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Executive Summary 
 

A major concern of the Health and Safety Executive (HSE) is the hazard surrounding the 

storage of high level liquid waste (HLLW).  Targets have been put in place to encapsulate all 

of this waste in a borosilicate glass matrix as soon as possible through Sellafield’s Waste 

Vitrification Plants (WVPs).  The efficiency of a WVP is reduced by blockages which form in 

the off-gas system, causing the plant to be shut-down for significant periods of time.  This 

thesis is focussed on understanding the chemistry and mechanisms by which dust is carried 

from the calciner to the off-gas system. 

 

Lithium nitrate is currently used as a process aid to reduce the amount of dust carried over to 

the dust scrubber on WVP, however, the mechanisms by which it achieves this were not fully 

understood.  The first series of experiments, therefore, were set up to determine the effects of 

lithium nitrate on the reactions of metal nitrates found in HLLW, at temperatures thought to 

be experienced in the calcination process (Chapter 5).  The products formed from the reaction 

of the component nitrates found in the HLLW were also found to be significantly affected by 

both time and temperature.  On timescales relevant to the calcination process, the reaction 

between Mg and Al nitrates, two of the most abundant HAL components, formed MgO and γ-

Al2O3 at 550 oC, via an unidentified Al containing intermediate.  At longer reaction times, 

however, MgaAl(OH)3+2a-c(NO3)c.xH2O was formed.  On addition of LiNO3, MgAl2O4 was the 

major reaction product, suggesting LiNO3 acted as a molten salt. 

 

The reaction between phosphomolybdic acid (H3PMo12O40.xH2O, PMA) and zirconyl nitrate 

yielded Zr(MoO4)2 (a primary component of the POG blockage material) above 350 oC, with 

no reaction occurring below this temperature.  On addition of LiNO3, Li2Zr(MoO4)3 was 

formed via an intermediate (Li2MoO4), which was isolated from the reaction at 350 oC.   

Reaction time had no significant effect on these reactions. 

 

Experiments to determine the effects of LiNO3 on the chemistry and dust generation 

properties of full Highly Active Liquor (HAL) simulants were carried out (Chapter 6).  On 

freeze drying, Caesium phosphomolybdate (Cs3PMo12O40, CPM), Mg3RE2(NO3)12.24H2O and 

Al(NO3)3.9H2O were identified as the crystalline products found in Blend HAL simulant, with 

Mg(NO3)2.6H2O also present in Magnox.  After calcination for 10 minutes at 350 oC, 

Mg3RE2(NO3)12.24H2O, and Mg(NO3)2.6H2O in Magnox HAL simulant, were the only 

crystalline products remaining, with decomposition occurring between 380-400 oC.  Poorly 

crystalline CeO2 was formed above 450 oC.  Addition of LiNO3 to Blend HAL simulant 

resulted in formation of BaCeO3 at 550 oC, again implying LiNO3 acted as a molten salt. 
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Using the small scale calciner, dust and calcine samples of varying particle sizes were 

collected under a range of calcination conditions.  During these experiments, it was found that 

low temperatures, the addition of LiNO3 and high feed rates resulted in a reduction in the 

normalised amount of dust generated.  The mechanism by which this dust was formed 

appeared to occur first by the abrasive breakdown of larger calcine particles, which created 

the majority of the dust, followed by carry-over of the smallest calcine particles, making up a 

minor fraction of the dust. 

 

Using a short simulant, the temperatures experienced by the calcine in the small scale calciner 

were determined (Chapter 7).  These were found to be highly dependent on the particle size of 

the calcine, as only the outer surface of a calcine particle would have come into contact with 

the heated calciner tube.    

 

To allow the collection of dust particles generated on the small scale calciner, which was not 

possible in historic studies, a dirt trap was designed and installed.  Chapter 8 details the design 

specification along with installation and experimental issues encountered during this project.  

The commercial benefits of maintaining the capacity to produce calcine at lab scale and the 

impact this project has had on the calciner rig are also outlined. 

 

The major outcomes of this project were the identification of a range of species present in the 

HAL simulant, both before and after calcination, the temperatures experienced in the 

calcination process and the mechanism by which the dust is created and carried to the off-gas 

system.  These can be used to help model the processes which occur in the calcination process 

on WVPs and allow optimisation of set-points to minimise dust carry-over to the off-gas 

system, therefore reducing downtime.  By carrying out further experiments on the VTR, the 

temperatures experienced on the full-scale process can be better determined. 
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1. Introduction 
 
1.1 Issues with New Nuclear Build 

 

With the price of fossil fuels rising and the increasing concerns over CO2 emissions 

contributing to global warming, the nuclear option is becoming more viable as a source for 

the production of electricity.  The nuclear industry supplies approximately 15 % of the world 

electricity, and around 13.5 % of that in the UK as of 20081.  This number is falling in the 

UK, as most of the reactors were built 40-50 years ago, and are in the process of being 

decommissioned.  The future for nuclear energy, however, looks bright, as proposals are 

being drawn up for new possible reactor sites in the UK, and the government are behind the 

advancement of nuclear technologies (BERR, 2008). 

 

The major issue with the advancement of nuclear power is the production of nuclear waste.  

The waste is hazardous and must be contained in a suitable manner.  It must be proved that 

both future and legacy waste can be treated, stored and disposed of in a suitable manner, in 

order to build public confidence in nuclear power.  This will allow new build, and final 

disposal solutions, to progress with the backing of the public to fulfil future energy needs. 

 

When HLW waste is in liquid form it is highly mobile, and therefore if released can be 

transported to the surrounding environment.  As the waste is highly active, it also produces 

heat, causing the liquor to boil if not cooled.  If a fault with the cooling system was to occur 

for an extended period of time, this could cause boiling of the liquor releasing radioactive 

gases to the atmosphere.  These storage tanks are one of the greatest concerns of the Health 

and Safety Executive (HSE),  hence the UK government, through the Nuclear Installations 

Inspectorate (NII), have put targets in place to reduce high level liquid waste (HLLW) stocks 

to set levels by 2015 (Bradshaw et al., 2007). 

 

1.2 The Arising of High Level Liquid Waste 

 

Nuclear fuel rods are comprised of UO2, of which approximately 5 % is 235U and the 

remainder 238U.  When a uranium-235 atom fissions, it splits into two daughter products.  

Some of these daughter products poison the fuel, which causes fewer fission reactions to 

occur. These poisons reduce the efficiency of the reactor.  Once the efficiency drops to an 

unviable level, after approximately three years, the fuel is removed from the core and replaced 

with new enriched fuel (IAEA, 2006).   

 

 

                                                           
1 Taken from http://www.world-nuclear.org, 27th September 2009.  

http://www.world-nuclear.org/
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The spent fuel, which has been removed from the reactor, will have a composition of 

approximately 1 % 235U, 95 % 238U, 3 % fission products and 1 % 239Pu.  After a period of 

cooling, this fuel is dissolved in nitric acid and reprocessed to recover the uranium and 

plutonium from the fuel using the PUREX process (World Nuclear Association, 2008).  The 

remaining solution containing the fission products is classed as high level liquid waste and is 

concentrated and stored in underground tanks, which are internally cooled.  At Sellafield, 

when the waste has been cooled for a sufficient period of time, it is transported to the waste 

vitrification plant (WVP) to be immobilised in glass. 

 

1.3 Immobilisation of High Level Liquid Waste 

 

The HLLW is solidified by passing through a rotating kiln known as a calciner.  This solid is 

mixed with borosilicate glass frit in a ratio of approximately 1:3 in a melter where they react 

to produce the immobilised glass product.  The glass is poured into a canister which is welded 

shut, then decontaminated and sent to storage (this is discussed in more detail in section 

2.3.2). 

 

In the calciner, small particles of HLW are created and drawn into the off-gas system.  The 

process of gases containing the particles being drawn into the off-gas system is driven by the 

negative pressure under which the vitrification system runs, which ensures all leakage in the 

system are in-leakages, so there is no risk of releasing radioactive particles to the 

environment.  This air intake pushes about 20 litres of air per minute through the calciner 

picking up these small particles transporting them to the dust scrubber (Hollebecque, 2008).  

Here the particles are re-dissolved in boiling nitric acid and recycled to the calciner (this is 

discussed in more detail in section 2.3.2.3). 

 

It is in the dust scrubber that a major cause of plant downtime occurs.  Blockages of pressure 

tapings and the recycle feed back to the calciner are major problems in the process, and can 

cause the plant to be shut down.  As the plant deals with highly radioactive materials, the 

process is highly automated and shielded behind thick concrete and lead glass.  To remove 

blockages in the dust scrubber master slave manipulators (MSMs) must be used to clear them.  

This project was designed to reduce blockage formation in the dust scrubber, by 

understanding the chemical processes from which they originate. 
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1.4 Issues with the Sellafield Vitrification Process 

 

Lithium nitrate is added to the HLLW as an aid in the calcination process.  It is well 

documented that lithium nitrate acts as a binding agent in the dried calcine, increasing the 

particle size and therefore reducing carry-over to the off-gas system (Magrabi, 1981).  What is 

not understood, however, are the processes which take place in the calciner that cause this 

binding effect to happen.  Lithium is also responsible for better homogeneity of the final glass 

product when added to the calciner, as the amount of refractory oxides, containing primarily 

iron and aluminium, are significantly reduced (Brace, 2005b).  By understanding the 

interactions of lithium nitrate with other compounds present in the HLLW, it will help 

provide a way of increasing the productivity of the WVP. 

 

Analysis of the problem compounds which cause the blockages in the dust scrubber has been 

carried out, and it has been found that zirconium molybdate and ruthenium dioxide are the 

main causes.  Both of these compounds have low solubility in nitric acid, and therefore 

precipitate in the dust scrubber liquor.  The effects of ruthenium on the WVP process are well 

researched, but not fully understood, as it has been known as a major problem for many years, 

because of its high volatility (Morris and Haig, 2010; Sarsfield et al., 2008; Moss and Haile, 

2004).   

 

It is not fully understood where in the process zirconium molybdate formation takes place.  It 

does precipitate in the HLLW, in the highly active storage tanks (HASTs) and in the dust 

scrubber.  The formation of zirconium molybdate is due to the transformation of caesium 

phosphomolybdate in the presence of zirconium in solution.  It is not clear whether this 

transformation takes place in the solid state in the calciner.  This reaction was investigated to 

see if it can be inhibited or slowed to reduce the levels present in the dust scrubber.  

As the major issues have been identified, a series of experiments were devised to test the 

effects of lithium nitrate in the calciner, in order to better understand the processes which take 

place.  The main objective of this project was to reduce the amount of blockages which occur 

in the WVP dust scrubber.  This will help improve the efficiency of the process and thus 

mitigate the risks of HLLW over a shorter time frame. 
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2. Literature Review 
 

2.1 INTRODUCTION 

 

Nuclear fission can be defined as the splitting of a large nucleus, usually uranium or 

plutonium, into smaller nuclei with the simultaneous release of energy.  It was discovered and 

named by physicists Lise Meitner and Otto Frisch in 1939 after initial experiments carried out 

by Otto Hahn and Fritz Strassmann.  The experiments carried out were designed to try and 

extend the periodic table beyond uranium (the heaviest element known at the time).  This was 

carried out by bombarding the element with neutrons, causing a neutron to bind and create a 

new element.  This worked for most elements up to uranium.  Uranium was found to break 

down into smaller elements, discovered by tracing an increase in barium concentration 

(Bowersox, 2012).  These results were sent to Meitner who postulated the process of nuclear 

fission occurring.  This phenomenon is now the basis for the production of nuclear energy 

throughout the world. 

 

Enrico Fermi, was amongst the first people to realise the significance of the discovery of 

nuclear fission.  It was under his supervision that the first artificial nuclear reactor (Chicago-

Pile 1) was constructed in 1942 (Greenwood and Earnshaw, 2002).  This used graphite blocks 

as a moderator, with both pure uranium metal and uranium dioxide pellets as fuel.  The 

reactor was controlled by inserting cadmium rods to act as a neutron absorber.  The cadmium 

rods were slowly removed, allowing the reactor to go critical, and a self-sustaining reaction to 

occur.  This ran successfully for 30 minutes, running at a power of 0.5 Watts, before it was 

shut down by re-inserting the rods.  This experiment proved it was possible to create and 

sustain energy production by harnessing the power of the atom.   

 

2.1.1 The nuclear reaction 

 

Nuclear fission is the splitting of nuclei of heavy atoms by the absorption of a neutron causing 

it to become unstable.  Upon splitting, a large amount of energy is released, which is used to 

create steam to drive a turbine and generate electricity.  The reaction is self-sustaining, as 

several fast moving nuclei are created during the fission reaction (Figure 2.1), each of which 

can be absorbed by another atom, causing the fission reaction to continue.   
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Figure 2.12 – Schematic diagram of the nuclear fission process 
 

Fission of uranium typically yields two daughter nuclides, termed fission products (Figure 

2.1).  These daughter nuclei form due to the high probability of asymmetric fission occurring.  

The fission products formed in nuclear waste reprocessing cover about a third of the periodic 

table, with atomic mass ranging from approximately 70 through to 165 (Figure 2.2).  These 

peak at around 90 and 140, meaning the fission reaction producing 141Ba and 92Kr is amongst 

the most common in the nuclear process (Bowersox, 2012). 

 

 
Figure 2.23 – Graph showing the atomic weight  

distribution of the fission products of 235U 

                                                           
2 Taken from http://www.atomicarchive.com/Fission/Fission1.shtml, 10th March 2010 
3 Taken from http://www.science.uwaterloo.ca/~cchieh/cact/nucfig/fissionyield.gif, 10th March 2010. 

http://www.atomicarchive.com/Fission/Fission1.shtml
http://www.science.uwaterloo.ca/~cchieh/cact/nucfig/fissionyield.gif
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During the fission reactions, different amounts of energy will be released.  The energy 

released follows according to the theory of relativity (E=mc2).  The energy released arises 

because the mass of the fission products and neutrons created in the fission process is 

minutely lower than the original atom.  The mass difference is not the same for each reaction, 

as different fission products are formed.  This loss of mass is responsible for nuclear fission 

producing energy, with many uranium atoms undergoing this process simultaneously.  It was 

calculated, and later proved experimentally, by Frisch that the energy released from this 

fission is 200 MeV (World Nuclear Association, 2010). 

 

235U is the element of choice for most nuclear reactors (239Pu is also used), as its nucleus is 

highly unstable, making it susceptible to fission.  In naturally occurring uranium deposits, 

235U only exists in 0.7 % abundance (Freundlich and Hedley, 1988).  It must therefore 

undergo an enrichment process to be a viable fuel source in most reactors, to about 3-5 % 235U 

(Freundlich and Hedley, 1988).  This allows a self-sustaining reaction to be maintained within 

the reactor.  The isotope ratio of the uranium used will depend on the design of the reactor. 

 

2.1.2 Reactor design 

 

The majority of the reactors which exist in the world today are light water reactors (LWR).  

This fact is largely due to the pioneering work done by the US navy in the development of 

this technology for submarine propulsion systems.  The first nuclear submarine (Nautilus) 

sailed for half a million miles over a 25 year lifespan with no problems occurring in the 

reactor (Oldham, 2004).  Due to this impeccable safety record, the first American commercial 

power-stations were based on this technology. 

 

LWRs use water, as both a moderator (slows down neutrons) and a coolant in the reactor’s 

core.  There are two types of LWR, the boiling water reactor (BWR) and pressurised water 

reactor (PWR).  In the BWR, steam is generated directly from the water in the core, and the 

radioactive steam goes straight to the turbines to produce electricity.  This is condensed and 

transported back to the core keeping the cycle going.  To minimise the release of radiation, 

the entire structure must be shielded, to the generator. 
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Figure 2.3 – Schematic diagram showing how a pressurised  

water reactor (PWR) is used to generate electricity  

(United States Nuclear Regulatory Commission, 2009) 

 

The PWR (Figure 2.3) runs on a two loop system.  The first loop involves the water in the 

reactor core being pressurised to stop the formation of steam.  This heated water is then 

passed through a heat exchanger, where the heat is transported to a secondary water system.  

This system is not pressurised, and the water transforms to steam and drives the turbine.  The 

condenser then cools the water and returns it to the cycle.  PWRs are advantagous as only the 

core and heat exchanger need to be shielded.  Any complication with the generators can 

therefore be fixed manually, and this is generally regarded as the easier option.   

 

Other reactor designs include the advanced gas-cooled reactor (AGR) and liquid metal cooled 

reactors (LMR).  These are based on the same principles as the PWR, but generally use 

graphite as a moderator, and either carbon dioxide (AGR) or a liquid metal (eg. sodium, lead) 

as the coolant within the core.  These will again pass through a heat exchanger where steam is 

produced in a secondary loop to produce electricity.  The first commercial power-station, 

Calder Hall (opened in 1956), was an example of a gas-cooled reactor, and paved the way for 

the next generation AGR. 

 

 

 

http://www.nrc.gov/reading-rm/basic-ref/teachers/pwr-schematic.html
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Due to the famous international disasters at Three Mile Island in 1979, and Chernobyl in 

1986, the safety of nuclear reactors is a major concern.  Along with the need for higher 

thermodynamic efficiencies and proliferation concerns, this has driven governments and 

nuclear bodies the world over to propose new generations of nuclear power-station 

(summarised in Figure 2.4).   

 

 
Figure 2.4 – The evolution of nuclear power stations  

(The Generation IV International Forum, 2008) 

 

The proposed Generation IV designs will have inherent safety features, which do not rely on 

the operators to trigger them.  These features rely on the material properties and stored energy 

in order to shutdown the reactor, rather than human intervention, if an emergency situation 

should arise.  For example, in a fast breeder reactor the coolant is a liquid metal.  When the 

core overheats, the cladding and fuel will thermally expand allowing more neutrons to escape 

from the core, so a reaction is no longer sustainable.  The liquid metal then acts as a heat sink, 

so even if the coolant system fails the core will be cooled (World Nuclear Association, 

2008a).  Generation IV Power-stations are expected to be in operation by 2030, improving the 

safety and efficiency of the nuclear industry. 
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2.1.3 Spent fuel reprocessing 

 

The uranium used in nuclear reactors is first processed and transformed into fuel rods.  These 

are encased in a cladding material which protects the fuel from corrosion, and keeps the 

fission products contained.  The fuel elements will generally have lifetime of between three 

and seven years due to the build up of neutron absorbing elements (poisons), which reduces 

the efficiency of the reactor (IAEA, 2006).  The fuel rods are placed in cooling ponds to allow 

the short-lived highly active species to decay.  There will still be an abundance of fissionable 

material left in the fuel rods once taken out of service, so fuel rods are reprocessed, in some 

countries, to recover these materials. 

 

The plutonium-uranium extraction (PUREX) system is the most recognised way to recover 

useful elements from used reactor fuel rods.  Firstly the cladding is mechanically removed, 

followed by dissolution in nitric acid.  The uranium and plutonium can then be removed by 

solvent extraction in a tributyl phosphate/kerosene mixture (Devolpi et al., 2005), following 

filtration to remove fine insoluble particles.  The remaining nitric acid contains the rest of the 

fission products, and is stored in stainless steel tanks until ready for vitrification and disposal. 

 

Other methods of spent fuel reprocessing involve the dissolution of the whole fuel rod, with 

the cladding.  This avoids mechanical processing, and therefore cuts out a step where nuclear 

waste would be produced.   

 

2.2 Nuclear Waste 

 

Commercial nuclear reactors are the main source of nuclear waste, although hospitals, 

universities and weapons decommissioning also contribute.  For this project, the main focus 

was on the processing of high level liquid waste (HLLW), formed from the reprocessing of 

the spent fuel.   

 

2.2.1 Classification 

 

There are 4 main classifications for radioactive waste in the UK (DEFRA, 2001; Wilson, 

1996), which are: 

 

 Very Low Level Waste (VLLW) – Wastes which can be safely disposed of with 

ordinary refuse, each 0.1 m3 of material containing less than 400 kBq of beta/gamma 

activity or single items containing less than 40 kBq (DEFRA, 2001).  Wastes of this 

type would include contaminated disposable gloves, hospital wastes etc. 
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 Low Level Waste (LLW) – Containing radioactive materials other than those 

suitable for disposal with ordinary refuse, but not exceeding 4 GBq per tonne of alpha 

or 12 GBq per tonne of beta/gamma activity (DEFRA, 2001).  Wastes can be 

accepted for authorised disposal by controlled burial.  University research equipment, 

building rubble and metals housing reactors are usually classified as LLW. 

 Intermediate Level Waste (ILW) – Waste with radioactivity exceeding the upper 

boundaries for LLW, but which do not need heating to be taken into account in the 

design of storage or disposal facilities (DEFRA, 2001).  The cladding for fuel cells 

and reactor core materials will have high levels of radioactivity, but are designed not 

to heat after the reactor is decommissioned, so will be classified as ILW. 

 High Level Waste (HLW) – Wastes in which the temperature may raise significantly 

as a result of their radioactivity, so this factor has to be taken into account in 

designing storage or disposal facilities (DEFRA, 2001). These are all associated with 

spent fuel rods and their reprocessing.  HLW is about 2 % volume of the total nuclear 

waste formed, but contains over 90 % of the radioactive materials formed in the 

nuclear industry (Wilson, 1996). 

 

2.2.2 Storage and disposal 

 

VLLW, due to its low activity, can be incinerated and placed in landfill sites.  No special 

disposal methods are required.  LLW is, however, monitored at specially designated landfill 

sites.  These forms of waste are not considered a threat to the surrounding environment due to 

the low levels of radiation that they emit.   

 

ILW and HLW are usually stored at the nuclear plant site, and are encapsulated in an inert 

medium (immobilised).  This media can be a range of different glasses, ceramics and cements 

depending on the properties required (Table 2.1).  This is a major area of research and 

development within the nuclear industry. 
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Table 2.1 – Properties of various waste forms and their uses in the immobilisation of 

nuclear waste (Donald et al., 1997) 

Wasteform 
Process 

Temp1 

Waste 

Loading2 
Economics3 

Current/Studied Applications 

Alkali 

Borosilicate 

Glasses 

High Int Int 
 Vitrification 

 High U and Pu wastes 

Alkali 

Phosphate 

glasses 

Int Int High 
 High actinide wastes 

 Pu wastes 

Clay-based 

Inorganics 
Low Int Low 

 Studied for high U, Pu 

and Zr wastes 

Cement Low Int Low  LILW encapsulation 

SYNROC High Int Int-High  Defence wastes 

Phosphate 

Ceramics 
Int Int Int-High 

 High lanthanide and 

actinide wastes 

Barium 

Aluminosilicate 
High Int Int-High  Limited HLW use 

Calcium 

Titanium 

Silicate 

V. High Int Int-High 

 CANDU waste 

 50% UO2 waste 

loadings 

Int = Intermediate, V. High = Very High 

1 Process Temp: Low, <200 oC; Int, 200-1000 oC; High, 1000-1250 oC; V. High, >1250 oC 

2 Waste Loading: Low, <10 %; Int, 10-25 %; High, >25 % 

3 Economics: Low, <Borosilicate glass; Int, Comparable to borosilicate glass;  

High, >Borosilicate glass 

 

At the Sellafield site, HLLW is stored in double walled stainless steel storage tanks shielded 

by concrete, known as highly active storage tanks (HAST’s).  These tanks are internally 

cooled to stop the waste from boiling, which could lead to leakages.  Due to the liquid nature 

of the waste, it is highly hazardous as it is corrosive and could lead to a breach from 

containment if not actively managed.  The tanks are closely monitored to ensure agitation and 

cooling mechanisms are in place to minimise the hazard, but the tanks are not suitable for 

long term storage.  To minimise this hazard, the waste is immobilised by the vitrification 

process.  The HLLW is pumped to the waste vitrification plant (WVP), where it is solidified, 

and incorporated into a glass matrix (see section 2.3).  The glass is poured into a container 

which is welded shut, and decontaminated before being placed in a shielded, convection 

cooled store (Bradshaw et al., 2007). 
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There is currently no permanent nuclear waste disposal facility in the UK, for several reasons.  

These include the positioning of this site, production of a safety case, and research to prove a 

safe method of disposal.  The current preferred option for disposal in the UK is the use of a 

deep geological disposal facility.  This would involve creating a series of tunnels between 

500-1000 metres below the surface, and placing waste canisters in a specially designed 

repository.  This would also be surrounded with further engineered barriers to stop radioactive 

elements being released to the surrounding environment (Figure 2.5).   

 

 
Figure 2.5 – A schematic of the proposed deep geological disposal route made by SKB in 

Sweden (Svensk Karnbranslehantering AB, 2006) 

 

One of the major problems is the leaching of radioactive elements into mobile ground water.  

