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Abstract  

The acidic thermophilic archaeon Sulfolobus solfataricus has been widely used as a model 

organism in archaeal research and it can utilise different compounds (tryptone or glucose) 

as carbon sources. However, the understanding of this archaeon in responding to these 

carbon sources (at quantitative proteome level) and its regulation (at phospho proteome 

level) has not been well studied yet. Therefore, I would like to investigate the effects of 

different carbon sources (tryptone and glucose) to different S. solfataricus strains (P2, 

PBL2025 and PBL2073). Furthermore, a P-peptide (phospho peptide) enrichment 

protocol was optimised. Quantitative phosphoproteomic analysis was performed for S. 

solfataricus P2 using optimised P-peptide enrichment and iTRAQ strategy. 

 

In order to achieve these goals, firstly, the growth effect on different S. solfatarcius strains 

from different carbon sources was monitored to determine the sampling times. Sample 

preparation and technical optimisation for quantitative proteomic and phosphoproteomic 

studies were then performed. 

 

Secondly, both proteomic (iTRAQ) and metabolomic (GC-MS) tools were applied to 

determine the global proteomic and metabolomic changes of three different S. 

solfatarcius strains in responding to two carbon sources (glucose and tryptone). In this 

thesis, an investigation of the global proteomic changes between S. solfatarcius strains 

PBL2025 and P2 was carried out. As a result, a total of 158 proteins (27% of quantified 

proteins) showed their abundance changes, when both strains grown on standard glucose 

media. Of these proteins, more than half of them (61%) involving in carbon fixation, 

butanoate and-so-forth showed their up regulation, whereas the others (39%) belonging 

to carbohydrate or amino acid metabolic pathways showed their down regulation. 

Moreover, 208 and 159 (27% and 34% of quantified proteins) proteins were affected 

under trypton vs glucose for PBL2025 and P2 respectively. The down regulation of 

detected amino acids pathways were significant in both strains in responding to carbon 

source change from glucose to tryptone, which was inferred to follow a feedback-

inhibited pattern. Metabolomic data show high abundances of detected amino acids, 

which support for the proteomic observations.  
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Thirdly, MOAC (metal oxide affinity chromatography)-TiO2, IMAC (immobilized metal 

ion affinity chromatography)-Fe and combination of these two (SIMAC) were tested for 

P-peptide enrichment of tryptic digested protein of S. solfataricus grown on standard 

media. Based on optimised P-peptides strategies, a combination of complementary 

strategies: TiO2 magnetic beads and the SIMAC was applied to investigate the global 

phosphoproteomic changes in responding to different carbon sources (for S. solfataricus 

P2). Most of the quantified P-proteins involving in carbohydrate metabolism were 

unaffected, while P-proteins functioning in amino acid metabolism were up or down 

regulated. 

 

This thesis reports the quantitative proteomic and metabolomic changes in three different 

S. solfataricus strains in responding to different carbon sources. An optimised P-peptide 

enrichment strategy was also established, which may be applied for other achaeal studies. 

Furthermore, quantitative phosphoproteomic study was performed for S. solfataricus P2, 

and this was recognised as the first global quantitative phosphoproteomic study in this 

archaeon. 
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Chapter 1 Introduction 

1.1 Background 

Sulfolobus solfataricus P2 has been established as a model organism in the third domain 

of life: archaea [1, 2]. Its optimal growth occurs at temperature ranging from 75 to 80°C 

and at pH 2-3 [2, 3]. Research on the thermostable crenarchaea Sulfolobus spp. has 

attracted community’s interest due to its growth in extreme high temperature and acidic 

growth conditions, which made them promising candidates for industrial applications. 

Some studies on re-construction of the central carbohydrate metabolic (CCM) pathways 

of S. solfataricus P2 have been intensively performed [4], however, these pathways have 

not been completely understood, since almost half of the genes/proteins have not been 

characterised yet [5, 6]. Research on amino acid metabolisms of S. solfataricus at a system 

level has not been investigated. Through a systematic proteomic study, most 

phosphoproteins identified were involved in the metabolism process [7]. However, until 

now, there was no report concerning on quantitative phosphoproteomic analysis in S. 

solfataricus at system-wide level has been reported yet.  

1.2 Aims and objectives 

The overall objective of this thesis is to fill a gap in amino acid metabolism and gain a 

good understanding of CCM of S. solfataricus at a system level by interpretating the -

omics (proteomic and metabolomic) data from growth on different carbon sources. 

 

In this PhD study, the first objective is to gain an understanding of changes in protein 

abundances and affected metabolites through comparasion of both proteomic and 

metabolomic aspects for assessing on carbohydrate pathways especially CCM and amino 

acid pathways of S. solfataricus. In addition, protein phosphorylation was proposed to be 

important due to its potential invoving in CCM regulation hence in responsing to change 

of carbon sources from glucose to tryptone [7]. I aim to optimise an efficient P-peptide 

enrichment strategy for further investigation of quantitative phosphoproteome changes in 

S. solfataricus P2 comparing different growth on glucose vs tryptone, from which 

contributions will be drawn to gain a better understanding of the regulation of CCM.  
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To address these aims, three different S. solfataricus strains including (P2; PBL2025, a 

spontaneous mutant; and PBL2073, a genetic modified strain) and different carbon 

sources (glucose, trypton, ethanol, acetone, propanol and iso-propanol) were used. Both 

global quantitative proteomic (iTRAQ expriments) and metabolomic (GC-MS) 

experiments were performed to generate in-depth data sets. Moreover, an efficient 

phosphopeptide enrichment strategy (SIMAC: combination of TiO2 and IMAC) was 

optimised before a large scale phosphoproteomics study using iTRAQ was performed. 

Furthermore, integration of both proteomic and metabolomic data were applied to infer 

biological changes involved in carbohydrate and amino acid metabolic pathways in S. 

solfataricus. An overview of the contents in this thesis and their relationships are 

summarised in Fig 1.1. Aims and objectives are listed and contributions from PhD work 

are also summarised. 

 

Chapter 1: Brief introduction of connections between different chapters in this thesis.  

 

Chapter 2: Literature review of -omics (proteomic and metabolomic) studies in archaea 

especially in S. solfataricus with a focus on phophoproteomic studies. 

 

Chapter 3: The first major task within this thesis is to do methodology optimisation for 

global proteome identification and characterisation of S. solfataricus. Quick test using 

both SDS-PAGE gel digestion and in-solution digestion compled with SCX fractionation 

were performed. Furthermore, P-peptide identification was also tested using different MS 

instruments, and a limit of detection of phosphopeptide using a UHR Q-TOF maXis 

instrument was determined with β-casein used as a standard.  

 

Chapter 4: Based on above optimised protocols, 3 sets of 8-plex iTRAQ experiments were 

performed to investigate the responses of S. solfataricus strains (P2, PBL2025 and 

PBL2073) to different carbon sources including 0.4% glucose and 0.2% tryptone at a 

quantitative proteomic level. Bioinformatic analysis was applied to identify proteins that 

changed their abundances in various comparisons. 

 

Chapter 5: This study focused on optimisation of P-peptide enrichment methodologies 

using a tryptic digest of whole cell lysates of S. solfataricus grown on 0.4% glucose media. 

Different affinity-based resins were tested including different TiO2 formats (pipette tip, 

spin tip and magnetic beads), IMAC-Fe (PHOS-select iron affinity gel) and modified 
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SIMAC (a combination of both TiO2 and IMAC-Fe). Optimisation processes were 

performed in aspects including the use of non-phosphopeptide inhibitors, peptides-to-

beads ratio, and consecutive incubations for TiO2 beads and elution buffers for IMAC. As 

a result, a modified SIMAC protocol was employed for a better phosphoproteome 

coverage. 

 

 

Fig 1.1 Overview of thesis contents and relationship of chapters are summarised. 
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Chapter 6: Global quantitative phosphoproteome study of S. solfataricus P2 grown on 

0.4% glucose compared to 0.2% tryptone was performed to investigate whether the 

phosphorylated protein abundances were regulated or not by changing carbon source. In 

total, 109 unique P-peptides from 100 P-proteins were quantified with a determination of 

147 P-sites on Ser/Thr/Tyr. Most of quantified P-proteins functioning in carbohydrate 

metabolisms showed no abundance change, whereas P-proteins involving in amino acids 

metabolisms regulated. 

 

Chapter 7: GC-MS technique was applied to investigate the metabolomic changes of S. 

solfataricus strains (P2, PBL2025 and PBL2073) in responding to different carbon 

sources (0.4% glucose vs 0.2% tryptone). Global metabolomic data was submitted to an 

on-line XCMS software for statistical analysis. Identification of compounds was achieved 

using AMDIS and searched against NIST 2.0 library. Among 163 identified compounds 

from all experiments, 113 metabolites corresponding C number in KEGG pathway were 

found. However, only 47 of them were involved in metabolic pathways.  

 

A brief comparison of -omics (proteomic data from Chapter 4 and metabolomics data 

from Chapter 7) data was interpreted to show the response of S. solfataricus strains to 

different carbon sources in system level. 

 

Chapter 8: Conclusions and future work. 

1.3 Contributions from PhD work 

Responses of quantitative proteomic changes of different strains of S. solfataricus 

including P2, PBL2025 and PBL2073 to different carbon sources (glucose and tryptone) 

were reported. All experiments including proteomic and metabolomic work were 

performed using the same biological organisms grown on/treated under the same 

conditions, which provide valuable -omics information for future modelling work. 

Furthermore, information of regulated proteins may provide useful knowledge for further 

biological researches such as biofilm studies using PBL2025 and P2. 

 

An optimised P-peptide enrichment strategy was established for further global 

quantitative phosphoproteomic study of S. solfataricus. Compared to enrichment-free 

precursor acquisition independent from ion count (PAcIFIC) technique [7, 8], the 
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advantages of enrichment strategy is a shorter MS sample running and data analysis time: 

2 weeks vs 8 weeks. Also, it enables quantitative detection of phosphorylated 

proteins/peptides when coupled with label based proteomic tool such as iTRAQ or TMT.  

 

The first global quantitative phosphoproteomic study in archaea using iTRAQ was 

performed in the model strain S. solfataricus P2. Future biological work can be performed 

based on the brief construction of protein-protein interaction especially quantified P-

proteins. Moreover, promising target proteins were selected for PTMs cross-talk between 

phosphorylation and acetylation. Furthermore, target P-proteins may be selected for CCM 

regulation mechanism studies. As discussed below (Section 2.2.4), protein 

phosphorylation seems to play a major role in almost all the cellular process [9]. It is 

suggested that proteins undergo the rerversible phosphorylation/dephosphorylation 

process provide a tight reglulation on sugar metabolism in S. solfataricus [7]. For instance, 

enzymes at branch point such as 2-keto-3-deoxy gluconate aldolase involves in npED and 

spED metabolic branch pathway, isocitrate dehydrogenase involved in TCA and 

glyoxylate pathway [7]. The last but not the least, investigation on target P-protein show 

potential benefit for industrial applications. For instance, the successful expression of 

small heat shock protein (Sso-HSP20, encoded by gene SSO2427 in S. solfataricus) 

provide protection of Escherichia coli on temperature shock at both 50 °C and 4°C [10]. 

In addition, it shed lights on the indusrial application of P-protein through reducing the 

energy consumption for temperature cooling down processes. 
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Chapter 2 Background and literature review 

2.1 Introduction 

2.1.1 Archaea 

Archaea has been established as the third domain of life based upon ribosomal RNA 

sequence characterisation in late 1970s [11]. Since then, Eucarya, Bacteria, and Archaea 

are proposed as the three domains of life on the earth, while Bacteria and Archaea belong 

to the Prokaryotes [12]. It was termed as ‘archaebacteria’, but later changed to Archaea 

[11, 12]. Although there are a few common characteristics shared between Archaea and 

Bacteria, for instance, physical cell structures and basic metabolic pathways; there are 

still different attributes from biochemical and genetic aspects [12]. Interestingly, the 

genetic information processing system of bacteria-like archaea shows striking similarity 

to that of Eukaryotes. For instance, the chromosome replication-related proteins of S. 

solfataricus P2 were found to be more related to its eukaryotic counterparts but distinct 

from proteins in bacteria [3]. Gribaldo and Brochier-Armanet [13] summarised 

characteristics of Archea by stating that ‘Archaea look like organisms that use eukaryotic-

like proteins in a bacterial-like context’.  

2.1.2 Sulfolobus solfataricus 

Archaea can be divided into three kingdoms: Crenarchaeota, Euryarchaeota and 

Korarchaeota, based on their philosophy and particular habitats [14]. S. solfataricus, a 

hyperthermophilic Crenarchaeota, grows in sulfur-rich acidic hot springs at temperatures 

up to 90°C (optimum 75-80°C) and at pH values of 1-5 (optimum pH 2-3) [15] . 

 

Sulfolobus spp. has been developed as a model organism for genetics studies [16], 

especially when the whole genome sequences became available for S. solfataricus [3], 

Sulfolobus acidocaldarius [17] and Sulfolobus tokodaii [18]. Research on thermostable 

enzymes of thermophilic crenarchaea of Sulfolobus spp. have generated considerable 

interests due to their activity at high temperature and extreme acidic conditions which are 

generally toxic to other organisms [19].  
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S. solfataricus can use various carbon sources such as tryptone, a variety of sugars and 

amino acids [20] as an energy source. S. solfataricus P2 was isolated in Italy and has been 

considered as a model organism representative of the archaeal domain [1, 2]. S. 

solfataricus 98/2 was isolated from United States [21, 22]. S. solfataricus PBL2025, 

which was the spontaneous derivative strain of S. solfataricus 98/2, has been widely used 

as genetic tool for molecular biology research. Compared to S. solfataricus P2, the strain 

PBL2025 lacks more than 40 genes (from SSO3004 to SSO3050). The central metabolic 

pathways may be different between strains P2 and PBL2025 due to the genes not been 

present (please see Section 2.1.5 for details). S. solfataricus PBL2073 was the gene 

SSO3117 disruption strain from S. solfataricus PBL2025 (from Professor Paul Blum’s 

lab). 

2.1.3 Application of archaea, especially S. solfataricus 

Since their discovery and establishment as the third domain of life, the study of archaea 

has attracted much attention [23]. Usually, most of the microorganisms belong to archaea 

domain live in extreme environments [24], eg. halophilic, methanogenic, acidophilic and 

hyperthermophilic habitats. Their application seems to offer great opportunities for 

industrial biotechnology due to stability even under harsh pH or temperature conditions 

[25-28]. For instance, hyperthemophilic archaea survive at extreme acidic and high 

temperature conditions, and thus their proteins harbour unique properties, which made 

them promising candidates for industrial applications, e.g. thermostable enzymes [27], 

bioremediators [29], and biological waste water treatment [30]. Li et al.,[10] noticed the 

expression of small heat shork protein of S. solfataricus P2 (S.so-HSP 20) in an E. coli 

expression system was involved in the stress response to temperature change (high 

temperature up to 50 °C as well as cold shock: 4 °C treatments) based on structural and 

functional analysis. This study could shed light on cellular thermo tolerance study 

through investigating the expression of S.so-HSP 20 in different bacterial model system. 

The study of hyper thermal/acidic stable enzymes in archaea reveals new opportunities 

for the efficient production biofuel from renewable source, as reviewed by [31]. Take the 

characterisation of a bi-functional β-xylosidase/α-L-arabinosidase enzyme of S. 

solfataricus P2 as an example [32]. It gained particular interest due to the utilization for 

the pre-treatment of lignocellulose, before its further hydrolysis/conversion to bioenergy 

[32].  
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Isopropanol together with ethanol and methanol are mostly used as alcoholic solvents, 

which termed as volatile organic compound (VOC) with a total production about 6.5 

million tonnes in 2013 (http://www.ceresana.com/en/market-

studies/chemicals/solvents/). Atmosphere pollution from these VOCs resulted in 

numerous waste. Thus efficient control of these environmental unfriendly VOCs is 

necessary. Biological treatments of these VOC shows great potential benefits. There have 

been some reports on the biodegradation of isopropanol using thermophile bacteria: 

Bacillus pallidus [33], and hyperthermophilic archaeon S. solfataricus [34]. Moreover, 

there were few reports on the the utilization of alcohols (n-propanol or isopropyl alcohol) 

and ketones as carbon sources in S. solfataricus [34, 35]. Izzo et al., and colleagues [36] 

reported the biodegradation of widespread organic pollutant phenol using the 

thermoacidophilic S. solfataricus 98/2 under aerobic condition. Further study was 

performed in a fed-batch bioreactor by [37], which indicates it as an ideal bioremediation 

candidate for the chemical industrial application in waste management under extreme 

thermalphilic and acidophilic conditions.  

 

There are three sections included in this Chapter:  

- Section 1: Current proteomic study in S. solfataricus especially the response of S. 

solfataricus P2 to various carbon sources, with a brief review about proteomic techniques 

used in following studies including SDS-PAGE gel, shotgun proteome and iTRAQ. 

- Section 2: Phosphoproteomic study and technical development. Due to limited 

investigation of the phosphoproteome in archaea, reviews of phosphoproteome 

methodologies with focus on enrichment techniques were mainly incorporated from other 

subjects.  

- Section 3: Techniques applied in metabolomic studies in archaea.  

2.2 Literature review 

Section 1: Current -omics studies of S. solfataricus 

2.2.1 -Omics studies of S. solfataricus  

2.2.1.1 Proteomic studies of S. solfataricus 

Reconstruction of central carbon metabolism (CCM) of S. solfataricus in responses to 

various carbon sources (as shown in Fig 2.1) and different living temperatures have been 

http://www.ceresana.com/en/market-studies/chemicals/solvents/
http://www.ceresana.com/en/market-studies/chemicals/solvents/
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performed in model strain P2 by incorporating -omics techniques in different levels 

including genomic, comparative genomics, transcriptomics and proteomics [38]. 

Quantitative proteomic analyses of P2 in responding to different carbon sources were 

successfully carried out using 2DE and 15N metabolic labelling or iTRAQ peptides 

labelling techniques. For instance, Snijders et al., [39] observed a minor change (3%) in 

transcript level and a significant change (14%) at protein level when yeast extract and 

tryptone were supplied as alternative carbon sources to glucose. Moreover, proteome 

level changes of the P2 strain, in response to alcohols or ketones (ethanol, acetone, n-

propanol or iso-propropanol) with or without the presence of glucose were investigated 

through RT-PCR and iTRAQ by [35, 40]. Growth inhibitory effect was observed with 

the addition of alcohols or ketones compared to glucose control, but only 6.3% and 5.5% 

of quantified proteins showed up- and down- abundance changes respectively in 

proteome level [35]. The majority (88.2%) of identified and quantified proteins remain 

unchanged, which was speculated resulting from the presence of glucose. Chong et al., 

[40] noticed that S. solfataricus cannot survive in isopropanol or acetone only media, but 

it shows ability to utilise 0.199% or 0.498% (v/v) n-propanol. Further iTRAQ analysis 

revealed up or down regulations of 36% of detected proteins compared to glucose control 

[40]. The growth of S. solfataricus on various concentrations 0.101%-5.03% (v/v) of 

ethanol were evaluated with a determination of maximum consumption at 0.79% w/v 

ethanol [41]. Compared to glucose control, 21% and 31% of determined proteins showed 

their up and down regulations respectively, through using iTRAQ technique. Furthermore, 

CCM response of this P2 strain to optimal (80°C) and suboptimal (70°C) living 

temperatures under standard glucose media were investigated by incorporating the above 

-omic technologies as well as metabolomics and enzymatic techniques [38]. Standard 

operation procedures were proposed for future -omics study of S. solfataricus [38].  

 

In contrast to the extensive studies of P2, no comprehensive quantitative proteome study 

has been investigated for commonly used genetic tool: strain PBL2025, not even in 

relation to its response to different carbon sources. Interest in quantitative proteomics 

study of these S. solfataricus strains was further inspired by the discovery of their 

attachments to various surfaces and the observation of different biofilm formation 

between PBL2025 and P2 [42]. Upon surface attachment, a strong induction of 8 genes 

including (SSO3007, SSO3009, SSO3010, SSO3014, SSO3017, SSO3019, SSO3035 and 

SSO3041) were observed at transcript level through RT-PCR and quantitative PCR 
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analysis [42]. The expression of the other 10 tested genes are not affected at transcript 

level. Another concern on the large scale proteomics study is based on the identification 

of enzymes involved in extracellular polysaccharides formation in PBL2025, which are 

encoded by two of missing genes: SSO3006 and SSO3019 [43]. Further investigation 

efforts are required to have a better understanding of proteins presenting at different 

stoichiometry and the significantly affected pathways between P2 and PBL2025 grown 

on the same carbon sources as well as the response of one strain to different carbon 

sources. 

2.2.1.2 Phosphoproteomic studies of S. solfataricus 

Whilst CCM routes are partly well known in S. solfataricus (see Fig. 2.1), research on its 

regulation is relatively limited. Protein phosphorylation has been noticed to play 

important roles in cell processes as discussed in detail in the following Section 2. Glucose 

metabolism usually occurs via Entner-Doudoroff (ED) pathway with a non-

phosphorylative branch [44]. In 2005, Ahmed and colleges found evidence for ED 

pathway with a semi-phosphorylative branch (sp-ED) in S. solfataricus. The activity of 

kinase: isocitrate dehydrogenase in the glyoxylate cycle was probably regulated through 

phosphorylation as proposed for S. solfataricus [45] and S. acidocaldarius [46]. At the 

proteome level, the possibility of the regulation of key enzymes involved in the CCM by 

protein post translation modification (PTM) was pointed out by Snijder et al for the first 

time [39]. Later, Esser and colleagues [7] observed a high number of phosphoproteins 

(540 phosphoproteins) in S. solfataricus P2 when carbon sources were changed from 

glucose to tryptone. By using a precursor acquisition independent from ion count 

(PAcIFIC) approach without incorporating any phosphopeptide enrichment technique, 

they found most of phosphoproteins were especially enriched in the metabolism process 

[7]. For instance, the observation of phosphorylation of enzymes involved in ED pathway: 

glucose dehydrogenase (GDH-1, encoded by SSO3003) on Tyr134 were observed when 

grown on both glucose and tryptone condition, while the phosphorylation of GDH-2 

(SSO3204) on Tyr324, Ser326 and Thr333was only determined when tryptone was supplied 

[7]. However, the phosphoproteomic study was directed to phosphoprotein identification 

only in S. solfataricus [7] and S. acidocaldarius [47]. Until now, there is no report 

concerning quantitative phosphoproteomics in S. solfataricus and S. acidocaldarius, not 

even in archaea. The changes at quantitative proteome level involving in metabolic 

pathways especially regulation of CCM mechanism in phosphoproteome level of S. 
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solfataricus is therefore worth studying. Hopefully, this work will provide new 

information for extending knowledge on the pathways for regulation of carbohydrate 

metabolism in archaea. 

2.2.1.3 Metabolomic studies of S. solfataricus and techniques applied  

Compared to the relatively extensive proteomic studies, the investigation of S. 

solfataricus being performed at the metabolomic level is limited. One study carried out 

by Zaparty et al [38], which integrated quantitative metabolome changes and 

exometabolome analyses of S. solfataricus P2 in response to living temperature change 

from 80 to 70 °C were performed using GC-MS analysis. A total of 70 metabolites and 4 

compounds (glycerol, glucose, inositol and erythritol) from exometabolome were 

detected, but glycerol may be from glycerol stock and glucose was used as the carbon 

source. Amino acid metabolism was found to be significantly affected, and to result from 

the change of living temperature by integrating datasets originated from proteomic, 

transcriptomic and metabolomics analyses [38]. Another metabolomic study of S. 

solfataricus investigated the comparison between strains PBL2025 and PBLΔ3195 (key 

enzyme 2-keto-3-deoxygluconate kinase deletion mutant using GC-MS technique [48] 

was carried out. Recently, in order to maximise the metabolome coverage, untargeted 

metabolome analyse by RP and HILIC fractionations prior to ultra-performance LC-MS 

(UPLC/MS) were applied in S. solfataricus and Ignicoccus hospitalis [49]. No reduced 

form glutathione (GSH) but low concentrations of oxidized form GSH were detected in 

both archaea [49]. It fills in a gap of the evidence or proof for the existence of GSH in S. 

solfataricus, which is supposed to result from the high sensitivity of the UHPLC-MS. 

Together with proteome data, it supports the existence of GSH biosynthesis in archaea 

[49]. 
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Fig 2.1 Reconstruction of CCM in S. solfataricus. [Reproduced from [4]]. The up and 

downregulated proteins compared to glucose grown cells are indicated by arrows: black, yeast 

extract and tryptone; white: D-arabinose; red: ethanol; green: n-propanoate. D: dehydratase; A: 

aldolase; DH: dehydrogenase; OR: oxidoreductase; M: mutase; E: enolase; S: synthase; K: kinase; 

I: isomerase; P: phosphatase; H: hydratase; L: ligase; C: carboxylase; G1P: glucose 1-phosphate; 

G6P: glucose 6-phosphate; F6P: fructose 6-phosphate; F1,6P: fructose 1,6-bisphosphate; DHAP: 
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dihydroxyacetone 3-phosphate; GAP: glyceraldehyde 3-phosphate; KD(P)G: 2-keto-3-deoxy-(6-

phospho)gluconate; KD(P)Gal: 2-keto-3-deoxy-(6-phospho) galactonate; 1,3-BPG: 1,3-

bisphosphoglycerate; 3-PG: 3-phosphoglycerate; 2-PG: 2-phosphoglycerate; GA: 

glyceraldehyde; PEP: posphoenolpyruvate; KDA: 2-keto-3-deoxy-D-arabinoate; DOP: 2,5-

dioxopentanoate. 

2.2.2 Technique optimisation for proteomic/phosphoproteomic studies  

The successful application of gel- and mass spectrometry (MS)-based proteomic 

techniques was recently reviewed by taking S. solfataricus as an example [4]. The 

following subsections explained some issues in detail. 

2.2.2.1 Protein quantitation 

Quantitative proteomics refers to the measurement of absolute or relative protein amounts 

under different biological conditions. MS-based quantitative proteomic techniques 

provides quantitative information either at the MS or MS/MS level, which is incorporated 

based on ion intensity or peak area. There are label-based and label-free quantitative 

methodologies. Isobaric and isotopic labelling techniques are widely used, such as 

iTRAQ (isobaric tags for relative & absolute quantitation) [50], TMT (tandem mass tags) 

[51], metabolic-based SILIC (stable isotope labelling with amino acid in cell culture) [52] 

and ICAT (isotope-coded affinity tags) [53]. iTRAQ was applied in this thesis since it 

allows to analyse up to 8 samples (4- or 8-plex iTRAQ) in a single experiment 

simultaneously. 

2.2.2.2 iTRAQ (isobaric tags for relative & absolute quantitation) 

4-plex and 8-plex iTRAQ reagents have been widely used in proteome studies of S. 

solfataricus and were reviewed recently [4]. iTRAQ tags are composed of reporter ions 

(114-117 for 4-plex, plus 113, 118, 119 and 121 for 8-plex), a balance group and primary 

amine specific peptide reactive group: N-hydroxysuccinimie ester (NHS-ester) as shown 

in Fig 2.2. Total mass of isobaric tags are the same at 145 Da for 4-plex. Upon MS/MS, 

reporter ions with various m/z are released; these ion will be used for relative 

quantification, and other ion information will be used for protein identification. Digested 

peptides from different biological treatments are labelled separately and pooled together 

before submitting to HPLC-based fractionation. Different iTRAQ tags are co-eluted from 

the HPLC due to similar physio-chemical properties. Protein identification and relative 

quantitation are thus characterised by using LC-MS/MS. 
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Fig 2.2 A. Diagram shows components of 4-plex iTRAQ tag. B. Combination between isobaric tag and 

peptide amine terminal. Total mass of reporter ion and balance group are kept constant. C. Fundamental 

principle explanation of isobaric tags used for identification and relative quantitation upon MS and MS/MS. 

[Reproduced from [50]] 

2.2.2.3 Technology for phosphoprotein characterisation 

MS techniques have been developed and are widely used for proteome research in areas 

such as the systematic analysis of proteins and their post translational modifications 

(PTMs). However, until now analysis of phosphorylation has always been a challenge for 

researchers: phosphorylation/de-phosphorylation occurs at sub-stoichiometry levels and 

phosphoproteins often occur at low abundance in cells as well as being an instantaneous 

phosphorylation/de-phosphorylation process [54]. In addition, the low sensitivity of 

phosphopeptides under positive ionization conditions due to the affect from the negative 

charge carried on phosphate group hampers the development of phosphoproteomic study. 

Further MS technical issues including the phenomenon of ionization suppression, in 

which the ionization of low abundance phosphopeptides is greatly suppressed due to the 

presence of high abundant non-phosphopeptides, the MS dynamic range can also limit 

the phosphoproteome studies if the dynamic range of protein/peptide concentration is 
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greater than that of MS [54]. Therefore, the enrichment of low abundance 

phosphopeptides seems to be vital for the identification and characterisation of 

phosphoproteins. A large number of reviews have emerged that examine the sample 

preparation process for phosphoproteomics research of which Kanshin et al., 2012 and 

Loroch et al., 2013 are more recent examples [55, 56] which focus on the enrichment of 

phosphopeptides. Furthermore, a single or combination of various MS dissociation 

techniques including collision-induced dissociation (CID), electron transfer dissociation 

(ETD), electron capture dissociation (ECD), generate cleavage at different sites and result 

in various product ions, benefits for PTMs study, and discussed in detail in Section 2.5.3 

[57]. For example, a combination of complementary CID and ETD fragmentation 

techniques was proven to enhance proteome and phosphoproteome coverage than their 

sole use [57].  

 

Besides different fragmentation techniques as mentioned above, neutral loss of H3PO4 

(98, 49 or 32.7 Da, corresponding to +1, +2 and +3 charge state) or HPO3 (80 Da), SRM 

(selective reaction monitor) /MRM (multiple reaction monitor) has been proposed to be 

beneficial for phosphopeptide characterisation [58]. Also, compared to the 

conventionally used positive ion mode, a strong relative signals of phosphorylated 

peptides was detected under negative ion mode [59]. However, the beneficial application 

of neutral loss dependent MS3 strategies for high mass accuracy instrument for global 

quantitative phosphoproteomics is not significant, due to the balance between time 

consuming and more information collection from complex samples [60].  However, not 

many reports were obtained for identification of the low abundant phosphopeptides and 

to date, no large scale quantitative phosphoproteome study has been performed in archaea. 

It is still a challenge. Further technical optimisation is unavoidable at this stage. 

2.2.2.4 Techniques for phosphoproteomic studies 

One of the issues for quantitative phosphoproteomic studies is the low abundance of 

phosphopeptides, as reviewed in detail recently [58]. It can be solved: take iTRAQ for an 

example, through the employment of phosphopeptide enrichment techniques, which is 

incorporated either before or after labelling. Some phosphoproteome studies suggested a 

use of large protein material (e.g. 10 mg) for phosphopeptide enrichment before labelling 

with iTRAQ reagents. The affected factors for phosphopeptide enrichment are discussed 

in details in Section 2. Besides the sample preparation and phosphopeptide enrichment 
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issues mentioned in Section 2.2.5.1, it is reasonable to notice that iTRAQ reagents are 

highly specific for primary amines, which require that the sample is free of amine. 

However, phosphopeptides are usually eluted by pure ammonium solvents in most of the 

enrichment techniques such as IMAC/MOAC, therefore, cleaning up samples such as 

using C18 material is necessary before moving to the labelling step.  

 

One of factors that need to be considered for the design of phospohproteomic experiment 

is the available reporter ions upon ETD (electron transfer dissociation) fragmentation. 

Since upon ETD, only three of 4-plex [61], five of 8-plex iTRAQ labels [62] and four of 

6-plex TMT tags [63] give rise to unique reporter ions that would allow for quantification, 

respectively. In ETD mode, both 113 and 114 tags appear at 101 Da; similarly, 104 Da 

for 116 and 117 tags, 106 for 118 and 119 tags for 8-plex iTRAQ reagents [61], while 

with 6-plex TMT, both  126 and 127 tags appear at 114 Da, 128 and 129 tags appear at 

116 Da [63]. 

 

In summary, workflows for iTRAQ-based quantitative phosphoproteomics can be found 

in Fig 2.4, in which the labelling step could be performed either directly for peptides or 

after phosphopeptide enrichment.  

2.2.3 Need for -omics studies of S. solfataricus  

There are more than 40 genes (SSO3004-SSO3050) absent in PBL2025 compared to the 

model strain P2, some of which are involved in sugar metabolism, such as glycosyl 

hydrolase (lac S gene, coding for β-glycosidase) [64, 65]. Genes SSO3006, SSO3019, 

SSO3022, SSO3032 and SSO3036 in P2 were found to be involved in the CCM [66]. 

Three of glucose-1-dehydrogenases (dhg-1, dhg-2, dhg-3) genes have been reported in 

P2, among which dhg-2 (coded by gene SSO3042) has still an unknown function [66, 67].  

 

In addition, the uptake of sugar substrates, for instance: glucose may be affected in 

PBL2025 because the transportation of glucose in S. solfataricus is via a high-affinity 

binding-protein dependent ATP-binding cassette (ABC) transporter [68]. A typical ABC 

transporter is composed by 2 permeases, 2 ATPases, and 1 membrane anchored substrate-

binding protein. There are 37 putative ABC transporters and 15 binding proteins in P2 

based on genetic information [69]. In contrast, the number of functional ABC transporters 

may be less in PBL2025 due to the absence genes as shown in Fig 2.3: genes SSO3012, 
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SSO3045 and SSO3046, produce ATP binding protein-ABC transporter; gene SSO3043 

codes for binding protein; and genes SSO3047 and SSO3048 code for permeases of ABC 

transporter; cellodextrin transporter component SSO3053 was proposed to be a homolog 

to an oligosaccharide transporter (TM1223) from Thermotoga maritime [70].  

 

Several questions still remain: How does the absence of specific ‘missed’ genes affect 

the glucose metabolic pathway especially branched ED pathway (glycolysis), as show in 

Fig 2.3. Does dhg-2 possess similar function to asdhg-1and dhg-3? Does the lack of 

encoding genes from three of 37 ABC transporters show an effect on substrate uptake? 

Compared to P2, are there any other ABC transporters being activated resulting from the 

lack of some ABC transporter coding genes in strain PBL2025, which will provide carbon 

and energy source for cell growth? Is it because of the existence of promiscuous pathways 

or some iso-enzymes substitute for the missing functional genes so that S. solfataricus 

PBL 2025 could survive? Or just because the missed genes solely play a role in surface 

attachment and biofilm formation [71]. The investigation by comparing proteomic level 

differences between P2 and PBL 2025 can provide some answer. 
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Fig 2.3 A modified branched ED pathway for the absence genes in PBL2025. G1P: glucose 1-

phosphate; G6P: glucose 6-phosphate; F6P: fructose 6-phosphate; F1,6P: fructose 1,6-

bisphosphate; DHAP: dihydroxyacetone 3-phosphate; GAP: glyceraldehyde 3-phosphate; 

KD(P)G: 2-keto-3-deoxy-(6-phospho)gluconate; 3-PG: 3-phosphoglycerate; GA: glyceraldehyde; 

PEP: posphoenolpyruvate. 

 

SSO3117 gene was found to catalyse acetaldehyde to acetate in ethanol catabolism 

pathway [45] and catalyse the reversible reaction from propionaldehyde to propanoic acid 

in the n-propanol metabolism pathway [72] in S. solfataricus P2, as indicated in Fig 2.3. 

SSO3117 gene in P2 was highly expressed at protein level when it was grown in pentose 

D-arabinose compared to hexose D-glucose. The putative aldehyde dehydrogenase (gene 

SSO3117) has been re-annotated as 2, 5-dioxopentanoate dehydrogenase (DOP DH), also, 

its function has been characterised in pentose (non-natural isomer, d-arabinose) oxidation 

pathway, which was found to catalyse 2,5-dioxopentanoate, glyceraldehyde, and 
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glycolaldehyde [73]. Its gene function has also been confirmed in the natural pentose, D-

xylonate and L-arabinonate [74] in S. solfataricus P2 and S.acidocaldarius.  

 

However, it was revised to be aldehyde dehydrogenase (Lactaldehyde dehydrogenase, 

‘succinate semialdehyde dehydrogenase or other NAD-dependent aldehyde 

dehydrogenase’) in S. solfataricus P2 [66]. Lactaldehyde dehydrogenase is one of the 

general aldehyde oxidation enzymes, which has been purified both in Escherichia coli 

[75, 76] and yeast [77]. This enzyme was oxygen induced and was plroposed to be 

involved in the oxidation aldehyde produced from L-1,2-propaediol, fructose and 

rhamnose etc metabolic pathways in E.coli. [75]. However, there is no report about the 

lactaldehyde dehydrogenase in archaea. The biological function of SSO3117 in S. 

solfataricus was unknown. What is the possible change after the disruption of the lactate 

dehydrogenase gene in S. solfataricus at the protein expression level? The comparisons 

of proteomics and metabolomics changes in system level between mutant and wild strains 

would benefit for elucidation of functional role of SSO3117. 

Section 2 Phosphoproteomics studies in the archaea 

2.2.4 Phosphoproteomic studies 

2.2.4.1 What are post translational modifications (PTMs)? 

Post translational modifications (PTMs) are the covalent modifications of proteins being 

followed by the synthesis process, where processed proteins undergo modification by 

chemical addition, for examples, phosphorylation, glycosylation [78-81], acetylation [82, 

83], proteolytic cleavage [84, 85], methylation, etc. Protein properties and activities 

might change after these modifications. Each modification performs a distinguished 

function throughout the cell’s life, e.g. phosphorylation plays an important role in signal 

transduction [9], protein function, activity and interaction as well as intracellular protein 

localization [86]. PTMs studies become fascinating when the cross talk 

between  phosphorylation and other PTMs such as ubiquitination [87] and acetylation [88] 

were reported.  

2.2.4.2 Bibliometric data analysis 

To get a picture of recent studies of PTMs (last ten years), different PTMs keywords such 

as phosphorylation, methylation, glycosylation, acetylation and proteolysis as well as 
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human, archaea and S. solfataricus were used to search within the National Center for 

Biotechnology NCBI Pubmed (http://www.ncbi.nlm.nih.gov/pubmed/) database. The 

results are presented in Fig 2.4. From Fig 2.4A, we can see that study of phosphorylation 

is always one of the so called ‘hot’ research topics. However, few studies have been 

reported in archaea compared to the wealth of research numbers reported for study of 

phosphorylation in human material (Fig 2.4B).  

 

  

 

 

 

Fig 2.4 Numbers of post translational modifications studies reported for (A) humans and (B) archaea 

from 2004 until 2014. 

 

It can be seen that although the number of published papers in archaea is lower than 

that observed for humans, the broad trend is similar. The study of S. solfataricus and 

S. acidocaldarius is still mainly focused on the identification of phosphoproteins. 

There is a great depth of knowledge to be acquired through the phosphoproteomic 

http://www.ncbi.nlm.nih.gov/pubmed/
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study. In 2000, the identification and characterisation of enzymes mainly depended on 

PCR and other biological tools [89-91]. With the development of new techniques, the 

application of MS for protein identification and PTMs research, especially for 

phosphoproteomic studies attracted more attention [54, 92, 93]. 

 

2.2.4.3 What is protein phosphorylation? 

Phosphorylation of proteins is one of the most important PTMs in prokaryotes [94, 95], 

eukaryotes [9] and archaea [96]. In this process, the γ-phosphate group transfers from 

ATP or GTP to the side chain of amino acids in a (polypeptide chain) protein [97, 98]. 

Phosphorylation has been found on 9 amino acids. It occurs not only on Ser, Thr, Tyr, 

Asp, His [99], but also on Cys, Lys, Gln [100] and Arg residues [101]. The activities and 

functional properties of protein, especially enzymes can be changed after phosphorylation. 

For example, phosphorylation on Ser309 of phosphopeptide [VGpSVDIAHK] from 

protein (encoded by gene SSO0207) has been shown to attenuate the catalytic efficiency 

of phosphohexomutase in S. solfataricus P1 [102]. This instantaneous and reversible 

process is well known to play an important role in signal transduction in almost all 

cellular processes, including cell division and metabolism [9], to cope with stress 

adaptation, eg. temperature, pH, nutrition deficiency [95, 103, 104], DNA damage 

response in chromosomes [105], and control of cell growth [106]. In S. tokodaii, 

phosphorylation of the fork head domain protein (ST0829) negatively regulated its DNA-

binding activity, and it was postulated that this could be involved in the adaption of this 

organism to extreme living environments (high temperature, low acidic pH) [107].  

