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Abstract 

Variations in life-history characteristics across geographic gradients may have 

implications for the impact of environmental change on animals. Linking one of the 

most important life-history characteristics and a geographic gradient, Bergmann’s 

rule describes body size increase with increasing latitude. Due to comparable thermal 

patterns between latitude and altitude, a similar process is expected to apply across 

altitude. For social insects, the colony could be biologically analogous to the body of 

a unitary organism. This study investigates the relationship between altitude and 

colony size in social insects. The model species used were wood ants Formica 

lugubris and F. paralugubris. These species have a flexible nesting strategy known 

as polydomy. I therefore considered both nest size and colony size. Initially, I 

developed an accurate mark-release-recapture method to estimate nest size, and 

found that mound volume can be a useful nest size index. A detailed case-study 

focused on canopy cover effects and showed that nests were larger in shadier areas. 

Informed by the results, I finally assessed the relationship between altitude, canopy 

cover, polydomy, nest size and colony size. The results reveal that colony size 

follows Bergmann’s rule along altitude when canopy cover is controlled for: 

microclimatic factors can be more significant than geographic factors in determining 

colony size. A systematic review in the Appendix shows that F. lugubris populations 

in different locations differ in mean nest size, but shows no evidence of a trade-off 

between nest size and multi-nest organisation. This thesis not only provides the first 

intra-specific evidence of Bergmann’s rule acting at the colony level across altitude, 

but also indicates the prominent role of microclimate on a key life-history 

characteristic. The work therefore sheds light on the evolution of an eco-geographic 

cline and the effects which climate change may have on the cline. 
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Chapter 1 – General Introduction 

 

The world that we live in obeys fundamental laws of physics. Certain elements, 

materials and energy react and interact with each other according to their properties: 

for example, the rate (time) of gas diffusion depends on the nature of other gases or 

solvents and the temperatures (energy) in given spaces (Philibert, 2005). All 

biological phenomena or activities of an organism are also bound by the control of 

these laws of physics. For example, most enzymes, which affect the life of organisms, 

are active within a relatively small range of temperatures (Suzuki, 2015). Based on 

these laws, body size of an organism determines its surface-area-to-volume ratio, and 

then subsequently constrains and shapes the biological characteristics of the 

organism. Taking the exchange of materials between the body and the environments 

for example, more complex and efficient mechanisms of oxygen transport should be 

developed with increasing body size, otherwise oxygen cannot reach every cell 

efficiently (Calder, 1996). 

 

Body Size 

In the first chapter of Size, Function and Life History, Calder (1996) states: “Suppose 

we encounter a new beast……if we know only its weight, we can predict a wide 

variety of its specifications and requirements: home range, heart and metabolic rate 

and life span - each from an empirical allometric equation based on body size.” 

There is probably no doubt that body size is one of the most fundamental 

characteristics of any animal because it is associated with most important aspects of 
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an animal’s biology (Calder, 1996; Brown & Lomolino, 1998; Chown & Gaston, 

2010). Taking metabolic rate for example: the relationship between body size and 

metabolic rate persists in a 3/4-power scaling, even though body size can range 

across 21 orders of magnitude from the smallest microbes to the largest mammals 

(Fig. 1.1, adapted from West et al., 2000). The metabolic transformation contributes 

both energy and the materials to run all biological functions and build all organismal 

structures, so metabolic rate constrains all biological activities at all organisation 

levels, from molecules, cells to individuals and populations (West et al., 2000). Body 

size therefore can be considered the most relevant and requisite factor for 

quantitative analyses of patterns in the comparative physiology and life history of 

animals (Calder, 1996). 

 

 

 

 

 

 

 

Figure 1.1. The relationship between metabolic rate and body mass for a series of 

organisms ranging from the smallest microbes (green line), ectotherms (blue line) to 

the largest endothermic mammals (red line) (adapted from West et al., 2000). 
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There is barely any law that can be applied universally, and “rules” are usually more 

flexible than “laws” (Lawton, 1999; Watt & Salewski, 2011). The Oxford Dictionary 

defines law as “a statement of fact, deduced from observation, to the effect that a 

particular natural or scientific phenomenon always occurs if certain conditions are 

present”, for example, the three laws of thermodynamics. Ecological experiments 

cannot be easily replicated due to the constantly changing background environments, 

animal behaviours and ecosystem states (Knapp et al., 2004). Therefore laws are too 

restrictive for ecology, instead, rules are proposed in ecology: “a rule reflects the 

notion of generality and conditional probability, but places less restrictive boundaries 

on expectations” (Watt et al., 2010). There are several ecological rules which are all 

descriptions of patterns (Mayr, 1956). These rules are empirical generalisations and 

independent of mechanisms (Meiri, 2011). Some of these ecological rules regard 

animals’ body sizes. Cope's rule describes the tendency for lineages to increase in 

body size over evolutionary time (Rensch, 1948; Hone & Benton, 2005). Foster's 

rule (also known as the island rule) is a tendency stating that small mammals evolve 

larger size, whereas large mammals evolve smaller size on islands (Lomolino, 1985; 

Meiri et al., 2008).  

The “bigger is better” rule proposes that, within a population, individuals with larger 

body size tend to have greater performance and fitness than those with smaller size 

(Kingsolver & Huey, 2008). Large body size brings some obvious fitness benefits 

(reviewed by Dibattista et al., 2007), for example, larger individuals may have (1) 

access to more types of food, (2) increased competitive ability, (3) better endurance 

of severe conditions or diseases, (4) earlier maturation and (5) higher reproductive 

output. According to the fitness benefits of larger body size, it seems that the “bigger 

is better” rule should predict a directional selection favouring increased size. 
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However, growing to and maintaining a larger size also involves costs and risks: for 

example, to achieve a large body size requires a long developmental stage, which 

may negatively affect fecundity and survival, and thus is negative to fitness 

(Kingsolver & Huey, 2008). Therefore the “bigger is better” rule will be true, given 

that the positive effects of larger body size overcome the negative effects of longer 

developmental time on fitness. Other negative effects of larger body size may also 

include greater resource requirements (McNab, 2010). 

Based on the concept of fitness optimisation, life history theory involves the specific 

strategies used by organisms to cope with their environments (Stearns, 1992; Vuarin 

et al., 2012). Biologists therefore are curious about the relationships among 

environmental factors, organismal lifestyes and life-history characteristics. Another 

rule involves the relationship between the prominent characteristic, body size, and a 

large-scale environmental factor: Bergmann claims a body size change across the 

geographic gradient, latitude (Bergmann, 1847; Watt et al., 2010).  

 

Bergmann’s Rule 

Bergmann's rule (Bergmann, 1847) is one of the oldest and most studied eco-

geographic rules of body size. James (1970) provided a translated excerpt of this rule: 

“…it is obvious that on the whole the larger species live farther north and the smaller 

ones farther south.” According to the excerpts translated by James (1970), 

Bergmann’s rule originally has linked temperature to latitude because temperature on 

a global scale decreases from the equator to the poles. The decline of temperatures 

with rising altitude and latitude is the main comparable similarity between altitude 

and latitude (Brown & Lomolino, 1998). The same relationship along latitude might 
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be applied to altitudinal gradients. Watt et al. (2010) also gave a translation of 

Bergmann’s rule: “if there would be genera, which species are distinguished as much 

as possible only by size, the smaller species would all need a warmer climate.”  

However, the ranges of body size vary among species: should we study an ecological 

pattern with the control of phylogenetic constraints even within a genus? The issue of 

whether Bergmann’s rule should be applied inter- or intra-specifically has been 

discussed for a long time. On the one hand, Bergmann originally proposed to apply 

his rule inter-specifically (within genera) to homeotherms (endotherms) (James, 1970; 

Watt et al., 2010). The redefinition of the rule by Blackburn et al. (1999) also 

supported inter-specific studies: “the tendency for a positive association between the 

body mass of species in a monophyletic higher taxon (e.g. species within genera or 

within families) and the latitude inhabited by those species.” On the other hand, a 

suggestion was made by James (1970) that intra-specific and inter-specific 

geographic patterns of body size variation should be separately formalised. James 

intends that the extension of Bergmann’s rule within species could be defined as the 

neo-Bergmann’s rule. Angilletta et al. (2004a) also states that Bergmann’s rule could 

be used to describe the pattern of a species’ body size change along latitude (intra-

specifically). Furthermore, Bergmann attempts to test his rule among races of 

domestic animals (within species) (Watt et al., 2010). More than 160 years after 

Bergmann’s study, recently, Watt et al. (2010) review the original definition and 

several suggested redefinitions of Bergmann’s rule (Table 1.1). Meiri (2011) 

suggests that the rule is a pattern that can be studied at any taxonomic level and in 

any taxon. Bergmann’s rule is used more loosely to describe a trend of the body size 

increases with rising latitude or decline of temperature either intra-specifically or 

inter-specifically.  
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Table 1.1. Original definition and suggested redefinitions of Bergmann’s rule from 

the review of Watt et al. (2010). 

Bergmann’s 

rule 

Inter-

specific 

Endothermic 

Temperature Bergmann (1847) 

Latitude 
Bergmann (1847); 

Blackburn et al. (1999) 

Ectothermic 
Temperature  

Latitude Blackburn et al. (1999) 

 

Intra-

specific 

Endothermic 
Temperature 

Rensch (1938); James 

(1970); Paterson (1990) 

Latitude  

Ectothermic 
Temperature Paterson (1990) 

Latitude  

 

It has been established for a long time that Bergmann’s rule is applicable to 

endotherms in terms of ecology and morphology (Mayr, 1963). More than 65% of 

endotherms show Bergmann’s cline in body size (i.e. body size increases with rising 

latitude) (Ashton et al., 2000; Ashton, 2002; Meiri & Dayan, 2003). The fasting 

endurance hypothesis (also known as starvation resistance) states that more seasonal 

environments favour larger body size because larger animals can store more fat and 

then survive during seasonal stress (Lindstedt & Boyce, 1985; Millar & Hickling, 

1990). The mass of body fat scales as total body mass to greater than the 1.0 power 

for both birds and mammals (Lindstedt & Boyce, 1985; Calder, 1996): larger 

endotherms have both relatively and absolutely greater energy stores. Furthermore, 

as mentioned before, larger animals have a lower metabolic rate per weight. Greater 

energy stores and lower weight-specific metabolic rates therefore benefit larger 

endotherms via fasting endurance.  

The suggested revisions of Bergmann’s rule by Paterson (1990) and Blackburn et al. 

(1999) do not exclude ectotherms (reviewed by Watt et al. (2010), Table 1.1). A 
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review study by Vinarski (2014) shows that there is not a universal pattern in the 

geographic variation of body size for each large taxon of ectotherms (e.g. molluscs, 

arthropods, amphibians, reptiles, etc.). Vinarski (2014) claims that it is still not 

feasible to judge the occurrence of Bergmann’s cline in ectotherms, because of the 

low number of studies of these taxa. In the phylum Arthropoda, Bergmann’s rule has 

been best investigated for the class Insecta (Diptera, Lepidoptera, Neuroptera, 

Homoptera, Hymenoptera, etc) (Table 1.2, adapted from Shelomi, 2012; Vinarski, 

2014). In this relatively well-studied group, both Bergmann’s cline (body size 

increases with rising latitude) and converse Bergmann’s cline (body size decreases 

with rising latitude) were found in species belonging to different orders (Shelomi, 

2012). Two different aspects of hypothesised mechanisms are suggested to apply 

Bergmann’s rule to ectotherms. 

 

Table 1.2. Number of studies in insects with Bergmann’s, converse-Bergmann’s, and 

no clines, compared inter- and intra-specifically within the type of range examined 

(latitude or altitude) (adapted from Shelomi, 2012). 

 Inter-specific Intra-specific Total 

Latitude:    

Bergmann’s cline 18 123 141 

Converse-Bergmann’s cline 12 111 123 

No cline 36 114 150 

Altitude:    

Bergmann’s cline  6  75  81 

Converse-Bergmann’s cline 15  98 113 

No cline 21 150 171 

 

Both adaptive and non-adaptive hypotheses arise to explain Bergmann’s cline. The 

non-adaptive hypothesis illustrates how thermal effects on biochemical processes can 
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result in the temperature-size relationship (Angilletta et al., 2004b). Originally, Ray 

(1960) proposed a relationship between body size and temperature named 

“temperature-size rule”. It describes that a smaller final body size of ectotherms is 

produced at increased rearing temperature under laboratory conditions (Atkinson, 

1994; Angilletta & Dunham, 2003). This thermal plasticity in body size is a 

taxonomically widespread “rule” in biology because it has been reported for bacteria, 

protists, plants and ectotherms (Angilletta et al., 2004b). This rule is met in more 

than 84% of all ectotherms (Atkinson, 1994). Atkinson (1994) suggested three key 

thermal effects to understanding temperature-size relationships: thermal constraints 

on maximal body size, thermal sensitivities of growth rate, and thermal sensitivities 

of juvenile survivorship.  

From the other perspective, the adaptive hypothesis considers the costs and benefits 

of a given life history to describe the reason that natural selection promotes 

genotypes which grow more slowly but mature at a larger size when raised at lower 

temperatures (Atkinson & Sibly, 1997; Angilletta et al., 2004b). Taking some insect 

and reptile species for example, this can be achieved by the delay of maturation in 

their life cycle: the transition from a one-generation-per-year cycle to a one-

generation-per-two-years cycle at high latitudes results in an increase in the final 

body size (reviewed by Vinarski, 2014). Although the increasing body size seems to 

be a by-product of delayed maturation and not an independent adaptation, larger 

body size indeed benefits ectotherms with the greater fasting endurance ability 

(Cushman et al., 1993; Blackburn et al., 1999; Vinarski, 2014). The adaptive 

hypothesis states that the body size variation in Bergmann’s rule should be based on 

geographically-based genetic differences, so thermal plasticity (differences in growth 



19 

 

rate and developmental rate at different temperatures) (van der Have & de Jong, 

1996) is not the underlying mechanism.  

Vinarski (2014) provides an opinion that the adaptive and non-adaptive hypotheses 

cannot always be separated distinctly: “Any mechanism increasing fitness may be 

regarded as adaptive in a certain sense”. Thermal plasticity in body size represented 

as the temperature-size rule can be considered as a kind of “adaptive” characteristic 

in some aspects. A larger body size may result from a longer duration of growth or 

faster growth, or both. However, ectotherms grow more slowly at lower temperatures. 

A larger body size in cold environments should be achieved by delayed maturation 

for prolonged growth (Atkinson, 1994, and references therein; Angilletta et al., 

2004a). In addition, it is also possible that Bergmann’s clines are formed as a result 

of the decrease in size at low latitudes (high temperatures) rather than the increase at 

high latitude. The solubility of oxygen in water decreases with increasing 

temperature. The limitation on oxygen may reduce the body size of aquatic and some 

terrestrial ectotherms (Atkinson, 1994).  

According to the temperature-size rule for ectotherms, if the body size is mainly 

determined by temperature, Bergmann’s clines would have been observed in those 

ectotherms with wide distribution ranges. However, the review by Vinarski (2014) 

has shown that there is not a single universal pattern of body size change for 

ectotherms. The temperature-size rule arose based on the results of laboratory 

experiments with other environmental factors controlled. Under natural conditions, it 

is very likely that these environmental factors (e.g. moisture content and primary 

production) overcome or form synergistic interactions with  the impact of thermal 

effects on an organism (Vinarski, 2014).  
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Microclimate 

In addition to the large-scale geographic gradients, small-scale environmental factors 

also contribute to local physical conditions of the environment. Microclimate is the 

set of climatic conditions measured in local areas near the ground surface (Chen et 

al., 1999; Geiger et al., 2009). This set of measurements includes temperature, light, 

wind speed, and moisture. Although studies of eco-geographic rules focus on the 

large-scale ecological questions, there are some reasons that these studies should 

consider or include the concept of microclimate. Firstly, relationships between 

microclimates and ecological processes are ubiquitous and complex, for example, the 

limitations on local light, temperature, moisture and vapour pressure may constrain 

the plant distributions (Chen et al., 1999). Secondly, by adjusting local distribution 

or changing their use of different habitats, animals can still find appropriate 

microclimates under the impact of the large-scale environmental conditions (Suggitt 

et al., 2012). Changes driven by microclimate in habitat use can shape or shift 

species’ distribution dynamics and their responses to environmental change (Lawson 

et al., 2014). Moreover, microclimate may also be associated with animal’s body size 

(Cagle et al., 1993; Kaspari, 1993; Dawson et al., 2005). For these reasons, 

microclimate effects should be considered in studies of any eco-geographic rule. 

For terrestrial ecosystems, habitat type (e.g. desert, grassland and woodland) is a 

major modifier of the microclimate experienced by organisms, for example, it affects 

the extreme value of temperatures (Suggitt et al., 2011). Taking woodland habitat as 

an example, microclimatic variables, especially solar radiation, local air temperature 

(air temperature at the ground surface) and soil temperature, are highly sensitive to 

the canopy variation between sites (Chen & Franklin, 1997). Small canopy openings 

are a common and significant cause of woodland spatial heterogeneity (Clinton, 
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2003). Canopy features contribute to structural complexity and provide high spatial 

and temporal variability on the forest floor within woodland habitat (Chen & 

Franklin, 1997; Chen et al., 1999).  Canopy cover therefore could be a feasible and 

practical index of microclimate for woodland habitat.  

 

The Social Insect Colony 

Social insects have two levels of organisation, the individual and the colony. The 

allometry or biological scaling should be important at both organisation levels. On 

the one hand, body size, which influences all aspects of biology, is one of the most 

significant characteristics of an individual. On the other hand, individuals of social 

insects form a new level of organisation that has its own biological or physiological 

properties, by living together and coordinating their collective activities. According 

to the concept “Insect Sociometry” proposed by Tschinkel (1991), the colonies can 

also be characterised by their physical and numerical features. The biomass of a 

colony, the total number of individuals (including brood), or the worker population 

in a colony has been used to represent the size of a colony (Kaspari & Vargo, 1995; 

Tschinkel, 1998, 1999).  

Selection may act at the level of the colony when it favours the evolution of traits 

that reinforce the survival and reproduction of a colony (Crozier & Consul, 1976; 

Frumhoff & Ward, 1992). The colony of social insect, for several reasons, can be 

considered to be the biological analogue of the body of an individual organism 

(Tschinkel, 1991; Kaspari & Vargo, 1995; Tschinkel, 1998, 1999; Clémencet & 

Doums, 2007; Lanan et al., 2011). Firstly, just as body size plays a prominent role 

for a unitary organism, colony size is associated with many biological aspects of a 
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social insect colony (Dornhaus et al., 2012). Colony size is correlated to competitive 

abilities in ants (Palmer, 2004); brood number in bees (Eckert et al., 1994); foraging 

behaviours in wasps (O'Donnell & Jeanne, 1992), bees (Eckert et al., 1994) and ants 

(Herbers & Choiniere, 1996); colony-level organisation in ants (Holbrook et al., 

2011; Schmidt et al., 2011; Dornhaus et al., 2012); lifespan in wasps (O'Donnell & 

Jeanne, 1992); and thermoregulation ability in ants (Rosengren et al., 1987).  

Secondly, individuals of a social insect colony and cells of a unitary organisms show 

similarities in terms of organisation. A multicellular individual can also be 

considered as a “complex society” of cells, just as a colony can be thought of as a 

complex society of individuals (Anderson & McShea, 2001). Anderson and McShea 

(2001) illustrate the similar relationship between complexity and aggregate size 

(body size of a multicellular individual or colony size of a social insect colony) 

which are generally applying to complex societies of cells of multicellular organisms 

and to colonies of multicellular individuals: the complexity of the society increases 

with aggregate size increasing. One of the indices of complexity is degree of 

differentiation. Larger systems are expected to be more differentiated: larger body 

size with more cell types, larger colony size with higher worker specialisation. 

Another similarity of organisation between unitary organisms and social insect 

colonies is shown by the allometry of reproduction. Larger unitary organism species 

invest proportionately less in their offspring (Reiss, 1991). Per-capita productivity, 

defined as the ratio of total new workers and sexuals produced to the total number of 

adult workers, usually decreases in larger colonies (reviewed by Kramer et al., 2014). 

Finally, metabolic scaling theory and empirical studies also show that individuals of 

a colony function similarly to cells of a multicellular organism in physiological 

features. Several features of physiology (e.g. metabolic rate and gonad tissue mass) 
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and life history (e.g. growth and lifespan) of the whole social insect colony also 

follow the same size-dependencies as unitary organisms when a colony’s summed 

biomass is analogous to the mass of individuals (Gillooly et al., 2010; Hou et al., 

2010). For example, the slope for the relationship between colony biomass and 

metabolic rate is statistically indistinguishable from the predicted value of a 3/4-

power scaling as seen in the unitary animals (Fig. 1.1, West et al., 2000; Hou et al., 

2010). In addition, the difference of metabolic rate between individual bees and bees 

in a colony is similar to the difference between cells in vitro and cells in vivo (Fig. 

1.2, adapted from Gillooly et al., 2010). A hypothesis is proposed that the 

mechanism limiting the exchange rate of energy and materials is the same in both 

whole social insect colonies and unitary organisms (Hou et al., 2010). Thus, the 

colony size could be analogous to the body size of a social insect colony.   

 

Figure 1.2. Comparison of the metabolic rate changes between individual bees and 

bees in a colony (a), and between cells in vitro and cells in vivo (b). Data for 

individual bees is averaged from two references (adapted from Gillooly et al., 2010).   
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Red Wood Ants and Polydomy 

The red wood ant group (also known as Formica rufa group) comprises six 

morphologically similar species in temperate and boreal forests across northern 

Eurasia (Cotti, 1996; Bernasconi et al., 2011). These ants, which are considered 

keystone species, are ecologically dominant and have impacts at multiple community 

levels including ants, other arthropods and vertebrates (Sudd & Lodhi, 1981; 

Savolainen & Vepsäläinen, 1988; Haemig, 1992; Punttila et al., 1994; Rolstad et al., 

2000; Punttila et al., 2004; Kilpeläinen et al., 2005). Red wood ants may also 

function as ecological indicators in European broadleaf forest and taiga, e.g. for 

climate warming and land-use changes by changes in their distribution and 

abundance (Ellison, 2012). Wood ants defend large territories against other ant 

species (Savolainen & Vepsäläinen, 1988, 1989) and, as predators, hunt on trees and 

on the ground in woodlands (Sudd & Lodhi, 1981). Their main food resource is 

honeydew excreted from the tended aphids, which are also a source of protein for 

these ant species (Rosengren & Sundström, 1991). By tending sap-sucking aphids, 

the ants can also affect tree growth (Rosengren & Sundström, 1991). Maintaining 

long-lasting foraging trails between nest and trees, on which they tend aphids, is 

associated with the stability of food resource.  

Red wood ants are known for their large and long-lived nests, which are rich in 

organic material (Ohashi et al., 2007; Domisch et al., 2008). They build nests with 

both underground (chambers) and aboveground (mounds) parts. The large mineral-

soil mound part is built on the soil surface and covered by forest litter, such as pine 

needles, twigs, resin, and bark to form thatch parts (Laakso & Setälä, 1998; Ohashi et 

al., 2007). In addition to metabolic heat produced by individual ants, microbial 

decomposition of these organic materials functions as another heat source (Frouz, 



25 

 

2000). Wood ants also accumulate nutrients in the mounds, for example, carbon and 

nutrient concentrations are apparently higher in their mounds than the surrounding 

forest floor (Laakso & Setälä, 1998; Lenoir et al., 2001). Their mounds can act as 

habitats for myrmecophiles and influence the nutrient cycle of the forest (Laakso & 

Setälä, 1997, 1998; Domisch et al., 2008; Jurgensen et al., 2008; Robinson & 

Robinson, 2013). Because of their strong impact on forest ecosystems (Laakso & 

Setälä, 1997; Ohashi et al., 2007; Żmihorski, 2010) and their “near threatened” 

situation listed by the International Union for Conservation of Nature (IUCN, 2014), 

the red wood ant group are protected in many European countries (Bernasconi et al., 

2011). 