Elements such as technetium have a long half life (215 000 years), and will form highly 

soluble anions (eg TcO4
-).  These should be contained so no bodies of water become 

contaminated.  This is the reason that engineered and natural barriers are important 

considerations when designing a nuclear waste repository.  The idea of the deep geological 

disposal facility came about due to this phenomenon, as at 500 metres down the ground water 

moves very slowly in certain environments, such as granitic rock (Rempe, 2008).   

 

2.3 Vitrification 

 

Glass making has been carried out for thousands of years, but only in the past 60 years has it 

been considered for the immobilisation of nuclear waste.  The major reasons for the choice of 

glass as a host material include (Marples, 1988): 
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 Most fission products are soluble in glass, so a homogeneous matrix is formed. 

 Flexible amorphous structure allows incorporation of a wide variety of oxidation 

states, atom sizes, bonding requirements. 

 High loadings (up to 50 %) of waste can be incorporated into the structure. 

 Glasses are inert materials so can withstand chemical attack and natural erosion 

which are important requirements for final disposal. 

 The processing and materials for manufacture are reasonably economical compared to 

other possible hosts. 

 The structure is unchanged by radiation effects. 

 

Alkali borosilicate glasses are used worldwide, as they have been the source of extensive 

study, so properties are well documented (Donald, Metcalfe and Taylor, 1997).  They have a 

reasonable processing temperature (1000-1100 oC), and can be easily modified to improve 

chemical resistance, mechanical strength, etc where required.  Other glasses such as 

phosphate and rare earth oxide glasses have been tested, but none can provide the low cost 

and high flexibility of the current systems (Donald, Metcalfe and Taylor, 1997). 

 

2.3.1 History of vitrification 

 

The first attempts to vitrify nuclear wastes into a glass product were carried out in the early 

1950’s in Canada using nepheline syenite as the starting material (Donald, Metcalfe and 

Taylor, 1997).  By 1958 a pilot plant had been constructed producing radioactive glass, to 

prove that the concept of vitrification was possible. 

 

Over the same period of time in the UK, natural soils were being investigated as base material 

for HLW glass production.  These however needed processing temperatures of over 1500 oC 

to produce a homogeneous product, so alternative glasses were investigated.  The 

investigation led to the development of the FINGAL (Fixation In Glass of Active Liquor) 

process.  The FINGAL process involved the calcining of the HLLW, melting and 

homogenising with the glass frit all taking place in a stainless steel crucible.  The crucible 

also served as the storage vessel for the glass, so no pouring mechanism was needed (Lutze 

and Ewing, 1988).   
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The crucibles in the FINGAL process could only hold about 50 kg of product, so 

subsequently this project had to be scaled up.  In 1975 the HARVEST (Highly Active Residue 

Vitrification Experimental Studies) process, which could produce batches of approximately 

1000 kg, was begun.  It was through these two processes that the identification of borosilicate 

glass as a good immobilisation host was identified.  The problems of caesium and ruthenium 

volatility, forming compounds which cause blockages in the off-gas system were also 

discovered at this time (Marples 1988).  These are problems which still exist today. 

 

By the early 1980’s, the French has developed a continuous vitrification route, named the 

atelier de vitrification de Marcoule (AVM) process.  British Nuclear Fuels Ltd (BNFL), now 

Sellafield Ltd, adopted this process for its commercial waste vitrification plant (WVP).  This 

process still exists today as the method of immobilisation for HLLW formed during the 

reprocessing of spent nuclear fuels. 

 

2.3.2 Processing 

 

In the AVM process (Figure 2.6), the calcination is carried out separately from the melting by 

passing the waste through a rotating kiln (calciner).  Any volatile elements, compounds and 

small radioactive particles are recycled by the primary off-gas system, to minimise the 

radiation released.  The secondary off-gas system is used to reduce the amount of NOx 

released to the atmosphere.  The dried and de-nitrated waste is then fed into the melter with 

the borosilicate glass frit, where homogenisation takes place.  The glass is then poured into a 

canister, a lid is welded on and the canister is decontaminated, before being taken to a 

temporary store on site.  A breakdown of the processes involved in each stage, is given below. 

 
Figure 2.6 – Schematic of the continuous AVM process used for vitrification of high 

level liquid waste (Courtesy of the National Nuclear Laboratory) 
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2.3.2.1 The Calciner 

 

The calciner is a rotating kiln which has a diameter of 0.3 metres and a length of ~4 metres.  It 

is elevated at a 3 % angle from horizontal (Marples, 1988) and is supported by roller bearings 

at each end.  It also has special gas tight seals which allow for tube expansion, made from 

graphite.  The tube is split into 4 zones, and is heated by 8 half-shell electric resistance 

furnaces (one top and one bottom in each zone).  A rabble bar is placed inside the calciner, 

which is free to move around as the calciner rotates. 

 

The calciner is fed from a feed tank, where the HAL is mixed with glass forming additives, 

such as lithium nitrate to reduce the amount of calcine passing to the off-gas system and to 

reduce the viscosity of the glass, and process aids such as sugar to reduce the volatility of the 

ruthenium (Marples, 1988).  The HAL is fed into the calciner usually between 40-70 litres an 

hour depending on feed concentration and the source of the waste (Magnox, oxide or blend).  

The calciner rotates at around 25 rpm, with the rabble bar tumbling to prevent solids build up 

on the walls.  The temperature set points are generally about 800 oC in zones 1 and 2, 

dropping to 650-700 oC by zone 4 (Veyer, 1995), although these temperatures are never 

reached (Figure 2.7) due to the energy consuming processes and heat transfer occurring inside 

the calciner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 – Schematic diagram of the calciner with the temperature profile in the 

different zones (Courtesy of the National Nuclear Laboratory) 
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The calciner is designed to fulfil two major purposes, which are the evaporation of the liquids 

from the HAL, and the de-nitration of the waste forms into oxides so they can be incorporated 

into the glass matrix.  Evaporation is the first process to take place, and this happens in the 

first two zones of the calciner.  The process conditions are such that the evaporative front is 

maintained at the interface between Zones 2 and 3 (Bradley, 2010).  This may be monitored 

by the power input to each zone, as evaporation consumes more energy than the de-nitration 

phase.  This is also apparent from the measurement of the external tube temperature in these 

zones, as although set to 800 oC it will only reach between 100 oC and 150 oC (Veyer, 1995).  

After Zone 2, all the liquid should be evaporated, and a solid blend of metal nitrates will be 

present. 

 

In Zones 3 and 4 of the calciner, there is a significant rise in the tube temperature to between 

500-600 oC (Veyer, 1995).  This allows most of the metal nitrates to decompose into their 

oxide forms.  Some nitrates are more stable however (eg. LiNO3, NaNO3 and some rare earth 

nitrates) and will not decompose at these temperatures (Chun, 1977).  Approximately 25 % of 

the nitrates will remain once the waste has passed through the calciner.  The retention of some 

nitrates is helpful for the melting stage of the process, as they increase the reactivity of the 

calcine with the glass frit (Owens, Leung and Magrabi, 1985), producing a more 

homogeneous glass product. 

 

2.3.2.2 The Melter 

 

The melter is an elliptical shaped vessel made from Inconel 601 (Marples, 1988), which is an 

alloy of iron, nickel and chromium.  This material is chosen because it is ferromagnetic, so 

has a high dielectric constant and low specific resistance.  This allows an alternating current 

to be used to induce localised electrical currents, causing eddy currents to be formed 

(Bonnetier, 2007).  The eddy currents act as charge carriers, and will overcome the specific 

resistance, and cause the melter to heat up.  This allows the high temperatures needed for 

melting glass to be reached. 

 

The melter is split into several zones (Figure 2.8), each of which is independently controlled.  

Wall temperatures of up to 1150 oC are induced to ensure the target of a glass internal 

temperature of 1050 oC, which will allow a homogeneous glass to be formed in the timescale 

allowed.  1050 oC is approaching the melting point of the inconel melter (1300 oC), meaning 

it has to be monitored closely.  Coupled with the fact that the glass will react with the Inconel, 

removing chromium, these factors severely reduce the life expectancy of the melter (BNFL, 

2007).  The melter typically lasts for around 300-400 pours before fatigue and creep 

mechanisms cause it to be taken out of service. 
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Figure 2.8 – Schematic diagram of the melter in the vitrification process 

(Courtesy of the National Nuclear Laboratory) 

 

The capacity of the melter is approximately 200 litres (520 kg) of glass, although it is only 

half filled before each pour.  A batch is typically fed at 25 kg an hour, comprising of 

approximately 7 kg of calcine and 18 kg glass frit (Dawson, 2010).  The glass is mixed by 

having an air sparge in the melt.  This reduces the settling of insoluble compounds such as 

RuO2 and iron-chromium spinel phases into the heel.  The heel is the bottom section of glass 

(approximately 70 kg) which lies below the pour nozzle, and is only removed when the melter 

is fully drained.  Once every 8 hours (190 kg charge) the glass is poured from the melter and 

collected in canisters (BNFL, 2007), where they have a lid welded on, and are sent for 

decontamination and temporary storage (see 2.3.2.4).  It takes two pours to fill one canister on 

the WVPs at Sellafield. 

 

At the temperatures in the melter, the remaining nitrates decompose to oxides allowing them 

to be incorporated in to the glass structure.  While this process is on-going, there are releases 

of NOx gases which need to be controlled from both the melter and the calciner.  In this gas 

stream there are small particles (dust) which need to be captured and returned to the process.  

This gas is pulled out of the upper end of the calciner by the vacuum in the primary off-gas 

system. 
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2.3.2.3 Primary Off-Gas System 

 

There are many different gases released from reactions taking place within the melter and 

calciner, some of which (especially NOx) need to be controlled, along with small radioactive 

particles which get carried in the gas stream.  The first stage of this process is to re-dissolve 

the solid particles in nitric acid, which is done in the dust scrubber.   

 
Figure 2.9 – Schematic diagram of the dust scrubber 

(Courtesy of the National Nuclear Laboratory) 

 

The waste gas stream passes from the calciner to the dust scrubber, driven by the negative 

pressure differential between the two systems (Roe, 2003).  By running at negative pressure, 

it also forces any leakages in the system to be in-leakages, so no radioactive material can 

escape from the system.  The gas flows in tangentially, creating a cyclone effect.  This allows 

the larger particles to be separated from the gas by centrifugal force.  Smaller particles can be 

caught on the impingement plates, as the dense particles cannot change direction as quickly as 

the gas molecules.  There are six of these plates in the dust scrubber to maximise capture of 

the radioactive solids (Roe, 2003).  Any solids not caught on the plates will collide with the 

nitric acid liquid droplets flowing from the top of the dust scrubber.  This ensures that the 

minimum amounts of solid particles are able to pass through the dust scrubber and onto the 

next stage of the POG. 
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There are several factors which affect the efficiency of particle dissolution in the dust 

scrubber.  The most important of these include (Hollebecque, 2008; Roe, 2003): 

 

 Number of impingement plates – the higher the number, the more probable the 

particles will become trapped removing them from the gas stream. 

 Acidity of liquid – the higher the acidity, the greater the solubility of the particles 

improving efficiency of particle removal. 

 Particle Size – the finer the particles, the more likely they are to remain in the gas 

stream, and therefore reduce the chances of capture. 

 Gas flow rate – if the gas flows faster, particles will not be able to change direction 

as quickly allowing the impingement plates to gather more of the finer particles, 

improving efficiency. 

 Liquid flow rate – particles have a higher chance of colliding with the droplets, 

dissolving them and removing them from the gas stream. 

 Temperature – dust scrubber liquor kept at boiling point to increase dissolution and 

prevent condensation. 

 

 All of these factors are taken into account in the design of the dust scrubber.  The gas enters 

at the widest point where the cyclone is formed.  There is a narrowing above this in order to 

accelerate the gas up the dust scrubber to increase the velocity allowing smaller particles to be 

picked up by the impingement plates (Roe, 2003).  These plates have a large cross section to 

maximise particle capture.  An air lift takes the nitric acid from the reservoir to the top of the 

dust scrubber, and causes a liquid curtain to be formed, running down the plates.  The dust 

scrubber liquor is recycled around the loop at around 195 litres per hour (Hollebecque, 2008), 

which will dissolve any small particles which collide with it.  The acidity is monitored to 

ensure maximum dissolution efficiency. 

 

The dust scrubber liquor is fed back into the calciner at a rate of 15 litres per hour 

(Hollebecque, 2008).  The liquor is air-lifted into a recycling constant volume feeder (RCVF), 

which ensures this rate is kept constant.    
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After the solid particles have been removed by the dust scrubber, the gases pass to the 

condenser (Figure 2.10).  Approximately 75 % of the gas released from the calciner is water 

vapour (Hollebecque, 2008), which is cooled, condensed and recirculated back around the 

condenser to cool the new gas influx.  Some of the free NOx in the system will undergo a 

recombination reaction with water to form nitric acid.  The flow rate of the gases drops from 

120 m3 / h entering the condenser from the dust scrubber to 36 m3 / h leaving the top of the 

condenser (Hollebecque, 2008) due to the condensation and recycling of the water vapour 

which makes up most of the gas flow.   

 

 
Figure 2.10 – Schematic diagram of the condenser 

(Courtesy of the National Nuclear Laboratory) 

 

The gases enter the condenser at the bottom, and are passed through two sieving plates.  

These act as scrubbing units, as any small particles not removed by the dust scrubber will be 

removed here (Sellafield Ltd, 2008).  The gases also pass through the condensate liquor, 

helping remove solid particles and allowing some of the NOx to be removed by reacting with 

the water.  This also helps with the initial cooling of the gases in the condenser. 
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The condenser works on a three pass system.  These systems are isolated by a hydraulic guard 

(top sieve plate).  The first pass is designed to cool the gas stream to the point where the water 

vapour will begin to condense.  This system consists of a tube bundle up which the gas will 

rise, while being surrounded by cooling water (Hollebecque, 2008).  The second pass system 

is similar to the first, except the gas is pushed down the column.  In this pass, most of the 

condensate is formed, and the liquid flows to the bottom of the condenser and out to the 

condensate tank.   

 

The third pass is designed to maximise the efficiency of the NOx recombination reaction with 

water to form nitric acid.  In this pass, the condensate is present inside the tube bundles, and 

can therefore interact with the gas stream.  The large amounts of water present will increase 

the probability of the reaction occurring (Sellafield Ltd, 2008).  The remaining gases will then 

pass through two demister plates to remove any moisture droplets, before moving on to the 

NOx absorber. 

 

The NOx absorber (Figure 2.11) is a series of plates through which the off-gas passes.  Each 

of these trays has a layer of liquid, which is designed to react with the NOx and remove it 

from the gas stream.  The gases pass up through bubble caps, which have narrow openings to 

increase the velocity of the gas going into the liquid at each stage.  By increasing the velocity 

and forming bubbles, it is more probable that a recombination reaction will occur.  The liquid 

temperature is kept between 10-20 oC, as low temperatures increase the rate of reaction 

(Hollebecque, 2008). 

 

There are 16 trays present in the NOx absorber, each one designed to remove NOx from the 

system.  However, as the gas rises up through the plates, the harder it becomes to remove the 

NOx from the stream.  For this reason, the overflow liquor is airlifted back to the thirteenth 

tray.  Fresh water is pumped in at the top (sixteenth tray) at a rate of 20 litres per hour 

(Hollebecque, 2008), as the water dilutes the acid in the reservoir to below 1 M acidity, which 

improves the efficiency of the NOx absorption. 
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Figure 2.11 – Schematic diagram of the NOx absorber 

(Courtesy of the National Nuclear Laboratory) 

 

The primary off-gas (POG) system needs to be kept at a negative pressure to prevent the 

leakage of radioactive materials.  The negative pressure is caused by a motive force used to 

eject the off-gas.  As the pressure of the off-gas coming from the calciner is variable, an in-

bleed valve is positioned before the ejector, in order to keep it constant.  The pressure at the 

ejector is approximately -100 mbar, rising to -90 mbar in the NOx absorber, -30 mbar in the 

condenser, and -15 mbar in the dust scrubber (Hollebecque, 2008).  This pressure cascade 

ensures the off-gas is driven from the calciner and through the POG system to the ejector.  

The remaining gases pass through filters to ensure any remaining solids are removed, before 

being released into the atmosphere from the stack. 

 

2.3.2.4 Decontamination and storage 

 

After the glass has been poured into the stainless steel canisters, the surface is 

decontaminated.  Decontamination is done using high pressure water jets to remove any 

residual material from the outer surface.  The surface is remotely swabbed, and tested for any 

contaminants which may have been missed.  If this test is passed, the canisters are taken to the 

interim storage facility on the Sellafield site (Figure 2.12). 
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Figure 2.12 – The interim storage facility for vitrified HLW at Sellafield  

(World Nuclear Association, 2008b) 

 

The storage facility is comprised of large slabs of concrete, with many vertical holes cast in 

the top.  The canisters are loaded using a remote automated system into large flasks (Figure 

2.12) which lower the canisters into the holes (Benbow, 1997).  The loading structures are 

very heavy and are moved around by an overhead crane allowing remote operation.  

 

The interim storage facility at Sellafield can accommodate up to 8,000 canisters.  As the 

canisters contain high level waste, they are heat generating and have to be cooled.  The 

canisters are air cooled using natural convection throughout the concrete structure.  The store 

has been designed to store waste for up to 100 years, to allow time for a final disposal 

solution to become available. 

 

2.4 Current Problems and Blockages 
 

 

There are two main causes of downtime on the waste vitrification plant (WVP) which are; the 

changing of the melter due to failure, and blockages in the HAL feed and off-gas systems.  

Downtime due to melter change is unavoidable due to the corrosive nature of the glass 

product on the melter walls, and is a lengthy process due to the hot-cell environment it resides 

in.  In this project, the focus was to support a programme to reduce the downtime of the WVP 

caused by blockages in the system to improve the efficiency of the plant and help meet targets 

for converting HLLW into a solid waste-form. 
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During normal operations of WVP, pressure tappings and feed lines can become blocked by 

solids (Turner, 2007).  This has required WVP to stop operations in order to remove the 

blockage.  Any blockages which take place in the pipe-work will cause a plant shutdown to 

occur if they cannot be removed to avoid any unnecessary complications arising.  The main 

areas where these blockages occur are in horizontal pipes with a low flow-rate of material 

passing through them.  The parts which have been blocked and have caused a plant shutdown 

to occur include (Talford, 2003): 

 

 Recycle Constant Volume Feeder (RCVF) Airlift from the Dust Scrubber. 

 Dust Scrubber Feed line from the Calciner. 

 Dust Scrubber Pressure Tappings. 

 

Analysis on the materials which cause the blockages on the VTR showed it to contain the 

species zirconium molybdate hydrate [ZrMo2O7(OH)2(H2O)2] and ruthenium dioxide.  These 

compounds are insoluble in nitric acid, and are therefore precipitated in the dust scrubber 

liquor.  These solids can then accumulate, causing blockages and causing downtime on the 

plant. 

 

There are systems in place on the WVP to try to reduce the build up of materials.  The auto 

deboucharge (a pressurised water jet) is used to clear debris from the dust scrubber feed line 

to avoid build up of material.  For blockages which cannot be removed, there are three 

options: 

 

1. Use a master slave manipulator (MSM) to physically remove the blockage by 

rodding. 

2. Remove and replace the pipe which contains the blockage. 

3. Chemically remove the blockage using ammonium carbamate which dissolves the 

zirconium molybdate. 

 

The chemical solvent route is only used in areas of the plant which cannot be easily removed. 

 

During VTR Campaign 9, there was a significant amount of dust carryover to the off-gas 

system (Short, 2010).  The extra dust carryover resulted in the build up of solids in the RCVF 

and dust scrubber inlet (Figure 2.13).  The HAL simulant used was not dosed with lithium 

nitrate.  This extent of solids build up is not observed on the VTR when lithium nitrate is 

added to the HAL simulant. 

 



25 

 

 

Figure 2.13 – Photograph of the dust scrubber inlet during  

VTR campaign 9 (Short, 2010) 

 

Blockages in the RCVF were also a concern during campaign 9.  These were attributable to a 

combination of flaked material, which had dried out and fallen off the walls of the dust 

scrubber during non-operational periods and excessive dust carryover during operational 

periods (Short, 2010).  XRD analysis on this material showed the main component of the 

blockage material was zirconium molybdate, with chemical analysis also showing an elevated 

concentration of iron. 

 

A summary of VTR Campaign 9 blockages was recorded (Table 2.2).  These blockages 

occurred in the RCVF and dust scrubber inlet (from the calciner), which are the main pipes 

blocked on the WVP’s.   

 

In order for the off-gas system to pull the gas from the calciner to the dust scrubber, there 

must be a pressure differential.  Formation of blockages in the dust scrubber inlet and pressure 

tappings seriously affects the pressure control system of the POG, leading to shut down of the 

process (Roe, 2003).  This can be detected on the plant as it manifests as a drop in pressure 

differential in the off-gas coupling.  Once this reaches a critical level, an alarm will sound.  If 

the pressure differential cannot be raised then the plant must be shut down to allow the 

blockage to be removed. 

 

The other major blockage issue is in the RCVF.  The RCVF is responsible for the recycle of 

the DSL back to the calciner.  Blockages therefore slow down or stop this process, which 

results in more liquid being present in the dust scrubber.  This first manifests on plant as a 

reduction in level and temperature in the RCVF tundish, due to the lack of feed caused by the 

blockage.  This is a clear sign of a blockage and the plant must be shut down to allow the 

blockage to be removed. 
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Table 2.2 - POG blockages and debris build-up during Campaign 9 (Short, 2010) 

Date 

Cumulative hours in feed (hrs) 

Campaign 9 part 1 

Campaign 9 part 2 

 

Blend 

cal. 

Blend 

vit. 

Dilute 

Blend 

cal. 

Mag 

cal. 

Mag 

vit. 
 

Pre 18th 

May 
0 0 0 0 0 

DSRV washed out after Campaign 8a & 

PPD006. Left dry prior to start of 

Campaign 9 

2nd Jun 20 0 62 24 27 

RCVF breakpot-inner bowl line 

blocked, ~40ml solids retrieved by 

rodding. DSRV NOT washed/emptied 

10th Jun 20 0 62 24 163 

~0.5cm thick layer on inner surface of 

POG coupling, & some loose material in 

DSRV inlet. Coupling replaced as 

found. 

25th Jun 20 0 62 24 360 

Some calcine build-up around melter 

neck and still only ~0.5cm in off-gas 

coupling. Significant build-up in DSRV 

inlet 

End of Campaign 9 part 1. DSRV washed with water and left empty over summer. Off-gas 

coupling and DSRV inlet cleaned 

21st Sep 
20 

0 

0 

0 

62 

0 

24 

0 

360 

0 

RCVF breakpot-RCVF inner bowl line 

blocked. Required rodding and washing 

to clear 

24th Sep 
20 

9 

0 

0 

62 

0 

24 

0 

360 

0 

RCVF breakpot-RCVF inner bowl line 

blocked. Required rodding and washing 

to clear. Large lump of solids retrieved 

from DSRV 

29th Sep 
20 

61 

0 

0 

62 

9 

24 

0 

360 

0 

Knife gate seal on Calcine collection kit 

required cleaning due to (baked) calcine 

build-up 

End of Campaign 9 part 2 

22nd Oct 
20 

72 

0 

76 

62 

9 

24 

8 

360 

41 

Very little solid material found in 

DSRV, but RCVF breakpot-RCVF line, 

and RCVF inner bowl were clogged 

with ~80ml of fine solids 
 

 

2.5 Calciner Chemistry 
 

2.5.1 Caesium phosphomolybdate and zirconium molybdate formation 

 

Caesium phosphomolybdate, Cs3PMo12O40.xH2O (CPM), is precipitated, as a yellow solid, 

from highly active liquor (HAL) when the molybdenum concentration exceeds approximately 

0.015 M (Richardson, 2000).  This occurs during the evaporation process after reprocessing, 

before HAL is transferred to the HAST’s.  Studies of this precipitation (Magnaldo et al., 

2007; Richardson, 2000; Doucet et al., 2002) have shown that when subjected to various 

conditions, conversion of CPM to ZMH is observed. 
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The rate of conversion of CPM to ZMH has been found to increase at higher temperatures and 

lower acidities (Bradley et al., 2004; Doucet et al., 2002).  Increased tellurium concentration 

(at higher levels than in HAL) also increases the rate of precipitation of ZMH (Kubota and 

Fukase, 1980).  Testing done between 50 oC and 80 oC, to simulate temperatures experienced 

in HASTs, showed that complete conversion of CPM to ZMH at 80 oC occurred within one 

week.  At 50 oC very little conversion had occurred after a week (Richardson, 2000).  ZMH is 

insoluble in nitric acid, and is one of the main causes of blockages on the waste vitrification 

plant (WVP). 