2.2.4.3.1 Ser/Thr/Tyr protein phosphorylation 

Sporadic studies on phosphorylated proteins have been done in archaea and were 

reviewed [96, 108]. Updated phosphoprotein identification information was collected and 

is listed in Supplementary Table SP2.1.  

 

Although the phosphoserine was detected in egg yolk protein in 1932 [109]. It was over 

two decades later in 1954 that the first enzymatic phosphorylation of proteins was 

described  and phosphothreonine was identified in casein [110]. However, 

phosphotyrosine was still unknown until 1979 [111]. Ser/Thr/Tyr phosphorylation has 

become known as one of the traditional PTMs in eukaryotic microorganisms [112, 113]. 

Also, Ser/Thr/Tyr phosphorylation has been found in bacteria such as B. subtilis [114] 
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and E. coli [115]. Interestingly, researchers noted that Ser/Thr/Tyr phosphorylation in 

some bacteria was linked to bacterial pathogenicity [116]. In the minimal organism 

Mycoplasma pneumonia, Schmidl [117] found a highly conserved phosphorylated Ser 

site from archaea to human for the first time, and suggest the ecological niche adaptation 

role of protein phosphorylation. The number of identified phosphoproteins, 

phosphopeptides and the assignment of phosphosites are increasing. The availability of 

genomic information and increasing maturity of high-accuracy MS techniques such as 

CID, ETD and ECD lead to a rapid and sensitive study of phosphoproteomics [57]. 

Furthermore, researchers are making progress to work on the dynamics of in vivo 

phosphoprotein and to reconstruct the systemic signalling networks [57, 118]. 

 

However, developments in phosphoproteomic studies in archaea is not as well 

investigated as those in eukaryotes and bacteria. The first report on phosphoproteins in 

the extreme halophile archaeon Halobacterium halobium was observed in 1980 through 

using (32P) orthophosphate pulse-labeling by Spudich [119]. After that, phosphotyrosine 

proteins were detected in S. sulfataricus P1, Haloferax volcanii and Methanosarcina 

thermophia using antiphosphotyrosine antibody [120]. Later, phosphorylation on 

Ser/Thr/Tyr of protein kinases was reported using the traditional 32P incorporation 

method with the aid of MS analysis, as listed in Supplementary Table SP2.1. 

Identification number of phosphoprotein in archaea increased significantly by 

incorporating MS based techniques. The first comprehensive Ser/Thy/Tyr 

phosphoproteome study was presented by Aivaliotis et al., [121] in the halophilic 

archaeon H. salinarum by employing SCX fractionation followed by TiO2 beads 

enrichment, from which 90 unique phosphopeptides corresponding to 69 

phosphoproteins were determined by LC-MS/MS. Later, a higher number of 

phosphoproteins were determined in model Sulfolobus species: 540 and 801 from S. 

solfataricus [7] and S. acidocaldarius [47] respectively by using LC-MS/MS with 

multiple injections and MRM and data analysis by a precursor acquisition independent 

from ion count method without incorporating any phosphopeptide enrichment technique. 

2.2.4.3.2 Phosphorylation of His-Asp signal transduction system 

The availability of genomic sequence information has ensured the development of protein 

phosphorylation research in all three domains of life [99, 101, 122]. Phosphoryl groups 

can be added on the 1-N or 3-N of iminazole ring in histidine [123]. The first instance of 
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phosphohistidine was reported by Boyer [124]. Phosphorylation sites in bacteria have 

been initially reported in His and Asp residues [94, 95, 125]. Gradually, the 

phosphorylation of His-Asp signal transduction system was discovered in yeast, fungi 

[106], Arabidopsis and rice [126, 127]. Kanamaru [106] found that this famous signal 

transduction system played an important role in controlling cell growth. In archaea, 

Rudolph detected phosphohistidine in kinase ChA [128] and Asp in ChY [129]. However, 

this well characterised two-component regulatory system (TCS) to date has not been 

identified in animals and is not encoded in the human genome [130]. With the discovery 

of the TCS in some eukaryotes, vertebrate cells and histones [105, 131-136], research on 

acid-labile phosphohistidine has attracted more attention. The phosphorylation of 

hydroxyl oxygen on Ser/Thr/Tyr residues (also referred to as O-phosphorylation) forms 

a phosphate ester, which has been shown to be acid-stable [134]. The phosphor-amidate 

bond formed during the phosphorylation of nitrogen on His, Arg and Lys is acid unstable 

[137]. Besant and Attwood [123] pointed out that acid/alkali-stability was a characteristic 

that is distinct from other phosphorylated residues. However, conventional MS 

techniques for Ser/Thr/Tyr detection are limited for the study of phosphohistidine due to 

the P-N bond being unstable under acidic conditions [134]. This potentially is one of the 

reasons why phosphohistidine has not been identified in most MS experiments. 

 

2.2.4.4 Phosphoproteomic studies in archaea  

Protein phosphorylation in archaea has been noticed to play important roles. Skórko 

observed that phosphorylation in S. acidocaldarius depends on the state of growth and 

the extent of phosphorylation reached its maximum in the late exponential phase [138]. 

Previous studies have demonstrated that proteasomal phosphorylation is regulated by 

growth in halophilic archaea [139]. Aivaliotis and co-workers found that phosphoproteins 

in H. salinarum mostly appeared in cell metabolism [121]. Humbard reported that 

phosphorylation of the α1 subunit of 20S core particles (components of proteasomes) in 

Haloferax volcanii was related to late-stationary phase growth [140]. Moll and Schäfer 

have proven that the plasma membrane of S. acidocaldarius can withstand low pH 2-3 

while maintain internal cellular pH around 6.5 [141]. Van de Vossenberg, et al. 

demonstrated that the ion permeability of cytoplasmic membrane regulates the limit 

growth temperature in S. solfataricus [142]. Konings, et al., reviewed the critical role of 
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cell membrane of archaea in surviving of extreme living environments [143]. Recently, 

the total phosphoprotein identification number in archaea increased significantly with the 

employment of MS techniques, the study of archaea using proteomics tool has gained 

some attention since its establishment for the third domain of life [4]. However, no 

quantitative phosphoproteome research has been carried out in archaea.  

2.2.5 Technology for phosphoproteomic studies  

Current phosphoproteomic studies (as shown in Fig 2.5) mostly employ enrichment 

techniques such as IMAC, MOAC in combine with LC-based fractionation to gain a 

better phosphoproteome coverage, as detailed in the following parts: 2.2.5-2.2.6.  

 

 

Fig 2.5 Phosphoproteomic strategy. [Figure modified based on [56, 144, 145]]. IMAC: 

immobilized metal ion affinity chromatography; MOAC: metal oxide affinity chromatography; 

SAX: strong anion exchange; SCX: strong cation exchange; HILIC: hydrophilic-interaction 
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liquid chromatography; ERLIC: electrostatic repulsion hydrophilic interaction chromatography. 

CID: collision-induced dissociation; ETD: electron transfer dissociation; HCD: high-energy C-

trap dissociation; PQD: pulsed Q collision induced dissociation; MSA: multi-stage aciviation.  

 

2.2.5.1 Sample preparation for phosphoproteomic studies 

2.2.5.1.1 Matrix effects and limit of detection 

As with many techniques, it is important to have standards from which to estimate the 

starting materials need to be used. In the case of phosphorylation, bovine α, β-casein can 

be used as standards for limit of detection of phosphopeptides determination and 

therefore the starting material information for phosphoproteome optimisation experiment 

can be calculated.  

 

In LC-MS-based phosphoproteomics experiments, reproducibility and accuracy of 

analysis results can be affected by impurities. This has been termed the ‘matrix effects 

(ME)’ [146]. Minimisation of the ME would greatly improve the quantitative results. One 

of the key modern MS soft ionization techniques, electrospray ionization (ESI), is prone 

to be negatively affected by ME. Trufelli, et al. [146] have reviewed the potential 

mechanism of ion suppression/enhancement that results from ME interference. In 

addition, they made some useful comments on how to overcome ME in different aspects, 

sample preparation, chromatography, calibration, and MS, etc.. Some suggestions 

include the use of hydrophilic-interaction liquid chromatography (HILIC) (for high polar 

compounds analysis) or ultra-HPLC as alternatives to traditional reverse phase LC-MS, 

the modification of MS conditions, eg. ionization mode/technique, and discussed by Liu 

et al. [147]. 

2.2.5.1.2 Improvements for efficient digestion  

While high-quality samples are the foundation for biological analyses, sample 

preparation methods are crucial steps for MS-based proteomics study, which will affect 

the subsequent data quality.  

 

Enzymatic and chemical cleavage techniques, and developments focus on enhancing 

digestion efficiency and accelerating the laborious digestion processes, have been 

reviewed [148]. Different size peptides are generated using different enzymes. Small 
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phosphopeptide (residues 33-48, with phosphorylation on Ser 35) from 100 fmol of β-

casein was detectable using Lys-C digestion, but no phosphopeptide was detected from 

trypsin digestion products [149]. For phosphoprotein digestion, enhanced digestion 

efficiency can be achieved through mild digestion or multiple enzymatic treatment or 

multidigestion by protease-immobilized microreactors [148]. Incomplete/mild digestion 

using trypsin or endoproteinase Lys-C was reported to aid the determination of multiply-

phosphorylation sites from 20 recombinant E. coli proteins using MALDI-MS. It is 

inferred to be caused by ionization efficiency enhancement, resulting from positive 

charge of residues especially those contained Arg [148].  

 

Compared to the single use of trypsin, a good digestion can also be achieved by using 

multiple digestion protocols, which incorporates a combination of trypsin and another 

non- or less specific proteases such as elastase, Lys-C, Glu-C or Lys-N. Compared to the 

single use of trypsin, the detection of unique phosphopeptides and phosphorylation sites 

of HeLa cells increased significantly from 3891 to 8062 and 4647 to 8507, respectively, 

by using firstly Glu-C and then trypsin [150]. However, in archaea, the effects on 

digestion efficiency by employing multiple digestion have been evaluated for membrane 

protein analysis but not yet in phosphoproteome study. For instance, protein quantifiable 

range was extended by incorporating both trypsin and Glu-C in Halobacterium salinarum 

[151]. A high number of unique peptides and proteins (75% more for total proteins) were 

determined resulted from a better digestion by a combine using of trypsin and 

chymotrypsin in S. solfataricus [152]. 

 

In addition, attention needs to be paid to the missed cleavage site resulting from negative 

interference of digestion for data analysis in a phosphoproteome study. Trypsin digestion 

efficiency could be negatively affected by amino acid residues, for example, if Pro is 

closely proximal to tryptic cleavage site; basic amino acids or negatively charged residues 

adjacent to phosphosites [145], and phosphorylation-modification [153]. 

Phosphorylation amino acids type, location and sequence information as well as the salt 

bridge formed between Arg and Lys has a negative effect on trypsin digestion [154]. 

Dickhut et al., [154] observed a strong negative effect from phospho-Ser and phospho-

Thr and a smaller inhibitory effect from phospho-Tyr, which is proximal to cleavage sites 

using 19 artificial miss-cleavage model peptides. 
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Impairment tryptic digestion resulted from phosphorylation-modification can be 

overcome to some extent by employing an increase of trypsin/peptides ratio from the 

commonly used 1/50 to 1/20 or 1/10 and addition of organic solvents such as ACN and 

trifluoroethanol (TFE) [154]. The positive improvements by using trypsin/peptides ratio 

1/20 or 1/10 and the addition of organic solvents including 10% ACN or 5% TFE for 

phosphoproteome study were validated in large-scale quantitative phosphoproteome 

experiments using both label-free and iTRAQ label-based studies of human platelets 

samples [154]. Recently, a trypsin/peptides ratio of 1/1 was used by Liu et al., [155]. In 

this ‘one-step protocol’, interference from excessive trypsin and its autolysis product was 

removed since Ti4+-IMAC enrichment was applied directly after digestion [155]. 

Although phosphorylation sites determination and quantification was significantly 

observed by the addition of TFE, considerations need to be taken for its use in high-

complex biological samples due to its interference with the following TiO2 enrichment 

and a reduced digestion efficiency for certain model peptide with the presence of TEAB 

[154].  

 

In-solution digestion seems to be simpler than the others in terms of sample handling but 

has similar time-consuming problem due to overnight digestion, which is commonly used 

for trypsin digestion. Steps are moving forward from conventionally > 25h protocol to > 

16h protocol, and recently, a more efficient 25 min digestion procedure was optimised 

and tested by using HeLa cells [155]. The ‘one-step protocol’, refers to the combination 

of cell lysis, protein extraction and digestion into one step, and ~25 min was consumed 

but with a compromise of a high amount of trypsin [155]. Cell pellets were re-suspended 

in lysis buffer together with a high amount of trypsin, cell disruption and protein 

extraction was performed using ultrasonication at 37 °C and trypsin digestion were 

simultaneously achieved [155]. In contrast to the 1:25 peptide to trypsin ratio, which was 

used in conventional > 28 h (Protocol A) and improved >16 h (Protocol B) procedures, 

the optimised ratio was 1:1 for ‘one-step protocol’. Furthermore, no protease inhibitor 

was applied due to short time treatment. Interference from excessive trypsin and its 

autolysis product will be removed since Ti4+-IMAC enrichment was applied directly after 

digestion [155]. The identification number of unique phosphorylation sites from new 

protocol, protocol A and B were 2987, 2682 and 2020 from HeLa cells (105 cells, around 

40 µg protein) and 1452, 1167 and 965 from HepG-2 cells, respectively. Phosphosites 

quantification number is 1465, 1622 and 965 from similar amount of HeLa cells 
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determined by using heavy and light isotope dimethyl labels [155]. However, the limit 

factor to routine usage of this technique is the expensive cost of huge amount of trypsin 

especially for experiments requiring a large amounts of starting materials. Additional 

considerations need to be taken if followed by label-based quantitative phosphoproteome 

experiments such as TMT and iTRAQ, because the estimation of protein concentration 

seems impracticable.  

 

Besides improving tryspin digestion efficiency, efforts have been put on reducing sample 

preparation time. Good trypsin digestion efficiency can be achieved under optimal pH 

and temperature conditions. Combination of microwave irradiation and acid hydrolysis, 

termed microwave-assisted acid hydrolysis (MAAH) technique, was reported to aid for 

protein sequence and phosphophorylation sites determination of standard proteins [148]. 

Tryptic digestion efficiency was improved without affecting PTMs, eg. phosphorylation 

sites remain intact and it shows promise for phosphoprotein characterisation study. 

However, MAAH assisted technique was only tested for phospophorylation study in 

standard proteins, and its application in archaea membrane proteome was reported for 

Pyrococcus furiosus, but not in a phospohproteome study [156].  

2.2.5.1.3 In-solution / in-gel digestion and on-membrane digestion 

Compatibility with the following enzymatic digestion or phosphopeptide enrichment 

need to be considered for careful selection of extraction solvents. As many detergents and 

surfactants may have positive or negative effect on enzyme activity or phosphopeptide 

enrichment. One example is the chemical denaturation reagent sodium dodecyl sulphate 

(SDS), the presence of SDS was proven to prevent phosphopeptides loss due to their 

binding to plastic surfaces, such as pipette tips and Eppendorf tubes prior to IMAC or 

TiO2 enrichment [157]. However, the incompatibility of SDS with subsequent LC-

MS/MS needs to be taken into consideration, specifically identification of strategies to 

remove SDS. Worthington et al., [158] proposed to avoid the usage of urea for protein 

denature, because the induced carbamylation modification may contribute greatly to the 

non-specific binding with IMAC or TiO2 metal resins, as discussed in Section 2.6.1. 

 

 One of the solutions for efficient digestion is to immobilise proteins in PAGE gel or on 

membrane. It benefits for the separation of protein isoforms and PTMs and therefore 

increase the possibility of determination by downstream LC-MS/MS [159]. In-gel protein 
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digestion are widely used in archaea research, while in-column or on membrane 

(nitrocellulose or poly (vinyldifluoride) PVDF), filter-assisted sample preparation (FASP) 

digestion has not been applied yet. In-gel digestion is of high efficiency, but often 

laborious and time-consuming [160] for MS. Compared to in-solution digestion, there is 

a high-risk of losing 50-85% amount of protein samples by using in-gel digestion [161], 

due to the complex washing procedure (including stain, de-stain and in-gel digestion).  

 

Benefits of employing on-membrane digestion of gel-resolved proteins includes efficient 

tryptic digestion, time saving (a half time) compared to in-gel digestion as well as a better 

proteome coverage especially suitable for study of membrane proteome [162]. Peptides 

from on-membrane digestion can be analysed directly by MALDI-based MS. 

Improvements (remove of membrane) made by [162] enabled the possibility that peptides 

from on-membrane digestion can be detected by (LC)-ESI-based MS. Lee et al. [163] 

tried the combination of polyurethane membrane digestion with in-solution digestion to 

detect tetra-phosphorylated peptides  in β-casein.  

 

In summary, sample preparation is of importance. Efficient digestion can be achieved by 

a selection of most appropriate extraction buffer and enzyme as well as optimised 

conditions. 

2.2.6 Enrichment technology for phosphoproteomic studies 

2.2.6.1 Phosphopeptide enrichment 

Although protein phosphorylation plays an important role in almost all of the cellular 

processes detail can be found in Section 2.2.4, its study is still a challenge. The 

enrichment of low abundance phosphoproteins or phosphopeptides has been reported to 

be vital for the phosphoproteomic studies. Technical development enables the efficient 

quantitative phosphoproteomic studies. A large number of reviews have emerged and 

have been examined the sample preparation process for phosphoproteomics research with 

a focus on the improvements on phosphoprotein/phosphopeptides enrichment techniques 

as well as challenges for their application to large scale phosphoproteomics, as listed in 

Fig 2.5 [55, 144, 164]. Usually, technologies for phosphoprotein studies including P32 

radio-labelling and 1-D or 2-D gel electrophoresis, chemical modification and antibody 

based immunoprecipitation, affinity chromatography, etc. The advantages and 

disadvantages of various methods have been reviewed in detail elsewhere [144, 145].  



Chapter 2 Background and literature review 

30 

 

 

Phosphopeptide enrichment can be achieved through chemical modification, which 

include carbodiimide condensation, β-elimination, oxidation-reduction condensation, α-

Diazo resin and so forth. Compared to IMAC/MOAC, the advantage of using chemical 

modification is the high specificity [144]. For instance, β-elimination is one of the 

conventional enriched techniques, in which process phosphate group of phospho -Ser or 

-Thr is eliminated through the addition of basic solvents e.g. Ba(OH)2. This process was 

coupled with the addition of propanedithiol (named Michael addition), through which 

specific binding will be achieved using dithiopyridine resin. Thus, peptide with 

phosphorylation modification can be enriched through these specific bindings [144]. The 

benefits of employing phosphate elimination for MS analysis include avoiding neutral 

loss and thus retaining intact peptide sequence, which is useful for further identification 

and also, increasing of ionization efficiency for common used MS positive ion mode 

[145]. One of the obvious issues raised by the use of chemical reactions is the sample loss 

due to many reaction steps and increase of sample complexity resulted from incomplete 

reaction and side reactions [144]. Commercially available anti-tyrosine antibodies have 

high affinity for phospho tyrosine and they are suitable for immunoprecipitation, but the 

specificity of commercially available phospho- Ser and Thr antibodies currently limit 

their application for phosphoproteome [145]. Affinity-based enrichment techniques such 

as immobilized metal ion affinity chromatography (IMAC), Phos-tag chromatography 

(phosphate-binding tag molecular), metal oxide affinity chromatography (MOAC), 

polymer-based metal ion affinity capture (PolyMAC) enrichment are reported, as 

discussed by [144]. Phos-tag was similar to IMAC in that it is based on the binding 

between negative charge oxygen atom of phosphate and positive charge of Mn2+ or Zn2+, 

which was anchored to agarose such as SDS-PAGE as a matrix and therefore act as Phos-

tag molecular bound [165]. The major difference between Phos-tag and IMAC is the 

neutral working conditions around pH 7.5 for Phos-tag compared to low pH incubations 

for IMAC. Only few phospho-protein/peptide enrichment studies have been carried out 

to improve enrichment efficiency using Phos-tag in respect of testing different incubation 

and elution buffers. There are also a few reports on the use of using hydroxyapatite 

chromatography for phospho-protein or peptide enrichment [144]. Although these studies 

using Phos-tag, PolyMAC and hydroxyapatite techniques for phosphopeptide enrichment 

seems promising, they have not been widely tested in complex samples, from which no 
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solid conclusions are withdrawn in aspects of their superiorities to IMAC and MOAC 

[144].  

 

A brief summary of various improvements on phosphopeptide enrichment efficiency by 

using IMAC-Fe and MOAC-TiO2 is shown in Table 2.1. Furthermore, the observation of 

novel phosphorylation sites or phosphopeptides and moreover, phosphoproteome 

coverage seems to be significantly improved by a combination of different methodologies.  

 

Table 2.1. Summary of improvements on phsphopeptide enrichment using IMAC-Fe and MOAC-TiO2 

 IMAC-Fe MOAC-TiO2 

Loading buffer to 

reduce non-

specific binding  

High organic solvents (ACN) and acids to reduce binding of acidic peptides  

Acetic acid > TFA, hydrochloric 

acid, formic acid  

TFA together with glycolic acid, lactic acid, 

citric acid, 2,5-DHB, phthalic acid, glycerol  

Consecutive 

incubations  Tandem IMAC Multiple incubation cycles 

Other factors 

Matrix support: NTA or IDA 

resins.  

Peptide/beads ratio; Incubation time; 

Physical properties, higher surface/volume ratio: 

mesopoous > smooth particles; nanoparticles > 

micro-sized beads. 

Formats 

 Matrix-assisted laser desorption 

ionization (MALDE) plate, 

column,tips, gel Magnetic beads, pipette tips, spin tips, columns   

Elution buffer  

Ammonium hydroxide 

Phosphoric acid, addition of DHB 

or ACN  

pH, amine nucleophilicity and structure of 

elution solvents; bis-Tris propane; pH step wise 

elution and pH step gradient elution  

  Note: NTA: nitriloacetic acid; IDA: iminodiacetic acid; 2,5-DHB: 2,5-dihydroxybenzoic acid; 

TFA:trifluoroacetic acid. 

 

Until now, Fe3+ or Ga3+ and TiO2 are among the most widely used materials for IMAC 

and MOAC, respectively. Principles for IMAC and MOAC are similar, negatively 

charged phosphates that is oxygen atom will combine with the positively charged metal 

ions, for instance, Fe3+ of IMAC or Ti4+ of TiO2 through incubation. Also, similar 

procedures were incorporated by IMAC and MOAC. A wash step was carried out after 

incubation to remove non-specific binding. Finally, phosphopeptides were eluted by 

basic solvent, such as ammonium solution. A notorious issues for both IMAC and MOAC 

is non-specific binding of acidic peptides (Asp and Glu), which is caused by the affinity 
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between the carboxylate group of amino acid residues and metal ions materials. Thus the 

co-elution of acidic peptides and phosphopeptides are unavoidable, which significantly 

affect the enrichment efficiency. IMAC was also observed to have a higher affinity 

towards multiphosphorylated peptides, while the determination of monophosphopeptides 

from TiO2 enrichment is obvious [166]. Therefore, improvements on phosphopeptides 

recovery and in-depth phosphoproteomic study is still on progress in terms of enhancing 

selectivity, specificity and sensitivity. For IMAC and MOAC, developments focus on 

testing different metal ions/oxide materials due to different binding efficiency and 

support resins such as magnetic beads, MALDI plate, column, tips, Poly-MAC as well as 

optimisation of reaction conditions [144, 164].  

2.2.6.1.1 IMAC  

As mentioned above, IMAC is based on the affinity reaction between the negatively 

charged oxygen of phosphates and positively charged metal ions. Fe3+, Ga3+, Zr4+, Al3+, 

Cu2+, Co2+, Ca2+, Zn2+, Ni2+ and Ti4+ have been introduced, and Fe3+ is mostly used [144, 

145, 167]. However, their application has been hampered. Besides the above mentioned 

non-specific binding issues caused by acidic peptides, one of the disadvantage of IMAC 

is sample loss and possible contamination caused by Fe3+ leaching due to non-covalently 

binding with solid phase as discussed in [167]. Negroni et al., [168] also pointed out 

another limitation of ‘rusty IMAC’ caused by re-using POROS-Fe3+IMAC packed 

columns, which is due to the accumulation of Fe3+precipitation (Fe3+ and Fe2O3) after 

ammonium elution. Numerous efforts have been performed to improve the specificity 

and sensitivity of IMAC from every aspect including testing different support resins, 

various metal ions and optimisation of operation protocols.  

 

For nonspecific binding from acidic peptide issues, the employment of other enzymes 

with one carboxyl terminus cleavage such as Glu-C and the esterification of carboxyl to 

methyl ester were reported [144, 145]. However, wide usage is limited by loss of sample 

and increase of sample complexity resulting from side reactions and incomplete reaction.  

 

It was noticed that nitrilotriacetic acid (NTA) resins gave better results when combined 

with Fe3+ than Ga3+, while iminodiacetic acid (IDA) resins worked better for Ga3+ than 

Fe3+ [145]. But still, no confident conclusions were drawn due to limited reporting.  
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The influence of incubation buffer on IMAC binding specificity as well as elution buffer 

are not ignorable [145]. It was observed that acid strength (optimal pH) and ironic 

composition and strength aids in reducing non-specific binding from acidic peptides with 

IMAC [144]. Moreover, an optimal concentration of acid and ions need to be determined, 

since a superoptimal concentration also prevents phosphopeptide binding and sub-

optimal concentration will not reduce the non-specific binding of acidic peptide [144]. 

Compared to TFA, hydrochloric acid and formic acid, an optimal concentration of acetic 

acid was mostly used in IMAC loading buffer, because strong acids (such as TFA) may 

lead to phosphopeptide loss [144]. In addition, the presence of ACN in loading solutions 

shows superior positive influence on blocking non-specific hydrophobic interactions 

compared to acetone, ethanol and methanol [144]. Ye et al. noticed an affinity 

enhancement between IMAC resin and phosphopeptides when a higher concentration of 

ACN was applied to treat a tryptic digestion of α- and β- casein. The authors also observed 

a negative effect of ACN on the ionization of acidic peptides, but not for phospohpeptides 

[169].  

 

As mentioned before, the ideal elution buffer is also to elute the bound 

phosphopeptides/proteins from IMAC resins. Ideal elution buffers need to have a good 

elution efficiency (ideally 100%) and be compatible with subsequent MS. IMAC-bound 

phospohpeptides can be eluted by phosphoric acid and ammonium hydroxide (pH 10.5); 

DHB or ACN has been introduced with phosphoric acid as to improve phosphopeptide 

elution [144]. A mixture of phosphoric acid and DHB is good for MALDI-MS while 

phosphoric acid with ACN is compatible with ESI-MS [144]. Stepwise elution may be 

carried out when one cycle elution is insufficient and is discussed in SIMAC part. The 

ideal protocol for Fe3+-NTA-silica IMAC resin is incubate 1 h and wash with the same 

60% ACN in 100 mM acetic acid and finally elute by 5% ammonium hydroxide [169]. 

An optimal loading and washing solvents as well as efficient elute solution need to be 

determined for small or large starting materials.  

 

Furthermore, improvements on the application of IMAC to 

phosphoprotein/phosphopeptides enrichment are still in progress from different aspects, 

which include the testing of different materials for efficient binding and various support 

resins as well as the optimisation of enrichment protocols should reduce non-specific 

binding especially of acidic peptides. Efficient elution of phosphopeptides for a high 
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phosphoproteomics recovery is also required [164]. Furthermore, the application of 

phosphopeptide precipitation by CaCl2 coupled with Fe-IMAC, phosphotyrosine 

immunoprecipitation coupled with methyl esterification and Fe-IMAC, β-elimination 

with Fe-IMAC, tandem IMAC (IMAC-IMAC),  combining of different IMAC metals, 

have been proven to be superior to the one step IMAC enrichment [55, 144, 164]. 

Multiple TiO2 incubations or a combined use of IMAC and TiO2 (termed SIMAC) will 

discussed in following part. 

2.2.6.1.2 MOAC  

Phosphopeptide enrichment using metal oxide such as TiO2, zirconium dioxide (ZrO2), 

aluminium oxide (Al2O3), niobium oxide (Nb2O5) and aluminium hydroxide was 

discussed in detail by [144, 145, 167]. A number of different configurations exist for 

operating this technique. One example was that ZrO2 packaged tips were shown to be 

superior to TiO2 for monophosphopeptide enrichment, while TiO2 was better for the 

enrichment of multi-phosphopeptides [170].  

 

Advantages of MOAC over IMAC lies in the stability of oxide metal than irons with 

regard to pH and temperature, and better tolerance to detergents and solvents, as well as 

good sensitivity and selectivity [145, 171]. Compared to IMAC, TiO2 does not show the 

Fe3+ leaching issues as mentioned above by Negroni et al. [168]. They appear in many 

formats including nanoparticles, magnetic beads and phosphopeptides-affinity MALDI 

plate. Nanoparticles work better than microparticles due to higher surface area [168]. The 

commercially available TiO2 beads has been widely applied for phosphopeptides isolation 

due to its higher selectivity for phosphopeptides, as well as their robustness and tolerance 

towards many regents [157].  

 

Physical properties of TiO2 beads have certain effect on its enrichment capacity. One of 

the possible explanations is more binding sites resulting from a higher surface/volume 

ratio, which benefits for beads enrichment characteristic [144, 172]. For instance, the 

advantages of mesoporous over smooth particles [144] and higher selectivity of 

nanoparticles over micro-sized beads for phosphopeptide [172].  

 

As mentioned before, the non-specific binding of acidic peptides was notorious for both 

IMAC and TiO2 enrichment. For TiO2, high acetonitrile and TFA concentrations in 
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loading buffers help to reduce non-specific interactions between acidic peptides with the 

beads and are mostly used in incubation solution [145]. Moreover, a variety of organic 

acids such as 2,5-DHB [173], phthalic acid [174], glycolic acid, ammonium glutamate, 

lactic acid, β-hydroxypropanoic acid [175], citric acid [176], glycerol [177] and some 

other acids have been proposed as non-phosphopeptide excluders. The binding 

interactions with metal oxides of TiO2 was: phosphate group > organic acid > carboxyl 

group, therefore, the addition of organic acids competed for binding sites with acidic 

residues. As a result, the non-specific binding was reduced and TiO2 enrichment 

specificity was enhanced. However, they all have advantages and disadvantages. Due to 

the co-elution of some phosphopeptides by using DHB and its high hydrophobicity, 

alternative reagents were applied to avoid the potential contamination from 2,5-DHB and 

phthalic acid on LC system and the inlet of MS as proposed by [157]. 

Monophosphopeptide enrichment is less efficient through using 1 M citric acid, which is 

possibly caused by similar binding to TiO2 beads as monophosphopeptides [157]. 

Hydrophilic and soluble glycolic acid and lactic acid were preferable because of better 

compatibility with LC-MS than 2,5-DHB [167].  

 

Continuous improvements are still on to solve the problem of different acids/TiO2 

enrichment. Zhao et al. [176] developed CATSET (citric acid-assisted two-step) strategy 

to overcome the problem of citric acid/TiO2 enrichment as mentioned above [157]. 

Compared to the traditionally used DHB/TiO2, more than 37% of the total 

phosphopeptides and 2.6-fold more of the multiphosphorylated peptides were identified 

by using CATSET strategy [176]. Furthermore, Kanshin and colleagues [178] noticed 

that peptides containing multiple glutamine and asparagine residues containing peptides 

(named N/O-rich peptides) are predominantly co-enriched with phosphopeptides by TiO2 

beads via examining the amino acids distribution patterns in both phosphopeptides and 

non-phosphopeptides in mammalian cells (HeLa and HEK293 cells), yeast 

(Saccharomyces cerevisiae strain YAL6B) and insect (Drosophila melanogaster 

Schneider S2 cells). The portions of poly-N/Q peptides of non-phosphopeptides varies 

from 11% to 17% in these examined species, and are most typical in yeast cells [178]. 

Elution of N/Q-rich peptides is not reported in IMAC. Addition of 125 mM asparagine 

and glutamine in wash buffer (70% ACN, 3% TFA) and an optimum peptide/TiO2 ratio 

(408 µg/mg) were successfully applied to mitigate N/Q-rich peptides for an efficient TiO2 

enrichment [178]. Finally, a 30% increase in phosphopeptides enrichment was achieved 
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as well as a 5-fold decreased in the intensity of non-phosphopeptides without the obvious 

change of phosphopeptides intensities [178].  

 

Other factors affecting phosphopeptide enrichment by TiO2 beads include ratio of 

peptide-to-beads, incubation time and consecutive incubations have been investigated by 

[179] and [180]. The amount of beads shows a significant effect on enrichment selectivity. 

Optimum peptide/bead ratio of 1/2 to 1/8 (mass/mass) was observed for HeLa cell lysates 

[179]. Optimum peptide/beads ratio and incubation cycles need to be determined for 

different biological samples [179]. There was a slight increase of the phosphopeptide 

identification number with extend of incubation time and it reached a plateau at certain 

time (30 min) [179]. Singly phosphopeptides were predominantly determined when 

larger beads volume was applied, while deficient beads tended to favor the identification 

of multiplyphosphopeptides [179, 180].  

 

Efficient elution of phosphopeptides from TiO2 resins is of paramount importance. One 

of the big issues for using TiO2 is the incomplete elution of multiphosphopeptides that 

are very tightly bound with beads. In addition to pH-dependence of phosphopeptides 

elution solvents, amine nucleophilicity and structure of elution solvents also play 

important roles in phosphopeptide recovery, especially the elution solvent structure [177, 

181, 182]. pH step wise elution and pH step gradient elution were reported to be 

beneficial for TiO2 enrichment specificity enhancement. Four novel phosphorylation sites 

of human cyclin-dependent kinase 2 were characterised using methyl esterification 

together with a pH step-wise elution by using firstly 0.1 M triethylammonium bicarbonate 

(pH 8.5) and then 3% NH4OH pH gradient (11.5) [182]. Later, 15% more 

phosphopeptides and 53 more multiple phosphopeptides were identified from tryptic 

human neuroblastoma SH-SY5Y cells by using pH gradient elution using NH4HCO3 

(adjust from pH 9.2 to 11.3 using NH4OH) compared to one-step elution [181]. Besides 

conventionally used NH4OH, other phosphopeptides elution solvents including NaOH, 

TEA, bis-Tris, bis-Tris propane and NH4HCO3 were compared, composition of elution 

solvents was proposed to play a major role in phosphopeptide recovery [177]. NH4OH in 

favours of eluting shorter phosphopeptides (1-1.5 KDa); bis-Tris propane seems to 

greatly recover longer phosphopeptides (1-4 KDa), which contained more hydrophilic 

and/or more acidic residues. A total 1.4-fold more phosphopeptides were detected by 
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using two-step elution (NH4OH and bis-Tris propane) from PC3 prostate cancer cell 

lysates [177].  

 

Similar to IMAC, the enrichment specificity is still a bottleneck for MOAC enrichment 

to be dealt with. 

2.2.6.1.3 SIMAC 

SIMAC (sequential elution from IMAC), in which gallium-IMAC and TiO2-MOAC 

treatment were combined, was performed to improve the phosphoproteome coverage 

especially to increase the identification of multiply phosphorylated peptides by [166]. 

Later, Sun et al., [183] found the limitation of SIMAC in respect of its reproducibility 

and linearity of the detected phophopeptides by using casein and standard 

phosphopeptides. Thus, SIMAC was proposed as a semi-quantitative method for large 

scale phosphoproteomics studies [183].   

 

In conclusion, the enrichment of phosphopeptides is still a challenge, and the combined 

utilisation of different techniques is unavoidable at this stage. Thus, it is important to 

decide what the target of the research particular, since in terms of methodologies, “one 

size” may not fit all [184].  

2.2.6.2 LC fractionation  

Various LC techniques have been applied to reduce the sample complexity and thus 

benefit detection of low abundance phosphopeptides by downstream MS analysis. LC 

separation can be regarded as one of the enrichment techniques, but it’s widely used in 

couple with IMAC/MOAC. Among these methodologies, strong cation exchange (SCX) 

is widely used, however, other techniques such as HILIC, ERLIC, RPLC and capillary 

electrophoresis (CE) -based separation were also applied. 

2.2.6.2.1 Strong cation and anion exchange (SCX and SAX) 

SCX and SAX techniques separate peptides based on peptide charge. For SCX, peptides 

carry different positive charge in acidic SCX loading buffers (usually pH ~3):  an average 

net charge of +2, +1 and 0 for tryptic non-phosphopeptide, singly phosphopeptide and 

multiple phosphopeptide, respectively [144]. These peptides will firstly retain to negative 

charge stationary phase and will be eluted by increasing ionic strength in mobile phases. 

Principles for SAX are similar to SCX, but with reverse charge state materials as 
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stationary phase. Phosphopeptides are mostly eluted in early SCX fractions. However, 

acidic peptides cannot be separated efficiently from phosphopeptides by employing SCX 

due to similar net charge. Sample loss from multiple phosphopeptides with an average 

net charge of 0 [144] was another limitation. In addition, Worthington et al., [158] 

observed that reverse-phase chromatography is more preferable for phophopeptide 

separation than SCX, due to the enrichment of these modified peptides by the latter. 

2.2.6.2.2 Hydrophilic interaction chromatography (HILIC) 

Peptide separation using HILIC is based on hydrophilic interactions between peptide 

residues and mobile phases. Elution was achieved by an increase of mobile phase polarity. 

Basic peptides are retained in stationary phase, followed by the phosphopeptides and 

highly hydrophilic peptides. It has been used for the fractionation of complex 

phosphopeptides from cell lysates [185]. Similar to SCX, the co-elution of 

multiphosphopeptides and multi acidic residues containing peptides is one of the 

disadvantages.  

2.2.6.2.3 Electrostatic repulsion hydrophilic interaction chromatography (ERLIC) 

Research on the application of ERLIC to investigate phosphoproteomic studies were 

reported by Alpert [186], peptides were separated based on both charge and polarity by 

using a Poly weak anion-exchange (WAX) material column. Compared to SCX, a good 

separation of tryptic digest of rat kidney tissue was obtained by using ERLIC [187]. A 

significantly high number of both phosphoproteins (158% higher) and glycoproteins (0.1% 

higher) were detected from a single ERLIC fraction (ERLIC04) than which from SCX 

(SCX01) [187]. A maximum identification number (338 phosphoproteins and 583 

phosphosites) was determined from ERLIC (ERLIC04). The significant phosphopeptides 

loss through SCX might be resulted from the C18 desalting and co-elution with high-

abundant peptides without PTMs [187]. In addition, modified pH and concentration of 

ERLIC buffers benefit the retain of phosphopeptide and glycopeptides and therefore 

subsequent identification [187]. 

2.2.6.2.4 HPLC fractionation combine with IMAC/MOAC enrichment 

Zarei, et al. [185] investigated three LC fractionation techniques: ERLIC, HILIC and 

SCX by combination with consecutive TiO2 enrichment for phosphoproteomics analysis 

of tryptic digested HeLa cells. They found a maximum phosphopeptides identification 

number (6013 and nonredundant number is 3913) using SCX-TiO2, while ERLIC-TiO2 
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was preferable if one was focussed on selection of multi-phosphorylated peptides. Zarei, 

et al. [188] evaluated the combined use of SCX-ERLIC vs ERLIC-SCX vs SCX 

following by TiO2 enrichment  for phosphopeptides analyse of tryptic cell lysate of HeLa 

cells. A maximum number of nonredundant phosphopeptides (6433) was determined 

from ERLIC-SCX. However, 49% (vs ERLIC-SCX) and 15% (vs SCX) more multiple 

phosphopeptides (≥ 3 phospho sties) were detected using SCX-ERLIC [188].  

 

Engholm-Keller, et al. [189] identified more than 6600 unique phosphopeptides from 300 

µg of tryptic digestion of insulinoma cells by incorporating TiSH strategy (a combine use 

of TiO2, SIMAC and HILIC), which resulted in 95% enrichment specificity.  

