
ON SCHUR ALGEBRAS, DOTY COALGEBRAS

AND QUASI-HEREDITARY ALGEBRAS

Rachel Ann Heaton
University of York

Department of Mathematics

Thesis submitted to the University of York
for the degree of Doctor of Philosophy

December 2009

1





Abstract

Motivated by Doty’s Conjecture we study the coalgebras formed from the
coefficient spaces of the truncated modules Tr λE. We call these the Doty
Coalgebras Dn,p(r). We prove that Dn,p(r) = A(n, r) for n = 2, and also that
Dn,p(r) = A(π, r) with π a suitable saturated set, for the cases;
i) n = 3, 0 ≤ r ≤ 3p− 1, 6p− 8 ≤ r ≤ n2(p− 1) for all p;
ii) p = 2 for all n and all r;
iii) 0 ≤ r ≤ p− 1 and nt− (p− 1) ≤ r ≤ nt for all n and all p;
iv) n = 4 and p = 3 for all r.

The Schur Algebra S(n, r) is the dual of the coalgebra A(n, r), and S(n, r)
we know to be quasi-hereditary. Moreover, we call a finite dimensional coal-
gebra quasi-hereditary if its dual algebra is quasi-hereditary and hence, in the
above cases, the Doty Coalgebras Dn,p(r) are also quasi-hereditary and thus
have finite global dimension. We conjecture that there is no saturated set π
such that D3,p(r) = A(π, r) for the cases not covered above, giving our reasons
for this conjecture.

Stepping away from our main focus on Doty Coalgebras, we also describe
an infinite family of quiver algebras which have finite global dimension but are
not quasi-hereditary.
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Introduction

This thesis is concerned with the Polynomial Representation Theory of the
General Linear Group as studied in Green [11]. Its motivation is a conjecture
put forward by S. Doty, known as Doty’s Conjecture, concerning the trun-
cated symmetric powers of the general linear group. It states that a matrix,
the Modular Kostka matrix, is non-singular. If true, then from its inverse and
Steinberg’s Tensor Product Theorem, one could obtain all irreducible polyno-
mial characters of GLn in characteristic p.

The focus of our research is on these truncated symmetric powers Tr λE,
and the coalgebras defined from their coefficient spaces, the so-called Doty
Coalgebras, Dn,p(r) =

∑
cf (Tr λE) where λ = (λ1, . . . , λn) such that

∑n
i=1 λi

= r, λ1 ≥ λ2geq . . . ≥ λn and λ1 ≤ n(p − 1). The dual of a coalgebra is an
algebra, and as shown in [11], we have that the Schur Algebra S(n, r) is the
dual of the coalgebra A(n, r), which consists of homogeneous polynomials of
degree r in n2 variables. Our other motivation for this thesis is the notion
of a Quasi-Hereditary Algebra (see for example [4]), and indeed it is the case
that the Schur algebra is quasi-hereditary, and thus, as its dual, A(n, r) is a
quasi-hereditary coalgebra.

This thesis proves the following;

i) D2,p(r) = A(2, r) for all primes p;
ii) D3,p(r) = A(π, r) for all primes p, 0 ≤ r ≤ 3p− 1, 6p− 8 ≤ r ≤ n2(p− 1)
and π a suitable saturated set;
iii) Dn,2(r) = A(π, r) for all n and π a suitable saturated set;
iv) Dn,p(r) = A(π, r) for all p and all n, and for 0 ≤ r ≤ p − 1 and
n2 − (p− 1) ≤ r ≤ n2(p− 1) with π a suitable saturated set;
v) D4,3(r) = A(π, r) for 0 ≤ r ≤ n2(p− 1) with π a suitable saturated set.

We therefore have that in all these cases, the corresponding Doty Coalgebra
is quasi-hereditary, and thus has finite global dimension.

We now give a general overview of the structure of this thesis. Chapter
1 first states the Doty Conjecture and then goes on to define the notion of
algebraic groups and coalgebras, and shows how the dual of an algebra is
indeed a coalgebra. It then goes on to define the coalgebra A(n, r) and the
Schur Algebra S(n, r) stating how they are each others dual. Quasi-Hereditary
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Algebras are then defined, along with finite global dimension, and it is shown
how all quasi-hereditary algebras have finite global dimension. We then explain
why the Schur algebra is quasi-hereditary.

Chapter 2 focuses on defining the Doty Coalgebras, which initially involves
introducing the Symmetric and Exterior Algebras, and then the aforemen-
tioned truncated modules Tr λE and their coefficient spaces. To be able to
prove the cases above, we must show that the coefficient spaces of the tilting
modules of A(n, r) (or respectively A(π, r)) are contained in the coefficient
spaces of the truncated modules. With this in mind we then have a section on
Classification by Highest Weights, which defines the irreducible GLn-modules
L(m,n), and then a section on tilting modules, giving the definition of these
modules, classifying them for SL2, and then stating why it is enough to show
that their coefficient spaces arise in the coefficient spaces of the truncated
modules.

Chapter 3 then proves the case D2,p(r) = A(2, r) for all primes p, whilst
Chapter 4 provesD3,p(r) = A(π, r) for all primes p, 0 ≤ r ≤ 3p−1, 6p−8 ≤ r ≤
n2(p−1) and π a saturated set. The case for n = 3 is much more complex, and
thus it is necessary to introduce p-cores and core classes, and then classify all
core classes for 0 ≤ r ≤ 5p− 5. Tilting modules are then reintroduced and we
prove a number of theorems on tilting truncated modules. We then introduce
some facts on the filtration multiplicities (T (λ) : ∇(µ)), and then state the
method we will use to prove the case n = 3, which incorporates an algorithm for
calculating the character of the truncated modules, the Littlewood-Richardson
Rule.

Chapter 5 considers the ‘missing’ range for the case n = 3, namely 3p ≤
r ≤ 6p − 9, and explains why we conjecture that D3,p(r) 6= A(π, r) for this
range. It also takes a brief look at the case n ≥ 4 which incorporates the
proof of Dn,p(r) = A(π, r) for all p and all n, and for 0 ≤ r ≤ p− 1, with π a
saturated set. We then give reasons why we conjecture that Dn,p(r) 6= A(π, r)
for n ≥ 4 and r > p except for when n = 4 and p = 3. Finally, Chapter 5
proves the case Dn,2(r) = A(π, r) for all n and π a suitable saturated set.

Chapter 6 then steps away from Doty Coalgebras. As stated above, we have
that all quasi-hereditary algebras have finite global dimension. The reverse of
this is not necessarily true, and in our research on quasi-hereditary alegbras
we came across a paper by Dlab and Ringel [3], which gives an example of
an 11-dimensional serial algebra which has finite global dimension but is not
quasi-hereditary. Studying this example we were able to find an infinite family
of such algebras, all of which are quiver algebras and thus can be displayed
as a nice picture. This chapter defines this family of quiver algebras, proving
why they have finite global dimension, but are not quasi-hereditary.
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Chapter 1

Preliminaries

1.1 Doty’s Conjecture, Algebraic Groups,

Coalgebras and Algebras

AIM: This section states Doty’s Conjecture, defines algebraic groups, coalge-
bras and their comodules. It shows how we get from an algebra to a coalgebra
and how an algebraic group can be viewed as a coalgebra. Doty’s Conjecture
is stated first as this was the motivation behind the research, we will go on to
define the modules used in the conjecture.

CONJECTURE 1.1.1 Doty’s Conjecture [9, Conjecture 2.6]
The modular Kostka numbers are defined as follows: K ′µλ = [Tr λE : L(µ)], for

Tr λE the truncated module and L(µ) the irreducible polynomial GLn-module
of highest weight µ. Then Doty’s Conjecture states that the modular Kostka
matrix K ′ = (K ′µλ), with rows and columns indexed by the set of all partitions
λ of length ≤ n, and bounded by n(p−1) (fixed in some order), is non-singular
for all n and all primes p.

We now go on to define an algebraic group.

DEFINITION 1.1.2 Let GLn(k) be the group of invertible matrices over k
an algebraically closed field, and Mn(k) be the space of all n×n matrices over
k.
A k-valued function f on Mn(k) is a polynomial function if
f ∈ k[c11, c12, ..., cnn] with cij(g) = (i, j)th entry of g, for g ∈ GLn(k).
A subgroup G ⊆ GLn(k) is a linear algebraic group if there is a set A of
polynomial functions on Mn(k) such that

G = {g ∈ GLn(k)| f(g) = 0 ∀f ∈ A}.

11



REMARK 1.1.3 [24, Theorem 2.3.5]
Every affine algebraic group over k is isomorphic to a closed subgroup of
GLn(k), for some n.

DEFINITION 1.1.4 Let k be an algebraically closed field. Let G = GLn(k),
and H a subgroup of G. Then

k[G] = k[c11, c12, ..., cnn, (det)−1]

where cij(g) = (i, j)th entry of g.
Now fix f1, ..., fr ∈ k[G]. Suppose H = {g ∈ G| f1(g) = · · · = fr(g) = 0} then
H is a closed set in the Zariski topology [26], and k[H] = {f ↓H | f ∈ k[G]}.

We now give some definitions on coalgebras and comodules.

DEFINITION 1.1.5 A k-coalgebra is a triple (C, δ, ε) where C is a k-vector
space, and δ : C → C ⊗ C, and ε : C → k are linear maps such that

(δ ⊗ id)δ = (id⊗ δ)δ coassociativity

(ε⊗)δ = (id⊗ ε)δ = id counit

where δ is the comultiplication or diagonal map, and ε is the counit or aug-
mentation map.

A subspace C ′ ⊂ C is a subcoalgebra if δ(C ′) ⊆ C ′ ⊗ C ′. Note that C ′ is
a coalgebra itself by restricting δ to δ′ : C ′ → C ′ ⊗ C ′ and ε to ε′ : C ′ → k.

DEFINITION 1.1.6 A right C-comodule is a pair (V, τ) where V is a k-
vector space and τ : V → V ⊗ C is a linear map such that

(τ ⊗ idC)τ = (idV ⊗ δ)τ and (idV ⊗ ε)τ = idV .

We call τ the structure map of V .

DEFINITIONS 1.1.7 [6, Section 1.1 and 1.2]
(i) Let C and C ′ be two coalgebras. Then φ : C → C ′ is a morphism of
coalgebras if ε′ ◦ φ = ε and (φ⊗ φ) ◦ δ = δ′ ◦ φ
(ii) Let (V, τ) and (V ′, τ ′) be two C-comodules. Then φ : V → V ′ is a mor-
phism of comodules if (φ⊗ idC)τ = τ ′ ◦ φ.
(iii) Let C be a coalgebra. Then a coideal of C is a subspace I such that
δ(I) ⊆ C ⊗ I + I ⊗ C and ε(I) = 0.
(iv) Let J be a set and Cj a coalgebra for each j ∈ J . Then we have that
the direct sum C =

⊕
j∈J Cj is a coalgebra with δ : C → C ⊗ C such that

δ(
∑

j∈J xj) =
∑

j∈J δj(xj) and ε : C → k such that ε(
∑

j∈J xj) =
∑

j∈J ε(xj),
for xj ∈ Cj.
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We now show how a coalgebra is the dual of an algebra.

DEFINITION 1.1.8 Let (C, δ, ε) be a k-coalgebra and R a k-algebra.
Then A = Homk(C,R) is an associative k-algebra with multiplication given
by the convolution product

(f ∗ g)(c) =
∑
i

f(ci)g(c′i)

for f, g ∈ A, where δ(c) =
∑

i ci ⊗ c′i and with identity 1A(c) = ε(c)1R.
In particular the linear dual C∗ = Homk(C, k) is the dual algebra of C.

The following defines the invariant matrix, needed for the next proposition
which shows how we get from a comodule to a module.

DEFINITION 1.1.9 Let (V, τ) be a right C-comodule and let {vi}i∈I be a
k-basis of V . The elements cij ∈ C, for i, j ∈ I, are defined by

τ(vj) =
∑
i∈I

vi ⊗ cij

for j ∈ I. We call the matrix (cij) the invariant matrix afforded by the basis
{vi}i∈I .

PROPOSITION 1.1.10 [6, Proposition 2.2a]
Let C be a coalgebra and (V, τ) a C-comodule. Let f ∈ C∗ and v ∈ V and
define fv ∈ V by

fv = (id⊗ f)τ(v) = (id⊗ f)(
∑
i

vi ⊗ xi) =
∑
i

id(v)⊗ f(xi) =
∑
i

f(xi)vi.

In particular, if {vi}i∈I is a basis for V then fvi =
∑

i∈I f(cji)vj for (cij) the
invariant matrix. Then the product fv makes the right C-comodule V into a
(unital) left C∗-module.

The next remark gives well known canonical isomorphisms between duals of
comodules which will be needed later in the proof of Theorem 4.1.3.

REMARK 1.1.11 Let C be a coalgebra, and let V, W be C-comodules.
Then
i) (V ⊗W )∗ ∼= V ∗ ⊗W ∗,
ii) HomC(V,W ) ∼= HomC(W ∗, V ∗).
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PROPOSITION 1.1.12 [6, Proposition 2.1b]
(i) If f : C → D is a morphism of coalgebras then f ∗ : D∗ → C∗ where
f ∗(α) = α ◦ f is a morphism of algebras.
(ii) The assignment C 7→ C∗ determines a contravariant functor from coalge-
bras to algebras which restricts to an equivalence of categories between finite
dimensional coalgebras and algebras.

Finally we show how an algebraic group can be viewed as a coalgebra.

PROPOSITION 1.1.13 [24, Exercise 2.1.2]
Let G be an algebraic group over k and algebraically closed field.
Then we can define R = k[G] with ε : k[G] → k such that ε(f) = f(1) and
also with m∗ = δ : k[G]→ k[G]× k[G], the comorphism of the multiplication
map m : G×G→ G.
Thus we have a triple (R, δ, ε) where δ and ε satisfy the following:
(i) (δ ⊗ idR) ◦ δ = (idR ⊗ δ) ◦ δ
(ii) (ε⊗ idR) ◦ δ = (idR ⊗ ε) ◦ δ = idR,
and hence (R, δ, ε) is a coalgebra.

1.2 The coalgebra A(n, r) and the Schur Alge-

bra S(n, r)

AIM: In this section we define the coalgebra A(n, r) ⊂ k[G], and also the
Schur Algebra S(n, r), the dual algebra of A(n, r). We also consider a different
way of viewing the Schur Algebra, resulting in a theorem by Schur.

DEFINITION 1.2.1 Let G = GLn(k), with k[G] as in Definition 1.1.4.
Let n = {1, 2, . . . , n}, then for each pair i, j ∈ n, let cij ∈ k[G] be the function
which associates to each g ∈ G its (i, j)-coefficient gi,j.
Let A(n) = k[cij | 1 ≤ i, j ≤ n], the algebra of polynomial functions in n2

variables.

Then A(n, r) ⊆ A(n), consists of the elements expressible as homogeneous
polynomials of degree r in the cij.

DEFINITION 1.2.2 Let I(n, r) be the set of all maps i : {1, 2, . . . , r} →
{1, 2, . . . , n}. Then for i, j ∈ I(n, r) write cij for ci1j1ci2j2 . . . cirjr .
Then A(n, r) = k-span {ci,j| i = (i1, . . . , ir), j = (j1, . . . , jr) ∈ I(n, r)}

REMARK 1.2.3 [11, Section 2.1] The dimension of A(n, r) is as follows;

dim A(n, r) =

(
n2 + r − 1

r

)
14



A(n, r) has a coalgebra structure as a subcoalgebra of k[G], giving rise to
an algebra structure on the dual A(n, r)∗.

After defining the coalgebra A(n, r) we now move on to the Schur Algebra
S(n, r).

DEFINITION 1.2.4 The Schur Algebra S(n, r) = A(n, r)∗ where S(n, r)
has basis {ξij | i, j ∈ I(n, r)} dual to {cij | i, j ∈ I(n, r)}, the basis for A(n, r).

However we can also look at S(n, r) in a different way as now shown.

DEFINITION 1.2.5 Let E be a k-vector space with basis {e1, . . . , en}, so
dim E = n. Then G = GLn(k) acts on E as follows

geν =
∑
µ∈n

gµνeµ =
∑
µ∈n

cµν(g)eν

for all g ∈ G and ν ∈ n.

Now, for i = (i1, i2, . . . , ir) ∈ I(n, r) where 1 ≤ i1, . . . , ir ≤ n, we write ei
for ei1 ⊗ ei2 ⊗ . . .⊗ eir . Then {ei | i ∈ I(n, r)} is a basis of E⊗r. Now suppose
G = GLn(k) then we have the action

G× E⊗r → E⊗r

gej = gej1 ⊗ . . .⊗ gejr

where

gej =
∑

i∈I(n,r)

gi1j1 . . . girjrei

=
∑

i∈I(n,r)

ci,j(g)ei ∀g ∈ G, j ∈ I(n, r)

We also have the action by the symmetric group E⊗r × Sym(r)→ E⊗r given
by eiπ = eiπ. Note that the action is associative with (eiσ)π = (eiσ)π = eiσπ =
(ei)(σπ).

THEOREM 1.2.6 [11, Theorem 2.6c] By Schur’s Theorem

S(n, r) ∼= EndSym(r)
(E⊗r).
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1.3 Quasi-hereditary Algebras and finite

global dimension

AIM: Definiton 1.3.1 up to Proposition 1.3.14 introduces the notion of a quasi-
hereditary algebra. There is a reasonable amount of detail needed for this, with
the introduction of standard and costandard modules, high-weight categories,
saturated sets and hereditary ideals. In sections 1.3.15-1.3.19 we define projec-
tive dimension and global dimension, and Proposition 1.3.21 states that any
quasi-hereditary algebra has finite global dimension.

We begin with the definition of a weight space.

DEFINITION 1.3.1 (i) Let X(n) = Zn, so α = (α1, . . . , αn) ∈ X(n) for
αi ∈ Z. Let GLn1 = GL1(k)n = GL1(k)× . . .×GL1(k) (n times), and let V be
a GLn1 -module, with comodule structure map τ : V → V ⊗ k[GLn1 ].
Now, for (x1, . . . , xn) ∈ GL1(k)n we define ti(x1, . . . , xn) = xi where 1 ≤ i ≤ n.
Moreover for α ∈ X(n) we put tα = tα1

1 . . . tαnn . We can then define the
corresponding weight space

V α = {v ∈ V | τ(v) = v ⊗ tα},

and we call α a weight of V if V α 6= 0.

We then move on to the definition of a dominance order.

DEFINITION 1.3.2 Let α, β ∈ X(n), with α = (α1, . . . , αn) and β =
(β1, . . . , βm). Let |α| = α1 + α2 + . . . + αn. Then, we define a dominance
order, written α E β if
1) |α| = |β|
2) α1 + . . .+ αa ≤ β1 + . . .+ βa for all 1 ≤ a ≤ n
Moreover, for λ ∈ X(n) we say that λ = (λ1, . . . , λn) is dominant if λ1 ≥ λ2 ≥
. . . ≥ λn.

DEFINITION 1.3.3 We have
(i) Λ(n, r) = {α ∈ Nn0 , α = (α1, . . . , αn) : |α| = r}
(ii) X+(n) = {α = (α1, α2, . . . , αn) : α1 ≥ α2 ≥ . . . ≥ αn}.
(iii) Λ+(n, r) = Λ(n, r) ∩X+(n)

The following defines certain properties of modules.

DEFINITION 1.3.4 We define mod(A) to be the category of all finitely-
generated A-modules.
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DEFINITION 1.3.5 Let A be an algebra with M an A-module.
i) The socle of M , notated soc(M), is defined to be the unique largest semisim-
ple submodule of M .
ii) We define the radical of M , denoted rad(M), to be the intersection of all
proper maximal submodules of M . The head of M , hd(M) = M/radM .

DEFINITION 1.3.6 Let A be a finite dimensional algebra withM a finitely-
generated A-module.
Choose PM a projective A-module such that hd(PM) ∼=hd(M). Then PM is
the projective cover of M .
Choose IM an injective A-module such that soc(IM) ∼=soc(M). Then IM is
the injective envelope of M .

DEFINITION 1.3.7 Let A be a finite dimensional k-algebra with simples
{L(λ) | λ ∈ Λ+}, P (λ) the projective cover of L(λ) and I(λ) the injective
envelope of L(λ).
Then if X ∈ mod(A) we define [X : L(λ)] to be the multiplicity of L(λ) as a
composition factor of X.

The following looks at maximal and minimal submodules of an A-module.

DEFINITION 1.3.8 (i) Let π ⊆ Λ+. Then V ∈ mod(A) belongs to π if all
composition factors of V belong to {L(λ)| λ ∈ π}.

(ii) Among all submodules of arbitrary V in π there is a unique maximal
submodule U ⊆ V such that U belongs to π. We write Oπ(V ) = U .

(iii) Among all submodules of arbitrary V in π there is a unique minimal
submodule W ⊆ V such that V/W is in π. We write Oπ(V ) = W .

It is then necessary to define standard and costandard modules.

DEFINITION 1.3.9 Fix a partial ordering ≤ on Λ+. For λ ∈ Λ+ define
π(λ) = {µ ∈ Λ+| µ < λ}.
Let M(λ) be the unique maximal submodule of P (λ), and define K(λ) =
Oπ(λ)(M(λ)). Then we define the standard modules by ∆(λ) = P (λ)/K(λ),
and the costandard modules by ∇(λ)/L(λ) = Oπ(λ)(I(λ)/L(λ)).

The next three definitions look at filtrations, high weight categories, and hered-
itary ideals, all needed to define Quasi-Hereditary Algebras.

DEFINITION 1.3.10 An A-module filtration 0 = X0 ≤ X1 ≤ . . . ≤ Xr =
X is a ∆-filtration if Xi/Xi−1 = 0 or Xi/Xi−1

∼= ∆(λ) for some λ ∈ Λ+. If
such a filtration exists we write X ∈ F(∆).
One similarly defines ∇-filtration.
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DEFINITION 1.3.11 We say mod(A) is a high weight category (with re-
spect to ordering ≤) if for all λ ∈ Λ+,
(i) I(λ)/∇(λ) ∈ F(∇),
(ii) whenever (I(λ)/∇(λ) : ∇(µ)) 6= 0 for µ ∈ Λ+ then µ > λ.

We call the elements of Λ+ the dominant weights.
This can be defined analogously via P (λ) and ∆(λ).

DEFINITION 1.3.12 An ideal H of A is called a hereditary ideal if the
following conditions are satisfied;
(i) H is a projective left A-module,
(ii) HomA(H,A/H) = 0,
(iii) HJ(A)H = 0 where J(A) is the radical of A.

Finally we can define a Quasi-Hereditary Algebra.

DEFINITION 1.3.13 A is a quasi-hereditary algebra if there exists a chain
of ideals

A = H0 > H1 > . . . > Hn = 0

with Hi/Hi+1 hereditary in A/Hi+1 for 1 ≤ i ≤ n.

PROPOSITION 1.3.14 [4, Proposition A3.7]
Suppose mod(A) is a high weight category with respect to the partial ordering
≤. Write out the elements of Λ+ as λ1, . . . , λn such that i < j when λi < λj,
and define π(i) = {λ1, . . . , λi} where 1 ≤ i ≤ n.
Then A > Oπ(1)(A) > . . . > Oπ(n)(A) = 0 is a hereditary chain of ideals.
Thus A is quasi-hereditary.

We now move on to projective and global dimension, to be able to show all
Quasi-Hereditary Algebras have finite global dimension.

DEFINITION 1.3.15 The projective dimension of an A−module M is de-
noted by PdA(M), and is defined as the smallest positive integer n such that
Extn+1

A (M,C) = 0 for all A−modules C. If no such n exists, then we say
PdA(M) = ∞. Equivalently, the projective dimension of M is the smallest
integer n such that M has a projective resolution

0→ P n → P n−1 → · · · → P 0 →M → 0,

where the P i are all projective A−modules.
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DEFINITION 1.3.16 The left global dimension of a finite dimensional al-
gebra A is denoted l.gl.dim A and is defined as

l.gl.dim A = sup {PdA(M) | M is a finitely-generated left A-module}.

Analogously, for the right global dimension of A we have

r.gl.dim A = sup {PdA(M) | M is a finitely generated right A-module}.

DEFINITION 1.3.17 We therefore say that an algebra A has finite global
dimension provided there exists some A-module M such that PdA(M) = n
and all modules have projective dimension less than or equal to n. If no such
module M exists then the algebra has infinite global dimension.

DEFINITION 1.3.18 A ring R is called left Noetherian if every left ideal
of R is finitely generated. Similarly, a ring R is right Noetherian if every right
ideal of R is finitely generated. We say a ring is Noetherian if it is both left
and right Noetherian.

PROPOSITION 1.3.19 [18, Page 58][13, Proposition 4.7]
(i) If a ring R is left and right Noetherian, then the left and right global
dimensions are equal.
(ii) Suppose R is a finite dimensional algebra over a field k. Then R is both
left and right Noetherian.

DEFINITION 1.3.20 We define l(λ) = l to be the length of the longest
chain λ0 < λ1 < . . . < λl = λ in Λ+, and define

l(Λ+) = {maximum of the lengths l(λ) | λ ∈ Λ+}.

We then show how all quasi-hereditary algebras have finite global dimension.

PROPOSITION 1.3.21 [4, Proposition A2.3]
Let A be a quasi-hereditary algebra. Then ExtiA(L(λ), L(µ)) = 0 for λ, µ ∈ Λ+

and i > l(λ)+l(µ), and hence A has finite global dimension bounded by 2l(Λ+).

The following remark will be the basis of our final chapter.

REMARK 1.3.22 [3, Example Page 283] The above is not an if and only if
statement; there exist algebras of finite global dimension which are not quasi-
hereditary.
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1.4 The Schur Algebra is Quasi-hereditary

AIM: This section is fairly self-explanatory. We explain why the Schur al-
gebra is quasi-hereditary, defining its standard and costandard modules. We
also highlight that this therefore means the Schur algebra has finite global
dimension.

DEFINITION 1.4.1 [10, 3.3.1]
The simple S(n, r)-modules are {L(λ) | λ ∈ Λ+(n, r)}.

DEFINITION 1.4.2 [10, 3.3.2] If a ≥ 1 is an integer, we denote by Sa(E)
the a-th symmetric power of E. More generally, let λ = (λ1, . . . , λn) be a
partition of r, then the tensor product of symmetric powers Sλ(E) = Sλ1(E)⊗
. . .⊗ Sλn(E) is a GLn(k)-module and hence an S(n, r)-module.
The canonical epimorphism Ψ : E⊗r → Sλ(E) is an S(n, r)-homomorphism.

We now go on to define the module Dλ,k, which requires a build up of defini-
tions, we start with the diagram of λ and a bijective λ-tableau.

DEFINITION 1.4.3 [11, 4.2] We call the diagram of λ, the subset

[λ] = {(s, t) | 1 ≤ s, 1 ≤ t ≤ λs}

of Z × Z. A λ-tableau is a map from [λ] to a set, and as [λ] has r elements
there exists at least one bijection T : [λ] → r. We choose one bijection and
call it the bijective λ-tableau T = T λ.

We now move on to define the column stabilizer of T .

DEFINITION 1.4.4 [11, 4.2] If the image under T of (s, t) is x(s, t) we can
depict T as follows;

x(1, 1) x(1, 2) . . . . . . x(1, λ1)
x(2, 1) x(2, 2) . . . x(2, λ2)
x(3, 1) x(3, 2) . . .
. . . . . .

So, every element of r appears once in the above depiction, and we say x(s, t) is
in row s and column t of T . The column stabilizer C(T ) of T is the subgroup
of Sym(r) consisting of all π ∈ Sym(r) which preserve the columns of the
above depiction.

We now go on to introduce the bideterminants (Ti : Tj).

20



DEFINITION 1.4.5 [11, 4.3] If i = (i1, . . . , ir) is an element of I(n, r) we
denote the λ-tableau iT : [λ]→ n by Ti.
Now let k be an infinite field, and let i, j be elements of I(n, r). Then we
define an element (Ti : Tj) = (Ti : Tj)k of A(n, r) by the formula

(Ti : Tj) =
∑

π∈C(T )

sgn(π)ci,jπ =
∑

π∈C(T )

sgn(π)ciπ,j.

Where sgn(π) is the sign of π. Then, apart from the interchange of rows and
columns, (Ti : Tj) is a bideterminant [11, 4.3a].

After defining the following element of I(n, r) we can then define the module
Dλ,k.

DEFINITION 1.4.6 [11, 4.3 Example 2 and 4.4] Let ` be the element of
I(n, r) whose λ-tableau is

T` =


1 1 . . . . . . 1
2 2 . . . 2
3 3 . . .
. . .


Then we define Dλ,k as the k-span of the bideterminants (T` : Ti) for all
i ∈ I(n, r). Hence Dλ,k is a subspace of A(n, r).

REMARK 1.4.7 [11, 4.4] The module Dλ,k is independent of the choice of
T .

Having defined Dλ,k we now go on to show how it can be viewed as an S(n, r)-
submodule of A(n, r), first showing how A(n, r) is a bimodule for S(n, r).

PROPOSITION 1.4.8 [11, 4.4] Let h, j ∈ I(n, r), then the space A(n, r) is
a bimodule for S(n, r) via the following;

ξ ◦ ch,j =
∑
i∈I

ξ(ci,j)ch,i,

ch,j ◦ ξ =
∑
i∈I

ξ(ch,i)ci,j.

Now, if we replace h by `π, multiply by s(π) and sum over all π ∈ C(T ), then,
for all ξ ∈ S(n, r), we get

ξ ◦ (T`,j) =
∑
i∈I

ξ(ci,j)(T` : Ti).

It thus follows Dλ,k is a left S(n, r)-submodule of A(n, r).
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We now move on to the module Vλ,k.

DEFINITION 1.4.9 [11, 2.7 Example 1] For the module E⊗r we can define
a non-singular bilinear form

<,>: E⊗r × E⊗r → k

by < ei, ej >= δij for all i, j ∈ I(n, r). This bilinear form is contravariant and
we call it the canonical form on E⊗r.

DEFINITION 1.4.10 Let λ ∈ Λ+(n, r), then we denote by N , the kernel of
the S(n, r)-epimorphism φ : E⊗r → Dλ,k where ej 7→ (T`,j) for all j ∈ I(n, r).
We have an exact sequence in M(n, r)

0→ N → E⊗r → Dλ,k → 0.

Then we let Vλ,k be the orthogonal compliment to N , relative to the canonical
form <,> on E⊗r. So

Vλ,k = {x ∈ E⊗r | < x,N >= 0}.

PROPOSITION 1.4.11 [11, 5.1] The module Vλ,k ∼= (Dλ,k)
◦.

Proof. The canonical form <,> we know to be contravariant, and N is an
S(n, r)-submodule of E⊗r. Hence Vλ,k is also a submodule of E⊗r. Moreover,
since <,> is non-singular, we can define a non-singular, contravariant form

(, ) : Vλ,k ×Dλ,k → k

by (x, φ(y)) =< x, y > for all x ∈ Vλ,k and y ∈ E⊗r. Hence Vλ,k ∼= (Dλ,k)
∗.

THEOREM 1.4.12 [10, Theorem 3.4]
The Schur Algebra S(n, r) is quasi-hereditary with respect to the dominance
order and with ∆(λ) ∼= Vλ,k and ∇(λ) ∼= Dλ,k.

COROLLARY 1.4.13 The Schur Algebra has finite global dimension.
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Chapter 2

The Doty Coalgebras

2.1 The Symmetric and Exterior Algebras

AIM: The Doty Coalgebras are the focus of our research, and thus we spend a
reasonable amount of time defining them. The symmetric and exterior algebras
are themselves GLn(k)-modules and they play a crucial role in defining these
Doty coalgebras.

We first define the Symmetric Algebra.

DEFINITION 2.1.1 [8, Introduction] Let G = SL(2), then there exists an
irreducible G-module Vm of dimension m+1 for m = 1, 2, . . .. Let e1, . . . , em be
a basis for Vm−1, then we define the symmetric algebra S(E) = k[e1, e2, . . . , em].

We have that E = ke1 + ke2 + . . .+ kem ⊆ S(E).
There is also a G-action by algebra automorphisms, extending the G-module
structure on E and hence we can write S(E) as a G-module decomposition
via:

S(E) =
∞⊕
r=0

Sr(E)

where Sr(E) = k-span{ei1 · . . . · eir | i1, . . . , ir ∈ n}.
In particular for n = 2 we have

Sr(E) = k-sp{er1, er−1
1 e2, e

r−2
1 e2

2, . . . , e
2
1e
r−2
2 , e1e

r−1
2 , er2}.

We now introduce the tensor algebra and then define the Exterior Algebra.

DEFINITION 2.1.2 Consider the tensor algebra

T (E) = k ⊕ E ⊕ E ⊗ E ⊕ E ⊗ E ⊗ E ⊕ . . .
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with multiplication

(x1 ⊗ . . .⊗ xr) · (y1 ⊗ . . .⊗ ys) = x1 ⊗ . . .⊗ xr ⊗ y1 ⊗ . . .⊗ ys.

Let I be the ideal generated by all x⊗ y− y⊗x where x, y ∈ E. Then we also
have that the symmetric algebra S(E) = T (E)/I.
Now, let J be the ideal generated by all the x ⊗ y + y ⊗ x and the x ⊗ x for
all x, y ∈ E. Then we define the exterior algebra to be

Λ(E) = T (E)/J.

The elements x̂ = x+ J satisfy x̂ŷ = −ŷx̂ and x̂2 = 0 for x, y ∈ E.
We write x1 ∧ x2 ∧ . . . ∧ xr for x1 ⊗ x2 ⊗ . . .⊗ xr + J ∈ Λ(E).
If E has a basis e1, . . . , en then Λ(E) has basis ei1 ∧ ei2 ∧ . . .∧ eir for i1 < i1 <
. . . < ir. As in the case for S(E), we also have Λ(E) =

⊕∞
r=0 Λr(E) where

Λr(E) = k-span{ei1 ∧ . . . ∧ eir | i1 < . . . < ir}.

2.2 The Doty Coalgebras

AIM: For C a coalgebra and V a C-comodule we can define the coefficient
space cf (V ), which is a subcoalgebra of C. In this section we define this
coefficient space and give further information about its properties. We then
return to the symmetric algebra S(E) and with the use of an ideal I = ⊕rIr
we form a set of irreducible GLn(k)-modules S̄rE = SrE/Ir. We then form
the truncated modules Tr λE = Sλ1E ⊗ . . . ⊗ SλnE for λ = (λ1, . . . , λn) a
partition of r into n parts. In 2.2.13 we then define the Doty coalgebras
Dn,p(r) =

∑
λ cf (Tr λE). We complete this section with an example of the

case D2,2(r).

DEFINITION 2.2.1 [12, Section 1.2] Let X and Y be k-spaces with bases
{ξi}i∈I and {ηj}j∈J . Then for all u ∈ X ⊗ Y we define xi and yi by u =∑

j∈J xj ⊗ ηj =
∑

i∈I ξi ⊗ yi for some uniquely determined xi ∈ X, yi ∈ Y . If
U = {uλ}λ∈Λ is a subset of X ⊗ Y then in particular

uλ =
∑

λ∈Λ, j∈J

xλj ⊗ ηj =
∑

λ∈Λ, i∈I

ξi ⊗ yλi.

We then define the left span of U to be

L(U) = k-sp{xλj | λ ∈ Λ, j ∈ J}

a subspace of X, and define the right span of U to be

R(U) = k-sp{yλi | λ ∈ Λ, i ∈ I}

a subspace of Y .
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LEMMA 2.2.2 [12, Section 1.2] Let (V, τ) a right C-comodule. Then for any
subset U of V the L(τ(U)) is a subcomodule of V containing U .

Having defined the left and right span, we can now define the coefficient space
of a module.

DEFINITION 2.2.3 The coefficient space cf (V ) is R(τ(V )). So for {vi}i∈I
a basis for V and τ : V → V ⊗C such that τ(vj) =

∑
i∈I vi⊗ cij for j ∈ I then

cf (V ) = k-sp{cij | i, j ∈ I}.

The following two lemmas give further information on the coefficient space.

LEMMA 2.2.4 [12, 1.2c] cf (V ) is independent of the choice of basis of V .

LEMMA 2.2.5 [12, 1.2e] cf (V ) is a subcoalgebra of C.

We now give an example of a coefficient space.

EXAMPLE 2.2.6 Let G = GL2(k). Let V = k-sp{v1, v2} the natural G-
module, and

k[G] = k[c11, c12, c21, c22, det−1].

Now, V has structure map τ : V → V ⊗ k[G] with

τ(v1) =
2∑
i=1

vi ⊗ ci1 = v1 ⊗ c11 + v2 ⊗ c21

τ(v2) =
2∑
i=1

vi ⊗ ci2 = v1 ⊗ c21 + v2 ⊗ c22.

Then cf (V ) = R(τ(V )) = k-sp{c11, c12, c21, c22}.
Note that if we take two different basis elements for V , say {w1, w2} we still
get cf (V ) = R(τ(V )) = k-sp{c11, c12, c21, c22}.

THEOREM 2.2.7 Let C be a coalgebra over an algebraically closed field,
and V a simple C-comodule. Let D = cf (V ), then D∗ ∼= Mn(k) where n =
dim V . Thus D∗ is semisimple.

Proof. Refer to [12, Section 1.3], and choose a dual basis for T . Then there is
an isomorphism between the multiplication of these dual elements and matrix
multiplication.
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EXAMPLE 2.2.8 Let n = 2, C a coalgebra and V a C-comodule. Let
D = cf(V ) = k-sp{c11, c12, c21, c22} as in Example 2.2.6. M2(k) has basis
e11, e12, e21, e22 where eij is a 2× 2 matrix with 1 in the (i, j)th position, and
0 everywhere else, and D∗ has a dual basis α11, α12, α21, α22.
Multiplication on M2(k) is as follows; eijers = δjreis where δ is the Kronecker
delta. Now consider multiplication in D∗;

(αijαrs)(cab) = (αij ⊗ αrs)δ(cab)

= (αij ⊗ αrs)(
∑
t

cat ⊗ ctb)

=
∑
t

δiaδjtδrtδsb

= δiaδrjδsb

= δrjαis(cab).

So, αijαrs = δrjαis.
Then we have an isomorphism φ : D∗ →M2(k) such that φ(αrs) = ers,
and if α ∈ D∗ then

α = λ11α11 + λ12α12 + λ21α21 + λ22α22

= α(c11)α11 + α(c12)α12 + α(c21)α21 + α(c22)α22.

Then

φ(α) =

(
α(c11) α(c12)
α(c21) α(c22)

)
The following looks at coefficient spaces of simple comodules.

REMARK 2.2.9 [12, 1.3.2] For A a finite dimensional algebra over an al-
gebraically closed field k, we have A/J(A) ∼= Mn1(k) ⊕ . . . ⊕Mnr(k), and for
C a coalgebra with pairwise non-isomorphic simples V1, . . . , Vm we have that
C ⊇ cf (V1)⊕ . . .⊕ cf (Vm) where the cf (Vi) are all simple subcoalgebras.

We now give an example of this.

EXAMPLE 2.2.10 (i) There exists a surjective homomorphism E ⊗ E →
S2E and thus

cf (S2E) ⊆ cf (E ⊗ E) = cf (E)cf (E) = A(2, 1)A(2, 1) ⊆ A(2, 2).

(ii) Let p ≥ 5 and let

C = A(2, 3) = k-sp{cijcklcmn} | 1 ≤ i, j, k, l,m, n ≤ 2}.

Then by Remark 1.2.3, dim A(2, 3) = 20. A(2, 3) has two simple comodules;
S3E = k-sp{e3

1, e
2
1e2, e1e

2
2, e

3
2} and E ⊗ Λ2E = k-sp{e1, e2} ⊗ k-sp{e1 ∧ e2}.

Then
A(2, 3) = cf (S3E)⊕ cf (E ⊗ Λ2E).
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We now give two basic definitions which are required to define the Doty Coal-
gebras.

DEFINITION 2.2.11 Let λ = (λ1, λ2, . . . , λn) be a partition of r into n
parts. Then we call λ a proper partition if λ1 ≥ λ2 ≥ . . . ≥ λn.

DEFINITION 2.2.12 A ring A is called graded if A =
⊕∞

r=0Ar where all
Ar are subspaces of A and we have that ArAs ⊆ Ar+s.
An ideal I =

⊕
Ir where Ir = Ar ∩ I is called homogeneous.

We are now able to define the Doty Coalgebras.

DEFINITION 2.2.13 [9, Section 1] We have from Definition 2.1.1 that

S(E) = k[e1, e2, . . . , en] =
∞⊕
r=0

SrE.

Then S(E) is a graded ring. Let I be the ideal generated by ep1, e
p
2, . . . , e

p
n for

char k = p prime. This is a GLn-submodule, and is also a homogeneous ideal
with I =

⊕∞
r=o Ir where

Ir = sp{em1
1 · . . . · emnn | m1 + . . .+mn = r and some mj ≥ p}.

Then we have

S̄(E) = S(E)/I =
∞⊕
r=0

SrE/Ir.

So let S̄rE = SrE/Ir which are all irreducible. Note that for r > n(p − 1)
we have S̄rE = 0. Now let t = n(p − 1) and let λ = (λ1, λ2, . . . , λn) with
t ≥ λ1 ≥ . . . ≥ λn ≥ 0. Then we define the truncated modules

Tr λE = S̄λ1E ⊗ . . .⊗ S̄λnE.

We then define the Doty Coalgebras to be

Dn,p(r) =
∑
λ

cf (Tr λE)

where λ runs over all partitions of r into n parts, with t ≥ λ1 ≥ . . . ≥ λn ≥ 0.

We follow this with a detailed example of D2,2.
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EXAMPLE 2.2.14 Let n = 2 and p = 2. Then S̄(E) =
⊕∞

r=0 S
rE/Ir and

S̄0E = k

S̄1E = k-sp{e1, e2}/{0} = E

S̄2E = k-sp{e2
1, e1e2, e

2
2}/k-sp{e2

1, e
2
2} ∼= Λ2E

S̄3E = k-sp{e3
1, e

2
1e2, e1e

2
2, e

2
2}/k-sp{e3

1, e
2
1e2, e1e

2
2, e

2
2} = 0.

Indeed S̄rE = 0 for r > 2, and thus S̄(E) ∼= k ⊕ E ⊕ Λ2E.
As λ = (λ1, λ2) runs over all partitions of r into n parts, then in this case λ
runs over the partitions (2, 2), (2, 1), (2, 0), (1, 1), (1, 0), (0, 0).
Giving

Tr(2,2)E = S̄2E ⊗ S̄2E = Λ2E ⊗ Λ2E,

Tr(2,1)E = S̄2E ⊗ S̄1E = Λ2E ⊗ E,
Tr(2,0)E = S̄2E ⊗ S̄0E = Λ2E ⊗ k,
Tr(1,1)E = S̄1E ⊗ S̄1E = E ⊗ E,
Tr(1,0)E = S̄1E ⊗ S̄0E = E ⊗ k,
Tr(0,0)E = S̄0E ⊗ S̄0E = k ⊗ k.

Now, as an example, let us calculate cf (Λ2E ⊗ Λ2E). Well, take g ∈ GL2(k)
and write

g =

(
a b
c d

)
then

g(e1 ∧ e2 ⊗ e1 ∧ e2) = g(e1 ∧ e2)⊗ g(e1 ∧ e2)

= (ae1 + ce2 ∧ be1 + de2)⊗ (ae1 + ce2 ∧ be1 + de2)

= (ad(e1 ∧ e2) + bc(e2 ∧ e1))⊗ (ad(e1 ∧ e2) + bc(e2 ∧ e1))

= (ad− bc)e1 ∧ e2 ⊗ (ad− bc)e1 ∧ e2

= det(g)e1 ∧ e2 ⊗ det(g)e1 ∧ e2

= det(g)2e1 ∧ e2.

Thus cf (Tr (2,2)E) = k(det)2.
Similarly we can say that cf (E) = A(2, 1) and cf (E⊗E) = A(2, 2). Note also
that kdet ⊆ A(2, 2) and thus Tr (2,0)E embeds in Tr (1,1)E. Therefore we have
that

D2,2 = k ⊕ A(2, 1)⊕ A(2, 2)⊕ A(2, 1)det⊕ kdet2.
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2.3 Classification by Highest Weights

AIM: To be able to move on to proving our theorem, that D2,p(r) = A(2, r), it
is first necessary to introduce further information. This section defines weight
spaces and also gives the classification of modules of highest weights which
form an irreducible set of GLn(k)-modules: the modules {L(m1, . . . ,mn)}. We
again finish on some examples, referring back to the final example in the last
section and this time giving the result as tensor products of these irreducible
modules of highest weights.
We first define X(T ), the group of algebraic group homomorphisms.

REMARK 2.3.1 [24, Section 2.5] Let

T = {diag(a1, . . . , an) | a1, . . . , an ∈ k×}

where k× is the multiplicative group of the field k. Define X(T ) = Hom(T, k×)
the group of algebraic group homomorphisms. Now, given λ = (m1, . . . ,mn) ∈
Zn we define a homomorphism λ̃ : T → k× by

λ̃(diag(a1, . . . , an)) = am1
1 am2

2 · · · amnn .

Write kλ for the corresponding simple 1-dimensional module, so T acts on k
by tv = λ̃(t)v. Then every irreducible module for T has the form kλ for some
λ ∈ X(T ). And as every T -module is semisimple then each rational T -module
V ∼=

⊕
i∈I kλi where λi ∈ X(T ).

The following returns to weight spaces which we follow with an example.

DEFINITION 2.3.2 In Definition 1.3.1 we defined the weight space V α for
α ∈ X(n). Analogously, for λ ∈ X(T ), we can define the λ-weight space

V λ = {v ∈ V | tv = λ(t)v ∀ t ∈ T}.

So, in the case n = 2 we have

Let T =

{(
r 0
0 s

)
| r, s ∈ k×

}
and define

V (a,b) = {v ∈ V | tv = rasbv ∀ t ∈ T}.

The fact that V is a polynomial module implies that V =
⊕

a,b≥0 V
(a,b).

DEFINITION 2.3.3 With V as in the definition above, then we define the
character of V to be chV =

∑
(dim V (a,b))xa1x

b
2.
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EXAMPLE 2.3.4 (i) For E = ke1 + ke2 we have
te1 = re1 = r1s0e1 and so E(1,0) = ke1 with dim E(0,1) = 1, so

E = E(1,0) ⊕ E(0,1)

and
chE =

∑
(dim V (a,b))xa1x

b
2

= x1 + x2.

(ii) For S2E = ke2
1 + ke1e2 + ke2

2 we have
te2

1 = (te1)2 = r2e2
1 and so E(2,0) = ke2

1 with dim E(2,0) = 1
te1e2 = re1se2 and so E(1,1) = ke1e2 with dim E(1,1) = 1
te2

2 = (te2)2 = s2e2
2 and so E(0,2) = ke2

2 with dim E(0,2) = 1
so

chS2E = x2
1 + x1x2 + x2

2.

(iii) ch Λ2E = x1x2.

DEFINITION 2.3.5 We say a module has highest weight (m1, . . . ,mn), if,
(m1, . . . ,mn) is itself a weight, and, with respect to the dominance order,
(m1, . . . ,mn) D (r1, . . . , rn) for all other weights r.
For example with E = E(1,0) ⊕ E(0,1) we have that (1, 0) D (0, 1), and E has
highest weight at (1, 0).

The above information now allows us to look at the following theorem.

THEOREM 2.3.6 [11, Theorem 3.5a] Classification by Highest Weights
For each (m1, . . . ,mn) with m1 ≥ m2 ≥ . . . ≥ mn > 0, there exists an ir-
reducible module of highest weight (m1,m2, . . . ,mn). We call this module
L(m1,m2, . . . ,mn). The {L(m1,m2, . . . ,mn) | m1 ≥ . . . ≥ mn} form a full set
of irreducible rational GLn(k)-modules.

REMARK 2.3.7 For G-modules V1 and V2 we have;
(i) ch (V1 ⊗ V2) = (ch V1)(ch V2)
(ii) V1, V2 have the same composition factors (including multiplicities) if and
only if chV1 = chV2

We finally return to our example from the last section.

EXAMPLE 2.3.8 (i) Consider Λ2(E) = k(e1 ∧ e2), then

t(e1 ∧ e2) = te1 ∧ te2

= ae1 ∧ be2

= ab(e1 ∧ e2)
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Hence Λ2(E) = L(1, 1).
(ii) L(r, 0) is the submodule of SrE generated by er1.
(iii) L(r + s, s) = L(r, 0)⊗ Λ2E ⊗ . . .⊗ Λ2E (s times).
(iv) Consider Example 2.2.14 where n = 2 and p = 2, then

S̄(E) = k ⊕ E ⊕ Λ2E = L(0, 0)⊕ L(1, 0)⊕ L(1, 1),

and

Tr(2,2)E = S̄2E ⊗ S̄2E = Λ2E ⊗ Λ2E = L(1, 1)⊗ L(1, 1) ∼= L(2, 2),

Tr(2,1)E = Λ2E ⊗ E = L(1, 1)⊗ L(1, 0) ∼= L(2, 1),

Tr(2,0)E = Λ2E ⊗ k = L(1, 1)⊗ L(0, 0) ∼= L(1, 1),

Tr(1,1)E = E ⊗ E = L(2, 0) + 2L(1, 1),

Tr(1,0)E = E ⊗ k = L(1, 0)⊗ L(0, 0) ∼= L(1, 0),

Tr(0,0)E = k ⊗ k = L(0, 0)⊗ L(0, 0) ∼= L(0, 0).

2.4 Tilting Modules

AIM: Tilting modules play a crucial role in proving our theorem D2,p(r) =
A(2, r), and so we introduce these now. In this section we also give a theo-
rem that states if the coefficient spaces of the tilting modules of A(2, r) are
contained within D2,p(r), then we will have proven that D2,p(r) = A(2, r) and
thus that D2,p(r) is quasi-hereditary and has finite global dimension, the re-
sult required. It therefore remains to find the coefficient spaces of these tilting
modules!

DEFINITION 2.4.1 Define ∇(r, s) = Sr−sE ⊗ kdet⊗s for r ≥ s.
Then for G = GL2(k) a G-module M has a good filtration if there is a filtration
M = M0 > M1 > M2 > . . . > Mr = 0 where each Mi/Mi+1

∼= ∇(a, b), for
some (a, b) ∈ X+(2).

DEFINITION 2.4.2 We call a finite dimensional rational module M , a tilt-
ing module, if M and M∗ both have a good filtration.

REMARK 2.4.3 [5, Theorem 1.1, Proposition 1.2]
(i) For λ = (r1, . . . , rn) with r1 ≥ . . . ≥ rn there exists a tilting module
M(r1, . . . , rn) with unique highest weight (r1, . . . , rn), (occurring once).
(ii) Any tilting module is isomorphic to a direct sum of these M(r1, . . . , rn).
(iii) The tensor product of two tilting modules is again a tilting module.

So far we have considered GL, but now, having defined a tilting module we
classify them for SL2.
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THEOREM 2.4.4 [5, Section 2 Ex. 2] Classifying the Tilting Modules for
SL2

(i) For r ≤ p− 1, then T (r) = L(r) = SrE.
(ii) For r = p, then T (r) = T (p) = E ⊗ Sp−1E, and there exists a short exact
sequence

0→ Λ2E ⊗ Sp−2E → E ⊗ Sp−1E → SpE → 0

and we notate this by

T (p) =
SpE

Sp−2E
.

(iii) For p− 1 ≤ r ≤ 2p− 2, then

T (p− 1 + a) =
Sp−1+aE

Sp−1−aE

where 1 ≤ a ≤ p− 1.
(iv) For p− 1 ≤ r ≤ 2p− 2 + cp, let s = b+ pc where p− 1 ≤ b ≤ 2p− 2 and
c ≥ 0, then T (s) ∼= T (b)⊗ T (c)F .

REMARK 2.4.5 For GL2(k), with a ≥ b, then

T (a, b) ∼= T (a− b, 0)⊗ (Λ2E)⊗b,

and so for SL2(k), T (a, b) ↓SL2(k)= T (a− b).
In particular T (r, 0) ↓SL2(k)

∼= T (r). For example T (4, 3) ∼= T (1, 0) ⊗ (Λ2E)⊗3

and T (4, 3) ↓SL2(k)= T (1).

The following theorem is then crucial to proving our main theorem 3.1.1 for
the case n = 2.

THEOREM 2.4.6 Suppose {T (λ)| λ ∈ Λ} is a full set of tilting modules
for the coalgebra A(n, r). Suppose also that cf (T (λ)) ⊆ Dn,p(r) for all λ ∈
Λ+(n, r).
Then Dn,p(r) = A(n, r).

Proof. By [7, Corollary 7.3] we have that A(n, r) =
∑

λ∈Λ+(n,r) cf (T (λ)), and

hence if cf (T (λ)) ⊆ Dn,p(r) for all λ ∈ Λ+(n, r), then A(n, r) ⊆ Dn,p(r). We
also have by definition that Dn,p(r) ⊆ A(n, r) and hence A(n, r) = Dn,p(r).
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Chapter 3

The case n = 2 for all primes p

3.1 The Theorem for n=2

AIM: This short section gives the main theorem we will prove for the case
n = 2, and explains briefly how we will go about proving this theorem.

THEOREM 3.1.1 The Doty Coalgebras D2,p(r) are quasi-hereditary for all
primes p and 0 ≤ r ≤ 2t, where t = 2(p− 1), as

D2,p(r) =


A(2, r) 0 ≤ r ≤ t
A(2, t− j)detj r = t+ j, 0 ≤ j ≤ t
0 r > 2t

REMARK 3.1.2 By Theorem 2.4.6 we know that

D2,p(r) = A(2, r) if cf (T (λ)) ⊆ D2,p(r)

for all tilting modules T (λ) of A(2, r). Thus we prove Theorem 3.1.1, by find-
ing the coefficient spaces of these tilting modules within the Doty Coalgebra
D2,p(r).

The proof splits into three parts;
(i) 0 ≤ r ≤ p− 1
(ii) p ≤ r ≤ t
(iii) t+ 1 ≤ r ≤ 2t.

Before we begin these parts of the proof we shall first do some general work
on the Doty Coalgebra D2,p(r).
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3.2 Generalisation of the D2,p(r) for all p and

all r

AIM: This section describes the S̄rE for 0 ≤ r ≤ t and then describes the
truncated modules Tr λE. We then give a full description of the D2,p(r) =∑

cf (Tr λE). Examples are given throughout the section.

THEOREM 3.2.1 We have

S̄rE ∼=
{
SrE, if 0 ≤ r ≤ p− 1
St−rE ⊗ Λ2E⊗r−p+1, if p ≤ r ≤ t

Proof. For 0 ≤ r ≤ p − 1 we have S̄rE = k-sp{er1, er−1
1 e2, . . . , e1e

r−1
2 , er2}/0 =

SrE.