Some wood ant species have a flexible nesting strategy named polydomy: one colony 

may either build one nest or comprise several spatially separated but socially 

connected nests (Hölldobler & Wilson, 1977; Ellis & Robinson, 2014; Robinson, 

2014). Debout et al. (2007) define polydomy as “an arrangement of an ant colony in 

at least two spatially separated nests”, and the detached distance between these two 

nests should be greater than of the distance between two nest chambers in the core 

nest structure.  Any structure that contains workers and brood is considered as a nest, 

but the presence of a queen is not an elementary criterion for a nest (Debout et al., 

2007). The nest is therefore an extra level of organisation between the individual and 

the colony. Polydomy has evolved several times in ants, and is found in all the main 

subfamilies and on all continents where ants occur (Debout et al., 2007). 

Potential ecological benefits of being polydomous include risk spreading (Debout et 

al., 2007; Robinson, 2014) and both resource discovery (Cook et al., 2013) and 

exploitation (by establishing new nests near food resource) (Lanan et al., 2011). A 

polydomous colony may also overcome the constraints on increasing size for a 
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monodomous colony (Robinson, 2014), for example, increasing total colony size 

through increasing nest number rather than increasing individual number of a single 

nest.  

The “domy” forms (whether monodomous or polydomous) vary markedly both 

within and between red wood ant species. Formica aquilonia, F. lugubris and F. 

polyctena have been recorded as polydomous in some areas but monodomous in 

others, however, F. rufa and F. pratensis are recorded only as monodomous (a 

colony has only one nest) (Ellis & Robinson, 2014). In wood ants, domy form may 

also link to reproductive strategy: polydomy is associated with polygyny (multiple 

queens in a nest), and monodomous colonies are usually monogynous (one queen in 

a nest) (reviewed by Ellis & Robinson, 2014). In other ants, half of recorded 

polydomous species are monogynous (Debout et al., 2007). Polydomy is also a factor 

that must be considered when the study focuses on colony size because of its effects 

on colony-level organisation. 

The chosen species in this study were two sibling and sympatric species Formica 

lugubris and Formica paralugubris (Hymenoptera: Formicidae) (Seifert, 1996). 

These two species are highly similar to each other in aspects of morphology and 

ecology, and have to be morphologically discriminated from each other under a 

stereo-microscope (Seifert, 1996). Among the ecologically important red wood ant 

group, F. lugubris is of interest for altitudinal studies because it has been recorded at 

altitudes from 800 to 2400 metres in Central Europe (Kutter, 1965; cited by Sudd et 

al., 1977). In the relatively few studies that cover it, F. paralugubris also has been 

found at altitudes from 1100 to 2000 metres (Bernasconi et al., 2006; Glaser, 2006). 

Formica lugubris uses both monodomous and polydomous strategies: monodomous 

in the Swiss Jura Mountains and polydomous in Great Britain and the Swiss Alps; 
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whereas F. paralugubris has only a polydomous form (Bernasconi et al., 2005; 

Maeder et al., 2005; Ellis & Robinson, 2014). In the following chapters of this study, 

a polydomous colony is defined as a group of nests which are connected to each 

other by trails, which were defined as a distinct path with at least 10 workers in 40 

cm (Ellis et al., 2014). 

 

Rationale for the Thesis and Aims 

A comparable similarity between altitude and latitude is the decline of temperatures 

with rising altitude and latitude (Brown & Lomolino, 1998). If the tendency of body 

size increase across latitude is driven by temperature, the same relationship along 

latitude might be applied to altitudinal gradients. The term “altitude” is the vertical 

distance between an object and a reference point (McVicar & Körner, 2013). In this 

thesis, altitude is used to indicate the vertical distance from sea level.  

If a social insect colony can be biologically analogous to the body of a unitary 

organism, the colony size can be considered as the “body size” of a colony. This 

study aims to test whether Bergmann's rule, originally observed between latitude and 

body size, can be applied to the relationship between altitude and ant colony size (Fig. 

1.3). There are some studies on inter-specific or intra-specific Bergmann’s rule 

between latitude (or altitude) and body size (or colony size) of social insects, but 

there is a knowledge gap concerning intra-specific studies for Bergmann’s rule 

between altitude and colony size (Table 1.3).  

In terms of altitude, the most obvious and important small-scale factor which is 

associated with this geographic gradient is the patterns of vegetation. For woodland, 
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the habitat type occupied by red wood ants, one of the indices of patterns of 

vegetation is canopy cover. Canopy cover is known to be related to ant’s nest size 

(Ellis et al., 2014). Since temperature, the most likely main driving force of 

Bergmann’s rule, is also related to canopy cover (Rodriguez-Garcia et al., 2011; 

Suggitt et al., 2011; Huang et al., 2014), we also included the effect of canopy cover 

together with altitudinal effects in the investigation of colony size.  

 

Table 1.3. Summary of previous research on Bergmann’s rule in social insects, 

broken down into inter-specific or intra-specific Bergmann’s rule between latitude 

(or altitude) and body size (or colony size) of social insects. The boxes marked “?” 

lack data and are the focus of this study. “None found” indicates that no supporting 

research was found in the given category. Reversed relationship (converse 

Bergmann’s cline) between latitude (or altitude) and body size (or colony size) were 

not found in inter-specific nor intra-specific studies. Note this table is reproduced in 

Chapter 5 as Table 5.1. 

 Support No relationship 

Bergmann’s 

rule 

Inter-specific 

Latitude 
Body size [1][2] [3] 

Colony size [4] [2][3][5] 

Altitude 
Body size None found [3] 

Colony size None found [3] 

 

Intra-specific 

Latitude 
Body size [6][7][8] None found 

Colony size None found [8] 

Altitude 
Body size [8]

a
[9]

b
 None found 

Colony size ? ? 

[1] Cushman et al. (1993); [2] Kaspari (2005); [3] Geraghty et al. (2007); [4] Kaspari 

and Vargo (1995); [5] Porter and Hawkins (2001); [6] Daly et al. (1991); [7] Rust 

(2006); [8] Heinze et al. (2003); [9] Stone (1993); 
a
 two high altitudinal populations 

in the study were larger than expected from latitude; 
b
 a study of solitary bees. 
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Figure 1.3. Aim of this study: to investigate the application of Bergmann’s rule to 

the relationship between altitude and ant colony size. 

 

Establishing appropriate methods to estimate colony size (or nest size) is the first 

step of this study. In Chapter 2, an accurate mark-release-recapture method was 

developed. Mound volume was also demonstrated to be a useful nest size index. In 

Chapter 3, a preliminary test then was conducted to test the feasibility of developed 

methods to detect altitudinal effects on nest/colony size, and to estimate required 

sample size for further study. The results of this test also showed that canopy cover 

(an index of microclimate) may influence nest size. In Chapter 4, I describe a 

detailed case-study which specifically focused on canopy cover effects on nest size. 

Temperature and food resource availability were considered as mediating factors 

underlying the relationship between canopy cover and nest size. Building on the 

findings of these investigations, a study in Chapter 5 was conducted to determine the 

relationships between altitude (a geographic gradient), canopy cover, polydomy, nest 

size and colony size (Fig. 1.3). In Chapter 6, in addition to discussing the limitations 

of and potential future work arising from this study, a systematic review was 

conducted from previous studies and found that F. lugubris populations in different 

locations differ in average nest size, but show no evidence of a trade-off between 

nest size and multi-nest organisation.  
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Chapter 2 – A comparison of mark-release-recapture 

methods for estimating colony size in the wood ant 

Formica lugubris 

 

Abstract 

Colony size can be considered the analogue of the body size of a superorganism. Just 

as body size is important to the physiology of an individual animal, colony size 

correlates with the life history and ecology of social insects. Although nest 

excavation and counting all individuals is the most accurate method for estimating 

colony size (or nest size), it has the major drawback of being destructive. 

Alternatively, mark-release-recapture (MRR) can be used repeatedly to measure the 

size of the same colony or nest. We compared the accuracy and feasibility of four 

MRR methods and a mound volume method with complete counts from nest 

excavation for estimating the nest size of F. lugubris, a mound-building wood ant of 

the Formica rufa group, during the early spring in Scotland. We found that our 

After-Disturbing method, in which we performed marking and recapturing after 

gentle disturbance to the top of nest mound, has the best balance between accuracy, 

non-destructiveness, and time required. We also found that mound volume can be an 

index of ant nest size under certain conditions. Both non-destructive methods can be 

used on the same colony or nest repeatedly to monitor nest dynamics. 
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Introduction 

Body size is one of the most significant characteristics of an animal because it 

influences virtually all physiological characters (Brown & Lomolino, 1998; 

Blanckenhorn & Demont, 2004). In social insects, the colony can be considered the 

biological analogue of the “body” of an individual organism (Tschinkel, 1991; 

Kaspari & Vargo, 1995; Tschinkel, 1998, 1999; Clémencet & Doums, 2007; Lanan  

et al., 2011). As a group of cells are categorized as an organism when the cells build 

a cooperative unit to reproduce their genes, it could be correct to classify a group of 

organisms as a superorganism when the organisms construct a cooperative unit to 

reproduce their genes (Seeley, 1989). Hence, the individual and the superorganism 

are two levels of organisation of social insects. Studying the “body size” of the 

colony may reveal how this life-history trait of the superorganism correlates with 

their lifestyle and habitat. For example, number of workers may be related directly to 

competitive abilities in ants (Palmer, 2004), foraging behaviour in ants and bees 

(Eckert et al., 1994; Herbers & Choiniere, 1996), and worker life span of wasps 

(O'Donnell & Jeanne, 1992; Pamilo et al., 1992). Moreover, it is especially 

interesting that the size of these superorganisms can have a wide range, for example, 

over eight orders of magnitude in the ant family Formicidae alone (Kaspari & Vargo, 

1995). In addition, in polydomous ants, one colony may settle in either one nest or 

several spatially separated but socially connected nests (Hölldobler & Wilson, 1977). 

Although the nests and other structures of ant colonies can be regarded as extensions 

of the superorganism, Debout et al. (2007) suggested that nest-level allocation is 

subjected to stronger selection than is colony-level allocation in some polydomous 

ants. Banschbach and Herbers (1996) indicated that only nest-level traits play a 

major role in determining variation in fitness. Therefore, estimating colony size, as 
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well as nest size of polydomous colonies, is important to understanding the life-

history and ecology of social insects.  

The total number of individuals or the worker population in a colony (or a nest) has 

been used to represent the colony size (or nest size) of social insects (Kaspari & 

Vargo, 1995; Tschinkel, 1998, 1999). In ants, the most accurate colony size 

estimation method is nest excavation (Elmes, 1974; Gordon, 1992; Tschinkel, 1993; 

Akre et al., 1994; Beshers & Traniello, 1994; Tschinkel et al., 1995). Although the 

nest excavation method can obtain the exact count and biomass of all stages in the 

nest, it is destructive and laborious (Stradling, 1970; Skórka et al., 2006). An 

additional step has also been used to decrease labour of excavation method in some 

studies. After excavation and mixing the whole nest soil and ants, the number of 

individuals in a given sampled mound soil volume was counted, then the nest size 

was estimated by this number and the total mound volume (Tschinkel, 1993; 

Tschinkel et al., 1995). 

Alternatively, mark-release-recapture (MRR) methods (or capture-mark-recapture, 

CMR) can monitor the colony dynamics without destroying it (Chew, 1959; Kruk-de 

Bruin et al., 1977; Breen, 1979; Sundström, 1995; Billick, 1999; Brown et al., 2002; 

Rosset & Chapuisat, 2007). In general the MRR method is based on some 

assumptions (Chew, 1959; Stradling, 1970): (1) every individual in the colony is able 

to be captured and marked; (2) a sample which represents the population of the 

colony is taken to mark and estimate; (3) the marks are permanent during the 

sampling period, and the marked individuals are not influenced by them; (4) the 

marked animals mix thoroughly with unmarked individuals before resampling; (5) 

the population is closed, the rates of immigration and emigration are known and no 

births and deaths occur during the period of mixing. From these assumptions, 
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probably the most challenging step of the MRR method is how to ensure all 

individuals are available to be captured and marked. For example, in carpenter ants, 

about 80 per cent of the individuals do not forage, so marking on foraging trails can 

only estimate the forager group (Ayre, 1962). It can also be a problem to capture 

certain special types of workers such as repletes which usually stay in the deep parts 

of the nests (Chew, 1959). Then there is a trade-off between the assumption four and 

the assumptions three and five. To make sure marks are retained and the population 

is isolated needs a short experimental period. On the other hand, the period should be 

long enough for marked and unmarked ants to mix thoroughly. Several studies have 

investigated the feasibility of using non-destructive MRR methods to estimate real 

parameters of the colony, such as colony size and colony biomass (Table 2.1). Porter 

and Jorgensen (1980) and Kruk-de Bruin et al. (1977) showed that although the 

estimation from MRR method on foragers (on the trail) only represented the size of 

the foragers group, it can be used to estimate the whole colony size of 

Pogonomyrmex owyheei and Formica polyctena because foragers compose a certain 

proportion of colony. Besides the forager group, defender estimation was also a good 

index of colony size in P. owyheei (Porter & Jorgensen, 1980). Billick (1999) tested 

whether the MRR method provided an accurate estimate of worker number of F. 

neorufibarbis by capturing and marking workers after overturning rocks on the nests. 

Although the fit of the regression line showed by R square value from the studies of 

foragers is higher (Kruk-de Bruin et al., 1977; Porter & Jorgensen, 1980), the results 

underestimated the colony size. On the other hand, although the regression line in 

Billick’s study has a lower fit compared to former studies, estimation from the 

number of workers rather than only of foragers seems to more realistically predict the 

colony size. 
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Table 2.1. Summary of the results in studies which compared the estimates by non-

destructive methods with real parameters of ant colony size. 

 

Estimates 
Real 

parameters 
r2

 n species References 

Mound volume 
Colony 

biomass 
0.90 30 

Solenopsis 

invicta 

(Tschinkel et al., 

1995) 

Nest volume 
Total 

number 
0.87 16 

Formica 

pallidefulva 

(Mikheyev & 

Tschinkel, 2004) 

Defender number 

(MRR) 

Total  

adults 
0.86 12 

Pogonomyrmex 

owyheei 

(Porter & Jorgensen, 

1980) 

Forager number 

(MRR) 

Total 

number 
0.86 15 F. polyctena 

(Kruk-de Bruin et 

al., 1977) 

Mound volume 
Colony 

biomass 
0.85 75 S. invicta (Tschinkel, 1993) 

Removed worker 

number
#
 

Worker 

number 
0.83 21 

Myrmica 

ruginodis 
(Skórka et al., 2006) 

Forager number 

(MRR) 

Total  

adults 
0.81 10 P. owyheei 

(Porter & Jorgensen, 

1980) 

Territory area 
Worker 

biomass 
0.80 30 S. invicta 

(Tschinkel et al., 

1995) 

Basal area of 

mound 

Worker 

number 
0.79 30 F. podzolica 

(Savolainen et al., 

1996) 

Territory area 
Colony 

biomass 
0.79 30 S. invicta 

(Tschinkel et al., 

1995) 

Worker number 

(MRR) 

Worker 

number 
0.77 6 F. neorufibarbis (Billick, 1999) 

Territory area 
Worker 

number 
0.76 30 S. invicta 

(Tschinkel et al., 

1995) 

Removed worker 

number
#
 

Worker 

number 
0.69 76 M. scabrinodis (Skórka et al., 2006) 

Removed worker 

number
#
 

Worker 

number 
0.66 27 M. rubra (Skórka et al., 2006) 

Depth of the nest 
Worker 

number 
0.61 24 

Cataglyphis 

cursor 

(Clémencet & 

Doums, 2007) 

Surface area of 

the nest dome 

Worker 

number 
0.59 59 F. exsecta 

(Liautard et al., 

2003) 

Surface area of 

the nest dome 

Brood 

production 
0.55 59 F. exsecta 

(Liautard et al., 

2003) 

Basal area of nest 
Alate   

mass 

0.25

-

0.52 

49 F. podzolica 
(Deslippe & 

Savolainen, 1994) 

#
Number of workers removed by sticks in a given period (see text in introduction); r

2
: 

r square value; n: sample size 
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In addition to the above main methods, in some studies the colony size or nest size 

was related to or estimated by other non-destructive methods using the features of 

nest, such as the basal area or the volume of nest mound (Deslippe & Savolainen, 

1994; Savolainen et al., 1996; Liautard et al., 2003; Sorvari & Hakkarainen, 2007; 

Sorvari, 2009). Table 2.1 shows several studies which compared the nest features 

with the real parameters of colony. Tschinkel (1993) and Tschinkel et al. (1995) 

suggest that mound volume of the nest may be a convenient and non-destructive 

method to estimate the colony biomass of Solenopsis invicta. Ground-level area of 

the mound was related to alate mass (Deslippe & Savolainen, 1994), and worker 

number (Savolainen et al., 1996). Surface area of the nest dome could predict both 

worker number and brood production (Liautard et al., 2003). Depth of the nest was 

also related to colony size (Clémencet & Doums, 2007). However, there are also 

problems with these methods of estimation. Domisch et al. (2008) argued that 

decomposition could be either increased or decreased by the activity of colony or 

external reasons such as temperature. Nests of F. lugubris and F. polyctena in shaded 

areas have higher mounds (Sudd et al., 1977; Mabelis, 1979). Breen (1979) also 

indicated that nest diameter was not a useful predictor for the forager population of F. 

lugubris.  

Activities of workers or the colony was also measured to estimate colony size in 

some studies (Table 2.1). Skórka et al. (2006) conducted a new method for three 

Myrmica species in which they opened the topmost part of the nest until the first 

chambers with larvae was found and used sticks to remove workers which climbed 

up the stick. The number of workers removed in a given period was positively 

correlated with the number of workers in the nest. The amount of traffic on trails was 

combined with the number of trails radiating from a nest to estimate the relative size 
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of a nest population of F. polyctena (Mabelis, 1979). A similar idea has been used to 

predict worker numbers of wasps by Malham et al. (1991), who counted the number 

of individuals entering or leaving the colony in a given period. This seemed like a 

simplified MRR method which omitted the recapturing procedure. The error of the 

estimated size from this method was high, so it may needed repeating several times 

on different days for a more accurate average number (Skórka et al., 2006). 

Tschinkel et al. (1995) found that territory area was related to the biomass of worker 

and colony, and the number of workers, but it would be time consuming to use this 

index for estimation of colony size. 

Several species of ants in the Formica rufa group (red wood ants) are considered 

“near threatened” by the International Union for Conservation of Nature and Natural 

Resources (IUCN, 2014) and are protected by law in many European countries 

(Bernasconi et al., 2011) because of their strong impact on forest ecosystems 

(Laakso & Setälä, 1997; Ohashi et al., 2007; Żmihorski, 2010). Complete excavation 

of nests is therefore not feasible as a routine method for studies which need to 

estimate wood ant colony size or nest size. We compared the feasibility and the 

accuracy of several MRR methods and the nest mound volume for estimating the 

nest size of red wood ants. To seek out the best balance for the five assumptions of 

MRR method, we applied four methods with different levels of invasiveness and 

collected recapture data over multiple days.  
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Materials and Methods 

Species and Location 

The choice of model species was Formica lugubris, which belongs to the well-

studied Formica rufa group in Europe (Cotti, 1996). Formica lugubris has both 

monodomous and polydomous social forms (Bernasconi et al., 2005; Maeder et al., 

2005), and is polydomous in Great Britain (Sudd et al., 1977). The experiment was 

conducted in Inshriach forest in the Cairngorms National Park of Scotland in April 

2012. Temperatures ranged from 3 to 11
o
C. An area of the forest, approximately 25 

hectares, planted primarily with Canadian lodgepole pine (Pinus contorta) was to be 

clear felled in summer 2012 in order to restore native woodland flora, so colonies of 

F. lugubris in this area were to be severely disrupted. This made the site appropriate 

for applying invasive measures to the wood ant nests. A preliminary survey recorded 

24 nests in approximately three hectares along the forest edge of this area and no F. 

lugubris nests in an approximately eight-hectare deep-forest area. No other species of 

wood ants were present. To test our nest size estimation method, we selected 15 nests 

that provided a wide distribution of nest sizes and were accessible for excavation. 

The minimum distance between these nests and neighbouring nests was greater than 

15 metres. 

Methods 

We applied four MRR methods and a mound volume estimation method to the nests. 

For our four MRR methods, we marked ants on Day 0, and counted the ratio of 

marked and unmarked ants on Day 1 and Day 2. For each nest, ants were marked by 

one person with Pactra
®

 paints (Testors, USA) applied as a dot on the gaster using 

match sticks in three of the methods and with Brillo
®

 spray leather dye 
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(Moneysworth & Best, Canada) in the fourth. Different colours of paints were used 

for the four MRR methods for each nest. The colours used for these methods were 

varied between colonies. Pactra paint has been used to mark many ant species in 

previous studies (Fewell, 1990; Fewell et al., 1992; Brown & Gordon, 1997; Haight, 

2012). Laboratory preliminary tests established that both Pactra paint and spray dye 

can be retained on the cuticle of F. lugubris workers for more than two weeks and do 

not contribute to ant mortality over this time period.  

On-the-Trail Method 

On Day 0, we used Pactra paint to mark and count foragers passing in either 

direction along the strongest foraging trail at a distance of 0.3-1 meters from the nest, 

for 15 minutes. On Day 1 and Day 2, the numbers of outgoing foragers marked and 

unmarked individuals were counted and recorded by one person along the same trail 

for 15 minutes. We counted only outgoing foragers to avoid recounting the same 

foragers if they left and returned to the nest in a short period. 

On-the-Surface Method 

A different colour of Pactra paint was used to mark workers directly on the nest 

surface for 15 minutes, regardless of whether the ants had already been marked by 

the first colour. The number of marked workers was recorded. Each day for the next 

two days, we did recapturing work on the nest surface using a single visual scan 

sample, which means that one person scanned the whole nest surface only once to 

count the numbers of marked (with the relevant colour) and unmarked (not painted 

with that colour) workers. 
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After-Disturbing Method 

To make more workers emerge from the nest, we disturbed the nest by lightly 

tapping the top of the nest by hand for 5 seconds. We then marked workers directly 

on the surface with a third colour of paint for 15 minutes, regardless of whether they 

had already been marked by another colour/s. On Day 1 and Day 2, we disturbed the 

nest in the same way and then counted the number of marked (with relevant colour) 

and unmarked workers on the nest surface using a single visual scan sample by one 

person. 

Mound-Sampling Method 

Nests were categorised by approximate mound size (small: < 20L, medium: 20-85L, 

and large: > 85L). On Day 0, an appropriate volume (0.5L, 2L or 4L for small, 

medium or large nest mound respectively) of mound thatch containing workers was 

collected from the south-facing part of nest mound and placed in a small bin. We 

marked all workers in the bin with spray leather dye, regardless of whether they had 

already been marked by any Pactra paint, but without obscuring other paint marks, 

and returned all collected soil and ants to the mound. On Day 1, we collected the 

same volume of thatch to count the spray-marked and unmarked ants then returned 

all thatch and ants. The same procedures were conducted on Day 2. 