 

Studies carried out by Doucet et al. (2002) showed the precipitation of ZMH from CPM 

proceeds from surface reactions, rather than from the solution, and the rate of formation 

follows an ‘S-shaped’ curve.  The ZMH formed a highly ordered cubic crystal structure, after 

being grown from an amorphous film.  A subsequent study by Magnaldo, Masson and 

Champion (2007) suggested surface nucleation in combination with crystal growth was 

responsible for the build up of ZMH within nuclear waste reprocessing.  Neither of these 

studies resulted in a mechanism being discovered for the conversion of CPM to ZMH. 

 

Formation of precipitates from high-level liquid waste simulant was investigated by Izumida 

and Kawamura (1990).  Precipitation of zirconium molybdate hydrate, ZrMo2O7(OH)2(H2O)2 

(ZMH) was confirmed through XRD analysis, from a sample with low acidity aged at high 

temperature.  The following reactions were used to explain this: 
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This suggests that the formation of ZMH takes place in solution, increasing the likelihood that 

these reactions take place in the dust scrubber rather than in the calciner.  The precipitation of 

ZMH is known to occur in the highly active storage tanks (HASTs) under aqueous conditions. 

 

The build-up of ZMH in the HAST’s causes problems as it settles to the bottom of the HASTs 

and is very difficult to remove.  The post operation clean out (POCO) waste residues left in 

the tanks, after pumping all the liquid to WVP, would ideally be encapsulated using the 

vitrification process, although recovering this waste could prove a challenge.  ZMH is a stable 

product, however, with a low thermal expansion and high radiation stability (Tadros and 

Metwally, 2006) so it will not change structure once encapsulated.   
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In the dust scrubber, the formation of ZMH is not desirable.  In its cubic form, ZMH is 

difficult to keep in suspension in the dust scrubber liquor (DSL), and so settles and causes 

blockages.  Therefore, preventing the formation of ZMH, or changing the morphology, would 

be beneficial to reducing blockages in the dust scrubber.  A current investigation is dedicated 

to understanding the crystal growth, morphology and properties of ZMH. 

 

The investigation (Masheder, 2009) has shown the morphology of ZMH can be changed from 

cubic to a ‘wheatsheaf’ structure by the addition of tellurium (Te).  The morphology is altered 

as a function of Te concentration.  ZMH in the ‘wheatsheaf’ morphology was found to be 

removed more easily from the surfaces from which they were grown, and would therefore be 

more easily kept in suspension in the DSL.  Additives such as citric acid have been shown to 

decrease the average crystallite size of zirconium molybdate (Edmondson, 2009).  This could 

also be beneficial in reducing blockages caused by ZMH formation in the dust scrubber. 

 

 

 

 

Figure 2.14 – Structures of Mo2O5
2+ and ZMH (Edmondson, 2010) 

 

It is theorised that the reason for the reduction in crystal size of ZMH on the addition of citric 

acid is the formation of a complex between the citric acid and the di-molybdate species, 

Mo2O5
2+ (Figure 2.15), thought to be part of the CPM to ZMH conversion reaction.  At 10 

mol % addition of citric acid, twinning of the crystals can be seen, causing elongation of the 

crystals.  At higher addition levels, fractured growth is seen, resulting in the formation of 

‘wheat-sheaf’ shaped crystals (Edmondson, 2010). 

 

Figure 2.15 – Di-molybdate : Citric Acid Complex (Edmondson, 2010) 
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An ongoing morphological study of zirconium molybdate (Edmondson, 2010) has postulated 

that the formation of ZMH from the conversion of CPM begins with the formation of the 

phosphomolybdate keggin ion [PMo12O40]3-.  This is then broken down to form H3PO4 and 

free molybdates.  Raman spectroscopy has shown that PMo12O40
3- and Mo2O5

2+ species exist 

in equilibrium in a nitric acid solution (Sarsfield, 2004).  Mo2O5
2+ is of interest, as its structure 

transposes directly into the structure of ZMH (Figure 2.14).  It is thought that zirconium ions 

react with this species, resulting in the formation of ZMH through the following reaction 

scheme (Edmondson, 2010): 
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It is currently unknown whether the conversion of CPM to ZMH occurs within the calcination 

process.   

 

2.5.2 Reactivity of lithium 

 

Lithium plays an important role in the vitrification process.  Originally, lithium was only used 

as a component in the glass frit, but investigations have shown that it also has a profound 

effect in the calcination process.  From full-scale inactive trials carried out by BNFL, it is 

hypothesised that the roles of lithium in the vitrification of high level waste include (Magrabi, 

1981): 

 

 Formation of complex oxides with aluminium and iron, allowing higher reactivity in 

the melter improving the homogeneity of the glass product. 

 Acting as a binding agent, reducing dust carry-over to the off-gas system and 

therefore reducing blockages in the dust scrubber. 

 Reducing the viscosity of the glass, allowing a higher portion of waste oxides to be 

incorporated, and improving the pour characteristics of the melt. 

 

The amount of lithium present in the system must be carefully controlled, as too little can 

result in high dust carry-over and high glass viscosity.  This would result in high probability 

of blockages in the off-gas system, poor homogeneity of the glass product and difficulty in 

controlling the pour rates (Magrabi, 1981).  A high lithium content can also be detrimental to 

the process causing the calcine to become too sticky, causing blockages in the calciner.  It 

could also lead to higher leach rates from the glass product, causing problems with final 

disposal (Marples, 1988; Larkin 1986; Harrison et al., 2010). 
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The target amount of lithium oxide present in the final glass product is about 4 wt%4.  Half of 

this is present in the glass frit as lithium oxide (Li2O) and the other half is added to the HAL 

as lithium nitrate (LiNO3.3H2O (aq)) before calcination.  This combination provides a good 

balance of properties in both the calciner and the melter. 

 

Oxides of aluminium and iron are stable and take a long time to react in the melter. The 

addition of lithium promotes the formation of complex oxides which are more reactive than 

the pure oxide.  This is important for Magnox waste-forms, where the levels of aluminium 

and iron are relatively high (Wills, 2002).  Oxide and Blended waste-forms have much lower 

concentrations of aluminium and iron, and therefore the need to add lithium to the simulant is 

reduced.  This would need to be taken into account by adding the lithium to the glass frit, so 

the level of lithium in the final glass product remained at the desired level. 

 

There are, however, a number of benefits which could be achieved by eliminating lithium 

addition to the HAL, (Brace, 2005b): 

 

 As lithium is added as a dilute solution it takes up a large volume of HAST’s 18 and 

19.  Removing this would allow more flexibility within HALES and provide benefits 

to upstream reprocessing operations. 

 Lithium analysis of HAL could be eliminated. 

 Full-lithium base glass may give greater fluidity allowing better mixing and faster 

waste incorporation within the melter. 

 Formation of alkali molybdates in the calciner causes yellow phase formation.  

Yellow phase is not easily incorporated into the glass and is corrosive to the melter 

crucible, reducing the lifetime of the melter. 

 

 

 

 

 

 

 

 

Figure 2.16 - Full scale full Li MW Magnox glass (Short, 2006b) 

(Grid markings are 1cm2, refractory phase particles are circled) 

 

                                                           
4 This figure of 4wt% is based on a 25% waste oxide incorporation, which results in a 1:1 ratio of 

lithium to sodium.  At different waste oxide incorporations, this value is changed to maintain the 

lithium to sodium ratio in the final glass product. 
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Although the benefits of adding lithium to the calciner are well documented and researched 

(Magrabi, 1981; Larkin, 1986; Marples 1988), there seems to be little understanding of the 

reactions which take place in the calciner.  When lithium is not added, spinel phases 

containing iron and aluminium can be seen in the glass as grey oxide particles (Figure 2.16), 

which can be separated from the glass.  This allows analysis to be carried out, and the oxides 

present can be detected.  Upon the addition of lithium to the calciner, these phases are present 

in a much smaller scale and quantity and therefore become difficult to separate.  Analysis of 

the new lithium containing phase is therefore limited to SEM, as this can be done in the glass 

product (Figure 2.17). 

 

  

 

Figure 2.17 – High magnification backscattered electron image of a  

refractory rich particle in WRW17 4 % Li2O (Short, 2006b) 

 

SEM and EDS analysis (Figure 2.17) revealed that one phase was composed of the refractory 

metals Al, Mg, Cr, Ni and Fe in various relative abundances (Short, 2006b), and probably 

present in the form of oxides with a spinel type crystal structure (although X-ray diffraction 

analysis would be required to confirm this). The other phase often had particles containing 

cerium, zirconium and rare-earth metals entrained in it too. 

 

 

 

Glass matrix 

AlMgFeNiCr 

particles  
(grey spots) 

CeZrRE particles 
(white spots) 
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Table 2.3 – The possible reactions of lithium nitrate with metal nitrates in the 

calcination process 

Product Reaction Scheme 

Melting  

Point 

(oC) 

LiNO3 NO REACTION  255 

Li2O 2223 424 ONOOLiLiNO Heat   1432 

LiAlO2 222333 4)( ONOLiAlONOAlLiNO   1625 

Li2ZrO3 2232233 23)(2 ONOZrOLiNOZrOLiNO   1695 

Li2MoO4 224233
2

3
2 ONOMoOLiMoOLiNO   705 

CsLiMoO4 2433 NOLiCsMoOMoOCsLiNO    770-800 

 

Lithium nitrate has a noticeably low melting point, meaning if un-reacted it would be present 

as a liquid in the calcination process.  This may be one of the reasons that lithium acts as a 

binder, reducing the dust carry-over to the dust scrubber (Magrabi, 1981).  It is highly likely 

that some of the lithium nitrate will remain un-reacted, due to the high concentration of 

lithium compared to possible reactants, such as aluminium, and the relatively short residence 

time in the calciner.   

 

2.5.3 Nitrate decomposition 

 

One of the main processes which take place in the calcination process is the de-nitration of 

metal nitrates.  The objective of the calcination process is to produce a material with good 

reactivity and low volatility when in the melter (Jervis, 1985).  Some residual nitrates will 

remain in the calcine from compounds with high decomposition temperatures (Table 2.4). The 

amount of residual nitrates after calcination will depend on the process aids and temperatures 

used.  These nitrates will increase the reactivity in the melter (Owens, Leung and Magrabi, 

1985), giving a more homogeneous glass product.  As the melter is operated at around 1050 

oC, these residual nitrates will decompose to their oxide form in the melter, allowing a 

uniform glass, containing waste oxides, to be formed. 
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Table 2.4 – De-nitration temperatures for metal nitrates found in simulated HAL (Chun, 

1977) 

Nitrate 
Oxide 

Form 

Decomposition 

Starting 

Temp (oC) 

Decomposition 

Terminal 

Temp (oC) 

Denitration  

at 400 oC (%) 

Al(NO3)3.9H2O Al2O3 53 460 99 

Ba(NO3)2 BaO 296 805 0.5 

CsNO3 Cs2O 522 Volatile 0 

Cr(NO3)3.9H2O Cr2O3 33 466 97 

Fe(NO3)3.9H2O Fe2O3 46 367 100 

Mg(NO3)2.6H2O MgO 43 502 60 

Ni(NO3)2.6H2O NiO 55 665 99 

Rare Earth M2O3 50 836 65 

Ruthenium Sol RuO2 37 557 95 

Sr(NO3)2 SrO 339 738 0.1 

Zn(NO3)2.6H2O ZnO 74 372 100 

Zirconium Sol ZrO2 24 656 98 

LiNO3.3H2O Li2O 600* Volatile 0 

NaNO3 Na2O 588 Volatile 0 

* loss of 3H2O between 56-254 oC. 

 

The decomposition temperature of metal nitrates has been found to be inversely proportional 

to the charge density of the metal cation (Yuvaraj et al., 2003).  The charge density of the 

metal cation determines the bond type between the metal and the nitrate.  Metals with a low 

charge density (Na+, K+, Ba+) form an ionic bond which is strong, and therefore the 

decomposition temperature is relatively high.  A high charge density cation (Al3+, Ga3+, Fe3+) 

results in the formation of covalent bonds between the metal and the nitrate anion.  This 

reduces the bond order, weakening the nitrate bond, resulting in a low decomposition 

temperature (Yuvaraj et al., 2003).   
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2.5.4 Molten salts 

 

Lithium nitrate is currently added to the calciner in order to reduce the dust carry-over from 

the calciner to the dust scrubber.  As lithium has a low melting point it will be present as a 

liquid in the calciner.  This gives rise to the possibility of molten salt reactions occurring. 

 

Molten salts can provide an alternative media, which can change the reactivity and solubility 

of reactants (Afanasiev and Geantet, 1998).  This provides a different environment in which 

chemical reactions can occur, which would not usually take place in an aqueous medium.  An 

example of this was performed by Xu et al. (2009) creating metal oxides with polar surfaces 

exposed, by using lithium nitrate as a molten salt.  This is due to the strong interaction 

between the polar surfaces and the molten salt lowering the surface energy, allowing these 

compounds to be formed.  These polar surfaces have a high surface energy, and may give 

novel properties to the products.  These types of reactions could occur in zones 3 and 4 of the 

calciner where the lithium nitrate will exist in a molten state. 

 

There are two main mechanisms by which reactions proceed in a molten salt host, which are 

the ‘template-growth’ and ‘dissolution-precipitation’ mechanisms (Zhang, 2007).  ‘Template-

growth’ reactions occur when one of the reactants is much more soluble in the molten salt 

than the other.  The soluble reactant diffuses on to the surface of the other reactant causing a 

reaction to occur.  The product of this reaction retains the morphology of the insoluble 

reactant. 

 

The ‘dissolution-precipitation’ mechanism occurs when both reactants are soluble in the 

molten salt (Zhang, 2007).  These reactions are faster than those using the ‘template-growth’ 

mechanism and can occur at much lower temperatures.  This is due to the increased 

interaction between the reactants and faster diffusion.  The products from this reaction have 

no fixed morphology and can be very different from the reactants. 

 

Alkali metal nitrates are low cost and have relatively low melting points, such as lithium 

nitrate (255 oC), and are therefore often used in investigations for molten salt synthesis.  

When two or more of these alkali metal nitrates are mixed the melting points can be made 

even lower, forming a deep-eutectic molten salt.  The melting points of some alkali metal 

nitrates and their deep-eutectic mixtures are shown in Table 2.5. 
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Table 2.5 – Melting points of alkali metal nitrates and their deep eutectic mixtures 

(Afanasiev and Geantet, 1998) 

Molten Salt Composition (%) Melting Point (oC) 

Lithium Nitrate 0 – 100 255 

Sodium Nitrate 0 – 100 310 

Potassium Nitrate 0 – 100 337 

LiNO3 – KNO3 eutectic 43 - 57 132 

LiNO3 – NaNO3 – KNO3 eutectic 30 – 17 - 53 120 

 

Lithium nitrate and other alkali metal nitrates, act as Lux-Flood bases.  They are, therefore, 

good O2- donors and can lower the temperatures needed for an oxidation reaction to occur.  

The following equations describe the Lux-Flood interactions between molten nitrates and 

oxoacids (Afanasiev and Geantet, 1998): 

 

NO3
- + Acid                             NO2

+ + Acid.O2- 

NO2
+ + NO3

-                             2NO2 + 1/2O2 

 

This type of reaction is used in the formation of metal oxides.  The cation (Li+, Na+, K+ etc) of 

the molten nitrate has a strong impact on the reactivity of the melt.  This will control the 

basicity of the molten salt and therefore the concentration of O2- available for reaction.  

Lithium nitrate is the most basic of the alkali metal nitrates, making it the best O2- donor, 

giving it the highest reactivity (Afanasiev, 2007).  Combined with the fact that lithium nitrate 

has the lowest melting point of the pure alkali metal nitrates, it is a good molten salt to use in 

the molten salt synthesis of metal oxides. 

 

In the calcination process, it is possible that the addition of lithium nitrate facilitates reactions 

which would not occur in the aqueous phase.  Experiments will be designed to determine 

whether lithium nitrate undergoes or facilitates reactions in the calciner, causing a lower dust 

carry-over to the dust scrubber, or simply binds the calcine together while in its molten salt 

state. 
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2.5.5 Ruthenium chemistry 

 

Ruthenium is formed as a fission product and is present in HAL resulting from the 

reprocessing of spent fuel.  The HAL is evaporated and stored in HAST’s, where it 

encounters temperatures in which volatilisation can occur.  Volatile species are removed 

through the off-gas system to avoid them being released to the environment through the plant 

stack.  An incident occurred in 1997 where there was a release of radioactive ruthenium from 

the WVP stack (Watson, 1997).  The release was small in terms of a radiological event, but 

highlighted the need to carry out further research into ruthenium behaviour under the range of 

conditions experienced during the vitrification process. 

 

Ruthenium is also present in the dust scrubber as a significant portion of the insoluble solids, 

in the form RuO2.  This contributes to blockages forming in the off-gas system on WVP, 

reducing the throughput of the plant.  Several investigations have been carried out (Morris 

and Haig, 2010; Sarsfield et al., 2008; Moss and Haile, 2004) to help understand the 

behaviour of ruthenium species within the operating conditions on the WVP’s. 

 

Early work on speciation of ruthenium in nitric acid solutions carried out by Brown et al. 

(1961) identified 4 classes of ruthenium complexes in plant processes (Table 2.6).  The 

majority of these contain the stable nitrosyl ruthenium RuNO (III) cation (Newby and 

Rhodes, 1978) and exist in a six co-ordination species made up with aquo ligands with the 

formula [RuNO(NO3)x(H2O)5-x]3-x+.  The value of x increases as the strength of the nitric acid 

increases. 

 

Table 2.6 – Summary of ruthenium species present in nitric acid solutions 

Species (and colour) 
Behaviour in HNO3 at room 

temperature 

Oxidation to RuO4 in 

HNO3 solution 

(1) RuNO nitrato 

complexes (Red/Brown) 

Moderately stable, conversion to 

(4) possible 
Easy (slow) 

(2) RuNO nitro complexes 

(yellow) 
Stable Difficult 

(3) RuNO uncomplexed 
Converted to (1) and (2) under 

appropriate conditions 
Easy (slow) 

(4) RuORu nitrate (brown) Stable in the absence of HNO2 Very easy 
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The following reaction schemes show the relative rates of oxidation to the Ru (IV) cation 

(Ru4+) or RuO4 (Waring, 1999): 

 

Ru(NO)nitro complexes  Ru4+   difficult 

Ru(NO)nitrato complexes  Ru4+  easy, but slow 

Ru4+  (RuORu)6+  RuO4              fast 

 

In the evaporators, ruthenium volatility is relatively low (Cains, 1980).  However, under 

calcination conditions the ruthenium volatility is greatly increased.  Work carried out by 

Weisenburger and Weiss (1980) showed the volatility of ruthenium depends on the waste 

composition and processing conditions. 

 

An extensive study of ruthenium volatility was carried out at Harwell in the 1980’s with the 

main author being P. W. Cains.  This study showed (Berg and Monteith, 1998): 

 

 Volatile forms of ruthenium are transients eg. RuO4. 

 When ruthenium is volatilised to RuO4 it rapidly decomposes to form very fine 

particles of RuO2 under conditions used on the WVP plant. 

 Lab results do not simulate what happens under plant conditions due to there being 

more places for deposition on the plant. 

 

Klein et al. (1985) asserted the existence of volatile ruthenium nitrosyl species formed either 

through the reaction between RuO4 with NOx or the calcination of RNN solutions in nitric 

acid.  Ruthenium nitrosyl species are more stable than RuO4 and can therefore be condensed 

from the gas phase more easily.  This postulation could explain the existence of both soluble 

(RNN) and insoluble (RuO2) species of ruthenium being present in the off-gas system. 

 

Evaporation studies on dust scrubber liquors (Moss and Haile, 2004; Wright and Brown, 

2003; Wright and Brace, 2004) have all shown that no loss of ruthenium is detectable.  

However, when dissolved calcine is used there are significant amounts of ruthenium 

volatilised from the samples (Sarsfield et al., 2008).  It is possible that operations in the dust 

scrubber during the running of the VTR either cause all the ruthenium to form stable species 

in the DSL, or that the volatile forms of ruthenium are driven off.  
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Morris (2010) identified that nitric acid, cerium and chromium are the most likely species in 

the HAL to cause the oxidation of ruthenium to form RuO4.  They are all present in the dust 

scrubber and have high enough oxidation potentials to oxidise ruthenium under dust scrubber 

conditions.  Motojima (1989) reported that cerium nitrate can completely oxidise Ru (III) to 

RuO4 when the ratio of cerium to ruthenium is above 1.5.  The ratio of cerium to ruthenium is 

lower in the dust scrubber than in the calcine, which could account for the differences in 

ruthenium volatility behaviour (Morris, 2010). 

 

Ruthenium is added to HAL simulant as ruthenium nitrosyl nitrate (RNN), which thermally 

decomposes to form RuO2.  Under calcination conditions, oxidising species are formed due to 

the decomposition of nitrates, which can oxidise the ruthenium to form RuO4.  This is a 

volatile species, and is therefore preferentially carried over to the off-gas system.  By adding 

sugar to the HAL simulant, the number of oxidising species is reduced in the calciner, 

decreasing the amount of RuO4 formed.  This reduces the carryover of ruthenium to the dust 

scrubber. 

 

MacDougal et al. (1982) studied the reactions of sugar with nitric acid, quoting the reaction 

as: 

OHCONOCOHNO

OHNONOHNO

OHNONOCOOHCHNO

2223

223

221122123

1212241224

618612

17661212







 

Resulting in the overall reaction: 

OHCONOOHCHNO 2221122123 35124848   

 

These reactions will also take place with the metal nitrates present in the HAL as well as with 

nitric acid.  Due to the nature of these reactions the following observations were noted upon 

increasing the concentration of sugar added (Undre, 1985): 

 

1. The acidity of the dust scrubber decreases. 

2. The acidity of the condensate and NOx absorber liquors increase. 

3. The residual nitrate within the calcine decreases. 

4. The calciner tube expansion increases. 

5. The mean particle size of the calcine decreases. 

6. The ruthenium carryover to the off-gas system decreased to a minimum before 

increasing (Figure 2.18). 
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The first 3 points can be explained by the destruction of nitrate ions originating from the nitric 

acid and waste metals in the HAL (Brace, 2005c).  This reduces the amount of residual 

nitrate, reducing the acidity of the dust scrubber liquor and increasing the amount of NOx gas 

liberated and collected in the NOx absorber and condenser. 

 

The reaction between sugar and nitrates is an exothermic one, releasing extra energy as heat.  

This manifests as an increase in calciner tube expansion.  The extra gases released from these 

reactions also help to break up the calcine, increasing the proportion of small particles created 

in the calciner (Brace, 2005c).  This increases the dust carryover to the dust scrubber, 

increasing the chance of blockages occurring.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 – Graph showing the effects of sugar concentration on the carryover of 

ruthenium to the off-gas system (Brace, 2006d) 

 

The reduction in ruthenium present in the DSRV is due to the reduction in ruthenium 

volatility as more sugar is added (Figure 2.18).  This, however, reaches a minimum at 240 g 

sugar per kg waste oxide (Brace, 2006d).  Above this sugar addition, the amount of ruthenium 

in the DSRV begins to increase.  This can be attributed to the increase in dust carryover 

caused by the exothermic reaction between sugar and nitric acid.  This results in a larger 

proportion of fines being produced in the calciner, which is more easily carried over to the 

dust scrubber. 
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2.5.6 Dust scrubber solids composition 

 

Filtration of dust scrubber liquor (DSL) samples, and subsequent EDX analysis of the solids, 

showed that there are 4 distinct sample morphologies present within DSL solids (Morris and 

Haig, 2010).  One of these comprised mainly of silicon, which can be attributed to carryover 

of small glass particles from the melter to the dust scrubber.  The second region was 

comprised mainly of zirconium and molybdenum, probably in the form of zirconium 

molybdate.  This is known as a major cause of blockages within the dust scrubber.  The third 

region analysed contained high levels of barium and ruthenium, and the final morphology was 

comprised mainly of ruthenium. 

 

Blend and Magnox calcine samples were also re-dissolved during the same study and filtered 

to collect the insoluble material (Morris and Haig, 2010).  In both cases, the major component 

of the sample was zirconium, with much lower levels of molybdenum and ruthenium than 

seen in the DSL samples.  This suggests that zirconium exists mainly as ZrO2 or zirconium 

phosphate in the calcine.  The formation of zirconium molybdate therefore most likely takes 

place in solution in the dust scrubber, although it is possible it is formed in the calciner, gets 

preferentially broken down into small particles and transferred to the dust scrubber through 

the off-gas. 

