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Abstract   

The current work addresses the possible impact of dietary and microbial fatty acids 

on the absorption of phenolics at the intestinal epithelium. The Caco-2 cell culture 

model of small intestinal enterocytes was optimised to mimic the chronic 

supplementation with physiological concentrations of fatty acid. Treatment with 

polyunsaturated fatty acids (PUFA) changed the fluidity of the brush border 

membrane, but this modification did not affect transepithelial transport of the test 

compounds caffeic acid, ferulic acid and epicatechin. PUFA supplementation did 

however increase paracellular diffusion of caffeic acid and epicatechin in apical to 

basolateral (a→b) transport direction. Epicatechin efflux was reduced by arachidonic 

acid and decosahexaenoic acid (DHA) supplementation, most likely by reducing 

either expression or activity of the ATP-binding cassette transporter family member 

C2. Transepithelial transport of ferulic acid in a→b direction was increased by PUFA 

supplementation, most likely through upregulation of an apical uptake transporter, 

whose identity could not be determined here. Supplementation of cells with the 

microbial metabolite butyric acid upregulated gene expression of monocarboxylate 

transporters 1 and 4, which resulted in increased ferulic acid uptake and 

metabolism. Metabolism of epicatechin was also affected by PUFA supplementation 

of cells. An unusual pattern of epicatechin glucuronidation by UDP-glucuronosyl 

transferase (UGT) 1A8 was observed in the intestinal cell line HT29-MTX. UGT 

activity was highly polarised within the cell, resulting in up to fifty times higher 

metabolite levels when the substrate reached the cell layer from what in vivo would 

be the serosal side, than from the side corresponding to the intestinal lumen. 

Consequent immunofluorescence staining revealed the presence of UGT1A8 in the 

basolateral plasma membrane. These in vitro results suggest a possible impact of 

dietary and microbial fatty acids on the absorption and metabolism of phenolic 

compounds. 
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Chapter 1: Introduction 

The current work focuses on the interaction of two types of food components: lipids 

and polyphenols. Accordingly, this chapter consists of two parts. In the first part, a 

very brief overview of the great variety of phenolic compounds is given and then the 

mechanisms of their intestinal absorption and metabolism are highlighted. After that, 

the phenolics which were investigated in the current work, are introduced in more 

detail. In the second part of this chapter, the absorption and metabolism of dietary 

lipids is detailed and routes of incorporation of dietary fatty acids into cellular 

structures are explained. 

1.1 Polyphenols 

1.1.1 Classification  

Polyphenols are a diverse group of compounds which are found in plants. In our diet 

they are therefore present in all plant derived foods, but their concentration will vary 

depending on the degree of processing the food has undergone and with the type 

and also with the part of the plant it was derived from (1). As the name suggests, 

polyphenols are characterised by the presence of at least one phenol group in their 

structure. The simplest representatives of this family of compounds are the 

hydroxycinnamic and hydroxybenzoic acids. They comprise one phenol ring, a 

carboxylic acid moiety and a different number of hydroxyl groups, connected to the 

aromatic ring. Most polyphenols belong to the class of flavonoids, which can be split 

into subgroups of flavones, isoflavones, flavanols, flavanones, anthocyanins, 

catechins and procyanidins (2). Figure 1.1 shows representatives of each category. 

Flavonoids are often conjugated to sugars and can also polymerise to form complex 

structures, as shown on a small scale for the procyanidin B2.  
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Figure 1.1; Examples structures of different polyphenol classes. 
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1.1.2 Transport and metabolism 

Absorption of polyphenols at the intestinal epithelium occurs via three different 

routes of uptake: paracellular diffusion, transcellular passive diffusion and 

transporter mediated uptake (figure 1.2).  

 

Figure 1.2; Transport routes of polyphenols across the intestinal epithelium. 

Molecules that cross the intestinal lining by paracellular diffusion do not enter the 

cells of the epithelium but move between them. Diffusion through this intercellular 

space is controlled by tight junctions. These are complexes made up of different 

protein families that connect cells of the epithelium and regulate the passage of 

solutes and ions. They have also been suggested to regulate the segregation of 

apical and basolateral membrane proteins (3). The tight junction complex is located 

at the very apical end of lateral plasma membranes. Enterocytes are the most 

abundant cell type in the epithelium, other types include goblet cells, paneth cells, 

tuft cells or microfold cells (4). With such a high number of different kinds of cells in 

the intestinal lining, it is important that tight junctions are not only formed between 

the same cell type, but that there is a continuous connection, as otherwise there 
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would be abundant opportunity for unregulated invasion of the underlying tissue by 

the intestinal microflora and also potentially detrimental xenobiotics (5). Along the 

intestine, paracellular permeability decreases from the duodenum towards the colon, 

probably reflecting the increase in microbial population along this axis (6). 

The tight junction complex is made up of different transmembrane proteins (the 

claudin family, occludin, junctional adhesion molecule (JAM)) and peripheral 

proteins (zonula occludens (ZO) proteins). Occludin has four transmembrane 

domains, two extracellular loops, one intracellular loop and one long, cytosolic 

C-terminal end. The extracellular loops, projecting into the paracellular space of 

neighbouring cells, bind to each other and hinder diffusion of larger molecules and 

particles. The C-terminus interacts with ZO proteins in the cytosol which in turn are 

linked to the actin cytoskeleton (3, 7). Though much smaller, claudins have a 

structure that is very similar to occludin. Whereas only a single form of occludin has 

been discovered, claudins are a larger protein family for which 24 members have 

been reported in humans. Just as described for occludin, their extracellular loops 

interact with each other in the intercellular space. Different members of the claudin 

family have been shown to have different functions in the tight junction complex. 

Claudin 1, claudin 3 and claudin 5 have been reported to help seal the tight junction 

barrier, wheras claudin 2, claudin 10b and claudin 15 are believed to form cation 

selective pores in the paracellular space. Claudin 10a and claudin 17 on the other 

hand, were shown to form anion selective pores. Unfortunately the last two family 

members are not well studied and there is no information on their expression in the 

intestine, which would be highly relevant to the work described here (8). Tight 

junctions between the cells of the intestinal epithelium have been reported to be 

smaller and more restrictive towards the tip of the villi than between crypt cells. The 

tight junction channel radius was shown to increase from ~ 6 to 60 Å in that 

direction (9) When Caco-2 monolayers were investigated regarding their pore 

diameter, it became apparent that there is a distinct size barrier to parracellular 
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diffusion. Molecules with a radius of over ~4 Å could easily diffuse across the cell 

layer but compounds above 4 Å exhibited much lower permeation rates, although 

diffusion of these larger compounds was not completely inhibited (10). These 

findings agree with the concept that there are two different diffusion pathways 

across tight junctions: a high capacity pore pathway and low capacity leak 

pathway (11). Members of the claudin family can also form heterodimers. On the 

cytoplasmic site, claudins are linked to the cytoskeleton via ZO proteins (3, 7). JAM 

have a single extracellular strand with two immunoglobulin (Ig) domains and a 

cytoplasmic tail that also links the to the actin skeleton via ZO proteins. They form 

homodimeres with JAM of neighbouring cells but have also been reported to interact 

with other types of proteins, for example integrins (12).  

Cells are not only connected by tight junctions but also by gap junctions and 

desmosomes. But these two types of connection do not primarily serve the purpose 

of sealing the intercellular space and preventing diffusion, but they facilitate 

communication between cells and provide a stable connection. Gap junctions 

consist of small channels made up from proteins of the connexin family, through 

which neighbouring cells can exchange ions and small molecules (13, 14). 

Desmosomes on the hand, provide a very strong connection between cells of a 

tissue, helping to resist mechanical stress. They are protein complexes made up of 

membrane spanning cadherins, that bind to cadherin strands of neighbouring cells, 

and of intracellular connections that link desmosomes to the cytoskeleton (15). In 

the lateral space between cells of the intestine, gap junctions and desmosomes are 

located more towards the basolateral membrane than tight junctions. Small phenolic 

compounds like gallic acid (16) or caffeic acid (17) are most likely to cross the 

intestinal epithelium by paracellular diffusion. 

Transepithelial transport of compounds across intestinal enterocytes, that are to 

large or polar to cross by paracellular route, can be facilitated either by uptake 

transporters located at the apical membrane or by efflux transporters at the 
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basolateral membrane. Many polyphenols are allocrites (substrates) of members of 

the SLC transporter family. Apical uptake in enterocytes is mostly facilitated by the 

transporters Organic cation transporter 3 (OCT3), Peptide transporter 1 (PepT1), 

Organic anion transporting peptide A and B (OATPA/B), Organic cation transporter, 

novel 1 and 2 (OCTN1/2), Human peptide transporter 1 (HPT1) and Apical sodium 

dependent bile acid transporter (ASBT). Basolateral efflux is mainly mediated by 

members of the ATP-binding cassette (ABC) transporter family (18, 19).  

But transporters are not only involved in uptake of phenolics from the intestinal 

lumen and excretion on the serosal side, but they can also limit the bioavailability of 

polyphenols through active excretion back into the intestinal lumen. Such apical 

efflux transporters are mostly members of the ABC family. Especially ABCB1, 

ABCC2 and ABCG2 have been shown to facilitate excretion of xenobiotics and their 

phase II metabolites. These transporters are highly expressed in enterocytes of the 

small intestine (20).  

Phase II metabolism of phenolics mainly comprises conjugation by sulfotransferases 

(SULT), catechol-O-methyltransferase (COMT) and UDP-glucuronosyltransferases 

(UGT).  

In vertebrates, the UGT protein is spanning the endoplasmic reticulum (ER) 

membrane with the active site facing the ER lumen (21). UGTs catalyse the transfer 

of glucuronic acid from the co-factor UDP-glucuronic acid (UDPGA) to a nucleophilic 

group of the substrate, increasing the compound’s polarity and thus enabling active 

transport and excretion (22). 

 



- 7 - 
 

 

Figure 1.3; Glucuronic acid conjugation of ferulic acid catalysed by 

UDP-glucuronosyltransferase (UGT). UDPGA = UDP-glucuronic acid, UDP = 

Uridine-diphosphate 

UGTs display broad substrate specificity ranging from drugs (23, 24) to 

environmental pollutants (25-27) and endogenous compounds (28-31). Many 

polyphenols are glucuronic acid conjugated (32-34). Glucuronidation affects the 

bioavailability and activity of polyphenols and with that, their potential health effect 

(32). In vertebrates four UGT families have been described: UGT1, UGT2, UGT3 

and UGT8. So far, no function could be observed for UGT8. Members of the UGT3 

family do not have UDPGA as their co-factor but instead catalyse the transfer of 

glucose-, xylose- or N-acetylglucosamine moieties. However, UGT3 activity only 

plays a minor role in phase II metabolism which is almost entirely facilitated by the 

UGT1A and UGT2B families (35). The highest UGT activity is found in liver and 

intestine. Ohno and Nakajin analysed samples from various tissues for relative 

mRNA abundance of different UGT isoforms. Overall, they found much higher levels 

of UGT2B than UGT1A forms, except for UGT1A9 which is highly expressed in 
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kidney. The main UGT2B isoforms in hepatic tissue are UGT2B4 and UGT2B15, the 

main UGT1A forms are UGT1A1 and UGT1A9. In the intestine they found UGT2B7, 

UGT2B17, UGT1A1 and UGT1A10 to be most abundant (36). 

SULTs catalyse the transfer of a sulfonyl-moiety from the co-factor 

3ˈ-phosphoadenosin-5ˈ-phosphosulfate (PAPS) to hydroxyl- or amine groups of a 

substrate. Reaction products are the sulfonated substrate and 

3ˈ-phosphoadenosine-5ˈ-phosphate (PAP) (figure 1.4). The strongest SULT activity 

is found in liver. There are two major SULT families, the cytosolic SULTS and the 

membrane bound SULTs. Membrane bound SULTs are mainly located at the trans-

Golgi site and are involved in posttranslational modification. Membrane bound 

SULTs have glycoproteins, lipids and peptides as substrates. Cytosolic SULTS are 

involved in inactivation and regulation of hormones and neurotransmitters, for 

example sterols and catecholamines, but they are also crucial enzymes of phase II 

metabolism. The major SULT forms expressed in the human small intestine are 

SULT1A3, SULT1A1 and SULT1B1. As with glucuronic acid conjugation, sulfonation 

increases the polarity and size of a compound and makes it thus a more likely 

allocrite of ABC efflux transporters in the intestine. (37-39) 
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Figure 1.4; Conjugation reaction catalysed by sulfotransferases (SULT) with the example of 

ferulic acid. PAPS = 3ˈ-phosphoadenosin-5ˈ-phosphosulfate, PAP = 

3ˈ-phosphoadenosine-5ˈ-phosphate 

COMT activity is highest in intestine, liver, kidney and brain. There are two forms, 

the cytosolic COMT (C-COMT) and membrane bound COMT (MB-COMT). The 

latter is highly expressed in brain tissue, but in all other organs C-COMT is the major 

form. COMT catalyses the formation of an ether bond between a hydroxyl group of 

the xenobiotic and a methyl group donated by the co-factor S-adenosyl methionine 

(figure 1.5) (40).    
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Figure 1.5; Methylation of epicatechin by Catechol-O-methyltransferase (COMT). SAM = 

S-adenosyl methionine, SAH = S-adenosyl-L-homocysteine 

 

1.1.3 Ferulic and caffeic acid 

Ferulic acid is most abundant in whole grain cereals, coffee, chocolate and berry 

fruits (41, 42). In whole grains, ferulic acid is mostly esterified to arabinose side 

chains of hemicellulose strands in the plant cell wall and is the most abundant 

phenolic from cereals (43), but only traces of ferulic acid are found in the endosperm 

(44). Since only this part is used for the production of white flour, foods made from 

this type of flour do not contain significant amounts of phenolic acids (45). In its 

bound form, ferulic acid cannot be absorbed in the small intestine, the fibre fraction 

first has to undergo enzymatic hydrolysis before the free acid can be absorbed at 

the intestinal mucosa. Cells of the mammalian gastrointestinal tract only have low 

cinnamoyl esterase activity (46), but several species of the colon microflora are able 
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to hydrolyse these ester bonds efficiently (47, 48) and the released phenolic acid is 

then absorbed in the large intestine. Most ferulic acid from cereals is present in the 

bound form, but there is a small fraction which is present as the free acid, and this 

can be readily absorbed in the small intestine (49). A similar distribution of free and 

esterified ferulic acid is also found in coffee. Here the major part of ferulic acid 

occurs in form of chlorogenic acid, in which ferulic acid is esterified to quinic acid, 

but there is also a small percentage of free ferulic acid present (50). Chlorogenic 

acids can also be hydrolysed by microbial esterases in the large intestine to release 

the free acid. Whether a compound is absorbed in the small or large intestine can be 

seen from their pharmacokinetic profile. Absorption in the small intestine occurs 

rapidly, the maximum plasma concentration is usually observed within the first two 

hours after ingestion, whereas phenolic acids released in the large intestine will only 

enter the bloodstream five to ten hours after food consumption (42). Here the matrix 

and the form of administration can play a role in the exact time profile, for example, 

ferulic acid from a morning coffee drunk on an empty stomach will reach the small 

and also the large intestine much faster than ferulic acid from wholemeal bread that 

is part of a large dinner. Absorption of ferulic acid from coffee occurs in two phases, 

the first maximum plasma concentration is reached within one hour due to the 

compound being taken up from the lumen of the stomach and small intestine. After 

that, the concentration in plasma decreases again, until about five hours after coffee 

consumption, when ferulic acid released in the colon results in a second rise plasma 

concentration (51).  

Another phenolic acid that is present in coffee but also fruits, salad and spices is 

caffeic acid (41, 42). Absorption of caffeic acid from coffee and apple cider has been 

shown to occur rapidly, the maximum plasma concentration was reached within two 

and one hour, respectively (51-53). In coffee, caffeic acid is also mainly present in 

form of its quinic acid ester.  
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1.1.4 Epicatechin  

The best source of (-)-epicatechin is chocolate, but it is also found in a range of 

fruits, green tea and broad beans (41). But even though with an average of 

70 mg/100 g dark chocolate is the food with the highest concentration of 

(-)-epicatechin, it might not contribute the highest amount to the diet if one considers 

portion sizes. 100 g of chocolate equals to an entire bar, which is probably not eaten 

on a regular basis. Green tea infusions on the other hand, might contain a lower 

concentration with about 8 mg/100 mL, but regular tea drinkers will consume much 

more than this every day (41). Even with black tea, which contains about half the 

amount of (-)-epicatechin compared to green tea, habitual consumption will most 

likely contribute more than the occasional chocolate snack (54). (-)-Epicatechin is 

one of four stereoisomers that naturally occur for this compound (see figure 1.1), but 

it is the most abundant one in tea and chocolate. Especially in green tea, 

(-)-epicatechin is also accompanied by epicatechin gallate (ECG), epigallocatechin 

(EGC) and epigallocatechin gallate (EGCG) (see figure 1.1). These other members 

of the catechin family also occur in other types of food, but their combination and 

high amount is characteristic for green tea which is why they are collectively called 

green tea catechins (GTC) together with the (-)-epicatechin stereoisomer 

(+)-catechin. Most human bioavailability studies of (-)-epicatechin have been 

conducted using either green tea or green tea extracts. In tea infusions EGCG is 

usually the most abundant GTC followed by EGC. (-)-Epicatechin and ECG are only 

present in lower amounts (55, 56). The different types of GTC vary in their 

bioavailability. (-)-Epicatechin is absorbed best and found in plasma and urine 

almost exclusively in form of its phase II metabolites whereas EGCG is absorbed 

least and mostly present in the free form (56, 57). Absorption of GTC occurs in the 

small intestine and is dose dependent. Maximum plasma concentrations are usually 

observed within two hours of ingestion. High total concentrations of (-)-epicatechin 

and its metabolites were reached in plasma when high doses were administered. 
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When plasma levels were investigated after consumption of green tea infusions of 

varying strength, tea containing 0.13 mmole (-)-epicatechin resulted in total plasma 

concentration of 0.13 μM and 0.38 mmole of (-)-epicatechin resulted in 0.22 μM of 

that compound in plasma (58). When green tea extracts, which contain much higher 

GTC levels than the tea infusions, were administered, total plasma concentrations of 

(-)-epicatechin increased correspondingly. With the extract, 11, 19 and 65 μM 

(-)-epicatechin were detected in plasma after consumption of 5, 13 and 26 mmole of 

the compound, respectively (56, 59). In comparison to that, the concentration of free 

(-)-epicatechin was only about 0.15 nM after consumption of 581 mg green GTC 

(60), whereas individual metabolites were present in over 100 fold higher 

concentrations (55). Using chocolate instead of green tea as an (-)-epicatechin 

source, similar dose relationships were observed with 28 and 56 mmole 

consumption,which gave rise to plasma concentrations of 35 and 68 μM respectively 

(61). These total concentrations of epicatechin only include metabolites that are 

formed from (-)-epicatechin absorbed in the small intestine. Only about 5 - 10 % of 

the administered (-)-epicatechin dose was found in urine (55, 57), suggesting that 

the major part of the compound reaches the colon. Here all GTC are digested by the 

colon microflora and absorbed in form of two valerolactone break-down products 

termed M4 and M6 (62). But since all tea catechins can be broken down to yield 

these two metabolites, it is not possible to determine the part each individual 

compound contributes to the overall amount when a combination of catechins was 

administered.   
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1.2 Lipids 

1.2.1 Intestinal absorption and metabolism 

Lipids are the most energy dense part of our diet. In the Western diet fat accounts 

for 30 - 40 % of the total energy intake (63-67). The major lipid components of food 

are triacylglycerols which provide 90 - 95% of energy from all dietary lipids (68). 

Other components are cholesterol, phospholipids, sterolesters and free fatty acids 

(FFA). Since the current work focuses on non-sterol lipids, only the absorption and 

metabolism of triacylglycerols and free fatty acids are reviewed.  

Digestion of lipids starts in the mouth. Lingual lipase, which hydrolyses 

triacylglycerols to two molecules FFA and one molecule monoacylglycerol, is 

secreted by salivary glands of the tongue. Lingual lipase secretion has been shown 

to be stimulated by chewing and the lipid composition of foods (69). Digestion of 

lipids continues in the stomach which secretes gastric lipase that differs from other 

members of this enzyme family by being stable and fully active at the very low pH 

prevalent in the stomach. It also does not require the cofactor colipase, as 

pancreatic lipase does (70). 
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Figure 1.6; Overview of the gastrointestinal tract anatomy. Adapted from (71) 

In the stomach, lipids are already emulsified by the stomach acid and when the 

chymus is emptied into the duodenum, these lipid droplets are then further 

dispersed and mixed with bile, which is produced by the liver and stored in the gall 

bladder from where it is released into the duodenum upon stimulation by gastric 

emptying. The main components of bile are bile acids, phospholipids and 

cholesterol, which help to disperse dietary lipids into small micelles and enhance the 

oil/water surface area at which water soluble lipases can catalyse the hydrolysis of 

triacylglycerols. Bile acids are reabsorbed along the small intestine via the sodium-

dependent bile acid transporter (72) and transported back to the liver where they are 

filtered out and secreted again with the bile (73, 74). Pancreatic lipase, which is the 

more active than its lingual and gastric family members, is also secreted into the 

duodenum, together with the cofactor colipase which prevents the enzyme from 

being inhibited by bile acids. The pancreas also secretes phospholipase and 
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carboxylester lipase which are able to hydrolyse phospholipids, lysophospholipids 

and sterol esters (68, 75).  

The main sites of lipid absorption are the duodenum and ileum. The concentration of 

FFA in enterocytes of the small intestine remains low as upon entering the cell, they 

are very rapidly bound by fatty acid binding protein (FABP). This mechanism 

ensures that the concentration gradient of FFA is maintained so that even low 

amounts of this energy dense nutrient can always freely diffuse into the cell. FFA 

absorption is dependent on chain length and saturation. Increasing chain length 

reduces absorption and increasing desaturation increases absorption. The medium 

chain fatty acids myristic and palmitic acid are almost entirely absorbed but the long 

chain fatty acid stearic acid much less and arachidic acid with an acyl chain length 

of 20 carbon atoms is only taken up by about 25 %. Whereas arachidonic acid, 

which is the same length as arachidic acid, but contains five double bonds, is almost 

completely absorbed again (76). FFA uptake has also been suggested to occur by 

transporters cluster of differentiation 36 (CD36) and fatty acid transport protein 

(FATP), but it was subsequently shown that these proteins do not influence the net 

absorption of lipids in the intestine but are more important in directing absorbed fatty 

acids to specific pathways of lipoprotein formation (68, 77). Caveolae mediated 

endocytosis has also been identified as a possible fatty acid uptake mechanism 

(78). 
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Figure 1.7; The glycerol-3-phosphate pathway of triacylglycerol synthesis. GPAT = 

glycerol-3-phoshate acyltransferase, AGPAT = acylglycerol-3-acyltransferase, DGAT = 

diacylglycerol acyltransferase, CoASH = Coenzyme A, G3P = glycerol-3-phosphate, LPA = 

lysophosphatidic acid, PA = phosphatidic acid, DAG = diacylglycerol, TAG = triacylglycerol 

All cell types have the ability to synthesise triacylglycerols via the 

glycerol-3-phosphate pathway and intestinal enterocytes are no exception. 

Triacylglycerol synthesis via this pathway is illustrated in figure 1.7. The first step in 

this series of reactions is the transfer of a fatty acid moiety, that has been activated 
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through conjugation to Coenzyme A (CoA) by acylCoA synthase (ACS), to 

glycerol-3-phosphate at the n-1 position, resulting in the formation of 

lysophosphatidic acid (75, 77). This reaction is catalysed by the enzyme 

glycerol-3-phoshate acyltransferase (GPAT). Four different forms of GPAT were 

identified, GPAT 1 and 2 reside in the outer mitochondrial membrane and GPAT 3 

and 4 reside in the ER membrane (79). Lysophosphatidic acid is then esterified with 

one further acylCoA molecule resulting in phosphatidic acid. This reaction is 

catalysed by acylglycerol-3-acyltransferase (AGPAT). This reaction occurs in the 

ER. In the next step, phosphatidic acid is dephosphorylated to diacylglycerol by 

members of the lipin family. This step occurs in the ER lumen but the three 

members of the lipin family with phosphatase activity that have been identified in 

humans, are also present in the cytosol. Enzyme translocation to the ER is 

regulated by the cytosolic concentration of acylCoA and insulin. In the final step of 

the glycerol-3-phosphate pathway, another fatty acid is transferred to diacylglycerol 

by diacylglycerol acyltransferase (DGAT) to form triacylglycerol (79-81).  

However, in the postprandial phase, high concentrations of not only FFA but also 

monoacylglycerol are available in enterocytes of the small intestine. These are 

primarily re-esterified into triacylglycerol through the monoacylglycerol pathway 

(illustrated in figure 1.8) that is unique to this cell type. The monoacylglycerol 

pathway is essentially the reverse of the lipase activity. It contains two steps, in the 

first a CoA activated FFA is transferred to monoacylglycerol, catalysed by 

monoacylglycerol acyltransferase (MGAT). The second step is identical to the last 

step of the glycerol-3-phosphate pathway, the formation of triacylglycerol from 

diacylglycerol and fatty acid CoA. This step is also catalysed by DGAT. Both 

reactions occur in the ER (68, 79-81). This pathway of triacylglycerol synthesis from 

monoacylglycerole and acylCoA is very fast and occurs within seconds of absorption 

of the monomers (78). 
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Figure 1.8; The monoacylglycerol pathway of triacylglycerol synthesis. CoASH = Coenzyme 

A, DAG = diacylglycerol, DGAT = diacylglycerol acyltransferase, MAG = monoacylglycerol, 

MGAT = monoacylglycerol acyltransferase, TAG = triacylglycerol 

Triacylglycerols formed from dietary lipids in the small intestine are either stored in 

form of lipid droplets or packed into lipoproteins and excreted at the serosal side into 

the lymph or blood for systemic distribution. While the liver mainly synthesises very 

low density lipoprotein (VLDL), the intestine mainly synthesises chylomicrons. These 

are the largest type of lipoproteins with a lipophilic core made up of triacylglycerols, 

cholesterol and sterolesters. These neutral lipids are surrounded by a single 

phospholipid layer that contains different coat proteins of the apolipoprotein (Apo) 

family. Formation of chylomicrons starts in the ER lumen. During extrusion of 

ApoB48 from the translocon into the ER lumen, the protein attracts and binds 

triacylglycerols at the inner ER membrane surface and eventually folds around the 

lipid molecules and buds of as a nascent ApoB48 rich particle (82). This process is 

assisted by the microsomal triglycerol transfer protein (MTTP) but the exact 

mechanism is not clear (77). The ApoB48 particle then fuses with lipid droplets 

made up of triacylglycerols, cholesterol and phospholipids formed in the ER, which 
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causes it to expand and become less protein dense. This pre-chylomicron is then 

transported to the Golgi, in pre-chylomicron transfer vesicles (PCTV), which are 

unique to cells of the small intestine, and during migration though the Golgi, further 

Apo coat proteins are added and glycosylated (68, 75). As mentioned above, there 

is evidence that CD36 is involved in directing triacylglycerols to incorporation into 

chylomicrons instead of VLDL, as deficiency in that protein was associated with 

decreased chylomicron and increased VLDL synthesis in the intestine. CD36 is 

found in PCTVs but is also ubiquitously expressed throughout the body. CD36 

deficiency also results in decreased uptake of lipids into cells which leads to 

prolonged circulation of lipoproteins in plasma (68, 77, 78, 83).    

Triacylglycerols synthesised in the small intestine can also be stored in form of 

cytosolic lipid droplets. Transient storage of dietary lipids in the postprandial phase 

is a common mechanism that prevents hyperlipidaemia due to a surge of 

lipoproteins entering the bloodstream after a meal (75). The mechanism of lipid 

droplet formation is still not resolved and several modes of droplet initiation have 

been proposed. The most widely accepted one is the accumulation of 

triacylglycerols between the two sheets of the ER membrane, attracting more and 

more neutral lipids while growing and eventually budding off into the cytosol. This 

mechanism would explain that lipid droplets are surrounded by a single phospholipid 

layer and not by a bilayer like all other organelles (84). It is also under discussion to 

what extend lipid droplets stay in contact with the ER. Proteomic analysis of proteins 

extracted from the lipid droplet phospholipid coat, have shown the presence of a 

number of lipid processing enzymes, like DGAT, ACS, lysophosphatidylcholine 

acyltransferase and monoglyceride lipase, suggesting a role of these storage 

organelles in lipid metabolism (85-87). 

But lipids are not only turned over into triacylglycerols to be used for storage and 

energy production but they also constitute the building material of all cellular 

membranes. Each cell and each organelle is surrounded by a lipid bilayer that is 
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mainly made up of phospholipids and cholesterol. Phospholipids are composed of a 

glycerol backbone with different fatty acids attached at n-1 and n-2 position and a 

headgroup linked to the carbon 3 via a phosphate moiety. There is a variety of 

different headgroups and together with different acyl chains, there are hundreds of 

possible combinations varying slightly in their physical properties which makes it 

possible that different membranes can exhibit unique properties regarding their 

thickness, polarity, fluidity, curvature and other characteristics, tailoring them for a 

variety of tasks and environments. In human ileum samples, the most abundant lipid 

classes, besides cholesterol, were phosphatidylcholine and 

phosphatidylethanolamin but also phosphatidylserine and phosphatidylinositol and 

some sphingomyelin and ceramide (88). Synthesis of those phospholipids is 

illustrated in figure 1.9 and the general structure of the two sphingolipids is shown in 

figure 1.10. Phospholipids are synthesised from either phosphatidic acid or 

diacylglycerol. In both cases reactants are activated by conjugation with cytidine 

diphosphate (CDP). The difference is that with phospholipids based on phosphatidic 

acid, the lipid is CDP conjugated and then the nucleotide is exchanged for the 

headgroup, as shown for the synthesis of phosphatidylinositol, whereas with 

phospholipids based on diacylglycerol, the headgroup is activated by CDP 

conjugation and then reacts with the lipid, as shown for phosphatidylcholine and 

phosphatidylserine formation (89). Interestingly, it was shown that intestinal cells 

process absorbed lipids differently depending on whether they were taken up from 

the basolateral or from the apical side. Lipids entering the cell from the basolateral 

side are more likely to be incorporated into phospholipids instead of triacylglycerols 

compared to lipids taken up from the apical side (90-92). 
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Figure 1.9; synthesis of phospholipids from intermediates of the glycerol-3-phosphate 

pathway. CDIPT = CDP-diacylglycerol inositol phosphatidyltransferase, CDP = 

cytidyldiphosphate, CDPD = CDP-diacylglycerol , CDPE = CDP-ethanolamin, CDS = 

phosphatidate cytidylyltransferase, CMP = cytidine monophosphate, CDPC = CDP-choline, 

CPD = CDP-choline: 1,2-diacylgylcerol cholinephosphotransferase, CTP = 

Cytidyltriphosphate, DAG = diacylglycerol, CDP-ethanolamine:1,2-diacylgylcerol 

ethanolaminephosphotransferase PA = phosphatidic acid, PC = phosphatidylcholine, PE = 

phosphatidylethanolamin, PI = phosphatidylinositol, PS = phosphatidylserine, PSD = 

phosphatidylserine decarboxylase, PSS = phosphatidylserine synthase 
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Figure 1.10; Structure of ceramides and sphingomyelins. R = acyl chain 

Cells of the small intestine are well supplied with fatty acids from the diet but other 

cell types, especially in liver and adipose tissue, also synthesise fatty acids de novo. 

Fatty acids up to a chain length of 16 carbon atoms are synthesised in the 

cytoplasm by the multi-enzyme complex fatty acid synthase (FAS) and then further 

elongated in the ER. Via these two routes, fatty acids with up to 26 carbon atoms 

can be synthesised de novo. There are six different elongases in mammals termed 

elongation-of-very-long-chain-fatty-acids (ELOVL) 1-6 (93, 94). Different members of 

that family are expressed in different tissues and have varying substrate specificity. 

For example, ELOVL5 preferentially elongates fatty acids with a chain length of 

18 - 20 carbon atoms, whereas ELOVL2 has the highest activity towards fatty acids 

with a chain length of 20 to 24 carbon atoms (95, 96). All fatty acids produced by 

these enzymes are saturated fatty acids (SFA). In humans, double bonds can be 

introduced to the acyl chains by four members of the desaturase enzyme family, 

Δ4-, Δ5-, Δ6- and Δ9 desaturase, resulting in monounsaturated fatty acids (MUFA). 

Fatty acids taken up from the diet can also be processed further through elongation 

and desaturation. Since mammals do not have the ability to synthesise highly 

unsaturated fatty acids (HUFA) de novo, they have to rely on supplementation with 

the diet. But not all HUFA need to be present in the diet to the extent they are 

required by tissues, some can be synthesised from the polyunsaturated fatty acid 
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(PUFA) precursors linoleic acid and α-linolenic acid. Below is a list of the most 

abundant fatty acids that are found in tissue and in the diet:  

 

SFA MUFA PUFA 

C8:0 caprylic     

C10:0 capric     

C12:0 lauric     

C14:0 myristic     

C16:0 palmic C16:1 palmitic (n-7)   

C18:0 stearic C18:1 oleic (n-9) C18:2 linoleic (n-6) 

    C18:3 α/γ-linolenic (n-3/6) 

C20:0 arachidic C20:1 gondoic (n-7) C20:3 eicosatrienoic (n-6) 

    C20:4 arachidonic (n-6) 

    C20:5 EPA (n-3) 

C22:0 behenic C22:1 cetoleic (n-11) C22:6 DHA (n-3) 

C24:0 lignoceric C24:1 nervonic (n-9)   

Table 1.1; The most common dietary and tissue fatty acids. The short form is given as CX:Y 

with X = number of carbon atoms in the acyl chain and Y = number of double bonds in the 

acyl chain. After the trivial name, n-Z denotes the carbon atom Z at which the first double 

bond is located counting from the n or omega (ω) end of the chain which is the opposite of 

the delta (Δ) or alpha (α) end that bears the carboxylic acid moiety. SFA = saturated fatty 

acid, MUFA = monounsaturated fatty acid PUFA = polyunsaturated fatty acid  

Most PUFA either belong to the n-3 or the n-6 series. All n-3 PUFA can be 

endogenously synthesised from α-linolenic acid and all n-6 PUFA can be 

synthesised from linoleic acid, but these two smallest members of their series have 

to be taken up with the diet and are therefore termed essential fatty acids (EFA) 
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(94). The sequence of reactions leading from those EFA to HUFA is illustrated 

below:     

 

Figure 1.11; Fatty acid anabolism pathways in humans. DS = desaturase, ELOVL = 

elongation-of-very-long-chain 

While enterocytes of the small intestine are exposed to high concentrations of 

dietary fatty acids, the mucosa of the large intestine is exposed to high 

concentrations of microbial fatty acids. The short chain fatty acids with an acyl-chain 

length of one to six carbon atoms are produced by the colon microflora mainly from 

dietary fibre (47). The most abundant short chain fatty acids in the large intestine are 

acetic acid (C2:0), propionic acid (C3:0) and butyric acid (C4:0) reaching 

concentrations in the millimolar range (97). Short chain fatty acids are readily taken 

up into colonocytes where they are mainly used for energy production, but a part is 

also excreted from the basolateral side, enters the bloodstream and is taken up by 

the liver where they are also used for lipid synthesis (98). Uptake and excretion 

occurs via passive diffusion and transporter mediated diffusion, facilitated by 

members of the monocarboxylate transporter (MCT) family at both apical and 

basolateral side (97).  
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1.2.2 Dietary sources and tissue modulation 

Vegetable oils and animal fats contribute the greatest part of dietary fatty acids. But 

there are  differences in the percentage of individual fatty acids depending on the 

source of fat. For example, palm and coconut oil, which are much used in south-east 

Asia, contain mostly saturated medium chain fatty acids, lauric and myristic acid in 

coconut and palmitic but also the MUFA oleic acid in palm oil. Olive oil, which is a 

highly characteristic part of the Mediterranean diet, is mostly made up of oleic acid 

(> 70 %) but also some palmitic and linoleic acid. Corn oil, which is more popular in 

the US also contains high levels of oleic acid together with linoleic acid. In general, 

vedgetable oils are rich in oleic, linoleic, and palmitic acid, with only little content of 

n-3 PUFA. Lipid rich vegetable foods like avocado, pistachios or walnuts share the 

distribution pattern of the pure oil, only with lower overall percentage of fat. The fatty 

acid composition of animal fat depends on the source of lipids. Butter, which is 

made from milk, exhibits a typical milk fat composition with a wide range of 

saturated fatty acids, mainly palmitic, stearic and myristic acid, a small percentage 

of short chain fatty acids and also some oleic acid. Another good source of milk fat 

is cheese, which has the same fatty acid profile as butter. In contrast to milk fat, the 

animal fat lard reflects more the composition of adipose tissue, where 

triacylglycerols are synthesised containing oleic, palmitic and linoleic acid. The fat 

content of meat itself varies depending on the animal source and which part of the 

animal tissue was removed from. Muscle tissue mainly contains oleic, palmitic and 

linoleic acid, similar to adipose tissue. Just as with meat, the fat content of fish 

depends on the species. Muscle tissue from some white fish like cod have a very 

low lipid content, whereas oily fish like herring or sardines is high in fat. Apart from 

unsaturated fatty acids like oleic and linoleic acid, oily fish also contributes HUFA 

like DHA and EPA to the diet as well as some more unusual fatty acids, like gondoic 

and cetoleic acid from herring, for example. (All nutritional information was obtained 

from the USDA National Nutrient Database (99).) 
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The examples given above show that there is a great variation in the fatty acid 

content of foods and that depending on cultural background and personal 

preferences, the type and amount of fatty acid that is absorbed can differ 

substantially between individuals. Since dietary fatty acids are not only used for 

energy production but also as cellular building material, the lipid composition of the 

diet is to some extent also reflected in the lipid composition of cells. It has been 

shown that supplementation with specific dietary lipids will increase the abundance 

of that particular lipid and its metabolic products, not only in the small intestine, but 

through systemic distribution of dietary fatty acids by chylomicrons also in other 

organs. For example, mice fed with a diet based on herring were shown to have a 

different lipoprotein and fatty acid composition than mice fed with a diet based on 

beef. Liver tissue of fish fed mice contained less MUFA, more n-3 PUFA and less 

n-6 PUFA than meat fed mice (100). When mice were fed a diet with added fish oil 

or safflower oil, compared to coconut oil, the fatty acid composition of platelets was 

reflecting the high content of linoleic acid and EPA/DHA of those lipid sources. 