Mound-Volume Method 

To estimate mound volume, the longest basal diameter, the perpendicular diameter 

and the height of the nest mounds were measured. If a nest was settled on the slope, 

uphill height of the nest was used as the height of the nest. Relative mound volume 

was calculated by multiplying these three dimensions. 
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Nest Excavation 

As far as possible, we completed all four MRR methods in the order listed above for 

each nest, however we could not complete all four MRR methods for certain nests, 

especially the On-the-Trail method, because of the absence of ants on trails due to 

cold weather. We chose 11 of the original 15 nests according to the completeness of 

our data for each nest and aiming to maintain a wide distribution of nest size. We 

excavated these 11 nests and counted the actual number of workers. We first 

removed the thatch of the above ground parts and counted the workers within the 

nest material, then dug out the underground chambers of the nest, counting the ants 

in the soil. We used 12-volt car batteries to drive 35-watt car vacuums and aspirators 

for collecting and counting ants individually. After excavating the nests and counting 

the actual number of ants, we relocated the ants with their nest material out of the 

area which will be clear felled. 

Statistical Analyses 

For each of our four MRR methods, the estimated nest size was calculated using 

Bailey’s (1951) unbiased modified formula, which is thought to have a better 

estimate than Lincoln index when marked number is small (Stradling, 1970; Gaskell 

& George, 1972; Paulson & Akre, 1991): N = T*(n + 1) / (t + 1), where N is the 

estimated total number of workers in the nest, T is the number of marked ants, n is 

the total number in the recapture sample (marked and unmarked workers), and t is 

the number of marked workers in the recapture sample. We excluded data for which 

the total number in the recapture sample (n) was smaller than total marked ants (T) in 

our MRR methods. Due to the temperature limitations on foraging, the On-the-Trail 

data were available on only one day and from only 7 nests. For each of the other 
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MRR methods, we estimated the nest size from the Day 1 and Day 2 data separately, 

and also took the mean of estimated nest size from the two recapture days for 

analysis. For each nest, if data from one of the days were excluded because the total 

recapture sample number was too small, data from the other day was used as the 

mean. We used simple linear regression for the relationship between the estimated 

nest size and the actual nest size. Bayesian information criterion (BIC) (Schwarz, 

1978) and adjusted r
2
 were used for comparison and measuring how well a model 

performs (Seber & Lee, 2003; Fox, 2008; Bingham & Fry, 2010). BIC is considered 

more appropriate than Akaike information criterion (AIC) (Akaike, 1974) if the 

sample size is larger than 7 (Seber & Lee, 2003; Fox, 2008), though these two 

methods gave very similar results when applied to our regression models. All data 

were transformed by log10 to normalise the distributions, and regressions were 

conducted with the JMP statistics package (version 6.0.0; SAS institute, Cary, NC, 

USA). 

 

Results 

We found that the After-Disturbing method, in which ants were marked on the nest 

surface after mild disturbance, was the best MRR method for predicting the actual 

nest size of F. lugubris. Both the estimates of nest size from the mean of two days’ 

data and from the Day 2 data significantly predicted the actual nest size, with the 

mean estimated nest size a particularly good predictor (Table 2.2; Fig. 2.1a,c). In 

addition to the After-Disturbing method, the estimated nest size from the Day 1 data 

of On-the-Surface method (Table 2.2; Fig. 2.1e) and the Day 2 data of Mound-

Sampling method (Table 2.2; Fig. 2.1i) also significantly predicted the actual nest 
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size. As for other methods, the Mound-Volume method weakly predicted the actual 

nest size with a borderline significant relationship between relative mound volume 

and actual nest size (P = 0.054, Table 2.2; Fig. 2.2). There was no significant 

relationship between the actual nest size and the estimated nest size from the On-the-

Trail method (Table 2.2). 

 

Figure 2.1. The relationship between actual nest size and estimated nest size from 

three mark-release-recapture methods, presenting estimates from Days 1 and 2 of 

recapture, and also the mean of these estimates (a-c: After-Disturbing, d-f: On-the-

Surface, g-i: Mound-Sampling; Regression lines show the significant relationships). 
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Table 2.2. Results of the linear regression for the relationships between the estimated 

colony size and the actual colony size from five methods. 

Method Day n F ratio P  Relationship r2 r2
adj BIC 

On-the-
Trail 

1 7 0.73 0.43 - - - - 

On-the-

Surface 
Mean 11 1.14 0.31 - - - - 

 1 7 6.71 < 0.05 log10 y = 0.5796 × log10 x + 1.7594 0.57 0.49 -16.48 
 

2 8 0.14 0.72 - - - - 

After-
Disturbing 

Mean 11 66.38 < 0.001 log10 y = 1.4874 × log10 x - 1.5951 0.88 0.87 -37.03 

 1 9 3.39 0.11 - - - - 

 
2 9 17.17 < 0.01 log10 y = 1.1448 × log10 x - 0.2789 0.71 0.67 -23.27 

Mound-
Sampling 

Mean 11 4.57 0.06 - - - - 

 1 11 1.93 0.20 - - - - 
 

2 8 7.91 < 0.05 log10 y = 0.4644 × log10 x + 2.5583 0.57 0.50 -18.98 

Mound-
Volume 

- 11 4.91 0.05 log10 y = 0.5846 × log10 x + 1.1512 0.35 0.28 -18.43 

y: actual colony size, x: estimated colony size; n: sample size; r2
 adj: adjusted r square; 

BIC: Bayesian information criterion 

 

The actual nest size of these 11 nests ranged from 4,251 to 66,285 ants (Mean ± SD 

= 23442 ± 25518). Average percentage of marked workers in recapturing day of four 

MRR methods ranged from 1.6% to 11.7% (Table 2.3). We recorded 3, 7 and 18 

queens in 3 of 11 nests. We were not aiming specifically to record queens, and it is 

likely that more queens were present in these and the other nests, but were not 

identified due to the quick counting of large numbers of individual ants. Many larvae 

and eggs were found in the biggest and third biggest nests respectively. Larger 

workers, which are repletes with distended gasters, were usually found in the 

underground part of the nests. Few workers were found in the chambers in the north-

facing part of the nest thatch. Nests extended approximately 0.5 m deep underground. 
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Ants marked by spray dye and paints were found deep in the underground parts of 

nest. No mortality of marked ants was observed during the experiment nor in the 

dumping places of nests.  

 

 

Table 2.3. Average numbers of marked and recaptured workers for our four MRR 

methods (Mean ± SD). 

n: sample size 

 

 

 

Figure 2.2. The relationship 

between actual nest size and the 

relative mound volume. Letters (a 

and b) indicate two nests with 

atypical mound shape (see text for 

discussion).  

 

 

  Day 1  Day 2 

Methods 
Marked 
number 

n 
Recaptured 

number 

% of 
marked 
number 

n  
Recaptured 

number 

% of 
marked 
number 

n 

On-the-Trail 93 ± 41 7 116 ± 66 1.6 ± 0.9 7     
On-the-Surface 200 ± 89 11 621 ± 37 3.1 ± 2.7 7  455 ± 217 2.3 ± 1.0 8 
After-Disturbing 196 ± 69 11 579 ± 404 3.0 ± 2.2 9  475 ± 275 3.0 ± 1.9 9 
Mound-Sampling 110 ± 112 11 327 ± 242 11.7 ± 9.5 11  247 ± 208 6.0 ± 6.5 8 
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Discussion 

We tested four mark-release-recapture methods involving different levels of 

disturbance, for estimating nest size and also investigated the relationship between 

nest mound size and nest size of Formica lugubris. We found that our “After-

Disturbing” method, in which we performed marking and recapturing after lightly 

tapping the nest mound surface, was the best method to estimate nest size. Estimates 

of nest size from this method effectively predict nest sizes ranging from 4,000 to 

over 60,000 workers. Estimates from the mean of two days recapture data 

contributed to a better fitting regression model than using either day alone, however, 

estimates from Day 2 data alone may provide the best balance between accuracy and 

effort, not only because they require less recapture effort but also because the 

regression model makes a more realistic estimate: In the model of relationship 

between actual nest size and the estimated nest size from After-Disturbing method in 

Day 2, parameters of the equation slope and intercept made the regression line the 

closest to the equation y = x, thus with the least underestimating comparing to other 

methods (Fig. 2.1).  

Lightly tapping the nest mound surface in the After-Disturbing method was probably 

an important step. Compared to the On-the-Surface method in which workers are not 

disturbed, adding this step meant that not only can more workers in total be marked 

and recaptured but also probably includes workers from other task groups switching 

to nest defence. Thus, adding this step increases the accuracy of the assumptions, that 

a representative sample of the colony is taken to mark and estimate, improving the 

prediction of nest size. In contrast, the On-the-Trail and On-the-Surface methods 

may only capture certain groups so the estimates from these methods are less likely 

to represent the whole nest. The same situation may occur in the Mound-Sampling 
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method, in which we only sampled part of the mound. Individuals do not distribute 

evenly in red wood ant nests (Coenen-Stass et al., 1980), so sampling position within 

the mound may greatly influence the representativeness of the sampling. Even by 

lightly disturbing, as we did in After-Disturbing and Mound-Sampling methods, we 

still cannot capture and recapture all types of workers in a nest. It is likely that this is 

why all estimates from our four MRR methods underestimated the nest size. 

However, we found a balance between increased accuracy and reduced 

destructiveness and time for estimating wood ants nest size, as well as the colony 

size of monodomous species. 

MRR methods require that paint marks are permanent over the time-scale of the 

study. In laboratory preliminary tests we found that both Pactra Paint and Brillo 

spray dye can be retained on the workers for more than two weeks and do not 

influence survival. In the Mound-Sampling method, if the ants we captured had been 

marked by other paint, we sprayed Brillo dye carefully to keep the former mark still 

visible. Bright and obvious colours such as yellow and pink were used in our 

experiments and were detected easily. We observed some painted individuals when 

we were excavating the underground parts of the nests. This sheds light on the 

assumption of thorough mixing of marked and unmarked workers, suggesting that 

ants do move through different parts of the nest. Although Porter and Jorgensen 

(1980) proposed that recapture should be done within one day for the minimum 

effects of high forager mortality in harvester ants, this does not seem to apply to F. 

lugubris and our MRR methods. The significant relationships between actual and 

estimated nest size of After-Disturbing and Mound-Sampling method from Day 2 

data showed that a period of two days provided a better estimate, compared to one 

day, suggesting that waiting the extra day allowed colonies to mix more thoroughly. 
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As for the assumption of closed population, our study was conducted during mid-

April, at which point there are no pupae and no eclosions in F. lugubris (Cherix et al., 

2006). The turnover rate of workers was probably low at this period due to the 

extended longevity caused by winter of the present workers (Calabi & Porter, 1989). 

The duration of the experiment was also not long enough to cause a considerable 

change of worker number from births and deaths. Furthermore, although F. lugubris 

is polydomous in Great Britain (Sudd et al., 1977), we chose nests with at least a 15 

metre distance and without obvious trails between them. Low activity caused by cold 

weather in April helps to meet the assumption of closed population. 

Some previous studies have shown that physical features of the nest such as nest 

volume, mound volume and basal area of mound can be used to predict the colony 

size or colony biomass of ants (Table 2.1) (Tschinkel, 1993; Tschinkel et al., 1995; 

Savolainen et al., 1996; Mikheyev & Tschinkel, 2004), however, other studies found 

contrasting results (Sudd et al., 1977; Breen, 1979; Domisch et al., 2008). In our 

study, Mound-Volume method provided a borderline significant relationship between 

relative mound volume and actual nest size. Looking into the details of the mound 

dimensions we found that two outliers in Fig. 2.2 (points a and b) were from nests 

with atypical mound shape. Point (a) was from a nest which built the mound on a 

steep slope. This may have caused us to underestimate the height of the mound. In 

contrast, a nest which built the mound partly on a fallen tree contributed the data of 

point (b). This may have caused us to overestimate its height. The relationship 

between relative mound size and actual nest size would be significant if these two 

data points were excluded (F = 19.30, P < 0.01, n = 9, r2
 = 0.73). In addition, our 

study was conducted at the beginning of spring, before F. lugubris starts to modify 

the mound (Cherix et al., 2006). Mound volume would be expected to be most stable 



48 

 

during this period, when the building work of the previous summer and the 

decomposition of the previous autumn and winter have had time to stabilise. 

Therefore, although some studies showed that mound features should not be used as 

a predictors for the colony size of F. lugubris (Sudd et al., 1977; Domisch et al., 

2008), we believe that measuring Mound-Volume method can be a feasible wood ant 

nest size estimation method, at least in the beginning of spring and for nests with 

relatively typical mound shape. For the nests settled in a slope, the downhill height of 

the mound is probable a better measurement to calculate relative mound volume 

rather than the uphill height of the mound. 

This study was conducted in April, before colonies became fully active. This posed 

difficulties for the On-the-Trail method due to cold weather. On the other hand, this 

season is suitable for the On-the-Surface, After-Disturbing, Mound-Sampling and 

Mound-Volume methods because the low foraging activity contributes to the 

isolation of nests and ensures most of the population will be in the nest. It also 

increased stability of nest population and mound volume compared to other seasons. 

Because estimates may vary across different seasons due to variation in shading and 

changing predation rate and food availability, caution should be used if comparing 

nest sizes across different seasons. However, our method can be applied to the same 

nest in the same season year by year to monitor the growth or dynamics of nest size. 

Our After-Disturbing method is probably feasible for many mound-building ant 

species which would become aggressive and assemble on the mound surface after 

disturbance of the nest mound. Really counting the exact number of marked and 

unmarked workers in recapturing may improve the accuracy of our After-Disturbing 

method. However, the techniques we used, for example, marking individuals on the 
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mound surface and counting by a single scan sample in the recapturing step, can 

already contribute to an accurate and fast predictor of ant nest size.      

To summarize, we found that our After-Disturbing method, in which marking and 

recapturing were performed after gently disturbance to the nest, provides a feasible 

mark-release-recapture method to estimate colony size for monodomous mound-

building ants, or nest size of polydomous species. We improved the method’s 

compliance with the assumptions of MRR by lightly tapping the mound surface 

before marking and capturing, and conducting the experiment in the beginning of 

spring. We found that our After-Disturbing method has the best balance between 

accuracy, non-destructiveness, and time required. We also found that mound volume 

can be an index of ant nest size under certain conditions. Both methods can be used 

on the same nest repeatedly to follow the nest dynamics. 
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Chapter 3 – Preliminary tests and power analyses for 

the relationship between altitude and ant colony size 

 

Abstract 

Bergmann’s rule describes the decline of body size, which is probably the most 

important characteristic of an animal, from polar to tropical latitudes. This latitudinal 

relationship can be applied to altitude due to comparable changes of thermal patterns 

across these two geographic gradients. In social insects, the colony size could be 

biologically analogous to the body size of a unitary organism because it is associated 

with many physiological and behavioural features of the colony. This preliminary 

study aimed to apply Bergmann’s rule to the relationship between altitude and ant 

colony size. In addition to the geographic gradients, other factors such as canopy 

cover and the aspect of nesting slope may influence environmental conditions. I 

targeted a wood ant species Formica lugubris in the Swiss Jura Mountains. This 

monodomous (one colony has only one nest) population can simplify my question 

for this preliminary study. I did not find an altitudinal effect on colony size within a 

small geographic range, instead, I found that canopy cover and the aspect of nesting 

slope could be important. According to the results, I plan to conduct a future study on 

both F. lugubris and F. paralugubris in the Swiss Alps for a larger altitudinal range. 

Based on the required sample size calculated from power analyses, mound volume 

will be used to estimate nest size efficiently to obtain the necessary sample size. The 

importance of canopy cover and local temperatures of nesting location were 

addressed. New measurements and analyses of both canopy cover and local 

temperatures will be performed. 
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Introduction  

Body size is associated with most aspects of biology for individual animals, 

including physiological performance, morphology and fitness (Brown & Lomolino, 

1998; Blanckenhorn & Demont, 2004; Kingsolver & Huey, 2008). Bergmann’s rule 

is an eco-geographic rule of animal body size: the decline of body size from polar to 

tropical latitudes (Bergmann, 1847; Watt et al., 2010). Because of comparable 

patterns of change in temperature between latitude and altitude (Brown & Lomolino, 

1998), a similar body size change has also been found along altitudinal gradients in 

some species (revew study: Shelomi, 2012).  

In addition to the individual, the colony is a specific level of organisation for social 

insects. Just as body size is a fundamental characteristic of a unitary organism, 

colony size is also associated with many aspects of the life history and physiology of 

a social insect colony. Therefore, the colony size of a social insect colony could be 

biologically analogous to the body size of a unitary organism (Kaspari & Vargo, 

1995; Hölldobler & Wilson, 2009). The total number of individuals or the total 

biomass in a colony has been used to represent the size of a colony (Kaspari & Vargo, 

1995; Tschinkel, 1998, 1999).  

The same relationship between body size and latitude could be applied to altitudinal 

gradients. The colony size can be considered as the body size of the colony for social 

insects. Combining these ideas, I conducted this preliminary test for the application 

of Bergmann's rule to the relationship between altitude and colony size. To 

investigate the relationship, the chosen species is Formica lugubris, which can 

distribute as high as 2100 metres in altitude (Bernasconi et al., 2006). This species 

belongs to the red wood ants group which have ecologically important impacts on 
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forest ecosystem (Sudd & Lodhi, 1981; Punttila et al., 2004) and has been listed as 

“near threatened” by the International Union for Conservation of Nature and Natural 

Resources (IUCN, 2014). Red wood ants are flexible in colony-level organisation: 

one colony can either build one nest (monodomy) or several spatially separated but 

socially connected nests (polydomy) (Debout et al., 2007; Ellis & Robinson, 2014). 

Having different domy forms brings an extra level, the nest, to the organisation for 

social insects. Therefore this nesting strategy should be considered when the study 

focuses on the colony size of red wood ants. Fortunately, F. lugubris is monodomous 

in the Swiss Jura Mountains (Bernasconi et al., 2005). Starting the investigation from 

the monodomous F. lugubris population can simplify my question because in this 

population, nest size also means colony size.  

With regard to altitude, some environmental factors may change along this gradient 

and have effects on colony size. The pattern of vegetation is the most obvious 

environmental factor which is associated with an altitudinal gradient. Canopy cover 

is one of the indices of patterns of vegetation for woodland, and is known to be 

related to ant nest size (Ellis et al., 2014). Another environmental factor which may 

affect nest size is the aspect of nesting slope, because it may be associated with the 

sunshine hours a colony receives. I therefore also investigated the effects of canopy 

cover and the aspects of nesting slope together with altitude on colony size in this 

study. 

As a preliminary test, the aims of this study were: 1) to test three indices of colony 

size (nest size) – worker population from After-Disturbing method and Mound-

Volume method, and total biomass – for choosing the best measurement method 

according to the balance between accuracy, effort and time spent; 2) to check 

whether two local environmental factors, canopy cover and the aspect of nesting 
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slope, may have effects on colony size (nest size) along altitudinal gradients; 3) to 

estimate minimum required sample size through power analyses of the results for 

future study. 

 

Materials and Methods 

Species and Location 

In the Swiss Jura Mountains, six wood ant species (F. polyctena, F. rufa, F. pratensis, 

F. truncorum, F. lugubris and F. paralugubris) have overlapping distributions. 

Among these species, F. lugubris and F. paralugubris can be distinguished from the 

other four species in the field, but have to be separated from each other by stereo-

microscope. Formica lugubris is principally monodomous in the Swiss Jura 

Mountains (Bernasconi et al., 2005), whereas F. paralugubris is highly polydomous. 

I therefore aimed to find monodomous colonies of F. lugubris in the field but may 

include some nests of F. paralugubris due to the temporary lack of trails between 

nests. Samples were collected for species identification. In the following text of this 

chapter, nest size can be taken to mean colony size, if is referring to a monodomous 

F. lugubris colony.  

Three 2-km-wide transects were identified in the Swiss Jura Mountains (near 

Yverdon-les-Bains, Vaud, Switzerland; Fig. 3.1) according to previous records of F. 

lugubris and F. paralugubris nests (D. Cherix, personal communication). There are 

two main coniferous tree species in this area: Abies alba and Picea abies. The 

altitude of the survey area ranges from 400 to 1500 metres. For scheduling the 

surveys, each transect was divided into several zones basically by contour line every 

200 metres (letters A to O in Fig. 3.1). The highest and lowest zones of Transect 1 
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and 2 were investigated twice at mid-July and end-August for the comparison of 

seasonal differences. 

 

Figure 3.1. Three 2-km-wide transects with altitude ranges from 400 m to 1400 m at 

the Swiss Jura Mountains near Yverdon-les-Bains, Vaud, Switzerland. Letters A to O 

show the zones divided by contour line every 200 metres. Records of Formica 

lugubris are shown as red dots, and F. paralugubris as blue dots (©  OpenStreetMap 

contributors).  
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Methods 

Two of the methods used for estimating nest size were the After-Disturbing method 

(a mark-release-recapture method to estimate worker population) and the Mound-

Volume method (relative mound volume is calculated by multiplying two diameters 

and the height of the mound) which are both tested and proved to be accurate and 

feasible methods (Chen & Robinson, 2013). Total biomass of the nest was calculated 

by multiplying the average dry body mass and the worker population. For each zone, 

it took one day for surveying nests and marking ants, and one day for the recapturing 

process. I surveyed each section mainly along roads, paths and trails aiming to cover 

the whole section. Apart from private and inaccessible areas, the survey for each 

section focused on woodlands, deep forests and the edges between woodlands and 

pastures. In the surveying and marking day (the first day of mark-release-recapture 

method), I searched for nests without trails linking them to other nests in order to 

target monodomous nests of F. lugubris. Except for those were clearly polydomous, 

monodomous colonies of all sizes that I found were recorded. Once a nest was found, 

two basal diameters and the height of the nest mound were measured to calculate the 

mound volume. Survey date and time, nest location, the aspect of the nesting slope 

and air temperature were recorded. For the aspect, the south was defined as zero 

degree, western angle as positive degree and eastern angle as negative. Pictures of 

the nest and the surrounding environment were taken. Canopy cover of each nest was 

measured by photos, which were taken skyward above each nest (about 15 cm from 

the mound top) using a digital camera with a 28-mm focal length (S90, Canon, 

Japan), with the software ImageJ (version 1.48). Marking work of the After-

Disturbing method was done within 15-20 min.  
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Recapturing work was usually done after two days. However, it was carried out after 

three days for four nests due to rain limiting ant activity. Temperatures of air and the 

inner nest were measured when recapturing work was in progress. A probe sensor of 

the thermometer was attached on a thin stick and poked inside the nest mound to 

measure the core temperature of the nest (approximately from 20 cm to 40 cm under 

the mound top) (Cherix et al., 2006). After recapturing work of the After-Disturbing 

method was done, 50 individuals were collected after disturbing and preserved in 

70% alcohol solution for identifying species and assessing body size and colony 

biomass. Formica lugubris and F. paralugubris were distinguished by the difference 

in the ratio of two measurements (Seifert, 1996): the length of the longest hair on 

lateral metapleuron and ventrolateral propodeum, and the width of the scale (petiole). 

Average head width (widest point) is a commonly used measurement of worker body 

size (Heinze et al., 2003; Clémencet & Doums, 2007). Specimens were also oven-

dried at 60-70
o
C for 24 h to obtain average dry body mass (Tschinkel, 1993; Kaspari 

& Weiser, 1999). 

Statistical Analyses 

Average dry body mass of each nest was assessed from the dry mass of 50 workers. 

Three indices were used to represent nest size: worker population (from After-

Disturbing method), mound volume and total biomass. These indices of nest size 

were transformed by log10 to normalise the distribution. Pearson correlation 

coefficient was used for the relationship between worker population and mound 

volume. I used Generalised Linear Models (GLM) to test whether body size (head 

width), worker population, mound volume and total biomass changed along altitude, 

and whether there were other factors related to these indices of nest size. Nested two-

way ANOVA were used to test whether there were seasonal differences in nest size. 
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Analyses were conducted with JMP statistics package (version 6.0.0; SAS institute, 

Cary, NC, USA) and R statistics package (version 3.1.0, R Development Core Team). 