 

 Zhou, et al. [190] evaluated the performance of Ti4+-IMAC, Ti4+-IMAC-HILIC and 

SCX-Ti4+-IMAC-HILIC that were termed 1D, 2D and 3D respectively, for efficient 

phosphoproteomics analysis using Lys-C and trypsin tandem digestion of human cancer 

cell lines: HeLa and K562. For HeLa cells: 2D outperformed 1D in terms of 

phosphopeptides identification and phosphorylation site localisation (143% and 131% 

more) when using the same starting material. It is potentially attributed to the reduction 

of sample complexity by HILIC separation and multiple MS runs in 2D. A better 

performance of 2D over 3D was also observed for both phosphopeptides (38% more) and 

phosphorylation sites (36% more) determination of HeLa cells, which was possibly 

caused due to sample losses during additional separation processes of 3D [190]. The 

author noted only 70% overlap of unique phosphopeptides between 2D and 3D strategies. 

In general, enrichment efficiency varied according to the differences of sample 

complexity and phosphorylation level between HeLa and K562. To achieve maximal 

results, 750 µg of starting material was applied for K562 while only 125 µg was needed 

for HeLa cells. Furthermore, 3D technique gave a better result than 2D for K562 cells, 

which resulted in the identification of 1.32 times more unique phosphopeptides. A round 

60% of detected phosphopeptides was found in both 2D and 3D techniques. 

 

It is therefore noteworthy to use optimised starting material, LC separation and 

enrichment techniques to gain enough phosphopeptides before submitting to downstream 

MS.  
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2.2.6.3 Phosphoproteome detection using MS  

Traditional techniques used to detect phosphoproteins include traditional biochemical 

methods: radioactive 32P-labelling, phospho-specific antibodies, and Western blot 

analysis. The 32P-labelling method is highly sensitive but also highly stressful to deploy 

due to radioactivity and the associated follow-up procedures [191]. The accuracy and 

speed to identify the phosphoprotein using antibodies is excellent, however, the lack of 

wider commercialisation of phospho-antibodies limits their application [106]. Antibodies 

are not always available for the protein of interest, limiting their application. 

2.2.6.3.1 MS fragmentation 

MS has developed as a powerful tool for protein identification and study of PTMs at the 

proteome-scale [54, 93, 192]. The use of multiple approaches could increase coverage in 

phosphoproteomics research. CID (also known as collisionally activated dissociation, 

CAD), Electron capture dissociation (ECD) and ETD [193] have been extensively used 

for the study of PTMs and for a detailed review see elsewhere [194]. 

 

 

Fig 2.6 Nomenclature for fragment 

ions 

(Picture reproduced from 

http://www.sepscience.com by Klink 

[195].) 

 

 

Dissociation occurs at Cα–Ccarbonyl, Ccarbonyl–N (i.e.,amide), or N–Cα bonds to produce a-, 

b-, or c-type ions if the charge is retained on the N-terminal segment and x-, y-, or z-type 

ions if the charge is retained on the C-terminal segment [57]. Fig 2.6 showed the common 

nomenclature for the MS fragment ions has been proposed by Roepstorff and Fohlman 

[196] and modified later by Johnson et. al [197]. 

CID is one of the most widely used peptide fragmentation techniques, it is a process 

where amide bonds cleave, with the result that b and y-ions dominate the product ion 

spectrum. CID is suitable for doubly charged and small (≤ 7 amino acids) to middle sized 

peptides (8-11 amino acids) [198]. A difficulty is that protein PTMs such as 

http://www.sepscience.com/
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phosphorylation obscure the tryptic cleavage sites on the peptide backbone and the 

presence of basic amino acids (such as histidine) in a peptide prevent the protonation 

efficiency being sufficient and therefore influence modified peptide identification results 

[198]. The charge of the peptide precursor affects its ionization efficiency (for soft 

ionization approaches uses in modern MS instruments), which limits the use of CID for 

the study of labile PTMs (if the PTM doesn’t remain on the residue during fragmentation 

in the MS, this reduces the ability to identify the site of modification). Alternative 

approaches such as ECD are usually confined with the most expensively Fourier 

transform ion cyclotron resonance (FTICR) MS and its wide application has been also 

limited by the requirement of dense near-thermal energical electrons, for which as Syka, 

et al. [193] pointed out, was still technically challenging. Because commonly used radio 

frequency electrostatic fields in instrument for trapping ions would made the thermal 

electrons kinetically excited, and not available for ECD [193, 198]. 

 

Compared to the traditional b and y-type ions observed in CID, ETD fragmentation 

typically produces c and z-type ions by cleavage of the Cα-N bond and provided more 

sequence information, which was more useful for peptide identification [199]. In 2007, 

ETD was employed by Molina, et al. [200] as a complementary technique for high 

throughput phosphopeptide localisation study and proved to be a useful tool. ETD has 

been shown to be efficient for highly-charged (usually +3 to +6 charge) and long peptides 

(≥14 amino acids), and a modified supplemental low-energy method called electron 

transfer with collisionally activated dissociation (called ETcaD) [201, 202] was designed 

to improve fragmentation efficiency for doubly-charged phosphopeptides. The 

combining of ETD with CID for phosphopeptide identification and localisation [203] has 

been recommended as it can increase the identification coverage, although ETD was seen 

to be superior to CID for the identification of a number of phosphorylated peptides and 

sequence coverage. The application of CID and ETD fragmentation has been reported in 

many phosphoprotein studies, with more details available elsewhere [198, 204]. Kim, et 

al., [205] systematically evaluated the application of CID and ETD in large scale 

phosphoproteomic studies. Complementary information was observed, but still lack of 

proper searching algorithm when merge CID and ETD data before searching into 

database [205].  
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2.2.7 MS data analysis  

2.2.7.1 Protein identification  

MS/MS data sets obtained from low abundance proteins, for instance, phosphoproteins, 

generally has medium quality compared to that observed for high abundance proteins. 

Thus phosphoproteomics study requires a highly sensitive search algorithm. Widely used 

database search algorithms include SEQUEST [206], Mascot [207], Phenyx [208] and 

X!Tandem [209]. These are the most popular search engines for protein and peptide 

identification [93]. All of them have both advantages and disadvantages. The correlation 

based on SEQUEST (correlate experimental and theoretical data without a model) 

algorithm is famous for its high sensitivity, but the speed is slow compare to X!Tandem 

to process data, especially when PTMs are present [210]. It has been reported that the 

open-source X!Tandem algorithm is fast, but has problems of lower sensitivity and high 

false discovery rates [209, 211]. Some algorithms perform better at identifying certain 

types of proteins than others. Kapp, et al. [212] researched on blood specimen samples, 

and found Mascot and X!Tandem to be superior to SEQUEST in specificity. However, 

this conflicted with Searle’s et al. working on a human plasma protein mixture [213]. 

Phenyx is an OLAV (a family of scoring schemes based on signal detection) scoring-

based method, which was shown to be superior to Mascot in a high-throughput protein 

identification project [208]. Dagda and co-workers [211] found Mascot performed better 

individually than SEQUEST, X!Tandem and Phenyx for sensitivity and specificity. There 

is still an argument to the combine use of different search algorithms, called a consensus 

method-strategy, that could improve specificity, sensitivity and coverage [211]. In 

addition, the phosphopeptide identification number can be positively affected by 

searching parameters. For instance, 15% more phosphopeptides were identified with the 

incorporation of carbamylation and deamidation as variable peptide modifications, which 

are induced by routinely used phosphoproteomics strategies in sample preparation such 

as urea denature (carbamylation) and basic elution of IMAC or TiO2 enrichment 

(deamidation) [158].  

2.2.7.2 Phosphorylation site localisation 

Various algorithms have been developed for precise phosphorylation site localisation. 

Since the estimation of phosphosite determination accuracy cannot directly obtained from 

any search engine such as the commonly used 1% or 5 % of false discovery rate (FDR) 
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in target/decoy database search for data estimation in peptide/protein identification [214]. 

False localisation rate (FLR) is proposed as a data quality indicator for phospho sites 

assignment. A probability based-score named Ascore, which was coupled with 

SEQUEST search engine [215], was proposed as an accuracy indicator for 

phosphorylation site localisation. Mascot delta (MD) score, as the name suggests, is from 

Mascot Daemon. It reflects the difference between the highest ion score and the 2nd 

highest ion score [216]. Ascore is proposed to benefit for phospho- Ser and Thr sites, 

while MD score works well for phosphorylation Tyr sites localisation. With technique 

developments, the application of a new algorithm provides improvement on the 

detetermination of more phosphorylation sites, for instance, PhosphoRS [217]. The 

choice of softwares for data analysis based on the MS data formats and searching engines 

used for protein/peptide identification. For instance, in terms of data format, the 

conversion of mass spectra raw data into .mgf file (Mascot generic file) and search against 

target database using Mascot search engine. Thus .DAT file can be obtained and will be 

used for MD score calculation without further process. 

 

Section 3 Metabolomic studies 

2.2.8 Technology for metabolomic studies 

Metabolomics refers to the investigation of whole set of metabolites (the small molecular 

compounds) under specific conditions, from which differs the genetic information 

remains. Microbial metabolomic studies have attracted interest from the research 

community and the applied technologies were reviewed recently by [218]. 

 

The widely used and extensively developed nuclear magnetic resonance spectroscopy 

(NMR) and MS technology platforms have accelerated the field of metabolomic studies, 

as discussed in detail in [219]. Each method has its advantages and limitations. Briefly, 

the advantages of MS lies in its high sensitivity, selectivity and wide dynamic range over 

NMR. The combine use with gas chromatography (GC), liquid chromatography (LC), or 

UHPLC separation techniques prior to MS detection is greatly beneficial to reduce 

sample complexity [219] and therefore to the downstream identification using MS. The 

structure elucidation and absolute quantitation especially for volatile metabolites is one 

of the difficulties by using LC-MS [219] since non-volatile compounds cannot detected 
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by GC-MS. To make samples volatile and thus to be detected by GC-MS, chemical 

derivatization reaction is necessity, from which sample lose during this process is a 

shortage. It seems there is no single technique that can be used for universal detection of 

all metabolites. Therefore, combined use of NMR, GC/LC-MS and other robust 

analytical technologies are necessary at this stage.  

 

Usually, metabolomics studies can be conducted as target and unknown/global 

metabolome. For target compound analysis, it requires extensive knowledge about the 

specific target and optimisation of methodology, but data statistical analysis is easier than 

for un-target metabolomic study. On the contrary, sample preparation is simple for global 

metabolome, but the later on high-through data processing and interpretation is still a 

bottleneck. Manual interpretation of large amount generated data is time-consuming, 

low-effectiveness, and experience dependent. Therefore, automatic bioinformatics tools 

are imperative. Comprehensive algorithms and various softwares for data processing and 

efficient metabolite annotation and quantitation are still in progress for untargeted 

metabolomics.  

 

In terms of archaea, not many metabolomic and phosphoproteomic analyses have been 

carried. There are several contributing factors to this. On one hand, technical limits such 

as MS dynamic range is still bottleneck for low abundance phosphopeptide detection. 

Also, PTMs properties such as basic histidine phosphorylation is not favour for current 

MS technology, most of which are operated using acidic conditions. On the other hand, 

lack of proper methodology e.g. software for efficient interpret large scale information 

especially the combine -omics data are important obstacles. In addition, the incomplete 

genomic information limits the comprehensive interpretation of by incorporating -omics 

data, for instance, almost a half of genes in S. solfataricus P2 have no known function 

until now [3, 6].  

2.3. Conclusions 

There are some reports about re-construction of central carbohydrate metabolism (CCM) 

in S. solfataricus as recently reviewed [220] due to unique and unusual enzymes 

characteristics, which is partly resulted from modified metabolic pathway and 

hypothermal living conditions. However, these studies have not been fully completed yet. 
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Our study aims to provide complementary information to the existing CCM pathway and 

extend knowledge on how S. solfataricus utilise various carbohydrates through proteomic 

and metabolic studies of different S. solfataricus strains including P2, PBL2025 and 

PBL2073.  

 

Additionally, phosphopeptide enrichment techniques need be optimised for specific 

biological microorganisms. It will aid phosphoproteome study, which is hampered by the 

substoichiometric of phosphorylation and low abundance of phosphoproteins. This thesis 

research will provide foundations for biotechnology and practical applications through 

further investigation of their carbohydrate metabolic pathways and potential regulation 

using phosphorylation mechanism in S. solfataricus.  

 

Last but not the least, an -omics study which integrate genomics, transcriptomics, 

proteomics and metabolomics data at the system level is still not mature. There is a long 

way to go for this kind of application in the study of archaea.  
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Chapter 3 Sample preparation and technique optimisation for 

proteomic analysis of Sulfolobus solfataricus in responding to 

different carbon sources 

3.1Abstract  

The acidic thermophilic archaeon Sulfolobus solfataricus has been used as a model 

organism in archaeal research. This microorganism grows typically at 80 oC and in low 

pH conditions around 2-3. It is well known that S. solfataricus can use different 

compounds as carbon sources such as D-glucose, tryptone and amino acids. For example, 

D-glucose can be converted into different metabolites using the Entner-Doudoroff (ED) 

pathways with non-phosphorylative and semi-phosphorylative branches. However, the 

metabolic pathway of D-glucose is not completely understood and information about their 

regulatory mechanisms is quite limit. Therefore, we would like to investigate the effects 

of different carbon sources to different S. solfataricus strains (P2, PBL2025 and 

PBL2073). Our second goal is to optimise a protocol for quantitative proteome (iTRAQ) 

experiments. An estimation of the limit of detection of phosphopeptides was performed 

for setting up a framework for further global quantitative phosphoproteome studies.  

 

In order to achieve these goals, firstly, the effect of different carbon sources on S. 

solfatarcius growth was monitored to determine the sampling times. Secondly, different 

strategies were used to perform proteomic analysis such as: proteolytic trypsin digestion 

(in-gel and in-solution), peptide separation (using both strong cation exchange (SCX) and 

reverse-phase chromatography) as well as MS techniques: ion trap and Q-TOF 

instruments (using an electrospray HCT Ultra and maXis-UHR-TOF). In total, 13 unique 

phosphopeptides from 12 distinctive phosphoproteins were identified using HCT Ultra 

MS, with the determination of 19 phosphosites without incorporating any enrichment 

technique in S. solfataricus strain P2 grown on 0.4% D-glucose. Moreover, the minimum 

detectable level of phosphopeptide was determined using a maXis-UHR-TOF with 

trypsin digested beta casein. At least 240 µg of S. solfataricus is required for a single 

mass spectrometric run. 
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3.2 Background 

S. solfataricus P2 is a model organism in the archaeal domain of research [1, 2]. Optimal 

growth occurs at pH 2-3 and at temperatures ranging from 75 to 80°C [2, 3]. S. 

solfataricus can use various sugars and tryptone as carbon sources [20]. The development 

of MS-based proteomic techniques has contributed greatly to unveiling the unique 

metabolism of this hyperthermophilic archaeon, as reviewed by Kort, et al., [4]. 

Quantitative proteomic techniques (especially iTRAQ) were widely applied to investigate 

the growth of S. solfataricus P2 on different carbon sources, such as ethanol, acetone, n-

propanol or iso-propanol with the presence or absence of glucose [35, 40]. S. solfataricus 

98/2 is geographically different from P2 [21, 22]. S. solfataricus PBL2025 is a widely 

used genetic tool in molecular biology research, which is the spontaneous derivative 

strain of strain 98/2. It lacks genes from SSO3004 -SSO3050 compared to S. solfataricus 

P2. Detailed roles of the absent genes can be seen in Chapter 2. S. solfataricus PBL2073 

is the gene SSO3117 disruption strain from S. solfataricus PBL2025. In strain P2, the 

SSO3117 gene was found to be involved in ethanol catabolism [35] and n-propanol 

metabolism pathways [40]. As a result, the metabolic pathways might be different among 

these three S. solfataricus strains (P2, PBL2025 and PBL2073), due to the absence of 

certain genomic regions. By comparing proteins involved in various pathways especially 

carbohydrate pathways at the proteomics level, the aim was to analyse proteins at the 

proteomic level to gain further understanding of the response of S. solfataricus to a change 

of different carbon sources and to access global changes between P2, PBL 2025 and 

PBL2073.   

 

Glucose is proposed to be metabolised via a Entner-Doudoroff (ED) pathway with non-

phosphorylative [44] and semi-phosphorylated [221] branches. A larger number of 540 

identified phosphoproteins was identified in S. solfataricus P2 in response to changing 

carbon source [7]. Furthermore, 809 phosphoproteins were detected in 3 different S. 

acidocaldarius strains (including wild type and mutant strains) [47]. However, until now, 

the global quantitative phosphoproteome in S. solfataricus has not been reported. 

Therefore, we aim to study the phosphoproteome of S. solfataricus in order to investigate 

its importance and contribution in the regulation of the carbohydrate mechanism. In 

principle, the analysis of S. solfataricus will provide new information for extending 

knowledge on the pathways for regulation of carbohydrate metabolism in archaea. 
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MS has developed as a powerful tool for phosphoproteomic research [93]. However, this 

topic is still challenging, due to biological low abundance and substoichiometric nature 

of phosphorylation and technical limitations such as dynamic range of MS and loss of 

phosphate under the conventionally used positive ion MS mode as discussed in Chapter 

2 [54]. Under these circumstances, the determination and handling of the amount of 

sample is important. 

 

Basic proteomic techniques such as protein extraction, in-solution digestion and SCX 

peptide separation will be achieved easily. Phosphoproteomics studies are still a challenge, 

and determination of phosphopeptides is a key step.  

 

As with many techniques, it is important to have standard operating procedures (SOPs) 

to ensure that all experiments are reliable and reproducible. One of the aims in this 

Chapter is to provide fundamental techniques for further quantitative proteomic 

experiments (in Chapter 4) as well as phosphoproteomics study (in Chapter 5 and 6). To 

satisfy the above aims, three different strains of S. solfataricus (P2, PBL2025 PBL2073) 

and different carbon sources (glucose, tryptone, ethanol, n-propanol, iso-propanol and 

acetone) were investigated. 

3.3 Materials and methods 

Fig 3.1 shows the workflow used for this Chapter. Cells obtained from stocks were 

cultured in standard glucose media, an initial OD650 = 0.2 was applied in all the 

experiments. S. solfataricus were collected in the late exponential growth phases based 

on the growth curves. Cell growth curve was determined via absorbance of cells (OD650) 

using a spectrophometer (Ultrospec-2100 Pro UV/Visible, Amersham Biosciences, USA). 

Specific growth rates (μ) were calculated (biological triplicates) graphically by plotting 

OD650 versus time. Proteomic analysis was carried out as described in the following 

workflow.  
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Fig 3.1 Workflow used for comparison analysis of S. solfataricus strains. 

OD is optical density. µ is the specific growth rate and t is the doubling time. SCX is strong cation 

exchange. HILIC is hydrophilic interaction chromatography. TiO2 is titanium dioxide. ABC is 

ammonium bicarbonate and TEAB is triethyl ammonium bicarbonate buffer. SDS-PAGE is 

sodium dodecyl sulfate polyacrylamide gel electrophoresis. 

3.3.1 Cell culture and protein extraction 

3.3.1.1 Cell culture and sampling time 

S. solfataricus grows on a variety of different carbon sources such as various sugars and 

tryptone [1]. It also could utilize alcohol and acetone as reported by Chong, et al. [35]. 

To determine whether the S. solfataricus strains PBL2025 and PBL2073 (deleted gene 

SSO3117) could metabolise tryptone, acetone, ethanol and isopropanol as carbon sources, 

cells were cultured with tryptone (0.2%), acetone (0.4%), ethanol (0.8%), isopropanol 

(0.8%) and glucose (0.4%) separately, at 80°C, 120 rpm in a horizontal shaking thermal 

incubator (Thermotron, Infors, UK). Glucose was used as a positive control. The 

reference strains were sub-cultured to make stock cultures and were then stored at -80°C. 

S. solfataricus strains were activated at optical density (OD) at wavelength of 650nm 

(OD650=1.0+0.1) using 0.4% glucose. All the experiments were started (initial OD650=0.2) 
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in 150 ml of standard media as described by Zaparty, et al.[222]. The OD650 values were 

corrected against evaporation (negative control with media only). Cells were collected in 

the late exponential growth phases based on the growth curve. A volume of 50 ml of 

cultured cells was harvested and centrifuged at 6,000 x g for 10 min at 4°C. Cells pellets 

were then collected and stored at -80°C until required. 

3.3.1.2 Haemocytometer for cell counting  

To investigate if the cell number of S. solfataricus and OD650 share a linear relationship, 

we counted the number of cells using a haemocytometer and an optical microscope. The 

haemocytometer was initially invented for counting blood cells and gradually was widely 

used for determine other cell counts [223]. It consisted of two counting champers with 

ruled grids and a cover slip. Cell number counting was done by following the counting 

rules (left and top count, right and down not count) and calculation of cell numbers per 

millimetre followed Strober’s [223] recommend protocol.  

 

The surface area of the central 25 squares was 1mm2 (1.0 mm x 1.0 mm), and the depth 

was 0.1 mm for each square, thus the total volume was 1 x 104 mm3. Cell numbers per ml 

= average numbers of 1.0 mm2 square x dilution times x 104 (since 1ml = 103 cm). The 

samples were diluted to different times according to the growth phase to make sure the 

cell number within the range from 50 to 200 in each 1/25 central square.  

3.3.1.3 Protein extraction and trypsin digestion 

Cell pellets were collected as described in Section 2.1.1. Protein extraction was performed 

as described previously [224]. Briefly, protein was extracted using an ultra-sonicator 

(Branson SONIFIER 450, UK) for 8 cycles with alternative sonication for 45 seconds and 

incubation in ice for 90 seconds at 70-80% duty cycle. Lysis buffer that contains 50 mM 

Tris-HCl (pH 7.5) and a 5 mM concentration of each of the following chemicals: sodium 

vanadate, sodium fluoride, 2-glycerol phosphate and sodium pyrophosphate [225] was 

added to inhibit the activity of phosphatases. Supernatants containing soluble crude cell 

extracts were centrifuged at 12000 × g for 30 min at 4 °C to reduce potential protein 

degradation. Protein concentration was determined by the Bio-Rad RC-DC Protein 

Quantitation Assay (Bio-Rad, UK), and protein was then stored at -20°C until needed. 

 

500 µg of protein sample was dried in a vacuum concentrator (Eppendorf Concentrator 

5301, Germany) before resuspending in either 50 mM ammonium bicarbonate (ABC) or 
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0.5% sodium dodecyl sulphate (SDS) or denaturing with 8 M Urea. Samples were 

reduced by 10 mM DL-Dithiothreitol (DTT) for 60 min at 56°C, before alkylated by 55 

mM idoacetamide in 50 mM ABC for 30 min in dark. Samples were then diluted with 40 

mM ABC in 9% acetonitrile (ACN) to ensure that the final concentration of urea was less 

than 1 M before trypsin was added with a ratio of 1/40 (trypsin/protein) and incubated at 

37°C for overnight. Digested peptides were dried in a vacuum concentrator. 

3.3.1.4 SDS-PAGE and in-gel tryptic digestion 

To test the efficiency of protein extraction, a range of (1, 5, 10 and 20 µg) protein amounts 

was run on 0.75 mm thick acrylamide SDS-PAGE composing of 12% of resolving gel 

(30% Acrylamide/Bis, 10% SDS and 1.5 M Tris-HCl pH 8.8) and 4% stacking gel (30% 

Acrylamide/Bis, 10% SDS and 0.5 M Tris-HCl pH 6.8). Protein sample preparation for 

SDS-PAGE was performed as described elsewhere [160]. Briefly, proteins were 

resuspended in laemmli-sample buffer containing β-mercaptoethanol, then incubated at 

95°C for 5 min to denature protein. Gels were run on a Mini-PROTEAN Tetra 

Electrophoresis system (Bio-Rad, UK). The running programme was applied as follow: 

80 V for 20 min, then 180 V for 50 min. Subsequently, gels were stained with coomassie 

brilliant blue 250 (Fisher scientific, UK). Gels containing 20 µg of proteins were used for 

in-gel digestion [160]. These gels were cut into 24 pieces before being washed and de-

stained with 200 mM ABC in 40% v/v ACN. Then, the reduction and alkylation processes 

were performed in a similar way with in-solution digestion. Gel pieces were washed 

several times using 50 mM ABC before adding trypsin, and then were kept overnight at 

37°C. 

3.3.1.5 Acetone precipitation 

Acetone precipitation has been used for soluble protein purification [226] and remove of 

impurities such as salts and detergents which would interfere with MS analysis [227]. 

Five time volumes of ice-cold acetone (-20°C) were added to sample. The mixtures were 

then kept overnight at -20°C, then supernatants were removed post centrifuge 12000 x g 

for 20 min. Different resuspension buffers including 50 mM ABC at pH 7.5 and triethyl 

ammonium bicarbonate (TEAB) were tested. In total, 100 µg protein was used for 

precipitation and then 20 µg protein (in different resuspension buffers) used to run on 

SDS-PAGE to test the difference between with and without acetone precipitation as well 

as ABC and TEAB re-suspension.  
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3.3.2 Peptide separation and purification 

3.3.2.1 Strong cation exchange (SCX) 

Limit of detection (LoD), dynamic range, and sample reproducibility of MS would be 

negatively affected by sample complexity. To get a better sample characteristic in a 

proteomics/phosphoproteomics experiment, the effects of high sample complexity and 

background need to be minimised by employing approaches such as SCX/HILIC 

chromatography, to reduce sample complexity by fractionation.  

 

Ion exchange chromatography has proven to be a powerful tool for protein separation and 

purification [185, 228, 229]. SCX has been widely employed for peptide separation in 

PTMs study especially phosphoproteomics study, which was based on charge interactions 

between peptides and stationary phase [230].  Digested peptides (200 µg) were re-

dissolved in 70 µl of SCX buffer A (20% ACN, 10 mM KH2PO4, pH 2.85) prior to loading 

onto a 2.1 x 200 mm Poly SULFOETHYL-A column (Hichrom Limited, UK) connected 

with a DIONEX BioLC GS50 Peek System pump (Dionex, USA). The fractionation of 

peptides was performed at a flow rate of 0.2 ml/min using a gradient as follow: 0% of 

buffer B (20% ACN, 10 mM KH2PO4, 0.5 M KCl, pH 2.85) for 5 min, ramped up to 40% 

of buffer B for 20 min, then ramped up to 100% of buffer B and kept for 10 min, and 

finally 0% of buffer B for 10 min. Peptides were detected by an UV detector (Dionex 

UVD170U, USA) at wavelength at 214 nm. Fractions were collected every minute, and 

dried in the vacuum concentrator. 

3.3.2.2 Hydrophilic interaction chromatography (HILIC) 

Peptide fractionation using HILIC based on hydrophilic interactions technique has been 

studied for complex phosphopeptides from cell lysates [185]. A total of 200 µg of 

digested peptides were re-suspended in 90 µl HILIC buffer A (90% ACN, 10 mM 

ammonium formate, pH 3) prior to loading onto a 4.6 x 200 mm Poly 

HYDROXYETHYL-A column (Hichrom Limited, UK) connected with an Agilent 1100 

Series HPLC system (Agilent, US) which consists of a G1311 QuatPump, G1379 

DEGASSER and G1314A UWD UV detector at wavelength of 280 nm. Peptides were 

fractionated by increasing percentage of buffer B (10% ACN, 10 mM ammonium formate, 

pH 4) at a flow rate of 0.5 ml/min. The HILIC gradient started with 0% of buffer B for 

10 min, ramped up to 60% of buffer B for 15 min, then ramped up to 100% of buffer B 



Chapter 3 Sample preparation and technique optimisation for proteomic analysis of Sulfolobus solfataricus  

53 

 

for 5 min, and finally 0% of buffer B for 5 min. Fractions were collected every minute 

and dried in the vacuum concentrator. 

3.3.3 Technique optimisation for phosphoproteomic studies  

3.3.3.1 Limit of detection (LoD) curve  

Compared to high abundant non-phosphopeptide, low abundance phosphopeptides are 

not easy to detect by MS analysis as mentioned in Chapter 2 (Section 2.1.4). To determine 

the LoD of phosphopeptides using TiO2 enrichment for MS (Bruker maXis UHR-TOF 

instrument) analysis and to estimate amount of S. solfataricus proteins used for 

phosphoproteome experiment, the commercialized β-casein, with five known 

phosphoserine sites was chosen as a standard for method development. Larsen, et al. [173] 

reported four different phosphopeptides in bovine β-casein, the monophosphorylated 

peptide 48FQ[pS]EEQQQTEDELQDK63 (Mr 2060.82), and three 

tetraphosphorylatedpeptides 

22NVPGEIVE[pS]L[pS][pS][pS]EESITR40 (Mr 2352.85),  

17ELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR40(Mr2966.16), and 

16RELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR40 (Mr 3122.27).  

 

A range of concentrations of β-casein start from 5 to 2.5, 0.5, 0.1, 0.02, 0.004 pmol and 

8 fmol were used. We also investigated the interference of complex sample to TiO2 

enrichment of phosphopeptides from β-casein by using 500 µg of trypsin digested cell 

lysates of S. solfataricus. Peptides mixture was enriched by TiO2 (50 µl beads slurry, ratio 

of 1/10 of beads/protein) and C18 desalting was performed before its submission to LC-

MS/MS. A signal to noise (S/N) ratio was obtained automatically by using Analyst QS 

(V.1.1). A S/N ratio correspond to three times the noise level for targe P-peptide was 

choosed [221]. In addition, the relationship between the signal changes of targeted 

phosphopeptide with the changes of injection concentration of β-casein was obtained 

graphically by plotting β-casein concentration versus S/N ratio of target phosphopeptide.  

3.3.3.2 Phosphopeptide enrichment by TiO2 

TiO2 enrichment was applied as it has been widely reported for phosphopeptide 

enrichment [185, 231, 232]. Certain amounts (500 µg, calculated based on LoD curve) of 

trypsin digested peptides from whole cell lysates of S. solfataricus grown on glucose were 

desalted using C18 material. Then, phosphopeptide enrichment was carried out using 
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magnetic TiO2 beads (GE Healthcare TiO2 Mag Sepharose, UK). The loading, washing 

and elution of samples were performed as recommended from the manufacturers (GE 

Healthcare, UK). Briefly, peptides were re-suspended in 100 µl of loading buffer 

containing 80% v/v ACN, 1% v/v TFA and 1 M glycolic acid to inhibit binding of non-

phosphopeptide with 50 µl of TiO2 beads. Then, the non-phosphopeptides were removed 

twice by washing buffer containing 80% ACN and 5% FA, while the elution of 

phosphopeptides using 50 µl of 5% ammonia, pH 12. The enriched phosphopeptide 

sample was dried to completion in a vacuum concentrator. 

3.3.4 Mass spectrometry (MS) and associated data analysis 

All the dried peptides were desalted using a C18 column 200-mg C18 Sep-Pak SPE 

column (Sigma, UK) and dried with a vacuum concentrator before submitting to a nano-

HPLC (Dionex, UK) coupled to Esquire HCT Ultra ion trap mass spectrometer (Bruker, 

Germany). Peptides from gel slices (20 µg sample) and SCX fractions (200 µg sample) 

were re-dissolved in 10 µl of MS buffer consisting of 0.1% FA and 3% ACN, then 

submitted into an ESI-ion trap (HCT Ultra) MS.  

 

In addition, to access the performance of different MS instruments, one of the high 

intensity SCX fractions was submitted into high resolution and sensitivity MS: maXis 

UHR-TOF (Bruker, Germany) using the same LC gradient for HCT Ultra ion trap MS: A 

[0.1% FA in 3% ACN] and B [0.1% FA in 97% ACN]. The increasing organic proportion 

was used for peptide separation (separation ramp from 3% to 45% B within 40 min, 

followed by a 5 min ramp to 95% buffer B, and then holding at 5% buffer B for 10min). 

The pump flow rate was constant at 300µl/min. The ESI detector was set at a mass range 

of 250-2000 m/z for data acquisition in full MS scan under the positive ion mode. During 

1 s MS scan, peptides with a +2, +3, and +4 charge state were selected for fragmentation. 

Three precursors were selected for MS/MS.  

 

A phosphorylation specific neutral loss scan of H3PO4 (97.97, 48.88 and 32.66 Da) or 

HPO3 (79.97, 39.99, 26.67Da), which correspond to +1, +2 and +3 charged peptides are 

predominantly occur upon CID in LC-MS/MS. This neutral loss program was 

incorporated to solve ion suppression phenomenon using 𝛽-casein as a standard. Ion 

suppression is the detection of low abundant phospho-peptides that are strongly 
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suppressed by the presence of high abundant non-phosphopeptides [58]. Usually, upon 

neutral loss of phosphoric acid (98Da), phospho-serine and phospho-threonine were 

converted into dehydroalanine (69Da) and dehrdroaminobutyric residue (83 Da) 

respectively in MS/MS spectra. But most of phospho-tyrosine containing peptides stay 

stable due to the structure properties.  

 

Usually, the neutral loss of H3PO4 (98Da) and HPO3 (80 Da), especially the neutral loss 

of phosphoric acid on Ser and Thr caused by β-elimination was dominant upon CID 

fragmentation for the commonly used LC-MS/MS program. As a result, it reduces the 

product b- and y- ions intensity and caused the lacks of the informative fragmentation on 

backbone for phosphopeptide identification and precise site localization [233]. Therefore, 

MS/MS/MS (MS3) spectrum fragmentation was required to provide informative sequence 

fragmentation for effective phosphoproteomics study as described [60]. MS3 program 

was initiated only if neutral loss peak was dorminant in MS2 spectra to save time [60]. 

The MS 3 program was then used for analysing phosphopeptides from S. solfataricus 

samples.   

 

All MS data were were converted to MGF files using Bioanalyst version 4.0 (Bruker 

Daltonics, Germany) before submitting to an in-house Phenyx searching engine (v.2.6, 

Geneva Bioinformatics, Switzerland) as well as Mascot Daemon (V2.5). S. solfataricus 

P2 protein database was downloaded from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes) in Oct 2013. The .mgf files was used to 

search against both forward and reversed decoy databases to estimate data quality by 

calculation of false discovery rate [214]. The search parameters were used as follow: 

trypsin as digestion enzyme with up to one missed cleavages, carbamidomethyl (C) as a 

fixed modification, oxidation (M) and phosphorylation (STY) as variable modifications. 

MS and MS/MS tolerances were set up at 1.2 and 0.6 Da respectively. The MS and 

MS/MS for one the SCX fractinonation run on MaXis were used 0.1 and 0.1Da 

respectively. Phenyx/Mascot data were then exported into excel (Microsoft 2010, USA) 

for further analysis.  
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3.4 Results and discussions 

3.4.1 S. solfataricus growth files 

3.4.1.1 The growth of S. solfataricus on different carbon sources 

Different S. solfataricus strains were grown on different carbon sources: glucose (0.4%), 

tryptone (0.2%), ethanol (0.8%), acetone (0.4%) and isopropanol (0.8%). Biological 

triplicates of growing cells were applied and results are summarised and shown in Table 

3.1. It was reported by Chong et al. [35] that S. solfataricus P2 could grow on isopropanol, 

ethanol and acetone. It reached a maximum consumption rate when grown on 0.79 % 

(w/v) ethanol [35]. Further pre-culture of both S. solfataricus PBL2025 and PBL2073 

strains on acetone, isopropanol and ethanol were applied but both strains were 

demonstrated to be unable to grow on tested culture as sole carbon sources (data not 

shown). Therefore, these strains were grown on 0.4% glucose and 0.2% tryptone and will 

be used for further experiments.  

 

Table 3.1 Growth of S. solfataricus strains on different carbon sources 

Carbon  source 

 

Strain 

0.4% 

Glucose 

0.2%  

Tryptone 

0.8%  

n-propanol 

0.8%  

Ethanol 

0.4%  

Acetone 

0.8%  

Isopropanol 

P2 + + + + + + 

PBL2025 + + - - - - 

PBL2073 + + - - - - 

Note: +: Grow. -: Not grow. Data of strain P2 grown on 0.8% ethanol, 0.4% acetone and 0.8% isoproponal 

were obtained from Chong, et al.,[35, 40, 41]. 

 

Their growth curves were obtained by plotting the optical density at a wavelength of 650 

nm (OD650) against time (Figs 3.2A and B). Specific growth rate (µ) and doubling time 

(t=Ln2/t)) were calculated based on these data, as can be seen in Table TS3.1 (in 

Appendix). From Figs 3.2A and B, we can see that growth of P2, PBL2025 and PBL2073 

on standard glucose media are slightly different. Compared to strain P2, the lack of some 

ABC transporter encoding genes in PBL2025 and PBL2073 results in a longer lag phase, 

as shown in Fig 3.2A.  
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Fig. 3.2 Standard growth curve of S. solfataricus P2 (●), PBL2025 (○) and PBL2073 (▲) grown on 0.4% 

glucose (A) and 0.2% tryptone (B). Data were performed from biological triplicate cultures. 

 

However, the average specific growth rates of both mutant strains are higher. PBL2073 

grows slightly faster (15% higher than PBL2025 and twice more than P2) than the others 

on 0.4% glucose (0.0106 +0.002 h-1 and 0.0195 +0.001 h-1, 0.0214 +0.0001 h-1 for P2, 

PBL2025 and PBL2073 respectively). It is inferred that some other ABC transporters 

may be activated, which will contribute a faster growth of both mutant strains. In addition, 

the absence of some genetic information in mutant strains may explain the growth 

difference. SSO3117 gene in S. solfataricus P2 has recently been named as aldehyde 

dehydrogenase [66]. The wide substrate specificity of SSO3117 might provide some hints 
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to explain growth differences between PBL2025 and PBL2073. Furthermore, the activity 

of aldehyde dehydrogenase in E.coli provide some information for the role of the gene 

SSO3117 deleted in S. solfataricus PBL2073 [75]. We inferred that some metabolic 

pathways in mutant strains might need to be activated, therefore it took longer time for 

these mutant strains to enter exponential phase than the wild type strain. This hypothesis 

will be elucidated via both proteomic and metabolomic analyses in Chapters 4, 7 and 8. 

The maximum OD650 of these strains were not different (based on student t-tests): 1.55 + 

0.01 for P, 1.59 + 0.05 for PBL2025, and 1.52 + 0.08 for PBL2073.  

 

Tryptone is a mixture of free amino acids, which was obtained from a pancreatic enzyme 

digestion of casein in milk. When 0.2% tryptone was supplied, all S. solfataricus strains 

grew slowly and reached the stationary phase earlier (less than 40 h) than those grew on 

0.4% glucose (more than 60 h) (Figs 3.2A and 3.2B). Although the maximum OD650 

values were almost the same when these strains were grown on tryptone (0.75 + 0.03), 

the growing time to reach these values was different: 34, 42 and 33 h for P2, PBL2025 

and PBL2073 respectively. We postulate the lack of usable specific amino acids might 

affect the growth of S. solfataricus on 0.2 % tryptone media as indicated by the work of 

Sezonov and team [234]. They [234] found that cells physiology and size changed 

significantly when the OD600 reached up to 0.3 and when L-Ser and L-Thr amounts 

became limited.  

 

To estimate the correlation between OD650 and number of cells, cells were collected at 

different OD650 and cell number were counted using an optical microscope with a 

haemocytometer. Cell cultures were diluted with distilled water to ensure numbers of 

cells were in a range for counting as mentioned in method section. As a result, a linear 

relationship between cell number (x107) and OD650 was observed and linear relationship 

equations were shown in Table TS3.2 in the Appendix. 

3.4.2 Sample preparation  

3.4.2.1 Protein extraction and SDS-PAGE 

Cells were collected in the late-exponential phase for P2, PBL2025 and PBL2073, 

respectively, which corresponds to an OD650 range of 1.01 + 0.03 when grown on 0.4% 

glucose or a range of 0.70 + 0.05 with the presence of 0.2% tryptone. To investigate 
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protein extraction process, we carried out SDS-PAGE analysis with known amounts of 

protein, the evaluation process was performed based gel intensities, as showed in Fig 3.3 

A and B. As expected, the highest amount of proteins resulted in high gel intensities in 

Fig. 3.3 A and B, corresponding to 20 µg amount of protein. Gel bands of corresponding 

to 20 µg protein (in Fig 3A) were cut and digested with trypsin before submitting to an 

LC coupled with HCT Ultra MS. Data were then used for a quick assessment of digestion 

efficiency. 