Membrane fluidity was also significantly higher in platelets from mice fed with 

safflower or fish oil than in platelets from mice fed with coconut oil (101). This 

example shows that the modulation of fatty composition of cells by dietary fatty acids  

has an impact on the physical properties of the membrane. Supplementation with 

fish oil has also been shown to increase the percentage of HUFA in phospholipids 

and triacylglycerols of platelets, blood immune cells, serum lipids, muscle tissue, 

heart tissue and adipose tissue of human volunteers in a concentration dependent 

manner (102-109) and that a regular supplementation with lower doses is more 

effective then intermittent supply of high doses (110). A diet enriched with vegetable 

oil high in oleic or α-linolenic acid was also shown to change plasma serum levels of 

MUFA and PUFA in humans (111).  
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1.2.3 Impact on absorption 

In the pharmaceutical industry, lipids are employed as drug carriers and absorption 

enhancers. Their popularity in this context is partly due to the fact that they can be 

synthesised with a great range of physical properties from liquid to solid and also 

different polarity and hydrophobicity. Lipophilic drugs administered in an oil matrix 

are more likely to be incorporated into mixed micelles and therefore more finely 

dispersed and likely to reach the intestinal wall for absorption. Popular lipid vehicles 

are FFA, triacylglycerols of medium and long chain fatty acids and fatty acid ethyl 

esters. Phospholipids are also used as emulsifiers (74, 112). There are many 

published examples on drug bioavailability enhancement by lipids, for example, 

passive diffusion of doxorubicin into endothelial cells of the aorta was increased 

after concomitant injection of lipid analogues made up of short-chain sphingolipids 

(113). 

Increase of polyphenol bioavailability through incorporation into liposomes has also 

been investigated. For example, curcumin plasma concentration in mice was several 

fold higher when incorporated into liposomes compared to the pure compound 

(114). Similar results were obtained for liposomal preparations of quercetin. Here, 

the presence of lipids delayed maximum plasma concentration of the compound and 

quercetin remained in circulation for longer, resulting in a several fold increased 

area under the curve (AUC) for the plasma and tissue concentration profile (115).   

But the examples given above are all based on short term modulation of physical 

properties. As mentioned in the previous section, dietary fatty acids are incorporated 

into biomembranes and such change in lipid composition can yield a change in 

plasma membrane fluidity. Many polyphenols are reported to cross the intestinal 

epithelium by passive diffusion. A change in membrane fluidity could thus affect the 

diffusion rate of phenolics and with that their pharmacokinetics. In pig intestinal cells, 

a PUFA deficient diet drastically changed the fatty acid composition of plasma 

triacylglycerides and also decreased the fluidity of isolated brush border membrane 
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vesicles (BBMV) (116). Brush border membrane fluidity increases along the 

intestinal tract (117).  

But not only passive diffusion can be influenced by membrane fatty acid 

modification, membrane spanning proteins are also affected. Calcium (Ca2+), 

magnesium (Mg2+) and sodium/potassium-ATPase (Na+/K+-ATPase) activity has 

also been shown to be sensitive to the membrane lipid environment (118). 

Incorporation of linoleic acid into hepatocyte plasma membranes increased 

membrane fluidity and concomitantly decreased Mg2+-, Ca2+- and Na+/K+-ATPase 

activity by about 25% (119). In erythrocytes and fibroblasts glucose transport was 

also demonstrated to be dependent on the lipid environment. A decrease in 

membrane fluidity of about 8% increased transport of glucose, but any further 

decrease in fluidity reversed this effect (120). The inverted response to membrane 

fluidity was shown for Ca2+ uptake at the intestinal brush border of rabbits. Here a 

small increase in fluidity by about 5 % through incorporation of oleic acid was shown 

to increase Ca2+ uptake, whereas a larger increase in fluidity by about 15 % 

drastically decreased Ca2+ uptake (121). Another group of transporters that have 

been reported to be sensitive to their lipid microenvironment are of the ABC-family 

(122-124). Since these transporters have been shown to recognise phase II 

conjugates of many xenobiotics, these proteins could also play a substantial role in 

the first pass elimination of polyphenols. But it is not only lipids that can exert an 

effect on integral membrane proteins, but proteins also modulate their lipid 

environment. Membrane lipids in immediate vicinity to the protein are called annular 

lipids (from Latin ‘annulus’ = ring-shaped (125)). They form a distinct shell of lipids 

around the peptide region spanning the hydrophobic membrane core. To match the 

hydrophobic and hydrophilic domains of the inserted protein, annular lipids can be 

distorted in their packing density by stretching or compression to yield a 

conformation that is less favourable in terms of lipid-lipid packing, but will result in 

stronger van der Waals attraction between the protein and lipids, thus ‘dissolving’ 
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the protein in the membrane. The distinction between annular lipids and bulk lipids is 

mostly characterised by this conformational change but not by a difference in lipid 

composition compared to the bulk lipids. The annular lipid shell is not a rigid 

structure but highly dynamic with an average residing time of a lipid molecule in the 

shell of 10-7 s before diffusing back into the bulk lipid phase (126-128). 

Membrane lipid composition was also shown to affect the pathway of cellular uptake 

of water soluble compounds by endocytosis. It was reported that incorporation of 

long chain saturated fatty acids resulted in a decrease in membrane fluidity of 

macrophages which also caused a decrease in pinocytosis rates (129). 
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1.3 Project aims 

Dietary lipids have been shown to affect cellular lipid composition through 

incorporation of fatty acids from food into cellular triacylglycerol and phospholipid 

structures. Especially the small intestine is regularly exposed to high quantities of 

fatty acids which will differ in their chain length and saturation depending on food 

preferences. Changes in plasma membrane lipid composition have been shown to 

affect transepithelial transport via paracellular and transcellular routes. The impact 

of lipids on the absorption of polyphenols has been reported regarding improved 

solubility of phenolic compounds when co-ingested with lipids but so far it has not 

been investigated how long term changes of membrane composition could affect 

polyphenol bioavailability. In the current study, this gap of knowledge was 

addressed. The main objectives of the work were: 

 To establish and characterise an in vitro model of the impact of chronic lipid 

supplementation on enterocytes of the small intestine. 

 To test whether chronic fatty acid supplementation affects transepithelial 

transport of polyphenols across the intestinal epithelium, using the phenolic 

acids caffeic acid and ferulic acid and the flavanol epicatechin as model 

substrates.  

 To identify the mechanism by which fatty acids affect transport of phenolics.  

 To test whether fatty acid supplementation will affect phase II metabolism of 

selected polyphenols.  
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Chapter 2: Materials, methods and equipment 

2.1 Materials 

All cell culture consumables, acetonitrile, formic acid, stearic, linolenic and 

arachidonic acid, (-)-epicatechin (from here on only called epicatechin), 

3,4-dimethoxycinnamic acid, ascorbic acid, CelLytic M buffer, caprylic, lauric, 

palmitic, stearic, linolenic, linolenic and arachidonic acid, 1-oleoyl-rac-glycerol, 

L-α-lysophosphatidylcholine, L-α-phosphatidylcholine, α-tocopherol, 

glycodeoxycholic acid, taurodeoxycholate, taurocholate hydrate, ferulic acid, caffeic 

acid, hesperetin, metoprolol, estrone-3-sulfate, ibuprofen, diglycine, 

methyl-β-cyclodextrin, 1-(4-trimethylammoniophenyl)-6-phenyl-1,3,5-hexatriene 

p-toluenesulfonate (TMA-DPH), lucifer yellow, 3,4-dimethoxycinnamic acid, 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and protease 

inhibitor cocktail were purchased from Sigma-Aldrich (St. Louis, USA), RIPA buffer, 

EZ-Link Sulfo-NHS-LC-Biotin, High Capacity Streptavidin Agarose Resin and 

bicinchoninic acid (BCA) kit were purchased from Pierce Biotechnology (Rockford, 

USA), cholesterol detection kit, EPA and DHA were purchased from Cayman 

Chemical (Ann Harbour, USA), all protein simple consumables and reagents were 

purchased from protein simple (Santa Clara, USA). Baculovirus infected insect cells 

expressing human UGT isoforms were purchased from BD Bioscience (Woburn, 

USA). The Caco-2 cell line (HTB-37) and the HepG2 cell line (HB-8065) were 

obtained from ATCC (Manassas, USA), the HT29-MTX cell line (130) was a 

generous gift from the Nestlé Research Center (Lausanne, Switzerland). Cy3-

conjugated donkey anti-mouse IgG and Alexa488-conjugated donkey anti-rat IgG 

were obtained from Jackson Immuno Research (West Grove, USA), fluorescein 

conjugated wheatgerm agglutinin (WGA) from Vector laboratories (Burlingame, 

USA), ProLong Gold antifade reagent mounting medium from molecular probes 

(Carlsbad, USA) all TaqMan primer/probe sets, Lipofectamine RNAiMAX, siRNA 

and Opti-MEM from life technologies (Carlsbad, USA).  
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2.2 Cell culture  

Caco-2 cells were routinely cultured in low glucose (5 mM) Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 15% Fetal Bovine Serum (FBS), 

100 units/mL penicillin, 0.1 mg/mL streptomycin and 0.25 µg/mL amphotericin B (full 

medium) at 37°C with 5% CO2 in humidified atmosphere. Cells were subcultured 

when reaching ~ 90% confluence (after 3 - 5 days) and seeded into flasks at a 

density of 1 x 104 cm-2 (as recommended by the supplier (131)). Cells were received 

from ATCC at passage number 23 and used for experiments between passage 

number 35 and 50. 

HT29-MTX cells were cultured the same way as Caco-2 cells but with 10 % FBS 

instead of 15 % and cells were seeded into flasks at a density of 2.4 x 104 cm-2. 

Cells were received at passage number 17 and used for experiments between 

passage numbers 27 to 35. 

HepG2 cells were grown in Minimum Essential Medium (MEM) supplemented with 

10 % FBS, non-essential amino acids, 100 µM sodium pyruvate, 100 units/mL 

penicillin and 0.1 mg/mL streptomycin. Cells were subcultured when reaching ~ 

90 % confluence and seeded into flasks at a density of 1 x 105 cm-2. Cells were 

received from ATCC at passage number 74 and used for experiments between 

passage number 80 and 90. 

For all cell lines, cell numbers were determined using a haemocytometer.   

2.3 Fatty acid treatment  

For experiments, cells were supplemented with 50 μM fatty acid or 1000 μM butyric 

acid, unless stated otherwise. Stock solutions of fatty acids were prepared in 100 % 

ethanol and controls were supplemented with the corresponding amount of solvent. 

For treatments with EPA and DHA, an additional 100 μM of α-tocopherol (vitamin E) 

was added to the medium to prevent oxidation of the fatty acid. Corresponding 

controls were treated with the same amount of vitamin E and ethanol. Final ethanol 
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concentrations in the medium were 0.5 % (108 mM) and 0.6 % (130 mM) for DHA 

and EPA treatments. The medium was changed every other day. Different batches 

of FBS were used and there was no control for batch to batch variation in lipids.  

For chronic supplementation, cells were seeded into fatty acid containing medium. 

For acute treatments, cells were grown in full medium containing 10 % FBS and 

changed to fatty acid containing medium 24 h (for results described in section 3.3.1) 

or 48 h (for results described in section 3.3.2 and in chapter 4) before the transport 

study or harvesting. Caco-2 and HT29-MTX cells were used for experiments on day 

22 or day 23 after seeding. The last medium change was always performed 24 h 

before the experiment.  

Micelles were prepared by dissolving monoolein, lyso-phosphatidylcholine, 

phosphatidylcholine and α-tocopherol and FFA in chloroform with a final 

concentration of 0.2 mM, 0.3 mM, 0.1 mM, 0.01 mM and 0.05 mM respectively. This 

lipid mixture was dried under nitrogen flow and mixed with bile salts 

glycodeoxycholic acid (0.8 mM), taurodeoxycholic acid (0.46 mM) and taurocholate 

hydrate (0,75 mM) dissolved in serum free DMEM medium. Bile salts and lipids 

were then vortexed and sonicated for 30 min. 1 mL aliquots were taken for analysis.  

For transport experiments, cells were seeded into 6-well Transwell plates (0.4 µm 

pore size, polycarbonate) at 6 x 104 cm-2. Caco-2:HT29-MTX co-cultures were 

seeded at a ratio of 76:24 unless stated otherwise. With this seeding density, cells 

were usually confluent within 24 h.  

For preliminary experiments described in section 3.3.1, cells were grown in 

Transwell plates and for experiments described in section 3.3.2 cells were grown in 

flasks with a growth area of 75 cm-2, due to the high cost of the permeable supports. 

Cells used for fluidity measurements were grown in petri dishes (ø = 10 cm). The 

two culture types (solid vs. permeable support) resulted in a slightly different fatty 

acid composition of cells. Mainly, cells grown on permeable supports had a higher 

content of the saturated fatty acids palmitic (C16:0) and stearic acid (C18:0) but less 
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of the monounsaturated fatty acids palmitoleic (C16:1) and oleic acid (C18:1), as 

shown in table 2.1. 

 

 percentage [%] 

fatty acid solid permeable 

16:0 20 24 

16:1 9 4 

18:0 11 20 

18:1 38 24 

18:2 5 3 

18:3 2 1 

20:4 5 7 

205 2 3 

22:6 4 5 

Table 2.1; Fatty acid composition of differentiated Caco-2 cells grown on solid and 

permeable supports. solid: n = 3, permeable: n = 1; For details on analysis see section 2.14. 

For gene expression studies and protein quantification cells were seeded into 6-well 

plastic plates as preliminary studies had shown a very similar response to fatty acid 

treatment in cells grown on permeable and solid supports.  
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 expression change [2-ΔΔC
T] 

gene solid permeable 

ABCB1 1.1 ± 0.09 1.3 ± 0.11 

ABCC2 0.9 ± 0.03 0.9 ± 0.06 

ABCG2 1.1 ± 0.05 1.2 ± 0.08 

Table 2.2; Changes in gene expression after chronic DHA [50 μM] treatment of Caco-2 cells 

grown on solid or permeable supports. Values are given as cycle threshold (CT) of the gene 

of interest in samples from treated cells normalised to the CT of the reference gene GAPDH 

and to the CT of the gene of interest in samples from untreated cells. See section 2.8 for 

calculations. 

For siRNA silencing cells were either seeded into 6-well or 12-well plastic plates and 

not Transwell inserts, as they were analysed five days after seeding, which is too 

short a time for full differentiation to occur. 

Cells used for fluorescence microscopy were grown in Millicell cell culture inserts 

(12-well, PET 0.4 µm pore size, Millipore).  

HepG2 cells were grown in 6-well plastic plates at a seeding density of 1 x 105 cm-2 

for all experiments. Cells were used for experiments 5 days after seeding by which 

time they were about 95 % confluent.  

2.4 Transport studies  

Transport studies were conducted with cells grown on Transwell inserts, which are 

illustrated below. 
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Figure 2.1; Structure of Transwell inserts 

For transport studies, cell monolayers were washed twice with Hank’s Balanced Salt 

Solution (HBSS) and the Transepithelial Electrical resistance (TEER) of the cell 

layer was measured in HBSS containing 1.8 mM calcium chloride (HBSS + CaCl2). 

Calcium chloride was added to maintain tight junction integrity (132). TEER values 

are indicative of the differentiation state of the cell layer. With increasing time in 

culture, the TEER of a cell layer increases due to the formation of tight junctions. 

Figure 2.2 shows the development of TEER in Caco-2 cultures over time. On the 

basis of this data, a TEER value of 300 Ω was chosen as a minimum for cell layers 

to be used for transport studies. 
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Figure 2.2; Transepithelial electrical resistance (TEER) of Caco-2 cell layers grown in 

Transwell inserts over time in culture. Each data point represents the average TEER of one 

Transwell insert measured at three different areas of the cell layer. The TEER value of 300 Ω 

was selected as a minimum value for cell layers used in transport studies. TEER values at 

day 0 are from membranes immersed in full medium, before seeding of cells. 

Monitoring the tight junction integrity is especially important for cell layers used in 

transport studies as it determines diffusion of a compound by the paracellular route. 

Figure 2.3 shows the correlation between TEER of Caco-2 cell layers 22 - 23 days 

after seeding and the permeability of the paracellular transport marker lucifer yellow 

in apical to basolateral direction.  

0 5 10 15 20

100

200

300

400

500

600

700

 

T
E

E
R

 [


]

days after seeding



- 39 - 
 

 

Figure 2.3; Correlation between transepithelial electrical resistance (TEER) of Caco-2 cell 

layers grown in Transwell inserts and diffusion rate of paracellular permeability marker lucifer 

yellow in apical to basolateral direction. For details on lucifer yellow analysis see section 2.6. 

r = Pearson’s correlation coefficient.  

After TEER measurement, the buffer was aspirated and replaced by 2 mL aglycone 

dissolved in HBSS + CaCl2 in the donor chamber and 2 mL HBSS + CaCl2 in the 

receiver chamber. For transport experiments with epicatechin, 100 μM ascorbic acid 

were additionally added to donor and receiver chamber to prevent oxidation of the 

compound. The concentration of compounds used for transport experiments in the 

donor chamber was dictated by the sensitivity of the analysis method and by the 

prerequisites of transport experiments using the Caco-2 model. In general, diffusion 

of a compound is described by Fick’s first law as: 

    
  

  
 

with J = flux, D = diffusion coefficient, dc = change in concentration and dx = length 

of diffusion pathway. In Caco-2 transport assays, results are usually calculated as 

‘apparent permeability’ (Papp), which is derived from D in Fick’s law, using the 

following equation: 
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with cr = concentration of the analyte in the receiver chamber in μM, t = transport 

time in s, V = volume of the receiver chamber in cm3, A = growth area in cm2 and 

cd = concentration of the analyte in the donor chamber in μM. However, there are 

several prerequisites regarding the assay set-up for using this equation. Figure 2.4 

shows a cross section schematic of such transport assay set-up with different flux 

pathways marked.  

 

 

Figure 2.4; Overview of flux in Caco-2 transport assays. J = flux, a = apical, b = basolateral, 

c = intracellular 

The main assumption made for calculating Papp is that the concentration of the 

transport compound in the donor chamber (cd) does not change during the transport 

experiment and that the flux back from the receiver to the donor chamber (Jr


d) is 

negligibly low. In practice these two conditions are met by selecting the compound 

concentration in the donor chamber and the transport time so that only a small 

fraction of the compound is crossing into the receiver chamber (cd >> cr). Ideally this 

can be achieved by using radiolabeled compounds of interest which can be detected 

a  b b  a

apical

(a)

basolateral

(b)

Jba

receiver

donor

Jba

Jab

Jbc

Jca

c

receiver

donor

Jab

Jac

Jcb

c

c = intracellular



- 41 - 
 

in trace amounts with the appropriate method. However, the compounds tested in 

the current work were not readily available in a radiolabeled form, so the aglycones 

were analysed by HPLC with either diode array detection or fluorescence detection, 

where possible. As these detection methods are less sensitive, higher 

concentrations and longer incubation times were used in the assay. The detection 

limit for hesperetin, caffeic and ferulic acid was ~ 1 μM, therefore they were used at 

a concentration of 500 μM and with an incubation time of 60 min. With these 

conditions, ~ 0.8% of the original load of caffeic acid and 8 - 9% of the original load 

of ferulic acid and hesperetin were detected in the receiver chamber after transport. 

The detection limit of epicatechin was ~ 0.05 μM and since this compound was 

reported to be cytotoxic in Caco-2 cultures at a concentration of > 250 μM (133) a 

concentration of 200 μM was chosen for transport studies. With an incubation time 

of 90 min, the percentage of original load that was detected in the receiver chamber 

was ~ 0.1% and ~ 1% for a  b and b  a transport, respectively. The detection 

limit for the paracellular marker lucifer yellow was ~ 0.02 μM and the concentration 

of 100 μM was chosen for transport experiments. With an incubation time of 60 min 

0.2 - 0.5% of the original load were found in the receiver chamber, dependent on 

tight junction integrity. The detection limit for the passive diffusion model compound, 

metoprolol was < 0.5 μM and using a concentration of 500 μM and an incubation 

time of 10 min, ~ 5% of the original load were detected in the receiver chamber. 

After incubation, 1.5 mL samples of the donor and receiver chambers were 

collected, acidified with 10 mM acetic acid and 100 µM ascorbic acid, 50 µM internal 

standard 3,4-hydroxycinnamic acid was added and the samples were analysed by 

HPLC and/or LC-MS/MS. After sample collection, cells were either used for viability 

testing or washed three times with HBSS + CaCl2 and lysed with 80% methanol 

containing 100 µM ascorbic acid and 5 µM internal standard. After vigorous mixing, 

cell lysates were centrifuged, the supernatant was dried under vacuum and 

reconstituted in 100 µL LC-MS/MS solvent A.   
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When the impact of transport inhibitors was investigated, these compounds were 

added to the donor and acceptor chamber at the following concentrations: 300 μM 

phloretin, as the presence of this concentration gave a 80% inhibition of mevalonate 

and 90% inhibition of pyrovate uptake via MCT1 (134); 10 μM apigenin, 25 μM 

MK571 and 25 μM cyclosporine A, as described previously for inhibition of apical 

efflux-transporters ABCB1, ABCC2 and ABCG2 (135). Possible inhibitors of ferulic 

acid transport were also used at previously suggested concentrations: 500 μM 

ibuprofen (136), 1000 μM diglycine (137) and 500 μM estrone-3-sulfate (138).  

All replicates of transport studies were conducted on the same day with usually 

n = 6 and therefore N = 1.  

2.5 Viability test 

After transport experiments, 2 mL of 0.5 mg/mL MTT in serum free medium was 

added to the apical side and 2 mL of HBSS + CaCl2 was added to the basolateral 

side of the cell layer. After 4 h incubation, solutions were aspirated, the cells were 

lysed in 2 mL of 10% Triton X-100 and 0.1 M hydrochloric acid in isopropanol and 

the absorption of the lysate was read at  = 595 nm on a microplate reader. Results 

are given as fold change: 

            
                               

                                 
 

 

To monitor tight junction integrity during experiments, TEER before and after 

transport was compared. With a 60 min incubation time, TEER dropped by 85 Ω and 

with a 90 min incubation time TEER dropped by 108 Ω on average. Cell layers that 

had a TEER value of above 300 Ω before the transport experiment but were below 

that value afterwards, were still included. 
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2.6 HPLC analysis 

After transport experiments, aglycone concentrations were determined using an 

Agilent 1200 series HPLC equipped with diode array detector (DAD) and 

fluorescence detector (FLD). Separation was achieved on an Agilent ZORBAX 

Eclipse Plus C18 column (2.1 x 100 mm, particle size 1.8 µm). Solvent A consisted 

of 95% deionised water, 5% acetonitrile and 0.1% formic acid. Solvent B consisted 

of 95% acetonitrile, 5% deionised water and 0.1% formic acid.  

The solvent gradient profile for the analysis of ferulic acid, caffeic acid and 

hesperetin was as follows: 0 – 12 min linear gradient from 0% solvent B to 50% 

solvent B; 12 – 18 min linear gradient from 50% solvent B to 100% solvent B; 18 –

 24 min 100% solvent B; 24 – 31 min 0% solvent B. The flow rate was 0.2 mL/min. 

The peak areas detected at 320 nm by DAD were used to quantify ferulic acid, 

caffeic acid and the internal standard 3,4-dimethoxycinnamic acid hesperetin was 

detected at 287 nm.  

The solvent gradient profile for the analysis of epicatechin and metoprolol was the 

following: A linear increase from 0 % solvent B to 50 % solvent B in the first 18 min, 

then increase to 100 % solvent B between 18 and 18.5 min, holding of 100 % 

solvent B for 3 min, a linear decrease to 0 % solvent B between 21.5 and 24 min 

with a subsequent column equilibration at 0 % solvent B for 7 min. The flow rate was 

0.2 mL/min. Epicatechin was detected using the FLD at an excitation wavelength of 

λ = 230 nm and an emission wavelength of λ = 321 nm. Metoprolol was detected 

with an excitation wavelength of λ = 225 nm and an emission wavelength of 

λ = 320 nm. The internal standard was monitored at λ = 320 nm using the DAD. 

The paracellular transport marker lucifer yellow was quantified by FLD with an 

excitation wavelength of  = 425 nm and an emission wavelength of  = 515 nm. 

Samples from transport studies without lucifer yellow did not exhibit any background 

signal within this spectrum. Therefore the transport marker was analysed without 

chromatographic separation on a column. The autosampler was directly connected 
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to the FLD and 5 μL of sample were injected. The mobile phase was PBS and the 

flow rate was 0.085 mL/min.  

2.7 LC-MS/MS analysis of metabolites 

Samples were analysed for ferulic acid metabolites as described previously (139) 

with the following modifications: Solvent A consisted of 95% deionised water, 5% 

acetonitrile and 0.5% formic acid, solvent B consisted of 95% acetonitrile, 5% 

deionised water and 0.5% formic acid. A solvent gradient was run with the following 

profile: 0% solvent B from 0 to 3 min, a linear increase from 5% to 30% solvent B 

from 3 min to 15 min, 100% solvent B from 15.1 min to 17.5 min and 0 % solvent B 

from 17.6 min to 21.5 min. The flow rate was 0.3 mL/min and 15 μL of sample were 

injected. Separation was achieved on an Agilent ZORBAX Eclipse Plus C18 column 

(2.1 x 100 mm, particle size 1.8 µm). Ferulic acid and its metabolites were identified 

and quantified by comparison to original standards. Ion traces were monitored in 

negative ionisation mode and two traces were monitored for each metabolite. In the 

list below, the first trace was used for quantification. 

 

m/z = 369 → 113; m/z = 369 → 193  for feruloyl-glucuronide  

m/z = 273 → 178; m/z = 273 → 193  for feruloyl-sulfate  

m/z = 195 →121; m/z = 195 → 136  for dihydroferulic acid,  

m/z = 193 → 178; m/z = 193 → 134  for ferulic acid and  

m/z = 207 → 103     for 3,4-dimethoxycinnamic acid 

 

For LC-MS/MS analysis of epicatechin metabolites an LC-MS/MS method for 

analysis of green tea catechin metabolites in urine (140) was adopted and optimised 

for analysis of epicatechin metabolites in cell culture samples. Separation was 

achieved with an Agilent 1200 series HPLC using a Phenomenex Kinetex C18 

column with particle size of 2.6 µM. The injection volume was 10 μL. Solvent A 

consisted of 95% Millipore water, 5% acetonitrile and 0.5% formic acid. Solvent B 
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consisted of 95% acetonitrile, 5% Millipore water and 0.5% formic acid. The solvent 

gradient was the following: 0% solvent B from 0 to 3 min, a linear increase to 50% 

solvent B from 3 to 16 min, 100% solvent B from 16 to 20 min and 0% solvent B 

from 20 to 23 min. The flow rate was 0.4 mL/min 

Ion traces were monitored in negative ionisation mode and chromatograms obtained 

for the first of the following traces were used for determination of peak areas:  

 

m/z = 303 → 137; m/z = 303 → 165 for O-methyl-epicatechin  

m/z = 369 → 289; m/z = 369 → 245 for epicatechin-sulfate 

m/z = 383 → 303; m/z = 383 → 137 for O-methyl-epicatechin-sulfate 

m/z = 465 → 289; m/z = 465 → 245 for epicatechin-β-D-glucuronide 

m/z = 479 → 303; m/z = 479 → 137 O-methyl-epicatechin-β-D-glucuronide  

m/z = 289 → 245; m/z = 289 → 203 for epicatechin 

m/z = 207 → 103     for 3,4-dimethoxycinnamic acid 

 

For results shown in figures 4.6, 5.14, 6.12 - 6.14, 6.20, 7.2, 7.3, 7.5, and 7.12 the 

concentrations were adjusted to the original volume of the compartment they were 

drawn from. The volume of a cell monolayer was estimated through 

immunofluorescence staining of the cell membrane (see section 2.10). The distance 

between apical and basolateral membrane was measured by confocal microscopy 

and was an average of 15 μm for both Caco-2 and HT29-MTX cells, estimated from 

13 independent experiments for Caco-2 and 24 independent experiments for 

HT29-MTX cells. With a growth area of 4.67 cm2 for Transwell plates and 9.5 cm2 

for solid 6-well plates, the volume of a cell monolayer was calculated as 7 μL and 

14 μL respectively. As cell lysates were reconstituted in 100 μL solvent B, 

metabolites were diluted by the factor 14.3 and 7.15 respectively. For cell lysate 

samples, the concentration obtained by LC-MS/MS analysis was multiplied by this 

dilution factor. For samples collected from the apical or basolateral well, the dilution 
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factor was 1 as those samples were injected without further processing. For the total 

amount, peak areas were multiplied by the total sample volume (2000 μL for apical 

and basolateral and 100 μL for intracellular amounts) and divided by the injection 

volume. For epicatechin metabolism by HepG2 cells, peak areas obtained for 

epicatechin conjugates, presented in figures 5.14, 5.15 and 7.1, were normalised to 

protein concentration determined by the BCA assay. For that, cell layers were lysed 

with 1 M sodium hydroxide, neutralised with 1 M hydrochloric acid and the BCA 

assay was performed according to the manufacturer’s protocol.   

2.8 Gene expression analysis 

Cells were seeded into solid 6-well plates and maintained as for transport 

experiments. On day 22 after seeding (Caco-2 and HT29-MTX) or day 5 after 

seeding (HepG2 and Caco-2 after siRNA gene silencing), cells were washed twice 

with ice cold PBS, scraped and mRNA was extracted using the ambion RNAqueous 

kit, according to the manufacturer’s protocol. RNA was transcribed to cDNA using 

the Applied Biosystems high capacity RNA to cDNA kit and then gene expression 

was determined by TaqMan real-time PCR using the Applied Biosystems TaqMan 

gene expression assay and TaqMan gene expression master mix according to the 

manufacturer’s protocol on a StepOnePlus real-time PCR system. The Applied 

Biosystems ID of the primer/probe sets were: 

 

SLC16A1: Hs00161826_m1, 

SLC16A3: Hs00358829_m1 

SLC16A4: Hs01006127_m1 

SLC5A8: Hs00377618_m1 

SLC22A7: NM_002046.3 

ABCB1: Hs00184500_m1 

ABCC2: Hs00166123_m1 

ABCG2: Hs01053790_m1UGT1A1: Hs02511055_s1, 
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UGT1A8: Hs01592482_m1, 

UGT1A9: Hs02516855_sH 

GAPDH: NM_002046.3 

 

Each well of the PCR plate contained a primer/probe set specific to the gene of 

interest with the probe conjugated to the fluorescent dye 6-carboxyfluorescein (FAM, 

absorption at λmax = 494 nm, emission λmax = 518 nm) and a primer probe set 

specific for the reference gene GAPDH with the probe conjugated to the 

fluorescence dye VIC (chemical structure not disclosed by Applied Biosystems, 

absorption at λmax = 538 nm, emission λmax = 554 nm). Because of the two different 

fluorophores, CT values for gene of interest and reference gene can be determined 

simultaneously in the same sample and well. The relative expression of a gene of 

interest in fatty acid treated cells compared to non-treated control cells was 

calculated as follows: 

                             
 

 
             

 

   

   

                 

     
 

 
              

 

   

  

with n = number of replicates, CTFI = CT value of gene of interest in fatty acid treated 

sample, CTFR = CT value of reference gene in fatty acid treated sample, CTCI = CT 

value of gene of interest in control sample, CTCR = CT value of reference gene in 

control sample. In figure 7.7 only the expression of the gene of interest relative to 

GAPDH is given as: 
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2.9 SiRNA silencing of efflux transporters   

Gene silencing was achieved by reverse transfection of Caco-2 cells with ABCB1 

(s10418), ABCC2 (s3227) or ABCG2 (s18056) or negative control (AM4611) siRNA. 

All reagents were used according to the manufacturer’s protocol. 

50 μM siRNA stocks were prepared in molecular biology grade water. SiRNA was 

mixed with the low serum medium Opti-MEM at a ratio of 1 in 250 and 

Lipofectamine RNAiMAX was mixed with Opti-MEM at a ratio of 1 in 17 and both 

were incubated for 5 min at RT. Then diluted RNA and diluted transfection reagent 

were mixed 1 in 2 and incubated for 5 min at RT. An aliquot of the mixture was then 

transferred into a well and overlaid with a cell suspension in Opti-MEM. Final 

reagent concentrations were 2.63 pmol siRNA per cm2 and 0.79 μL Lipofectamine 

RNAiMAX per cm2. Cells were plated at a density of 0.178 x 106 cm-2. After 24 h, the 

medium was replaced with 10 % FBS in DMEM, without added penicillin, 

streptomycin or amphotericin B.  

For gene expression analysis, cells were grown in 12-well plates, for metabolism 

experiments, cells were grown in 6-well plates. All experiments were carried out 5 

days after seeding. 

2.10 Staining and microscopy 

Caco-2 or HT29-MTX cells were seeded into Millicell cell culture inserts at a density 

of 6 x 104 cm-2. Before staining, cells were fixed with 4 % para-formaldehyde in PBS 

for 20 min. Caco-2 cells were then incubated with fluorescein conjugated wheatgerm 

agglutinin for 10 min. Then both cell lines were permeabilised with 0.1 % 

Triton X-100 for 20 min and incubated with either mouse MCT1 (sc-365501) or 

mouse MCT4 (sc-376139) for Caco-2, or rabbit UGT1A (sc-25847) and mouse 

ABCC1 (sc-18835) antibody for HT29-MTX cells, all at a dilution of 1:50 for 1 h. 

After washing with PBS, Caco-2 cells were further incubated with Cy3-conjugated 

donkey anti-mouse IgG and HT29-MTX cells were incubated with Cy3-conjugated 
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donkey anti-mouse IgG and Alexa488-conjugated donkey anti-rat IgG at a 1:300 

dilution in PBS for 1 h. Then cell layers were stained with 0.2 mg/mL DAPI and 

mounted on microscopy slides with ProLong Gold antifade reagent mounting 

medium. Cells were imaged using a Zeiss LSM510 confocal microscope with an 

Plan-Apochromat 63x oil immersion objective with a numerical aperture of 1.4. 

Images in figure 4.10 were acquired with a Z-stack consisting of 11 slices with a 

depth of 20 μm, for images in figure 4.11, 10 slices with a depth of 18 μm were 

acquired, for images presented in figure 7.10, 15 slices with a slice depth of 28 μm 

were acquired.  

Widefield images of Caco-2/HT29-MTX co-cultures were acquired using the Leica 

EL6000 microscope with a 10x HI PLAN dry objective with a numerical aperture of 

0.25. Percentage of each cell line in the monolayer at day 21 was calculated from 

widefield images using the ImageJ software. 

2.11 Surface biotinylation and protein detection 

HT29-MTX cells grown on permeable supports were washed twice with ice cold 

PBS and 0.25 mg/mL EZ-Link Sulfo-NHS-LC-Biotin dissolved in HBSS + CaCl2 from 

either apical or basolateral side. After 4 h of incubation on ice, the reaction was 

stopped by addition of 40 mM Tris. Cells were washed twice with Tris-Buffered 

Saline (TBS) and lysed with RIPA buffer containing 0.5% protease inhibitor cocktail. 

After rocking on ice for 20 min, lysates were centrifuged at 14 000xg for 10 min and 

the supernatant was incubated with 25 µL High Capacity Streptavidin Agarose 

Resin over night at 8°C with constant gentle shaking. The supernatant was 

removed, the resin washed three times with TBS and samples were eluted in 20 µL 

of 4x protein simple sample buffer containing 0.2 M DTT. 10 µL sample were used 

for analysis by capillary electrophoresis.  

For UGT1A protein detection, HT29-MTX cells grown on solid supports were 

washed with PBS, scraped and lysed in RIPA buffer containing 0.5% protease 

inhibitor cocktail by gently rocking the samples in ice for 30 min. Afterwards the 
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lysate was centrifuged at 14 000xg for 10 min and the protein concentration of the 

supernatant was determined by BCA microplate assay according to the 

manufacturer’s instructions. Protein analysis was carried out using the automated 

capillary electrophoresis system ‘Simon’. Samples, size protein molecular weight 

markers, primary and secondary antibodies, separation and stacking matrix and a 

luminol/horseraddish-peroxidase mixture are transferred to separate wells of a 

384-well plate and inserted into a tray of the machine. Protein separation and 

detection occurs in capillaries which are handled by a robot and automatically 

loaded with the help of a vacuum pump. After loading of separation matrix, stacking 

matrix and sample, capillaries are connected to running buffer reservoirs on both 

ends and a direct current of 250 volts is applied which starts the separation of 

peptides based on their molecular weight, similar to separation of peptides by 

SDS-PAGE. After separation, sample peptides are immobilised at the capillary wall 

and then detection occurs with the help of immunoprobes, analogue to traditional 

Western blotting. The chemoluminescence signal is detected by a camera and the 

signal intensity was analysed by the software Compass v2.3.7. All analysis 

parameters were used as recommended by the manufacturer, except that loading 

time of the stacking matrix was increased to 17.0 s, loading time of the sample was 

increased to 12.0 s and separation time to 47.0 min, to achieve a higher sensitivity. 