 

Calcination work carried out by Short (2005) at PNNL showed there are several fluorite-type 

phases present within the calcine, belonging to the Fm-3m space group.  These same phases 

have been seen in calcine dissolution work, where XRD analysis was carried out on milled 

and un-dissolved calcine samples (Short, 2006).  This showed that one of the fluorite type 

phases in the calcine was insoluble in nitric acid.  EDS analysis on this material showed it to 

have a high level of zirconium present in the sample.  Possible structures of this type include 

Sm0.5Zr0.5O1.75 and Zr2Gd2O7 (Short, 2005). 

 

On the addition of lithium nitrate to the HAL, there are 2 additional phases which can be seen 

using XRD analysis that are not present when the sample is lithium free (Short, 2005) and a 

different phase related to the fluorite structure.  The related phase had the same fluorite-type 

structure, but the 2θ values were shifted to lower scattering angles.  This type of structure can 

accommodate a large variety of elements, and is therefore likely to form as a complex oxide. 

 

The first additional phase which arises is also a fluorite related structure, but belongs to the 

Pm-3m space group.  The other additional phase is that of CsLiMoO4.  This has been 

identified in previous studies (Morgan et al., 2004) as being present as part of yellow-phase 

formation in the vitrified product. 

 



41 

 

Previous studies on HAL simulant aging (Sarsfield et al., 2004) have shown that there is no 

significant change in composition of the simulant when aged at 50 oC both with and without 

agitation.  The only major change in composition is the conversion of CPM to ZMH.  The rate 

of this conversion increases at low acidity, low fission product concentration and increased 

agitation.  Increase agitation also causes CPM to de-agglomerate, reducing the particle size.  

This allows better suspension of the CPM in the HAL, although on formation of ZMH the 

particles fall out of suspension and are much more difficult to re-suspend.   

 

2.5.7 VTR campaigns 4 and 5 

 

During VTR campaign 4A, the effects of feed rate, waste oxide concentration, acidity, 

temperature and sugar concentration on the response of the calciner, off-gas system and 

calcine properties were monitored.  The following observations were made (Brace, 2006a; 

Brace, 2006b): 

 

 Increasing the acidity of the HAL increases the volatility of ruthenium in the calciner 

to the off-gas system. 

 Increasing the waste oxide concentration and feed rate of HAL to the calciner had no 

significant effect on calcine properties and calciner or off-gas performance (other 

than the higher set points required to keep the evaporative front at the zone 2/3 

interface). 

 Increasing the zone 3 and 4 temperatures by 60 oC reduced the residual nitrate present 

in the calcine by approximately 7 %. 

 The effect of sugar on the reduction of the volatility of ruthenium was dependant on 

the nitrate concentration in the HAL.  The optimum concentration was found to be 

between 4 and 5.5 g of sugar per mole of nitrate. 

 

The condition of the rabble bar was also found to be influential in the amount of dust carried 

over to the dust scrubber.  When the rabble bar was deformed, a significant increase in fine 

calcine particles was produced, increasing the amount of dust carryover.  It was therefore 

found to be important to monitor the condition of the rabble bar more closely in future trials 

to reduce the probability of blockages forming in the off-gas system. 
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As part of VTR campaign 5, the effects of the addition of lithium nitrate to the HAL were 

monitored.  This was done using both magnox and blended simulants.  Lithium nitrate was 

dosed into the HAL based on having 0 %, 1 % and 2 % of the lithia present in the final glass 

product contained within the simulant.  In all 3 cases, the amount of dust carryover was 

reduced as the amount of lithium nitrate added was increased (Vickers, 2006b).  This is 

because lithium nitrate will be present as a molten salt in the calciner and has a high 

decomposition temperature, so helps to bind the calcine together. 

 

In VTR campaign 5, substituting blended simulants for magnox simulants reduced the amount 

of dust carryover and ruthenium carryover to the off-gas system.  This was despite only small 

changes in residual nitrate and the particle size distributions of the resultant calcines (Vickers, 

2006c).   

 

It was noted that when comparing results from VTR campaign 4B and campaign 5, there was 

a decrease in ruthenium carryover despite the amount of dust carryover increasing.  The only 

major difference between the trials was the difference in zone 3 and 4 temperatures.  It was 

postulated that an increase in temperature had reduced the amount of nitrate present in the 

HAL, reducing the number of oxidising species present in the calciner (Vickers, 2006c).  This 

would reduce the amount of the volatile RuO4 species being produced and therefore lower the 

carryover to the off-gas system.  Zone 1 and 2 temperature set points seemed to have little 

effect on the ruthenium carryover (Vickers, 2006a).  This is probably due to the boiling of 

water keeping the temperature constant, just moving the evaporative front toward the top end 

of the calciner. 

 

Experiments have been run on the VTR using both magnox and blended simulants, with and 

without the addition of lithium.  The dust carryover from an individual experiment can be 

calculated (Equation 1) so a comparison can be drawn.  This allows factors which affect the 

dust carryover to be identified.  Table 2.7 gives a brief overview of the effects of calciner 

temperature, HAL feed type, feed rate, waste oxide concentration, sugar : nitrate ratio and 

lithium addition on the dust carryover from experiments carried out on the VTR. 
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Equation 1: Dust Scrubber Solids Build Up (Brace, 2006c) 
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Where: 

 

 c is the concentration of solids in the dust scrubber liquor at time t, g / l 

 MD is the rate at which solids are abated in the dust scrubber, g / h (note: if the DS is 100 

% efficient then this is equal to the dust carryover, if 90 % efficient 0.9 x dust carryover 

etc.) 

 R is the dust scrubber recycle rate, l / h 

 c0 is the concentration of solids in the dust scrubber liquor at time 0 h, g / l 

 V is the volume of dust scrubber liquor, l 

 t is the elapsed time, h 

 

Equation 1 does not take into account the efficiency of the dust scrubber (some particles may 

not be removed in the dust scrubber and make it to the condenser, therefore not contributing 

to the total solids) or if there are any blockages in the dust scrubber inlet preventing the dust 

getting to the dust scrubber.  The MD values are a useful tool for assessing dust carryover, but 

are not absolute values.  Any anomalies in these values can be investigated, however, by 

visual inspections for blockages and analysis of the condenser liquor. 

 

2.5.8 The effects of temperature, waste oxide concentration and acidity 

 

Experimental work carried out by Brace (2005a) compared the solubility of Magnox calcines 

with a 75 % / 25 % oxide/Magnox blend under dust scrubber conditions.  The results of this 

work showed that blend and Magnox calcines have different solubility characteristics.  

Magnox calcines display a maximum solubility in nitric acid in the range 5-7 M, where as 

Blend calcine solubility increases with increasing acidity up to 10 M.  Blend calcines are also 

significantly less soluble due to the higher concentration of zirconium and molybdenum 

present in the simulant.  A reduction of temperature, carried out in these experiments (Brace, 

2005a), did not result in any significant reduction in solubility of both calcines. 

 

Other factors which affect the solubility of the calcines in nitric acid are the waste oxide 

concentration and the dissolution time (Brace, 2005a).  The higher the waste oxide 

concentration, the greater the amount of insoluble material is present, reducing the solubility 

of the calcine.  Other species, which are soluble at lower incorporation rates, may also have 

reached their solubility limits contributing to the increase in insoluble fraction.  Dissolution 

time also affects the solubility of the calcine.  The greater the dissolution time, the more 

insoluble material precipitates from the solution.  This can be explained by the formation of 

insoluble species through reactions in the solution.  As the dust scrubber has a reservoir of 

dissolved calcine, the fraction of insoluble material will build and eventually lead to 

blockages within the off-gas system.
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Table 2.7 – Factors which affect dust carryover to the off-gas system on the VTR (Short, 2005b; Vickers, 2006a; Vickers, 2006c) 

   Calciner Temperature (oC)     

Campaign/ 

Experiment 

Number 

Feed Type 
Feed Rate 

(l / h) 
Zone 1 Zone 2 Zone 3 Zone 4 

Sugar:Ni

trate 

Lithium 

Addition 

(g / l) 

Waste Oxide 

Conc (g / l) 
MD 

C5 E2/1 Magnox 42.46 770 770 680 680 4.9 0 184.65 157.5 

C5 E2/2 Magnox 42.46 830 830 680 680 4.9 0 184.65 154.1 

C5 E3 Magnox 42.46 800 800 680 680 4.9 0 184.65 221.9 

C5 E4/1 Magnox 42.46 800 800 680 680 3.5 0 184.65 305.9 

C5 E4/2 Magnox 42.46 800 800 680 680 6.5 0 184.65 307.1 

C5 E5 Magnox 45.80 800 800 680 680 4.9 6.1 171.2 130.8 

C5 E6 Magnox 49.15 800 800 680 680 4.9 11.4 159.5 47.1 

C5 E19 Blend 39.67 800 800 703 703 4.9 0 197.6 162.0 

C5 E20 Blend 43.01 800 800 703 703 4.9 6.5 182.3 69.0 

C4B E Blend 49.85 800 800 735 735 4.9 11.2 169.7 88.1 

C6 E1 Dil. Blend 60.3 870 870 685 685 4.9 0 130 188.6 

C6 E2 Dil. Blend 63.6 880 880 685 685 4.9 0 110 160.6 

C6 E3 Dil. Blend 69.0 910 910 685 685 4.9 0 90 151.4 
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Owens et al. (1985) carried out a series of experiments in which a series of HAL simulants 

were calcined in a muffle furnace at temperatures of 300 oC, 400 oC and 500 oC.  The 

purposes of these experiments were to monitor the residual nitrate and ruthenium retention as 

a function of temperature, lithium addition and sucrose addition.  During these experiments it 

was found that residual nitrate decreases with increasing temperature and sucrose addition and 

increases with the addition of lithium nitrate.  By comparing the residual nitrate in samples 

with lithium addition to those without, it was shown that some of the lithium nitrate had 

reacted at 300 oC. 

 

During this work (Owens et al., 1985) some of the calcined HAL samples were subjected to 

DTA analysis.  It was reported that when no lithium was present in the sample, a single peak 

was observed at 400 oC due to the evolution of NO2.  Upon the addition of lithium nitrate, 2 

further peaks were reported at temperatures of 300 oC and 500 oC, which were considered to 

be characteristic of the presence of lithium. 

 

2.6 Chapter Summary 

 

Over the past 50 years, there have been numerous methods devised to encapsulate high level 

liquid waste (HLLW) from reprocessing.  The AVM method was found to be the most 

suitable, and was adopted at the Sellafield site with the building of three waste vitrification 

plants (WVP’s).  This method involves passing the liquid waste through a rotary kiln 

(calciner) and encapsulating the waste in a borosilicate glass, in a continuous process.  This 

gives the best combination of properties such as durability, high waste loading and radiation 

stability at a relatively low cost. 

 

Although the AVM process is the best method for waste vitrification, there are some 

problems which arise, which force the shut-down of the WVP plants.  The most common of 

these are blockages which arise in the dust scrubber and recycle constant volume feeder 

(RCVF).  These blockages arise due to the formation of insoluble precipitates, such as 

zirconium molybdate and ruthenium dioxide.  By understanding the chemistry behind the 

formation of these precipitates, and of the highly active liquor (HAL) and dust scrubber liquor 

(DSL), it may be possible to reduce or control the amount of blockages which occur on the 

WVP lines. 
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Lithium nitrate has a significant effect on the properties of the calcine, and reduces the 

amount of carry-over to the dust scrubber.  This has helped to reduce the number of blockages 

which occur on the WVP plant, but the reasons for this are not fully understood.  As lithium 

nitrate will exist as a molten salt in the calciner, it could be simply binding the calcine 

together, reducing the amount of dust released to the dust scrubber.  An investigation in the 

reactivity of lithium nitrate could allow an understanding of how the chemistry in the calciner 

can be manipulated to reduce the number of blockages which occur, increasing the efficiency 

of the WVP plants. 

 

3. Experimental Methods 
 

3.1 Introduction 

 

If lithium nitrate is added to the simulated highly active liquor (HAL) processed on the VTR, 

a reduction in the amount of refractory oxides, high in aluminium and iron, is observed in the 

resulting product glass.  A series of lab-scale experiments were therefore designed to 

determine the reactivity of lithium nitrate with other metal nitrates present in the HAL.  These 

were carried out under conditions designed to simulate those experienced in the calciner, and 

the reaction mixtures (Table 3.2) based on the stoicheometry of Magnox HAL simulant used 

on the vitrification test rig (VTR). 

 

As identification of the lithium containing phases is very difficult in a large scale multi-

component system, the reactions of lithium with other species were also investigated.  The 

possible reactions of lithium nitrate with aluminium nitrate, iron nitrate, zirconyl nitrate and 

caesium phosphomolybdate (CPM) were investigated.  A systematic approach was taken 

when designing these reactions, to ensure the effects of lithium on the reactions could be 

monitored.   

 

The experimental approach consisted of first reacting lithium nitrate with the other 

compounds individually to determine if any reactions were observed.  Reactions between the 

other HAL simulant components were then carried out without the presence of lithium nitrate, 

with lithium nitrate and with an equivalent amount of nitrate added through addition of excess 

nitric acid.  This was to determine whether the additional nitrate was responsible for any of 

the reactions which took place, rather than the lithium cation.  By carrying out reactions with 

and without the presence of lithium nitrate, the role of lithium in the calciner could be better 

understood.  This research on simplified HAL simulants has allowed identification of some 

reaction products which may form in the calcination process. 
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3.2 Materials 

 

The materials shown in Table 3.1 were used in this project. All materials were used as 

received without any further purification. 

Table 3.1 – Materials used in sample preparation 

Chemical Purity (%) Supplier 

LiNO3 >98 Fisher Scientific 

Al(NO3)3.9H2O 98 Alfa Aesar 

Mg(NO3)2.6H2O >99 Acros Organics 

Fe(NO3)3.9H2O 98 - 101 Alfa Aesar 

ZrO(NO3)2 (161g/l) N/A Alfa Aesar 

H3PMo12O40 N/A Alfa Aesar 

Cr(NO3)3.9H2O 98.5 Alfa Aesar 

Nitric Acid (16M) N/A Fisher Scientific 

Sucrose N/A  

 

3.3 Sample preparation 

 

All of the simplified HAL simulants were made using the same method, using the chemicals 

and quantities listed in Table 3.2.  Quantities of reagents shown in Table 3.2 were place in a 

100 ml container.  Water and nitric acid were added and the mixture was shaken thoroughly 

until a homogeneous solution was formed.  Samples were left overnight to allow any 

reactions to occur.  Sugar solution was added and the mixture shaken thoroughly for 30 s to 

ensure homogeneity.  The samples were stored at room temperature for further treatment. 
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Table 3.2: Sample Preparation Table* 

 

Sample 

Name 

Anhydrous 

Lithium 

Nitrate 

Aluminium 

Nitrate 

Nonahydrate 

Magnesium 

Nitrate 

Hexahydrate 

Iron 

Nitrate 

Nonahydrate 

Chromium 

Nitrate 

Nonahydrate 

Phospho-

molybdic 

Acid 

Zirconyl 

Nitrate 

(161 g / l) 

Nitric 

Acid 

(16 M) 

Sugar 

Solution 

(200 g / l) 

 

Water 

LAN1 1.739 g 7.481 g - - - - - 4.588 g 3.349 g 36.192 g 

LMN1 1.885 g - 7.335 g  - - - 4.588 g 3.339 g 36.192 g 

LIN1 3.171 g - - 6.049 g - - - 4.588 g 3.494 g 36.192 g 

LPN1 2.711 g - - - - 6.509 g - 4.588 g 2.230 g 36.192 g 

LZN1 6.824 g - - - - - 14.875 g 4.588 g 4.199 g 23.713 g 

AMN1 - 4.841 g 4.379 g - - - - 4.588 g 3.053 g 36.192 g 

AIN1 - 6.387 g - 2.833 g - - - 4.588 g 3.033 g 36.192 g 

MIN1 - - 6.187 g 3.033 g - - - 4.588 g 3.001 g 36.192 g 

PZN1 - - - - - 8.044 g 7.307 g 4.588 g 1.517 g 30.061 g 

LAMN1 1.003 g 4.315 g 3.903 g - - - - 4.588 g 3.214 g 36.192 g 

LAIN1 1.279 g 5.502 g - 2.440 g - - - 4.588 g 3.244 g 36.192 g 

LMIN1 1.356 g - 5.726 g 2.587 g - - - 4.588 g 3.312 g 36.192 g 

LPZN1 2.457 g - - - - 5.899 g 5.357 g 4.588 g 2.323 g 31.697 g 

AMN2 - 4.315 g 3.903 g - - - - 5.936 g 3.214 g 36.192 g 

AIN2 - 5.502 g - 2.440 g - - - 6.307 g 3.244 g 36.192 g 

MIN2 - - 5.726 g 2.587 g - - - 6.411 g 3.312 g 36.192 g 

PZN2 - - - - - 5.899 g 5.357 g 7.891 g 2.323 g 31.697 g 

LAMCN1 0.959 g 4.126 g 3.731 g - 0.401 g - - 4.588 g 3.202 g 36.192 g 

AMCN2 - 4.126 g 3.731 g - 0.401 g - - 5.877 g 3.202 g 36.192 g 

AMCN1 - 4.607 g 4.167 g - 0.448 g - - 4.588 g 3.048 g 36.192 g 

 

 

* Chemical Stoicheometries represent those found in Magnox HAL simulant, with sugar added at 4.9 g / [NO3
-].  

 

All values weighed within an error of ±0.001 g 
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Table 3.3: Molar ratios of elements 

 

Sample 

Name 

Molar Ratios of Elements Present in the Sample 

Li Al Mg Fe Cr P Mo Zr C 

LAN1 1.3 1.0 - - - - - - 0.5 

LMN1 1.0 - 1.0 - - - - - 0.4 

LIN1 3.1 - - 1.0 - - - - 0.7 

LPN1 1.0 - - - - 0.1 1.1 - 0.2 

LZN1 1.5 - - - - - - 1.0 0.2 

AMN1 - 1.0 1.3 - - - - - 0.7 

AIN1 - 2.4 - 1.0 - - - - 1.3 

MIN1 - - 3.2 1.0 - - - - 1.2 

PZN1 - - - - - 0.1 1.7 1.0 0.1 

LAMN1 1.3 1.0 1.3 - - - - - 0.8 

LAIN1 1.3 1.0 - 0.4 - - - - 0.6 

LMIN1 3.1 - 3.2 1.0 - - - - 1.5 

LPZN1 1.5 - - - - 0.1 1.7 1.0 0.3 

AMN2 - 1.0 1.3 - - - - - 0.8 

AIN2 - 2.4 - 1.0 - - - - 1.6 

MIN2 - - 3.2 1.0 - - - - 1.5 

PZN2 - - - - - 0.1 1.7 1.0 0.3 

LAMCN1 1.3 1.0 1.3 - 0.1 - - - 0.9 

AMCN2 - 1.0 1.3 - 0.1 - - - 0.9 

AMCN1 - 1.0 1.3 - 0.1 - - - 0.7 
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3.3.1 Calcination 

 

30 ml of each simplified HAL simulant was transferred to a porcelain crucible using a pipette.  

The crucibles were placed in a furnace at room temperature and subjected to the following 

heat cycle (Figure 3.1) to replicate the conditions which would be experienced in the calciner: 

 

1. Increase the temp at 5 oC / min to 110 oC and dwell for 20 minutes to simulate the 

evaporation conditions (Zones 1 and 2) in the calciner. 

2. Increase temp to 250 oC at 5 oC / min and dwell for 20 minutes to prevent loaming of 

the nitrates. 

3. Increase temp to 350 oC at 5 oC / min and dwell for 20 minutes to simulate 

temperatures experienced by the calcine in the denitration process (Zones 3 and 4) in 

the calciner. 

4. Decrease temp to 110 oC and dwell to preclude any deliquescence until sample was 

collected. 

 
Fig 3.1 – Temperature profile of calcination at 350 oC 

 

The crucibles were removed from the furnace and allowed to cool to room temperature.  The 

resultant solid was transferred to a sample jar and placed in a dessicator ready for further 

analysis.  The process was repeated twice more, with fresh combined solution samples, taking 

the furnace up to 450 oC and 550 oC respectively in heat cycle part 3, leaving everything else 

unchanged. 
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3.3.2 Freeze Drying 

 

Freeze drying, or lyophilisation, is the process of removing water from a frozen material by 

sublimation.  This is achieved by reducing the pressure under vacuum allowing the solid ice 

phase to be converted directly to vapour (shown in Figure 3.2).  This leaves behind a solid 

product with the same characteristics as the original product if water was added without any 

decomposition taking place. 

 

Figure 3.2 – Phase diagram of Water5 

 

The purpose of freeze drying is to produce a solid product without thermally decomposing the 

species present within the samples.  This allows solid state analysis to be carried out on the 

samples and gives a starting point to determine which reactions take place in solution and 

which take place under calcination conditions.   

 

There are two main stages to freeze drying; the first is freezing of the sample.  This was done 

by adding the chosen solution (as prepared in section 3.2) dropwise into liquid nitrogen using 

a Pasteur pipette. The resultant frozen pellets were placed in suitable 75 ml wide neck flasks 

using a spoon headed spatula.  The flasks were attached to a Christ Alpha 1-2LD plus freeze 

dryer using the rubber attachments around the acrylic chamber (shown in Figure 3.3). The 

freeze dryer was then turned on and the main drying stage started. 

                                                           
5 Adapted from http://www.laetusinpraesens.org. 
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Figure 3.3 – Photo of Christ Alpha 1-2LD plus freeze dryer 

 

The freeze dryer was set to main drying mode and the ice condenser temperature and pressure 

were monitored on the display.  Typical pressures of 0.05 mbar were reached equating to an 

ice condenser temperature of approx -48 oC.  The samples were left for 24 hours to dry 

completing the main drying stage.  Once the samples were dried the vacuum was released 

from the freeze dryer and the flasks removed from the rubber attachments.  The solids were 

collected in a suitable container and were stored for either further heat treatment (see section 

3.3.3) or analysis. 

 

3.3.3 Calcination of freeze dried samples 

 

Further calcination was carried out on a selection of the freeze dried samples to replicate the 

residence time experienced in the calciner on the VTR, as this could not be achieved using the 

calcination method outlined in section 3.2.1 due to the ramp up period required to ensure the 

liquid didn’t boil over.  This was done by preheating a furnace to the desired calcination 

temperature.  Approx 5 g of the freeze dried sample was then placed in a porcelain crucible 

and placed in the preheated furnace for a set period of time (between 2 and 15 minutes).  The 

sample was then removed and allowed to cool to room temperature before being placed in a 

suitable container and stored awaiting analysis. 
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3.4 Sample nomenclature 

As there were many samples, an identification system was introduced in order for them to be 

dinstinguishable when comparing results.  Each chemical added was given a symbol to 

represent its presence in the sample.  These symbols are shown in Table 3.4. 

Table 3.4 – Sample Naming System 

Symbol Meaning 

L Contains Lithium Nitrate 

A Contains Aluminium Nitrate 

M Contains Magnesium Nitrate 

I Contains Iron Nitrate 

C Contains Chromium Nitrate 

P Contains Phosphomolybdic Acid 

Z Contains Zirconyl Nitrate 

N1 Contains Standard Nitrate 

N2 Contains Added Nitrate 

-XXX Calcination Temperature in oC 

 

For example, a sample containing lithium nitrate, magnesium nitrate and iron nitrate with a 

standard amount of nitric acid added and a calcination temperature of 500 oC would be called 

LMIN1-500.  The samples are named accordingly in Table 3.2. The sample LMIN1-500 

which has been heated for 24 hours in the furnace would be called LMIN1-500-24h.  If heat 

treated for 30 minutes the sample would be LMIN1-500-30m. 
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3.5 Scanning electron microscopy 

Scanning electron microscopy (SEM) operates on the same principles as optical microscopy, 

using lenses to magnify the image of a object.  However in SEM magnetic fields are used as 

lenses to focus a beam of electrons on to the surface of the sample rather than using curved 

glass lenses to focus light.  These electrons are scattered from the object and focussed to form 

an image through digital conversion.  Electrons have a much shorter wavelength than light, 

and so higher resolutions can be achieved (as resolution is a function of the wavelength).  

Improvements in resolution of SEM over optical microscopy can be up to 104 times.  Egerton 

(2005) provides an in depth overview of the principles of SEM. 

 

Figure 3.4 – Schematic Diagram of an SEM 
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A scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDS) 

capability was used to deterine the chemical composition of the samples.  EDS operates on 

the principle of a primary electron from the SEM beam knocking an electron from the inner 

shell of an atom, within the sample, out of its orbit.  This leaves the atom in an excited state, 

and causes an electron from an outer shell to move to fill the core hole and reduce the overall 

energy of the system.  This transition produces an X-ray photon with an energy proportional 

to the energy gap between the two shells (Figure 3.5) which is distinctive to that element.  