 

Acetone has been used in proteomic analysis as a purification of proteins [226] and 

quantitative research based on the selective tagged peptides using acetone modification 

[227]. There was a report that acetone precipitation and ultracentrifugation could provide 

complementary protein identification data for human urinary proteins [235].  

 

 

 

Fig 3.3. SDS-PAGE of protein from S. solfataricus (A) P2 grown on 0.4% glucose. (B) Grown on 

0.2%tryptone. (C) SDS-PAGE of acetone precipitated protein of S. sulfataricus grown on 0.4% glucose 

and 0.2% tryptone, and re-suspend in pH7.5, 0.05 M AB, 0.05 M TEAB and 0.5 M TEAB. 
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Different re-suspension buffers were used after acetone precipitation of protein extracted 

from S. solfataricus and results were shown in Fig 3.3C. We can see that the gel bands 

intensity were reduced after precipitation treatment by acetone. It is inferred that 

impurities may be removed after acetone treatment as the band sharpness was different 

compared to which without acetone treatment. It might indicate deep desalting or ionic 

detergents washing out, which could be an effective method to remove impurity particles 

for downstream MS analyse. Therefore, it is recommend to perform protein acetone 

precipitation before further operation. Fig 3.3C shows similar a gel band pattern when 

precipitated proteins were re-suspended in either 0.05M AB or 0.05 M TEAB. Compared 

to 0.05 M of re-suspension buffer, a gel band (as indicated in Fig 3.3C) ‘disappearance’ 

was observed when protein was resuspended using 0.5 M TEAB buffer. By considering 

TEAB buffer is most widely used in labelling-based quantitative proteomic techniques 

such as iTRAQ, 0.05 M TEAB was recommended for future work. 

3.4.3 Technical optimisation 

3.4.3.1 Sample fractionation by high performance liquid chromatography (HPLC) 

A single or combination employment of different LC fractionations techniques was 

beneficial for reducing sample complexity and resulted into improvement on proteome 

coverage. It shows special importance for detection of low abundance phosphopeptides 

[58].  

3.4.3.1.1 SCX chromatography 

The widespread use of SCX separation of complex peptides was performed [228] and 

results are shown in Fig 3.4 A-C. To test the performance of the MS instruments, trypsin-

digested bovine serum albumin (BSA) was used as a standard. A technical replicate was 

applied to test the reproducibility of instrument as well as efficiency of trypsin digestion. 

From 20 µg of digested BSA, more than 20 sharp peaks (intensity over 40 mAU) were 

observed (as shown in Fig. 3.4A). Similar chromatography was observed by using a 

couple of BSA (data not shown). It indicates a good BSA digestion and stability of the 

instrument. In Fig 3.4B, as expected, we can see that higher amount of samples used 

resulted in higher absorbance intensity (200 µg vs 20 µg). However, samples needed to 

be desalted by C18 columns before submission to the LC-MS/MS. To test the desalting 

efficiency, 200 µg of trypsin digested cell lysates was treated by different C18 columns 
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(smaller capacity from NEST, USA and big capacity from SUPELCO, UK) and results 

are shown in Fig 3.4C. 

 

 

  

Fig 3.4 SCX chromatography of (A) 20 µg BSA and blank. (B) 200 µg and 20 µg of digested 

proteins from S. solfataricus grown on 0.4% glucose and  blank. (C) 200 µg of digested 

proteins from S. solfataricus destalted by different C18 materials supplied by supelco, nest and 

blank. HILIC chromatography of (D) normal and modified gradient program for 200µg BSA 

and blank. (E) 40 µg  and 200 µg digested protein and blank. (F) 90min program separation 

for 40 µg and 120 µg protein of S. solfataricus grown on 0.4% glucose and blank. 
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In Fig 3.4C, similar chromatography peaks were observed which indicate similar 

desalting capacity. The intensity between two desalting materials are almost the same 

except for the first two peaks (as indicated in 11-15min in Fig 3.4C) which might be 

caused by a difference in binding capacity of C18 materials supplied or insufficient 

washing out of glycerine surrounding the polypropylene (C18 material).  

 

A total of 32 SCX fractions from 200 µg digested proteins (in Fig 3.4C) were collected 

by every minute and desalted using a SUPELCO C18 column (Sigma, UK) before 

submitting to a nano-HPLC coupled to an HCT Ultra MS. Biological replicates were 

run using SCX, but only one set of SCX fractions were run on LC-MS/MS (HCT Ultra) 

due to the limit of instrument. Furthermore, to test the difference between different 

MS, the 22th min fraction with highest SCX intensity was desalted and submitted to 

both HCT-Ultra and maXis UHR-TOF. 

 

Tryptic digestion of proteins mainly occurred in lysine and arginine residues, and N-

methylation of lysine residues in S. solfataricus [236, 237] proteins have been reported 

to be involved in thermal stability. In such a situation, the amino acid residues from 

peptides digested by trypsin are mostly arginine, and carboxyl terminal would carry a 

proton under an acidic environment (pH 2.85). Many studies have been carried out to 

improve tryptic digestion efficiency, and a detailed discussion was reviewed in Chapter 

2. These include work from Taouatas and co-workers [238] who separated the same 

single charge phosphopeptide from N-acetylated peptides using metallo-endopeptidase 

(Lys-N cleavage specificity) and a modified gradient. Different protein/trypsin ratios 

were tested (data not shown), an optimum 35/1 ratio was recommend for S. solfataricus 

whole cell lysates. 

3.4.3.1.2 HILIC chromatography 

Basic peptides would be retained in HILIC, due to hydrophilic interaction with mobile 

phase (water in buffer B), followed by the phosphopeptides and highly hydrophilic 

peptides. A modified gradient was applied to improve peptide separation (Fig 3.4D). 

Fig 3.4E shows chromatography of different amounts of S. solfataricus samples (40 

and 200 µg used). From Fig 3.4D, BSA peptides were eluted mainly from the 20th to 

28th min, and numbers of peaks was less compared to which in SCX. One of the 

potential reasons was that most of the peptides were non-absorbable under an UV 
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wavelength of 280 nm. A modified 37 min gradient (c in Fig 3.4D) to get a better 

separation was used for 20 µg BSA. An extended gradient (90 min) was also 

investigated (Fig 3.4F) with the aim to improve peptide separation. However, 

improvements was not significant, as shown from the chromatograph in Fig 3.4F.   

 

In summary, efficient LC separation chromatography is important for global 

quantitative proteomics/phosohoproteomics studies.  

3.4.3.2 Protein identification based on shotgun technique 

3.4.3.2.1 Integration of proteomic results from SDS-PAGE and SCX fractions 

The identification number between SDS-PAGE and SCX fractions is not directly 

comparable, because the starting protein amount is different for these two methods, 20 

and 200 µg, respectively. To assess about in-gel and in-solution tryptic digestion, 

selective gel slices from S1 to S10 and SCX fractions (even number start from 14 to 32 

min fractions) were run on the HCT-Ultra MS. The number of proteins and peptides 

identified from each selected gel slice/SCX fractions are detailed in Tables TS3.4 and 

TS3.5 in the Appendix. As we can see, 412 unique peptides from 177 proteins were 

identified from selected in-gel digestion. 221 unique peptides from 137 proteins were 

detected from selective SCX fractionations using in-solution digestion.  

 

Moreover, the identification of unique phospho- peptides/proteins from in-gel vs in-

solution tryptic digestions are listed in Table 3.2. Also, detected numbers from selected 

runs are listed. It can be seen that 7 and 11 phosphopeptides were detected for in-gel and 

in-solution tryptic digestions respectively. A number of 6, 3 and 1 phosphosites were 

detected on Ser, Thr and Tyr for in-gel tryptic digestion, whilst the phosphorylation sites 

distribution on Ser/Thr/Tyr was 8, 10 and 2 for in-solution tryptic digestion. Furthermore, 

phosphoprotein coverage, which shows the localization of the identified phosphoproteins 

in the subset of protein samples analysed from SCX fractionations and SDS-PAGE, is 

shown in Fig 3.5. The results of course give an indication only as the whole proteome 

was not analysed. From our data (in Table 3.2), 7 phosphoproteins were identified from 

the 22th, 24 th, 26 th, 28 th and 30th min fractions among a total of 137 S. solfataricus proteins 

identified from selected SCX fractions. 
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Table 3.2 Identified phosphopeptides from selected SCX fractions and gel slides. 

  AC 

Peptide  

Score 

MD 

Score 

P-

site PTMs 

SCX 

F22 13814256 39.33 35.47 S D[pS]KKVLFLVGEEFEDIELLYPFYR 

F22 13813147 31.87 23.73 YS ES[pY]ILV[pS]YPK 

F22 13815497 26.55 19.93 S EVLEEYGF[pS] 

F24 13815813 25.81 21.7 TST QI[pT]GR[pS]EFN[pT]VYFNNVK 

F26 13814125 27.79 21.65 T ASELVDLMHKQGL[pT][pS]GK 

F28 13814112 26.19 18.75 S NL[pS]EYKAANLMGLTPAAVSNYLKSR 

F30 13815142 26.77 23.45 S ELLGYL[pS]KLLK 

Gel 

S2 13816095 26.65 20.51 YSS PPTGA[pY]RGLGIPPAVLVLENLVK[pS]I[pS]K 

S4 13813729 25.89 17.3 T GNEM[pT]DELR 

S6 13815002 28.19 14.91 Y [pY]YEEIGINR 

S6 13813882 23.41 20.71 S IMNAGALGAEIII[pS]GKL[pT][pT]ERAR 

S7 13813351 30.43 26.25 STT FETKK[pY]FFTIIDAPGHR 

S8 13814861 30.95 24.61 TTS MKI[pT]VV[pT][pS]GLRSNYSGGSVHVNNVVR 

S8 13813184 29.79 24.98 TS ILL[pT]V[pS]ALVK 

S9 13813396 30.02 19.73 T MKD[pT]KVK 

S9 13813584 26.59 21.76 STT [pS]AYFMTAL[pT]F[pT]DGKIIK 

S9 13813724 26.1 22.9 T [pT]REELAKK 

S9 13813216 27.29 26.17 S VGEKLIY[pS]K 

Note: P is phosphorylation. MD score is Mascot delta score for P-site localization..  

3 phosphoprotein from the 22th mins, and another 4 phosphoproteins were identified at 

the four fractions. It is in agreement with previous report that phosphopeptides can be 

eluted in early SCX gradient fractions due to their lower net charge state caused by 

negative charge of phosphate in low pH [228]. It also indicates that the gradient program 

needs to be improved to achieve a better separation performance. Moreover, large 

amounts of protein as starting material and phosphopeptides enrichment techniques need 

to be considered for global phosphorylation studies. 
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Fig 3.5 Localization of phosphoproteins identified from SDS-PAGE (black) and SCX (slash). 

 

Compared to in-solution digestion, disadvantages of in-gel tryptic digestion include its 

time-consuming nature, handling in cutting gels (often is laborious) [160] when preparing 

samples for MS. Also, there is a high-risk of losing proteins (50-85%) from in-solution 

digestion [161] due to the multiple washing procedures (including stain, de-stain and in-

gel digestion). In addition, the proteome coverage by employment of gel-based technique 

was better that from in-solution digestion, which is possibly due to better digestion 

efficiency. However, the limit detection of extremely acidic/basic proteins of SDS-PAGE 

gel need to be considered. Taken together, SDS-PAGE gel was used in our study to 

estimate protein extraction and trypsin digestion process, and in-solution digestion was 

carried out for further studies. 

 

Trypsin digested cell lysates (about 4 mg proteins) were submitted to SCX 

chromatography, followed by TiO2 enrichment. C18 desalted phosphopeptides were 

submitted to the HCT-Ultra ion trap MS. Unfortunately, not many 

phosphoproteins/proteins were determined (SCX chromatography were shown in Fig 

FS3.1 and Table TS3.6 in the Appendix B), which indicates the necessity for optimisation 

of phosphopeptide enrichment and MS detection techniques. Moreover, a method named 

ERLIC (Electrostatic repulsion hydrophilic interaction chromatography) has been 

reported for phosphoproteomics study by Alpert [186]. Furthermore, Hao and colleagues 

[229, 239] compared ERLIC and SCX techniques for identification of 

phosphopeptides/phosphoproteins, as a result, more phosphopeptides and 

phosphoprotiens were detected using ERLIC compared to SCX. It was suggested that the 
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loss of phosphopeptides might be caused by C18 desalting after SCX separation. The 

combination use of SCX, HILIC and ERLIC coupled with TiO2 enrichment has been 

investigated [185], offering a powerful technique for phosphoproteomics studies.  

 

In summary, LC separation chromatography is important, but efficient phosphopeptide 

enrichment seems to be necessity for global quantitative phosphoproteomic studies. 

3.4.3.3 Different MS instruments 

Besides HCT-Ultra ion trap, high resolution and sensitivity of MS instruments including 

Amazon and maXis-UHR-TOF were applied for phospho- peptide/protein detection. In 

total, 86 peptides from 70 proteins were identified from the 22thmin SCX fraction using 

HCT Ultra ion trap. In contrast, 195 unique peptides from 130 unique proteins were 

determined when the same fraction was submitted into the maXis-UHR-TOF MS. It is 

inferred that high resolution and sensitivity of the MS instrument shows a positive effect 

on peptides/proteins identification results. However, only 2 phosphopeptides 

corresponding to 2 phosphoproteins were identified using either MS instrument from the 

same fraction (as listed in Table 3.2). Moreover, only 2 phosphopeptides (from 148 

peptides identified) corresponding to 2 phosphoproteins (from 77 proteins) were 

identified from a control experiment (without TiO2 enrichment) using the Amazon MS. 

That is an obvious evidence of the ion suppression phenomenon. Therefore, 

conventionally used TiO2 beads was applied to enrich phosphopeptides before submitting 

to the LC-MS/MS. 

3.4.3.3.1 MS program for neutral loss of H3PO4  

A MS program for assigning neutral loss of H3PO4 (97.97, 48.88 and 32.66 Da) on 

phosphopeptides was performed on the Amazon MS using 𝛽-casein as a standard. Using 

this program, the ion suppression phenomenon was mostly resolved. Phosphopeptides 

including 33FQ[pS]EEQQQTEDELQDK48 (Mr 2061.83 Da) and 

30IEKFQ[pS]EEQQQTEDELQDK48 (Mr 2432.08 Da) were detected using with and 

without neutral loss scan. However, a peptide with multiple phosphosites 

17ELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR40 (Mr2966.16) was uniquely detected 

by using the MS neutral loss program. Therefore, this MS neutral loss program was 

applied for identification of phosphopeptides of S. solfataricus, which were enriched by 

TiO2 beads. As expected, the ion suppression phenomenon was eliminated for the 

complex samples. As a result, 5 phosphopeptides were observed from a total of 32 total 
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identified peptides (for neutral loss scan program). In contrast, only 2 unique 

phosphopeptides from 2 phosphoproteins were detected using the normal MS program. 

However, the total phosphopeptides and phosphoproteins number are not favourable for 

global phosphoproteome study, so further experiments will be applied on the high-

resolution maXis Q-TOF. 

 

Table 3.3 Phosphopeptide of 𝛽-casein detected using different MS programs 

MS program Detected phosphopeptide of 𝛽-casein 

Normal MS 33FQ[PS]EEQQQTEDELQDK48, 30IEKFQ[PS]EEQQQTEDELQDK48 

Neutral loss 

33FQ[PS]EEQQQTEDELQDK48,30IEKFQ[PS]EEQQQTEDELQDK48 

17ELEELNVPGEIVE[PS]L[PS] [PS] [PS]EESITR40 

 

Table 3.4 Phosphopeptide of S. solfataricus detected using neutral MS program 

MS P-rotein  P-peptide sequence P-site z m/z 

Neutral 

loss 

15897630 EMAKILRDEA[PS]WDYDEAK S 3 2248.97 

15897546 CGVFAV[PS]SPKEVNIQLVVEGIR S 4 2480.25 

15897389 IGVV[PS]GKGGVGKSFVSSNLAMAIAASGR S 4 2955.28 

15897225 VALTSLG[PS]K S 2 954.48 

15897157 IF[PT]AV[PS]SSSLVEEYLKK TS 3 2059.95 

   Note: P is phosphorylation. Z is charge state of peptide.  

3.4.3.3.2 Limit of detection (LoD) for phosphopeptides  

To determine the LoD for phosphopeptides, β-casein (Mr 24000 Da), with the 

commercialized and known phosphorylation on serine was chosen. Four of the five 

known phosphoserines can be found from trypsin digestion products and a 

phosphopeptide (residues 33-48, phosphorylation on Ser35) from in-gel tryptic digestion 

of 250 fmol of β-casein was still detectable using nano-ESI LC-MS/MS [149]. To ensure 

detection of phosphopeptides, also, by considering the sample loss during desalting step, 

a large amount 5 pmol of in-solution trypsin digested β-casein was applied in our 

experiment. The LoD of phosphopeptides was determined by using a decreasing 

concentration of β-casein starting ranging from 5 pmol to 2.5, 0.5, 0.1, 0.02, 0.004 pmol 

and 8 fmol in amount. To investigate the interference of complex sample to the detection 

intensity of phosphopeptides, 500 µg of tryptic cell lysates of S. solfataricus as a 

simulation of the complicated biological samples was mixed with β-casein.        
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Fig 3.6 Realationship between different concentrations of of β-casein (from 5 x 103 fmol to 2500, 500, 100, 

20, 4 and 1.6 fmol) with interference (generated by tryptic cell lysates of S. solfataricus). 

 

Peptide 33FQ[pS]EEQQQTEDELQDK48 (Mr 2061.83, +3 charged of 687.95) was mostly 

abundant peptide detected from the digested beta casein. It was used as a target peptide 

for investigating a LoD of phosphopeptide. The signal to noise ratio (S/N) of the target 

peptide vs β-casein concentrations with S. solfataricus is shown in Fig 3.6. There was an 

obvious decrease: approximately 2.5 times down for detection of target phosphopeptide 

when the concentration of β-casein decreased. When the amount of beta casein was less 

than 1 pmol (0.024 µg), the low abundance target phosphopeptide signal cannot be 

observed because of inadequate signal to noise ratio, which results from the complex 

background noise from digested cell lysates. The whole genome of S. solfataricus P2 is 

3 Mb [3], and supposed the phosphorylation level was less than 0.01% [54]. Therefore, 

we could estimate the amount of sample (240 µg) for phosphorylation study by LC-

MS/MS analysis. 

 

The limit of detection of phosphopeptides for beta casein and S. soltataricus cell lysates 

were 0.024 µg and 240 µg respectively. However, higher amounts of S. soltataricus 

samples (500 µg) was recommended for phosphopeptide enrichment analysis due to the 

loss of sample during desalting, LC separation processes such as SCX.  
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3.4.3.4 Phosphopeptide enrichment  

Based on the LoD curve determined above, peptides digested from 500 µg of S. 

solfataricus proteins were used for phophopeptide enrichment with a 50 µl TiO2 beads 

slurry. Furthermore, a control sample where phosphopeptides were not enriched was also 

performed. Only 2 phosphopeptides (from 148 peptides identified) corresponding to 2 

phosphoproteins were identified using the Amazon without enrichment, whilst 18 

phosphopeptides (from 249 peptides identified) corresponding to 18 phosphoproteins 

were detected using TiO2 beads enrichment. A total of 27 unique phosphopeptides 

corresponding to 22 phosphoproteins were detected without enrichment using the maXis 

Q-TOF, covering 9.2% of phosphorylated peptides compared to total peptides detected. 

A higher number of 54 phosphopeptides corresponding to 53 proteins were detected using 

TiO2 beads enrichment. However, the total peptides and proteins identification number is 

also high using the maXis, which indicates the necessity of optimisation of the 

phosphopeptides enrichment workflow. 

 

Furthermore, common issues were observed for phosphopeptide identification by 

analysing the sequence information of both phosphopeptides and non-phosphopeptides, 

which is in agreement with a previous report. For instance, compared to non-

phosphopeptides, a higher percentage that were triply charged was observed: 12.5% of vs 

5.1% from SCX fractions detected using HCT-Ultra ion trap and 50% vs 29.4% of neutral 

loss program detected by the Amazon and 61.1% vs 33.3% from TiO2 enrichment results 

detected through maXis Q-TOF. In total, the phosphopeptide enrichment technique using 

whole cell lysates of S. solfataricus will be applied and detailed results can be found in 

Chapter 5.  

3.5 Conclusions 

Some studies have re-constructed the CCM pathways in S. solfataricus P2 as detailed in 

Chapter 2. However, these pathways have not been completely understood and there was 

no system report on amino acid metabolism [3, 6]. This study provides complementary 

information to the existing glucose glycolysis pathway in S. solfataricus and extends 

knowledge on how S. solfataricus can utilise various carbohydrates via a study of 

different S. solfataricus strains (P2, PBL2025 and PBL2073) in responding to different 

carbon sources.  
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The growth curves of different S. solfataricus strains grown on 0.4% glucose and tryptone 

as sole carbon source were determined. Cell pellets from P2, PBL2025 and PBL 2073 

were collected in the late exponential phase further experiments including proteomic 

(Chapter 4), phosphoproteomic (Chapters 5 and 6) and metabolomic (Chapter 7) analyses. 

Moreover, pre-culture of PBL2025 and PBL2073 strains in ethanol, acetone and n-

propanol shows that both strain cannot adapt and utilize these compounds as S. 

solfataricus strain P2. Further experiments will be applied when strains were grown on 

glucose and tryptone. 

 

We speculate that pathways involved in degradation of glucose and tryptone in S. 

solfataricus PBL2025 might be different from that in S. solfataricus P2. The lag phase of 

S. solfataricus PBL2025 was different from that of P2 and PBL2073. The differences of 

specific growth rates among three strains (S. solfataricus P2, PBL2015 and PBL2073) 

might be due to lack of some important genes/proteins in PBL2025 and PBL2073, such 

as the ABC transporter coding genes. The uptake difference of glucose among these 

strains will be measured. Moreover, we speculate that the gene SSO3117 disruption strain 

S. solfataricus PBL2073 is not adapted to utilize ethanol/n-propanol as the sole carbon 

source and might been converted to acetaldehyde/propionaldehyde while then 

accumulated in the cell as indicated in Fig 2.1 in Chapter 2. However, the conversion 

from acetaldehyde to acetate for ethanol metabolism is a unique direction manner, which 

perhaps causes its death in early growth phase. 

 

The identification of peptides/proteins derived from SDS-PAGE coupled with in-gel 

tryptic digestion vs in-solution digestion coupled with SCX chromatography was 

performed, which lay a fundamental proteomics technique for further quantitative 

proteomic studies. Proteomic (based on isobaric tags for relative and absolute quantitation 

(iTRAQ)) and metabolomic analyses will be applied to elucidate pathways involving 

degradations of different carbon sources and results are presented in Chapter 4.  

 

The LoDs of phosphopeptide for beta casein and S. solfataricus was 0.024µg and 240µg 

respectively. However, 500µg of S. solfataricus proteins were used for further 

phosphopeptides enrichment experiments because of the loss during sample preparation 

and other processes (e.g. SCX) as well as the application of technical replicates for MS 

http://en.wikipedia.org/wiki/Isobaric_labeling
http://en.wikipedia.org/wiki/Quantitative_proteomics
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analysis. The optimisation on phosphopeptide enrichment methods for large scale 

phosphoproteome studies will be performed and results are discussed in Chapter 5. 
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Chapter 4 Quantitative proteomic analysis of Sulfolobus 

solfataricus utilising different carbon sources 

4.1 Abstract 

The extreme thermoacidophilic crenarchaeon Sulfolobus solfataricus has been widely 

used as a model organism in archaeal research. Here, three 8-plex iTRAQ experiments 

were performed to generate in-depth quantitative proteomic data sets for S. solfataricus 

strains P2, PBL2025 (a spontaneous mutant) and PBL2073 (a genetic mutant). This 

approach was used in a combination with bioinformatics methods (enrichment analysis) 

to identify the functional proteins present at different stoichiometry between P2 and 

PBL2025 when grown on the same (glucose) carbon source, as well as those affected by 

changing the carbon source from glucose to tryptone.  

 

A total of 158 proteins (27 % of quantified proteins) were determined as being present in 

different ratios amounts between S. solfataricus P2 grown on glucose compared to S. 

solfataricus PBL2025. Among these differentially abundant proteins, 61 proteins 

involved in amino acid and carbohydrate metabolism were present in reduced amounts 

in the PBL2025 compared to P2 strains, whereas 97 proteins belonging to carbon fixation, 

butanoate metabolism and Val, Leu, and iso-Leu biosynthesis and so forth were greater 

in abundance.  

 

In contrast, when changing carbon source from glucose to tryptone many changes 

occurred at proteome level for both these strains: 159 and 208 (27% and 34.2% of 

quantified proteins) proteins show abundance change for P2 and PBL2025. These 

changes involved central carbohydrate metabolism including glycolysis and pyruvate 

metabolism, nucleotide metabolism including purine and pyrimidine metabolism (for 

P2), or energy metabolism including oxidative phosphorylation (for PBL2025). A 

significant change in amino acid metabolic pathways was found in both strains. 

Furthermore, these results demonstrate that the absence of 46 genes (in PBL2025 strain) 

affected the regulation of many metabolic pathways, and the change of carbon sources 

from glucose to tryptone resulted in the inhibition of most amino acid biosynthesis.  
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4.2 Introduction 

The extremely thermoacidophilic crenarchaeon Sulfolobus solfataricus grows at 80◦C and 

pH 3 [1], and it utilises a variety of sugars and amino acids as sole carbon and energy 

sources [20]. S. solfataricus P2 was first isolated in Italy [2], whilst S. solfataricus 

PBL2025 strain (a spontaneous mutant of S. solfataricus 98/2 strain(s)) was isolated in 

the US [240]. The S. solfataricus P2 genome has been fully sequenced with about 3 Mb 

sequence consisting of a single chromosome and encoding 2977 proteins [3]. S. 

solfataricus P2 has been used as a model microorganism, while S. solfataricus PBL2025 

has been widely used as a biological tool for construction of mutants (by deleting target 

genes) in biological research [241]. Compared to P2, PBL2025 lacks genes from 

SSO3004 to SSO3050 [242], in which 6 genes are supposed to be involved in central 

carbohydrate metabolism (CCM), 8 genes play role in energy metabolism, 8 genes are 

composed of transporters, and 2 genes function in the biofilm formation and extracellular 

polymeric substances (EPS) secretion [43]. 

 

Glucose or tryptone as a single source of carbon and energy for S. solfataricus induces 

different metabolic enzymes, transporters and uptake systems to support growth and cell 

survival. In 2006, Snijders et al.,[39] using 15N metabolic labelling based proteomics 

(yeast extract and tryptone  vs glucose), reported 3% of the identified genes and 14% of 

the identified proteins were differentially regulated more than 2 fold; these genes/proteins 

were involved in CCM. Further interest in quantitative proteome level of S. solfataricus 

(PBL2025 and P2) was inspired when the biofilm formation differences between these 

strains was observed [43] and the role of SSO3006 and SSO3019 in EPS formation was 

confirmed [42]. Recently, Esser, et al. [7] suggested that the blocking of sugar 

degradation pathways and activation of enzymes in gluconeogenesis of S. solfataricus 

was enhanced when tryptone was supplied. Esser, et al., [7] found the phosphoproteome 

of the P2 strain were dramatically affected when the carbon source was changed from 

tryptone to glucose. The immediate purpose of this study is to generate an in-depth 

quantitative proteome data set for both S. solfataricus strains (P2 and PBL2025). To 

achieve this, we apply an iTRAQ approach, since this technique has been routinely 

successfully applied to the proteomics studies of S. solfataricus [4]. 
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Three sets of 8-plex iTRAQ experiments were performed to investigate the quantitative 

proteomics level of these two strains when tryptone or glucose was used as a sole carbon 

source. Furthermore, bioinformatics tool is applied to identify prominent pathways 

affected by changing carbon source from glucose to tryptone. Maps of comprehensive 

pathways for both S. solfataricus P2 and PBL2025 grown on either tryptone or glucose 

in standard medium are constructed based on the iTRAQ data.  

4.3 Materials and methods 

4.3.1 Growth conditions 

S. solfataricus strains P2 and PBL2025 were grown in media containing either 0.2% 

tryptone (w/v) or 0.4% glucose (w/v) as a sole carbon and energy source in a horizontal 

shaking thermal incubator (Thermotron, Infors, UK) at 120 rpm at 80°C. Cells grown on 

glucose were used as a control. Stock cultures of these strains were stored at -80°C and 

activated using either 0.4% glucose grow up to OD650 = 1.0 + 0.05; or 0.2% tryptone grow 

up to OD650 = 0.70 + 0.05. All the experiments were performed at an initial OD650 of 0.2 

+ 0.05 in 150 ml of standard media as described elsewhere [38]. Cell growth curves were 

obtained by measuring the optical density at a wavelength of 650 nm using a 

spectrophometer (Ultrospec-2100 Pro UV/Visible, Amersham Biosciences, US) against 

time. The specific growth rates (μ) were calculated (biological triplicates) graphically by 

plotting OD650 versus time. The OD650 values were also corrected against evaporation 

(negative control without S. solfataricus). The pH of growth medium was measured by 

(Mettler Toledo 320 pH meter, UK) against the growth at OD650nm for all S. solfataricus 

strains when tryptone or glucose was supplied. 

 

 Based on the growth curves, cells were collected at late exponential growth phases for 

further experiments. A volume of 50 ml of cell culture was harvested and centrifuged at 

5,000 x g for 10 min at 4°C and cell pellet was collected and then stored at -80°C until 

required. Numbers of cells were counted using a haemocytometer (Marienfield, 

Germany) under an optical microscope (Axiostar Plus, USA).All chemicals were 

purchased from Sigma-Aldrich (Gillingham, UK) unless otherwise stated. 

4.3.2 Protein extraction and labelling 

Crude protein extraction was performed as described elsewhere [38]. Briefly, cells were 

washed with extraction buffer (500 mM TEAB, triethylammonium bicarbonate pH8.5 
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containing 0.05% SDS (w/v)). Then re-suspended in the extraction buffer and one volume 

of acid washed glass beads (425-600 μm) (compared to cell pellet) was added. Protein 

was extracted using a disruptor (Genie Vortex, USA). Supernatants containing soluble 

crude extracts were centrifuged at 21000 × g for 30 min at 4 °C and then transferred into low 

binding tubes. To purify proteins, 5 time volumes of ice-cold acetone (compared to sample) 

were added and samples were left at -20 °C for overnight. Samples were centrifuged at 

12000 × g for 20 min at 4 °C, these protein pellets were then re-suspended in the extraction 

buffer, and protein concentrations were determined using the Bio-Rad RC-DC Protein 

Quantitation Assay (Bio-Rad, UK).  

 

A total of 100 µg proteins of each phenotype was firstly reduced with 50 mM tris 2-

carboxyethyl phosphine hydrochloride at 60 °C for 1 h, then alkylated with 200 mM 

methyl methanethiosulfonate at room temperature for 10 min before digested by trypsin 

at a ratio of 1:40 (trypsin:protein) at 37 °C for overnight. Digested samples were then labelled 

using 8-plex iTRAQ reagents according to the manufacturer’s protocol (AB Sciex, USA). 

After labelling, samples were mixed and dried in a vacuum concentrator. The detailed 

labelling of samples is shown in Table 4.1A and B.  

 

Table 4.1 Labeling of iTRAQ experiments. 

Table 4.1 (A) The 1st set of iTRAQ. 

Strain P2 P2 PBL2025 

Carbon source Tryptone Glucose 

1st 2nd 3rd 1st 2nd 3rd  1st 2nd 

iTRAQ reagent 116 117 118 113 114 115 119 121 

 

Table 4.1 (B) The 2nd set of iTRAQ. 

Strain PBL2073 PBL2025 

Carbon source Glucose Glucose Tryptone 

1st 2nd 3rd 1st 2nd 3rd  1st 2nd 

iTRAQ reagent 115 116 117 118 119 121 113 114 

Note: 1st, 2nd, and 3rd indicates biological replicates. 
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Table 4.1 (C) The 3rd set of iTRAQ. 

Strain PBL2073 PBL2025 

Carbon source Tryptone Tryptone 

1st 2nd 3rd 1st 2nd 3rd  

iTRAQ reagent 113 114 115 116 117 118 

Note: 1st, 2nd, and 3rd indicates biological replicates. 

Common biological samples were applied in different iTRAQ sets. For instance, S. 

solfataricus PBL2025 grown on glucose were used for the1st and the 2nd iTRAQ sets. 

PBL2025 cells grown on tryptone were used for the 2nd and the 3rd iTRAQ sets. 

4.3.3 Hydrophilic interaction chromatography (HILIC) 

Labelled peptides were re-suspended in 90 µl of HILIC buffer A (80% ACN, 10 mM 

ammonium formate, pH 3) prior to loading onto a 4.6 x 200 mm Poly 

HYDROXYETHYL-A column (5 μm, 200Å, Hichrom Limited, UK) coupled with an 

Agilent 1100 Series HPLC system (Agilent, US) consisting of a G1311 Quat Pump, 

G1379 Degasser and G1314A UWD UV detector operated at a wavelength of 280 nm. 

Peptides were fractionated using a gradient as follows: 10 min of buffer A before ramping 

up to 20% of buffer B (5% ACN, 10 mM ammonium formate, pH 5) for 5 min then up to 

60% of buffer B for 50 min, then ramped up to 100% of buffer B for 10 min and kept for 

10 min and finally 0% of buffer B for 5 min at a flow rate of 0.5 ml/min. Fractions were 

collected every minute, then 35 high intensity fractions were chosen and dried in a 

vacuum concentrator (Eppendorf Concentrator 5301, Germany). 

4.3.4 LC-MS/MS and data analyses 

Each dried HILIC fraction was re-dissolved in 20 μl of MS loading buffer containing 3% 

acetonitrile and 0.1% formic acid, and then 10μl of sample was introduced to a nano-LC-

ESI-qQ-TOF-MS/MS, QStarXL Hybrid ESI Quadrupole time of flight-tandem mass 

spectrometer, (Applied Biosystems, Framingham, MA; MDS-Sciex, Concord, Ontario, 

Canada). Details of the nano-LC system, MS/MS parameters and LC gradient were used 

as described in details elsewhere [38].  
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Protein identification and quantitation were mainly carried out as described elsewhere 

[224]. Briefly, MS/MS raw data were firstly converted into MGF format using a Mascot 

dll script in Analyst QS v. 1.1. Data were then submitted to a Phenyx searching engine 

(v.2.6, Geneva Bioinformatics, Switzerland) using S. solfataricus P2 protein database 

(2994 proteins) downloaded in April 2011 from NCBI (http://www.ncbi.nlm.nih.gov). 

Parameters for searching were set up as follows: MS tolerance was set at 0.4 Da and 

MS/MS tolerance were set as following: peptide tolerance 0.2 Da, charge +2 and +3, +4, 

minimum peptide length, z-score, maximum p-value and AC score were 5, 5, 10−6 and 5, 

respectively, and trypsin enzyme was used with two missed cleavages permitted for both 

cases. Modifications were set: 8-plex iTRAQ mass shifts (+304 Da, K and N-term) and 

methylthiol (+46 Da) as fixed modification and oxidation of methionine (+16 Da) as 

variable modification. The results were then exported to Excel (Microsoft 2010, USA) 

for further analyses. These data were also searched within the reversed S. solfataricus P2 

database to estimate the false-discovery rate (FDR) as detailed elsewhere [214]. Data 

were then analysed using our in-house statistical approach uTRAQ server (v4.0) and 

SignifiQuant (v4.0, University of Sheffield) to determine regulated proteins [224]. The 

significantly up- or down- regulated proteins mentioned in the following text refers to the 

direction of change, because the fold change underestimation issue remains unsolved 

until now but direction of change remains unaffected [224].  

 

The quantified proteins were categorized based on the arCOG functional code 

(http://archaea.ucsc.edu/arcogs/). Furthermore, to gain an understanding of how different 

S. solfataricus strains responded to different carbon sources at proteomic level and to 

determine which pathways were significantly regulated, an enrichment test analysis based 

on the hypergeometric distribution model was used as describe in the equation below 

[243]. A p-value was calculated for each pathway in every regulated group and pathways 

which achieved p-values < 0.05 were considered to be significantly affected. 

 

Where: N: total number of predicted proteins. M: number of proteins that is annotated to 

an arCOG category for gene function enrichment analysis or a specific KEGG pathway 

enrichment analysis, respectively. n: number of up or down regulated proteins. k: number 

http://archaea.ucsc.edu/arcogs/
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of proteins that are regulated and also annotated to specific KEGG pathways or gene 

functional categories.  

4.4 Results and discussion 

4.4.1 Cell growth profiles  

4.4.1.1 Strain PBL2025 compared to P2 grown on glucose  

From Fig 4.1A we can see that PBL2025 gained a similar growth trend with P2 (but 

PBL2025 shows a higher specific growth rate) in the standard glucose media, however, 

it showed a longer lag phase than P2 (18 hours compared to 10 hours). PBL2025 reached 

the stationary phase slower (with a slightly higher maximum OD650) than P2. It is inferred 

that the growth difference might be a result from the lack of genes SSO3004-SSO3050 in 

PBL2505 as discussed below, in which 6 genes are involved in CCM, 8 genes play role 

in energy metabolism and 8 genes are composed of transporters [242]. The protein 

phosphorylation involved in the CCM of S. solfataricus was noticed to be affected when 

changing carbon source from glucose to tryptone as reported previously by [7].  

 

 

Fig 4.1. Glucose consumption profiles of S. solfataricus P2 (○) and PBL2025 (▲) grown on 0.4% (w/v) 

glucose. Data were performed from biological triplicate cultures. 

The longer lag phase of PBL2025 could be explained by the lack of the ATP-binding 

cassette (ABC) transporters and secondary transporters in PBL2025 compared to P2 

(SSO3012, SSO3045, SSO3046, SSO3043, SSO3047 and SSO3048) since the uptake of 

sugars is carried out via ABC and secondary transporters [244]. However, compared to 

strain P2, the average specific growth rate of PBL2025 was higher in 0.4% glucose 
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condition (as shown in Fig 3.2 in Chapter 3), 0.0106 ± 0.002 and 0.0214 ± 0.0001 h-1 for 

P2 and PBL2025 respectively. Correspondingly, an increase of glucose consumption 

(35.6mg/L compared to 40.2mg/L, calculation based on Fig 4.1) and a decrease of 

doubling time (32.5 ± 0.69 h compared to 65.4 ± 0.65 h) were also observed. The higher 

growth rate of PBL2025 might have resulted from the accelerating activities of some 

ABC transporters, since the uptake of glucose is mediated by ABC-transporters in S. 

solfataricus [245]. On the other hand, it might be due to the activation of some unknown 

transport systems relative to P2, as proposed in [70], where cellodextrin consumption in 

S. solfataricus 98/2 was investigated via a genetic mutants study. Furthermore, 

Lalithambika [70] found the inactivation of a putative ABC transporter involving 

SSO2847, SSO2848, SSO2849 and SSO2850 had no effect on the cell growth when 

grown on glucose. Accordingly, the author proposed the existence of additional transport 

systems in strain 98/2 relative to P2 [70]. The effect of growth media on cell biomass of 

S. solfataricus strains was also estimated. In glucose standard media, although PBL2025 

grew faster, its biomass reduced up to 21% compared to P2 (at late exponential growth 

phase). 

 

Fig 4.2 Specific growth rates of S. solfataricus P2 and PBL2025 strains grown on 0.2% (w/v) tryptone and 

0.4% (w/v) glucose. A biological triplicate was performed for each condition.  

 

4.4.1.2 S. solfataricus strains grown on tryptone compared to glucose 

The specific growth rates of S. solfataricus strains grown on 0.2% tryptone and 0.4% 

glucose are shown in Fig 4.2. From Fig 4.2, we can see the average specific growth rates 

of P2 were 0.0106 ± 0.002 h-1 and 0.0195 ± 0.001 h-1 when grown on tryptone and glucose 

respectively, whilst the specific growth rates of PBL2025 were 0.0214 ± 0.0002 h-1 and 

0.0132 ± 0.002 h-1 respectively. Correspondingly, there was a decrease of doubling time 
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of P2 grown on tryptone compared to glucose (35.5 h compared to 65.4 h). The faster 

growth of P2 on tryptone compared to glucose was reported in a previous study, where 

the oligopeptide binding proteins (encoded by SSO1273 and SSO2619) of ABC 

transporters were strongly induced by the addition of tryptone in media [246]. This is also 

agreed with the observation of Elferink, et al., [244], who noticed the activity of glucose-

binding proteins of ABC transporters in P2 showed the highest levels in tryptone 

compared to glucose. Transport proteins are supposed to catalyse the transfer of carbon 

sources across membrane into cell [247]. Above all, it might also contribute to the fast 

growth of S. solfataricus on tryptone. 