Samples were denatured by incubation with DTT containing protein simple sample 

buffer at room temperature for 30 min. All primary antibodies were used at a dilution 

of 1:100. For results presented in figure 7.9, samples were loaded at a protein 

concentration of 0.8 mg/mL.  

2.12 Membrane fluidity  

Impact of chronic fatty acid supplementation on brush border membrane fluidity of 

Caco-2 cells was determined using the fluorescent probe TMA-DPH. For that, the 

brush border membrane was isolated as described previously (141). Briefly, cells 

were washed with ice-cold PBS, scraped and homogenized in 0.1 M mannitol, 2 mM 
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HEEPES/Tris buffer by passing ten times through a 21 gauge needle. 10 mM MgCl2 

was added and after gentle rocking on ice for 30 min the homogenate was 

centrifuged at 3 000xg for 15 min. The supernatant was removed, centrifuged at 

30 000xg for 30 min and the resulting pellet of brush border membrane vesicles 

(BBMV) was reconstituted in 0.3 M mannitol, 0.1 mM MgSO4 and 

20 mM HEPES/Tris buffer. The protein concentration of the BBMV suspension was 

determined by BCA assay and each sample was adjusted to a protein concentration 

of 0.1 mg/mL with reconstitution buffer. 

BBMV fluidity was determined by incubating BBMV suspensions with 1 µM 

TMA-DPH at different temperatures and reading parallel and perpendicular 

fluorescence intensity using the PHERAstar FS microplate reader in fluorescence 

polarisation mode at an excitation wavelength of λ = 355 nm and an emission 

wavelength of λ = 460 nm. Samples were allowed to equilibrate for 15 min after 

each temperature increase of 2 K. Fluorescence anisotropy (r) was calculated 

according to the following equation:  

  
     
      

 

where    is the fluorescence intensity emitted in parallel to the direction of the 

polarized light and    is the fluorescence intensity emitted in the perpendicular 

direction.  

Results are given as the percentage change of anisotropy between fatty acid treated 

cells and controls:  

% change  
          

        
 

 

2.13 Membrane cholesterol removal and quantification 

Cholesterol was removed from the plasma membrane of differentiated Caco-2 

monolayers by incubation with 10 mM methyl-β-cyclodextrin dissolved in 

HBSS + CaCl2 for 30 min. Afterwards, cell layers were washed twice and transport 
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experiments were carried out as described in section 2.4. After transport, cells were 

washed and scraped into microcentrifuge tubes. For analysis of cholesterol content, 

cells were dispersed in 100 µL PBS and extracted three times with 

chloroform:methanol 2:1. Combined extracts were dried under vacuum and 

reconstituted in 100 µL of ethanol. Cholesterol content was quantified using the 

Cayman Chemical Cholesterol Fluorometric Assay Kit according to the 

manufacturer’s instructions. Efficiency of the solvent extraction was 92 %, 

determined by cholesterol spiking of samples.  

2.14 Fatty acid analysis 

Caco-2 cells grown on solid supports were supplemented with 50 μM fatty acid as 

described in section 2.3. On day 22 after seeding, cells were detached using 0.05% 

trypsin in HBSS, washed twice by repeated re-suspension in HBSS and spinning 

down and the final cell pellet was stored at -80°C until analysis. Cells were allowed 

to thaw on ice and were than mixed with CelLytic M lysis buffer at a w/w ratio of 1:10 

cells:buffer and homogenised by passing ten times through a 21gauge needle. 

Homogenised cell suspension was mixed with the internal standards methyl 

heneicosanoic acid (FAME C21:0) and 1,2-ditricosanoyl-sn-glycero-3-

phosphocholine (PC C23:0), methanol, 3 N hydrochloric acid in methanol and 

hexane. The samples were mixed vigorously and incubated at 100°C for 90 minutes. 

After they reached room temperature HPLC grade water was added, the samples 

were mixed again and then centrifuged to aid phase separation. The organic phase 

was collected and analysed by gas chromatography (GC) with flame ionisation (FI) 

detection using an injection volume of 2 μL. Separation was achieved using a Varian 

CP-Sil 88 capillary column on an Agilent 7890A gas chromatograph with 1:25 split 

injection. The carrier gas was hydrogen at a flow rate of 2.5 mL/min. The oven 

temperature programme was the following: 60°C for 5 min, then increase to 165°C 

at a rate of 15 K/min with subsequent hold time of 1 min then increase to 195°C at a 

rate of 2 K/min with a subsequent hold time of 20 min and then an increase to 215°C 
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at a rate of 5 K/min with a subsequent hold time of 8 min. The temperature of the FI 

detector was set to 300°C. Fatty acids were quantified using response factors to the 

internal standards as described previously (142). 

The double bond index was calculated as follows: 

                   

 

   

 

with %FAi being the molar percentage of a fatty acid, nDBi the number of double 

bonds in that fatty acid.  

Results of the fatty acid analysis are given as a relative weight percentage of the 

overall fatty acid content and not as absolute values. This way of presentation was 

chosen because the initial weight of the sample was very low and could thus only be 

measured with a high probability of inaccuracy, especially in the case of cell 

samples harvested from permeable supports.  

2.15  In vitro glucuronidation  

Activity of different UGT isoforms towards epicatechin was tested using recombinant 

human enzymes expressed in insect microsomes. In vitro glucuronidation assay 

was performed as described in Wong et al., 2010 (143). In short, an amount of BD 

Bioscience UGT supersomes corresponding to 0.5 μg protein was incubated at 

37°C in 100 mM phosphate buffer (pH = 7.4) with 100 μM ascorbic acid, 1 mM 

UDPGA, 5 mM saccharolactone, 0.025 mg/mL alamecithin and 50 μM ferulic acid 

for 1 h. The reaction was stopped by adding 10 μL of 500 mM ice cold hydrochloric 

acid in acetonitrile. Then samples were centrifuged for 10 min at 17 000xg and the 

supernatant was analysed by LC-MS/MS as described in section 2.7.  

2.16 Statistics 

All values shown are the mean of n independent experiments ± standard error of the 

mean. For analysis of statistical significance, unpaired Students t-test and ANOVA 

with Bonferroni test for means comparison (where indicated) were used, except for 
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results presented in sections 3.3.1 and 3.3.2, where the Mann Whitney U Test was 

chosen as only two samples were analysed for most conditions and the standard 

distributions in treatment groups were much larger than in control groups. 

Correlation was analysed using Pearson’s correlation. 

2.17 Equipment 

 StepOne Real time PCR System, Applied Biosystems, Life Technologies Ltd, 

Cheshire, UK. 

 Hettich Universal 320R centrifuge, Andreas Hettich GmbH & Co., Tuttlingen, 

Germany 

 PHERAstar FS microplate reader, BMG Labtech, Ortenberg, Germany 

 Multiskan Ascent 96-well plate reader, Thermo Fisher Scientific, Waltham, USA 

 MS 6410 triple quadrupole LC-MS/MS, Agilent Technologies, Santa Clara, USA 

 HPLC Agilent 1200 system, Agilent Technologies, Dorset, UK 

 ‘Simon’ automated capillary electrophoresis system, Protein Simple, San Jose, 

USA 

 Nanodrop ND-1000 spectrophotometer, Thermo Scientific, Loughborough, UK 

 Zeiss LSM510 META upright confocal microscope, Carl Zeiss Microscopy, 

Cambridge, UK 

 Leica EL6000 microscope Leica Microsystems Ltd, Milton Keynes, UK 

 GC Agilent 7890A, Agilent Technologies, Santa Clara, USA 

 Genevac EZ-2 plus, Fisher Scientific Ltd, Leicestershire, UK 

 Milli-Q water purifying system, Millipore, Hertfordshire, UK  
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Chapter 3: The impact of fatty acid supplementation on the Caco-2 cell model 

3.1 Abstract 

To investigate the impact of dietary lipids on polyphenol absorption, a cell culture 

model of the small intestine was used. First, different culturing conditions were 

tested regarding their efficiency to modify cellular fatty acid composition. Incubation 

with fatty acids bound to FBS albumin proved to be a more robust and easier 

method for changing lipid composition than incubation with mixed micelles. Also 

chronic incubation for 22 days resulted in more pronounced and diverse changes 

than incubation for 24 h or 48 h. Fatty acid treatment of cells induced formation of 

lipid droplets, an effect that was intensified when lipid treatment was performed in 

glucose growth medium. However, lipid treatment had no cytotoxic impact on cells, 

when viability was assessed by MTT assay. On the contrary, treatment with PUFA 

even enhanced apparent viability. Tight junction integrity assessed by measuring 

TEER was also not affected. Treatment with PUFA did change plasma membrane 

fluidity significantly: linoleic, α-linolenic and arachidonic acid increased and EPA 

decreased fluidity. Therefore it is concluded, that the chronic treatment of Caco-2 

cells constitutes a good model to study the effect of long term fatty acid 

supplementation on the intestinal epithelium.   
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3.2 Introduction 

A critical property that determines the bioavailability of a compound is its capacity to 

cross the cells of the intestinal epithelium, the first line of defence in a complex 

machinery that nature has created to protect an organism from absorbing potentially 

harmful substances. In order to investigate the impact of lipids on such ability of 

phenolics to cross the intestinal lining, most work was carried out using the Caco-2 

cell culture model, which is widely used and well characterised. This cell line was 

derived from a colon adenocarcinoma, but cells will spontaneously differentiate into 

small intestinal, enterocyte like cell monolayers with a polar morphology and 

function that includes well developed tight junctions, and microvilli on the apical side 

(144). Cells express many key enzymes of lipid (145) and polyphenol (146) 

metabolism and also most uptake and efflux transporters (147) that are found in 

enterocytes of the small intestine, making it a good model to study intestinal 

polyphenol uptake. However, the Caco-2 cell line is still a heterogeneous cell 

population that includes a minor amount of flat undifferentiated cells (148), 

sub-populations with a morphology varying in the organisation of the action 

cytoskeleton, the composition of membrane glycoproteins, in viability and marker 

enzyme density (149, 150). There are a number of studies that used Caco-2 cells to 

investigate lipid absorption (151, 152) and metabolism (85, 91, 153) and it has been 

shown that the lipid composition of these cells can be modified by incubation with 

free fatty acids (154, 155). In the current study the emphasis was placed on a long 

term impact of different dietary lipids on transport across the intestinal epithelium. 

Therefore the Caco-2 small intestinal model was first characterised regarding the 

impact of such long term fatty acid supplementation on some key parameters 

related to physical properties that determine epithelial permeability. 
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3.3 Results 

The impact of different incubation methods on the fatty acid composition of cells was 

compared to identify optimal assay conditions. Then the effect of fatty acid 

modification was analysed regarding the impact on cell viability, lipid storage and 

membrane fluidity. 

3.3.1 Impact of fatty acid presentation as part of micelles or albumin 

complexes on cellular lipid profile 

Previous publications have shown that the lipid composition of cells in culture can be 

modulated by supplementing the growth medium with free fatty acids. In vivo, free 

fatty acids are presented to intestinal cells either from the luminal side of the 

intestine in the form of mixed micelles with bile acids or from the serosal side, bound 

to albumin circulating in the blood stream. Both forms of fatty acid presentation are 

also used in vitro. To investigate whether these two different incubation methods 

result in the same changes in cellular fatty acid composition, the lipid composition of 

differentiated Caco-2 cells treated for 24 h with either 50 μM stearic acid, oleic acid 

or DHA, presented as micelles or albumin bound, was analysed by gas 

chromatography with flame ionisation detection. Table 3.1 shows the concentration 

of the main fatty acids present in the incubation medium. Both micelle and FBS 

incubation medium contained not only the supplemented fatty acid, but also other 

background lipids that stem from either the FBS or the mixed micelles. 10% FBS 

medium already contained 15 to 35 µM of palmitic, stearic and oleic acid. These 

concentrations increased to over 50 µM when further stearic or oleic acid were 

added, but not to the expected amount of around 70 µM. No DHA could be detected 

in 10% FBS medium and after adding 50 μM of that fatty acid this concentration was 

also detected. A ten times higher content of palmitic and oleic acid was detected in 

the medium containing micelles, compared to the FBS incubation medium. The 

stearic acid content of micelle medium was five times higher than that of FBS 
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medium and also ~ 20 µM of linoleic acid were detected in micelle medium but not 

FBS medium. Just as with the 10 % FBS medium, no DHA was detected in the 

micelle control solution and the added fatty acid was recovered. The addition of 

neither stearic nor oleic acid to micelles changed the content of those fatty acids in 

the final incubation medium, indicating that these fatty acids were not incorporated. 

 

 fatty acid [μM] 

incubation medium C16:0 C18:0 C18:1 C18:2 C22:6 

10% FBS medium 34 19 24 n.d. n.d. 

10% medium + 50 µM C18:0 34 57 23 n.d. n.d. 

10% medium + 50 µM C18:1 35 16 59 n.d. n.d. 

10% medium + 50 µM C22:6 34 21 23 n.d. 48 

micelle medium 224 94 243 23 n.d. 

micelles + 50 µM C18:0 221 93 271 22 n.d. 

micelles + 50 µM C18:1 211 87 231 22 n.d. 

micelles + 50 µM C22:6 215 92 265 23 53 

Table 3.1; Fatty acid content of incubation medium with and without fatty acid 

supplementation. An aliquot of the medium prepared as described in chapter 2.3 was taken 

before the start of the experiment and frozen immediately. Lipid content was analysed as 

described in chapter 2.14. C16:0 = palmitic acid, C18:0 = stearic acid, C18:1 = oleic acid, 

C18:2 = linoleic acid, C22:6 = DHA; n = 1; n.d. = not detected
 

It can therefore be concluded that the fatty acid profile of the incubation medium 

differed between the two incubation techniques and that the micelle solution had a 

much higher lipid background than the FBS medium. Even though no PUFA were 

detected in 10 % FBS medium, they were present when the lipid composition of 

undiluted FBS was analysed. After 1:10 dilution in medium, some fatty acids from 

FBS were below the detection limit of ~ 10 μM. Calculating from the undiluted FBS, 
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DHA, arachidonic acid, linoleic acid and α-linolenic acid should be present in 10 % 

FBS medium at the concentrations of 2, 7, 3 and 6 μM, respectively.  

To investigate whether the different amounts of background lipids were able to 

modulate cellular fatty acid content on their own, three different control incubations 

were carried out. Cells were either incubated with serum free medium, 10% FBS 

supplemented medium or micelle solution without added free fatty acid and the fatty 

acid composition of whole cell lipid extracts was analysed (Figure 3.1).  

 

 

Figure 3.1; Comparison of fatty acid composition of Caco-2 cells grown on permeable 

supports, incubated with serum free medium, 10% FBS in medium or micelle solution without 

added fatty acid. 16:0 = palmitic acid, 16:1 = palmitoleic acid, 18:0 = stearic acid, 18:1 = oleic 

acid, 18:2 = linoleic acid, 18:3 = linolenic acid, 20:4 = arachidonic acid, 20:5 = EPA, 

22:6 = DHA; n = 1; For conditions and analysis sections 2.3 and 2.14. 

Cells incubated with micelle solution contained 19% more oleic acid but 

interestingly, 7% less stearic acid  than cells incubated with 10% FBS medium and 

the percentage of linoleic acid was also slightly increased with micelle treatment. 

The increase in oleic and linoleic acid content could be due to the high concentration 

of these fatty acids in the micelle solution (table 3.1). However, the concentration of 

stearic acid was also higher in micelle solution than 10 % FBS medium, but the 

stearic acid content of Caco-2 cells was much lower after incubation with micelles. 

These results show that not all background fatty acids from micelle preparations are 
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equally available to be taken up by the cell. Cells incubated with serum free medium 

had a very similar fatty acid composition to cells incubated with 10% FBS medium 

which is not surprising as cells were incubated in 10 % FBS medium for the previous 

21 days and only switched to serum free medium for the last 24 h. These 

experiments demonstrate that the lipid background of the control medium alone 

already resulted in a modification of cellular fatty acid composition. 

The lipid composition of cells, incubated for 24 h with stearic acid, oleic acid or DHA 

bound to serum albumin or incorporated into mixed micelles, is shown in figures 3.2 

to 3.4, with panel A showing the results for incubation with micelles and panel B 

showing the results for incubation with fatty acids bound to albumin. 

 

 

Figure 3.2; Impact of 24 h incubation of differentiated Caco-2 monolayers grown on 

permeable supports with 50 µM stearic acid on fatty acid composition of cell samples. Panel 

A shows incubations with fatty acids incorporated into micelles, panel B shows incubations 

with fatty acids added to medium containing 10% FBS. 16:0 = palmitic acid, 

16:1 = palmitoleic acid, 18:0 = stearic acid, 18:1 = oleic acid, 18:2 = linoleic acid, 

18:3 = linolenic acid, 20:4 = arachidonic acid, 20:5 = EPA, 22:6 = DHA; n = 2, N = 1; For 

conditions and analysis see sections 2.3 and 2.14. 

Treatment with 50 µM stearic acid in 10 % FBS medium increased the content of 

that fatty acid in Caco-2 cells by 7 % and decreased the palmitic acid content by 

6.8 % (figure 3.2B). Incubation with stearic acid incorporated into micelles increased 
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the percentage of that fatty acid by 2.8 % and decreased the percentage of oleic 

acid by 3.1 %, without a change in palmitic acid percentage (figure 3.2A). 

Treatment with oleic acid incorporated into micelles had no effect on cellular fatty 

acid composition (figure 3.3A). This result is in accordance with the analysis of the 

incubation medium, which showed that addition of free oleic acid did not change the 

concentration of that fatty acid in the micelle solution. Adding oleic acid to medium 

with 10 % FBS resulted in an 11 % increase of that fatty acid in the cellular lipid 

extract and a 4 % decrease of each palmitic acid and stearic acid (figure 3.3B).  

 

 

Figure 3.3; Impact of 24 h incubation of differentiated Caco-2 monolayers grown on 

permeable supports with 50 µM oleic acid on fatty acid composition of cell samples. Panel A 

shows incubations with fatty acids incorporated into micelles, panel B shows incubations 

with fatty acids added to medium containing 10% FBS. 16:0 = palmitic acid, 

16:1 = palmitoleic acid, 18:0 = stearic acid, 18:1 = oleic acid, 18:2 = linoleic acid, 

18:3 = linolenic acid, 20:4 = arachidonic acid, 20:5 = EPA, 22:6 = DHA; n = 2, N = 1; For 

conditions and analysis see sections 2.3 and 2.14. 

Figure 3.4 shows that incubation with 50 µM DHA greatly increased the 

concentration of that fatty acid in the cell lipid extract with both incubation methods.  

With micelle incubation the percentage of DHA rose from 2 % to 8 % and reduced 

the content of oleic acid by 6 % (figure 3.4A). With FBS incubation, the percentage 

of DHA rose from 5 % to 21 % and reduced the content of palmitic, stearic and oleic 

acid by 5 %, 4 % and 5 %, respectively (figure 3.4B). 
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Figure 3.4; Impact of 24 h incubation of differentiated Caco-2 monolayers grown on 

permeable supports with 50 µM DHA on fatty acid composition of cell samples. Panel A 

shows incubations with fatty acids incorporated into micelles, panel B shows incubations 

with fatty acids added to medium containing 10% FBS. 16:0 = palmitic acid, 

16:1 = palmitoleic acid, 18:0 = stearic acid, 18:1 = oleic acid, 18:2 = linoleic acid, 

18:3 = linolenic acid, 20:4 = arachidonic acid, 20:5 = EPA, 22:6 = DHA; n = 2, N = 1; For 

conditions and analysis see sections 2.3 and 2.14. 

Overall incorporation of selected fatty acids was more pronounced when fatty acids 

were bound to FBS albumin than when incorporated into micelles. Also the micelle 

medium had a high background of other fatty acids that dominated the desired 

change in cellular fatty acid composition. Therefore the incubation condition with 

10 % FBS medium was chosen for all further studies.  

3.3.2 Modification of cellular fatty acid content by chronic and acute 

incubation with fatty acids bound to serum albumin 

Most studies investigating the impact of lipid supplementation on the fatty acid 

profile of cells in culture have used an incubation time of a few hours to a few days, 

whereas animal studies addressing the same question were usually carried out with 

a feeding period of several weeks. It is generally assumed that cells in vitro will 

respond in a very similar way to changing fatty acid availability as in vivo, but in a 

much shorter time. However, so far it has not been reported whether the response 

of cells in culture to changing lipid availability varies with the length of the incubation 

period. This question was addressed by comparing the pattern of changes occurring 
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with acute fatty acid supplementation of Caco-2 cells for 48 h and chronic incubation 

of cells over their entire differentiation time of 22 to 23 days. 

Table 3.2 shows the change in overall percentage of the most abundant cellular fatty 

acids in supplemented cells, compared to cells incubated with 10 % FBS medium 

only. In general, most changes were similar with acute and chronic treatment but the 

impact was more pronounced in cells supplemented for their entire differentiation 

time. Some of the most interesting modifications of individual fatty acids are 

highlighted in table 3.2. The most prominent impact of supplementation was the 

incorporation of high amounts of all unsaturated fatty acids, that were additionally 

supplied, into the cellular lipid profile of up to + 32 % of overall fatty acid content with 

chronic arachidonic acid supplementation (table 3.2, frame a). Supplementation with 

stearic acid had no impact on cellular stearic acid content. 



 

Table 3.2; Impact of chronic and acute supplementation on change in overall percentage of cellular fatty acids. Cells were grown on solid supports and 

incubated with 50 µM fatty acid for 22 - 23 days or 48 h as described in section 2.3 and analysed as described in section 2.14. C16:0 = palmitic acid, 

C16:1 = palmitoleic acid, C18:0 = stearic acid, C18:1 = oleic acid, C18:2 = linoleic acid, C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, 

C22:6 = DHA, SFA = saturated fatty acid, MUFA = monounsaturated fatty acid, PUFA = polyunsaturated fatty acid 

  supplementation 

%  C18:0 C18:1 n-9 C18:2 n-6 C18:3 n-3 C20:4 n-6 C20:5 n-3 C22:6 n-3 

Fatty acid  chronic acute chronic acute chronic acute chronic acute chronic acute chronic acute chronic acute 

C16:0  - 0.7 -1.2 - 4.2 - 1.6 + 0.1 - 0.2 + 1.5 - 0.5 + 1.5 - 1.5 + 9.6  + 4.3 + 0.3 

C16:1 n-7  + 0.3 +1.4 - 3.6 - 1.2 - 4.9 - 2.2 - 6.3 - 0.9 - 7.4 - 2.0 - 6.4  - 7.0 - 0.7 

C18:0  + 1.2 + 2.4 - 3.4 - 0.9 - 0.3 + 1.2 + 4.9 + 0.6 + 9.1 + 0.1 + 7.1  + 5.8 - 0.1 

C18:1 n-9  + 6.6 + 2.6 + 17.5 + 8.6 - 17.8 - 6.3 - 22.7  0 - 27.7 - 3.2 - 24.2  - 27.2 - 7.2 

C18:2 n-6  - 3.6 - 3.4 - 2.5 - 2.3 + 23.2 + 9.4 - 0.5 -4.1 - 2.7 - 1.2 - 1.5  - 2.9 - 3.6 

C18:3 n-3  - 0.4 - 0.2 + 1.3 - 0.8 - 0.3 - 0.3 + 20.5 + 7.7 - 1.7 + 0.2 - 0.8  - 1.3 - 0.4 

C20:4 n-6  - 1.7 - 0.8 - 2.5 - 1.4 + 0.2 -0.9 - 2.0 -1.7 + 31.9 + 9.2 - 2.0  -  2.7 - 1.3 

C20:5 n-3  - 1.1 - 0.4 - 1.2 - 0.6 - 2.1 - 0.9 + 4.7 -2.1 - 2.1 - 1.3 + 20.5  + 9.0 + 0.2 

C22:6 n-3  - 1.3 - 0.5 - 1.9 - 0.7 - 1.7 - 0.9 - 1.4 -1.3 - 1.9 - 1.6 - 1.1  + 21.9 + 12.2 

SFA  + 1.8 + 2.3 - 7.3 - 1.7 + 0.9 + 2.4 + 7.6 + 2.4 + 11.5 + 0.6 + 16.7  + 11.2 + 1.0 

MUFA  + 6.7 + 2.8 + 14.3 + 7.4 - 22.9 - 8.5 - 29.5 - 1.1 - 35.7 - 5.2 - 30.9  - 34.8 - 8.2 

Σ PUFA  - 8.4 - 5.0 - 6.8 - 5.6 + 22.0 + 6.2 + 22.1 - 1.3 + 24.4 + 4.8 + 14.3  + 23.6 + 7.3 

n-6 PUFA  - 5.7 - 4.0 - 5.2 - 3.5 + 26.1 + 8.2 - 1.8 - 5.6 + 30.0 + 7.4 - 4.2  - 6.0 - 4.8 

n-3 PUFA  - 2.8 - 1.1 - 1.7 - 2.1 - 4.2 - 2.0 + 23.8 + 4.3 - 5.7 - 2.7 + 18.5  + 29.6 + 12.0 

n  2 1 2 1 1 1 2 1 2 1 1 0 2 1 

 a 

 d  e 

 b 

 c 

 d 

 c 
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Table 3.3; Lipid composition of Caco-2 cells grown on solid supports and treated with 50 µM 

of different fatty acids for 22 - 23 days. Results are given as weight percentage of total fatty 

acids. Numbers in bold differ significantly from control cells grown in 10% FBS medium with 

p = 0.083. nd = not detected, All replicate samples were obtained on different days, partly 

from different batches of cells (N = 1, 2 or 3). For conditions and analysis see sections 2.3 

and 2.14. C16:0 = palmitic acid, C16:1 = palmitoleic acid, C18:0 = stearic acid, C18:1 = oleic 

acid, C18:2 = linoleic acid, C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, 

C22:6 = DHA, SFA = saturated fatty acid, MUFA = monounsaturated fatty acid, 

PUFA = polyunsaturated fatty acid   

  supplementation 

Fatty acid 

[%] 
 

control 

 

C18:0 

 

C18:1 

n-9 

C18:2 

n-6 

C18:3 

n-3 

C20:4 

n-6 

C20:5 

n-3 

C22:6 

n-3 

C16:0  20.1 ± 0.9 19.4 ± 2.0 15.9 ± 0.3 20.1 21.6 ± 1.4 21.6 ± 1.3 29.6 24.4 ± 2.5 

C16:1 n-7  9.2 ± 0.7 9.5 ± 0.9 5.6 ± 0.4 4.3 2.9 ± 0.7 1.8 ± 0.1 2.8 2.2 ± 0.04 

C18:0  10.5 ± 0.6 11.7 ± 1.8 7.1 ± 0.3 10.2 15.4 ± 0.3 19.6 ± 1.6 17.6 16.3 ± 1.0 

C18:1 n-9  38.3 ± 0.6 44.9 ± 3.0 55.8 ± 0.7 20.5 15.6 ± 1.9 10.6 ± 0.2 14.1 11.1 ± 1.3 

C18:2 n-6  4.8 ± 0.1 1.2 ± 0.3 2.3 ± 0.6 28.0 4.3 ± 0.2 2.1 ± 0.7 3.3 1.9 ± 1.0 

C18:3 n-3  2.0 ± 0.1 1.6 ± 0.5 3.3 ±0.001 1.7 22.5 ± 6.5 0.3 ± 0.3 1.2 0.7 ± 0.2 

C20:0  nd 0.6 ± 0.6 0.6 ± 0.05 0.9 0.7 ± 0.03 0.7 ± 0.1 nd 0.7 ± 0.1 

C20:3 n-6  0.7 ± 0.4 0.3 ± 0.3 0.5 ± 0.05 0.8 0.6 ± 0.1 1.4 ± 0.4 nd 0.8 ± 0.3 

C20:4 n-6  5.1 ± 0.5 3.4 ± 1.0 2.6 ± 0.2 5.3 3.1 ± 0.1 37.0 ± 3.7 3.1 2.4 ± 0.2 

20:5 n-3  2.1 ± 0.2 1.0 ± 0.1 0.9 ± 0.04 nd 6.8 ± 3.2 nd 22.6 11.1 ± 1.2 

C24:0  1.1 ± 0.1 1.8 ± 0.1 1.0 ± 0.1 1.6 1.4 ± 0.2 1.5 ± 0.2 1.1 1.8 ± 0.2 

C24:1 n-9  1.2 ± 0.1 1.0 ± 0.1 1.6 ± 0.00 1.0 0.7 ± 0.1 0.6 ± 0.05 0.8 0.6 ± 0.04 

C22:6 n-3  3.6 ± 0.5 2.3 ± 0.5 1.7 ± 0.01 1.9 2.2 ± 0.2 1.7 ± 0.1 2.5 25.5 ± 3.4 

SFA  33.0 ± 0.3 34.8 ± 0.2 25.7 ± 0.8 33.9 40. ± 1.3 44.5 ± 3.0 49.7 44.2 ± 3.3 

MUFA  48.7 ± 1.2 55.4 ± 1.9 63.0 ± 1.1 25.8 19.2 ± 2.7 13.0 ± 0.3 17.8 13.9 ± 1.4 

Σ PUFA  18.2 ± 1.5 9.8 ± 2.1 11.4 ±0.3 40.2 40.3 ± 4.0 42.6 ± 3.2 32.5 41.8 ± 1.9 

n-6 PUFA  10.6 ± 1.1 4.8 ± 1.6 5.4 ± 0.9 36.7 8.7 ± 0.6 40.6 ± 4.5 6.3 4.6 ± 1.5 

n-3 PUFA  7.7 ± 0.8 4.9 ± 1.0 6.0 ± 0.1 3.5 31.5 ± 9.8 2.0 ± 0.4 26.2 37.3 ± 4.7 

DBI  112 91 101 122 152 169 156 216 

N  3 2 2 1 2 2 1 2 
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Supplementation with n-3 PUFA reduced the percentage of n-6 PUFA and vice 

versa (table 3.3). Treatment of cells with linoleic or arachidonic acid resulted in a 

decrease in EPA content to the below detection limit. 

Supplementation with PUFA also led to a decrease in MUFA and an increase in 

SFA levels. Palmitic and stearic acid together make up 96 % of all cellular SFA. 

98 % of MUFA are palmitoleic and oleic acid (table 3.3). These four fatty acids can 

all be synthesised endogenously, but palmitic, stearic and oleic acid are also 

supplied with the medium (table 3.1). Palmitic acid levels are not affected by PUFA 

supplementation (table 3.2 frame b and table 3.4) indicating that fatty acid treatment 

has no impact on endogenous synthesis involving cytosolic FAS. Palmitic acid levels 

are unchanging but the desaturation of palmitic to palmitoleic acid is affected by 

PUFA treatment, resulting in decreased palmitoleic acid levels, which contributes to 

the overall decrease in MUFA with PUFA supplementation. The enzyme catalysing 

this reaction is the Δ9-desaturase. These results would indicate that PUFA 

supplementation is affecting either the expression or activity of Δ9-desaturase. 

 

  chronic supplementation  acute supplementation 

  control C18:2 C18:3 C20:4 C22:6  control C18:2 C18:3 C20:4 C22:6 

C16:0  20.1 20.1 21.6 21.6 24.4  20.1 19.9 19.5 18.6 20.4 

C16:1  9.2 4.3 2.9 1.8 2.2  9.2 7.0 8.3 7.2 8.5 

Σ C16  29.3 24.5 24.5 23.4 26.6  29.3 26.9 27.8 25.8 28.9 

Table 3.4; Impact of chronic and acute PUFA supplementation on cellular palmitic and 

palmitoleic acid content. Excerpt from table 3.3. For conditions and analysis see sections 2.3 

and 2.14. C16:0 = palmitic acid, C16:1 = palmitoleic acid, C18:2 = linoleic acid, 

C18:3 = linolenic acid, C20:4 = arachidonic acid, C22:6 = DHA 

While the content of the SFA palmitic acid remained unchanged, the content of the 

SFA stearic acid increased with all PUFA treatments except linoleic acid (table 3.2 

frame c). Cells can take up stearic acid from the medium, mainly by passive 

diffusion and, to a much lesser extent, by caveolin-mediated endocytosis and via the 
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uptake transporter CD36 (78). But as none of these mechanisms are selective for 

one type of fatty acid over another, it is not plausible that a change in fatty acid 

uptake from the medium is responsible for changing stearic acid levels while the 

palmitic acid content remains stable. Therefore this effect is more likely due to an 

impact of PUFA on endogenous synthesis of stearic acid, involving the enzyme 

ELOVL6. The precursor of stearic acid is palmitic acid. Since palmitic acid levels are 

not affected by PUFA treatment, such changes in stearic acid levels are not due to a 

change in substrate availability for ELOVL6, but instead it seems that PUFA have an 

impact on the enzyme’s activity or expression. However, looking more closely at the 

data, it becomes apparent that the increase in cellular stearic acid content is 

correlated with a decrease in oleic acid levels (table 3.5). Endogenous synthesis of 

oleic acid requires the precursor stearic acid and the enzyme Δ9-desaturase. The 

sum of cellular oleic and stearic acid concentrations remains the same with all PUFA 

treatments. It therefore seems that all PUFA treatments reduced the oleic acid 

content by ~ 20 % and then the saturation level of the remaining ~ 30 % of stearic + 

oleic acid is regulated by an impact of individual PUFA on the Δ9-desaturase activity, 

as already observed with the desaturation of palmitic to palmitoleic acid. 

 

  chronic supplementation  acute supplementation 

  control C18:2 C18:3 C20:4 C22:6  control C18:2 C18:3 C20:4 C22:6 

C18:0  10.5 10.2 15.4 19.6 16.3  10.5 11.7 11.1 10.6 10.4 

C18:1  38.3 20.5 15.6 10.6 11.1  38.3 32 38.3 35.1 31.1 

Σ C18  48.8 30.7 31.0 30.2 27.4  48.8 43.7 49.4 45.7 41.5 

Table 3.5; Impact of chronic and acute PUFA supplementation on cellular stearic and oleic 

acid content. Excerpt from table 3.3. For conditions and analysis see sections 2.3 and 2.14. 

C18:0 = stearic acid, C18:0 = oleic acid, C18:2 = linoleic acid, C18:3 = linolenic acid, 

C20:4 = arachidonic acid, C22:6 = DHA 

The effect of PUFA on palmitic and stearic acid desaturation is mainly observed in 

chronic but not acute treatment (tables 3.4 and 3.5), indicating that these are cellular 
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responses which are not induced by acute lipid doses but more with long term 

changes in dietary patterns.  

Supplementation with linoleic or α-linolenic acid did not result in a large increase in 

downstream reaction products although those two EFA should be elongated and 

desaturated to yield highly unsaturated fatty acids (HUFA) of the n-3 and n-6 

pathway (table 3.2 frame d). In vivo, these reactions occur mainly in liver and 

adipose tissue and to a much lesser extend in enterocytes. But ELOVL5 and 

ELOVL7, which catalyse the chain elongation, are expressed ubiquitously and 

FADS2, which catalyses the desaturation, the rate limiting step in this process, is 

also expressed in Caco-2 cells. Moreover, Caco-2 cells have previously been shown 

to be able to process EFA to HUFA (156). One pathway of fatty acid processing that 

is well observed here is the retro-conversion of DHA to EPA through peroxisomal β-

oxidation (table 3.2 frame e).  

Fatty acid supplementation did not only affect the percentage of individual cellular 

fatty acids but also dramatically changed the profile of SFA, MUFA and PUFA. 

Supplementation with PUFA increased the percentage of cellular PUFA to ~ 40 % 

while decreasing the percentage of MUFA to about one third of the control value and 

increasing the percentage of SFA by about one third. The relationship between 

these three groups of fatty acids is shown in figure 3.5.  
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Figure 3.5; Impact of fatty acid supplementation (as indicated on the abscissa) on 

desaturation profile. For conditions and analysis see sections 2.3 and 2.14. C18:0 = stearic 

acid, C18:1 = oleic acid, C18:2 = linoleic acid, C18:3 = linolenic acid, C20:4 = arachidonic 

acid, C20:5 = EPA, C22:6 = DHA 

There is a clear inverse correlation between the percentage of MUFA and the 

percentage of PUFA in cellular lipids. The correlation between the three groups of 

unsaturation in different treatments is shown in figures 3.6 to 3.8. 
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Figure 3.6; Correlation between MUFA and PUFA in Caco-2 cells grown on solid supports 

and chronically treated with 50 µM fatty acid. Each data point represents an incubation with a 

different fatty acid as indicated in the label. For conditions and analysis see sections 2.3 and 

2.14. r = Pearson correlation coefficient; C18:0 = stearic acid, C18:1 = oleic acid, 

C18:2 = linoleic acid, C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, 

C22:6 = DHA 

 

 

 

Figure 3.7; Correlation between SFA and PUFA in Caco-2 cells grown on solid supports 

chronically treated with 50 µM fatty acid. Each data point represents incubation with a 

different fatty acid as indicated in the label. For conditions and analysis see section 2.3 and 

2.14. r = Pearson correlation coefficient; C18:0 = stearic acid, C18:1 = oleic acid, 

C18:2 = linoleic acid, C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, 

C22:6 = DHA 

control 18:0 

18:1 

18:2 

18:3 

20:4 

20:5 

22:6 

0 

10 

20 

30 

40 

50 

60 

70 

0 10 20 30 40 50 

%
 M

U
F

A
 

% PUFA 

r = - 0.989, p = 0.0002 

control 
18:0 

18:1 
18:2 

18:3 

20:4 20:5 22:6 

0 

10 

20 

30 

40 

50 

60 

0 10 20 30 40 50 

%
 S

F
A

 

% PUFA 

r = 0.895, p = 0.016 



- 71 - 
 

 

Figure 3.8; Correlation between MUFA and SFA in Caco-2 cells grown on solid supports and 

chronically treated with 50 µM fatty acid. Each data point represents incubation with a 

different fatty acid as indicated in the label. For conditions and analysis see sections 2.3 and 

2.14. r = Pearson correlation coefficient; C18:0 = stearic acid, C18:1 = oleic acid, 

C18:2 = linoleic acid, C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, 

C22:6 = DHA 

 

With a coefficient of correlation of – 0.959, there is a strong dependence of MUFA 

on PUFA content in fatty acid supplemented cells (figure 3.6), mainly due to the 

above described decrease of oleic acid levels. The slightly less strong correlation 

between MUFA and SFA (figure 3.8) is probably also reflecting the PUFA impact on 

desaturation of stearic to oleic acid, as discussed above (figure 3.5). Interestingly, 

supplementation with stearic acid has the same effect as supplementation with oleic 

acid on the overall degree of unsaturation of cellular lipids. Both fatty acids decrease 

the double bond index of whole cell lipid extracts whereas all other treatments 

increase this parameter (table 3.3).  