For p ≤ r ≤ t we have;
S̄rE = k-sp{er1, er−1

1 e2, . . . , e1e
r−1
2 , er2}/

k-sp{er1, er−1
1 e2, . . . , e

p
1e
r−p
2 , er−p1 ep2, . . . , e1e

r−1
2 , er2}

= k-sp{ep−1
1 ep2 + Ip, e

p−2
1 e2

2 + Ip, . . . , e
2
1e
p−2
2 + Ip, e1e

p−1
2 + Ip}

= L(p− 1, r − (p− 1)) by Theorem 2.3.6
∼= L((p− 1)− (r − (p− 1)), 0)⊗ L(1, 1)⊗r−(p−1)

∼= S(p−1)−(r−(p−1))E ⊗ Λ2E⊗r−(p−1)

∼= S2p−2−rE ⊗ Λ2E⊗r−(p−1)

∼= St−rE ⊗ Λ2E⊗r−p+1

EXAMPLE 3.2.2 Take n = 2 and p = 5, then t = n(p− 1) = 8.
We have that S̄rE = SrE for 0 ≤ r ≤ 4 = p− 1,

S̄5E = S5E/k-sp{e5
1, e

5
2}

= k-sp{e4
1e2 + I5, e

3
1e

2
2 + I5, e

2
1e

3
2 + I5, e1e

4
2 + I5}

= L(4, 1)
∼= L(3, 0)⊗ L(1, 1)
∼= S3E ⊗ Λ2E
∼= S8−5E ⊗ Λ2E⊗5−5+1.

S̄6E = S6E/k-sp{e6
1, e

5
1e2, e1e

5
2, e

6
2}

= k-sp{e4
1e

2
2 + I6, e

3
1e

3
2 + I6, e

2
1e

4
2 + I6}

= L(4, 2)
∼= L(2, 0)⊗ L(1, 1)⊗2

∼= S2E ⊗ Λ2E⊗2

∼= S8−6E ⊗ Λ2E⊗6−5+1.
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S̄7E = S7E/k-sp{e7
1, e

6
1e2, e

5
1e

2
2, e

2
1e

5
2, e1e

6
2, e

7
2}

= k-sp{e4
1e

3
2 + I7, e

3
1e

4
2 + I7}

= L(4, 3)
∼= L(1, 0)⊗ L(1, 1)⊗3

∼= S1E ⊗ Λ2E⊗3

∼= S8−7E ⊗ Λ2E⊗7−5+1.

S̄8E = S8E/k-sp{e8
1, e

7
1e2, e

6
1e

2
2, e

5
1e

3
2, e

3
1e

5
2, e

2
1e

6
2, e1e

7
2, e

8
2}

= k-sp{e4
1e

4
2 + I8}

= L(4, 4)
= L(1, 1)⊗4

= Λ2E⊗4

= S8−8E ⊗ Λ2E⊗8−5+1.

Having looked at the S̄rE we now look at the number of ways we can partition
r into n = 2 parts.

THEOREM 3.2.3 We have D2,p(r) =
∑

cf (Tr (λ1,λ2)E) where λ1 + λ2 = r
and t ≥ λ1 ≥ λ2.
Then the number of such partitions (λ1, λ2) is as follows:

r+1
2

for 0 ≤ r ≤ t, rodd

r+2
2

for 0 ≤ r ≤ t, r even

r+1
2
− (r − t) for t+ 1 ≤ r ≤ 2t, r odd

r+2
2
− (r − t) for t+ 1 ≤ r ≤ 2t, r even

Proof. For r even, the number of ways of partitioning r into two parts is r+2
2

,
and for r odd, it is r+1

2
.

For example;
r = 1 1+1

2
= 1, so 1 can be partitioned into (1, 0)

r = 2 2+2
2

= 2, so 2 can be partitioned into (2, 0) and (1, 1)

r = 3 3+1
2

= 2, so 3 can be partitioned into (3, 0) and (2, 1)

r = 4 4+2
2

= 3, so 4 can be partitioned into (4, 0), (3, 1) and (2, 2)

r = 5 5+1
2

= 3, so 5 can be partitioned into (5, 0), (4, 1) and (3, 2)

So, we would have for r/2 ≤ λ1 ≤ r for r even, and (r + 1)/2 ≤ λ1 ≤ r
for r odd. However, in our case, λ1 ≤ t, thus restricting the number of parti-
tions available. For example in the case above, when p = 3 then t = 4 and 5
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partitions as (4, 1) and (3, 2) only.

To make this adjustment to the number of partitions, we find r − t when-
ever r ≥ t+ 1, (when r ≤ t we do not need to make an adjustment). Then for
r even the number of partitions is r+2

2
− (r − t) and for r odd then number is

r+1
2
− (r − t).

EXAMPLE 3.2.4 n = 2, p = 3, t = 4

r = 1 1+1
2

= 1, so 1 can be partitioned into (1, 0)

r = 2 2+2
2

= 2, so 2 can be partitioned into (2, 0) and (1, 1)

r = 3 3+1
2

= 2, so 3 can be partitioned into (3, 0) and (2, 1)

r = 4 4+2
2

= 3, so 4 can be partitioned into (4, 0), (3, 1) and (2, 2)

r = 5 5+1
2
− (5− 4) = 2, so 5 can be partitioned into (4, 1) and (3, 2)

r = 6 6+2
2
− (6− 4) = 2, so 6 can be partitioned into (4, 2) and 3, 3)

r = 7 7+1
1
− (7− 4) = 1, so 7 can be partitioned into (4, 3)

r = 8 8+2
2
− (8− 4) = 1, so 8 can be partitioned into (4, 4)

Now that we have an understanding of what the S̄rE look like we can formulate
the truncated modules Tr (λ1,λ2)E whose coefficient spaces sum together to give
the Doty Coalgebras.

THEOREM 3.2.5 The truncated modules Tr λE are equal to
i) S(t−λ1)E ⊗ S(t−λ2)E ⊗ kdet(λ1−p+1)+(λ2−p+1), for p ≤ λ1, λ2 ≤ t
ii) S(t−λ1)E ⊗ S(t−λ2)E ⊗ kdet(λ1−p+1), for p ≤ λ1 ≤ t, 0 ≤ λ2 ≤ p− 1
iii) Sλ1E ⊗ Sλ2E, for 0 ≤ λ1, λ2 ≤ p− 1

Proof. (iii) For 0 ≤ λi ≤ p− 1, we have S̄λiE = SλiE for i = 1, 2.
Hence Tr (λ1,λ2)E = S̄λ1E ⊗ S̄λ2E = Sλ1E ⊗ Sλ2E.

(ii) For 0 ≤ λ2 ≤ p− 1 and p ≤ λ1 ≤ t, we have S̄λ1E = St−λ1E⊗Λ2E⊗λ1−p+1

and S̄λ2E = Sλ2E. Hence

Tr (λ1,λ2)E = S̄λ1E ⊗ S̄λ2E
= S(t−λ1)E ⊗ Λ2E⊗λ1−p+1 ⊗ Sλ2E
= S(t−λ1)E ⊗ Sλ2E ⊗ Λ2E⊗λ1−p+1

= S(t−λ1)E ⊗ Sλ2E ⊗ detλ1−p+1.
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(i) For p ≤ λi ≤ t we have S̄λiE = S(t−λi)E ⊗ Λ2E⊗λi−p+1 for i = 1, 2. Hence

Tr (λ1,λ2)E = S̄λ1E ⊗ S̄λ2E
= S(t−λ1)E ⊗ Λ2E⊗λ1−p+1 ⊗ S(t−λ2)E ⊗ Λ2E⊗λ2−p+1

= S(t−λ1)E ⊗ S(t−λ2)E ⊗ Λ2E⊗λ1−p+1 ⊗ Λ2E⊗λ2−p+1

= S(t−λ1)E ⊗ S(t−λ2)E ⊗ Λ2E⊗(λ1−p+1)+(λ2−p+1)

= S(t−λ1)E ⊗ S(t−λ2)E ⊗ det⊗(λ1−p+1)+(λ2−p+1)

REMARK 3.2.6 For future use we will call;
Tr (λ1,λ2)E with p ≤ λi ≤ t for i = 1, 2; Category 1.
Tr (λ1,λ2)E with p ≤ λ1 ≤ t, 0 ≤ λ2 ≤ p− 1; Category 2.
Tr (λ1,λ2)E with 0 ≤ λi ≤ p− 1 for i = 1, 2; Category 3.

Having generalised the S̄rE and the Tr λE along with the partitions of r into
n parts, we can now formulate the Doty Coalgebras.

THEOREM 3.2.7 For r even let ι = r
2

and for r odd let ι = r+1
2

. Then we
have that D2,p(r) is equal to one of the following;

i)
∑

ι≤λ1≤r cf (Sλ1E ⊗ Sλ2E) if 0 ≤ r ≤ p− 1

ii)
∑

ι≤λ1≤p−1 cf (Sλ1E ⊗ Sλ2E) +
∑

p≤λ1≤r cf (St−λ1E ⊗ Sλ2E ⊗ Λ2E⊗λ1−p+1)
if p ≤ r ≤ t
iii)
∑

ι≤λ1≤t cf (S(t−λ1)E ⊗ Sλ2E ⊗ Λ2E⊗λ1−p+1) if r = t+ 1

iv)
∑

r−p+1≤λ1≤t cf (S(t−λ1)E⊗Sλ2E⊗Λ2E⊗λ1−p+1)+
∑

ι≤λ1≤r−p cf (S(t−λ1)E⊗
S(t−λ2)E ⊗ Λ2E⊗(λ1−p+1)+(λ2−p+1)) if t+ 2 ≤ r ≤ t+ (p− 1)
v)
∑

ι≤λ1≤t cf (S(t−λ1)E ⊗ S(t−λ2)E ⊗ Λ2E⊗(λ1−p+1)+(λ2−p+1)) if t+ p ≤ r ≤ 2t

Proof. (i) 0 ≤ r ≤ p− 1
In this case, where r = λ1 + λ2, λ1 ≤ p− 1 < t, so we have no restrictions on
the number of partitions and there will be r+2

2
for r even, and r+1

2
for r odd.

Referring now to the Tr (λ1,λ2)E, then as λ1 ≤ p − 1 and λ2 ≤ λ1, then both
λ1, λ2 ≤ p−1 and so all Tr (λ1,λ2)E will be from Category 3. Hence Tr (λ1,λ2)E =
Sλ1E ⊗ Sλ2E.
Recall also that r

2
≤ λ1 for r even and r+1

2
≤ λ1 for r odd. So we have

D2,p(r) =
∑

ι≤λ1≤r

cf (Sλ1E ⊗ Sλ2E) for 0 ≤ r ≤ p− 1.

(ii) p ≤ r ≤ t
Again, as r ≤ t, then λ1 ≤ t and so we have no restrictions on the number of
partitions. Thus there will be r+2

2
for r even and r+1

2
for r odd.We now want
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to know the range of λ1 and λ2 to know which categories the Tr (λ1,λ2)E will
come from.
We have p ≤ r ≤ t, so similarly, λ1 ≤ t. Take r greatest, so r = t. As
t = 2(p − 1) then t is always even. Thus the smallest λ1 can be is t

2
, when

r = t. In this case λ2 = r − λ1 = t − t
2

= t
2

= 2(p−1)
2

= p − 1. So, λ2 < p.
Obviously, when λ1 = t, then λ2 = t− λ1 = 0. So, 0 ≤ λ2 ≤ p− 1.
When r is smallest, r = p and p odd, so with r+1

2
≤ λ1 ≤ r then p+1

2
≤ λ1 ≤ p.

Hence, overall p+1
2
≤ λ1 ≤ t. Thus, in this case, we have Tr (λ1,λ2)E from both

Categories 1 and 2. So

Tr (λ1,λ2)E = Sλ1E ⊗ Sλ2E for
p+ 1

2
≤ λ1 ≤ p− 1

and

Tr (λ1,λ2)E = S(t−λ1)E ⊗ Sλ2E ⊗ Λ2E⊗(λ1−p+1) for p ≤ λ1 ≤ t.

Then, for p ≤ r ≤ t, we have

D2,p(r) =
∑

ι≤λ1≤p−1

cf (Sλ1E⊗Sλ2E)+
∑

p≤λ1≤r

cf (St−λ1E⊗Sλ2E⊗Λ2E⊗λ1−p+1).

(iii) r = t+ 1
For r = t + 1 there is a restriction on the number of partitions. As t
is always even, then t + 1 is always odd, so the number of partitions is
r+1

2
− (r − t) = p − 1. With r = t + 1 we have r+1

2
= t+1+1

2
≤ λ1 ≤ t.

Now t+1+1
2

= t+2
2

= t
2

+ 1 = 2(p−1)
2

+ 1 = p − 1 + 1 = p, and thus p ≤ λ1 ≤ t.
When λ1 = p, then λ2 = t+1−p = 2p−2+1−p = p−1. Hence 1 ≤ λ2 ≤ p−1.
So, in this case, the Tr (λ1,λ2)E come from Category 2, and thus for r = t+ 1,

D2,p(r) =
∑
ι≤λ1≤t

cf (S(t−λ1)E ⊗ Sλ2E ⊗ Λ2E⊗λ1−p+1).

(iv) t+ 2 ≤ r ≤ t+ (p− 1)
As in (iii), r < t + 1 and so there is a restriction on the number of parti-
tions, namely r+2

2
− (r − t) for r even and r+1

2
− (r − t) for r odd. Now

r ≥ t + 2 and so t+2
2
≤ λ1 ≤ t ⇒ p ≤ λ1 ≤ t. If r = t + 2 then

λ2 = r − λ1 = t + 2 − p = 2p − 2 + 2 − p = p, so 2 ≤ λ2 ≤ p and thus
we have Tr (λ1,λ2)E from both Categories 1 and 2.
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Then

D2,p(r) =
∑

r−p+1≤λ1≤t

cf (S(t−λ1)E ⊗ Sλ2E ⊗ Λ2E⊗λ1−p+1)

+
∑

ι≤λ1≤r−p

cf (S(t−λ1)E ⊗ S(t−λ2)E ⊗ Λ2E⊗(λ1−p+1)+(λ2−p+1))

for t+ 2 ≤ r ≤ t+ (p− 1).

Note: In Category 2, the greatest λ2 can be is p − 1. So we have λ2 =
r − λ1 ≤ p− 1⇒ r − λ1 ≤ p− 1⇒ −λ1 ≤ p− 1− r ⇒ λ1 ≥ r − p+ 1.

(v) t+ p ≤ r ≤ 2t
Again there is a restriction on the number of partitions, as in (iv). Also λ1 ≥ r

2

for r even and λ1 ≥ r+1
2

for r odd. In both cases λ1 ≥ p. To find the smallest λ2

can be, take r least at r = t+p. We have λ1 ≤ t, so λ2 = r−λ1 = t+p−t = p,
and hence λ2 ≥ p, and we thus we have Tr (λ1,λ2)E from Category 1 only.

So for t+ p ≤ r ≤ 2t we have that

D2,p(r) =
∑
ι≤λ1≤t

cf (S(t−λ1)E ⊗ S(t−λ2)E ⊗ Λ2E⊗(λ1−p+1)+(λ2−p+1)).

3.3 Proof of Theorem 3.1.1 part (i)

THEOREM 3.3.1 The Doty Coalgebras D2,p(r) = A(2, r) for 0 ≤ r ≤ p− 1

In Definition 2.3.3 we defined the character of a module. As we prove the
above theorem, we will be viewing characters both in terms of SL2-modules
and in terms of GL2-modules. We therefore prove the following two lemmas
so we understand the relationship between GL and SL.

LEMMA 3.3.2 Let X and Y be polynomial modules of degree r. Then

HomGL(X, Y ) = HomSL(X, Y ).

Proof. We have HomGL(X, Y ) ⊆ HomSL(X, Y ). Now let

Z = {diag(t, . . . , t) | t ∈ k∗}

with k algebraically closed. Then GL = ZSL. Take zt = diag(t, t, . . . , t), then
we now make the following claim;
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CLAIM 3.3.3 If V is a finite dimensional polynomial of degree r then

ztv = trv

for v ∈ V .

Proof. Let V = E⊗r, then V is spanned by vectors e = ei1 ⊗ ei2 ⊗ . . .⊗ eir . So

zte = (tei1)⊗ . . .⊗ (teir) = tre.

Now let π : E⊗r → SαE, such that α has at most n parts and |α| = r, then
for v ∈ SαE we have v = π(u) where u ∈ E⊗r. Hence

ztv = ztπ(u) = π(ztu) = π(tru) = trπ(u) = trv.

Now, every module embeds in a direct sum of these SαE and hence with
φ : V ↪→M = ⊕(SαE) then for v ∈ V we have

φ(ztv) = ztφ(v) = trφ(v) = φ(trv)

and thus ztv = trv as required.

So, returning to our Lemma, if θ ∈ HomSL(X, Y ) and g ∈ GL then g = zth
where h ∈ SL and

θ(gx) = θ(zthx)

= θ(trhx)

= trθ(hx)

= trhθ(x)

= zthθ(x)

= gθ(x).

LEMMA 3.3.4 If X and Y are polynomial modules of degree r then

X ∼= Y as GL-modules⇔ X ∼= Y as SL-modules.

Proof. ‘⇒’ If φ : X → Y is a GL-module isomorphism then certainly it is an
SL-module isomorphism.
‘⇐’ Suppose φ : X → Y is an SL-module isomorphism. Then

φ ∈ HomSL(X, Y ) = HomGL(X, Y )

by Lemma 3.3.2, so φ is a GL-module map and is one-to-one and onto and
thus is an isomorphism.

Having clarified the relationship between GL and SL we now give the following
formula which gives a way of working with characters of modules.
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THEOREM 3.3.5 The Clebsch-Gordon Formula[16, Chapter 22 Exercise 7]
Let G = SL2(C) and let Vr be an irreducible G-module of dimension r + 1.
So, V0

∼= k, V1
∼= E, V2

∼= SrE, ...
Take r ≤ s, then Vr ⊗ Vs ∼= Vr+s ⊕ Vr+s−2 ⊕ . . . ⊕ Vs−r. Now take χ(r) =
chSrE = xr + x(r−2) + . . .+ x−r, then we have

χ(r)χ(s) = χ(r + s) + χ(r + s− 2) + . . .+ χ(s− r).

EXAMPLE 3.3.6 Let p = 5,

ch (T (4)⊗ T (3)) = chT (4) chT (3)

= ch (S4E) ch (S3E)

= χ(4)χ(3)

= χ(7) + χ(5) + χ(3) + χ(1).

REMARK 3.3.7 (i) Let a ≥ b, then

χ(a, b) = χ(1, 1)χ(a− b, 0) = ch (Sa−bE ⊗ (Λ2E)⊗b),

(ii) chT (r) = χ(r) for r ≤ p− 1,
(iii) chT (p− 1 +m) = χ(p− 1 +m) +χ(p− 1−m) where p− 1 +m ≤ 2p− 2.

EXAMPLE 3.3.8 Let p = 5,
(i)

chT (7) = chT (p− 1 + 3)

= chSp−1+3E + chSp−1−3E

= chS7E + chS1E

= χ(7) + χ(1).

(ii)

chT (5) = chT (p)

= ch (SpE) + ch (Sp−2E)

= chS5E + chS3E

= χ(5) + χ(3).

Having gathered this information we are now able to prove Theorem 3.3.1.

Proof of Theorem 3.3.1 part(i) where 0 ≤ r ≤ p− 1.
A(2, r) has indecomposable tilting comodules T (r − α, α) where, for r even
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0 ≤ α ≤ r
2
, and for r odd 0 ≤ α ≤ r−1

2
. Moreover, as SL2-modules, T (a, b)

has character χ(a− b), and thus we have that chT (r − α, α) = χ(r − 2α).

We know from Theorem 3.2.7, that D2,p(r) =
∑

ι≤λ1≤r cf (Sλ1E ⊗ Sλ2E) for
0 ≤ r ≤ p− 1. So, for r even, take λ1 = λ2 = r

2
. Then

ch (Sλ1E ⊗ Sλ2E) = ch (S
r
2E ⊗ S

r
2E)

= χ(
r

2
)χ(

r

2
)

= χ(r) + χ(r − 2) + χ(r − 4) + . . .+ χ(0)

=

r
2∑

α=0

χ(r − 2α)

=

r
2∑

α=0

chT (r − α, α).

Now, using Remark 2.3.7 (ii) and our work on tilting modules, we have that
two tilting modules are isomorphic if and only if they have the same characters.

Therefore Sλ1E ⊗ Sλ2E ∼=
∑ r

2
α=0 chT (r − α, α) and hence

cf T (r − α, α) ⊆ cf (Sλ1E ⊗ Sλ2E) ⊂ D2,p(r),

for 0 ≤ α ≤ r
2
.

Similarly, for r odd, we have cf T (r− α, α) ⊆ cf (Sλ1E ⊗ Sλ2E) ⊂ D2,p(r), for
0 ≤ α ≤ r−1

2
, where λ1 = r+1

2
and λ2 = r−1

2
.

So D2,p(r) contains the coefficient space of all the tilting comodules of A(2, r)
and thus, for 0 ≤ r ≤ p− 1 we have

A(2, r) ⊆ D2,p(r) and so A(2, r) = D2,p(r).

3.4 Proof of Theorem 3.1.1 part (ii)

We first study the characters of the tilting modules we wish to find. We express
these characters in a way which will allow us to show that they occur in the
coefficient space of a certain truncated module.

THEOREM 3.4.1 Notation: For p ≤ r ≤ t, when r is even, write r =
p− 1 + j. When r is odd write r = p− 1 + i.
We know t is always even, thus for r even, we have p+ 1 ≤ r ≤ t⇒ p+ 1 ≤
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p− 1 + j ≤ t⇒ 2 ≤ j ≤ p− 1.
For r odd, then p ≤ r ≤ t− 1⇒ p ≤ p− 1 + i ≤ t− 1⇒ 1 ≤ i ≤ p− 2.

The characters of the tilting comodules of A(2, r) for p ≤ r ≤ t are as fol-
lows;
For r even;

chT (r − α, α) =

{
χ(r − j + (j − 2α)) + χ(r − j − (j − 2α)) 0 ≤ α ≤ j−2

2

χ(r − 2α) j
2
≤ α ≤ r

2

For r odd;

chT (r − α, α) =

{
χ(r − i+ (i− 2α)) + χ(r − i− (i− 2α)) 0 ≤ α ≤ i−1

2

χ(r − 2α) i+1
2
≤ α ≤ r

2

Proof. Recall:
(i) A(n, r) has tilting comodules T (r − α, α) where 0 ≤ α ≤ r

2
for r even, and

0 ≤ α ≤ r−1
2

for r odd.
(ii) The chT (a, b) = chT (a− b, 0) = chT (a− b) as an SL2-module. Hence

chT (a, b) =

{
χ(a− b) for 0 ≤ a− b ≤ p− 1
χ(p− 1 +m) + χ(p− 1−m) a− b ≥ p, p− 1 +m = a− b

1) r even
We first want to show chT (r − α, α) = χ(r − 2α) for j

2
≤ α ≤ r

2
. Here

a− b = r− 2α and so we require 0 ≤ r− 2α ≤ p− 1. Well, if 0 ≤ r− 2α then
2α ≤ r which implies α ≤ r

2
. Moreover if r−2α ≤ p−1 then with r = p−1+j

we have p− 1 + j − 2α ≤ p− 1 which implies α ≥ j
2
. So as stated j

2
≤ α ≤ r

2
.

We next wish to show chT (r−α, α) = χ(r− j+(j−2α))+χ(r− j− (j−2α))
for 0 ≤ α ≤ j−2

2
. Again a− b = r − 2α and so we require r − 2α ≥ p, and so

with r = p− 1 + j we have p− 1 + j− 2α ≥ p which implies α ≤ j−1
2

. However
j−1

2
is odd and thus we must have α ≤ j−2

2
as stated.

So

chT (r − α, α) = chT (r − 2α, 0)

= chT (r − 2α) as an SL-module

= χ(p− 1 +m) + χ(p− 1−m)

= χ(r − j +m) + χ(r − j −m)

= χ(r − j + (j − 2α)) + χ(r − j − (j − 2α))

as m = a− b− p+ 1 = r − 2α− p+ 1 = j − 2α.
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2) r odd
We first want to show chT (r − α, α) = χ(r − 2α) for i+1

2
≤ α ≤ r−1

2
. Here

a− b = r− 2α and so we require 0 ≤ r− 2α ≤ p− 1. Well, if 0 ≤ r− 2α then
2α ≤ r which implies α ≤ r

2
. However as we are considering when r is odd,

then we must have α ≤ r−1
2

. Moreover if r−2α ≤ p−1 then with r = p−1+ i
we have p − 1 + i − 2α ≤ p − 1 which implies α ≥ i

2
, and again as i is odd,

then we require α ≥ i+1
2

. So as stated i+1
2
≤ α ≤ r−1

2
.

We next wish to show chT (r−α, α) = χ(r− i+ (i− 2α)) +χ(r− i− (i− 2α))
for 0 ≤ α ≤ i−2

2
. Again a− b = r − 2α and so we require r − 2α ≥ p, and so

with r = p− 1 + i we have p− 1 + i− 2α ≥ p which implies α ≤ i−1
2

as stated.
So

chT (r − α, α) = chT (r − 2α, 0)

= chT (r − 2α) as an SL-module

= χ(p− 1 +m) + χ(p− 1−m)

= χ(r − i+m) + χ(r − i−m)

= χ(r − i+ (i− 2α)) + χ(r − i− (i− 2α))

as m = a− b− p+ 1 = r − 2α− p+ 1 = i− 2α.

We now move on to showing that the coefficient spaces of the tilting modules
occur in the coefficient spaces of the truncated modules.

CALCULATION 3.4.2 Finding ‘most’ of A(2, r)’s tilting comodules for r
even

For 0 ≤ r ≤ p − 1 we were able to show directly that D2,p(r) contains the
coefficient spaces of the tilting modules of A(n, r) by equating the characters
of the tilting modules to those modules whose coefficient spaces sum to give
the D2,p(r).
For p ≤ r ≤ t we use the same method of equating characters but due to the
structure of D2,p(r) for p ≤ r ≤ t it is slightly more complex. We have to ‘find’
the tilting modules in two stages.

In this section we show how for p ≤ r ≤ t and r even we can find most
of the tilting modules of A(n, r). We then do the same for r odd, and then in
the next section we show how to ‘find’ the remaining tilting modules, again
for r even and r odd.

Recall

D2,p(r) =
∑

r
2
≤λ1≤p−1

cf (Sλ1E⊗Sλ2E)+
∑

p≤λ1≤r

cf (St−λ1E⊗Sλ2E⊗Λ2E⊗λ1−p+1)
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for p ≤ r ≤ t with r even.

THEOREM 3.4.3 Let r = p− 1 + j with p ≤ r ≤ t, then

ch (S
r
2E ⊗ S

r
2E) = chT (r, 0) + chT (r − 1, 1) + · · ·+ chT (r − j − 2

2
,
j − 2

2
)

+ chT (r − j

2
,
j

2
)

+ chT (r − (j − 1), j − 1) + . . .+ chT (
r

2
,
r

2
)

Proof. ch (S
r
2E ⊗ S r

2E) = χ( r
2
)χ( r

2
) = χ(r) + χ(r− 2) + χ(r− 4) + . . .+ χ(0)

We now rewrite this sum using j, where, as before, r = p − 1 + j and
2 ≤ j ≤ p−1. In this way we can compare the ch (S

r
2E⊗S r

2E) with the char-
acters of the tilting modules in the form we found them in the previous section.

So,
ch (S

r
2E ⊗ S r

2E) = χ(r) + χ(r − 2) + χ(r − 4) + . . .+ χ(4) + χ(2) + χ(0)

=

1︷ ︸︸ ︷
χ(r − j + j) +

2︷ ︸︸ ︷
χ(r − j + (j − 2)) +

3︷ ︸︸ ︷
χ(r − j + (j − 4))

+ . . .+

4︷ ︸︸ ︷
χ(r − j + 2) +

5︷ ︸︸ ︷
χ(r − j) +

4︷ ︸︸ ︷
χ(r − j − 2) + . . .

+

3︷ ︸︸ ︷
χ(r − j − (j − 4)) +

2︷ ︸︸ ︷
χ(r − j − (j − 2)) +

1︷ ︸︸ ︷
χ(r − j − j)

+

6︷ ︸︸ ︷
χ(r − j − (j + 2)) +

7︷ ︸︸ ︷
χ(r − j − (j + 4)) + . . .

+

8︷ ︸︸ ︷
χ(r − j − (p− 1))

We now rearrange this sum so that we are pairing some of these characters off:

ch (S
r
2E ⊗ S r

2E) =

1︷ ︸︸ ︷
χ(r − j + j) + χ(r − j − j)

+

2︷ ︸︸ ︷
χ(r − j + (j − 2)) + χ(r − j − (j − 2)) +

3︷ ︸︸ ︷
χ(r − j + (j − 4)) + χ(r − j − (j − 4)) + . . .

+

4︷ ︸︸ ︷
χ(r − j + 2) + χ(r − j − 2) +

5︷ ︸︸ ︷
χ(r − j)

+

6︷ ︸︸ ︷
χ(r − j − (j + 2)) +

7︷ ︸︸ ︷
χ(r − j − (j + 4)) + . . .

+

8︷ ︸︸ ︷
χ(r − j − (p− 1))

Then we compare these characters with those found for the tilting modules in
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Theorem 3.4.1 and we have;

ch (S
r
2E ⊗ S r

2E) =

1︷ ︸︸ ︷
chT (r, 0) +

2︷ ︸︸ ︷
chT (r − 1, 1) +

3︷ ︸︸ ︷
chT (r − 2, 2) + . . .

+

4︷ ︸︸ ︷
chT (r − j − 2

2
,
j − 2

2
) +

5︷ ︸︸ ︷
ch T (r − j

2
,
j

2
)

+

6︷ ︸︸ ︷
chT (r − (j − 1), j − 1)

+

7︷ ︸︸ ︷
chT (r − (j − 2), j − 2) + . . .+

8︷ ︸︸ ︷
chT (

r

2
,
r

2
).

To ensure this is clear we check the following;

i) chT (r − j
2
, j

2
) = χ(r − j).

Well, chT (r − j
2
, j

2
) = chT (r − j, 0) = chT (r − j) = χ(r − j) as r − j =

p− 1 + j − j = p− 1 ≤ p− 1.

ii) chT (r − (j − 1), j − 1) = χ(r − j − (j + 2)).
Well, chT (r − (j − 1), j − 1) = chT (r − (2j − 2), 0) = chT (r − (2j − 2)) =
χ(r− (2j− 2)) as r− 2j + 2 = p− 1 + j− 2j + 2 = p− 1− j ≤ p− 1 as j ≥ 2.
Hence chT (r − (j − 1), j − 1) = χ(r − j − (j + 2)).

iii) chT ( r
2
, r

2
) = χ(r − j − (p− 1)).

Well, chT ( r
2
, r

2
) = chT (0) = χ(0) = χ(r − j − (p− 1)) as r = p− 1 + j.

So we see that by considering the character of the module S
r
2E⊗S r

2E we can
equate it to the character of certain tilting modules of the A(2, r). Hence the
coefficient spaces of these tilting modules are contained within the D2,p(r) of
corresponding degree. As stated above we will show later how the remaining
tilting modules can be ‘found’.

EXAMPLE 3.4.4 p = 7, r = 8 thus j = 2

ch (S
r
2E ⊗ S r

2E) = ch (S4E ⊗ S4E)
= χ(4)χ(4)
= χ(8) + χ(6) + χ(4) + χ(2) + χ(0)
= χ(r − j + j) + χ(r − j − (j − 2)) + χ(r − j − 2)

+ χ(r − j − (j + 2)) + χ(r − j − (p− 1))
= χ(r − j + j) + χ(r − j) + χ(r − j − j)

+ χ(r − j + (j + 2)) + χ(r − j − (p− 1))

A(2, 8) has tilting modules T (8, 0), T (7, 1), T (6, 2), T (5, 3), T (4, 4), and;

chT (8, 0) = χ(8) + χ(4) = χ(r − j + j) + χ(r − j − j)
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chT (7, 1) = χ(6) = χ(r − j)
chT (6, 2) = χ(4) = χ(r − j − 2)
chT (5, 3) = χ(2) = χ(r − j − (j + 2))
chT (4, 4) = χ(0) = χ(r − j − (p− 1))

So,
ch (S4E ⊗ S4E) = χ(r − j + j) + χ(r − j) + χ(r − j − j)

+ χ(r − j + (j + 2)) + χ(r − j − (p− 1))
= χ(r − j + j) + χ(r − j − j) + χ(r − j)

+ χ(r − j + (j + 2)) + χ(r − j − (p− 1))
= ch T (8, 0) + ch T (7, 1) + ch T (5, 3) + ch T (4, 4).

We most now repeat the process for r odd.

CALCULATION 3.4.5 Finding ‘most’ of A(2, r)’s tilting modules, for r
odd

THEOREM 3.4.6 Let r = p− 1 + i with p ≤ r ≤ t, then

ch (S
r+1
2 E ⊗ S

r−1
2 E) = chT (r, 0) + chT (r − 1, 1) + . . .+

chT (r − i− 1

2
,
i− 2

2
) + chT (r − (i+ 1), i+ 1)

+ . . .+ chT (
r + 1

2
,
r − 1

2
)

Proof. We follow a similar method as in the previous section, but for r odd.
Take λ1 = r+1

2
, then

ch (S
r+1
2 E ⊗ S

r−1
2 E) = χ(

r + 1

2
)χ(

r − 1

2
) = χ(r) + χ(r − 2) + . . .+ χ(1)

Now rewrite this sum using i, where r = p− 1 + i, for 1 ≤ i ≤ p− 2. So,

ch (S
r+1
2 E ⊗ S r−1

2 E) = χ(r) + χ(r − 2) + χ(r − 4) + . . .+ χ(3) + χ(1)
= χ(r − i+ i) + χ(r − i+ (i− 2)) + χ(r − i+ (i− 4))

+ . . .+ χ(r − i+ 1) + χ(r − i− 1) + . . .+
χ(r − i− (i− 4)) + χ(r − i− (i− 2))+
χ(r − i− i) + χ(r − i− (i+ 2)) + χ(r − i− (i+ 4))
+ . . .+ χ(r − i− (p− 2)).

Again rearrange this sum, pairing off certain characters, and compare with
the characters of the tilting modules found in Theorem 3.4.1;
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ch (S
r+1
2 E ⊗ S r−1

2 E) = χ(r − i+ i) + χ(r − i− i) + χ(r − i+ (i− 2))
+χ(r − i− (i− 2)) + χ(r − i+ (i− 4))
+χ(r − i− (i− 4)) + . . . + χ(r − i+ 1)
+χ(r − i− 1) + χ(r − i− (i+ 2)) +
χ(r − i− (i+ 4)) + . . .+ χ(r − i− (p− 2)).

Thus
ch (S

r+1
2 E ⊗ S r−1

2 E) = chT (r, 0) + ch T (r − 1, 1) + chT (r − 2, 2) + . . .
+ chT (r − i−1

2
, i+1

2
)

+ chT (r − (i+ 1), i+ 1) + . . .+ chT ( r+1
2
, r−1

2
).

To ensure this is clear, we check the following;

i) chT (r − (i+ 1), i+ 1) = χ(r − i− (i+ 2)).
Well, chT (r − (i + 1), i + 1) = chT (r − (2i + 2), 0) = chT (r − (2i + 2)) =
χ(r − (2i + 2)) as p − 1 + i − 2i − 2 = p − 3 − i < p − 1 and hence
chT (r − (i+ 1), i+ 1)) = χ(r − i− (i+ 2)).

ii) chT ( r+1
2
, r−1

2
) = χ(r − i− (p− 2)).

Well, chT ( r+1
2
, r−1

2
) = chT (1) = χ(1) = χ(r− i− (p− 1)) as r− i− p+ 2 = 1.

So as in the r even case, the character of S
r+1
2 E ⊗ S

r−1
2 E corresponds to

the character of certain tilting modules of A(n, r). Thus the coefficient spaces
of these tilting modules are contained in D2,p(r).

We then find the remaining tilting modules.

CALCULATION 3.4.7 Finding the coefficient spaces of the remaining tilt-
ing comodules of A(2, r) in D2,p(r) for p ≤ r ≤ t, r even and odd.

If we look back at the list of characters of tilting modules which equate to
the ch (S

r
2E ⊗ S r

2E) and ch (S
r+1
2 E ⊗ S r−1

2 E) respectively, then we can make
the following list of ‘missing’ tilting modules, along with their characters;

For r even;

chT (r − j + 2

2
,
j + 2

2
) = χ(r − j − 2)

...

chT (r − j, j) = χ(r − j − j)

and for r odd;

ch T (r − i+ 1

2
,
i+ 1

2
) = χ(r − i− 1)
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...

chT (r − i, i) = χ(r − i− i)

Recall

D2,p(r) =
∑

ι≤λ1≤p−1

cf (Sλ1E⊗Sλ2E)+

Section 2︷ ︸︸ ︷∑
p≤λ1≤r

cf (St−λ1E ⊗ Sλ2E ⊗ Λ2E⊗λ1−p+1)

for p ≤ r ≤ t and call the second part of this sum Section 2.

THEOREM 3.4.8 For r even

ch (St−λ1E ⊗ Sλ2E) = chT (r − j + 2

2
,
j + 2

2
) + . . .+ chT (r − j, j)

where t− λ1 + λ2 = r − j − 2.

For r odd

ch (St−λ1E ⊗ Sλ2E) = chT (r − i+ 1

2
,
i+ 1

2
) + . . .+ chT (r − i, i)

where t− λ1 + λ2 = r − i− 1.

Proof. We start with the following claim

CLAIM 3.4.9 There exists a λ1 and λ2 such that;
(i) t− λ1 + λ2 = r − i− 1 for r odd
(ii) t− λ1 + λ2 = r − j − 2 for r even.

Proof. (i) r odd
Suppose t− λ1 + λ2 = r − i− 1
⇒ t− λ1 + r − λ1 = r − i− 1
⇒ 2p− 2− λ1 + p− 1 + i− λ1 = p− 1 + i− i− 1
⇒ 3p− 3− 2λ1 + i = p− 2
⇒ 2p− 1− 2λ1 + i = 0
⇒ p+ p− 1 + i− 2λ1 = 0
⇒ p+ r = 2λ1

⇒ p+r
2

= λ1.

• Now check that p ≤ p+r
2
≤ r as we know p ≤ λ1 ≤ r.

In fact, because in this case i = 3, . . . , t − p and r = p − 1 + i then we have
p+ 2 ≤ r ≤ t, rather than p ≤ r ≤ t.
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So, let us take r = p+ 2.
Then p+r

2
= p+p+2

2
= 2p+2

2
= p+ 1 and indeed p ≤ p+ 1 ≤ p+ 2 if and only if

p ≤ p+ 1 ≤ r which holds if and only if p ≤ p+r
2
≤ r as required.

Now take r = t, then we require p ≤ p+t
2
≤ t

⇔ p ≤ p+2p−2
2
≤ 2p− 2

⇔ p ≤ 3p−2
2
≤ 2p− 2

⇔ 2p ≤ 3p− 2 ≤ 4p− 4
⇔ 2 ≤ p which is obviously true!

• Now we need to find λ2.
Well, we have t− λ1 + λ2 = r − i− 1
⇒ λ2 = r − i− 1− t+ λ1

= p− 1 + i− i− 1− t+ λ1

= p− 2− t+ λ1

= p− 2− (2p− 2) + λ1

= p− 2− 2p+ 2 + λ1

= −p+ λ1

= λ1 − p
= p+r

2
− p

= r−p
2

.

And with λ2 = λ1 − p and λ1 ≥ p then λ1 ≥ λ2.

(ii) r even
Suppose t− λ1 + λ2 = r − j − 2
⇒ t− λ1 + r − λ1 = r − j − 2
⇒ 2p− 2− λ1 + p− 1− j − λ1 = p− 1 + j − j − 2
⇒ 3p− 3− 2λ1 + j = p− 3
⇒ p− 1 + j + 2p− 2− 2λ1 = p− 3
⇒ r + p+ 1− 2λ1 = 0
⇒ r + p+ 1 = 2λ1

⇒ r+p+1
2

= λ1

• Now check that p ≤ r+p+1
2
≤ r as we know that p ≤ λ1 ≤ r.

In fact, because in this case j = 4, . . . , p − 1 and r = p − 1 + j = p + 3 then
we have p+ 3 ≤ r ≤ t rather than p ≤ r ≤ t.

So, let us take r = p+ 3.
Then r+p+1

2
= p+3+p+1

2
= 2p+4

2
= p + 2 and indeed p ≤ p + 2 ≤ p + 3 of and

only if p ≤ p+ 2 ≤ r which holds if and only if p ≤ r+p+1
2
≤ r as required.

Now take r = t then we require p ≤ t+p+1
2
≤ t
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⇔ 2p ≤ t+ p+ 1 ≤ 2t
⇔ 2p ≤ 2p− 2 + p1 ≤ 4p− 4
⇔ p ≥ 3.

When p = 2 we can see D2,p(r) = A(2, r) by observation thus it is enough
to take p ≥ 3.

• Now we need to find λ2.
Well, we have t− λ1 + λ2 = r − j − 2
⇒ λ2 = r − j − 2− t+ λ1

= p− 1 + j − j − 2 + λ1

= p− 3− t+ λ1

= p− 3− (2p− 2) + λ1

= λ1 − p− 1
= λ1 − (p− 1)
= r+p+1

2
− (p+ 1)

= r−p−1
2

.

And with λ2 = λ1 − (p+ 1) and λ1 ≥ p then λ1 ≥ λ2.

Now that we know there exists such a λ1 and λ2, we can go about calculating
ch (St−λ1E ⊗ Sλ2E) for both r even and r odd. Firstly, for r even
ch (St−λ1E ⊗ Sλ2E) = χ(t− λ1)χ(λ2)

= χ(t− λ1 + λ2) + χ(t− λ1 + λ2 − 2)
+χ(t− λ1 + λ2 − 4) + . . .+ χ((t− λ1)− λ2)

= χ(r − j − 2) + χ(r − j − 4) + χ(r − j − 6)
+ . . .+ χ(r − j − j)

N.B.
(a) t− λ1 ≥ λ2 because we have λ2 = r− λ1 and t− λ1 ≥ r− λ1 because here
p+ 2 ≤ r ≤ t
(b) For proof of t− λ1 − λ2 = r − j − j see proof of Claim 3.4.10.

Comparing these characters with those of the ‘missing’ tilting modules, we
see;

ch (St−λ1E ⊗ Sλ2E) = chT (r − j + 2

2
,
j + 2

2
) + . . .+ chT (r − j, j).

Hence we have shown that the coefficient spaces of the ‘remaining’ tilting
modules are contained in cf (St−λ1E⊗Sλ2E) ⊆ D2,p(r). Thus D2,p(r) = A(2, r)
for r even and p ≤ r ≤ t.
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For r odd

ch (St−λ1E ⊗ Sλ2E) = χ(t− λ1)χ(λ2)
= χ(t− λ1 + λ2) + χ(t− λ1 + λ2 − 2)

+χ(t− λ1 + λ2 − 4) + χ((t− λ1)− λ2))
= χ(r − i− 1) + χ(r − i− 3) + χ(r − i− 5)

+ . . .+ χ(r − i− i)
= ch T (r − i+1

2
, i+1

2
) + . . .+ ch T (r − i, i)

N.B. For proof of t− λ1 − λ2 = r − i− i see proof of Claim 3.4.10.

Hence we have shown that the coefficient spaces of the ‘remaining’ tilting mod-
ules are contained in cf (St−λ1E ⊗ Sλ2E) ⊆ D2,p(r). Thus D2,p(r) = A(2, r)
for r odd and p ≤ r ≤ t.

CLAIM 3.4.10 With λ1 and λ2 as in Claim 3.4.9, then t−λ1−λ2 = r− i− i
for r odd, and t− λ1 − λ2 = r − j − j for r even.

Proof. (i) r odd
t− λ1 − λ2 = t− r+p

2
−
(
r+p

2
− p
)

= 2p− 2− r − p+ p
= 2p− 2− r
= 2p− 2− (p− 1 + i)
= 2p− 2− p+ 1− i
= p− 1− i
= p− 1 + i− i− i
= r − i− i

(ii) r even
t− λ1 − λ2 = t− r+p+1

2
−
(
r+p+1

2
− p− 1

)
= t− r − p− 1 + p+ 1
= 2p− 2− r
= 2p− 2− (p− 1 + j)
= p− 1− j
= p− 1 + j − j − j
= r − j − j

3.5 Proof of Theorem 3.1.1 part (iii)

AIM: This final section proves a reflection property, which completes the proof
of Theorem 3.1.1. The previous sections proved this theorem for 0 ≤ r ≤ t,
whilst this section proves it for nt

2
≤ r ≤ nt, which for n = 2 is the range
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t ≤ r ≤ 2t. We prove this theorem for general n as it will be used again when
we consider n ≥ 3 in later chapters.
We first define the antipode map σ.

DEFINITION 3.5.1 Let k[G] = k-sp{xij, det−1}. Then we define the an-
tipode map

σ : k[G]→ k[G] such that σ(f)(x) = f(x−1).

Then σ : Dn,p(r)→ Dn,p(r).

REMARK 3.5.2
σ(det)(x) = det(x−1)

= 1

det(x)

= det−1(x)

We therefore have that σ(det) = det−1.

We can now give our theorem for proving the reflection property.

THEOREM 3.5.3

Dn,p(r) = σ(Dn,p(nt− r))dett

where nt
2
≤ r ≤ nt and σ is the antipode map.

Thus
Dn,p(r) = A(n, nt− r)dett

Proof. For any n and any prime p then

¯S(E) = S̄0E ⊕ S̄1E ⊕ S̄2E ⊕ . . .⊕ S̄tE
= k ⊕ E ⊕ . . .⊕D⊗p−1.

Let
γ : S̄jE ⊗ S̄t−jE → S̄tE

be a multiplication G-map. So

γ : S̄jE ⊗ S̄t−jE → D⊗p−1.

Now let D⊗p−1 = L so dim L = 1. Then multiplying each side by L∗ gives the
map

β : (S̄jE ⊗ L∗)⊗ S̄t−jE → k

as L⊗ L∗ ∼= k.
With V = S̄jE ⊗ L∗ and W = S̄t−jE then V,W are G-modules and we have
a bilinear form

β : V ⊗W → k where (v, w) 7→ β(v ⊗ w).

53



This is non-degenerate:
Let V ⊥ = {w ∈ W | (v, w) = 0 for all v ∈ V }. This is a G-submodule as
for w ∈ V ⊥ and g ∈ G then (v, gw) = (g−1v, w) = 0 so gw ∈ V ⊥. Now, V is
simple and thus either V ⊥ = 0 or V ⊥ = V . Well, we cannot have V ⊥ = V as
then the multiplication map S̄jE ⊗ S̄t−jE → S̄tE would be zero. However we
can find v ∈ S̄jE and w ∈ S̄t−jE such that vw 6= 0.

CLAIM 3.5.4 This gives an isomorphism

φ : S̄jE ⊗ L∗ → (S̄t−jE)∗ where φ(v)(w) = (v, w)

Proof. Assume β : V ⊗W → k aG-homomorphism, then β(gv⊗gw) = β(v⊗w)
and so we have (gv, gw) = (v, w). If φ(v) = 0 then φ(v)(w) = 0 for all w ∈ W
and thus (v, w) = 0 for all w ∈ W and hence v = 0.
Therefore φ is injective and so dim V =dim Imφ ≤ dim W ∗ = dim W .
We have that dim W ≤ dim V and so dim V = dim W and thus φ is a linear
isomorphism.

Now φ(gv)(w) = (gv, w) = (g−1gv, g−1w) = (v, g−1w)
and (gφ(v))(w) = φ(v)(g−1w) = (v, g−1w) ⇒ φ an isomorphism of G-
modules.

Hence
S̄jE ⊗ L∗ ∼= (S̄t−jE)∗ ⇒ S̄jE ∼= (S̄t−jE)∗ ⊗ L

Now suppose S̄t−jE = V has basis v1, v2, . . . , vn with coefficient functions fij,
where gvi =

∑
fji(g)vj. Then V ∗ has dual basis α1, α2, . . . , αn where

(gαi)(vj) = αi(g
−1vj)

= αi(
∑

r frj(g
−1)vr)

= fij(g
−1).

Hence gαi =
∑

j fij(g
−1)αj. So, if

gαi =
∑

Fji(g)αj then Fji(g) = fij(g
−1)

i.e. Fji = σ(fij).
Hence

cf (V ∗) = k-sp{Fij} = k-sp{σ(fij)} = σ(cf (V )).

So
cf (S̄t−jE∗) = σ(cf (S̄t−jE)).
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Now suppose that V1 ×W1 → k and V2 ×W2 → k are non-singular bilinear
forms. Then the product form V1 ⊗ V2 ×W1 ⊗W2 → k is also non-singular
as (v1 ⊗ v2, w1 ⊗ w2) = (v1, w1)(v2, w2). It then follows from this that the
product form Tr λE ⊗ (D⊗t)∗ × Tr µE → k with λ = (λ1, . . . , λn) and µ =
(t− λ1, t− λ2, . . . , t− λn) is non-singular.
Then by 3.5.4

(Tr λE ⊗ (D⊗t)∗)∗ ∼= Tr µE

and thus
(Tr λE)⊗ (D⊗t)∗ ∼= (Tr µ̄E)∗

where µ̄ = (t− λn, t− λn−1, . . . , t− λ1). So

(Tr λE ∼= (Tr µ̄E)∗ ⊗D⊗t

and thus

cf (Tr λE) = cf ((Tr µ̄E)∗)cf (D⊗t) = σ(cf (Tr µ̄E))cf (D⊗t).

Now
Dn,p(r) =

∑
|λ|=r, λ1≤t cf (Tr λE)

=
∑
|µ̄|+|λ|=nt, µ̄1≤t σ(cf (Tr µ̄E))cf (D⊗t)

= σ(Dn,p(nt− r))(det)t

55





Chapter 4

The case n = 3 for all primes p

4.1 The theorem and the method

AIM: In this section we first give some brief definitions which are necessary in
giving our main theorem 4.1.3. In Section 1.2 we defined the coalgebra A(n, r),
and then in Chapter 3 we proved that for n = 2 the coefficient spaces of all the
tilting modules of A(2, r) were contained in the Doty Coalgebra D2,p(r). For
the case n = 3 we follow a similar method, but instead of finding all tilting
modules of A(3, r) we instead show that all coefficient spaces of the tilting
modules of A(π, r) are contained in the Doty Coalgebra D3,p(r) where π is a
suitable saturated set. We explain why this is true, drawing on our previous
work on quasi-hereditary algebras, and show how we will go about proving
this.

DEFINITION 4.1.1 Recall the dominance order defined in 1.3.2. Let Λ+(n, r)
be the partitions of r into at most n parts. We say a subset π of Λ+(n, r) is
saturated if whenever λ ∈ π and µ E λ then µ ∈ π.

EXAMPLE 4.1.2 In Λ+(3, 5), the set π = {(3, 2, 0), (3, 1, 1), (2, 2, 1)} is sat-
urated.

THEOREM 4.1.3 The Doty Coalgebras D3,p(r) = A(π, r) for

π = {λ = (λ1, λ2, λ3) | λ is a partition of r and λ1 ≤ t = 3(p− 1)}

a saturated set, and 0 ≤ r ≤ 3p− 1 or 6p− 8 ≤ r ≤ 3t.

We now explain the role this saturated set can play in quasi-hereditary algebras
to be able to explain how we will prove Theorem 4.1.3.
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DEFINITION 4.1.4 In Definition 1.3.8 we stated that for S a finite-dimensional
algebra, and a subset π ⊆ Λ+, then V ∈ mod(S) belongs to π if all compo-
sition factors of V belong to {L(λ) | λ ∈ π}. Now fix some saturated subset
of Λ, π, and let I(π) be the ideal of all elements x in S such that xV = 0 for
every module V belonging to π.

THEOREM 4.1.5 If S is a quasi-hereditary algebra with poset Λ and π ⊆ Λ
is a saturated set then we can form another quasi-hereditary algebra

S(π) = S/I(π).

Proof. [4, Lemma A3.10].

REMARK 4.1.6 i) {L(λ) | λ ∈ π} is a full set of simples for S(π) and S(π)
is a quasi-hereditary algebra, (with partial ordering on π being restriction to
π of partial ordering on Λ).
ii) We can prove that I(π) is the set of all x ∈ S such that xT = 0 for all
T = T (λ) with λ ∈ π.
iii) We can dualise this for coalgebras. So define A(π) to be the span of all
cf (V ) such that V belongs to π. Then A(π) is a quasi-hereditary coalgebra
with A(π)∗ = S(n, r)/I(π).
In fact A(π) = k-sp{cf (T (λ)) | λ ∈ π}.

Proof. i) See [4, Proposition A3.11].
ii) If V belongs to π, then embed V in an injective module I, where Oπ(I)
is the largest submodule of I belonging to π. Then I has a good filtration,
which implies Oπ(I) has a good filtration. Now, any module M with a good
filtration has a resolution by tilting modules [4, Lemma A4.3]

0→ Tr → · · · → T1 → T0 →M → 0

and so we can assume that if M belongs to π, then so do all the Ti.
Now, if x vanish on all Ti then xM = 0, so xOπ(I) = 0 so xV = 0.
iii) See [7, Corollary 7.3].

REMARK 4.1.7 The proof of Theorem 4.1.3 is split into the following sec-
tions;
i) 0 ≤ r ≤ p− 1
ii) p ≤ r ≤ 2p− 1
iii) 2p ≤ r ≤ 3p− 1
iv) 6p− 8 ≤ r ≤ 3t.

In Section 3.5 we proved a reflection property for all n which completed the
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case for n = 2. The same property is used here for the n = 3 case. We prove
Theorem 4.1.3 for all r up to 3p− 1, i.e. for each degree r we need to ensure
the coefficient spaces of the tilting modules of A(π, r) are contained in D3,p(r).
We do this by considering characters of these tilting modules and showing they
arise in the characters of certain truncated modules of D3,p(r).

4.2 p-cores and core classes

AIM: Throughout the proof of our main theorem, the use of core classes
plays a crucial role in clarifying whether we know that the coefficient spaces
of the necessary tilting modules arise in the coefficient spaces of the truncated
modules, and thus in this section we introduce p-cores and core classes. We
start with p-cores, giving their definition and then showing how we calculate
p-cores in general. We then define core classes, namely a block of partitions
with the same p-core.