The X-rays produced are captured and processed by a detector and can therefore be used to 

identify the elements present in the sample. 

 

Figure 3.5 – Schematic diagram of electron movement during EDS spectroscopy 
 

Samples for EDS analysis were prepared by grinding to a fine powder using a porcelain 

mortar and pestle, and spinkling a small amount on a sticky carbon tab.  The tab was then 

placed on a carbon stub to reduce sample charging, and placed under high vacuum in the 

microscope chamber.  An electron accelerating voltage of 10 kV was used on all the samples, 

with a working distance set to 35 mm and a spot size of 25 μm.  

Primary 

electron 

K 

L 

M 

K-shell 

electron 

X-ray 

Electron from 

L-shell fills 

gap in K-shell 

Primary 

electron 



56 

 

 

 

Figure 3.6 – Diagram showing the interaction volume of the SEM  

Electron beam with the sample (Goodhew et al, 2001) 

 

Due to the interaction volume of the electrons with the sample when using EDS, more than 

one phase may contribute to the detected signal.  The measurement of more than one phase 

could give rise to multiple peaks, suggesting a reaction has occurred, contradicting the XRD 

data.  When using EDS data to identify reaction products, the interaction volume was taken 

into account.  A comparison to the XRD data was made where possible. 

 

The use of SEM (EDS analysis) had limitations, as elements with Z < 10 were not represented 

accurately.  This is due to the beryllium windows in the EDS spectrophotometer, which 

absorb the characteristic X-rays from elements with Z < 10, not allowing them to reach the 

detector.  Thus, peaks showing lithium, oxygen and nitrogen contained in the samples were 

not taken into account.  The absence of any distinct peaks in this analysis may suggest lithium 

nitrate is present in the sample, as all the elements have Z < 10 so would not be detected in 

the analysis. 

3.6 X-ray diffraction 

X-ray Diffraction (XRD) is used to identify crystalline compounds by measuring the counts 

of X-rays diffracted at an angle of 2θ in accordance with Bragg’s Law  

n λ = 2 d sin θ 

where n is an integer, λ is wavelength, d is the lattice spacing and θ is the angle of the incident 

beam.  This is shown schematically in Figure 3.7.  An x-ray source of known wavelength is 

used, so the diffraction angle (θ) is dependant on the lattice spacing (d).  
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Figure 3.7 – Schematic of X-ray Diffraction  

 

In most powder X-ray diffractometers, the sample is rotated about a point at θo / min, 

perpendicular to the direction of the X-ray beam, while the X-ray source remains fixed.  The 

detector moves at twice the speed of the sample (2θ o / min), in order to keep the angle of 

incidence and diffraction the same, and measures the counts caused by diffraction of the X-

ray beam.  This allows a range of 2θ values to be measured to build up a diffraction pattern.  

The detector and the source are equidistant from the sample to keep the beam in focus.  This 

ensures minimum peak broadening occurs.  Cullity and Stock (2001) provide a more in depth 

overview of the principles of XRD.  

The sample was powdered to ensure the orientation of the lattice planes was random.  When 

the diffraction conditions are satisfied, a peak of a distinctive intensity is recorded by the 

detector.   This peak can be matched to reference diffraction patterns for standardised 

materials recorded in the International Centre for Diffraction Data (ICDD) database. 

For samples containing iron a Siemens D5000 diffractometer with a cobalt source was used to 

avoid fluorescence.  The samples were prepared by grinding down to a fine powder using an 

agate mortar and pestle, and loading the powder into an aluminium sample tray.  The sample 

was smoothed over using a microscope slide to ensure the top layer was flat and positioned at 

the correct sample height.  The sample was loaded into the diffractometer and scanned using 

Co Kα radiation using a step size of 0.05 o, and a scanning speed of 0.5 o / min over the range 

of 10 o to 80 o 2θ.  The resulting patterns were peak matched to the corresponding ICDD files 

using the Stoe x-ray diffraction analysis software WinXPOW. 
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A Stoe diffractometer was used for all samples not containing iron.  These samples were 

prepared by grinding to a fine powder using an agate mortar and pestle, and placing a thin 

layer on sticky tape mounted in a sample holder.  This was then placed in a sample changer, 

which loaded the samples into the machine. The samples were scanned using Cu Kα radiation 

using a step size of 0.03 o, and a scanning speed of  0.5 o / min over the range of 0 o to 130 o 

2θ.  The resulting patterns were again peak matched to the corresponding ICDD files using 

WinXPOW. 

3.7 Thermogravimetric analysis 

Thermogravimetry allows a sample to be simultaneously weighed while being heated or 

cooled in a controlled manner (Gabbott, 2007).  The sample was placed on a thermobalance, 

which was suspended within a furnace, and subjected to an inert nitrogen atmosphere.  The 

sample was heated at a constant rate, and the weight of the sample recorded every second.  A 

weight vs temperature graph is plotted, which shows the range of temperatures at which gases 

were evolved from the sample.  From this graph, it was possible to determine decomposition 

temperatures of materials and identify the temperature range over which reactions occur 

which involve the evolution of gases.  Gabbott (2007) provides an overview of the principles 

and applications of thermal analysis. 

Thermogravimetric analysis (TGA) was performed on all of the samples using a Mettler 

Toledo TGA/SDTA851e Module, calibrated using zinc (melting point 419.6 oC) and 

aluminium (melting point 660.3 oC) standards and the analysis software STARe System 

version 8.1x.  The samples were ground to a fine powder using a porcelain mortar and pestle, 

and approximately 30 mg was placed in an alumina crucible and the weight of the sample 

recorded to ± 0.00005 g.  The samples were heated at 5 oC / min over the temperature range  

30 oC to 1000 oC.  The weight was recorded once every  second.  All measurements took 

place under a nitrogen atmosphere, with a nitrogen flow through the furnace of 50 ml / min.   

 

3.8 7Li Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy 

 

Nuclear magnetic resonance (NMR) spectroscopy measures the energy levels of nuclear 

spins, using E = hν (where h is Planck’s constant and ν is the frequency), in the presence of a 

strong magnetic field.  The nuclear spins experience a series of magnetic interactions, which 

are dependent on the orientation of the molecules to the magnetic field.  Using NMR, these 

interactions can be characterised to obtain information about the electronic environment of the 

observed nuclei (Wong, 2001), in this case 7Li.   
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There are three major interactions which occur in solid-state NMR experiments on the nuclei 

of alkali metals, denoted by the following Hamiltonian (Wong, 2001):   

 

H = HZ – HCS - HQ 

 

The main interaction is between the nuclear magnetic moment (µ) and the external magnetic 

field (B0), known as the Zeeman interaction (HZ), shown by the following Hamiltonian: 

 

HZ = -µ.B0 

 

The electron cloud surrounding the nucleus generates a secondary magnetic field, changing 

the external field at the nucleus, known as chemical shielding (HCS).  This can be expressed as 

the Hamiltonian: 

 

HCS = µ.σ.B0 

 

where σ is the chemical shield tensor, providing three-dimensional information of the 

shielding of the nucleus.  As the magnetic field may not be symmetrical, this leads to the 

possibility of differing chemical shifts arising depending on the directionality of these fields.  

This leads to line broadening and asymmetry in the solid-state NMR spectra, known as 

chemical shift anisotropy (CSA), shown in Figure 3.8.  

 

 

Figure 3.8 – The possible effects of CSA on solid-state NMR spectra (Wong, 2001) 

 

The quadrupolar interaction (HQ) arises due to the asymmetrical charge distribution associated 

with nuclei with a nuclear spin > ½.  It is a measure of the interaction between the electric 

field gradient and the nuclear quadrupole moment (eQ) and can be expressed as: 
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where J is the nuclear spin angular momentum and V is the electric field gradient tensor.  All 

of these interactions contribute to the effective interaction felt at the nucleus.  Available 

literature (Duer, 2008) provides futher information on these interactions and their effects on 

the NMR spectra produced. 

 

The chemical shift of an NMR signal depends on the molecular orientation to the direction of 

the magnetic field (B0).  Since molecules can change position, conformation, etc. over time, 

the NMR signal is dependent on how fast those changes occur relative to the NMR timescale 

(Spano, 2011).  Small molecules in solution exhibit rotational correlation times in the order of 

nanoseconds, which motionally average out the anisotropic interactions.  The resulting 

spectra, therefore contain peaks at the isotropic frequency positions for the different sites in 

the molecule (Spano, 2011).  In contrast, solid-state NMR experiments focus on sample 

systems with restricted molecular motion, such that on the NMR timescale, a large number of 

orientations are simultaneously present.  This results in spectra exhibiting broad features 

which consist of a superposition of signals from different orientations.  While these spectra 

can provide a wealth of information, they lack the site-specific resolution necessary for 

operations like structural characterization (Spano, 2011).  To obtain high resolution spectra in 

solid-state NMR, a coherent averaging of the anisotropic frequencies via mechanical rotation, 

magic-angle-spinning (MAS), is employed (Figure 3.9). 

 

 

Figure 3.9 – Depiction of the MAS process where (A) shows the z-components of spin 

angular momentums aligned in random directions without MAS and (B) shows the 

average orientation of the spins (shown by the single arrow) using the MAS technique 

(Spano, 2011) 
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MAS is used to cancel out the contributions of the anisotropic interactions to the spectra.  

This works by aligning the sample at 54.74 o from the direction of the magnetic field, which 

reduces the P2(Cosθ) = 0.5(3cos2β-1) value to zero, and rotating the sample at high frequency.  

This removes the orientation dependence of the nuclear spins, thus cancelling the anisotropic 

contribution (Spano, 2011), effectively aligning the spins along the magic angle axis (Figure 

3.9).  This reduces the spectra down to peaks at the isotropic frequency positions for the 

different sites in the molecule.  Duer (2004) provides a comprehensive guide to solid-state 

NMR techniques. 
 

7Li MAS NMR spectroscopy was performed using a Varian VNMRS spectrometer operating 

at Larmor frequency of 155.4 MHz.  All chemical shifts were referenced to 1 M LiCl (aq) by 

setting the signal of LiCl to δ = 0 ppm.  The solid samples were ground to a fine powder and 

packed into a 4 mm MAS rotor spinning at 14 kHz.  The simplified HAL simulant samples 

had a full spectral width of 40.32 kHz, with an acquisition time of 100 ms and a relaxation 

delay of 5 seconds was inserted between scans.  For the full HAL simulant samples, a spectral 

width of 208.3 kHz with an acquisition time of 30 ms and a relaxation delay of 1 second 

between scans was utilised.  Single pulse excitation with a pulse width of 0.1 µs was used for 

all experiments. 

 

3.9 Helium Pycnometry 

 

Helium pycnometry works by detecting the pressure change caused by gas displacement due 

to the presence of a solid sample.  Helium is used as the gas as it is inert and small in size, 

therefore able to penetrate into sample pores.  Figure 3.10 shows a schematic of the helium 

pycnometer. 

 

Figure 3.10 – Schematic diagram of the helium pycnometer (Kolodziejczyk, 2013) 



62 

 

 

An unknown volume of a solid sample (Vs) is placed inside a cell of known volume (Vc) and 

the cell is pressurised to a known value (Pc).  An isolated reference cell, of known volume 

(Vr), is also charged to a known pressure (Pr).  Once pressurised, a valve between the two 

cells is opened and the system pressure (Psys) goes to equilibrium.  Using the ideal gas law, 

PV = nRT, the volume of the solid sample can be calculated using the following sequence of 

equations (Kolodziejczyk, 2013; Aligizaki, 2006):  

 

Under the initial conditions, where the sample cell is isolated form the reference cell, the gas 

law can be expressed as: 

 

nRTVPVVP rrscc  )(  

 

where P is the pressure of the gas, V is the volume of the gas, n is number of moles, T is 

temperature of the gas and R is the molar gas constant.  On opening the valve between the 

sample and reference cells, the conditions become: 

 

nRTVVVP srcsys  )(  

 

Which can be expressed as: 

 

rrsccsrcsys VPVVPVVVP  )()(  

 

The unknown value of Vs can be obtained through rearrangement to: 
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As the sample weight is known, the density of the sample can therefore be calculated using 

the sample volume. 

 

Helium pycnometry was performed using a Micrometrics AccuPyc II 1340 pycnometer.  The 

samples were used as produced on the small scale calciner rig with no further treatment.  The 

samples were weighed using an external mass balance (±0.0001 g) and placed in the sample 

cell, filling it to approximately half of its capacity.  The sample volume was pressurised to 

7.00 psig at 0.005 psig / min before the cell valve was opened to the reference chamber.  The 

measured density in this work was averaged after 10 purges (used to clean the sample cell and 

remove any volatile contaminants) followed by 10 sample runs.   
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4. Introduction to the Small Scale Calciner 

Rig 
 

4.1 INTRODUCTION 

 

The small scale calciner rig is a piece of research equipment which was designed to bridge the gap 

between lab scale and full scale calcination experiments.  It consists of two main sections, a rotary 

tube furnace and an off-gas system.  HAL simulant and sugar solution are simultaneously fed into the 

calciner, where evaporation and denitration processes occur, and the resultant calcine product is 

collected in a glass pot sealed to the lower end fitting.  The system is kept under depression by a fan 

which pulls the mix of air, H2O, HNO3, NOx and dust created in the calciner through the off-gas 

system, where the vapours are condensed and the dust dissolved / suspended in the scrubber.  This 

was designed to mimic the processes which occur in the full scale process.  It is not, however, a scale 

model of the VTR and WVP plants.  It was bought and designed to achieve the following objectives 

(Brace, 2003): 

 

 To develop a greater understanding of the calcination process and investigate the chemistry 

surrounding fundamental plant issues such as the formation of zirconium molybdate. 

 To provide sufficient technical understanding at lab and small scale to reduce, where possible, 

the duration and therefore cost of the VTR campaigns. 

 To enable R&T to make recommendations to plant earlier than currently envisaged from the 

VTR without a calcination programme. 

 

The key differences between the small scale calciner and the VTR include: 

 

 The rotary furnace on the small scale calciner has 3 heated zones as opposed to the 4 on the 

VTR. 

 The calciner tube is approximately a third of the size of the full scale tube. 

 The waste oxide throughput on the small scale calciner is usually between 368.8 g / h (at a 

feed rate of 2 l / h) and 737.6 g / h (at a feed rate of 4 l / h) compared to the VTR waste oxide 

throughput, which is typically range of 6-10 kg / h, depending on feed concentration and rate.   

 The off-gas system on the small scale calciner uses a vortex scrubber, which acts as the dust 

scrubber and condenser as opposed to the impingement baffle plate column used on the VTR. 
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Figure 4.1 – Photos showing the layout of the Small Scale Calciner Rig
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The small scale calciner is therefore not thought to be suitable to directly determine new operational 

set points for the VTR, but is suitable to identify trends which arise from changing the experimental 

parameters.  The fundamental chemistry is thought to be sufficiently independent of scale to allow 

investigation into the objectives outlined above.  To attain these objectives, there is a degree of in- 

built versatility, allowing the following variables to be controlled: 

 

 HAL simulant composition 

 HAL feed rate 

 Sugar addition 

 Calciner temperatures 

 Rotational speed of the tube 

 Angle of inclination of the tube 

 Air in-bleed flow 

 

The angle of the tube, speed of rotation and feed rate all influence the residence time in the calciner, 

which is known to have an impact on the properties of the resultant calcine product (Short, 2012; 

Brace, 2004).  The effects of temperature, sugar addition and simulant composition on calcine 

properties and amount of dust carry-over have also been well documented (Brace, 2006b).  However, 

analysis of the density, particle size and chemical composition of the dust had not been possible in 

previous studies, as there were no sample collection points before the dust scrubber, where the 

majority of the dust is dissolved, on either the small scale calciner or the VTR.  

 

The small scale calciner rig had not been used for approximately 2 years before this project began.  

This led to a number of issues being encountered with the existing equipment.  Also, the original 

configuration of the rig did not allow for the capture of dust particles entrained in the off-gas from the 

calciner, which passes to the off-gas system.  As the existing rig needed to be partially rebuilt, the 

opportunity was taken to design and install a dirt trap.6  This allowed collection of dust for further 

analysis, which was not possible in historic studies. 

 

 

 

 

 

 

 

 

                                                           
6 The details of the design and installation of the dirt trap and the issues encountered during this process, and 

with the rig rebuild are fully discussed in Chapter 8. 
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4.2 EXPERIMENTAL 

 

Before the small scale calciner was operated, a series of checks were carried out to ensure the rig ran 

efficiently and that safety protocols were followed.  The off-gas system contains 30 litres of ~2 M 

nitric acid, so must be set to this level before the run begins.  The flexible hose and pipework that 

connects the calciner to the off-gas system were cleaned to minimise the chances that a blockage 

would form, which would lead to the possibility of a NOx release.  Cleaning the flexible hose also 

ensured all the dust collected was produced from the new experiment.  The off-gas flow was set to run 

through the flow meter to allow this to be measured and all the valves in the off-gas system checked 

to ensure they are in the correct positions when setting up the calciner rig.  Finally, the calcine 

collection pot was sealed to the lower end fitting.  Once these checks had been completed, the calciner 

was ready for operation. 

 

A minimum of 5 litres of the appropriate HAL simulant and 2 litres of sugar solution (200 g / l) were 

prepared and decanted into the designated containers where they were kept under constant agitation.  

The feed pipes were immersed in these solutions and run through a pair of calibrated peristaltic pumps 

connected to the calciner inlet nozzles.  The dust scrubber pump and chiller unit were switched on to 

circulate the cooled liquor round the off-gas system and the off-gas fan was set to create a depression 

of -13 mbar throughout the system.  The calciner rotation speed was set to 30 rpm and the calciner 

temperatures set to the appropriate values in the three heated zones.  The rig was left for ~60 mins to 

allow the calciner tube to reach temperature to ensure the correct calcination conditions were created.  

Once the off-gas flow had been recorded, it was set to by-pass the flowmeter to improve rig 

depression and reduce the risk of blockages occurring through dust being carried through the 

flowmeter.  The calciner was considered ready to start feed once the calciner tube expansion remained 

constant for a minimum of 10 mins and the rig depression had stabilised at -13 mbar, through 

adjustment of the off-gas fan speed. 

 

The HAL feed was started by turning on the peristaltic pumps which had been pre-set to the desired 

feed rate.  The pumps were left running for a period of one hour, after which they were stopped.  

During this period, the off-gas flow was diverted through the dirt trap by altering the position of the 3 

way valve, allowing dust to be collected for the full duration of the experiment.  Checks were also 

carried out on the rig every 10 mins during this period to ensure it was running correctly.  Once the 

feed had been stopped, the rig was left running for 30 mins to allow all the calcine and dust produced 

to make its way to the collection pot and dirt trap respectively.  After this, the temperature set-points 

were adjusted to room temperature and the calciner allowed to cool for a minimum of 2 hours before 

the calciner rotation, dust scrubber pump, chiller and off-gas fan were stopped.  The rig was further 

cooled overnight before the calcine and dust samples were taken. 
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The pre-weighed calcine collection pot was weighed with the calcine made during the experiment to 

determine the mass produced.  The calcine was then passed through sieves with pore sizes of 2 mm 

and 0.5 mm to split the calcine into three size fractions (<0.5 mm, 0.5-2 mm and >2 mm).  Each size 

fraction was weighed to determine the particle size distribution of the calcine and analysed using 

XRD, TGA and EDS to show if any differences in chemical composition arose as a function of 

particle size.  Conventional particle size analysis was not possible due to the solubility of the calcine 

in aqueous media. 

 

The dust sample was collected from the dirt trap and flexible hose (shown in Figure 4.2).  To remove 

the dust from the dirt trap, the base plate was removed allowing the filter cartridge to slide out and be 

emptied into a pre-weighed container.  The dust collected in the flexible hose was loosened using a 

pipe cleaning brush and collected in the pre-weighed container.  The combined sample was then 

weighed with this value being taken as the amount of the dust collected during the experiment7.  This 

was thought to give a representative value to allow trends to be observed, though is not the total value 

of dust produced due to the hold up of dust in the apparatus which could not be collected.  The value 

for the mass of dust collected was normalised against the mass of calcine produced for each 

experiment to allow comparisons to be made in dust carry-over as a function of calcination 

conditions.  The combined dust sample was analysed and compared to the calcine fractions of 

different particle size. 

 
 

Figure 4.2 – Photos showing the off-gas flow path (red line) from the calciner  

through the flexible hose and dirt trap where the dust samples were collected 

                                                           
7 There would have been dust collected in the upper end fitting, 3 way valve and a portion passing through the 

dirt trap filter during the small scale calciner experiments which could not be collected. 
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4.3 SMALL SCALE CALCINER RIG DESIGN AND REBUILD 

 

Blockages have been known to form in the pipework connecting the calciner and the off-gas system 

causing downtime on WVP.  As a consequence there is an interest in discovering the composition, 

particle size and density of calcine particles which are carried from the calciner to the dust scrubber 

during VTR and WVP operations.  The first sampling point on the VTR in the off-gas system is that 

of the dust scrubber liquor.  As the majority of the particles are soluble in nitric acid, it is difficult to 

measure the size and densities of these calcine particles.  This section focuses on the design and 

rebuild of the small scale calciner rig to allow collection of dust samples from the calciner, so the size, 

density and composition of these calcine particles could be measured. 

The small scale calciner rig had not been used for approximately 2 years before this project began.  

This led to a number of issues being encountered with the existing equipment.  Also, the original 

configuration of the rig did not allow for the capture of dust particles entrained in the off-gas from the 

calciner, which passes to the off-gas system.  As the existing rig needed to be partially rebuilt, the 

opportunity was taken to design and install a dirt trap.  This allowed collection of dust for further 

analysis, which was not possible in historic studies. 

 

4.3.1 Dirt trap design 

 

In order to allow the capture of dust particles in their solid form, a filter had to be added to the 

existing off-gas pipe work between the calciner and the off-gas system.  Originally, the off-gas system 

and calciner upper end fitting were connected by a flexible hose approximately 1.2 metres in length, 

with the majority of the dust being trapped in either this hose or in a designated trap, where it would 

be dissolved in the condensate.  As the dust was partially trapped in the flexible hose, it was decided 

that the filter would benefit from being as close to the calciner upper end fitting as possible.  These 

ideas were taken to the NNL design team with the following design specifications: 

 

 The off-gas flow must be allowed to by-pass the dirt trap to prevent a NOx release occurring 

in the event of filter blinding. 

 The dirt trap must be isolated during filter change operations to allow dust collection during 

routine operations without the possibility of a NOx release. 

 The filter must be removable to allow dust samples to be taking during an experiment. 

 The dirt trap loop must fit in the designated fumehood, and not block access to the HAL 

simulant feed buckets or peristaltic pumps. 

 The dirt trap loop should be made of glassware, in keeping with the current off-gas system, 

thus allowing visual inspection. 
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 Where possible, the dirt trap should avoid build-up of condensation, allowing the dust 

samples to remain in their solid state for further analysis. 

 

After a period of consultation with the NNL design team, a design was proposed which used 

components from the same manufacturer as the off-gas system, ensuring compatibility.  Figure 4.3 

shows the design and components list of the agreed dirt trap loop.  The major components of this dirt 

trap loop were: 

 

 The 3-way-valve (multi-port ball valve) – Allowed the off-gas flow to either by-pass the dirt 

trap or flow through to allow the collection of dust. 

 The dirt trap – Houses a PTFE cartridge covered with a 100 µm mesh filter to collect any dust 

whilst allowing the off-gas flow to pass through.  It has a removable base plate to allow 

changing of the cartridge and filter during routine operation of the calciner rig. 

 Two compact ball valves to allow isolation of the dirt trap, ensuring no NOx releases or off-

gas flow will be present while changing the filter.  These were designed to be used as an 

additional safety feature. 

 A new, smooth bore steel braided flexible hose designed to trap the minimum amount of dust, 

allowing it to travel to the off-gas system to be caught in the dirt trap. 

 

The remaining components (Figure 4.3) were identical to those already used to construct the off-gas 

system on the small scale calciner rig.   

 

As the new dirt trap loop would add extra weight to the existing glass pipe work, new scaffolding was 

also required.  However, it was decided that this would be built at the discretion of the NNL 

engineering team during installation of the dirt trap loop.  An assortment of scaffolding components 

were listed to order, but no further design work was carried out.  Once the design work had been 

completed and the components sourced, the implications on the safety of the small scale calciner rig 

had to be assessed before any work could begin. 
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Figure 4.3 – Drawing of the proposed dirt trap loop with parts list  

(Courtesy of the National Nuclear Laboratory) 
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4.3.2 Working on a nuclear licensed site 

 

In order to carry out work on a nuclear licensed site, there were procedures which had to be followed.  