To balance sample sizes for power analyses of altitudinal effect, I separated nests of 

F. lugubris into higher and lower groups by their altitude (above 1300 metres and 

below 1300 metres), and also separated nests of F. paralugubris into two groups by 

1300 metres. In order to estimate required sample size for future studies, power 

analyses were conducted after t-tests for comparison of nest size and mound volume, 

and performed with G*Power 3.1.9 (Faul et al., 2007).  

 

Results 

I recorded 26 nests of F. lugubris and 15 of F. paralugubris (red and blue dots in Fig. 

3.1). Worker population (from After-Disturbing method) and relative mound volume 

are positively correlated in F. lugubris and/or F. paralugubris (Fig. 3.2; F. lugubris: 

r = 0.85, P < 0.001, n = 26; F. paralugubris: r = 0.89, P < 0.001, n = 15; combining 

two species: r = 0.88, P < 0.001, n = 41).   

 

 Figure 3.2. Positive correlation 

between worker population (from the 

After-Disturbing method) and relative 

mound volume (from the Mound- 

Volume method).  
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There was no significant relationship between altitude and any of the three indices of 

nest size in this study (Table 3.1, Fig. 3.3). Larger mounds tended to be found in 

shady areas rather than in open areas (Table 3.1). Nests located on slopes with a 

more western aspect were larger in worker population and total biomass than those 

on slopes with a more eastern aspect (Table 3.1). The interaction between canopy 

cover and the aspect of nesting slope had an effect on worker population, and had a 

borderline significant effect on total biomass (Table 3.1, Fig. 3.4): the difference in 

nest sizes of eastern-facing and western-facing slopes was greater when canopy 

cover was lower. Formica paralugubris nests were larger than F. lugubris in worker 

population and mound volume, and both species differed in total biomass at a 

borderline significant level.  
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Table 3.1. The effects of altitude, canopy cover and the aspect of nesting slope on 

worker population from After-Disturbing method (a), mound volume (b), and total 

biomass (c) of Formica lugubris and F. paralugubris. Generalised linear model 

(GLM) was used. 

(a) Best model  Best model with Altitude 

Parameter Estimate t value  Estimate t value 

Intercept 3.75e+00 18.26***  3.21e+00   4.11*** 

Altitude    4.03e-04   0.73 

Species 2.92e-01    2.25*  2.86e-01   2.19* 

Canopy Cover (C.C.) 1.41e-03    0.46  1.98e-03   0.63 

Aspect (As.) 7.57e-03    2.40*  7.73e-03   2.43* 

C.C.× As. -1.02e-04   -2.12*  -1.02e-04  -2.12* 

d.f. (residual/null) 36/40  35/40 

AIC 46.66  48.04 

 

(b) Best model  Best model with Altitude 

Parameter Estimate t value  Estimate t value 

Intercept 3.62e+00 14.77***   3.15e+00    3.02** 

Altitude    3.42e-04    0.46 

Species 4.50e-01  14.77*  4.43e-01    2.53* 

Canopy Cover  7.92e-03    2.16*  8.43e-03    2.18* 

d.f. (residual/null) 38/40  37/40 

AIC 69.20  70.97 

 

(c) Best model  Best model with Altitude 

Parameter Estimate t value  Estimate t value 

Intercept 1.04e+00 5.14***  2.09e-01    0.28 

Altitude    6.21e-04    1.14 

Species 2.60e-01   2.02#  2.51e-01    1.96# 

Canopy Cover (C.C.) 2.46e-03   0.81  3.30e-03    1.06 

Aspect (As.) 7.87e-03   2.52*  8.13e-03    2.61* 

C.C.×As. -9.49e-05  -1.97#  -9.58e-05   -2.00# 

d.f. (residual/null) 35/39  34/39 

AIC 44.36  44.86 

C.C.×As.: Interaction of Canopy Cover and Aspect; # P < 0.07; * P < 0.05; ** P < 

0.01; *** P < 0.001 
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Figure 3.3. The relationships between altitude and two indices of nest size for 

Formica lugubris and F. paralugubris: worker population from After-Disturbing 

method (a) and relative mound volume (b). Statistical results see Table 3.1 (a) and 

(b). 

 

 
 

Figure 3.4. Interaction effect between canopy cover and the aspect of nesting slope 

on worker population from After-Disturbing method (a) and on total biomass (b) of 

Formica lugubris and F. paralugubris. Error bar: 1SE. Statistical results see Table 

3.1 (a) and (c). 
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There was a borderline significant effect of the interaction between altitude and the 

aspect of nesting slope on body size (head width) (Table 3.2, Fig. 3.5): nests on 

slopes with a more eastern aspect tended to have increasing worker body size with 

increasing altitude, whereas worker body sizes of nests on slopes facing in a western 

direction tended to decrease with increasing altitude.    

 

Table 3.2. The relationship between altitude, the aspect of nesting slope and body 

size (head width) of Formica lugubris and F. paralugubris. 

 Best model 

Parameter Estimate t value 

Intercept   7.50e+01        5.38*** 

Altitude (Al.) -7.53e-03 -0.67 

Aspect (As.)  6.39e-01    1.96# 

Al.×As. -4.86e-04   -1.86# 

d.f. (residual/null) 37/40 

AIC 267.94 

Al.×As.: Interaction of Altitude and Aspect; # P < 0.07; *** P < 0.001 

 

 

Figure 3.5. The interaction effect 

between altitude and the aspect of 

nesting slope on body size (head 

width) of Formica lugubris and F. 

paralugubris. Error bar: 1SE. 
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For the power analyses on the results of altitudinal effect, for F. lugubris, both 

worker population and mound volume were not significantly different between nests 

in higher (> 1300 m, n = 11) and lower altitude (< 1300 m, n = 15), however, the 

power of these analyses are low (worker population: t = -0.96, P = 0.35, two-tailed 

power = 0.15; mound volume: t = -1.01, P = 0.33, two-tailed power = 0.16). Using 

these results to predict what sample size would be required for a more reliable 

analysis, I found that 87 nests in each altitudinal range category are required to 

obtain a power of 0.70 for the analysis of difference in worker population, or 79 nests 

in each category for the analysis of mound volume. However, using one-tail t-test is 

justifiable because of the directional hypothesis of this study: colony size increases 

with increasing altitude. For one-tail t-tests, only 67 (for worker population) or 60 

(for mound volume) nests of F. lugubris are required instead. In F. paralugubris, 

both worker population and mound volume were also not significantly different 

between nests in higher (> 1300 m, n = 7) and lower altitude (< 1300 m, n = 8) 

(worker population: t = 0.85, P = 0.41, two-tailed power = 0.12; mound volume: t = -

0.56, P = 0.59, two-tailed power = 0.08). Sixty-eight nests are required in each 

altitudinal range category to obtain a power of 0.70 for the analysis of worker 

population or 155 nests for mound volume. Again, for one-tail t-tests, only 52 (for 

worker population) or 118 (for mound volume) nests of F. paralugubris are needed 

instead. 

In terms of seasonal effects, worker populations of these two species in late-August 

were borderline larger than that in mid-July (Table 3.3). Mound volume of these two 

species was significantly larger in late August. The two species showed no difference 

in seasonal effect. 
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Table 3.3. Seasonal effect on worker population from After-Disturbing method and 

on mound volume of Formica lugubris and F. paralugubris. Nest identity is included 

as a random effect. 

 Worker Population  Mound Volume 

Source F ratio d.f. P value   F ratio d.f. P value  

Nest[Species]&Random  4.86 9 < .05   17.73 12 < .001 

Species (Sp.) 0.11 1 0.74  0.12 1 0.73 

Seasonal Effect (Se.) 4.41 1 0.07  20.23 1 < .001 

Sp.×Se. 0.04 1 0.84  0.69 1 0.42 

residual 9  12 

r2
 adjust 0.65  0.89 

Sp.×Se.: Interaction of Species and Seasonal Effect 

 

Discussion 

The results did not show a relationship between altitude and three nest size indices of 

F. lugubris and F. paralugubris. It is possible that the results really reflect a lack of 

relationship, however, I could not be confident in concluding that no relationship 

exists because of the following limitations in this study. The first limitation was the 

small range of altitude I obtained in the surveys. Although the altitude of the survey 

area ranged from 400 to 1500 metres, nests of F. lugubris and F. paralugubris were 

only found in a range between approximately 1000 and 1450 metres in altitude. This 

range may have been insufficient to show any difference of nest size along the 

geographic gradient. Therefore, I plan to perform the future study in the Swiss Alps 

for a larger altitudinal range. The lowest altitude nests were recorded at 1000 metres 

in this study and at 1100 metres in the Italian Alps (Bernasconi et al., 2006). 

Previous records showed that these two species could be found at 1800 metres in the 

Swiss Alps (D. Cherix, personal communication) and 2100 metres in the Italian Alps 

(Bernasconi et al., 2006). Because the highest altitude in the proposed site is 2200 
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metres, the expected altitudinal range of the study in the Swiss Alps should be at 

least 800 metres, i.e. almost twice the range achieved in the current study. 

The other limitation was that the sample size of this study. I recorded only 26 nests 

(colonies) of F. lugubris and 15 of F. paralugubris. The analyses comparing the nest 

sizes in high and low altitude only had the power of 0.13-0.25 (one-tailed t-tests). 

According to the power analyses, I require a sample size of 60 to 67 nests in both 

low and high altitude areas (a total of 120 to 134 nests) for F. lugubris to reach the 

power of 0.70 (one-tailed analyses). The feasibility of obtaining the requisite sample 

size can be increased by reducing the time consumed in measuring nest size. The 

After-Disturbing method is accurate but requires two days to obtain the nest size of 

each nest. The total biomass method needs not only worker population data but also 

body mass of workers. In contrast, the Mound Volume method takes less than three 

minutes for a given nest because only the diameters and the height of the mound are 

needed. I plan to use Mound Volume method to estimate nest size in future studies 

for obtaining a sufficient sample size in a limited time frame. Although the Mound-

Volume method is not as accurate as the After-Disturbing method is (Chen & 

Robinson, 2013), the results of the Mound-Volume method do correlate strongly 

with the After-Disturbing method at this site (Fig. 3.2, Table 3.1). According to the 

power analyses, a required sample size of 120 F. lugubris nests and 236 F. 

paralugubris nests should be obtained with Mound-Volume method.  

The study also showed that other environmental factors were related to nest size. The 

effect of canopy cover either acted alone or in combination with the effect of slope 

aspect on each index of nest size. Canopy cover strongly influences the thermal 

environments of the locations on a woodland floor (Rodriguez-Garcia et al., 2011; 

van Gils & Vanderwoude, 2012). Thus, a study which specially focuses on the effect 
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of canopy cover on wood ant nests will be performed (Chapter 4). Moreover, the 

aspect of nesting slope was also related to worker population and total biomass. I 

thus need an accurate and time-saving method to take into account the direction 

where sunshine comes from. Using canopy cover images from fisheye lens can be 

the solution for the measurements of both canopy cover and the aspect of nesting 

slope. Fisheye lens obtains a circular photo covering a 180-degree angle of view. 

Compared with the image from 28-mm-focal-length lens I used in this study, the 

image from fisheye lens can include not only a wide and complete range but also the 

unique shape of the canopy cover for each nest (Frazer et al., 1999). Therefore using 

fisheye lens for the measurement of canopy cover will fit in with my needs of the 

assessments on both canopy cover and the aspect of nesting slope.  

I attempt to apply Bergmann’s rule from latitude to altitude because of the similarity 

on changes of thermal patterns along the gradients. The thermal environments at the 

forest floor layer are also influenced by canopy cover (Rodriguez-Garcia et al., 2011; 

van Gils & Vanderwoude, 2012). In order to test whether temperature is the 

mediating factor working on nest size through altitude and canopy cover, I plan to 

check the effects of canopy cover and altitude on local temperature by collecting 

thermal data at the nest locations. Data loggers (iButton: DS1921G-F5; 

Maxim/Dallas Semiconductor, TX, US) will be used to continuously record local 

temperature for the analyses of daily mean, maximum and minimum temperatures. 

Nests of Formica paralugubris seemed to be larger than those of F. lugubris in three 

indices of nest size. The difference of nest sizes between two species may result from 

the sampling method of this study. I targeted monodomous nests in order to find F. 

lugubris colonies (for a monodomous colony, a nest is a colony). Some nests of F. 

paralugubris were included due to the lack of trails between nests during the surveys. 
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Because I did not sample these F. paralugubris nests randomly, the difference of nest 

sizes in this study may not actually show the difference between these two species. In 

the future study of the relationship between altitude and colony size in the Swiss 

Alps (Chapter 5), I plan to target both F. lugubris and F. paralugubris because: 1) I 

am not able to identify them from each other morphologically in the field; 2) both 

species are polydomous in the Swiss Alps and cannot be distinguished by domy 

forms. Workers will be collected from each nest for confirming species identification. 

In terms of body size, I did not find Bergmann’s cline between altitude and body size 

(head width, Table 3.3). Again, just as I did not find the cline between colony size 

and altitude, the same limitations of low altitudinal range and low sample size may 

apply to altitude and body size. Heinze et al. (2003) reported that two high altitude 

populations of Leptothorax acervorum had larger worker body size than expected 

from their latitude, but he did not show altitude information for the populations. In 

this study, the nesting slopes facing different aspects may have different effects on 

body size (Fig. 3.5). I suppose that slopes with an eastern aspect receive solar 

radiation much earlier than those with a western aspect every day. Workers of the 

nests on slopes with an eastern aspect could start being active early and keep inner-

nest temperatures over the active level for a long time. For the eastern-facing nests, 

increasing altitude may considerably influence the length of time with active 

temperatures and result in a larger body size. In contrast, the nests on slopes with a 

western aspect may always receive little sunshine regardless of the altitude they 

located at. Therefore, the thermal environments within the western-facing nests may 

be not strongly associated with altitude (Fig. 3.5). I therefore suggest that, compared 

to the results of colony size, body size is more sensitive than colony size to the small 

change on thermal environments linked with altitude (Table 3.1 and 3.2). 
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With regard to seasonal effects, nest size was detected to grow within two months in 

the active season. If the period of a survey is more than two months, the results of 

nest size could be influenced by seasonal effects. According to the required sample 

size calculated from power analyses, I should record more than 350 nests. Future 

study may proceed across more than two months for obtaining the requisite sample 

size. Therefore, sampling date may also be considered for the analyses of nest size.  

To sum up, for future study of the relationship between altitude and colony size, I 

plan to conduct the investigation on both F. lugubris and F. paralugubris in the 

Swiss Alps for an altitude range of at least 800 metres (Chapter 5). Polydomous 

organisation of the colony will be considered for statistical analyses. Mound volume 

will be used to estimate nest size for the best balance of accuracy, effort, and time 

consumed. According to the power analyses, about 120 nests of F. lugubris and 236 

nests of F. paralugubris will be needed. The effect of canopy cover not only will be 

the focus of a direct study investigating its impact on nest size (Chapter 4) and will 

also be taken into consideration when altitude is studied (Chapter 5). The 

measurement of canopy cover will be done with the photos taken by fisheye lens for 

complete information of the canopy. I will also record local temperatures by data 

loggers to check the links between thermal environments, altitude and canopy cover 

in order to understand whether temperature is the mediating factor working on nest 

size.     
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Chapter 4 – The relationship between canopy cover 

and colony size of the wood ant Formica lugubris - 

implications for the thermal effects on a keystone ant 

species 

 

Abstract 

Climate change may affect ecosystems and biodiversity through the impacts of rising 

temperature on species’ body size. In terms of physiology and genetics, the colony is 

the unit of selection for ants so colony size can be considered the body size of a 

colony. For polydomous ant species, a colony is spread across several nests. This 

study aims to clarify how climate change may influence an ecologically significant 

ant species group by investigating thermal effects on wood ant colony size. The 

strong link between canopy cover and the local temperatures of wood ant’s nesting 

location provides a feasible approach for our study. Our results showed that nests 

were larger in shadier areas where the thermal environment was colder and more 

stable compared to open areas. Colonies (sum of nests in a polydomous colony) also 

tended to be larger in shadier areas than in open areas. In addition to temperature, our 

results supported that food resource availability may be an additional factor 

mediating the relationship between canopy cover and nest size. The effects of canopy 

cover on total colony size may act at the nest level because of the positive 

relationship between total colony size and mean nest size, rather than at the colony 

level due to lack of link between canopy cover and number of nests per colony. 

Causal relationships between the environment and the life-history characteristics may 

suggest possible future impacts of climate change on these species.   
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Introduction 

Climate change is one of the most notable ecological and environmental issues. This 

phenomenon, which is of global concern, has altered species distribution and 

abundance, and consequently affected ecosystems and biodiversity (Parmesan, 1996; 

Hughes, 2000; Smith & Smith, 2003; Forero-Medina et al., 2011). There are many 

predictions for climate change, including more frequent storms and hurricanes, and 

greater snowfall. Rising average and extreme temperatures are the main and general 

predictions (Smith & Smith, 2003). For plants and many ectotherms, temperature has 

a profound impact on many functions relating to an organism’s size, such as 

metabolic rates and rates of gas exchange (Atkinson, 1994). Body size is probably 

the most significant life-history characteristic of an animal due to its influence on 

most physiological and morphological characters (Atkinson, 1994; Brown & 

Lomolino, 1998; Blanckenhorn & Demont, 2004). Therefore, climate change may 

affect animals through impact on body size mediated by rising temperature (Smith et 

al., 1995; Hunt & Roy, 2006). 

For social insects, the colony can be considered the biological analogue of the body 

of a solitary organism (Kaspari & Vargo, 1995; Tschinkel, 1998, 1999). Colony size 

of social insects has been represented by the total number of individuals or workers 

in a colony (Kaspari & Vargo, 1995; Tschinkel, 1998, 1999). Just as body size has a 

significant role for solitary organisms, colony size has been known to correlate with 

the lifestyle of a social insect colony, for example, competitive abilities, foraging 

behaviours and life span (O'Donnell & Jeanne, 1992; Pamilo et al., 1992; Eckert et 

al., 1994; Herbers & Choiniere, 1996; Palmer, 2004). Again, just as for body size, 

temperature is one of the exogenous factors which affects colony size in social 
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insects (Porter & Tschinkel, 1993; Asano & Cassill, 2012). For these reasons, colony 

size could be a useful index to understand how climate change will influence social 

insects.  

The red wood ants are a group of morphologically similar Formica species (Cotti, 

1996; Bernasconi et al., 2011), which are ecologically dominant and have impacts at 

multiple community levels including ants, other arthropods and vertebrates, across 

northern Eurasia (Sudd & Lodhi, 1981; Savolainen & Vepsäläinen, 1988; Haemig, 

1992; Punttila et al., 1994; Rolstad et al., 2000; Punttila et al., 2004; Kilpeläinen et 

al., 2005). Red wood ants can affect the growth of trees both negatively, by herding 

sap-sucking aphids, and positively, by increasing predation or harassment of other 

herbivores (Rosengren & Sundström, 1991; Styrsky & Eubanks, 2007). They build 

nests with large aboveground mounds which function as habitats for myrmecophiles 

and influence the nutrient cycle of the forest (Laakso & Setälä, 1997, 1998; Domisch  

et al., 2008; Jurgensen et al., 2008; Robinson & Robinson, 2013). They are also 

ecological indicators for land-use changes in European broadleaf forest and taiga 

(Ellison, 2012). Red wood ants have significant impacts on forest ecosystems and 

most of them are considered “near threatened” by the International Union for 

Conservation of Nature (IUCN, 2014). Furthermore, because future climate change 

predictions also indicate more severe warming at higher latitudes (Walther et al., 

2002; ACIA, 2004), understanding how climate change may affect these temperate 

species is therefore important for future conservation actions.  

Species distribution modelling and physiological experiments have been the 

prevailing research for the potential effects caused by climate change. Temperature 

experiments such as testing thermal tolerance can be an useful tool for modelling and 
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predicting responses of ants to warming (Diamond et al., 2013). For ants, some 

species-level studies have asserted the negative impacts on physiology or behaviours 

from climate change (Andrew et al., 2013; Diamond et al., 2013; Stuble et al., 2013); 

others have revealed its promotive role on the expansion of species distribution, 

especially for invasive species (Roura-Pascual et al., 2004; Morrison et al., 2005; 

Chen, 2008; Diamond et al., 2012; Bertelsmeier et al., 2013a; Bertelsmeier et al., 

2013b). 

Although species’ responses to specific environmental factors such as temperature 

can be tested in laboratories, a laboratory approach may not be effective for 

capturing the effects caused by daily or annual dynamics of temperature. It would be 

more comprehensive if we can directly investigate these in the field, if conditions 

accurately representing the natural environment cannot be simulated. This could be 

achieved by a field transplant or a common garden experiment (Pelini et al., 2012). 

However, as for many social insects, red wood ant nests are complex and long-

lasting. Wood ants spend many years building large nest mounds in woodland, and 

one red wood ant colony may also settle in several spatially separated but socially 

connected nests, called polydomy (Debout et al., 2007; Ellis & Robinson, 2014). It is 

not feasible to move the whole colony without damage and long-term effects on the 

colony’s function and organisation.  

Fortunately, it is known that the thermal environments of the locations on a 

woodland floor are strongly influenced by canopy cover (Rodriguez-Garcia et al., 

2011; van Gils & Vanderwoude, 2012). This provides a practicable approach to 

explore how colony size and nest size are related to a lasting but localised thermal 

environment, which a red wood ant colony may continually experience for years. 
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Moreover, in addition to temperature, higher canopy cover may imply more 

surrounding trees, which probably provide more aphids, the main food resource of 

red wood ants. Food resource availability may positively relate to wood ant nest size 

(Sorvari & Hakkarainen, 2005; Punttila & Kilpeläinen, 2009). Therefore, we might 

be able to detect the role of food resource availability in the relationship between 

canopy cover and nest size. 

In this study, we investigated the relationship between canopy cover and both the 

total colony size (worker population of a polydomous colony) and nest size (worker 

population of a single nest) of a woodland specialist ant species in the field. There is 

a known negative relationship between canopy cover and temperature (Geiger et al., 

2009; Rodriguez-Garcia et al., 2011; Huang et al., 2014); we verified this at our site 

by collecting thermal data at the colony locations. Larger nests or colonies are 

expected to cope better with colder environments due to increased abilities to 

regulate inner nest temperature (Rosengren et al., 1987; Punttila & Kilpeläinen, 

2009). We would therefore expect to observe larger colony size and nest size in 

shady areas with a colder environment.  

 

Materials and Methods 

Species and Location 

The study species was the red wood ant Formica lugubris (Hymenoptera: 

Formicidae). To focus on the relationship between canopy cover and colony size, and 

to minimise the effects from altitude and slope direction, we conducted our study in a 

part of the Longshaw Estate, Peak District (53°18'35"N, 01°36'25"W; access 

permission obtained with S. Ellis by the National Trust) in the UK. It is a flat area 
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(~1.1 km
2
) with an altitudinal range of 270-350 m. Formica lugubris has both 

monodomous and polydomous social forms (Bernasconi et al., 2005; Maeder et al., 

2005; Ellis & Robinson, 2014), and is polydomous in Great Britain (Sudd et al., 

1977; Ellis & Robinson, 2014). We defined a polydomous colony as a group of nests 

which are connected each other by trails. There are over 900 nests of polydomous F. 

lugubris in our sampling area, and the number of nests per colony ranging from 1 to 

22 nests (Ellis et al., 2014).   

Methods 

The study was conducted in June 2013, when canopy cover had reached a relatively 

stable level. To choose colonies to include in our sample, we divided the 

experimental site into a grid of 44 squares with a side length each of 140 metres. We 

defined the intersections of the gridlines as our sampling points. We located the nest 

nearest to each sampling point and the colony to which this nest belonged was 

chosen for inclusion. Because the longest distance between two nests of the same 

polydomous colony was 52 metres (2.5 metres on average, more than 90% trails 

below 8 metres, S. Ellis, preliminary survey), by this method, we minimised the 

chance of choosing a colony that included several nests within different sampling 

points. We defined a sampling point as having no colony present if we could not find 

any nest within a radius of 70 metres from the intersection. This sampling method 

was able to include a range of canopy cover (from an isolated tree to dense cover).  