DEFINITION 4.2.1 Suppose we have a proper partition λ = (λ1, λ2, λ3) of
r into n = 3 parts. Then we can draw this partition by placing λ1 x’s in row
1, λ2 x’s in row 2 and λ3 x’s in row 3. For example, with λ = (6, 4, 1) then we
can draw this as follows;

X
XXXX
XXXXXX

We call each of these x’s a node.
The edge of this consists of the set of nodes of the partition which are on
the right-hand edge and can be removed together whilst still leaving a proper
partition. So in the above example the edge is as follows;

X
XXXX
XXXXXX

A rim p-hook consists of p nodes along the edge of the partition, and we then
define the p-core to be what remains of the original partition once we have
removed all possible rim p-hooks from it ensuring we leave a proper partition.
So in the example we can remove two rim 5-hooks as follows;

X
XXXX
XXXXXX

and so what remains is simply
X
so in another way we can say that for p = 5, the partition (6, 4, 1) has p-core
(1, 0, 0).

We can now define a core class.
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DEFINITION 4.2.2 A core class consists of all partitions of r into n parts
which have the same p-core.

REMARK 4.2.3 [21, Chapter 1, Section 1, Exercises 8b, 8c] Note that for
some partitions the rim p-hooks can be removed in different ways whilst still
leaving a proper partition. It is a theorem that it does not matter in which way
the rim p-hooks are removed, as the result will always give the same p-core.

4.3 Classification of core classes for p ≤ r ≤
2p− 1

AIM: Having clarified this definition we shall now do some work on calculating
p-cores for a general partition, as this will be needed later when we classify the
core classes of partitions for each degree r. As shown above, we can see that
depending on the partition, it may be possible to remove more than one rim
p-hook, on the other hand it may not be possible to remove any rim p-hooks.
For the moment however we shall consider the range p ≤ r ≤ 2p − 1 and the
cases where we can remove one rim p-hook from each partition, showing the
general method for calculating a p-core. We then go on to classify the core
classes for this range.

1) Consider first a partition of the form (λ1, 0, 0), so;
XXXX. . .X
then we can only remove a rim p-hook from this provided λ1 = r ≥ p, which
is true for p ≤ r ≤ 2p− 1 and thus the partition has p-core (λ1 − p, 0, 0). For
example with p = 5 and λ1 = r = 6 then the partition (6, 0, 0) has p-core
(1, 0, 0);

XXXXXX

2) Now consider a partition of the form (λ1, λ2, 0), so;

X. . .X
XXXX. . .X

i) We remove the rim p-hook by beginning at the top right hand corner and
working back along the first row, and thus if λ1−λ2 ≥ p then we can remove the
rim p-hook without touching the second row, and hence this partition will have
p-core (λ1 − p, λ2, 0). For example with p = 5, r = 7 and (λ1, λ2, 0) = (6, 1, 0)
then λ1 − λ2 = 5 = p and so (6, 1, 0) has p-core (λ1 − p, λ2, 0) = (1, 1, 0):

X
XXXXXX

ii) If λ1 − λ2 < p then to remove the rim p-hook we must remove some
nodes from the first row and some from the second. We therefore consider

60



λ1 − λ2 + 1 as this is the most we can remove from the first row before mov-
ing down to the second. Then what remains of the first row after removing
what we can of the rim p-hook is λ1 − (λ1 − λ2 + 1) = λ2 − 1. We then have
p − (λ1 − λ2 + 1) remaining to remove from the second row. We therefore
calculate λ2 − (p− λ1 + λ2 − 1) = λ1 − p+ 1 to find out what remains of the
second row once we have removed the rim p-hook. Thus the p-core here is
(λ2 − 1, λ1 − p+ 1, 0).
For example with r = 7, p = 5 and (λ1, λ2, 0) = (5, 2, 0) then we remove
λ1−λ2+1 = 5−2+1 = 4 from the first row, leaving p−(λ1−λ2+1) = 5−4 = 1
to remove from the second row leaving p-core (1, 1, 0):

XX
XXXXX

3) Finally consider a partition of the form (λ1, λ2, λ3), so;

X. . .X
XXXX. . .X
XXXXXX. . .XX

i) As usual, if λ1 − λ2 ≥ p then we can remove the rim p-hook from the first
row without affecting the second or third rows. In this case the partition will
have p-core (λ1 − p, λ2, λ3). For example, with r = 9 and p = 5 then the
partition (7, 1, 1) has p-core (2, 1, 1):

X
X
XXXXXXX

ii) Now suppose that λ1 − λ2 < p, so we remove λ1 − λ2 + 1 nodes from the
first row, leaving λ2 − 1. Then, as above, what remains of the rim p-hook
to remove is p − (λ1 − λ2 + 1), which we must now remove starting at the
right hand side of the second row. Suppose that λ2 − λ3 ≥ p − (λ1 − λ2 + 1)
then we can remove what remains of this rim p-hook from the second row
without affecting the third row, and hence what remains of the second row
is λ2 − (p − λ1 + λ2 − 1) = λ1 − p + 1 and so this partition has p-core
(λ2 − 1, λ1 − p + 1, λ3). For example, with r = 9 and p = 5 then the par-
tition (5, 3, 1) has p-core (λ2−1, λ1−p+1, λ3) = (3−1, 5−5+1, 1) = (2, 1, 1):

X
XXX
XXXXX

iii) Finally, suppose λ1−λ2 < p and also λ2−λ3 < p−(λ1−λ2 +1) and thus to
remove the rim p-hook we must use all three rows. So, we remove λ1 − λ2 + 1
from the first row, leaving λ2−1 in that row, and p−(λ1−λ2+1) to remove from
the second two rows. In this case, the most we can remove from the second row
is λ2−λ3+1 and so what remains in this second row is λ2−(λ2−λ3+1) = λ3−1,
and calculating p−(λ1−λ2+1)−(λ2−λ3+1) = p−λ1+λ3−2 gives what remains
to take away from the third row, thus leaving λ3−(p−λ1 +λ3−2) = λ1−p+2
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in this third row. Hence this partition has p-core (λ2 − 1, λ3 − 1, λ1 − p + 2).
For example with r = 9 and p = 5 then the partition (4, 3, 2) has p-core
(3− 1, 2− 1, 4− 5 + 2) = (2, 1, 1):

XX
XXX
XXXX

Note here that in case 3), all three examples have the same p-core, and hence
we have a core class:
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(7, 1, 1)
(5, 3, 1)
(4, 3, 2)

With λ = (7, 1, 1), µ = (5, 3, 1) and σ = (4, 3, 2) then we can see that λ1 ≥
µ1 ≥ σ1, λ1+λ2 ≥ µ1+µ2 ≥ σ1+σ2 and λ1+λ2+λ3 ≥ µ1+µ2+µ3 ≥ σ1+σ2+σ3

and thus (7, 1, 1) is the highest or ‘top’ weight in this core class, (5, 3, 1) is the
‘middle’ weight and (4, 3, 2) is the lowest or ‘bottom’ weight. It is these core
classes and the structure of the weights within them that will play a crucial
role in solving Theorem 4.1.3.

DEFINITION 4.3.1 We call a partition self-titled if it is its own p-core. In
other words it is impossible to remove a rim p-hook and still leave a proper
partition.

PROPOSITION 4.3.2 Let λ be a non self-titled partition of r into ≤ 3
parts. Then there are three possible types of core classes for the range p ≤
r ≤ 2p− 1. They are as follows;
For p ≤ r ≤ 2p− 1, where λ1 − λ2 ≥ p and λ1 ≤ 2p− 3;
(λ1, λ2, λ3)
(λ2 + p− 1, λ1 − p+ 1, λ3)
(λ3 + p− 2, λ1 − p+ 1, λ2 + 1)

For r = 2p− 1 with λ1 + p > t and λ1 − p = p− 1 we have;
(λ1, λ2, λ3) = (2p− 1, 0, 0)
(λ1 − p, λ1 − p, 1) = (p− 1, p− 1, 1)

For r = 2p− 2, 2p− 1 with λ1 + p > t and λ1 − p = p− 2;
(λ1, λ2, λ3)
(λ2 + p− 1, λ1 − p+ 1, λ3)
which for r = 2p− 2 is the core class
(2p− 2, 0, 0)
(p− 1, p− 1, 0)
and for r = 2p− 1 is the core class
(2p− 2, 1, 0)
(p, p− 1, 0)

Proof. Take a general p-core (µ1, µ2, µ3), then there are three possible ways of
attaching a rim p-hook to this p-core. Firstly by adding the rim p-hook to the
first row, then adding it starting on the second row, and finally by adding it
starting on the third row. We calculate the new partitions formed in each of
these cases.
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Adding to the first row gives a new partition η = (µ1 + p, µ2, µ3), to the sec-
ond row gives the partition φ = (p + µ2 − 1, µ1 + 1, µ3), and adding to the
third row gives the partition ψ = (µ3 + p − 2, µ1 + 1, µ2 + 1). Then letting
(λ1, λ2, λ3) = (µ1 + p, µ2, µ3) gives the core class above consisting of three par-
titions.
We must now check that each of these new partitions is indeed a proper par-
tition. Clearly η is a proper partition as µ1 + p > µ2 ≥ µ3. Next consider φ,
well this is a proper partition unless p+µ2 + 1 < µ1 + 1, i.e. if p−2 < µ1−µ2.
Thus we would require p− 1 ≤ µ1 − µ2 ≤ µ1, but as we know that µ1 ≤ p− 1
then the case where this is not a proper partition is when µ1 = p− 1 = λ1− p.
Thus we have λ1 = 2p − 1 and so must have that r = 2p − 1 giving the core
class above consisting of two partitions where r = 2p− 1.
Finally consider ψ, well this is a proper partition unless µ3 + p − 2 < µ1 + 1
thus implying that p − 3 < µ1 − µ3 ≤ µ1. So this would not be a proper
partition when µ1 = λ1 − p ≥ p − 2 which requires λ1 ≥ 2p − 2 and thus
r = 2p − 2, 2p − 1 and these give the core classes above consisting of two
partitions where r = 2p − 2, 2p − 1. This also shows that we only have the
core class consisting of three weights when λ1 = µ1 + p ≤ 2p− 3.

The final thing we need to check is that these partitions can only be ordered
in the way shown in the above proposition. Consider the following [25] ;
Define α1 = (1,−1, 0, . . . , 0)
α2 = (0, 1,−1, 0, . . . , 0)
...
αn−1 = (0, 0, . . . , 1,−1)
Then for two partitions λ and µ, we have λ ≥ µ if and only if λ−µ =

∑n
i=1 aiαi

with ai ≥ 0.
We apply this now to the case n = 3. Firstly η−φ = (µ1−µ2+1, µ2−µ1+1, 0) =
(µ1 − µ2 + 1)(1,−1, 0), secondly φ − ψ = (µ2 − µ3 − 1, 0, µ3 − µ2 + 1) =
(µ2 − µ3 − 1)(1, 0,−1).

It now remains to find the partitions in the range p ≤ r ≤ 2p − 1 that are
self-titled.

PROPOSITION 4.3.3 The self-titled partitions can be broken down into
the following four cases;
i) λ1 − λ2 = p− 1 and λ2 + 1 < p with λ3 ≤ λ2;
ii) λ1 − λ2 = p− ξ, λ2 + 1 < ξ and λ3 = 0 where λ1 ≤ p− 3 and ξ > 2;
iii) λ1 − λ2 = p− ξ, λ2 + 2 < ξ and λ3 6= 0 where λ1 ≤ p− 3 and ξ > 2;
iv) λ1 − λ2 = p− ξ and λ2 − λ3 = ξ − 2 where ξ > 1.

Proof. i) With λ1 − λ2 = p− 1 then removing a rim p-hook from the first row
would leave the p-core (λ2 − 1, λ2, λ3) which is not a proper partition. More-
over due to being restricted to the range p ≤ r ≤ 2p − 1 then we are unable
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to remove a rim p-hook from the second and third rows. This is equivalent to
saying λ2 − λ3 + λ3 + 1 = λ2 + 1 < p.

ii) Now suppose λ1−λ2 = p− ξ where ξ ≥ 3. Assume firstly that λ3 = 0, then
if we were able to remove a rim p-hook it would be from the first two rows
only, so with λ1 − λ2 = p − ξ then we could remove p − ξ + 1 from the first
row, leaving p− (p− ξ + 1) = ξ − 1 to remove from the second row, however
if λ2 + 1 < ξ ⇒ λ2 < ξ − 1 then there are not enough nodes to remove the
remainder of the rim p-hook.
We must also state why λ1 ≤ p − 3 in this case. Well, take λ1 = p − 2 then
p− 2− λ2 = p− ξ and so λ2 = ξ − 2, which fits into the final case. Indeed if
λ1 ≥ p− 2 then we can find a λ2 such that λ2 = ξ − 2. However, if λ1 ≤ p− 3
then λ2 ≤ ξ − 3.

iii) Suppose again that λ1 − λ2 = p− ξ but in this case λ3 6= 0, then again we
could, remove p − ξ + 1 from the first row, and we have remaining ξ − 1 to
remove from the second two rows. However, if λ2 − λ3 + λ3 + 2 = λ2 + 2 < ξ
then λ2 + 1 < ξ − 1 and there are not enough nodes to remove the remainder
of the rim p-hook.

iv) As above, with λ1 − λ2 = p − ξ then we can remove p − ξ + 1 from
the first row, and so need to remove ξ − 1 from the remaining two rows. In a
similar way to part i) if λ2 − λ3 = ξ − 2 then after removing the rim p-hook
we will not leave a proper partition.

We can split these self-titled partitions into three cases depending on λ1 and
λ3.

COROLLARY 4.3.4 The self-titled partitions given in the previous propo-
sition each relate to one of the following three cases as shown;
i) λ1 − λ2 = p− 1 if and only if λ1 − λ3 > p− 2.
ii) • With λ2 + 1 < ξ and λ3 = 0, where ξ ≥ 3, then λ1 − λ2 = p − ξ if and
ony if λ1 = λ1 − λ3 < p− 2.
• With λ2 + 2 < ξ and λ3 6= 0, where ξ ≥ 3 then λ1 − λ2 = p− ξ if and only
if λ1 − λ3 < p− 2.
iii) With ξ ≥ 2, then λ1 − λ2 = p − ξ and λ2 − λ3 = ξ − 2 if and only if
λ1 − λ3 = p− 2.

This way of defining self-titled partitions will be used in the proof of Theorem
4.1.3, which is why we have introduced this now.
Proof. i) ‘⇒’ If λ1 − λ2 = p− 1 and λ2 ≥ λ3 then λ1 − λ3 ≥ p− 1 > p− 2.
‘ ⇐’ We have λ1 − λ3 > p − 2 where λ is self-titled. Now suppose for a con-
tradiction that λ1 − λ2 6= p − 1. Well if λ1 − λ2 ≥ p then we can remove a
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p-edge from the first row and thus λ is not self-titled. If, on the other hand
λ1 − λ2 ≤ p− ξ, where ξ > 1 then to ensure we have a self-titled partition we
require either λ3 = 0 and λ2 + 1 < ξ, or λ3 6= 0 and λ2 +λ3 + 1 < ξ. But these
are the cases in part ii) which we will prove imply λ1 − λ3 < p − 2. Thus we
have a contradiction and so λ1 − λ2 = p− 1.

ii) ‘ ⇒’ Firstly take the case where λ1 − λ2 = p − ξ and λ2 + 1 < ξ where
λ3 = 0. Then λ1 − λ3 = λ1 = p − ξ + λ2. Suppose for a contradiction that
p− ξ + λ2 ≥ p− 2, then λ2 ≥ ξ − 2 and λ1 = λ1 − λ3 ≥ p− ξ + ξ − 2 = p− 2
and thus p− ξ ≥ p− 2 thus giving that ξ ≤ 2, which is a contradiction as we
have ξ ≥ 3. Hence it must be that p− ξ+ λ2 < p− 2 implying λ1 < p− 2 and
thus λ1 − λ3 < p− 2 as required.

Now take the case where λ3 6= 0 and hence we have λ1 − λ2 = p − ξ and
λ2 + 2 < ξ. Suppose for a contradiction that λ1 − λ3 ≥ p − 2. Then
p−2 ≤ λ1−λ3 = λ1−λ2+λ2−λ3 = p−ξ+λ2−λ3 < p−ξ+ξ−2−λ3 = p−2−λ3.
So, we have that p− 2 < p− 2− λ3 which is not true. Hence λ1 − λ2 < p− 2.

‘ ⇐’ Suppose λ1 − λ3 < p − 2, then λ1 < p − 2 + λ3 which implies that
λ1−λ2 < p−2+λ3−λ2. We have that λ2 ≥ λ3 and hence λ1−λ2 < p−2 = p−ξ
with ξ > 2. Moreover as we have a self-titled partition, then if λ3 = 0 we re-
quire λ2 + 1 < ξ, and if λ3 6= 0 then we require λ2 + 2 ≤ ξ.

iii) ‘⇒’ If λ1−λ2 = p−ξ and λ2−λ3 = ξ−2 then λ1−λ3 = λ1−λ2 +λ2−λ3 =
p− ξ + ξ − 2 = p− 2.
‘ ⇐’ Assume λ1 − λ3 = p − 2, then as λ2 ≥ λ3 then λ1 − λ2 ≤ p − 2 hence
λ1−λ2 = p−ξ with ξ ≥ 2. Moreover λ2−λ3 = p−2+λ2−λ1 = p−2+ξ−p =
ξ − 2 as required.

4.4 Classification of core classes for 2p ≤ r ≤
3p− 1

AIM: Looking back to 4.3.2 we can see that we have one type of core class
consisting of 3 partitions, which we shall call a 3-set and two types of core
classes consisting of 2 partitions, which we shall call 2-sets, and then with
Corollary 4.3.4 we also have three types of self-titled partitions. Each of these
self-titled partitions and core classes has a different p-core, so we shall take
each separately and show how a rim p-hook can be added on in each case to
preserve the p-core but create a new core class in the range 2p ≤ r ≤ 3p− 1.
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1) The 3-set.
We use the letters T , M and B to signify the partitions which are at the top,
the middle and the bottom of the core class respectively. In this case we have
the core class

(λ1T , λ2T , λ3T ) = (λ1T , λ2T , λ3T )

(λ1M , λ2M , λ3M) = (λ2T + p− 1, λ1T − p+ 1, λ3T )

(λ1B, λ2B, λ3B) = (λ3T + p− 2, λ1T − p+ 1, λ2T + 1)

where λ1T − λ2T ≥ p, and the core class has p-core (λ1T − p, λ2T , λ3T ).
Now consider a general partition λ where we need to add on a rim p-hook
whilst maintaining the above p-core. What are the possible ways of attaching
this p-core? Well, as stated in the proof of Proposition 4.3.2, we can add it to
the top row, add it starting on the middle row and then moving up to the top
row, or add it starting on the bottom row and then move up to the middle row
and top row. So there are three possible options. Thus for each of the above
partitions in the 3-set we shall find out the resulting partition when each of
the above options is completed.

i) Adding to the top row:

T) Then (λ1T , λ2T , λ3T ) becomes (λ1T + p, λ2T , λ3T )
M) (λ1M , λ2M , λ3M) becomes (λ1M + p, λ2M , λ3M) = (λ2T + 2p − 1, λ1T − p +
1, λ3T ) = (λ2T + 2p− 1, λ1T − p+ 1, λ3T )
B) (λ1B, λ2B, λ3B) becomes (λ1B+p, λ2B, λ3B) = (λ3T +2p−2, λ1T−p+1, λ2T +
1)

ii) Adding to the middle row:

T) (λ1T , λ2T , λ3T ) becomes (λ1T , λ2T + p, λ3T ), this does not affect the top
row as λ1T − λ2T ≥ p and hence λ1T ≥ λ2T + p.
M) (λ1M , λ2M , λ3M) becomes (λ1M + p− (λ1M + 1) + λ2M , λ1M + 1, λ3M)
= (λ2M + p− 1, λ1M + 1, λ3M)
= (λ1T − p+ 1 + p− 1, λ2T + p− 1 + 1, λ3T )
= (λ1T , λ2T + p, λ3T )
B) (λ1B, λ2B, λ3B) becomes (λ1B + p− (λ1B + 1) + λ2B, λ1B + 1, λ3B)
= (λ2B + p− 1, λ1B + 1, λ3B)
= (λ1T − p+ 1 + p− 1, λ3T + p− 2 + 1, λ2T + 1)
= (λ1T , λ3T + p− 1, λ2T + 1)

iii) Adding to the bottom row:

T) (λ1T , λ2T , λ3T ) becomes (λ1T , λ2T + p− (λ2T + 1) + λ3T , λ2T + 1)
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= (λ1T , λ3T + p− 1, λ2T + 1).
M) (λ1M , λ2M , λ3M) becomes
(λ1M + p− (λ1M + 1)− (λ2M + 1) + λ2M + λ3M , λ1M + 1, λ2M + 1)
= (λ3M + p− 2, λ1M + 1, λ2M + 1)
= (λ3T + p− 2, λ2T + p− 1 + 1, λ1T − p+ 1 + 1)
= (λ3T + p− 2, λ2T + p, λ1T − p+ 2)
B) (λ1B, λ2B, λ3B) becomes (λ1B + p− (λ1B + 1)− (λ2B + 1) +λ2B +λ3B, λ1B +
1, λ2B + 1)
= (λ3B + p− 2, λ1B + 1, λ2B + 1)
= (λ2T + 1 + p− 2, λ3T + p− 2 + 1, λ1T − p+ 2)
= (λ2T + p− 1, λ3T + p− 1, λ1T − p+ 2)

Looking at each of these results we can see that the partition we get from
iT), namely (λ1T + p, λ2T , λ3T ), gives the new top weight, followed by the
partition we get from iM) and then the partition we get from iB). The next
highest weight will be that from iiT), namely (λ1T , λ2T + p, λ3T ), which is also
the result we get from iiM), and then the partition we get from iiB), namely
(λ1T , λ3T + p− 1, λ2T + 1), will be the fifth weight which is also the result for
iiiT). Looking at iiiM), i.e. the partition (λ3T + p − 2, λ2T + p, λ1T − p + 2),
we see that as λ2T ≥ λ3T , then λ2T + p ≥ λ3T + p and thus λ2T + p ≥
λ3T + p− 2 and therefore iiiM) is not a proper partition and we can discount
this from our results. Finally we have that the partition from iiiB), namely
(λ2T + p− 1, λ3T + p− 1, λ1T − p+ 2), will be the final weight in our new core
class for 2p ≤ r ≤ 3p− 1.
We therefore have that the 3-set from the range p ≤ r ≤ 2p− 1 which has p-
core (λ1T−p, λ2T , λ3T ) becomes the following 6-set in the range 2p ≤ r ≤ 3p−1;

(λ1T + p, λ2T , λ3T )
(λ2T + 2p− 1, λ1T − p+ 1, λ3T )
(λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1)
(λ1T , λ2T + p, λ3T )
(λ1T , λ3T + p− 1, λ2T + 1)
(λ2T + p− 1, λ3T + p− 1, λ1T − p+ 2)

The final thing we need to understand is why specifically we have the core class
in this order, so why have we stated that the highest weight is (λ1T+p, λ2T , λ3T )
and the lowest weight (λ2T +p−1, λ3T +p−1, λ1T −p+2), and why do all the
other partitions sit as they do in the block? From Definition 1.3.2 we know
that for two weights λ = (λ1, λ2, λ3) and µ = (µ1, µ2, µ3), that λ has a higher
weight than µ if;
i) λ1 ≥ µ1

ii) λ1 + λ2 ≥ µ1 + µ2
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iii) λ1 + λ2 + λ3 ≥ µ1 + µ2 + µ3

Now clearly λ1 + λ2 + λ3 = µ1 + µ2 + µ3 as they both sum to give the same
degree r so it is unnecessary to check iii) in each case. However, we must prove
parts i) and ii) to show why the core class is structured as it is. We do this
now by numbering the weights 1 to 6 then proving 1 D 2, 2 D 3, etc.
1 D 2
i) λ1T − λ2T ≥ p and so λ1T + p ≥ λ2T + 2p− 1.
ii) (λ2T + 2p− 1) + (λ1T − p+ 1) = (λ1T + p) + λ2T

2 D 3
i) λ2T ≥ λ3T so λ2T + 2p− 1 > λ3T + 2p− 2
ii) λ1T − p+ 1 = λ1T − p+ 1 so if i) holds then ii) holds.
3 D 4
i) λ1T ≤ 2p− 3 so λ3T + 2p− 2 ≥ 2p− 2 > 2p− 3 ≥ λ1T

ii) If λ1T + p− 1 ≥ λ2T + p then λ1T − λ2T ≥ 2p− 1 which is a contradiction,
so in fact λ2T + p > λ1T − p+ 1 so for 3>4 we could actually write the weights
either way round, we choose as we have, simply because λ3T + 2p− 2 > λ1T

4 D 5
i) Clear.
ii) λ2T ≥ λ3T so λ1T + λ2T + p > λ1T + λ3T + p− 1.
5 D 6
i) λ1T − λ2T ≥ p and so λ1T > λ2T + p− 1.
ii) As i) holds then so does ii).

Thus we have clarified why the core class appears in the order it does.

2) The self-titled partition where λ1 − λ3 < p− 2.
We are beginning with a partition (λ1T , λ2T , λ3T ) where λ1T −λ3T < p−2, and
as before we can add a p-hook on in three ways, by adding it to the top row,
adding it on starting on the second row, or adding it on starting on the third
row. Note that as this partition has its own p-core then we need to preserve
the structure of λT when adding on the p-hook.
i) Adding to the top row: (λ1T , λ2T , λ3T ) becomes (λ1T + p, λ2T , λ3T ).
ii) Adding to the middle row: (λ1T , λ2T , λ3T ) becomes (λ1T + p− (λ1T + 1) +
λ2T , λ1T + 1, λ3T ) = (λ2T + p− 1, λ1T + 1, λ3T ).
iii) Adding to the bottom row: (λ1T , λ2T , λ3T ) becomes (λ1T + p− (λ2T + 1)−
(λ1T + 1) + λ2T + λ3T , λ1T + 1, λ2T + 1) = (λ3T + p− 2, λ1T + 1, λ2T + 1)

As each of these new weights are different then we can conclude that the
self-titled partition from p ≤ r ≤ 2p− 1 where λ1T − λ3T < p− 2 becomes the
following 3-set in the range 2p ≤ r ≤ 3p− 1;
(λ1T + p, λ2T , λ3T )

69



(λ2T + p− 1, λ1T + 1, λ3T )
(λ3T + p− 2, λ1T + 1, λ2T + 1).

It now remains to prove why the core class appears in the above order, just as
we did in 1). So ordering the core class 1,2,3, we prove 1 D 2, 2 D 3.
1 D 2
i) λ1T − λ2T ≥ p and so λ1T + p > λ2T + p− 1.
ii) (λ2T + p− 1) + (λ1T + 1) = λ1T + p+ λ2T

2 D 3
i) Clearly holds as λ2T ≥ λ3T .
ii) Holds as i) does.

3) The self-titled partition where λ1 − λ3 > p− 2.
We are beginning with a partition (λ1T , λ2T , λ3T ) where λ1T −λ3T > p−2, and
as before we can add a p-hook on in three ways, by adding it to the top row,
adding it on starting on the second row, or adding it on starting on the third
row. Note that as this partition has its own p-core then we need to preserve
the structure of λT when adding on the p-hook.
i) Adding to the top row: (λ1T , λ2T , λ3T ) becomes (λ1T + p, λ2T , λ3T ).
ii) Adding to the middle row: We know from Corollary 4.3.4 that if λ1T−λ3T >
p− 2 then λ1T −λ2T = p− 1, and thus when adding p onto the second row we
get that (λ1T , λ2T , λ3T ) becomes (λ1T , λ2T +p, λ3T ) = (λ1T , λ1T +1, λ3T ) which
is clearly not a proper partition.
iii) Adding to the bottom row: Again we have λ1T − λ2T = p − 1 and thus
if we start by adding on to the third row, then whatever remains to be
added on to the second row will always fit without affecting the first row
and hence (λ1T , λ2T , λ3T ) becomes (λ1T , λ2T + p− (λ2T + 1) + λ3T , λ2T + 1) =
(λ1T , λ3T + p− 1, λ2T + 1)

We can discount the weight in ii) and as the remaining two weights are different
then we can conclude that the self-titled partition from p ≤ r ≤ 2p− 1 where
λ1T − λ3T > p− 2 becomes the following 2-set in the range 2p ≤ r ≤ 3p− 1;
(λ1T + p, λ2T , λ3T )
(λ1T , λ3T + p− 1, λ2T + 1).

By now numbering the top weight 1 and the bottom weight 2, we must now
explain why we have this ordering of the core class.
1 D 2
i) Clear.
ii) λ2T ≥ λ3T and so λ1T + p+ λ2T > λ1T + λ3T + p− 1.
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4) The self-titled partition where λ1 − λ3 = p− 2.
So we are beginning with a partition (λ1T , λ2T , λ3T ) where λ1T − λ3T = p− 2,
and as before we can add a p-hook on in three ways, by adding it to the top
row, adding it on starting on the second row, or adding it on starting on the
third row. Note that as this partition has its own p-core then we need to
preserve the structure of λT when adding on the p-hook.
i) Adding to the top row: (λ1T , λ2T , λ3T ) becomes (λ1T + p, λ2T , λ3T ).
ii) Adding to the middle row: (λ1T , λ2T , λ3T ) becomes (λ1T + p− (λ1T + 1) +
λ2T , λ1T + 1, λ3T ) = (λ2T + p− 1, λ1T + 1, λ3T ).
iii) Adding to the bottom row: We have that λ1T − λ3T = p− 2 and thus we
have two more nodes to add on to get it up to a p-hook. Well, one of these
will be used as we step up from the third row, to the second row, and thus
the final node will be added on to the end of the second row. We therefore
have that (λ1T , λ2T , λ3T ) becomes (λ1T , λ1T + 1, λ2T + 1) which is clearly not
a proper partition.

We can discount this final weight and as the remaining two new weights are
different then we can conclude that the self-titled partition from p ≤ r ≤ 2p−1
where λ1T − λ3T = p − 2 becomes the following 2-set in the range 2p ≤ r ≤
3p− 1;
(λ1T + p, λ2T , λ3T )
(λ2T + p− 1, λ1T + 1, λ3T ).

Numbering the core class 1 and 2, we must now explain why we have this
ordering of the core class.
1 D 2
i) λ1T ≥ λ2T and thus λ1T + p > λ2T + p− 1.
ii) (λ2T + p− 1) + (λ1T + 1) = λ1T + p+ λ2T .

5) The 2-set where λ1T + p > t and λ1T − p = p− 2
In this case we have the following core class;

(λ1T , λ2T , λ3T ) = (λ1T , λ2T , λ3T )

(λ1B, λ2B, λ3B) = (λ2T + p− 1, λ1T − p+ 1, λ3T )

So as usual we need to take these two partitions and see what happens when
we add a p-hook first to the top row, then the middle row, and finally the
bottom row.
i) Adding to the top row:
T) It is a requirement in any partition µ that µ1 ≤ t and thus as in this case
λ1T + p > t then we cannot add a p-hook to the first row.
B) (λ1B, λ2B, λ3B) becomes (λ1B + p, λ2B, λ3B)
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= (λ2T + p− 1 + p, λ1T − p+ 1, λ3T )
= (λ2T + 2p− 1, λ1T − p+ 1, λ3T )
ii) Adding to the middle row:
T) (λ1T , λ2T , λ3T ) becomes (λ1T , λ2T +p, λ3T ) as here λ1T = 2p−2 and λ2T = 0
or 1 and hence adding a p-hook to the second row will not affect the first row.
B) (λ1B, λ2B, λ3B) becomes (λ1B + p− (λ1B + 1) + λ2B, λ1B + 1, λ3B)
= (λ2B + p− 1, λ1B + 1, λ3B)
= (λ1T − p+ 1 + p− 1, λ2T + p, λ3T )
= (λ1T , λ2T + p, λ3T )
iii) Adding to the bottom row:
T) (λ1T , λ2T , λ3T ) becomes (λ1T , λ2T +p−(λ2T +1)+λ3T , λ2T +1) = (λ1T , λ3T +
p− 1, λ2T + 1) and as λT = (2p− 2, 1, 0) for r = 2p− 1 and λT = (2p− 2, 0, 0)
for r = 2p − 2 then we have that (λ1T , λ3T + p − 1, λ2T + 1) = (λ3T + 2p −
2, λ1T − p+ 1, λ2T + 1).
B) (λ1B, λ2B, λ3B) = (p−1, p−1, 0) for r = 2p−2 and thus we would result in
(p−1, p−1, p) which is not a proper partition. For r = 2p−1, λB = (p, p−1, 0)
and so result in the partition (p, p−1, p) which again is not a proper partition.
We therefore have that iB) gives the new top weight followed by iiT) which is
the same as iiB). Then we have iiiT) as the iiiB) have been discounted. Thus
the 2 set where λ1T − p < p− 1 for p ≤ r ≤ 2p− 1 becomes the following 3-set
for 2p ≤ r ≤ 3p− 1;
(λ2T + 2p− 1, λ1T − p+ 1, λ3T )
(λ1T , λ2T + p, λ3T )
(λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1).

We must now explain why we have this ordering of the core class, by number-
ing the core class 1 to 3.
1 D 2
i) λ2T + 2p− 1 ≥ 2p− 1 > 2p− 2 > 2p− 1 and λ1T = 2p− 1, 2p− 2
ii) (λ2T + 2p− 1) + (λ1T − p+ 1) = λ1T + λ2T + p.
2 D 3
i) λ3T = 0 so λ3T + 2p− 2 = 2p− 2 ≤ λ1T = 2p− 1, 2p− 2.
ii) λ2T + p ≥ p ≥ λ1T − p+ 1 as λ1T = 2p− 1, 2p− 2.

6) The 2-set where λ1T + p > t and λ1T − p = p− 1, so for r = 2p− 1
In this case we have the following core class;

(λ1T , λ2T , λ3T ) = (λ1T , λ2T , λ3T ) = (2p− 1, 0, 0)

(λ1B, λ2B, λ3B) = (λ1T − p, λ1T − p, λ3T ) = (p− 1, p− 1, 1)

So as usual we need to take these two partitions and see what happens when
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we add a p-hook first to the top row, then the middle row, and finally the
bottom row.
i) Adding to the top row:
T) It is a requirement in any partition µ that µ1 ≤ t and thus as in this case
λ1T + p > t then we cannot add a p-hook to the first row.
B) (λ1B, λ2B, λ3B) = (p−1, p−1, 1) becomes (2p−1, p−1, 1) = (λ1T , λ1T−p, 1)
ii) Adding to the middle row:
T) (λ1T , λ2T , λ3T ) = (2p− 1, 0, 0) becomes (2p− 1, p, 0) = (λ1T , λ2T + p, λ3T )
B) (λ1B, λ2B, λ3B) = (p−1, p−1, 1) becomes (2p−2, p, 1) = (λ1T−1, λ2T +p, 1)
iii) Adding to the bottom row:
T) (λ1T , λ2T , λ3T ) = (2p− 1, 0, 0) becomes (2p− 1, p− 1, 1) = (λ1T , λ1T − p, 1).
B) (λ1B, λ2B, λ3B) = (p−1, p−1, 1) becomes (p−1, p, p) which is not a proper
partition.
We therefore have that iiT) (λ1T , λ2T + p, λ3T ) gives the new top weight fol-
lowed by iT) (λ1T , λ1T − p, 1) as λ2T + p = p > p − 1 = λ1T − p. We have
that iiiT) is the same as iB) and as iiiB) has been discounted then we are left
with iiB) as the new lowest weight. Thus the 2-set where λ1T − p = p− 1 for
p ≤ r ≤ 2p− 1 becomes the following 3-set for 2p ≤ r ≤ 3p− 1;
(λ1T , λ2T + p, λ3T )
(λ1T , λ1T − p, 1)
(λ1T − 1, p, 1).

It remains to show why we having this ordering on the core class, again by
numbering the core classes 1 to 3.
1 D 2
i) Clear.
ii) λ1T = 2p− 1, λ2T = 0 so λ2T + p = p > p− 1 = λ1T − p.
2 D 3
i) Clear.
ii) λ1T + λ1T + p = 3p− 2 = 2p− 1− 1 + p = λ1T − 1 + p.

7) Finally, for 2p ≤ r ≤ 3p − 1 we will also have the new self-titled parti-
tions. As they follow the normal rules for a self-titled partition then they will
be of the same form as those in the range p ≤ r ≤ 2p−1, and so using Proposi-
tion 4.2.19 and Corollary 4.2.20 we have λ = (λ1, λ2, λ3) where λ1 +λ2 +λ3 = r
such that;
i) λ1 − λ3 > p− 2.
ii) λ1 − λ3 < p− 2.
iii) λ1 − λ3 = p− 2
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4.5 Classification of core classes for 3p ≤ r ≤
4p− 1

AIM: Although we are only proving Theorem 4.1.3 up to r = 3p− 1 we still
continue our classification of p-core for the range 3p ≤ r ≤ 4p−1. This will help
us in Chapter 5 when we conjecture that D3,p(r) 6= A(π, r) for 3p ≤ r ≤ 6p−9.
Using the above classification we can see that we have a 6-set, three 3-sets,
two 2-sets and the three new types of self-titled partitions, each of which
has a different p-core. We will not go into the same detail as for the range
p ≤ r ≤ 3p − 1, but by applying the same method we will give the new core
classes formed for the range 3p ≤ r ≤ 4p− 1.

1) The 6-set from the 3-set.
In this case we have the core class;

(λ11, λ21, λ31) = (λ1T + p, λ2T , λ3T )

(λ12, λ22, λ32) = (λ2T + 2p− 1, λ1T − p+ 1, λ3T )

(λ13, λ23, λ33) = (λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1)

(λ14, λ24, λ34) = (λ1T , λ2T + p, λ3T )

(λ15, λ25, λ35) = (λ1T , λ3T + p− 1, λ2T + 1)

(λ16, λ26, λ36) = (λ2T + p− 1, λ3T + p− 1, λ1T − p+ 2)

where λ1T − λ2T ≥ p and each has p-core (λ1T − p, λ2T , λ3T ).
Following the method for the previous ranges, we result in a new core class for
3p ≤ r ≤ 4p− 1 consisting of 7 weights;

(λ1T + p, λ2T + p, λ3T )
(λ1T + p, λ3T + p− 1, λ2T + 1)
(λ2T + 2p− 1, λ1T + 1, λ3T )
(λ2T + 2p− 1, λ3T + p− 1, λ1T − p+ 2)
(λ3T + 2p− 2, λ1T + 1, λ2T + 1)
(λ3T + 2p− 2, λ2T + p, λ1T − p+ 2)
(λ1T , λ2T + p, λ3T + p)

2) The 3-set from the self-titled where λ1T − λ3T < p− 2.
In this case we have the following core class for the range 2p ≤ r ≤ 3p− 1;
(λ1T + p, λ2T , λ3T )
(λ2T + p− 1, λ1T + 1, λ3T )
(λ3T + p− 2, λ1T + 1, λ2T + 1)
which has p-core (λ1T , λ2T , λ3T ). We again work through each one adding on
the p-hook to each row to form the new core class for the range 3p ≤ r ≤ 4p−1;
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(λ1T + 2p, λ2T , λ3T )
(λ2T + 2p− 1, λ1T + 1, λ3T )
(λ3T + 2p− 2, λ1T + 1, λ2T + 1)
(λ1T + p, λ2T + p, λ3T )
(λ1T + p, λ3T + p− 1, λ2T + 1)
(λ2T + p− 1, λ3T + p− 1, λ1T + 2).

3) The 2-set from the self-titled where λ1T − λ3T > p− 2.
In this case, for 2p ≤ r ≤ 3p− 1 we have the following core class;
(λ1T + p, λ2T , λ3T )
(λ1T , λ3T + p− 1, λ2T + 1)
and as usual we now add p-hooks to each one to find the new core class for
3p ≤ r ≤ 4p− 1;

(λ1T + p, λ2T + p, λ3T )
(λ1T + p, λ3T + p− 1, λ2T + 1)
(λ3T + 2p− 2, λ1T + 1, λ2T + 1)

4) The 2-set from the self-titled where λ1T − λ3T = p− 2
In this case we have the following core class for 2p ≤ r ≤ 3p− 1;
(λ1T + p, λ2T , λ3T )
(λ2T + p− 1, λ1T + 1, λ3T )
and we now add p-hooks to each of these partitions to find the new core class
formed for the range 3p ≤ r ≤ 4p− 1;

(λ2T + 2p− 1, λ1T + 1, λ3T )
(λ1T + p, λ2T + p, λ3T )
(λ3T + 2p− 2, λ1T + 1, λ2T + 1)

5) The 2-set from the 3-set where λ1T + p > t and λ1T − p = p− 2.
In this instance we have the following core class for the range r = 3p−1, 3p−2;
(λ2T + 2p− 1, λ1T − p+ 1, λ3T )
(λ1T , λ2T + p, λ3T )
(λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1)

We now add p-hooks to these partitions to find the new core class for r =
4p− 1, 4p− 2.

(λ2T + 2p− 1, λ1T + 1, λ3T )
(λ3T + 2p− 2, λ2T + p, λ1T − p+ 2)

75



6) The 2-set from the 3-set where λ1T + p > t and λ1T − p = p− 1.
In this instance we have the following core class for the range r = 3p− 1;
(λ1T , λ2T + p, λ3T )
(λ1T , λ1T − p, 1)
(λ1T − 1, p, 1)

We now add p-hooks to these partitions to find the new core class for r = 4p−1.

(λ1T , λ1T , 1)
(λ1T , λ2T + p, λ3T + p)

7)i) The new self-titled where 2p− 2 > λ1 − λ3 > p− 2.
This is exactly the same proof as for number 3) in the range 2p ≤ r ≤ 3p− 1

7)ii) The new self-titled where λ1 − λ3 < p− 2.
This is the same proof as for 2) in the range 2p ≤ r ≤ 3p− 1.

7)iii) The new self-titled where λ1 − λ3 = p− 2.
This is the same proof as for 4) in the range 2p ≤ r ≤ 3p− 1.

7)iv) The new self-titled where λ1 − λ3 = 2p− 2.
We show here that these cannot be made into a new partition.

CLAIM 4.5.1

λ1 − λ3 = 2p− 2⇔ λ1 − λ2 = p− 1 and λ2 − λ3 = p− 1.

Suppose this is true and we go about trying to add p-hooks to this partition.
Well, we know that λ1 ≥ 2p − 2 and thus λ1 + p ≥ 3p − 2 > 3p − 3 = t so
adding to the top row would produce a partition out of the range required.
As λ1 − λ2 = p − 1 then adding to the middle row would give the partition
(λ1, λ1 + 1, λ3) which is not a proper partition. Finally, as λ2 − λ3 = p − 1
then adding to the bottom row would give the partition (λ1, λ2, λ2 + 1) which
again is not a proper partition. Hence no new partitions can be formed.

Proof. of Claim
‘⇒’
Suppose for a contradiction that λ1− λ3 = 2p− 2 but λ1− λ2 = p− 1 + η and
λ2−λ3 = p− 1− η where η ≥ 1 then we can remove p− 1 + η+ 1 = p+ η > p
from the first row and hence the partition is not self-titled and we have a
contradiction.
On the other hand, suppose λ1 − λ3 = 2p − 2 but λ1 − λ2 = p − 1 − η and
λ2 − λ3 = p − 1 + η where η ≥ 1 then we can remove p − 1 − η + 1 = p − η
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from row one and as p − 1 + η > η then we can remove the remainder of the
p-hook from the second row and so the partition is not self-titled which is a
contradiction. Hence we must have λ1 − λ2 = λ2 − λ3 = p− 1.
‘⇐’
If λ1−λ2 = p−1 = λ2−λ3 then λ1−λ3 = λ1−λ2+λ2−λ3 = p−1+p−1 = 2p−2
as required.

7)v) The case where λ1 − λ3 > 2p − 2. We show here that there exists no
self-titled partitions where λ1 − λ3 > 2p− 2. Recall from Corollary 4.3.4 that
for λ1−λ3 > p−2 then λ1−λ2 = p−1. Then λ2−λ3 > λ1−p+1+2p−1−λ1 = p
and so we can always remove a p-hook from the second row and the partition
is not self-titled.

8) Finally for this range we have the new self-titled partitions.

CLAIM 4.5.2 For the range 3p ≤ r ≤ 4p−1 there are no self-titled partitions
where λ1 − λ3 < p− 2.

Proof. Suppose for a contradiction there does exist a self-titled partition where
λ1 − λ3 < p− 2 then from Corollary 4.3.4 we know that we have either;
i) λ1 − λ2 = p− ξ and λ2 + 1 < ξ when λ3 = 0
ii) λ1 − λ2 = p− ξ and λ2 + 2 < ξ when λ3 6= 0.

i) If this holds then r = λ1 +λ2 +λ3 = λ1 +λ2 = 2λ1−p+ ξ < 2p−2−p+ ξ =
p−2+ξ, so to ensure that r ≥ 3p we require p−2+ξ > 3p implying ξ ≥ 2p+2.
Thus we have that λ1 − λ2 = p− ξ ≤ p− (2p+ 2) = −p− 2 which is clearly a
contradiction. Hence there are no self-titled partitions of type i).

ii) Now suppose this holds, then r = λ1 +λ2 +λ3 < (p−ξ+λ2)+(ξ−2)+λ3 <
(p−2)+(ξ−2)+λ3 = p−4+ξ+λ3. So to ensure r ≥ 3p we need p−4+ξ+λ3 > 3p
so λ3 > 2p + 4 − ξ. Now we know that 2 ≤ ξ ≤ p so λ3 > p + 4, moreover if
2 ≤ ξ ≤ p then 0 ≤ λ1−λ2 ≤ p−2 and hence λ2 ≤ λ1 ≤ λ2 +p−2 giving that
λ2 = p− 2 < λ3 which is a contradiction, so there are no self-titled partitions
of type ii)

We therefore have only the following type of self-titled partitions;
i) Those where λ1−λ3 > p− 2, for example p = 7, r = 3p = 21, λ = (11, 5, 5).
ii) Those where λ1 − λ3 = p − 2, for example p = 11, r = 3p + 3 = 36,
λ = (17, 8, 8).
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4.6 Classification of core classes for 4p ≤ r ≤
5p− 5

AIM: Finally we repeat the process to find the core classes for 4p ≤ r ≤ 5p−5.
The reason we need go no further than r = 5p − 5 is because the ‘halfway’
point 3t

2
≤ 5p− 5, and after r = 3t

2
we can apply the reflection property shown

in Section 3.5. From above we can see that we have a 7-set, a 6-set, two 3-sets
and four 2-sets, and the two types of new self-titled partitions. Note however
that two of the 2-sets are for the cases r = 4p−1, 4p−2 and thus for our new
range will be for r = 5p− 1, 5p− 2 which is greater than 5p− 5 and thus we
do not need to worry about these particular core classes.

1) The 7-set from 6-set from the 3-set.
In this case we have the following core class;

(λ1T + p, λ2T + p, λ3T )
(λ1T + p, λ3T + p− 1, λ2T + 1)
(λ2T + 2p− 1, λ1T + 1, λ3T )
(λ2T + 2p− 1, λ3T + p− 1, λ1T − p+ 2)
(λ3T + 2p− 2, λ1T + 1, λ2T + 1)
(λ3T + 2p− 2, λ2T + p, λ1T − p+ 2)
(λ1T , λ2T + p, λ3T + p).

We now add p-hooks to these partitions to find the new core class for 4p−1 ≤
r ≤ 5p− 5;

(λ1T + p, λ2T + 2p, λ3T )
(λ1T + p, λ3T + 2p− 1, λ2T + 1)
(λ1T + p, λ2T + p, λ3T + p)
(λ2T + 2p− 1, λ3T + 2p− 1, λ1T − p+ 2)
(λ2T + 2p− 1, λ1T + 1, λ3T + p)
(λ3T + 2p− 2, λ1T + 1, λ2T + p+ 1)

2) The 6-set from the 3-set from the self-titled where λ1T − λ3T < p− 2
In this case we have the core class;
(λ1T + 2p, λ2T , λ3T )
(λ2T + 2p− 1, λ1T + 1, λ3T )
(λ3T + 2p− 2, λ1T + 1, λ2T + 1)
(λ1T + p, λ2T + p, λ3T )
(λ1T + p, λ3T + p− 1, λ2T + 1)
(λ2T + p− 1, λ3T + p− 1, λ1T + 2)
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and we now go about adding on p-hooks to each partition to find the new
core class for 4p− 1 ≤ r ≤ 5p− 5;

(λ1T + 2p, λ2T + p, λ3T )
(λ1T + 2p, λ3T + p− 1, λ2T + 1)
(λ2T + 2p− 1, λ1T + p+ 1, λ3T )
(λ2T + 2p− 1, λ3T + p− 1, λ1T + 2)
(λ3T + 2p− 2, λ1T + p+ 1, λ2T + 1)
(λ3T + 2p− 2, λ2T + p, λ1T + 2)
(λ1T + p, λ2T + p, λ3T + p)

3) The 3-set from the 2-set from the self-titled where λ1T − λ3T > p− 2
In this case we have the following core class from 3p ≤ r ≤ 4p− 1;
(λ1T + p, λ2T + p, λ3T )
(λ1T + p, λ3T + p− 1, λ2T + 1)
(λ3T + 2p− 2, λ1T + 1, λ2T + 1)

which for the range 4p ≤ r ≤ 5p− 5 gives the new core class;

(λ1T + p, λ3T + 2p− 1, λ2T + 1)
(λ1T + p, λ2T + p, λ3T + p).

4) The 3-set from the 2-set from the self-titled where λ1T − λ3T = p− 2.
In this case we have the following core class for 3p ≤ r ≤ 4p− 1;
(λ2T + 2p− 1, λ1T + 1, λ3T )
(λ1T + p, λ2T + p, λ3T )
(λ3T + 2p− 2, λ1T + 1, λ2T + 1)

which gives the new core class for 4p ≤ r ≤ 5p− 5;

(λ2T + 2p− 1, λ1T + p+ 1, λ3T )
(λ1T + p, λ2T + p, λ3T + p)

5) and 6) are not important as they are the cases where r = 5p− 2, 5p− 1 >
5p − 5 ≥ 3t

2
so are out of the range we need to consider as any degree above

r = 3t
2

we shall prove with the reflection property in Section 3.5.

7)i) The 2-set from the self-titled where 2p− 2 > λ1 − λ3 > p− 2.
This is the same proof as for 3) from the range 3p ≤ r ≤ 4p− 1
7ii) The 3-set from the self-titled where λ1 − λ3 < p− 2.
This is the same proof as for 2) from the range 3p ≤ r ≤ 4p− 1.
7)iii) The 2-set from the self-titled where λ1 − λ3 = p− 2.
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This is the same proof as for 4) from the range 3p ≤ r ≤ 4p− 1.

8)i) The new self-titled where 2p− 2 > λ1 − λ3 > p− 2.
This is the same proof as for 3) from the range 2p ≤ r ≤ 3p− 1.
8)ii) The new self-titled where λ1 − λ3 = p− 2.
This is the same proof as for 4) from the range 2p ≤ r ≤ 3p− 1.

9) What remains now is the new-self-titled in this range.

CLAIM 4.6.1 The only self-titled partitions that exist in the range 4p ≤ r ≤
5p− 5 are where λ1 − λ3 > 2p− 2. For example, p = 7, r = 5p− 5 = 30 and
λ = (16, 10, 4).

Proof. i) First we shall prove that there exists no self-titled partitions where
p−2 < λ1−λ3 ≤ 2p−2. From Corollary 4.3.4 we know that if such a partition
did exist then λ1−λ2 = p− 1, and thus 0 ≤ λ2−λ3 ≤ p− 2. Let λ2−λ3 = µ,
then for the self-titled partition to exist we would require λ3 < p− (µ+ 1), as
then we cannot remove the rim p-hook from the third row, and so we can say
that r = λ1 +λ2 +λ3 < (p−1+µ+(p−µ−1))+(µ+(p−µ+1))+(p−µ+1) =
4p− µ− 4 < 4p, which is a contradiction as we require 4p ≤ r ≤ 5p− 5.

ii) We now prove there exists no self-titled partitions where λ1 − λ3 = p − 2.
Suppose there exists a partition of this kind, then from Corollary 4.3.4 we
know that λ1 − λ2 = p − ξ and λ2 − λ3 = ξ − 2 and of course we must have
that (λ2−λ3) +λ3 + 1 ≤ p−1 i.e. that λ2 + 1 ≤ p−1. Therefore we have that
λ3 ≤ p−ξ and so r = λ1+λ2+λ3 ≤ (p−ξ+ξ−2+p−ξ)+(ξ−2+p−ξ)+(p−ξ) =
4p− 4− 2ξ < 4p which is a contradiction as we require 4p ≤ r ≤ 5p− 5.

iii) Finally we prove that there exists no self-titled partition where λ1 − λ3 <
p − 2. So suppose there is and that λ3 = 0 then from 4.3.4 we know that
λ1−λ3 = p−ξ and λ2+1 < ξ, then r = λ1+λ2 < (p−2)+(p−2−p+ξ) = p−4+ξ.
So for r ≥ 4p then we require at least for p− 4 + ξ > 4p which only occurs if
ξ ≥ 3p+ 4 which implies λ1 − λ2 ≤ −2p− 4 which is clearly a contradiction.
If on the other hand we have λ3 6= 0 then λ1 − λ2 = p − ξ, λ2 + 2 < ξ and
λ3 ≤ p−1. Therefore r = λ1+λ2+λ3 < (ξ−2+p−ξ)+(ξ−2)+(p−1) = 2p+ξ−5
and so for r ≥ 4p we require at least for 2p+ξ−5 > 4p which implies ξ ≥ 2p+5,
thus giving that λ1 − λ2 ≤ −p − 5 which is a contradiction. So there are no
self-titled partitions in the range 4p ≤ r ≤ 5p− 5 such that λ1 − λ3 < p− 2.
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4.7 Classification of core classes for 0 ≤ r ≤
5p− 5

Bringing all of the previous work together we can now classify the core classes
for each degree 0 ≤ r ≤ 5p− 5.

• We first do this for the case p ≤ r ≤ 2p − 1, in which we have the fol-
lowing four categories;
1) Self-titled partitions λ where
i) λ1 − λ3 < p− 2,
ii) λ1 − λ3 > p− 2,
iii) λ1 − λ3 = p− 2.

2) A 3-set where λ1 − λ2 ≥ p and λ1 ≤ 2p− 3
(λ1, λ2, λ3)
(λ2 + p− 1, λ1 − p+ 1, λ3)
(λ3 + p− 2, λ1 − p+ 1, λ2 + 1)

3) A 2-set where λ1 − λ2 ≥ p, λ1 + p > t and λ1 − p < p− 1
(λ1, λ2, λ3)
(λ2 + p− 1, λ1 − p+ 1, λ3)

This is r = 2p− 2 with λ = (r, 0, 0) and r = 2p− 1 with λ = (r − 1, 1, 0).