3.3.3 Impact of fatty acid supplementation on cell viability  

The results described above indicate that the fatty acid content of Caco-2 cells can 

be modified by addition of free fatty acids to FBS containing medium and that 

chronic treatment results in greater changes than acute treatment. 

0 

10 

20 

30 

40 

50 

60 

70 

0 10 20 30 40 50 60 

%
 M

U
F

A
 

% SFA 

20:5 

18:0 

18:1 

control 

18:2 18:3 

22:6 
20:4 r = - 0.95, p = 0.0037 



- 72 - 
 

 

Figure 3.9; Impact of chronic fatty acid supplementation on viability assessed by TEER fold 

change. For further information see sections 2.3 and 2.5. C8 = octanoic acid, C12 = lauric 

acid, C16 = palmitic acid, C18:0 = stearic acid, C18:1 = oleic acid, C18:2 = linoleic acid, 

C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, C22:6 = DHA; n = 6, N = 1; 

* = p < 0.05; 

Figure 3.9 shows the impact of chronic incubation with different fatty acids on 

TEERvalues, indicating tight junction integrity and figure 3.10 shows the impact of 

fatty acid supplementation on cell viability, determined by MTT assay. Only the 

medium chain fatty acid caprylic acid decreased TEER and treatment with oleic acid 

increased TEER slightly. Interestingly, all PUFA treatments increased apparent 

viability of cells, indicating that chronic PUFA supplementation had no cytotoxic 

effect. Only oleic acid treatment decreased viability.   
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Figure 3.10; Impact of fatty acid supplementation on viability assessed by MTT assay. For 

further information see sections 2.3 and 2.5. C8 = octanoic acid, C12 = lauric acid, 

C16 = palmitic acid, C18:0 = stearic acid, C18:1 = oleic acid, C18:2 = linoleic acid, 

C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, C22:6 = DHA; n = 6, N = 1; 

* = p < 0.05 

3.3.4 Cellular lipid accumulation 

It has previously been reported that cells in culture are prone to store supplemented 

fatty acids in form of triacylglycerides in intracellular lipid droplets. PUFA such as 

DHA and EPA have been associated with reduced lipid droplet accumulation in 

adipocytes (157). To investigate whether chronic supplementation of Caco-2 cells 

with 50 μM fatty acid, as performed here, leads to lipid droplet formation, cells were 

treated with DHA for their entire differentiation period and then stained with the 

hydrophobic probe nile red to identify intracellular storage lipids. It was assumed 

that if DHA incubation, which is usually reported to reduce lipid accumulation, 

induces lipid droplets, then other fatty acids will have a similar effect. 
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                   5 mM glucose             25 mM glucose 

              control        + DHA   control        + DHA 

         

         

         
 

         

         

         

Figure 3.11, Lipid droplet formation in Caco-2 and HT29-MTX cells grown on permeable 

supports in high or low glucose medium and treated with 50 μM DHA for 22 days. Nuclei are 

shown in blue, lipid deposits in red. Representative images of three independent 

experiments are shown (n = 3, N = 1). For conditions and analysis see sections 2.3 and 

2.10.  
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Figure 3.11 shows the impact of glucose concentration and DHA supplementation 

on lipid accumulation in the two intestinal cell lines used in this study. Different 

glucose concentrations were tested because both medium with high (25 mM) and 

physiological (5 mM) glucose concentration is routinely used to culture Caco-2 cells. 

Nile red is a fluorescence probe that will selectively integrate into hydrophobic 

structures and its fluorescence signal is quenched in an aqueous environment (158). 

It will therefore give a strong signal when dissolved in the neutral lipid core of lipid 

droplets, but will also show a weak signal when incorporated into cellular 

membranes, as especially clearly observed with the low glucose control incubation 

of HT29-MTX cells. 

Figure 3.11 shows that Caco-2 cells which had not been fatty acid supplemented 

already contained some intracellular lipid deposits when grown in either low or high 

glucose medium, but there was a stronger fluorescence signal with high glucose 

medium. With DHA supplementation, cells grown in low glucose medium, as well as 

cells grown in high glucose medium, developed pronounced intracellular lipid 

bodies. With high glucose, lipid droplets were of larger size than with low glucose 

medium. 

HT29-MTX cells showed no lipid accumulation when grown in low glucose control 

medium and only very little when grown in high glucose control medium. With DHA 

addition, HT29-MTX cells grown in low glucose medium developed some 

intracellular lipid droplets but with high glucose medium there was a dramatic 

accumulation of lipid bodies.  

Since especially HT29-MTX cells accumulated substantially more lipids with high 

glucose medium in combination with fatty acids, low glucose medium was chosen 

for all further experiments. 
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Figure 3.12; Size of intracellular lipid bodies in Caco-2 cells grown on permeable supports in 

10 % FBS medium for 22 days. A) Image of Nile Red stained Caco-2 cells as shown in figure 

3.10. B) Detail of image A) showing intracellular lipid accumulations and scale bars. C) 

length of scale bars shown in B) in μM.  

Most fatty acids that are taken up from the luminal side of small intestinal 

enterocytes are re-esterified into triacylglycerols and can be either transiently stored 

in cytosolic lipid droplets or assembled into lipoproteins or chylomicrons and 

released into the bloodstream. Caco-2 cells are also able to excrete lipoproteins and 

chylomicrons into the medium (145, 159). Chylomicrons have a size of 0.08 –

 1.2 μm whereas lipid droplets, in non adipose tissues, can reach a diameter of up to 

6 μm (75). Figure 3.11 shows a typical example image of the nile red staining, 

where the area surrounding the nucleus has been enlarged to show the lipid staining 

in more detail. Most of the lipid bodies observed here had a diameter of < 1 μm 

which could make them either large chylomicrons or lipid droplets. Some had a 

diameter of > 1.3 μm which clearly identifies them as lipid droplets (figure 3.12). 

Most of the nile red fluorescence signal seems to cluster around the nucleus 

indicating ER localisation. Lipid droplets localise to the cytoplasm but they are 

formed and bud from the ER (75, 86). It can therefore not definitively be determined 
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whether the small lipid bodies observed around the nucleus are indeed lipid droplets 

or whether they are lipoproteins assembled in the secretory pathway. 

3.3.5 Impact of chronic fatty acid supplementation on membrane fluidity  

The impact of chronic fatty acid supplementation of Caco-2 cells on membrane 

fluidity was assessed using the fluorescence probe TMA-DPH (figure 3.13). To 

assess this parameter there are a number of different probes available which insert 

into the membrane in different ways and at different depth, giving information on the 

fluidity at this precise localisation. TMA-DPH was chosen as it mimics phospholipid 

components well, with a polar headgroup and a non-polar chain, it has a general 

structure that is similar to membrane lipids (160).  

 

 

Figure 3.13; Chemical structure of fluorescence probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-

hexatrien-1-yl)phenylammonium p-toluenesulfonate (TMA-DPH). 

BBMV were isolated from differentiated cells chronically supplemented with 50 μM 

fatty acid and incubated with TMA-DPH. The fluorescence probe was then excited 

with polarised light and the ratio of signal emitted in parallel and perpendicular 

direction was determined, which reflects the degree of restriction that the membrane 

exerts on the free movement of the probe. Fluorescence anisotropy was assessed 

at an array of temperatures ranging from 25°C to 45°C. Figure 3.14 shows the 

temperature dependence of and the effect of different fatty acids on fluorescence 

anisotropy in BBMV. Anisotropy decreased with increasing temperature and with 

supplementation of cells with unsaturated fatty acids. 
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Figure 3.14; Fluorescence anisotropy of brush border membrane vesicles isolated from 

differentiated Caco-2 cells that were grown on solid supports and either chronically 

supplemented with 50 μM fatty acid or solvent vehicle (EtOH) or untreated (control). 

C18:0 = stearic acid, C18:1 = oleic acid, C18:2 = linoleic acid, C18:3 = linolenic acid, 

C20:4 = arachidonic acid; n = 4, N =2; For clarity of the graph, error bars were omitted (see 

figure 3.15). For details on culture, isolation and analysis see section 2.2, 2.3 and 2.12. 

All treatments, except for EPA and DHA, were compared to membrane fluidity of 

BBMV isolated from Caco-2 cells grown in 10 % FBS medium. Cells treated with 

EPA or DHA were also supplemented with 100 μM of the antioxidant vitamin E to 

prevent oxidation of the HUFA in the growth medium, which would induce oxidative 

stress of cells. Vitamin E supplementation of cells differentially lowered membrane 

anisotropy, with no change compared to non-supplemented cells at 25°C, but 

decreased with increasing temperatures. Because of that, anisotropy of cells 

supplemented with DHA or EPA was normalised to cells grown in 10 % FBS 

medium supplemented with 100 μM vitamin E, as shown in figure 3.15.  
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Figure 3.15; Fluorescence anisotropy of brush border membrane vesicles isolated from 

differentiated Caco-2 cells that were grown on solid supports and chronically treated with 

100 μM vitamin E and either 50 μM EPA (C20:5) or DHA (C22:6) or solvent vehicle. For 

clarity of the graph, error bars were omitted (see figure 3.15). n = 4, N = 2 For details on 

culture, isolation and analysis see section 2.2, 2.3 and 2.12. 

For several anisotropy curves an inflexion point was noted, which indicates a phase 

change in the lipid membrane from gel phase to liquid crystalline phase at that 

temperature. Therefore anisotropy values were plotted against the reciprocal 

temperature and linear regression lines were fitted to find the approximate 

temperature value at which such a phase change occurs in different lipid treatment 

groups (figure 3.16). The results are summarised in table 3.6 together with the P-

values obtained from ANOVA analysis of significant differences in fluorescence 

anisotropy between BBMV isolated from untreated and lipid supplemented Caco-2 

cells.  
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Figure 3.16; Fluorescence polarisation of individual lipid treatment groups in relation to the 

reciprocal temperature. C18:0 = stearic acid, C18:1 = oleic acid, C18:2 = linoleic acid, 

C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, C22:6 = DHA, 

VitE = vitamin E, EtOH = ethanol. For details on conditions and analysis see sections 2.2, 

2.3, 2.12 and 2.16. 
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Supplementation of the growth medium with linoleic, α-linolenic and arachidonic acid 

resulted in a significant decrease in fluorescence anisotropy, which corresponds to 

an increase in membrane fluidity. Stearic acid, oleic acid, EPA and DHA had no 

significant effect. Ethanol was used for preparing fatty acid stock solutions and was 

present in treatment groups and also in control groups for transport experiments at a 

concentration of ~ 100 mM. It has been reported that ethanol increases membrane 

fluidity (161). To test whether the presence of the solvent has an impact on 

membrane fluidity here, the fluorescence anisotropy of BBMV isolated from 

chronically ethanol supplemented Caco-2 cells were compared to BBM isolated from 

cells grown without supplementation of solvent or fatty acid. Membrane fluidity was 

slightly increased in ethanol treated samples at higher temperature, but these 

changes were not significant.  
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supplementation P-value 
~ T inflexion 

point [°C] 

control  37 

EtOH 0.883 34 

C18:0 1 31 

C18:1 0.066 34 

C18:2 0.0006 37 

C18:3 0.036 ? 

C20:4 0.012 33 

VitE  36 

C20:5 0.412 34 

C22:6 0.731 ? 

Table 3.6; Membrane fluidity significance level and phase transition temperature for brush 

border membrane vesicles isolated from Caco-2 cells chronically supplemented with different 

fatty acids. All treatments were compared to brush border membrane vesicles isolated from 

untreated control cells, except EPA and DHA treatments, which were compared to samples 

obtained from cells chronically supplemented with vitamin E. C18:0 = stearic acid, 

C18:1 = oleic acid, C18:2 = linoleic acid, C18:3 = linolenic acid, C20:4 = arachidonic acid, 

C20:5 = EPA, C22:6 = DHA, VitE = 
 
vitamin E, For details on analysis see sections 2.12 and 

2.16. 

A possible phase transition point in BBMV was analysed as shown in figure 3.16. 

Even though ethanol had no significant impact on membrane fluidity it reduced the 

phase transition temperature by ~ 3 K. Stearic acid, oleic acid and EPA also 

reduced the phase transition temperature, but no obvious inflexion point could be 

observed in BBMV isolated from linolenic acid or DHA supplemented cells. 
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3.4 Discussion  

Different incubation conditions were tested for a long term, dietary pattern cell 

culture model and the impact of modification of the cellular fatty acid composition on 

basic parameters was assessed.  

Previous reports have shown that fatty acids incorporated into micelles are taken up 

much faster and more efficiently than fatty acids bound to albumin and that uptake 

from the apical side of Caco-2 cells occurs at a higher rate than uptake from the 

basolateral side (162-164). Such studies were usually carried out with the help of 

isotopically labelled free fatty acids which are then traced through different 

compartments and metabolic pathways. While this approach gives valuable insight 

into the preferred incorporation of supplemented fatty acids into different lipid 

classes (triglycerides, phospholipids, etc.) and into eventual intracellular storage or 

excretion in form of different lipid particles, it does not provide information on overall 

changes in cellular lipid composition induced by the treatment. Mixed micelles are 

made up of different kinds of lipids and bile acids but since it is only the free fatty 

acid which is isotopically labelled, the impact of other fatty acid moieties cannot be 

monitored. The lipid component of mixed micelles is typically made up of a 

monoglyceride (in the present study that was monoolein), phosphatidylcholine and 

lysophosphatidylcholine, where the fatty acid composition is usually not well defined 

as they are extracted from natural sources like egg yolk or soybean and contain a 

mixture of different acyl moieties. Not only free fatty acids, but also 

monoacylglycerols, can be absorbed by Caco-2 cells and used for phospholipid and 

triacylglycerol synthesis. Caco-2 cells display low level phospholipase and 

lysophospholipase activity (165) and therefore the fatty acids derived from those 

micelle components can also be taken up and turned over. Such impact of other 

micelle lipid components has been observed in the current study where micelle 

treatment of Caco-2 cells resulted in a cellular lipid modification dominated by the 

monoacylglycerol component and only to a lesser extent by the free fatty acid. A 
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much more controlled lipid modification was achieved when fatty acids were 

presented in the form of albumin complexes.  

For short term incubations of a few minutes to a few hours, fatty acids are usually 

complexed to lipid free bovine serum albumin (BSA) at high concentrations in buffer 

and afterwards diluted to the final concentration, and then sterile filtered (166). With 

this method, there is a precisely defined concentration of fatty acids and nutrients in 

the experimental set-up. But with long term incubation, as employed here, this 

approach is very cumbersome as other factors that are needed for cell growth and 

development, which are contained in FBS (such as growth and adhesion factors, 

trace elements and vitamins), would have to be added individually to the serum free 

medium. Adding fatty acids dissolved in ethanol directly to FBS-containing growth 

medium under sterile conditions, as chosen here, is a much easier method, but will 

not result in a precisely defined nutrient composition of the medium. However, since 

a model of chronic dietary pattern was sought, it would be a highly artificial situation 

to incubate enterocytes with only one single type of fatty acid as the entire source of 

lipids and would ultimately lead to EFA deficiency in the model. Since FBS contains 

low levels of PUFA, a domination of the metabolic impact of EFA deficiency over the 

desired effect of the provided fatty acid is avoided with the here chosen method of 

incubation. However, the here employed method does not replicate the conditions in 

which fatty acids are presented to intestinal enterocytes in vivo, which is complexed 

to albumin from the basolateral and incorporated into micelles from the apical side. 

With short term incubations, the ratio of fatty acid to BSA is usually set between 1 

and 6 to 1 as albumin has a very high capacity of fatty acid binding of up to 13 mole 

fatty acid per mole albumin (167). FBS contains albumin at a concentration of 

20 - 36 g/L (168). The fatty acid concentration used in the current study is 50 μM, 

which corresponds to a fatty acid to albumin ratio of about 1.4 to 1 in 10 % FBS 

medium. Since albumin has a much higher fatty acid binding capacity than that, it 
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was assumed that all supplemented fatty acid was bound, even with the presence of 

additional background fatty acids as listed in table 3.1. 

There are numerous reports that the fatty acid profile of the plasma membrane can 

be modulated in animal studies with selective fatty acid feeding and that this effect 

can also be reproduced in vitro. The chemical nature of the acyl chains esterified to 

the glycerol backbone of phospholipids, together with the type of headgroup and 

cholesterol content, determines plasma membrane fluidity, which in turn can have 

an impact on the passive diffusion rate of a compound across the lipid bilayer. One 

of the objectives of the current study was to assess such impact of acyl chain 

modification on passive diffusion of phenolics. Cell culture studies on incorporation 

of fatty acids are typically performed with an exposure time of 24 or 48 h, which is 

very short for the Caco-2 cell culture model, where transport studies are usually 

carried out at day 21 to 25 after seeding, by which time the cells will have 

spontaneously differentiated to small intestinal, enterocyte-like cell monolayers. 

During differentiation there occurs not only a structural change, characterised by 

development of a distinctly polar morphology, but also a functional change, resulting 

in a shift in expression and activity of many key enzymes, receptors and nutrient 

transporters (169). The activity of some important enzymes for lipid metabolism is 

also changing during differentiation of Caco-2 cells. Activity of MOGAT and of 

acyl-CoA synthase increases with differentiation as well as excretion of 

triacylglycerols, whereas phospholipid secretion decreases over time. Excretion of 

HDL is unaffected by differentiation but more VLDL and less LDL is released with 

increasing time in culture (145). Also, with increasing differentiation time, 

supplemented fatty acids are more likely incorporated into phospholipids and less 

into triacylglycerols (170). The consequence of these changes in metabolism is that 

fatty acids supplemented at the beginning of cell differentiation will most likely be 

metabolised in a slightly different way and might have a different impact on cell 

proliferation than when supplemented after differentiation is almost complete. Also 
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short term treatment will simulate an acute exposure to certain lipids but not the long 

term impact of dietary patterns, as was sought here. It was therefore of interest to 

compare how acute treatment and chronic treatment differentially modulate lipid 

composition of Caco-2 cells. In animal models it has been shown that the response 

to long term exposure can vary over a longer feeding period. For example, one 

study that analysed the fatty acid composition of subcellular membranes after 3, 8 

and 12 weeks of feeding rats with different oil enriched diets reported dynamic 

changes in cellular lipid composition over time (171). At first, a diet rich in linoleic 

acid but poor in α-linolenic acid caused a drastic decrease in n-3 fatty acid levels, 

but those levels recovered to values of the control group over the course of the 12 

week feeding period. A cod liver oil diet, rich in n-3 PUFA, caused a great drop in 

n-6 PUFA levels but levels of linoleic acid slowly recovered whereas arachidonic 

acid levels remained constantly low. With the same diet, levels of DHA increased 

over time, but levels of oleic acid dropped slowly. By week 12, the double bond 

indices of all feeding groups, except for the cod liver oil group, were very similar, but 

at week 3 double bond indices of membranes obtained from rats fed with a lard, 

soybean or sunflower oil enriched diets were much lower than that of the control 

group. Such changes in fatty acid composition are not accompanied by changes in 

phospholipid headgroup distribution (172). Adaptation to changing fatty acid 

availability is hardly ever seen in short term cell culture studies, where usually only 

an increase in the percentage of the fatty acid that was supplemented with, is noted 

(155, 173). But the longer the supplementation period, the more a cellular 

adjustment to the additional fatty acid can be observed (174-177). In that respect, 

the Caco-2 model is of great advantage as cell monolayers are typically maintained 

for a long period of time. In general, a supplementation with n-3 PUFA will decrease 

the content of n-6 PUFA and vice versa and such effects are dose dependent (178-

180). Exogenous fatty acid supply can inhibit endogenous synthesis (181). In the 

current study, a decrease in MUFA concentrations was observed in cells 
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supplemented with PUFA with a concomitant increase in the corresponding SFA 

levels. This is very likely due to a decrease in Δ9-desaturase expression caused by 

the PUFA supplementation as has been described before (178, 182-184). Another 

metabolic pathway, which is usually not observed in cell culture studies, but was 

observed here, is the retro-conversion of DHA to EPA through peroxisomal 

β-oxidation (185). The fact that these cellular adaptations to fatty acid 

supplementation, which are typically only seen in vivo, were observed here, shows 

that chronic fatty acid supplementation of Caco-2 cultures is a good model to study 

the impact of fatty acid supplementation on enterocytes in vitro, despite the fact that 

there is only little turnover of EFA to HUFA. But this anabolic pathway is also not 

consistently observed in animal models, some studies do report an increase in 

HUFA after EFA feeding (186), but some do not (187). Perhaps, since in the current 

study different HUFA are supplied at low levels with the FBS, there are sufficient 

amounts available and therefore the cell is reluctant to waste ATP by producing 

more than necessary.  

Since only the whole cell fatty acid composition was assessed, it was not possible to 

determine into which lipid classes the supplemented fatty acids were incorporated. 

Since the aim was to change membrane fluidity, it would be necessary for the 

supplemented fatty acid to be incorporated into the membrane phospholipid fraction. 

But since the accumulation of intracellular lipid bodies was observed, it cannot just 

be assumed that supplemented fatty acids were incorporated into phospholipids, but 

the possibility must be considered, that all additional fatty acids are simply stored in 

lipid droplets and no membrane modification has taken place.  

Lipid droplet accumulation is a typical process in enterocytes of the small intestine in 

the postprandial phase. After a fat containing meal, high amounts of lipid are taken 

up and transiently stored in enterocytes in form of triacylglycerole droplets to prevent 

hyperlipidaemia. Over time, fatty acids are then slowly released from lipid droplets 

and excreted in form of lipoproteins or chylomicrons (75). In vivo, excreted lipid 



- 88 - 
 

particles are carried in the bloodstream to other organs where they are hydrolysed 

and fatty acids can be taken up and used. In vitro there are no vessels to take away 

lipoproteins between medium changes, so they accumulate in the basolateral 

medium and can be re-absorbed. In pig small intestinal explants, lipid droplets were 

observed in the basolateral cytoplasm of enterocytes, even without any lipid 

treatment, and addition of a pre-digested oil and bile salt mixtures resulted in 

formation of lipid droplets in the apical part of enterocytes within one hour (188). In 

cultured fibroblasts, lipid droplets could already be observed after five minutes of 

fatty acid exposure and volume and number of lipid bodies increased with prolonged 

incubation period (189). A nine day treatment of Caco-2 cells with palmitic, stearic or 

oleic acid also resulted in accumulation of triacylglycerols and all treatments resulted 

in the same level of lipid body accumulation, independent of acyl chain length and 

saturation (154). The core of lipid droplets mainly consists of neutral lipids 

(triglycerides and sterol esters) and is surrounded by a single, outer layer of 

phospholipids, mainly consisting of phosphatidylcholine. In published reports, where 

a similar experimental set-up, as used in the current study, was employed and 

where differential incorporation of supplemented fatty acids into phospholipid and 

neutral lipid fraction was analysed, the composition of both lipid classes was 

modified by exogenous fatty acid treatment. Not only SFA but also PUFA induced 

lipid droplet formation, but supplemented EPA and DHA were preferentially 

incorporated into phospholipids and less into triacylglyceroles (190). In lymphocytes, 

supplemented long chain fatty acids were incorporated into both phospholipids and 

neutral lipids. SFA were preferentially incorporated into neutral lipids e.g. treatment 

with stearic acid resulted in a rise of that fatty acid in the neutral lipid fraction from 

15 % to 36 % and in the phospholipid fraction from 20 % to 30 %. PUFA were 

preferentially incorporated into phospholipids e.g. DHA rose from 1.3 % to 23 % in 

the phospholipid fraction and from 0.8 % to only 8 % in the neutral lipid fraction (191, 

192). These studies, given here as an example of a number of reports on this topic, 
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lead to the conclusion that even though in the current study the fatty acid 

composition of phospholipids and neutral lipids was not analysed separately, it can 

be assumed that supplemented fatty acids, especially PUFA, were incorporated into 

the membrane phospholipid fraction and not only stored in lipid droplets. 

As discussed above, short term in vitro incubations with fatty acids often only 

contain one specific type of lipid but with an incubation with 10 % FBS in medium, 

as was used here, there are about 100 μM of background lipids present. FBS is 

serum, which means the fatty acids it contains will mostly be esterified as 

triacylglycerols, phospholipids and sterolesters and present in form of lipoproteins 

and chylomicrons. Additionally supplemented fatty acids, on the other hand, are free 

fatty acids. Pazouki et al. analysed the lipid composition of FBS in detail and found 

that it contained mostly palmitic and stearic acid (both 130 μM) and also oleic acid 

(105 μM), arachidonic acid (32 μM), DHA (30 μM) and linoleic acid (13 μM). Of 

course these values will vary depending on the product’s place of origin and the 

associated vegetation and perhaps animal breed. Nevertheless, concentrations of 

fatty acids reported by Pazouki et al. roughly correlate with the concentrations of 

fatty acids measured for one batch of FBS used in the current study. It was further 

reported that 78 % of FBS fatty acids exist in form of phospholipids, 6 % as 

triacylglycerols and 16 % as free fatty acids, though this distribution varied with 

different types of fatty acid. Only 47 % of palmitoleic acid were found in the 

phospholipid fraction, whereas 23 % occurred in triacylglycerols and 30 % as free 

fatty acids. Distribution of DHA showed a very different pattern, here 91 % were 

esterified as phospholipids, no DHA was found in the triacylglycerol fraction and 9 % 

occurred as free fatty acids. In general, serum PUFA were mainly present as part of 

phospholipids whereas triacylglycerols were entirely made up of myristic, 

palmitoleic, oleic and palmitic acid (193). It is important to know in which form those 

background fatty acids are present, since only free fatty acids and 

monoacylglycerols can be taken up by the cell. Since most fatty acids are not in a 
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freely available form, they will have to be hydrolysed in order to be taken up. In vivo, 

the activity of pancreatic lipase determines the hydrolysis of triacylglycerols in the 

small intestine, but in absence of this enzyme, endogenous lipolytic activity of 

enterocytes becomes crucial in vitro. As already mentioned above, Caco-2 cells do 

have the capacity to hydrolyse phospholipids and triacylglycerols, but the enzyme 

activity is much lower than in vivo. Therefore it can be assumed that the 

supplemented free fatty acids and those that stem from FBS have a greater impact 

on cell lipid composition than the esterified lipids. It has been reported that fatty 

acids were incorporated much more efficiently when bound to BSA in lipid free 

medium (27 - 37 % of supplemented fatty acid incorporated in 24 h) than in medium 

with 10% FBS (5 - 7 % of supplemented fatty acid incorporated in 24 h) (194). 

Another study, investigating competition between different fatty acids regarding 

cellular uptake and incorporation, found that increasing concentrations of 

background lipids had no impact on uptake of EPA or linoleic acid (195), which 

could indicate that it is not the lipid component of FBS that inhibits fatty acid uptake. 

They did however observe, that increasing amounts of background lipids affect the 

incorporation into different lipid classes. The higher the concentration of background 

lipids, the more of the fatty acid of interest was found in the neutral lipid fraction 

(195).  

A great weakness of the current study is the low number of replicates that was 

analysed for lipid composition, due to very limited access to the analysis equipment. 

Because there were only two replicates per treatment group, the data could not be 

tested for normal distribution and no parametric test could be applied to determine 

statistical significance. Therefore Mann Whitney U test was chosen and due to the 

nature of this test, a p value of ≤ 0.05 cannot be reached with only five samples 

(three control and two test samples). However, even though only a statistical 

significance of p ≤ 0.1 could be obtained here, most of the fatty acid changes have a 

large effect size, for example, with DHA treatment, the effect size for cellular DHA 
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content is r = 0.775. Replicates of cell samples that were analysed for lipid 

composition were not grown simultaneously, but a few weeks apart and often 

different batches of cells and fatty acid standards were used. Such a way of 

obtaining sample replicates probably resulted in an increased variance, but it 

indicates that the observed modulation of cell composition is reproducible. Together 

with the large effect size, this supports the credibility of the data.  

Passive diffusion across a cell layer is dependent on partition of a compound 

between the membrane lipophilic core and the aqueous surrounding, which 

constitutes the rate limiting step for this mechanism of absorption. The degree of 

unsaturation (position and number of double bonds) of the acyl chains in the 

membrane core determines the packing density and strength of the lateral van der 

Waals attractions in that membrane region. Melting points of pure fatty acids reveal 

their packing density, which decreases from oleic acid (Tm = 10°C) to linoleic acid 

(Tm = - 8°C), α-linolenic acid (Tm = - 10°C), arachidonic acid (Tm = - 49.5°C), DHA 

(Tm = - 44.5°C) and EPA (Tm = - 54.4°C) (118). Exchanging fatty acids of the 

hydrophobic membrane core will result in a changed cohesion and fluidity. 

Membrane fluidity can be assessed using fluorescence probes that insert into the 

bilayer, mimicking membrane components. That way, the movement of molecules 

within the membrane can be investigated with different techniques, the most widely 

used being assessment of anisotropy using the fluorescence probes DPH or 

TMA-DPH. In the current study, experiments on plasma membrane fluidity were 

performed on isolated BBMV and not on whole cells. It has been reported that 

fluorescence polarisation of membrane probes in whole cells is strongly correlated 

with lipid body accumulation. Polarisation dropped drastically when lipid droplet 

formation was induced but when isolated membranes from cells with and without 

lipid bodies were used in the assay, no difference could be observed (196). Since 

lipid accumulation was observed in the current study, BBMV were used for 

measuring cell membrane fluidity, even though this approach could also result in 
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several inaccuracies. Isolated membranes can be perturbed during the isolation 

process and do not reflect the added structural stability that the cytoskeleton 

provides in whole cell assays. But apart from the interferences of lipid droplets, in 

whole cell assays the probe can also diffuse into other subcellular membranes and 

organelles, where a different lipid composition is prevalent, resulting in a difficult to 

interpret mixture of fluorescence signals (192). Membrane fluidity can change with 

cell differentiation (117, 197) and also with culturing conditions. For example, it has 

been shown that growing Caco-2 cells in high glucose medium results in an 

increase in membrane fluidity compared to cells grown in low glucose medium 

(198). Reports on the impact of in vitro incubation with fatty acids on membrane 

fluidity vary in their conclusion. For example, supplementing Caco-2 cells with EPA 

was once reported to have no effect on fluidity (199) and another time, under the 

same conditions, an increase in fluidity was observed (155). This variation could 

stem from the short incubation time of 24 h and 20 h respectively, or because whole 

cells were used for the assay. Other in vitro studies also do not report a change with 

short term fatty acid supplementations (192, 200), but in animal models, fatty acid 

feeding usually results in altered membrane fluidity. For example a diet with 

safflower oil rich in oleic and linoleic acid decreased fluorescence polarisation in rat 

synaptosomal membranes (201) and membrane anisotropy of rat urothelium plasma 

membrane exhibited a dose dependent, inverse correlation with the percentage of 

DHA present in the diet (202). Chronic fatty acid supplementation of Caco-2 cells 

resulted in a significant change in plasma membrane fluidity, similar to that observed 

in animal studies. These results again show that Caco-2 cells are a good model to 

study the impact of lipids on transport across the intestinal epithelium. But the 

question remains whether the observed changes in fluidity stem from the 

modification of phospholipid acyl chains or from other factors. Interestingly, the 

PUFA linoleic, α-linolenic and arachidonic acid have the opposite effect on fluidity as 

DHA and EPA. This behaviour could indicate that there are different mechanisms 
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that contribute to the overall impact of PUFA on fluidity. As already mentioned 

above, it is not only the fatty acid composition of membrane lipids that affects fluidity 

but also the cholesterol content and phospholipid headgroup distribution. It has been 

reported that fatty acid feeding does not change the abundance of different 

headgroups, but it was shown that PUFA can reduce cholesterol synthesis and 

increase cellular cholesterol efflux (203-207). Such reduced content of cholesterol in 

the plasma membrane will also have an impact on membrane fluidity. Which 

membrane component exactly is the cause for the observed change in fluidity 

cannot be determined from the present data, this would require a more in-depth 

analysis of membrane composition regarding content of different fatty acids and 

cholesterol.    

Except for oleic acid, none of the fatty acids tested impaired cell viability; on the 

contrary, all PUFA even increased apparent viability as assessed by the MTT assay. 

This assay is based on the cellular uptake of a yellow tetrazolium salt and 

consequent intracellular reduction of the compound to a dark purple formazan 

product. An increase in product formation rate in this assay is usually interpreted as 

an increase in cell proliferation. However, in the case of the Caco-2 cell model, this 

interpretation is not plausible as by the time the assay is performed, cells are 

differentiated, no longer dividing and completely fill the available growth area. It is 

more likely that the supplemented fatty acid either has an impact on the reduction 

reaction itself or on the intracellular concentration of the substrate MTT. It is still not 

entirely clear which enzymes exactly are catalysing the formation of the formazan 

product. Early studies concluded that MTT is reduced by enzymes of the 

mitochondrial respiratory chain with succinate acting as the electron donor (208) and 

in rat tissue samples intracellular formazan crystals, co-localising with mitochondria, 

were observed (209). In vitro studies, using isolated mitochondria and selective 

inhibitors, revealed that the reduction of MTT occurs somewhere between 

ubiquinone binding to complex II and cytochrome c binding to complex IV within the 
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chain of reactions occurring at the inner mitochondrial membrane, but the exact 

mechanism is still unclear (210, 211). Later studies found that mitochondrial MTT 

reduction constitutes only a minor pathway and that cytosolic NADH and NADPH 

are much more potent electron donors in this reaction. In contrast to studies using 

subcellular fractions, performing the assay with whole cells showed that respiratory 

chain inhibitors had no impact on overall formazan production and most of the 

product was found in the cytosol (211, 212). Also formazan granules formed in the 

cytoplasm of HeLa cells were reported not to co-localise with lysosomes or 

mitochondria (213). Another study revealed that formazan production is not impaired 

in cell lines with dysfunctional mitochondria (214). Also it was shown that the assay 

is much dependent on the cell line used and also on culturing conditions, for 

example the concentration of glucose in the culturing medium and the presence of 

pyruvate or lactate (210). PUFA could have an impact on activity or expression of a 

cellular reductase, and in that way, increase its own turnover. One possible 

candidate for this reaction could be glutathione S-transferase which has been shown 

to reduce MTT in vitro (215) and which is induced by several PUFA (216). Another 

factor that could come into play here is the occurrence of intracellular lipid bodies 

with fatty acid treatment. It was reported that due to its hydrophobic nature, the 

formazan product specifically localises in lipid droplets and emits a higher intensity 

signal than when formed in the cytosol of cells that do not contain any lipid bodies 

(213). However, it is unlikely that the presence of lipid droplets contributes to the 

increase in apparent viability that was observed here, as this effect only occurred in 

cells treated with PUFA and it is unlikely that there was lipid droplet formation in 

cells treated with, for example, EPA but not in cells treated with stearic or palmitic 

acid. Also when the formazan product was extracted with organic solvent, the 

difference in intensity due to the hydrophobic environment of the lipid core would be 

lost, since all samples are dissolved in the same medium after extraction. A further 

potential impact on formazan production is the uptake or efflux of the substrate. The 
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MTT molecule in solution is very polar and also ionic. It is therefore highly 

improbable that this greatly hydrophilic molecule can cross the cell membrane 

simply by passive diffusion. Most likely the uptake will require a plasma membrane 

spanning transporter but it seems the identification of such has never been 

attempted. The only report on active transport of MTT has been concerning the 

possible impact of ATP-binding-cassette efflux transporters. The presence of 

selective inhibitors of ABCB1 and ABCC2 correlated with an increase in apparent 

viability measured by MTT assay. This increase could stem from the inhibition of 

active MTT efflux and consequent increased intracellular concentration of substrate 

(217). Since there is some evidence that PUFA can decrease expression and 

activity of ABCB1 (181, 218) such modulation of intracellular substrate concentration 

could also account for the increase in apparent viability observed in the current 

study.  