We mapped the chosen colonies, recording: the number of and size of nests; spatial 

distribution pattern of nests; the trails between nests; foraging trails between nests 

and trees. In addition, number of inter-nest trails per nest, trail length and number of 

forage trees used by each nest were recorded. In our study, we defined a distinct trail 
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from a nest to a tree as a foraging trail (see (Ellis et al., 2014)). However, it does not 

mean that the nests without any obvious foraging trails were not foraging at all; they 

might be involved in other foraging activities. A Mound-Volume method was used to 

estimate nest size; three dimensions of nest mound were multiplied to represent the 

total number of individuals of mound-building wood ants (Eeva et al., 2004; Punttila 

& Kilpeläinen, 2009; Chen & Robinson, 2013). This method has been tested and 

shown to provide a reliable estimate of nest worker population in this species (Chen 

& Robinson, 2013). A photo was taken skyward above each nest using 180-degree 

hemispherical lens (FC-E8 fisheye lens with Coolpix 5000, Nikon Corporation, 

Tokyo, Japan) which produces circular images that record the size, shape, and 

location of gaps of the canopy. Canopy cover (percentage) was estimated from the 

circular photo using the software Gap Light Analyzer 2.0 (Frazer et al., 1999).  

For the background thermal environment, we derived annual solar radiation data 

from digital elevation model data at 10-metre resolution (©  Crown Copyright 2014. 

An Ordnance Survey/EDINA supplied service.). The calculation was done using the 

Area Solar Radiation tool in the Spatial Analyst toolbox of ArcMap 10.1 and 

specifying the latitude, elevation and slope direction of our sampling points. The 

calculation sampled every day throughout 2013, using a 30-minute interval. All other 

settings were set to default. Besides the annual solar radiation as background data, 

we also wanted to obtain information about the small-scale thermal environment of 

the nest. For this reason, a temperature-recording device was placed on the ground 

next to the north side (to reduce the chance of direct sunshine exposure) of the nest 

which was discovered first in every colony. The devices consisted of a polyethylene 

terephthalate (PET) tube (diameter = 10 cm, length = 20 cm) wrapped in aluminium 

foil to reduce the effect of direct solar radiation (Suggitt et al., 2011). A thermal 
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datalogger (iButton: DS1921G-F5; Maxim/Dallas Semiconductor, TX, US) was 

placed in each device to record hourly environmental temperatures from 31
st
 May for 

16 days.     

Statistical Analyses 

Total colony size was calculated as the sum of nest sizes to represent the total 

number of individuals in a colony. Size data (nest size and total colony size) were 

transformed by log10 to normalize the distributions. We used “lme” function from the 

“nlme” package for R (version 3.0.1, R Development Core Team) to fit linear mixed-

effect models for: 1) the effects of annual solar radiation and canopy cover on nest 

size; 2) the relationships of the number of nests per colony to canopy cover and nest 

size; 3) whether the presence or absence of foraging trail was related to canopy cover 

and nest size; and 4) the relationships of foraging trail length to canopy cover and 

nest size. For linear mixed-effect models, the best model was selected according to 

AIC and the significance of factors. Colony identity was included as a random effect 

in the models.  

Linear regression models were used for: 1) the effects of annual solar radiation and 

canopy cover on total colony size; 2) the relationship between the size of the largest 

nest of each colony and canopy cover, and between the size of the smallest nest of 

each colony and canopy cover; 3) the relationship between total colony size and 

mean nest size per colony; 4) the relationship of annual solar radiation, number of 

nests per colony and canopy cover to six local temperature parameters- the mean and 

the standard deviation of hourly temperature (TempMean and TempSD), the mean and 

the standard deviation of daily maximum and minimum temperature (MaxMean, 

MaxSD, minMean, and minSD). For linear regressions, F test was used to select the best 
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model. Pearson’s correlation was used for total colony size and six local temperature 

parameters. If a temperature parameter was correlated to both total colony size and 

canopy cover, partial correlation was used to measure the degree of association 

between total colony size and canopy cover, with the effects of this temperature 

parameter removed.  

To analyse the variation in nest size at different levels of canopy cover, nests were 

separated into three groups based on the canopy cover of their location to balance the 

sample size of each group: nests with canopy cover lower than 51.2% (n = 67), 

between 51.2% and 67.5% (n = 67), and higher than 67.5% (n = 67). To analyse the 

differences of total colony size between colonies, we also separated colonies into 

three groups based on their number of nests to balance the sample size: colonies with 

one to three nests (Close-to-Monodomous Group, n = 12), colonies with four to 

seven nests (Intermediate-Polydomous Group, n = 12), and colonies with more than 

seven nests (Polydomous Group, n = 10). Levene’s tests were used to compare the 

variances between groups. Kruskal-Wallis’ test was used to compare total colony 

size of each group. Linear regression models, Levene’s test and Kruskal-Wallis’ test 

were conducted with the JMP statistics package (version 6.0.0; SAS institute, Cary, 

NC, USA). 

 

Results 

Thirty-four colonies, with a total of 201 nests, were sampled and recorded for this 

study. There was no colony at 10 sampling points. We found that nest size increased 

significantly with increasing canopy cover (linear mixed-effect model, solid line in 

Fig. 4.1, fixed effect: t = 2.19, P < 0.05, n = 201, reduced model AIC = 464.23). The 
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full model contained two factors: canopy cover and annual solar radiation, the latter 

factor had no significant effect on nest size (t = -0.69, P = 0.50, n = 201, full model 

AIC = 489.40). There was no significant relationship between the size of the largest 

nest of each colony and canopy cover (linear regression: F = 2.64, d.f. = 33, P = 0.11, 

see Fig. 4.1), or between the size of the smallest nest of each colony and canopy 

cover (linear regression: F = 3.14, d.f. = 33, P = 0.09, see Fig. 4.1). The variances of 

nest size did not significantly differ between three groups with different canopy 

cover (Levene’s test, F = 0.72, P = 0.49, n = 67 for each group). Total colony size, 

which was the sum of the size of all nests in that colony, borderline significantly 

increased with increasing mean canopy cover (linear regression: F = 3.67, d.f. = 33, 

P = 0.06, reduced model r2
 = 0.10, Fig. 4.2). Again, the factor annual solar radiation 

did not have a significant effect on colony size (t = -1.18, P = 0.25), and did not 

significantly improve the model (full model r2
 = 0.19, F test, F = 1.17, P = 0.25). 

Canopy cover at our 201 sampled nests ranged from 24% to 86%, with a mean of 

59%. 

 

Figure 4.1. The relationship 

between mean nest size and mean 

canopy cover. Circle dots: the 

log10 mean nest size and mean 

canopy cover of 34 colonies; grey 

error bar: 1SE, four points without 

error bars are colonies containing 

only one nest; dashed line: y = 0.0149 x + 4.0423, F ratio = 11.10, P < 0.001, r2
 = 

0.26, model fitted by linear regression for the relationship between mean nest size 
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and mean canopy cover; solid line: y = 0.0097 x + 4.0282, from the fixed effects of 

the linear mixed-effect model, which includes colony identity as a random effect. 

Full analyses are showed in results.    

 

Figure 4.2. The trend between 

total colony size and mean 

canopy cover of 34 colonies. 

Linear regression, solid line: y = 

0.0117 x + 4.8727, F ratio = 3.67, 

P = 0.06, r2
 = 0.10. 

 

One temperature-recording device was lost. According to the records of the 33 nests 

from which dataloggers were retrieved, both TempMean and the TempSD of local 

environmental temperatures were lower with increasing canopy cover (linear 

regressions: Fig. 4.3). MaxMean were also lower in shadier areas, whereas there was 

no significant relationship between the MaxSD and canopy cover. MinMean increased 

with rising canopy cover, whereas minSD decreased (Fig. 4.3). The relationships 

between the local temperature parameters and total colony size were similar to the 

relationships between the local temperature parameters and canopy cover: there were 

negative correlations of total colony size with TempMean, TempSD, MaxMean and 

minSD, whereas minMean was borderline significantly positively correlated with total 

colony size. There was no significant correlation between total colony size and 

MaxSD (Table 4.1). For three-way correlation between total colony size, canopy 

cover and the local temperature parameters, using partial correlation to remove the 
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effects of the local temperature parameters eliminated the positive trend between 

total colony size and canopy cover (Table 4.1). Annual solar radiation levels showed 

no significant relationship with the six local temperature parameters (Annual solar 

radiation: 873978.25 ± 26008.40, whr/m
2
, Mean ± SD, linear regressions: F = 0.02-

0.94, d.f. = 32, P = 0.33-0.89). 

 

Table 4.1. Correlations and partial correlations between canopy cover, total colony 

size and six local temperature parameters (the mean and the standard deviation of 

hourly temperature , TempMean and TempSD; the mean and the standard deviation of 

daily maximum and minimum temperature, MaxMean, MaxSD, minMean, and minSD). 

 Canopy Cover Temperature Parameters Partial Correlation# 

Total Colony Size 0.31
!
 

TempMean   -0.44* 0.10 

TempSD   -0.40* 0.10 

MaxMean   -0.39* 0.16 

MaxSD   -0.10  - 

minMean    0.31
!
 0.14 

minSD   -0.45**            -0.13 

!P = 0.08, *P < 0.05, **P < 0.01, #Partial correlation between total colony size and 

canopy cover with the effects of local temperature parameters removed, n = 33. 
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Figure 4.3. The relationships between canopy cover and six local temperature 

parameters for 33 colonies. Solid line of each graph shows the significant model 

fitted by linear regression. (a) the mean of temperature: y = -0.03 x + 14.24, P < 

0.001, r2
 = 0.43. (b) the standard deviation (SD) of temperature: y = -0.04 x + 7.38, P 

< 0.001, r2
 = 0.46. (c) the mean of daily maximum temperature: y = -0.09 x + 27.39, 

P < 0.001, r2
 = 0.34. (d) the SD of daily maximum temperature: not significant. (e) 

the mean of daily minimum temperature: y = 0.03 x + 5.67, P < 0.001, r2
 = 0.46. (f) 

the SD of daily minimum temperature: y = -0.03 x + 3.66, P < 0.001, r2
 = 0.69. 
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The sizes of nests with at least one foraging trail was greater than those of nests 

without any foraging trail (linear mixed-effect model, fixed effect: t = 4.70, P < 

0.001, n = 201, model AIC = 441.93, Fig. 4.4). Nests with foraging trail/s were also 

located in areas with higher canopy cover than those without any foraging trail (with 

foraging trail/s: 61.83% ± 3.73, without foraging trail: 56.71% ± 2.62, Mean ± SE, 

linear mixed-effect model, fixed effect: t = 4.57, P < 0.001, n = 201, model AIC = 

1443.27). The minimum length of foraging trails decreased with an increase of 

canopy cover (minimum length of foraging trails: 4.52m ± 0.33, Mean ± SE, linear 

mixed-effect model, fixed effect: t = -4.44, P < 0.001, n = 135, model AIC = 979.40). 

There was no relationship between minimum foraging trail length and nest size 

(linear mixed-effect model, fixed effect: t = -0.66, P < 0.51, n = 135, model AIC = 

309.46). 

 

Figure 4.4. The relationship between 

nest size and the presence or absence 

of foraging trail. Boxplots show the 

range, quartiles, medium and outliers 

of the data. Boxplot width is 

proportional to the square root of 

sample size. This figure does not take 

colony identity in account, but the full analysis does (linear mix-effect model).  

 

Colonies included in this study ranged from a single nest (monodomous) to as many 

as 20 nests connected as a single polydomous colony. Total colony size of a 
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polydomous colony could be larger through one or both of the following ways: have 

bigger individual nests, or have more nests per colony. Our results showed that 

colonies with greater total colony size had greater mean nest size (mean nest size 

value as Fig. 4.1 shows, F = 40.41, d.f. = 33, P < 0.001, r2
 = 0.56). On the other hand, 

total colony size also increased when a colony had more nests; there was a 

significant increase in total colony size from Close-to-Monodomous Group (with one 

to three nests, n = 12) to Intermediate-Polydomous Group (with four to seven nests, n 

= 12) and Polydomous Group (with more than seven nests, n = 10) (Kruskal-Wallis’ 

test, χ2 = 10.15, P < 0.01, Fig. 4.5). The groups did not significantly differ in the 

variances of total colony size from each other (Levene’s test, F = 1.88, P = 0.16). As 

for the two factors which are related to total colony size, we found a borderline 

significant negative relationship between nest size and the number of nests per 

colony (linear mix-effect model, fixed effect: t = -2.03, P = 0.051, n = 201, model 

AIC = 462.33, Fig. 4.6). There was no significant relationship between canopy cover 

and number of nests per colony (linear mix-effect model, fixed effect: t = -1.00, P = 

0.33, n = 201, model AIC = 1463.63). Number of nests per colony showed no 

significant relationship with the six local temperature parameters (linear regressions, 

F = 0.00-0.38, d.f. = 32, P = 0.54-0.95). Annual solar radiation showed no significant 

relationship with the six local temperature parameters (linear regressions, F = 0.02-

0.95, d.f. = 32, P = 0.34-0.88). We made a flow chart showing the relationship 

between canopy cover, nest size, colony size and other factors in the present study 

(Fig. 4.7). 
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Figure 4.5. The relationship 

between number of nests and 

total colony size. Kruskal-Wallis’ 

test, χ² = 10.15, P < 0.01.  

 

 

 

Figure 4.6. The relationship between number of nests per colony and nest size. Nest 

size tends to decrease as number of nests per colony increases (Linear mixed effect 

model, fixed effect: t = -2.03, P = 0.051, model AIC = 462.33). Boxplot width is 

proportional to the square root of number of nests.  
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Figure 4.7. The relationships of colony size and nest size to possible related factors 

hollow arrow with a cross indicate the significant, the borderline significant and the 

non-significant relationships respectively. Plus and minus signs indicate the 

relationships as positive and negative respectively.in our study. Arrows illustrate the 

possible direction of causality. Solid arrow, hollow arrow and  

 

Discussion 

Our results clearly showed that red wood ant (F. lugubris) nest size increased with 

increasing canopy cover: nests in shady areas were larger than those in open areas 

(Fig. 4.1). Temperature and food resources are two important factors which would be 

predicted to affect nest size and are related to canopy cover. Impacts of the thermal 

environment on nest size could be mediated through two routes: thermoregulation 

and worker population dynamics. For thermoregulation, a wood ant nest with a small 

worker population has to rely on direct sun radiation to reach and maintain a 
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sufficient inner nest temperature (Brandt, 1980; Frouz & Finér, 2007). In contrast, 

thermoregulation of nests with larger worker populations can be independent of sun 

exposure because of sufficient endogenous heat generation, based on the metabolism 

and clustering behaviour of workers (Rosengren et al., 1987; Frouz, 2000) and 

microbial heat production within the nest material (Coenen-Stass et al., 1980; Frouz, 

2000). In terms of worker population dynamics, brood development rate and the egg 

production rate of queens increase with increasing temperature; meanwhile, worker 

longevity decreases (Porter & Tschinkel, 1993; Asano & Cassill, 2012). The trade-

off between brood developmental rate, egg reproductive rate and worker longevity 

determines how the nest grows in size, which is related to the potential of producing 

sexual offspring (Tschinkel, 1993).  

Our temperature measurements showed that the thermal environment of areas with 

higher canopy cover was generally colder and more stable than that of more exposed 

areas (Fig. 4.3). To cope with the cold, nests in shady areas must be large enough to 

execute effective thermoregulation. Among our sampling points, the maximum 

canopy cover was 86%. This means that even in the shadier areas nests may 

sometimes receive sunshine. When sunshine falls on the nest, it might not cover the 

whole nest mound. This could cause a thermal gradient in the stable cool 

environment of shadier areas. Therefore, when the sunshine is present, the shadier 

areas provide a nest with greater variety of thermal environments aiding regulation of 

worker population dynamics: workers could stay in cooler chambers for longer 

longevity and could move brood to warmer part for a faster development rate. Shady 

areas not only necessitate nest growth but could also actively promote it.  
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For the nests in open areas, although the mean daily minimum temperature is a little 

lower, the mean daily maximum is much higher than that in shadier areas (Fig. 4.3). 

The whole or a large part of the nest passively experiences a generally warmer 

environment, so the nest has less need to grow larger to allow thermoregulation. In 

addition, warmth-related increases in egg production and brood developmental rate 

might not be able to compensate for the decreased worker longevity. Thus the nests 

in very open areas were smaller than those in shady areas. There may also be 

additional influences from the growth-stage-related thermal requirements for wood 

ant nests and the forest succession: a newly-built or young wood ant nest is usually 

small therefore might not survive in shadier areas, and the dynamics of forest 

succession can result in the canopy modification. Overall, local temperature was 

probably the primary mediating factor for the relationship we found between canopy 

cover and nest size. Modelling nest size growth in different thermal environments 

could be a feasible approach for future studies of red wood ants, with physiological 

data related to temperature, for example, the relationship of temperature with worker 

longevity, brood developmental rate and queen’s egg production.  

In addition to temperature, food resource availability is another factor which 

influences wood ant nest size (Sorvari & Hakkarainen, 2005; Punttila & Kilpeläinen, 

2009). The majority of the ants in the trails connecting trees and nests are foragers, 

which collect honeydew from aphids (more than 90% of a colony’s nutrition) 

(Rosengren & Sundström, 1991; Gordon et al., 1992). Low canopy cover may 

therefore imply a decrease of available foraging trees for wood ant nests. Our study 

showed that nests with foraging trails were generally located in shadier areas and 

nests without foraging trails in more exposed areas. Among the nests with foraging 

trail/s, minimum foraging trail length was shorter in shady areas than that in open 



87 

 

areas, which, as would be expected, indicated that nests were closer to trees in shady 

areas than in open areas. Nests with foraging trail/s also were larger than nests 

without foraging trail/s (Fig. 4.4). This matches the findings of a previous study at 

the same site using a partially overlapping sample set, which also found that F. 

lugubris nests with foraging trail/s were larger and in shaded areas than nests without 

any foraging trail (Ellis et al., 2014).  

Although we might be able to assume that shadier areas provided more possible food 

resources resulting in the presence of foraging trails, the direction of causality 

between nest size and the presence of foraging trails is not clear (Fig. 4.7). On the 

one hand, an established foraging trail may provide more food to promote nest 

growth. On the other hand, an alternative hypothesis is that only nests above a certain 

size are able to establish and maintain a lasting foraging trail. Our data showed that 

although nests with foraging trail/s were on average bigger than those without a trail, 

the minimum nest size was similar for nests both with and without foraging trails 

(Fig. 4.4). This would seem to rule out the existence of a nest size threshold which 

determines whether a nest starts foraging or not, at least within our observed range of 

nest sizes, and so it is quite possible that the presence of one or more foraging trails 

promotes increased nest size. Therefore, in addition to local temperature, food 

resource availability is another possible mediating factor for the relationship between 

canopy cover and nest size. Interestingly, we only found a few small nests in highly 

shady areas (for example, over 70% canopy cover, see Fig. 4.1). Food resources are 

unlikely to be limiting in these areas, so there should be other reasons why small 

nests are less common. For example, if a new nest in a highly shady area does not 

grow over a “threshold” size, it may not survive over the winter. It seems that the 

thermal effects of canopy cover are more important than the relationship with food 



88 

 

resource availability, in terms of nest size. We therefore suggest an initial 

mechanistic process when a nest is newly built: higher canopy cover implies nearer 

trees resulting in higher food resource availability, and the effects of the thermal 

environment on worker population dynamics promotes nest growth. The benefits of 

larger nest size for thermoregulation could result in a positive feedback on nest 

growth once the nest reaches a certain size. Further work is needed to investigate the 

relative importance of these different effects over the course of colony establishment, 

growth and maturity. 

At the colony level, we found a trend that total colony size increased with increasing 

canopy cover. Total colony size was also related to local temperature in the same 

way. The trend between total colony size and canopy cover was eliminated when a 

three-way partial correlation was applied to remove the effects of local temperature. 

These results indicate that, similar to the nest level, local temperature seems to be a 

mediating factor between canopy cover and total colony size (Fig. 4.7). Furthermore, 

annual solar radiation had no effect on total colony size nor local temperature in our 

study; this further supports that the thermal environment experienced by wood ant 

colonies was strongly determined by canopy cover in this flat area. If higher canopy 

cover results in increasing total colony size, this could occur in two ways: a 

polydomous colony has larger total colony size either because it has bigger nests, or 

because it has more nests, or both. For the first way, we found that a colony that had 

larger total colony size also had larger mean nest size. This suggests that canopy 

cover probably influences total colony size through the thermal effects on nest size 

discussed above. Apart from nest size, our results also showed that total colony size 

increased when the number of nests increased (Fig. 4.5). For these reasons, we 

suggest that a polydomous wood ant colony may increase total colony size by both 
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ways: increasing the size of each nest and increasing the number of nests, but mainly 

by the former. We also suggest that these two approaches compensate for the effects 

from each other because there was a borderline significant negative trend between 

the nest size and the number of nest per colony (Fig. 4.6). Moreover, neither canopy 

cover nor local temperature was related to number of nests per colony (Fig. 4.7). It 

seems that if the canopy cover has impacts on the qualities of the environment (eg: 

local temperature or food resource abundance) that affect total colony size, it acts 

more at the nest level (individual nest size) than at the colony level (the number of 

nests per colony).  

This paper presents a study specifically focused on the relationships of canopy cover 

to ant nest size and colony size. Our results support and strengthen a marginally 

significant trend between canopy cover and nest size which was found at the same 

site by Ellis et al. (2014). The stronger finding in our study is probably due to 

methodological differences. First, Ellis et al. (2014) actively chose the largest ten 

colonies for a nest network study; in our study an even-distribution survey was 

performed. Second, Ellis et al. used images from digital photographs for canopy 

cover; in our study the circle images of sky which were taken by a fisheye lens 

provided a complete estimation of canopy cover. Third, colony identity was included 

in our analyses. Frouz and Finér (2007) also found similar relationships between nest 

size and canopy cover in another red wood ant species Formica polyctena. This 

study again focussed only on the nest level, and used a semi quantitative scale to 

estimate shading, which differentiates three levels of shading by daily sunshine hour 

(Frouz, 2000).  



90 

 

In regard to the canopy-related relationships between polydomy and colony-level 

organisation, previous studies have showed two different results. Sorvari and 

Hakkarainen (2005) reported a higher degree of polydomy in F. aquilonia in clear-

cut areas where the colonies experienced an extreme environment. They 

hypothesised that new nests are established by budding more frequently in clear-cuts 

than in forest interior in order to be near the forest edge for food resources. In 

contrast, Punttila (1996) suggested that monogynous (monodomous) populations of 

F. lugubris should be common in young forest before the canopy closure, whereas 

polygynous (polydomous) F. aquilonia should dominate in older forests and in the 

interior areas. He suggested a mechanism from inter-specific competition and forest 

succession: with bigger size of the dispersing females, F. lugubris is a more efficient 

coloniser than is F. aquilonia. Female F. lugubris disperse to a young forest first 

where the canopy is still open, and F. aquilonia dominates over other species when it 

comes in the gradually mature forest later by nest budding. Another survey for 

several mound-building species (including F. lugubris and four red wood ant species) 

was conducted by Punttila and Kilpeläinen (2009) in Finland. They found species-

specific associations of nest size with canopy cover. In our study, neither a positive 

nor negative relationship between canopy cover and the number of nests was found. 