4) A 2-set where λ1 − λ2 ≥ p, λ1 + p > t and λ1 − p = p− 1
(λ1, λ2, λ3)
(λ1 − p, λ1 − p, 1)

This is r = 2p− 1 with λ = (r, 0, 0).

• For 2p ≤ r ≤ 3p − 1 then the above categories form new core classes as
follows;
1) A 3-set becomes a 6-set consisting of the core class
(λ1 + p, λ2, λ3)
(λ2 + 2p− 1, λ1 − p+ 1, λ3)
(λ3 + 2p− 2, λ1 − p+ 1, λ2 + 1)
(λ1, λ2 + p, λ3)
(λ1, λ3 + p− 1, λ2 + 1)
(λ2 + p− 1, λ3 + p− 1, λ1 − p+ 2)
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2) The self-titled partition where λ1 − λ3 < p − 2 becomes a 3-set consisting
of the new core class
(λ1 + p, λ2, λ3)
(λ2 + p− 1, λ1 + 1, λ3)
(λ3 + p− 2, λ1 + 1, λ2 + 1)

3) The self-titled partition where λ1 − λ3 > p − 2 becomes a 2-set consist-
ing of the new core class
(λ1 + p, λ2, λ3)
(λ1, λ3 + p− 1, λ2 + 1)

4) The self-titled where λ1 − λ3 = p − 2 becomes a 2-set consisting of the
new core class
(λ1 + p, λ2, λ3)
(λ2 + p− 1, λ1 + 1, λ3)

5) A 2-set where λ1 − p < p − 1 becomes a 3-set consisting of the new core
class
(λ2 + 2p− 1, λ1 − p+ 1, λ3)
(λ1, λ2 + p, λ3)
(λ3 + 2p− 2, λ1 − p+ 1, λ2 + 1)

6) A 2-set where λ1 − p = p − 1 becomes a 3-set consisting of the new core
class
(λ1, λ2 + p, λ3)
(λ1, p− 1, 1)
(λ1, p, 1)

7) We have new self-titled partitions λ where
i) λ1 − λ3 < p− 2,
ii) λ1 − λ3 > p− 2,
iii) λ1 − λ3 = p− 2.

• For 3p ≤ r ≤ 4p − 1 then the above categories form new core classes as
follows;
1) The 6-set from the 3-set becomes a 7-set consisting of the new core class
(λ1 + p, λ2 + p, λ3)
(λ1 + p, λ3 + p− 1, λ2 + 1)
(λ2 + 2p− 1, λ1 + 1, λ3)
(λ2 + 2p− 1, λ2 + p− 1, λ1 − p+ 2)
(λ3 + 2p− 2, λ1 + 1, λ2 + 1)
(λ3 + 2p− 2, λ2 + p, λ1 − p+ 2)
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(λ1, λ2 + p, λ3 + p)

2) The 3-set from the self-titled where λ1 − λ2 < p − 2 becomes a 6-set con-
sisting of the new core class
(λ1 + 2p, λ2, λ3)
(λ2 + 2p− 1, λ1 + 1, λ3)
(λ3 + 2p− 2, λ1 + 1, λ2 + 1)
(λ1 + p, λ2 + p, λ3)
(λ1 + p, λ3 + p− 1, λ2 + 1)
(λ2 + p− 1, λ2 + p− 1, λ1 + 2)

3) The 2-set from the self titled where λ1 − λ3 > p − 2 becomes a 3-set
consisting of the new core class
(λ1 + p, λ2 + p, λ3)
(λ1 + p, λ3 + p− 1, λ2 + 1)
(λ3 + 2p− 2, λ1 + 1, λ2 + 1)

4) The 2-set from the self titled where λ1 − λ3 = p − 2 becomes a 3-set
consisting of the new core class
(λ2 + 2p− 1, λ1 + 1, λ3)
(λ1 + p, λ2 + p, λ3)
(λ3 + 2p− 2, λ1 + 1, λ2 + 1)

5) A 3-set from a 2-set where λ1 − p < p − 1 becomes a 2-set consisting
of the new core class
(λ2 + 2p− 1, λ1 + 1, λ3)
(λ3 + 2p− 2, λ2 + p, λ1 − p+ 2)

6) A 3-set from a 2-set where λ1 − p = p − 1 becomes a 2-set consisting
of the new core class
(λ1, λ1, 1)
(λ1, λ2 + p, λ3 + p)

7i) A new self-titled where λ1 − λ3 < p − 2 becomes a 3-set consisting of
the new core class
(λ1 + p, λ2, λ3)
(λ2 + p− 1, λ1 + 1, λ3)
(λ3 + p− 2, λ1 + 1, λ2 + 1)

7ii) A new self-titled where 2p−2 > λ1−λ3 > p−2 becomes a 2-set consisting
of the new core class
(λ1 + p, λ2, λ3)
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(λ1, λ3 + p− 1, λ2 + 1)

7iii) A new self-titled where λ1 − λ3 = p − 2 becomes a 2-set consisting of
the new core class
(λ1 + p, λ2, λ3)
(λ2 + p− 1, λ1 + 1, λ3)

8) We have new self-titled partitions λ where
i) λ1 − λ3 > p− 2
ii) λ1 − λ3 = p− 2

• For 4p ≤ r ≤ 5p − 5 then the above categories form new core classes as
follows;
1) The 7-set from the 6-set from the 3-set becomes a 6-set consisting of the
new core class;
(λ1 + p, λ2 + 2p, λ3)
(λ1 + p, λ3 + 2p− 1, λ2 + 1)
(λ1 + p, λ2 + p, λ3 + p)
(λ2 + 2p− 1, λ3 + 2p− 1, λ1 − p+ 2)
(λ2 + 2p− 1, λ1 + 1, λ3 + p)
(λ3 + 2p− 2, λ1 + 1, λ2 + p1)

2) The 6-set from the 3-set from the self-titled where λ1 − λ3 < p − 2 be-
comes a 7-set consisting of the new core class;
(λ1 + 2p, λ2 + p, λ3)
(λ1 + 2p, λ3 + p− 1, λ2 + 1)
(λ2 + 2p− 1, λ1 + p+ 1, λ3)
(λ2 + 2p− 1, λ3 + p− 1, λ1 + 2)
(λ3 + 2p− 2, λ1 + p+ 1, λ2 + 1)
(λ3 + 2p− 2, λ2 + p, λ1 + 2)
(λ1 + p, λ2 + p, λ3 + p)

3) The 3-set from the 2-set from the self-titled where λ1 − λ3 > p − 2 be-
comes a 2-set consisting of the new core class;
(λ1 + p, λ3 + 2p− 1, λ2 + 1)
(λ1 + p, λ2 + p, λ3 + p)

4) The 3-set from the 2-set from the self-titled where λ1 − λ3 = p − 2 be-
comes a 2-set consisting of the new core class;
(λ2 + 2p− 1, λ1 + p+ 1, λ3)
(λ1 + p, λ2 + p, λ3 + p)
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5) and 6) are not important as they are the cases when r = 5p − 2, 5p − 1
which is out of the range we are considering.

7i) A 3-set from a new self-titled where λ1 − λ3 < p − 2 becomes a 6-set
consisting of the new core class;
(λ1 + 2p, λ2, λ3)
(λ2 + 2p− 1, λ1 + 1, λ3)
(λ3 + 2p− 2, λ1 + 1, λ2 + 1)
(λ1 + p, λ2 + p, λ3)
(λ1 + p, λ3 + p− 1, λ2 + 1)
(λ2 + p− 1, λ2 + p− 1, λ1 + 2)

7ii) A 2-set from a new self-titled where λ1 − λ3 = p − 2 becomes a 3-set
consisting of the new core class;
(λ2 + 2p− 1, λ1 + 1, λ3)
(λ1 + p, λ2 + p, λ3)
(λ1 + p, λ3 + p− 1, λ2 + 1)

7iii) A 2-set from a new self-titled where 2p− 2 > λ1 − λ3 > p− 2 becomes a
3-set consisting of the new core class;
(λ1 + p, λ2 + p, λ3)
(λ1 + p, λ3 + p− 1, λ2 + 1)
(λ3 + 2p− 2, λ1 + 1, λ2 + 1)

8i) A new self-titled where 2p − 2λ1 − λ3 > p − 2 becomes a 2-set consist-
ing of the new core class;
(λ1 + p, λ2, λ3)
(λ1, λ3 + p− 1, λ2 + 1)

8ii) A new self-titled where λ1 − λ3 = p − 2 becomes a 2-set consisting of
the new core class;
(λ1 + p, λ2, λ3)
(λ2 + p− 1, λ1 + 1, λ3)

9) We have new self-titled partitions λ where λ1 − λ3 > 2p− 2.

EXAMPLE 4.7.1 To illustrate this we shall now give the results of the core
classes for p = 5 and for all 0 ≤ r ≤ 5p − 5. Each degree will be shown
separately, along with each core class within that degree. The p-core of each
core class will be given at the top of each core class, with self-titled partitions
being marked ST.
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• 0 ≤ r ≤ p− 1

deg 0
ST

0,0,0

deg 1
ST

1,0,0

deg 2
ST ST

2,0,0 1,1,0

deg 3
ST ST ST

3,0,0 2,1,0 1,1,1

deg 4
ST ST ST ST

4,0,0 3,1,0 2,2,0 2,1,1

• p ≤ r ≤ 2p− 1

deg 5
Ø ST ST

5,0,0 3,2,0 2,2,1
4,1,0
3,1,1

deg 6
x ST ST ST ST

6,0,0 5,1,0 4,1,1 3,3,0 2,2,2
4,2,0
3,2,1

deg 7

xx xx ST ST
7,0,0 6,1,0 5,1,1 4,2,1
4,3,0 5,2,0
3,3,1 3,2,2

deg 8

xxx xxx
ST xx

x

ST
8,0,0 7,1,0 6,2,0 6,1,1 4,3,1
4,4,0 5,3,0 5,2,1

3,3,2 4,2,2

deg 9

xxxx xxxx xxxx xx
xx

ST ST
9,0,0 8,1,0 7,2,0 7,1,1 6,2,1 5,2,2
4,4,1 5,4,0 6,3,0 5,3,1

3,3,3 4,3,2
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• 2p ≤ r ≤ 3p− 1

deg 10

Ø xxxxx
ST xxxxx

ST ST
10,0,0 8,2,0 7,3,0 7,2,1 6,2,2 5,3,2
9,1,0 6,4,0 6,3,1
8,1,1 4,3,3
5,5,0
5,4,1
4,4,2

deg 11

x xxxxxx xx
xxxx

xxxxxx
ST xxxxxx

11,0,0 10,1,0 9,1,1 8,3,0 7,3,1 7,2,2
9,2,0 5,4,2 5,5,1 7,4,0 6,3,2
8,2,1 5,3,3
6,5,0
6,4,1
4,4,3

deg 12

xx xx xx
xxxxx

xxxxxxx

ST ST ST
12,0,0 11,1,0 10,1,1 9,2,1 8,4,0 7,3,2 6,3,3
9,3,0 10,2,0 5,5,2 6,5,1
8,3,1 8,2,2
7,5,0 6,6,0
7,4,1 6,4,2
4,4,4 5,4,3

deg 13

xxx xxxxxxxx xx
x

xxx xxxxxxxx

ST
12,1,0 11,2,0 11,1,1 9,4,0 9,3,1 7,3,3
10,3,0 6,4,3 10,2,1 8,5,0 7,5,1
8,3,2 9,2,2 8,4,1
7,6,0 6,6,1
7,4,2 6,5,2
5,4,4 5,5,3
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deg 14

xxxx xx
xx

xxxxxxxxx
xx xx xxxxxxxxx

xxxx

12,2,0 12,1,1 11,2,1 10,4,0 10,2,2 9,5,0
11,3,0 10,3,1 6,5,3 8,6,0 6,6,2 9,4,1
8,3,3 9,3,2 8,4,2 8,5,1
7,7,0 7,6,1
7,4,3 7,5,2
6,4,4 5,5,4

• 3p ≤ r ≤ 4p− 1

deg 15

xxxxxxxxxx xxxxx
xxxxx xxxxxxxxxx

Ø xxxxxxxxxx

ST
12,3,0 12,2,1 11,4,0 11,2,2 10,5,0 10,3,2 9,5,1
7,4,4 11,3,1 8,7,0 6,6,3 10,4,1 7,6,2

9,3,3 8,4,3 9,6,0
7,7,1 9,4,2
7,5,3 8,6,1
6,5,4 8,5,2

5,5,5

deg 16

xxxxxx xxxxxxxxxxx
xxxxxx

x xxxxxx xx
xxxx

12,4,0 12,3,1 12,2,2 11,5,0 10,6,0 10,5,1
8,8,0 7,5,4 11,3,2 11,4,1 10,4,2 9,6,1
8,4,4 10,3,3 9,7,0 9,5,2

7,7,2 9,4,3
7,6,3 8,7,1
6,6,4 8,5,3

6,5,5
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deg 17

xx xxxxxxxxxxxx
xx xxxxxxx

xxxxxxxxxxxx
xx
xxxxx

12,5,0 12,3,2 11,6,0 11,5,1 11,3,3 10,6,1
12,4,1 7,6,4 11,4,2 9,7,1 7,7,3 10,5,2
9,8,0 10,7,0 9,5,3 9,6,2
9,4,4 10,4,3
8,8,1 8,7,2
8,5,4 8,6,3
7,5,5 6,6,5

deg 18

xxx xxxxxxxx
xxxxxxxxxxxxx

xxxxxxxx xx
x

ST xxx

12,6,0 12,5,1 12,3,3 11,7,0 11,6,1 10,6,2 9,9,0
12,4,2 9,8,1 7,7,4 11,4,3 11,5,2 8,5,5
10,8,0 9,5,4 8,7,3 10,7,1
10,4,4 10,5,3
8,8,2 9,7,2
8,6,4 9,6,3
7,6,5 6,6,6

deg 19

xxxx xx
xx

xxxxxxxxx
xxxxxxxxx

xxxx xxxx

12,7,0 12,6,1 11,7,1 11,6,2 10,9,0 9,9,1
12,4,3 12,5,2 11,5,3 10,7,2 8,6,5 9,5,5
11,8,0 10,8,1 9,7,3 10,6,3
11,4,4 10,5,4
8,8,3 9,8,2
8,7,4 9,6,4
7,7,5 7,6,6
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• 4p ≤ r ≤ 5p− 5

deg 20

xxxxxxxxxx xxxxx
xxxxxxxxxx

xxxxx xxxxxxxxxx

Ø
12,8,0 12,7,1 12,6,2 11,9,0 11,7,2 10,10,0
12,4,4 12,5,3 10,8,2 8,7,5 11,6,3 10,9,1
8,8,4 11,8,1 10,6,4 10,7,3 10,5,5

11,5,4 9,9,2
9,8,3 9,6,5
9,7,4 8,6,6
7,7,6

4.8 Tilting Modules

AIM: We have clarified that to prove Theorem 4.1.3 it is necessary to find all
tilting comodules of A(π, r) for π a saturated set, which we do by comparing
their characters with those of the truncated modules Tr λE, whose coefficient
spaces sum to form D3,p(r). These truncated modules are made up of tensor
products of the modules S̄λiE, some of which are tilting, and some of which
aren’t. We therefore now study these modules, first stating when they are and
are not tilting and then describing them just as we did for the n = 2 case.
We also describe the coalgebras D3,p(r) and give an example when p = 3 and
r = 3. From 4.8.8-4.8.15 we then use the information on the S̄λiE to prove
which of the truncated modules are tilting and which are not. This will then
give us the tilting truncated modules we need to work with, to find the tilting
comodules of A(π, r).

THEOREM 4.8.1 For n = 3 and all primes p the simple modules S̄rE are
tilting for 0 ≤ r ≤ p− 1 and 2p− 2 ≤ r ≤ 3p− 3. Analogously we have that
the S̄rE are not tilting for p ≤ r ≤ 2p− 3.

Proof. Firstly, take the range 0 ≤ r ≤ p − 1, then S̄rE = SrE = ∇(r, 0, 0) =
L(r, 0, 0) = ∆(r, 0, 0) and thus S̄rE = T (r, 0, 0). Similarly for the range 2p −
2 ≤ r ≤ 3p − 3 we can use the multiplication map as described in Theorem
3.5.3

S̄rE ⊗ S̄t−rE → L

where t = n(p− 1) and L = det⊗p−1. This then induces the isomorphism

S̄t−rE ∼= (S̄rE)∗ ⊗ L

We know S̄rE to be tilting and thus (S̄rE)∗ is tilting, moreover we have that
L is tilting and hence S̄t−rE is tilting.
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If we now look at the range p ≤ r ≤ 2p−3 and consider the specific case p = 3
and r = p then S̄rE = L(2, 1, 0). This is tilting if L(2, 1, 0) = ∇(2, 1, 0) which,
restricting to SL3, would imply that L(1, 1) = ∇(1, 1). However ∇(1, 1) is 8
dimensional, whilst we can see that L(1, 1) is 7 dimensional from the following
short exact sequence:

0→ L(1, 0)F ↪→ ∇(3, 0)→ L(1, 1)→ 0

and thus it is not possible for L(2, 1, 0) to equal ∇(2, 1, 0) and hence S̄pE is
not tilting for p = 3.
Let us now prove the general result. Well for the range p ≤ r ≤ 2p − 3
then for GL, S̄rE = L(p − 1, a, 0) where 1 ≤ a ≤ p − 2. Then we have
L(p− 1, a, 0)|SL3(k) = L(p− 1− a, a) = L(m,n) where 1 ≤ m,n ≤ p− 2. Now
consider the following picture [14, Section 5.2].

(−1,−1) (p− 1,−1)

(−1, p− 1) (p− 1, p− 1)

(0, 0)

λ

µ

For any weight in the bottom alcove, labeled λ, we have∇(λ) = L(λ). However
for weights in the top alcove, labeled µ, we have the short exact sequence

0→ L(µ)→ ∇(µ)→ L(λ)→ 0.

So, ∇(µ) 6= L(µ) and we see that the non tilting modules for GL3 are those of
the form L(m,n, 0) where 1 ≤ m,n ≤ p− 2, exactly the range we have above
and hence we know that S̄rE is not tilting for p ≤ r ≤ 2p− 3.

We now give a detailed description of the S̄rE whose tensor products form the
truncated modules.
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DESCRIPTION 4.8.2 Description of the S̄r(E)

i) For 0 ≤ r ≤ p− 1 we have S̄rE = SrE/{0} = SrE.
ii) We have SrE = k-sp{ea1eb2ec3 | a+ b+ c = r} and let

Ir = k-sp{ea1eb2ec3 | a, b or c is ≥ p}.

Then for p ≤ r ≤ 2p− 2 we have

S̄rE = SrE/Ir

= k-sp{ea1eb2ec3 + Ir | a+ b+ c = r, a, b, c ≤ p− 1}
= L(p− 1, r − (p− 1), 0)

iii) For 2p− 2 ≤ r ≤ t, with SrE and Ir as above then we have

S̄rE = L(p− 1, p− 1, r − (2p− 2)).

Bringing this together we have that;

S̄(E) = S̄0E⊕S̄1E⊕. . .⊕S̄p−1E⊕S̄pE⊕. . .⊕S̄2p−2E⊕S̄2p−1E⊕. . .⊕S̄3p−3E.

So therefore

S̄(E) =L(0, 0, 0)⊕ L(1, 0, 0)⊕ L(2, 0, 0)⊕ . . .⊕ L(p− 1, 0, 0)⊕
L(p− 1, 1, 0)⊕ L(p− 1, 2, 0)⊕ L(p− 1, 3, 0)⊕ . . .⊕
L(p− 1, p− 1, 0)⊕ L(p− 1, p− 1, 1)⊕ L(p− 1, p− 1, 2)

⊕ . . .⊕ L(p− 1, p− 1, p− 1),

where the modules in the range L(p − 1, 1, 0), . . . , L(p − 1, p − 2, 0) are not
tilting as L(p− 1, a, 0) 6= ∇(p− 1, a, 0) for 1 ≤ a ≤ p− 2.

EXAMPLE 4.8.3 When n = 3 and p = 3 then we have

S̄(E) = S̄0E ⊕ S̄1E ⊕ S̄2E ⊕ S̄3E ⊕ S̄4E ⊕ S̄5E ⊕ S̄6E
= L(0, 0, 0)⊕ L(1, 0, 0)⊕ L(2, 0, 0)⊕ L(2, 1, 0)⊕ L(2, 2, 0)
⊕L(2, 2, 1)⊕ L(2, 2, 2)

with L(2, 1, 0) the only non-tilting summand.

We now give a description of the truncated modules and finally the Doty
Coalgebras themselves.
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EXAMPLE 4.8.5 With n = 3 and p = 3 we have;

D3,3(0) = cf (S0E ⊗ S0E ⊗ S0E)
D3,3(1) = cf (S1E ⊗ S0E ⊗ S0E)
D3,3(2) = cf (S2E ⊗ S0E ⊗ S0E) + cf (S1E ⊗ S1E ⊗ S0E)
D3,3(3) = cf (L(2, 1, 0)⊗ S0E ⊗ S0E) + cf (S2E ⊗ S1E ⊗ S0E)

+cf (S1E ⊗ S1E ⊗ S1E)

D3,3(4) = cf (L(2, 2, 0)⊗ S0E ⊗ S0E) + cf (L(2, 1, 0)⊗ S1E ⊗ S0E)
+cf (S2E ⊗ S2E ⊗ S0E) + cf (S2E ⊗ S1E ⊗ S1E)

D3,3(5) = cf (L(2, 2, 1)⊗ S0E ⊗ S0E) + cf (L(2, 2, 0)⊗ S1E ⊗ S0E)
+cf (L(2, 1, 0)⊗ S2E ⊗ S0E) + cf (L(2, 1, 0)⊗ S1E ⊗ S1E)
+cf (S2E ⊗ S2E ⊗ S1E)

D3,3(6) = cf (L(2, 2, 2)⊗ S0E ⊗ S0E) + cf (L(2, 2, 1)⊗ S1E ⊗ S0E)
+cf (L(2, 2, 0)⊗ S2E ⊗ S0E) + cf (L(2, 2, 0)⊗ S1E ⊗ S1E)
+cf (L(2, 1, 0)⊗ L(2, 1, 0)⊗ S0E) + cf (L(2, 1, 0)⊗ S2E ⊗ S1E)
+cf (S2E ⊗ S2E ⊗ S2E)

REMARK 4.8.6 We now understand when the S̄rE are and are not tilting
and how the coefficient spaces of these modules sit within the D3,p(r). It is now
necessary to prove which of these truncated modules (whose coefficient spaces
form the D3,p(r)) are tilting, so we know which characters to calculate in the
hope of equating them with the characters of the tilting modules of A(π, r).
The following theorems bring together a number of results which show which
of the truncated modules are tilting.

We first consider the following remark which is necessary to prove this collec-
tion of theorems.

REMARK 4.8.7 [22, Section 5.1, Lemma 5.3.1] For S a finite dimensional
algebra with blocks B1, . . . , Bn, and X a finitely generated S-module, then
X = X1⊕X2⊕ . . .⊕Xn where each Xi belongs to block Bi. Then in the case
where S = S(n, r), each core class is a union of blocks so, with the core classes
Λ1, . . .Λm we get the decomposition X = Y1⊕ . . .⊕ Ym where each Yi belongs
to the core class Λi.

We now begin our theorems, first looking at a specific truncated module for
all p.

THEOREM 4.8.8

L(p− 1, 1, 0)⊗ Sp−2E

is tilting for all primes p.
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Proof.
i) For p = 2, L(p − 1, 1, 0) ⊗ Sp−2E = L(1, 1, 0) which we know to be tilting
by Theorem 4.8.1.
ii) Now let p ≥ 3. Consider ∆(p − 1, 1, 0) ⊗ Sp−2E then we have the short
exact sequence

0→ L(p− 2, 1, 1)→ ∆(p− 1, 1, 0)→ L(p− 1, 1, 0)→ 0

giving the short exact sequence

0→ L(p− 2, 1, 1)⊗ Sp−2E → ∆(p− 1, 1, 0)⊗ Sp−2E

→ L(p− 1, 1, 0)⊗ Sp−2E → 0.

We claim this splits. By using Pieri’s Formula [21, Chapter 1, Section 5], we
have

ch ∆(p− 1, 1, 0)⊗ Sp−2E = sp−1,1 · sp−2

= s2p−3,1 + s2p−4,2 + s2p−4,1,1 + s2p−5,3 + s2p−5,2,1

+ . . .+ s2p−p,p−2 + s2p−p,p−3,1 + s2p−(p+1),p−1

+s2p−(p+1),p−2,1.
We also have

ch L(p− 2, 1, 1)⊗ Sp−2E = sp−2,1,1 · sp−2

= s2p−4,1,1 + s2p−5,2,1 + s2p−6,3,1 + . . .
+s2p−(p+1),p−2,1.

Hence

ch L(p− 1, 1, 0)⊗ Sp−2E = (sp−1,1 − sp−2,1,1)sp−2

= s2p−3,1 + s2p−4,2 + s2p−5,3 + . . .+ sp,p−2 + sp−1,p−1.

Then using Remark 4.8.7 we can write ∆(p− 1, 1, 0)⊗Sp−2E = M ⊕N where
all composition factors of M have p-core from the set

Mcore = {(p−4, 1, 1), (p−5, 2, 1), (p−6, 2, 1), . . . , (p−ξ, p−ξ, 1), (p−1, p−2, 1)}

i.e. those with last entry 1, and all composition factors of N do not.
Then

chM = s2p−4,1,1 + s2p−5,2,1 + s2p−6,3,1 + . . .+ sp−1,p−2,1

= ch L(p− 2, 1, 1)⊗ Sp−2E

We also have that
L(p− 2, 1, 1)⊗ Sp−2E ↪→ M
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by the definition of M . Hence by characters, M = L(p − 2, 1, 1) ⊗ Sp−2E.
Thus

N ∼= (∆(p− 1, 1, 0)⊗ Sp−2E)/(L(p− 2, 1, 1)⊗ Sp−2E)
∼= L(p− 1, 1, 0)⊗ Sp−2E.

So L(p − 1, 1, 0) ⊗ Sp−2E is isomorphic to a summand of a module with a
∆-filtration, thus it has a ∆-filtration [19, Page 211].
Run the same argument with ∇(p − 1, 1, 0), then ∇(p − 1, 1, 0) ⊗ Sp−2E =
M1 ⊕N1 where all composition factors of M1 have p-core from the set Mcore
above.
We now have

0→ L(p− 1, 1, 0)⊗ Sp−2E
f→ ∇(p− 1, 1, 0)⊗ Sp−2E

g→ L(p− 2, 1, 1)⊗ Sp−2E → 0

and Ker g = N1 = L(p− 1, 1, 0)⊗ Sp−2E hence N1 ⊆ L(p− 1, 1, 0)⊗ Sp−2E.
Thus L(p−1, 1, 0)⊗Sp−2E is a direct summand of the module ∇(p−1, 1, 0)⊗
Sp−2E which has a ∇-filtration, thus L(p− 1, 1, 0)⊗ Sp−2E has a ∇-filtration
and so has a good filtration. Hence L(p− 1, 1, 0)⊗ Sp−2E is tilting.

We then move on to another specific truncated module for all p.

THEOREM 4.8.9 The module

L(p− 1, 2, 0)⊗ Sp−2E

is tilting for all p ≥ 3.

Proof. The structure of this proof follows that of the previous theorem.
i) When p = 3, L(p−1, 2, 0)⊗Sp−2E = L(2, 2, 0)⊗S1E, and by Theorem 4.8.1
we know both L(2, 2, 0) and S1E are tilting, and hence the tensor product is
also tilting.
ii) Now let p ≥ 5. Consider ∆(p − 1, 2, 0) ⊗ Sp−2E then we have an exact
sequence

0→ L(p− 2, 2, 1)→ ∆(p− 1, 2, 0)→ L(p− 1, 2, 0)→ 0

giving an exact sequence

0→ L(p− 2, 2, 1)⊗ Sp−2E → ∆(p− 1, 2, 0)⊗ Sp−2E

→ L(p− 1, 2, 0)⊗ Sp−2E → 0.

We claim this splits. We have
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ch ∆(p− 1, 2, 0)⊗ Sp−2E = sp−1,2 · sp−2

= s2p−3,2 + s2p−4,3 + s2p−4,2,1 + s2p−5,4 + s2p−5,3,1

+s2p−5,2,2 + . . .+ s2p−p,p−1 + s2p−p,p−2,1

+s2p−p,p−3,2 + s2p−(p+1),p−1,1 + sp−1,p−2,2

Moreover, we have

ch L(p− 2, 2, 1)⊗ Sp−2E = sp−2,2,1 · sp−2

= s2p−4,2,1 + s2p−5,3,1 + s2p−5,2,2 + . . .+ s2p−p,p−2,1

+s2p−p,p−3,2 + sp−1,p−2,2.
Hence

chL(p− 1, 2, 0)⊗ Sp−2E = (sp−1,2 − sp−2,2,1)sp−2

= s2p−3,2 + s2p−4,3 + s2p−5,4 + . . .+ sp,p−1 + sp−1,p−1,1.

Now, using Remark 4.8.7, write ∆(p − 1, 2, 0) ⊗ Sp−2E = M ⊕ N where all
composition factors of M have p-core of the form (α, β, γ) where γ ≥ 1 and
all composition factors of N do not, so have p-cores of the form (a, b, 0).
Then

chM = s2p−4,2,1 + s2p−5,3,1 + s2p−5,2,2 + . . .+ s2p−p,p−2,1 + s2p−p,p−3,2 + sp−1,p−2,2

= chL(p− 2, 2, 1)⊗ Sp−2E.

We also have that L(p− 2, 2, 1)⊗Sp−2E ↪→ M by the definition of M . Hence
M = L(p− 2, 2, 1)⊗ Sp−2E. Thus

N ∼= (∆(p− 1, 2, 0)⊗ Sp−2E)/(L(p− 2, 2, 1)⊗ Sp−2E)
∼= L(p− 1, 2, 0)⊗ Sp−2E.

So L(p − 1, 2, 0) ⊗ Sp−2E is isomorphic to a summand of a module with a
∆-filtration, thus it has a ∆-filtration.
Run the same argument with ∇(p− 1, 2, 0), then

∇(p− 1, 2, 0)⊗ Sp−2E = M1 ⊕N1

where all composition factors of M1 have p-core of the form (α1, β1, γ1) where
γ1 ≥ 1. We now have

0→ L(p−1, 2, 0)⊗Sp−2E
f→ ∇(p−1, 2, 0)⊗Sp−2E

g→ L(p−2, 2, 1)⊗Sp−2E → 0

and Ker g = N1 = L(p− 1, 2, 0)⊗ Sp−2E hence N1 ⊆ L(p− 1, 2, 0)⊗ Sp−2E.
Thus L(p−1, 2, 0)⊗Sp−2E is a direct summand of the module ∇(p−1, 2, 0)⊗
Sp−2E which has a ∇-filtration, thus L(p− 1, 2, 0)⊗ Sp−2E has a ∇-filtration
and so has a good filtration. Hence L(p− 1, 2, 0)⊗ Sp−2E is tilting.

The two previous theorems are then brought together to give a more general
case.
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THEOREM 4.8.10 The module

L(p− 1,m, 0)⊗ Sp−2E

is tilting for 1 ≤ m ≤ p− 2 and p ≥ m.

Proof. This again follows the same method as the previous two theorems.
i) Let p = m + 1, then L(p − 1,m, 0) ⊗ Sp−2E = L(m,m, 0) ⊗ Sm−1E which
we know to be tilting by Theorem 4.8.1.
ii) Now let p ≥ m. Consider ∆(p− 1,m, 0)⊗ Sp−2E then we have

0→ L(p− 2,m, 1)→ ∆(p− 1,m, 0)→ L(p− 1,m, 0)→ 0

giving

0→ L(p− 2,m, 1)⊗ Sp−2E → ∆(p− 1,m, 0)⊗ Sp−2E

→ L(p− 1,m, 0)⊗ Sp−2E → 0.

We claim this splits, as using Pieri’s Formula we have;
ch ∆(p− 1,m, 0)⊗ Sp−2E = sp−1,m · sp−2

=s2p−3,m + s2p−4,m+1 + s2p−4,m,1 + s2p−5,m+2 + s2p−5,m+1,1 + s2p−5,m,2 + . . .

+ s2p−(3+m),2m + s2p−(3+m),2m−1,1 + s2p−(3+m),2m−2,2 + . . .

+ s2p−(3+m),m,m + s2p−(3+m+1),2m+1 + s2p−(3+m+1),2m,1 + s2p−(3+m+1),2m−1,2

+ . . .+ s2p−(3+m+1),m+1,m + . . .+ s2p−(p+2−m),p−1 + s2p−(p+2−m),p−2,1

+ s2p−(p+2−m),p−3,2 + . . .+ s2p−(p+2−m),p−(1+m),m + s2p−(p+2−m+1),p−1,1

+ s2p−(p+2−m+1),p−2,2 + . . .+ s2p−(p+2−m+1),p−m,m + s2p−(p+2−m+1),p−2,2 + . . .

+ s2p−(p+2−m+1),p−m,m + s2p−(p+2−m+2),p−1,2 + s2p−(p+2−m+2),p−2,3 + . . .

+ s2p−(p+2−m+2),p−(m−1),m + . . .+ s2p−(p+1),p−1,m−1 + s2p−(p+1),p−2,m

Moreover we have
chL(p− 2,m, 1)⊗ Sp−2E

=s2p−4,m,1 + s2p−5,m+1,1 + s2p−5,m,2 + . . .+ s2p−(3+m),2m−1,1 + s2p−(3+m),2m−2,2

+ . . .+ s2p−(3+m),m,m + s2p−(3+m+1),2m,1 + s2p−(3+m+1),2m−1,2 + . . .

+ s2p−(3+m+1),m+1,m + . . .+ s2p−(p+2−m),p−2,1 + s2p−(p+2−m),p−3,2 + . . .

+ s2p−(p+2−m),p−(1+m),m + s2p−(p+2−m+1),p−2,2 + . . .+ s2p−(p+2−m+1),p−m,m

+ s2p−(p+2−m+2),p−2,3 + . . .+ s2p−(p+2−m+2),p−(m−1),m + . . .+ s2p−(p+1),p−2,m.
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Hence

chL(p− 1,m, 0)⊗ Sp−2E =s2p−3,m + s2p−4,m+1 + s2p−5,m+2 + . . .+ s2p−(3+m),2m

+ s2p−(3+m+1),2m+1 + . . .+ s2p−(p+2−m),p−1

+ s2p−(p+2−m+1),p−1,1 + s2p−(p+2−m+2),p−1,2

+ . . .+ s2p−(p+1),p−1,m−1.

Now, using Remark 4.8.7, write ∆(p − 1,m, 0) ⊗ Sp−2E = M ⊕ N where all
composition factors of M have p-core of the form (α, β, γ) where γ ≥ 1 and
all composition factors of N do not, so have p-cores of the form (a, b, 0).
Then chM = chL(p− 2,m, 1)⊗ Sp−2E. We also have that

L(p− 2,m, 1)⊗ Sp−2E ↪→ M

by the definition of M . Hence M = L(p− 2,m, 1)⊗ Sp−2E. Thus

N ∼= (∆(p− 1,m, 0)⊗ Sp−2E)/(L(p− 2,m, 1)⊗ Sp−2E)
∼= L(p− 1,m, 0)⊗ Sp−2E.

So L(p − 1,m, 0) ⊗ Sp−2E is isomorphic to a summand of a module with a
∆-filtration, thus it has a ∆-filtration.
Run the same argument with ∇(p− 1,m, 0), then

∇(p− 1,m, 0)⊗ Sp−2E = M1 ⊕N1

where all composition factors of M1 have p-core of the form (α1, β1, γ1) where
γ1 ≥ 1.
We now have a short exact sequence

0→ L(p− 1,m, 0)⊗ Sp−2E
f→ ∇(p− 1,m, 0)⊗ Sp−2E

g→ L(p− 2,m, 1)⊗ Sp−2E → 0

and Ker g = N1 = L(p− 1,m, 0)⊗Sp−2E hence N1 ⊆ L(p− 1,m, 0)⊗Sp−2E.
Thus L(p−1,m, 0)⊗Sp−2E is a direct summand of the module∇(p−1,m, 0)⊗
Sp−2E which has a ∇-filtration, thus L(p− 1,m, 0)⊗Sp−2E has a ∇-filtration
and so has a good filtration. Hence L(p− 1,m, 0)⊗ Sp−2E is tilting.

The previous theorem is then generalised further.

THEOREM 4.8.11 The module

L(p− 1,m, 0)⊗ S̄aE

is tilting for 1 ≤ m ≤ p− 2 and p− 2 ≤ a ≤ p− 1 with p ≥ m.
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Proof. We have L(p−1,m, 0)⊗Sp−2E tilting, and as the tensor product of two
tilting modules is again tilting then we have that L(p−1,m, 0)⊗Sp−2E⊗S1E
is also tilting.
We also have that Sp−1E | Sp−2E ⊗ S1E thus implying L(p − 1,m, 0) ⊗
Sp−1E | L(p−1,m, 0)⊗Sp−2E⊗S1E and as the right hand side is tilting then
so is the left hand side.

The following well known Proposition and Corollary are then needed to give
the final two theorems on tilting truncated modules.

PROPOSITION 4.8.12 For V any finite dimensional G-module then

V | V ⊗ V ∗ ⊗ V

Proof. Define a G-homomorphism V ⊗ V ∗⊗ V π→ V such that π(u⊗α⊗ v) =
α(v)u for u, v ∈ V, α ∈ V ∗. We wish to find the G-map φ : V → V ⊗ V ∗⊗ V
such that π ◦ φ = id.
Well, we have V ⊗ V ∗ ∼= Endk(V ), and let v1, . . . , vn be a basis for V and
α1, . . . , αn a dual basis for V ∗, then I =

∑
vi ⊗ αi is an element in V ⊗ V ∗.

Let φ(v) = I⊗v, then (π ◦φ)(v) = π(
∑
vi⊗αi⊗v) =

∑
viαi(v) =

∑
λivi = v

with v = λ1v1 + . . .+ λnvn.
Hence π ◦ φ : V → V is id : V → V , and so V ⊗ V ∗ ⊗ V = Ker(π) ⊕ Im(φ)
where Im(φ) ∼= V ⇒ V | V ⊗ V ∗ ⊗ V .

COROLLARY 4.8.13 Using this proposition we also have that if M is a
tilting module and X ⊗M and Y ⊗M are tilting then X ⊗ Y ⊗M is also
tilting.

Proof. Since M is a direct summand of M⊗M∗⊗M we have that X⊗Y ⊗M
is a direct summand of

X ⊗ Y ⊗M ⊗M ⊗M∗ ∼= (X ⊗M)⊗ (Y ⊗M)⊗M∗.

Since X⊗M , Y ⊗M and M∗ are all tilting then so is (X⊗M)⊗(Y ⊗M)⊗M∗

and thus X ⊗ Y ⊗M is isomorphic to a direct summand of a tilting module
and hence is itself a tilting module.

THEOREM 4.8.14 The module

L(p− 1,m, 0)⊗ L(p− 1,m, 0)⊗ S̄aE

is tilting for 1 ≤ m ≤ p− 2 and p− 2 ≤ a ≤ p− 1 with p ≥ m.
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Proof. For V any G-module, V | V ⊗ V ⊗ V ∗, and hence S̄aE | S̄aE ⊗ S̄aE ⊗
(S̄aE)∗, and thus L(p− 1,m, 0)⊗L(p− 1,m, 0)⊗ S̄aE is a direct summand of

L(p− 1,m, 0)⊗ L(p− 1,m, 0)⊗ S̄aE ⊗ S̄aE ⊗ (S̄aE)∗.

We know L(p − 1,m, 0) ⊗ S̄aE is tilting from Theorem 4.3.8, thus the right
hand side is tilting and thus the left hand side is tilting.

THEOREM 4.8.15 L(p− 1,m′, 0)⊗ L(p− 1,m, 0)⊗ S̄aE is tilting for 1 ≤
m′,m ≤ p− 2 and p− 2 ≤ a ≤ p− 1 with p ≥ m.

Proof. S̄aE | S̄aE ⊗ S̄aE ⊗ (S̄aE)∗ ⇒ L(p − 1,m′, 0) ⊗ L(p − 1,m, 0) ⊗
S̄aE | L(p− 1,m′, 0)⊗L(p− 1,m, 0)⊗ S̄aE ⊗ S̄aE ⊗ (S̄aE)∗. We have L(p−
1,m′, 0)⊗ S̄aE tilting, and L(p− 1,m, 0)⊗ S̄aE tilting, so the right hand side
is tilting and thus the left hand side is tilting.

4.9 Decomposition Numbers

AIM: Although we have stated that the core classes will play a crucial role in
finding the necessary tilting modules, this is not all the information we need.
We now give a short section on decomposition numbers, explaining why they
are important and giving certain facts about them which we can use.

The previous section has given us a clear understanding of which of the trun-
cated modules Tr λE are tilting and thus we know which we can consider
calculating the character of. This is not the end of the story though. Suppose
we calculate the character of a certain truncated module and the leading term
in this character corresponds to the character of the highest weighted tilting
module T (t, 0, 0). Suppose moreover its character, when expressed as a sum of
Schur functions, contains multiplicities of many other weights of tilting mod-
ules whose highest weight is less than that of T (t, 0, 0). Without knowing the
∇-filtration multiplicities (T (t, 0, 0) : ∇(µ, 0, 0)) for µ < t we cannot be sure
this tilting module T (µ, 0, 0) is in fact a composition factor of the truncated
module in question, and thus do not know if cf (T (µ, 0, 0)) ⊆ D3,p(r). We
need to therefore gather together information on these decomposition num-
bers, and we do this now. There is unfortunately not a clear understanding
of these numbers for all values of n and p, but we do have the following facts,
which together will be enough for our research.

FACT 4.9.1 [5, Corollary 3.8] For r ≤ n and λ, µ ∈ Λ+(n, r) then

(T (λ) : ∇(µ)) = [∇(µ′) : L(λ)]

where µ′ is the transpose of µ. So for example (5, 3, 1)′ = (3, 2, 2, 1, 1).
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FACT 4.9.2 [22, Theorem 5.1.3] Let λ and µ be two partitions of r into n
parts.
Then (T (λ) : ∇(µ)) 6= 0 ⇒ λ and µ have the same p-core with µ ≤ λ.

We combine this information with our classification of core classes; only those
tilting modules whose partitions are in the same core class may be composition
factors of each other.

DEFINITIONS 4.9.3 [23, Sections 2 and 4] The Mullineux Bijection
The next fact uses the Mullineux Bijection so we do a little bit of background
work before defining this bijection.

DEFINITION 4.9.4 i) The edge of a partition was defined in 4.2.1. In
Mullineux’s paper, he also defines a p-edge which consists of p-segments, all
but at most one of which contains p nodes. The first p-segment comprises of
either the first p nodes of the edge of the diagram starting at the uppermost
right hand corner of the partition, or of the entire edge if its length is less than
p. The next p-segment is obtained similarly starting in the row below that
which contains the last node of the previous p-segment defined. This process
continues until the final row is reached.
ii) For a partition P , e(P ) denotes the number of points in the p-edge of P ,
and I(P ) denotes the partition (possibly empty) obtained by removing the
p-edge from P .

EXAMPLE 4.9.5 Let p = 5 and P = (9, 8, 8, 7, 6, 3, 3, 2, 1)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Then e(P ) = 16 and I(P ) = (7, 7, 6, 5, 3, 2, 1)

We now define a p-regular partition, with an example, which, combined with
the above information, will allow us to define the Mullineux Bijection.

DEFINITION 4.9.6 A partition µ is p-singular if for some i

µi+1 = µi+2 = . . . = µi+p > 0.

Otherwise, µ is p-regular.

EXAMPLE 4.9.7 The partition (6, 6, 5, 5, 5, 5, 1) is p-regular if and only if
p ≥ 5.
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DEFINITION 4.9.8 The Mullineux Bijection
Given a partition P , let I(P ) = P ′, then we can continue removing the p-edge
from P ′ to form I(P ′), and so on until we have the empty partition. Suppose
this takes α steps, then we have partitions P0, . . . , Pα where Pα = P, P0 =
∅, Pi−1 = I(Pi) for i = 1, 2, . . . , α.
Now set ai = e(Pi) and let ri be the number of rows of Pi. Suppose also that
P is p-regular, then so is each Pi ([23, Lemma 2.2]) and we define a sequence
(s1, . . . , sα) by the formula

si = ai − ri + εi

where εi = 0 if p divides ai and is 1 otherwise.

We now give an example of the Mullineux Bijection.

EXAMPLE 4.9.9 Let p = 5 and P = (3, 3, 2, 2, 1, 1) = Pα, then aα = 7
and rα = 6, as there are 7 nodes in the p-edge removed from P and they are
removed from 6 rows;

xx
xxxxxxxxxx

Then I(P ) = P ′ = Pα−1 = (2, 1, 1, 1) and so α−1 = 5 and rα−1 = 4, as there is
only one p-edge that can be removed from the 4 rows.

xx
xxx

After removing this p-edge we are left with the empty partition and so P0 =
I(P ′) = ∅ and therefore we know α = 2. We can then go about reforming the
new partition s from (s1, s2). We take s1 to start with, where s1 = a1−r1+ε1 =
5− 4 = 1 so we have to put the p = 5 nodes of the p-edge of P1 back in 1 row.
There is only one way of doing this;
xxxxx
This is then built on with s2 = a2 − r2 + ε2 = 7 − 6 + 1 = 2 so we must put
back the 7 nodes of the p-edge of P2 back in 2 rows, so that when we remove
them, following the p-edge, what remains is the above partition xxxxx. There
is only one way of doing this;

xxxxxxxxxxxx

We therefore know that Mull(P ) = Mull(3, 3, 2, 2, 1, 1) = (10, 2) or P̃ = (10, 2).

We now give another fact we shall use in the proof of Theorem 4.1.3, which
uses the Mullineux Bijection.

FACT 4.9.10 [2, Theorem 5.1] Let λ be some partition of r into n parts, and
denote the transpose of λ by λ′. We say λ is restricted if λi − λi+1 < p.
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Then the injective module I(λ) = T (Mull(λ′)) provided λ is restricted and
λ1 < (n− 1)(p− 1).

REMARK 4.9.11 If there exists a filtration 0 = V0 < V1 < V2 < . . . < Vm =
V with Vi/Vi−1

∼= ∇(λi) with 0 < i ≤ m then we often represent this by saying
V has filtration structure

∇(λm)

...

∇(λ1)

We follow this with an example of Fact 4.9.10.

EXAMPLE 4.9.12 Let p = 5, r = 12 and λ = (6, 4, 2) then λ is restricted
as;
i) λ1 − λ2 = 6− 4 = 2 < 5 = p and λ2 − λ3 = 4− 2 = 2 < 5 = p
ii) λ1 = 6 < 8 = (3− 1)(5− 1) = (n− 1)(p− 1)
Therefore I(6, 4, 2) = T (Mull((6, 4, 2)′)), so now we need to calculate
Mull((6, 4, 2)′). Well (6, 4, 2)′ = (3, 3, 2, 2, 1, 1) and from Example 4.9.9 we
know that Mull(3, 3, 2, 2, 1, 1) = (10, 2) and thus I(6, 4, 2) = T (10, 2).

So why does this help us in our work? Well I(λ) always has socle L(λ) and
we have that L(λ) ⊆ ∇(λ) ⊆ I(λ) and thus if I(λ) = T (Mull(λ′)) then
T (Mull(λ′)) also has socle L(λ), hence in constructing the filtration structure
for T (Mull(λ′)) we always know that∇(λ) is at the bottom. So in this example
we have that T (10, 2, 0) has filtration structure

∇(10, 2, 0)

...

∇(6, 4, 2)

If we then refer back to the core classes of r = 12 for p = 5, then (11, 1, 0) sits
at the top of the following core class;

11, 1, 0

10, 2, 0

8, 2, 2

6, 6, 0

6, 4, 2

5, 4, 3

Thus by this calculation, we know that ∇(5, 4, 3) is not in the filtration struc-
ture of T (10, 2, 0), but ∇(6, 4, 2) is.
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We now move onto another fact which we shall need in the proof of Theorem
4.1.3.

FACT 4.9.13 [10, 3.8][11, Section 6.3]
As stated previously, the full ∇-filtration multiplicities for (T (λ) : ∇(µ)) are
not known, however, for p = 2, 3 and 0 ≤ n ≤ 13 the results are known, and
are contained in James’ book ‘The Representation Theory of the Symmetric
Groups’. However the relevant numbers are given there as decomposition
numbers of the Specht modules, thus it is necessary to understand how we get
from one result to the other.
Let S = S(n, r) for n ≥ r and e = e2 ∈ S. Then eSe = kSym(r) and
we define the Schur functor f : mod(S) → mod(eSe) such that f(V ) = eV
where eV = {ev | v ∈ V }. So when we apply this Schur functor to a ∇(λ)
we get that f∇(λ) = Sλ the Specht module, and applied to some L(µ) then

fL(µ) = DMull(µ) where Dµ = hd Sµ [4, 4.4(5)].
Putting all this together, and using Fact 4.9.1 we get

(T (λ) : ∇(µ)) = [∇(µ′) : L(λ)]

= [f∇(µ′) : fL(λ)]

= [Sµ
′
: DMull(λ)]

Then we can refer to the tables of decomposition numbers given in James [17,
Appendix].

EXAMPLE 4.9.14 Let p = 3 and r = 6, and suppose we wish to know the
composition factors of the tilting module T (4, 1, 1). Well, from our Classifi-
cation of core classes, we have that (4, 1, 1) sits third highest in the following
core class;
(6, 0, 0)
(5, 1, 0)
(4, 1, 1)
(3, 3, 0)
(3, 2, 1)
(2, 2, 2)
Thus using Fact 4.9.2 we know that besides ∇(4, 1, 1), the only other possible
modules in the∇-filtration of T (4, 1, 1) are∇(3, 3, 0), ∇(3, 2, 1) and∇(2, 2, 2).
So we wish to find (T (4, 1, 1) : ∇(µ)) for µ ≤ (4, 1, 1).

(T (4, 1, 1) : ∇(µ)) = [∇(µ′) : L(4, 1, 1)]

= [f∇(µ′) : fL(4, 1, 1)]

= [Sµ
′
: DMull(4,1,1)]
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So let us calculate Mull(4, 1, 1), well P2 = (4, 1, 1), a2 = 5, r2 = 3, P1 =
(1, 0, 0), a1 = 1, r1 = 1 and P0 = ∅. So s1 = 1 − 1 + 1 = 1 giving the
partition consisting of one node, and s2 = 5 − 3 + 1 = 3 and so we need to
attach the 5 nodes to this single node over 3 rows. This is only possible by

reforming the partition (4, 1, 1). So we need to consider [Sµ
′

: DMull(4,1,1)]
and referring to James’ book we see that µ′ = (4, 1, 1), (3, 2, 1), (3, 1, 1, 1) and
thus µ = (3, 1, 1, 1), (3, 2, 1), (4, 1, 1). Therefore the only composition factors
of T (4, 1, 1) are ∇(4, 1, 1) as expected and also ∇(3, 2, 1).

We now have one final fact to give which will help us in finding those tilting
modules whose highest weight sits in the middle of its core class. To give the
fact we first introduce the following theorem about horizontal h-cuts.

THEOREM 4.9.15 Suppose λ = (λ1, . . .) and µ = (µ1, . . .) are partitions
of r. We say that the partitions (λ, µ) admit a horizontal h-cut if we have
λ1 + . . .+ λh = µ1 + . . . µh. Put λt(h) = (λ1, . . . , λh), λ

b(h) = (λh+1, λh+2, . . .)
and µt(λ) = (µ1, . . . , µh), µ

b(h) = (µh+1, µh+2, . . .), i.e. the top and bottom
parts of λ and µ. Then

(T (λ) : ∇(µ)) = (T (λt) : ∇(µt))(T (λb) : ∇(µb)).

Proof. Using [4, 4.2(9), 4.2(15)] we have the above for ordinary decomposition
numbers. If we then apply the reciprocity formula of [4, 4.2(14)] it then applies
to tilting modules.

PROPOSITION 4.9.16 Let λ and µ be two partitions of r into n = 3 parts.
Then for the cases we are considering, where 0 ≤ r ≤ 3p− 1, λ and µ always
admit a horizontal h-cut.

Proof. Clearly, in the range 0 ≤ r ≤ p− 1 there are no weights in the middle
of a core class as all weights are self-titled.
Now consider the range p ≤ r ≤ 2p − 1, where, from Proposition 4.3.2, we
know we have only one 3-set to consider, which is of the form

(λ1, λ2, λ3)

(λ2 + p− 1, λ1 − p+ 1, λ3)

(λ3 + p− 2, λ1 − p+ 1, λ2 + 1)

Then with λ = (λ1, λ2, λ3) and µ = (λ2 +p−1, λ1−p+1, λ3), because λ3 = µ3

we can make a horizontal 2-cut.

Now consider the final range 2p ≤ r ≤ 3p − 1, where, from Section 4.7,
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we know we have to consider three 3-sets and one 6-set. We shall look at the
3-sets first, which are as follows;

(λ1 + p, λ2, λ3)

(λ2 + p− 1, λ1 + 1, λ3)

(λ3 + p− 2, λ1 + 1, λ2 + 1)

(λ2 + 2p− 1, λ1 − p+ 1, λ3)

(λ1, λ2 + p, λ3)

(λ3 + 2p− 2, λ1 − p+ 1, λ2 + 1)

(λ1, λ2 + p, λ3)

(λ1, p− 1, 1)

(λ1, p, 1)

Now in the first two 3-sets here, we can see that the top and middle weights
both have final entry λ3, and hence they admit a horizontal 2-cut. Meanwhile,
in the final 3-set, both the top and middle weight have first entry λ1 and hence
they admit a horizontal 1-cut. Finally we consider the 6-set in this range which
is as follows;

(λ1 + p, λ2, λ3)

(λ2 + 2p− 1, λ1 − p+ 1, λ3)

(λ3 + 2p− 2, λ1 − p+ 1, λ2 + 1)

(λ1, λ2 + p, λ3)

(λ1, λ3 + p− 1, λ2 + 1)

(λ2 + p− 1, λ3 + p− 1, λ1 − p+ 2)

In this case, the first and second weight both have last entry λ3 and thus these
partitions admit a horizontal 2-cut. We shall show later that it is only then
necessary to check the fourth and fifth weights in this core class, and indeed
we can see these both have first entry λ1 and thus they admit a horizontal
1-cut.

We are now able to give our final fact.