 

In conclusion, it was shown that the chronic supplementation of Caco-2 cells, with 

fatty acids bound to FBS albumin, in medium with physiological glucose content, will 

result in a change in cell fatty acid composition. Chronic treatment does not impair 

cell viability but it does have an impact on plasma membrane fluidity. The model can 

therefore be employed to investigate the impact of dietary fatty acids on polyphenol 

absorption.  
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Chapter 4:  Butyric acid increases transepithelial transport and metabolism of 

ferulic acid through upregulation of monocarboxylate transporters 

SLC16A1 and SLC16A4 

4.1 Abstract 

Ferulic acid is highly abundant in whole grain products where it is covalently linked 

to fibres of the plant cell wall. The free acid is released in the colon by microbial 

fermentation and taken up by the colon mucosa along with other metabolites 

produced by the intestinal microflora, especially short chain fatty acids (SCFA). 

Butyric acid is one of the three most abundant SCFA in the large intestine. Chronic 

treatment of intestinal Caco-2 cells resulted in increased expression of 

monocarboxylate transporters (MCT) 1 and 4, which have also been suggested as a 

pathway of ferulic acid absorption. Acute SCFA treatment only resulted in 

upregulated expression of MCT4. Both chronic and acute treatment increased 

transepithelial transport of ferulic acid in uptake but not in efflux direction. Chronic 

treatment also increased intracellular concentrations of ferulic acid, which in turn 

resulted in increased levels of ferulic acid metabolites. Immunofluorescence staining 

of cells revealed the uniform distribution of MCT1 protein in the cell membrane, 

whereas MCT4 was only detected in the lateral plasma membrane sections of 

Caco-2 cells. These results suggest a novel transport mechanism for ferulic acid 

across colonic enterocytes, which is that ferulic acid is taken up into the cytosol by 

MCT1 and transported out across the basolateral membrane by MCT4. 
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4.2 Introduction 

As described in chapter 1, whole grain is a good source of ferulic acid and the free 

acid is released in the colon by microbial esterases. Therefore the main site of 

ferulic acid uptake from whole grain foods is the colon after fermentation by the 

colon microflora (46, 48). Fermentation of fibre also results in the production of large 

quantities of short chain fatty acids (SCFA). These fatty acids with a chain length of 

one to five carbon atoms together can reach concentrations of 30 to 100 mM in the 

colon (47, 219). One of the major SCFA produced is butyric acid. Butyric acid is 

absorbed in the large intestine either by passive diffusion of the free acid or via the 

apical uptake transporters monocarboxylate transporter 1 (MCT1) and sodium 

coupled monocarboxylate transporter (SMCT) (220, 221). MCT1 and SMCT 

transport SCFA by facilitated diffusion and co-transport of either protons, along the 

proton gradient created by the luminal pH of 6 to 7 (MCT1), or of sodium ions, along 

the sodium gradient maintained by basolateral sodium/potassium pumps (SMCT). 

SCFA constitute the major energy source for cells of the large intestine colonocytes 

(222, 223).  

After synthesis of the nascent peptide chain into the ER, the MCT1 transporter is 

assembled as a heterodimer with the chaperone peptide CD147, also known as 

basigin. CD147 directs MCT1 insertion into the plasma membrane and the 

continued association of the two proteins is essential for ensuring functionality of the 

transporter. MCT1 can also bind to another chaperone called embigin, but CD147 is 

the preferred partner (224). There is no report of SMCT forming a similar 

complex (225) 

Butyric acid has been associated with a broad range of beneficial health effects. It is 

reported to protect from colon cancer by induction of cell differentiation and 

apoptosis and it also has anti-inflammatory properties and protects the mucosa 

through stimulation of mucus secretion and tight junction integrity (226, 227). Some 

of these effects are mediated through increased concentrations of butyric acid in 
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colonic enterocytes caused by upregulated expression of MCT1 and its chaperone 

CD147 and consequent increased absorption (228-232). In the small intestine, 

which, compared to the colon, is only sparsely populated by bacteria, concentrations 

of SCFA are low and it is this difference in SCFA concentration that is believed to be 

the reason for the great difference in MCT1 abundance between the large and the 

small intestine (233).  

In chapter 3 it was shown that dietary fatty acids are able to modulate the 

composition and some biophysical properties of Caco-2 cells. SCFA like butyric acid 

are much more abundant in the intestine than dietary fatty acids, but they are solely 

used for energy production and do not serve as building materials for membranes, 

and hence, will not change membrane composition. However, through their ability to 

upregulate transporter expression, they could still affect ferulic acid bioavailability as 

MCT1 and SMCT have also been suggested as a pathway of ferulic acid uptake 

(234, 235). It was therefore investigated whether there is a link between 

physiological butyric acid levels, as present in the colon, and the uptake of ferulic 

acid via MCT1 and SMCT, using the Caco-2 intestinal cell culture model.  
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4.3 Results 

4.3.1 Impact of butyric acid pre-treatment of enterocytes on bidirectional 

transport of ferulic acid  

The influence of increasing concentrations of butyric acid on ferulic acid transport 

was investigated using the intestinal Caco-2 cell culture model. Figure 4.1 shows 

that only the concentration of 1000 μM was able to significantly modulate ferulic acid 

transport in apical to basolateral direction (control: Papp = 9.0 cm/s, chronic 1000 μM 

butyrate: Papp = 11.4 cm/s). Chronic butyric acid supplementation had a greater 

effect than acute butyric acid treatment  
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Figure 4.1; Impact of supplementation of Caco-2 cells with different concentrations of butyric 

acid on transepithelial transport of ferulic acid (500 μM) in apical to basolateral direction. 

Cells were either incubated for their entire differentiation time of 21 days (chronic) or for 24 h 

starting at day 20 after seeding (acute). Butyric acid was dissolved in ethanol (final 

concentration 0.5% for 250 and 1000 µM and 1% for 500 µM butyric acid before addition to 

10 % FBS medium. Controls were incubated with the corresponding amount of ethanol for 

the corresponding time. The pH of the transport solution was 7.4 in both receiver and 

acceptor chamber. n = 6, N = 1; * = p ≤ 0.05, For conditions and analysis see sections 2.3, 

2.4 and 2.6. 

In the next step, transport in apical to basolateral (Ja→b) direction was compared to 

transport in efflux basolateral to apical (Jb→a) direction after chronic supplementation 

of Caco-2 cells with 1000 μM butyric acid (figure 4.2).  
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Figure 4.2; Butyric acid treatment only affects ferulic acid (500 μM) transport in Ja→b direction 

(apical to basolateral) not in Jb→a direction (basolateral to apical). Cells were either incubated 

for their entire differentiation time of 21 days (chronic) or for 24 h starting at day 20 after 

seeding (acute). n = 6, N = 1; * = p ≤ 0.05; For conditions and analysis see section 2.3, 2.4 

and 2.6. 

Butyric acid only increased transport in the uptake direction, whereas efflux of ferulic 

acid was unaffected. 

Ferulic acid has been described to be mainly taken up by passive diffusion and, as a 

minor pathway, also by facilitated diffusion via MCT1. A directional change in 

transport as shown in figure 4.2 does not support a change in passive diffusion but 

instead it suggests that the transport via MCT1 is increased by the butyric acid 

treatment. This hypothesis was tested by performing transport experiments in the 

uptake direction in the presence and absence of the MCT1 inhibitor phloretin, after 

chronic supplementation of Caco-2 cells with 1000 μM butyric acid (figure 4.3). 
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treatment 1 treatment 2 p-value 

b- p- b- p+ 1 

b+ p+ b- p+ 1 

b+ p+ b- p- 0.416 

b+ p- b- p+ 0.057 

b+ p- b- p- 0.002 

b+ p- b+ p+ 0.192 

Figure 4.3; A Impact of MCT inhibitor phloretin (300 µM), applied to both sides of the cell 

monolayer, on apical to basolateral transport (Ja→b) of ferulic acid (500 μM) across 

chronically butyric acid (1000 µM) supplemented Caco-2 monolayers. n = 6, N = 1; 

* = p ≤ 0.05, B Statistical significance between treatment groups analysed with one-way 

ANOVA. b- = no butyric acid, b+ = butyric acid supplemented, p- = no phloretin, 

p+ = phloretin supplemented. For conditions and analysis see sections 2.3, 2.4 and 2.6. 

The presence of 300 μM phloretin abolished the effect of butyric acid pre-treatment, 

indicating that MCT1 is involved in the ferulic acid transport increase.  

According to the literature, MCT1 is located in the apical membrane of Caco-2 cells, 

facilitating transport from the apical lumen to the cytosol. Such localisation would 

explain the asymmetrical impact of butyric acid on transport. In consequence, there 

should be an increase in intracellular ferulic acid concentration when uptake 

transport is assessed, but no change with efflux transport. However, when 

intracellular ferulic acid concentrations were analysed, a very different picture 

emerged (figure 4.4). 
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Figure 4.4; Changes in intracellular ferulic acid concentrations induced by chronic and acute 

butyric acid supplementation. The extracellular concentration of ferulic acid was 500 μM. 

n = 6, N = 1; For conditions and analysis see sections 2.3, 2.4 and 2.7. 

Ferulic acid concentrations were higher when 500 μM of the compound were 

applied from the basolateral side (111 ± 12 μM), than when applied from the apical 

side (70 ± 5 μM) and butyric acid treatment increased intracellular concentrations 

with transport in both directions. The increase even was much higher in efflux 

direction (+ 63 %) than in uptake direction (+ 26 %). Acute butyric acid treatment did 

not change intracellular ferulic acid concentrations. 

4.3.2 Impact of butyric acid on metabolism of ferulic acid 

To explore the impact of butyric acid on ferulic acid transport further, it was 

investigated whether the change in intracellular ferulic acid concentrations, shown in 

figure 4.4, is also reflected in the metabolism of ferulic acid, since increasing 

intracellular concentrations of the aglycone would constitute an increase in substrate 

availability for metabolising enzymes.  

To achieve this, an LC-MS/MS method was developed to quantify the three main 

ferulic acid metabolites in Caco-2 cells, feruloyl-glucuronide, feruloyl-sulfate and 

dihydroferulic acid. Metabolite traces in cell culture samples were identified and 
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concentration was assessed by comparison to original standards. Example 

chromatograms of standards are shown in figure 4.5. 

 

 

 

Figure 4.5; Chromatogram of ferulic acid metabolite standards analysed by LC-MS/MS. All 

standards were injected at a concentration of 1000 μM. Ion traces shown: 

feruloyl-glucuronide m/z = 369 → 113; feruloyl-sulfate m/z = 273 → 178; dihydroferulic acid 

m/z = 195 → 121; ferulic acid m/z = 193 → 178. For details see section 2.7. 

After transport experiments, samples were taken from the apical and basolateral 

chamber and the Caco-2 cell layer was washed, lysed, collected and analysed. 

Concentrations obtained by LC-MS/MS analysis were adjusted for the original 

volume of the sample (2000 μL for apical and basolateral, 7 μL for cell lysate 

samples, see chapter 2.4). 
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Figure 4.6, Ferulic acid metabolism by Caco-2 cells. Concentration of metabolites detected 

in apical, basolateral and cell lysate samples after ferulic acid (500 µM) transport in uptake 

(a → b) or efflux (b → a) direction. n = 6, N = 1; For details on conditions, analysis and 

calculation see sections 2.4 and 2.7.  

 

All metabolites were more abundant in the basolateral than the apical well (two-way 

ANOVA analysis: apical ca→b vs. cb→a p = 0.013, cellular ca→b vs. cb→a p = 0.033, 

basolateral ca→b vs. cb→a p = 0.009) but the highest concentrations were found 

intracellularly (see section 2.7 for calculation of intracellular concentrations). 

Dihydroferulic acid was the most abundant metabolite in the donor and acceptor 

chamber but intracellularly the most abundant metabolite was ferulic acid sulfate, 

reaching high concentrations of up to 9 μM. In general, metabolite concentrations 

were higher when ferulic acid was applied to the basolateral side (b → a) than when 

ferulic acid was applied to the apical side (a → b). In that respect, metabolite levels 

correlated with intracellular ferulic acid levels. 
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Figure 4.7 shows the changes in metabolite levels induced by chronic butyric acid 

supplementation, figure 4.8 shows changes induced by acute treatment. Overall, 

chronic butyric acid supplementation had a high impact on metabolism, acute 

treatment only very little.  

 

 

Figure 4.7, Ferulic acid metabolism by Caco-2 cells. Change in metabolite formation after 

chronic butyric acid (1000 μM) treatment. Ferulic acid metabolite content was analysed in 

apical, basolateral and cell lysate samples after ferulic acid (500 µM) transport in uptake 

(apical → basal) or efflux (basal → apical) direction. n = 6, N = 1; * = p ≤ 0.05 according to 

ANOVA analysis; For details see sections 2.3, 2.4 and 2.7. 

With chronic butyric acid supplementation, levels of all metabolites increased, 

except for feruloyl-sulfate, where apical levels decreased but intracellular and 

basolateral levels also increased (figure 4.7). Overall abundance of the glucuronide 

and of dhFA increased significantly (glucuronide: Ja→b p = 0.0141, Jb→a: p = 0.0142; 

dhFA: Ja→b p = 0.008, Jb→a p = 0.011) with butyric acid supplementation but there 

was no overall increase in sulfate conjugates (Ja→b p = 0.216 Jb→a p = 0.334) with 

butyric acid supplementation. Acute supplementation only increased ferulic acid 

sulfate levels on the basolateral side, increased dihydroferulic acid on the apical 
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side, when ferulic acid was applied apically, and decreased cellular levels of ferulic 

acid glucuronide when applied basolaterally (figure 4.8).  

 

 

Figure 4.8, Ferulic acid metabolism by Caco-2 cells. Change in metabolite formation after 

acute butyric acid (1000 μM) treatment. Ferulic acid metabolite content was analysed in 

apical, basolateral and cell lysate samples after ferulic acid (500 µM) transport in 

apical → basal (Ja→b) or basal → apical (Jb→a) direction. n = 6, N = 1; * = p ≤ 0.05; For details 

see sections 2.3, 2.4 and 2.7. 

4.3.3 Butyric acid impact on transporter expression 

As mentioned above, it has previously been reported that butyric acid increases 

expression of MCT1 and transport experiments with phloretin indicated that a 

change in MCT1 activity or abundance is responsible for the increase in ferulic acid 

absorption. Therefore, the impact of chronic and acute butyric acid supplementation 

on MCT1 gene expression in the Caco-2 model was tested. As phloretin is not only 

an inhibitor of MCT1 but also of other MCT isoforms, the second and third most 

abundant MCT isoforms in the colon, MCT4 and MCT5, were also investigated, as 

well as SMCT which has also been suggested to play a role in ferulic acid transport. 
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Figure 4.9; Impact of chronic and acute 1 mM butyric acid supplementation on gene 

expression of SLC16A1 (MCT1) and SLC16A3 (MCT4) in Caco-2 cells. n = 5, N = 1; 

* = p ≤ 0.05; For details see sections 2.3 and 2.8. 

Figure 4.9 shows the impact of butyric acid treatment on MCT1 and MCT4 

expression. MCT1 was upregulated by chronic but not acute treatment whereas 

MCT4 was upregulated by chronic as well as acute treatment. MCT5 was not 

affected by chronic butyric acid supplementation. No SMCT mRNA could be 

detected in Caco-2 cells. The fact that MCT1 was not upregulated with acute 

treatment but MCT4 was and that with acute treatment there was also an increase in 

ferulic acid transport indicates that not only MCT1 but also MCT4 is involved in 

ferulic acid transport.  

To detect localisation of those two transporters, indirect immunofluorescence 

staining of Caco-2 monolayers was carried out. Figure 4.10 shows differentiated 

Caco-2 cells stained for MCT1 and figure 4.11 shows cells stained for MCT4. 
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    apical            lateral              basal 

 

 

 

 
 

 
Figure 4.10; Indirect immunofluorescence detection of MCT1 in differentiated Caco-2 

monolayers. Cells were incubated with DAPI, membrane marker wheatgerm agglutinin 

(WGA) and mouse anti-hMCT1 primary antibody and Cy3-conjugated donkey anti-mouse 

secondary antibody. MCT1 is shown in red, appearing orange when co-localising with WGA 

shown in green and appearing purple when co-localising with DAPI shown in blue. n = 3, 

N = 1; For details see sections 2.3 and 2.10.  
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Figure 4.11; Indirect immunofluorescence detection of MCT4 in differentiated Caco-2 

monolayers. Cells were incubated with DAPI, membrane marker wheatgerm agglutinin 

(WGA) and mouse anti-hMCT4 primary antibody and Cy3-conjugated donkey anti-mouse 

secondary antibody. MCT4 is shown in red, appearing orange when co-localising with WGA 

shown in green. n = 3, N = 1; For details see sections 2.3 and 2.10  
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MCT1 (in red) was detected in the plasma membrane on the apical, lateral and 

basal side, co-localising with the plasma membrane marker WGA (shown in green, 

appearing orange in the merged fluorescence images when co-localising with red 

MCT1). The signal intensity of MCT1 detected in the apical plasma membrane 

varied between cells. Such an effect could either stem from a heterogeneous cell 

population with different MCT1 expression levels or from the fact that cells did not 

grow to exactly the same height. This means that some cells are in the plane of 

focus, and appear brighter than others that are not. MCT1 was also detected in the 

nuclear envelope co-localising with DAPI (shown in blue, appearing purple in 

merged images when co-localising with red MCT1). MCT4 was almost exclusively 

localised in the lateral plasma membrane with only very low signal originating from 

the apical and basal membrane. No intracellular MCT4 signal could be observed.  

To investigate whether the changes in metabolite concentrations detected in the 

apical well could stem from an impact of butyric acid on the expression of apical 

efflux transporters, mRNA levels of the most abundant apical ATP-binding cassette 

transporters, that were described to recognise xenobiotics and phase II metabolites 

as allocrites in Caco-2 cells (discussed further in chapter 6), ABCB1, ABCC2 and 

ABCG2 where investigated (figure 4.11).  
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Figure 4.12; Impact of chronic and acute 1 mM butyric acid supplementation on gene 

expression of ABC-efflux transporters in Caco-2. n = 4, N = 1, * = p ≤ 0.05; For details see 

sections 2.3 and 2.8. 

Gene expression of ABCG2 was greatly increased after long term butyric acid 

treatment whereas ABCC2 expression was slightly reduced. ABCB1 expression was 

not affected.  
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4.4 Discussion 

MCT1 was shown to act either as a symporter, facilitating proton coupled transport 

of monocarboxylates, or as an antiporter exchanging one monocarboxylate against 

another without proton movement (224). In vivo, such proton coupled transport in 

the small intestine is driven by the acidic microclimate of pH 6.1 to pH 6.8 in the 

unstirred water layer at the surface of the brush border (236). This acidic 

microclimate is sometimes simulated in Caco-2 transport studies by using an apical 

incubation buffer with the corresponding lower pH, but such set-up was not 

employed in the current study. MCT1 expression has been reported to increase in 

the presence of the short chain fatty acid butyric acid, a microbial metabolite 

reaching high concentrations of up to 25 mM in the colon (219). In the current study 

it was shown that pre-treatment of intestinal Caco-2 cells with butyric acid resulted in 

increased transepithelial transport of ferulic acid, an effect that was abolished when 

the MCT inhibitor phloretin was added to the transport buffer on both sides of the 

cell monolayer. It has been suggested that ferulic acid is an allocrite of MCT1, and in 

the current study, upregulation of MCT1 by chronic butyric acid supplementation did 

correlate with an increase in ferulic acid uptake into the cell. However, ferulic acid 

transport across the cell monolayer was increased even when MCT1 expression 

was not, suggesting that it is not only MCT1 that facilitates ferulic acid transport. 

Another transporter that was upregulated by butyric acid treatment is MCT4, which 

can also be inhibited by phloretin and which is highly expressed in the colon and in 

Caco-2 cells (220, 237, 238). It therefore seems that either MCT4 on its own, or both 

MCT1 and MCT4 together, is the underlying cause of the effect observed here 

related to butyric acid treatment. Immunofluorescence staining of Caco-2 cells 

revealed the presence of MCT4 solely in the lateral plasma membrane and the 

presence of MCT1 in all parts of the plasma membrane, but with the strongest signal 

originating from the basal membrane.  
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Taken together, these results suggest the following mechanism: ferulic acid, applied 

to either the apical or basolateral side, is taken up into the cell by MCT1, which is 

more abundant after chronic butyric acid treatment, resulting in increased 

intracellular concentrations of the aglycone. After acute butyric acid treatment, there 

is no increase in intracellular concentration, as MCT1 expression is unchanged. 

MCT1 is only able to import ferulic acid into the cell, as there is no increase in ferulic 

acid transport to the apical side after chronic supplementation with butyric acid, even 

though MCT1 is also localised in the apical plasma membrane and it’s expression is 

upregulated. MCT4, on the other hand, only exports ferulic acid from the cytosol to 

the basolateral side and not in the reverse direction, as intracellular ferulic acid 

concentrations are unchanged when the aglycone is applied to the basolateral side 

after acute butyric acid treatment, even though MCT4 is upregulated. The lack of 

MCT4 in the apical plasma membrane has the consequence that only apical to 

basolateral transport is affected by butyric acid and not basolateral to apical 

transport. However, this observation, that MCT1 only imports and MCT4 only 

exports ferulic acid, disagrees with the idea that both transporters can translocate 

monocarboxylates in and out of the cell, only depending on the concentration 

gradient of the allocrite (239). However, bidirectional transport by MCT1 and MCT4 

has mostly been investigated in non-differentiating cell lines and oocytes using small 

endogenous compounds like lactic acid, which might have different transport 

kinetics than larger phenolics like ferulic acid. Also, the asymmetrical nature of MCT 

facilitated transport in Caco-2 cells has been observed previously. Neuhoff et al. 

found that the transport of salicylic acid, another substrate of MCT1, could be 

inhibited by phloretin in the apical to basolateral transport direction, but not in the 

basolateral to apical direction (240).  

The increase in metabolism of ferulic acid, after chronic but not acute butyric acid 

treatment, confirms the observations from transport experiments. As the 

upregulation of MCT1 with chronic treatment resulted in increased intracellular 
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ferulic acid concentrations, the formation rate of ferulic acid metabolites was also 

increased, as there were higher levels of substrate available. Using human intestinal 

S9 homogenates, the Km for the formation of ferulic acid glucuronide was recently 

determined as 4610 ± 100 μM and the Km for the formation of ferulic acid sulfate 

was 62.9 ± 7.2 μM (143). This data could explain why an increase in intracellular 

ferulic acid concentration by butyric acid treatment from 70 μM to 89 μM did not 

significantly increase the overall amount of sulfoconjugate, but had a significant 

impact on the formation of ferulic acid glucuronide. Since it is not known which 

enzyme catalyses the formation of dhFA, no pharmacokinetic data is available on 

that. The export of ferulic acid sulfate to the apical side was decreased with chronic 

butyric acid supplementation. This could be due to decreased expression of the 

apical efflux transporter ABCC2, indicating that ferulic acid sulfate is an allocrite of 

ABCC2. ABCG2 is strongly upregulated with butyric acid treatment, which might 

also contribute to the increase in metabolite concentrations in samples collected 

from the apical reservoir.  

With acute butyric acid treatment no increase in metabolite levels was observed, 

because without upregulation of MCT1, there is no increase in the intracellular 

concentration of ferulic acid. Only sulfate transport to the basolateral side was 

enhanced, which could be the result of an impact of butyric acid on a basolateral 

efflux transporter, maybe also of the ABCC family.  

Reports on the intestinal localisation of MCT1 vary in their conclusion. The 

transporter was found in the apical membrane of Caco-2 cells (241) and once 

almost exclusively in the apical (237) and once entirely in the basolateral (242) 

membrane of enterocytes of the human large intestine. It was observed in the apical 

membrane of pig (243) and rat (232), but in the basolateral membrane of hamster 

(244) and cow (245) colon enterocytes. In the current study, MCT1 was found to be 

uniformly distributed in Caco-2 cells. MCT4 on the other hand, has only been 

reported to localise in the basolateral membrane of human mucosal cells (237) and 
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was also only detected in the basolateral membrane here. A possible explanation for 

this variation in reports on MCT1 but not MCT4 localisation has recently been 

addressed and the authors suggested that the answer might lie in the ability of 

different tissues to recognise certain targeting signals in the nascent protein. Both 

MCT1 and MCT4 are associated with the chaperone protein CD147. CD147 knock 

down studies have shown that without the chaperone CD147 neither MCT1 nor 

MCT4 will localise in the plasma membrane, but instead those transporters 

accumulate in the Golgi, which indicates that MCT1 and MCT4 are dependent on 

CD147 for correct membrane targeting (246, 247). MCT4 contains a strong 

C-terminal sorting signal, targeting the protein to the basolateral membrane of 

epithelial cells. MCT1, on the other hand, does not contain any sorting signal but 

CD147 does. It has a strong targeting sequence for basolateral sorting, as well as a 

weak apical targeting signal. Through the tight association between MCT1 and 

CD147, MCT1 localisation is determined by the localisation of CD147. In tissues that 

recognise the basolateral targeting motif, CD147 and MCT1 will be inserted into the 

basolateral membrane, in tissues that do not recognise this sequence, they will be 

localised in the apical plasma membrane. CD147 is a highly glycosylated protein 

and it has been suggested that the degree of glycosylation in different tissues may 

play a role in its apical or basolateral targeting (248-250). 

SMCT has also been proposed to facilitate ferulic acid transport and expression of 

the transporter at the mRNA level has been described for Caco-2 cells (230). In 

contrast to that, there was no SLC5A8 (SMCT) mRNA detected in the current study. 

The silencing of SLC5A8, in the Caco-2 batch used in the experiments described 

here, could be related to reports of SLC5A8 silencing in other colon cancer cell 

lines. Exon 1 of SLC5A8 was found to be hypermethylated in over 50% of primary 

colon cancers, adenomas and colon cancer cell lines, resulting in non-transcription 

of the gene (251). As the Caco-2 cell line is derived from colon adenoma, perhaps 

the same has happened here.  
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In summary, results described in this chapter demonstrate that short chain fatty 

acids produced by the colon microflora can influence the absorption of polyphenols 

and that not MCT1 but MCT4 expression might be crucial for transepithelial 

transport of ferulic acid in the colon. Moreover, butyric acid increased the amount of 

ferulic acid metabolites that were produced. Human studies on the pharmacokinetics 

of ferulic acid and it’s metabolites have shown that the concentration of metabolites 

in plasma is higher than the concentration of the aglycone and also that metabolites 

have a longer half life than the aglycone (252). Therefore butyric acid could enhance 

the bioavailability of ferulic acid, and with that, increase the potential of positive 

health effects.  
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Chapter 5:  Impact of chronic fatty acid supplementation on transepithelial 

transport of phenolic acids 

5.1 Abstract 

In this chapter, supplementation of the Caco-2 cell model with fatty acids was 

employed to identify a possible impact of dietary lipids on caffeic and ferulic acid 

transport. Chronic supplementation with PUFA increased uptake of both phenolics. 

Caffeic acid permeation correlated with permeation rates of the paracellular 

transport marker lucifer yellow. The increase in ferulic acid transport neither 

correlated with permeation rates of the paracellular marker nor with plasma 

membrane fluidity changes. Passive transcellular diffusion of metoprolol and 

hesperetin was also unaffected by lipid treatment. Ferulic acid uptake was only 

increased in the apical to basolateral but not in the basolateral to apical direction, 

which indicates the involvement of a transporter mediated pathway. Phloretin, an 

inhibitor of MCT, did not affect DHA-induced increase in transport, but 

estrone-3-sulfate lowered permeation rates of ferulic acid across fatty acid treated 

and untreated Caco-2 cells. Transport to the basolateral side was decreased by 

estrone-3-sulfate but intracellular ferulic acid concentrations were unchanged and 

DHA also had no significant impact on intracellular ferulic acid concentrations. Both 

DHA and estrone-3-sulfate affected metabolism of ferulic acid, but not due to 

changes in aglycone transport but by direct impact on the activity of the metabolising 

enzymes. In conclusion, caffeic acid transport is affected by dietary fatty acids 

through an increase in paracellular absorption and ferulic acid uptake through 

impact on an unidentified transporter. 
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5.2 Introduction 

In chapter 4, the transporter-mediated component of ferulic acid absorption in the 

large intestine, where high levels of SCFA induced enhanced expression of MCT, 

was investigated. In the small intestine, where MCTs are less abundant, passive 

diffusion is reported to constitute the major route of uptake (135, 234). In chapter 3 it 

was shown that chronic supplementation of Caco-2 cells with different dietary fatty 

acids would modulate plasma membrane fluidity. For many in vitro studies with 

membrane vesicles and model organisms, it has been reported that lipid 

composition and fluidity are crucial factors determining passive diffusion (113, 253-

256). For example, in yeast mutant strains, differing in plasma membrane fluidity, 

drug uptake through passive diffusion correlated with that parameter (257). In 

animal models, PUFA feeding and incorporation into plasma cell membranes 

resulted in decreased uptake of the passive transcellular diffusion marker diazepam 

(181). This chapter explores the impact of dietary lipids on transepithelial transport 

and metabolism of the coffee phenolics caffeic and ferulic acid in vitro. 
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5.3 Results 

5.3.1 Impact of chronic fatty acid treatment on transepithelial transport of 

phenolic acids 

The results described in chapter 3 indicated that the cellular fatty acid content can 

be modified by addition of free fatty acids to FBS-containing medium and that 

chronic treatment results in greater changes than acute treatment. Therefore, to 

screen for the impact of different fatty acids on the transepithelial transport of 

phenolics in the intestinal Caco-2 model, chronic supplementation was used. Figure 

5.1 shows the effect of fatty acid treatment on absorption of caffeic acid and ferulic 

acid.  

 

 

Figure 5.1; Impact of dietary fatty acids on absorption of phenolic acids. Transport of caffeic 

and ferulic acid (both 500 μM) across chronically fatty acid supplemented (50 μM) Caco-2 

monolayers was assessed. For details on transport and analysis see sections 2.3, 2.4 and 

2.6. C8 = octanoic acid, C12 = lauric acid, C16 = palmitic acid, C16:1 = palmitoleic acid, 

C18:0 = stearic acid, C18:1 = oleic acid, C18:2 = linoleic acid, C18:3 = linolenic acid, 

C20:4 = arachidonic acid, C20:5 = EPA, C22:6 = DHA; n = 6, N = 1; * = p ≤ 0.05 
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A similar pattern of transport changes was observed for both phenolic acids. Neither 

medium chain nor long chain SFA had an impact on transport. Only 

supplementation with PUFA increased the transepithelial transport. Α-linolenic acid, 

arachidonic acid, EPA and DHA increased caffeic as well as ferulic acid transport, 

whereas linoleic acid significantly increased caffeic acid transport only.  

The fact that both caffeic and ferulic acid transport is increased with the same 

treatment suggests that both changes in transport rate are the result of PUFA 

affecting the same mechanism. Caffeic acid is thought to cross the intestinal 

epithelium by paracellular diffusion only, whereas ferulic acid is mainly transported 

up by passive diffusion and also by facilitated diffusion via MCT, as described in 

chapter 4. To investigate the mechanism further, supplementation with the PUFA 

DHA was selected. Figure 5.2 shows the apparent permeability of the two phenolics 

acids in comparison to the paracellular transport marker lucifer yellow.  

 

 

Figure 5.2; Impact of chronic DHA supplementation on apical to basolateral transepithelial 

transport of caffeic and ferulic acid (both 500 μM) and lucifer yellow (100 μM) across Caco-2 

monolayers. For details on transport and analysis see sections 2.3, 2.4 and 2.6. n = 6, N = 1; 

* = p ≤ 0.05 

Caffeic acid (MW = 180 g/mol) and lucifer yellow (MW = 457 g/mol) have very 

similar permeation rates of 0.8 x 10-6 cm/s and 0.4 x 10-6 cm/s respectively, whereas 

the permeation rate of ferulic acid (MW = 194 g/mol) is considerably higher at 
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11 x 10-6 cm/s. Treatment with the PUFA DHA increased transport of both caffeic 

acid and lucifer yellow by 0.3 x 10-6 cm/s and transport of ferulic acid by 

3 x 10-6 cm/s. That means the increase in permeability of ferulic acid alone is eight 

times higher than the overall transport rate of the paracellular marker lucifer yellow. 

It is very unlikely that such high transport rates as observed for ferulic acid could 

stem from paracellular diffusion, especially since there is no decrease in TEER with 

DHA treatment (see chapter 3, figure 3.9) and yet there is such a great change in 

permeability of the compound. To test whether a change in tight junction integrity 

could affect the transport rate of ferulic acid in such a way, differentiated Caco-2 cell 

monolayers were treated with methyl-β-cyclodextrin to decrease plasma membrane 

cholesterol content and reduce tight junction integrity (258). 

 

 

Figure 5.3; Impact of cholesterol removal by 30 min methyl-β-cyclodextrin (10 mM) treatment 

of differentiated Caco-2 monolayers on cellular cholesterol content. Cells were either 

incubated from the apical side only (1 sided) or from both apical and basolateral side 

(2 sided). Methyl-β-cyclodextrin was dissolved in HBSS + 1.8 mM CaCl2, control cells were 

treated with buffer only. Cholesterol content of untreated cells was set as 100 %. For further 

conditions and analysis see sections 2.2 and 2.13. n = 6, N = 1; * = p ≤ 0.05 

As shown in figure 5.3, one-sided incubation of Caco-2 cells with 

methyl-β-cyclodextrin resulted in removal of 39% of cellular cholesterol, two-sided 

incubation resulted in removal of 57% of cellular cholesterol.  
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Figure 5.4; Impact of 30 min methyl-β-cyclodextrin (10 mM) treatment and transport study on 

transepithelial electrical resistance. Different letters indicate statistically significant 

differences determined by one-way ANOVA. a vs. b: p = 2.96E-7, a vs. c: p = 6.32E-11, b vs. 

c: p = 2.43E-6; n = 6, N = 1; For details on conditions and analysis see sections 2.2, 2.3 and 

2.13. 

The treatment with methyl-β-cyclodextrin also resulted in a significant decrease in 

TEER, which was even further reduced after the transport experiment (figure 5.4). 

 

 

Figure 5.5; Impact of 2-sided cholesterol removal by methyl-β-cyclodextrin on paracellular 

transport of caffeic acid, ferulic acid and lucifer yellow. For further conditions and analysis 

see sections 2.3, 2.4 and 2.6.  n = 6; * = p ≤ 0.05 

Methyl-β-cyclodextrin treatment increased paracellular diffusion of caffeic acid and 

lucifer yellow but had no impact on ferulic acid transport (figure 5.5). These results 
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indicate that the increase in ferulic acid transport, caused by PUFA 

supplementation, is not the result of an increase in paracellular diffusion.  

PUFA supplementation of Caco-2 cells results in a modulation of plasma membrane 

fluidity as described in section 3.3.5. Linoleic, α-linolenic and arachidonic acid 

resulted in an increase in membrane fluidity whereas EPA and DHA resulted in a 

decrease in plasma membrane fluidity. Supplementation with these five fatty acids 

also resulted in an increase in ferulic acid transport. But since EPA and DHA have 

the opposite effect on fluidity compared to the other three PUFA, but all five had the 

same effect on transport, it is unlikely that the change in fluidity is the cause for the 

observed change in ferulic acid absorption. 

5.3.2 Impact of PUFA on transporter mediated absorption of ferulic acid 

Transepithelial permeation of a compound can occur via four different mechanisms, 

paracellular diffusion, transcellular passive diffusion, carrier mediated diffusion or 

active transport involving plasma membrane spanning transporters (see chapter 1). 

Since the modification of membrane fluidity by fatty acid supplementation did not 

correlate with the increase in ferulic acid transport rate, and paracellular transport 

was also ruled out as the cause of the observed change in apparent permeability, it 

was assumed that a membrane spanning transporter was involved in the observed 

change in ferulic acid transport. Therefore, in the next step the PUFA DHA was 

selected to investigate the mechanism of transepithelial transport of ferulic acid 

further. Figure 5.6 shows the impact of DHA treatment on uptake transport (apical to 

basolateral side) of hesperetin, metoprolol and ferulic acid and also transport of 

ferulic acid in the efflux direction (basolateral to apical).  
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Figure 5.6; Impact of chronic DHA supplementation on transepithelial transport of ferulic 

acid, hesperetin and metoprolol in apical to basolateral direction (a → b) and of ferulic acid in 

basolateral to apical direction (b → a). For details on transport and analysis see sections 2.3, 

2.4 and 2.6. n = 6, N = 1; * = p ≤ 0.05 

Transepithelial transport of hesperetin and metoprolol, which are both absorbed by 

passive diffusion (259, 260), was unaffected by DHA supplementation of Caco-2 

cells, confirming that a change in passive diffusion is not the cause for the increase 

in permeability of ferulic acid. DHA treatment only significantly increased apical to 

basolateral transport of ferulic acid (Ja→b control vs. Ja→b DHA: p = 6.48E-6, Jb→a 

control vs. Ja→b DHA: p = 7.36E-5, Jb→a DHA vs. Ja→b DHA: p = 0.00195) but not in 

basolateral to apical transport direction (Jb→a DHA vs. Ja→b control: p = 0.11, Jb→a 

DHA vs. Jb→a control: p = 1). Such an asymmetric effect suggests that DHA has an 

impact on a transporter-mediated process. In chapter 4, a change in facilitated 

diffusion of ferulic acid via modulation of the expression of MCT1 and MCT4, by the 

microbial metabolite butyric acid, was reported. There, the effect of butyric acid on 

ferulic acid transport was abolished by the presence of the MCT inhibitor phloretin in 

the transport buffer. It was therefore tested whether phloretin would also inhibit the 

effect of DHA on ferulic acid transport. Figure 5.7 shows that the presence of 

phloretin in the transport buffer had no significant impact on ferulic acid transport. 
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treatment control DHA 
E-3-S 

DHA 

Phloretin 

DHA 

Gly-Gly 

DHA 

Ibuprofen 

DHA 

control  4.9E-4 3.2E-4 1.7E-4 0.03 0.08 

DHA 4.9E-4  2.8E-10 1 0.222 0.084 

E-3-S 

control 
2.8E-6 1.6E-11 

0.241    

Phloretin 

control 
0.085 0.223 

 0.081   

Gly-Gly 

control 
1 5.6E-4 

  0.066  

Ibuprofen 

control 
1 1.5E-4 

   0.030 

Figure 5.7; A Impact of different transport inhibitors on apical to basolateral transport of 

ferulic acid (500μM). B Corresponding p-values determined by one-way ANOVA. For details 

on transport and analysis see sections 2.3, 2.4 and 2.6. n = 6, N = 1 for phloretin and 

estrone-3-sulfate (E-3-S) and n = 3, N = 1 for Diglycine (Gly-Gly) and Ibuprofen; * = p ≤ 0.05 

Since phloretin did not reduce transport across DHA treated cell monolayers to the 

level of controls, other transport inhibitors were tested, which target some of the 

most abundant uptake transporters in the apical membrane of Caco-2 cells, 

according to the literature (18, 147). Diglycine (Gly-Gly), an inhibitor of 

control E-3-S Phloretin Gly-Gly Ibuprofen

2

4

6

8

10

12

14 ****

 

P
a

p
p
 [

 x
1

0
-6
 c

m
/s

]
 control   DHA

*

A 

B 



- 127 - 
 

Peptide transporter 1 (PepT1) (137, 261), and ibuprofen, an inhibitor of PepT1 (136) 

and Organic anion transporting polypeptide B (OATPB) (136), had no impact on 

ferulic acid transport, but estrone-3-sulfate, an inhibitor of Organic anion 

transporter 2 (OAT2) (138, 262), Sodium-dependent organic anion transporter 

(SOAT) (263) and several members of the OATP family (264), significantly reduced 

transepithelial transport across DHA treated and untreated cells. To test whether 

DHA has an impact on gene expression of the phloretin and estrone-3-sulfate 

sensitive transporters MCT and OAT2, changes in mRNA levels of those 

transporters in chronically supplemented Caco-2 cells were assessed.  