We suggest that the impacts from canopy cover acts on the nest level rather than on 

the colony level. This further supports the finding of Ellis et al. (2014) which also 

found no relationship between the number of nests and canopy cover (10 colonies 

with a total of 140 nests). Overall, the differences between studies may result from 

the differences between sampling sites and between methodologies, for example, 

whether other wood ant species are present or not, whether the ants are experiencing 
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normal forest succession or extreme events such as clear-cutting, and whether the 

studies are focused within or across species.     

The most direct approach of understanding the influence of an environmental factor 

on a species is probably to examine their physiological or life-history characteristics 

in direct response to the environmental factor, for example, temperature. However, a 

laboratory approach has some limitations for our question. Investigating the 

relationship between canopy cover and wood ant nest size in the field solves it in 

many aspects. First, it is not feasible to simulate the daily or annual temperature in a 

laboratory approach because the exact dynamics are complex. Canopy cover 

provides an index for estimating local thermal environment. Second, we can obtain 

the nest size data in a natural environment with little disturbance to colony function 

and organisation. Moreover, the present study shows an overall reaction of wood ant 

nests to canopy cover. Canopy cover may influence nests by changing not only the 

features of temperature but also the food resource availability (Fig. 4.7). Future 

studies could involve canopy manipulation or the seasonal variation in canopy cover 

to monitor the long-term change in nest size and the colony-level organisation on 

wood ant species, which are ecologically significant in the forest ecosystem. As the 

effect of climate change on species can act through multiple and complex ways 

(changes in vegetation, species interaction and human activity), species-specific 

responses to future climate change are challenging to predict. A prediction based on 

causal relationships between the environments (eg: canopy cover) and the life-history 

characteristics (eg: nest size and colony size) may suggest possible future outcomes, 

thus help species’ conservation and potentially reduce negative impacts of climate 

change on these species. 
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Chapter 5 – Is Bergmann’s rule applicable to the 

relationship between altitude and ant colony size? 

Geographic gradient versus microclimate 

 

Abstract 

Bergmann’s rule is a common eco-geographic rule which describes the increase of 

body size from tropical to polar latitude. Temperature is the most likely driving force 

of Bergmann’s rule, so the latitudinal relationship can also be applied to altitudinal 

gradients. The colony size of social insects correlates with many physiological and 

behavioural features of the colony, and therefore could be biologically analogous to 

the body of a unitary organism. Combining these ideas, this study focused on the 

application of Bergmann’s rule to the relationship between altitude and ant colony 

size. In addition to the large-scale geographic gradients, small-scale factors such as 

microclimate also have impacts on environmental conditions. We investigated the 

relationship between altitude (geographic gradient), canopy cover (an index of 

microclimate) and total colony size in Formica lugubris and F. paralugubris in the 

Swiss Alps. Polydomy was also considered in analyses. Local temperature data were 

recorded across different altitudes and canopy cover. Total colony size of these two 

red wood ant species increases with increasing canopy cover. Total colony size also 

follows Bergmann’s rule along altitude when canopy cover is controlled for. The 

small-scale factors such as microclimate may be more significant than the large-scale 

geographic factors in determining a life-history characteristic of an animal. We 

therefore suggest that studies of eco-geographic trends should also consider the 

small-scale factors. This study can be a reference for future conservation actions 

concerning red wood ant species. 
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Introduction 

Habitat, lifestyle, and life history of a given animal are correlated (Stearns, 1992). 

Body size is one of the most significant life-history characteristics because it is 

associated with most aspects of biology, including physiological performance and 

other characteristics (Calder, 1996; Brown & Lomolino, 1998; Chown & Gaston, 

2010). Bergmann’s rule is a common eco-geographic rule of life-history 

characteristics: the increase of body size from tropical to polar latitudes (Bergmann, 

1847; Mayr, 1956; Watt et al., 2010). According to the excerpts translated by James 

(1970), Bergmann’s rule has linked temperature to latitude because temperature on a 

global scale decreases from the equator to the poles. The original Bergmann’s rule 

and the redefinition proposed to apply the rule inter-specifically (James, 1970; 

Blackburn et al., 1999; Watt et al., 2010). However, Bergmann attempted to test his 

rule among races of domestic animals (Watt et al., 2010). Some researchers also state 

that Bergmann’s rule could be used to describe the pattern of a species’ body size 

change along latitude (James, 1970; Angilletta et al., 2004a). Meiri (2011) suggests 

that the rule is a pattern that can be studied at any taxonomic level and in any taxon. 

Therefore, Bergmann’s rule is used more loosely to describe a trend of the body size 

increases with rising latitude or with the decline of temperature either intra-

specifically or inter-specifically. 

Bergmann originally suggested applying his rule to homeotherms (endotherms) 

(James, 1970; Watt et al., 2010). More than 65% of endotherms show Bergmann’s 

cline in body size (i.e. body size increases with rising latitude) (Ashton et al., 2000; 

Ashton, 2002; Meiri & Dayan, 2003). The fasting endurance hypothesis (also known 

as starvation resistance) has been considered to be the most likely hypothesis of the 

driver for endotherms: larger body size increases survival during the longer resource-
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shortage season in higher latitude as a result of the relatively larger energy reserves 

and lower metabolic requirements per unit weight (Lindstedt & Boyce, 1985; Millar 

& Hickling, 1990). Although the original focus was on endotherms, the suggested 

revisions of Bergmann’s rule by Paterson (1990) and Blackburn et al. (1999) do not 

exclude ectotherms (reviewed by Watt et al., 2010). A review study by Vinarski 

(2014) shows that there is not a universal pattern in the geographic variation of body 

size for each large taxon of ectotherms (e.g. molluscs, arthropods, amphibians, 

reptiles, etc.). Both adaptive and non-adaptive hypotheses arise to explain 

Bergmann’s cline for ectotherms (see Chapter 1). The non-adaptive hypothesis 

illustrates how thermal effects on biochemical processes can result in the 

temperature-size relationship: a smaller final body size of ectotherms is produced at 

increased rearing temperature (Atkinson, 1994; Angilletta & Dunham, 2003; 

Angilletta et al., 2004b). The adaptive hypothesis considers the costs and benefits of 

a given life history to describe the reason that natural selection promotes genotypes 

which grow more slowly but mature at a larger size when raised at lower 

temperatures (Atkinson & Sibly, 1997; Angilletta et al., 2004b).  

In social insects, the individual and the colony are two levels of organisation 

(Kaspari & Vargo, 1995; Tschinkel, 1999; Clémencet & Doums, 2007). The 

allometry or the biological scaling should be applied on both levels of organisation. 

The colonies can also be characterised by their physical and numerical features 

(Tschinkel, 1991). The total number of individuals or the worker population in a 

colony has been used to represent the colony size (Kaspari & Vargo, 1995; Tschinkel, 

1998, 1999). Some researchers have suggested that the colony of social insects could 

be biologically analogous to the body of a unitary organism (Tschinkel, 1991; 

Kaspari & Vargo, 1995; Tschinkel, 1998, 1999; Hölldobler & Wilson, 2009; Lanan  
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et al., 2011). Basic features of the physiology (ie: metabolic rate) and life history (ie: 

growth) of whole colonies follow virtually the same size dependences as unitary 

insects (Hou et al., 2010). Just as body size has a defining role for solitary organisms, 

colony size correlates with many features of a social insect colony, including 

competitive abilities, foraging behaviours and life span (O'Donnell & Jeanne, 1992; 

Pamilo et al., 1992; Eckert et al., 1994; Herbers & Choiniere, 1996; Palmer, 2004). 

Some studies therefore have focused on Bergmann’s rule on colony size (Table 5.1).  

  

Table 5.1. Summary of previous research on Bergmann’s rule in social insects, 

broken down into inter-specific or intra-specific Bergmann’s rule between latitude 

(or altitude) and body size (or colony size) of social insects. The boxes marked “?” 

lack data and are the focus of this study. Reversed relationship (converse 

Bergmann’s cline) between latitude (or altitude) and body size (or colony size) were 

not found in inter-specific nor intra-specific studies. 

 Support No relationship 

Bergmann’s 

rule 

Inter-

specific 

Latitude 
Body size [1][2] [3] 

Colony size [4] [2][3][5] 

Altitude 
Body size None found [3] 

Colony size None found [3] 

     

Intra-

specific 

Latitude 
Body size [6][7][8] None found 

Colony size None found [8] 

Altitude 
Body size [8]

a
[9]

b
 None found 

Colony size ? ? 

[1] Cushman et al. (1993); [2] Kaspari (2005); [3] Geraghty et al. (2007); [4] Kaspari 

and Vargo (1995); [5] Porter and Hawkins (2001); [6] Daly et al. (1991); [7] Rust 

(2006); [8] Heinze et al. (2003); [9] Stone (1993); 
a
 two high altitudinal populations 

in the study were larger than expected from latitude; 
b
 a study of solitary bees. 
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The decline of temperatures with rising altitude and latitude is the main comparable 

similarity between altitude and latitude (Brown & Lomolino, 1998). If Bergmann’s 

rule is driven by temperature, the same relationship along latitude could be applied to 

altitudinal gradients, as the most important similarity between altitude and latitude is 

the decline of temperatures with rising altitude and latitude (Brown & Lomolino, 

1998). Social insect colony size can be considered as analogous to body size. For 

these reasons we ask, can Bergmann's rule be applied to the relationship between 

altitude and colony size? Understanding the relationship between altitude and colony 

size is important for conservation actions because climate change has different 

impacts along altitudinal gradients (Parmesan, 2006). There have been some studies 

on inter-specific or intra-specific Bergmann’s rule between latitude (or altitude) and 

body size (or colony size) of social insects, but no intra-specific investigation for 

Bergmann’s rule between altitude and colony size (Table 5.1). However, an inter-

specific study showed that evolutionary constraints and phylogeny have greater 

influence on colony size and body size than altitudinal or latitude gradients do 

(Geraghty et al., 2007). A review by Shelomi (2012) also indicates that inter-specific 

studies found Bergmann’s cline less frequently than intra-specific studies did. The 

outcome results from the variation among species within the examined clades. 

Therefore, an intra-specific research is probably more feasible to reveal the eco-

geographic mechanism on colony size. 

In addition to large-scale geographic gradients such as altitude, small-scale factors 

have impacts on physical conditions of the environment. Microclimate is the set of 

climatic conditions which are measured in local areas near the ground surface (Chen 

et al., 1999; Geiger et al., 2009). For terrestrial ecosystems, habitat type (e.g. 

grassland and woodland) is a major modifier of the microclimate experienced by 
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organisms, for example, it affects the extreme value of temperatures (Suggitt et al., 

2011). Taking woodland habitat for example, microclimatic variables, especially 

solar radiation, local air temperature (air temperature at the ground surface) and soil 

temperature, are highly sensitive to the changes of canopy (Chen & Franklin, 1997). 

Spatial heterogeneity of woodland is commonly and significantly caused by small 

canopy openings (Clinton, 2003). The canopy features therefore contribute to 

structural complexity and provide high spatial and temporal variability on the forest 

floor within woodland habitat (Chen & Franklin, 1997; Chen et al., 1999). Moreover, 

canopy cover may be the most obvious and significant small-scale factor which is 

associated with altitudinal gradients. Canopy cover is also known to affect ant’s nest 

size (Chen & Robinson, 2014; Ellis et al., 2014), distribution (Punttila, 1996) and 

reproduction (Sorvari & Hakkarainen, 2005). Since the most likely main driving 

force of Bergmann’s rule, temperature, is also related to canopy cover (Rodriguez-

Garcia et al., 2011; Suggitt et al., 2011; Huang et al., 2014), we also investigated the 

effects of canopy cover together with altitude gradients aiming to see how altitude 

affects colony size when accounting for canopy cover. 

For some ant species, one colony may settle in either one nest or several spatially 

separated but socially connected nests (polydomy) (Hölldobler & Wilson, 1977; Ellis 

& Robinson, 2014; Robinson, 2014). Debout et al. (2007) define polydomy as “an 

arrangement of an ant colony in at least two spatially separated nests”, and the 

separated distance of these two nests should be obviously larger than that of two nest 

chambers in the core nest structure. A polydomous colony may have multiple 

ecological benefits such as risk spreading (Debout et al., 2007; Robinson, 2014) and 

both resource discovery (Cook et al., 2013) and exploitation (by establishing new 

nests near food resource) (Lanan et al., 2011). Being polydomous may also allow 
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colonies to overcome the constraints on increasing size for monodomous colonies 

(Robinson, 2014), for example, increasing total colony size through increasing nest 

number. Therefore, domy form (whether monodomous or polydomous) of the colony 

is also a factor of interest within an investigation focusing on Bergmann’s rule and 

colony size. 

In this study, we investigate the relationship between altitude, canopy cover and both 

nest size (worker population in a nest) and total colony size intra-specifically in 

polydomous populations of Eurasian red wood ants Formica lugubris and Formica 

paralugubris. Both species have ecologically significant impacts on forest ecosystem 

(Sudd & Lodhi, 1981; Punttila et al., 2004). Among the red wood ant group, F. 

lugubris and F. paralugubris are of interest for altitudinal studies because they have 

been recorded at altitudes from 800 to 2400 metres in Central Europe (Kutter, 1965; 

cited by Sudd et al., 1977) and from 1100 to 2000 metres (Bernasconi et al., 2006; 

Glaser, 2006), respectively. We also checked the effects of canopy cover and altitude 

on local temperature by collecting thermal data at the colony locations. Larger 

colonies may cope better with colder environments due to better starvation resistance 

capability (Kaspari & Vargo, 1995) or increased abilities to regulate inner nest 

temperature (Rosengren et al., 1987; Punttila & Kilpeläinen, 2009). Since thermal 

environments are colder both with rising altitude and canopy cover, we predict  

positive relationships between nest/colony size and altitude, and between nest/colony 

size and canopy cover. 

 

Materials and Methods 

Species and Location 
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To have a large range of altitude, we conducted our study in a part of the Alps 

(46°15'16"-46°20'23"N, 07°02'35"-07°09'39"E) in Ollon, Vaud, Switzerland with an 

altitudinal range of 800-2100 m. There is a transition of Scots pine Pinus sylvestris-

dominated forests to Swiss Pine Pinus cembra-dominated stands from 1200 to 2400 

m in the Swiss Central Alps, with a transition zone between 1600 and 2000 m 

(Hättenschwiler & Körner, 1995). The study species were two red wood ant sibling 

species Formica lugubris and Formica paralugubris (Hymenoptera: Formicidae) 

(Seifert, 1996). These two species are highly similar to each other in the aspects of 

morphology and ecology, and have to be morphologically discriminated from each 

other under a stereo-microscope (Seifert, 1996). Both F. lugubris and F. 

paralugubris form polydomous colonies in the Swiss Alps, although F. lugubris has 

monodomous social organisation in other parts of its geographical range (Bernasconi 

et al., 2005; Maeder et al., 2005; Ellis & Robinson, 2014). We defined a polydomous 

colony as a group of nests which are connected to each other by trails, with trails 

defined as a distinct path with at least 10 workers in 40 cm (Chen & Robinson, 2014; 

Ellis et al., 2014). The term “altitude” is the vertical distance between an object and a 

reference point (McVicar & Körner, 2013). In this study, altitude is used to indicate 

the vertical distance from sea level. 

Methods  

The study was performed in 2013, from late June, when canopy cover had reached a 

relatively stable level, to early September, when the air temperature started to 

decrease. To make sure that our sampling areas were occupied by F. lugubris and F. 

paralugubris, we conducted a 10-km-by-4-km- transect to include the nests recorded 

by a previous survey (D. Cherix, personal communication). The transect primarily 

covered the road “Route du Col de la Croix” from Villars-sur-Ollon to Les Diablerets, 
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and was divided into sections every 200 metres. We accessed each section to find our 

target species mainly through roads, paths and trails. Apart from private and 

inaccessible areas, the survey for each section focused on woodlands, deep forests 

and the edges between woodlands and pastures.  In the Swiss Alps, several wood ant 

species (eg: F. rufa, F. pratensis, F. lugubris and F. paralugubris, etc.) have 

overlapping distributions. According to morphological differences of workers, we 

identified colonies of F. lugubris and F. paralugubris as distinct from other ant 

species in the field. Because the two study species had to be distinguished 

morphologically by stereo-microscope, fifty workers were collected from each nest 

for confirming species identification. 

We defined a distinct trail (with at least 10 workers in 40 cm) from a nest to a tree as 

a foraging trail (Chen & Robinson, 2014), although this does not mean that the nests 

without any foraging trails were not foraging at all. The location detail (latitude and 

longitude) of each colony was recorded. We recorded and mapped the spatial 

distribution pattern of nests of each colony, including the trails between nests, and 

foraging trails between nests and trees. A Mound-Volume method was used to 

estimate nest size (Chen & Robinson, 2013, 2014; Ellis et al., 2014); two diameters 

and the height (cm) of nest mound were multiplied to represent the worker 

population of each mound-building wood ants nest. We took a photo skyward above 

each nest using 180-degree hemispherical lens (FC-E8 fisheye lens with Coolpix 

5000, Nikon Corporation, Tokyo, Japan), which produces circular images that record 

the size, shape, and location of gaps of the canopy. Canopy cover (percentage) was 

estimated from the circular photo using the software Gap Light Analyzer 2.0 (Frazer 

et al., 1999; Chen & Robinson, 2014).  
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To investigate how the small-scale thermal environment of the nest is influenced by 

altitude and canopy cover, we chose a subsample of nests to record local 

temperatures. For this purpose, we divided altitude and canopy cover into three (< 

1500m, 1500-1800m, > 1800m) and two (< 60%, > 60%) categories, respectively, 

according to the altitude and canopy cover data from preliminary survey. Five nests 

belonging to each combination of categories (six combinations) were chosen, giving 

a total of 30 nests. A temperature-recording device was fixed on the ground right 

next to the north side of each chosen nest. The device was made up of a polyethylene 

terephthalate (PET) tube (diameter = 10 cm, length = 20 cm) wrapped in aluminium 

foil to reduce the effect of solar radiation (Suggitt et al., 2011; Chen & Robinson, 

2014). Hourly environmental temperatures were recorded by the thermal data logger 

(iButton: DS1921G-F5; Maxim/Dallas Semiconductor, TX, US) within each device 

during the period from mid-July to early-September.   

Statistical Analyses 

Total colony size was calculated as the sum of sizes of each nest belonging to a 

polydomous colony to represent the total worker population in a colony. Size data 

(nest size, total colony size and mean nest size) were transformed by log10 to 

normalize the distributions. We used “lmer” function from the “lme4” package of R 

(version 3.1.0, R Development Core Team) to fit linear mixed-effects model for the 

effects of domy form (whether monodomous or polydomous), altitude and canopy 

cover on nest size. Colony identity was included as a random effect in the model. 

The “anova” function and AIC value were used for model selection. 

Linear mixed-effects models were also used for the effects of altitude and canopy 

cover on local temperature measurements at nesting locations: local daily mean 
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temperature (MeanLocal), local daily maximum temperature (MaximumLocal) and local 

daily minimum temperature (MinimumLocal). The identity of the colony to which the 

recording device belonged to was included in the model as a random effect. As 

background values, air temperature measurements (MeanAir: daily mean; 

MaximumAir: daily maximum; and MinimumAir: daily minimum) of the days which 

we recorded local temperatures were included respectively in the models as covariate 

factors to control the changes of daily measurements for the analyses of local 

temperatures. We obtained air temperature data from the weather station “Gerance 

Service SA IVAUDVIL3” (46°17'52.8"N 7°03'18.0"E; 1249 m; from Weather 

Underground, http://www.wunderground.com/), which is approximately 1.5 km from 

the transect.  

We used a linear regression model for the effects of domy form, canopy cover and 

altitude on total colony size and mean nest size. The “anova” function of R package 

was used for model selection. We used Kruskal-Wallis rank sum test for the 

differences of mean canopy cover, altitude, total colony size and mean nest size 

between colonies with different number of nests. The “kruskalmc” function from the 

“pgirmess” package of R was used for multiple comparison test after Kruskal-Wallis’ 

test, if necessary. Linear regression model and Kruskal-Wallis’ test were conducted 

with R statistics package (version 3.1.0, R Development Core Team). 

 

Results  

Nest size, colony size, canopy cover and altitude 

One hundred and fifty nine colonies of F. lugubris with a total of 286 nests, and 94 

colonies of F. paralugubris with a total of 140 nests were sampled and recorded for 
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this study. We found that nest size increased significantly with increasing canopy 

cover, and with increasing altitude (Model 6 in Table 5.2, Figs 5.1a and 5.1b). There 

was a significant negative interaction effect between canopy cover and altitude on 

nest size (Model 6 in Table 5.2, Fig. 5.1c). Monodomous colonies had significantly 

larger nest size than polydomous colonies did (Model 6 in Table 5.2, Fig. 5.1d). The 

species showed no significant difference in nest size (Models 1 to 5 in Table 5.2). 

The species identity factor did not significantly improve the model (comparison 

between Models 5 and 6 in Table 5.2, χ
2
 = 0.49, P = 0.48), we therefore chose the 

reduced model (Model 6 in Table 5.2, with domy form, canopy cover, altitude and 

the interaction between canopy cover and altitude) as the best model. 

Total colony size, which was the sum of sizes of all nests in that colony, significantly 

increased with increasing mean canopy cover across all nests of that colony and with 

increasing altitude (Model 6 in Table 5.3, Figs 5.2a and 5.2b). The interaction of 

mean canopy cover and altitude had a significant negative effect on total colony size 

(Model 6 in Table 5.3, Fig. 5.2c). Total colony size of polydomous colonies was 

significantly larger than that of monodomous colonies (Model 6 in Table 5.3, Fig. 

5.2d). The species identity factor had no significant effect on total colony size 

(Models 1 to 5 in Table 5.3), and did not significantly improve the model (ANOVA 

test for Models 5 and 6 in Table 5.3, F = 0.26, P = 0.61). The reduced model (Model 

6 in Table 5.3, with domy form, canopy cover, altitude and the interaction between 

canopy cover and altitude) was therefore chosen as the best model. Relationship 

between mean nest size, domy form, canopy cover and altitude are provided as 

appendices (Table 5.S1). Canopy cover at our 426 sampled nests ranged from 19% to 

96%, with a median of 80%, and altitude of nests ranged from 1247 m to 1995 m, 

with a median of 1660 m. 
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Table 5.2. The relationships between log10 nest size, canopy cover, altitude and 

domy form. Data were fitted with linear mixed-effects model (253 colonies with 426 

nests). The statistical baseline of “Species” factor was set as Formica lugubris. The 

statistical baseline of “Domy” factor was set as monodomy in Models 5 and 6. The 

“Interaction” term mean the interaction effect between canopy cover and altitude 

factors. The “anova” function of R package and AIC value were used for model 

selection. Model 5 was significantly better than Models 1 to 4 (χ
2
 = 37.87-103.29, P 

< 0.001). There was no significant difference between Models 5 and 6 (χ
2
 = 0.49, P = 

0.48). Due to very similar AIC values of Model 5 and Model 6, the reduced model 

(Model 6) was chosen as the best model. 

