremity prosthesis research is directed towards the creation of prostheses as true limb replace-
ments; however, in current practice we are mostly limited to prostheses as tools.

In the past, electric motors were the primary actuators used in prosthetic devices as they have a
high torques and are easy to control. However, their heavy weight, sizes, and shapes have been
restrictive and uncomfortable to the users [1, 2]. Typically electric motors are not small enough
and can only be placed remotely, like ahead of the wrist joint of the hand [2]. This positioning
increases the complexity of the mechanical designs, since all the tendons driving the fingers have
to pass through the wrist joint. Due to these constraints the design and development of most of
the current commercial prosthetic hands have failed to provide enough grasping functionality and
have few active degrees of freedom restricting their effectiveness [3]. Several robotic and an-
thropomorphic hands may have sufficient active degrees of freedoms, such as the Shadow Hand
with up to 20 DOF [4], allowing them to have dexterity comparable to that of the human hand,
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unfortunately though these type of hands cannot be used as prostheses due to their physical char-
acteristic (pneumatic actuator) that pose several serious limitations on human-hand interaction
[5].

Due to these limitations of the previous electric motors and of the pneumatic actuators, some re-
searchers have used Shape Memory Alloys (SMAs), or Electroactive Polymers (EAPs) to replace
the electric motor and the pneumatic actuator as they are operationally similar to the human mus-
cles [6]. Both of these are lightweight and direct-driven actuators, that can provide ways to in-
crease the functionality of artificial hands without adding mechanical complexity [6]. EAP mate-
rials have higher response speeds and lower densities when compared to SMAs [7]. However,
they have low actuation forces, mechanical energy density and lack of robustness compared to
the SMAs [7]. Besides, the big advantages of shape memory alloys are their incredible small size
and volume, their high force to weight ratio and their low cost [1, 8]. One drawback with SMAs
is that in prosthetic devices large lengths of SMAs are needed, something that limits their life cy-
cle [1].

The main goal of this paper is to report the design of a novel biomimetic middle finger for a male
adult, which is to be actuated using an electric DC motor and an SMA actuator.

2. Hand and Finger Anatomy

The human hand consists of a broad palm (metacarpal and Carpals) with total five digits attached
to the forearm by a wrist joint. These five digits are thumb and four fingers (index finger, middle
finger, ring finger and little finger). The thumb is located on one of the sides of the palm and
connected to the carpals bone. Each finger consist of three bones, which are the Proximal pha-
lanx, the Middle phalanx, and the Distal Phalanx, and three joints, which are the Metacarpopha-
langeal (MCP) Joint, the Proximal Interphalangeal (PIP) Joint and the Distal Interphalangeal
(DIP) Joint. The bones and the joints of the hand are illustrated in Figure 1.

The MCP joint have 2 DOF, these being abduction-adduction and flexion-extension. The PIP
and DIP joints have 1 DOF, that is flexion-extension. The abduction-adduction angles of MCP
joint is around 200, and flexion-extension is 900. The flexion-extension movement of the PIP and
DIP joints are 100~1100 and 80~900 respectively [3, 5, 6, 10].
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(a)

(b)

Figure 1: (a) Anatomy of Human Hand [10], (b) Bones and Joint with Human Hand.

3. Finger Design and its Rapid Prototyping

3.1 Finger Dimensions

The dimensions of the design in Figure 2 and Table 1 are based on the size of the main au-
thor’s middle finger and it is custom made due to the result of large variations in the sizes of
human hands and fingers.

Palm
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Figure 2: Prosthetic middle finger design.

Table 1: Dimensions of Finger Phalanges.

Lengths (mm) Widths (mm) Depthsmax (mm)

PP MP DP PP MP DP PP MP DP

58.59 36.03 23.93 17.00 15.00 13.00 15.35 9.43 6.04

The abduction-adduction movement of MCP joint is just 200, and does not contribute sig-
nificantly to its functionality. For this reason, it is neglected leaving the design of our finger
with 3 DOF, these being 1 DOF at the MCP joint, 1 DOF at the PIP joint, and 1 DOF at the
DIP joint.

Total three resolute joints are used connected in each joint or each DOF, as shown in Figure
3. Each phalanx consists of one head and one tail. The fixed axes (with a stopper) of rota-
tions were called the head. The head of palm is connected to the tail of the proximal phalanx,
for the MCP joint, which is corresponding to the movement of flexion-extension: 900; the
head of the proximal phalanx is connected to the tail of the middle phalanx, for the PIP joint,
which is corresponding to 1100 of flexion-extension; and the head of the middle phalanx is
connected to the tail of the distal phalanx, for the DIP joint, which corresponds to 800 of
flexion-extension.
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Figure 3: Kinematics architecture of Finger.