FACT 4.9.17 Let λ and µ be partitions of r into at most 3 parts, with µ < λ.
Then in the cases given above

(T (λ) : ∇(µ)) ≤ 1.
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Proof. We have that λ and µ always admit a horizontal h-cut, and thus
(T (λ) : ∇(µ)) = (T (λt) : ∇(µt))(T (λb) : ∇(µb)). There are two cases of this
horizontal cut, the first being between the first and second row, in which case
(T (λt) : ∇(µt)) = 1 as T (λt) has highest weight λt = µt. Hence (T (λ) :
∇(µ)) = (T (λb) : ∇(µb)) ≤ 1 as these are now GL2-modules [4, 3.4(3)].
The second case is where we make a horizontal cut between the second and
third row, in which case (T (λb) : ∇(µb)) = 1 as T (λb) has highest weight
λb = µb. Hence (T (λ) : ∇(µ)) = (T (λt) : ∇(µt)) ≤ 1 as these are now
GL2-modules [4, 3.4(3)].

4.10 The method for the case n = 3

AIM: In this section we explain the method we use to prove the case for n = 3,
namely that we are wishing to show that the coefficient spaces of all tilting
modules of A(π, r) for π a saturated set are contained in D3,p(r). By using the
classification of the core classes in Section 4.7 we split this into those tilting
modules whose weights are a) at the top of their core class or are self-titled,
b) at the bottom of their core class, and c) in the middle of their core class,
explaining in each case what we need to prove to show cf (T (λ)) ⊆ D3,p(r) for
T (λ) a tilting module of A(π, r). We then introduce Young’s Rule and the
Littlewood-Richardson Rule which we will apply to calculate the character of
the truncated modules and find the tilting modules within them via the above
methods a)-c).

a) Those tilting modules whose highest weights are either self-titled
or are the highest in their core class.

Suppose we have a tilting module T (α) where this highest weight α is highest
in its core class, then T (α) has filtration structure

∇(α)
∇(β1)

...
∇(βm)

for α ≥ β1 ≥ . . . ≥ βm.
So, provided there exists some tilting truncated module Tr λE, such that when
we express its character as the sum of Schur functions, the function sα occurs
as a coefficient, then we have that cf T (α) ⊆ cf (Tr λE), as although there
may exist other coefficients in this character expression which are of a higher
weight than α they will sit in a different core class to α and by Fact 4.9.2
[T (µ) : ∇(α)] = 0 for µ and α in different core classes with µ > α.

108



This is also true of self-titled weights and hence it is enough to show that the
Schur function sν occurs in some ch Tr λE for ν highest in its core class or
self-titled. We will show later that these sν will always occur in the character
of the truncated module TrλE where λ is minimal in its degree r.

b) Those tilting modules whose highest weights are at the bottom
of their core class.

Suppose we have a core class where α is the highest weight in that core class
and ω is the lowest. Suppose also that ∇(ω) occurs as a section in the ∇-
filtration of T (α), so

T (α)= ∇(α)

∇(β)
...

∇(ω)

where ω < β < α.

As ω is the lowest weight in its core class then T (ω) = ∇(ω) as there is
no weight lower which can sit under ∇(ω) as a composition factor. Then in
fact

T (α) = ∇(α)
...
∇(β)

...

T (ω)

Case 1:
Suppose we find both the chT (α) and the chT (ω) in some ch (Tr λE). Then
cf T (ω) ⊆ cf T (α) ⊆ cf (Tr λE) ⊆ D3,p(r). Hence we have the tilting module
T (ω).

Case 2:
Suppose we cannot find the character of the tilting module T (α) in the charac-
ter of some truncated module, moreover suppose T (ω) sits at the bottom of a
number of tilting modules all whose p-cores are the same as that of α and ω, but
are tilting modules whose coefficient spaces we cannot find in any cf (Tr λE). If
however, chT (ω) arises in some ch Tr λE then we have cf T (ω) ⊆ cf (Tr λE) as
none of the tilting modules that T (ω) is a composition factor of can be found
in the Tr λE.
Thus in conclusion, if the character of all those tilting modules whose weight
sits at the bottom of its core class arise at some point in the character of
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some tilting Tr λE, then whether we have found the coefficient spaces of the
tilting modules above it in its core class or not, we know we have these tilting
modules. We prove later that all these characters will arise.

c) The tilting modules whose highest weights are in the middle of
their core class.

Suppose we have a certain core class whose highest weight is α and then
there is a ‘middle’ weight µ. It may be that

T (α)
...

∇(µ)
...

and thus the tilting module

T (µ) = ∇(µ)
...

may arise as a section in the ∇-filtration of T (α). Suppose moreover there
exists a tilting truncated module Tr λE where the character of T (α) and T (µ)
arise with a multiplicity of m and n respectively. Using Fact 4.9.17 we know
that [T (α) : ∇(µ)] = 0 or 1, and thus we require that n ≥ m + 1, in fact we
require that chT (µ) arises with a multiplicity of at least one higher than the
sum of all the multiplicities of the T (αi) where αi > µ and all αi are in the
same core class as µ.

For example, suppose ch Tr λE = sα + 2sµ +
∑

σ<µ aσsσ with µ < α and
chT (α) = sα and chT (µ) = sµ. Suppose also that [T (α) : ∇(µ)] = 1 then
ch Tr λE = chT (α) + chT (µ) +

∑
σ<µ aσchT (σ).

There is also a second option. Suppose there exists a truncated tilting mod-
ule whose character has leading term sµ where chT (µ) = sµ and µ is in the
middle of its core class. As there is no higher weight in the character of
that truncated module then there is no occurrence of a higher weighted tilt-
ing module which T (µ) may be a composition factor of. Hence ch Tr λE =
chT (µ) +

∑
σ<µ aσchT (σ), and we have the tilting module T (µ).

We will prove that for all tilting modules whose weight is in the middle of
its core class, there exists either:
i) a truncated tilting module whose character contains that of this ‘middle’
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tilting module, with a multiplicity higher than the sum of all multiplicities of
the tilting modules whose weights are higher and in the same core class.
ii) a truncated tilting module whose character has leading term equal to the
highest weight of this ‘middle’ tilting module.

Now that we understand what we need to find it remains to identify the
truncated modules whose coefficient spaces contain the coefficient spaces of
the tilting modules. To do this it will sometimes be necessary to calculate the
character of these truncated modules. This we did in Chapter 3 for the case
n = 2, however for the case n = 3 the calculations are slightly more com-
plicated and so we shall need to use both Young’s Rule and the Littlewood-
Richardson Rule which gives us a method for calculating these characters. We
describe these now.

DEFINITIONS 4.10.1 All the information in this section can be found in
G.D. James’ book ‘The Representation Theory of the Symmetric Groups’ [17,
Chapter 16]. Clearly there is a lot more detail contained in his work and it
is unnecessary for this research to go into all of the background work that
results in both Young’s Rule and The Littlewood Richardson Rule. We shall
go into it in as much detail as we feel necessary but the book can of course be
consulted for further information.

DEFINITION 4.10.2 We call T a standard tableau if the numbers in the
array increase along the rows and down the columns of T .

DEFINITION 4.10.3 A tableau T is called semistandard if the numbers in
the array are non-decreasing along the rows and strictly increasing down the
columns of T .

DEFINITION 4.10.4 A tableau T has type µ if for every i, the number i
occurs µi times in T . For example
2211
1
is a (4, 1)-tableau of type (3, 2).

DEFINITION 4.10.5 Let Sn be the symmetric group of degree n. Then for
each partition µ of n we associate a Young Subgroup Sµ of Sn by taking

Sµ = S{1,2,...,µ1} × S{µ1+1,...,µ1+µ2} × S{µ1+µ2+1,...,µ1+µ2+µ3} × . . .

For example with n = 5 and µ = (3, 1, 1) then Sµ = S{1,2,3} × S{4} × S{5}.
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REMARK 4.10.6 [17, Chapter 4] The study of representations of Sn starts
with the permutation module Mµ of Sn on the cosets of Sµ. The Specht module
Sµ is a submodule of Mµ, and when the base field k = Q the different Specht
modules, as µ varies over partitions of n, give all the ordinary irreducible
representations of Sn.

Using the above definitions we are now able to define Young’s Rule.

DEFINITION 4.10.7 Young’s Rule [17, 14.1]
The multiplicity of SλQ as a composition factor of Mµ

Q is equal to the number
of semi-standard λ-tableaux of type µ.

EXAMPLE 4.10.8 Consider µ = (3, 2, 2) then the semi-standard tableaux
of this type are:

1112233 3
111223

33
11122

2
111233

23
11123

3
2
11123

233
1112

3
23
1112

22
11133

223
1113

3
22
1113

2
223
111

33
33
111

Adjusting notation slightly, we then have that s3s2s2 = s7 + 2s61 + 3s52 +
2s43 + s511 + 2s421 + s331 + s322 so for example the multiplicity of S(6,1) as a
composition factor of M (3,2,2) is 2.

We now move onto the Littlewood Richardson Rule, first giving a definition
and theorem which are necessary in defining it.

DEFINITION 4.10.9 Given a sequence of numbers, the quality of each term
is determined as follows (each term is either good or bad);
i) All the 1s are good.
ii) An i + 1 is good if and only if the number of previous good i’s is strictly
greater than the number of previous good (i+ 1)s.

EXAMPLE 4.10.10 Consider the sequence;
3 1 2 2 1 1 2 3
× X X × X X X X

REMARK 4.10.11 It follows from Definition 4.10.9 that an i + 1 is bad if
and only if the number of previous good i’s equals the number of previous
good (i+ 1)s. Hence we have the following result.

THEOREM 4.10.12 [17, 15.4] If a sequence contains m good (i − 1)’s in
succession, then the next m i’s in the sequence are all good.
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DEFINITION 4.10.13 The Littlewood-Richardson Rule
This rule is an algorithm for calculating sλsµ where λ is a proper partition of
n − r and µ is a proper partition of r. The details of this rule can be found
from pages 54-63 in James’ book, however these details are unnecessary here
and so what we give is the method for applying the rule.
First draw the diagram λ then add µ1 1s, then µ2 2s and so on, making sure
that at each stage λ, together with the numbers which have been added, form
a proper, semi-standard diagram. Then reject the result unless reading from
right to left in successive rows, each i is preceded by more (i − 1)’s than i’s,
thus ensuring that every term is good.

We shall now do two examples using this rule, the first being an example
of Young’s Rule with λ = (λ1, 0, 0), µ = (µ1, 0, 0), σ = (σ1, 0, 0), and the
second being a more complex example using the Littlewood-Richardson Rule,
with λ = (λ1, λ2, 0), µ = (µ1, µ2, 0). We shall take information from the
Classification of core classes in Section 4.7 and also from our description of
how we go about finding the necessary tilting modules depending on where
their weights sit in their respective core classes from Section 4.10. This will
give a clear example of all future work and how we shall find the tilting modules
needed to prove Theorem 4.1.3.

EXAMPLE 4.10.14 Let n = 3, p = 5 and r = 7, then from the description
of the Dn,p(r) in 4.8.4 we have

D3,5(7) = cf (Tr 7E) + cf (Tr 6,1E) + cf (Tr 5,2E) + cf (Tr 5,1,1E) + cf (Tr 4,3E)
+cf (Tr 4,2,1E) + cf (Tr 3,3,1E) + cf (Tr 3,2,2E)

= cf (L(4, 3, 0)⊗ S0E ⊗ S0E) + cf (L(4, 2, 0)⊗ S1E ⊗ S0E)
+cf (L(4, 1, 0)⊗ S2E ⊗ S0E) + cf (L(4, 1, 0)⊗ S1E ⊗ S1E)
+cf (S4E ⊗ S3E ⊗ S0E) + cf (S4E ⊗ S2E ⊗ S1E)
+cf (S3E ⊗ S3E ⊗ S1E) + cf (S3E ⊗ S2E ⊗ S2E)

Now, for r = 7 = p + 2 < 2p − 1 = 9 we can refer to the Classification
of core classes for p ≤ r ≤ 2p − 1 to find the core classes in this case, where
the partitions of r = 7 into n = 3 parts are as follows;

(7, 0, 0), (6, 1, 0), (5, 2, 0), (5, 1, 1), (4, 3, 0), (4, 2, 1), (3, 3, 1) and (3, 2, 1).

For this range we have 3-sets where λ1 − λ2 ≥ p and λ1 ≤ 2p − 3, and as
7− 0 = 7 > 5 = p and 6− 1 = 5 = p then we have (7, 0, 0) and (6, 1, 0) sitting
at the top of two different core classes. Using the information from Section
4.7 then we can complete these core classes as follows;

(7,0,0) (6,1,0)
(4,3,0) (5,2,0)
(3,3,1) (3,2,2)
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The only other core classes for this degree consist of self-titled partitions,
and indeed as 5 − 1 = 4 = p − 1 then (5, 1, 1) is self-titled, and (4, 2, 1) gives
λ1−λ2 = 4− 2 = 2 = p− 3 = p− ξ with λ2−λ3 = 2− 1 = 1 = ξ− 2 and thus
(4, 2, 1) is also self-titled by Proposition 4.3.3. This accounts for all partitions
of r into n parts.
We now use Section 4.10 which shows that for partitions at the top or bottom
of their core class and those which are self-titled in this range we find their cor-
responding tilting modules by calculating the character of the lowest weighted
truncated module in D3,5(7), and showing their weight arises at least once.
The weights second highest in these core classes also occur in this truncated
module as long as their weight arises with a higher multiplicity. We must
therefore calculate the character of Tr (3,3,2)E = S3E ⊗ S2E ⊗ S2E as this is
the lowest weighted tilting truncated module for this degree.
We now use the Young’s Rule to calculate sλsµsσ = s3s2s2, as shown in Ex-
ample 4.10.8. We therefore have that

s3s2s2 = s7 + 2s61 + 3s52 + s511 + 2s43 + 2s421 + s331 + s322,

and thus as the top weights s7 and s61 arise at least once we have the cor-
responding tilting modules T (7, 0, 0) and T (6, 1, 0). Similarly, the bottom
weights s331 and s322 arise once and so we have their corresponding tilting
modules T (3, 3, 1) and T (3, 2, 2). Finally the self-titled weight s511 and s421

arise at least once giving their tilting modules T (5, 1, 1) and T (4, 2, 1). Looking
at the second weights in the 3-sets, we have that s43 arises with multiplicity
2 which is greater than the multiplicity of s7, the weight above it, and hence,
by applying horizontal cuts and using Fact 4.9.17, we have the tilting module
T (4, 3, 0). In the same way, the weight s52 arises with multiplicity 3 which is
greater than that of s61 and hence we have the tilting module T (5, 2, 0). Thus
the coefficient spaces of all of the tilting modules of A(3, 7) are contained in
cf (Tr (3,2,2)E) which is itself contained in D3,5(7) and hence D3,5(7) = A(3, 7)
and so Theorem 4.1.3 is proven for this particular example.

We now move onto our second example which requires the use of the Littlewood-
Richardson Rule.

EXAMPLE 4.10.15 Let n = 3, p = 5 and r = 14 then

cf (Tr (8,6,0)E) = cf (L(4, 4, 0)⊗ L(4, 2, 0)⊗ S0E) ⊂ D3,5(14)

and it is the character of this truncated module that we shall calculate using
the Littlewood-Richardson Rule. Recall from Theorem 4.8.1 that L(4, 4, 0) is
a tilting module, but L(4, 2, 0) is not, and thus by [14, Page 18] we have

ch (L(4, 4, 0)⊗ L(4, 2, 0)) = s44(s42 − s321).
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We shall first calculate s44 · s42 and then take from this s44 · s321. So we begin
by writing down s44 and then add on four 1s and two 2s for the s42.

xxxx22
xxxx1111

Using the method from the previous remark we shall begin by moving down
the 2s one by one, recalling that as the four 1s in the top row are good then
both of the 2s will also be good.

2
xxxx2
xxxx1111

22
xxxx
xxxx1111

This is the most we can do with the 2s whilst still leaving all of the 1s on
the top row, so we now move down one 1 and then begin to move down the
two 2s. To ensure the resulting partition is semi-standard we cannot put a 1
under a 1, thus it must go on the third row. We therefore have three good
1s on the top row and so both 2s after this will also be good if left on the
second row. Note that the 1 must come before the 2 to ensure the rows are
non-decreasing.

1
xxxx22
xxxx111

12
xxxx2
xxxx111

122
xxxx
xxxx111

We now move down two 1s and then the two 2s. Again the 1s must go on the
third row to ensure we have a semi-standard partition, and they must come
before the 2s. Moreover there are enough good 1s on the top row to ensure
both 2s will be good in the first partition where we do not move any 2s down.

11
xxxx22
xxxx11

112
xxxx2
xxxx11

1122
xxxx
xxxx11

This is the most we can do. If we were to move down three 1s, we would
also have to move down at least one 2 as otherwise we will not have a proper
partition. However, placing the three 1s before the 2 in the fourth row, means
that reading from right to left in successive rows gives the sequence 122111,
and thus the second two in this sequence is not good.

1112
xxxx2
xxxx1

Furthermore, we cannot go on to move down all four 1s as wherever we place
the 2s we will not have a proper partition. For example

1111
xxxx
xxxx22

is not a proper partition and also the two 2s are bad as there are not two good
1s preceding them. We therefore have that

s44 · s42 = s86 + s851 + s842 + s761 + s752 + s743 + s662 + s653 + s644

We now go on to calculate s44 · s321 so again draw s44 first and then add on
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s321 as shown;

3
xxxx22
xxxx111

We cannot place the 3 anywhere else except in the third row, so we start by
moving the 2s which must sit before the 3 to ensure the result is semi-standard.
Moreover, one 2 must always be left in the second row to ensure the 3 in the
third row is good.

23
xxxx2
xxxx111

We now move one 1 and then move the 2s. The 1 must go down to the third
row as it cannot sit below itself in the second row. The two good 1s left in the
first row ensure the two 2s will also be good if left in the second row.

13
xxxx22
xxxx11

123
xxxx2
xxxx11

This is all we can do as if we move down another 1 then there will not be
enough 1s in the first row to ensure both 2s are good. We thus have that

s44 · s321 = s761 + s752 + s662 + s653

and so subtracting this from s44 · s42 gives the final result

s44(s42 − s321) = s86 + s851 + s842 + s743

and so we have calculated the character of the truncated module Tr (8,6,0)E as
a sum of Schur function.

REMARK 4.10.16 The Littlewood-Richardson Rule will be used when we
are finding tilting modules in the range 2p ≤ r ≤ 3p − 1. By 4.7, we know
that there are core classes in this range which consist of 6 weights, and thus
to find those middle weights we must consider the multiplicity of the Schur
function corresponding to their weight as it arises in the character of a tilting
truncated module. The truncated modules we use require both Young’s Rule
and the Littlewood-Richardson Rule to calculate the multiplicities of these
Schur functions. However, we first of all start with the range 0 ≤ r ≤ p− 1.

4.11 The proof for 0 ≤ r ≤ p− 1

AIM: The section contains a simple proof which resolves the above range.

THEOREM 4.11.1 For 0 ≤ r ≤ p− 1 then cf (T (λ)) ⊆ cf (Tr λE)
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Proof. For 0 ≤ r ≤ p − 1 then L(λ) = ∇(λ) = ∆(λ) = T (λ) as for r < p,
S(n, r) is semisimple. Moreover each weight λ is self-titled and thus has its
own core class. Tr λE = Sλ1E⊗Sλ2E⊗Sλ3E, where λi ≤ p− 1 and thus each
SλiE is tilting. The Schur function sλ arises in ch (Tr λE) and as the weight
λ is self-titled then cf (T (λ)) ⊆ cf (Tr λE) as required.

4.12 The proof for p ≤ r ≤ 2p− 1

AIM: In this section we shall prove that, when represented as Schur functions,
the characters of the tilting modules whose weights are either self-titled or are
highest or lowest in their core classes, always arise in the character of Tr µE for
µ the minimal element in Λ+(3, r). Moreover we shall prove that the coefficient
space of the tilting modules whose weights are in the middle of their core class
also arise in the coefficient space of the same truncated module, due to the
Schur function corresponding to their weight arising with a higher multiplicity
than that of the weight above them in their core class.

PROPOSITION 4.12.1 For p ≤ r ≤ 2p− 1, Λ+(3, r) has a unique minimal
element µ and µ1 < p− 1.

Proof. Case 1: 3 divides r. In this case µ = (r/3, r/3, r/3) and as r ≤ 2p− 1
then r/3 ≤ 2p− 1/3 < p− 1/3 and thus r/3 ≤ p− 1.
Case 2: 3 divides r + 1. Here µ = ((r + 1)/3, (r + 1)/3, (r − 2)/3) and so we
require (r + 1)/3 ≤ p − 1. Well r ≤ 2p − 1 and so (r + 1)/3 ≤ 2p/3 and we
require 2p/3 ≤ p− 1 which is true if and only if 3 ≤ p. For the case p = 2 we
refer you to Chapter 5.
Case 3: 3 divides r+2. Here µ = ((r+2)/3, (r+2)/3−1, (r+2)/3−1) and so
we require (r+2)/3 ≤ p−1. As r ≤ 2p−1 then (r+2)/3 ≤ (2p−1)/3 ≤ p−1
if and only if 2 ≤ p.

THEOREM 4.12.2 For p ≤ r ≤ 2p−1 and |λ| = r then HomG(SµE,∇(λ)) 6=
0 where µ is the unique minimal element of Λ+(3, r), and hence L(λ) is a com-
position factor of SµE.

Proof. First note that (SµE)◦ ∼= SµE for µ1 < p as each SµiE is simple in this
case.
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Then, using the information given in Remark 1.1.11, we have that

HomG(SµE,∇(λ)) = HomG(∇(λ)◦, (SµE)◦)
∼= HomG(∆(λ), (Sµ1E)◦ ⊗ (Sµ2E)◦ ⊗ (Sµ3E)◦)
∼= HomG(∆(λ), Sµ1E ⊗ Sµ2E ⊗ Sµ3E)
∼= HomG(∆(λ), SµE)
∼= ∆(λ)µ

6= 0

as by our knowledge about the characters of finite dimensional modules of
complex Lie algebras by [16, Section 2.4] we have that µ is a weight of the
Weyl module as µ ≤ λ.
There therefore exists a non-zero map φ : SµE → ∇(λ) which implies L(λ) ⊆
Im(φ) as L(λ) = socG∇(λ) and therefore L(λ) is a composition factor of
Im(φ) = (SµE)/Ker(φ) and thus L(λ) is a composition factor of SµE.

The above proposition and theorem allow us to give the following corollary
which resolves those tilting modules whose weights are highest in their core
class or are self-titled.

COROLLARY 4.12.3 If λ is maximal in its core class, or self-titled, then
cf (T (λ)) ⊆ cf (SµE) = cf (Tr µE) where µ is the unique minimal element of
Λ+(3, r).

Proof. We have that SµE ∼= T (v1)⊕. . .⊕T (vm) and so as L(λ) is a composition
factor of SµE then L(λ) is a composition factor of some T (vi). Thus λ ≤ vi
and λ and vi are in the same core class, however λ is maximal in its core class
and hence we must have λ = vi. So, T (λ) is a summand of SµE and therefore
cf (T (λ)) ⊆ cf (SµE).

We now move on to the tilting modules whose weights are lowest in their core
class.

THEOREM 4.12.4 For p ≤ r ≤ 2p − 1 and λ lowest in its core class, then
cf (T (λ)) ⊆ cf (SµE) for µ minimal in Λ+(3, r).

Proof. We have HomG(∇(λ), SµE) ∼= ∇(λ)µ 6= 0 as µ ≤ λ. Moreover for
λ minimal in its core class we have L(λ) = ∇(λ) = ∆(λ) = T (λ) and thus
cf (T (λ)) = cf (∇(λ)) ⊆ cf (SµE).

We now look at the tilting modules whose weights are second highest in the
core class of the 3-set.
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THEOREM 4.12.5 The tilting modules whose weights are in the middle of
the core class consisting of three weights, arise in the truncated module Tr µE
for µ minimal in each Λ+(3, r), due to 4.10. Namely that the Schur function
sλ for each tilting module T (λ) arises as a term in ch (Tr µE) with a higher
multiplicity than the Schur function sσ for σ > λ in the same core class.

Proof. To prove this we shall calculate the character of the truncated module
Tr µE and consider the multiplicities. Note that there are three cases to con-
sider:
Case 1: For 3|r we use Tr ( r

3
, r
3
, r
3

)E = S
r
3E ⊗S r

3E ⊗S r
3E which we know to be

tilting as r
3
< p− 1.

Case 2: For 3|r + 1 we use Tr ( r+1
3
, r+1

3
, r+1

3
−1)E = S

r+1
3 E ⊗ S r+1

3 E ⊗ S r+1
3
−1E

which again is tilting as r+1
3
≤ p− 1.

Case 3: For 3|r+2 we use Tr ( r+2
3
, r+2

3
−1, r+2

3
−1)E = S

r+2
3 E⊗S r+2

3
−1E⊗S r+2

3
−1E

which again is tilting as r+2
3
≤ p− 1.

Case 1: 3 | r
Let us first do an example, so take n = 3, p = 5 and r = 9, then we wish to
calculate

ch (Tr 333E) = S3E ⊗ S3E ⊗ S3E
= (s3 · s3·)s3

= (s6 + s51 +42 +s33)s3

= (s9 + s81 + s72 + s63)+
(s81 + s72 + s711 + s63 + s621 + s54 + s531)+
(s72 + s63 + s621 + s54 + s1531 + s522 + s441 + s432)+
(s63 + s531 + s432 + s333)

We can display this result with multiplicities as follows;

1s9

2s81

3s72 1s711

4s63 2s621

2s54 3s531 1s522

1s441 2s432

1s333

THEOREM 4.12.6 The Schur function sλ for all weights λ = (λ1, λ2, λ3)
such that |λ| = r arises at least once in ch (Tr

r
3
, r
3
, r
3E).

Proof. From Theorem 4.12.5 we have clarified that the truncated module we
are using, Tr µE where µ is minimal, is equal to Sµ1E ⊗ Sµ2E ⊗ Sµ3E where
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each SµiE is simple as µ1 ≤ p − 1. Hence, irrelevant of the fact we are now
in a greater range for the degree r, we can still apply the proof of Theorem
4.12.2, to show that each weight λ arises at least once in the ch (Tr

r
3
, r
3
, r
3E).

THEOREM 4.12.7 The character of the truncated module

ch (Tr
r
3
, r
3
, r
3E) =

∑
aλsλ where aλ =

{
λ2 + 1− λ3 for λ2 ≤ r

3

λ1 + 1− λ2 for λ2 >
r
3

Proof. 1) We shall first consider the case where λ2 ≤ r
3
.

First recall that λ = (λ1, λ2, λ3) where |λ| = r and λ1 ≥ λ2 ≥ λ3. Now, letting
each r

3
be notated by 1s, 2s and 3s, then, by Young’s Rule, aλ is the number of

ways we can form a semi-standard λ-tableau of type ( r
3
, r

3
, r

3
). Let us consider

this proof for three cases; where λ1 6= 0 and λ2, λ3 = 0, where λ1, λ2 6= 0 and
λ3 = 0, and finally where λ1, λ2, λ3 6= 0.

i) Let λ = (λ1, 0, 0), then we can form only one increasing row, where we first
insert the 1s, followed by the 2s and finally the 3s. Thus aλ = 1 = λ2 + 1−λ3.
For example, with p = 7 and r = 9 then we have λ = (9, 0, 0) as
111222333.

ii) Let λ = (λ1, λ2, 0), then to ensure we have a semi-standard tableau we
first place all the 1s in the first row from left to right. As λ2 ≤ r

3
then we can

fit at most λ2 3s in the second row, so we have the following options;
Put all 2s in λ2 and the remaining 2s and all 3s in λ1 from left to right;
Put λ2−1 2s and then at the end of the row put one 3 in λ2, then the remain-
ing 2s and 3s in λ1 from left to right;
Put λ2 − 2 2s and then at the end of the row put two 3s in λ2, then the re-
maining 2s and 3s in λ1 from left to right;
This continues until we reach the final option which is placing λ2 3s in λ2, and
then all 2s and r

3
− λ2 3s in λ1 from left to right.

Then aλ = λ2 + 1 = λ2 + 1− λ3.
For example with p = 7, r = 9 and λ = (8, 1, 0) we have;

3
11122233

2
11122333

iii) Let λ = (λ1, λ2, λ3). As before, all 1s must go first in the top row. Then to
ensure we have a semi-standard tableau, and as λ3 ≤ r

3
, the first λ3 columns

must be of the form;

3
2
1

There are then r
3
− λ3 2s and 3s remaining to place in the first and second

rows. Now as λ2 ≤ r
3

then λ1 − λ2 ≥ λ1 − r
3

but λ2 − λ3 ≤ r
3
− λ3. The ways
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of forming a semi-standard tableau are therefore dependent upon λ2, and we
have the following options;
Put λ2 − λ3 2s in λ2 and the remaining 2s and all 3s in λ1 from left to right;
Put λ2 − λ3 − 1 2s and then at the end of the row put one 3 in λ2, then the
remaining 2s and 3s in λ1 from left to right;
Put λ2 − λ3 − 2 2s and then at the end of the row put two 3s in λ2, then the
remaining 2s and 3s in λ1 from left to right;
This continues until we reach the final option which is placing λ2−λ3 3s in λ2,
and then all 2s and r

3
−(λ2−λ3) 3s in λ1 from left to right. Thus aλ = λ2−λ3+1

as required.
For example, with p = 7, r = 9 and λ = (6, 2, 1) we have

3
2
111
2

233

3
2
111
3

223

2) We now consider the case where λ2 >
r
3
.

If λ2 >
r
3
, then there are only two cases to consider, namely where λ1, λ2 6= 0

and λ3 = 0, and then where λ1, λ2, λ3 6= 0.
i) In the first case we have λ = (λ1, λ2, 0), and as usual, place all 1s in the
first row from left to right. Now, as λ2 > r

3
, then λ2 − r

3
> 0, and so we

must place λ2 − r
3

2s after the 1s in the first row, and underneath these 2s we
must place λ2 − r

3
3s at the end of the second row, to give strictly increasing

columns. There therefore remains r
3
− (λ2 − r

3
) = 2r

3
− λ2 2s and 3s to place

in the tableau. Now, λ1 <
2r
3

and so λ1− λ2 <
2r
3
− λ2 and so aλ is dependent

on λ1 − λ2, and we have the following options;
Put λ1 − λ2 2s in λ1 and the remaining 2s and all 3s in λ2 from left to right;
Put λ1 − λ2 − 1 2s and then at the end of the row put one 3 in λ1, then the
remaining 2s and 3s in λ2 from left to right;
Put λ1 − λ2 − 2 2s and then at the end of the row put two 3s in λ1, then the
remaining 2s and 3s in λ2 from left to right;
This continues until we reach the final option which is placing λ1 − λ2 3s
in λ1, and then all 2s and r

3
− (λ1 − λ2) 3s in λ2 from left to right. Thus

aλ = λ1 + 1− λ2.
For example, with p = 7, r = 9 and λ = (5, 4, 0) we have the options;

2
11122
333

2
11123
233

ii) For the case where λ = (λ1, λ2, λ3), as before, all 1s must go first in the top
row. Then to ensure we have a semi-standard tableau, and as λ3 ≤ r

3
, the first

λ3 columns must be of the form;
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3
2
1

Then again, as for the previous case, we must place λ2 − r
3

2s after the 1s in
the first row, and below these place λ2 − r

3
3s at the end of the second row.

There then remains r
3
− λ3− (λ2− r

3
) = 2r

3
− λ2− λ3 2s and 3s to place in the

first and second rows. We can do this as follows;
Put λ1 − λ2 2s in λ1 and the remaining 2s and all 3s in λ2 from left to right;
Put λ1 − λ2 − 1 2s and then at the end of the row put one 3 in λ1, then the
remaining 2s and 3s in λ2 from left to right;
Put λ1 − λ2 − 2 2s and then at the end of the row put two 3s in λ1, then the
remaining 2s and 3s in λ2 from left to right;
This continues until we reach the final option which is placing λ1−λ2 3s in λ1,
and then all 2s and r

3
−(λ1−λ2) 3s in λ2 from left to right. Thus aλ = λ1−λ2+1

as required.
For example, with p = 7, r = 9 and λ = (4, 4, 1), we have the following option;

3
2
1

323
112

Case 2: 3 | r + 1
Let us first do an example, so take n = 3, p = 5 and r = 9, then we wish to
calculate

ch (Tr 332E) = S3E ⊗ S3E ⊗ S2E
= (s3 · s3·)s2

= (s6 + s51 +42 +s33)s2

= (s8 + s71 + s62)+
(s71 + s62 + s611 + s53 + s521)+
(s62 + s53 + s521 + s44 + s431 + s422)+
(s53 + s431 + s332)

We can display this result with multiplicities as follows;

1s8

2s71

3s62 1s611

3s53 2s521

1s44 2s431 1s422

1s332

THEOREM 4.12.8 The character of the truncated module

ch (Tr
r+1
3
, r+1

3
, r+1

3
−1E) =

∑
aλsλ

where

aλ =

{
λ2 + 1− λ3 for λ2 ≤ r+1

3
− 1

λ1 + 1− λ2 for λ2 >
r+1

3
− 1
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Proof. The proof follows the same method as for case 1, except in this instance
we replace r

3
by r+1

3
− 1.

Case 3: 3 | r + 2
Let us first do an example, so take n = 3, p = 5 and r = 7, then we wish to
calculate

ch (Tr 322E) = S3E ⊗ S2E ⊗ S2E
= (s3 · s2·)s2

= (s5 + s41+32)s2

= (s7 + s61 + s52)+
(s61 + s52 + s511 + s43 + s421)+
(s52 + s43 + s421 + s331 + s322).

We can display this result with multiplicities as follows;

1s7

2s61

3s52 1s511

2s43 2s421

1s331 1s322

THEOREM 4.12.9 The character of the truncated module

ch (Tr
r+2
3
, r+2

3
−1, r+2

3
−1E) =

∑
aλsλ

where

aλ =

{
λ2 + 1− λ3 for λ2 ≤ r+2

3
− 1

λ1 + 1− λ2 for λ2 >
r+2

3
− 1

Proof. The proof follows the same method as for case 1, except in this instance
we replace r

3
by r+1

3
− 2.

So, how does this help us prove theorem 4.12.5? Well, letting the ‘top’ weight
be λ and the ‘middle’ weight be µ, let us first assume that both λ2 and µ2 ≤ r

3

(or r+1
3
− 1, r+2

3
− 1 respectively), then aλ = λ2 + 1− λ3 and aµ = µ2 + 1−µ3.

Recalling from Section 4.7 that µ = (µ1, µ2, µ3) = (λ2 + p− 1, λ1 − p+ 1, λ3),
we have that aµ = (λ1− p+ 1) + 1−λ3 = λ1− p+ 2−λ3, so we need to check
that λ1 − p + 2 − λ3 > λ2 + 1 − λ3. Well, indeed this is true if and only if
λ1 − p+ 1 > λ2 which holds if and only if λ1 − λ2 > p− 1, which we know to
be true. Thus the Schur function of the ‘middle’ weight arises with a higher
multiplicity than that of the ‘top’ weight.
We now need to consider the case when both weights do not necessarily have
second entry less than r

3
. Well, it cannot be the case that a top weight can

have second entry greater than r
3

as then λ1−λ2 < p which is a contradiction.
So in all cases the top weight will arise with multiplicity λ2 + 1 − λ3. It is

123



possible however for a ‘middle’ weight, µ, to have second entry greater than
r
3
, and we know in this case that the multiplicity of aµ = µ1 − µ2 + 1 =

(λ2 + p− 1)− (λ1 − p+ 1) + 1 = λ2 − λ1 + 2p− 1. We therefore need to show
that aµ > aλ i.e. that λ2−λ1 + 2p−1 > λ2−λ3 + 1. This is true if and only if
λ1 − λ3 < 2p− 2 which we know to be true, as by Proposition 4.3.2 we know
that λ1 < 2p − 3. Hence in all cases aµ > aλ and thus by 4.10 we have that
the coefficient spaces of all tilting modules whose weights are second highest
in the core class of the 3-set are contained in the coefficient space of the tilting
truncated module Tr σE for σ minimal in the degree r.

EXAMPLE 4.12.10 We now give a full example of the above proof for the
case n = 3, p = 5 and p ≤ r ≤ 2p − 1. For each degree p ≤ r ≤ 2p − 1, the
following tilting modules are needed;

r = p = 5
T (5, 0, 0), T (4, 1, 0), T (3, 2, 0), T (3, 1, 1), T (2, 2, 1)

r = 6
T (6, 0, 0), T (5, 1, 0), T (4, 2, 0), T (4, 1, 1), T (3, 3, 0), T (3, 2, 1), T (2, 2, 2)

r = 7
T (7, 0, 0), T (6, 1, 0), T (5, 2, 0), T (5, 1, 1), T (4, 3, 0), T (4, 2, 1), T (3, 3, 1),
T (3, 2, 2)

r = 8
T (8, 0, 0), T (7, 1, 0), T (6, 2, 0), T (6, 1, 1), T (5, 3, 0), T (5, 2, 1), T (4, 4, 0),
T (4, 3, 1), T (4, 2, 2), T (3, 3, 2)

r = 2p− 1 = 9
T (9, 0, 0), T (8, 1, 0), T (7, 2, 0), T (7, 1, 1), T (6, 3, 0), T (6, 2, 1), T (5, 4, 0),
T (5, 3, 1), T (5, 2, 2), T (4, 4, 1), T (4, 3, 2), T (3, 3, 3)

For each degree p ≤ r ≤ 2p − 1 the following partitions sit at the top of
their core class;

r = 5 (5, 0, 0)
r = 6 (6, 0, 0)
r = 7 (7, 0, 0), (6, 1, 0)
r = 8 (8, 0, 0), (7, 1, 0), (6, 1, 1)
r = 9 (9, 0, 0), (8, 1, 0), (7, 2, 0), (7, 1, 1)

For each degree p ≤ r ≤ 2p − 1 the following partitions sit in the middle
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of their core class;

r = 5 (4, 1, 0)
r = 6 (4, 2, 0)
r = 7 (4, 3, 0), (5, 2, 0)
r = 8 (5, 3, 0), (5, 2, 1)
r = 9 (6, 3, 0), (5, 3, 1)

For each degree p ≤ r ≤ 2p − 1 the following partitions sit at the bottom
of their core class;

r = 5 (3, 1, 1)
r = 6 (3, 2, 1)
r = 7 (3, 3, 1), (3, 2, 2)
r = 8 (4, 4, 0), (3, 3, 2), (4, 2, 2)
r = 9 (4, 4, 1), (5, 4, 0), (3, 3, 3), (4, 3, 2)

For each degree p ≤ r ≤ 2p− 1 the following partitions are self-titled;

r = 5 (3, 2, 0), (2, 2, 1)
r = 6 (5, 1, 0), (4, 1, 1), (3, 3, 0), (2, 2, 2)
r = 7 (5, 1, 1), (4, 2, 1)
r = 8 (6, 2, 0), (4, 3, 1)
r = 9 (6, 2, 1), (5, 2, 2)

Recall that the Schur functions corresponding to those weights at the top,
the bottom and those that are self-titled must occur at least once in the char-
acter of a truncated tilting module, and those Schur functions correspond-
ing to the middle weights must occur with a higher multiplicity than the
weight above it. For each degree p ≤ r ≤ 2p − 1 we shall find ch (Tr λE) =
ch (S̄λ1E ⊗ S̄λ2E ⊗ S̄λ3E) for λ the lowest weight in that degree, and show
how the multiplicities of the Schur functions occur in the necessary way.

• r = 5
Here λ = (2, 2, 1) and

ch Tr λE = ch (S̄2E ⊗ S̄2E ⊗ S̄1E)

= s2 · s2 · s1

= (s4 + s31 + s22) · s1

= s5 + s41 + s41 + s32 + s311 + s32 + s221

= s5 + 2s41 + 2s32 + s311 + s221.

As s5, s32, s311, and s221 all occur and are either at the top or bottom of their
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core classes, or are self-titled then we have that the coefficient spaces of their
corresponding tilting modules occur in cf Tr λE. Moreover for (λ1T , λ2T , λ3T ) =
(5, 0, 0) then λM = (p − 1, r − p + 1, 0) = (4, 1, 0) and indeed s41 occurs with
a higher multiplicity than s5 in ch (S̄2E ⊗ S̄2E ⊗ S̄1E).

Hence Tr (2,2,1)E = T (5, 0, 0)⊕ T (4, 1, 0)⊕ T (3, 2, 0)⊕ T (3, 1, 1)⊕ T (2, 2, 1).

• r = 6
Here λ = (2, 2, 2) and

ch Tr λE = ch (S̄2E ⊗ S̄2E ⊗ S̄2E)

= s2 · s2 · s2

= (s4 + s31 + s22) · s2

= s6 + s51 + s42 + s51 + s42 + s411 + s33 + s321 + s42 + s321 + s222

= s6 + 2s51 + 3s42 + s411 + s33 + 2s321 + s222.

The issue here is T (4, 2, 0) which is the only partition in the middle of its p-core.
With λT = (6, 0, 0) then λM = (p − 1, r − p + 1, 0) = (4, 2, 0) and s42 occurs
with a higher multiplicity than s6. For all other weight, the corresponding
Schur function occurs at least once and thus

Tr (2,2,2)E =T (6, 0, 0)⊕ T (5, 1, 0)⊕ T (4, 2, 0)⊕ T (4, 1, 1)⊕ T (3, 3, 0)

⊕ T (3, 2, 1)⊕ T (2, 2, 2).

• r = 7
Here λ = (3, 2, 2) and

ch Tr λE = ch (S̄3E ⊗ S̄2E ⊗ S̄2E)
= s3 · s2 · s2

= (s5 + s41 + s32) · s2

= s7 + s61 + s52 + s61 + s52 + s511 + s43 + s421 + s52 + s43 + s421

+s331 + s322

= s7 + 2s61 + 3s52 + s511 + 2s43 + 2s421 + s331 + s322.

The issues here are T (4, 3, 0) and T (5, 2, 0). With λT = (r, 0, 0) = (7, 0, 0)
then λM = (4, 3, 0), and with λT = (6, 1, 0) = (r − 1, 1, 0) then λM = (p +
1 − 1, r − p − 1 + 1, 0) = (5, 2, 0) and both s43 and s52 occur with a higher
multiplicity than s7 and s61 respectively. Hence

Tr (3,2,2)E =T (7, 0, 0)⊕ T (6, 1, 0)⊕ T (5, 2, 0)⊕ T (5, 1, 1)⊕ T (4, 3, 0)

⊕ T (4, 2, 1)⊕ T (3, 3, 1)⊕ T (3, 2, 2).
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• r = 8
Here λ = (3, 3, 2) and

ch Tr λE = ch (S̄3E ⊗ S̄3E ⊗ S̄2E)
= s3 · s3 · s2

= (s6 + s51 + s42 + s33)s2

= s8 + s71 + s62 + s71 + s62 + s611 + s53 + s521 + s62 + s53 + s521

+s44 + s431 + s422 + s53 + s431 + s332

= s8 + 2s71 + 3s62 + s611 + 3s53 + 2s521 + s44 + 2s431 + s422 + s332.

Here the issues are T (5, 3, 0) and T (5, 2, 1). With λT = (7, 1, 0) = (r − 1, 1, 0)
then λM = (p + 1 − 1, r − p − 1 + 1, 0) = (5, 3, 0). With λT = (6, 1, 1) =
(r−α, α−β, β) the λM = (p+α−β− 1, r− p−α+ 1, β) = (5, 2, 1) and both
s53 and s521 occur with a higher multiplicity than s71 and s611 respectively.
Hence

Tr (3,3,2)E =T (8, 0, 0)⊕ T (7, 1, 0)⊕ T (6, 2, 0)⊕ T (6, 1, 1)⊕ T (5, 3, 0)

⊕ T (5, 2, 1)⊕ T (4, 4, 0)⊕ T (4, 3, 1)⊕ T (4, 2, 2)⊕ (3, 3, 2).

• r = 9
Here λ = (3, 3, 3) and

ch Tr λE = ch (S̄3E ⊗ S̄3E ⊗ S̄3E)
= s3 · s3 · s3

= (s6 + s51 + s42 + s33)s3

= s9 + s81 + s72 + s63 + s81 + s72 + s711 + s63 + s621 + s54 + s531

+s72 + s63 + s621 + s54 + s531 + s522 + s441 + s432 + s63 + s531

+s432 + s333

= s9 + 2s81 + 3s72 + s711 + 4s63 + 2s621 + 2s54 + 3s531 + s522 + s441

+2s432 + s333.

The issues here are T (6, 3, 0) and T (5, 3, 1). With λT = (7, 2, 0) then λM =
(6, 3, 0) and with λT = (7, 1, 1) then λM = (5, 3, 1), and both s63 and s531

occur with a higher multiplicity than s72 and s711 respectively. Hence

Tr (3,3,3)E =T (9, 0, 0)⊕ T (8, 1, 0)⊕ T (7, 2, 0)⊕ T (7, 1, 1)⊕ T (6, 3, 0)

⊕ T (6, 2, 1)⊕ T (5, 4, 0)⊕ T (5, 3, 1)⊕ T (5, 2, 2)⊕ T (4, 4, 1)

⊕ T (4, 3, 2)⊕ T (3, 3, 3).

Thus for each degree p ≤ r ≤ 2p − 1, cf T (µ) ⊆ cf Tr λE ⊆ D3,p(r) for λ
minimal in r and T (µ) a tilting module of A(3, r), and hence D3,5(r) = A(3, r)
for p ≤ r ≤ 2p− 1.
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4.13 The proof for 2p ≤ r ≤ 3p− 1

AIM: We now move on to the next range, following similar methods to the
previous range and also using the Littlewood-Richardson Rule to prove Theo-
rem 4.1.3. As before, the general method for the proof is the same, in that we
need to show that the coefficient spaces of all tilting modules of A(π, r), for
π a saturated set, are contained within some tilting truncated module which
is contained in D3,p(r). Again we do this by comparing characters, or more
specifically multiplicities of Schur functions, dependent on where the weight
of these tilting modules sit in their core classes.

For the range 2p ≤ r ≤ 3p − 1 we split the proof into a number of different
parts.
• We first consider the range 2p ≤ r ≤ 3p− 3 and show;
i) That the cf (T (µ)), for µ highest or lowest in its core classes or self-titled,
is contained in cf (Tr λE) for λ the partition of minimal weight in r.
ii) The cf (T (σ)) for σ the second highest weight in the core class of the 3-set
or the 6-set is also contained in cf (Tr λE) for λ minimal in r, due to 4.10 c).
iii) The cf (T (ν)) for ν the third highest weight in the core class of the 6-set
is contained in cf (Tr λE) for λ minimal, due to a rather complicated reason
which will be explained at this point!
iv) The coefficient spaces of the tilting modules whose weights are fourth and
fifth highest in the core class of the 6-set are contained in the coefficient space

of the truncated module Tr λE = L(p − 1, p − 1, 0) ⊗ S̄
r−(2p−2)

2 E ⊗ S̄
r−(2p−2)

2 E

for r even and in Tr λE = L(p− 1, p− 1, 0)⊗ S̄
r−(2p−2)+1

2 E ⊗ S̄
r−(2p−2)−1

2 E for r
odd.

• We then consider the case r = 3p− 2 and show;
i) The cf (T (µ)), for µ highest or lowest in its core classes or self-titled, is
contained in cf (Tr λE) for Tr λE = L(p−1, 1, 0)⊗Sp−1E⊗Sp−1E which is the
lowest weight for degree r = 3p− 2. Moreover, the cf (T (σ)) for σ the second
highest weight in the core class of the 6-set is also contained in cf (Tr λE).
ii) The cf (T (σ)) for σ the second highest weight in the core class of the 3-set
which came from the self-titled weight λ where λ1 − λ3 < p − 2 is contained
in cf (Tr (p,p−1,p−1)E) = cf (L(p− 1, 1, 0)⊗ Sp−1E ⊗ Sp−1E).
iii) The cf (T (σ)) for σ the second highest weight in the core class of the
3-set where λ1 + p > t and λ1 − p < p − 1 is contained in cf (Tr λE) =
cf (L(p− 1, 1, 0)⊗ L(p− 1, 1, 0)⊗ S̄p−2E).
iv) For those weights sitting third, fourth and fifth in the core class of the 6-set
we can use the same result as for the case 2p ≤ r ≤ 3p− 3.

• We then consider the case r = 3p− 1 and show;
i) The cf (T (µ)), for µ highest or lowest in its core classes or self-titled, is
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contained in cf (Tr λE) for Tr λE = L(p−1, 1, 0)⊗L(p−1, 1, 0)⊗Sp−1E which
is the lowest weight for degree r = 3p − 2. Moreover, the cf (T (σ)) for σ the
second highest weight in their core classes of the 6-set is also contained in
cf (Tr λE).
ii) The cf (T (σ)) for σ the second highest weight in the core class of the 3-set
which came from the self-titled weight λ where λ1 − λ3 < p − 2 is contained
in cf (Tr (p,p,p−1)E) = cf (L(p− 1, 1, 0)⊗ L(p− 1, 1, 0)⊗ Sp−1E).
iii) The cf (T (σ)) for σ the second highest weight in the core class of the 3-set
where σ1− p < p− 1 is contained in cf (L(p− 1, 2, 0)⊗L(p− 1, 1, 0)⊗ S̄p−2E,
whilst the cf (T (σ)) for σ the second highest weight in the core class of the

3-set where σ1−p = p−1 is contained in cf (L(p−1, p−1, 1)⊗S p+1
2 E⊗S p−1

2 E).
iv) For those weights sitting third, fourth and fifth in the core class of the 6-set
we can use the same result as for the case 2p ≤ r ≤ 3p− 3.

Note that we use the results from Section 4.8 and Remark 2.4.3 (iii) to show
that all these truncated modules are indeed tilting.

CALCULATION 4.13.1 The case 2p ≤ r ≤ 3p− 3

i) We consider the tilting modules whose weights are at the top or bottom
of their p-core, or are self-titled, and show their coefficient spaces are con-
tained in the coefficient space of Tr λE for λ minimal in r.

PROPOSITION 4.13.2 For 2p ≤ r ≤ 3p−3, Λ+(3, r) has a unique minimal
element µ and µ1 ≤ p− 1.

Proof. Case 1) 3|r
In this case µ = ( r

3
, r

3
, r

3
) and as r ≤ 3p− 3 then 3p−3

3
≤ p− 1 as required.

Case 2) 3|r + 1
In this case µ = ( r+1

3
, r+1

3
, r+1

3
−1) and so we check that r+1

3
≤ p−1. The great-

est r can be such that 3 divides r+ 1 is r = 3p− 4 and indeed 3p−4+1
3

= p− 1
and thus r+1

3
≤ p− 1, and thus r+1

3
− 1 < p− 1.

Case 3) 3|r + 2
In this case µ = ( r+2

3
, r+2

3
− 1, r+2

3
− 1) and so we check that r+2

3
≤ p− 1. Here

the greatest r can be such that 3 divides r+ 2 is with r = 3p− 5 and we have
3p−5+2

3
= p− 1 and so r+2

3
≤ p− 1 and r+2

3
− 1 < p− 1.

THEOREM 4.13.3 For 2p ≤ r ≤ 3p−1 and |λ| = r then HomG(SµE,∇(λ)) 6=
0 where µ is the unique minimal element of Λ+(3, r), and hence L(λ) is a com-
position factor of SµE.
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Proof. From Proposition 4.13.2 we have clarified that for the three cases 3|r,
3|r + 1 and 3|r + 2, the truncated module we are using, Tr µE where µ is
minimal, is equal to Sµ1E ⊗ Sµ2E ⊗ Sµ3E where each SµiE is simple as µ1 ≤
p−1. Hence, irrelevant of the fact we are now in a greater range for the degree
r, we can still apply the proof of Theorem 4.12.2, to show that each L(λ) is a
composition factor of SµE.

COROLLARY 4.13.4 If λ is maximal in its core class then cf (T (λ)) ⊆
cf (SµE) where µ is the unique minimal element of Λ+(3, r).

Proof. Same as for Corollary 4.12.3.

THEOREM 4.13.5 For 2p ≤ r ≤ 3p− 1 and λ lowest in its core class, then
cf (T (λ)) ⊆ cf (SµE) for µ minimal in Λ+(3, r).

Proof. Same as for Theorem 4.12.4.

ii) We now consider those tilting modules whose weights are second highest in
their core classes of both the 3-set and the 6-set.

THEOREM 4.13.6 The cf (T (σ)) for σ the second highest weight in the
core class of either the 6-set or the 3-set, are contained in cf (Tr µE) for µ
minimal in each Λ+(3, r), due to Section 4.10. Namely that the Schur function
sσ for each tilting module T (σ) arises as a term in ch (Tr µE) with a higher
multiplicity than the Schur function sλ for λ > σ in the same core class.

Proof. As we are again using the truncated module Tr µE for µ minimal, where
each SµiE is simple due to µi ≤ p− 1, then we can use the work from Section
4.12 despite being in a larger degree range for r, and thus we know that;
• The character of the truncated module ch (Tr

r
3
, r
3
, r
3E) =

∑
aλsλ

where aλ =

{
λ2 + 1− λ3 for λ2 ≤ r

3

λ1 + 1− λ2 for λ2 >
r
3

• The character of the truncated module ch (Tr
r+1
3
, r+1

3
, r+1

3
−1E) =

∑
aλsλ

where aλ =

{
λ2 + 1− λ3 for λ2 ≤ r+1

3
− 1

λ1 + 1− λ2 for λ2 >
r+1

3
− 1

• The character of the truncated module ch (Tr
r+2
3
, r+2

3
−1, r+2

3
−1E) =

∑
aλsλ

where aλ =

{
λ2 + 1− λ3 for λ2 ≤ r+2

3
− 1

λ1 + 1− λ2 for λ2 >
r+2

3
− 1

We therefore need to ensure for both the 3-set and the 6-set, that the multi-
plicity aσ of the Schur function sσ is greater than aλ, where λ is the highest
weight in its core class and σ is the second highest weight in its core class.
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So, what do λ and σ look like? Well, let us first consider the 6-set. Refer-
ring back to Section 4.7, we have that λ = (λ1 + p, λ2, λ3) where the weight
(λ1, λ2, λ3) was the highest weight in the 3-set for the range p ≤ r ≤ 2p − 1.
We know that λ2 ≤ r

3
and thus aλ = λ2 + 1 − λ3. The second weight

σ = (λ2 + 2p − 1, λ1 − p + 1, λ3), and for the case where σ2 ≤ r
3
, ( r+1

3
− 1

and r+2
3
− 1 respectively), then aσ = (λ1 − p + 1) + 1 − (λ3). So we need to

check that aσ > aλ which is true if and only if λ1− λ2 > p− 1 which we know
to be true. If on the other hand, σ2 >

r
3
, ( r+1

3
− 1 and r+2

3
− 1 respectively)

then aσ = σ1 + 1 − σ2 = (λ2 + p − 1) + 1 − (λ1 − p + 1), which is greater
than aλ = λ2 + 1 − λ3 if and only if 3p > λ1 + 2 − λ3. Well, we know that
λ1 ≤ 2p− 3 and thus λ1 + 2− λ3 ≤ 2p− 1− λ3, so it is enough to show that
3p > 2p−1−λ3 which is true if and only if λ2 > −p−1 which is of course true.