Within the NNL central laboratory, before work could begin, a facilities work request (FWR) was 

raised, completed and approved by the facilities team, as well as other stakeholders, including the 

engineering, design, lab leader and operations control management teams.  The purpose of the FWR 

form was to ensure the operators were aware of the nature of the work which was to be carried out, 

the hazards associated with the work and that all the stakeholders had an input to determine whether 

the work was inherently safe.  The information captured on this form included (Webb, 2014): 

 

 A description of the work to be done. 

 References to the associated safety documentation and instructions. 

 Required resources and technical input for the work. 

 A section for authorising signatures. 

 A section for operator signatures. 

 

By capturing this information in one place, it ensured that all of the associated documentation had 

been reviewed and authorised as well as acting as a reference to all resources required to carry out the 

work should a new operator need trained.  Figure 4.4 shows a flow chart which was followed to allow 

completion of the FWR form and the associated paperwork, thus allowing the design work to be 

implemented and the experiments carried out. 

 

The first task was the completion of the customer details and charging details.  The customer details 

were a requirement, as they would have been needed in the case of an emergency.  The charging 

details were to ensure the facilities required for the work could be paid for once the work commences.  

Once these sections were cleared by the project manager, the scope of the work section was 

completed.  The scope of work section included (Webb, 2014): 

 

 Clear description of work to be carried out from ‘cradle to grave.’ 

 Short description of why the work is required. 

 A photo of the equipment or rig being used. 

 Details of the services required. 

 Details of the parameters covering normal working operations. 

 Requirements for overnight or lone working. 

 

This ensured both the operators and the lab leaders were aware of the work which was to be carried 

out, where the work was to be carried out and which facilities were required to complete the work.   
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Figure 4.4 – Flow chart showing the procedure for preparation of documentation before 

commencing work within the NNL central laboratory 
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As this work was covered by the building safety case, the next task was to complete a plant 

modification proposal (PMP) form.  A PMP is required for any changes in design or the installation of 

new equipment on an engineering plant.  The application of the PMP process ensured that: 

 The full extent of what is or what could be affected by the modification, both during and 

following its implementation, is identified and adequately considered. 

 All new and increased risks to safety and the environment are identified, assessed and 

adequately controlled. 

 Safety and environmental classifications are assigned to the modification which reflect its 

safety and environmental significance and ensure that it is the subject of adequate scrutiny. 

 The correct standards and procedures are applied to any engineering or operational changes. 

 The correct standards and procedures are applied to any design changes. 

 All requirements to update any records associated with the modification are identified. 

 All training and communication requirements associated with the modification are identified. 

 

As an engineering plant has effects on operational safety and environmental impact, the PMP had to 

be reviewed and authorised by the operations, engineering and building managers as well as 

environmental and radiological impact personnel for the Sellafield site. 

 

The facility register of environmental aspects (FREA) would not be affected by this work as the 

quantity of NOx produced by the experiments was taken into account.  The building emissions were 

already reported as if the off-gas system was not operational and all of the NOx produced was released 

through the building stack via the fume-hood.  The next step, therefore, was the preparation of 

COSHH and risk assessments to cover the proposed experimental programme.  COSHH assessments 

were required for handling HAL simulant, nitric acid, off-gas system liquors, chiller coolant and 

calcine, which all occur through routine operation of the calciner rig.  Due to the fact these hazardous 

chemicals needed to be handled and machinery would be in operation, the major hazards were 

identified as: 

 Chemotoxic hazards associated with the handling of strong acids. 

 High temperature hazard if in contact with the off-gas pipework and calciner tube. 

 Trapping hazards associated with rotating machinery and use of hand tools. 

 Working at height while opening and closing fire damper valves and emptying dirt trap. 

 

These hazards were captured in the risk assessment with an assessment of what remedial action 

should be taken to reduce the probability of these occurring.  This was also captured in the next stage 

of the process, updating of the operating instruction (OI). 



76 

 

 

Operations which require multi-step processes necessitate the use of an OI.  An OI contains a step by 

step guide for the operator to use and should capture any set-up, calibration, sampling, operational, 

shut-down and clean-up processes.  Within each step, any hazards should be identified and the 

appropriate PPE, beyond what is already worn in the lab, identified.  As this work required the 

addition of extra equipment to the rig, the small scale calciner OI had to be updated to include the use 

of the dirt trap loop during routine operation.  This work did not affect the emergency shut-down 

procedures for the rig from previous experiments. 

Within the resources required section of the FWR, the following must be considered: 

 

 Who will carry out the work and what training do they require? 

 What facility resources are required? 

 What raw materials are required? 

 Timescales and possible impact on other related projects. 

 

The technical input section required information on the emissions and waste generated from the 

operation of the small scale calciner rig.  NOx emissions were calculated for each experiment as the 

worst case scenario, as if all the nitrate anions (NO3
-) from the metal nitrates and nitric acid were 

given off as NO2.  These values were reported in the FWR giving a value for the total NOx produced 

throughout the whole experimental programme, thus allowing a check against the building emissions 

limits.  The waste HAL simulants and off-gas liquors were stored in 10 litre containers in a designated 

bunded area in the lab.  These were then taken for final disposal via the same route as VTR wastes. 

Once these sections were completed, the work originator and operations manager’s signatures were 

required to signify that the work package had been accepted.  The operators, due to work under the 

conditions of the FWR, then had to sign to show they have read and understand the FWR and 

associated paperwork.  The final step, before submitting the paperwork to the facilities team, was to 

authorise the EIM&T regime by obtaining the signature of the engineering manager, and nominate a 

qualified person to supervise the engineering work.   

The process for the authorisation to proceed then involved passing the FWR and associated 

paperwork to the appropriate lab leaders.  This was then checked by the facilities team before being 

passed on to the OCM for final approval at their weekly meetings.  Once all parties were satisfied 

with the work laid out in the FWR, work could then proceed.  If there were any issues, these would be 

pointed out and discussed, with the paperwork being re-submitted for the following weeks meeting 

(Webb, 2102). 
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4.3.3 Small scale calciner re-build 

 

4.3.3.1 Dirt trap installation 

 

Once the FWR had been approved, signifying the completion of amendments to all of the associated 

paperwork, all of the components were ordered for the building of the dirt trap loop.  Whilst waiting 

for the components to arrive, a job order number was raised and the safety documentation prepared to 

allow the NNL engineering team to install the components.  The work pack required before starting 

the work included: 

 

 Job card – A form where the unique job number is recorded and signature is gathered from 

the plant owner to ensure they approve of the work which will be carried out. 

 Risk Assessment – List of hazards, their consequences and measures taken to reduce the 

probability of these occurring. 

 COSHH assessments – Identification of hazards and remedial action required to reduce the 

risks associated with any chemical considered hazardous to a workers health. 

 Isolation Test Certificate (ITC) – This ensures that an electrical isolation has been carried out 

on the plant to prevent any moving parts being activated during the job, eliminating the 

hazards associated with moving machinery. 

 Pre-job brief form – This highlights the major hazards associated with the work and is 

required to be signed by the job supervisor and the personnel carrying out the work to ensure 

they have read and understand these hazards. 

 Work Control Assessment (WCA) form – A brief description of the job and a list of the 

associated documentation required for the job.  Must be signed by a qualified person of work 

(POW) and the Safe Systems of Work (SSOW) controller before work can commence. 

 

The preparation of this work pack was required before every job which was carried out by the NNL 

engineering team.  Once completed, it is passed to the SSOW controller for final approval and 

recorded in the work log for the building.  The work pack was then passed to the engineering team 

and the pre-job brief was conducted by the job supervisor to ensure the personnel conducting the work 

were aware of the hazards associated with the job.  Once the components had arrived, the job was 

ready to begin. 

 

Before installing the components on to the small scale calciner rig, the dirt trap loop was constructed 

to ensure all the parts fit together (Figure 4.5).  During this process, the internal components of the 3-

way-valve were found to be faulty and had to be sent back to the manufacturer, taking a total of 10 

weeks to be returned in the correct configuration.  During this time, a scaffold was built to support the 

weight of the dirt trap loop. 
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Figure 4.5 – Photo of the assembled dirt trap loop before installation 

 

Once the 3-way-valve had been returned, the dirt trap loop was installed successfully on to the 

existing off-gas pipework.  However, the steel braided hose, which was designed to connect the 

calciner upper end fitting to the 3-way-valve, was too short to bridge this gap due to the misalignment 

of the respective flanges.  Therefore, one of the existing flexible hoses was used to connect the 

calciner to the off-gas system in order to carry out a test of the small scale calciner to determine if the 

rig was in working order.  During this test, there were several issues identified which required further 

attention to get the rig in working order (see section 4.3.3.2). 

 

4.2.3.2 Other issues 

 

After installation of the dirt trap loop, the other components of the rig were inspected and tested to 

determine the condition of the rig.  During this investigation, the following issues were identified: 

 

 The off-gas fan had seized due to corrosion inside the fan casing. 

 Dust scrubber pump failure. 

 Degradation of the valve V12, which allows the off-gas to be diverted through the flowmeter. 

 The calciner rotation and heating had no power. 
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To resolve these issues, a new dust scrubber pump and valve were resourced and the spare off-gas fan 

was utilised.  A work pack was put together (as outlined in section 4.3.3.1) and approved by the 

SSOW controllers to install these new components and determine the cause of the lack of power to the 

calciner.  Once these issues had been resolved, the rig depression was tested and found to be 

insufficient.  The cause of this was identified to be a fracture of the glass tubing in the off-gas system 

(Figure 4.6), thought to be caused by a combination of vibrations from the off-gas fan and the 

additional weight added from the installation of the dirt trap loop.  The opportunity was taken to order 

spare glass tubing to avoid significant downtime occurring in the future due to this issue.  The glass T-

piece was replaced and extra support was added to the dirt trap loop to remove any excess stresses 

caused by the increased load on the glassware. 

 

 

Figure 4.6 – Photo showing fracture of the glassware during testing of the small scale calciner 

 

After these modifications had been made, further testing revealed insufficient rig depression was still 

an issue.  The cause of this was isolated to the calciner tube, which suggested the seals in either the 

upper or lower end fittings were loose.  These seals were replaced by the NNL engineering team, 

which resolved the issues.  The rig, now in working order, was ready to be tested and commissioned 

in feed. 
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4.3.4 Commissioning and testing 
 

Before experimentation on the small scale calciner could begin, the rig had to be commissioned, first 

using water feed followed by HAL simulant feed in accordance with the PMP.  A commissioning 

checklist was therefore agreed, raising the following questions: 

 

1. Is the off-gas diverted down the original off-gas pipe when the 3 way valve is in position 

1? 

2. Is the off-gas diverted through the dirt trap loop when the 3 way valve is in position 2? 

3. Is the temperature of the dirt trap blanking plate below 60 oC? 

4. Is the pressure differential at PI 001 between -11 mbar and -15 mbar when the off-gas is 

diverted through the dirt trap loop? 

 

The first two questions were answered by observing the direction of the condensate flow through the 

3-way-valve and were put in place to ensure the valve seating was in the correct configuration.  The 

dirt trap blanking plate temperature was measured using a contact thermocouple.  This temperature 

was important as the blanking plate must be removed during routine operation to obtain the dust 

sample.  Finally the pressure differential had to be in the range -11 to -15 mbar, as this is the operating 

window in which the rig operates to run in line with the -13 mbar at which the VTR is run.  In order to 

proceed to the HAL feed commissioning trial, the answers to the above questions all had to be 

affirmative in two, separate water feed trials.  Once this had been completed and approved by the 

plant owner, the HAL feed trials were conducted.  Before the rig could be considered for experimental 

use, the following question was posed: 

 

 Is the pressure differential at PI 001 between -11 mbar and -15 mbar when the off-gas is 

diverted through the dirt trap loop? 

 

This was an important issue in HAL feed, as the consequence of collecting dust in the dirt trap on the 

pressure differential in the system was unknown.  If the filter had blinded, restricting or blocking the 

off-gas flow, there was a possibility of a NOx release from the upper and lower end seals of the 

calciner tube.  Signs of this occurring would have manifested as a rise in the negative pressure 

differential throughout the system.  However, there were no issues encountered throughout the two 

HAL feed trials which were conducted.   

 

The four commissioning trials (two water feed and two HAL feed) were also used as training runs for 

the operators to become suitably qualified, experienced personnel (SQEP’d), which shows the 

operator is fully trained to operate the rig.  This was the final part of the PMP requirements, which 

allowed the authorisation of the rig to be used for further experimentation. 
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4.3.5 Experimental issues 

4.3.5.1 Off-gas fan and rig depression issues 

 

During small scale calciner operations, there were several issues which resulted in lengthy delays to 

the project.  The main issue with the small scale calciner was the unreliability of the off-gas fan, 

which is used to maintain depression throughout the rig.  This was replaced during the initial testing 

of the calciner with a spare which had been sourced during the original commissioning of the rig.  

However, due to a valve failure on the off-gas fan casing, which was used to drain the entrained 

condensate, there was an increased rate of corrosion which led to the fan having a shortened life span 

than was expected.   

 

During the lifespan of the off-gas fan, it had seized several times, either due to corrosion causing the 

motor shaft to stick or due to excessive build-up of condensate within the fan casing.  To deal with 

this issue, the NNL engineering team were alerted to any issues and an instruction was issued, 

alongside the associated work package (outlined in section 4.3.3.1) to allow drainage and/or freeing 

up of the off-gas fan.  Due to the regularity which this occurred, a maintenance regime could not be 

put in place due to the high work load of the NNL engineering team.  Each occurrence, therefore, led 

to anywhere between a week and two months downtime depending on availability.  Ultimately, the 

off-gas fan reached a point of failure and a replacement had to be resourced.  This was an issue, as the 

company which produced the original off-gas fan was no longer trading. 

 

In the original small scale calciner construction and commissioning records, an engineering drawing 

of the off-gas fan was present.  This allowed a new fan to be fabricated, though as it was custom built, 

it had a lead time of three months, further delaying the project.   

 

Another issue which arose throughout this project was the loss of depression in the off-gas system of 

the small scale calciner, causing the alarm to sound, triggering a shut-down of the rig.  There were 

several causes of this, the major cause being in-leakage past the seals in the upper and lower end 

fittings of the calciner tube.  The procedure for overcoming this issue was again to provide the NNL 

engineering team with a work package (section 4.3.3.1) to allow them to replace the seals.  There 

were again issues with resource availability, leading to further delays.  This was a constant issue 

throughout the experimental programme, leading to it being shortened due to time and resource 

restraints. 
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4.3.5.2 NOx release event 

 

During one of the small scale calciner experiments conducted during this project, the NOx alarm 

sounded, indicating a level above 5 ppm was released from the calciner into the fumehood, prompting 

an evacuation of the lab.  An investigation into the cause of this showed that a blockage was formed 

in the 3-way-valve from the build-up of dust passing from the calciner to the off-gas system.  As the 

NOx containing off-gas stream was unable to pass to the off-gas system, it would have been released 

through the upper and lower end fittings of the calciner tube into the surrounding fumehood.  Due to 

the hazards associated with a NOx release, an event was raised through the on-line safety and health at 

NNL sites (OSHANS) system. 

 

As part of the OSHANS procedure, an inspection of the small scale calciner rig was carried out by the 

operations control management (OCM) team as well as a review of all the associated safety 

documentation and operational instructions.  The major outcomes from this review were (Mattinson, 

2014): 

 

 Work place air monitoring and air flow checks to be carried out to determine whether there is 

a NOx hazard in the vicinity of the dirt trap and safety screens. 

 Currently a dust mask is used for certain operations to negate dust hazard.  This should be 

revisited to determine whether a NOx hazard is also present, resulting in the need to wear a 

respirator fitted with the appropriate filter.  Training should be undertaken by the operators 

for the associated respiratory protective equipment (RPE). 

 The risk assessments, COSHH assessments, operating instruction and facilities work request 

should be updated to cover RPE use, consideration of other lab users and lone working issues. 

 Associated documentation should also be updated to cover additional checks to the 3-way-

valve to ensure the probability of the same issue arising in future trials. 

 Additional signs on the doors to the furnace room (which houses the small scale calciner) 

should be produced highlighting a personal NOx monitor is to be worn while the calciner is in 

operation. 

 

Once these issues had been addressed, another review of the small scale calciner rig and the 

associated documentation was undertaken by the OCM.  This was to ensure the safety of the operators 

had been fully considered and all previous issues had been addressed.  Only once this had been 

completed could small scale calciner operations re-commence.   
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4.3.6 Original and revised timelines 

 

All of the issues covered in this chapter resulted in a delay in the final delivery of the project.  Table 

4.1 outlines the original project plan and the result of each delay.  The extra, unscheduled work that 

was carried out as a result is also outlined. 

 

Table 4.1 – Overview of original project timeline and the effects of the issues encountered 

Task 
Original Date 

for Completion 

Actual Date 

Completed 

Major Additional Work Carried out to 

Allow Completion of the Task 

Design of the 

dirt-trap loop 

January 

2011 

January 

2011 
 No additional work required. 

Complete FWR 

and associated 

paperwork 

April 

2011 

September 

2011 

 PMP paperwork reviewed several times, 

delaying authorising signatures. 

 Addendum required to PMP due to 

additional drawings being required. 

 Complete review of OI. 

 Paperwork required re-writing due to 

new document templates being released. 

Order parts for 

installation 

July 

2011 

December 

2011 
 No additional work required. 

Installation of 

dirt-trap loop 

September 

2011 

May 

2012 

 3-way-valve sent back to manufacturer 

for re-configuration. 

 New flexible hose ordered. 
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Calciner 

test runs 

October 

2011 

August 

2012 

 New DS pump, glassware and V12 

ordered. 

 Spare off-gas fan utilised. 

 Extra support added to dirt-trap loop. 

 Upper and lower end fitting calciner 

seals replaced. 

 SSOW package put together (See 

section 8.2.3.1) to allow installation of 

new components. 

Commissioning 

and training runs 

December 

2011 

October  

2012 
 No additional work required. 

Carry out 

experiments 

April 

2012 

September 

2013 

 Maintenance instruction written for 

draining and freeing of off-gas fan. 

 New off-gas fan sourced and 

manufactured. 

 Upper and lower end fitting calciner 

seals replaced. 

 NOx release event triggered OSHANS 

investigation. 

 FWR and all associated paperwork 

reviewed and updated. 

 RPE training undertaken. 

 

This shows that these issues delayed the project by a total of 17 months.  Some of these issues would 

have been expected to occur throughout the project and time was allowed in the original project plan 

as a contingency.  However, the severity of some of these issues could not have been anticipated, and 

hence project delivery was delayed.  
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5. Effects of Lithium Nitrate on Short 

Simulants in the Calcination Process 
 

5.1 INTRODUCTION 

 

Lithium nitrate is added to highly active liquor (HAL) before calciation and vitrification.  The main 

benefit of this addition is to reduce dust carry-over and hence blockages in the off-gas system.  It is 

also reported to improve the reactivity of the calcine in the melter (Magrabi, 1981).  Although these 

benefits are well documented, the underlying mechanisms by which these benefits are realised remain 

unclear.  One of the focuses of this work, therefore, was to understand the reactivity of lithium nitrate 

in the calciner to determine why lithium nitrate acts as a binding agent, reducing dust carry-over. 

 

Previous work (Vickers, 2006) had been carried out using full HAL simulants, which are difficult to 

analyse due to the large number of components they contain.  Another focus of this section of work 

was therefore to use simplified ‘short simulants’ to determine the reactivity of the major components 

of the HAL with lithium nitrate and the other species present in a series of systematic experiments.   

 

5.2 EXPERIMENTAL 

 

It was reported that the addition of lithium nitrate to the HAL simulant processed on the vitrification 

test rig (VTR) reduced the amount of refractory oxides, high in aluminium and iron, observed in the 

resulting product glass (Short, 2006b).  To investigate this observation further, a series of lab-scale 

experiments were designed to determine the reactivity of lithium nitrate with other metal nitrates 

present in the HAL.  These experiments were carried out under conditions designed to simulate those 

experienced in the calciner.  The reaction mixtures were based on the stoichiometry of Magnox HAL 

simulant used on the VTR. 

 

The reactions between lithium nitrate and selected HAL components were investigated in a systematic 

series of simplified experiments, because the complex chemical composition of HAL has, hitherto, 

prevented elucidation of the underlying mechanisms of reaction.  The possible reactions of lithium 

nitrate with the nitrates of aluminium, magnesium, iron and zirconium (as zirconyl nitrate) and 

phosphomolybdic acid (PMA) were investigated.  These compounds were chosen as they are the 

major components present in the HAL after the reprocessing of Magnox and UO2 fuels.  A systematic 

approach was taken when designing these reactions, to assist in identifying reaction products and 

intermediates.   
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The experimental approach consisted of first reacting lithium nitrate with HAL component 

compounds to identify reactions and characterise the products.  Reactions between the HAL simulant 

components were subsequently carried out without the presence of lithium nitrate, with lithium nitrate 

and with an equivalent amount of nitrate added through addition of excess nitric acid.  These 

experiments were used to determine whether lithium or the additional nitrate were responsible for any 

of the reactions.  By carrying out reactions with and without the presence of lithium nitrate, the role of 

lithium in the calciner could be better understood.   

 

Six samples were chosen to determine whether the residence time in the furnace affected the extent of 

reactions in the calciner.  These samples were AMN1, LMN1, LAMN1, PZN2, LPN1 and LPZN1.  

These samples were freeze dried and calcined at temperatures of 350 oC, 450 oC and 550 oC.  XRD, 

TGA and EDS analysis were carried out on the calcined products.  These results were compared to 

those obtained in the initial investigation.   

 

Achieving short residence times in a muffle furnace, to simulate calcination conditions, was not 

possible using liquid samples because introducing the samples at the reaction temperature led to flash 

boiling and loss of the crucible contents.  Clearly, preheating with an extended residence time would 

not be appropriate.  The samples were therefore first freeze-dried, to remove water and the resultant 

solid was placed in the furnace at the desired temperature.  This approach was thought to give a 

representative sample, since the freeze-drying simulated calciner Zones 1 and 2 (without heating), and 

the furnace simulated the conditions in Zones 3 and 4.   

 

5.2.1 Calculating theoretical TGA results 

 

TGA analysis was carried out on each of the starting materials used in these experiments (e.g. lithium 

nitrate, magnesium nitrate etc.).  The data, comprising sample weight at each temperature step, were 

converted to percentage weight values to give the weight loss curve for each of the starting materials. 

 

From these weight loss curves, theoretical weight loss curves were produced for each reaction.  These 

were constructed by taking into account the ratio of the reactants in each sample, and combining the 

weight loss curves accordingly (Equation 5.1).   
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TWX is theoretical weight at temperature X (%) 

MWAX is measured weight of component A at temperature X (%) 

MWBX is measured weight of component B at temperature X (%) 

A is mass of component A in the sample (g) 

B is mass of component B in the sample (g) 

 

This calculation was carried out for each of the measured temperatures and the results combined to 

form the theoretical traces.  It was not possible to conduct TGA investigation of the calcined products 

immediately following the reaction.  Consequently, it was important to acknowledge hydration of 

dehydrated nitrates or product phases in the calcined material, by absorption of atmospheric water, as 

a contributing factor in the TGA investigation of the calcine products. 

 

The theoretical weight loss after calcination at set temperatures was also calculated.  The first step 

was to calculate the theoretical mass of each component in the sample after calcination at a set 

temperature (Equation 5.2).   