 Model 1 Model 2 Model 3 

 Estimate t value Estimate t value Estimate t value 

Intercept  4.04e+00 23.34***  6.59e+00 16.46*** 5.69e+00 83.52*** 

Canopy Cover   1.88e-02   8.40*** - - - - 
Altitude  - - -6.98e-04  -2.88** - - 

Domy - - - - -4.17e-01 -5.21*** 

Species  1.21e-01   1.60  1.10e-01   1.28  5.64e-02  0.50 

AIC 909.25 966.38 948.54 

 

 Model 4 Model 5 Model 6 

 Estimate t value Estimate t value Estimate t value 

Intercept -1.29e+00 -0.67 -1.05e+00 -0.58 -1.14e+00 -0.63 

Canopy Cover   7.93e-02  3.32***  7.78e-02  3.44***  7.92e-02  3.52*** 
Altitude   2.97e-03  2.75**  2.95e-03  2.88**  3.01e-03  2.96** 

Interaction -3.35e-05 -2.47* -3.21e-05 -2.49* -3.29e-05 -2.57* 

Domy - - -4.51e-01 -6.32*** -4.57e-01 -6.47*** 

Species  1.12e-01  1.41  5.21e-02  0.70 - - 

AIC 904.96 869.09 867.59 

*P < 0.05; **P < 0.01; ***P < 0.001 
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Table 5.3. The relationships between log10 total colony size, canopy cover, altitude 

and domy form. Data were fitted with linear model. The statistical baseline of 

“Species” factor was set as Formica lugubris. The statistical baseline of “Domy” 

factor was set as monodomy in Models 5 and 6. The “Interaction” term mean the 

interaction effect between canopy cover and altitude factors. The “anova” function of 

R package was used for model selection. Model 5 was significantly better than 

Models 1 to 4 (F = 7.71-35.57, P < 0.01). There was no significant difference 

between Model 5 and Model 6 (F = 0.26, P = 0.61), the reduced model (Model 6) 

was therefore chosen as the best model. 

 Model 1 Model 2 Model 3 

 Estimate t value Estimate t value Estimate t value 

Intercept 4.38e+00 28.44***  6.86e+00 19.48***  5.69e+00 100.90*** 

Canopy Cover  1.90e-02   9.47*** - - - - 
Altitude  - - -6.45e-04  -3.06** - - 

Domy - - - -  2.36e-01    3.08** 

Species 1.74e-02   0.26  9.54e-03   0.13  4.42e-02    0.58 

F  F2, 250 = 44.86*** F2, 250 = 4.71** F2, 250 = 4.79** 

r
2
 0.26 0.04 0.03 

 

 Model 4 Model 5 Model 6 

 Estimate t value Estimate t value Estimate t value 

Intercept -6.91e-01 -0.43 -7.87e-01 -0.50 -8.18e-01 -0.52 

Canopy Cover   7.51e-02  3.77***  7.62e-02  3.90***  7.69e-02  3.95*** 
Altitude   3.79e-03  3.13**  2.81e-03  3.22**  2.83e-03  3.25** 

Interaction -3.04e-05 -2.69** -3.13e-05 -2.83** -3.17e-05 -2.87** 

Domy - -  2.14e-01  3.30**  2.10e-01  3.27** 

Species  1.12e-02 -0.17  3.29e-02  0.57 - - 

F  F4, 248 = 26.24*** F5, 247 = 24.01*** F4, 248 = 30.04*** 

r
2
 0.29 0.33 0.33 

**P < 0.01; ***P < 0.001 
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Figure 5.1. The relationship between log10 nest size, canopy cover, altitude and 

domy form (effect plots for the fixed effects of linear mixed-effects model, referring 

to Model 6 in Table 5.2). Grey areas in 5.1a and 5.1b indicate the 95% confidence 

intervals. Lines of different colours in 5.1c show the relationships between altitude 

and nest size under different canopy cover. Error bars in 5.1d indicate 1SE.  
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Figure 5.2. The relationship between log10 total colony size, canopy cover, altitude 

and domy form (effect plots for the effects of regression model, referring to Model 6 

in Table 5.3). Grey areas in 5.2a and 5.2b indicate the 95% confidence intervals. 

Lines of different colours in 5.2c show the relationships between altitude and total 

colony size under different canopy cover. Error bars in 5.2d indicate 1SE. 

 

Local temperature measurements 

Sixteen temperature-recording devices were lost or broken or dislocated in the field. 

According to the records of the 14 nests from which data loggers were retrieved (one 

to five nests belong to each combination of categories), daily mean of local 

environmental temperatures (MeanLocal) was lower with increasing altitude, whereas 
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canopy cover did not affect MeanLocal (Fig. 5.3a, Table 5.4). In contrast, daily 

maximum of local temperatures (MaximumLocal) were higher in open areas than in 

shadier areas, whereas altitude had no significant effect on MaximumLocal (Fig. 5.3b, 

Table 5.4). Daily minimum of local temperatures (MinimumLocal) increased with 

rising canopy cover, and decreased with increasing altitude (Figs 5.3c and 5.3d, 

Table 5.4). Local temperature data were recorded for 12-37 days (Mean = 25 days) 

among these 14 nests, across a range of canopy cover of 28-88% and an altitudinal 

range of 1373-1981 m.   

 

Table 5.4. The relationships between local temperature measurements, canopy cover 

and altitude, with air temperature measurements as co-variances (MeanLocal:  local 

daily mean temperatures; MaximumLocal: local daily maximum temperatures; 

MinimumLocal: local daily minimum temperatures; MeanAir: air daily mean 

temperatures; MaximumAir: air daily maximum temperatures; MinimumAir: air daily 

minimum temperatures; data fitted by linear mixed-effects model with recorded 

location as a random effect). 

*P < 0.05; **P < 0.01; ***P < 0.001 

 

 

 Local Temperature Measurements 

 MeanLocal  MaximumLocal  MinimumLocal 

 Estimate t value  Estimate t value  Estimate t value 

Main 

Effects 

Intercept  7.77e+00  3.67**   8.14e+00  0.85   7.75e+00  2.44* 

Canopy Cover -1.14e-02 -1.00  -1.22e-01 -2.38*   4.05e-02  2.37* 

Altitude -4.95e-03 -5.19***  -2.52e-03 -0.58  -7.42e-03 -5.14*** 

Covariates 

MeanAir  9.16e-01 51.44***       

MaximumAir     1.31e+00 24.09***    

MinimumAir        8.72e-01 63.14*** 
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Figure 5.3. The relationships between local temperature measurements, altitude and 

canopy cover  (MeanLocal: local daily mean temperature; MaximumLocal: local daily 

maximum temperature; and MinimumLocal: local daily minimum temperature; effect 

plots for the fixed effects of linear mixed-effects model, referring to Table 5.4). Grey 

areas indicate the 95% confidence intervals. 

 

Colony-level organisation 

There was no significant difference between two species in total colony size (Table 

5.2 and t test: t = 0.24, P = 0.81) nor in mean nest size (Table 5.S1 and t test: t = 1.07, 

P = 0.29). Mean canopy cover (t test, t = 0.04, P = 0.97) and altitude (t test, t = -0.60, 
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P = 0.55) of colony locations were not significantly different between two species. 

We therefore combined the data from the two species for the following analyses. 

Colonies with different number of nests had different total colony size (Kruskal-

Wallis’ test, χ
2
 = 30.58, P < 0.001, see Fig. 5.4 for sample sizes and results of 

multiple comparison test); colonies with one and two nests tended to have smaller 

total colony size than those with three and four nests did. Colonies with more nests 

tended to have smaller variances in total colony size (Levene’s test, F = 3.10, P < 

0.01, see Fig. 5.4 for sample sizes); colonies with four and seven nests had smaller 

variances on total colony size than other colonies did. The number of nests per 

colony showed no significant relationship with mean canopy cover (χ
2
 = 3.85, P = 

0.70), altitude (χ
2
 = 2.30, P = 0.89), nor mean nest size (χ

2
 = 11.03, P = 0.09).  

 

 

 

 

 

 

 

 Figure 5.4. The relationship between total colony size and the number of nests per 

colony. Different letters indicate significant difference among groups (Kruskal-

Wallis’ test and multiple comparison test). Boxplots show the range, quartiles, 

median and outliers of the data. 
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Discussion 

Our results reveal that nest size and total colony size (summed size of all nests) of 

Formica lugubris and F. paralugubris follow Bergmann’s rule along altitude when 

canopy cover is controlled for (Figs 5.1, 5.2 and 5.5). Among the colonies we 

sampled and recorded, 62.5% of them are monodomous colonies (F. lugubris: 58.5%; 

F. paralugubris: 69.1%). High proportions of monodomous colonies are probably the 

main reason that we found very similar results for nest size and colony size in the 

effects of altitude and canopy cover (Table 5.2 and 5.3): colony size data are mainly 

represented by nest size data. 

Figure 5.5. The relationships of altitude, canopy cover and nest size (colony size) to 

possible related factors in our study. Arrows illustrate the proposed direction of 

causality. Solid arrow and hollow arrow indicate the statistically significant and the 

suggested relationships respectively. Plus and minus signs indicate the relationships 

as positive and negative respectively. “Interaction” makes reference to the interaction 

effect between altitude and canopy cover. 
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As one of the indices of the patterns of vegetation, canopy cover should be 

considered for a study of altitudinal effects. In fact, there was a negative relationship 

between altitude and canopy cover in our study (supporting information: Fig 5.S1). 

Several of our results also show that the effect of canopy cover on nest size and 

colony size is more powerful than that of altitude. First, when altitude was the only 

factor added into models (Models 2 in Table 5.2 and Table 5.3), there were negative 

altitudinal effects on nest size and colony size. These relationships probably resulted 

from the decrease of canopy cover with increasing altitude (Fig. 5.S1). Second, 

variations of nest size and colony size along the change of canopy cover were greater 

than along the altitudinal gradient even when these two factors were added into 

models simultaneously (Figs 5.1a,b and 5.2a,b). Moreover, our models predict that 

the slope of the relationship between altitude and nest size or colony size decreases, 

even to becoming flat when canopy cover is at a high level (ie: with a 90% canopy 

cover; Figs 5.1c and 5.2c). This means that altitude affects nest size and colony size 

when the canopy cover is low; meanwhile, nest size and colony size increase in very 

shady areas irrespective of the altitude at which they are located. These results 

suggest that the small-scale factors such as microclimate or microhabitat could be 

more significant than the large-scale geographic factors in determining a life-history 

characteristic of an animal. A review study for Bergmann’s rule shows nearly equal 

numbers of Bergmann and converse-Bergmann clines overall (Shelomi, 2012). We 

propose a possible explanation that some clines (or the absence of a cline) found in 

previous studies were very likely caused or influenced by small-scale factors rather 

than the geographic gradient, altitude, which is of interests to the researchers. 

Therefore we suggest that a study for any eco-geographic mechanism should also 

take small-scale factors into account, otherwise even if an eco-geographic trend is 
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shown, it may result from microhabitat effects (for example, converse-Bergmann 

clines showed by Models 2 in Table 5.2 and Table 5.3).  

From our results, it seems very likely that temperature is the mediating factor  

working on nest size and colony size through altitude and canopy cover. Two 

relationships support this hypothesis: between altitude, canopy cover and 

temperature, and between altitude, canopy cover and colony size (or nest size). First, 

altitude and canopy cover act on different elements of local thermal environments 

simultaneously: altitude on mean temperature and canopy cover on temperature 

fluctuation (Table 5.4, Fig. 5.3). Theoretically, temperature decreases with increasing 

altitude (Jacobson, 2005). We found an approximately 5
o
C/km decrease in daily 

mean temperature along altitudinal gradients (Table 5.4). This is very close to the 

mean rate of 5.6
o
C/km from a previous study in the Alps (Theurillat & Guisan, 2001) 

and the theoretical value of 6.5
o
C/km (Jacobson, 2005). In terms of the canopy cover, 

thermal environments are colder and more stable in shadier areas than in open areas 

(Rodriguez-Garcia et al., 2011; van Gils & Vanderwoude, 2012; Chen & Robinson, 

2014). We found similar results for the thermal stability: temperature fluctuation was 

smaller in shadier areas than in open areas (Table 5.4, Figs 5.3b and 5.3d). To sum 

up, although altitude and canopy cover act on different elements of local temperature, 

increasing altitude and canopy cover have similar impacts: generally decreasing local 

temperatures (Fig. 5.5). Second, our results show that both altitude and canopy cover 

are associated with nest size and colony size (Table 5.2 and 5.3, Fig. 5.5). The 

negative interaction effects of altitude and canopy cover on nest size and colony size 

further indicate that the effects of altitude and canopy cover compensate each other 

in increasing nest size and colony size. A mediating factor shared by increasing 

altitude and canopy cover is one of the probable explanations. Accordingly, we 
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suggest that temperature is the most likely mediating factor for the effects of altitude 

and canopy cover working on nest size and colony size. 

Temperature has also been related to several hypotheses concerning the 

evolutionary-based reason of Bergmann’s rule. Fasting endurance was suggested to 

be the most likely hypothesis with respect to body size of endotherms: more seasonal 

environments favour larger body size because larger animals can store more fat and 

then survive during seasonal stress (Lindsey, 1966; Millar & Hickling, 1990; 

Blackburn et al., 1999). Kaspari and Vargo (1995) propose a similar situation for 

colony size: large colonies can buffer the queen/s in resisting the harsh environment 

better than small colonies because of their greater energy reserves. We also consider 

thermoregulation as a candidate hypothesis. As mentioned before, our results 

indicate that canopy cover may have greater effects on nest size and colony size than 

altitude does. With lower daily maximum on local temperatures (Fig. 5.3b), thermal 

environments in shadier areas are cold for most of the time every day so they might 

not be able to provide enough heat for routine activities of a nest or a colony. With 

larger worker populations, a nest or colony would be able to produce sufficient 

endogenous heat generation, based on the metabolism and clustering behaviour of 

workers (Rosengren et al., 1987; Frouz, 2000) and microbial heat production from 

nest materials (Coenen-Stass et al., 1980; Frouz, 2000). Therefore, we hypothesise 

that having a larger nest size and colony size would be beneficial for 

thermoregulation.  

Geraghty et al. (2007) studied Bergmann’s rule inter-specifically and found no 

significant relationship between altitude and colony size. This result may be due to 

the variation of colony size among species within the clades. A review study states 

that phylogeny has a greater influence on body size so inter-specific studies found 
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Bergmann’s cline less frequently than intra-specific studies did (Shelomi, 2012). 

Intra-specific study should therefore be most appropriate for studying eco-geographic 

rules. As far as we know, this is the first study aiming to apply Bergmann’s rule 

intra-specifically to the relationship between altitude and colony size of a social 

insect (Table 5.1). Although there are two species in our study, F. lugubris and F. 

paralugubris are two sibling species with similar functions in forest ecosystem, and 

have a sympatric distribution in the Swiss Alps (Bernasconi et al., 2010). No species 

effect was revealed in any of our results (e.g. Table 5.2 and 5.3). We therefore 

consider this study as an effectively intra-specific study for the application of 

Bergmann’s rule to the relationship between altitude and colony size.     

In terms of the colony-level organisation, our results show that monodomous 

colonies have larger nest size and smaller total colony size than polydomous colonies 

do (Models 6 in Table 5.2 and 5.3). Although a monodomous colony can build a 

larger individual nest, a polydomous colony can have larger total colony size by 

increasing nest number. We also find that there seems to be a trend that total colony 

size increases with increasing nest number per colony (Fig. 5.4). This further 

supports the results of a previous study which finds that colonies with more nests 

have larger total colony size (Chen & Robinson, 2014). In addition, colonies with 

more nests tend to have smaller variance in total colony size (Fig. 5.4). We do not 

find any effect of altitude nor canopy cover on the number of nests per colony; both 

these environmental factors may not affect colony-level organisation. We suggest 

that age could be a likely factor to explain the trends between total colony size and 

nest number per colony, and between the variance of total colony size and nest 

number per colony. Colonies with more nests may have been established for a longer 

time than those with fewer nests, therefore are larger with smaller variances than 
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those of younger colonies. However, it would be challenging to test this hypothesis 

due to the lack of an effective method to measure the age of a colony. The definition 

of a polydomous colony we used may also affect the analyses for the colony-level 

organisation: more than 60% of colonies were defined as monodomous in this study 

(see sample sizes of colonies with different numbers of nests in Fig. 5.4). This 

functionally-based definition distinguishes polydomous colonies with one to more 

than twenty nests in the Peak District, UK (Chen & Robinson, 2014; Ellis et al., 

2014), and one to seven nests in this study in the Swiss Alps. The differences 

between studies may result from the differences between sampling sites.  

To sum up, our study finds that nest size and colony size of F. lugubris and F. 

paralugubris follow Bergmann’s rule along altitude when canopy cover is controlled 

for. To the best of our knowledge, this study is the first intra-specific study for the 

application of Bergmann’s rule to the relationship between altitude and colony size.  

Second, the effect of canopy cover on nest size and colony size is more powerful 

than that of altitude. We therefore suggest that micro-climate or micro-habitat could 

be more important than the geographic factors in determining a life-history 

characteristic. Finally, temperature is the most likely mediating factor. Altitude and 

canopy cover may act on different elements of local temperatures simultaneously. 

Benefits of larger colony size (or nest size) on thermoregulation is the hypothesis we 

consider for the relationship between altitude, canopy cover and colony size. With 

regard to climate change, its effects may be vertically different along altitudinal 

gradients through multiple and complex ways (ie: changes in vegetation). Our study 

may provide a reference for future conservation actions regarding these red wood ant 

species which have ecologically significant impacts on the forest ecosystem.  

 



118 

 

Acknowledgements 

We thank Dr. D. Cherix, Dr. A. Freitag and Dr. J.-L. Gattolliat for the results of a 

preliminary survey, their advice about the experimental site and for access to the 

laboratory equipment. We thank Prof. J. Hill for experimental advice; Dr. P. Mayhew 

for experimental advice and access to laboratory equipment; P. Buckham-Bonnett, S. 

Ellis and D. Procter for their comments on the manuscript; W.-H. Liang for 

fieldwork assistance. We thank the funding provided by the Studying Abroad 

Scholarship, Ministry of Education, Taiwan (SAS-100-1-16-1-UK-042). 

 

Appendices 

 

Figure 5.S1. Relationship 

between altitude and mean 

canopy cover of 253 colonies. 

Solid line shows the equation: 

Mean Canopy Cover (%) = 

157.44 – 0.05 * Altitude (m). 

Data were fitted with linear 

regression (F1, 251 = 110.46, P < 0.001, r2
 = 0.31).  
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Table 5.S1. The relationships between log10 mean nest size, domy form, canopy 

cover and altitude. Data were fitted with linear model. The statistical baseline of 

“Species” factor was set as Formica lugubris. The statistical baseline of “Domy” 

factor was set as monodomy in Model 5 and 6. The “Interaction” term mean the 

interaction effect between canopy cover and altitude factors. The “anova” function 

was used for model selection. Model 5 was significantly better than Model 1 to 4 ( F 

= 7.75-36.89, P < 0.01). There was no significant difference between Model 5 and 6 

(F = 0.68, P = 0.41), the reduced model (Model 6) was therefore chosen as the best 

model. 

 Model 1 Model 2 Model 3 

 Estimate t value Estimate t value Estimate t value 

Intercept 4.26e+00 28.58***  6.68e+00 19.68***  5.69e+00 103.69*** 

Canopy Cover  1.83e-02   9.42*** - - - - 
Altitude  - - -6.48e-04  -3.17** - - 

Domy - - - - -1.81e-01 -2.43** 

Species 8.00e-02   0.22  7.21e-03   0.98  6.23e-02    0.83 

F  F2, 250 = 45.14*** F2, 250 = 5.63** F2, 250 = 3.55* 

r
2
 0.26 0.04 0.03 

 

 Model 4 Model 5 Model 6 

 Estimate t value Estimate t value Estimate t value 

Intercept -8.41e-01 -0.54 -7.49e-01 -0.50 -7.97e-01 -0.53 

Canopy Cover   7.58e-02  3.93***  7.47e-02  3.95***  7.57e-02  4.02*** 
Altitude   2.81e-03  3.27**  2.79e-03  3.31**  2.83e-03  3.36*** 

Interaction -3.14e-05 -2.88** -3.05e-05 -2.85** -3.11e-05 -2.91** 

Domy - - -2.04e-01 -3.27**  -2.10e-01 -3.37*** 

Species  7.26e-02  1.14  5.19e-02  0.83 - - 

F  F4, 248 = 26.50*** F5, 247 = 24.17*** F4, 248 = 30.07*** 

r
2
 0.29 0.31 0.33 

**P < 0.01; ***P < 0.001 
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Chapter 6 – General Discussion 

 

Bergmann’s rule may apply to the body size change across altitudinal gradients 

because of comparable changes of temperature between latitude and altitude. Just as 

body size is prominent to many biological aspects of an individual animal, colony 

size associates with many life-history features of social insects. Colony size therefore 

can be analogous to the body size of a social insect colony. In this thesis I 

investigated the relationship between altitude and ant colony size. The thesis 

contributes the first intra-specific evidence of Bergmann’s rule applied to the colony 

size across altitude, and indicates not only the importance of microclimate on a 

fundamental characteristic of an animal but also the considerable role of 

microclimate for any study of eco-geographic trends.  

In Chapter 2, I developed an accurate method to estimate red wood ant nest size, and 

indicated mound volume can be used as a feasible nest size index. Chapter 3 showed 

results of a preliminary test and indicated that microclimate may influence nest size. 

The case-study of Chapter 4 specifically investigated canopy cover effects on nest 

size and colony size of Formica lugubris. In Chapter 5, I finally conducted a study of 

the relationship between altitude, canopy cover, polydomy, nest size and colony size.  

 

Summary of Chapters 

For studies regarding colony size and nest size, having a feasible and accurate 

estimation method is the fundamental and first step. Counting all individuals after 

nest excavation is definitely the most accurate method for assessing colony size (or 
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nest size); however, the considerable drawback of this method is its destructiveness. 

Species of red wood ants are listed as “near threatened” by the IUCN (2014) and 

protected in many European countries (Bernasconi et al., 2011). Complete 

excavation of nests is not considered as a routine method for studies which need to 

estimate wood ant colony size or nest size. In Chapter 2, I compared the accuracy 

and feasibility of four mark-release-recapture methods and a mound volume method 

with actual counts from nest excavation for estimating the nest size of F. lugubris. 

The results showed that gentle disturbance to the nest mound made the After-

Disturbing method the most accurate mark-release-recapture method. There is a 

balance between accuracy, non-destructiveness, and time required for each method. 

Mound volume also can be a useful index of ant nest size with the lowest time 

requirement.  

These methods were applied in a preliminary test for the relationship between 

altitude and colony size in Chapter 3. The monodomous population of F. lugubris in 

the Swiss Jura Mountains was targeted to simplify the question. This study did not 

show an altitudinal effect on colony size within a small geographic range. However, 

the study found that canopy cover and the aspect of nesting slope may be important 

for wood ant colony size. I therefore chose to use fisheye lens for the assessments of 

insolation aiming to include both canopy cover and the aspect of nesting slope. The 

results also led to the decision to carry out a further study in the Swiss Alps for a 

larger altitudinal range. Mound volume was then chosen to estimate nest size 

efficiently for obtaining the required sample size, which was calculated from power 

analyses.  

Being aware of the importance of canopy cover and local temperatures of nesting 

location addressed in Chapter 3, I conducted an investigation focusing on the 
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relationship between canopy cover, nest size and colony size in Chapter 4. An even-

distribution sampling method was used to survey for colonies of F. lugubris in a part 

of the Peak District, UK (where F. lugubris is polydomous). The results indicated the 

association between larger nests and shadier areas, where the environments were 

colder and more stable compared to open areas. Colony size (sum of nest sizes in a 

polydomous colony) also tended to be larger in shadier areas than in open areas. I 

suggested that temperature and food resource availability may be the mediating 

factors between canopy cover and nest size.  

Informed by the results from Chapter 2 to 4, I was able to investigate the relationship 

between a geographic gradient – altitude, an index of microclimate – canopy cover, 

polydomy, nest size and colony size in Chapter 5. This study was conducted on F. 

lugubris and F. paralugubris in the Swiss Alps with an altitude range of 1200 to 

2100 metres. I found that total colony size and nest size of these two red wood ant 

species followed Bergmann’s rule across altitudes (increase with increasing altitude) 

when canopy cover was controlled for. The results also showed that the effect of a 

small-scale factor (in this study, canopy cover) seemed to be more important than 

that of a geographic factor (altitude) in determining a life-history characteristic (nest 

size or colony size) of an animal.  