 

 

Figure 5.8; Impact of chronic DHA supplementation on gene expression of selected 

transporters in Caco-2 cells. For details on treatment and analysis see sections 2.3 and 2.8. 

n = 6, N = 1; * = p ≤ 0.05 

The expression of the three most abundant MCT isoforms in Caco-2 cells was not 

increased with DHA treatment; on the contrary, expression of MCT1 (SLC16A1) and 

MCT5 (SLC16A4) even decreased, which argues against a role of MCT transporters 

in the increase in ferulic acid transport after DHA treatment. Expression of OAT2 

(SLC22A7) was upregulated after DHA supplementation.  
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5.3.3 Impact of fatty acid supplementation on ferulic acid metabolism by 

Caco-2 cells 

The mechanism of ferulic acid transport described in chapter 4 was investigated by 

comparing transport and gene expression data with changes in metabolism. This 

approach was employed again, this time to draw conclusions on the impact of DHA 

on ferulic acid transport.  

 

 

Figure 5.9; Impact of chronic DHA supplementation on metabolism of ferulic acid by Caco-2 

cells. The aglycone was either applied to the apical side (apical → basal) or to the 

basolateral side (basal → apical) at a concentration of 500 μM. For details on treatment and 

analysis see sections 2.3 and 2.7. n = 6, N = 1; * = p ≤ 0.05 

DHA supplementation increased the concentration of all metabolites on the apical 

side, when ferulic acid was applied to the apical side but did not significantly change 

intracellular metabolite concentrations and significantly increased dihydroferulic acid 

and ferulic acid glucuronide concentrations in the basolateral chamber. DHA 

supplementation significantly increased ferulic acid sulfate and dihydroferulic acid 

concentrations on the apical side, decreased concentrations of dihydroferulic acid 
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and ferulic acid glucuronide intracellularly and significantly increased concentrations 

of dihydroferulic acid and ferulic acid glucuronide in the basolateral well, when 

ferulic acid was applied to the basolateral side (figure 5.9). For metabolite 

concentrations, see figure 4.6. 

The conclusions on the impact of DHA on ferulic acid metabolism are not as clear as 

with the impact of butyric acid. Generally, metabolite levels are increased in the 

apical and basolateral chamber but not intracellularly. DHA also had no influence on 

the concentration of ferulic acid in the cell lysate, so there is no correlation of 

intracellular aglycone concentration with metabolism increase (figure 5.12).  

Since it was not possible to draw definite conclusions from the data presented in 

figure 5.9, regarding the transport mechanism that is affected by PUFA 

supplementation, the metabolism of ferulic acid was also investigated in DHA 

treated and untreated cells in the presence and absence of the transport inhibitor 

estrone-3-sulfate. Since estrone-3-sulfate reduced transepithelial transport of ferulic 

acid (figure 5.6), most likely through inhibition of apical aglycone uptake, the 

resulting lower intracellular concentration of ferulic acid should be reflected in 

metabolite formation.  
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Figure 5.10; Impact of estrone-3-sulfate on metabolism of ferulic acid by control and 

chronically DHA treated Caco-2 cells. A fold change of amount of metabolites produced in 

the presence of estrone-3-sulfate is shown normalised to the amount of metabolites 

produced in the absence of estrone-3-sulfate. For details on treatment and analysis see 

sections 2.3 and 2.7. n = 6, N = 1; * = p ≤ 0.05 

The impact of DHA supplementation on metabolism was compared between 

incubations with and without estrone-3-sulfate. The inhibitor showed the same effect 

on metabolism by DHA-supplemented and control cells. It decreased the amount of 

dihydroferulic acid and feruloyl-glucuronide and increased the amount of feruloyl-

sulfate that was produced (figure 5.10).  
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Figure 5.11; Impact of estrone-3-sulfate on metabolism of ferulic acid by control and 

chronically DHA treated Caco-2 cells. A fold change of amount of metabolites produced in 

DHA treated cells is shown normalised to the amount of metabolites produced in untreated 

cells. Note that this data is the same as already presented in figure 5.11, but plotted 

differently to show a different effect. For details on treatment and analysis see sections 2.3 

and 2.7. n = 6, N = 1; * = p ≤ 0.05 

Comparing the impact of estrone-3-sulfate treatment on ferulic acid metabolism in 

DHA supplementated and non-supplemented cells shows that, while the inhibitor 

reduces metabolite formation in Caco-2 cells, it has no impact on the pattern of 

changes induced by DHA treatment (figure 5.11). There was a general increase of 

metabolite concentration after DHA supplementation in the presence and absence 

of estrone-3-sulfate. There also was a very slight but non-significant increase in 

intracellular concentrations of ferulic acid after DHA treatment, but the presence of 

estrone-3-sulfate in the incubation medium did not affect intracellular concentrations 

of ferulic acid (figure 5.12)  
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Figure 5.12; Impact of DHA supplementation and the presence of estrone-3-sulfate (E-3-S) 

on intracellular concentrations of ferulic acid in Caco-2 cells. For details on treatment and 

analysis see sections 2.3 and 2.7. n = 6, N = 1;  

Even though paracellular and transcellular passive diffusion have been ruled out as 

the cause of ferulic acid transport increase induced by PUFA supplementation on 

the basis of experiments described above, it was still interesting to investigate a 

possible impact of these physical changes on ferulic acid metabolism. Therefore it 

was tested whether treatment of Caco-2 cells with methyl-β-cyclodextrin has an 

impact on ferulic acid metabolism. 

 

 

Figure 5.13, Impact of methyl-β-cyclodextrin treatment of Caco-2 cells on metabolism of 

ferulic acid. For details on treatment and analysis see sections 2.2 and 2.13. n = 6, N = 1; 

* = p ≤ 0.05 
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Figure 5.13 shows that methyl-β-cyclodextrin treatment induced in a unique pattern 

of metabolism changes, that was different from previously observed effects, with 

decreased levels of feruloyl-sulfate in all compartments and dihydroferulic acid in the 

apical well, but increased levels of feruloyl-glucuronide intracellularly. 

5.3.4 Impact of fatty acid supplementation on ferulic acid metabolism in 

HepG2 cells. 

The metabolism of ferulic acid described in section 5.3.3 gives no clear picture of the 

impact of fatty acids on ferulic acid transport. It is quite possible that several effects 

overlay each other here, for example PUFA could also have an impact on the 

metabolism itself by affecting the expression or activity of enzymes that catalyse 

those reactions. Caco-2 cells are a complex model in this respect because they are 

a differentiating cell line and there are three compartments in which metabolites can 

accumulate. Therefore a much simpler model was sought to investigate the impact 

of fatty acids on metabolism of ferulic acid further. Differential fatty acid feeding in 

animal models will not only change the composition of the intestinal cells but also of 

other tissues and organs. The liver is usually thought to be the crucial organ for 

metabolism of xenobiotics, since many key phase II enzymes are particularly 

expressed here. The lipid composition of liver cells was also shown to change with 

fatty acid supplementation in vivo (265, 266). Therefore, for further experiments the 

hepatoblastoma HepG2 cell line was chosen, as this cell line is a much simpler 

model since it is non-polarising. It does however express many efflux transporters, 

therefore what fraction of the metabolites produced is exported into the medium and 

how much is retained intracellularly was investigated first.  
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Figure 5.14; Distribution of ferulic acid metabolites in HepG2 cultures. Results are given as 

the total amount of compound summed up over the 100 μL of cell lysate or 2000 μL of 

supernatant. Cells were incubated with 1 μmol ferulic acid in 2000 μL buffer for 120 min and 

the supernatant and cell lysate were analysed as described in section 2.13. n = 6, N = 1 

Figure 5.14 shows that the largest portion of metabolites was exported into the 

supernatant and only 1 - 2 % could be found intracellularly. For that reason, only the 

supernatant was analysed in all further experiments. 

Next, the impact of a five day treatment of HepG2 cells with different long chain fatty 

acids on ferulic acid metabolism was investigated.   
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Figure 5.15; Impact of different long chain fatty acids on ferulic acid metabolism in HepG2 

cells. Cells were treated with 50 μM fatty acid for 5 days and metabolism was analysed as 

described in sections 2.3 and 2.7. C18:0 = stearic acid, C18:1 = oleic acid, C18:2 = linoleic 

acid, C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, C22:6 = DHA; n = 6, 

N = 1; * = p ≤ 0.05 

As figure 5.15 shows, there is a clear impact of PUFA on the formation of 

dihydroferulic acid and feruloyl-glucuronide. Glucuronide levels increased and 

dihydroferulic acid levels decreased. The impact of fatty acids on sulfoconjugation is 

not as clear, as there is an increase in that metabolite with stearic, linoleic and 

arachidonic acid and a slight decrease with DHA supplementation.  

Since DHA has been selected for most of the experiments described above, it was 

again chosen to investigate a long term impact of fatty acids. HepG2 cells were 

cultured in the renewed presence of 50 μM DHA over several passages and ferulic 

acid metabolism was tested at different time points.   

 

C18:0 C18:1 C18:2 C18:3 C20:4 C20:5 C22:6

0.5

1.0

1.5

2.0

**

*****

*******
 

 

F
o

ld
 C

h
a

n
g

e

 sulfate

 dhFA

 glucuronide

*



- 136 - 
 

 

Figure 5.16, Impact of long term supplementation of HepG2 cells with 50 μM DHA on ferulic 

acid (500 μM) metabolism. X-axis indicates day after lipid supplementation commenced and 

number of passages in lipid supplemented medium. For details on conditions and analysis 

see sections 2.3 and 2.7. n = 6, N = 1; * = p ≤ 0.05 

The continuous presence of DHA in the growth medium over several passages 

increased the formation of glucuronic acid conjugates up to three times the amount 

found in control cells. Dihyhodroferulic acid production remained lower than in 

untreated cells and sulfoconjugation, although decreased at day five, was actually 

increased after two weeks of supplementation (figure 5.16).   
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5.4 Discussion 

The impact of different dietary patterns, concerning the type of lipid that is 

consumed, on phenolic acid bioavailability, was investigated. An enterocyte cell 

culture model with chronic supplementation of low concentrations of dietary fatty 

acids was used to study this possible interaction. 

Chronic supplementation with several different PUFAs resulted in an increase in 

caffeic and ferulic acid uptake. Since fatty acid treatment did not decrease cell 

viability or TEER (see figure 3.9), such an effect does not seem to be due to a 

weakening of the cell layer integrity caused by lipid cytotoxicity. Choosing DHA to 

investigate the mechanism of uptake increase further, it was found that caffeic acid 

but not ferulic acid transport correlated with an increase in permeability of the 

paracellular diffusion marker lucifer yellow. Paracellular diffusion is regulated by 

proteins of the tight junction complex. Very early in the history of tight junction 

research, the great abundance of cholesterol in the tight junction complex and 

disturbance of the tight junction assembly with cholesterol removal, was noted (267). 

More recently the presence of some of the tight junction proteins in special 

cholesterol rich membrane domains, that can be selectively extracted using certain 

detergents, was confirmed (268, 269). When fractionated by sucrose gradient 

centrifugation, the tight junction proteins occludin, claudin 1, claudin 3, claudin 4, 

claudin 7 and JAM-A, but not the ZO proteins, co-localised with the detergent 

resistant membrane (DRM) marker flotillin. After lowering the membrane cholesterol 

content using methyl-β-cyclodextrin, these proteins became detergent soluble and 

no longer localised in DRM fractions. Methyl-β-cyclodextrin treatment of Caco-2 

cells resulted in time dependent removal of cholesterol, a decrease in TEER and an 

increase in permeability of the paracellular diffusion marker dextran (269). 

Cholesterol removal also resulted in a redistribution of tight junction proteins 

occludin, claudin 3 and claudin 4 from the lateral plasma membrane to the cytosol 

(269, 270), thereby causing a decrease in tight junction integrity and an increase in 
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paracellular diffusion. Supplementation with dietary PUFA has also been shown to 

modulate DRM composition and functioning (271-273), which could explain the 

impairment of tight junction integrity observed here. The description of the impact of 

PUFA on paracellular diffusion in the literature varies depending on the incubation 

conditions and the cell line employed. In most studies, where 24 h of exposure time 

were chosen, either no effect on TEER and diffusion rate of paracellular markers 

lucifer yellow, mannitol, fluorescein and dextran, or an increase in permeability only 

with very high concentrations of PUFA in the millimolar range, was found (177, 274-

279). The long term impact of physiological concentrations of fatty acids, as 

investigated in the current study, has not been described before.  

As methyl-β-cyclodextrin treatment of Caco-2 cell monolayers resulted in an 

increase in transport of caffeic acid but not ferulic acid, it was concluded that caffeic 

acid uptake is due to increased paracellular diffusion but ferulic acid uptake is not. 

The fact that transport of ferulic acid did not correlate with changes in paracellular 

nor passive transcellular diffusion suggests that it was transporter mediated uptake 

that was affected by PUFA supplementation. Previous reports (234) and the work 

described in chapter 4 have shown a possible role of MCT1 in the uptake of ferulic 

acid in Caco-2 cells. Therefore it was tested, whether the PUFA DHA has a similar 

effect as butyric acid in modulation of MCT expression. Ferulic acid transport was 

not sensitive to the MCT inhibitor phloretin, and expression of MCT1, MCT4 and 

MCT5 was not enhanced with DHA supplementation, and therefore MCT is not 

involved in PUFA upregulation of ferulic acid transepithelial transport. The impact of 

other transport inhibitors affecting some of the most abundant uptake transporters in 

the apical membrane of Caco-2 cells, which could have ferulic acid as an allocrite 

(19, 147, 280), was investigated, and it was found that estrone-3-sulfate decreased 

transport across fatty acid supplemented and non-supplemented cell layers. 

Estrone-3-sulfate is reported to be an inhibitor of OAT2 and OAT2 expression was 

also found to be increased in DHA supplemented cells. However, previous reports 
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have not found ferulic acid to be an allocrite of OAT2 but only of OAT1 (281). There 

is no information available whether estrone-3-sulfate is also inhibiting OAT1, so it 

would be interesting to explore this possible interaction further. 

 

 

Figure 5.17, Cellular localisation of estrone-3-sulfate sensitive transporters in Caco-2 cells.  

Estrone-3-sulfate is also an inhibitor of other apical uptake transporters expressed in 

Caco-2 cells. It inhibits OATPB, but since ibuprofen, which is an inhibitor of OATPB 

as well, had no effect on ferulic acid transport, OATPB is unlikely to be involved in 

ferulic acid uptake. The only other apical uptake transporter that is known to be 

inhibited by estrone-3-sulfate, is SOAT (263). Instead of apical uptake, basolateral 

efflux transporters could also be responsible for the observed effect of 

estrone-3-sulfate on ferulic acid transport. Here the inhibitor has an impact on 

ABCC1 and OSTα/β (282). To determine the exact mechanism of estrone-3-sulfate 

action in this context, all four transporters, OAT1, SOAT, ABCC1 and OSTα/β, 

would have to be investigated concerning their ability to transport ferulic acid. But it 

is not entirely clear whether the target of estrone-3-sulfate is actually the same 

transporter that is responsible for the increase in ferulic acid transport after PUFA 

supplementation. Looking closely at the transport and metabolism data presented in 

figures 5.6 and 5.10, it can be observed that the presence of estrone-3-sulfate 

neither abolishes the significant increase in ferulic acid uptake induced by fatty acid 

treatment, nor does it alter the change in metabolism pattern induced by chronic 
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DHA supplementation. It could therefore also be that ferulic acid is the allocrite of a 

third, unknown transporter that is neither sensitive to phloretin nor to 

estrone-3-sulfate and which has not been considered or reported so far.    

Even though co-incubation of ferulic acid with the transport inhibitor 

estrone-3-sulfate resulted in a decrease of the metabolites dihydroferulic acid and 

ferulic acid glucuronide, it is not likely that this effect was due to a decreased uptake 

of ferulic acid into the cell, as intracellular concentrations of ferulic acid were 

unchanged. Most likely it is a direct effect of estrone-3-sulfate on metabolism. 

Caco-2 cells exhibit steroid sulfatase activity (283, 284), meaning that the inhibitor 

estrone-3-sulfate can be deconjugated intracellularly and the free steroid then 

constitutes a competing substrate for phase II metabolism enzymes that also 

conjugate ferulic acid. Thus the decrease in feruloyl-glucuronide can be explained 

as estrone is a substrate of the same UGTs as ferulic acid, namely UGT1A1, 

UGT1A8, UGT1A9 and UGT1A10 (143, 285). Which enzyme catalyses the 

reduction of ferulic acid to dihydroferulic acid has not been characterised, but since 

the formation of this metabolite is also decreased with estrone-3-sulfate 

co-application, it can be assumed, that there is also an overlapping enzyme 

specificity of these two compounds. Which sulfatase isoform catalyses the 

hydrolysis of feruloyl-sulfate has also not been reported, but perhaps here as well is 

a overlap in enzyme specificity with esterone-3-sulfate which would result in a 

decreased desulfation of the ferulic acid metabolites and consequent raised levels of 

this conjugate in the presence of estrone-3-sulfate. Estrone-3-sulfate deconjugation 

is catalysed by steroid sulfatase, which also has a weak affinity for non-steroidal 

substrates, for example, p-nitrophenol (286). Alternatively, the desulfation of 

estrone-3-sulfate would lead to increased intracellular levels of sulfate which might 

shift the equilibrium of the desulfation reaction a little from the product to the 

reactant side and result in increased levels of that conjugate. 
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Fatty acid supplementation induced changes in ferulic acid metabolism were also 

compared between intestinal enterocytes and hepatocytes to assess how different 

tissues are affected by different dietary lipids. In both cell lines, fatty acid 

supplementation induced an increase in glucuronide formation. This effect of lipids 

on UGT activity and expression has been described before (287-289), and is 

discussed further in chapter 7. Sulfoconjugation was also increased in chronically 

DHA supplemented Caco-2 cells and in HepG2 cells that have been treated for 

more than nine days. Ferulic acid is sulfoconjugated mainly by SULT1E1 but also by 

SULT1A1, SULT1A2 and SULT1A3 (143). There is no report on SULT regulation by 

dietary lipids, but SULT1E1 is highly expressed in adipose tissue (290). Since the 

main function of adipose tissue is to store lipids, there is a potential connection here 

that would be interesting to explore further. SULT1E1 expression and activity in 

HepG2 cells are very low (291, 292). In Caco-2 cells, SULT1E1 is also expressed at 

low levels, but SULT1A3 is very highly expressed, over 1000 times more than 

SULT1E1 (293). Therefore, even though ferulic acid has a much higher affinity for 

SULT1E1, SULT1A3 could have a dominating impact on ferulic acid 

sulfoconjugation due to the much higher expression. Formation of dihydroferulic acid 

was increased in intestinal cells but decreased in hepatocytes, which indicates a 

mechanism that is differentially regulated in different tissues. From comparison of 

metabolism in enterocytes and hepatocytes it can be concluded that the impact of 

fatty acid supplementation of Caco-2 cells on ferulic acid metabolism is more likely 

due to a direct impact on metabolising enzymes and not connected to the change in 

transport. 

The ability of methyl-β-cyclodextrin treatment to modulate ferulic acid metabolism in 

Caco-2 cells was also investigated. This was interesting as any observed changes 

would not stem from changes in gene expression but purely from the physical 

impact of lowered membrane cholesterol content. This impact could either be direct 

through reduced/enhanced diffusion of a hydrophobic compound across the plasma 
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membrane or indirect, affecting endocytosis or exocytosis pathways or DRM 

resident transporters (discussed further in chapter 6). Transport of ferulic acid 

glucuronide- and sulfoconjugates will rely on the latter mechanisms, as they are too 

large and polar to freely diffuse across the lipophilic core of the plasma membrane. 

Many transporters, such as PepT1 (294) or ABCB1 (295), are reported to locate to 

DRM. DRM are rich in cholesterol and lowering plasma membrane cholesterol 

content by methyl-β-cyclodextrin treatment results in disturbance of these structures 

and consequent altered transporter activity (296). DRM are also involved in 

endo-/exocytosis pathways which are sensitive to cholesterol depletion and either 

mediate direct uptake of compounds by endocytosis or regulate the abundance of 

transporters on the cell surface (297, 298). The decrease in apical efflux of 

feruloyl-sulfate and dihydroferulic acid after methyl-β-cyclodextrin treatment could 

be the result of the impact of cholesterol removal affecting DRM residing efflux 

transporters, as discussed further in chapter 6. The increase in feruloyl-glucuronide 

will most likely be due to activation of the ER residing UGT enzyme, as discussed 

further in chapter 7.  

 

In conclusion, it was shown that paracellular diffusion of caffeic acid in the intestinal 

Caco-2 cell culture model can be enhanced by fatty acid supplementation that 

weakens tight junction integrity. Ferulic acid transport is also enhanced by this 

treatment but through a different mechanism, which does not correlate with 

membrane fluidity changes. Most likely the PUFA sensitive mechanism of ferulic 

acid transport involves a carrier mediated process, perhaps one that is inhibited by 

estrone-3-sulfate, but which is not of the MCT family. Further work will need to be 

carried out to determine the identity of such transporter. 
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Chapter 6:  Impact of the fatty acid DHA on transepithelial transport of 

epicatechin and its phase II metabolites in the Caco-2 model 

 

6.1 Abstract 

The influence of chronic dietary fatty acid treatment of Caco-2 cells on epicatechin 

transport was investigated. Several fatty acids were tested but only DHA and 

arachidonic acid were able to reduce efflux to the apical side, which indicates an 

interference with the previously reported mechanism of epicatechin efflux by apical 

ABC-transporter. SiRNA silencing of ABCB1, ABCC2 and ABCG2 revealed that 

epicatechin is probably an allocrite of ABCC2, whereas the phase II conjugates 

O-methyl-epicatechin, epicatechin-sulfate and O-methyl-epicatechin-sulfate seem to 

be transported by ABCG2. DHA treatment decreased the transport of the O-methyl- 

and O-methyl-sulfo-conjugates and increased formation of sulfate metabolites. 

Glucuronic acid conjugates were only detected after transport in basolateral to 

apical direction and all other conjugates were also much more abundant when efflux 

transport was investigated. This behaviour agrees with the observation that 

epicatechin accumulates intracellularly when applied to the basolateral side but not 

when loaded in the apical well. Lowering membrane cholesterol content by 

methyl-β-cyclodextrin treatment of cells also reduced efflux of aglycone and 

metabolites. Epicatechin transport in apical to basolateral direction correlated very 

well with lucifer yellow permeation rates, which indicates that epicatechin absorption 

probably occurs by paracellular diffusion. 
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6.2 Introduction 

As reviewed in chapter 1, the flavanol epicatechin belongs to a group of polyphenols 

whose beneficial properties have received a lot of attention over the recent years. 

When the mechanism of epicatechin uptake at the intestinal epithelium was 

investigated in the Caco-2 enterocyte model, either no (299) or only very little (300) 

transport from the apical to the basolateral side was observed, whereas efflux of that 

compound from the basolateral to the apical compartment was much higher. Uptake 

rates increased and efflux decreased when the experiment was conducted in the 

presence of the compound MK571, an inhibitor of the apical efflux pump ABCC2. 

Such behaviour would indicate that epicatechin is an allocrite of apical efflux 

transporters of the ABC-family. This group of transporters, especially ABCB1, has 

been reported to localise in specific domains that are found in the outer leaflet of the 

plasma membrane called DRM or lipid rafts (301, 302). These structures contain 

many membrane receptors and transporters at a much higher density than the 

surrounding plasma membrane (303, 304) and modulation of their lipid composition 

by dietary fatty acids was shown to alter the activity of raft residing proteins (256, 

305-307). Since ABC-transporters are DRM resident, for this chapter the hypothesis 

that dietary fatty acids can affect epicatechin bioavailability through modulation of 

the plasma membrane composition and consequent interference with 

ABC-transporter activity, was investigated.  
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6.3 Results  

6.3.1 Impact of chronic fatty acid supplementation on transepithelial 

transport of epicatechin  

To screen for a possible modification of epicatechin absorption by dietary lipids, 

Caco-2 cells were chronically supplemented with 50 μM fatty acid and after 22 days, 

transepithelial transport of epicatechin was assessed in uptake (apical to 

basolateral) and efflux direction (basolateral to apical).  

 

 

Figure 6.1; Impact of chronic fatty acid supplementation of Caco-2 cells on epicatechin 

transport. Cells were treated with 50 μM fatty acid for 22 days and transport of epicatechin 

(200 μM) was assessed in uptake (apical → basal) and efflux direction (basal → apical). For 

details on conditions and analysis see sections 2.3, 2.4 and 2.6. C8 = octanoic acid, 

C16 = palmitic acid, C18:0 = stearic acid, C18:1 = oleic acid, C18:2 = linoleic acid, 

C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, C22:6 = DHA; n = 6, N = 1; 

* = p ≤ 0.05 

Figure 6.1 shows that all unsaturated fatty acids tested had an impact on 

epicatechin transport. Oleic, linoleic and α-linolenic acid increased epicatechin 
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efflux, which would either correspond to a stimulation of efflux transporter activity or 

an impact on paracellular diffusion. Only arachidonic acid and DHA decreased efflux 

of epicatechin while increasing uptake (though with arachidonic acid this increase 

was not significant), which could be due to decreased efflux transporter activity. 

Supplementation with DHA decreased the uptake : efflux ratio of epicatechin from 

1 : 10 to 1 : 5 (figure 6.2).  

 

Figure 6.2; Apparent permeability rate of epicatechin across chronically DHA supplemented 

Caco-2 monolayers in uptake (apical → basal) and efflux (basal → apical)) direction. For 

details on conditions and analysis, see sections 2.3, 2.4 and 2.6. n = 6, N = 1; * = p ≤ 0.05 

To test whether the observed changes in epicatechin transport rate after DHA 

supplementation were due to a change in efflux transporter activity, transport was 

assessed in the presence and absence of a mix of three different inhibitors that 

target ABC efflux transporters. Cyclosporin A was included as an ABCB1 inhibitor 

(308), MK571 is reported to inhibit different transporters of the ABCC family (309) 

and apigenin is an inhibitor of ABCG2 (310). The presence of a combination of 

these three compounds reduced efflux of epicatechin across non-treated cell 

monolayers, but not across DHA treated Caco-2 cells, indicating that DHA treatment 
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already reduced activity of efflux transporters and the inhibitor mix was not able to 

reduce it further (figure 6.3).    

 

 

Figure 6.3; Impact of the presence of ABC transporter inhibitors apigenin (10 μM), MK571 

(25 μM) and cyclosporine A (25 μM) on the basolateral to apical transport of epicatechin 

(200 μM) across DHA treated and non-treated Caco-2 monolayers. For details on conditions 

and analysis, see sections 2.3, 2.4 and 2.6. n = 3, N = 1; * = p ≤ 0.05 

 

 

Figure 6.4; Impact of chronic DHA treatment on efflux transporter expression in Caco-2 cells. 

For details on conditions and analysis, see sections 2.3 and 2.8. n = 6, N = 1; * = p ≤ 0.05 
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shows that chronic DHA supplementation had no significant impact on ABCB1 and 

ABCG2 mRNA levels but slightly reduced expression of ABCC2 by 6 ± 3 %. 

6.3.2 Impact of ABC-transporter siRNA silencing on intracellular 

concentrations of epicatechin  

As described above, it has previously been suggested that epicatechin is an allocrite 

of the apical efflux transporter ABCC2, mostly on the basis that co-application of the 

ABCC inhibitor MK571 increased epicatechin uptake. To investigate the involvement 

of ABCC2 but also of ABCB1 and ABCG2 in epicatechin transport further, 

expression of those three transporters was reduced by siRNA treatment of Caco-2 

cells and the impact of transporter expression decrease on epicatechin uptake was 

investigated. 

 

 

Figure 6.5; Impact of ABCB1, ABCC2 and ABCG2 siRNA treatment on gene expression of 

those transporters in Caco-2 cells. Gene expression was normalised to reference gene 

GAPDH and expression of the gene of interest in control incubations with negative control 

siRNA. For details on conditions and analysis, see sections 2.8 and 2.9. n = 3, N = 1 
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As shown in figure 6.5, there was an overlap in target specificity of the siRNA 

probes. They did not only repress mRNA levels of the one gene they were supposed 

to target, but siRNA targeted at ABCB1 also affected ABCG2 and vice versa. With 

ABCC2 siRNA treatment, mRNA levels of ABCG2 were also reduced whereas 

transcription of ABCB1 was slightly enhanced, perhaps a cellular mechanism to 

counteract the impact of siRNA treatment.  

 

Figure 6.6; Impact of siRNA silencing of ABC-transporter expression on intracellular 

concentration of epicatechin. For details on conditions and analysis, see sections 2.6 and 

2.9. n = 6, N = 1  

Silencing of ABCC2 resulted in enhanced intracellular retention of epicatechin, 

compared to cells treated with negative control siRNA, indicating that this 

transporter is indeed involved in the efflux of epicatechin from Caco-2 cells (figure 

6.6).  
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SiRNA silencing of ABC-transporters will not only affect efflux of epicatechin itself, 
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investigating metabolite transport using transport inhibitors can lead to 

misinterpretation, if the inhibitor has an effect on the formation of the metabolite 
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metabolites between the cell lysate and supernatant after siRNA silencing of 

transporters is a more reliable way of studying the efflux mechanism of epicatechin 

metabolites. To achieve this, an LC-MS/MS method for analysis of green tea 

catechin metabolites in urine (140) was adopted and optimised for analysis of 

epicatechin metabolites in cell culture samples. Figure 6.7 shows sample 

chromatograms of different epicatechin conjugate traces.  
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Figure 6.7; Traces of epicatechin metabolites analysed by LC-MS/MS. (1) 3ˈ-O-methyl-EC, 

(2) 4ˈ-O-methyl-EC [both m/z = 303 → 137], (3) EC-4ˈ-sulfate, (4) EC-5-sulfate, (5) 

EC-3ˈ-sulfate [all three m/z = 369 → 289], (6) 3ˈ-O-methyl-EC-5-sulfate, (7) 

3ˈ-O-methyl-EC-7-sulfate, (8) 4ˈ-O-methyl-EC-5-sulfate, (9) 4ˈ-O-methyl-EC-7-sulfate [all 

four m/z = 383 → 303], (10) EC-7-β-D-glucuronide, (11) EC-4ˈ-β-D-glucuronide, (12) 

EC-3ˈ-β-D-glucuronide [all three m/z = 465 → 289], (13) 3ˈ-O-methyl-EC-7-β-D-glucuronide, 

(14) 4ˈ-O-methyl-EC-5-β-D-glucuronide, (15) 4ˈ-O-methyl-EC-7-β-D-glucuronide, (16) 

4ˈ-O-methyl-EC-3ˈ-β-D-glucuronide [all four m/z = 465 → 289], (17) EC (10 pmol loaded) 

[m/z = 289 → 245], For details on conditions and analysis, see sections 2.4 and 2.7. 

As no original standards were available, identification of structural isomers was 

achieved by comparison to publications where they were so and which employed 

similar chromatographic conditions as used here, namely Kuhnle et al. 2000 (311) 

and Actis-Goretta et al. 2012 (312). Also, no absolute quantification of metabolites 

was possible, only relative quantification by comparing peak areas between different 

0

500

1000

0
100
200

0
50

100

0

4000

8000

0
200
400

8 10 12 14

0

1000

2000



2


 

1

54
3






EC-sulfate

 
S

ig
n

a
l 
In

te
n

s
it
y

time [min]

9


8

7
6

 
methyl-EC-sulfate

 
 

methyl-EC

13

12
1110

 

 EC-glucuronide

 

 

17

15



16

14


methyl-EC-glucuronide

 

 
EC

 



- 152 - 
 

treatments. Figure 6.8 gives the structure of (-)-epicatechin and the preferred sides 

of conjugation. 

 

 

Figure 6.8; Structure of (-)-epicatechin with preferred sides of conjugation labelled. 

Transport of epicatechin metabolites grown on solid supports was investigated by 

comparing efflux of metabolites from the cytosol to the apical side (Jc→a) and 

intracellular metabolite concentrations. 

 

Figure 6.9; Impact of efflux transporter siRNA silencing on epicatechin-sulfate levels in 

Caco-2 cell lysate and cell culture supernatant. For details on conditions and analysis, see 

sections 2.7 and 2.9. n = 6, N = 1; * = p ≤ 0.05  
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Silencing of ABCG2 resulted in a decreased epicatechin-3ˈ-sulfate efflux and 

increased intracellular retention, indicating that this compound is an allocrite of 

ABCG2. The decrease in efflux with ABCB1 and ABCC2 siRNA treatment will most 

likely stem from reduced ABCG2 expression that is a side effect of those two 

probes. Levels of epicatechin-5-sulfate are much lower than those of the 3ˈ-isomer 

and siRNA silencing did not indicate involvement of either transporter in efflux of that 

compound. The third stereoisomer, epicatechin-4ˈ-sulfate was not detected in the 

supernatant of five day old cultures and therefore not taken into consideration 

(figure 6.9).  

 

 

Figure 6.10; Impact of efflux transporter siRNA silencing on O-methyl-epicatechin levels in 

Caco-2 cell lysate and cell culture supernatant. For details on conditions and analysis, see 

sections 2.7 and 2.9. n = 6, N = 1; * = p ≤ 0.05   

Both levels of the 3ˈ- and the 4ˈ-O-methyl-epicatechin form were reduced in the 

supernatant and elevated in cell lysate samples after siRNA silencing of ABCG2. 

The increase of methyl forms in both types of sample after ABCC2 silencing could 

stem from the increased intracellular levels of the aglycone with that treatment. 
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Decreased efflux of 3ˈ-O-methyl-epicatechin after ABCB1 silencing could again be 

due to decreased ABCG2 expression with that treatment (figure 6.10). 

 

 

Figure 6.11; Impact of efflux transporter siRNA silencing on O-methyl-epicatechin-sulfate 

levels in Caco-2 cell lysate and cell culture supernatant. For details on conditions and 

analysis, see sections 2.7 and 2.9. n = 6, N = 1; * = p ≤ 0.05  

Distribution of three out of the four O-methyl-epicatechin-sulfate isomers, detected in 

Caco-2 cell culture samples, was sensitive to ABCG2 silencing, only 

3ˈ-O-methyl-epicatechin-5-sulfate levels were elevated in cell samples but not 

decreased in the supernatant (figure 3.11).  
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basolateral well of Caco-2 cells grown on transwell inserts (see below). Determining 

an impact of apical efflux transporter silencing on these compounds is difficult as 

they are either found not at all, or only in very low amounts in the apical supernatant, 

and it is also physiologically irrelevant, as these transporters don’t seem to affect the 

bioavailability of those conjugates. 

6.3.4 Impact of chronic DHA treatment on transport of epicatechin 

metabolites. 

Metabolism of epicatechin by chronically DHA treated Caco-2 cells was assessed to 

gain an insight into how the fatty acid affects metabolite transport, and with that, 

bioavailability of the compound. 

The impact of transporter silencing, described in section 6.3.3, was investigated in 

Caco-2 cultures five days after seeding. As already described in chapter 3, the 

expression and activity of many metabolising enzymes changes during cell 

differentiation. Therefore, metabolism of epicatechin was now compared between 

Caco-2 cultures five and 22 days after seeding. The change in relative concentration 

(see section 2.7 for calculations) of metabolites in intracellular and supernatant 

samples over time is presented for the most abundant conjugate of each of the three 

types of epicatechin metabolite presented above.  
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Figure 6.12; Formation of 3ˈ-O-methyl-epicatechin in non-differentiated (5 days) and 

differentiated (22 days) Caco-2 cells. For details on conditions and analysis, see sections 

2.3, 2.4 and 2.7. n = 3, N = 1  

Relative 3ˈ-O-methyl-epicatechin concentrations in the supernatant steadily 

increased over time, with slightly higher levels in cultures of non-differentiated cells. 