3.2 Material Selection for Rapid Prototyping

The finger, shown in Figure 2 was manufactured using a Vanguard HS HiQ SLS (Selective
Laser Sintering) rapid prototype machine. DuraForm GF plastic (Glass filled Nylon based on
Nylon 12) was used as it has a high enough tensile module (4068MPa), and it is light

(1.49g/
3cm ). Using this material and the relevant calculations (Equation 1), the object

length change ( L ) is 8.23 x 10-5 m (0.0823mm), which suggests that the material is strong
enough. The total mass without any mechanism is 53g.

LA

FL

L

L

A

F

Strain

Stress
E







0

0

0

0




------- (Equation 1)

Where: E = Young’s (Tensile) Module,

F = Force applied to the object,

0A = Original cross-section area through which the force applied,

L = Amount by which the length of the object change,

0L = The original length of the object

Nylon was preferred than aluminium because it has a lower friction coefficient, 0.15-0.25
and 1.05-1.34 respectively. An additional implication would be the use of bearings needed
on all aluminium based design, as it would have increased the overall complexity of the sys-
tem without any benefits.
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4. Hybrid Actuator Design for Finger

For a prosthetic finger to be effective , it should allow holding and grasping of objects, as these
two are important functions of a human hand. The joints and phalanx torques needed to maintain
grasp are presented in this section.

4.1 DC Actuator Design for MCP Joint

The movement of the flexion-extension in the MCP joint is controlled by a DC actuator be-
cause the proximal phalanx of the middle finger in one finger tasks can create a higher force
than the distal phalanx which is about 40N in proximal phalanx [9].

Maxon DC motor RE10 was used in our design. This motor is extremely light weight and
small in size, just around 20g (including gear head), 10mm diameter and 57mm total length
(including gear and encoder). It is placed in the palm to control the flexion-extension of
MCP joint, as this joint needs more force/power [9] than the rest.

GearRatioDCactuatorMCPjo  int ------- (Equation 2)

Where: GearRatio= External Gear Ratio,

DCactuator = Torque of DC actuator,

intMCPjo = Torque of MCP joint.

A proper gear to convert the rotation motion of the DC actuator to flexion-extension motion
of the finger and to increase the torque of the joint is needed. A higher gear ratio of worm
gear is used instead of a bevel gear. This is because the gear ratio is directly proportional to
the torque of the MCP joint, as illustrate by Equation 2. The maximum transmission torque
in the MCP joint is 4.26Nm by using a 45:1 worm gear.

The design shown in Figure 2 was computed based on using a worm gear. The ‘room’ for the
placement of the DC is located on the Metacarpal bone (palm) (see Figure 1).

4.2 SMAs Actuator Design for PIP and DIP Joint – Conceptual design

The SMAs actuator design is the most challenging part in order to produce the smallest size
possible so that to achieve large linear stroke or displacement for large angular motion. We
propose a mechanism associated with SMAs wires in order to create large linear displace-
ment through small change of SMAs wires.

An SMA actuator and a spring are used to control the flexion-extension of PIP joint. The
SMA actuator is constructed together with the miga motor. It can have a 10mm linear stroke
and 6N output force when 200  m diameter SMA wire is used. The dimension of the actua-

tor assembly is small enough (56mm x 17mm x 3mm) to be located in the palm. The output
force can be increasable by changing the location of the spring connected on the output lever
(Figure 4) and changing the size of SMA wires used. The length of the output lever is 30mm
(Figure 4). The flexion-extension of DIP joint is coupled to PIP joint. Hence, the proposed
finger has two actives DOFs, and one passive DOF. The abduction-adduction of this middle
finger is not considered, it is because compared to the human hand, the movement range is
very small and just 200 of middle finger. Hence, it is not important or not necessary for the
middle finger.

When the SMA wires heat up, they contract and pull the output lever to the opposite direc-
tion to that of the SMA wire contraction, due to the pivot used, as shown in Figure 4. This
achievement pulls the tendon wire which is connected on one side to the ‘Place to connect
tendon cable’ (Figure 4) and on the other side is connected to the middle phalange of finger
to allow the PIP joint to move in an angular motion.
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There are two reasons for the use of the spring attached on the SMA actuator (see Figure 4).
Firstly, it can reduce the recovery time in order the finger can be released faster, and sec-
ondly, it increases the output lever force in order to increase the grasping force. The output
lever force is based on where the spring is connected to the output lever, as shown in the
Figure 4.

Figure 4: SMA Actuator .

The recovery (resting) position of the SMA actuator’s output lever is shown in Figure 4.
When the SMA cable fully contracts, the output lever will move to the left and get aligned
with the edge of the PC Board of the SMA actuator (see Figure 4). The stroke of this motion
is around 10mm.

In static analysis, the torque at PIP and DIP joints are given by Equation 3 and 4 respec-
tively:

SpringgSpringOpporSMAactuatoPIPjo aFaF  sinint ------- (Equation 3)

Where: rSMAactuatoF = SMA actuator force.

a = Middle Phalange cross-sectional radius at tendon location

gSpringOppoF sin = Opposite Spring Force.