 

Both S. solfataricus P2 and PBL2025 strains had a shorter lag phase and a faster growth 

rate in tryptone than in glucose media: 4 h and 12h differences for tryptone compared to 

glucose for P2 and PBL2025 respectively. Tryptone is a complex mixture of amino acids, 

and it is inferred that tryptone can be directly used as tricarbocitrate cycle (TCA) 

intermediates [248] for protein biosynthesis and also as intermediate metabolites for 

carbohydrate, lipid and nucleotide metabolism due to the close interaction of amino acid 

metabolism with glycolysis, gluconeogenesis and the citrate cycle [249]. Glucose is 

metabolized through the Entner-Doudoroff (ED) pathway with semi-phosphorylative and 

non-phosphorylative (np-ED) branches in S. solfataricus [221]. S. solfataricus can 

synthesise all 20 amino acids and utilize various amino acids as carbon sources [20]. TCA 

intermediates are used as precursors for cellular biosynthesis. The initial reaction step of 

TCA cycle is the adding of Acetyl-CoA to oxaloacetate to form citrate, which is catalyzed 

by the enzyme citrate synthase. Replenishment of oxaloacetate is necessary to keep TCA 

cycling [248]. The replenishment the oxaloacetate of the ED pathway is via carboxylation 

of pyruvate or phosphoenolpyruvate when S. solfataricus grown on glucose [39]. It may 

explain why the growths of both these two S. solfataricus strains on tryptone were faster 

than in glucose.  

4.4.1.3 The effect of pH change of medium S. solfataricus growth 

To test if the lower OD observed for all S. solfataricus strains (P2, PBL2025 and 

PBL2073) growth on tryptone compared to glucose might be a consequence of the 

observed alkalisation (pH change) of the growth medium, the pH of medium was 

measured against the growth at wavelength of OD650nm and results are shown in Fig 4.3. 
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It can be seen that the change of pH for glucose and tryptone media is different, which 

may be caused by the metabolic pathway differences. All the strains were grown on an 

initial pH of 3.04, and it decreased down to 2.3 on 0.4% glucose media, but it increased 

significantly up to 6.9 for when 0.2% tryptone was provided as a sole carbon source. 

 

 

Fig 4.3 The pH change of medium against the cell growth.  

 

The pH of decreases from 3.04 to 2.28 with cell growth from 0.20 to 1.23 for all strains 

grown on 0.4% glucose media (Fig 4.3). The minimum pH is similar: 2.35±0.03, 

2.36±0.05, 2.41±0.03 for strain P2, PBL2025 and PBL2073, respectively. During the 

initial 20-24 h, the pH dropped from 3.04 to around 2.65 with the increase of cell density 

(OD650) from 0.20 to 0.42, 0.32 and 0.65 for P2, PBL2025 and PBL2073 respectively. 

The maximum growth was achieved when no glucose was available in medium for 

consumption (it can be supported by the glucose consumption in Fig 4.1).  

 

The pH of 0.2% tryptone growth medium increased with cell growth and the tolerant 

maximum pH for all strains is similar: 6.93±0.06, 6.89±0.02, 6.81±0.05 for P2, PBL2025 

and PBL2073, respectively. The pH of tryptone medium increased from 3.04 to around 

4.44 within 24 h with the increase of cell density (OD650) from 0.20 to 0.44; and the 

maximum cell growth was achieved when the pH of medium reaches up to 6.5. The drop 

of OD650 was observed for all the strains when pH of growth medium reaches to the upper 

tolerance limit of cell membrane (pH 6.5-7.0). It is inferred that the low OD observed on 
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0.2% tryptone media can be contributed partly to the limit by up-taking of substrate since 

cell growth was observed again when the tryptone medium were acidified to 3.04 and it 

stops grow when pH of media reaches to around 6.5 (data not shown).  

 

The effect of media on cell biomass of the S. solfataricus strains was also estimated. Both 

strains declined their biomass yields when grown on tryptone compared to glucose in 

stationary phases (0.41 ± 0.04 compared to 0.81 ± 0.01 g/L for P2, and 0.43 ± 0.05 

compared to 0.64 ± 0.06 g/L for PBL2025 respectively). This was possibly caused by the 

pH change of medium that limit the uptake of carbon and energy source in tryptone 

compared to glucose.  

4.4.2 Proteomic results 

Many proteomics studies have been performed for S. solfataricus P2, however, 

comparable studies are still rare for S. solfataricus PBL2025. A previous study reported 

that changing of carbon source from tryptone to glucose significantly affected the protein 

phosphorylation level in S. solfataricus P2 [7]. However, this study focused on the 

phosphoproteome identification only, here we perform quantitative proteomics analysis 

for both two strains grown on either tryptone or glucose. Two sets of 8-plex iTRAQ 

experiments were carried out to investigate the responses of these S. solfataricus strains 

(PBL2025 vs P2) to different carbon sources (tryptone vs glucose) with details of each 

set iTRAQ shown in Tables 4.2A and B. 

 

The numbers of identified and quantified proteins are shown in Table 4.2. A total of 2806 

unique peptides corresponding to 740 proteins was identified (FDR < 1%) from the 1st 

iTRAQ experiment, whilst 2880 unique peptides and 702 proteins (FDR < 1%) were 

observed for the 2nd iTRAQ experiment, and 2194 unique peptides and 637 proteins for 

the 3rd iTRAQ experiment respectively. However, only proteins identified with more than 

2 unique peptides were used for quantitation, resulting 609, 583 and 449 proteins 

quantified for the 1st, 2nd and 3rd iTRAQ experiments, respectively. Furthermore, t-tests 

were also performed to determine regulated proteins for each iTRAQ experiment [250]. 

The quantified protein number with abundance change from PBL2073 compared to 

PBL2025 grown on either glucose or tryptone were less than 100 (81 with the presence 

of glucose and 43 when tryptone was supplied), which are not enough for enrichment 
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test, so the following results are only discussed for comparisons between the 1st and 2nd 

set of iTRAQ experiments.  

 

Table 4.2 Numbers of identified and quantified proteins from iTRAQ experiments. 

Total predicted 

proteinsa) 

2994 

iTRAQ experiment 1st experiment 2nd experiment 

Proteins identified 

with 

 ≥ 2 unique peptidesb) 

 

583 

 

609 

 

Protein regulation 

Number of proteins and their distribution (%) 

PBL2025 vs P2 both 

grown on glucose 

P2 grown on trypton vs 

glucose 

PBL2025 grown on 

trypton vs glucose 

Up  97 16.6% 78 13.4% 110 18.1% 

Unchanged  425 72.9% 424 72.7% 401 65.8% 

Down 61 10.5% 81 13.9% 98 16.1% 

a) She, et al., 2001 and Esser, et al., 2011. b) More than 2 unique peptides and FDR < 0.01.  

 

Moreover, to determine which cellular processes of S. solfataricus were significantly 

regulated under tryptone compared to glucose conditions, proteomics data were analysed 

based on a gene functional analysis (with p-value < 0.05, protein function categories and 

localization are download from arCOG (http://archaea.ucsc.edu/arcogs/)) [251]. 

Furthermore, the response of the CCM and its relationship with other significantly 

affected pathways was also determined based on the pathway enrichment analysis [243]. 

Details of these analyses are discussed below. 

4.4.2.1 Characterisation, functional classification and localization of regulated 

proteins 

Only proteins quantified with more than 2 unique peptides were used for classification 

and detailed results are shown in Supporting Information Table SP4.1A-C. Among these 

significantly regulated proteins, cytoplasmic proteins were predominantly observed 

(approximate of 50% for each phenotype comparison), followed by unknown proteins. 

http://archaea.ucsc.edu/arcogs/
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Furthermore, a numerical distribution of regulated proteins according to localization and 

function of cells is also shown in Supporting Information Table SP4.1D and E. Archaea 

generally possess a single cytoplasmic membrane and S-layer, but lack an outer 

periplasm, however, they contain proteins attached to the outside the cytoplasmic 

membrane, a region in between S-layer and a cytoplasmic membrane called pseudo-

periplasm [152]. In our investigation, some pseudo-periplasm proteins were detected 

under different phenotype comparisons; however, these pseudo-periplasm proteins were 

much less than that of cytoplasmic membrane proteins. According to enrichment analysis, 

many processes such as amino acid biosynthesis and carbohydrate metabolism were 

inhibited under tryptone compared to glucose conditions for both strains. Furthermore, 

nucleotide metabolism and energy metabolism were also inhibited for tryptone compared 

to glucose (for P2) and tryptone compared to glucose (for PBL2025), respectively. 

 

The differentially regulated proteins were classified according to their functional roles 

and implicated in metabolic pathways such as carbohydrate, energise, amino acid 

metabolic pathways, main cellular genetic information processing such as transcription 

and translation; results are shown in Supporting Information Table SP4.1D-E. In brief, 

differentially abundant proteins were classified as follows: comparison C1: 158 proteins 

were classified into 14 cellular processes for PBL2025 compared to P2 (both grown on 

glucose); comparison C2: 159 proteins involved in 15 processes for P2 grown on tryptone 

compared to glucose, and comparison C3: 208 proteins involved in 15 processes for 

PBL2025 grown on tryptone compared to glucose.  

 

As expected, the largest group of detected proteins was hypothetical proteins for all 

comparisons, since hypothetical proteins are predicted at up to 40.3% of the whole S. 

solfataricus proteome [3]. The next largest groups were proteins involved in translation 

and energy metabolism. Furthermore, most of the regulated proteins observed in the 

translation group were ribosomal proteins and tRNA synthetases. Following this were a 

large number of proteins involved in amino acids biosynthesis (as showed in Fig 4.4 and 

Table SP4.3A-C in supplymentary information). These processes are linked together, for 

instance: metabolism of amino acids provides various metabolites and precursors for 

other cellular processes such as glycolysis, citrate cycle, pyruvate metabolism etc. and 

eventually for the biosynthetic requirements of new cell construction [249]. 
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4.4.2.2 Gene function enrichment analysis 

The differentially regulated proteins were assigned to different functional ontologies 

based on their gene functions (from arCOG). To provide different viewpoints of 

functional representation of responses of S. solfataricus to different carbon sources, 

proteomics data were analysed in terms of gene functional analysis with a p-value < 0.05 

[251]. Regulated proteins were classified into 18 or 19 out of 26 arCOG functional 

categories in S. solfataricus. The results are depicted in Fig 4.4 and Fig 4.5. All detailed 

numbers can be seen in supplementary data Table SP4.3.  

 

 

 

Fig 4.4 Classification of regulated proteins based on arCOG gene functions. (A) PBL2025 vs P2 

both grown on glucose. Categoreis with font bond indicates changes are significantly based on 

enrichment test, and underline means down-regulation. 
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Fig 4.4 Classification of regulated proteins based on arCOG gene functions. (B) P2 grown on 

tryptone vs glucose, and (C) PBL2025 grown on tryptone vs glucose. Categoreis with font bond 
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indicates changes are significantly based on enrichment test, and underline means down-

regulation. 

 

 

Fig 4.5. Spider chart of classification of regulated proteins based on arCOG gene functions. Blue, red, 

purple and green line are for predicted, PBL2025 vs P2 both grown on glucose, P2 grown on tryptone vs 

glucose, and PBL2025 grown on tryptone vs glucose.  

 

Gene function categories identified with less than 5 quantified proteins and those with 

only one regulated gene are not considered for classification. For S. solfataricus PBL2025 

compared to P2 grown on glucose, a lower relative abundance of energy production and 

conversion (arCOG C) and defence mechanism (arCOG V) categories were observed (red 

line in Fig 4.5), as well as the higher abundance of members of lipid transport and 

metabolism (arCOG I) was also noticed. Comparisons of the arCOG functional code 

profiles in the quantitative proteome under tryptone vs glucose conditions revealed 

obvious variations between strain P2 and PBL2025 (purple and green lines in Fig 4.5). 

By focusing on proteins classified into cellular metabolism (arCOG C, E-I, P-Q), 

enrichment analysis revealed that proteins of arCOG V (Defense mechanisms) and 

arCOG P (Inorganicion transport and metabolism) were down regulated in both 

comparisons (Fig 4.5).  
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Additionally, arCOGs carbohydrate transport and metabolism (arCOG G), and 

transcription (arCOG K) were down regulated in tryptone compared to glucose of P2 as 

depicted in Fig 3 (purple line). In contrast, only the down regulation of arCOG P and 

arCOG V were found in tryptone compared to glucose for PBL2025 (green line in Fig 

4.5). Moreover, up regulated proteins belonging to arCOG O (posttranslational 

modification) was significantly observed in comparison of PBL2025 grown on tryptone 

vs glucose (green line in Fig 4.5). This agrees with observations reported by [7], in which 

a significant change of protein phosphorylation when provided different carbon sources 

in P2 was found [7]. Transport systems (carbohydrate, lipid and inorganicion transport) 

were significantly affected in tryptone media compared to glucose, as well as the defence 

mechanisms.  

4.4.3 Carbohydrate transporter proteins 

The uptake of glucose is mediated by ABC-transporters in S. solfataricus [245]. It has 

been discussed in two super-families according to its substrate binding activities: the 

carbohydrate and the di-/oligopeptide uptake transporter classes [252]. Different 

transporters show various substrate binding activities [252]. Transporting of various 

substrates impacts on different metabolism and eventually growth patterns. Most of the 

quantified transporters in this investigation belonged to the ABC transporters and they 

are listed in Supporting Information Table SP4.2. 

 

A typical ABC transporter consists of 2 ATPases, 2 permeases and 1 membrane anchored 

substrate-binding protein [252]. In S. solfataricus, there are 37 putative ABC transporters 

[246] based on the genome sequence information and 15 binding proteins: whereas 6 

belong to sugar class, 8 belong to oligopeptide class and 1 ungrouped [252]. The 

up/down-regulated ABC transporters detected here are listed in Table SP4.2. 

Furthermore, the affected transporters from previous studies where S. solfataricus grown 

on other carbohydrates are also summarized in Table SP4.2. The up regulation of 

oligo/dipeptide superfamily transporters were detected in both strains (in tryptone 

compared to glucose). When P2 was grown on tryptone compared to glucose, 10 proteins 

belonging to 7 ABC transporters were quantified, but only one dipeptide ABC 

transporter, periplasmic dipeptide binding protein (dppA, encoded by SSO2619) was up 

regulated and another ATP-binding protein of maltose ABC transporter (encoded by 

SSO3055) was down-regulated. However, 4 of 5 quantified ABC transporters including 
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SSO1003, SSO1275, SSO2619 and SSO3055 were up-regulated when PBL2025 was 

grown on tryptone compared to glucose. It can be hypothesised that the up regulation of 

SSO3055, SSO2619, permease protein (SSO1275) and sugar ABC transporter 

(SSO1003) could lead to the activation of these transporters, possibly, contributed to a 

shorter lag phase and a faster growth on tryptone compared to glucose mediated growth 

of PBL2025. These observations support the work carried out by Elferink,  et al., [244], 

who found the expression of glucose-binding activity of the membrane-bound sugar-

binding proteins reached highest level in cells grown on tryptone. It is also consistent 

with a previous study [246], where a strong expression of SSO2619 and SSO1273 

(oligopeptide binding protein) under the addition of a peptide mixture (tryptone) 

condition was reported. Interestingly, the expression of SSO0999 (ABC-type trehalose 

transporter system) was not affected under tryptone conditions in both strains, which is 

consistent with the study reported by [246]. The abundance change of SSO0999 seemed 

to be affected by the supplement of various carbon sources. This protein showed its up-

regulatetion under n-propanol [40] and ethanol [35, 41], and down-regulation under iso-

propanol and phenol and no change under acetone [35] and tryptone conditions. Taken 

together, these may explain why the lag phase of PBL2025 and P2 were similar when 

both were grown on tryptone, despite the absence of some transporter encoding genes in 

PBL2025.  

4.4.4 Effect of carbon sources on metabolism pathways 

Regulated proteins were distributed into 53, 50 and 55 different pathways (a total of 77 

pathways from KEGG: http://www.genome.jp/keeg/) for three comparisons (see Table 

4.3 for details of comparisons), respectively. To gain a better understanding of how 

different S. solfataricus strains responded to different carbon sources, a relative frequency 

of the regulated enzymes in each pathway was calculated using the enrichment test 

(hypergeometric model) with a p-value ˂ 0.05 [253] and the results are shown in Table 

4.3. As listed in Table 4.3, the significantly affected pathways were involved in amino 

acids biosynthesis, carbohydrate metabolism, energy metabolism and nucleotide 

metabolism. Due to the specificity of archaeal metabolism and limit aviliability of 

characterized proteins in different KEGG pathways, only those pathways with proteins 

mostly characterized such as glycolysis pathway will be discussed.  

 

 

http://www.genome.jp/keeg/
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Table 4.3 Summary of pathway enrichment analysis (hypergeometric model). 

 Pathways C1 C2 C3 

Carbohydrate metabolism Butanoate metabolism + None None 

Glycolysis None _ + 

Pyruvate metabolism None _ None 

Amino acids metabolism Ala, asp and glu metabolism _ + _ 

Arg and pro metabolism _ _ None 

Val, leu and iso-leu biosynthesis + _ _ 

Val, leu and iso-leu biodegradation None _ None 

Energy metabolism Carbon fixation pathways + None None 

Oxidative phosphorylation None None _ 

Nucleotide metabolism Purine metabolism None _ None 

Pyrimidine metabolism None _ None 

 

Note: C1: PBL2025 vs P2 both grown on glucose; C2: P2 grown on tryptone vs glucose; C3: PBL2025 

grown on trypton vs glucose. +: Up regulation. -: Down regulation. None: change was not significant in a 

given pathway. A pathway was considered if more than 5 quantified proteins were observed for that 

pathway. 

4.4.4.1 Responses of S. solfataricus PBL2025 vs P2 grown on glucose conditions 

 

For PBL2025 vs P2, both grown on glucose, a proteomic analysis showed that the missing 

of genes SSO3004-SSO3050 in PBL2025 likely resulted in different regulations of 

pathway metabolisms. According to the pathway enrichment test (as detailed in Table 

4.3), proteins with an increased abundance were involved in the butanoate metabolism, 

Val, Leu and iso-Leu biosynthesis and carbon fixation pathway [254].  

4.4.4.1.1 Regulation of central carbohydrate metabolism 

52 proteins involving in CCM were quantified for comparison C1. The increased 

abundance of some enzymes involving in this pathway was reasonable. For instance, 

glucose is metabolised through Entner-Doudoroff pathway: semi-phosphorylative and 

non-phosphorylative ED (np-ED) branch [221]. The first few steps of np-ED pathway is 

conversion of glucose to glucono-1,5-lactone then to gluconate, catalysed by glucose 1-
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dehydrogenase (gdh-1, -2, -3, encoded by SSO3003, SSO3042 and SSO3204 separately) 

and gluconolactonase (encoded by SSO2705 and SSO3041separately) [39]. It is obvious 

to assume that the absence of SSO3041 and SSO3042 genes resulted in the accumulation 

and thus the requirement for higher abundance of gdh-1 (encoded by SSO3003), as 

indicated in Fig 4.6. However, although the substrate specificity of gdh-3 (SSO3204) in 

P2 has been shown to specific to glucose [255], its expression was the same level in 

PBL2025 (as shown in Fig 4.6). The pentose phosphate pathway enzymes also showed 

similar abundances, although PBL2025 lacks the SSO3032 and SSO3036 genes.  

 

EPS metabolism was involved in in propanoate metabolic pathway based on KEGG 

pathway map. The increased relative abundances of proteins involving in propanoate 

metabolism included: Acetyl-CoA C-acetyltransferases (encoded by SSO2061, SSO2062 

and SSO2625), methylmalonate-semialdehyde dehydrogenase (SSO1218) and 4-

aminobutyrate aminotransferase (SSO3211) for PBL2025 compared to P2 (both grown 

on glucose). The formation and amount of EPS differences between PBL2025 and P2  

has been showed in a previous study [42]. Moreover, the complementation of SSO3006 

(α-mannosidase) and SSO3019 genes confirmed their roles in EPS formation [43]. No 

expression of SSO3006 and strong induced expression of SSO3019 at transcriptional level 

were reported by using q-PCR upon surface attachment in P2 [42]. At the proteomic level, 

SSO3006 was quantified but its abundance was not different to that observed in P2, and 

SSO3019 was not detected in PBL2025 compared to P2 (both grown on glucose standard 

media).  
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Fig 4.6 Regulated pathways for carbohydrate metabolism (Glycolysis, TCA and pyruvate metabolism). 

Comparison 1: PBL2025 vs P2 both grown on glucose (purple). Comparison 2: tryptone vs glucose of P2 

(green); Comparison 3: tryptone vs glucose of PBL2025 (red). Direction arrows are for up-regulated and 

down-regulated proteins respectively. G1P: glucose 1-phosphate; G6P: glucose 6-phosphate; F6P: fructose 

6-phosphate; F1,6P: fructose 1,6-bisphosphate; DHAP: dihydroxyacetone 3-phosphate; KD(P)G: 2-keto-

3-deoxy-(6-phospho)gluconate; GAP: glyceraldehyde 3-phosphate; PGP: 1,3-bisphosphoglycerate; 3-PG: 

3-phosphoglycerate; 2-PG: 2-phosphoglycerate; GA: glyceraldehyde; PEP: posphoenolpyruvate; PPP: 

pentose phosphate pathway. 



Chapter 4 Quantitative proteomics analysis of Sulfolobus solfataricus utilising different carbon sources 

93 

 

 

 

Fig 4.6 Regulated pathways for PBL2025 vs P2 both grown on glucose. (B) Biosynthesis of 

amino acids. Red and blue backgrounds are for up-regulated and down-regulated proteins 

respectively. Metaboloites with red cicle are up-regulated (data from Chapter 7). F6P: fructose 6-

phosphate; 3-PG: 3-phosphoglycerate; PEP: posphoenolpyruvate; OAA: oxaloacetic acid; OGA: 

2-oxoglutarate; PPP: pentose phosphate pathway. 

 

In addition to changes involving in the CCM, the increased abundances of malate 

oxidoreductase (SSO3197) and 2-keto-3-deoxy gluconatealdolase (SSO2869) were 

found in PBL2025 compared to P2 (as shown in Fig 4.6A). S. solfataricus can synthesise 
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all 20 amino acids [20] and these amino acids can be used for protein biosynthesis. 

Biosynthesis of some amino acids was significantly different between PBL2025 and P2, 

as shown in Fig 4.6B. The up-regulation of these proteins might accelerate the utilization 

of pyruvate. The pyruvate production from malatate and KD(P)G catalysed separately by 

these enzymes seems to prefer to be utilized by the biosynthesis of Leu, Val and iso-Leu 

compared to other amino acid biosynthesis (as shown in Fig 4.6B). It can be pursued from 

the higher abundance of proteins involving in Leu, Val and iso-Leu metabolism, 

especially 3-isopropylmalate dehydratase subunits (encoded by SSO2470 and SSO2471), 

dihydroxy-acid dehydratase (SSO3107), 3-isopropylmalate dehydrogenase (SSO0723) in 

PBL2015 compared to P2. Above all, more active amino acid pathways might contribute 

to the higher specific growth rate of PBL2025 compared to P2 when grown on glucose.  

4.4.4.1.2 Energy metabolism 

Energy produced from various metabolic pathways is used for cell growth [248]. Among 

the 21 quantified proteins involved in the CO2 fixation pathway, 5 proteins were up-

regulated in PBL2025 compared to P2 in glucose condition, leading this pathway could 

be considered as significantly affected. CO2 fixation refers to the assimilation of CO2 into 

cellular organic materials [256]. It sustains autotrophic growth and can be also used for 

energy conservation and as a sink for cycling of reduced electron carriers, as discussed 

by Bar-Even, et al.,[254]. Autotrophic CO2 fixation has been attracting attention since the 

characterisation of three new CO2 fixation pathways was made in the last decade [257]. 

As of today, six mechanisms of CO2 assimilation have been identified, as reviewed in 

detail elsewhere [257]. Among them, the 3-hydroxypropionate-4-hydroxybutyrate cycle 

(3HP/4HB) was found in Sulfolobales [258], leading to the assimilation of bicarbonates. 

This cycle was initially reported in Crenarchaeota Metallosphaera sedula [258]. 

Although not all of the enzymes have been characterised, key genes in this pathway have 

been already found in Sulfolobus and other Crenarchaeota species genomes [258]. 

Usually, the 3HP/4HB cycle is divided into two parts: (1) the transformation of acetyl-

CoA and two bicarbonate molecules into succinyl-CoA, and (2) the conversion of 

succinyl-CoA into two acetyl-CoA molecules [258]. 

 

The detection of up-regulated proteins involving in this pathway included acetyl-CoA C-

acetyltransferase (acaB), acetyl-CoA synthetase (acsA) and aconitatehydratase. AcaB-2, 

acaB-3 and acaB-7 (encoded by SSO2061, SSO2062 and SSO2625 respectively) catalyse 
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the conversion of acetoacetyl-CoA to acetyl-CoA, while protein acsA (encoded by 

SSO2863) catalyses the formation of acetyl-CoA from acetate. In addition, 

aconitatehydratase (encoded by SSO1095) catalyses the conversion of isocitrate to cis-

aconitate, then to citrate. Acetyl-CoA goes directly to pyruvate, propanoate metabolism 

as well as Val, Leu and Iso-Leu biosynthesis pathways (source: KEGG: 

http://www.genome.jp/keeg/). It can be inferred that the accumulation of acetyl-CoA 

involved in the regulation of intracellular biosynthesis metabolism, and further resulted 

in an activation of carbon fixation in PBL2025 and eventually a faster growth of this 

strain than P2.  

4.4.4.2 Responses of S. solfataricus under tryptone vs glucose conditions 

4.4.4.2.1 Regulation of central carbohydrate metabolism 

52 and 51 proteins involved in CCM were quantified for comparisons C2 (P2 grown on 

glucose vs tryptone) and C3 (PBL2025 grown on glucose vs tryptone), respectively. The 

differential abundances of these proteins are shown in Figs 4.6A (based on an enrichment 

test). From Fig 4.6A, we can see that the down regulation of proteins in glycolysis and 

pyruvate metabolism was significantly in comparison C2 (green color). However, 

proteins involved in glycolysis showed an increased abundance but no abundance change 

in pyruvate metabolism in comparison C3 (red color). These differences might be 

explained by the ‘missing’ genes in PBL2025 compared to P2. It seemed that when cells 

were grown on tryptone, a high abundance of amino acids supplemented in the media 

resulted in an increase of pyruvate/TCA intermediates [248]. Accumulation of DL-2-

methylglutamic acid and pyroglutamic acid were detected based on GC-MS (data from 

Chapter 6). Unsurprisingly, the TCA pathway remained unaffected for both comparisons, 

which agreed well with a previous study in S. solfataricus [39]. Also, it might explain 

why the growth of these two S. solfataricus strains on tryptone were faster than on 

glucose.  

4.4.4.2.2 Regulation of amino acids metabolism 

Catabolism of amino acids is different from their biosynthesis, this catabolism process 

involves breakdown to remove the α-amino groups and then the carbon skeletons 

including pyruvate, Acetyl-CoA, Acetoacetyl-CoA and TCA cycle intermediates 

(oxaloacetate, fumarate, succinyl CoA and α-ketoglutarate). These metabolites are 

directly used for carbohydrate, nucleotide metabolism and other cellular processes [248]. 

http://www.genome.jp/keeg/
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However, for both strains, of cells ceased growth at ca. 40 h when tryptone was supplied, 

and their biomasses were less than that obtained in the glucose condition. This was 

possibly due to the lack of available carbon sources for cell construction. 

 

At the proteome level, the down regulation of amino acid biosynthesis pathways under 

the tryptone condition in both strains was reasonable since cells did not require the 

production of more amino acids to use as storage sources [259]. Conversely, it also meant 

that the protein synthesis process happened based on its functional properties rather than 

a need to store extra amino acids as mentioned elsewhere [259]. Furthermore, bacterial 

amino acid biosynthesis processes are regulated at different levels: through enzymatic 

activity or through metabolite flow regulation or, even, at the DNA level (enzyme 

formation or gene expression) regulation [260]. A negative-feed-back regulation 

mechanism has been proposed in those cases, which means that the end-product inhibits 

its own biosynthesis through affecting the biosynthetic enzyme activity (for a review see 

elsewhere [260]). In other words, the supplement of external amino acids interferes with 

their intracellular formation. Subsequently, when microorganisms resort to an exogenous 

supplement of amino acids, their intracellular biosynthetic pathways tend to be blocked 

or shut down. This was observed, for instance, for Val [261] and iso-Leu biosynthesis in 

E. coli [262]. A similar phenomenon has been found for anthranilate synthase in S. 

solfataricus, which catalyses the synthesis of anthranilate from chorismate and glutamine 

and is feedback-inhibited by tryptophan [263]. In the light of this, we can reasonably 

speculate that the down regulation of the detected amino acids metabolic pathways 

followed a similar pattern. 

4.4.4.2.2.1 Regulation of Val, Leu and iso-Leu metabolism 

Val, Leu and iso-Leu are hydrophobic branched-chain amino acids (BCAAs). Significant 

down regulation of BCAAs metabolism were found in comparisons tryptone vs glucose 

comparisons in both P2 and PBL2025 strains. BCAAs have been investigated 

substantially in humans due to their important biological roles, such as the regulation of 

protein synthesis in a variety of tissues, the role in secondary structure of proteins, 

nutrient signaling as reviewed elsewhere [264]. The first common step of their catabolism 

involves the BCCA aminotransferase and keto acid dehydrogenase. Eventually, they are 

converted to succinyl-CoA or acetyl-CoA, which enters into pyruvate metabolism and 

TCA cycle respectively. From a biosynthetic aspect, the last four reactions are catalysed 
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by the same four enzymes in the biosynthesis of Val, Leu and iso-Leu (Fig 4.7), therefore, 

they are mostly discussed synchronically [260]. Enzymes with multiple substrates such 

as enzymes encoded by SSO2470, SSO2471 and SSO0576 are easily affected by the 

existence of any of BCCAs substrates (as shown in Figure 4.7). The substrates of 3-

isopropylmalate dehydratase subunits (encoded by SSO2470 and SSO2471) are 2-

methylamate, D-erythro-3-methylamate, (2S)-2-Isopropylmalate, 3-Isopropylmalate and 

(2R, 3S)-3-Isopropylmalate, where (S)-2-Aceto-2-hydroxybutanoate, (R)-3-Hydroxy-3-

methyl-2-oxopentanoate, (R)-2,3-Dihydroxy-3-methylpentanoate can be catalyzed by 

ketol-acid reductoisomerase (SSO0576). As speculated above, the down regulation of 

Val, Leu and iso-Leu biosynthesis metabolism may follow a feedback-inhibited pattern 

in S. solfataricus [263].  
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Fig 4.7 The amino acids metabolism regulation of S. soltataricus in P2 for tryptone vs glucose. 

Red, blue, and white background are for up-regulated, down-regulated, un-changed proteins 

respectively. Orange and blue cycle, and underline is for up-regulated, down-regulated, un-

changed metabolites. F6P: fructose 6-phosphate; 3-PG: 3-phosphoglycerate; PEP: 

posphoenolpyruvate; OAA: oxaloacetic acid; OGA: 2-oxoglutarate. 
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Fig 4.7 The amino acids metabolism regulation of S. soltataricus in PBL2025 (B) for tryptone vs 

glucose. Red, blue, and white background are for up-regulated, down-regulated, un-changed 

proteins respectively. Orange and blue cycle, and underline is for up-regulated, down-regulated, 

un-changed metabolites. F6P: fructose 6-phosphate; 3-PG: 3-phosphoglycerate; PEP: 

posphoenolpyruvate; OAA: oxaloacetic acid; OGA: 2-oxoglutarate; PPP: pentose phosphate 

pathway. 
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4.4.4.2.2.1 Regulation of Ala, Asp and Glu metabolism  

For the tryptone vs glucose comparisons, most of the detected proteins were down 

regulated; only 0.5% and 0.8% of the quantified proteins were up regulated for P2 and 

PBL2025 respectively; these proteins are involved in Ala, Asp and Glu metabolism in 

P2, and Arg and Pro metabolism in PBL2025, as shown in Fig 4.8. These observations 

agree with a previous study, where certain concentrations of L-Glu and L-Asp enhanced 

cell growth by the presence of glucose, whereas Gly, L-Leu, L-Val showed no effect on 

cell growth [265]. 

 

The growth-stimulation effect of L-Glu in the presence of glucose was significant 

compared to other amino acids [265]. Glu plays a central role in various metabolic 

processes, as well as stress responses in bacteria as reviewed elsewhere [266]. Also, it 

has been reported that Glu-, Arg- and Lys-dependent acid resistance systems play an 

important role in protecting against acidic [267] and oxidative stress [268] in E. coli.  

Similar functions of Arg and Lys have also been found in bacteria Salmonella 

typhimurium CECT 443, but not for Glu [269]. Although the enzymetic properties may 

be different between E. coli and S. solfatarics due to typical living conditions for the latter 

organism, it could provide some hints for functional elucidiation of archaeal enzyme.  

 

Glu catabolism is mainly carried out via the glutamate dehydrogenase (GDH) or 

glutamate decarboxylase (GAD) in bacteria [266]. Extracellular Glu also enters directly 

into the TCA cycle through 4-aminobutyrate aminotransferase (SSO3211). The up 

regulation of NAD specific GDH (gdhA-1, gdhA-2 and gdhA-4, encoded by SSO1457, 

SSO1907 and SSO2044), which catalyses the revisable oxidative deamination of Glu to 

produce 2-oxoglutarate and ammonia with reduction of NAD+, and SSO3211 were found, 

as shown in Figs 4.8 (A and B). This aspect agrees well with a previous study, which 

showed a large abundance of GDH in S. solfataricus [270].  

 

GAD catalyses the decarboxylation of Glu to 4-aminobutanoate that leads to the further 

production of succinate semi-aldehyde in bacteria [266]. Furthermore, GAD systems 

were found to be especially related with resistance against acidic conditions [266]. 

Purification and characterisation of archaeal GAD were found in Pyrococcus horikoshii 

[271], Thermococcus kodakaraensis KOD1 [272] and Pyrococcus furiosus [273].  
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Fig 4.8 Regulations of Ala, Asp and Glu metabolism in S. soltataricus grown on tryptone vs 

glucose for strain P2 (A) and PBL2025 (B). Red, blue, and white background are for up-regulated, 

down-regulated, un-changed proteins respectively. Orange and blue cycle, and underline is for 

up-regulated, down-regulated, un-changed metabolites. 
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Moreover, down regulation of Gln synthetase (encoded by SSO0366 and SSO2440) was 

observed in this investigation. Gln synthetase is supposed to catalyse the synthesis of Gln 

from Glu and NH3 [274]. Its catalytic activity is solely regulated by end-product 

inhibition mechanism through Gly and Ala in S. acidocaldarius [275]. High abundance 

of Ala and low abundance of Gly has been detected for P2 grown under tryptone 

compared to glucose conditions (data in Chapter 7). The regulation of Gln synthetase in 

S. solfataricus may indicate follow the end-product inhibition mechanism (Fig 4.8). 

 

In summary, the down regulation of most of the detected amino acid metabolic pathways 

may explain the reduced biomass (P2 and PBL2025) in tryptone as compared to 

compared to glucose-grown cells.  

4.4.4.2.3 Energy metabolism 

Under tryptone vs glucose conditions, no differentially-regulated proteins involved in 

energy-related pathways were found in P2; however, statistically significant down 

regulation of oxidative phosphorylation proteins (based pathway enrichment analysis) 

were observed in PBL2025 as a result of energetic purposes.  

 

For tryptone growth compared to glucose for PBL2025, 30 proteins involving in energy 

metabolism were found to be significantly regulated (13 up and 17 down regulated). 

Usually, NADH and succinate generated from TCA cycle are oxidized and release energy 

to power the ATP synthase, subsequently ATP provides energy to other cellular process 

[276]. In our investigation, inorganic pyrophosphatase (SSO2390) and three NADH 

dehydrogenases subunits C, D and I (SSO0323, SSO0324, and SSO0326) involving in 

the oxidative phosphorylation pathway were down regulated, but the ATP synthase 

(SSO0559, SSO0561, SSO0563, SSO0564 and SSO0566) were unchanged. It can be 

speculated that up-regulation of proteins involved in glycolysis was activated for energy 

requirements. Ultimately, these regulations supported the shorter lag phase of PBL2025 

grown in tryptone media compared to glucose.  

4.5 Conclusions 

S. solfataricus PBL2025 exhibited a longer lag phase when grown on glucose standard 

media, possibly due to the missing genes (absence of genes SSO304-SSO3050 compared 

to P2). Both S. solfataricus P2 and PBL2025 strains could utilise tryptone as a sole carbon 
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source and demonstrated fast growth rates on tryptone compared to glucose conditions 

(1.25 and 1.62 folds for P2 and PBL2025 respectively). However, maximum cell 

biomasses for both S. solfataricus P2 and PBL2025 strains grown on tryptone were less 

than those grown on glucose. 

 

At the proteome level, almost a third of the quantified proteins (detected with ≥ 2 MS/MS 

spectra) were regulated in tryptone compared to the glucose conditions (27.3% of 583 

proteins for S. solfataricus P2 and 34.2% of 608 proteins for S. solfataricus PBL2025). 

Among these proteins, 83 quantified proteins overlapped between tryptone compared to 

glucose conditions (for both strains). Categorization of regulated proteins based on the 

new arCOGs genome annotation showed that 18 and 19 of 26 functional categories were 

affected when both S. solfataricus P2 and PBL2025 strains were grown on tryptone 

compared to glucose conditions. A pathway enrichment test was applied to determine 

regulated pathways based on the iTRAQ data. It has been shown that most cellular 

processes, especially amino acid metabolism pathways in S. solfataricus grown on 

tryptone, decreased in abundance compared to glucose conditions (for both S. solfataricus 

P2 and PBL2025), and down regulation of glycolysis and pyruvate metabolism was also 

found for S. solfataricus P2. This observation supports a previous study reporting sugar 

degradation was blocked in the presence of tryptone in P2 [7] However, the glycolysis 

pathway seemed to be accelerated in the S. solfataricus PBL2025 strain grown on 

tryptone compared to glucose. The reasons for these differences are not clear yet, further 

quantitative phosphoproteomic studies are in progress. Up and down regulation of 

proteins involved in sp-ED and gluconeogenesis were also observed, but these proteins 

did not show significant differential regulation. This study provides useful quantitative 

proteomics data for metabolic pathways manipulation of the model archaea S. 

solfataricus P2 and PBL2025. 
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Chapter 5 Evaluation of phosphopeptide enrichment 

strategies for global phosphoproteomic study of Sulfolobus 

solfataricus P2 

5.1 Abstract 

In terms of Phosphopeptide (P-peptide) characterisation, enrichment is a bottleneck for 

global phosphoproteomic studies. P-peptide enrichment is a critical step for proteomic 

analysis of Sulfolobus solfataricus due to low stoichiometric phosphorylation as well as 

low abundance of phosphorylation (P-proteins) in biological samples. Optimisation of 

the P-peptide enrichment process was performed to minimise the non-P-peptides binding 

to achieve high enrichment efficiency and sensitivity. Different affinity resins including 

three different TiO2 formats (spin tips, magnetic beads and pipette tips) and PHOS-Select 

Iron Affinity Gel (IMAC-Fe) were tested alone and in combination of both. Different 

acids were included in the sample loading buffer to evaluate their ability to act as non-P-

peptide excluders during P-peptide enrichment using TiO2 beads. Optimisation was also 

performed for peptide-to-beads ratio, consecutive incubations with TiO2 beads. Different 

elution buffers were tested for IMAC. In addition, 500 µg of tryptic digest cell lysates of 

S. solfataricus grown on standard glucose media was used for each experiment.  

 

The key finding was that TiO2 beads showed the best performance compared to pipette 

and spin tips for P-peptides enrichment. The use of non-P-peptide excluders (glycolic and 

lactic acid) in loading buffer improved P-peptides enrichment efficiency using TiO2 beads. 