   

)1( AXAX MLATM     (Equation 5.2) 

 

TMAX is theoretical mass of component A at temperature X (g) 

MLAX is measured weight loss of component A at temperature X (fraction) 

A is mass of component A in the sample (g) 

 

These values could then be used to work out the theoretical weight loss of the sample at a set 

temperature using Equation 5.3.  Finally this value was subtracted from the maximum theoretical 

weight loss (Equation 5.4), which gave the theoretical weight loss which should be observed after 

calcination at a set temperature. 
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x             (Equation 5.3) 

 

XMaxobs TLTLTL              (Equation 5.4) 

 

TLx is theoretical weight loss at temperature X (%) 

TLMax is maximum possible theoretical weight loss (%) 

TLobs is theoretical weight loss observed after calcination at temperature X (%) 

 

Using this, the actual weight losses observed in the samples after TGA analysis could be compared to 

the theoretical weight losses calculated from measurements carried out on the starting materials.   
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5.3 RESULTS AND DISCUSSION 

 

5.3.1 Reactions between aluminium nitrate and magnesium nitrate 

 

5.3.1.1 Lab scale experiments 

 

5.3.1.1.1 AMN1 and AMN2 

 

The XRD patterns of the reaction products showed strong reflections attributable to Mg(NO3)2.6H2O 

[14-101] for samples AMN1-350-3h, AMN2-350-3h, AMCN1-350-3h and AMCN2-350-3h; see 

Figure 5.1.  Reflections associated with Mg(NO3)2.6H2O essentially account for all reflections in the 

XRD patterns of the products, and no reflections corresponding to any Al bearing phase were 

observed.  TGA analysis of products AMN1-350-3h and AMN2-350-3h (Figure 5.2) showed total 

weight losses of 68 wt% and 77 wt% respectively at 1000 oC, compared to the total expected weight 

loss of 85 wt% corresponding to complete denitration and dehydration of the reagents to form the 

corresponding metal oxides.  Complete denitration and dehydration of Al(NO3)3.9H2O would result in 

an expected weight loss of 45 wt% at 1000 oC.  Assuming reversible dehydration of Mg(NO3)2.6H2O 

below 400 oC, consistent with XRD (Figure 5.1) and literature data (Paulik et al., 1988), this implies 

partial decomposition of Al(NO3)3.9H2O, to form an amorphous nitrate bearing product which is 

likely also hydrated, with a higher retention of the hydrate and nitrate inventory with the addition of 

extra HNO3.  This is consistent with XRD data and the thermal decomposition of Al(NO3)3.9H2O 

reported previously (Pacewska and Keshr, 2002).  Overall, the presence of strong reflections 

associated with Mg(NO3)2.6H2O, and absence of additional reflections corresponding to a reaction 

product indicated that no observable reaction had occurred to form a crystalline product.  This is 

consistent with thermal analysis of the reagents (Appendix), which showed Mg(NO3)2.6H2O to 

undergo (reversible) dehydration between 270-400 oC and denitration above 400 oC, and 

Al(NO3)3.9H2O to undergo partial dehydration and denitration below 350 oC to form an amorphous 

product which would not be observed by XRD, in agreement with previous work by Paulik et al. 

(1988) and Pacewska and Keshr (2002).   
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Figure 5.1 – XRD analysis of the samples a) AMN1-350-3h, b) AMN2-350-3h, 

c) AMCN1-350-3h and d) AMCN2-350-3h using Co Kα18 radiation (λ = 1.789 Å) 

 

 

Figure 5.2 – TGA analysis of samples AMN1-350-3h, AMN2-350-3h, 

AMN1-450-3h, AMN2-450-3h, AMN1-550-3h and AMN2-550-3h 

                                                           
8 Due to the unavailability of the INEL diffractometer at NNL, which uses Co Kα1 radiation (λ = 1.789 Å), 

throughout periods of this project, XRD analysis was carried out at the University of Sheffield using a Siemens 

D5000 diffractometer, which uses Cu Kα1 radiation (λ = 1.546 Å).  The type of radiation used is therefore 

signified for each diffraction pattern shown throughout this chapter. 

10 20 30 40 50 60 70

2theta (degrees)

In
te

n
s

it
y
 (

a
.u

.)

a)

b)

c)

d) 1

1
1 1 1

1
111 1 1 1 1 1

1 = Mg(NO3)2.6H2O

2 = Unidentified Reflection

2



90 

 

 

The XRD patterns for the reaction products of samples AMN1-450-3h and AMN2-450-3h (Figure 

5.3) showed a set of reflections attributed to MgO [45-946] and γ-Al2O3 [56-457].  An unknown, 

poorly crystalline phase was also present, which did not correspond to any known compound in the 

relevant phase diagrams, by reference to the ICDD database.  Some diffuse scattering was also 

apparent, suggesting the presence of non-crystalline component(s).  There was a notable absence of 

reflections attributable to Mg(NO3)2.6H2O from the diffraction pattern.  TGA data from the products 

of AMN1-450-3h and AMN1-450-3h (Figure 5.2) showed total weight losses of 39 wt% and 41 wt% 

respectively at 1000 oC, consistent with the similarities in the diffraction patterns and indicating 

substantial retention of the nitrate and hydrate inventory.  The weight loss profiles demonstrated two 

events: a broad weight loss up to 200 oC, attributed to dehydration; and a sharp weight loss at 400 oC, 

consistent with denitration of Mg(NO3)2.6H2O, by reference to thermal stability data for this 

compound (Appendix; Paulik et al., 1988).  Taken together, these data imply formation of an 

unidentified intermediate phase through reaction of the amorphous Al nitrate hydrate, with 

Mg(NO3)2.6H2O, or its decomposition products, together with MgO.  The available evidence suggests 

that this unidentified phase is likely to be a complex Mg and Al nitrate hydrate. 

 

 

 

Figure 5.3 – XRD analysis of samples a) AMN1-450-3h, b) AMN1-550-3h,  

c) AMN2-450-3h and d) AMN2-550-3h using Co Kα1 radiation (λ = 1.789 Å) 
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The XRD pattern for the reaction products of samples AMN1-550-3h and AMN2-550-3h (Figure 5.3) 

showed a close match to reflections attributable to Mg2Al(OH)7 [48-601].  However, consideration of 

the TGA data and available literature (Zhang et al., 2013) suggest the formation of an Al/Mg layered 

double hydroxide (Mg-Al-LDH) continuous solid solution of the form MgaAl(OH)3+2a-c(NO3)c.xH2O.  

Additional reflections in the XRD pattern of sample AMN1-550-3h showed the presence of MgO  

[45-946] and γ-Al2O3 [56-457].  On addition of nitric acid (sample AMN2-550-3h), however, the 

reflections attributed to MgO and γ-Al2O3 were not present.  TGA analysis of products AMN1-550-3h 

and AMN2-550-3h (Figure 5.2) showed total weight losses of 22 wt% and 36 wt% respectively.  The 

presence of residual weight loss, after calcination at 550 oC, implies retention of a proportion of the 

nitrate and hydrate inventory.  This observation is in agreement with the formation of a (possibly 

hydrated) Mg-Al-LDH phase by XRD (Figure 5.3) and is consistent with previous work carried out 

by Zhang et al. (2013) and Zhang and Li (2013), reporting that Mg-Al-LDH’s, of the form 

MgaAl(OH)3+2a-c(NO3)c.xH2O, were produced under various calcination conditions from 

Mg(NO3)2.6H2O and either Al(NO3)3.9H2O or Al(OH)3 starting materials.  The presence of MgO in 

the preparation of an Mg-Al-LDH was noted by Zhang et al. (2013), with the XRD reflections 

attributed to MgO reducing in intensity at increased reaction time and temperatures, suggesting that 

the reaction proceeds via a reaction involving MgO, in which additional HNO3 lowers the reaction 

temperature.  Previous work by Mascolo and Marino (1980), Pausch et al. (1986) and Roy et al. 

(1953) all showed the formation of an Mg-Al-LDH through reaction of alumina with MgO under 

various hydrothermal conditions.  The backscattered electron image (Figure 5.4) and X-ray maps 

(Figure 5.5) showed that the distribution of Al and Mg throughout the sample was relatively 

homogeneous, supporting the identification of a Mg-Al-LDH phase.  Overall, these data imply the 

formation of a Mg-Al-LDH, which must include a significant nitrate and hydrate component, in the 

form MgaAl(OH)3+2a-c(NO3)c.xH2O.  Formation must proceed by decomposition of the unidentified 

intermediate formed at lower temperature (via denitration and / or dehydration) and reaction between 

MgO and γ-Al2O3, also formed at lower temperature.  Higher nitrate content, through addition of 

HNO3, removed the presence of MgO and γ-Al2O3 from the reaction products.   
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XRD analysis showed that addition of Cr nitrate had very little effect on the product phases formed 

from the reaction between Mg and Al nitrates when calcined at 350 oC; see Figure 5.1.  Reflections 

associated with Mg(NO3)2.6H2O again account for essentially all reflections in the XRD patterns of 

the products, however, a single additional intense reflection, at 2θ = 18.05 o (Figure 5.1), was 

observed in the diffraction patterns of products from reactions involving Cr nitrate.  This reflection 

could not be attributed to any known phase in the relevant phase diagram, by reference to the ICDD 

database. The backscattered electron image (Figure 5.4) and X-ray maps (Figure 5.5) showed that Cr 

was localised to one area in the sample.  This is consistent with the XRD pattern of sample  

AMCN1-350-3h (Figure 5.1) which showed an additional reflection attributed to the presence of Cr in 

the sample, suggesting Cr formed an isolated phase, not interacting with other components in the 

sample. 

 

 

Figure 5.4 – Backscattered (left) and secondary (right) electron  

images of sample AMCN1-550-3h. 

 

 

Figure 5.5 – Digital maps showing the elemental composition  

of sample AMCN1-550. 
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From these experiments, it is possible to infer and conclude the following sequence of reactions: 

 Below 350 oC: Mg(NO3)2.6H2O undergoes reversible dehydration, whereas Al(NO3)3.9H2O 

undergoes partial denitration and dehydration to form an amorphous product.  These findings 

are consistent with analysis of the reagents (Appendix) and literature data (Paulik et al., 1988; 

Pacewska and Keshr, 2002).  The possibility of reaction between the reagents below 350 oC 

cannot be excluded, but the strong XRD reflections associate with Mg(NO3)2.6H2O, and 

absence of additional reflections corresponding to a crystalline reaction product, imply that 

the product must be minor and amorphous in nature. 

 Between 350-450 oC: an unidentified intermediate phase is formed together with MgO and  

γ-Al2O3; this suggests (partial) reaction of the amorphous Al nitrate hydrate, with 

Mg(NO3)2.6H2O and / or MgO.  The available evidence suggests that this unidentified phase 

is likely to be a complex Mg and Al nitrate hydrate.  

 Between 450-550 oC: a layered double hydroxide nitrate of the type  

MgaAl(OH)3+2a-c(NO3)c.xH2O, is formed, together with MgO and γ-Al2O3.  Formation of the 

Mg-Al-LDH must proceed by decomposition of the unidentified intermediate formed at lower 

temperature (via denitration and / or dehydration) and reaction between MgO and γ-Al2O3 

also formed at lower temperature.  Higher nitrate content, through addition of HNO3, removed 

the presence of MgO and γ-Al2O3 from the reaction products.   

 Addition of Cr nitrate had no affect on the reactions between Mg and Al nitrates. 

 

5.3.1.1.2 LMN1 

 

The XRD pattern of product LMN1-350-3h (Figure 5.6) showed a set of reflections which could be 

attributed to LiNO3 [8-466] and Mg(NO3)2.6H2O [14-101].  These components essentially accounted 

all of the reflections present in the XRD pattern which suggested no reaction had occurred.  This was 

verified by TGA analysis (Figure 5.7), which showed the total weight loss of the product to be  

84 wt% at 1000 oC, close to the 86 wt% expected total weight loss arising from complete denitration 

and dehydration of the metal nitrate hydrates to form the corresponding oxides.  Overall, the 

identification of LiNO3 and Mg(NO3)2.6H2O after calcination at 350 oC is consistent with thermal 

analysis of the reagents, which showed LiNO3 to be stable up to 600 oC, and Mg(NO3)2.6H2O to 

undergo dehydration between 270-400 oC and denitration above 400 oC (Appendix, in agreement with 

Chun, 1977; Paulik et al., 1988). 
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Figure 5.6 – XRD analysis of samples a) LMN1-350-3h,  

b) LMN1-450-3h and c) LMN1-550-3h using Cu Kα1 radiation (λ = 1.546 Å) 

 

 

Figure 5.7 – TGA analysis of samples LMN1-350-3h, 

LMN1-450-3h and LMN1-550-3h 
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The XRD pattern of product LMN1-450-3h (Figure 5.6) showed a set of reflections which did not 

correspond to any known compound in the relevant phase diagrams, by reference to the ICDD 

database; additionally, some diffuse scattering is apparent, suggesting the presence of amorphous 

component(s).  However, reflections associated with LiNO3 and Mg(NO3)2.6H2O were found to be 

absent from the diffraction pattern.  TGA analysis showed the total weight loss of the product to be  

75 wt% at 1000 oC, indicating quantitative retention of the nitrate and hydrate inventory.  The weight 

loss profile demonstrated three events: a broad weight loss up to 200 oC, attributed to dehydration; 

and two well defined weight loss events at 400 oC and 600 oC, consistent with denitration of 

Mg(NO3)2.6H2O and LiNO3, respectively, by reference to thermal stability data for these compounds 

(Appendix; Chun, 1977; Paulik et al., 1988).  Taken together, these data imply reaction of LiNO3 and 

Mg(NO3)2.6H2O between 350-450 oC, to form a metastable crystalline product, of unknown structure, 

comprising a mixed Li and Mg nitrate hydrate.  

 

The XRD pattern of product LMN1-550-3h (Figure 5.6) demonstrated the formation of MgO, together 

with a set of low intensity reflections, attributed to LiNO3, showing a portion of the starting material 

had re-formed.  At least one other phase was present, which could not be conclusively identified by 

reference to the ICDD database; some weak diffuse scattering was also apparent, suggesting the 

presence of amorphous component(s).  TGA analysis of the product (Figure 5.7) demonstrated a 

single weight loss event at 600 oC, with a total weight loss at 1000 oC of 49 wt%; notably, no 

significant low temperature dehydration event was observed.  This is consistent with the thermal data 

for LiNO3 (Appendix; Chun, 1977) which shows a single weight loss event above 600 oC 

corresponding to decomposition to the component oxide.  Complete conversion of Mg(NO3)2.6H2O to 

MgO would result in an expected weight loss of 67 wt%, which implies that the additional phase must 

comprise a metastable Li rich nitrate hydrate, possibly incorporating Mg.   

 

From these experiments, it is possible to infer and conclude: 

 Below 350 oC: LiNO3 and Mg(NO3)2.6H2O do not undergo any significant reaction. 

 Between 350-450 oC: the primary reaction is between LiNO3 and Mg(NO3)2.6H2O to form a 

metastable crystalline intermediate compound, likely a mixed nitrate hydrate of Mg and Li; an 

amorphous counterpart was also formed. 

 Between 450-550 oC: the metastable intermediate compound decomposes to form MgO and a 

portion of the LiNO3 starting material.  An amorphous phase was also present, which must be 

a Li rich nitrate phase possibly incorporating a small amount of Mg.   
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5.3.1.1.3 LAN1 

 

The XRD pattern of product LAN1-350-3h (Figure 5.8) showed a set of reflections attributable to 

LiNO3 [8-466].   No reflections corresponding to Al(NO3)3.9H2O or any Al bearing phase were 

observed.  TGA analysis of the calcined product (Figure 5.9) demonstrated a total weight loss of  

55 wt% at 1000 oC, compared to the expected total weight loss of 85 wt% arising from complete 

denitration and dehydration of the metal nitrate hydrates to form the corresponding oxides.  Complete 

denitration and dehydration of Al(NO3)3.9H2O below 350 oC would result in a product yielding an 

expected weight loss of 70 wt% at 1000 oC.  This implies partial decomposition of Al(NO3)3.9H2O 

(by loss of 78 % of the nitrate and hydrate inventory), to form an amorphous nitrate bearing product 

which is likely also hydrated, consistent with XRD data and the thermal decomposition of 

Al(NO3)3.9H2O reported previously (Pacewska and Keshr, 2002). 

 

 

Figure 5.8 – XRD analysis of sample LAN1-350-3h using Cu Kα1 radiation (λ = 1.546 Å) 
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Figure 5.9 – TGA analysis of samples LAN1-350-3h, 

LAN1-450-3h and LAN1-550-3h 

 

The XRD patterns of products LAN1-450-3h and LAN1-550-3h (Figure 5.10) showed a set of 

identical broad reflections attributed to LiAl2(OH)6(NO3).xH2O [51-359] and poorly crystalline γ-

Al2O3 [56-457] plus an additional crystalline phase which could not be identified, by reference to the 

relevant phase diagrams, using the ICDD database.  A different set of reflections were present after 

calcination at 450 oC, identified as LiNO3.3H2O [24-645].  Strong diffuse scattering was also 

apparent, suggesting the presence of amorphous component(s).  No reflections corresponding to 

anhydrous LiNO3 or Al(NO3)3.9H2O were apparent in the diffraction patterns.  TGA analysis of 

LAN1-450-3h and LAN1-550-3h (Figure 5.9) afforded total weight losses of 51 wt% and 45 wt% 

respectively at 1000 oC, indicating that a similar and substantive fraction of the volatile inventory was 

retained after reaction at 450-550 oC.  The weight loss curve shows two distinct weight loss events: a 

broad weight loss below 200 oC, typical of dehydration; and a sharp weight loss above 500 oC.  The 

latter event is consistent with the decomposition of a hydrated Li/Al layered double hydroxide (Li-Al-

LDH) phase (identified by XRD; Figure 5.10), as reported by Nayak et al. (1997).  Bessergeunev et al 

(1997) showed the reaction of LiNO3 with γ-Al(OH)3 yielded the product LiAl2(OH)6(NO3).xH2O 

under hydrothermal conditions.  The thermal transformation of Al(NO3)3.9H2O under acidic 

conditions is known to form aluminium meta-hydroxide (AlOOH), which decomposes to form γ-

Al2O3 at 400-500 oC (Pacewska and Keshr, 2004).  Taken together, these data imply the formation of 

a Li-Al-LDH, which must include a nitrate and hydrate component, in the form 

LiAl2(OH)6(NO3).xH2O.  An additional, unidentified crystalline phase was also formed between 350-

450 oC.  This phase is thought to be lithium rich, as the ratio of Al/Li in the starting materials was 

1:1.3, whereas there is a 2:1 ratio is evident in the Li-Al-LDH.  However, no match could be found 

using the ICDD database, suggesting the unidentified phase is a complex Li rich nitrate hydrate, 



98 

 

 

possibly incorporating Al.  Formation of LiAl2(OH)6(NO3).xH2O must proceed by reaction of 

LiNO3.3H2O with the non-crystalline products of Al(NO3)3.9H2O decomposition.  The presence of 

LiNO3.3H2O after calcination at 450 oC for 3 h showed the reaction had not gone to completion, 

however, no LiNO3.3H2O was observed in product LAN1-550-3h.  This showed further reaction 

occurred between 450-550 oC to yield Li-Al-LDH, implied by the increase in intensity of the 

reflections attributed to this phase as identified by XRD.  The unidentified crystalline phase was 

observed after calcination at 550 oC, suggesting it is stable up to at least 560 oC, as shown by TGA 

analysis. 

 

Figure 5.10 – XRD analysis of samples a) LAN1-450-3h and  

b) LAN1-550-3h using Co Kα1 radiation (λ = 1.789 Å) 

 

From these experiments, it is possible to infer and conclude: 

 Below 350 oC: LiNO3 and Al(NO3)3.9H2O do not undergo any significant reaction, but the 

latter undergoes partial decomposition to form a non-crystalline product. 

 Between 350-450 oC: LiNO3 reacts with the non-crystalline product of Al(NO3)3.9H2O 

denitration and dehydration to yield a poorly crystalline Li-Al-LDH, in the form  

LiAl2(OH)7-a(NO3)a.xH2O and an unidentified crystalline phase, thought to be a Li rich nitrate 

hydrate (possibly incorporating Al), with LiNO3.3H2O present in the product, showing the 

reaction had not reached completion. 

 Between 450-550 oC: The remaining LiNO3.3H2O undergoes further reaction with the non-

crystalline product of Al(NO3)3.9H2O decomposition to form Li-Al-LDH.  The unidentified 

crystalline phase is still observed. 
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5.3.1.1.4 LAMN1 

 

The XRD pattern of product LAMN1-350-3h (Figure 5.11) comprised sharp reflections which did not 

correspond to any known compound(s) in the relevant phase diagrams, by reference to the ICDD 

database.  No reflections could be attributed to LiNO3, Mg(NO3)2.6H2O or Al(NO3)3.9H2O.  These 

observations are in contrast to reactions involving LiNO3 with Mg(NO3)2.6H2O or Al(NO3)3.9H2O, in 

which no significant reaction was observed at 350 oC and LiNO3 was retained.  TGA analysis (Figure 

5.12) showed the total weight loss of the product to be 60 wt% at 1000 oC, compared to the expected 

total weight loss of 84 wt% arising from complete denitration and dehydration of the metal nitrate 

hydrates to form the corresponding oxides.  The weight loss curve shows three distinct weight loss 

events: a broad weight loss below 200 oC, typical of dehydration; and two sharp weight loss events at 

380 oC and 560 oC.  Both these events occurred at lower temperatures than expected for the 

denitration of Mg(NO3)2.6H2O and LiNO3 (Shown to be 400 oC and 600 oC respectively; Appendix; 

Paulik et al., 1988; Chun 1977).  Overall, these data imply that the crystalline product(s) of  

LAMN1-350-3h must comprise one or more nitrate hydrate phases incorporating Li, Al and Mg; 

because, LiNO3 does not react with either Mg(NO3)2.6H2O or Al(NO3)3.9H2O at 350 oC or below 

(sections 5.3.1.1.2 and 5.3.1.1.3). 

 

 

Figure 5.11 – XRD analysis of sample LAMN1-350-3h  

using Co Kα1 radiation (λ = 1.789 Å) 
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 Figure 5.12 – TGA analysis of samples LAMN1-350-3h,  

LAMN1-450-3h and LAMN1-550-3h 

 

The XRD patterns of product LAMN1-450-3h and LAMN1-550-3h (Figure 5.13) exhibited sharp 

reflections which matched the diffraction pattern of γ-Al2O3 [56-457], no additional reflections were 

observed, though significant diffuse scattering was apparent, suggesting the presence of a non-

crystalline phase.  The observation of crystalline γ-Al2O3 is in contrast to sample AMN1 (section 

5.3.1.1.1), which shows formation of poorly crystalline γ-Al2O3 and MgO under the same calcination 

conditions.  TGA analysis of these products (Figure 5.12) showed the total weight loss to be  

46-49 wt% at 1000 oC, demonstrating the retention of a significant volatile nitrate and hydrate 

inventory.  The weight loss curve shows two distinct weight loss events: a broad weight loss below 

200 oC, typical of dehydration; and a sharp weight loss at 560 oC.  There was a notable absence of the 

weight loss event at 380 oC, observed in sample LAMN1-350-3h, which implied this event must be 

due to the decomposition of the unknown intermediate(s) to form the γ-Al2O3 type structure, with a 

non-crystalline nitrate hydrate phase, presumably containing Li and Mg, stable up to 560 oC.  LiNO3 

is known to act as a molten salt above its melting temperature of 255 oC.  Molten salts can provide an 

alternative media, which can change the reactivity and solubility of reactants (Afanasiev and Geantet, 

1998).  There are two main mechanisms by which reactions proceed in a molten salt host, which are 

the ‘template-growth’ and ‘dissolution-precipitation’ mechanisms (Zhang, 2007).  ‘Template-growth’ 

reactions occur when one of the reactants is much more soluble in the molten salt than the other.  The 

soluble reactant diffuses on to the surface of the other reactant causing a reaction to occur.  The 

product of this reaction retains the morphology of the insoluble reactant.  Previous studies by Safaei-

Naeini et al. (2011) and Fazli et al. (2013) showed the reaction of MgO and γ-Al2O3 in a molten salt 
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medium results in the formation of MgAl2O4 via a template-growth mechanism, where the structure of 

γ-Al2O3 is retained, consistent with the XRD pattern shown for products LAMN1-450-3h and 

LAMN1-550-3h (Figure 5.13).  The work by Fazli et al. (2013) showed the formation of MgAl2O4 

began at 650 oC in a LiCl molten salt.  However, LiNO3 acts as Lux-Flood base, meaning it is a good 

O2- donor, and can lower the temperatures needed for an oxidation reaction to occur (Afanasiev and 

Geantet, 1998; Afanasiev, 2007).  This is consistent with the fact that MgO and γ-Al2O3 are formed in 

products AMN1-450-3h and AMN1-550-3h, without the presence of LiNO3.  Therefore, the 

observation of the γ-Al2O3 type structure in the diffraction pattern, as well as consideration of the 

available literature, suggest that MgAl2O4 is formed via a template-growth mechanism using LiNO3 as 

a molten salt, therefore retaining the γ-Al2O3 structure.  A non-crystalline phase, which must contain 

Li and Mg was also shown to be present through the significant diffuse scattering observed by XRD 

analysis, which appears to decompose above 560 oC, as shown by the TGA trace (Figure 5.12). 

 

 

Figure 5.13 – XRD analysis of a) LAMN1-450-3h and b) LAMN1-550-3h  

using Co Kα1 radiation (λ = 1.789 Å) 
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Confirmation of the retention of Li was made by 7Li MAS NMR spectroscopy.  Figure 5.14 shows a 

comparison of the 7Li MAS NMR spectra of LiNO3 and the product LAMN1-550-3h; the former is 

dominated by an intense symmetric and sharp resonance at -0.09 ppm, whereas the latter comprises an 

asymmetric intense resonance at a higher chemical shift of -0.06 ppm (measured relative to LiCl).  