Now let us consider the 3-set. In this case the highest weight in the core
class is µ = (λ1 + p, λ2, λ3) where here (λ1, λ2, λ3) was a self-titled weight in
the range p ≤ r1 ≤ 2p − 1 such that λ1 − λ3 < p − 2. We now prove that
µ2 = λ2 ≤ r

3
.

Suppose for a contradiction that λ2 >
r
3
, this holds if and only if λ1 +p+λ3 <

2r
3

, which holds if and only if 3λ1+3λ3+3p < 2r. We have that 2p ≤ r2 ≤ 3p−3
and so taking r2 = 3p − 3 would give that 3λ1 + 3λ3 < −3 which is clearly a
contradiction. Hence we have that λ2 ≤ r

3
, ( r+1

3
− 1 and r+2

3
− 1 respectively),

and thus aλ = λ2 + 1− λ3.
The second weight here is σ = (λ2 + p− 1, λ1 + 1, λ3), and in the case where
σ2 ≤ r

3
( r+1

3
− 1 and r+2

3
− 1 respectively) we have that aσ = (λ1 + 1) + 1−λ3,

so we must check that aσ > aλ, which is indeed true as λ1 ≥ λ2 and thus
λ1 + 2 > λ2 + 1 and hence λ1 + 2 − λ3 > λ2 + 1 − λ3. If, on the other hand,
σ2 >

r
3

( r+1
3
−1 and r+2

3
−1 respectively) then aσ = (λ2 +p−1) + 1− (λ1 + 1),

and as λ1−λ2 < p−2 then we have that aλ = λ2 +1−λ3 < λ2 +p−λ1−1 = aσ
as required.
We therefore have that in ch (Tr µE) for µ minimal, the Schur function sσ for
σ the second highest in its core class always arises with a higher multiplicity
than the Schur function sλ for λ highest in its core class. Therefore by 4.10
c), we have that cf (T (σ)) ⊆ cf (Tr µE).

iii) We now consider those tilting modules whose weights are third highest in
the core class of the 6-set. This tilting module arises as a composition factor
of a tilting module of higher weight which we have already shown occurs.
For notational purposes we shall call this ‘third’ weight (λ31, λ32, λ33) and the
weight above it (λ21, λ22, λ23).

THEOREM 4.13.7 The tilting module whose weight is third highest in the
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core class of the 6-set, T (λ31, λ32, λ33) has filtration structure

∇(λ31, λ32, λ32)

∇(σ1, σ2, σ3)

and T (λ21, λ22, λ23) has filtration structure

∇(λ21, λ22, λ23)

∇(λ31, λ32, λ33)

∇(τ1, τ2, τ3)

∇(σ1, σ2, σ3)

where ∇(σ1, σ2, σ3) = ∇(λ51, λ52, λ53) and ∇(τ1, τ2, τ3) = ∇(λ41, λ42, λ43) such
that λ31 > τ1 but λ32 < τ2.

Hence T (λ21, λ22, λ23) has filtration structure

∇(λ21.λ22, λ23)

∇(λ31, λ32, λ33)⊕∇(τ1, τ2, τ3)

∇(σ1, σ2, σ3)

and so we can also write this filtration structure of T (λ21, λ22, λ23) as

∇(λ21, λ23, λ23)

∇(τ1, τ2, τ3)

∇(λ31, λ32, λ33)

∇(σ1, σ2, σ3)

where

∇(λ31, λ32, λ33)

∇(σ1, σ2, σ3)

is a non-split extension at the bottom of T (λ21, λ22, λ23) and so must be
T (λ31, λ32, λ33).

Hence we have that T (λ21, λ22, λ23) has filtration structure

∇(λ21, λ22, λ23)

∇(τ1, τ2, τ3)

T (λ31, λ32, λ33)
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And as we have already found the tilting module T (λ21, λ22, λ23) in Theorem
4.13.6 then cf (T (λ31, λ32, λ33)) ⊆ cf (T (λ21, λ22, λ23)) ⊆ cf (Tr λE) ⊆ D3,p(r)
for all primes p and λ minimal in degree r for 2p ≤ r ≤ 3p− 3.

Proof of Theorem 4.13.7. We first show that T (λ31, λ32, λ33) has filtration
structure

∇(λ31, λ32, λ33)

∇(σ1, σ2, σ3)

and T (λ21, λ22, λ23) has filtration structure

∇(λ21, λ22, λ23)

∇(λ31, λ32, λ33)

∇(τ1, τ2, τ3)

∇(σ1, σ2, σ3)

Let us first understand what these tilting modules look like. Well, for p ≤
r ≤ 2p − 1, let (λ1T , λ2T , λ3T ) be the partition at the top of its p-core.
Then by 4.7 we have (λ1M , λ2M , λ3M) = (λ2T + p − 1, λ1T − p + 1, λ3T ) and
(λ1B, λ2B, λ3B) = (λ3T + p− 2, λ1T − p+ 1, λ2T + 1). Thus for 2p ≤ r ≤ 3p− 3
we have;

(λ11, λ12, λ13) = (λ1T + p, λ2T , λ3T )
(λ21, λ22, λ23) = (λ2T + 2p− 1, λ1T − p+ 1, λ3T )
(λ31, λ32, λ33) = (λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1)
(λ41, λ42, λ43) = (λ1T , λ2T + p, λ3T )
(λ51, λ52, λ53) = (λ1T , λ3T + p− 1, λ2T + 1)
(λ61, λ62, λ63) = (λ2T + p− 1, λ3T + p− 1, λ1T − p+ 2)

CLAIM 4.13.8 ∇(σ1, σ2, σ3) = ∇(λ51λ52, λ53)

Proof of Claim 4.13.8. To prove this we use Fact 4.9.10 to show that
T (λ21, λ22, λ23) ∼= I(λ51, λ52, λ53) and hence ∇(λ51, λ52, λ53) sits at the bottom
of the tilting module T (λ21, λ22, λ23). We consider this in stages by applying
the Mullineux Bijection.
i) Considers where λT is equal to partitions of the form (λ1T , a, 0) where a ≥ 0.
ii) Considers where λT is equal to partitions of the form (λ1T , a, 1) where a ≥ 1.
iii) Considers where λT is equal to partitions of the form (λ1T , a, 2) where a ≥ 2.
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iv) Then looks to find the greatest that λ3T can be which is found in Claim
4.13.9 to be p−1

3
when 3|p−1 and p−2

3
when 3|p−2. So we apply the Mullineux

Bijection to these final two cases.
Having done this we then show that ∇(λ51, λ52, λ53) is a composition factor of
T (λ31, λ32, λ33) by calculating (T (λ31, λ32, λ33) : ∇(λ51, λ52, λ53)).

We have (λ51, λ52, λ53) = (λ1T , λ3T + p − 1, λ2T + 1). We now want to show
that we can use Fact 4.9.10 and so check the following;
Firstly, λ1T ≤ 2p− 3 < 2p− 2 = (n− 1)(p− 1).
Secondly,

λ51 − λ52 = λ1T − λ3T − p+ 1 ≤ 2p− 3− λ3T − p+ 1

= p− λ3T − 2

< p

and

λ52 − λ53 = λ3T + p− 1− λ2T − 1

< p

because λ3T − λ2T − 2 < 0 as λ2T ≥ λ3T . We can therefore apply Fact 4.9.10
and say that
I(λ1T , λ3T + p− 1, λ2T + 1) ≡ T (Mull(λ1T , λ3T + p− 1, λ2T + 1)′)

≡ T (Mull(3, 3, . . . , 3︸ ︷︷ ︸
λ2T+1

, 2, 2, . . . , 2︸ ︷︷ ︸
λ3T−λ2T+p−2

, 1, 1, . . . , 1︸ ︷︷ ︸
λ1T−λ3T−p+1

))

We therefore have to apply the Mullineux bijection to;

x

...
xx
xx

...
xxxxxxx

...
xxxxxx

λ2T + 1

λ3T − λ2T + p− 2

λ1T − λ3T − p+ 1

Well (λ3T−λ2T +p−2)−(p−(λ2T +2)) = λ3T , so what remains after removing
a rim p-hook is;
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x

...
xx
xx

...
xxxxxx

...
xxxxxxxx

...
xxxxxx

λ3T

λ1T − λ3T − p+ 1

Now we know that λ3T < p as otherwise λ1T + λ2T + λ3T ≥ 4p which is a
contradiction as 2p ≤ r ≤ 3p − 3. So when we move to the next row we take
off λ3T + 1 + µ where µ is some number of nodes from the final single line to
create an edge of length at most p. We then move down each row removing
the single x’s.
Then what remains of the first column is (λ2T + 1) + (λ3T −λ2T + p− 2)− 1 =
λ3T + p− 2, and what remains of the second column is (λ2T + 1)− 1 = λ2T .

x

...
xx
xx

...
xxxx

λ2T

λ3T − λ2T + p− 2

We continue to remove Mullineux p-hooks until we result in the empty set,
and then start rebuilding the partition using si = ai − ri + εi. So we now go
about looking at the different cases that arise when reconstructing the new
partition dependent upon the values of λ2T and λ3T , and prove in every case
that I(λ51, λ52, λ53) ∼= T (λ21, λ22, λ23).
i)
• For λ3T + p− 1 = p− 1 and λ2T + 1 = 1, λ3T = 0 then λT = (λ1T , 0, 0). So
we apply the Mullineux Bijection to;

λ1T − (p− 1)

p− 1

1
1

Which becomes

λ1T − (p− 1)

p− 1 p
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as a− r + ε = (p+ λ1T − p+ 1)− (λ1T ) + 1 = 2.
Then

I(λ1T , λ3T + p− 1, λ2T + 1) ∼= T (2p− 1, λ1T − (p− 1), 0)

= T (λ2T + 2p− 1, λ1T − p+ 1, λ3T )

= T (λ21, λ22, λ23)

as required.

• For λ3T +p−1 = p−1 and λ2T +1 = 2, λ3T = 0 then we have λT = (λ1T , 1, 0).
So we apply the Mullineux bijection to;

λ1T − (p− 1)

p

p

Which becomes;

λ1T − (p− 1)

p p

as a1−r1+ε1 = (p+λ1T−p+1)−(λ1T )+1 = 2 and a2−r2+ε2 = p−(p−1)+0 = 1.
Then I(λ1T , λ3T + p − 1, λ2T + 1) ∼= T (2p, λ1T − (p − 1), 0) = T (λ21, λ22, λ32)
as required.

• For λ3T + p− 1 = p− 1 and λ2T + 1 = 3, λ3T = 0 then λT = (λ1T , 2, 0). So
we apply the Mullineux Bijection to;

λ1T − (p− 1)

1

p

Which becomes;
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λ1T − (p− 1)

1 p p

as a1−r1+ε1 = (p+λ1T−p+1)−(λ1T )+1 = 2 and a2−r2+ε2 = p−(p−1)+0 = 1.
Then I(λ1T , λ3T + p − 1, λ2T ) ∼= T (2p − 1, λ1T − (p − 1), 0) = T (λ21, λ22, λ23)
as required.

And so on for λ3T +p−1 = p−1 and λ2T +1 = α, so with λT = (λ1T , α−1, 0).

ii)
• For λ3T + p − 1 = p, λ2T + 1 = 1 and λ3T = 1 then λT = (λ1T , 1, 1), so we
apply the Mullineux Bijection to

λ1T − (p− 1)

p

2 1

2

1

Which becomes;

1

p p

λ1T − p+ 1

as a1 − r1 + ε1 = (p + λ1T − p + 1 + 1) − (λ1T ) + 1 = 3 and a2 − r2 + ε2 =
p− (p− 1) + 0 = 1.
So I(λ1T , λ3T + p − 1, λ2T + 1) ∼= T (2p, λ1T − (p − 1), 1) = T (λ21, λ22, λ23) as
required.

• For λ3T + p − 1 = p, λ2T + 1 = 3 and λ3T = 1 then λT = (λ1T , 2, 1),
and we apply the Mullineux Bijection to;
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λ1T − (p− 1)

1

p

1

Which becomes;

λ1T − (p− 1)

1 p p

as a1 − r1 + ε1 = (p + λ1T − p + 1 + 1) − (λ1T ) + 1 = 3 and a2 − r2 + ε2 =
p− (p− 1) + 0 = 1.
So I(λ1T , λ3T + p− 1, λ2T + 1) ∼= T (2p+ 1, λ1T − (p− 1), 1) = T (λ21, λ22, λ23)
as required.

And so on for λ3T +p−1 = p, λ2T +1 = α and λ3T = 1, so with (λ1T , α−1, 1).

iii) For λ3T + p − 1 = p + 1, λ2T + 1 = 3 and λ3T = 2, so we apply the
Mullineux Bijection to;

λ1T − p

1 1

p

21

which becomes;

1

1 p p

λ1T − p
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as a1−r1+ε1 = (p+λ1T−p+2)−(λ1T )+1 = 3 and a2−r2+ε2 = p+1−(p)+1 = 2.
So I(λ1T , λ3T + p− 1, λ2T + 1) ∼= T (2p+ 1, λ1T − p+ 1, 2) = T (λ21, λ22, λ23)

iv) To conclude this we need to understand what is the most λ3T can be.

CLAIM 4.13.9 a) For 3 | p− 1, 0 ≤ λ3T ≤ p−1
3

,

b) For 3 | p− 2, 0 ≤ λ3T ≤ p−2
3

.

of Claim 4.13.9.
a) If λ3T = p−1

3
then λ2T ≥ p−1

3
and as λ1T − λ2T ≥ p then λ1T ≥ p−1

3
+ p and

thus λ1T + λ2T + λ3T ≥ 2p − 1, so taking equalities throughout we have the
largest r can be as p ≤ r ≤ 2p− 1.
On the other hand, if we took λ3T = p−1

3
+ 1 then λ2T ≥ p−1

3
+ 1 and

λ1T ≥ p−1
3

+1+p and therefore λ1T+λ2T+λ3T ≥ 2p+2 which is a contradiction.

b) The proof is similar for 3 | p − 2. If λ3T = p−2
3

then λ2T ≥ p−2
3

and as

λ1T −λ2T ≥ p then λ1T ≥ p−2
3

+p and thus λ1T +λ2T +λ3T ≥ 2p−2, so taking
equalities we have the largest r can be.
On the other hand, if we took λ3T = p−2

3
+ 1 then λ2T ≥ p−2

3
+ 1 and

λ1T ≥ p−2
3

+ 1 + p and therefore λ1T + λ2T + λ3T ≥ 2p + 1 which is a contra-
diction.

So, returning to the proof of Claim 4.13.8, we have that the final case to
consider is
a) λ3T + p − 1 = 4p−4

3
and λ2T + 1 = p+2

3
so r = 2p − 1 and we have

(4p−1
3
, 4p−4

3
, p+2

3
), then we can then remove Mullineux rim p-hooks from the

transpose as follows;

1

1 1

p

p−1
3

p−4
3

p−4
3

Then as s1 = (p+ p−4
3

)−(p+ p−7
3

)+1 = 2 and s2 = (p+ p+5
3

)−(p+ p−1
3

)+1 = 3
then rebuilding the partition we have
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1

p−4
3 p p

p−1
3

giving
I(λ1T , λ3T + p− 1, λ2T + 1) ∼= T (2p+ p−4

3
, p−1

3
+ 1, p−1

3
)

= T (p−1
3

+ 2p− 1, 4p−1
3
− p+ 1, p−1

3
)

= T (λ2T + 2p− 1, λ1T − p+ 1, λ3T )

b) λ3T + p − 1 = 4p−5
3

and λ2T + 1 = p+1
3

so r = 2p − 1 and we have

(4p+1
3
, 4p−5

3
, p+1

3
). Then we can then remove Mullineux rim p-hooks from the

transpose as follows;

2

1 1

p

p−2
3

p−5
3

p−5
3

Then as s1 = (p+ p−5
3

)−(p+ p−8
3

)+1 = 2 and s2 = (p+ p+4
3

)−(p+ p+1
3

)+1 = 3
then rebuilding the partition we have

1

p−5
3 p p

p−2
3

giving
I(λ1T , λ3T + p− 1, λ2T + 1) ∼= T (2p+ p−6

3
, p−2

3
+ 1, p−2

3
)

= T (p−2
3

+ 2p− 1, 4p−2
3
− p+ 1, p−2

3
)

= T (λ2T + 2p− 1, λ1T − p+ 1, λ3T )

Thus I(λ51, λ52, λ53) ∼= T (λ21, λ22, λ23) and thus we know the tilting module
T (λ21, λ22, λ23) has filtration structure

∇(λ21, λ22, λ23)
...

∇(λ51, λ52, λ53)

Secondly we need to show that ∇(λ51, λ52, λ53) is a composition factor of
T (λ31, λ32, λ33). Well, T (λ31, λ32, λ33) = (λ3T + 2p − 2, λ1T − p + 1, λ2T + 1)
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and ∇(λ51, λ52, λ53) = (λ1T , λ3T + p− 1, λ2T + 1).
The (T (λ31, λ32, λ33) : ∇(λ51, λ52, λ53))
= (T (λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1) : ∇(λ1T , λ3T + p− 1, λ2T + 1))
= (T (λ3T+2p−λ2T−3, λ1T−p−λ2T , 0) : ∇(λ1T−λ2T−1, λ3T+p−λ2T−2, 0))GL3

= (T (λ3T −2p−λ2T −3, λ1T −p−λ2T ) : ∇(λ1T −λ2T −1, λ3T +p−λ2T −2))GL2

= (T (λ3T+2p−λ2T−3−(λ1T−p−λ2T )) : ∇(λ1T−λ2T−1−(λ3T+p−λ2T−2)))SL2

= (T (λ3T − λ1T + 3p− 3) : ∇(λ1T − λ3T − p+ 1))SL2

And from SL2 we know T (p− 1 + r) has filtration structure

∇(p− 1 + r)

∇(p− 1− r)

Here T (p− 1 + r) = T (p− 1 + (λ3T −λ1T + 2p− 2)) and thus T (p− 1 + r) has
filtration structure

∇(λ3T − λ1T + 3p− 3)
∇(λ1T − λ3T − p+ 1)

Therefore T (λ31, λ32, λ33) has filtration structure

∇(λ31, λ32, λ33)

∇(λ51, λ52, λ53)

and indeed ∇(σ1, σ2, σ3) = ∇(λ51, λ52, λ53)

CLAIM 4.13.10 The tilting module whose weight is second highest in the
core class of the 6-set, T (λ21, λ22, λ23), has filtration structure

∇(λ21, λ22, λ23)

∇(λ31, λ32, λ33)

∇(λ41, λ42, λ43)

∇(λ51, λ52, λ53)

Proof. We have ∇(λ21, λ22, λ23) naturally at the top and Claim 4.13.8 proved
that we have ∇(λ51, λ52, λ53) at the bottom. So we need to show that
(T (λ21, λ22, λ23) : ∇(λ31, λ32, λ33)) 6= 0 and (T (λ21, λ22, λ23) : ∇(λ41, λ42, λ43)) 6=
0.

Well,
(T (λ21, λ22, λ23) : ∇(λ31, λ32, λ33))
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= (T (λ2T + 2p− 1, λ1T − p+ 1, λ3T ) : ∇(λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1))GL3

= (T (λ2T + 2p− 1− λ1T + p− 1, λ1T − p+ 1− λ3T ) : ∇(λ3T + 2p− 2− λ1T +
p− 1, λ1T − p+ 1− λ2T − 1))SL3

= (T (λ2T−λ1T+3p−2, λ1T−λ3T−p+1) : ∇(λ3T−λ1T+3p−3, λ1T−λ2T−p))SL3

= (T (λ2T − λ1T + 3p− 2− λ1T + λ3T + p− 1) : ∇(λ3T − λ1T + 3p− 3− λ1T +
λ2T + p))SL2

= (T (λ2T + λ3T − 2λ1T + 4p− 3) : ∇(λ2T + λ3T − 2λ1T + 4p− 3))SL2

= 1

Similarly,
(T (λ21, λ22, λ23) : ∇(λ41, λ42, λ43))
= (T (λ2T + 2p− 1, λ1T − p+ 1, λ3T ) : ∇(λ1T , λ2T + p, λ3T ))GL3

= (T (λ2T + 2p− 1− λ3T , λ1T − p+ 1− λ3T ) : ∇(λ1T − λ3T , λ2T + p− λ3T ))GL2

= (T (λ2T +2p−1−λ3T −λ1T +p−1+λ3T ) : ∇(λ1T −λ3T −λ2T −p+λ3T ))SL2

= (T (λ2T + 3p− 2− λ1T ) : ∇(λ1T − λ2T − p))SL2

And T (p − 1 + r) = T (p − 1 + (λ2T + 2p − 1 − λ1T )) has filtration struc-
ture

∇(p− 1 + (λ2T + 2p− 1− λ1T )

∇(p− 1− (λ2T + 2p− 1− λ1T ))

which we can write

∇(λ2T + 3p− 2− λ1T )

∇(λ1T − λ2T − p).

Thus T (λ21, λ22, λ23) has filtration structure

∇(λ21, λ22, λ23)

∇(λ31, λ32, λ33)

∇(λ41, λ42, λ43)

∇(λ51, λ52, λ53)

CLAIM 4.13.11 We can actually write the filtration structure of T (λ21, λ22, λ23)
as

∇(λ21, λ22, λ23)

∇(λ41, λ42, λ43)

∇(λ31, λ32, λ33)

∇(λ51, λ52, λ53)
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Proof. Consider T0 = 0, T1
∼= ∇(λ51, λ52, λ53), T2/T1

∼= ∇(λ41, λ42, λ43),
T3/T2

∼= ∇(λ31, λ32, λ33) and T4/T3
∼= ∇(λ21, λ22, λ23).

Then
T3/T1

∼= ∇(λ31, λ32, λ33)
∇(λ41, λ42, λ43)

= ∇(λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1)
∇(λ1T , λ2T + p, λ3T )

Now suppose λ1T−p+1 ≥ λ2T+p ⇒ λ1T−λ2T ≥ 2p−1. As λ1T+λ2T+λ3T = r
for p ≤ r ≤ 2p− 1 then λ1T − λ2T ≯ 2p− 1. So suppose λ1T − λ2T = 2p− 1,
then λT = (2p − 1, 0, 0) and (λ1T + p, λ2T , λ3T ) = (3p − 1, 0, 0) > (t, 0, 0) so
referring back to our classification of core classes, for r = 2p − 1 we have the
core class
(2p− 1, 0, 0)
(p− 1, p− 1, 0).

So, when finding the new partitions for r = 3p− 1 with p-core (p− 1, 0, 0) we
have only
(2p− 1, p, 0)
(2p− 1, p− 1, 1)
(2p− 1, p, 1)

and so in this case (λ31, λ32, λ33) actually sits at the bottom of its core class,
as we have only a 3-set, and thus is not relevant to the case we are at the
moment considering. We can therefore assume that λ1T −λ2T 6= 2p− 1 and so
λ1T −p+1 < λ2T +p. However, as λ2T ≥ λ3T then λ2T +1 > λ3T . Hence we in
fact have T3/T1

∼= ∇(λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1)⊕∇(λ1T , λ2T + p, λ3T )
and so we can write

T3/T1
∼= ∇(λ1T , λ2T + p, λ3T )
∇(λ3T + 2p− 1, λ1T − p+ 1, λ2T + 1)

= ∇(λ41, λ42, λ43)
∇(λ31, λ32, λ33)

And so we have that T (λ21, λ22, λ23) has filtration structure

∇(λ21, λ22, λ23)

∇(λ41, λ42, λ43)

∇(λ31, λ32, λ33)

∇(λ51, λ52, λ53)
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CLAIM 4.13.12

∇(λ31, λ32, λ33)

∇(λ51, λ52, λ53)

is a non-split extension at the bottom of T (λ21, λ22, λ23) and thus must be the
tilting module T (λ31, λ32, λ33).

Proof. 1) Consider the case where λ32 = λ33. We have Tr λE = ⊕I(µ)(dµ)

where dµ = dim HomG(L(µ),Tr λE) = dim L(µ)λ. Then taking λ to be the
lowest weight for each degree r then we go back to our three cases:

i) 3|r
Then λT = ( r

3
, r

3
, r

3
) and so

dim L(λ31, λ32, λ33)( r
3
, r
3
, r
3

)

= dim L(λ3T + 2p− 1, λ1T − p+ 1, λ1T − p+ 1)(η,η,η)

= dim L(λ3T + 2p− 2− λ1T + p− 1, 0, 0)(ζ,ζ,ζ)

= dim L(λ3T − λ1T + 3p− 3, 0)(0,0)

where η = λ1T+λ2T+λ3T+p
3

and ζ = λ2T+λ3T−2λ1T+4p−3
3

.
Now, we have p ≤ r ≤ 2p − 3 ⇒ p ≤ λ1T − λ2T ≤ 2p − 3 ⇒ p ≤
λ1T − λ3T ≤ 2p − 3 as λ2T ≥ λ3T . So, λ1T − λ3T ≤ 2p − 3 ⇒ λ3T − λ1T ≥
3 − 2p ⇒ λ3T − λ1T + 3p − 3 ≥ p. Hence L(λ3T − λ1T + 3p − 3, 0) =
L(λ3T − λ1T + 2p− 3, 0)⊗ L(1, 0)F .
L0(1, 0) = E ↓SL3 and has GL weights (1, 0, 0), (0, 1, 0), (0, 0, 1) thus giving
SL weights (1, 0), (−1, 1), (0,−1) and so L0(1, 0)F has weights (p, 0), (−p, p)
and (0,−p).
Now, suppose (α1, α2) is a weight of L(λ3T−λ1T +2p−3, 0) then L(λ3T−λ1T +
3p− 3) has weights (α1, α2) + (p, 0), (α1, α2) + (−p, p) and (α1, α2) + (0,−p).
Suppose
(α1, α2) + (p, 0) = (0, 0) then (α1, α2) = (−p, 0)
(α1, α2) + (−p, p) = (0, 0) then (α1, α2) = (p,−p)
(α1, α2) + (0,−p) = (0, 0) then (α1, α2) = (0, p)
This would imply L(λ3T−λ1T +2p−3, 0) has a weight of at least p. So suppose
λ3T − λ1T + 2p− 3 ≥ p ⇒ λ3T − λ1T ≥ −p+ 3 ⇒ λ1T − λ3T ≤ p− 3 which
is a contradiction as p ≤ λ1 − λ3 ≤ 2p− 3.
Thus L(λ3T − λ1T + 3p− 3, 0) cannot have a weight (0, 0), so
dim L(λ31, λ32, λ33)( r

3
, r
3
, r
3

) = 0 and thus L(λ31, λ32, λ33) does not occur in the so-
cle of S̄

r
3E⊗S̄ r

3E⊗S̄ r
3E and so dim HomG(L(λ31, λ32, λ33), S̄

r
3⊗S̄ r

3E⊗S̄ r
3E) =

0. Therefore ∇(λ31, λ32, λ33) does not embed in S̄
r
3 ⊗ S̄ r

3E⊗ S̄ r
3E and so there

is a non-split extension

∇(λ31, λ32, λ33)

∇(λ51, λ52, λ53)

144



at the bottom of T (λ21, λ22, λ23) which must be the tilting module T (λ31, λ32, λ33).

Hence cf (T (λ31, λ32, λ33)) ⊆ cf (T (λ21, λ22, λ23)) ⊆ cf (S̄
r
3E ⊗ S̄ r

3E ⊗ S̄ r
3E) ⊆

D3,p(r).

ii) 3|r + 1
The same method occurs, except here λT = ( r+1

3
, r+1

3
, r+1

3
− 1). So

dim L(λ31, λ32, λ33)( r+1
3
, r+1

3
, r+1

3
−1)

= dim L(λ3T + 2p− 2, λ1T − p+ 1, λ1T − p+ 1)( r+1
3
, r+1

3
, r+1

3
−1)

= dim L(λ3T − λ1T + 3p− 3, 0)(0,1).
So suppose
(α1, α2) + (p, 0) = (0, 1) then (α1, α2) = (−p, 1)
(α1, α2) + (−p, p) = (0, 1) then (α1, α2) = (p,−p+ 1)
(α1, α2) + (0,−p) = (0, 1) then (α1, α2) = (0, p+ 1).
So again L(λ3T −λ1T +2p−3, 0) would need to have weight of at least p, which

we know is not possible. Hence L(λ31, λ32, λ33)( r+1
3
, r+1

3
, r+1

3
−1) = 0 and using

the same method as for 3| r then cf (T (λ31, λ32, λ33)) ⊆ cf (T (λ21, λ22, λ23)) ⊆
cf (S̄

r+1
3 ⊗ S̄ r+1

3 E ⊗ S̄ r+1
3
−1E) ⊆ D3,p(r).

iii) 3|r + 2
Here λT = ( r+2

3
, r+2

3
− 1, r+2

3
− 1). So

dim L(λ31, λ32, λ33)( r+2
3
, r+2

3
−1, r+2

3
−1) = dim L(λ3T − λ1T + 3p− 3, 0)(1,0).

So suppose
(α1, α2) + (p, 0) = (1, 0) then (α1, α2) = (1− p, 0)
(α1, α2) + (−p, p) = (1, 0) then (α1, α2) = (p+ 1,−p)
(α1, α2) + (0,−p) = (1, 0) then (α1, α2) = (1, p).
So again L(λ3T −λ1T +2p−3, 0) would need to have weight of at least p, which

we know is not possible. Hence L(λ31, λ32, λ33)( r+2
3
, r+2

3
−1, r+2

3
−1) = 0 and so

cf (T (λ31, λ32, λ33)) ⊆ cf (T (λ21, λ22, λ23)) ⊆ cf (S̄
r+2
3 ⊗ S̄ r+2

3
−1E ⊗ S̄ r+2

3
−1E) ⊆

D3,p(r).

2) Consider the case where λ32 > λ33

i) 3|r
Then λT = ( r

3
, r

3
, r

3
) and so dim L(λ31, λ32, λ33)( r

3
, r
3
, r
3

)

= dim L(λ3T + 2p− 1, λ1T − p+ 1, λ2T + 1)(
∑3
i=1 λiT+p

3
,
∑3
i=1 λiT+p

3
,
∑3
i=1 λiT+p

3
)

= dim L(λ3T + 2p− 2− λ1T + p− 1, λ1T − p+ 1− λ2T + 1)(0,0)

= dim L(λ3T − λ1T + 3p− 3, λ1T − λ2T − p)(0,0)

Now, L(λ3T − λ1T + 3p− 3, λ1T − λ2T − p)
= L(λ3T−λ1T+2p−3, λ1T−λ2T−p)⊗L(1, 0)F , which has weights (p, 0), (−p, p)
and (0,−p).

145



Now, suppose (α1, α2) is a weight of L(λ3T −λ1T + 2p− 3, λ1T −λ2T − p) then
L(λ3T−λ1T+3p−3, λ1T−λ2T−p) has weights (α1, α2)+(p, 0), (α1, α2)+(−p, p)
and (α1, α2) + (0,−p).
Suppose
(α1, α2) + (p, 0) = (0, 0) then (α1, α2) = (−p, 0)
(α1, α2) + (−p, p) = (0, 0) then (α1, α2) = (p,−p)
(α1, α2) + (0,−p) = (0, 0) then (α1, α2) = (0, p)
This would imply L(λ3T −λ1T + 2p− 3, λ1T −λ2T − p) has a weight of at least
p. Now, we know that λ3T − λ1T + 2p− 3 < p, so what about λ1T − λ2T − p?
Well λ1T − λ2T − p ≥ p if and only if λ1T ≥ 2p+ λ2T . However we know that
λ1T ≤ 2p− 4 and thus we have a contradiction.
Thus L(λ3T − λ1T + 3p − 3, λ1T − λ2T − p) cannot have a weight (0, 0), so
dim L(λ31, λ32, λ33)( r

3
, r
3
, r
3

) = 0 and thus L(λ31, λ32, λ33) does not occur in the
socle of S̄

r
3E⊗S̄ r

3E⊗S̄ r
3E and so dim HomG(L(λ31, λ32, λ33), S̄

r
3⊗S̄ r

3E⊗S̄ r
3E).

Therefore ∇(λ31, λ32, λ33) does not embed in S̄
r
3 ⊗ S̄ r

3E⊗ S̄ r
3E and so there is

a non-split extension

∇(λ31, λ32, λ33)

∇(λ51, λ52, λ53)

at the bottom of T (λ21, λ22, λ23) which must be the tilting module T (λ31, λ32, λ33).

Hence cf (T (λ31, λ32, λ33)) ⊆ cf (T (λ21, λ22, λ23)) ⊆ cf (S̄
r
3 ⊗ S̄

r
3E ⊗ S̄

r
3E) ⊆

D3,p(r).

ii) 3|r + 1
The same method occurs, except here λT = ( r+1

3
, r+1

3
, r+1

3
− 1). So

dim L(λ31, λ32, λ33)( r+1
3
, r+1

3
, r+1

3
−1)

= dim L(λ3T + 2p− 2, λ1T − p+ 1, λ2T + 1)( r+1
3
, r+1

3
, r+1

3
−1)

= dim L(λ3T − λ1T + 3p− 3, λ1T − λ2T − p)(0,1).
So suppose
(α1, α2) + (p, 0) = (0, 1) ⇒ (α1, α2) = (−p, 1)
(α1, α2) + (−p, p) = (0, 1) ⇒ (α1, α2) = (p,−p+ 1)
(α1, α2) + (0,−p) = (0, 1) ⇒ (α1, α2) = (0, p+ 1).
So again L(λ3T − λ1T + 2p− 3, λ1T − λ2T − p) would need to have weight of at
least p, which we know is not possible.
Hence L(λ31, λ32, λ33)( r+1

3
, r+1

3
, r+1

3
−1) = 0 and using the same method as for 3|r

then cf (T (λ31, λ32, λ33)) ⊆ cf (T (λ21, λ22, λ23)) ⊆ cf (S̄
r+1
3 S̄

r+1
3 E⊗ S̄ r+1

3
−1E) ⊆

D3,p(r).

iii) 3|r + 2

Here λT = ( r+2
3
, r+2

3
− 1, r+2

3
− 1). So dim L(λ31, λ32, λ33)( r+2

3
, r+2

3
−1, r+2

3
−1) =
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dim L(λ3T − λ1T + 3p− 3, λ1T − λ2T − p)(1,0).
So suppose
(α1, α2) + (p, 0) = (1, 0) ⇒ (α1, α2) = (1− p, 0)
(α1, α2) + (−p, p) = (1, 0) ⇒ (α1, α2) = (p+ 1,−p)
(α1, α2) + (0,−p) = (1, 0) ⇒ (α1, α2) = (1, p).
So again L(λ3T − λ1T + 2p − 3, 0) would need to have weight of at least p,
which we know is not possible.
Hence L(λ31, λ32, λ33)( r+2

3
, r+2

3
−1, r+2

3
−1) = 0 and so

cf (T (λ31, λ32, λ33)) ⊆ cf (T (λ21, λ22, λ23)) ⊆ cf (S̄
r+2
3 S̄

r+2
3
−1E ⊗ S̄ r+2

3
−1E)

⊆ D3,p(r).

Thus in all cases we have that the coefficient space of the third highest tilting
module in the core class of the 6-set for 2p ≤ r ≤ 3p is contained in the coef-
ficient space of the lowest weighted tilting truncated module which is itself a
subset of D3,p(r).

iv) We now consider those tilting modules whose weights are fourth and
fifth highest in the core class which is a 6-set, that which we have notated
(λ41, λ42, λ43) and (λ51, λ52, λ53).

THEOREM 4.13.13 The cf (T (λ41, λ42, λ43)) and cf (T (λ51, λ52, λ53)) are con-

tained in cf (L(p− 1, p− 1, 0)⊗ S
r−(2p−2)

2 E ⊗ S
r−(2p−2)

2 E) ⊆ D3,p(r) for r even.
The cf (T (λ41, λ42, λ43)) and cf (T (λ51, λ52, λ53)) are contained in

cf (L(p− 1, p− 1, 0)⊗ S
r−(2p−2)+1

2 E ⊗ S
r−(2p−2)−1

2 E) ⊆ D3,p(r) for r odd.

The case where r is even

EXAMPLE 4.13.14 Let p = 7 and r = 18, then we calculate

ch (Tr 12,3,3E) = ch (L(6, 6, 0)⊗ S3E ⊗ S3E)
= (s66 · s3) · s3

= (s960 + s861 + s762 + s663)s3

= (s12,6 + s11,7 + s11,6,1 + s10,8 + s10,7,1 + s10,6,2 + s99 + s981

+s972 + s963) + (s11,6,1 + s10,7,1 + s10,6,2 + s981 + s972+
s963 + s882 + s873 + s864) + (s10,6,2 + s972 + s963 + s873+
s864 + s774 + s765) + (s963 + s864 + s765 + s666)

We can display this result, with multiplicities, as follows;
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1s12,6

1s11,7 2s11,6,1

1s10,8 2s10,7,1 3s10,6,2

1s99 2s981 3s972 4s963

1s882 2s873 3s864

1s774 2s765

1s666

Proof. By 4.10 c), when proving this, it is enough to show that the Schur func-
tion corresponding to the weights which are fourth highest in the core class of
the 6-set arise at least once in the character of the above truncated module,
and that no Schur function corresponding to a weight which is higher in the
same core class, also arises.
So let us first consider what a typical term sσ looks like when it arises in the
ch (L(p−1, p−1, 0)⊗SαE⊗SαE), where α = r2−(2p−2)

2
and 2p ≤ r2 ≤ 3p−3.

Well if σ = (σ1, σ2, σ3), then using the Littlewood-Richardson Rule we have
that p − 1 ≤ σ1 ≤ p − 1 + 2α, p − 1 ≤ σ2 ≤ p − 1 + α and 0 ≤ σ3 ≤ 2α,
where σ1 + σ2 + σ3 = 2p − 2 + 2α = r2. Now, let us consider a weight λ
which is fourth highest in the core class of the 6-set. By Section 4.7 we know
that λ = (λ1, λ2 + p, λ3) where (λ1, λ2, λ3) was the highest weight in the core
class of the 3-set for the range p ≤ r1 ≤ 2p − 1. Now, clearly, we have that
λ1 + (λ2 + p) + λ3 = r2, so we need to check the following;

1) Is p− 1 ≤ λ1 ≤ p− 1 + 2α?
Well, clearly λ1 ≥ p as p ≤ r1 ≤ 2p− 3, so indeed λ1 ≥ p− 1.
Now as λ1 ≤ r1, then it is enough to check that r1 ≤ p− 1 + 2α which is true
if and only if r1 ≤ 2p− 2, which we know to be true as we are considering the
range where λ1 ≤ 2p− 3.

2) Is p− 1 ≤ λ2 + p ≤ p− 1 + α?
Well, λ2 ≥ 0 and thus λ2 + p ≥ p > p− 1 as required.
So, is λ2 + p ≤ p − 1 + α?. Well this is true if and only if λ2 ≤ p−3

2
, so

suppose for a contradiction that λ2 ≥ p−1
2

. As λ1 − λ2 ≥ p, this would mean

that λ1 ≥ 3p−1
2

, and then we would have that λ1 + λ2 ≥ 2p − 1 which is a
contradiction as λ1 + λ2 + λ3 ≤ 2p− 3, so indeed λ2 + p ≤ p− 1 + α.

3) Is 0 ≤ λ3 ≤ 2α?
Clearly λ3 ≥ 0. Now suppose for a contradiction that λ3 ≥ 2α this holds
if an only if λ2 ≥ 2α and thus to ensure λ1 − λ2 ≥ p we would require
λ1 + λ2 + λ3 > r1, giving a contradiction, and thus λ3 ≤ p− 1.

We therefore have that all the Schur functions which correspond to the high-
est weight of the tilting modules whose weights are fourth highest in the core
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class of the six, will arise, at least once, in ch (L(p−1, p−1, 0)⊗SαE⊗SαE).
To ensure, then that the coefficient spaces of these tilting modules are con-
tained in the coefficient space of this truncated module, we must check that
no Schur functions corresponding to higher weights in the same core class also
arise. Well, let us look at the top weight in the 6-set, namely (λ1 + p, λ2, λ3).
Note that λ2 < p − 1, as if λ2 ≥ p then we would require λ1 ≥ 2p and thus
r1 ≥ 3p which is not true. Therefore the Schur function corresponding to this
weight cannot arise in the ch (L(p− 1, p− 1, 0)⊗ SαE ⊗ SαE), as we already
have that for a typical term σ = (σ1, σ2, σ3) in this character, σ2 ≥ p − 1.
For the same reason, the second and third weights cannot arise, these both
have second entry λ1−p+1 which, as λ1 ≤ 2p−3, then λ1−p+1 ≤ p−2 < p−1.

We now consider those weights which are fifth highest in the same core class,
namely those of the form (λ1, λ3 + p − 1, λ2 + 1). Let us first show that the
Schur function corresponding to this weight will actually arise, well, we have
already clarified that p − 1 ≤ λ1 ≤ p − 1 + 2α. Next we must check that
p− 1 ≤ λ3 + p− 1 ≤ p− 1 +α and that 0 ≤ λ2 + 1 ≤ 2α. Well, for the former,
as λ3 ≥ 0 then indeed λ3 + p − 1 ≥ p − 1. Now suppose for a contradiction
that λ3 + p− 1 > p− 1 + α which occurs iff λ3 > α, then λ1 + λ2 < p− 2 + α
iff λ1 < p − 2 + α − λ2. However, we know that λ1 − λ2 > p which occurs iff
λ1 > p+λ2 and hence we would have λ2 + p− 1 < p− 2 +α−λ2 which is true
iff λ2 <

α−1
2
< α < λ3 which is a contradiction. Hence λ3 + p− 1 ≤ p− 1 + α

as required. Now consider the latter, well clearly λ2 + 1 ≥ 0 as required. Now
suppose for a contradiction that λ2 + 1 ≥ 2α which is true iff λ2 ≥ 2α − 1,
however we know that λ1 − λ2 > p and thus to ensure λ1 − λ2 ≥ p we would
require λ1 + λ2 + λ3 > r1, giving a contradiction, and thus λ2 + 1 ≤ 2α as
required.

Now that we have clarified that the Schur functions corresponding to the
fifth highest weights do indeed arise in ch (L(p− 1, p− 1, 0)⊗ SαE ⊗ SαE) it
is now necessary to show that they arise with a higher multiplicity than the
Schur functions which correspond to the weights which are fourth highest. We
therefore make the following claim;

THEOREM 4.13.15 The character of the truncated module

ch (Tr 2p−2,α,αE) =
∑

aλsλ where aλ =

{
λ3 + 1 for λ1 ≥ p− 1 + α
λ1 − λ2 + 1 for λ1 < p− 1 + α

.

Here λ = (λ1, λ2, λ3) such that p−1 ≤ λ1 ≤ p−1 + 2α, p−1 ≤ λ2 ≤ p−1 +α
and 0 ≤ λ3 ≤ 2α.

Proof. 1) Let us first consider the case where λ1 ≥ p− 1 + α. Now, we know
that any sλ which arises in ch (L(p − 1, p − 1, 0) ⊗ SαE ⊗ SαE) will be such
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that λ2 ≥ p − 1 and thus there are two types of weights λ to consider, those
were λ1, λ2 6= 0 and λ3 = 0, and those where λ1, λ2, λ3 6= 0. We begin with
the former;

i) λ = (λ1, λ2, 0).
Now, using x’s for L(p − 1, p − 1, 0) and 1s and 2s for the two SαE we have
that aλ is the number of ways we can place the x’s, 1s and 2s to form a semi-
standard λ-tableau of type (2p− 2, α, α). Now, the L(p− 1, p− 1, 0) must be
placed first, so the first p− 1 columns are filled with x’s. This leaves α 1s and
2s to fill in. As we always need strictly increasing columns, then up to the end
of λ2 the columns must be of the form

2
1

We then just have the rest of the first row to fill in, which is increasing so we
fill it first with the remaining 1s and then the remaining 2s. There is thus only
one way to form λ so aλ = 1 = λ3 + 1.
For example, with p = 7, r = 18 and λ = (11, 7, 0) we have;

xxxxxx2
xxxxxx11122

ii) λ = (λ1, λ2, λ3).
As above, the first p−1 columns are filled with the x’s, and again, as λ2 ≥ p−1
then the columns up to the end of λ2 are of the form

2
1

It then remains to fill λ3 and λ1−λ2 with α−(λ1−(p−1)) = α−λ2+p−1 1s and
2s. Now λ1 ≥ p−1+α and thus λ2 +λ3 ≤ p−1+α and so λ3 ≤ α−λ2 +p−1.
Therefore aλ is dependent on λ3 and we can fill the remainder as follows;
Put λ3 2s in the third row and the remaining 1s and 2s in the first row from
left to right;
Put one 1 and λ3 − 1 2s in the third row from left to right and then the re-
maining 1s and 2s in the first row from left to right;
Put two 1s and λ3 − 2 2s in the third row from left to right and then the
remaining 1s and 2s in the first row from left to right;
This continues to the final option where we place λ3 1s in the third row and
the remaining 1s and 2s in the first row from left to right.
There are therefore λ3 + 1 ways of forming λ and aλ = λ3 + 1 as required.

For example, with p = 7, r = 18 and λ = (10, 6, 2) we have the following
options;

22
xxxxxx
xxxxxx1112
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12
xxxxxx
xxxxxx1122

11
xxxxxx
xxxxxx1222

2) The case where λ1 < p − 1 + α. As λ1 ≤ p − 2 + α then so is λ2 and
hence λ1 + λ2 ≤ 2p − 4 + 2α and thus λ3 ≥ 2, hence λ = (λ1, λ2, λ3) with
λ1, λ2, λ3 6= 0. As in case 1), we must first fill the first p − 1 columns of the
first two rows with x’s. Then as p − 1 ≤ λ2 ≤ p − 2 + α, we have that the
columns up to the end of the second row are of the form

2
1

It remains to fill the nodes in λ3 and λ1−λ2 with α−λ2 +p−1 1s and 2s. Now,
with λ1 < α+p−1 we have that λ3 > α−λ2+p−1 but λ1−λ2 < α−λ2+p−1,
and thus aλ is restricted by λ1 − λ2. We have the following options;
Put λ1 − λ2 1s in the first row and the remaining 1s and 2s in the third row
from left to right;
Put λ1 − λ2 − 1 1s and one 2 in the first row from left to right and then the
remaining 1s and 2s in the third row from left to right;
Put λ1 − λ2 − 2 1s and two 2s in the first row from left to right and then the
remaining 1s and 2s in the third row from left to right;
This continues to the final option where we place λ1 − λ2 2s in the first row
and the remaining 1s and 2s in the third row from left to right.
There are therefore a total of λ1−λ2 + 1 ways to form λ and aλ = λ1−λ2 + 1
as required.

For example, with p = 7, r = 18 and λ = (8, 7, 3) we have the following
options;

122
xxxxxx2
xxxxxx11

112
xxxxxx2
xxxxxx12

We now go about showing that the Schur function corresponding to the fifth
highest weight in the 6-set, always arises with a higher multiplicity than the
Schur function corresponding to the fourth highest weight. The fourth weight
is of the form (λ1, λ2 +p, λ3) whilst the fifth weight is of the form (λ1, λ3 +p−
1, λ2 + 1),

CLAIM 4.13.16 For both the fourth and fifth weight, the first entry, λ1 ≥
p− 1 + α.
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Proof. We shall first prove that 2λ1 ≥ r2, where 2p ≤ r2 ≤ 3p − 3. Well, we
know that λ1 − λ2 ≥ p, so if λ1 is the smallest it can be we have λ1 − λ2 = p
so λ2 = λ1 − p. Depending on the degree r1, we will either have, for λ1 small-
est, that λ3 = λ2 or λ3 = λ2 − 1. Take the case where λ3 = λ2, then we have
λ1 +λ2 +λ3 = r1 ⇔ 3λ1−2p = r1 ⇔ 2λ1 = r2 +p−λ1 ≥ r2 as required. Taking
the case where λ3 = λ2 − 1, then we have λ1 + λ2 + λ3 = r1 ⇔ 3λ1 − 2p− 1 =
r1 ⇔ 2λ1 = r2 + p− λ1 + 1 > r2 as required.

Now, back to the claim. Assume for a contradiction that λ1 < p−1 +α which
is true if and only if α = r1−p+2

2
> λ1 − p + 1 ⇔ r1 + p > 2λ1 ⇔ r2 > 2λ1,

which we know to be false, and hence λ1 ≥ p− 1 + α.

So, we have that the Schur function sσ corresponding to the fourth highest
weight σ arises with multiplicity σ3 + 1 = λ3 + 1 whilst the Schur function sτ
corresponding to the fifth highest weight τ arises with multiplicity τ3 + 1 =
λ2 +2. Clearly λ2 +2 > λ3 +1 and hence aτ > aσ, and thus, using Section 4.10
c), we have that the coefficient spaces of the tilting modules whose weights are
fifth highest in the core class of the 6-set arise in cf (Tr 2p−2,α,αE).

The case where r is odd

EXAMPLE 4.13.17 Let p = 7 and r = 17, then we calculate

ch (Tr 12,3,3E) = ch (L(6, 6, 0)⊗ S3E ⊗ S2E)
= (s66 · s3) · s2

= (s960 + s861 + s762 + s663)s2

= s11,6 + s10,7 + s10,6,1 + s98 + s971 + s962

+s10,6,1 + s971 + s962 + s881 + s872 + s863

+s962 + s872 + s863 + s773 + s764

+s863 + s764 + s665

We can display this result, with multiplicities, as follows;
1s11,6

1s10,7 2s10,6,1

1s98 2s971 3s962

1s881 2s872 3s863

1s773 2s764

1s665

Proof. of Theorem 4.13.13
Following the proof for the case r even, we first consider what a typical
term sσ looks like when it arises in the ch (L(p − 1, p − 1, 0) ⊗ SαE ⊗ SβE),

where α = r2−(2p−2)+1
2

, β = r2−(2p−2)−1
2

and 2p ≤ r2 ≤ 3p − 3. Well if
σ = (σ1, σ2, σ3), then using the Littlewood-Richardson Rule we have that
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p − 1 ≤ σ1 ≤ p − 1 + α + β, p − 1 ≤ σ2 ≤ p − 1 + β and 0 ≤ σ3 ≤ α + β,
where σ1 + σ2 + σ3 = 2p − 2 + α + β = r2. Now, let us consider a weight λ
which is fourth highest in the core class of the 6-set. By Section 4.7 we know
that λ = (λ1, λ2 + p, λ3) where (λ1, λ2, λ3) was the highest weight in the core
class of the 3-set for the range p ≤ r1 ≤ 2p − 1. Now, clearly, we have that
λ1 + (λ2 + p) + λ3 = r2, so we need to check the following;

1) Is p− 1 ≤ λ1 ≤ p− 1 + α + β?
Well, clearly λ1 ≥ p as p ≤ r1 ≤ 2p− 3, so indeed λ1 ≥ p− 1.
Now as λ1 ≤ r1, then it is enough to check that r1 ≤ p − 1 + α + β which is
true if and only if r1 ≤ 2p−2, which we know to be true as we are considering
the range where λ1 ≤ 2p− 3.

2) Is p− 1 ≤ λ2 + p ≤ p− 1 + β?
Well, λ2 ≥ 0 and thus λ2 + p ≥ p > p− 1 as required.
So, is λ2 + p ≤ p− 1 + β? Well this is true if and only if λ2 ≤ p−4

2
, so suppose

for a contradiction that λ2 ≥ p−2
2

. As λ1 − λ2 ≥ p, this would mean that

λ1 ≥ 3p−2
2

, and then we would have that λ1 + λ2 ≥ 2p − 2 which is a contra-
diction as λ1 + λ2 + λ3 ≤ 2p− 3, so indeed λ2 + p ≤ p− 1 + α.

3) Is 0 ≤ λ3 ≤ α + β?
Clearly λ3 ≥ 0. Now suppose for a contradiction that λ3 ≥ α + β this holds
if an only if λ2 ≥ α + β and thus to ensure λ1 − λ2 ≥ p we would require
λ1 + λ2 + λ3 > r1, giving a contradiction, and thus λ3 ≤ p− 1.

We therefore have that all the Schur functions which correspond to the high-
est weight of the tilting modules whose weights are fourth highest in the core
class of the six, will arise, at least once, in ch (L(p−1, p−1, 0)⊗SαE⊗SαE).
To ensure then, that the coefficient spaces of these tilting modules are con-
tained in the coefficient space of this truncated module, we must check that
no Schur functions corresponding to higher weights in the same core class also
arise. Well, let us look at the top weight in the 6-set, namely (λ1 + p, λ2, λ3).
Note that λ2 < p − 1, as if λ2 ≥ p then we would require λ1 ≥ 2p and thus
r1 ≥ 3p which is not true. Therefore the Schur function corresponding to this
weight cannot arise in the ch (L(p− 1, p− 1, 0)⊗ SαE ⊗ SβE), as we already
have that for a typical term σ = (σ1, σ2, σ3) in this character, σ ≥ p − 1.
For the same reason, the second and third weights cannot arise, these both
have second entry λ1−p+1 which, as λ1 ≤ 2p−3, then λ1−p+1 ≤ p−2 < p−1.

We now consider those weights which are fifth highest in the same core class,
namely those of the form (λ1, λ3 + p − 1, λ2 + 1). Let us first show that the
Schur function corresponding to this weight will actually arise, well, we have
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already clarified that p − 1 ≤ λ1 ≤ p − 1 + α + β. Next we must check that
p−1 ≤ λ3 +p−1 ≤ p−1+β and that 0 ≤ λ2 +1 ≤ α+β. Well, for the former,
as λ3 ≥ 0 then indeed λ3 + p − 1 ≥ p − 1. Now suppose for a contradiction
that λ3 + p− 1 > p− 1 + β which occurs iff λ3 > β, then λ1 + λ2 < p− 2 + α
iff λ1 < p − 2 + α − λ2. However, we know that λ1 − λ2 > p which occurs iff
λ1 > p + λ2 and hence we would have λ2 + p < p − 2 + α − λ2 which is true
iff λ2 <

α−2
2
< β < λ3 which is a contradiction. Hence λ3 + p− 1 ≤ p− 1 + β

as required. Now consider the latter, well clearly λ2 + 1 ≥ 0 as required. Now
suppose for a contradiction that λ2 +1 ≥ α+β which is true iff λ2 ≥ α+β−1,
however we know that λ1−λ2 > p and thus to ensure λ1−λ2 ≥ p we would re-
quire λ1+λ2+λ3 > r1, giving a contradiction, and thus λ2+1 ≤ 2α as required.