Furthermore, a 20/1 (w/v) peptide-to-TiO2 beads ratio and 4 cycles of incubation of beads 

were found to be the optimum conditions for P-peptide enrichment for this system. 

 

The use of elution buffer (ammonium in ACN) together with MOAC-TiO2 resulted in a 

high number of detected P-peptides compared to the sole use of ammonium. The number 

of P-proteins identified from modified SIMAC and TiO2 techniques were complementary 

and the overlap was only 13.2 %. Therefore, a combined use of modified SIMAC and 4 
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cycles of continuous incubation of TiO2 beads were the optimal condition for P-peptide 

enrichment here. 

5.2 Introduction 

The acidic thermophilic archaeon Sulfolobus solfataricus P2 has been used as a model 

organism in archaeal research. It grows typically at 80 oC and low pH around 2-3. S. 

solfataricus can use different compounds as carbon source such as D-glucose and 

tryptone. Recently, a high number of P-proteins (540 proteins) was detected for this 

archaeon in a report studying the effect of different carbon sources [7]. However, a global 

quantitative phosphoproteomic study has not been performed for archaea yet. 

 

P-peptide enrichment is a crucial step for phosphoproteomic analysis. In addition to 

issues of abundance and stoichiometry, there are further technical considerations for 

phosphoproteomic analysis using MS-based techniques: such as ionization suppression 

phenomenon, dynamic range as well as poor fragmentation using collision induced 

dissociation techniques. Low sensitivity of P-peptide detection in positive ionization 

conditions results from the negative charge carried on the phosphate group.  

 

The development of affinity-based P-peptide enrichment enables an efficient quantitative 

phosphoproteomics study, especially the widely use of immobilized metal ion affinity 

chromatography (IMAC), TiO2 and a combined use of both as reviewed elsewhere [144, 

145, 164]. However, both of these workflows have advantages and disadvantages. The 

application of IMAC is hampered by the non-specific binding of acidic peptides, which 

is caused by the affinity between the carboxylate group of amino acid residues and IMAC 

materials.  

 

IMAC results in selective binding of multiple P-peptides than mono-P-peptides [157]. 

Improvements of IMAC applications for p-protein/P-peptide enrichment are still ongoing, 

as reviewed in Chapter 2. For instance, the test of different materials for efficient binding 

and various support resins, the optimisation of enrichment protocols to reduce non-

specific binding especially acidic peptides, as well as efficient P-peptides elution [164]. 

Furthermore, the application of tandem IMAC-IMAC and a combined use of different 

ions IMAC have proved to be superior to the one step IMAC enrichment [164].  
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Commercially available magnetic TiO2 beads have been widely used by the community 

because of their high selectivity and specificity. Various acids in loading buffer used as 

non-P-peptide excluders such as 2,5-DHB (2,5-dihydroxybenzoic acid), phthalic acid 

[174], glycolic acid [157], lactic acid [277], and citric acid [176] have been found to 

significantly reduce the unspecific bindings of non-P-peptides. Glycolic acid or lactic 

acid was recommended due to its high adsorption efficiency for TiO2 [157]. However, 

Sugiyama, et al., [277] and Aryal and Ross [278] observed a high non-specific binding 

by using glycolic acid. Phthalic acid and 2.5-DHB were not applied here to avoid a 

potential contamination of a LC system and the inlet of MS as proposed by [157] and 

reviewed by [279].  

 

Other factors affecting P-peptide enrichment by TiO2 beads are the ratio of peptide-to-

beads, incubation time and consecutive incubation were investigated by [179] and [180]. 

The optimum peptide to beads ratio ranged from 1:2 to 1:8 (mass to mass) was proposed 

for P-peptide enrichment from HeLa cells. The author recommends to test pre-

experiments on the optimal peptide/beads ratio and incubation cycles, since this will 

potentially vary between cell types [179].  

 

In contrast to IMAC, the advantage of TiO2 lies in its high selectivity for P-peptides as 

well as its robustness and tolerance towards commonly used detergents, salts, and 

reagents for biological analysis [157]. Therefore, to improve phosphoproteome coverage, 

especially to increase the identification of multiple P-peptides, a combination of gallium-

IMAC and TiO2-MOAC enrichment, termed SIMAC (sequential elution from IMAC) 

was performed by [166]. However, the enrichment of P-peptides is still a challenge, and 

the combination of different techniques seems necessity at this stage [184]. 

 

The purpose of this study is to obtain an optimised strategy for P-peptides/proteins 

detection (including sample preparation, peptide enrichment, MS operation, and 

bioinformatics approaches), for application to quantitative phosphoproteomic analysis of 

S. solfataricus P2 (Chapter 7) to compare samples grown on either glucose or tryptone. 

To achieve this aim, we tested various TiO2 formats (magnetic beads, spin tips and off-

column tips) and iron gel based IMAC, as well as the combination of both techniques 

(SIMAC) to evaluate the efficiency of P-peptides enrichment procedures. This evaluation 
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will be based on the comparing different forms of materials, the robustness of technique 

(estimated by detection number of P-peptides), selectivity of P-peptides (estimate by 

phosphorylation ratio of P-peptides: total peptides) as described [179], and easy-to-

operate for sample handling. 

5.3 Materials and methods 

5.3.1 Cell growth, protein extraction and trypsin digestion 

Cell collection of S. solfataricus strain P2, cell lysis, protein extraction and trypsin 

digestion were the same as described in Chapter 3. Briefly, cells were collected in the 

late-exponential growth phase by centrifugation at 5,000 g for 10 min at 4°C. Cell pellets 

were then stored at -80°C until required and protein extraction were carried out as detailed 

in Chapter 3.  

 

To improve enrichment efficiency, the resultant peptides were desalted by Discovery 

DSC-18 columns (according to the manufacturer’s instructions) before being dried by 

vacuum concentration (Eppendorf Concentrator 5301, Germany). Dried peptides were 

stored at -80°C for further analysis. 

5.3.2 P-peptides enrichment  

Limit of detection (LoD) of P-peptides was investigated using β-casein (data shown in 

Chap 3). Based on the LoD curve, 500 µg proteins were used as initial materials, and 

biological duplicates or triplicates were carried out for each experiment. For PHOS-

Select Iron Affinity Gel experiments. Procedures were performed as manufacturer's 

instructions (Sigma Aldrich, UK). Optimal elution conditions were tested for 400 mM 

ammonia with or without the addition of 30% ACN, as indicated in Fig 5.1 A. 

 

 Different formats of TiO2 including magnetic TiO2 beads (GE Healthcare TiO2 Mag 

Sepharose, UK), Mono Tip TiO (GL Sciences) and the titan spherephos-TiO kit spin tip 

(Hichrom Limited, UK) were tested. For magnetic beads, besides the recommend 

glycolic acid, different acids including lactic acid, citric acid and glutamic acid were 

tested as non-P-peptide excluders. In addition, 125 mM asparagine (NQ-Asp) and 

glutamine (NQ-Glu) was added before a washing step when lactic acid was used [178]. 

Loading, washing and elution steps were performed as recommended from the 
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manufacturers' documentation and solvents were prepared as listed Table TS 5.1 in the 

Appendix.  

 

 

Fig 5.1 Flow chart of P-peptides enrichment of IMAC (A), consecutive TiO2 beads (B) and modified 

SIMAC (C). F1 to F4 is the set of elutions using consecutive TiO2 enrichment.  

 

Different ratios of peptides/ TiO2 (w/v of 80/1, 40/1, 20/1 and 10/1) and 4 cycles 

consecutive incubations (F1-F4 as shown in Fig 5.1B) were tested for magnetic TiO2 

beads. Briefly, digested cell lysates (500 µg) were resuspended in loading buffer: 1 M 

glycolic acid to prevent binding of non-P-peptides with 80% acetonitrile (ACN) and 5% 

TFA mixed with magnetic TiO2 beads (12.5, 25, 50 and 100 µl of TiO2 beads slurry) 

respectively and vortex for 30 min. After that, samples were washed with loading buffer 

once and washing buffer (80% ACN, with 1% TFA) twice. Finally, P-peptides were 

incubated with 50 µl of 5% ammonium hydroxide pH 12 for 5 min, and eluted. Vacuum 

dried samples were kept at -80°C. 
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Peptides were also subjected to SIMAC enrichment as described in details by [183] with 

some modifications, as shown in Fig 5.1C. P-peptides binding with IMAC-Fe gel were 

firstly eluted by 1% TFA buffer and then 40 mM ammonium hydroxide in 30% ACN. To 

achieve a good enrichment efficiency and phosphproteome recoverage, TFA elution and 

supernatant flow were dried separately and submitted to another two cycles of TiO2 

incubations, respectively.  

5.3.3 LC-MS/MS analysis 

C18 desalting following supplier’s instructions (Nest group, US) was applied after P-

peptides enrichment. Dried samples were then dissolved in 10 µl of MS loading buffer 

containing 3% ACN and 0.1% formic acid buffer and then 5 µl of sample was introduced 

to an LC-MS/MS. All experiments were run in biological triplicates and technical 

duplicates on a maXis UHR-TOF MS (Bruker, Germany) except the test of different acids 

that were run on Amazon MS (Bruker, Germany) and only biological duplicates were 

carried out due to instrument time limitation. LC gradient runs were from 3% to 40% B 

in 75 min followed by a 9 min wash at 90% B and a 14 min equilibration step at 3% B.  

5.3.4 MS data analysis 

MS raw data were converted into .mgf files using DataAnalysis (version 4.1, Bruker 

Daltonics) and submitted to an in-house Mascot Daemon (Version 2.4; Matrix Science) 

using a concatenated target/decoy database. The protein sequences of S. solfataricus P2 

were downloaded from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Bacteria/Sulfolobus_solfataricus_uid108/) 

in 2013 Oct and its decoy format, the reversed sequence was created using Peptide Shaker 

(v 0.22.6, https://code.google.com/p/peptide-shaker/). The Mascot Daemon search 

parameters were as used as follows: trypsin as digestion enzyme with up two missed 

cleavages permitted, carbamidomethyl (C) as a fixed modification and oxidation (M), 

phospho (STY) as variable modifications. Peptide tolerance was set up with +0.02 Da 

and MS/MS tolerance with ± 0.1 Da [280]. For individual peptides search, a false 

discovery rates (FDR) calculation was determined as described in [214], and a FDR of 

5% was applied with peptide score cut-off >25. Furthermore, for determination of P-sites, 

a threshold mascot delta score (MD-score) of 6 was used, corresponding to 5% of FLR 

(false localization rate) [216]. MD scores were calculated based on Mascot ion scores 

that were extracted from the corresponding Mascot dat-files. Proteins and peptides 

ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Bacteria/Sulfolobus_solfataricus_uid108/
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extracted from Mascot were further analysed using Microsoft Excel 2013 (Microsoft, 

USA).  

 

Mascot Daemon worked as a search engine, it can also process MS raw files into .mgf 

format. Phenyx only accept .mgf format files. To compare the results by using different 

search engines, the same .mgf files were submitted to either Phenyx or Mascot Daemon. 

One of advantages of Phenyx over Mascot is the superiority in a high-throughput protein 

identification project [208]. The similar searching parameters (compared to Mascot) were 

applied to our in-house search engine Phenyx (v.2.6, Geneva Bioinformatics, 

Switzerland). Briefly, MS tolerance of 0.02 Da and MS/MS tolerance of 0.1Da were used 

together with a charge stage of +1, +2, +3 and +4, minimums peptide length of 6, with 

peptides z-score of 4, p-value of 10-4 and AC score of 4. For individual peptides search, 

5% of FDR was calculated as described in [214] and applied. 

5.4 Results and discussions 

5.4.1 Search parameters and search engine optimization  

MS tolerance of 0.02Da was applied to both Mascot Daemon and Phenyx search engine 

for P-protein identification. Moreover, to compare the results derived from different 

searching engines, the same .mgf files were submitted to either Phenyx or Mascot 

Daemon. And results were shown in Table 5.1. 

 

The results by using Mascot were divided into two parts: with or without P-site 

localization filter while P-site localization was not applied for Phentx results at the 

present because there is no available bioinformatics tool that can be used in conjunction 

with Phenyx data for P-site localization. The overlapped number between different 

searching parameters and searching engines is shown in Fig. 5.2. 

 

Table 5.1 Number of peptide/proteins identified using different search engine and parameters. 

Search 

engine FLR 

MS 

tolerance P-pep P-pro 

Mascot 

0.05 0.02 7 6 

1 0.02 9 7 

Phenyx - 0.02 205 178 

FLR: false localisation rate. -: not determined. P: phosphorylation. 
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Fig 5.2 Overlapped number identified using 0.02Da as MS tolerance for Mascot and Phenyx: P-

proteins (A) and P-peptides (B). 

 

It can be seen from Fig 5.2 that only 5 P-proteins and 4 P-peptides were identified by 

using Phenyx and Mascot. The percentage of overlapped number of P-proteins from two 

search engine is not unexpected. One of the previous studies reported 247 overlapped 

proteins among the totally 801 proteins identified by using Phenyx (786) and 

Peptideshaker (372) [281]. The latter is an amalgamation of Mascot, Omssa and X! Tandem. 

It is a clear message that number of P-proteins identified by Phenyx was higher than 

Mascot. It agrees well with that Phenyx is superior to Mascot for protein identification 

[208]. 

 

Moreover, other advantages by using Phenyx search engine are: firstly, the in-house 

software tool kit can be easied used for iTRAQ quantifiecaiton analysis [224, 282]. 

Secondly, the identified P-protein/P-peptides can be compared with previous published 

data using PAcIFIC approach [7]. Thirdly, the P-sites annotation can be easied performed 

using the in-house script. However a major disadvantage (at this stage) is the accurancy 

of P-site localization information cannot be estimated (since there is no available 

bioinformatics tool that can be used for Phenyx data output). Therefore, taking into 

account of number of P-proteins identified, the possibility for comparision with published 

data and compatibility for using in-house software for quantitative phosphoproteomics 

analysis (iTRAQ data in Chapter 6), Phenyx data were used for further discussions as 

well as for analysing other data (Chapter 6).  
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The same amount of proteins (500 µg) were used for comparison between the different 

methods. The P-peptide enrichment efficiency of three different commercial materials 

were evaluated, including pre-packed TiO2, IMAC-Fe and SIMAC. The number is the 

total identification summarised from 6 runs (biological triplicates and technical 

duplicates) for each sample run on the maXis UHR Q-TOF. A brief summary of the 

detection number from different experiments is shown in Table 5.1 The detailed effects 

of different materials are shown in Figs 5.2-5.10, and Tables ST 5.2-ST 5.9 in the 

Appendix, whilst the distribution of P-sites (single, double, triple and more than four P-

sites) of different experiments are shown in Tables 5.2A-G. Optimisation of various acids 

as non-phosphopeptides excluders were run on the Amazon and only biological 

duplicates were tested due to instrument time. Only 5 unique P-peptides corresponding 

to 5 P-proteins were detected in control samples, where no P-peptides enrichment was 

applied. A total number of 205 unique P-peptides corresponding to 178 P-proteins were 

detected from all P-peptides enrichment experiments: merged data from all experiments 

detected by LC-MS (maXis UHR Q-TOF, Bruker), and a ratio of 10.6% for P-peptides 

/total peptides was also calculated. Furthermore, 151 and 54 P-peptides were observed 

for monophosphorylated (less than one P-sites) and multiphosphorylated (more than two 

P-sites) sites respectively. Among 205 P-sites observed, 83 (31.4%), 66 (25.0%) and 115 

(43.6%) were found on Ser, Thr and Tyr, respectively. The distribution of P-sites, ratio 

of Ser/Thr/Tyr, in this study was 31.4%/25.0%/43.6%, and this differed slightly from a 

recent phosphoproteome study where the ratio of 25.8%/20.6%/53.6% was reported [7]. 

There is a note that Esser, et al. applied PAcIFIC (precursor acquisition independent from 

ion count) technique, where digested whole cell lysates were directly analysed by LC-

MS/MS with an MRM program without P-peptides enrichment [7, 8]. In that study, a 

precursor range of 400-1200 m/z with 10 m/z intervals were applied. As a result, they 

also detected 1318 P-sites from a total of 540 P-proteins [7]. Therefore, it is a clear 

message that the PAcIFIC technique gave a higher identication number than the 

combination of different P-peptides enrichment approaches. However, the advantage of 

enrichment strategies over PAcIFIC approach is its potential application for further 

quantitative study. Also, LC-MS/MS running time reduced significantly from at least 8 

weeks to 2 weeks. Additional cost including bulk batch of trypsin, IMAC or MOAC 

enrichment materials and C18 desalting columns need to be considered for choosing 

enrichment methods.  
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Table 5.1 Brief summarised detection number from different experiments. 

Treatments Protein amounts Elute conditions P-pep Tot number of P-pep 

IMAC 

 

500 µg x 3 

Amm + ACN 13 13 

SP 12 12 

500 µg x 3 Amm 8 8 

SIMAC 

 

 500 µg x 3 

IME 10 

31 

 

 

TFA-TiO 8 

TFA-TiO-2Cy 7 

SP-TiO 12 

SP-TiO-2Cy 8 

TiO2 

(Ratio 20/1) 500 µg x 3 

F1 23 

59 

F2 28 

F3 18 

F4 17 

Note: 500 µg of peptides was used for each experiments; n=3, biological triplicates with technical 

duplicates were run. 

5.4.1 IMAC 

Commercially-available IMAC-Fe was used to test its capability for P-peptide 

enrichment and results are shown in Fig 5.2; detailed information of P-sites is listed in 

Table TS5.1 in the Appendix. We noticed that there was a slight improvement of numbers 

P-peptides/proteins detected when ACN was added to the elution buffer (Fig 5.2): 13 and 

13 unique P-peptides corresponding to 13 and 8 P-proteins with and without the presence 

of ACN. This finding agrees with a previous study reporting that the binding between P-

peptides of α- and β-casein to Fe-IMAC can be enhanced by the addition of ACN [169]. 

Ye, et al, [169] suggested that the ionization of P-peptides can be relatively enhanced 

through the negative affect of the ionisation of acidic residues such as aspartate and 

glutamate by using a high concentration of up to 30% ACN.  

 

Interestingly, the peptide sample after incubation with IMAC-Fe was submitted to LC-

MS/MS to assess the enrichment efficiency. There is a higher number of P-peptides (12) 

corresponding to 11 P-proteins were detected from the supernatant flow. It indicates that 

multiple incubation cycles: tandem IMAC [166] or a subsequent combination with 

MOAC enrichment was necessary as proposed in previous reports [183] .  
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Fig 5.2 Total numbers of unique P-peptides and P-proteins identified by using IMAC. Amm is eluted by 

40mM ammonia. Amm + ACN is eluted by 40mM ammonia in 30% ACN. SP is detected from supernatant 

flow. 

5.4.2 TiO2 enrichment 

5.4.2.1 TiO2 resins in different formats 

Pre-packed TiO2 resins in different forms (magnetic beads, TiO pipette tips, and TiO Spin 

tip) were employed to determine their P-peptide enrichment capabilities. Trypsin digested 

peptides from S. solfataricus P2 grown on standard glucose (0.4%) media were used to 

evaluate these TiO2 workflows and results are shown in Fig 5.3. Obviously, different 

TiO2 formats resulted in different numbers of detected P-peptides, but the distribution 

pattern of P-sites on Ser/Thr/Tyr was similar, as detailed in Table TS 5.2 in the Appendix.  

 

Fig 5.3 Total identification numbers of unique P-peptides and P-proteins by using different TiO2 formats.  

 

It is clear from Fig 5.3 that the use of magnetic beads led to a better result in terms of 

number/robustness of identified P-peptides/proteins. At a peptide/TiO2 ratio of 20/1, 53 
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P-proteins were determined from 59 P-peptides with 71 P-sites identified, while the 

identification number of P-peptides and P-sites were only 14 and 18, 16 and 25 for spin 

tips and pipette tips, respectively. The P-peptide selectivity from beads was the highest 

compared to the others. One of the explanations is that: 4 cycles of incubation procedure 

of beads results in binding and elution of more P-peptides. In contrast, only one 

incubation process was applied to spin tips and TiO pipette tips. In addition, there was a 

report that physical properties of TiO2 beads had some effects on their enrichment 

specificity and capacity [144, 172]. In addition, a high surface/volume ratio such as a 

mesoporous surface benefits more efficient binding of P-peptides with TiO2 resins than 

smooth surface [144, 172]. The enrichment capacity might result from undocumented 

modifications of the TiO2 materials. It is reasonable to infer that a continuously votexed 

incubation (30 min) for magnetic beads allows for sufficient reaction and therefore 

contributes to the higher identification number.  

 

Different concentrations of ACN and trifluoroacetic acid (TFA) in loading buffer were 

evaluated for spin tips, TiO tips and beads: 0.4% TFA in 80% ACN vs 0.1% TFA in 3% 

ACN vs 5% TFA in 80% ACN, respectively. Higher concentrations of ACN and organic 

acids such as TFA, acetic acid and formic acid in loading buffers was reported to help to 

reduce non-specific interactions with the beads [278], therefore, it is one of the reasons 

for various enrichment efficiencies among these experiments.  

 

Only 18.6% of multiple P-peptides was characterised from beads, the percentage of multi 

P-peptides determined from spin tip and TiO tips were 9 (14.3%) and 30 (33.3%) 

respectively. Considering sample handling and phosphoproteome coverage, a 

combination of magnetic beads and IMAC-Fe seems to be suitable for a large scale global 

phosphoproteome study. 

5.4.2.2 Effect of different acids on non-P-peptides binding 

We next attempted to optimise series of acids as non-P-peptide inhibitors in the sample 

loading buffer for phospho enrichment using magnetic beads, since this has been shown 

to play an important role in enrichment efficiency [157]. Using the same amount digest 

peptides as mentioned above, we tested the performances of glycolic acid, lactic acid and 

citric acids, as well as glutamic acid in the loading buffer. Different concentrations of 

citric acids were prepared according to [176]. The results are shown in Fig 5.4A and 
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summarised in Table TS5.3 in the Appendix. Furthermore, percentages of mono- and 

multiple- P-sites were calculated and depicted in Table5.11C. Only 27 P-sites were 

identified and 27 unique P-peptides were determined from 26 P-proteins, corresponding 

to a phosphorylation ratio of 5.8% without any enrichment treatment (Control). The 

number of detected P-peptides was greatly improved by incorporating acids in the loading 

buffer of TiO2 enrichment as reported by [176, 283, 284], and the average 

phosphorylation ratio (as defined by [179], number of P-peptides/total number of 

identified peptides x 100%) reached up to 14.0%. It clearly indicates the necessity of 

enrichment and the importance of non-P-peptides excluders should be used for complex 

samples.  

 

Fig 5.4 Total numbers of unique P-peptides and P-proteins detected when different acids as non-P-peptides 

inhibitor (A). Percentage of acidic acids in P-peptides sequence when different acids were applied (B). CA 

is citric acid. Gly acid is glycolic acid. Lac ac is lactic acid. NQ-Glu is lactic acid with addition of glutamine. 

NQ-Asp is lactic acid with addition of asparagine. Glu acid is glutamic acid. D is short for aspartic acid. E 

is short for glutamic acid. 

 

From Fig 5.4A, we can see that glycolic acid and lactic acid resulted in a similar number 

of the highest P-peptide and p-protein identification and P-sites determination numbers 

(in Table TS 5.4 in Appendix). It is in agreement with Jensen and Larsen’s [157] work, 
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which was performed on a standard peptide mixture using MALDI-MS. The performance 

of various concentrations of citric acid was different, and the P-peptide identification 

number of 200 mM CA was the lowest, which supported Zhao, et al.’s observation [176]. 

The identification numbers of other four CA concentrations were similar, and there was 

no significant increase of detection number when CA concentration increased up to 500 

mM and 1M. There was no significant difference for amino acid ratio of N and Q in both 

P-peptide and non-P-peptide (results are shown in Table TS5.5 in the Appendix), that 

explained why N/Q-Glu and N/Q-Asp expereiments (lactic acid as non-P-peptide 

inhibitor) did not show better performance compared to lactic acid. The percentage of 

acidic acids (aspartic acid and glutamic acid) in P-peptide sequence were calculated, and 

results are depicted in Fig 5.4B and Table TS5.5 in the Appendix. Fig 5.4B shows that, 

compared to the control (5.1%), the percentage of Asp (D) were reduced in almost all the 

acids except 1M CA and Glu. In contrast, the effect of acids on and Glu (E) was different. 

The addition of all acids except 200 mM CA and lactic acid together with Asp shows a 

negative effect on reducing Glu binding. 

 

The ratios of single and multiple P-peptides were also calculated as shown in Table 5.2C. 

It shows clearly that mono- P-peptides were predominantly detected from all acids 

treatment. A possible reason will be discussed in Section 5.4.4.  

5.4.2.3 Effect of peptide-to-beads ratio on P-peptides enrichment 

The ratio of peptide to TiO2 beads has been found to play a significant role in P-peptides 

enrichment efficiency [179, 180]. The amount of TiO2 beads slurry applied for efficient 

P-peptides enrichment was investigated by testing different ratios of peptide to TiO2 

beads (w/v) ranging from 80/1, 40/1, 20/1 and 10/1. In total, 145 P-peptides 

corresponding 124 P-proteins were determined from TiO2 beads (from all four 

comparisons of peptide/beads ratios). The numbers of identified P-peptides from each 

ratio of peptide/beads experiments are shown in Fig 5.5 and detailed information about 

the distribution of Ser/Thr/Tyr sites, and single- or multiple- P-peptides are listed Table 

5.2D and Table TS5.6 in the Appendix. From Fig 5.5, we can see that numbers of unique 

P-peptides increased with the decrease of peptide-to-beads ratios such as 57, 46, 59 and 

43 for 80/1, 40/1, 20/1 and 10/1 respectively, and the highest number of detected P-

peptides was corresponding to the ratio of 20/1. The corresponding P-proteins are detailed 

in Table TS 5.6. There were 51, 43, 53 and 42 P-proteins, and P-sites were 69, 63, 71 and 
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60 for ratios of 80/1, 40/1, 20/1 and 10/1, respectively. Although the ratio of 20/1 

outperformed to the others, (40/1, 20/1 and 10/1) the difference was not significant. 

However, a slightly higher number of P-peptides with more than two P-sites was 

observed from the deficient beads usage (40/1 compared 20/1 and 10/1): 16 vs 11 vs 14. 

The detection number was similar to them (11) when insufficient beads (ratio of 80/1) 

was used. It agrees with a previous study reporting that the reduced use of beads benefits 

multiple P-peptide binding, but P-peptides selectivity will decrease if excessive or 

inadequate beads was used [179]. Taken all together, the optimised ratio 20/1 was used 

for future quantitative phosphoproteomics experiments.  

 

Fig 5.5 Total numbers of unique P-peptides and P-proteins corresponding to different ratios of peptide to 

beads. 

 

In summary, peptides-to-TiO2 ratios affected the enrichment efficiency of TiO2 beads. 

Here, for S. solfataricus P2, the optimum peptide-to-TiO2 ratio (w/v) of 20/1 was 

determined, however, the phosphorylation ratio was lower than other studies (30% for all 

the tested ratios compared to 80% of HeLa cell lysate [179]). It might be explained by 

high phosphorylation level (30%) in Eukaryotes compared to S. solfataricus (17%) as 

reported by [7]. Furthermore, a higher phosphoproteome coverage might be achieved by 

using efficient elution such as the application of a pH stepwise elution and pH step 

gradient elution [181, 182]. In addition, compared to conventional use of ammonium 

hydroxide, which favours the elution of short P-peptides (1-1.5KDa), bis-tris propane 

tends to elute long P-peptides  (1-4KDa) [177].  

5.4.2.4 Consecutive incubations by TiO2 beads 

Other factors such as consecutive incubations of TiO2 beads have been found to increase 

total numbers of identified P-peptides [179]. We investigated four consecutive 
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incubations for each specific ratio to determine both the best ratio of peptides-to-beads 

and number of incubated cycles. Detailed results are shown in Figs 5.6 and Table 5.2E, 

and Table TS 5.7 in Appendix. The overlap number between different cycles is shown in 

Venn diagram Fig 5.7 A and B. It can be seen that 23 P-peptides were identified from the 

1st incubation by using peptides to beads ratio of 20/1, and P-peptides increased slightly 

to 28 for the 2nd cycle. Of these, 11 P-proteins were overlapped from the two incubations. 

A decrease was observed from 2nd to the 3rd incubation, and 9 P-peptide from 9 P-protein 

were overlapped.  

 

 

Fig 5.6 Total numbers of unique P-peptides and P-proteins in relationship to consecutive incubation of 

beads. 

 

                   

Fig 5.7 Venn diagrams showing the overlap numbers between consecutive incubations using TiO2 beads: 

identified P-proteins (A) and P-peptides (B). 

 

In addition, there are still 16 P-proteins detected from 4th incubations, but the overlap 

protein percentage is 43.75% (7/16) with the 3rd incubation. So, no further test was 

performed by considering instrument time and experiment budget. In comparison to the 



Chapter 5 Evaluation of phosphopeptide enrichment strategies for global phosphoproteomic study  

120 

 

one-step incubation, a 256% (23 vs 59) increment in the total P-peptides and 252% (21 

vs 53) of p-protein identification were achieved by incorporation of four cycles of 

continuous incubation. The increase of incubation cycles from 1 to 4 led to increased 

numbers of total P-peptides detected (Table TS 5.7). 

5.4.3 SIMAC 

Fig 5.1C shows 5 elutions, which were run from one biological sample using the modified 

SIMAC technique. A total of 31 P-peptides corresponding to 30 P-proteins were detected, 

with 38 P-sites determined. A detailed identification number for each step was shown in 

Fig 5.8 and supplementary Table TS 5.8. The distribution of single and multiple 

phosphorylation ratio can be found in Table 5.2F. As a result, 28 P-peptides were detected 

from ammonium elution. Furthermore, 7 P-peptides corresponding to 7 P-proteins were 

detected from the 1st cycle of TiO2 enrichment of TFA elution. And 8 P-peptides 

corresponding to 7 phosphorylated proteins were detected from the 2nd cycle of TiO2 

enrichment using TFA as elution buffer. However, a high number of non-

phosphopeptides were also detected from the 2nd cycle of TFA elution. It indicates that 

one cycle TiO2 treatment for TFA elution is good enough. After ammonium hydroxide 

and TFA elution, some P-peptides were also detected from supernatant flow treated by 

two cycle of TiO2, 12 and 8 P-peptides were detected, respectively. However, a high 

number of non-P-peptides was also found from the 2nd runs, corresponding to a 

phosphorylation ratio of 2.3%. Therefore, a balance between P-peptides recovery and 

enrichment selectivity should be considered for global phosphoproteomic analysis.  

 

Fig 5.8 Total numbers of unique P-peptides and P-proteins detected using SIMAC technique. IME is the 

1st elution using IMAC. TFA-TiO is TFA elution and goes to TiO2 enrichment. TFA-TiO-2Cy is the 2nd 
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cycle of TiO2 enrichment with TFA elution. SP-TiO is supernatant flow submit to TiO2 enrichment. SP-

TiO-2Cy is 2nd cycle of TiO2 enrichment of supernatant flow.  

5.4.4 IMAC vs TiO2 vs SIMAC 

Numbers of detected P-peptides and P-proteins from IMAC, SIMAC and TiO2 (ratio 20/1) 

techniques are shown in Fig 5.9 and Table 5.2G, and detailed in Table TS 5.9 in the 

Appendix. Comparisons were made based on the same amount of proteins used for P-

peptides enrichment (500 µg of proteins and a biological triplicate applied for each 

condition). A high percentage of triply charged peptides were observed in P-peptides 

from all experiments and details can be found in Table TS5.10 in the Appendix. The 

overlap of P-peptides and P-proteins identified between different methods are shown in 

Fig 5.10 A-B. Among these P-peptides, 59 of them were detected from TiO2 conditions 

(peptide/beads ratio of 20/1 and 4 cycles of incubation), whereas only 13 were found 

from a single IMAC enrichment and 31 were detected from the modified SIMAC 

technique, corresponding to a different percentage of P-peptides: 6.1% vs 3.8% vs 5.2%, 

respectively. It has been shown that P-peptides enrichment using TiO2 resulted in higher 

coverage of P-peptides (for 1 cycle of incubation: P-proteins from 23 P-peptides). It 

supports the previous report that TiO2 is more selective than IMAC for P-peptide 

enrichment [278].  

 

In addition, only seven P-proteins and eight P-peptide were overlapped in three 

techniques (Fig 5.10 A and B). A higher number of unique P-peptides were observed than 

that of P-peptides (23 compared to 51) for SIMAC and TiO2 enrichment experiments. In 

total, 7.7% (1 of 13) of P-proteins and 15.4% (2 of 13) of P-proteins determined from 

IMAC were overlapped with those detected from either SIMAC or TiO2.  
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Fig 5.9 Total numbers of unique P-peptides and P-proteins identified by different treatments. Ctrl is without 

enrichment. 

                                           

                                  

Fig 5.10 Venn diagrams showing the overlap between different enrichment experiments: identified P-

proteins (A) and P-peptides (B). In total, 59, 31 and 13 P-peptides corresponding to 53, 30 and 13 P-proteins 

were determined using TiO2, SIMAC and IMAC techniques respectively. (C) Venn diagram showing the 

overlap between previous study [7], all enrichment and control (without enrichment) experiments identified 

using maXis-UHR-TOF of unique P-proteins (C) and P-peptides (D). 

 

An improvement of P-peptides recovery by using SIMAC could have resulted from the 

contributions of both IMAC and TiO2, which supports the previous report [183]. It 
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supports the previous statement that a combination use of IMAC and MOAC is necessary 

for comprehensive phosphoproteome analysis [184]. Altogether, 82 unique P-peptides 

from 76 P-proteins with a determination of 100 P-sites were identified by a combination 

of magnetic beads with the optimum peptide/beads ratio of 20/1 and 4 consecutive 

incubations and modified SIMAC technique (including 7 common P-proteins and 8 P-

peptides). The optimised strategy will be applied for further global quantitative 

enrichment optimisation. 

 

The distribution of single, double, triple and higher P-sites from different enrichment 

experiments are shown in Table 5.2 A-F. Compared to multi-P-peptides, a large number 

of mono-P-peptides (almost 80% of identified P-peptides ≤ 2 P) were identified from all 

experiments. It was possibly due to the suppression of multi-P-peptides by abundance of 

single- or non- P-peptides in MS analysis process [166], since LC/ESI-MS/MS was 

reported to be efficient for singly charged P-peptides detection [278]. Overall, of the 59 

P-peptides identified by TiO2 magnetic beads (peptide to beads ratio of 20/1), 48 were 

mono-phosphorylated, 10 were doubly-phosphorylated and only one triply-

phosphorylated. In comparison, the SIMAC technology detected 25 mono P-peptides 

(1P), 5 doubly phosphorylated (2P) and only one triply phosphorylated (3P).      

 

Table 5.2 Comparisons of different P-peptides enrichment strategies  

Table 5.2A IMAC. 

 

Number of P-peptides with various P-

sites 

Ratio of P-peptides with various P-

sites (%) 

 1P 2P 3P 4P 1P ≥ 2P 

Amm 12 1 1 1 92.3 7.7 

Amm + ACN 7 1 0 0 87.5 12.5 

SP 9 2 1 0 75.0 25.0 

 

Table 5.2B Different TiO2 formats. 

 

Number of P-peptides with various P-sites 

Ratio of P-peptides with 

various P-sites (%) 

1P 2P 3P 4P 1P ≥2P 

Beads 48 10 1 0 81.4 18.6 

Spin tip 12 2 0 0 85.7 14.3 

TiO tip 12 5 1 0 66.7 33.3 
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Table 5.2C Various acids as non-phosphopeptides excluders for TiO2 beads. 

  Number of P-peptides with various P-sites 

 Ratio of P-peptides with various P-sites 

(%) 

 1P 2P 3P 4P≥ 1P 2P 3P 4P≥ 

1 M CA 7 3 0 1 64 27 0 9 

500 mM CA 3 1 1 0 25 8 8 0 

200 mM CA 2 1 1 1 40 20 20 20 

100 mM CA 6 4 1 0 55 36 9 0 

50m M CA 6 6 1 1 43 43 7 7 

Glycolic acid 11 3 1 3 61 17 6 17 

Lactic acid 9 6 1 2 50 33 6 11 

NQ-Glu 2 1 2 0 40 20 40 0 

NQ-Asp 2 1 0 0 67 33 0 0 

Glutamic acid 2 2 0 0 50 50 0 0 

Control 0 2 0 0.0 0 100 0 0 

   

Table 5.2D different peptide-TiO2 beads ratio. 

Peptide/beads 

ratio 

 Number of P-peptides with various P-

sites 

 Ratio of P-peptides with various 

P-sites (%) 

1P 2P 3P 4P 1P ≥2P 

Ratio-80 46 10 1 0 80.7 19.3 

Ratio-40 30 15 1 0 65.2 34.8 

Ratio-20 48 10 1 0 81.4 18.6 

Ratio-10 31 13 1 0 72.1 27.9 

       

Table 5.2E Consecutive incubations of TiO2 beads. 

TiO2 

Incubations 

Number of P-peptides with various P-sites 

Ratio of P-peptides with 

various P-sites (%) 

1P 2P 3P ≥ 4P 1P ≥2P 

F1 38 17 2 0 66.7 33.3 

F2 32 12 2 0 68.1 29.8 

F3 30 15 4 0 61.2 38.8 

F4 25 14 4 0 58.1 41.9 

         

Table 5.2F SIMAC. 

SIMAC 

Number of P-peptides with various P-

sites 

Ratio of P-peptides with 

various P-sites (%) 

1P 2P 3P 4P 1P ≥2P 

IME 8 2 0 0 80.0 20.0 

TFA-TiO 5 1 1 0 71.4 28.6 

TFA-TiO-2Cy 7 1 0 0 87.5 12.5 

SP-TiO 12 0 0 0 100.0 0.0 

SP-TiO-2Cy 7 1 0 0 87.5 12.5 

SIMAC 25 5 1  80.6 19.4 
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Table 5.2G Different enrichment strategies. 

 

Number of P-peptides with various P-sites 

Ratio of P-peptides with 

various P-sites (%) 

1P 2P 3P ≥ 4P 1P ≥2P 

TiO2 48 10 1 0 81.4 18.6 

IMAC 12 1 1 0 92.3 7.7 

SIMAC 25 5 1 0 80.6 19.4 

Control 4 1 0 0 80.0 20.0 

          Note: P indicates phosphorylation. 

 

The numbers of P-peptides/proteins detected using affinity-based IMAC-Fe and TiO2 

enrichments were compared with the study reported by Esser [7] (without P-peptides 

enrichment), and results are shown in Fig 5.10C. A total of 48 P-proteins were overlapped 

from both studies. In addition, only one P-peptide with phosphorylation site was detected 

in both studies. In total, the P-protein number was 675, which accounts for 22.5% of the 

proteome of S. solfataricus.  

 

P-proteins from all enrichment experiments (identified using maXis-UHR-Q-TOF) were 

distributed into 20 out of 26 arCOG functional categories in S. solfataricus with regard 

to their biological functions based on arCOG classification 

(http://archaea.ucsc.edu/arcogs/). Results are shown in Fig 5.11. 

 

Fig 5.11 Pie chart of functional categories of all enriched P-proteins (178) identified from 205 unique P-

peptides.  

 

http://archaea.ucsc.edu/arcogs/
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Fig 5.11 shows the two largest group of enriched phosphorylated proteins were proteins 

with unknown function (arCOG S, 15.2%) and general function prediction only (arCOG 

R, 13.5%), followed by arCOG replication (arCOG L, 11.8%), , and amino acid transport 

and metabolism (arCOG E, 6.7%). 

 

The unique P-proteins identification number were compared from different techniques 

when similar carbon source (0.4% glucose) was supplied for S. solfataricus P2 and results 

are depicted in Fig 5.12. Compared to which without incorporating any enrichment 

strategies, a high number was observed by using enrichment techniques (205 vs 311). 

Also, a high number of P-proteins involved in replication (arCOG L) and post 

translational modification (arCOG O). The distribution into arCOG functional groups 

were less (20 vs 21). No P-proteins were classified into arCOG intracellular trafficking, 

secretion and vesicular transport (arCOG U). But similar distributions on cellular 

metabolism arCOG (F, I, K) were identified by using enrichment and without enrichment 

techniques [7]. 