Intracellular conjugate levels did not consistently rise after the first time point, in 

non-differentiated cells 3ˈ-O-methyl-epicatechin concentrations even slightly 

decreased over time (figure 6.12). 
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Figure 6.13; Formation of epicatechin-3ˈ-sulfate in non-differentiated (5 days) and 

differentiated (22 days) Caco-2 cells. For details on conditions and analysis, see sections 

2.3, 2.4 and 2.7. n = 3, N = 1  

In contrast to O-methyl-epicatechin, levels of epicatechin-3ˈ-sulfate were much 

higher in differentiated Caco-2 cultures, compared to cultures 5 days after seeding. 

As with O-methyl-epicatechin, sulphate levels in the supernatant steadily increased 

over time whereas intracellular concentrations were more stable. In five day old 

cultures, the conjugates were only detected in the supernatant after 1 h of 

incubation (figure 6.13). 
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Figure 6.14; Formation of 3ˈ-O-methyl-epicatechin-5-sulfate in non-differentiated (5 days) 

and differentiated (22 days) Caco-2 cells. For details on conditions and analysis, see 

sections 2.3, 2.4 and 2.7. n = 3, N = 1  

Just like with sulfoconjugates, levels of 3ˈ-O-methyl-epicatechin-5-sulfate were 

higher in differentiated cultures than in non-differentiated cultures. As with 

O-methyl-epicatechin, intracellular levels were very stable over time, and in 22 day 

old cultures, they even decreased slightly. In the supernatant, conjugate 

concentrations increased over time (figure 6.14). 

In conclusion, comparison of epicatechin metabolism in Caco-2 cells five and 22 

days after seeding has shown that COMT activity does not change with cell 

differentiation whereas SULT activity or expression increases. 

Next, the impact of chronic DHA supplementation on epicatechin metabolism was 

investigated. 
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Figure 6.15; Impact of chronic DHA supplementation on levels of O-methyl-epicatechin in 

different compartments. Epicatechin (200 μM) was applied either to the apical side 

(apical → basal) or to the basolateral side (basal → apical). For details on conditions and 

analysis, see sections 2.3, 2.4 and 2.7. n = 6, N = 1; * = p ≤ 0.05  

DHA treatment reduced efflux of O-methyl-conjugates to the apical side and 

increased levels in the basolateral compartment. It also decreased intracellular 

levels of O-methyl-epicatechin when the aglycone was applied to the basolateral 

side (figure 6.15).  
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Figure 6.16; Impact of chronic DHA supplementation on levels of epicatechin-sulfate in 

different compartments. Epicatechin (200 μM) was applied either to the apical side 

(apical → basal) or to the basolateral side (basal → apical). For details on conditions and 

analysis, see sections 2.3, 2.4 and 2.7. n.d. = not detected; n = 6, N = 1; * = p ≤ 0.05  

DHA treatment greatly increased epicatechin-sulfate levels in all compartments 

when the aglycone was applied apically, but not when applied to the basolateral side 

(figure 6.16). 
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Figure 6.17; Impact of chronic DHA supplementation on levels of 

O-methyl-epicatechin-sulfate in different compartments. Epicatechin (200 μM) was applied 

either to the apical side (apical → basal) or to the basolateral side (basal → apical). For 

details on conditions and analysis, see sections 2.3, 2.4 and 2.7. n = 6, N = 1; * = p ≤ 0.05  

O-methyl-epicatechin-sulfate export to the apical side was decreased when 

epicatechin was applied to the basolateral side and levels were increased in the 

basolateral chamber when the aglycone was applied to the apical side (figure 6.17). 
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Figure 6.18; Impact of chronic DHA supplementation on levels of 

epicatechin-β-D-glucuronide in different compartments. Epicatechin (200 μM) was applied 

either to the apical side (apical → basal) or to the basolateral side (basal → apical). For 

details on conditions and analysis, see sections 2.3, 2.4 and 2.7. n.d. = not detected; n = 6, 

N = 1; * = p ≤ 0.05  

No epicatechin-β-D-glucuronide forms were detected when the aglycone was 

applied to the apical side, only when applied to the basolateral side. DHA treatment 

increased levels in all compartments. After chronic DHA supplementation, the most 

abundant form, epicatechin-3ˈ-β-D-glucuronide, was also detected intracellularly 

when the aglycone was applied apically but not without fatty acid treatment.  
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Figure 6.19; Impact of chronic DHA supplementation on intracellular concentration of 

epicatechin. Epicatechin (200 μM) was applied either to the apical side (apical → basal) or to 

the basolateral side (basal → apical). For details on conditions and analysis, see sections 

2.3, 2.4 and 2.7. n = 6, N = 1; * = p ≤ 0.05    

Chronic DHA supplementation decreased intracellular epicatechin levels when 

applied to the basolateral side, but increased intracellular levels, when applied to the 

apical side. This behaviour agrees with the transport of epicatechin, where DHA has 

the same effect of lowering efflux and increasing uptake transport. But if that effect 

really is caused by a change in efflux transporter activity, then it would be expected 

that in both cases, uptake and efflux transport, intracellular levels of epicatechin 

would increase. Decreased intracellular aglycone levels, after transport in the 

basolateral to apical direction, could be explained by either increased apical efflux or 

decreased basolateral uptake. Since apical levels are also decreased with DHA 

treatment, the first explanation is highly unlikely. The results presented in figure 6.19 

do therefore support a mechanism of decreased basolateral uptake. Figure 6.20 

shows epicatechin concentrations detected in Caco-2 cells after uptake and efflux 

transport (for calculation of intracellular concentrations see section 2.7). In both 

cases, a 200 μM solution of epicatechin was applied. After apical to basolateral 

transport (Ja→b), an intracellular epicatechin concentration of 54 μM ± 3 μM was 

detected and after basolateral to apical transport (Jb→a) it was 632 μM ± 6 μM (figure 

6.20). It is very hard to reconcile the concept of a reduced bioavailability of 
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epicatechin due to its strong affinity for active efflux transporters with an intracellular 

accumulation of that compound to over three times the extracellular concentration. If 

those two mechanisms should co-exist, and the fact that inhibition or silencing of 

efflux transporters does indeed reduce epicatechin transport to the apical side is in 

support of the theory, than it must be assumed that epicatechin taken up from the 

basolateral side is localised intracellularly in a way that the aglycone is not within 

reach of apical membrane transporters.    

 

 

Figure 6.20; Impact of transport direction on intracellular concentrations of epicatechin. 

Epicatechin (200 μM) was applied either to the apical side (apical → basal) or to the 

basolateral side (basal → apical). For details on conditions and analysis, see sections 2.4 

and 2.7. n = 6, N = 1 

If epicatechin taken up from the basolateral side is distributed within the cells in the 

same way as epicatechin taken up from the apical side, than substrate 

concentrations for phase II enzymes would be over ten times higher in the efflux 

transport direction than the uptake direction. Consequently, levels of metabolites 

would be expected to reflect this difference. Figures 6.21 to 6.23 show the relative 

concentrations of metabolites detected after efflux transport (aglycone applied to the 

basolateral side) normalised to concentrations after uptake transport (aglycone 

applied to the apical side).  
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Figure 6.21; Impact of transport direction on concentrations of O-methyl-epicatechin. 

Metabolite levels detected after efflux transport were normalised to levels detected after 

uptake transport. For details on conditions and analysis, see sections 2.4 and 2.7. n = 6, 

N = 1; * = p ≤ 0.05    

 

 

 

Figure 6.22; Impact of transport direction on concentrations of epicatechin-sulfate. Metabolite 

levels detected after efflux transport were normalised to levels detected after uptake 

transport. For details on conditions and analysis, see sections 2.4 and 2.7. n.d. = not 

detected; n = 6, N = 1; * = p ≤ 0.05     
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Figure 6.23; Impact of transport direction on concentrations of O-methyl-epicatechin-sulfate. 

Metabolite levels detected after efflux transport were normalised to levels detected after 

uptake transport. For details on conditions and analysis, see sections 2.4 and 2.7. n = 6, 

N = 1; * = p ≤ 0.05      

On average, O-methyl-conjugates were two times more abundant when Caco-2 

cells were incubated with epicatechin from the basolateral side, than when 

incubated from the apical side (figure 6.21). Sulfoconjugates were six times more 

abundant after efflux transport (figure 6.22) but only half the amount of double-

conjugated forms were detected (figure 6.23). Therefore, overall metabolite 

formation does not reflect the much greater abundance of substrate in efflux 

direction. Only sulfonation of epicatechin increased to an extent that would correlate 

with ten times higher intracellular substrate concentrations. 

There also is no obvious link between the impact of DHA on intracellular epicatechin 

concentrations and metabolism. As shown in figure 6.19, DHA supplementation 

increases intracellular epicatechin concentrations with uptake transport, but 

decreases them with efflux transport. Sulfoconjugate levels are also increased after 

uptake transport, but not decreased after efflux. O-methyl-epicatechin levels show 

reduced efflux to the apical side, which corresponds with a decrease in apical efflux 
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transporter activity by DHA treatment, and overall reduced conjugate levels after 

efflux transport. Perhaps the increase in SULT activity is again due to a direct 

impact of DHA on enzyme expression, as already discussed in chapter 5. 

Epicatechin and ferulic acid sulfonation are both catalysed by SULT1A1 and 

SULT1A3 (313). Since DHA supplementation increased production of 

sulfoconjugates of both phenolics, the impact of that fatty acid on expression of 

SULT1A1, which has a much higher affinity for epicatechin than SULT1A3, was 

investigated. But although DHA treatment increased sulfoconjugation, the 

expression of SULT1A1 was actually decreased by 14 ± 11 %. Therefore, either 

SULT1A3 is greatly affected by DHA treatment, which still needs to be investigated, 

or DHA has an impact on protein translation or substrate accessibility. Both SULT 

and COMT enzymes exist as cytosolic and membrane bound forms. Xenobiotic 

conjugating SULTs, such as SULT1A1 and SULT1A3, are cytosolic (314). Both 

cytosolic COMT (S-COMT) and membrane bound COMT (MB-COMT) are translated 

from the same gene, regulated by differential promoter activity (315). In all tissues, 

except brain, COMT is predominantly expressed as the cytosolic form. Since both 

SULT and COMT are cytosolic, they should both encounter the same substrate 

levels. But SULT seems to be much more susceptible to changing substrate levels 

due to DHA treatment. In this respect, sulfoconjugates behave just as glucuronic 

acid conjugates, which are found in very low amounts intracellularly when 

epicatechin is applied to the apical side, but in much higher amounts and in all 

compartments when epicatechin is applied to the basolateral side. The UGT enzyme 

is not cytosolic but ER membrane resident. So in summary, UGT and SULT are 

sensitive to intracellular concentration changes, COMT much less so. Interestingly, 

formation of the double conjugate is actually decreased with the much higher 

intracellular epicatechin levels after efflux transport, even though levels of the 

individual conjugates are increased.  
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6.3.5 Impact of methyl-β-cyclodextrin treatment on epicatechin transport. 

The original assumption that DHA supplementation decreases epicatechin efflux by 

affecting apical transporter activity was tested further through incubation of Caco-2 

cells with methyl-β-cyclodextrin. As already mentioned in chapter 4 and 5, 

methyl-β-cyclodextrin treatment removes membrane cholesterol which results in 

disruption of DRM and reduced activity of DRM residing transporters. Figure 6.24 

summarises the impact of that treatment on epicatechin metabolite levels.  

 

 

Figure 6.24; Impact of methyl-β-cyclodextrin pre-treatment on transport of epicatechin 

metabolites. For details on conditions and analysis, see sections 2.4, 2.7 and 2.13. n = 6, 

N = 1; * = p ≤ 0.05  

Apical efflux of all metabolites was strongly inhibited, just as would be assumed with 

decreased efflux transporter activity. Intracellular metabolite levels were increased, 

which could stem from an accumulation of metabolites due to decreased efflux or 
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from increased substrate levels. Figure 6.25 shows changes in epicatechin levels 

induced by methyl-β-cyclodextrin treatment.  

 

 

Figure 6.25; Impact of methyl-β-cyclodextrin pre-treatment on transport of epicatechin. For 

details on conditions and analysis, see sections 2.4, 2.7 and 2.13. n = 6; * = p ≤ 0.05  

Cyclodextrin treatment did not significantly change epicatechin transport in uptake 

direction but reduced apical efflux and increased intracellular levels in the efflux 

direction.  

 

 

Figure 6.26; Correlation of epicatechin uptake with lucifer yellow transport. For details on 

transport and analysis, see sections 2.4, 2.6 and 2.13. 

 

 

cellular basal apical cellular

0.2

0.4

0.6

0.8

1.0

1.2 *

 

 

F
o

ld
 C

h
a

n
g

e

 basal  apicalapical  basal

*

0 1 2 3 4 5

5

10

15

20

e
p

ic
a

te
c
h

in
 P

a
p

p
 [

x
1

0
-6
 c

m
/s

] 

lucifer yellow P
app

 [x10
-6
 cm/s]

r = 0.995, p = 2.6E-10 



- 170 - 
 

As already shown in chapter 5, cyclodextrin treatment increased diffusion rates of 

the paracellular marker lucifer yellow. Epicatechin permeation rates in uptake 

direction correlated very well with lucifer yellow permeation rates, which indicates 

that epicatechin absorption occurs paracellularly (figure 6.26).  
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6.4 Discussion 

For this chapter, the impact of dietary fatty acids on epicatechin basolateral to apical 

and apical to basolateral transport in the Caco-2 enterocyte model was investigated. 

The reported limitation of epicatechin bioavailability due to active efflux by 

ABC-transporters was addressed by first screening fatty acids for their ability to 

increase uptake and to decrease efflux. Only chronic supplementation with 

arachidonic acid and DHA resulted in the desired effect. Interestingly, when 

modification of the cellular lipid composition was investigated, treatment of cells with 

those two fatty acids resulted in an almost identical lipid profile regarding acyl chain 

saturation (see figures 3.6 to 3.8). DHA was chosen to study the mechanism of the 

observed effect further. Epicatechin permeation rate was ten times higher in efflux 

than in uptake direction which agrees with previous reports on this topic. Zhang et 

al. even found a 22 times higher efflux than uptake rate for epicatechin in Caco-2 

cells and pre-incubation with the ABCC2 inhibitor MK571 reduced efflux to only 1.5 

times the uptake rate, which concurrently increased 2.5 fold (300). However, a 

different study conducted by Tian et al. found an almost equal transport rate for 

uptake and efflux in the same cell line with apparent permeability rates that lie 

between the ones that were observed here and in the above cited study (316). Tian 

and colleagues reported a Papp of 0.6 x 10-6 cm/s for uptake and a Papp of 

0.7 x 10-6 cm/s for efflux, whereas Zhang et al. observed an uptake rate of 

Papp = 0.14 x 10-6 cm/s and an efflux rate of Papp = 3 x 10-6 cm/s, which agrees with 

the epicatechin transport rates reported in the current chapter of 

Papp = 0.1 x 10-6 cm/s in uptake direction and Papp = 1 x 10-6 cm/s in efflux direction. 

Since Tian et al also observed an intracellular accumulation of epicatechin of 5 % of 

the applied dose in uptake direction but the intracellular amount presented in figure 

6.20 is only 0.1 % of the applied dose at the same incubation time, it seems that the 

batch of Caco-2 cells used by Tian et al. exhibit much higher apical uptake or lower 

apical efflux than the batch used here. ABC efflux transporter expression increases 
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in Caco-2 cells with time in culture but not with passage number (317). As both 

studies cited above as well as the work described in this chapter were carried out 22 

days after seeding, a difference in differentiation status should not be the reason for 

different uptake rates. The only major difference in experimental set-up is that Tian 

et al. cultured Caco-2 cells on membranes with a pore diameter of 3 μm whereas 

most transport studies use permeable supports with a pore diameter of 0.4 μm. The 

larger pore diameter is more typically used for cell migration assays (318, 319), and 

so perhaps this is the reason for the different transport rates observed.   

The transport profile of epicatechin described here for the Caco-2 cell model fits 

very well with the hypothesis that apical efflux transporters are the cause for a 

limited uptake of that compound in the small intestine. Also, the impact of DHA 

treatment on transport seems to agree with the idea that a modification of 

membrane lipids results in an activity decrease of efflux transporters which 

enhances epicatechin bioavailability. However, the fact that epicatechin 

accumulates intracellularly up to six times the extracellular concentration seems to 

stand in sharp contrast to the above described mechanism. In that case, uptake into 

cell to such high concentration occurs against the concentration gradient which 

indicates that active transport is required to achieve this. The only other explanation 

would be a mechanism of different local concentrations within the cell which would 

require low concentrations of the compound towards the cell membrane so that 

passive diffusion can occur along the concentration gradient. The ChEMBL 

Database gives the calculated partition coefficient of epicatechin as logP = 2.02 

(320) and the dissociation constants of the four hydroxyl group protons at the A and 

B phenyl-rings were determined experimentally as pKa1 = 8.72, pKa2 = 9.49, 

pKa3 = 11.23 and pKa4 = 13.4 (321). All transport studies described in this and 

previous chapters were carried out at pH = 7.4, which means that epicatechin will 

have been almost entirely protonated and thus should be able to cross the plasma 

membrane by passive diffusion. Inside the cell, the compound would then have to 
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accumulate in a restricted area to a much higher concentrations than detected in 

whole cell lysate, perhaps through binding to certain structures or uptake into 

specific organelles. Since epicatechin is able to emit a fluorescence signal, it would 

be of great interest to image epicatechin loaded cells and observe whether this 

compound does indeed accumulate in certain cellular structures. The limitation to 

this approach is the low excitation wavelength of epicatechin of around λ = 230 nm. 

Most fluorescence microscopes have a laser at 405 nm as the lowest excitation 

wavelength, which unfortunately is too high to carry out this experiment. Uptake 

from both the apical and basolateral side can occur by cytosis. There are different 

mechanisms how this process is initiated but they all have in common that they start 

with an invagination at the plasma membrane that is loaded with cargo, which could 

be membrane proteins, extracellular particles or fluid, and that then buds of and 

fuses with the early endosome. From the early endosome vesicles are either 

directed to the late endosome or lysosome, recycled back to the place of origin, 

sorted in the trans-Golgi network or, in polarised cells, routed towards the opposite 

membrane (322). 

Uptake of nutrients in the intestine can occur via transcytosis. An example is 

cobalamin or vitamin B12, which is taken up at the luminal side bound to the 

cobalamin gastric intrinsic factor and then transferred to transcobalamin in the late 

endosomal compartment from which it is released when it reaches the serosal side 

(323, 324). But although endo- or transcytosis originating from the apical membrane 

has been investigated much more extensively than transport from the basolateral 

side, the latter one is by no means less important. Especially in cells with a polarised 

morphology, like the Caco-2 cell line, transcytosis is crucial for establishing and 

maintaining the specific distribution of receptors and transporters between the apical 

and basolateral membrane. In undifferentiated Caco-2 cells, membrane proteins are 

still uniformly distributed in the plasma membrane but after connection of tight 

junctions and with increasing time in culture, polarity is established by shuttling 
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proteins to either apical or basolateral side via transcytosis (284, 325). Newly 

synthesised membrane proteins are mostly sorted in the trans-Golgi network and 

packed into vesicles that eventually fuse with their destination membrane. But there 

is also an ‘indirect pathway’ in which apically targeted proteins are first transported 

to the basolateral side and then re-routed to their final destination through 

transcytosis (326, 327). As cytotic transport is an important factor in polarised cells, 

such a mechanism may account for the intracellular accumulation of epicatechin. It 

was shown that basolaterally endocytosed compounds can accumulate in 

intracellular compartments if their release to the apical side or into the lysosome is 

disturbed (325, 328). Marsh et al. measured the uptake rate of fluid phase by 

endocytosis in Baby Hamster Kidney (BHK) cells with the help of labelled solutes 

and found it to be ~ 0.37 μL per h and per 107 cells (329). In Caco-2 cell 

monolayers, as used for results presented in figure 6.20, there are approximately 

106 cells per well, which would equal to an uptake of 0.037 μL per well. With a 

calculated cell layer volume of 7 μL, this would result in an intracellular epicatechin 

concentration of ~ 1 μM due to pinocytosis. Even if one considers differences in 

endocytosis rates for different cell types, it is unlikely that this transport mechanism 

is a major contribution to the ~ 600 μM epicatechin found intracellularly after efflux 

transport. Therefore another mechanism must be responsible for epicatechin uptake 

at the basolateral membrane.   

After 90 min of epicatechin transport, none of the compartments had reached 

equilibrium. Figure 6.27 depicts the concentrations detected in the apical and 

basolateral well and in the cell lysate.  
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Figure 6.27; Epicatechin concentrations after 90 min of uptake or efflux transport. Arrows 

indicate transport direction.  

With apical to basolateral transport there is a downward slope in epicatechin 

concentration from compartment to compartment which could indicate a simple 

diffusion of the compound through the cell. However, since there is a very potent 

uptake mechanism from the basolateral side, epicatechin which reaches the 

basolateral side by, for example, paracellular diffusion would be readily taken up at 

the receiver side, lowering the apparent diffusion rate and increasing intracellular 

concentrations through indirect influx (figure 6.28). Since transport rates of 

epicatechin and lucifer yellow correlate very well (figure 6.26), paracellular diffusion 

is a likely mechanism of epicatechin uptake. Similar results were obtained by 

Kosińska and Andlauer who measured epicatechin permeation across Caco-2 cells 

as Papp = 4.5 x10-6 cm/s and a corresponding permeation rate of Papp = 6 x10-6 cm/s 

for lucifer yellow (330). Both rates are more than ten times higher than what is 

usually reported for paracellular diffusion, but they do confirm that an increase in 

paracellular diffusion, as shown by increase in lucifer yellow permeation rate, 

correlates with increased epicatechin permeation in uptake direction. 
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Figure 6.28; A possible mechanism of epicatechin uptake. 

The involvement of apical efflux transporters in epicatechin transport was 

investigated by siRNA silencing and with the help of transport inhibitors. Efflux at the 

intestinal brush border is mediated by ABC-transporters. The most abundant 

ABC-transporters in the apical plasma membrane of Caco-2 cells, that have been 

shown to be involved in excretion of xenobiotics and their phase II metabolites, are 

ABCB1 (331), ABCC2 (332), and ABCG2 (333). Other xenobiotic transporters that 

facilitate translocation across the basolateral membrane are closely related to 

ABCC2. ABCC1 (334) and ABCC3 (335) consistently localise to the basolateral 

membrane in polarised cells of different types of tissue, whereas ABCC4 is reported 

to locate in either the basolateral or the apical membrane, but seems to locate to the 

basolateral membrane in Caco-2 cells (336). Other members of the ABC-transporter 

family are also present in enterocytes but they exhibit different substrate 

specificities, for example, several transporters of that superfamily are involved in 

maintaining the lipid asymmetry of the outer and inner membrane leaflet (337, 338). 
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Figure 6.29; Localisation of ABC-transporters in Caco-2 cells. 

All of the xenobiotic transporting members of the ABC-family are among the most 

highly expressed transporters in Caco-2 cells, but reports on their expression 

pattern vary concerning their relative abundance compared to one another. 

Especially ABCG2 expression seems to vary among Caco-2 batches in different 

laboratories. Presented below is a list of expression patterns that have been 

reported for that cell line.  

ABCC2 > ABCG2 > ABCC3 > ABCB1 > ABCC4 > ABCC1   (18) 

ABCC2 > ABCB1 > ABCC3 > ABCC4 > ABCG2 > ABCC1   (280) 

ABCC3 > ABCC2 > ABCB1 > ABCC4 > ABCG2 > ABCC1   (339) 

ABCC2 > ABCC3 > ABCB1 > ABCG2 > ABCC4 > ABCC1   (147) 

ABCC4 > ABCC3 > ABCB1 > ABCC2 > ABCC1 > ABCG2   (340) 

 

In the Caco-2 cells used for the work presented in this chapter, the order of 

expression was ABCC2 (CT = 23.6) > ABCB1 (CT = 25.6)> ABCG2 (CT = 28.8, all 

determined at a concentration of 5 ng cDNA/μL). 

Reduction of transporter expression by siRNA silencing has shown that epicatechin 

is a likely allocrite of ABCC2, as reported previously, and that most epicatechin 

conjugates are allocrites of ABCG2. The most extensively investigated efflux 

transporter of that group though, is ABCB1. This transporter especially has been 

associated with the symptom of multiple drug resistance (MDR) that is feature of 
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many cancer cells and cell lines. MDR involves several mechanisms, among them is 

the upregulation of drug transporting efflux transporters of the ABC-family, which 

greatly limits the concentration of anti-cancer drugs that can be achieved in those 

cells and thus diminishes success of therapy. One such drug that is an allocrite of 

ABCB1 is vinblastine. When vinblastine transport was investigated in the ABCB1 

expressing Madin-Darby-Canine-Kidney (MDCK) cell line, another cell line that is 

routinely used for in vitro drug bioavailability prediction, it was reported to behave in 

the same way as epicatechin did here. Transepithelial transport of vinblastine was 

much greater in efflux than in uptake direction and the drug accumulated 

intracellularly when it was applied to the basolateral side, but intracellular levels 

were low when it was applied to the apical side. ABCB1 inhibition increased 

intracellular drug concentrations further and reduced efflux to the apical 

compartment (341). The authors of that report suggested that the disposition of 

vinblastine was mainly due to the unusual ability of ABCB1 to pick up allocrites from 

inside the inner leaflet of the plasma membrane and release them in the outer leaflet 

from where they then diffuse to the extracellular space. When this model was 

originally described by Higgins and Gottesman in 1992, the authors prominently 

described ABCB1 to function as a ‘hydrophobic vacuum cleaner’ that keeps the 

inner membrane leaflet clean of xenobiotics (342). Such function could explain why 

vinblastine is very effectively prevented from entering the cell from the apical side, 

but the transporter is much less able to reduce drug concentration once it reaches 

the cyosol. The authors also suggested that there is some unidentified uptake 

mechanism for vinblastine at the basolateral membrane and that the drug then binds 

intracellularly and thus accumulates to high concentrations (341). SiRNA silencing of 

ABCB1 did not show an involvement of that transporter in epicatechin efflux and 

there is no report that ABCC2 is also able to take up allocrites from inside the 

plasma membrane. But since all ABC-transporters are very similar in their structure, 
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it would be interesting to investigate whether ABCC2 could exhibit an uptake 

mechanism that is analogue to that of ABCB1.    

Independent of the phenomenon of intracellular accumulation, the involvement of 

ABC-transporters, most likely ABCC2, in apical epicatechin efflux has been 

demonstrated by transporter silencing and inhibition. Expression of ABCC2 was 

slightly reduced after chronic DHA supplementation. However, the decrease in 

epicatechin efflux three times exceeds the decrease in mRNA transcript levels. To 

confirm whether a decrease in efflux transporter abundance really could be the 

cause for DHA induced epicatechin transport inhibition, protein levels of the 

transporter will have to be investigated. The original hypothesis that fatty acids can 

affect transporter mediated epicatechin efflux by modulation of transporter activity, 

could still play a role though. This modulation was thought to occur through 

interference of DHA with the structure of DRM or lipid rafts. These lipid domains 

within the outer leaflet of the plasma membrane are enriched in cholesterol, 

sphingolipids, glucosylceramide and phospholipids with saturated acyl-moieties. The 

term DRM results from their property of being insoluble in cold detergent solutions, 

traditionally that detergent was Triton X-100, but different extraction methods have 

been developed since, among them also detergent free procedures that employ 

sonification in cold buffer. Each extraction technique will result in DRM with a slightly 

different lipid and protein composition (301, 343). Transport of epicatechin across 

methyl-β-cyclodextrin treated cells, as described in this chapter, has shown that the 

efflux rate of the aglycone and its conjugates can be reduced by physical changes of 

the plasma membrane. Decrease in the transport of epicatechin and its metabolites 

to the apical side indicates that cholesterol removal from the plasma membrane 

reduces ABCC2 and ABCG2 activity, which could be based on a disruption of DRM 

due to the lower cholesterol content. ABCC2 is the least investigated of the three 

apical efflux transporters in Caco-2 cells. It is highly expressed in the canalicular 

membrane of hepatocytes and most studies on that transporter have been 
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conducted using this cell type. In one such study, the authors showed that 

membrane cholesterol removal by methyl-β-cyclodextrin resulted in a diffusion of 

ABCC2 out of DRM fractions and an inhibition of ABCC2 mediated efflux (344). 

Another group has shown the same behaviour for ABCG2 in MDCK cells (345). It 

has also been reported that ABCC2 resides in membrane domains that are resistant 

to extraction by the detergent Lubrol WX and different bile salts but not resistant to 

extraction by Triton X-100 (346, 347). DHA was shown to specifically incorporate 

into DRM but much more into Triton X-100 insoluble (DHA content increased from 

1.2 to 31.7 %) and less into Lubrol XW insoluble (DHA content increased from 1.2 to 

only 5 %) domains (174). There are contradicting reports on the action of DHA on 

raft structure. On the one hand it was shown that DHA increase raft size by inducing 

fusion of these structures (273), on the other hand, it was also reported that DHA 

prevents raft clustering in plasma membranes of ethanol treated cells (348). But 

since that fatty acid is mostly incorporated into raft domains that do not contain 

ABCC2, the impact of DHA on ABC-transporter function might not be through 

modulation of raft structure but perhaps through alteration of the plasma membrane 

cholesterol content, as n-3 PUFA feeding of mice and MDR cell lines has shown to 

reduce the content of cholesterol and sphingolipids in raft fractions (123, 207, 273). 

And as mentioned above, results presented in this chapter and in previously 

published reports have shown that a decrease in membrane cholesterol content 

resulted in a decrease in ABCC2 and ABCG2 activity. 

A direct impact of FFA on ABC-transporter activity was also investigated but the 

presence of neither DHA nor α-linolenic acid had a direct inhibitory effect on ABCB1 

(349). This transporter, together with ABCC1, has been shown to transport 

xenobiotics as well as lipids (337, 338). So a chronic fatty acid supplementation of 

cells could theoretically lead to a competitive inhibition of xenobiotic transport. But 

as this has not been observed for either transporter with a known affinity for lipids, it 
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is also unlikely that lipid treatment will cause a direct inhibition of epicatechin efflux 

via ABCC2. 

Another mechanism that could contribute to the abundance of ABCC2 at the plasma 

membrane is the release of that transporter from intracellular ABCC2 pools. It was 

reported that the protein is abundant in a vesicular compartment just below the 

apical membrane and that plasma membrane fusion or retrieval of those vesicles 

can be rapidly induced through several signalling pathways (350). There is no report 

on interaction of lipids with this mechanism, but it does comprise a further possible 

interface between gene regulation and transporter abundance at the cell surface 

and stresses the need to investigate transporter protein levels, not only of whole cell 

lysate samples, but ideally of isolated plasma membranes. 

Metabolism of epicatechin by Caco-2 cells resulted mainly in the formation of 

O-methyl-, sulfate- and double conjugates. All three types of metabolites were 

preferentially exported to the apical side. These results are in accordance with 

previous reports, where these conjugates were also mainly found in the apical 

chamber after apical aglycone loading (300, 351). After basolateral loading, another 

phase II metabolite, epicatechin-β-D-glucuronide, was detected mainly in the 

basolateral well and also in cell lysate. O-methyl-epicatechin-β-D-glucuronide was 

only detected in trace amounts. None of the studies cited above reported the 

formation of glucuronic acid conjugates.     

The main difference between epicatechin metabolite formation in the Caco-2 cell 

line and in human studies is the great abundance of the O-methyl-conjugate in in 

vitro studies, but which is not at all found in vivo. Even though no chemical 

standards of epicatechin conjugates were available for the work presented here, 

comparison of peak areas can indicate the relative abundance of metabolites. The 

largest peak areas were found for 3ˈ-O-methyl-epicatechin. Just as it was shown for 

ferulic acid conjugates, it would be expected that sulfate- or glucuronic acid 

conjugates will be ionised more easily in the ion source of the mass spectrometer 
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and therefore will result in a stronger signal and larger peak areas than 

O-methyl-epicatechin at the same concentration. Since 3ˈ-O-methyl-epicatechin 

consistently reaches the largest peak areas, it can be assumed with confidence that 

this conjugate represents the most abundant epicatechin metabolite produced by 

Caco-2 cells. Therefore, the conjugate which is most abundant in vitro is completely 

absent in vivo in human samples (55, 351-354). Also, after incubation of the Caco-2 

model with epicatechin, no glucuronic acid and sulfate double-conjugated forms 

were detected and no triple conjugates either, whereas they were detected in 

plasma and urine after feeding either green tea, cocoa or epicatechin to rats or 

humans (55, 353, 354).   

 

In this chapter it was shown that chronic supplementation of Caco-2 cells with the 

fatty acid DHA is able to reduce transport of epicatechin and its conjugates towards 

the apical side, which in vivo corresponds to the intestinal lumen. It was also 

demonstrated that a reduction in expression of the apical efflux transporter ABCC2 

has the same effect on epicatechin transport as DHA treatment and that reduced 

expression of ABCG2 reduced apical efflux of epicatechin conjugates. DHA could 

exert its effect on aglycone transport either through reduction of ABCC2 expression 

or through modulation of the lipid environment of that transporter when inserted into 

the plasma membrane which would results in reduced transporter activity. It could 

not be determined via which mechanism epicatechin crosses the basolateral plasma 

membrane and why it accumulates intracellularly. More work is required to clarify 

these aspects of epicatechin transport across the intestinal epithelium.  
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Chapter 7:  Increase of glucuronic acid conjugation of epicatechin by UGT1A8 

in DHA supplemented intestinal goblet cells 

 

7.1 Abstract 

Previous reports have shown that dietary fatty acids are able to modify glucuronic 

acid conjugation rates in vitro and in vivo. Using recombinant human UGT isoforms 

it was shown in this chapter that glucuronidation of epicatechin is mainly catalysed 

by UGT1A1, UGT1A8 and UGT1A9. In HepG2 cells, pre-treatment with PUFA, but 

not stearic acid, increased epicatechin glucuronidation. In the intestinal 

Caco-2/HT29-MTX co-culture model, overall glucuronidation rates were much higher 

than in hepatocytes and enterocytes alone, and epicatechin was much more readily 

conjugated when cells were incubated from the basolateral side than when 

incubated from the apical side. The highest amount of glucuronide was also found in 

the basolateral well, whereas the highest concentration was detected in the cell 

lysate. None of the other epicatechin metabolites shared this distribution pattern. 

HT29-MTX cells contained over 1000 fold higher mRNA levels of UGT1A8 than 

Caco-2 or HepG2 cells and expression of UGT1A1 and UGT1A8 was increased 

after treatment of cells with DHA. DHA also doubled UGT1A(8) protein levels 

detected in HT29-MTX cell lysate and immunofluorescence staining revealed the 

presence of UGT1A(8) at the plasma membrane of that cell line. These results 

suggest that in the HT29-MTX cells at least some of the UGT1A8 enzyme is not ER 

resident but plasma membrane spanning and facilitates conjugation of epicatechin 

much more efficiently from the basolateral than from the luminal side. 
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7.2  Introduction 

In the previous chapter, the metabolism of epicatechin by Caco-2 cells was 

described. Only very low levels of epicatechin-β-D-glucuronide were detected in the 

cell culture model although in vivo these conjugates were found to be much more 

abundant (351, 355). UGT expression varies between different tissue and cell lines. 

Enzyme levels are high in tissues involved in xenobiotic metabolism. The greatest 

abundance and also the highest variety of different UGT isoforms is found in liver, 

intestine and kidney (36). Overall, most cell lines reflect the enzyme expression 

pattern of the type of tissue they were derived from, but levels of some individual 

isoforms can differ significantly between tissue and in vitro model. For example, the 

hepatic HepG2 cell line does not express UGT1A4 although this enzyme is highly 

abundant in liver samples and the intestinal cell line Caco-2 only contains low 

mRNA levels of UGT1A10, which is very well expressed in the small intestine (356). 

Dietary lipids have been shown to affect glucuronic acid conjugation in vitro and 

in vivo (357), but reports differ on the outcome of this effect. Some studies found 

that fatty acids enhance activity (358) and some found that they inhibit 

glucuronidation (359). To investigate the effect of dietary lipids on UGT activity 

further, the impact of chronic fatty acid supplementation of different cell lines on 

formation of epicatechin-β-D-glucuronide was assessed.   
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7.3  Results 

7.3.1  PUFA increase epicatechin glucuronic acid conjugation in HepG2 cells 

Liver and intestinal tissue have been reported to exhibit high glucuronic acid 

conjugation activity. Incubation of the intestinal Caco-2 cell line with epicatechin only 

resulted in the production of low amounts of the conjugate (see chapter 6) and 

therefore, the HepG2 hepatocyte cell line was chosen to investigate the effect of 

supplementation with different fatty acids on glucuronic acid conjugation further 

(figure 7.1).  