Now that we have clarified that the Schur functions corresponding to the
fifth highest weights do indeed arise in ch (L(p− 1, p− 1, 0)⊗ SαE ⊗ SβE) it
is now necessary to show that they arise with a higher multiplicity than the
Schur functions which correspond to the weights which are fourth highest. We
therefore make the following claim;

THEOREM 4.13.18 The character of the truncated module

ch (Tr 2p−2,α,βE) =
∑

aλsλ where aλ =

{
λ3 + 1 for λ1 ≥ p− 1 + α
λ1 − λ2 + 1 for λ1 < p− 1 + α

.

Here λ = (λ1, λ2, λ3) such that p−1 ≤ λ2 ≤ p−1+α+β, p−1 ≤ λ2 ≤ p−1+β
and 0 ≤ λ3 ≤ α + β.

Proof. The proof follows from that of the case where r is even, except we are
now adding α 1s and β 2s.

We now go about showing that the Schur function corresponding the fifth
highest weight in the 6-set, always arises with a higher multiplicity than the
Schur function corresponding to the fourth highest weight. The fourth weight
is of the form (λ1, λ2 +p, λ3) whilst the fifth weight is of the form (λ1, λ3 +p−
1, λ2 + 1),

CLAIM 4.13.19 For both the fourth and fifth weight, the first entry, λ1 ≥
p− 1 + α.

Proof. This is the same proof as for the case r is even.

So, we have that the Schur function sσ corresponding to the fourth highest
weight σ arises with multiplicity σ3 + 1 = λ3 + 1 whilst the Schur function sτ
corresponding to the fifth highest weight τ arises with multiplicity τ3 + 1 =
λ2 +2. Clearly λ2 +2 > λ3 +1 and hence aτ > aσ, and thus, using Section 4.10
c), we have that the coefficient spaces of the tilting modules whose weights are
fifth highest in the core class of the 6-set arise in cf (Tr 2p−2,α,βE).
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CALCULATION 4.13.20 The case r = 3p− 2
i) We first consider those weights which are highest or lowest in their core
class, and which are self-titled. We then consider the weights which are second
highest in the core class of the 6-set.

THEOREM 4.13.21 The weights which are highest or lowest in their core
class or are self-titled arise in the truncated module

cf (Tr (p,p−1,p−1)E) = L(p− 1, 1, 0)⊗ Sp−1E ⊗ Sp−1E.

Moreover the weights which are second highest in the core class of the 6-
set arise in the same truncated module due to 4.10 c), namely that the Schur
function corresponding to their highest weight arises with a higher multiplicity
than the Schur function corresponding to the weight that is highest in the same
core class.

Proof. We first show that the coefficient space of all tilting modules whose
weights are highest or lowest in their core class or are self-titled are contained
in cf (Tr (p,p,p−1)E), by proving the following claim;

CLAIM 4.13.22 The Schur functions corresponding to all weights from (3p−
3, 1, 0) to (p, p− 1, p− 1) arise at least once in the ch (L(p− 1, 1, 0)⊗Sp−1E⊗
Sp−1E). Hence all weights in the degree r = 3p − 2 arise at least once, and
thus by 4.10 a) and b), we have the coefficient spaces of all tilting modules
whose weights are highest or lowest in their core class, or are self-titled.

Proof. Consider a term sσ in ch (L(p − 1, 1, 0) ⊗ Sp−1E ⊗ Sp−1E), what does
σ = (σ1, σ2, σ3) look like? Well, it is easy to see that p ≤ σ1 ≤ 3p − 3, as we
can clearly place all nodes of both Sp−1E in the top row, next to the p − 1
nodes of L(p− 1, 1, 0). Moreover if σ1 ≤ p− 1 then we would have σ2 > σ1 or
σ3 > σ1, which we cannot have.
Now, consider σ2. Well, as there is always at least one node in the second row,
and we can place the remaining in the first row, then σ2 ≥ 1. On the other
hand, we could distribute the remaining 2p − 2 nodes between the first two
rows, whilst still following Young’s Rule, such that σ1 = 3p−1

2
and σ2 = 3p−3

2
.

Hence 1 ≤ σ2 ≤ 3p−3
2

.
Finally consider σ3, where clearly σ3 ≥ 0, and the greatest σ3 can be is p− 1,
where we place all nodes of the second Sp−1E in the third row. If we were to
put p nodes or more in the third row, then either σ1 < σ3 or σ2 < σ3, which
we cannot have. Thus 0 ≤ σ3 ≤ p− 1.
Combining these restrictions together we have that (p, p − 1, p − 1) ≤ σ ≤
(3p−3, 1, 0) as stated. Now, we know by Proposition 4.3.2 that for λ a weight
in degree r1 = 2p− 2, with λ the highest weight in its core class consisting of
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three weights, we have that λ1 ≤ 2p − 3. When we then move up to degree
r2 = 3p − 2 we have that the maximal weight is (3p − 3, 1, 0). Moreover it is
clear that (p, p − 1, p − 1) is the minimal weight in degree r2 = 3p − 2, and
all weights in between fit into the boundaries given by σ. Hence the Schur
functions corresponding to all weights in the degree r = 3p − 2 arise at least
once in ch (L(p − 1, 1, 0) ⊗ Sp−1E ⊗ Sp−1E), and thus by 4.10 a) and b), we
have the coefficient spaces of all tilting modules whose weights are highest or
lowest in their core class, or are self-titled.

We now move onto showing that the coefficient spaces of the tilting modules
whose weights are second highest in their core class are also contained in the
same truncated module. To do this, we first prove the following claim;

CLAIM 4.13.23 For µ = (µ1, µ2, µ3) the highest weight in its core class, and
σ = (σ1, σ2, σ3) the second highest weight in its core class, we have that;
i) µ1, σ1 ≥ 2p
ii) µ1 ≤ p− 3 and σ1 ≤ p− 2.

Proof. Well, µ = (λ1 + p, λ2, λ3) and σ = (λ2 + 2p − 1, λ1 − p + 1, λ3), where
λ = (λ1, λ2, λ3) is top of its core class in the range p ≤ r ≤ 2p− 1, and hence
λ1−λ2 ≥ p. So, let us first consider µ. Well, λ1 ≥ p and hence µ1 = λ1+p ≥ 2p
as required. Moreover, with λ1−λ2 ≥ p then we have that λ2 ≤ λ1−p ≤ p−3
as we have that λ1 ≤ 2p− 3. Hence µ2 = λ2 ≤ p− 3 as required.
Now consider σ. Well, using that λ1 ≤ 2p− 3 we have that λ2 ≥ 1 and hence
σ1 = λ2 + 2p − 1 ≥ 2p as required. Finally, with λ1 ≤ 2p − 3 we have that
σ2 = λ1 − p+ 1 ≤ p− 2.

We therefore know that when considering the multiplicity aτ of a general Schur
function sτ in the ch (L(p − 1, 1, 0) ⊗ Sp−1E ⊗ Sp−1E) it is only necessary to
consider the cases where τ1 ≥ 2p and τ2 ≤ p−2. This brings us to the following
theorem.

THEOREM 4.13.24 If

τ ∈ {(τ1, τ2, τ3) | (τ1, τ2, τ3) ≤ (3p− 3, 1, 0), τ1 ≥ 2p and τ2 ≤ p− 2},

then, in the ch (L(p− 1, 1, 0)⊗ Sp−1E ⊗ Sp−1E), the Schur function sτ arises

with multiplicity aτ , where aτ =

{
τ2 for τ3 ≤ 1
τ2 − τ3 + 1 for τ3 > 1.

Proof. We have that

ch (L(p− 1, 1, 0)⊗ Sp−1E ⊗ Sp−1E) = (sp−1,1 − sp−2,1,1)sp−1sp−1,

and thus the multiplicity aτ = a1
τ−a2

τ where a1
τ is the number of semi-standard

tableaux formed from sp−1,1sp−1sp−1, and a2
τ is the number of semi-standard
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tableaux formed from sp−2,1,1sp−1sp−1

1) The case where τ3 ≤ 1.
i) Let us first look at the case where τ3 = 0, and follow the method through by
using the example p = 7, r = 19 and τ = (15, 4, 0). So, we first draw (p− 1, 1)
which we notate by x’s, and then to this we must add p − 1 1s and p − 1 2s.
As τ2 ≤ p− 2 then we can put at most τ2 − 1 of these 1s and 2s in the second
row, the rest must go in the first row. We therefore have the following options;
Place no 1s and τ2 − 1 2s in the second row, then the remaining nodes in the
first row from left to right;
Place one 1 and τ2 − 2 2s in the second row, then the remaining nodes in the
first row from left to right;
We continue increasing the 1s in the second row until we reach the final option
where we place τ2−1 1s and no 2s in the second row, and the remaining nodes
in the first row from left to right. This gives us a1

τ = τ2− 1 + 1 = τ2 tableaux,
which in our example are;

x222

xxxxxx111111222

x122
xxxxxx111112222

x112
xxxxxx111122222

x111
xxxxxx111222222

Now we need to find a2
τ , however, for τ3 = 0 this is equal to zero as the

tableaux formed from sp−2,1,1sp−1sp−1 will have at least one node in the third
row. Hence a2

τ = 0, and so aτ = τ2 as required.

ii) We now look at the case where τ3 = 1, and use the example p = 7, r = 19
and τ = (15, 3, 1). We again start by drawing (p− 1, 1) with x’s, to which we
must add p − 1 1s and p − 1 2s. Now one of these 1s or 2s must be placed
in the third row as τ3 = 1, let us first choose to place a 1 in the third row.
Then the remaining must be placed in the first and second rows such that the
number of nodes in row two is equal to the number in τ2. We can do this as
follows;
Place no 1s and τ2 − 1 2s in the second row, with the remaining in the first
row from left to right;
Place one 1 and τ2 − 2 2s in the second row, with the remaining in the first
row from left to right;
This continues to the final option where we place no 2s and τ2 − 1 1s in the
second row and the remaining in the first row form left to right. This gives
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a total of τ2 tableaux. If we then place a 2 in the third row instead of a 1,
then we follow the same method again to get a further τ2 tableaux, and hence
a1
τ = 2τ2. In our example, these are as follows;

1
x22
xxxxxx111112222

1
x12
xxxxxx111122222

1
x11
xxxxxx111222222

2
x22
xxxxxx111111222

2
x12
xxxxxx111112222

2
x11
xxxxxx111122222

We must now find a2
τ , so we draw (p − 2, 1, 1) using x’s and then have p − 1

1s and p− 1 2s to add to either row one or row two, such that the number of
nodes in row two is equal to the number in τ2. We therefore have the following
options;
Place no 1s and τ2− 1 2s in the second row and the remaining in the first row
from left to right;
Place one 1 and τ2− 2 2s in the second row and the remaining in the first row
from left to right;
This continues to the final option where we place τ2 − 2 1s and no 2s in the
second row and the remaining in the first row from left to right. Thus a2

τ = τ2,
and in our example these tableaux are as follows;

x
x22
xxxxx1111112222

x
x12
xxxxx1111122222

x
x11
xxxxx1111222222

Thus we have that aτ = a1
τ − a2

τ = (2τ2)− τ2 = τ2 as required.

2) The case where τ3 > 1.
For this case we shall follow our work with the example p = 7, r = 19 and
τ(14, 3, 2). Starting with a1

τ , we again draw (p − 1, 1) using x’s to which we
must add p− 1 1s and 2s. Now, as τ3 ≥ 2, then from column two, to the end
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of the third row we must place 1s in the second row, and 2s in the third row,
to ensure we have strictly increasing columns. Now there is only one node left
empty in the third row, so let us choose to put a 1 in this space. Then the
remaining 1s and 2s must go in rows one and two such that row two has the
same number of nodes as τ2. We can therefore do this as follows;
Place no 1s and τ2 − τ3 2s in row two and the remaining in row one;
Place one 1 and τ2 − τ3 − 1 2s in row two and the remaining in row one;
This continues to the final option where we place τ2 − τ3 1s and no 2s in the
second row and the remaining in the first row. Thus we have τ2 − τ3 + 1
tableaux. If we then go back and place a 2 in the empty node in row three
instead of a 1, then we can repeat the process again, getting another τ2−τ3 +1
tableaux, and thus a1

τ = 2(τ2 − τ3 + 1). In our example these are as follows;

12
x12
xxxxxx11112222

12
x11
xxxxxx11122222

22
x12
xxxxxx11111222

22
x11
xxxxxx11112222

It now remains to find a2
τ , so we draw (p− 2, 1, 1), and then fill rows two and

three with 1s and 2s respectively, up to the end of the third row to ensure we
have strictly increasing columns. The remaining 1s and 2s can then be placed
in rows one and two as follows;
Place no 1s and τ2 − τ3 2s in the second row and the remaining in the first
row;
Place one 1 and τ2− τ3− 1 2s in the second row and the remaining in the first
row;
This continues to the final option where we place τ2−τ3 1s and no 2s in the sec-
ond row and the remaining in the first row. We thus have that a2

τ = τ2−τ +1,
and our example gives these tableaux;

x2
x12
xxxxx111112222

x2
x11
xxxxx111122222

We therefore have that aτ = a1
τ−a2

τ = 2(τ2−τ3 +1)−(τ2−τ3 +1) = τ2−τ3 +1.

With this information we can now check that for µ the highest weight in its core
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class and σ the second highest weight, that aσ > aµ. Well, µ = (λ1 + p, λ2, λ3)
and σ = (λ2 + 2p − 1, λ1 − p + 1, λ3), and so when µ3 = σ3 = λ3 ≤ 1 then
aµ = µ2 = λ2 and aσ = σ2 = λ1 − p + 1, and indeed, as λ1 − λ2 ≥ p then
λ1 − p + 1 > λ2. On the other hand, when λ3 > 1 then aµ = λ2 − λ3 + 1 and
aσ = λ1 − p + 1 − λ3 + 1 = λ1 − λ3 − p + 2, and again as λ1 − λ2 ≥ p then
λ1−λ3−p+2 > λ2−λ3 +1. Hence the coefficient spaces of the tilting modules
whose weights are second highest in the core class of the 6-set are contained
in cf (L(p− 1, 1, 0)⊗ Sp−1E ⊗ Sp−1E).

ii) Here we consider those tilting modules whose weights are second highest in
the core class of the 3-set which came from the self-titled weight λ such that
λ1 − λ3 < p− 2.

THEOREM 4.13.25 For r = 3p − 2 where λ was a self-titled weight of
degree r = 2p− 2 with λ1 − λ3 < p− 2, then

cf (T (λ21, λ22, λ23)) ⊆ cf (L(p− 1, 1, 0)⊗ Sp−1E ⊗ Sp−1E).

Proof. From Section 4.7, we have that the 3-set formed from this self-titled
weight λ with λ1 − λ3 < p− 2 is as follows;

(λ1 + p, λ2, λ3)

(λ2 + p− 1, λ1 + 1, λ3)

(λ3 + p− 2, λ1 + 1, λ2 + 1)

Now consider the tilting truncated module L(p−1, 1, 0)⊗Sp−1E⊗Sp−1E, and
let us first calculate

L(p− 1, 1, 0)⊗ Sp−1E = (sp−1,1 − sp−2,1,1)sp−1

= s2p−2,1 + s2p−3,2 + s2p−4,3 + . . .+ sp,p−1 + sp−1,p−1,1.

Now, to ensure we have the tilting module in the middle of this core class
we need to ensure that the Schur function corresponding to its highest weight
arises with a higher multiplicity than the Schur function corresponding to the
weight at the top of this core class, when we calculate ch (L(p − 1, 1, 0) ⊗
Sp−1E ⊗ Sp−1E). Well, the only terms in the above sum which can be mul-
tiplied by another sp−1 such that the resulting Schur function has weight
(λ1 + p, λ2, λ3), are those in the range

(2p− (λ3 + 1), λ3, 0), (2p− (λ3 + 2), λ3 + 1, 0), . . . , (2p− (λ2 + 1), λ2, 0)

If the second entry is less than λ3 then when we add on the remaining nodes we
would not be able to form a partition with strictly increasing columns. If the
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second entry is greater than λ2 then we have too many nodes in the second row.

On the other hand, the terms from the above sum which can be multiplied
by another sp−1 such that the resulting Schur function has weight (λ2 + p −
1, λ1 + 1, λ3), are those in the range

(2p− (λ3 + 1), λ3, 0), (2p− (λ3 + 2), λ3 + 1, 0), . . . , (2p− (λ1 + 2), λ1 + 1, 0)

If the second entry is less than λ3 then when we add on the remaining nodes
we would not be able to form a partition with strictly increasing columns. If
the second entry is greater than λ1 + 1 then we have too many nodes in the
second row.
Thus, as λ1 + 1 > λ2 then the multiplicity of the Schur function corre-
sponding the ‘middle’ weight is greater than the multiplicity of the Schur
function corresponding to the top weight. Hence by 4.10 c) we have that
cf (T (λ2 +p−1, λ1 +1, λ3) ⊆ cf (L(p−1, λ1 +1, 0)⊗Sλ2E⊗Sλ3E) as required.

iii) Here we consider those tilting modules whose weights are second highest
in the core class of the 3-set where λ1 − p < p− 1

THEOREM 4.13.26 For r = 3p − 2 where λ1 + p > t and λ1 − p < p − 1
then cf (T (λ21, λ22, λ23)) ⊆ cf (L(p− 1, 1, 0)⊗ L(p− 1, 1, 0)⊗ Sp−2E).

Proof. We know here that (λ1, λ2, λ3) = (r1, 0, 0) = (2p − 2, 0, 0). Therefore
for r2 = 3p−2 then the weight highest in its core class is α = (λ2 +2p−1, λ1−
p+1, λ3) = (2p−1, p−1, 0) and the weight second highest is (λ1, λ2 +p, λ3) =
(2p− 2, p, 0). When calculating the character of Tr p,p,p−2E it is therefore only
necessary to consider weights who have last entry zero. We first find those in
sp−1,1 ·sp−2, namely (2p−3, 1, 0), (2p−4, 2, 0), (2p−5, 3, 0), . . . , (p−1, p−1, 0),
and note that the negative part of this calculation sp−2,1,1 · sp−2 will give no
weights with last entry zero. We know multiply each of these weights by sp−1,1

and see how many times (2p− 1, p− 1, 0) and (2p− 2, p, 0) occur in each.
sp−1,1 ·s2p−3,1,0 gives weights (3p−4, 2, 0), . . . , (2p−2, p, 0) and each occur once
in this.
sp−1,1 · s2p−4,2,0 gives weights (3p− 5, 3, 0), . . . , (2p− 3, p+ 1, 0) and each occur
once in this.
sp−1,1 · s2p−5,3,0 gives weights (3p− 6, 4, 0), . . . , (2p− 4, p+ 2, 0) and each occur
once in this.
...
sp−1,1 · s 3p−3

2
, p−1

2
,0 gives weights (5p−5

2
, p+1

2
, 0), . . . , (3p−1

2
, 3p−3

2
, 0) and each occur

once in this.
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sp−1,1 · s 3p−5
2

, p+1
2
,0 gives weights (5p−7

2
, p+3

2
, 0), . . . , (3p−1

2
, 3p−3

2
, 0) and each occur

once in this.
...
sp−1,1 · sp,p−2,0 gives weights (2p−1, p−1, 0), . . . , (3p−1

2
, 3p−3

2
, 0) and each occur

once in this.
sp−1,1 ·sp−1,p−1,0 gives weights (2p−2, p, 0), . . . , (3p−1

2
, 3p−3

2
, 0) and only the sec-

ond highest weight occurs once in this.

We therefore have that, in ch (Tr p,p,p−2E), the multiplicity of the Schur func-
tion corresponding to the second highest weight is p−1, whilst the multiplicity
of the Schur function corresponding to the highest weight is only p− 2. Thus
by 4.10 c), the cf (T (λ21, λ22, λ23)) ⊆ cf (L(p−1, 1, 0)⊗L(p−1, 1, 0)⊗Sp−2E).

iv) For the weights which are third, fourth and fifth highest in the core class
of the 6-set, we can use the same proof as for the range 2p ≤ r ≤ 3p− 3 as the
6-sets for r = 3p−2 are formed in exactly the same way as for 2p ≤ r ≤ 3p−3.
The only difference is that there are a smaller number of these 6-sets due to
there being a smaller number of 3-sets for 2p − 2 because of the case where
λT = (2p − 2, 0, 0) as λ1T − p < p − 1 which forms a 3-set not a 6-set which
was resolved in sections i) and ii). For the fourth and fifth highest weights we
use the truncated module L(p− 1, p− 1, 0)⊗SαE⊗SβE as r = 3p− 2 is odd,
where α = p+1

2
and β = p−1

2
. We can then use the proof of Theorem 4.13.13

from the range 2p ≤ r ≤ 3p−3 to show that the Schur functions corresponding
to both the fourth and fifth weights arise at least once in the character of the
above truncated module. Moreover, from the range 2p ≤ r ≤ 3p − 3 we also
have the following result;

THEOREM 4.13.27 The character of the truncated module

ch (Tr 2p−2,α,βE) =
∑

aλsλ where aλ =

{
λ3 + 1 for λ1 ≥ p− 1 + α
λ1 − λ2 + 1 for λ1 < p− 1 + α

Where λ = (λ1, λ2, λ3) such that p−1 ≤ λ1 ≤ p−1+α+β, p−1 ≤ λ2 ≤ p−1+β
and 0 ≤ λ3 ≤ α + β.

Proof. See proof of the same theorem 4.13.18 for the range 2p ≤ r ≤ 3p − 3,
which follows the proof for the even case in Theorem 4.13.15.

Let sσ be the Schur function corresponding to the fourth highest weight, then
σ = (λ1, λ2 + p, λ3) and let sτ be the Schur function corresponding to the fifth
highest weight, then τ = (λ1, λ3 +p−1, λ2 +1). For the range 2p ≤ r ≤ 3p−3
we had that σ1, τ1 ≥ p− 1 + α, and we proved that in this case aτ = τ3 + 1 =
λ2 + 2 > λ3 + 1 = σ3 + 1 = aσ. However for r = 3p− 1 it may be possible for,
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σ1 = τ1 = λ1 < p− 1 +α. For example, with p = 7 and r2 = 19 = r1 + p, then
λ = (9, 2, 1) is a weight at the top of its core class as 9 − 2 = 7 = p, and yet
λ1 = 9 < p− 1 + α = 10, hence σ1 = τ1 < p− 1 + α.
So, in this case aσ = σ1 − σ2 + 1 = λ1 − (λ2 + p) + 1 = λ1 − λ2 − p + 1 and
aτ = τ1− τ2 + 1 = λ1− (λ3 +p−1) + 1 = λ1−λ3−p+ 2, and we need to check
that aτ > aσ. Well, we know that λ2 ≥ λ3 and hence λ2 +p−1 ≥ λ3 +p−1 >
λ3 + p− 2 which is true if and only if λ1 − λ3 − p + 2 > λ1 − λ2 − p + 1 and
thus aτ > aσ as required.
Hence both cf (T (σ)) and cf (T (τ)) are contained in cf (L(p − 1, p − 1, 0) ⊗
SαE ⊗ SβE) where α = p+1

2
and β = p−1

2
.

CALCULATION 4.13.28 The case r = 3p− 1
i) We first consider those weights which are highest or lowest in their core
class, and which are self-titled. We then consider the weights which are second
highest in the core class of the 6-set.

THEOREM 4.13.29 The weights which are highest or lowest in their core
class or are self-titled arise in the truncated module

cf (Tr (p,p,p−1)E) = cf (L(p− 1, 1, 0)⊗ L(p− 1, 1, 0)⊗ Sp−1E).

Moreover the weights which are second highest in the core class of the 6-
set arise in the same truncated module due to 4.10 c), namely that the Schur
function corresponding to their highest weight arises with a higher multiplicity
than the Schur function corresponding to the weight that is highest in the same
core class.

Proof. We first show that the coefficient space of all tilting modules whose
weights are highest or lowest in their core class or are self-titled are contained
in cf (Tr (p,p,p−1)E), by proving the following claim;

CLAIM 4.13.30 The Schur functions corresponding to all weights from (3p−
3, 2, 0) to (p, p, p−1) arise at least once in the ch (L(p−1, 1, 0)⊗L(p−1, 1, 0)⊗
Sp−1E). Hence all weights in the degree r = 3p − 1 arise at least once, and
thus by 4.10 a) and b), we have the coefficient spaces of all tilting modules
whose weights are highest or lowest in their core class, or are self-titled.

Proof. Consider a term sσ in ch (L(p− 1, 1, 0)⊗L(p− 1, 1, 0)⊗ Sp−1E), what
does σ = (σ1, σ2, σ3) look like? Well, it is easy to see that p ≤ σ1 ≤ 3p− 3, as
we can clearly place all nodes of Sp−1E in the top row, next to the 2p−2 nodes
of both L(p− 1, 1, 0). Moreover if σ1 ≤ p− 1 then we would have σ2, σ3 > σ1,
which we cannot have.
Now, consider σ2. Well, as there are always at least two nodes in the second
row, and we can place the remaining in the first row, then σ2 ≥ 2. On the
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other hand, we could distribute the remaining 2p− 2 nodes between the first
two rows, whilst still following Young’s Rule, such that σ1 = σ2 = 3p−1

2
. Hence

1 ≤ σ2 ≤ 3p−1
2

.
Finally consider σ3, where clearly σ3 ≥ 0, and the greatest σ3 can be is p− 1,
where we place all nodes of the Sp−1E in the third row. If we were to put
p nodes or more in the third row, then either σ1 < σ3 or σ2 < σ3, which we
cannot have. Thus 0 ≤ σ3 ≤ p− 1.
Combining these restrictions together we have that (p, p, p − 1) ≤ σ ≤ (3p −
3, 2, 0) as stated. Now, we know by Proposition 4.3.2 that for λ a weight in
degree r1 = 2p − 1, with λ the highest weight in its core class consisting of
three weights, we have that λ1 ≤ 2p − 3. When we then move up to degree
r2 = 3p − 1 we have that the maximal weight is (3p − 3, 2, 0). Moreover it
is clear that (p, p, p − 1) is the minimal weight in degree r2 = 3p − 1, and
all weights in between fit into the boundaries given by σ. Hence the Schur
functions corresponding to all weights in the degree r = 3p − 1 arise at least
once in ch (L(p− 1, 1, 0)⊗L(p− 1, 1, 0)⊗Sp−1E), and thus by 4.10 a) and b),
we have the coefficient spaces of all tilting modules whose weights are highest
or lowest in their core class, or are self-titled.

We now move onto showing that the coefficient spaces of the tilting modules
whose weights are second highest in their core class are also contained in the
same truncated module. To do this, we first prove the following claim;

CLAIM 4.13.31 For µ = (µ1, µ2, µ3) the highest weight in its core class, and
σ = (σ1, σ2, σ3) the second highest weight in its core class, we have that;
i) µ1, σ1 ≥ 2p
ii) µ1 ≤ p− 3 and σ1 ≤ p− 2.

Proof. Same proof as for the case r = 3p− 2.

We therefore know that when considering the multiplicity aτ of a general Schur
function sτ in the ch (L(p−1, 1, 0)⊗L(p−1, 1, 0)⊗Sp−1E) it is only necessary
to consider the cases where τ1 ≥ 2p and τ2 ≤ p − 2. This brings us to the
following theorem.

THEOREM 4.13.32 If

τ ∈ {(τ1, τ2, τ3) | τ ≤ (3p− 3, 2, 0), τ1 ≥ 2p and τ2 ≤ p− 2},

then, in the ch (L(p− 1, 1, 0)⊗ L(p− 1, 1, 0)⊗ Sp−1E), the Schur function sτ

arises with multiplicity aτ , where aτ =

{
τ2 − 1 for τ3 = 0
τ2 − τ3 + 1 for τ3 6= 0

Proof. We have that

ch (L(p−1, 1, 0)⊗L(p−1, 1, 0)⊗Sp−1E) = (sp−1,1−sp−2,1,1)(sp−1,1−sp−2,1,1)sp−1,
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and thus the multiplicity aτ = a1
τ − a2

τ + a3
τ where a1

τ is the number of semi-
standard tableaux formed from sp−1,1sp−1,1sp−1 which follow the Littlewood-
Richardson Rule, a2

τ is twice the number of semi-standard tableaux formed
from sp−1,1sp−2,1,1sp−1 which follow the Littlewood-Richardson Rule, and a3

τ is
the number of semi-standard tableaux formed from sp−2,1,1sp−2,1,1sp−1 which
follow the Littlewood-Richardson Rule.

1) The case where τ3 = 0.
With τ3 = 0 then a2

τ = a3
τ = 0 and thus aτ = a1

τ . So, when calculating
sp−1,1sp−1,1sp−1, we first draw (p − 1, 1) which we notate by x’s. To this we
must add another (p − 1, 1) which we notate by 1s and a 2. To follow the
Littlewood-Richardson Rule and maintain a semi-standard tableau it is nec-
essary to put the 2 in the second row. We then add the 1s to either the first
or second row, such that the number of nodes in row two is less than or equal
to those in τ2 ≥ 2 and we can do this as follows;
Place no 1s in row two and p− 1 1s in row one;
Place one 1 in row two and p− 2 1s in row one;
And so on to the last option where we add τ2 − 2 1s to row two and the re-
maining 1s to row one.
To each of these new tableaux formed we can then add the remaining p − 1
nodes (notated by 4s) in one way, such that we have a τ -tableau. Hence
aτ = a1

τ = τ2 − 2 + 1 = τ2 − 1.

For example, let p = 7, r = 20 and τ = (16, 4, 0), then we have the fol-
lowing tableaux;

x244
xxxxxx1111114444

x124
xxxxxx1111144444

x112
xxxxxx1111444444

2) The case where τ3 6= 0.
Due to the nature of the truncated module we are using it is necessary here
to split this part into three cases, namely when τ3 = 1, when τ3 = 2 and when
τ3 ≥ 3. We start with;

i) The case where τ3 = 1.
In this case a3

τ = 0 as any tableaux formed from sp−2,1,1sp−2,1,1 will have a
minimum of two nodes in the third row. Thus aτ = a1

τ − a2
τ . So let us first

look at a1
τ . We begin by drawing (p − 1, 1) which we notate by x’s, then to

this we must add another (p− 1, 1) notated by p− 1 1s and one 2. The 2 we
can either place in the second or third row (if it were in the first then it would
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not be ‘good’ as necessitated by the Littlewood-Richardson Rule). Let us first
choose to place it in the second row, then we must now add the p− 1 1s, only
one of which can be placed in third row, and the remaining p− 2 1s must be
added to the first or second row, such that the number of nodes in the second
row is less than or equal to the number in τ2. We therefore have the following
options;
Place no 1s in the second row and p− 2 in the first row;
Place one 1 in the second row, and p− 3 in the first row;
This continues until we reach the final option where we place τ2 − 2 1s in the
second row, and p− 2− (τ2 − 2) 1s in the first row.
To each of these we can then add the remaining p− 1 4s, in one way, to form
a τ -tableau, and from this method we have τ2 − 1 tableaux.

For example with p = 5, r = 14 and τ = (10, 3, 1) we have the following
tableaux;

1
x24
xxxx111444

1
x12
xxxx114444

Now, after placing the 2 in the second row, we could have then chosen to not
put a 1 in the third row, so all 1s must be placed in the first or second rows
again such that the number of nodes in the second row is less than or equal
to the number in τ2. So we have the options;
Put no 1s in the second row and p− 1 in the first row;
Put one 1 in the second row and p− 2 in the first row;
This continues to the last option where we put τ2−2 1s in the second row and
p− 2− (τ2 − 2) in the first row.
To each of these tableau we can then add the remaining p− 1 4s, in one way,
to form a τ -tableau, and this method gives us another τ − 1 tableaux. With
the same example as above we get the following tableaux;

4
x24
xxxx111144

4
x12
xxxx111444

Now let us go back to when we placed the 2 in the second row, and instead,
choose to place it in the third row. Then the remaining 1s must be added to
the first or second row, again such that the number of nodes in the second row
does not exceed those in τ2. So we can;
Place non in the second row, and p− 1 in the first row;
Place one in the second row, and p− 2 in the first row;
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And so on to the last option where we place τ2 − 1 1s in the second row, and
p− 1− (τ2 − 1) in the first row.
Again, to each of these tableaux we can then add the remaining p − 1 4s, in
one way, to form a τ -tableau, and this method gives another τ2 tableaux. For
the example given above, these are

2
x44
xxxx111144

2
x14
xxxx111444

2
x11
xxxx114444

We have now covered all possible ways of forming a semi-standard τ -tableau
from sp−1,1sp−1,1sp−1 and we have that a1

τ = 2(τ2 − 1) + τ2.

We now need to find a2
τ which is twice the number of semi-standard τ -tableaux

formed from sp−1,1sp−2,1,1sp−1 such that they obey the Littlewood-Richardson
Rule. So, as before, we start by drawing (p− 1, 1) which we notate by x’s. To
this we must add (p−2, 1, 1) which we notate by p−2 1s, one 2 and one 3. To
ensure we follow the Littlewood-Richardson Rule, we must place the 3 in row
three and the 2 in row two, and thus it remains to add the p− 2 1s, which we
can add to either the first row or the second row, ensuring that the number of
nodes in the second row does not exceed the number in τ2. We thus have the
following options;
Put no 1s in row two and p− 2 in row one;
Put one 1 in row two and p− 3 in row one;
This continues to the final option where we place τ2 − 2 1s in row two and
p− 2− (τ2 − 2) in row one.
To each of these tableaux we can then add the remaining p− 1 4s in one way
to form a τ -tableau. Hence we have τ2− 1 ways of forming such a tableau and
thus a2

τ = 2(τ2 − 1). Referring back to our example, the tableaux formed here
are as follows;

3
x24
xxxx111444

3
x12
xxxx114444

So we can now calculate aτ = a1
τ−a2

τ = 2(τ2−1)+τ2−2(τ2−1)−τ2 = τ2−τ3+1
as τ3 = 1.

ii) The case where τ3 = 2. The method for finding a1
τ follows that of the

case where τ3 = 1. We draw (p − 1, 1) and then choosing to place the 2 of
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(p− 1, 1) in the second row and one 1 in the third row gives τ2 − 1 tableaux,
whilst placing again the 2 in the second row but putting no 1s in the third row
gives another τ2 − 1 tableaux.
Consider the example p = 5, r = 14 and τ = (10, 2, 2), then these tableaux
are as follows;

14
x1
xxxx111444

44
x2
xxxx111144

We then choose to place the 2 in the third row, and then add the remaining
1s, this time ensuring that not only are the number of nodes in the second row
less than or equal to the number in τ2, but that they are also greater than or
equal to the number of nodes in τ3 = 2. If the number was less than τ3 then to
get a τ -tableau it would be necessary to place two of the p− 1 4s underneath
each other, which is not possible in a standard tableau. So, we can first place
no 1s in the third row, which gives the following options;
Put τ3 − 1 1s in the second row and p− 1− (τ3 − 1) in the first row;
Put τ3 1s in the second row and p− 1− τ3 in the first row;
And so on until we reach the final option where we place τ2−1 1s in the second
row and p− 1− (τ2 − 1) in the first row.
To each of these tableaux there is then one possible way to add the remaining
p − 1 4s such that we form a semi-standard τ -tableau. So this method gives
τ2 − 1− (τ3 − 1) + 1 = τ2 − τ3 + 1 options.
In the example p = 5, r = 19 and τ = (10, 2, 2) this gives the tableau;

24
x1
xxxx111444

We can then choose to place one 1 in the third row, and then attach the re-
maining 1s to rows one and two again so that the number of nodes in row
two is greater than or equal to τ3 and less than or equal to τ2, this then gives
another τ2 − τ3 + 1 options, which in our example gives the tableau;

12
x1
xxxx114444

Thus, bringing all our options together we have that a1
τ = 2(τ2 − 1) + 2(τ2 −

τ3 + 1).

We now move onto a2
τ . As for the case τ3 = 1 we draw (p − 1, 1) and then

when adding (p − 2, 1, 1) to it we must place the 3 in the third row, and the
two in the second row. It then remains to attach the p − 2 1s, which, if we
choose to place non of these in the third row, again gives τ2 − 1 tableaux. In
our example, this is the following tableau;
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34
x2
xxxx111444

As τ3 = 2, we could also choose to place one of these 1s in the third row,
before the 3, to ensure we have a semi-standard tableau, and then attach the
remaining p−3 1s to the first and second rows, giving another τ2−1 tableaux,
which for our example is the following;

13
x2
xxxx111444

There is thus a total of 2(τ2 − 1) tableaux and hence a2
τ = 4(τ2 − 1).

It now remains to find a3
τ . We first draw (p − 2, 1, 1) notated by x’s, and

then add to it another (p−2, 1, 1) notated by p−2 1s, one 2 and one 3. Again,
to ensure we follow the Littlewood-Richardson Rule, it is necessary to place
the 3 in the third row and the 2 in the second row. We then must attach the
p− 2 1s to the first and second rows, we we can do as follows;
Add no 1s to the second row, and p− 2 to the first row;
Add one 1 to the second row and p− 3 to the first row;
This continues until we reach the final option where we add τ2 − 2 1s to the
second row and p − 2 − (τ2 − 1) 1s to the first row. To each of these there
is one way to add the remaining p− 1 4s such that we have a τ -tableau, and
thus a3

τ = τ2 − 1. Finishing our example, the tableau formed is as follows;

x3
x2
xxx1114444

We thus have that aτ = (2(τ2 − 1) + 2(τ2 − τ3 + 1))− (4(τ2 − 1)) + (τ2 − 1) =
τ2 − 1 = τ2 − τ3 + 1 as τ3 = 2.

iii) The case where τ3 ≥ 3.
For this case we use the example p = 7, r = 20 and τ = (14, 3, 3). We follow
a similar method to the previous case, so start with finding a1

τ . As before, we
draw (p− 1, 1) with x’s, and first choose to place the 2 of the next (p− 1, 1) in
the second row, and one of the 1s in the third row. We then add the remaining
1s such that the number of nodes in row two is less than or equal to those in
τ2 and greater than or equal to the number in τ3. We can thus;
Place τ3 − 2 1s in row two and p− 2− (τ3 − 2) in row one;
Place τ3 − 1 in row two and p− 2− (τ3 − 1) in row one;
And so on to the final option where we place τ2−2 in row two and p−2−(τ2−2)
in row one. To each of these there is one way to add the p − 1 4s to form a
τ -tableau, and thus we have τ2 − τ3 + 1 tableaux. In our example, this gives;

144
x12
xxxxxx11114444
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When we then choose to not place a 1 in the third row, then we add them
again to rows one and two in the same way, thus giving another τ2 − τ3 + 1
options, which in our example is as follows;

444
x12
xxxxxx11111444

Finally, we can choose to place the 2 in the third row as opposed to the second
row. From there we can add the 1s such that row two is restricted as above
and row three has either one 1 in it, or no 1s at all. This gives a further
2(τ2 − τ3 + 1) tableaux, which in our example are as follows;

124
x11
xxxxxx11144444

244
x11
xxxxxx11114444

Thus in total we have that a1
τ = 4(τ2 − τ3 + 1).

We now move on to a2
τ , as before, we draw the (p − 1, 1) with x’s, and then

add a (p− 2, 1, 1) where we must put the 3 in the third row and the 2 in the
second row. With the p − 2 1s, we can then place either non of them in the
third row, or just one of them in the third row. The number of 1s placed in
the second row is again restricted by τ2 and τ3, and the remaining are placed
in the first row. To each of these we can add the p − 1 4s in just one way to
form a τ -tableau and thus there are 2(τ2 − τ3 + 1) of these tableaux. In our
example these are as follows;

344
x12
xxxxxx11114444

134
x12
xxxxxx11144444

Thus we have that a2
τ = 4(τ2 − τ3 + 1).

We now find a3
τ , first drawing (p − 2, 1, 1) with x’s, then adding another

(p − 2, 1, 1) where we must put the 2 in the second row and the 3 in the
third row. The remaining 1s are added to the first or second row such that
the number in the second row is again restricted by τ2 and τ3. This gives that
a3
τ = τ2 − τ3 + 1, which in our example is;

x34
x12
xxxxx111144444

We can then calculate aτ = (4(τ2− τ3 + 1))− (4(τ2− τ3 + 1)) + (τ2− τ3 + 1) =
τ2 − τ3 + 1 as required.
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With this information we can now check that for µ the highest weight in its core
class and σ the second highest weight, that aσ > aµ. Well, µ = (λ1 + p, λ2, λ3)
and σ = (λ2 + 2p − 1, λ1 − p + 1, λ3), and so when µ3 = σ3 = λ3 = 0 then
aµ = λ2 − 1 and aσ = λ1 − p + 1 − 1 = λ1 − p, and indeed, as λ1 − λ2 ≥ p
then λ1 − p > λ2 − 1. On the other hand, when λ3 6= 0 then aµ = λ2 − λ3 + 1
and aσ = λ1 − p + 1 − λ3 + 1 = λ1 − λ3 − p + 2, and again as λ1 − λ2 ≥ p
then λ1 − λ3 − p+ 2 > λ2 − λ3 + 1. Hence the coefficient spaces of the tilting
modules whose weights are second highest in the core class of the 6-set are
contained in cf (L(p− 1, 1, 0)⊗ L(p− 1, 1, 0)⊗ Sp−1E).

ii) Here we consider those tilting modules whose weights are second highest in
the core class of the 3-set which came from the self-titled weight λ such that
λ1 − λ3 < p− 2.

THEOREM 4.13.33 For r = 3p − 1 where λ was a self-titled weight of
degree r = 2p− 1 with λ1 − λ3 < p− 2, then

cf (T (λ21, λ22, λ23)) ⊆ cf (L(p− 1, 1, 0)⊗ L(p− 1, 1, 0)⊗ Sp−1E.

Proof. The proof is similar to that of the case r = 3p−2. From Section 4.7, we
have that the 3-set formed from this self-titled weight λ with λ1 − λ3 < p− 2
is as follows;

(λ1 + p, λ2, λ3)

(λ2 + p− 1, λ1 + 1, λ3)

(λ3 + p− 2, λ1 + 1, λ2 + 1)

Now consider the tilting truncated module L(p−1, 1, 0)⊗L(p−1, 1, 0)⊗Sp−1E,
and let us first calculate L(p−1, 1, 0)⊗L(p−1, 1, 0) = (sp−1,1−sp−2,1,1)(sp−1,1−
sp−2,1,1). Using the Littlewood-Richardson Rule we result in the following sum;

s2p−2,2,0 + s2p−2,1,1 + s2p−3,3,0 + s2p−4,4,0 + . . .+ sp,p,0 + sp−1,p−1,2.

Now, to ensure we have the tilting module in the middle of this core class
we need to ensure that the Schur function corresponding to its highest weight
arises with a higher multiplicity than the Schur function corresponding to the
weight at the top of this core class, when we calculate ch (L(p − 1, 1, 0) ⊗
L(p − 1, 1, 0) ⊗ Sp−1E). Well, the only terms in the above sum which can be
multiplied by another sp−1 such that the resulting Schur function has weight
(λ1 + p, λ2, λ3), are those in the range

(2p− λ3, λ3, 0), (2p− (λ3 + 1), λ3 + 1, 0), . . . , (2p− λ2, λ2, 0)

where λ2 ≤ p − 3 as λ1 ≤ p − 3 by Proposition 4.3.3. If the second entry is
less than λ3 then when we add on the remaining nodes we would not be able
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to form a partition with strictly increasing columns. If the second entry is
greater than λ2 then we have too many nodes in the second row. Note that

On the other hand, the terms from the above sum which can be multiplied
by another sp−1 such that the resulting Schur function has weight (λ2 + p −
1, λ1 + 1, λ3), are those in the range

(2p− λ3, λ3, 0), (2p− (λ3 + 1), λ3 + 1, 0), . . . , (2p− (λ1 + 1), λ1 + 1, 0)

where λ1 + 1 ≤ p − 2 as λ1 ≤ p − 3. If the second entry is less than λ3 then
when we add on the remaining nodes we would not be able to form a partition
with strictly increasing columns. If the second entry is greater than λ1 + 1
then we have too many nodes in the second row.
Thus, as λ1 + 1 > λ2 then the multiplicity of the Schur function corre-
sponding the ‘middle’ weight is greater than the multiplicity of the Schur
function corresponding to the top weight. Hence by 4.10 c) we have that
cf (T (λ2 + p − 1, λ1 + 1, λ3) ⊆ cf (L(p − 1, 1, 0) ⊗ L(p − 1, 1, 0) ⊗ Sp−1E as
required.

iii) Here we consider those tilting modules whose weights are second highest
in the core class of the 3-set where λ1 − p < p− 1 and where λ1 − p = p− 1.

THEOREM 4.13.34 For r = 3p − 1 where λ1 + p > t and λ1 − p = p − 2
then

cf (T (λ21, λ22, λ23)) ⊆ cf (L(p− 1, 2, 0)⊗ L(p− 1, 1, 0)⊗ Sp−2E).

For r = 3p− 1 where λ1 + p > t and λ1 − p = p− 1 then

cf (T (λ21, λ22, λ23)) ⊆ cf (L(p− 1, p− 1, 1)⊗ S
p+1
2 E ⊗ S

p−1
2 E).

Proof. Let us first consider the case where λ1 − p = p− 2, we know here that
(λ1, λ2, λ3) = (r1 − 1, 1, 0) = (2p− 2, 1, 0). Therefore for r2 = 3p− 1 then the
weight highest in its core class is (λ2 + 2p − 1, λ1 − p + 1, λ3) = (2p, p − 1, 0)
and the weight second highest is (λ1, λ2 +p, λ3) = (2p−2, p+ 1, 0). When cal-
culating the character of Tr p+1,p,p−2E it is therefore only necessary to consider
weights who have last entry zero. We first find those in sp−1,1 · sp−2, namely
(2p− 3, 1, 0), (2p− 4, 2, 0), (2p− 5, 3, 0), . . . , (p− 1, p− 1, 0), and note that the
negative part of this calculation sp−2,1,1 · sp−2 will give no weights with last
entry zero. We now multiply each of these weights by sp−1,2 and see how many
times (2p, p− 1, 0) and (2p− 2, p+ 1, 0) occur in each.
sp−1,2 ·s2p−3,1,0 gives weights (3p−4, 3, 0), . . . , (2p−1, p, 0) and only the highest
weight occurs once in this.
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sp−1,2 · s2p−4,2,0 gives weights (3p− 5, 4, 0), . . . , (2p− 2, p+ 1, 0) and each occur
once in this.
sp−1,2 · s2p−5,3,0 gives weights (3p− 6, 5, 0), . . . , (2p− 3, p+ 2, 0) and each occur
once in this.
...
sp−1,2 · s 3p−5

2
, p+1

2
,0 gives weights (5p−7

2
, p+5

2
, 0), . . . , (3p−1

2
, 3p−1

2
, 0) and each occur

once in this.
sp−1,2 · s 3p−7

2
, p+3

2
,0 gives weights (5p−9

2
, p+7

2
, 0), . . . , (3p−1

2
, 3p−1

2
, 0) and each occur

once in this.
...
sp−1,2 · sp+1,p−3 gives weights (2p, p − 1, 0), . . . , (3p−1

2
, 3p−1

2
, 0) and each occur

once in this.
sp−1,2 ·sp,p−2,0 gives weights (2p−1, p, 0), . . . , (3p−1

2
, 3p−1

2
, 0) and only the second

occurs once in this.
sp−1,2 · sp−1,p−1,0 gives weights (2p− 2, p+ 1, 0), . . . , (3p−1

2
, 3p−1

2
, 0) and only the

second highest weight occurs once in this.

We therefore have that, in ch (Tr p+1,p,p−2E), the Schur function corresponding
to the second highest weight arises with multiplicity p − 2, whilst the Schur
function corresponding to the highest weight only arises with multiplicity p−3.
Hence, by 4.10 c), the coefficient space of the tilting module whose weight is
second highest in the core class of the 3-set with λ1 − p = p − 2 is contained
in cf (Tr p+1,p,p−2E).

We now move onto the 3-set where λ1 − p = p − 1 where we know that
(λ1, λ2, λ3) = (r, 0, 0) = (2p − 1, 0, 0) and so the second highest weight in the
3-set for r2 = 3p − 1 is (λ1, λ1 − p, 1) = (2p − 1, p − 1, 1), and indeed, the

leading term in ch (L(p − 1, p − 1, 1) ⊗ S p+1
2 E ⊗ S p−1

2 E) is s2p−1,p−1,1. Thus
by 4.10 c), the coefficient space of the tilting module whose weight is second
highest in the core class of the 3-set with λ1 − p = p − 1 is contained in
cf (L(p− 1, p− 1, 1)⊗ S p+1

2 E ⊗ S p−1
2 E).

iv) For the weights which are third, fourth and fifth highest in the core class
of the 6-set, we can use the same proof as for the range 2p ≤ r ≤ 3p − 3
as the 6-sets for r = 3p − 1 are formed in exactly the same way as for
2p ≤ r ≤ 3p − 3, it is just that there are a smaller number of these 6-sets
due to there being a smaller number of 3-sets for 2p − 1 because of the cases
where λ = (2p − 1, 0, 0), (2p − 2, 1, 0) as λ1T − p = p − 1 which form 3-sets
not 6-sets which were resolved in sections i)and ii). For the fourth and fifth
highest weights we use the truncated module L(p− 1, p− 1, 0)⊗ SαE ⊗ SαE
as r = 3p− 1 is even, where α = p+1

2
. We can then use the proof of the even
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part of Theorem 4.13.13 from the range 2p ≤ r ≤ 3p − 3, to show that the
Schur functions corresponding to the fourth and fifth weights arise at least
once in the character of the above truncated module. Moreover, from the
range 2p ≤ r ≤ 3p− 3 we also have the following result;

THEOREM 4.13.35 The character of the truncated module

ch (Tr 2p−2,α,αE) =
∑

aλsλ where aλ =

{
λ3 + 1 for λ1 ≥ p− 1 + α
λ1 − λ2 + 1 for λ1 < p− 1 + α

Where λ = (λ1, λ2, λ3) such that p−1 ≤ λ2 ≤ p−1+2α, p−1 ≤ λ2 ≤ p−1+α
and 0 ≤ λ3 ≤ 2α.

Proof. See proof of the same Theorem 4.13.15 for the range 2p ≤ r ≤ 3p− 3.

Let sσ be the Schur function corresponding to the fourth highest weight, then
σ = (λ1, λ2 + p, λ3) and let sτ be the Schur function corresponding to the fifth
highest weight, then τ = (λ1, λ3 +p−1, λ2 +1). For the range 2p ≤ r ≤ 3p−3
we had that σ1, τ1 ≥ p− 1 + α, and we proved that in this case aτ = τ3 + 1 =
λ2 + 2 > λ3 + 1 = σ3 + 1 = aσ. However for r = 3p− 1 it may be possible for,
σ1 = τ1 = λ1 < p− 1 +α. For example, with p = 7 and r2 = 20 = r1 + p, then
λ = (9, 2, 2) is a weight at the top of its core class as 9 − 2 = 7 = p, and yet
λ1 = 9 < p− 1 + α = 10, hence σ1 = τ1 < p− 1 + α.
So, in this case aσ = σ1 − σ2 + 1 = λ1 − (λ2 + p) + 1 = λ1 − λ2 − p + 1 and
aτ = τ1− τ2 + 1 = λ1− (λ3 +p−1) + 1 = λ1−λ3−p+ 2, and we need to check
that aτ > aσ. Well, we know that λ2 ≥ λ3 and hence λ2 +p−1 ≥ λ3 +p−1 >
λ3 + p− 2 which is true if and only if λ1 − λ3 − p + 2 > λ1 − λ2 − p + 1 and
thus aτ > aσ as required.
Hence both cf (T (σ)) and cf (T (τ)) are contained in cf (L(p − 1, p − 1, 0) ⊗
SαE ⊗ SαE) where α = p+1

2
.

REMARK 4.13.36 We have therefore found that the coefficient spaces of
all tilting modules of A(π, r) are contained in some tilting truncated module of
D3(p, r) and thus have proven Theorem 4.1.3 for the range 0 ≤ r ≤ 3p − 1.
Applying the reflection property from Section 3.5 also proves D3,p(r) = A(π, r)
for the range 6p− 8 ≤ r ≤ 3t. Hence, the Doty colagebras are quasi-hereditary
and thus have finite global dimension for these ranges.
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Chapter 5

Further cases

AIM: This chapter looks at the range we did not prove D3,p(r) = A(π, r) in
Chapter Four, namely 3p ≤ r ≤ 6p − 9 for n = 3, stating why we believe
D3,p(r) 6= A(π, r) for this range. We then move on to the case n ≥ 4, again
explaining why we conjecture Dn,p(r) 6= A(π, r) except in certain cases. Finally
we prove Dn,2(r) = A(π, r) for all n and for π a suitable saturated set.

5.1 The case n = 3 for 3p ≤ r ≤ 6p− 9

AIM: In Chapter Four we proved D3,p(r) = A(π, r) for 0 ≤ r ≤ 3p − 1 and
along with the reflection property in Section 3.5 we also have that D3,p(r) =
A(π, r) for 6p − 8 ≤ r ≤ 3t where t = n(p − 1). In this chapter we consider
the ‘middle’ range 3p ≤ r ≤ 6p − 9, and so begin with a conjecture that
D3,p(r) 6= A(π, r) for this range. We consider examples for p = 3, 5 and 7,
and show that we are unable to find the coefficient spaces of the tilting modules
of each A(π, r) respectively, via the methods we used to prove our theorem for
the range 0 ≤ r ≤ 3p− 1. We look at other methods we could use and explain
why we have been unable to prove D3,p(r) = A(π, r) for 3p ≤ r ≤ 5p− 5, and
thus why we conjecture that D3,p(r) 6= A(π, r) for 3p ≤ r ≤ nt

2
and thus for

the reflection of this range, i.e. nt
2
≤ r ≤ 6p− 9.

CONJECTURE 5.1.1 The Doty Coalgebras D3,p(r) 6= A(π, r) for 3p ≤ r ≤
6p− 9 and π = {λ = (λ1, λ2, λ3) | λ1 ≤ t, |λ| = r}.