 

 

Fig 5.12 Comparison of the classification of arCOG functional codes investigated by using with (orange) 

and without (black) enrichment techniques [7] reveals some differences.  
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In Fig 5.13, it gave an example of P-site annotation. The neutral loss of H3PO4 was 

observed with a good coverage of b- and y- ions for identification. 

 

Fig 5.13 An example of sptetrum annotation for phosphopeptide (including b- and y- series ions and neutral 

loss) determined from P-protein gi 13814416 identified using Phenyx search engine. 

5.5 Conclusions 

Using a maXis UHR-TOF LC-MS/MS we have been able to assess the P-peptide 

enrichment effectiveness from the cell lysates of S. solfataricus using IMAC, TiO2 and 

SIMAC. Compared to enrichment-free PAcIFIC technique. The advantage of enrichment 

strategies include less MS time. A higher percentage (almost twice more than that in total 

peptides) of triply charged P-peptides were observed from all enrichment results detected 

by the maXis Q-TOF as detailed in Table TS 5.10 in the Appendix. It indicates that the 

possibility of improvement on phosphoproteome coverage by using both CID and ETD, 

where the latter has proven to be more efficient for detection of highly-charged ≥3+ 

charge) peptides [205]. In addition, P-peptides with one P-sites were predominantly 

identified using TiO2 (81.4%), it shows the necessity for the combination of other 

enrichment technical workflows.  

 

We can conclude that: 

- Firstly, magnetic beads led to higher number of P-peptides/proteins detected compared 

to pipette tips and spin tips, although it is still unclear why one of these formats resulted 
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in a better result than another for P-peptides enrichment. It might be due to undocumented 

modifications of the resins materials made by their respective manufacturer(s).  

 

- Secondly, both SIMAC and consecutive TiO2 showed their benefits compared to single 

IMAC use in terms of P-peptides and p-protein identification.  

 

- Thirdly, the optimised peptide-to-TiO2 beads ratio of 20/1 and 4 consecutive incubations 

for magnetic beads were chosen for further experiments. In total, 71 P-sites from 53 P-

proteins were detected with an identification of 59 non-redundant P-peptides. Together, 

145 unique P-peptides were identified from 124 P-proteins, with a determination of 187 

P-sites on Ser (55, 29.4%), Thr (41, 21.9%) and Tyr (91, 48.75%) from the peptides/ 

beads ratio experiments.  

 

- Finally, the combind use of SIMAC with TiO2 provide complementary information 

which benefits a better phosphoproteome coverage. Together, we have optimised an 

efficient strategy that can be used for large-scale phosphopeoteomic experiments of S. 

solfataricus P2: peptide/magnetic beads ratio of 20/1 and 4 consecutive incubations and 

the modified SIMAC. However, phosphorylation enrichment from complex cell lysates 

with a high dynamic range is still a challenge. Large amounts of proteins are still 

recommend for global quantitative phosphoproteome studies. 
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Chapter 6 Expanding phosphoproteomic study from 

identification to quantitation in Sulfolobus solfataricus 

6.1 Abstract 

Based on information presented in in Chapter 5, P-peptides (phospho peptides) were 

enriched from whole cell lysates by a combination of TiO2 magnetic beads and SIMAC 

(IMAC and TiO2) before being fractionated using a HILIC technique. A total of 73 unique 

P-peptides corresponding to 61 P-proteins (phospho proteins) were detected with 91 P-sites 

(phospho sites) observed. The P-sites distribution of 36.3%/28.6%/35.2% were observed on 

Ser/Thr/Tyr residues. All quantified P-proteins were widely distributed into 16 arCOG 

functional categories and 31 KEGG pathways. Of these P-proteins, only 4 of them were 

differentially regulated in response to the carbon source changing from glucose to tryptone 

using 0.01Da as MS tolerance. A half of these regulated P-proteins are enzymes involved in 

amino acid metabolic pathways. The data provide valuable quantitative phosphoproteomic 

information for the understanding of how S. solfataricus P2 responded to different carbon 

sources (glucose vs tryptone). Most of the quantified P-proteins involved in carbohydrate 

metabolism are unaffected in expression level, while P-proteins functional in amino acid 

metabolism were up or down regulated. 

6.2 Introduction 

Recognition of important roles of protein phosophorylation in signal transduction in almost 

all cellular processes [94, 95, 285] has led to studies on the phosphoproteome of bacteria 

and eukaryotes. Previous studies within archaea demonstrated that protein phosphorylation 

[96, 108] mainly occurs on Ser, Thr or Tyr residues. Recent large scale phosphoproteome 

studies in the halophilic archaeon Halobacterium salinarum [286] and hyperthermophilic 

Sulfolobus species [7, 47] have revealed that protein phosphorylation sites are widely 

distributed in various cellular processes and especially enriched in metabolic processes.  

 

The first large set of protein phosphorylation on Ser/Thy/Tyr and the initial genome-wide 

phosphoproteomic study in archaea was performed on H. salinarum, which resulted in the 

determination of 81 P-sites from 69 P-proteins [286]. S. solfataricus able to grow under 

different carbon sources (from glucose to tryptone) has resulted in phosphoproteomic level 

changes, from which 1318 P-sites were identified from 540 unique P-proteins [7]. 

Furthermore, 809 unique P-proteins were detected in phosphoproteomics experiments of 
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three S. acidocaldarius strains (one wild and two mutants) [47]. However, these 

phosphoproteomic studies were carried out in terms of P-proteins identification without 

enrichment only. Until now, no quantitative phosphoproteomics studies in archaea have 

been performed. 

 

In this Chapter, we have studied the global quantitative phosphoproteome of S. solfataricus 

P2 grown on two different carbon sources by a combination of P-peptide enrichment 

techniques (TiO2 and SIMAC). We have identified a number of (61) unique P-proteins that 

are involved in 31 of the 78 KEGG pathways and their biological significance was 

determined by pathway mapping. This is the first quantitative phosphoproteome study in the 

third domain of life - the archaea.  

6.3 Materials and methods 

6.3.1 Microorganism growth conditions and protein digestion 

Cell growth of S. solfataricus strain P2 on 0.4% glucose or 0.2% tryptone was described in 

detail in Chapter 3. Cell pellets collection, cell lysates, protein extraction and digestion were 

performed following procedure detailed in Chapter 3. In total, 10 mg of protein was used 

per phenotype. An SDS-PAGE gel was run to test trypsin digestion efficiency.  

6.3.2 Phosphopeptides enrichment 

The resultant peptides were desalted by C18 materials (Discovery-C18, Sigma) before being 

enriched by PHOS-Select Iron Affinity Gel (IMAC-Fe) and TiO2 (modified SIMAC) as well 

as 4 cycles of continuous incubation of TiO2 magnetic beads with a peptide/beads ratio of 

20/1. P-peptides enriched by a combination of SIMAC and TiO2 beads from whole cell 

lysates were combined together respectively and desalted thoroughly to remove ammonium 

before iTRAQ labelling. 

6.3.3 Isobaric p-peptide labelling 

One set of 4-plex iTRAQ reagents were applied (114 and 115 are biological replicates of 

peptides from 0.4% glucose growth condition, while 116 and 117 are biological replicates 

for 0.2% tryptone). The labelling process was performed according to the manufacturer’s 

procedure (ABSciex, USA). Dried labelled p-peptides were fractioned using a HILIC 

column as described in Chapter 4 [224]. A total of 32 HILIC fractions were collected. These 
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P-peptide fractions were dried and C18 (Nest, USA) desalted and frozen at -80°C for further 

MS analysis.  

6.3.4 LC-MS/MS analysis and data analysis 

MS analysis was performed on ESI maXis-UHR-TOF MS (Bruker, Germany) coupled with 

on-line LC as described in Chapter 5. A 90 min LC gradient was used for iTRAQ samples 

and the MS set up procedure were used as described in Chapter 5. Only 26 of HILIC 

fractions were run due to an instrument performance problem. 

 

All MS/MS spectra files were firstly converted into .mgf files using DataAnalysis (V4.0, 

Bruker Daltonics, Germany) before submitting to an in-house Phenyx search engine (v.2.6, 

Geneva Bioinformatics, Switzerland). The same peptide sequence of concatenated 

target/decoy database S. solfataricus strain P2 was applied as mentioned in Chapter 5. 

Similar search parameters were used for P-protein identification as described in Chapter 5. 

Briefly, tolerance of 0.01 Da and 0.1 Da were used for MS and MS/MS (respectively) search. 

And a charge of +1, +2, +3 and +4. Acceptance parameters are: minimums peptide length 

of 6. Peptides Z score, P-value and AC score do not have a clear optimum, so these values 

are set as 4, 10-4, and 4 for the following process with in-house software FDRslide for FDR 

estimation. Trypsin was used as the proteolytic enzyme with up to two missed cleavages. 

Cys_CAM, iTRAQ _K, iTRAQ_Ntermi as fixed modification and oxidation plus 

phosphorylation (STY) as variable modifications. In addition, deamidation (caused by basic 

elution of IMAC or TiO2 enrichment) as variable peptide modification were incorporated 

for P-peptide identification [158]. Also, proteins with more than 1 peptide were used for 

quantification. Results were extracted to Excel 2013 (Microsoft 2013, USA) for further 

analyses. Data were then submitted into in-house techniques for quantification 

determination [224]. The inhouse FDRslide tool kit was used and 5% of FDR was applied 

for all data before performing quantification analysis.  

6.4 Results and discussions 

In this research, a 4-plex iTRAQ experiment was applied to investigate the global 

phosphoproteome responses of S. solfataricus P2 to carbon source change from glucose to 

tryptone. Trypsin digested peptides from S. solfataricus grown on 0.4% glucose and tryptone 

were labelled with iTRAQ reagents 114 and 115 (for glucose), and 116 and 117 (for tryptone) 

(biological duplicate for each condition).  
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6.4.1 Search parameters for Phenyx search engine 

In addition, besides 0.01Da as MS tolerance, a wider MS tolerance (0.05Da) was also tested 

since this parameter was used in our group [282] and other study where the same instrument 

was used for global proteomic analysis [280]. In total, 259 P-proteins were quantified when 

0.05Da MS tolerance was applied and 18 P-proteins showed abundance change. However, 

only the data with strict MS tolerance (0.01Da) were discussed in the following parts.  

 

A total of 600 proteins from 1853 unique peptides were detected in this experiment, however, 

only 61 unique P-proteins were detected from 73 P-peptides. A total of 91 P-sites were 

identified from 73 non-redundant P-peptides. A brief summary of P-proteins detected and 

quantified until recently is listed in Table 6.2.The P-peptide ratio (number of P-peptides/all 

detected peptides, as defined by [179]) is only 3.94% (73/1853) and P-protein ratio (P-

protein/all identified proteins) is 9.90% (61/600), which is lower than expected. It indicates 

that further optimisation for quantitative level phosphoproteome studies needs to be carried 

out. Furthermore, only one injection was run for all the HILIC fractionations and few rich 

intensity fractions were lost due to an instrument problem as well and no technical replicates 

were applied. Therefore, we believed that if all fractions were run with technical replicates, 

results will be improved. This thus represents a proof of principle. 

 

Among these quantified proteins, 62 proteins overlapped with proteins detected from the 

enrichment technical optimisation (data from Chapter 5). Only 9 quantified P-proteins 

overlapped with those identified from previous enrichment experiment (data from Chapter 

5). A comparison of both quantified P-proteins (A) and P-peptides (B) from this experiment 

(a) with other P-proteins identified from enrichment technique (d) (178 P-proteins from 

Chapter 5), and without enrichment (PAcIFIC) technique (b and c) (311 and 311 for glucose 

and tryptone respectively as reported elsewhere [7]) are shown in Figs 6.2 A and B. From 

Fig 6.2A, we can see that only 2 P-proteins overlapped from all of these experiments. Among 

the 21 shared proteins between P-identification (data from Chapter 5 and Esser, et al [7]) 

and P-quantification (this chapter): 6 were only identified by incorporating enrichment 

technique (data from Chapter 5) and 5 of them were only detected using a PAcIFIC strategy 

[7] in the glucose feed condition, and in total 4 of them were only detected in tryptone media 

respectively.  
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Table 6.2 Number of P-proteins identified from S. solfataricus P2 

Experiments Glucose Tryptone  

PAcIFIC1) 311 311 

Identification 

Enrichment2) 178 - 

Control2) 5 - 

Sum 820 

iTRAQ3) 61 Quantitation 

                                 1) Esser et al., 2012. 2) Data from Chapter 5. 3) Data from this Chapter 

In contrast, no P-peptides overlapped from both techniques (iTRAQ quantified and 

PAcIFIC). And no P-peptides overlapped between enrichment (Chapter 5) and quantitative 

(this Chapter) experiments. 

 

The percentage of P-peptides carrying a triple charged in the P-peptide enrichment 

experiments was higher than that in triply charged non-P-peptides (data from Chapter 5). 

However, the percentage of +3 charged peptides for the iTRAQ experiment is almost the 

same between P-peptides (203/400, 50.8 %) and non-P-peptides (1148/2797, 41.0%).  

                  
Fig 6.1 Venn diagram of overlapped P-proteins between different experiments: a) Quantified number from this 

iTRAQ experiment. b) Cells grown on glucose and c) Cells grown on tryptone using (PAcIFIC) technique [7]. 

d) Identified number from P-peptide enrichment experiment (Chapter 5).  

 

In total, 91 P-sites were identified, with a distribution of 33 (36.3%), 26 (28.6%) and 32 

(35.2%) on Ser/Thr/Tyr residues. The distribution ratio of P-sites on Ser/Thr/Tyr 

(36.3%/28.6%/35.2%) in this quantitative study differed from the ratio in Chapter 5 

(31.4%/25.0%/43.6%) and previous phosphorylation study (25.8%/20.6%/53.6%) as 

reported elsewhere [7].  
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Furthermore, most of the detected P-peptides (77.5%) were mono P-peptides, and only 22.5% 

of the quantified P-peptides carried up to three P-sites. In total, of these 71 P-peptides 

identified, 55, 12 and 4 were mono-, doubly-, and triply-phosphorylated respectively, and 

no P-peptides carried more than four P-sites. There were some P-peptides carrying more 

than triply P-sites observed from different experiments such as from TiO2 (34.2%), or 

SIMAC (35.8%), as mentioned in Chapter 5. It is less with enrichment results (5.6% for data 

in this Chapter), which may be caused by a strong ion suppression that the detection of 

multiple P-peptides were greatly suppressed by the high abundance of non- or single- P-

peptides [166], because the ESI-LC-MS/MS has been observed to be beneficial to detect 

singly charged P-peptides detection [278]. It also might be a result from the loss of samples 

during multiple C18 desalting steps that are required by the iTRAQ labelling procedure (to 

avoid ammonium interference from P-peptides elution) and after HILIC fractionation (for 

efficiency of LC-MS/MS running).  

6.4.2 Functional classification of quantified P-proteins 

Of these 61 quantified P-proteins, 49.2%, 6.6% and 42.6% were located in cytoplasmic, 

cytoplasmic membrane and unknown categories respectively. The quantified P-proteins 

were classified into 16 of total 26 arCOG functional categories and a percentage distribution 

of these results is shown in Fig 6.3. We can see that most of quantified P-proteins are 

involved in metabolism pathways. This finding is well agreed with previous 

phosphoproteomics study of S. solfataricus P2 [7]. The largest group belonged to general 

function prediction (arCOG R, 18%) followed by uncharacterized conserved protein 

(arCOG S, 11.5%s) since almost a half of the genome has not been annotated yet [6]. 

Similare percentage (11.5%, and 9.84%) of of P-proteins were classified into energy 

production and conversion and amino acid metabolism (arCOG C and E), respectively.  

 

The percentage of P-proteins quantified in this Chapter (61 proteins), from enriched 

optimisation work (178 proteins) and P-proteins from Esser [7]: without enrichment with 

their distributions based on arCOG are shown in Fig 6.4. We can see that most of the detected 

P-proteins were distributed into arCOG R and arCOG S. Compared to P-proteins from 

identification (data from Esser [7] and Chapter 5), percentages of two categories (arCOG C 

and M) increased in the quantitative phosphoproteomic analysis: 2.57% vs 3.37% vs 8.20%.  
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Fig 6.3 Classification of quantified P-proteins based on arCOG functions in S. solfataricus P2. 

 

 

Fig 6.4 Percentage distribution of quantified P-proteins (61 proteins, red line) vs P-proteins (311 proteins, blue 

line) from Esser et al. [7], and P-proteins from enrichment optimisation (178, black line).  

 

6.4.3 P-proteins involving KEGG pathways 

There are 27 of P-proteins were annotated as hypothetical proteins. Quantitated P-proteins 

were plotted against S. solfataricus KEGG pathways 

(http://www.genome.jp/kegg/pathway.html). As a result, 18 out of 61 P-proteins were 

distributed into 31 of 78 KEGG pathways, as listed in Table 6.2A-C. Fifteen of these P-

proteins are involved in multiple metabolic pathways.  

 

http://www.genome.jp/kegg/pathway.html
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Table 6.2 P-proteins involving in different KEGG pathways  

Table 6.2A Carbohydrate metabolic pathways 

Carbohydrate metabolism P-proteins 

Citrate cycle (TCA cycle) SSO2815  

Glycolysis / Gluconeogenesis SSO0286 

Pentose phosphate pathway SSO0666 

Pyruvate metabolism SSO2496 

Glyoxylate and dicarboxylate metabolism SSO2496 

Starch and sucrose metabolism SSO0810 

Propanoate metabolism SSO2496 

Butanoate metabolism SSO2496 

Amino sugar and nucleotide sugar metabolism SSO0810 

Pentose and glucoronate interconversions SSO0810 

 

Table 6.2B Amino acid pathways 

Amino acid metabolism P-protein 

Ala, Asp and Glu metabolism SSO1930 

Gly, Ser and Thr metabolism SSO0248 

Arg and Pro metabolism SSO1930 

Lys degradation SSO2496 

Phe metabolism SSO2996 

Trp metabolism SSO0452, SSO2017, SSO2122 

β-Ala metabolism SSO2720 

Val, Leu and iso-Leu biosynthesis SSO0248 SSO0504 

Val, Leu and iso-Leu degradation SSO2496 

 

Table 6.2C Other metabolic pathways 

 KEGG pathways 

P-

proteins 

Nucleotide metabolism 

 

Pyrimidine metabolism SSO0976 

Purine metabolism SSO0241 

Energy metabolism 

 
Carbon fixation pathways in prokaryotes 

SSO2815, 

SSO2496 

Translation 
Aminoacyl-tRNA biosynthesis 

SSO0504, 

SSO0938 

Xenobiotics biodegradation and metabolism Benzoate degradation SSO2496 

Metabolism of terpenoids and polyketides Terpenoid backbone biosynthesis SSO2496 

Lipid metabolism Fatty acid metabolism SSO2496 

Note: P-protein with underline indicates abundance change 

 

6.4.3.1 Carbohydrate metabolism  

In total, only 6 quantified P-proteins involved in the CCM was observed. The reconstruction 

of the CCM in relationship with P-proteins are shown in Fig 6.4 A. Combining the 

information from Table 6.2 and Fig 6.4A, it can be seen that P-proteins are involved in 

multiple metabolic pathways. For instance, SSO2496 is involved in glycolysis, pyruvate 

metabolism and TCA cycle, which agrees well with literature observations [7]. Furthermore, 
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only one of the detected P-proteins SSO0810 in pentose and glucuroate interconversions as 

well as starch and sucrose metabolism pathways were differentially regulated. The 

regulation of phosphorylation level was not significantly changed, which might be due to 

the negative affect by other PTMs, as mentioned in Section 6.4.4. It provides useful 

information for phosphorylation in S. solfataricus P2.  

6.4.3.2 Amino acid metabolism 

In total, four P-proteins SSO0248, SSO0504, SSO1930 and SSO2496 involved in amino 

acid metabolism including Val, Leu and iso-Leu biosynthesis, Gly, Ser andThr metabolism, 

Ala, Asp and Glu metabolism respectively. However, none of them show abundance change. 

 

6.4.4 Regulated P-proteins in responding to changing carbon sources 

Quantitative P-proteomic analysis of S. solfataricus P2 results in responding to different 

carbon sources showed that most of quantified P-proteins were involved in metabolic 

pathways, which agrees well with previous phosphoproteomics study at the P-proteins 

identification level. In response to change carbon source from glucose to tryptone, 4 P-

proteins showed an abundance change: 1 of them were down-regulated and 3 protein was 

up-regulated (as listed in Table 6.3). The arCOG annotation and are listed in Table 6.3.  

 

Table 6.3 P-proteins with their abundance changes 

GI arCOG annotation 

Log2 

ratio  STD 

SSO0625 GTP-binding protein 1.15 0.01 

SSO0637 hypothetical protein 2.02 0.23 

SSO0810 UDP-glucose 6-dehydrogenase (ugd) 2.16 0.04 

SSO2815 2-oxoacid--ferredoxin oxidoreductase, alpha chain 0.79 0.09 
Note: log2 ratio <1 indicates down-regulation, and log2 ratio >1 indicates up-regulation. – indicates no 

KEGG pathway related. 
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Fig 6.4 Central carbohydrate metabolism (CCM) in S. solfataricus P2 (Glycolysis, TCA and 

pyruvate metabolism) (A). G1P: glucose 1-phosphate; G6P: glucose 6-phosphate; F6P: fructose 6-

phosphate; F1,6P: fructose 1,6-bisphosphate; DHAP: dihydroxyacetone 3-phosphate; KD(P)G: 2-

keto-3-deoxy-(6-phospho)gluconate; GAP: glyceraldehyde 3-phosphate; PGP: 1,3-

bisphosphoglycerate; 3-PG: 3-phosphoglycerate; 2-PG: 2-phosphoglycerate; GA: glyceraldehyde; 

PEP: posphoenolpyruvate; PPP: pentose phosphate pathway. Blue background is down-regulated 

proteins. P is P-protein. 
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SSO0625 is GTP (guanosine triphosphate)-binding protein, which is predicted to be 

guanosine triphosphatase (GTPase) in S. solfataricus P2 [7]. GTPase binds and hydrolyses 

GTP, which works like a molecular switch that have the ‘ON’ GTP-bound activated state 

and ‘OFF’ GDP (guanosine diphosphate) -bound inactivated state. GTPases are widely 

distributed in three domain of life and are well-studied in bacteria and eukaryote, which are 

proposed to play important roles in signal transduction, cell division, cell viability and they 

are stress-related proteins [287, 288]. There are three GTP-binding proteins in S. solfataricus: 

SSO0269, SSO0581 and SSO0625 [7]. Hitherto, SSO0269 was classified into Hflx (high 

frequency of lysogenization) family based on crystal structure [289]. It shares common Hflx 

in N-terminal and G-domain in C-terminal with Hflx of E. coli, which is a ribosome-related 

GTPase but hints a role in translation rather than ribosome biogenesis [290]. However, the 

biological function of any S. solfataricus GTP-binding proteins (SsGBPs) is largely 

unknown except the investigation of GTP hydrolysing activity and thermal stabilities of 

SSO0269 through mutations study [291]. The biological function of Hflx in E. coli was 

remained unexplained until the observation of GTP-mediated autophosphorylation recently 

by Kaur and co-workers [292]. A preference of Mn2+ to Mg2+ as cofactor was found for Hflx 

and further investigation indicates a role in Mn homeostasis [292]. In addition, Mn-treated 

ΔHflx mutant cells exhibit filamentation phenotype and SOS response (global response to 

DNA damage) [292]. Autophosphorylation of Hflx was proposed to be a start point of signal 

transduction for Mn homeostasis and studies are still going on [292]. Autophosphorylation 

of leucine-rich repeat kinase 2 (LRRK2) on Thr1343 was reported, which is a protein harbor 

both kinase and GTPase activities [293]. This protein has a Ras-like GTP-binding domain 

and a kinase domain, and mutations at either domain lead to Parkinson’s disease [293]. 

Multiple Ser or Thr residues were found to be potential phosphosites and two novel sites 

were identified within the ROC/GTPase domain in vitro. In addition, it indicates 

autoregulation of LRRK2 [293]. The determination of regulated phosphoprotein SsGBP 

(SSO0625) upon carbon source change propose the interest to reveal the mystery of GTPases 

in S. solfataricus. 

 

Moreover, it can be noticed that one of the most abundant proteins: thermosome β-subunit 

(SSO0282) was quantified and it showed ‘light’ down regulation when lose parameters were 

applied (0.1Da for MS tolerance). A further study on SSO0282 seems promising to unravel 

the cross-talk between phosphorylation and acetylation in archaea, since N-terminal protein 

acetylation of SSO0282 and other 16 proteins in S. solfataricus have been reported [294]. A 
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list of proteins with their abundance changes and PTMs modifications are shown in Table 

6.4. Phosphorylation-dependent binding was proposed to be impaired by lysine acetylation 

of 14-3-3 protein, which was investigated through mutation lysine sites (K50, K69 

K118+K123) [88]. Furthermore, the predicted down regulation of Zn-dependent alcohol 

dehydrogenase (ADH-2, SSO0764) may be of interest due to its potential function in alcohol 

and acetone metabolism [35, 40, 41] in S. solfataricus. However, the abundance change 

cannot be distinguished from protein or phosphorylation level, further validation work still 

needs to be carried out.  

 

Table 6.4 Proteins with different PTMs modifications 

Protein Acetylation a) 

Phosphorylation-

identification b) 

Phosphorylation-

Quantitation c) 

SSO0278 + - - Up 

SSO0317 - + + Up 

SSO0352 + - - Down 

SSO0862 + + + Down 

SSO0962 + - - Down 

SSO1457 + - - Up 

        Note: a) Data from [294]. b) Data from Chapter 5. c) Data from this Chapter. 

6.5 Conclusions 

The application of P-peptide enrichment techniques coupled with quantitative proteomics 

enabled us to access the quantitative phosphoproteome network of S. solfataricus P2 in 

response to carbon source change from glucose to tryptone. Among the determined 600 

proteins, 61 of them were phosphorylated. The quantified P-proteins were widely distributed 

into 17 of 26 arCOG categories. Evidence was provided at the quantitative level that P-

proteins are widely involved in amino acids, carbohydrate metabolism and other cellular 

processes. However, only 4 of these quantified P-proteins were differentially regulated 

under glucose vs tryptone conditions (with the dataset in hand). Four of these regulated P-

proteins are involved in carbohydrate or amino acid metabolism and the others have not been 

characterised. The majority of P-proteins were not affected by changing carbon sources 

(glucose or tryptone). Here is the first time the quantitative analysis of P-proteins in S. 

solfataricus has been reported, offering potential application for other achaeal studies. 
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Chapter 7 Global metabolome analysis on response of Sulfolobus 

solfataricus to different carbon sources 

7.1 Abstract: 

The lack of 46 genes in S. solfataricus PBL2025 (a spontaneous mutant) results in quantitative 

proteome level change compared to model strain P2, also, many changes occurred at proteome 

level when changing carbon source from glucose to tryptone for both these strains. It would be 

predicted that altered genetic level would impact on metabolites and therefore metabolome. 

However, little information is known concerning the alteration of global metabolome. 

Metabolomics results based on GC-MS experiments indicated that 163 metabolites could be 

identified from all experiments and 113 of them were assigned a KEGG C number (used for 

pathway mapping), while only 47 metabolites involved in KEGG pathways. Amino acid 

metabolisms were significantly affected and most of the detected amino acids showed high 

abundances, which supports for quantitative proteomic data in Chapter 4. The regulation of S. 

solfataricus in responding to carbon source change from glucose to tryptone might follow 

feedback-inhibition mechanism.  

7.2 Introduction 

S. solfataricus P2 is a widely used model strain in archaeal research. S. solfataricus PBL2025 

has been a valuable strain as genetic tool through gene deleting in biological study [241]. By 

changing the carbon source from glucose to tryptone, Esser et al [7] observed a significant 

phosphorylation level change of proteins, especially those involved in CCM of S. solfataricus 

P2. Our previous proteomic studies (data from Chapter 4) have revealed interesting differences 

related to central carbohydrate metabolism (CCM), amino acids and energy metabolism 

between two strains (P2 and PBL2025) grown on glucose media and the same strain grown on 

different carbon sources (glucose vs tryptone). Proteomics techniques have been widely 

performed with regarding to interpreting the unique metabolic pathways of this archaeon [4]. 

By contrast, metabolomic study is still very limited except the study on CCM response of P2 

to optimal (80°C) and suboptimal (75°C) living temperatures under standard glucose media 

[38] and CCM changes in metabolites levels between 2-keto-3-deoxygluconate kinase deletion 

mutant strain PBL2025Δ3195 and PBL2025 grown on Brock media at 76°C [48].  

 

By incorporating the GC-MS technique, this work describes the application of metabolomics 

methods in S. solfataricus study to characterise global metabolites changes between different 
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strains as well as different carbon sources. Same biological samples (for 

proteomic/phosphoproteomic investigation in Chapter 4, 5 and 6) grown on same carbon source 

(glucose or tryptone) were used. The objective is to obtain preliminary data to provide global 

metabolomic information to model P2 strain and two mutant strains PBL2025 and PBL2073. 

It is also anticipated that these data together with our previous proteomic data may provide 

fundamental information to unravel the -omics changes (proteomic and metabolomic) in 

responding to different growth conditions of S. solfataricus.  

7.3 Materials and methods 

7.3.1 Sample preparation 

S. solfataricus strains P2, PBL2025 and PBL2073 were cultivated separately in 250ml flasks 

at 80°C, pH 3.0 and 120 rpm in a horizontal shaking thermal incubator (Thermotron, Infors, 

UK) in Brock media with 4 g/L glucose or 2 g/L tryptone as sole carbon source. A volume of 

50ml of cultured cells was harvested in late-exponential growth phase (OD650 = 1.0 ± 0.1) based 

on growth curves (see Chapter 3) and centrifuged at 5,000 x g for 10min at 4°C. Cells pellets 

were frozen using liquid nitrogen and then stored at -80°C until required. All chemicals were 

purchased from Sigma-Aldrich (Gillingham, UK) unless otherwise stated. Biological 

triplicates were applied. 

 

For extraction of metabolites, the cell pellet was washed by 1.5ml of 0.9% (w/v) NaCl and then 

distilled water (5,000 x g, 5min, 4°C). Subsequently, cells were re-suspended in 500 µl ice cold 

(-20°C) methanol containing an equivalent volume of acid washed glass beads (425−600μm) 

(compared to cell pellet volume). Global metabolites were extracted using a disruptor (Genie 

Vortex, USA) with 7 cycles alternately 45 sec of disruption and 2 min of incubation on ice 

between each run. Supernatants containing the soluble crude extracts were centrifuged at 

13,000 × g for 30 min at 4°C, transferred and dried by a vacuum centrifugation (Eppendorf 

Concentrator 5301, Germany). Global metabolites were derivatized as described in details 

elsewhere [295]. Briefly, dried samples were re-suspend in 25 µl of dimethylformamide 

contain 0.1% pyrimide. Later, 25 µl of N-methyltrifluoroacetmide was added. Samples are 

incubated at 80°C for 60 min and are ready for further analysis. Nor-valine was used as external 

standard; its derivatization followed the above procedure. Samples and external standard was 

mixed before GC-MS injection.  
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7.3.2 GC-MS analysis 

GC-MS settings for global metabolome analyses were used as follows: analysis was performed 

on a GC coupled to a Finnigan Trace DSQ single Quadrupole GC-MS coupled to an auto-

sampler (model AS3000, Thermo Electron, Waltham, USA) equipped with a 30 m × 0.25 mm 

× 0.25 μm df stabilwax fused silica column (Thames Restek, Bucks, UK). Hot needle injections 

with a 0.1 μl injection volume were employed. Helium was used as carrier gas at a constant 

flow rate of 1 mL/min. The splitless injector was set to 250 °C, running on the splitless mode. 

The oven temperature profiles were programmed to trace global metabolite:  40 °C held for 0.5 

min, followed by a 30 °C/min ramping up to 200 °C and held at 200 °C for 1 min. 

 

The GC-MS was operated in the full scan mode with mass range covering from 50 to 650 m/z. 

The ionization temperature was applied at 230oC and 105 eV was also used for ionization 

process. An external standard (Nor-valine) was added to all phenotypes for normalizing data 

purposes. A biological triplicates and a technical duplicates were performed for each sample. 

7.3.3 Data processing and analysis 

All chromatograms (raw data) were firstly converted into .mzXML format by MSConvert of 

ProteoWizard (version 3.0 4624) and submitted to online open source XCMS [296] for 

statistical analysis and visualized cloud plot data [297]. Cloud plot figures were generated 

based on significantly different extraction total ion chromatography (TIC) features, and criteria 

was set up as fold change ≥1.5 and p-value < 0.01. However, the information extracted from 

XCMS are only used for statistic purpose, since the data was searched against plant specific 

METLIN database.Identification of metabolites was achieved by search against NIST main 

library and extracted data was modified (to remove derivation information) using in house 

Macros program (from Dr.Vaidyanathan). The mass spectrum (Xcalibur .raw file) was 

analysed using the Automated Mass Spectral Deconvolution and Identification System 

(AMDIS) (V2.70 ) to identify the compounds by matching detected data with the mass spectral 

library, which linked to the National Institute of Standards and Technology (NIST) MS search 

2.0 NIST 2011 (NIST 11, USA). A deconvolution issue need to be considered which was 

resulted from the shared fragment ions by co-eluting compounds. To achieve a better 

identification of even low abundant peaks in the TIC various and to determine the maximum 

number of components with smallest false-positive hits, optimised parameters were used [298]. 

The deconvolution settings for AMDIS were: scan direction: high to low; instrument type: 

quadrupole; adjacent peak subtraction, 0; resolution, high; sensitivity, high; shape requirements, 

http://www.sheffield.ac.uk/cbe/staff/staffprofiles/vaidyanathan
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medium with target compounds from main library; component width: 12 (signal to noise ratio 

will be better with small component width) with minimum match factor 60. After 

deconvolution, the match factor >60% and probability >20% were considered for which the 

experimental spectrum matches with NIST reference spectrum [299]. The relative intensity 

(‘area’ extracted from AMDIS) was normalized against the area of Nor-valine. Thus metabolite 

abundance were expressed as ratios relatives to external standard. Therefore, the abundance 

change between different samples can be compared in terms of ‘relative change’.  

 

 Each metabolites was matched with unique C number (entry number of metabolites in KEGG 

COMPOUND database), which was obtained by manually search against KEGG database 

(http://www.kegg.jp/kegg/kegg2.html). The related pathways were mapped by searching 

against database of S. solfataricus [300]. 

7.4 Results and discussions  

Until now, there has been no single software or search engine that can be solely used for global 

metabolic data analysis. To have a basic understanding the response of S. solfataricus strains 

to different carbon sources, all the GC-MS data was firstly submitted for statistical analysis 

using online XCMS [296] and results are listed in Table 7.1, whereas cloud plot figures are 

depicted in Fig 7.1A-F. However, the database information used in XCMS are not specific for 

microorganism, so further metabolites identification was achieved by searching against the 

NIST library purchased from AMDIS. The identification numbers of metabolites from different 

experiments are listed in Table 7.2. Comparisons between different carbon sources are shown 

in Fig 7.2, and differences between various strains are shown in Fig 7.3  

7.4.1 Statistic analysis using XCMS 

Statistic features of metabolites changed between different comparisons are summarised in 

Table 7.1, and quantitative proteome data (withdrawn from Chapter 4) are also shown in this 

Table. For strains grown on the same carbon source, a similar change could be observed 

between significantly changed metabolomic features from GC-MS and abundance changed 

proteins from LC-MS/MS (data from Chapter 4). For instance, for cells grown on glucose 

media, a high number of proteins showed their abundance changes for P2 and PBL 2025 

comparison (GA vs GB) than PBL2025 and PBL2073 (GB vs GC) comparison: 158 proteins 

vs 81 proteins. Correspondingly, more changed features was detected at metabolome level: 690 

vs 219 for GA vs GB and GB vs GC comparisons respectively. For GA vs GB, the absence of 

47 genes (SSO3004-SSO3050) in PBL2025 resulted in a higher number change than which 

http://www.kegg.jp/kegg/kegg2.html
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only one gene difference in both proteome and metabolome levels. Furthermore, it can be seen 

that the effect from changing carbon source seems different between different strains (P2 and 

PBL2025). The regulation of 159 proteins were affected and 533 features changed from 

metabolic level for P2 grown on tryptone vs glucose, whereas a high number proteins (208) 

showed their increase or decrease in abundance relative to PBL2025 but a small number 

metabolome features (425) were found. However, a solid conclusion cannot be withdrawn for 

other comparisons, since only 5 comparisons of proteomic data are available due to technical 

limitation for data analysis between different iTRAQ sets.  

 

Examples of significantly changed metabolomics features are shown in cloud plot Figs 7.1 A-

F. A single bubble in cloud plot (Fig 7.1) indicates a feature. Different colours indicates the up 

or down regulation of the feature: green for up- red for down-regulation. The size of bubbles 

indicates log (fold change). A darker color indicates a smaller p-value. The bubble with a black 

outline indicates the feature was identified from METLIN database, while bubble without a 

black outline indicates no identification was found. It can be seen from Fig 7.1A, 533 regulated 

features were detected from tryptone vs glucose comparison of P2, 333 of them were up-

regulated and 200 were down regulated with fold change ≥1.5 and p-value <0.01. 

Table 7.1 Statistic analysis using online XCMS 

 Comparisons Changed/All 

identified features a 

Changed/All 

quantified proteins b 

Comparison 1 

(Carbon 

 source: tryptone 

vs glucose) 

P2 533/3740 159/583 

PBL2025 425/3502 208/609 

PBL2073 430/3660 - 

Merge data of P2, PBL2025 and 

PBL2073 

652/3100 - 

Comparison 2 

Different strains 

 grown on 

glucose 

P2 vs PBL2025  690/3740 158/583 

P2 vs PBL2073 830/3772 - 

PBL2025 vs PBL2073 219/3573 81/609 

P2 vs PBL2025 and PBL2073 787/3531 - 

Comparison 3 

Different strains  

grown on 

tryptone 

P2 vs PBL2025  105/3353 - 

P2 vs PBL2073 356/3580 - 

PBL2025 vs PBL2073 152/3313 43/450 

P2 vs PBL2025 and PBL2073 310/3392 - 

a) Statistically significant changed features, P<0.01, and fold change ≥1.5 were applied. b) 

Significantly changed proteins with P<0.01 (data from Chapter 4).  
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Fig 7.1 Cloud plot from XCMS statistical analysis for (A) P2 grown on glucose compared to tryptone. (B) 

PBL2025 grown on glucose compared to tryptone. 
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Fig 7.1 Cloud plot from XCMS statistical analysis for (C) PBL2073 grown on glucose compared to tryptone. 

(D) Strain PBL2025 compared to P2 both grown on glucose. 
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Fig 7.1 Cloud plot from XCMS statistical analysis for (E) strain PBL2025 compared to PBL2073 both grown on 

glucose. (F) Strain PBL2073 compared to P2 both grown on glucose. 
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7.4.2 Compounds identification 

There is no software available that can provide both metabolite annotation and statistical 

analysis for GC-MS data from microorganism. Therefore, annotation of metabolites was 

achieved by using GC-MS raw data searched against AMDIS. The raw results were saved 

in .txt format. Further analysis were performed using Excel (Microsoft 2013, USA). These 

results were firstly simplified by Macros program to remove deviration. To gain high 

confidence identification, only compounds detected from all biological triplicates per 

phenotype were used (as shown in Fig 6.2), and others were discarded. In total, 163 compounds 

were identified from all experiments and 113 of them were assighed a KEGG C numer (results 

are listed in Table SP 6.1 in supplementary materials), where only 15 of them have been 

reported in previous study [38]. 

 

Table 7.2 A summary number of compounds identified.  

Carbon 

source Strains 

Replicates 
Merge 

data 

Merge data of 

3 strains 3 4 5 6 

Glucose P2  2 7 81 11 101  

 PBL2025  2 20 18 84 124 140 

 PBL2073  0 20 74 0 94  

Tryptone P2  5 11 20 92 128  

 PBL2025  2 29 68 0 99 141 

 PBL2073  3 21 92 0 116  

Notes: Biological triplicates and technical duplicates were run for each experiment. The number 3-6 indicates 

that metabolites were detected from 3 (biological triplicates), or 4, or 5, or 6 GC-MS runs. Metabolites determined 

only from 1 or 2 biological samples are not considered.  