 

 

Figure 7.1; Impact of chronic fatty acid supplementation on epicatechin glucuronic acid 

conjugation in HepG2 cells. The amount of epicatechin-3ˈ-β-D-glucuronide concentration 

detected in fatty acid supplemented cells was compared to the amount detected in untreated 

cells. For details on conditions and analysis see sections 2.2, 2.3 and 2.7 C18:0 = stearic 

acid, C18:2 = linoleic acid, C18:3 = linolenic acid, C20:4 = arachidonic acid, C20:5 = EPA, 

C22:6 = DHA * = p ≤ 0.05, n = 6, N = 1 

Stearic acid had no effect on glucuronic acid conjugation but PUFA increased levels 

of the most abundant metabolite epicatechin-3’-β-D-glucuronide. EPA increased 

only intracellular epicatechin-3’-β-D-glucuronide levels but α-linolenic acid, 

arachidonic acid and DHA increased intra- as well as extracellular 

epicatechin-3’-β-D-glucuronide concentrations. However, overall amounts of 
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glucuronic acid conjugate were also low in HepG2 cells. Three structural isomers 

were detected but the less abundant epicatechin-7-β-D-glucuronide and 

epicatechin-4’-β-D-glucuronide were only present in trace amounts in the 

supernatant.  

7.3.2 Epicatechin metabolism by Caco-2/HT29-MTX co-cultures 

Apart from the liver, the small intestine has also been shown to have high 

glucuronidation activity. Since Caco-2 cells have only shown little glucuronidation 

activity towards epicatechin (see chapter 6), an improved in vitro model of the small 

intestine, the co-culture of enterocytes (Caco-2 cells) and goblet cells (HT29-MTX 

cells) was employed to investigate epicatechin conjugation. TEER indicated that 

tight junctions were formed between the two different cell types, but values for the 

mixed model were lower than for Caco-2 monolayers alone and did not reach 

300 Ω. But even though co-cultures only reached TEER values between 250 and 

300 Ω, these monolayers were used for transport experiments. The PUFA DHA 

doubled glucuronide levels in HepG2 cells and was therefore selected to assess 

glucuronidation in the Caco-2/HT29-MTX co-culture model. Cells were treated with 

DHA for their entire differentiation time of 22 days. Controls were treated with 

vehicle only. Conjugation rates were much higher in the intestinal co-culture model 

than in HepG2 cells and Caco-2 cells alone. Figure 7.2 shows the relative 

concentration of glucuronic acid conjugates compared to the total amount in 

different compartments of the cell model and figure 7.3 shows the same comparison 

for each of the most abundant forms of the non-glucuronic acid conjugates 

O-methyl-epicatechin, epicatechin-sulfate and O-methyl-epicatechin-sulfate. 

Individual graphs show the relative amount/concentration of a metabolite detected in 

the apical and basolateral well and in the cell lysate. Epicatechin was applied either 

to the apical (a → b) or the basolateral (b→ a) side. All epicatechin glucuronide 

forms showed the same pattern of distribution: the highest concentration was found 
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intracellularly whereas the highest amount was found in the basolateral well when 

epicatechin was applied basolaterally.  

 

Figure 7.2; Impact of chronic DHA supplementation on epicatechin glucuronidation in 

Caco-2/HT29-MTX co-cultures. Cells were seeded onto permeable supports at a ratio of 

Caco-2:HT29-MTX 76:24 and supplemented with 50 μM DHA or vehicle for their entire 

differentiation time of 22 days. For metabolism experiments, cells were incubated with 

epicatechin from either the apical (a → b) or basolateral (b → a) side. For graphs in column 

‘relative concentration’ peak areas were adjusted to represent the concentration of 

metabolite in the compartment they were drawn from, for graphs in the column ‘total amount’ 

results were adjusted for the overall sample volume, as described in section 2.7. For details 

on conditions and analysis see sections 2.2, 2.3 and 2.7. * = ≤ 0.05, n = 6, N = 1   
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Figure 7.3; Impact of chronic DHA supplementation on epicatechin metabolism in 

Caco-2/HT29-MTX co-cultures. Cells were seeded onto permeable supports at a ratio of 

Caco-2:HT29-MTX 76:24 and supplemented with 50 μM DHA or vehicle for their entire 

differentiation time of 22 days. For metabolism experiments, cells were incubated with 

epicatechin from either the apical (a → b) or basolateral (b → a) side. For graphs in column 

‘relative concentration’ peak areas were adjusted to represent the concentration of 

metabolite in the compartment they were drawn from. For graphs in the column ‘total 

amount’ results were adjusted for the overall sample volume as described in section 2.7. For 

details on conditions and analysis see sections 2.2, 2.3 and 2.7. * = ≤ 0.05, n = 6, N = 1   
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when cells were incubated from the apical side. DHA treatment was able to further 

increase glucuronide levels up to four fold in all compartments. None of the other 

metabolites showed the same pattern of distribution as epicatechin glucuronide. 

Figure 7.3 shows representative graphs for O-methyl-epicatechin, 

epicatechin-sulphate and O-methyl-epicatechin-sulphate. With all non-glucuronide 

metabolites, the highest concentration was detected intracellularly, but in contrast to 

epicatechin glucuronide, the highest amount was not found in samples drawn from 

the basolateral well but also in the cell lysate. Epicatechin applied basolaterally 

instead of apically resulted in a slight increase in methyl- and sulphate-conjugate 

concentrations but not as pronounced as with glucuronic acid conjugates. The 

O-methyl-sulphate double conjugate even showed opposite behaviour, with higher 

amounts produced when epicatechin was applied apically. None of the non-

glucuronide metabolites showed a pronounced difference regarding their distribution 

between the apical and basolateral well. These results indicate that DHA treatment 

did not increase activity of COMT or SULT but that it does increase the formation 

UGT products. The fact that DHA increased the amount of only one type of 

metabolites shows that there is a direct impact of DHA on that enzyme and not just 

a generic mechanism that is affected. Also the great difference in glucuronide 

production depending on the epicatechin transport direction (a → b vs. b → a) is 

unique to UGT catalysed reactions and does therefore not stem from an increased 

uptake of epicatechin and consequent increase in substrate availability from the 

basolateral side, as described in chapter 6, since in that case the relative 

concentration of SULT and COMT products would have been increased to a similar 

magnitude. Therefore, in the intestinal co-culture model, epicatechin glucuronidation 

by UGT seems to occur through a unique mechanism that is asymmetrical regarding 

the cellular localisation and responds to DHA supplementation of cells, a 

mechanism that cannot be explained by the current model of an ER residing 

enzyme.    



- 190 - 
 

7.3.3 HT29-MTX cells are the main source of UGT activity in co-culture 

The Caco-2/HT29-MTX seeding ratio of 76/24, used for the experiments presented 

above, was chosen to represent the percentage of goblet cells in the small intestine.  

 

 

Figure 7.4; Representative image of Caco-2/HT29-MTX co-cultures 22 days after seeding. 

The two cell lines were seeded at a ratio of Caco-2:HT29-MTX 76:24. Streaks of HT29-MTX 

cells are labelled ‘H’ and patches of Caco-2 cells are labelled ‘C’. For details on culture 

conditions and image acquirement, see sections 2.2 and 2.10. 

As Caco-2 cells grow more rapidly than HT29-MTX cells, seeding 24 % of the goblet 

cell line typically resulted in 13 ± 2% of those in the monolayer after differentiation. 

Even though the two different cell types were extensively mixed before plating, they 

always grew in the same pattern of patches of Caco-2 cells with ribbons of 

HT29-MTX running through (figure 7.4). To investigate how glucuronidation activity 

of co-cultures changes with different seeding ratios of the two cell lines, epicatechin 

metabolism was investigated with varying percentages of goblet cells in the model. 
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Figure 7.5 shows the impact of increasing amounts of HT29-MTX cells on glucuronic 

acid conjugation rates. There is an almost linear relationship between 

epicatechin-3’-β-D-glucuronide production and the percentage of goblet cells 

seeded. This indicates that Caco-2 cells contribute very little to the overall 

glucuronide formation and that either the activity or the abundance of UGT is much 

greater in HT29-MTX cells. For that reason, all following cell experiments were 

carried out with HT29-MTX cultures only. 

 

 

Figure 7.5; Impact of increasing percentage of HT29-MTX cells (25, 50, 75 and 100%) in the 

co-culture model on formation of epicatechin-3’-β-D-glucuronide. For conditions and analysis 

see sections 2.2, 2.3 and 2.7. * = p ≤ 0.05, n = 3, N = 1 

 

7.3.4 In vitro glucuronidation of epicatechin 
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UGT isoforms. This study conducted by Blount et al. used four different UGT1A 
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glucuronidation was now assessed using a wider range of 12 different UGTs of the 

1A and 2B family and the formation of all three glucuronide forms detected in cell 

culture samples was monitored.  

 

 

Figure 7.6; In vitro glucuronidation of epicatechin by recombinant human UGT isoforms 

expressed in insect microsomes. Microsomes corresponding to 0.5 mg/mL protein were 

incubated with 50 μM epicatechin for 60 min at 37°C in the presence of 0.025 mg/mL 

alamethicin, 100 μM ascorbic acid and 1 mM UDPGA in phosphate buffer. Conjugates were 

analysed by LC-MS/MS. For conditions and analysis see sections 2.7 and 2.15. n = 2, N = 1 

Three UGT of the 1A family were able to glucuronidate epicatechin: UGT1A1, 

UGT1A8 and UGT1A9 (figure 7.6). As already observed with epicatechin 

metabolism by liver and intestinal cell lines, epicatechin-3’-β-D-glucuronide was the 

most abundant product, followed by epicatechin-7-β-D-glucuronide and 

epicatechin-4’-β-D-glucuronide.  

7.3.5 DHA treatment increases UGT1A gene expression and protein levels 

Gene expression of the three UGT isoforms, that were identified to recognise 
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cells. Figure 7.7 shows their relative mRNA abundance, normalised to the 

housekeeping gene GAPDH, in the different cell lines.  

 

 

Figure 7.7; Relative expression levels of epicatechin glucuronidating UGT isoforms in 

Caco-2, HT29-MTX and HepG2 cells, normalised to levels of the housekeeping gene 

GAPDH and expressed as 2
-ΔC

T). For details on conditions and analysis see sections 2.2, 2.3 

and 2.9. n = 5, N = 1 

For all three UGT isoforms, similar mRNA levels were found in Caco-2 and HepG2 

cells, but HT29-MTX cells contained about 1000 fold higher levels of UGT1A8 

mRNA, therefore this isoform will most likely be the dominant epicatechin 

conjugating isoform in Caco-2/HT29-MTX co-cultures. The impact of chronic DHA 

treatment on UGT gene expression was assessed after 22 day treatment in Caco-2 

and HT29-MTX cells grown separately and after 5 day treatment in HepG2 cells. 

UGT1A1 expression was upregulated in Caco-2 and HT29-MTX cells and UGT1A8 

was upregulated in HT29-MTX and HepG2 cells (figure 7.8).  
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Figure 7.8; Impact of chronic DHA supplementation (50 μM and 22 days for Caco-2 and 

HT29-MTX and 5 days for HepG2) on UGT expression. For details on conditions and 

analysis see sections 2.2, 2.3 and 2.9. * = p ≤ 0.05, n = 5, N = 1 

Unfortunately, no specific UGT1A8 antibody was commercially available, therefore a 

generic UGT1A antibody recognising all isoforms of that family was used to assess 

the impact of DHA on protein levels of UGT1A8 in HT29-MTX cells. However, 

having shown that UGT1A8 is potentially about 1000 fold more abundant in that cell 

line than the other UGTs investigated, it was assumed that the UGT1A protein 

detected by that antibody will be mainly UGT1A8 with the other isoforms contributing 

only little to the signal. Twice the amount of UGT1A(8) protein was detected in cell 

lysates of chronically DHA supplemented HT29-MTX cells than in the lysate of cells 

treated with vehicle only (figure 7.9) 
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Figure 7.9; Impact of chronic DHA supplementation on UGT1A protein levels in HT29-MTX 

cells. (A) Image of capillaries with immunodetection of UGT1A. lane 1 = molecular weight 

(MW) standards, lane 2-4 =  control samples, lane 5 – 7 = DHA treatment. (B) Average peak 

areas of UGT1A protein in samples shown in (A). For conditions and analysis see sections 

2.2, 2.3 and 2.11. n = 3, N = 1   

7.3.6 UGT1A(8) localises in the plasma membrane in HT29-MTX cells 

It is difficult to imagine how the current model of UGT as an ER membrane residing 

enzyme would result in a pattern of product distribution and asymmetrical formation 

rates as described in section 7.3.2. To investigate intracellular localisation of the 

UGT1A(8) protein, indirect immunofluorescence staining of HT29-MTX cells grown 

on permeable supports was performed. Figure 7.10 shows representative images of 

24 independent experiments.  
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        DAPI           UGT1A              ABCC1    merged       z-position 

     

     

     

     

     

 

Figure 7.10; Indirect immunofluorescence staining of UGT1A and ABCC1 in HT29-MTX cells 

grown on permeable supports. Representative images of 24 independent experiments are 

shown. For images presented in rows A to D, cells were incubated with primary rat 

anti-human UGT1A, mouse anti-human ABCC1 and secondary Cy3 conjugated donkey anti-

mouse and Alexa Fluor 488 conjugated donkey anti-rat antibody. For images presented in 

row E, cells were incubated with secondary antibody only. For further details on conditions 

and image acquirement see sections 2.2, 2.3 and 2.10. 

UGT1A(8) was observed in the plasma membrane, co-localising with the plasma 

membrane marker ABCC1. The signal was more pronounced in lateral and basal 

sections of the plasma membrane than on the apical side. So far, most UGT 
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isoforms have been described to localise to the ER. Goblet cells such as the cell line 

HT29-MTX have a very unique structure with most of the apical lumen being filled 

with mucus granules and the basolateral lumen containing the nucleus (361). This 

conformation leaves little room for cytosolic organelles like the Golgi and the ER, 

which are consequently very much marginalised towards the peripheral space of the 

cell, close to the plasma membrane. Considering this spatial peculiarity, it might be 

that the apparent co-localisation of UGT and membrane marker ABCC1 is due to 

the ER residing UGT being localised just below the plasma membrane. 

To confirm whether UGT1A(8) really is plasma membrane spanning in HT29-MTX 

cells, cell surface biotinylation and pull down with streptavidin resin was performed.  
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Figure 7.11; Cell surface biotinylation and pull down of UGT1A(8) in HT29-MTX cells. (A) 

Specificity of antibodies used for UGT1A and controls analysed by capillary electrophoresis 

and immunodetection. (B) Peak areas of protein levels detected in cell surface biotinylation 

samples after streptavidin pull down (UGT1A, only basolateral for Na
+
/K

+
-ATPase) and in 

whole cell lysate (GAPDH). For conditions and analysis see sections 2.2, 2.3 and 2.11. 

n = 2, N = 1 

UGT1A(8) protein was detected in samples containing apical or basolateral plasma 

membrane proteins, but the enzyme was more abundant in samples from cells 

incubated with biotin from the basolateral side than in samples of cells incubated 

from the apical side (figure 7.11). Intracellular protein GAPDH was used as a 

negative control to monitor cell membrane integrity during biotinylation and plasma 

membrane spanning Na+/K+-ATPase was used as a positive control for successful 

biotinylation and pull down. No GAPDH could be detected in the apical surface 

lysate, which confirms the presence of UGT1A in the plasma membrane.  
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7.3.7 Extracellular UDPGA has no impact on epicatechin glucuronidation 

The results described above show that at least some of the UGT1A(8) pool resides 

in the plasma membrane of HT29-MTX cells. It is not clear however, what the 

orientation of the enzyme in the plasma membrane is. If it was inserted the same 

way as into the ER membrane, the enzyme’s active site would be facing the 

extracellular space. If it was inserted the opposite way, the usually cytoplasmic tail 

would be outside the cell. In the first case, with the active site facing the extracellular 

space, the availability of the co-factor UDPGA would be the rate limiting step of the 

enzyme reaction when investigated in a cell culture model. High concentrations of 

substrate are in contact with the cell surface in transport experiments but the 

co-factor would have to be exported from the cytosol to reach the active site of the 

enzyme. To test whether the active site is exposed to the extracellular space, the 

glucuronidation rate of substrate epicatechin was measured with and without 

externally supplied co-factor.  
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Figure 7.12; Impact of extracellular UDPGA on EC-3’-glc formation by HT29-MTX cells. Cells 

grown on solid supports were incubated with 200 μM epicatechin and 200 μM UDPGA and 

controls were incubated with epicatechin only. For conditions and analysis see sections 2.2, 

2.3 and 2.7. n = 3, N = 1 

Adding UDPGA to the incubation buffer together with the substrate epicatechin did 

not increase epicatechin-3’-β-D-glucuronide levels in either the supernatant or the 

cytosol (figure 7.12), indicating that the active site of the enzyme is not exposed at 

the apical cell surface. 
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7.4 Discussion 

In this chapter an enhanced tissue culture model of the intestinal epithelium was 

employed to further elucidate the impact of lipids on glucuronic acid conjugation. 

Using recombinant human UGT isoforms it was first shown that epicatechin was 

preferentially glucuronidated by UGT1A9 which is mainly expressed in liver and also 

by UGT1A8 which is extrahepatic and mainly expressed in the small intestine and 

kidney (358, 362-366). In the intestinal Caco-2/HT29-MTX co-culture model, 

UGT1A8 mRNA was much more abundant in HT29-MTX cells than in Caco-2 cells, 

and also more abundant than has been reported for the small intestine where 

UGT1A1 and UGT1A10 are the predominant isoforms of the UGT1A family (36, 

367). This difference between the intestine and an intestinal cell line could be 

explained by the fact that in studies looking at enzyme expression in tissue samples, 

mRNA is extracted from whole tissue and not from specific cell types. HT29-MTX 

cells are goblet cells, only one of five different cell types present in the intestine, 

which amounts to about 10% of the mucosa (4). In total mRNA extracts of intestinal 

tissue samples, the expression pattern of enterocytes would be predominant, as 

they are the major cell type present in that tissue and therefore high levels of a 

particular gene transcript originating from one of the less occurring cell types would 

be much diluted in the overall mRNA pool. To date how the gene expression profile 

of enzymes involved in phase II metabolism differs in the individual intestinal cell 

types has not been reported. Goblet cells are generally not regarded to be involved 

in nutrient or xenobiotic metabolism. Instead, their main function is to produce and 

excrete mucus that will act as a diffusion barrier and protect the intestinal epithelium 

from pathogen invasion, mechanical stress and injury (368). However, it might be 

possible that some UGT isoforms have a different function in mucus secreting cells 

than in enterocytes, as has been described for other metabolising enzymes. SULTs 

also conjugate xenobiotics in most cell types, but in goblet cells enzymes of that 

family sulfo-conjugate mucin molecules and the increase of SULT protein levels 
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along the length of the intestine is the cause for increasing acidity of the intestinal 

mucus layer towards the colon (369-371). It might therefore be possible that UGT 

isoforms also participate in processes beyond xenobiotic conjugation in goblet cells 

such as the HT29-MTX cell line. To investigate whether it is their function as mucus 

producing cells that causes the here observed departure from previous reports on 

UGT expression and localisation, it would be interesting to compare the UGT 

expression profile of the mucus producing cell line HT29-MTX with its non-mucus 

producing parent cell line HT29 and also with other types of goblet cells. 

The impact of dietary fatty acids on UGT activity has been investigated with 

contradicting results. Some groups found that fatty acids inhibited UGT activity, 

some found that they increase conjugation rates. Zakim and Dannenberg published 

a series of studies investigating the impact of the phospholipid environment on UGT 

activity. They found that different membrane modifying agents such as 

phospholipase or Triton X can modulate enzyme function (372-374). Feeding 

animals increasing amounts of certain fatty acids (n-3 or n-6 PUFA, MUFA or SFA) 

changed UGT protein levels in microsomes prepared from different tissues and also 

resulted in a direct modulation of UGT activity (287, 288, 375). These results were 

corroborated by another group who found that feeding rats an n-3 or n-6 PUFA rich 

diet increased UGT activity in liver microsomes by increasing abundance of UGT1A 

protein (376). The cytosolic concentration of free fatty acids is very low. Upon 

entering the cell, fatty acids are bound by FABP and are then either esterified and 

stored as triglycerides or coenzyme A conjugated and used for energy production 

(77). Okamura et al. have shown that acyl-CoAs added to an in vitro system can 

either inhibit or enhance UGT activity depending on concentration and whether 

microsomes have been pre-treated with de-latency agents (e.g. detergents or 

alamethicin). High acyl-CoA concentrations inhibited, lower concentrations 

enhanced activity. In intact microsomes, acyl-CoAs and free unsaturated fatty acids 

resulted in activity enhancement, whereas in detergent treated microsomes activity 
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was reduced (358). Unsaturated fatty acids could inhibit glucuronidation of 

4-methylumbelliferone by human kidney cortical microsomes and recombinant 

UGT1A9 and UGT2B7 enzymes. The greater the degree of fatty acid unsaturation, 

the greater the inhibition (359). Shibuya et al. extensively investigated the impact of 

different free fatty acids on UGT1A1 activity in vitro and in vivo. Using recombinant 

enzyme, they found that all PUFA tested inhibited UGT1A1 glucuronidation of 

estradiol in vitro. The most potent inhibitor was DHA. DHA also inhibited enzyme 

activity in vivo, increasing bilirubin levels 48 h after oral administration of low 

concentrations of DHA. In contrast, bilirubin levels were decreased when high 

concentrations of DHA were administered. The authors also showed that feeding 

fatty acids could greatly increase mRNA levels of UGT1A1 in weaning mice (357). In 

the current study DHA was found to increase conjugation of epicatechin, most likely 

through increasing levels of UGT1A8 protein.   

It has been shown that some UGT isoforms can be upregulated by PUFA 

metabolites of the lipoxygenase and the cyclooxygenase pathway and even by 

some free fatty acids. These metabolites and fatty acids are able to activate 

peroxisome proliferator-activated receptors α and γ (PPARα, PPARγ) which then 

dimerise with the retinoid X receptor (RXR) and bind to PPAR response elements in 

the promoter region of the gene, thus stimulating UGT gene transcription (377-379). 

Interestingly, in the work presented here DHA supplementation increased 

expression of UGT1A8 in HepG2 and HT29-MTX cells but not of UGT1A9, even 

though DHA has been shown to increase activity of transcription factor PPARα in 

the Caco-2 model (380) and UGT1A9 expression was shown to be upregulated with 

increased PPARα activity (377). 

The in vitro data reported here suggests that in vivo glucuronidation of epicatechin 

occurs mainly in the small intestine and less in liver. In one of the first publications 

on epicatechin conjugation, Vaidyanathan and Walle did not find any UGT activity 

towards epicatechin neither with human liver microsomes nor with human small or 
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large intestinal microsomes but they did find that epicatechin was readily 

glucuronidated by rat microsomes using the same protocol (313). Similar results 

were reported by Shrestha et al. using mouse liver microsomes (381). Natsume et 

al. compared epicatechin metabolites in urine and plasma of human and rat origin 

and found that in rat samples, epicatechin was preferentially glucuronidated at the 

7-position whereas human samples mainly contained epicatechin glucuronidated at 

the 3’-position (382) which corresponds to the findings presented here, where 

epicatechin was also found primarily conjugated at the 3’-position using human liver 

and intestinal cell lines. A very recent study conducted by Rodriguez-Mateos et al. 

also compared glucuronidation of epicatechin by Caco-2 and HepG2 cells and found 

only very little activity towards that compound in Caco-2 cells and no 

epicatechin-β-D-glucuronide formation in HepG2 cells. There is no previous report 

on glucuronic acid conjugation of epicatechin in HT29 or HT29-MTX cells. 

In metabolism experiments using the Caco-2/HT29-MTX co-culture model an 

interesting distribution pattern of epicatechin glucuronide was observed which was 

later found to stem from the glucuronidation activity of the HT29-MTX cell line. There 

was a dramatic impact of the transport direction on UGT product formation. When 

epicatechin was applied to the apical side of the cell layer, which in vivo 

corresponds to epicatechin reaching the intestinal mucosa from the gut lumen, 

glucuronidation was much lower than when epicatechin was applied to the 

basolateral side, which in vivo would correspond to epicatechin taken up into the 

mucosa from the submucosa. Also, epicatechin glucuronide was preferentially 

transported to the side of aglycone application, meaning that when epicatechin was 

applied apically, glucuronide levels were higher on the apical side, when epicatechin 

was applied basolaterally, glucuronide levels were higher in the basolateral 

compartment. These observations from metabolism experiments agree well with 

results obtained by immunofluorescence staining of HT29-MTX cells for UGT1A(8). 

Here, high levels of UGT1A(8) were observed in the lateral and basal parts of the 
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plasma membrane. As mentioned above, all UGT isoforms are assumed to localise 

to the ER but there are some reports that have also detected UGT protein or activity 

in the nuclear envelope and the Golgi (383-385). Early reports even found UGT 

activity in the plasma membrane of liver cells. (386-388). Also, immunofluorescence 

staining of intestinal tissue samples for UGT1A resulted in an asymmetrical staining 

pattern similar to the one shown in figure 7.10, but with the strongest signal towards 

the apical surface of crypt cells (389, 390). In immunofluorescence images 

presented here, it was the basolateral membrane where a stronger signal and 

activity was observed. Some of these differences could be caused by the mucus 

layer produced by HT29-MTX cells, which inhibits diffusion of substrate and 

antibody to the apical but not the basolateral cell surface. Though intestinal samples 

will also have a mucus layer at the luminal side, this will not interfere with staining as 

tissue is sliced and stained along the lateral axis. From the results described in the 

current chapter it seems that epicatechin, after entering the cell, is readily 

glucuronidated by UGT localised at the plasma membrane and quickly exported to 

the extracellular space by basolaterally located efflux transporters. This distribution 

of UGT enzyme has never been described before, so far most studies found UGT 

localised in the ER. All UGT1A isoforms are alternative splice variants from a single 

gene locus with only the first, N-terminal exon being unique for each isoform and 

exons 2-5 shared among all UGT1A forms. The N-terminal region contains a signal 

peptide that targets the nascent protein to the ER. This signal peptide is cleaved off 

after insertion into the ER membrane. The C-terminus contains an ER retention 

signal which is the same for all isoforms since it is translated from the shared 

exon 5. A number of different alleles have been reported for all UGT isoforms. For 

UGT1A8 eight different mutations have been described leading to three allelic 

variants. All three alleles were cloned and expressed in HEK293 cells but none of 

them localised in the plasma membrane (391). Several studies observed that the 

enzymes translated from the three different alleles had different glucuronidation 



- 206 - 
 

activity. UGT1A8*1 and UGT1A8*2 (A173G) exhibit similar conjugation rates whereas 

UGT1A8*3 (C277Y) hardly shows any activity at all (29, 391) and has been identified 

as a risk factor in colorectal cancer (392). One mutation in the signal peptide region 

(T4A) has been reported but not cloned and expressed in vitro (393). It would be of 

interest to analyse which allele is expressed in which cell line, especially with regard 

to UGT1A8*3, which occurs with low frequency in the general population but is 

much more abundant in tumour cells. Since most cell lines are carcinoma derived, 

such increased abundance of this low activity allele might help to explain some 

disagreements between in vivo and in vitro results. Also a possible impact of the A4T 

mutation on ER targeting could be investigated. 

It is not entirely resolved which sequence elements retain the UGT protein in the ER 

membrane. On the one hand, it has been shown that the transmembrane domain 

(TMD) and the cytosolic tail (CT) together anchor the enzyme in the ER membrane 

and in addition to that, the CT also contains a retrieval signal that targets any 

escaped protein for transport from the Golgi back to the ER. When TMD and CT 

were fused with the extracellular domain of CD4 this plasma membrane protein 

became ER resident (394). On the other hand, a different group found that neither 

deleting the N-terminal signal peptide nor removing the CT and TMD had an impact 

on UGT1A6 ER localisation. Instead this group showed an internal membrane 

anchoring region to play a vital role in UGT ER localisation (395, 396).  

In summary, it was shown that HT29-MTX cells display a, so far, unique distribution 

of UGT1A(8) protein in the plasma membrane and a corresponding distribution of 

epicatechin-β-D-glucuronide in the cell model. Further studies will have to show 

whether this is a distinctive feature of that individual cell line or whether it is a 

common attribute of mucus cells that has so far been overlooked because most 

studies on UGT activity and localisation have been conducted using liver cells where 

this particular isoform is not well expressed.   
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Chapter 8: Conclusions and outlook 

The current work describes the impact of lipids on absorption and metabolism of 

phenolics. Several mechanisms of interaction between those two groups of 

compounds were identified. Both dietary fatty acids and short chain fatty acids, 

which are metabolic products of the intestinal microflora, were able to modulate 

expression or activity of transmembrane transporters in models of the intestinal 

epithelium. Chronic treatment with butyric acid, at physiological concentrations as 

prevalent in the large intestine, increased expression of MCT1 and MCT4 which 

resulted in enhanced uptake of ferulic acid into the cell, and consequent elevated 

levels of phase II metabolites due to increased substrate availability, and also 

increased transepithelial transport of the aglycone. PUFA supplementation of 

Caco-2 cells resulted in enhanced paracellular diffusion of caffeic acid and 

epicatechin in the apical to basolateral transport direction, and efflux of epicatechin 

was reduced, most likely through an impact of PUFA on either expression or activity 

of apical transporter ABCC2. Uptake of epicatechin into the cell was much greater 

from the basolateral than from the apical side and intracellular epicatechin 

concentrations exceeding the extracellular concentration were reached with 

basolateral incubation. This uptake of aglycone against the concentration gradient 

indicates an active mechanism of epicatechin uptake at the basolateral plasma 

membrane of Caco-2 cells. A similar pathway mechanism was also observed for 

glucuronic acid conjugation of epicatechin by UGT1A8 in the HT29-MTX intestinal 

goblet cell line. Epicatechin conjugation was much greater when cells were 

incubated from the basolateral side than when incubated from the apical side, 

perhaps due to the presence of UGT1A8 in the basolateral plasma membrane. 

PUFA supplementation of cells also affected transport of ferulic acid in the apical to 

basolateral direction, but not, as originally hypothesised, through a change in 

passive diffusion rate. Even though the modulation of cellular lipid composition, by 

chronic fatty acid supplementation of the Caco-2 model, resulted in altered plasma 



- 208 - 
 

membrane fluidity, these physical changes did not correlate with the observed 

increase in ferulic acid transport. Instead it was demonstrated that the transport of 

ferulic acid could be inhibited by the compound estrone-3-sulfate, which argues for a 

transporter mediated pathway. More work is required to elucidate how these in vitro 

findings are linked to in vivo observations and whether the biological impact of 

phenolics can be enhanced through mechanisms identified in the current work.  

Understanding the uptake mechanism and subsequent metabolism is crucial to 

predict the bioavailability of a compound. In vitro cell culture studies are helpful tools 

to examine isolated effects and mechanisms. In vivo, individual effects are much 

harder to follow because whole organisms, be it mouse, pig or human, are incredibly 

complex and a compound can exert its effect on many different processes 

simultaneously. As a result often only an overall impact on certain parameters can 

be identified in vivo and the molecular mechanism behind that impact can then be 

isolated and investigated in vitro. To achieve this, the in vitro model needs to 

replicate in vivo conditions as closely as possible. The work described here was 

carried out using a model that was intended to represent a chronic exposure to 

certain fatty acids as would be expected with different dietary patterns, as opposed 

to acute high doses of something that is not regularly consumed. Therefore a 

chronic supplementation with 50 μM fatty acid was chosen to represent lipid 

concentrations in the small intestine. Lipids are hydrolysed and absorbed in the 

distal duodenum and proximal ileum. Reports on the concentration of FFA in the 

small intestine of healthy participants are scarce. One study determined the FFA 

concentration in the distal duodenum, after consumption of a meal replacement 

drink which contained 24 g of fat, as 42 mM (397). Most of the experiments 

conducted for the current work were performed using DHA. The best dietary source 

for this compound is fatty fish. According to the USDA National Nutrient Database 

(99), 100 g of salmon, which is also the weight of a small to average portion that 

would be consumed in a meal, contain 4.65 g of fat, of which 0.65 g are DHA. 
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Putting this information in relation to the study cited above reveals that one portion 

of salmon fillet would result in a concentration of DHA of about 245 μM at its site of 

absorption. DHA from fish is not only consumed as part of a meal but also in form of 

nutritional supplements, traditionally in form of cod liver oil, but now also more 

specifically as omega 3 fish oil. According to the National Diet and Nutrition Survey 

of 2011, 11 % of man end women in the UK over the age of 19 are taking cod liver 

oil or other fish oil supplements, among the over 65s the number of people taking 

these supplements even increases to 24 % (398). The more traditional cod liver oil 

supplements contain about 11 % w/w DHA, specific omega 3 fish oil supplements 

are often more concentrated and contain higher amounts of PUFA (99). Supplement 

are often sold as capsules of 1000 mg fish oil which, assuming will undergo the 

same dilution as in the study cited above were 1 g of fat resulted in a concentration 

of 1.75 mM in the duodenum, translates to a FFA concentration in the distal 

duodenum of about 1.75 mM of which about 190 μM (11%) would be DHA. Of 

course these are only approximate estimations and do not take into account any 

matrix effects or meal sizes, but they do demonstrate that a 50 μM concentration of 

DHA at the site of absorption could be easily achieved in a population with regular 

fish consumption or people taking fish oil supplements. 

The lipid induced changes in absorption and metabolism, which were identified in 

the current work, might contribute to some of the variations encountered in 

pharmacokinetic studies. High interindividual variation is often observed in human 

studies investigating absorption and metabolism of polyphenols (399-403). For such 

investigations, volunteers are asked to consume a defined amount of a phenolic 

compound and then plasma and/or urine samples are taken at regular intervals to 

monitor the absorption and excretion of the compounds of interest. Participants are 

required to abstain from polyphenol rich food before and during the study and a 

specified test meal is usually provided on the day of the study, but modulation of 

cellular composition and transporter expression by dietary fatty acids, as described 
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in the current work, could persist throughout pre-trial wash-out phase. Also, since 

meals are generally not regulated regarding non-polyphenol components before a 

study, lipids consumed during the wash-out phase could affect absorption during the 

trial. It would be of great interest to investigate whether such an interaction does 

indeed happen in vivo. For this purpose a human study could be conducted that 

tests the absorption of phenolics, for example, catechins from green tea or 

chocolate, before and after a supplementation period with fish oil or the impact of 

high and low fibre diets on absorption of ferulic acid from wheat bran.  

The work described here concentrated on the long term effect of lipids as 

modulators of intestinal absorption. There are only very few reports that look at 

dietary lipids in this context, but there are a great number of publications on the use 

of lipids as acute absorption enhancers. Medium and long chain fatty acids 

especially were found to have a high potential to increase the in vivo bioavailability 

of a range of compounds. For example, co-administration of capric acid increased 

peptide transport (404) and lauric acid increased transport of the paracellular marker 

phenol red in a concentration dependent manner (405). When a lipophilic drug was 

administered in an oil matrix rich in either long, medium or short chain fatty acids, 

the drug concentration in lymph was greatly increased by long chain fatty acids but 

plasma concentrations were much higher when the drug was ingested together with 

medium chain fatty acids. Short chain fatty acids did not affect drug absorption 

(406). High concentrations of DHA in a drug suspension were shown to increase 

plasma levels of model compounds as well (407, 408). The influence of the lipid 

matrix has also been investigated for polyphenol bioavailability. In pigs, quercetin 

absorption was increased with concomitant feeding of medium chain, but not long 

chain fatty acids (409). Adding different oils to tomato sauce stimulated re-

absorption of naringenin in humans. Especially the addition of olive oil resulted in a 

second plasma concentration peak of the glucuronic acid conjugate most likely due 

to enterohepatic recycling (410). A well-known case of direct impact of lipids on 
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absorption of lipophilic compounds is the uptake of carotenoids from vegetables 

consumed with or without added lipids. Adding oil to salad enhances absorption of 

lipid soluble vitamins, but not all types of oil have an equally strong effect. Soybean 

and coconut oil were shown to increase carotenoid uptake, whereas safflower oil, 

canola oil and butter had little impact (411, 412).  

Epidemiological studies have revealed a link between fruit and vegetable intake and 

health, which in part is thought to be due to the polyphenol content of these foods 

(413-415). However, direct health improvement by phenolics has mostly been 

demonstrated using nutritional supplements containing high doses of individual 

compounds. Many fatty acids themselves have also been extensively investigated in 

the same context. DHA, for example, has been shown to possess many beneficial 

properties such as anti-inflammatory and immunomodulatory capacity, and being 

able to induce cell differentiation and apoptosis in cancer cells (416-418). There are 

areas where polyphenols and PUFA have overlapping effects. For instance, both 

polyphenols (419-421) and PUFA (422-424) have been demonstrated to protect 

against colorectal cancer and also polyphenols (425-427) and PUFA (428-431) have 

been shown to help reduce the risk of CVD. Perhaps this overlap in biological action 

could be exploited for the use of these food components in a medical context, as 

neutraceuticals. Not only do both substances have an individual effect but in 

combination they might work in synergy potentiating their impact and in addition, the 

work described here has shown that PUFA can enhance absorption of polyphenols 

thus increasing the potential health benefit of a combination of these substances 

even further. A recent study investigated the impact of such a combination of fish oil 

and polyphenols together with vitamins on mouse models of CVD. The authors 

showed that this mixture of compounds was able to significantly reduce 

atherosclerotic lesions in mice on a high cholesterol diet (432). Such synergistic 

effects might also play a small role in the context of polyphenols and lipids as part of 

a healthy diet. In particular, the ‘Mediterranean diet’ is defined by a high content of 
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fresh fruit and vegetables (good sources of polyphenols) and also a high intake of 

fish and olive oil (sources of unsaturated fatty acids) (433). Therefore a small part of 

the success of the Mediterranean diet in preventing CVD and other diseases 

associated with a ‘Western’ nutrition and lifestyle, could be due to the circumstance 

that it is based on a combination of foods that is especially well suited to improve 

absorption of bioactive phenolic compounds.  
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