5.1.1 The example n = 3, p = 3 and r = 3p = 9

It is interesting to point out, that for this example, nt = 3(3p−3) = 9p−9 = 18
and thus the ‘halfway’ point we would need to reach to then use the reflection
property in Section 3.5 would be r = 9 = 3p. Let us first study the details
of this example. There are eight partitions λ = (λ1, λ2, λ3) of r into n parts,
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such that λ1 ≤ n(p− 1) = 6, namely (6, 3, 0), (6, 2, 1), (5, 4, 0),
(5, 3, 1), (5, 2, 2), (4, 4, 1), (4, 3, 2) and (3, 3, 3), and thus there are eight tilting
modules whose coefficient spaces we need to find, and eight truncated modules
with which to find them. These truncated modules are as follows;
Tr 630E = L(2, 2, 2)⊗ L(2, 1, 0)
Tr 621E = L(2, 2, 2)⊗ L(2, 0, 0)⊗ L(1, 0, 0)
Tr 540E = L(2, 2, 1)⊗ L(2, 2, 0)
Tr 531E = L(2, 2, 1)⊗ L(2, 1, 0)⊗ L(1, 0, 0)
Tr 522E = L(2, 2, 1)⊗ L(2, 0, 0)⊗ L(2, 0, 0)
Tr 441E = L(2, 2, 0)⊗ L(2, 2, 0)
Tr 432E = L(2, 2, 0)⊗ L(2, 1, 0)⊗ L(2, 0, 0)
Tr 333E = L(2, 1, 0)⊗ L(2, 1, 0)⊗ L(2, 1, 0)

By Theorem 4.8.15 we know that Tr 630E and Tr 333E are not tilting, and
thus we have six tilting truncated modules with which to work. It is next
necessary to understand the core classes of the tilting modules. Well, each
weight apart from (5, 3, 1) has an empty p-core, whilst (5, 3, 1) is self-titled, so
we have two core classes. So, let us consider each tilting module separately.

ch (Tr 432E) has leading term s630 and thus cf (T (6, 3, 0)) ⊆ cf (Tr 432E).
ch (Tr 522E) has leading term s621 and thus cf (T (6, 2, 1)) ⊆ cf (Tr 522E).
ch (Tr 441E) has leading term s540 and thus cf (T (5, 4, 0)) ⊆ cf (Tr 441E).
ch (Tr 531E) has leading term s531 and thus cf (T (5, 3, 1)) ⊆ cf (Tr 531E).
ch (Tr 621E) has leading term s522 and thus cf (T (5, 2, 2)) ⊆ cf (Tr 621E).
ch (Tr 540E) has leading term s441 and thus cf (T (4, 4, 1)) ⊆ cf (Tr 540E).

The next tilting module to consider is T (4, 3, 2). Unfortunately the Schur
function s432 is not the leading term in the character of a tilting truncated
module, so we need to look beyond this. As we are looking at p = 3 we can
use James’ book to find the composition factors of all the tilting modules, as
shown in Fact 4.9.13. These are shown below;
T (6, 3, 0) has filtration structure

∇(6, 3, 0)

∇(6, 2, 1)

∇(5, 4, 0)

∇(5, 3, 2)

∇(4, 4, 1)

∇(4, 3, 2)
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T (6, 2, 1) has filtration structure

∇(6, 2, 1)

∇(5, 2, 2)

∇(4, 4, 1)

∇(4, 3, 2)

T (5, 4, 0) has filtration structure

∇(5, 4, 0)

∇(5, 2, 2)

∇(4, 4, 1)

∇(4, 3, 2)

T (5, 2, 2) has filtration structure

∇(5, 2, 2)

∇(4, 3, 2)

T (4, 4, 1) has filtration structure

∇(4, 4, 1)

∇(4, 3, 2)

T (4, 3, 2) has filtration structure

∇(4, 3, 2)

∇(3, 3, 3)

So ∇(4, 3, 2) arises as a section in a ∇-filtration of every tilting module which
is above it in its core class. We now consider each tilting truncated module,
starting with Tr621E and look at the multiplicities of the weights in its char-
acter.
The ch (Tr 621E) = s522 + s432, so the one ∇(4, 3, 2) is ‘taken’ by the T (5, 2, 2).
The ch (Tr 540E) = s441 + s432, so the one ∇(4, 3, 2) is ‘taken’ by the T (4, 4, 1).
The ch (Tr 531E) = s531 + s522 + s431 + 2s432, so the two ∇(4, 3, 2) are ‘taken’
by the T (5, 2, 2)and the T (4, 4, 1).
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The ch (Tr 522E) = s621 + s531 + 2s522 + s441 + 2s432, so the two ∇(4, 3, 2) are
‘taken’ by the T (6, 2, 1) and the T (5, 2, 2).
The ch (Tr 441E) = s540 + s531 + s522 + 2s441 + 2s432, so the two ∇(4, 3, 2) are
‘taken’ by the T (5, 4, 0) and the T (4, 4, 1).
The ch (Tr 432E) = s630 + s621 + s540 + 2s531 + 2s522 + 2s441 + 3s432, so the three
∇(4, 3, 2) are ‘taken’ by the T (6, 3, 0), the T (5, 2, 2) and the T (4, 4, 1).

Therefore, via these methods, we have been unable to find a tilting trun-
cated module whose coefficient space contains the coefficient space of the
tilting module T (4, 3, 2). We must therefore now consider other methods.
Well, if it were true that cf (T (4, 3, 2)) ⊆ D3,3(9) then it would be the case
that T (4, 3, 2) would be contained in the image of some φ(Tr λE) where λ is
one of the eight partitions given above and φ : Tr λE → D3,3(9) is a homo-
morphism. Much detailed work in this area has found this is not the case.
Other methods were considered and tested, and we were unable to show that
cf (T (4, 3, 2)) ⊆ D3,3(9), and so we therefore conjecture that we cannot find
this tilting module T (4, 3, 2).

5.1.2 The example n = 3, p = 5 and r = 3p = 15

For this example we have the following core classes;

xxxxxxxxxx xxxxx
xxxxx xxxxxxxxxx

Ø xxxxxxxxxx

ST
12,3,0 12,2,1 11,4,0 11,2,2 10,5,0 10,3,2 9,5,1
7,4,4 11,3,1 8,7,0 6,6,3 10,4,1 7,6,2

9,3,3 8,4,3 9,6,0
7,7,1 9,4,2
7,5,3 8,6,1
6,5,4 8,5,2

5,5,5

It can be shown that the coefficient spaces of all tilting modules whose high-
est weight is highest or lowest in its core class, or self-titled, will arise in the
coefficient space of the tilting truncated module Tr 654E which is the lowest
weighted tilting truncated module. It therefore remains to find those tilting
modules whose highest weights sit in the middle of their core class. We shall
consider each one in turn, firstly looking at the 6-set. The Schur function
of the second highest weight (11, 3, 1) arises in ch (Tr 654E) with multiplic-
ity 2, one higher than the multiplicity of the Schur function of (12, 2, 1) and
thus cf (T (11, 3, 1)) ⊆ cf (Tr 654E). The tilting module with the third highest
weight T (9, 3, 3) we have due to the same method used in Theorem 4.13.7. The
cf (T (7, 7, 1)) ⊆ cf (Tr 933E) as in the character of Tr 933E, s771 is the highest
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weight that arises in its core class. Finally, the cf (T (7, 4, 3)) ⊆ cf (Tr 11,3,1)
as in the character of Tr 11,3,1E, s743 is the highest weight in its core class to
arise.
For the 3-set, we only need to find T (8, 7, 0), and as s870 arises with a higher
multiplicity than s11,4,0 in ch (Tr 753E), then cf (T (8, 7, 0)) ⊆ cf (Tr 753E).
The 7-set is where the problems arise. For the tilting module with the second
highest weight, we have that cf (T (10, 4, 1)) ⊆ cf (Tr 933E) as the leading term
in the character of Tr 933E is indeed s10,4,1. In a similar way, cf (T (9, 4, 2)) ⊆
cf (Tr10,4,1E) as the leading term in ch (Tr 10,4,1E) is s942. It remains to find
T (9, 6, 0), T (8, 6, 1) and T (8, 5, 2), and in a similar way to the previous exam-
ple, we can show that when we calculate the character of each of the truncated
modules, the highest weights of the tilting modules we wish to find never arise
with a higher multiplicity than the sum of the multiplicities of the weights
above them in their core class, and thus we cannot say that we have found
the coefficient spaces of these tilting modules in D3,5(15). There is also the
added difficulty in this and all other examples where p ≥ 5 in that we do not
have a full understanding of the composition factors of the tilting modules, as
we did for p = 3 via James’ book. Moreover in this case, we do not just have
one tilting module to find, but three. The same continues in the following
example.

5.1.3 The example n = 3, p = 7 and r = 3p = 21

In this example we have the following core classes;

Ø xxxxxxx xxxxxxx xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxxxxxxxxx

14,7,1 15,6,0 18,3,0 18,2,1 17,3,1 17,2,2 17,4,0
14,6,1 12,9,0 16,5,0 15,5,1 16,4,1 15,4,2 10,6,5
13,8,0 12,6,3 12,5,4 13,5,3 13,4,4 14,4,3
13,6,2 11,10,0 11,9,1 10,10,1 10,9,2
12,8,1 11,6,4 11,7,3 10,7,4 10,8,3
12,7,2 9,6,6 8,7,6 9,7,5 8,8,5
7,7,7

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

ST ST
16,3,2 15,3,3 14,5,2 13,7,1 11,5,5
9,8,4 9,9,3 11,8,2

As in the previous example all tilting modules whose highest weights are high-
est or lowest in their core class, or are self-titled can be found in the truncated
module Tr 876E, which is the lowest weighted, tilting truncated module for this
degree. The tilting modules whose weights are second highest in the core class
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of the 6-set arise in the same truncated module as their weight arises with a
higher multiplicity than that of the weight at the top of their core class. The
tilting modules whose weights are third highest in the core class of the 6-set
arise due to the same method used in Theorem 4.13.7. The remaining tilting
modules in the 6-sets arise in the following truncated modules;
cf (T (11, 10, 0)) ⊆ cf (Tr 12,6,3E)
cf (T (11, 6, 4)) ⊆ cf (Tr 16,4,1E)
cf (T (11, 9, 1)) ⊆ cf (Tr 13,4,4E)
cf (T (11, 7, 3)) ⊆ cf (Tr 15,4,2E)
cf (T (10, 10, 1)) ⊆ cf (Tr 13,4,4E)
cf (T (10, 7, 4)) ⊆ cf (Tr 16,4,1E)
cf (T (10, 9, 2)) ⊆ cf (Tr 14,6,1E)
cf (T (10, 8, 3)) ⊆ cf (Tr 15,4,2E)

For the 3-set, cf (T (12, 9, 0) ⊆ cf (Tr 975E). Finally, for the 7-set we can resolve
another two tilting modules; cf (T (14, 6, 1)) ⊆ cf (Tr 13,4,4E) and cf (T (13, 6, 2)) ⊆
cf (Tr 14,6,1E). What remains are the same tilting modules as for the previous
example, those which are third, fifth and sixth highest in the 7-set, and again
when we calculate the character of all tilting truncated modules we find that
their highest weight does not arise with a higher multiplicity than the sum of
the multiplicities of all the weights above them in their core class. We can
therefore not say whether these tilting modules are contained in D3,7(21).

REMARK 5.1.2 If we then look back at Section 4.7, we can see that for the
next range of r, namely 4p ≤ r ≤ 5p − 5, the same issue will arise. For this
range we have two core classes which are 6-sets and again a core class which
is a 7-set, thus there are many more tilting modules to find whose weights sit
in the middle of their core class.

5.2 The case n ≥ 4

AIM: Our understanding of what happens for n ≥ 4 is not complete, however
there are a number of points which can be made for this case. We firstly prove
that Dn,p(r) = A(π, r) for 0 ≤ r ≤ p − 1 and nt − (p − 1) ≤ r ≤ nt. We
then consider further ranges of r stating why we believe Dn,p(r) 6= A(π, r) for
p ≤ r ≤ nt− p except in the case n = 4 and p = 3.

5.2.1 The range 0 ≤ r ≤ p− 1

THEOREM 5.2.1 For 0 ≤ r ≤ p− 1 then cf (T (λ)) ⊆ cf (Tr λE)

Proof. For 0 ≤ r ≤ p − 1 then L(λ) = ∇(λ) = ∆(λ) = T (λ). Moreover each
weight λ is self-titled and thus has its own core class. Tr λE = Sλ1E⊗Sλ2E⊗
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Sλ3E, where λi ≤ p− 1 and thus each SλiE is tilting. The Schur function sλ
arises in ch (Tr λE) and as the weight λ is self-titled then cf (T (λ)) ⊆ cf (Tr λE)
as required.

COROLLARY 5.2.2 Using the reflection property of Section 3.5, this also
proves that Dn,p(r) = A(π, r) for nt− (p− 1) ≤ r ≤ nt.

5.2.2 The range p ≤ r ≤ 2p− 1

For each self-titled weight from 0 ≤ r ≤ p − 1 there are n possible ways to
add on a new p-hook. Namely adding it on to the first row, then adding it on
starting at the second row, and so forth until we add it on starting at the nth
row. Thus there will be core classes consisting of n weights.
Now, the lowest weighted truncated module for each degree r is as follows;
For n | r: ( r+1

n
, r+1

n
, . . . , r+1

n
)

For n | r + 1: ( r+1
n
, . . . , r+1

n
, r+1

n
− 1)

For n | r + 2: ( r+2
n
, . . . , r+2

n
, r+2

n
− 1, r+2

n
− 1)

...
For n | r + (n− 1): ( r+(n−1)

n
, r+(n−1)

n
− 1, . . . , r+(n−1)

n
− 1).

The greatest entry here is r+(n−1)
n

≤ 2p−1+n−1
n

= 2p−2+n
n

. Now 2p−2+n
n
≤ p − 1

if and only if p ≥ 2n−2
n−2

. However 2n−2
n−2

< 3 so we would require p ≥ 3, which
we know to be true. The case p = 2 is resolved in the following section. We
therefore know that the lowest weighted truncated module is always tilting
and then by the Littlewood-Richardson Rule, the ch (Tr λE) for λ minimal
gives the Schur function of each weight in the degree r at least once. We
therefore have that the coefficient spaces of the tilting modules whose highest
weights are highest or lowest in their core class, or self-titled, are contained
in cf (Tr λE) for λ minimal. Moreover, just as in the case n = 3 the Schur
function of the tilting module whose weight is second highest in its core class
arises with a higher multiplicity than the Schur function of the weight above
it. Thus we have the coefficient space of this tilting module aswell.
Thus, because of the structure of the case n = 4, p = 3 where there are at
most three weights in a core class for the range p ≤ r ≤ 2p − 1, we have
that the coefficient spaces of all tilting modules in this range are contained in
cf (Tr λE) for λ minimal, i.e. D4,3(r) = A(π, r) for p ≤ r ≤ 2p− 1. Moreover,
using the reflection property of Section 3.5 we also have that D4,3(r) = A(π, r)
for nt− (2p− 1) ≤ r ≤ nt.
However for all other cases there will be the third highest weights, to the n−1
highest weights which it still remains to find.
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EXAMPLE 5.2.3 Let n = 4 and r = p = 5, then we have the core classes;
Ø ST ST

(5,0,0,0) (3,2,0,0) (2,2,1,0)
(4,1,0,0)
(3,1,1,0)
(2,1,1,1)

The lowest weighted truncated module is Tr 2111E whose character is

s5 + 3s41 + 3s32 + 3s311 + 2s221 + s2111,

so as stated we have that cf (T (5, 0, 0, 0)), cf (T (3, 2, 0, 0)), cf (T (2, 2, 1, 0)),
cf (T (2, 1, 1, 1)) and cf (T (4, 1, 0, 0)) are contained in cf (Tr 2111E). It remains
to find T (3, 1, 1, 0) but as the multiplicity of s311 is 3 and the multiplicities of
s41 and s5 sum to give 4 we cannot say that cf (T (3, 1, 1, 1)) ⊆ cf (Tr 2111E).
Moreover, for the remaining tilting truncated modules Tr 41E, Tr 32E, Tr 311E
and Tr 221E, the same occurs in that in their character the multiplicity of s311

is not greater than the sum of the multiplicities of the Schur functions of s41

and s5.

This is just one example, and obviously as n increases so the number of tilting
modules to find will be greater. It is also the case for n ≥ 4, that we can-
not necessarily use the crucial Fact 4.9.17, which we used for the case n = 3.
Firstly, it may not be possible for two weights, λ and µ, in the same core class
to admit a horizontal h-cut. However, more importantly, even if they do, we
would then be in the case GLn−1, and unless n− 1 = 2, or we can make more
horizontal h-cuts to get back to GL2, we cannot be sure that (T (λ) : ∇(µ)) ≤ 1
where λ > µ. Therefore the method given in 4.10 c), of ensuring the multi-
plicity of sµ in strictly greater than that of sλ, cannot be used. This makes it
that much harder to find tilting modules whose weights are in the middle of
their core class.

It is also the case that the number of tilting truncated modules decreases
as n increases. We have

S̄E =L(0, . . . , 0)⊕ L(1, 0, . . . , 0)⊕ . . .⊕ L(p− 1, 0, . . . , 0)

⊕ L(p− 1, 1, 0, . . . , 0)⊕ L(p− 1, 2, 0, . . . , 0)⊕ . . .
⊕ L(p− 1, p− 1, 0, . . . , 0)

...

⊕ L(p− 1, . . . , p− 1, 1, 0, 0)⊕ L(p− 1, . . . , p− 1, 2, 0, 0)⊕ . . .
⊕ L(p− 1, . . . , p− 1, 0)⊕ (p− 1, . . . , p− 1, 1)⊕ L(p− 1, . . . , p− 1, 2)

⊕ . . .⊕ L(p− 1, . . . , p− 1, p− 1)
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where the only tilting modules are those in the ranges

L(1, 0, . . . , 0), . . . , L(p− 1, 0, . . . , 0)

and
L(p− 1, . . . , p− 1, 0), . . . , L(p− 1, . . . , p− 1, p− 1).

This then greatly restricts the number of tilting truncated modules which we
can work with, which plays a clear negative role for the range r > t.

5.2.3 The range r > t

Take the example n = 4, p = 3 and r = 11. The lowest weighted truncated
module is

Tr 3332E = L(2, 1, 0, 0)⊗ L(2, 1, 0, 0)⊗ L(2, 1, 0, 0)⊗ S2E.

Now L(2, 1, 0, 0)⊗S2E = (s21−s111) ·s2 = s41 +s32 +s221−s2111 is not tilting.
Moreover when we then calculate (s21−s111)(s21−s111)(s41 +s32 +s221−s2111)
we find negatives in the result and thus Tr 3332E is not tilting. The next lowest
weight is

Tr 4322E = L(2, 2, 0, 0)⊗ L(2, 1, 0, 0)⊗ S2E ⊗ S2E

which again we can show is not tilting. This continues to the next truncated
module

Tr 4331E = L(2, 2, 0, 0)⊗ L(2, 1, 0, 0)⊗ L(2, 1, 0, 0)⊗ S1E

which again is not tilting. It is unnecessary to continue looking at the trun-
cated modules as when considering the character of all other truncated mod-
ules, whether they be tilting or not, if sµ is the leading term in the character
of these truncated modules, then µ ≤ (7, 4, 0, 0), and thus we cannot find the
tilting modules whose highest weights are higher than µ, namely T (8, 3, 0, 0),
T (8, 2, 1, 0) and T (8, 1, 1, 1).

It is the combination of these issues that leads us to the conclusion that
Dn,p(r) 6= A(π, r) for n ≥ 4 and p ≤ r ≤ nt − p except for the case were
p = 3.

5.3 The case p = 2 for all n

THEOREM 5.3.1 For p = 2, and for all n, the Doty Coalgebras Dn,2(r) =
A(π, r) for π = {λ = (λ1, λ2, . . . , λn) | λ1 ≤ n(p− 1) = n} a saturated set and
where 0 ≤ r ≤ nt = n2.
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Proof. For n arbitrary, S̄E = S̄0E ⊕ S̄1E ⊕ . . .⊕ S̄nE where

S̄jE = k = L(

j︷ ︸︸ ︷
1, 1, . . . , 1

n−j︷ ︸︸ ︷
, 0, . . . , 0).

Now,

dimL(

j︷ ︸︸ ︷
1, 1, . . . , 1

n−j︷ ︸︸ ︷
, 0, . . . , 0) = dimS̄jE

and in this case S̄jE has weights
∑
εi1 + · · · + εij where i1 < i2 < · · · < ij

which we know to be the weights of ΛjE due to the basis of ΛjE consisting of
the elements ei1 ∧ · · · ∧ eij and thus

dimS̄jE = dimΛjE = dim∇(1, 1, . . . , 1, 0, . . . , 0)

and so
L(1, 1, . . . , 1, 0, . . . , 0) = ∇(1, 1, . . . , 1, 0, . . . , 0).

Similarly
L(1, 1, . . . , 1, 0, . . . , 0) = ∆(1, 1, . . . , 1, 0, . . . , 0)

and thus
L(1, 1, . . . , 1, 0, . . . , 0) = T (1, 1, . . . , 1, 0, . . . , 0).

Therefore all S̄jE are tilting.

Now, let λ = (λ1, λ2, . . . , λn) such that
∑n

i=1 λi = r, than we can find the
transpose of λ, which we shall call λ′ = (λ′1, λ

′
2, . . . , λ

′
m), where m ≤ n as for

λ ∈ π, λ1 ≤ n. For example, consider λ = (4, 3, 1, 0) then λ′ = (3, 2, 2, 1).
Then

Tr λ
′
E = Λλ′E = T (λ)⊕ [⊕µ<λT (µ)(dµ)]

and therefore
cf (T (λ)) ⊆ cf (Tr λ

′
E) ⊆ Dn,2(r)

so
A(π) ⊆ Dn,2(r).
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Chapter 6

A family of quiver algebras of
finite global dimension which
are not quasi-hereditary

AIM: In Section 1.3 we defined quasi-hereditary algebras and stated that all
quasi-hereditary algebras have finite global dimension, but that the reverse is
not necessarily true. Whilst researching quasi-hereditary algebras we studied a
paper by Dlab and Ringel [3], which described an 11-dimensional serial algebra
of global dimension 4 which is not quasi-hereditary.
By considering this example and the structure of the algebra we were able to
discover an infinite family of algebras of finite global dimension which are not
quasi-hereditary. All of these algebras are quiver algebras and thus have a nice
picture to go with each of them! This chapter defines this infinite family of
quiver algebras.

6.1 Preliminaries

AIM: This section gives the information needed in defining our family of
quiver algebras. We start with the definition of a quiver and quiver algebra.
We then define idempotents and projective indecomposable modules, and show
the correspondence between these projective indecomposable modules and the
simple modules of a ring.

DEFINITION 6.1.1 A quiver Γ is a directed graph and is given by a set of
vertices and a set of arrows between these vertices. An arrow α starts at the
vertex s(α) and terminates at the vertex t(α).
A path in Γ consists of a sequence of arrows α1α2 . . . αn with n ≥ 1 such that
the t(ai) = s(ai+1). We use the convention of concatenating paths from left
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to right. For each vertex i we denote by ei the trivial path which starts and
terminates at i

DEFINITION 6.1.2 Let k be a field, and Γ a quiver. Then a quiver algebra
kΓ is a k-algebra with basis consisting of all paths (including trivial paths) in
Γ, with multiplication given by concatenation of paths. We thus have that for
two paths x and y then the product is equal to zero unless t(x) = s(y).
This multiplication is associative.

EXAMPLE 6.1.3 If Γ is the quiver

1 2 3
α β

then kΓ = k-sp{e1, e2, e3, α, β, αβ}.

Having defined quiver algebras, we now go on to consider idempotents.

The following definitions are given for finite-dimensional algebras.

DEFINITION 6.1.4 Let A be algebra. Then e ∈ A is called an idempotent
if e2 = e. Moreover two idempotents are called orthogonal if e1e2 = e2e1 = 0.
We then say an idempotent is primitive if e = e2 6= 0 and there is no expression
e = f + g where f and g are non zero idempotents such that fg = gf = 0.

We now go on to define projective indecomposable modules.

DEFINITION 6.1.5 Let A be an algebra such that AA = ⊕ti=1Pi for Pi in-
decomposable. Then these summands are called the principal indecomposable
modules of A.

THEOREM 6.1.6 [20, Chapter 1, 3.13] i) If AA ∼= ⊕i∈IPi ∼= ⊕j∈JQj where
the Pi and Qj are all indecomposable, then there exists a bijection φ : I → J
such that Pi = Qφ(i), for all i ∈ I.
ii) A finitely-generated indecomposable A-module M is projective if and only
if M ∼= Pi for Pi a primitive indecomposable module of AA. Hence every Pi is
projective.

We now describe the link between projective indecomposable modules and
simple modules.

THEOREM 6.1.7 [20, Chapter 1, 3.14] Let A be a finite dimensional algebra
and e a primitive idempotent. Set P = eA, then P contains a unique maximal
submodule, namely eJ(A), where J(A) is the radical of A.

COROLLARY 6.1.8 [20, Chapter 1, 3.15] There is a one-to-one correspon-
dence between the isomorphism classes of the projective indecomposable mod-
ules of R and the isomorphism classes of the simple R-modules. This is given
by P = eA 7→ eA/eJ(A).
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6.2 The family of quiver algebras

AIM: We first give the thereom we wish to prove, which describes our family
of quiver algebras. We then break this thereom down into different values of
r. For each case we will give an example of such a quiver algebra, showing
why it has finite global dimension and why it is not quasi-hereditary. We will
then generalise each case with proofs.

THEOREM 6.2.1 For the following values of n and λ there exists a quiver
algebra A of dimension n with λ simples, such that A has finite global dimen-
sion m = (λ− 1)2, but is not quasi-hereditary.

No. of simples λ gl.dim m = (λ− 1)2 dim n
r = 1 r = 2 r = 3

3 4 11 17 23
4 6 19 31 43
5 8 29 49 69
6 10 41 71 101
7 12 55 97 139
8 14 71 127 183
9 16 89 161 233
10 18 109 199 289
11 20 131 241 351

This is an infinite table where r is the number of paths between vertices λ− 1
and λ.

We make the following remark regarding quasi-hereditary algebras, which will
be used when showing our family of quiver algebras are not quasi-hereditary.

REMARK 6.2.2 Let A be a quasi-hereditary algebra with simples Li, pro-
jective modules Pi and standard modules ∆i where 1 ≤ i ≤ n. If µ is maximal,
then Pµ = ∆µ as otherwise Pµ would have filtration structure

∆µ

...

∆x

for x > µ.

We now begin to define the family of quiver algebras, starting with the example
given by Dlab and Ringel [3].
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EXAMPLE 6.2.3 Let A be the quiver algebra

e1 e2

e3

α1 α2

α3

modulo I =< α1α2α3α1, α3α1α2 >.

Then A = k-sp{e1, e2, e3, α1, α2, α3, α1α2, α2α3, α3α1, α1α2α3, α2α3α1} is a se-
rial algebra of dimension n = 11. This algebra has the 3 idempotents e1, e2, e3,
and with the projective indecomposables Pi = eiA then;

P1 = k-sp{e1, α1, α1α2, α1α2α3}/I
P2 = k-sp{e2, α2, α2α3, α2α3α1}/I
P3 = k-sp{e3, α3, α3α1}/I.

We can lay out the projectives as a table of paths starting at ei, for each
Pi;

P1 P2 P3

1 2 3
2 3 1
3 1 2
1 2

It is now necessary to prove that A has finite global dimension, and so find
the projective dimension of each simple module. By Corollary 6.1.8 we have
an isomorphism between the projective indecomposables and the simples, and
indeed setting Li = hd(Pi), then we have three simple modules L1, L2, L3. The
fact that A is a serial algebra [3] means we can resolve these simple modules
in the following way:

We can resolve L1 as follows:

0→ P3 → P2 → P2 → P1 → L1 → 0

and thus pdim(L1) = 3.
We can resolve L2 as follows:

0→ P3 → P2 → L2 → 0

and thus pdim(L2) = 1.
We can resolve L3 as follows:

0→ P3 → P2 → P3 → P1 → P3 → L3 → 0
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and thus pdim(L3) = 4.

So A has global dimension 4 = (3− 1)2 = (λ− 1)2.

We now show why A is not quasi-hereditary. To do this we consider each
possible way of ordering the simple modules, and show that none of these
orderings give a way of filtering the projective modules Pi, by the standard
modules ∆i. Well, by Remark 6.2.2, we cannot take 1 or 2 to be maximal
as [P1 : L1] = 2 and [P2 : L2] = 2. Our only choice then is to take 3 to be
maximal. Now let us assume for a contradiction that A is quasi-hereditary.
We have [P1 : L3] = 1 which implies (P1 : ∆3) = 1 which implies ∆3 embeds
in P1, thus giving that soc(∆3) embeds in P1. However this is a contradiction
as we can see from the above table that there is a L1 sitting at the bottom of
P1. Hence A cannot be quasi-hereditary.

We now consider another example, but this time with four simple modules.

EXAMPLE 6.2.4 Let A be the quiver algebra

e1 e2

e3e4

α1

α2

α3

α4

modulo I =< α1α2α3α4α1, α2α3α4α1α2, α4α1α2α3 >.

Then A has dimension n = 19. Moreover it has the 4 idempotents e1, e2, e3, e4,
and again, laying out the projectives as paths starting at each ei, we have the
four projective modules;

P1 P2 P3 P4

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
1 2 3

It is now necessary to prove that A has finite global dimension, and so we find
the projective dimension of each simple module. We first show that A is serial,
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by showing each Pi is uniserial. Well, we have J = k-span of all non-trivial
paths, and P = eA. Then PJ t = k-span of all non-trivial paths starting at e of
length ≥ t, where 1 ≤ t ≤ n. We then have that dimPJ t/PJ t+1 is equal to the
number of non-trivial paths of length precisely t = 1. Hence, by [1, Chapter
II, Proposition 5], we have that each Pi is uniserial, and hence A is a serial
algebra. We can therefore form the following minimal projective resolutions
for each Li as follows.

We can resolve L1 as follows:

0→ P4 → P3 → P3 → P2 → P2 → P1 → L1 → 0

and thus pdim(L1) = 5.
We can resolve L2 as follows:

0→ P4 → P3 → P3 → P2 → L2 → 0

and thus pdim(L2) = 3.
We can resolve L3 as follows:

0→ P4 → P3 → L3 → 0

and thus pdim(L3) = 1.
We can resolve L4 as follows:

0→ P4 → P3 → P4 → P2 → P4 → P1 → P4 → L4 → 0

and thus pdim(L4) = 6.

So A has global dimension 6 = (4− 1)2 = (λ− 1)2.

We now show why A is not quasi-hereditary. To do this we consider each possi-
ble way of ordering the simple modules, and show that none of these orderings
give a way of filtering the projective modules Pi, by the standard modules
∆i. By Remark 6.2.2, we can only take 4 to be maximal as [Pi : Li] = 2 for
1 ≤ i ≤ 3. So, choose 4 to be greatest, then assume A is quasi hereditary. We
have [P1 : L4] = 1 and hence (P1 : ∆4) = 1. We therefore have that ∆4 embeds
in P1 and hence so does soc(∆4) thus giving that L3 embeds in P1. However
this is a contradiction as we can see by the above table, where L1 sits at the
bottom of P1, thus A is not quasi-hereditary.

We now bring these two examples together in the following theorem.
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THEOREM 6.2.5 Quiver algebras of the form

eλ

e1

e2
e3

e4

e5

e6

e7

αλ

α1

α2

α3

α4

α5

α6

modulo

I =< α1α2 . . . αλα1, α2α3 . . . αλα1α2, . . . , αλ−2αλ−1αλα1 . . . αλ−2, αλα1 . . . αλ−1 >

having λ simple modules and dimension n, are not quasi-hereditary, but have
finite global dimension m = (λ− 1)2.

REMARK 6.2.6 In these cases we have one path between vertices λ−1 and
λ and thus r = 1.

Proof. We first prove that these algebras have finite global dimension and then
prove that they are not quasi-hereditary. Let Pi be the projective modules
where i ∈ {1, . . . , λ}. Then we can display the projectives as follows;

P1 P2 P3 . . . Pλ−1 Pλ
1 2 3 λ− 1 λ
2 3 4 λ 1

3 4
... 1 2

4
... λ 2

...
... λ 1

... λ− 2
λ 1 2 λ− 2 λ− 1
1 2 3 λ− 1

We have that dimPJ t/PJ t+1 = 1 for 1 ≤ t ≤ n and thus each Pi is uniserial,
and hence A is a serial algebra. We can therefore form the following minimal
projective resolutions for each simple module. We start with L1;

0→ Pλ → Pλ−1 → Pλ−1 → . . .→ P4 → P3 → P3 → P2 → P2 → P1 → L1 → 0
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Then the pdim(L1) = 2(λ− 2) + 2− 1 = 2λ− 3.

We resolve L2 as follows;

0→ Pλ → Pλ−1 → Pλ−1 → . . .→ P5 → P4 → P4 → P3 → P3 → P2 → L2 → 0

Then the pdim(L2) = 2(λ− 3) + 2− 1 = 2λ− 5.

We resolve L3 as follows;

0→ Pλ → Pλ−1 → Pλ−1 → P5 → P4 → P4 → P3 → L3 → 0

Then the pdim(L3) = 2(λ − 4) + 2 − 1 = 2λ − 7. This continues for each Li
and we now show how we resolve Lλ−1;

0→ Pλ → Pλ−1 → eλ−1 → 0

So pdim(Lλ−1) = 2(λ− (λ− 1 + 1)) + 2− 1 = 1. Bringing this together, then
in general we can resolve each Li for 1 ≤ i ≤ λ− 1 as follows;

0→ Pλ → Pλ−1 → Pλ−1 → . . .→ Pi+2 → Pi+1 → Pi+1 → Pi → Li → 0

hence pdim(Li) = 2(λ− (i+ 1)) + 2− 1 = 2λ− (2i+ 1).

Finally we resolve Lλ as follows;

0→ Pλ → Pλ−1 → Pλ → . . .→ Pλ → P2 → Pλ → P1 → Pλ → Lλ → 0

and pdim(Lλ) = (λ− 1) + (λ− 1) + 1− 1 = 2λ− 2.

Hence the gl.dim A =pdim(Lλ) = 2λ− 2.

We now prove why these algebras are not quasi-hereditary, by considering
all possible orderings on the simple modules. Again, by Remark 6.2.2, we
must take λ to be maximal, and then let us assume that these algebras are
quasi-hereditary. We have [P1 : Lλ] = 1 which implies (P1 : ∆λ) = 1 and
thus ∆λ embeds in P1 and hence soc(∆λ) embeds in P1 which is a contradic-
tion, as seen from the above table of projectives. Hence these algebras are not
quasi-hereditary.

Having looked at the case r = 1 we now extend on the two examples given
and so look at the case r = 2.
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EXAMPLE 6.2.7 Let A be the quiver algebra

e1 e3

e2

α1
α1

2

α2
2

α3

modulo I =< α1α
2
2α3α1, α3α1α

1
2, α3α1α

2
2 >.

This algebra still has the 3 idempotents e1, e2, e3, and 3 projective modules,
and thus also 3 simple modules, just as in Example 6.2.3. However, its pro-
jectives, when layed out as a table of paths, are as follows;

P1 P2 P3

1 2 3
2 3 1
3 1 2
1 2
2 3
3 1
1 2

Now, P2 has a maximal submodule

M2 = k-sp{α1
2, α

1
2α3, α

1
2α3α1, α

2
2, α

2
2α3, α

2
2α3α1}.

Moreover M2 = V ⊕ W where V = k-sp{α1
2, α

1
2α3, α

1
2α3α1} and W = k-

sp{α2
2, α

2
2α3, α

2
2α3α1}. Let φ : P3 → V such that φ(x) = α1

2x for x ∈ P3, then
V ∼= P3. Similarly, with θ : P3 → W such that θ(y) = α2

2y for y ∈ P3, then
W ∼= P3.
In a similar way, P1 has submodule

N1 = k-sp{α1α
1
2, α1α

1
2α3, α1α

1
2α3α1, α1α

2
2, α1α

2
2α3}.

MoreoverN1 = V1⊕W1 where V1 = k-sp{α1α
1
2, α1α

1
2α3, α1α

1
2α3α1} andW = k-

sp{α1α
2
2, α1α

2
2α3}. In this case, letting φ : P3 → V1 such that φ(x) = α1α

1
2x

for x ∈ P3 gives V1
∼= P3. Hence, we can also display the above table in the

following way;
P1 P2 P3

1 2 3
2 P3 ⊕ P3 1

P3 ⊕
3
1

2
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We then show how this algebra has finite global dimension by forming minimal
resolutions for each of the simple modules. We start with L1;

0→ P3 ⊕ P3 → P2 → P2 → P1 → L1 → 0

so pdim(L1) = 3.

We now resolve the simple module L2;

0→ P3 ⊕ P3 → P2 → L2 → 0

and so pdim(L2) = 1.

Finally we resolve L3;

0→ P3 ⊕ P3 → P2 → P3 ⊕ P3 → P1 → P3 → L3 → 0

and thus pdim(L3) = 4.

We therefore have that this algebra has finite global dimension

m = 4 = (λ− 1)2,

just as for Example 6.2.3. We now show that this algebra is not quasi-
hereditary by considering all possible orderings on the simple modules. Well,
again by Remark 6.2.2, the only possibility is to take 3 to be maximal as
[Pi : Li] = 3 for i = 1, 2. So, take 3 to be maximal, and assume A is quasi-
hereditary. We have [P1 : L3] = 2 which implies (P1 : ∆3) = 2 and hence
∆3 ⊕∆3 embeds in P1. This implies L2 occurs twice in the socle of P1 which
we can see is a contradiction by the above table of projectives. Hence A is not
quasi-hereditary.

EXAMPLE 6.2.8 We now extend on Example 6.2.4, and consider the quiver
algebra

e1 e2

e3e4

α1

α2

α2
3

α1
3

α4
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modulo I =< α1α2α
2
3α4α1, α2α

2
3α4α1α2, α4α1α2α

1
3, α4α1α2α

2
3 >.

Again, A has the 4 idempotents e1, e2, e3, e4, but now has projective modules
as follows:

P1 P2 P3 P4

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
1 2 3
2 3 4
3 4 1
4 1 2
1 2 3

Now, P3 has a maximal submodule

M3 = k-sp{α1
3, α

1
3α4, α

1
3α4α1, α

1
3α4α1α2, α

2
3, α

2
3α4, α

2
3α4α1, α

2
3α4α1α2}.

Moreover M3 = V3 ⊕W3 where

V3 = k-sp{α1
3, α

1
3α4, α

1
3α4α1, α

1
3α4α1α2}

and
W3 = k-sp{α2

3, α
2
3α4, α

2
3α4α1, α

2
3α4α1α2}.

Let φ : P4 → V3 such that φ(x) = α1
3x for x ∈ P4, then V3

∼= P4. Similarly,
with θ : P4 → W3 such that θ(y) = α2

3y for y ∈ P4, then W3
∼= P4.

In a similar way, P2 has submodule

N2 = k-sp{α2α
1
3, α2α

1
3α4, α2α

1
3α4α1, α2α

1
3α4α1α2, α2α

2
3, α2α

2
3α4, α2α

2
3α4α1}.

Moreover N2 = V2 ⊕W2 where

V2 = k-sp{α2α
1
3, α2α

1
3α4, α2α

1
3α4α1, α2α

1
3α4α1α2}

and
W = k-sp{α2α

2
3, α2α

2
3α4, α2α

2
3α4α1}.

In this case, letting φ : P4 → V2 such that φ(x) = α2α
1
3x for x ∈ P4 gives

V2
∼= P4.

Finally, consider P1, which has submodule

N1 = k-sp{α1α2α
1
3, α1α2α

1
3α4, α1α2α

1
3α4α1, α1α2α

1
3α4α1α2, α1α2α

2
3, α1α2α

2
3α4}.

Moreover N1 = V1 ⊕W1 where

V1 = k-sp{α1α2α
1
3, α1α2α

1
3α4, α1α2α

1
3α4α1, α1α2α

1
3α4α1α2}
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and
W1 = k-sp{α1α2α

2
3, α1α2α

2
3α4}.

In this case, letting φ : P4 → V1 such that φ(x) = α1α2α
2
3x for x ∈ P4 gives

V1
∼= P4. Hence, we can also display the above table in the following way;

P1 P2 P3 P4

1 2 3 4
2 3 P4 ⊕ P4 1

3 P4 ⊕
4
1
2

2

P4 ⊕
4
1

3

It is now necessary to prove that A has finite global dimension, and so we find
the projective dimension of each simple module.

We can resolve L1 as follows:

0→ P4 ⊕ P4 → P3 → P3 → P2 → P2 → P1 → L1 → 0

and thus pdim(L1) = 5.
We can resolve L2 as follows:

0→ P4 ⊕ P4 → P3 → P3 → P2 → L2 → 0

and thus pdim(L2) = 3.
We can resolve L3 as follows:

0→ P4 ⊕ P4 → P3 → L3 → 0

and thus pdim(L3) = 1.
We can resolve L4 as follows:

0→ P4 ⊕ P4 → P3 → P4 ⊕ P4 → P2 → P4 ⊕ P4 → P1 → P4 → L4 → 0

and thus pdim(L4) = 6.

So A has global dimension 6 = (4− 1)2 = (λ− 1)2.

We now show why A is not quasi-hereditary. The only choice here is to take
4 to be maximal as [Pi : Li] = 3 for 1 ≤ i ≤ 3. Then assuming A is quasi-
hereditary would imply that L3 occurs twice in the socle of P1 which we can
see is not true by the above table of projectives. Hence we have a contradiction
and so A is not quasi-hereditary.
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We now combine these examples to give the following theorem.

THEOREM 6.2.9 Quiver algebras of the form

eλ−1

eλ

e1
e2

e3

e4

e5

e6

α2
λ−1 α1

λ−1

αλ

α1

α2

α3

α4

α5

module

I =< α1 . . . α
2
λ−1αλα1, α2 . . . α

2
λ−1αλα1α2, . . . , αλ−2α

2
λ−1αλα1 . . . αλ−2,

αλα1 . . . α
1
λ−1, αλα1 . . . α

2
λ−1 >

having λ simple modules and dimension n are not quasi-hereditary, but have
finite global dimension m = (λ− 1)2.

REMARK 6.2.10 In these cases we have two paths between vertices λ− 1
and λ and hence r = 2.

Proof. We first prove that these algebras have finite global dimension and then
prove that they are not quasi-hereditary.
Let Pi be the projective modules where i ∈ {1, . . . , λ}. Then we can display

197



the projectives as follows;

P1 P2 P3 P4 P5 . . . Pλ−1 Pλ
1 2 3 4 5 λ− 1 λ
2 3 4 5 6 λ 1
...

...
...

...
... 1 2

λ− 4 λ− 3 λ− 2 λ− 1 λ 2 3

λ− 3 λ− 2 λ− 1 λ 1
...

...

λ− 2 λ− 1 λ 1 2
... λ− 3

λ− 1 λ 1 2
...

... λ− 2

λ 1 2
... λ λ− 2 λ− 1

1 2
... λ 1 λ− 1

2
... λ 1 2 λ

... λ 1 2 3 1

λ 1 2 3 4
...

1 2 3 4 5 λ− 1

Now, Pλ−1 has maximal submodule

Mλ−1 = k-sp{α1
λ−1, α

1
λ−1αλ, α

1
λ−1αλα1, . . . , α

1
λ−1αλα1 · · ·αλ−2,

α2
λ−1, α

2
λ−1αλ, α

2
λ−1αλα1, . . . , α

2
λ−1αλα1 · · ·αλ−2}.

Moreover Mλ−1 = Vλ−1 ⊕Wλ−1 where

Vλ−1 = k-sp{α1
λ−1, α

1
λ−1αλ, α

1
λ−1αλα1, . . . , α

1
λ−1αλα1 · · ·αλ−2}

and

Wλ−1 = k-sp{α2
λ−1, α

2
λ−1αλ, α

2
λ−1αλα1, . . . , α

2
λ−1αλα1 · · ·αλ−2}.

Now

Pλ = k-sp{eλ, αλ, αλα1, . . . , αλα1α2 · · ·αλ−2},

and thus if we define φ : Pλ → Vλ−1 such that φ(x) = e1
λ−1x then Pλ ∼= Vλ−1.

Similarly, with θ : Pλ → Wλ−1 such that θ(x) = e2
λ−1x then Pλ ∼= Wλ−1.

Now consider Pi for 1 ≤ i ≤ λ− 2. Then Pi has submodule

Ni = k-sp{αiαi+1 · · ·α1
λ−1, αiαi+1 · · ·α1

λ−1αλ, . . . , αiαi+1 · · ·α1
λ−1αλ · · ·αλ−2,

αiαi+1 · · ·α2
λ−1, αiαi+1 · · ·α2

λ−1αλ, . . . , αiαi+1 · · ·α2
λ−1αλ · · ·αi−1}
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except in the case where i = 1 in which case

Ni = k-sp{αiαi+1 · · ·α1
λ−1, αiαi+1 · · ·α1

λ−1αλ, . . . , αiαi+1 · · ·α1
λ−1αλ · · ·αλ−2,

αiαi+1 · · ·α2
λ−1, αiαi+1 · · ·α2

λ−1αλ}.

We also have that Ni = Vi ⊕Wi where

Vi = k-sp{αiαi+1 · · ·α1
λ−1, αiαi+1 · · ·α1

λ−1αλ, . . . , αiαi+1 · · ·α1
λ−1αλ · · ·αλ−2}

and

Wi = k-sp{αiαi+1 · · ·α2
λ−1, αiαi+1 · · ·α2

λ−1αλ, . . . , αiαi+1 · · ·α2
λ−1αλ · · ·αi−1}

except in the case i = 1 in which case

Wi = k-sp{αiαi+1 · · ·α2
λ−1, αiαi+1 · · ·α2

λ−1αλ}.

Then with φ : Pλ → Vi such that φ(x) = αiαi+1 · · ·α1
λ−1x we have that Pλ ∼= Vi,

and thus, just as in the previous examples, we can also display the projectives
as follows;

P1 P2 P3 . . . Pλ−1 Pλ

1 2 3 . . . λ− 1 λ
2 3 4 . . . Pλ ⊕ Pλ 1
...

...
... . . . 2

λ− 1 λ− 1 λ− 1 . . .
...

Pλ ⊕
λ
1

Pλ ⊕
λ
1
2

Pλ ⊕

λ
1
2
3

. . . λ− 1

We now find minimal projective resolutions for each simple module Li, starting
with L1 as follows;

0→ Pλ ⊕ Pλ → Pλ−1 → Pλ−1 → . . .→ P3 → P3 → P2 → P2 → P1 → L1 → 0

then the pdim(L1) = 2(λ− 2) + 2− 1 = 2λ− 3.

We resolve L2 as follows;

0→ Pλ ⊕ Pλ → Pλ−1 → Pλ−1 → . . .→ P3 → P3 → P2 → L2 → 0

then the pdim(L2) = 2(λ− 3) + 2− 1 = 2λ− 5.

We resolve L3 as follows;

0→ Pλ ⊕ Pλ → Pλ−1 → Pλ−1 → . . .→ P4 → P4 → P3 → L3 → 0
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then the pdim(L3) = 2(λ− 4) + 2− 1 = 2λ− 7.

This continues for each Li and we now show how we resolve Lλ−1;

0→ Pλ ⊕ Pλ → Pλ−1 → Lλ−1 → 0

so pdim(Lλ−1) = 2(λ− (λ− 1 + 1)) + 2− 1 = 1.

Bringing this together, then in general we can resolve each Li for 1 ≤ i ≤ λ−1
as follows;

0→ Pλ ⊕ Pλ → Pλ−1 → Pλ−1 → . . .→ Pi+1 → Pi+1 → Pi → Li → 0

hence pdim(Li) = 2(λ− (i+ 1)) + 2− 1 = 2λ− (2i+ 1).

Finally we resolve Lλ as follows;

0→ Pλ ⊕ Pλ → Pλ−1 → Pλ ⊕ Pλ → . . .→ Pλ ⊕ Pλ →

P2 → Pλ ⊕ Pλ → P1 → Pλ → eλ → 0

and pdim(Lλ) = (λ− 1) + (λ− 1) + 1− 1 = 2λ− 2.

Hence the gl.dim A =pdim(Lλ) = 2λ− 2.

We now prove why these algebras are not quasi-hereditary, by considering
all possible orderings on the simple modules. We know that the only possible
option is to take λ to be maximal, as [Pi : Li] = 3 for 1 ≤ i ≤ λ−1. So, take λ
to be maximal, and then assume that these algebras are quasi-hereditary. So,
with [P1 : Lλ] = 2 we have (P1 : ∆λ) = 2 which implies that ∆λ ⊕∆λ embeds
in P1 and hence Lλ−1⊕Lλ−1 embeds in P1 which we can see is not true by the
above table of projectives. Hence these algebras are not quasi-hereditary.

REMARK 6.2.11 Just as we added one extra path between vertex λ − 1
and vertex λ in examples 6.2.7 and 6.2.8, we can in fact add any number of
paths between these two vertices. We can now give our final theorem, which
covers all values of r.
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THEOREM 6.2.12 Quiver algebras of the form

eλ−1

eλ

e1
e2

e3

e4

e5

e6

α2
λ−1

α1
λ−1

αrλ−1

αλ

α1

α2

α3

α4

α5

modulo

I =< α1 . . . α
r
λ−1αλα1, α2 . . . α

r
λ−1αλα1α2, . . . , αλ−2α

r
λ−1αλα1 . . . αλ−2, αλα1 . . . α

1
λ−1,

αλα1 . . . α
2
λ−1, . . . , αλα1 . . . α

r
λ−1 >

having λ simple modules and dimension n are not quasi-hereditary, but have
finite global dimension m = (λ− 1)2.

Proof. We first prove that these algebras have finite global dimension and then
prove that they are not quasi-hereditary.
Let Pi be the projective modules where i ∈ {1, . . . , λ}. Now, Pλ−1 has maximal
submodule

Mλ−1 = k-sp{α1
λ−1, α

1
λ−1αλ, α

1
λ−1αλα1, . . . , α

1
λ−1αλα1 · · ·αλ−2,

α2
λ−1, α

2
λ−1αλ, α

2
λ−1αλα1, . . . , α

2
λ−1αλα1 · · ·αλ−2, . . . ,

αrλ−1, α
r
λ−1αλ, α

r
λ−1αλα1, . . . , α

r
λ−1αλα1 · · ·αλ−2}.

Moreover Mλ−1 = V 1
λ−1 ⊕ V ⊕λ−1 . . .⊕ V r

λ−1 where

V j
λ−1 = k-sp{αjλ−1, α

j
λ−1αλ, α

j
λ−1αλα1, . . . , α

j
λ−1αλα1 · · ·αλ−2}.

Now
Pλ = k-sp{eλ, αλ, αλα1, . . . , αλα1α2 · · ·αλ−2},

and thus if we define φ : Pλ → V j
λ−1 such that φ(x) = ejλ−1x then Pλ ∼= V j

λ−1.

Now consider Pi for 1 ≤ i ≤ λ− 2. Then Pi has submodule

Ni = k-sp{αiαi+1 · · ·α1
λ−1, αiαi+1 · · ·α1

λ−1αλ, . . . , αiαi+1 · · ·α1
λ−1αλ · · ·αλ−2,

αiαi+1 · · ·α2
λ−1, αiαi+1 · · ·α2

λ−1αλ, . . . , αiαi+1 · · ·α2
λ−1αλ · · ·αλ−2,

αiαi+1 · · ·αrλ−1, αiαi+1 · · ·αrλ−1αλ, . . . , αiαi+1 · · ·αrλ−1αλ · · ·αi−1}
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except in the case where i = 1 in which case

Ni = k-sp{αiαi+1 · · ·α1
λ−1, αiαi+1 · · ·α1

λ−1αλ, . . . , αiαi+1 · · ·α1
λ−1αλ · · ·αλ−2,

αiαi+1 · · ·α2
λ−1, αiαi+1 · · ·α2

λ−1αλ, . . . , αiαi+1 · · ·α2
λ−1αλ · · ·αλ−2,

αiαi+1 · · ·αrλ−1, αiαi+1 · · ·αrλ−1αλ}.

We also have that Ni = V 1
i ⊕ V 2

i ⊕ . . .⊕ V r−1
i ⊕W where

V j
i = k-sp{αiαi+1 · · ·αjλ−1, αiαi+1 · · ·αjλ−1αλ, . . . , αiαi+1 · · ·αjλ−1αλ · · ·αλ−2}

and

W = k-sp{αiαi+1 · · ·αrλ−1, αiαi+1 · · ·αrλ−1αλ, . . . , αiαi+1 · · ·αrλ−1αλ · · ·αi−1}

except in the case i = 1 in which case

W = k-sp{αiαi+1 · · ·αrλ−1, αiαi+1 · · ·αrλ−1αλ}.

Then with φ : Pλ → V j
i such that φ(x) = αiαi+1 · · ·αjλ−1x we have that

Pλ ∼= V j
i , and thus, just as in the previous examples, we can also display the

projectives as follows;

P1 P2 P3 . . . Pλ−1 Pλ

1 2 3 . . . λ− 1 λ
2 3 4 . . . P⊕rλ 1
...

...
... . . . 2

λ− 1 λ− 1 λ− 1 . . .
...

P⊕r−1
λ ⊕ λ

1
P⊕r−1
λ ⊕

λ
1
2

P⊕r−1
λ ⊕

λ
1
2
3

. . . λ− 1

We can now form the following minimal projective resolutions for each simple
module Li.
We resolve L1 as follows;

0→ P⊕rλ → Pλ−1 → Pλ−1 → . . .→ P3 → P2 → P2 → P1 → L1 → 0

then the pdim(L1) = 2(λ− 2) + 2− 1 = 2λ− 3.

We resolve L2 as follows;

0→ P⊕rλ → Pλ−1 → Pλ−1 → . . .→ P3 → P3 → P2 → L2 → 0
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then the pdim(L2) = 2(λ− 3) + 2− 1 = 2λ− 5.

We resolve L3 as follows;

0→ P⊕rλ → Pλ−1 → Pλ−1 → P4 → P4 → P3 → L3 → 0

then the pdim(L3) = 2(λ− 4) + 2− 1 = 2λ− 7.

This continues for each Li and we now show how we resolve Lλ−1;

0→ P⊕rλ → Pλ−1 → Lλ−1 → 0

so pdim(Lλ−1) = 2(λ− (λ− 1 + 1)) + 2− 1 = 1.

Bringing this together, then in general we can resolve each Li for 1 ≤ i ≤ λ−1
as follows;

0→ P⊕rλ → Pλ−1 → Pλ−1 → . . .→ Pi+1 → Pi+1 → Pi → Li → 0

hence pdim(Li) = 2(λ− (i+ 1)) + 2− 1 = 2λ− (2i+ 1).

Finally we resolve Lλ as follows;

0→ P⊕rλ → Pλ−1 → P⊕rλ → . . .→ P⊕rλ → P2 → P⊕rλ → P1 → Pλ → Lλ → 0

and pdim(Lλ) = (λ− 1) + (λ− 1) + 1− 1 = 2λ− 2.

Hence the gl.dim A =pdim(Lλ) = 2λ− 2.

We now prove why these algebras are not quasi-hereditary, by considering
all possible orderings of the simple modules. Well, as in previous cases, we
can only consider taking λ to be maximal as [Pi : Li] = r for 1 ≤ i ≤ λ − 1.
So, let λ be maximal, and assume these algebras are quasi-hereditary, then
[P1 : Lλ] = r implies ∆⊕rλ embeds in P1 which implies L⊕rλ−1 embeds in P1. We
can see this is not true by the table of projectives above. Hence these algebras
are not quasi-hereditary.
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