Among these case studies, in Chapter 3, polydomous F. paralugubris had larger nest 

size than monodomous F. lugubris in the Swiss Jura Mountains (Fig. 3.2). I targeted 

monodomous nests in order to find F. lugubris colonies in this study, and thus 

inadvertently included some nests of F. paralugubris that appeared monodomous due 

to the lack of trails between nests during the surveys. Although I did not sample 

these F. paralugubris nests randomly, the role of domy form (polydomous or 

monodomous) in the differences of nest size in this study still interested me. In 
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Chapter 4, concerning polydomous F. lugubris in the UK, colonies with more nests 

had larger total colony size (Fig. 4.5) but tended to have smaller individual nests (Fig. 

4.6). In Chapter 5, on F. lugubris and F. paralugubris in the Swiss Alps, 

monodomous colonies had larger nests than polydomous colonies (Table. 5.2, Fig. 

5.1d). To set the results of these case studies in a broader context, in the Appendix 

section of this thesis, I report a systematic review conducted to investigate the 

relationship between domy form and nest size in red wood ants. 

 

Limitations and Future Work 

Limitations of this thesis arose from the limited time frame, budget and labour force, 

and primarily concern two features of this thesis: limitations on the methods of nest 

size estimation and the observation-based nature of the studies.  

Methodological Limitations 

Firstly, I mainly used mound volume method to estimate nest size and colony size of 

wood ants; mound volume of the nest was the actual parameter being tested. We 

cannot rule out the possibility that nests with similar worker population may build 

their nest mounds in different shapes under different environmental conditions. In 

Chapter 4 and 5, nests in colder environments (either in shadier areas or with higher 

altitudes) may construct higher mounds (Sudd et al., 1977), thus resulting in larger 

mound volume. In addition, the mound volume method was also established on one 

population and at one time of one year (Chapter 2). However, in Chapter 3, mound 

volume indeed was also highly correlated to worker population (by After-Disturbing 

method) for both monodomous F. lugubris and polydomous F. paralugubris (Fig. 

3.2). Therefore, mound volume can be used to estimate worker population of a nest 
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in different populations. In the systematic review study, although the fitted 

relationships between mound volume and worker population from the two formulae 

(one from the Longshaw Estate in UK, the other from the Swiss Jura Mountains) are 

not the same, the difference between these formulae is in the intercept but not in the 

slope. This means that an increase in mound volume corresponds to a similar 

increase in worker population across different sites. With a limited time frame, 

mound volume was the only practical choice to obtain the required sample size, and 

it did function as an estimation of nest size with the best balance between effort, 

accuracy and time consumed. To clarify the effects of using mound volume, both 

mound volume method and the more accurate After-Disturbing method could be 

used simultaneously for future work, given a sufficient time frame and labour force. 

For example, comparing the nest size estimations from both methods can reveal 

whether nests with similar worker population may build higher mounds in shadier 

areas or at high altitudes to reach a smaller surface-to-volume ratio for better thermal 

conservation in order to cope with colder environments.     

Observation-Base Studies Limitations 

The studies in this thesis are principally observational. In Chapter 4, although 

temperature was suggested as the main mediating factors between canopy cover and 

nest size, we still cannot completely separate the effects of temperature and food 

resource availability based on current observational data. However, the study is the 

first investigation specifically and systematically conducted for the relationship 

between canopy cover and nest size of wood ants. Given a longer time frame, budget 

and labour force, follow-up studies could include manipulation of canopy cover or 

food resource availability. For nests located in open areas, shelters could be 

constructed capping some nests, or extra food resources could be provided. For nests 



125 

 

in shadier areas, heaters could be set up as extra heat sources, or some foraging trails 

could be blocked. Nest size estimation (worker population) could be performed every 

year or even every season on both experimental and control groups. The differences 

on nest size and colony size between these groups are very likely to be observed after 

several years because the development process of nest size might be slow.  

Just as the Chapter 4 is the first study for canopy cover and wood ant nest size, the 

study in Chapter 5 also contributes the first intra-specific evidence of Bergmann’s 

rule applying to the relationship between altitude and ant colony size. This 

investigation demonstrates the important role of microclimate for future geographic-

scale studies. The manipulation of canopy cover and food resources described above 

could be performed across altitudes. Again, given a sufficient time frame, budget and 

labour force, follow-up studies could involve reciprocal transplants across altitudes 

or common garden experiments, where nests from various altitudes are transplanted 

in a controlled environment. With these manipulations, we could probably clarify 

whether the geographic difference is based on thermal plasticity or local adaptation. 

To conclude, although the case studies in this thesis are generally observation-based, 

this is an important first step to reveal ecological patterns. Subsequent studies can be 

designed specifically to identify probable underlying mechanisms.  

Other Future Work 

Other aspects of future study could involve the application of Bergmann’s rule to 

altitude and the body size of social insects. Heinze et al. (2003) showed a trend of 

larger body size in high altitudinal populations (Table 5.1). However the data in that 

study were only from two high-altitude populations which had considerably colder 

climate than expected from their latitude. Therefore, Bergmann’s rule has not really 



126 

 

been studied intra-specifically on body size along altitude in social insects. In 

Chapter 3, body size seemed to respond more sensitively to the change of a small 

altitude range than colony size did. Given that social insects have two levels of 

organisation, an investigation including both fundamental characteristics, body size 

and colony size, may reveal whether there is a trade-off or additive effect of these 

two levels of organisation on total biomass during the environmental change. 

Future studies may also be able to broaden this question to all species in the red 

wood ant group. Studies in this thesis find intra-specific (or effectively intra-specific) 

patterns in two very closely-related red wood ant species. Although inter-specific 

studies are considered to be weaker than intra-specific studies in morphometric 

analyses (Shelomi, 2012), inter-specific studies would be required to reveal whether 

the patterns (colony size variations with altitude and canopy cover) we found are 

general, at least within a highly related group. Different species of red wood ants 

occur in different types of forests, for example, from open to deep or from young to 

old woodlands (Punttila, 1996; Kilpeläinen et al., 2008; Punttila & Kilpeläinen, 

2009), or from lowlands to mountains (Hågvar, 2005; Glaser, 2006; Bernadou et al., 

2015). However, some species have overlapping distribution. The species in the red 

wood ant group also have similar ecological roles. Inter-specific studies regarding 

canopy cover or/and altitude across the whole group may further reveal the 

differentiation of their ecological roles in the forest ecosystem.  
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Conclusion 

Climate change is probably the most momentous ecological and environmental issue 

of global concern. The impacts of climate change include alterations in species 

distribution and abundance, consequent effects on ecosystems and biodiversity 

(Parmesan, 1996; Hughes, 2000; Smith & Smith, 2003; Forero-Medina et al., 2011). 

Rising temperatures is one of the main and general predictions of climate change 

(Smith & Smith, 2003). Temperature is the mediating factor which usually links 

climate change and altitude together. Climate change has different effects across this 

geographic feature (Diaz et al., 2003; Beniston, 2006; Parmesan, 2006). For plants 

and many ectotherms, temperature has a profound impact on many functions relating 

to an organism’s size, such as metabolic rates and rates of gas exchange (Atkinson, 

1994). Therefore, climate change may affect animals through impact on body size 

mediated by rising temperature (Smith et al., 1995; Hunt & Roy, 2006).  

In this thesis, two accurate methods were firstly developed and demonstrated to be 

effective for estimating mound-building red wood ant nest/colony size, which can be 

considered the body size of a colony. Canopy cover effects were specifically 

investigated for their impacts on nest size and colony size of F. lugubris. 

Temperature was suggested to be one of the mediating factors between canopy cover 

and nest size. Bergmann’s rule was then demonstrated to apply to total colony size 

and nest size of two red wood ant species across altitude, when canopy cover was 

controlled for. The small-scale factor (canopy cover) seemed to have a more 

important effect than a large-scale geographic factor did in determining a significant 

characteristic of an animal.  
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Montane species are greatly influenced by global climate changes which may result 

in impacts including population decrease, altitudinal range shift, and even species 

extinction (Pounds et al., 1999; Walther et al., 2002). The wood ants of the Formica 

rufa group are protected in many European countries due to their beneficial 

importance for woodlands (Bernasconi et al., 2011). Therefore, understanding both 

large-scale geographic and local effects on the features and organisation of a wood 

ant colony has implications not only for predicting how they respond to 

environmental changes but also for understanding the broader effects of climate 

change on these ants and the forest ecosystem. 
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Appendix – Polydomy and Nest Size 

 

Introduction 

The individual and the colony are two levels of organisation for social insects. Some 

ant species have a nesting strategy named polydomy: a single colony can be spread 

into several spatially separated but socially connected nests (Debout et al., 2007; 

Ellis & Robinson, 2014). The nest, an extra level of organisation for a polydomous 

colony, may also act as a unit of selection (Debout et al., 2007). In the red wood ant 

group, gyny (multi-queen or single-queen) and domy (multi-nest or single-nest) are 

associated (Ellis & Robinson, 2014): monodomous colonies are usually monogynous, 

and polydomous colonies are always polygynous. Polygyny (one colony with 

multiple queens) is correlated with larger colony size in ants (Boulay et al., 2014). A 

polydomous colony also can increase total colony size through increasing nest 

number to overcome the constraints on increasing size for a monodomous colony 

(one colony with only one nest) (Robinson, 2014). The question therefore arises: is 

there a trade-off between domy and the size of each nest? Or alternatively, can a 

polydomous colony increase total colony size by increasing nest number?  

Interestingly, nesting strategy is flexible within species in the red wood ant group. 

For example, F. aquilonia, F. lugubris and F. polyctena have been recorded as 

polydomous in some areas but monodomous in others (Ellis & Robinson, 2014). This 

flexibility also provides an opportunity to investigate colony-level organisation intra-

specifically. In this systematic review study, I therefore aimed to study the 

relationship between domy and nest size by investigating my data and of those from 

previous studies. In addition, populations in the same geographic region would be 
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expected to be more closely related. Considering possible effects from population 

phylogeny, I therefore also included geographic region as a factor in the analysis. 

 

Materials and Methods 

Data Collection 

To collect a dataset of domy and nest size for red wood ant species, I conducted a 

search of public databases (Web of Science, Google and Google Scholar) to scan the 

scientific literature. The name of each ant species (F. lugubris, F. polyctena, F. 

aquilonia, F. rufa, F. pratensis and F. paralugubris), the terms of domy (Monodomy 

or Polydomy), and the terms of nest size (Nest Size, Colony Size, Worker Population, 

Nest Volume and Mound Volume) were used as keywords. I included the data in my 

dataset if the literature contained all information of: sampling region, sample size, 

domy and nest size for a specific red wood ant species. Some data were 

complemented by personal communications from the authors (see Table 6.1 for more 

details on the procedure of literature search). Among red wood ants, F. lugubris is 

one of the most widely-distributed and well-studied species. Only the dataset of F. 

lugubris included sufficient data on both polydomous and monodomous populations 

for statistical analysis (Table 6.1). 
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Table A.1. Sources of nest size data on red wood ant group, their regions and the 

methods used in the studies. 

Species Domy Region Method n Reference 

F. lugubris 

Polydomous 

British Isles M-V 364 Sudd et al. (1977) 

British Isles M-V 197 
Chen and Robinson 

(2014) 

British Isles 

M-V  

(Real 

Counting) 

16 

(11) 

Chen and Robinson 

(2013) 
a
 

British Isles M-V 55 Borkin et al. (2012) 
b
 

Mainland  

Europe 
M-V 286 

Y.-H. Chen, Unpublished 

data (Chapter 5) 

North  

America 
M-V 93 Storer et al. (2008) 

c
 

Monodomous 

Fennoscandia M-V 1 Kilpeläinen et al. (2008) 

Mainland  

Europe 
M-V 26 

Y.-H. Chen, Unpublished 

data (Chapter 3) 

Fennoscandia M-V 58 
Punttila and Kilpeläinen 

(2009) 
d
 

British Isles MRR  5 Breen (1979) 

F. polyctena 

Polydomous 

Fennoscandia M-V 7 Kilpeläinen et al. (2008) 

Fennoscandia M-V 12 
Härkönen and Sorvari 

(2014) 
b
 

Fennoscandia M-V 12 
Punttila and Kilpeläinen 

(2009) 
e
 

Monodomous Fennoscandia 

MRR 

forager, 

M-V 

1 Rosengren (1977) 

F. aquilonia Polydomous 

Fennoscandia M-V 60 Laakso and Setälä (1997) 

Fennoscandia M-V 358 Kilpeläinen et al. (2008) 

British Isles M-V 89 Borkin et al. (2012) 

Fennoscandia M-V 302 
Punttila and Kilpeläinen 

(2009) 
e
 

F. rufa Monodomous 

Fennoscandia M-V 4 Kilpeläinen et al. (2008) 

Fennoscandia M-V 15 
Punttila and Kilpeläinen 

(2009)
 d

 

F. pratensis Monodomous Fennoscandia M-V 2 
Punttila and Kilpeläinen 

(2009)
 d
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n = number of nests in the literature; M-V: measurement of mound volume (usually 

as semi-ellipsoid) or dimensions of mound (two diameters and height); MRR: mark-

release-recapture method; 
a
 with both real counting and mound volume data (see 

Chapter 2), considering random sampling, the latter was used; 
b
 complemented by 

personal communications from the authors; 
c
 with conical volume (converted to 

semi-ellipsoid); 
d
 only mentioned as monogynous (very likely to be a monodomous 

population); 
e
 only mentioned as polygynous (very likely to be a polydomous 

population). 

 

Nest Size Conversion 

Most published studies contained only the nest mound dimensions (either volume or 

diameters and height; Table 6.1) because worker population counts are difficult in 

red wood ants. According to previous study (Chapter 2: Chen & Robinson, 2013) and 

unpublished data (Chapter 3: preliminary test, see Table 3.2), worker population of a 

red wood ant nest is highly associated with its mound volume. I therefore used two 

alternative formulae in order to convert mound dimension data into estimated worker 

population. The first formula was based on the data on F. lugubris and F. 

paralugubris collected in the Swiss Jura Mountains in 2012 (Chapter 3). The second 

formula was based on the data on F. lugubris collected in the Longshaw Estate, UK 

in 2012 (S. Ellis, personal communication). In both formulae, nest size (worker 

population) was estimated by After-Disturbing method (a mark-release-recapture 

method; Chen & Robinson, 2013) and mound volume was calculated as a semi-

ellipsoid by two diameters and height. Both nest size and mound volume values were 
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transformed by Log10 to normalise the distributions. Linear regression models were 

used for the relationship between worker population and mound volume. 

Formula 1: Log10 Worker Population = 0.6374 + 0.6435* Log10 Mound Volume (cm
3
) 

(F = 129.15, P < 0.001, r2
 = 0.77, n = 41) 

Formula 2: Log10 Worker Population = 1.7634 + 0.4980* Log10 Mound Volume (cm
3
)  

(F = 6.62, P < 0.05, r2
 = 0.42, n = 11) 

These two formulae differ in the intercept (regression model, t = 3.34, P < 0.01, n = 

52). However, there is no significant difference in the slopes (t = 0.94, P = 0.35) of 

two formulae. Although Formula 1 was more precise (better fitted model with higher 

r2
 value) than Formula 2, it did not mean that the former can better predict the 

accurate value of actual worker population. In order to compare the accuracy of these 

Formulae, I used the data from our previous study (Chapter 2: Chen & Robinson, 

2013) which contained both mound volume and real worker population counts. The 

two Formulae were used to generate estimated values of worker population from the 

mound volume data in Chapter 2, then the estimated worker population values were 

compared with the real counting of worker population. Although Formula 2 had 

lower r-square value than Formula 1 did, the estimated worker population converted 

by Formula 2 was closer to the real counting value of worker population. I thus chose 

Formula 2 to convert nest size data for the following analyses. 

Statistical Analyses 

If both worker population data and mound volume data were present in the literature, 

the former were used for the analysis of nest size. All nest size data were Log10 

transformed for further analyses. Populations from continental Europe were 
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separated into Fennoscandia and Mainland Europe groups. Overall, regions of the 

populations which the data were collected from were divided into four groups: North 

America, the British Isles, Fennoscandia and Mainland Europe. I used two-way 

ANOVA to test whether the region and the domy of the population have effects on 

the mean nest size of F. lugubris. Sample size of each population (how many nests 

contribute to the nest size value in the literature) was used to give different weights 

to each population-level data point. Tukey’s HSD was used for post-hoc comparisons. 

Statistical tests were performed using JMP package (version 6.0.0; SAS institute, 

Cary, NC, USA).  

 

Results 

I obtained nest size data on six populations of polydomous and four of monodomous 

F. lugubris from published literature, personal communications with authors and 

unpublished data (Table 6.1, Fig. 6.1). Polydomous and monodomous populations of 

F. lugubris did not significantly differ in nest size (F1, 9 = 0.32, P = 0.60; overall 

ANOVA model: F4, 9 = 7.99, P < 0.05, sum weights = 1101). Populations of F. 

lugubris in different regions had significantly different mean nest size (F3, 9 = 10.45, 

P < 0.05, Fig. 6.2): nest sizes of both populations in North America and Mainland 

Europe were significantly larger than that of the populations in the British Isles; 

populations in North America, Mainland Europe and Fennoscandia did not 

significantly vary in nest size; nest sizes of populations in Fennoscandia and the 

British Isles were not significantly different.  
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Figure A.1. Estimated nest size (worker population) of Formica lugubris of each 

population. The number above each bar indicates sample size of each study. Error 

bar shows 1SE; B.I.: the British Isles; M.E.: Mainland Europe; N.A.: North America; 

F.: Fennoscandia. 

 

Figure A.2. Log10 estimated nest size 

(worker population) of Formica 

lugubris in various geographical 

regions. Different letters indicate 

significant difference among groups. 

Error bar shows 1SE; B.I.: the British 

Isles; M.E.: Mainland Europe; N.A.: 

North America; F.: Fennoscandia. 
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Discussion 

If there was a trade-off between nest size and nest number, we would expect that 

polydomous populations had smaller nest size. However, I find that monodomous 

and polydomous populations did not differ in nest size. Therefore there is no 

evidence for a trade-off between nest size and nest number. The finding from this 

systematic inter-population review contrasts with our previous results of intra-

population studies, which show that polydomous colonies with more nests tended to 

have smaller nests (Fig. 4.6) and polydomous colonies had smaller nests than 

monodomous colonies did (Table 5.2, Fig. 5.1d). The “domy form” therefore may 

not have a universal effect across populations, or there may be other factors which 

play more important roles than domy form in determining nest size at the population 

level. 

Instead of the domy effect, nest size showed a geographical inter-population 

variation. Three reasons could cause these nest size differences found in this study. 

The first reason arose with the methods used for estimating nest size. I applied a 

single formula for all populations to convert mound volume into worker population 

data. It is possible that this formula was only accurate to convert those data for the 

populations of the British Isles because the formula was derived from a study in 

England. Although I converted the data to an estimate of worker population, in the 

main I was actually in effect comparing mound size between populations (only one 

study had worker population data). Our two formulae, which were used to convert 

mound volume to worker population, only differ in the intercept but not in the slopes. 

This means that nests with similar worker population from two different regions 

(populations) may build different mound sizes. However, the results also mean that 

mound volume predicts similar increasing trends of worker population with 
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increasing mound volume in two different populations. Using population-specific 

formulae which are based on each population would be expected to provide more 

accurate nest size values. However, I did not have both mound volume and worker 

population data of the populations in Fennoscandia and North Europe, so applying 

one formula consistently was the best remaining option to avoid bias.  

Secondly, the variation in nest size across populations may be associated with the 

phylogeny of these populations. From a phylogenetic perspective, populations in the 

British Isles are closer to the populations in Fennoscandia than to the populations in 

other regions (Pamilo et al., 1992). The results of this study also match this 

phylogenetic pattern: there was no difference between the populations in the British 

Isles and Fennoscandia in nest size. In addition, the F. lugubris population in North 

America was transported for introduction from Italy (Mainland Europe) into Quebec, 

Canada in the 1970s (Finnegan, 1975). There was also no difference between the 

populations in Mainland Europe and North America groups in nest size. It is very 

likely that nest size, a fundamental characteristic of ant colonies, has some genetic 

basis among these populations. 

Finally, as demonstrated in Chapters 4 and 5, both geographic factors and local 

microclimate impact wood ant nest size. On one hand, these populations are 

distributed across a large geographic scale (latitude: 46.3-63.1
o
N, altitude: 200-2000 

metres). The climate and ecological conditions vary in the regions of these 

populations. However, the geographic information from literature was not sufficient 

for further analysis of these effects. On the other hand, local habitat is another 

considerable factor. Taking the populations of our previous studies as examples; the 

conditions of habitats differ between the British Isles (Scotland and England) and 

Mainland Europe (the Swiss Jura Mountains and the Swiss Alps). According to our 
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observation, woodlands are more fragmented in Scotland and England than in 

Switzerland. Fragmentation results in more edge areas of forests. Canopy cover data 

also support our observation: nests in the Swiss Alps were located in areas with 

higher canopy cover (Canopy cover = 75 ± 16%, Mean ± 1SD, Chapter 5, n = 426) 

than those in England (Canopy cover = 59 ± 15%, Mean ± 1SD, Chapter 4, n = 201) 

(Kruskal-Wallis test: χ2
 = 135.49, P < 0.001). In Chapter 4, we found that nests 

located in shadier areas were larger than those in open areas. The results of this 

review study conform to our empirically observed relationship between canopy cover 

and nest size: nests of the populations in the British Isles were smaller and located 

with lower canopy cover, whereas those in the Swiss Alps were larger with higher 

canopy cover. 

Briefly summing up, we suggest three reasons which could cause the geographical 

inter-population variation of nest size: firstly, I applied a single formula (from one of 

the populations in several regions) for all populations to convert mound volume into 

estimated worker population; secondly, the variation in nest size across populations 

in different regions is very likely associated with the phylogeny of these populations; 

finally, the variation in nest size across populations may be linked to the differences 

of large-scale and/or small-scale environmental factors of different regions. However, 

with the data I collect from both my studies and literature, it is not possible to 

achieve any firm conclusion; more data would be needed. A global database for the 

biodiversity of ants has been curated by Dunn et al. (2007). Ant studies that focused 

on canopy cover are included in the database. To include some basic features of ant 

colony (e.g. colony size) would be useful for future studies on the relationships 

between environmental factors and characteristics of ant populations.  



139 

 

In addition to the effect of domy form on nest size among populations, the 

investigation presented in Chapter 5 includes an intra-population relationship 

between domy form and nest size. For F. lugubris in the Swiss Alps, I defined it as a 

polydomous population in this systematic review according to two factors. Firstly, 

more than two thirds of the nests were polydomous (193 of 286 nests). Secondly, we 

used the functional definition of polydomy in which the nests are defined as the same 

colony if they are linked together by trails (Heller & Gordon, 2006; Gordon & Heller, 

2012). The functional definition is stricter than the other commonly used definition 

in which the individuals from the same colony have non-aggressive communication 

(Pedersen & Boomsma, 1999). In the Swiss Alps, those nests without any trail linked 

to other nests were defined as monodomous colonies by the functional definition. 

According to the aggressiveness definition, if those functionally-defined 

monodomous nests were not aggressive to the nearby one/s, they may belong to the 

nearby nest/s to form a polydomous colony.  

This systematic review study shows that domy form did not have effect on nest size 

of F. lugubris across populations. This result contrasts with the finding of a previous 

intra-population study which shows that monodomous colonies had larger nest size 

than polydomous colonies did (Chapter 5). Instead, this review study shows that the 

populations in different geographic regions differed in nest size. The variation 

pattern in nest size mostly conforms to the phylogeny between these populations. 

The effects of environmental factors (in both geographic and local scales) may also 

be the reasons for the inter-population differences in nest size. 
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