 

7.4.2.1 S.solfataricus strains grown on different carbon sources  

A similar coumpounds detection number was observed for P2, PBL2025 and PBL2073 strains: 

140, 133 and 140, respectively as shown in Fig 7.2 A-D. Among these, most of the compounds 

(84%) were common (as shown in Fig 7.2 A) between glucose and tryptone growth media. The 

unique number of compounds detected from glucose vs tryptone varied between different 

strains (as indicated in Figs 7.2 B-D): a percentage of 12%, 27.4%, and 26% for P2, PBL2025 

and PBL2073 respectively.  



Chapter 7 Global metabolome analysis on response of Sulfolobus solfataricus to different carbon sources 

150 

 

                

 

 

                        

Fig 7.2 Number of compounds determined from different carbon sources. (A) summary of all strains. (B) for P2 

strain. (C) for PBL2025 strain and (D) for PBL2073 strain. 

 

7.4.2.2 Different strains grown on glucose or tryptone 

The numbers of compounds determined for different strains grown either on glucose or 

tryptone are listed and interpreted in Venn diagram formats that can be found in Figs 7.3 A-C. 

For instance, compared to P2, a high percentage ((12+19+8)/140=27.8%, Fig 7.3B) of unique 

compounds were detected in PBL2025 and PBL2073 strains when all the strains were grown 

on glucose. In contrast, only 9.2% unique compounds were detected on tryptone from these 

strains (Fig 7.3C). It the directly utilisation of amino acids  
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Fig 7.3 Compounds identified from different S. solfataricus strains (A) when cells grown on glucose and 

tryptone, (B) strains grown on glucose only and (C) cells grown on tryptone only. 

 

7.4.3 Metabolites plotted into KEGG pathway 

Among 163 compounds detcetd from all strains, only 113 of them were assigned C numbers, 

which were plotted against KEGG pathway. 47 of them were involved in metabolic pathways. 

Our experiments identified many new metabolites (listed in Table TS 6.1 in the Appendix) that 

has not been reported in S solfataricus [38]. However, these results are for identification only, 

further validation needs to be carried out.  

7.4.3.1 Responses of S.solfataricus grown on glucose vs tryptone 

Among 140 compounds detected from tryptone vs glucose for P2 strain, 24 reduced their 

abundances and most of them 116 (82.9%) increased their abundances when cultivated in 

tryptone. A total of 15 amino acids and a few belonging to KEGG metabolic pathways were 

detected by GC-MS, as listed in Table 7.3. 

 

Most of detected amino acids except glycine increased their abundance. In combination with 

the proteomic data from Chapter 4 (Section 4.4.4.2), it can be reasonable to hypothesis that 

amino acid followed a negative feedback-inhibition pattern. For instance, the accumulation of 
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Gln inhibited glutamine synthetase (encoded by SSO0366, down regulation of this enzyme was 

detected in Chapter 4) activity. A high amount of intermedia metabolites (methylglutamic acid 

and pyroglutamic acid) might indicate the acceleration of reversible conversion between 

glutamate and α-ketoglutaric acid. It is supported by proteomic data (Fig 4.7A in Chapter 4), 

where the up regulation of NAD specific glutamate dehydrogenase (gdhA-2 and gdhA-4 

encoded by SSO1907 and SSO2044) was also observed. The presence of α-ketoglutaric acid 

was not detected for cells grown on tryptone media in late exponential growth phase. As a 

consequence, cell could not survive due to lack of available carbon/energy source. Examples 

of amino acids involving in KEGG pathways (aminoacyl-tRNA biosynthesis and ABC 

transporters) are shown in Figs 7.4 A and B.  
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Table 7.2 Comparisons of different carbon sources for different strains 

Category 

 
Metabolities 

Glucose Tryptone Tryptone/Glucose 

2025/P2 
2073/ 

2025 

2073/ 

P2 

2073/ 

2025 
2073/P2 

2025/ 

P2 
P2 PBL2025 PBL2073 

Metabolic 

intermediates 

Acetyl-L-alanine 1.79 0 0 ~ 3.33 0 0.99 ~ 0 

3-Iodo-L-tyrosine 2.21 0 0 NF NF 0 3.01 0 NF 

Methylglutamic acid NF NF NF 0.94 1.17 1.25 ~ ~ ~ 

Pyroglutamic acid 6.64 0 0 0.94 4.58 4.87 5.93 4.35 ~ 

1-Methylguanine 4.63 0.15 0.678 0.78 1.47 1.88 2.31 0.93 4.99 

Amino acids  

Alanine 6.21 0 0 0.82 1.11 1.36 2.76 0.6 ~ 

Glutamic acid 3.84 0 0 1.82 4.3 2.37 4.67 2.88 ~ 

Glutamine 5.22 0.03 0.14 0 NF 0 7.05 0 0 

Glycine 2.58 0 0 0.21 1.03 4.89 0.82 1.55 ~ 

Leucine 2.18 0 0 0.79 0.84 1.06 2.09 1.02 ~ 

Phenylalanine 1.37 0 0 ~ 1.12 0 2.01 0 ~ 

Proline 2.18 0 0 0.44 0.84 1.92 2.09 ~ 1.84 

Serine 2.46 0 0 0.32 0.1 0.3 13.74 1.68 ~ 

Threonine 6.89 0 0 NF 0 0 2.42 0 NF 

Tyrosine 2.23 0 0 2.29 3.01 1.31 2.99 1.76 ~ 

Tryptophan 0 0 0 ~ 1.16 0 2.46 NF ~ 

Other metabolites 

Acetic acid 2.51 0.24 0.61 0.51 1.77 3.47 1.01 1.39 2.93 

Glyceraldehyde 0 NF 0 NF NF NF 0 NF NF 

α-ketoglutaric acid 3.56 0.28 1 NF NF NF 0 0 0 

Lactic acid 5.89 0.13 0.76 0.41 1.48 3.6 2.61 1.6 5.11 

Urea 2.24 0.29 0.65 ~ ~ NF 0 0 0.91 

 

Note: 0 indicates that metabolites only not detected in ‘divisor’ condition. ~ indicates that metabolite is not detected in ‘dividended’ condition. NF indicates not found. The 

‘area’ was normalized using external standard Nor-valine and ratio was calculated. 
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Fig 7.4 Detected metabolites involving in (A) Aminoacyl-tRNA biosynthesis in S. solfataricus P2 strain for 

tryptone vs glucose. Figure was obtained by plotting C number into KEGG pathways [300]. Red circle indicates 

metabolites detected in this Chapter.  
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Fig 7.4 Metabolites involved in ABC transporters (B). Figure was reproduced from KEGG pathway.  

7.5 Conclusions 

Global metabolomics study was performed by GC-MS to investigate the affected metabolites 

in S. solfataricus by changing carbon source from glucose to tryptone. Furthermore, the 

changes between different strains grown on the same carbon sources were also investigated. 

Most of detected metabolites were overlapped between different experiments. Most of 

identified amino acids increased their abundances such as Glu, Pro, Ser, and Tyr when cells 

were grown on tryptone compared to glucose. High abundances of detected metabolic 

intermideate, for instance, methyglutamic acid and pyroglutamic acid were observed when 

tryptone was supplied for all the strains. The down regulation of amino acid biosynthesis for 

tryptone vs glucose of S. solfataricus P2 and PBL2025 (proteomic data from Chapter 4) can be 

explained by the accumulation of end products (amino acids), which will activate the negative 
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feedback-inhibition regulation mechanism. Besides, almost all the detected amino acids except 

Trp and listed metabolic intermediates show high abundances in PBL2025 compared to P2, 

when glucose was the sole carbon source for both strains. Interestingly, a reduced abundances 

of the above mentioned metabolites were observed for PBL2073 vs P2 and PBL2073 vs 

PBL2025 comparisons with the presence of glucose.
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Chapter 8 Conclusions and future work 

8.1 Conclusions 

This thesis investigated the responses of three different S. solfataricus strains (P2, PBL2025 

and PBL2073) to various carbon sources (glucose, tryptone, acetone, ethanol, iso-propanol). 

However, -omics techniques including proteomic (iTRAQ) and metabolomic (GC-MS) 

strategies were only applied to unravel the respectively change from glucose to tryptone of 

three strains due to limit growth of mutant strains (PBL2025 and PBL2073) on the other tested 

carbon sources. Moreover, P-peptide enrichment protocol was established for S. solfataricus 

P2. Compared to other approaches, for instance, PAcIFIC [8], the MS running and 

corresponding data analysis time is shorter using enrichment strategy: 2 weeks vs 8 weeks for 

sample running. Furthermore, a combination use with label-based quantitative proteomics 

technologies such as iTRAQ made the quantitative information of phosphoproteins available. 

As a result, quantitative phosphoproteomics study was performed on model strain P2 to 

investigate the protein phosphorylation changes.  

 

Response of S. solfataricus strains to carbon sources change from glucose vs tryptone were 

investigated in proteomics (Chapter 4) and metabolomics (Chapter 7) level. iTRAQ analyses 

led to the quantification of 583, 609 and 450 proteins with more than 2 unique peptides for 1st, 

2nd, and 3rd iTRAQ experiments respectively. However, the comparisons between different 

iTRAQ sets were not analysed due to bioinformatic technique limitation. An investigation of 

the global proteome level changes between PBL2025 and P2 was carried out, as a result, 158 

proteins (27% of quantified proteins) showed their different abundances when both strains 

grown on standard glucose media. Of these proteins, more than half (61%) of regulated proteins 

involving in carbon fixation, butanoate and so forth showed their up regulation, whereas the 

others (39%) belonging to carbohydrate or amino acid metabolic pathways showed their down 

regulation. Moreover, 208 and 159 (27% and 34% of quantified proteins) proteins were 

affected under tryptone vs glucose for two strains PBL2025 and P2 respectively. The down 

regulation of pyruvate and glycolysis metabolism agreed a previous report that sugar 

degradation was blocked when tryptone was supplied in P2 [7]. However, the glycolysis 

pathway seemed to be up-regulated in PBL2025 strain in the presence of tryptone compared to 

glucose. Moreover, the down regulation of detected amino acid pathways was significant in 

both strains in responding to carbon sources change from glucose to tryptone. This study 
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provides useful quantitative proteomics data for metabolic pathways manipulation of the model 

archaea S. solfataricus P2 and PBL2025. 

 

For global metabolomic analysis, based on GC-MS technique, 113 metabolites were assigned 

with C numbers from all experiments, whereas only 47 of them were involved in KEGG 

pathways. High abundances of detected amino acids and metabolic intermediate such as Glu, 

Pro, Ser, and Tyr, methyglutamic acid and pyroglutamic were observed when cells were grown 

on tryptone compared to glucose from 3 strains. Almost all detected amino acids except Trp 

showed their high abundance in PBL2025 compared to P2 when glucose was used as a sole 

carbon source for both strains. Global metabolic and proteomic datasets showed that, amino 

acid metabolic pathways were down regulated when tryptone was supplied, which is inferred 

to follow a feedback-inhibited pattern. More solid conclusions cannot be made in -omics level 

for other comparisons due to limit detection of metabolites involving in carbohydrate pathways 

as well as unavailability of comparisons between iTRAQ sets at the moment.  

 

Furthermore, P-peptides enrichment strategies were optimised for global quantitative 

phospohproteomic study. TiO2 beads outperformed other tested formats (spin and pipette tips). 

Also, 4 cycles of incubation of beads with a 20/1 (w/v) peptide-to-TiO2 beads ratio were 

optimal condition for P-peptide enrichment of S. solfataricus. In addition, majority of P-

peptides with single P-sites were detected using TiO2 (81.4%), the combination use of TiO2 

was recommended than the usage of single one. Moreover, almost twice more triply charged 

peptides were observed for P-peptides than that for all identified peptides by all of the tested 

MS instruments: ion trap (HCT-Ultra), the Amazon and the maXis UHR-Q-TOF. It indicated 

that the possibility to get a better phosphoproteome coverage by using both CID and ETD 

fragmentations, since ETD has been shown to be beneficial to highly-charged peptides 

detection [205].  

 

Optimised enrichment methods were applied for quantitative phosphoproteomic analysis of S. 

solfataricus P2 grown on glucose compared to tryptone conditions. A total of 91 P-sites 

(phospho sites) were determined from 61 P-proteins (phospho proteins) contributed from 73 

unique P-peptides. The distribution of P-sites on Ser/Thr/Tyr was 36%/28%/35%. Of these 

quantified P-proteins, 19 were distributed into 31 KEGG pathways and 4 of these quantified 

P-proteins were differentially regulated in responding to different growth conditions (from 

glucose to tryptone). The regulated P-protein: Zn-dependent alcohol dehydrogenase (ADH-2, 
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encoded by SSO0764) may be of biological as well as industrial interest. ADH enzymes are 

important catalysts in alcohol and acetone metabolism, it shows great commeicial value.  

8.2 Future work 

Biological samples (cell pellets) were obtained from the same growth conditions. Therefore, -

omics (proteomics, phosphoproteomics and metalobolomics) data generated in this thesis are 

consistant, which can be used for further modelling work in regarding to the response of this 

hyperthomophilic archaeon under various carbon sources (glucose vs tryptone). The link 

between carbon source variance and temperature changes will broaden the CCM network 

studies for community [301]. 

 

P-peptide enrichment efficiency was less than 30%, which is still quite low, compared to which 

from human samples. From technical aspects for phosphoproteome coverage improvement, the 

application of Ti4+-IMAC, or micro size TiO2 beads, ERLIC separation or a combination with 

different MS fragmentation strategies such as CID with ETD may be useful. However, the 

number of biological replicates need to be considered for iTRAQ or TMT quantitative studies. 

For instance, only three of 4-plex [61], five of 8-plex iTRAQ labels [62] and four of 6-plex 

TMT tags [63] give rise to unique reporter ions under ETD mode that would allow for 

quantification, respectively. Moreover, localization of all identified P-proteins from 

enrichment optimisation (178 P-proteins in Chapter 5), control (5 P-proteins) and Esser, et al., 

(540 P-proteins), 19.6% of them were located in membrane (16.8% of cytoplasmic membrane 

and 2.7% of outer membrane). In contrast, only 13% of quantified P-proteins were located in 

membrane in our study (Chapter 6). Improvements of phosphoproteome coverage maybe 

achieved from protein extraction aspects by incorporating different extraction buffers such as 

SDC, which have been proven to benefit for quantitative membrane proteome study as 

investigated by [302]. The successful application of P-peptides enrichment with iTRAQ 

labelling technique in S. solfatricus P2 indicates that further work can be perfomed on other 

Sulfolobus species, such as S. acidocaldarirus, since hundreds of P-proteins were determined 

from wild and mutant strains [47]. Furthermore, the application in other archaeal researches 

might be possible if the successful application in Sulfolobus species is achieved. 

 

Among the encoding genes from SSO3004 to SSO3050 that were not presented in PBL2025 

strain, 7 of them were quantified in S. solfataricus P2, including SSO3003, SSO3007, SSO3009, 

SSO3019, SSO3038, SSO3039, and SSO3042, and three of these proteins (carbon monoxide 



Chapter 8 Conclusions and future work 

160 

 

dehydrogenase encoded by SSO3009, α-xylosidase SSO3022, and uncharacterised protein 

SSO3038) were observed as P-proteins. It would be interesting to investigate the phospho 

proteome difference between PBL2025 and P2, which will benefit for biofilm studies. The 

protein-protein interactions between the quantified P-proteins with identified P-proteins from 

[7] and our enrichment optimisation experiments would enable the studies on uncharacterised, 

predicted or hypothetical proteins. Some regulated P-proteins such as SSO0625 is promising 

candidate for further studies since SSO0625 predicted bo be GTPase, for which the biological 

function of any S. solfataricus GTP-binding proteins (SsGBPs) is unknown. 

 

In addition, further research on cross-talks between different PTMs such as phosphorylation 

and acetylation will be of interest. Impaired effect on phosphorylation from acetylation have 

been reported in 14-3-3 proteins by Lys sites mutation strategy [88]. The acetylation of 17 

proteins [294] and phosphorylation of hundreds of proteins [7] in S. solfataricus have been 

reported. Proteins reported to be both phosphorylated and acetylated will be mainly focus on 

PTM cross-talk studies in the future.  

 

However, quantitative phosphoproteome data from Chapter 6 will need further validations. For 

instance, Western blot, anti phosphotyrosine antibody-based immunohistochemistry, 

radioactive P32 or synthetic P-peptides, before going to biological mutation work in genomic 

level. Furthermore, not many investigations on signal pathways in S. solfataricus have been 

performed, it will be fascinating to construct signal maps in this archaeon based on 

phosphorylation studies. 

 

In addition, comparisons between different iTRAQ datasets are not available, which relies on 

bioinformatics tools. Co-operation work with researchers who have had background is ongoing, 

it would be fascinating to interpret the links and difference between different comparisons, for 

instance, PBL2025 compared to P2 grown on tryptone, or comparison of three different strains 

utilising the same carbon source. Moreover, not many metabolites detected in this thesis 

belonging to central carbohydrate metabolic pathways, therefore, to improve metabolome 

coverage, further work can be carried out using different extraction buffers coupled with LC-

MS, for instance, high resolution UHPLC coupled with MS or NMR detections. 
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Appendix A 

Table  

Table TS2.1 Phosphoproteins identified in archaea  

 

P-protein P-sites Archaea Method Reference 

Light-regulated (LR) 

protein LR1, LR2 Ser/Thr 

Halobacterium 

halobium 32P labeling 

Spudich, et al., 

1980 

Chemotaxis protein 

CheA His H. salinarum  32P labeling  

Rudolph, and 

Oesterhelt, 

1995 

Chemotaxis protein 

CheY Asp H. salinarum  32P labeling 

Rudolph, et al., 

1995 

Methyltransferase-

activating protein Ser, Thr or Tyr 

Methanosarcina 

barkeri 32P labeling 

Daas, et al., 

1996 

Phosphtyrosine 

protein 
Tyr Haloferax volcanii 

antibody with 

specificity for 

P-tyr 

immunoreaction

s  

Smith, et al., 

1997 

Tyr 

Methanosarcina 

thermophila TM-1, antibody 

Smith, et al., 

1997 

Tyr 

S. sulfataricus P1 

ATCC 35091  antibody 

Smith, et al., 

1997 

Zinc-dependent 

Leucyl 

aminopeptidases Ser or Thr 

S. sulfataricus MT4 

32P labeling 

Codon, et al., 

1998 

SSO0207, 

phosphohexomutase 

Ser309 S. sulfataricus  32P labeling & 

LC-MS/MS 

Solow, et al., 

1998, Ray et 

al., 2005 

Glycogen synthase Ser or Thr S. acidocaldarius 32P labeling Cardona, et al., 

2001 

Phenylalanyl-tRNA 

synthetase β-chain 

(FTS)  

Tyr Thermococcus 

kodakaraensis 

KOD1 

anti P-tyr 

antibody 

Jeon, et al., 

2002 

Phosphomannomuta

se (PMM)  

Tyr Thermococcus 

kodakaraensis 

KOD2 

anti P-tyr 

antibody 

Jeon, et al., 

2002 
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RNA terminal 

phosphate cyclase 

operon B (RtcB) 

Tyr Thermococcus 

kodakaraensis 

KOD3 

anti P-tyr 

antibody 

Jeon, et al., 

2002 

archaeal initiation 

factor 2(aIF2) 

Ser48 Pyrococcus 

horikoshii OT3 

32P labeling (in 

vitro) 

Tahara, et al., 

2004 

D-gluconate 

dehydratase , 

Sso3198 

Ser S. sulfataricus  enzyme purify, 

characterize 

Kim and Lee, 

2005 

Rio2, Serine protein 

kinase 

Ser128 Archaeoglobus 

fulgidus  

32P labeling LaRonde-

LeBlanc and 

Wlodawer, 

2004, 

LaRonde‐
LeBlanc et al., 

2005 

Rio1p, homolog of 

Ser/Thr kinase  

Ser/Thr Haloferax volcanii  32P labeling and 

MS  
[303]Humbard 

et al., 2010 

ST1565, Ser/Thr 

protein kinase  

Thr326,negativ

e regulation 

site; Thr329 , 

one of the 

major 

activation site 

S. tokodaii 32P labeling Wang et al., 

2010 

ST0829, Fork head 

domain-containing 

protein  

Ser/Thr S. tokodaii 32P labeling Duan and He, 

2011 

CBS domain protein Asp118 S. tokodaii 32P labeling Ragunathan et 

al., 2008 

SSO0771, Cdc6-1 

(cell division control 

protein 6) 

Thr/Ser S. solfataricus  32P labeling De Felice et al., 

2003 

SSO2184, Cdc6-2 Ser S. solfataricus  32P labeling  De Felice et al., 

2004 

SSO0257, Cdc6-3 Ser S. solfataricus  32P labeling  De Felice et al., 

2006 

Cell division control 

protein 6(Cdc6) 

Ser Methanobacterium 

thermoautotrophicu

m 

32P labeling  Grabowski and 

Kelman, 2001, 

Shin et al., 

2003, 

Kasiviswanatha

n et al., 2005 

Cdc6 Ser Thermoplasma 

acidophilum  

32P labeling  Haugland et al., 

2008a 

Cdc6 Ser Pyrobaculum 

aerophilum  

32P labeling  Grabowski and 

Kelman, 2001, 

De Felice et al., 

2004 

Cdc6 Ser Aeropyrum pernix 32P labeling  Atanassova and 

Grainge, 2008 

Minichromosome 

maintenance  

Ser/Thr/Tyr Aeropyrum pernix 32P labeling  Atanassova and 

Grainge, 2008 
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RNA kinase 

tRNAlle-agm2C 

synthetase（TiaS） 
Thr18 

Archaeoglobus 

fulgidus  32P labeling 

Osawa et al., 

2011; Terasaka 

et al., 2011 

     

     

Hypothetical protein 

(HVO_C0059)  

Ser136 and 

Thr139  Haloferax volcanii MS 

[304]Kirkland, 

et al., 2008 

RNA kinase 

tRNAlle-agm2C 

synthetase（TiaS） 
Thr18 

Archaeoglobus 

fulgidus  32P labeling 

Osawa et al., 

2011; Terasaka 

et al., 2011 

α1,α2,PAN- A 

subunit of 

proteasome 

α1 Thr147, α2 

Thr 13, and 

PNA-A Ser 

340  Haloferax volcanii  

MS/MS and 32P 

labeling 

[303]Humbard 

et al., 2010 

β-subunit of 

proteasome Ser129 Haloferax volcanii  MS 

[305]Humbard 

et al., 2006 

SSO2387, 

SSOPK2,putative 

protein serine kinase 
Ser S. sulfataricus  

32P labeling & 

MS 

[306]Lower and 

Kennelly, 2003 

SSO0469, 

SSOPK3,putative 

protein serine kinase 
Ser/Thr 

S. sulfataricus  

32P- labeling & 

MS 

[307]Lower, et 

al.,  2004 

SSO0563, 

SSOPK4,putative 

protein serine kinase 
Ser S. sulfataricus 

32P labeling & 

MS 
[308]Redbird, 

2010 

SSO0433, SSOPK5/ 

homolog of the 

piD261/Bud32 

family of protein 

kinase in Eucarya 
Auto-P- Se/Thr S. sulfataricus  

32P labeling 

Site-directed 

mutagenesis, 

SDS-PAGE, 

Western 

blotting 

[309]Haile  and 

Kennelly, 2011 

The FHA domain-

containing protein 

ArnA and the vWA 

domain-containing 

protein ArnB 
Ser/Thr S.acidocaldarius  32P labeling 

[310]Reimann, 

et al.,  2012 

SSO0417, cofactor-

independent 

phosphoglycerate 

mutase 
Ser59 S. sulfataricus   

Potters, et al., 

2003 

69 proteins 
Ser/Thy/Tyr   H. salinarum  

SCX & TiO2, 

LC- MS/MS [286] 
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622  proteins 
Ser/Thr/Tyr S. sulfataricus  LC- MS/MS [7] 

801 proteins 
Ser/Thr/Tyr S.acidocaldarius  LC- MS/MS [47]  

 

Appendix B 

Fig FS 3.1 SCX chromatography of peptides separation (4 mg for each) of S.solfataricus P2 grown on 

different carbon sources.  

Table TS3.1 Specific growth rates and doubling times of S.solfataricus under different conditions 

Table TS3.2 Relationship between cell numbers of S. solfataricus and OD650 

Table TS3.3 Cell dry weight (g/L) of S. solfataricus strains.  

Table TS3.4 Identified proteins and peptides from SDS-PAGE digestion/SCX fractions. 

Table TS3.5 Identified protein and peptides using phosphorylation search 
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Fig FS 3.1 SCX chromatography of peptides separation of S.solfataricus P2 grown on glucose (A) and tryptone 

(B).  

 

Table TS3.1 Specific growth rates and doubling times of S.solfataricus under different conditions 

S. solfataricus PBL2025 S. solfataricusP BL2073 

Carbon AVE  µ STD µ AVE t STD t Carbon AVE  µ STD µ AVE t STD t 

G 0.0214 0.00045 32.5 0.69 G 0.0247 0.00114 28.1 1.27 

T 0.0083 0.00064 83.5 6.66 T 0.0106 0.00064 65.4 4.08 

 

µ: specific growth rate (h-1), t: doubling time (h), t: Ln(2/t)  

AVE: average from biological triplicates; STD: Standard Deviation from biological triplicates. 

 

Table TS3.2 Relationship between cell numbers of S. solfataricus and OD650 

Carbon 

source 

P2 PBL2025 PBL2073 

 

OD 

Cell 

number 

/ml (x107) OD 

Cell number 

/ml (x107) OD 

Cell number 

/ml (x107) 

Glucose 0.202 0.234 0.198 0.269 0.221 0.280 

0.492 1.468 0.534 1.380 0.550 1.558 

0.795 2.275 0.830 2.760 0.769 2.764 

1.100 3.798 1.279 4.383 1.141 3.398 

1.386 4.721 1.398 5.287 1.328 4.252 

Tryptone 0.199 0.113 0.203 0.227 0.189 0.235 

0.484 1.446 0.475 1.411 0.487 1.346 

0.549 1.805 0.657 2.137 0.780 2.160 

0.618 2.084 0.787 2.486 0.832 2.282 

 

Number of cells (X107) = A * OD650 + B 

y=3.8327x-0.536, y=4.1025x-0.6624, y=3.3913x-0.4059 for P2, PBL2025 and PBL2073 grown on glucose 

respectively; and y=4.7501x-0.836, y=3.9315x-0.5205   y=3.166x-0.3051 
 

Table TS3.3 Cell dry weight (g/L) of S. solfataricus strains 

 

Strains 0.4%Glucose 0.2%Tryptone 

P2 0.81+ 0.01 0.41+ 0.04 

PBL2025 0.64+ 0.06 0.43+ 0.05 

PBL2073 0.75+ 0.03 0.48+ 0.07 
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Table TS3.4 Identified proteins and peptides from SDS-PAGE digestion/SCX fractions 

Slice/Fractions 
Unique  
protein 

Unique  
Phosphoprotein 

Unique 
peptide 

Unique 
Phosphopeptide 

S1 9 0 42 0 

S2 21 1 62 1 

S3 28 0 126 0 

S4 26 1 140 1 

S5 21 0 124 0 

S6 26 2 81 2 

S7 30 1 97 1 

S8 32 2 76 2 

S9 36 4 84 4 

S10 15 0 32 0 

SUM 177 4 412 4 

 

Table TS3.5 Identified protein and peptides using phosphorylation search 

Fractions 
Unique  

protein 

Unique  

Phosphoprotein 

Unique  

peptide 

Unique 

Phosphopeptide 

F14 0 0 0 0 

F16 0 0 0 0 

F18 1 0 1 0 

F20 18 0 24 0 

F22 69                  3 83 3 

F24 33 1 40 1 

F26 12 1 12 1 

F28 15 1 16 1 

F30 18 1 19 1 

F32 10 0 12 0 

SUM 137 7 221 7 
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Appendix C 

Figures Fig FS 4.1 SDS-PAGE gel for iTRAQ sets. 

             Fig FS 4.2 Cell pellets from different strains.  

 

 

 

Fig FS 4.1 SDS-PAGE gel of proteins for iTRAQ sets: the 1st set (A); the 2nd set (B) and the 3rd set (C). 

 

 

Fig FS 4.2 Cell pellets collected in late-exponenial growth phase of different S. solfataricus strains.
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Appendix D 

Table SP 4.3 The number of proteins from predicted database and iTRAQ data. 

 Predicted T/G-P2 T/G-2025 2025/P2-Glu 

arCOG C 185 15 22 21 

arCOG D 15 2 3 2 

arCOG E 215 19 26 21 

arCOG F 64 4 3 4 

arCOG G 154 12 12 7 

arCOG H 94 5 7 7 

arCOG I 92 7 9 11 

arCOG J 169 22 24 15 

arCOG K 130 15 16 11 

arCOG L 460 3 4 1 

arCOG M 78 2 4 3 

arCOG N 19 0 0 0 

arCOG O 74 11 9 7 

arCOG P 65 2 6 1 

arCOG Q 57 1 2 2 

arCOG R 348 17 31 16 

arCOG S 460 14 24 14 

arCOG T 15 1 1 1 

arCOG U 12 1 1 1 

arCOG V 125 6 4 13 

arCOG X 91 0 0 0 

Sum 2922 159 208 158 

T: tryptone. G: glucose. 
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Appendix E 

Table TS5.1 Buffers used for TiO2 /IMAC enrichment 

Table TS5.2-5.4, 5.6-5.9: Number of P-peptides/proteins and P-sites on Ser/Thr/Tyr, and peptides with 

mono-/multiple- P-sites detected from different enrichment strategies: 

 

Table TS5.5 Percentage of acidic amino acids in detected peptides from different acids of beads 

Table TS5.10 Percentage of triplicate charge peptides in P-peptides and total detected peptides. 

 

Tables Each supplemented table supports Fig 5.2-5.4 and Fig 5.6-5.9.  

 

Table TS5.1 Buffers used for TiO2 /IMAC enrichment 

 Loading/binding buffer Wash buffer (two 

times) 

Elute buffer Ref 

1 1M glycolic acid in 

80% ACN, 5%TFA 

80% ACN, 1%TFA 5% NH4OH, pH 12 GE Healthcare TiO2 

Mag Sepharose 

2 2 M lactic acid in 

80%ACN, 1%TFA 

80% ACN, 5%TFA 3% NH4OH, pH 

10.5 

[284] with 

modification 

3 Citric acid (50 mM, 

100 mM, 200 mM, 500 

mM, 1M) in 80%ACN, 

1%TFA 

60% ACN, 0.1%TFA 

and 0.1%TFA  

4% NH4OH in 60% 

ACN 

[176] 

4 Glutamic acid (about 

0.14 M) in 65%ACN, 

2%TFA 

65% ACN, 0.5%TFA 

and 65% ACN, 

0.1%TFA  

300 mM NH4OH in 

50% ACN, 500 mM 

NH4OH in 60% 

ACN 

[283] 

5 Lactic acid (0.25 M) in 

70%ACN, 3%TFA 

70% ACN, 3%TFA 

and 70% ACN, 

3%TFA, 125 mM of 

asparagine,125 mM of 

glutamine 

500 mM KH2PO4, 

pH 7  

[178] 

Note: ammonium hydroxide (NH4OH).  

GE-Healthcare TiO2 Mag Sepharose 

(http://www.gelifesciences.com/webapp/wcs/stores/servlet/productById/zh/GELifeSciences/28944010) 

 

http://www.gelifesciences.com/webapp/wcs/stores/servlet/productById/zh/GELifeSciences/28944010
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Table TS5.2 Number of P-peptides/proteins and P-sites on Ser/Thr/Tyr, and peptides with mono-

/multiple- P-sites detected from IMAC elution buffer and supernatant flow. 

 P-pep P-pro P-Ser P-Thr P-Tyr 
Mono-P 

≤1 Pi 

Multi-P 

≥ 2Pi 

IMAC -IME 26 24 7 10 17 19 7 

IMAC -ACN 26 25 10 7 19 19 7 

IMAC-SP 35 35 12 7 30 22 13 

 

Table TS5.3 Number of P-peptides/proteins and P-sites on Ser/Thr/Tyr and peptides with mono-

/multiple- P-sites detected from different TiO2 formats.  

  

P-pep 

 

P-pro 

 

P-Ser 

 

P-Thr 

 

P-Tyr 

Mono-P 

≤1 Pi 

Multi-P 

≥ 2Pi 

Beads 
146 140 68 42 96 96 50 

Spin tip 24 23 10 6 18 16 8 

Tio tip 29 27 22 5 2 22 7 

 

 

Table TS5.4 Number of P-peptides/proteins and P-sites on Ser/Thr/Tyr and peptides with mono-

/multiple- P-sites detected when various acids were used. 

 

Different acids P-pep P-pro P-Ser P-Thr P-Tyr 

Mono-

P ≤2 Pi 

Multi-P 

≥ 3Pi 

1M CA 11 11 11 3 3 10 1 

500m MCA 12 12 11 5 4 4 1 

200m MCA 5 5 5 4 3 3 2 

100m MCA 11 11 12 3 2 10 1 

50m MCA 14 14 10 10 5 12 2 

Glycolic acid 18 18 14 12 6 14 4 

Lactic acid 18 18 17 9 6 15 3 

NQ-Glu 5 5 6 2 2 3 2 

NQ-Asp 3 3 3 0 1 3 0 

Glu acid 4 4 5 1 0 4 0 

Control 2 2 1 1 2 2 0 
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Table TS5.5 Percentage of acidic amino acids in detected peptides from different acids of beads. 

 

 Percentage of Asp (D) Percentage of Glu (E) 

 

Phospho-

peptides 

Non-P-

peptides 

Total 

peptides 

Phospho-

peptides 

Non-P-

peptides 

Total 

peptides 

1M CA 7.9 4.9 5.3 7.4 7.3 7.4 

500mM CA 4.7 6.3 6.3 6.3 9.5 9.4 

200mM CA 3.7 6.1 6.0 0.0 8.7 8.4 

100mM CA 3.6 5.9 5.7 6.3 8.3 8.2 

50mM CA 5.2 5.2 5.2 7.0 7.1 7.1 

Glycolic 

acid 3.7 5.8 5.7 6.8 8.7 8.6 

Lactic acid 4.2 5.6 5.5 6.6 9.2 8.9 

Glutamic 

acid 7.4 6.1 6.3 5.6 9.6 9.5 

NQ-Glu 2.5 6.8 6.7 3.8 8.6 8.5 

NQ-Asp 5.5 7.4 7.5 12.7 9.2 9.6 

Ctrl 5.1 6.5 6.4 5.7 9.1 8.9 

 

 

 

 

Table TS5.6 Number of P-peptides/proteins and P-sites on Ser/Thr/Tyr and peptides with mono-

/multiple- P-sites detected from different peptide-to-beads ratios. 

 

Peptide-to-

TiO2 ratio 
P-pep P-pro P-Ser P-Thr P-Tyr 

Mono-P 

≤1 Pi 

Multi-P 

≥ 2Pi 

Ratio-80 
99 

92 58 25 59 62 37 

Ratio-40 112 104 62 42 59 70 42 

Ratio-20 146 140 68 42 96 96 50 

Ratio-10 107 99 57 43 53 67 40 
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Table TS5.7 Number of p- peptides/proteins and P-sites on Ser/Thr/Tyr and peptides with mono-

/multiple- P-sites detected from consecutive incubations of TiO2 beads.  

 

Peptide-to-

TiO2 ratio P-pep P-pro P-Ser P-Thr P-Tyr 

Mono-P 

≤1 Pi 

Multi-P 

≥ 2Pi 

F1 57 57 23 16 39 38 19 

F2 47 44 20 9 35 32 14 

F3 49 47 25 14 33 30 19 

F4 43 40 26 16 23 25 18 

 

Table TS5.8 Number of P-peptides/proteins and P-sites on Ser/Thr/Tyr and peptides with mono-

/multiple- P-sites detected from different elution of SIMAC experiments. 

 

Peptide-to-TiO2 

ratio P-pep P-pro P-Ser P-Thr P-Tyr 

Mono-P 

≤1 Pi 

Multi-P 

≥ 2Pi 

IMAC elute 28 26 16 5 13 22 6 

TFA-TiO2 37 36 23 9 30 20 17 

TFA-TiO2-2nd 

cycle 17 17 10 5 6 13 4 

SP-TiO2 25 23 7 3 6 14 11 

SP-TiO2-2nd cycle 12 13 11 14 14 8 4 

 

 

Table TS5.9 Number of P-peptides/protein and P-sites on Ser/Thr/Tyr and peptides with mono-

/multiple- P-sites detected from IMAC, TiO2 and SIMAC.  

Peptide-to-

TiO2 ratio P-pep P-pro P-Ser P-Thr P-Tyr 

Mono-P 

≤1 Pi 

Multi-P 

≥ 2Pi 

IMAC  
26 25 10 7 19 

19 

 
7 

SIMAC 95 92 51 32 57 61 34 

TiO2 146 140 68 42 96 96 50 

Control 27 26 13 11 13 19 8 
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Table TS5.10 Percentage of triplicate charge peptides in P-peptides and total detected peptides. 

 

All 

enrichment 

Ratio 

20/1 SIMAC IMAC Ctrl 

P-peptides 48.3 54.1 23.2 57.7 18.5 

Total peptides 29.9 30.2 17.6 27.0 14.6 
Note: Calculation is based on peptides with charge.
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Appendix F 

Table  

Table TS7.1 Abundance ratios of different comparisons. 

 

Table TS7.1. Ratios of different comparisons. 

  

Number of metabolites with 

Ratio <1 Ratio >1 

Comparison 1 

Tryprone vs 

glucose  

P2 
24 116 

PBL2025 
47 86 

PBL2073 
30 110 

Comparison 2 

Strains grown on 

glucose 

PBL2025/P2 
10 122 

PBL2073/PBL2025 
121 12 

PBL2073/P2 
65 64 

Comparison 3 

Strains grown on 

tryptone 

PBL2025/P2 
35 95 

PBL2073/PBL2025 
91 34 

PBL2073/P2 
45 96 
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Supplementary information  

Table SP 2.1 PTMs in archaea and human. 

Table SP 2.1A PTMs in archaea 

Key words      

Archaea and  methylation glycosylation phosphorylation acetylation proteolysis 

2014 17 5 20 3 16 

2013 26 21 34 3 33 

2012 27 40 42 5 25 

2011 16 19 19 3 9 

2010 20 20 12 4 13 

2009 12 5 10 4 6 

2008 14 10 20 5 6 

2007 16 7 17 4 10 

2006 17 7 13 6 9 

2005 26 13 23 3 5 

2004 10 6 18 1 5 

 

 

Table 2.1 B PTMs in human 

Key words      

Human and  methylation glycosylation  phosphorylation acetylation proteolysis 

2014 4369 1529 9870 1209 1718 

2013 7462 2812 17127 2085 3219 

2012 7543 3144 18074 2135 2722 

2011 3187 1381 7601 875 882 

2010 2846 1252 7613 888 1419 

2009 2391 1232 7225 824 616 

2008 2341 1211 6964 732 657 

2007 2152 1112 6458 773 597 

2006 1838 1060 6109 667 636 

2005 1666 1097 5961 596 597 

2004 1471 1007 5635 526 648 

 

Other supplementary tables for protein/peptide and P-protein/peptide were listed in the attached 

disk. 

 

app:ds:glycosylation
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Tables from Chapter 4 

Table SP4.1A 1st set iTRAQ Quant protein. 

Table SP4.1A 1nd set iTRAQ Quant protein. 

Table SP4.1A 3rd set iTRAQ Quant protein. 

Quant indicates quantitative proteins with ≥2 unique peptides. 

Table SP 4.1 D and E Sum on classification of quant and regulated protein. 

Table SP4.2 Changed transporters of S. solfataricus grown on different carbon sources. 

 

Table SP4.3A PBL2025 vs P2 both on Glu regulated proteins 

Table SP4.3B Try vs Glu of P2 regulated proteins 

Table SP4.3C Try vs Glu of PBL2025 regulated proteins 

Tables from Chapter 5 

Table SP5.1 P-peptides from enrichment techniques using Phenyx 

Table SP5.2 P-peptides from enrichment techniques using Mascot Daemon 

 

Table from Chapter 6 

Table SP6.1A Quantified P-proteins and their classification based on arCOG functional 

category. 

Table from Chapter 7 

Table SP7.1A Metabolites with KEGG C number. 

 