Springa = Middle Phalange cross-sectional radius at spring location.

intPIPjo = Torque of PIP joint.

DIPpulley

PIPpulley

PIPjoDIPjo
d

d
 intint  ------- (Equation 4)

Where: intPIPjo = Torque of PIP joint

PIPpulleyd = Diameter of PIP joint’s pulley

DIPpulleyd = Diameter of DIP joint’s pulley
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When the PIP joint moves, the DIP joint will also move, because the DIP joint is coupled to

the PIP joint through a set of 1.375 (
mm

mm

d

d

DIPpulley

PIPpulley

8

11
 ) ratio pulley. The main advantage

of this arrangement is the reduction of the number of actuators used. Moreover, the torque of
the DIP joint is higher. From Equations 3 and 4, the torque at the PIP joint is 0.022Nm, and
at the DIP joint is 0.03Nm. These two torques are adjustable depending on where the spring
connects to the output lever (see Figure 4) and on the different sizes of the SMA wires.

5. Finger Kinematics

The purpose of the finger kinematics analysis is to determine the relationship between the angu-
lar position of each joint. Our finger design was modelled as a robot hand fixed to the palm, as
shown in Figure 5.

Figure 5: Schematic of a robot hand lying in the X-Y plane based on a prosthetic finger.

Denavit-Hartenberg’s (D-H) is the most commonly used method to solve the forward kinematics
problem where the transformation of links connected in series are used to produce a single trans-
formation that shows the position or direction of the fingertip with respect to the palm or to the
reference base [6, 11]. The finger kinematics can be considered in 2D kinematics and lying in the
X-Y plane, as shown in Figure 5, because the abduction-adduction movement of the MCP joint
was neglected as previously explained.

The Denavit-Hartenberg (D-H) theorem calculates the position or direction of the fingertip and

consists of four variables, these being the joint angle i , the link/phalanx offset id , the

link/phalanx length il , and the link/phalanx twist i [11]. Because the three separate finger

joints are using resolute/hint joints and they are connected at the same level along the x-axis, the

offset, id , and the twist, i , are equal to zero. The finger link/phalanx coordinate parameters

are presented in Table 2.
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Table 2: Finger link/phalanx coordinate parameters.

Joint i
i i il id Joint Range

1 0
1 58.59 mm 0 0-900

2 0
2 36.03 mm 0 0-1100

3 0
3 23.93 mm 0 0-800

Since the values of the link/phalanx offset ( id ) and of the twist ( i ) are zero, the position of

the fingertip is given by:

321

321321211

321321211

0

)sin()sin(sin

)cos()cos(cos















FingerTip

FingerTip

FingerTip

FingerTip

Z

lllY

lllX

------- (Equations 5)

Where: il = length of the ith phalanx

i = Angle of the ith joint

1, 2, 3= represent MCP joint, PIP joint, and DIP joint respectively

The fingertip working envelope shown in Figure 5 is based on the Equations 5 and the values of

Table 2.
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(a)

(b)

Figure 5: (a) Fingertip working Envelope of MCP joint ( 1 ) in 450 interval with 3 finger links, (b)

Finger Tip working Envelope of MCP joint ( 1 ) in 10 interval.

Figure 5, illustrates that the position Y ranges from 118.55mm0  FingerTipYmm , while the

position X ranges from 118.55mm80.54  FingerTipXmm . Table 4 shows the corre-

sponding joint angles with respect to minimum and maximum of (X,Y). An important conclusion
is that the prosthetic fingertip working envelope has the same range of movement as the main au-
thor’s middle finger, which the finger design was based upon. Therefore, it can be claimed that it
provides a level of functionality close to that of an actual human middle finger.
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Table 3: Min. and Max. X, Y values corresponding to Min and Max joint angles.

FingerTipX
1 2 3 FingerTipY 1 2 3

minimum -54.8mm 900 650 470 0 0 0 0
maximum 118.55mm 0 0 0 118.55mm 900 0 0

6. Conclusions
This paper presented a design of a prosthetic middle finger based on a hybrid actuator with the
aim to resemble the kinematics architecture of a human middle finger. The hybrid actuator is a
combination of a DC actuator and of a shape memory alloy actuator. The prosthetic finger has 3
DOF in contrast to 4 DOF of the human finger, due to the fact that the movement of abduction-
adduction in the MCP joint is not necessary for the middle finger to accomplish grasping func-
tionality. The forward kinematics working envelope showed that this novel design can realise a
prosthetic middle finger capable of achieving the range of movement of a human one, and hence
closely resemble its functionality. Future work involves the implementation of a control unit for
object grasping and handling. The design of the control unit will be based on surface Electromy-
ography (sEMG) signal of the forearm muscles. Together with the measurements of the feedback
sensors, a close-loop control system will be implemented for accurate and effective operation of
the prosthetic finger.
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