These data confirm that Li is retained in the calcination reactions but does not exist in the original 

chemical environment of LiNO3 (the estimate accuracy of the derived chemical shifts is ± 0.02 ppm), 

consistent with XRD analysis.  The signal is slightly broader than that of LiNO3, indicative of a less 

crystalline environment, signifying the Li is present in a non-crystalline environment, however, the 

asymmetric nature could suggest the some of the Li is present in a crystalline phase.  Since product 

LAMN1-550-3h was found to comprise a highly crystalline phase with a γ-Al2O3 type structure and a 

non-crystalline component (thought to contain Li and Mg) by XRD analysis, the NMR data may 

suggest incorporation of Li in this phase (and its metastable precursors) by a solid solution 

mechanism.  Taken together, these data imply that the intermediate of unknown crystal structure 

formed at 350 oC, undergoes decomposition in the range 350-450 oC, to yield a γ-Al2O3 structure, 

thought to be MgAl2O4 formed through a molten salt route, which could incorporate Li.  Therefore, 

formation of a solid solution of the type Al2-x-yMgxLiyO3-x/2-y, cannot be excluded in these reactions 

and there is no precedent for formation of such a phase in the available literature.  Irrespective, the 

TGA and NMR data point to the presence of a co-existing non-crystalline nitrate hydrate phase 

incorporating Li.   

 

Figure 5.14 – 7Li MAS NMR spectra of LiNO3 and LAMN1-550-3h 
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From these experiments it is possible to infer and conclude the following: 

 Below 350 oC: LiNO3, Mg(NO3)2.6H2O, and Al(NO3)3.9H2O react to form a complex nitrate 

hydrate incorporating Li, Mg and Al; this phase or phases are of unknown crystal structure. 

 Between 350-450 oC: the complex nitrate hydrate decomposes to form MgAl2O4 through a 

molten salt template-growth synthesis, with the structure of γ-Al2O3 being retained, alongside 

a co-existing non-crystalline nitrate hydrate phase, incorporating Li and Mg.  7Li NMR data 

could show that some Li is incorporated in the crystalline MgAl2O4 structure, though the 

broad resonance suggests Li is present in a non-crystalline form, consistent with the XRD 

data. 

 Between 450-550 oC: the non-crystalline nitrate hydrate, incorporating Li and Mg remains 

thermally stable up to 560 oC, above which denitration occurs. 

 

5.3.1.1.5 MIN1 and MIN2 

 

The XRD patterns for samples MIN1-350-3h and MIN2-350-3h (Figure 5.15) showed strong 

matching reflections.  These were attributed to Mg(NO3)2.6H2O [14-101] and Fe2O3 [02-915].  The 

decomposition of Fe(NO3)3.9H2O to Fe2O3 below 350 oC is consistent with thermal analysis of the 

reagents (Appendix) and in agreement with available literature (Melnikov et al., 2014).  Furthermore, 

TGA analysis (Figure 5.16) showed the total weight loss of the products of MIN1-350-3h to be  

61 wt% at 1000 oC, compared to the expected total weight loss of 84 wt% arising from complete 

denitration and dehydration of the metal nitrate hydrates to form the corresponding oxides.  Complete 

denitration and dehydration of Fe(NO3)3.9H2O to Fe2O3 below 350 oC would result in a product 

yielding an expected weight loss of 58 wt% at 1000 oC,  which is in close agreement with the 61 wt% 

weight loss observed.  Overall, the identification of Mg(NO3)2.6H2O and Fe2O3 after calcination at 

350 oC is consistent with thermal analysis of the reagents, which showed Fe(NO3)3.9H2O undergoes 

almost complete thermal decomposition at 350 oC and Mg(NO3)2.6H2O undergoes (reversible) 

dehydration between 270-400 oC and denitration above 400 oC (Appendix, in agreement with 

Melnikov et al., 2014; Paulik et al., 1988). 

 



104 

 

 

 

Figure 5.15 – XRD analysis of samples a) MIN1-350-3h and  

b) MIN2-350-3h using Co Kα1 radiation (λ = 1.789 Å) 

 

 

 

Figure 5.16 – TGA analysis of samples MIN1-350-3h,  

MIN1-450-3h and MIN1-550-3h 
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The diffraction patterns of samples MIN1-450-3h, MIN1-550-3h, MIN2-450-3h and MIN2-550-3h 

(Figure 5.17) showed an identical set of reflections, attributed to MgO [45-946] and Fe2O3 [02-915].  

In the samples calcined at 450 oC for 3 h, there were some broad, weak reflections which did not 

appear when the samples were calcined at 550 oC.  This indicated that there may have been some 

poorly crystalline residual nitrates present at 450 oC, which decomposed fully between 450 oC and 

550 oC.  No reflections corresponding to Mg(NO3)2.6H2O or Fe(NO3)3.9H2O were apparent in the 

diffraction patterns.  TGA analysis (Figure 5.16) showed the total weight losses of samples MIN1-

450-3h and MIN1-550-3h were 11 wt% and 10 wt% respectively at 1000 oC, indicating that a similar 

and substantive fraction of the nitrate and hydrate inventory was retained after reaction at 450-550 oC.  

The weight loss profiles showed two weight loss events: a broad weight loss below 200 oC, attributed 

to dehydration; and a second between 300-400 oC consistent with denitration of Fe(NO3)3.9H2O, by 

reference to thermal data for this compound (Appendix; Melnikov et al., 2014).  These data imply that 

in the temperature range 350-550 oC, no reaction occurred between Fe(NO3)3.9H2O and 

Mg(NO3)2.6H2O, though the latter undergoes dehydration and dehydration to form MgO, consistent 

with the thermal behaviour of this reagent (Appendix; Paulik et al., 1988).   

 

 

Figure 5.17 – XRD analysis of a) MIN1-450-3h, b) MIN1-550-3h, 

c) MIN2-450-3h and d) MIN2-550-3h using Co Kα1 radiation (λ = 1.789 Å) 
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From these experiments, it is possible to infer and conclude: 

 Below 350 oC: Mg(NO3)2.6H2O and Fe(NO3)3.9H2O do not undergo any significant reaction, 

but the latter undergoes denitration and dehydration to form Fe2O3.  

 Between 350-550 oC: Mg(NO3)2.6H2O undergoes denitration and dehydration to yield MgO 

while Fe2O3 was retained in the reaction product.  A portion of the hydrate and nitrate 

inventory remained. 

 The addition of extra nitrate, in the form HNO3, has no significant effect on the reaction. 

 

5.3.1.1.6 AIN1 and AIN2 

 

The XRD pattern for sample AIN1-350-3h (Figure 5.18) showed reflections attributed to Fe2O3  

[02-915] and Al(NO3)3.9H2O [12-472].  This was unusual, as thermal analysis showed 

Al(NO3)3.9H2O is expected to decompose to form an amorphous product after calcination at 350 oC 

(Appendix; Pacewska and Keshr, 2002).  TGA analysis (Figure 5.19) showed the total weight loss of 

the products to be 30 wt% at 1000 oC compared to the 83 wt% weight loss which would arise from 

complete dehydration and denitration of the metal hydrate nitrates to form the corresponding oxides.  

Complete denitration and dehydration of Fe(NO3)3.9H2O below 350 oC would result in a product 

yielding an expected weight loss of 60 wt% at 1000 oC.  This implies partial decomposition of 

Al(NO3)3.9H2O (by loss of up to 50 % of the nitrate and hydrate inventory), had occurred to form an 

amorphous nitrate bearing product which is likely also hydrated, reported previously by Pacewska and 

Keshr (2002), with a portion of the starting material remaining in the sample.  The weight loss profile 

showed three distinct weight loss events; a broad weight loss below 200 oC, attributed to dehydration; 

a sharp weight loss at 300 oC; and a broad weight loss between 350-500 oC consistent with the thermal 

behaviours of both Al(NO3)3.9H2O and Fe(NO3)3.9H2O (Appendix, in agreement with Pacewska and 

Keshr, 2002 and Melnikov et al., 2014).  Overall, these data imply that both Al(NO3)3.9H2O and 

Fe(NO3)3.9H2O undergo (partial) dehydration and denitration to form a non-crystalline product (with 

a portion of the starting material remaining) and Fe2O3 respectively.   
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Figure 5.18 – XRD analysis of samples a) AIN1-350-3h, b) AIN1-450-3h  

and c) AIN1-550-3h using Co Kα1 radiation (λ = 1.789 Å) 

 

 

Figure 5.19 – TGA analysis of samples a) AIN1-350-3h, 

b) AIN1-450-3h and c) AIN1-550-3h 
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A matching set of reflections were shown in the XRD patterns of samples AIN1-450-3h and AIN1-

550-3h (Figure 5.18), attributed to the formation of Fe2O3 [02-915].  No reflections attributable to 

Al(NO3)3.9H2O were present.  TGA analysis (Figure 5.19) showed total weight losses of the products 

of samples AMN1-450-3h and AMN1-550-3h to be 19 wt% and 15 wt% respectively at 1000 oC.  The 

weight loss curves showed a broad weight loss below 200 oC, attributable to dehydration, with only a 

further 4-5 % weight loss occurring between 200-500 oC.  This is congruent with the thermal 

behaviours of Al(NO3)3.9H2O and Fe(NO3)3.9H2O after calcination above 450 oC (Appendix, in 

agreement with Pacewska and Keshr, 2002 and Melnikov et al., 2014).  The evidence implied that no 

reaction had occurred between Al(NO3)3.9H2O and Fe(NO3)3.9H2O, or their decomposition products; 

although available literature (Tsuchida and Sugimoto, 1990) suggests the formation of a non-

crystalline Fe2O3-Al2O3 solid solution at these calcination temperatures cannot be discounted. 

 

On addition of extra nitrate, in the form HNO3 (samples AMN2-350-3h, AMN2-450-3h and AMN2-

550-3h), XRD analysis (Figure 5.20) showed a matching, poorly crystalline pattern for all products.  

The weak reflections were attributed to formation of γ-Al2O3 [56-457].  There was a notable absence 

of reflections attributable to Al(NO3)3.9H2O and Fe2O3.  TGA analysis (Figure 5.21) showed the 

products calcined at 350, 450 and 550 oC all showed weight losses of between 20-22 wt% at 1000 oC. 

The weight loss curves all showed a broad weight loss below 200 oC, attributable to dehydration, with 

only a further 4-5 % weight loss occurring between 200-500 oC.  This is consistent with the thermal 

behaviours of Al(NO3)3.9H2O and Fe(NO3)3.9H2O at these temperatures (Appendix, in agreement 

with Pacewska and Keshr, 2002 and Melnikov et al., 2014).  Available literature (Li et al., 2007) 

showed that when calcined between 300-550 oC, the decomposition products of Al(NO3)3.9H2O and 

Fe(NO3)3.9H2O, in the molar ratio used in these experiments, formed an amorphous product.  It was 

also reported that a mixture of Fe and Al, preheated at 400 oC, formed a poorly crystalline product, 

with the broad peaks in the samples attributed to γ-Al2O3 (Shaheen and Hong, 2002), which is 

consistent with XRD and TGA findings.  Thermal transformation of Al(NO3)3.9H2O under acidic 

conditions is known to form AlOOH, which decomposes to form γ-Al2O3 at 400-500 oC (Pacewska 

and Keshr, 2004).  However, Balek et al. (2003) reported that addition of Fe2O3 to γ-Al2O3 led to 

formation of α-Al2O3 at 100 oC.  The retention of γ-Al2O3 in products AIN2-350-3h, AIN2-450-3h 

and AIN2-550-3h imply that the addition of extra HNO3 stabilises its formation, increasing the 

dispersion of the Fe2O3 constituents, therefore reducing the grain growth of the α-Fe2O3 (Shaheen and 

Hong, 2002) so it is not seen in these products.  These findings suggest that the addition of extra 

nitrate, in the form HNO3, stabilises the γ-Al2O3 phase and therefore hinders the formation of Fe2O3 

between 350-550 oC, accounting for the differences in products containing different levels of nitrate. 
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Figure 5.20 – XRD analysis of samples a) AIN2-350-3h, b) AIN2-450-3h  

and c) AIN2-550-3h using Co Kα1 radiation (λ = 1.789 Å) 

 

 

Figure 5.21 - TGA analysis of samples a) AIN2-350-3h, 

b) AIN2-450-3h and c) AIN2-550-3h 
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From these experiments, it is possible to infer and conclude: 

 Below 350 oC: No reaction is evident between Al(NO3)3.9H2O and Fe(NO3)3.9H2O, or their 

decomposition products; although they do undergo (partial) decomposition to form a non-

crystalline phase and poorly crystalline Fe2O3.  A portion of the Al(NO3)3.9H2O starting 

material remained in the product. 

 Between 350-550 oC: The remaining Al(NO3)3.9H2O undergoes dehydration and denitration 

to form a non-crystalline product with Fe2O3 remaining in the product.  No evidence of a 

reaction is apparent, although the formation of a non-crystalline Fe2O3-Al2O3 solid solution 

cannot be discounted. 

 The addition of excess nitric acid appeared to stabilise a poorly crystalline γ-Al2O3 phase, 

therefore hindering the formation of Fe2O3 between 350-550 oC.   

 

5.3.1.1.7 LAIN1 

 

The XRD pattern for sample LAIN1-350-3h (Figure 5.22) showed a strong set of reflections attributed 

to LiNO3 [8-466] with poorly crystalline peaks matched to γ-Al2O3 [56-457].  There were no peaks 

present matching Al(NO3)3.9H2O, Fe(NO3)3.9H2O or Fe2O3.  Significant diffuse scattering was also 

apparent, suggesting the presence of non-crystalline component(s).  TGA analysis showed a total 

weight loss for sample LAIN1-350-3h to be 70 wt% at 1000 oC.  Weight loss due to the complete 

dehydration and denitration of the reagents would result in a weight loss of 83 wt% at 1000 oC, of 

which 52 wt% would be due to decomposition of Al(NO3)3.9H2O, 21 wt% due to Fe(NO3)3.9H2O and 

10 wt% LiNO3.  This suggested a significant proportion of the hydrate and nitrate inventory was still 

present.  The weight loss profile showed three distinct events: a broad weight loss below 200 oC, 

attributed to dehydration; and two sharp weight loss events at 400 oC and 560 oC, neither of which are 

consistent with the thermal behaviour of Al(NO3)3.9H2O, Fe(NO3)3.9H2O or LiNO3 (Appendix; 

Pacewska and Keshr, 2002; Melnikov et al., 2014; Chun, 1977).  The event at 560 oC is typical of 

denitration, however, the event occurred at lower temperature than denitration of LiNO3, suggesting 

the denitration of a distinct intermediate phase.  The absence of Al and Fe containing crystalline 

phases can be attributed to the formation of a poorly crystalline γ-Al2O3 phase which impedes the 

grain growth of Fe2O3 (discussed further in section 5.3.1.1.6).  These data imply that no reaction had 

taken place involving LiNO3 due to identification in the XRD analysis (Figure 5.22).  Al(NO3)3.9H2O 

and Fe(NO3)3.9H2O undergo partial dehydration and denitration to form amorphous products.  The 

formation of a solid solution of Al(NO3)3.9H2O and Fe(NO3)3.9H2O (or their decomposition products) 

cannot be ruled out. 
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Figure 5.22 – XRD analysis of sample LAIN1-350-3h  

using Co Kα1 radiation (λ = 1.789 Å) 

 

 

Figure 5.23 – TGA analysis of samples LAIN1-350-3h, 

LAIN1-450-3h and LAIN1-550-3h 
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The XRD pattern of sample LAIN1-450-3h (Figure 5.24) showed reflections attributable to poorly 

crystalline LiAl2(OH)6(NO3).xH2O [51-359] and γ-Al2O3 [56-457], with the same set of unidentified 

crystalline reflections observed as in sample LAN1-450 and LAN1-550.  Strong diffuse scattering 

was also apparent, suggesting the presence of amorphous component(s).  No reflections 

corresponding to LiNO3, Al(NO3)3.9H2O, Fe(NO3)3.9H2O or Fe2O3 were apparent in the diffraction 

patterns.  TGA analysis of LAIN1-450-3h (Figure 5.23) showed a total weight loss of 41 wt% at  

1000 oC, indicating that a portion of the hydrate and nitrate inventory was retained.  The weight loss 

curve shows two distinct weight loss events at 200 oC and 460 oC.  The former could be attributed to 

dehydration and the latter denitration.  However, this does not fit with thermal behaviours of LiNO3, 

Al(NO3)3.9H2O or Fe(NO3)3.9H2O (Appendix; Pacewska and Keshr, 2002; Melnikov et al., 2014; 

Chun, 1977), implying denitration of LiAl2(OH)6(NO3).xH2O as identified by XRD (Figure 5.24).  

This Li-Al-LDH phase was also present in the reaction product LAN1-450-3h (discussed further in 

section 5.3.1.1.3).  Previous work by Kustrowski et al. (2005) showed that the Fe3+ cation can replace 

Al in the Li-Al-LDH structure.  However, the formation of LiFe2(OH)6(NO3).xH2O is known not to 

occur (Kustrowski et al., 2005).  Any remaining Fe in the product, therefore, must be present in a non-

crystalline form, or in solid solution with γ-Al2O3, in agreement with sample AIN2 (section 5.3.1.1.6).  

Overall, these data imply that LiNO3 reacts with Al(NO3)3.9H2O to form a LDH of the type 

LiAl2(OH)6(NO3).xH2O plus an unidentified crystalline phase.  Fe(NO3)3.9H2O does not appear to 

react with either LiNO3 or Al(NO3)3.9H2O, shown by the similarity in products formed without the 

presence of Fe (product LAN1), though available literature shows substitution of Fe into the Li-Al-

LDH structure is a possibility (Kustrowski et al., 2005) and formation of a poorly crystalline solid 

solution between the decomposition products of Al(NO3)3.9H2O and Fe(NO3)3.9H2O (Nayak et al., 

1997) cannot be ruled out.  These findings are consistent with the previous reaction (LAN1) between 

Li and Al nitrates forming LiAl2(OH)6(NO3).xH2O and an unidentified crystalline phase, thought to be 

Li rich; see section 5.3.1.1.3.  It also supported the conclusions for section 5.3.1.1.6 (products AIN1 

and AIN2) which suggested Al(NO3)3.9H2O and Fe(NO3)3.9H2O do not react together, but can form 

solid solutions in their oxide forms, in agreement with Nayak et al. (1997) and Tsuchida and 

Sugimoto (1990). 
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Figure 5.24 – XRD analysis of samples a) LAIN1-450-3h and  

b) LAIN1-550-3h using Co Kα1 radiation (λ = 1.789 Å) 

 

XRD analysis of product LAIN1-550-3h (Figure 5.24) showed reflections attributed to 

LiAl2(OH)7.2H2O [40-710] and γ-Al2O3 [56-457], plus the same unidentified crystalline intermediate 

as formed at 450 oC and in sample LAN1-550 (section 5.3.1.1.3).  Diffuse scattering was also 

observed, indicating the presence of non-crystalline component(s).  Reflections corresponding to 

LiNO3, Al(NO3)3.9H2O, Fe(NO3)3.9H2O or Fe2O3 were noticeably absent from the diffraction 

patterns.  TGA analysis of LAIN1-550-3h (Figure 5.23) showed a total weight loss of 29 wt% at  

1000 oC, showing partial retention of the volatile inventory.  The weight loss curve showed a broad 

weight loss event below 200 oC, typical of dehydration, with a gradual weight loss occurring above 

200 oC showing no distinct events.  This is in agreement with the thermal decompositions of 

Al(NO3)3.9H2O and Fe(NO3)3.9H2O, which both show almost complete dehydration and dehydration 

above 550 oC (Appendix; Pacewska and Keshr, 2002; Melnikov et al., 2014).  However, this does not 

fit with thermal behaviour of LiNO3 which shows a sharp denitration event occurs above 600 oC 

(Appendix; Chun, 1977).  The identification of LiAl2(OH)7.2H2O by XRD (Figure 5.24) implies the 

denitration of LiAl2(OH)6(NO3).xH2O occurred between 450-550 oC, consistent with the weight loss 

event observed in TGA analysis of product LAIN1-450-3h.  The formation of LiAl2(OH)7.2H2O was 

not seen in sample LAN1 (section 5.3.1.1.3), suggesting the presence of Fe has an effect on the 

denitration temperature of the Li-Al-LDH phase.  Overall, these data imply that the formation of 

LiAl2(OH)7.2H2O takes place between 450-550 oC, via dehydration and denitration of 

LiAl2(OH)6(NO3).xH2O, formed at 450 oC.  The unidentified crystalline phase, formed between 350-

450 oC, remained stable in the product after calcination at 550 oC.  This is in agreement with sections 

5.3.1.1.3 and 5.3.1.1.6. 
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From these experiments, it is possible to infer and conclude: 

 Below 350 oC: no reaction had taken place involving LiNO3 with either Al(NO3)3.9H2O or 

Fe(NO3)3.9H2O, although Fe and Al nitrates do undergo partial dehydration and denitration to 

form amorphous products.  The formation of a solid solution of Al(NO3)3.9H2O and 

Fe(NO3)3.9H2O (or their decomposition products) cannot be ruled out. 

 Between 350-450 oC: LiNO3 reacts with Al(NO3)3.9H2O to form LiAl2(OH)6(NO3).xH2O plus 

an unidentified crystalline phase and co-existing non-crystalline phase.  This is consistent 

with the previous reactions (LAN1) between Li and Al nitrates forming 

LiAl2(OH)6(NO3).xH2O; see section 5.3.1.1.3.  It also supported the conclusions for section 

5.3.1.1.6 (products AIN1 and AIN2) which suggested Al(NO3)3.9H2O and Fe(NO3)3.9H2O do 

not react together, but can form solid solutions in their oxide forms. 

 Between 450-550 oC: formation of LiAl2(OH)7.2H2O occurs via decomposition of 

LiAl2(OH)6(NO3).xH2O.  The unidentified crystalline phase remained present in the product 

along with a co-existing non-crystalline phase. 

 

5.3.1.2 Freeze dryer experiments 

 

5.3.1.2.1 AMN1 

 

Freeze drying was used to identify the products present in the short simulant solutions by drying the 

product without heating it.  This provided a solid sample allowing analysis to be carried out to 

identify the species present.  It also yielded a product which could be further calcined at short 

residence times, without the concerns of flash boiling, as would be experienced in the calcination 

process on the VTR. 

 

The XRD pattern for sample AMN1-FD (Figure 5.25) showed reflections attributed to 

Mg(NO3)2.6H2O [14-101] and Al(NO3)3.9H2O [12-472].  TGA data from AMN1-FD (Figure 5.28) 

produced a weight loss curve with a very similar profile to that produced from summation of the 

weighted summed data of Mg(NO3)2.6H2O and Al(NO3)3.9H2O.  The weight loss achieved at 1000 oC 

was 84 wt%, identical to that expected from the weighted contribution of the individual components 

at this temperature (Figure 5.26).  These data show that no observable reaction had taken place 

between the component nitrates during the freeze drying process. 
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Figure 5.25 – XRD analysis of sample AMN1-FD  

using Co Kα1 radiation (λ = 1.789 Å) 

 

 

Figure 5.26 – TGA analysis of samples AMN1-FD and AMN1-350-5m, 
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The XRD patterns of the products from calcination of AMN1-FD at 350 oC and 450 oC, for 5-15 mins, 

are shown in Figures 5.27 and 5.28, respectively.  These data show the presence of Mg(NO3)2.6H2O 

in all products, but the absence of Al(NO3)3.9H2O, no reflections could be conclusively assigned to 

any reasonable Al bearing phase.  All diffraction patterns exhibit significant diffuse scattering, 

implying the presence of an additional non-crystalline phase.  XRD data of the products of calcination 

at 350 oC and 450 oC, show additional reflections associated with an unidentified phase, which 

increase in relative intensity with reaction time.  Since reflections associated with Mg(NO3)2.6H2O do 

not show a reciprocal decrease in relative intensity (except after reaction at 450 oC for 15 min), it is 

thought probable that the unidentified phase may crystallise from the amorphous component, 

incorporating Al.  The reflections associated with this unidentified phase were not observed in the 

XRD data of AMN1-350-3h or AMN1-450-3h, which implies that this phase is a metastable 

intermediate.  TGA data of the products of calcination at 350 oC were essentially identical, 

irrespective of reaction time, therefore only data from product AMN1-350-5m are shown in Figure 

5.26.  The presence of Mg(NO3)2.6H2O in all products is in agreement with TGA data from these 

products, Figures 5.26 and 5.29.  These data showed weight loss events in the temperature range 270-

400 oC associated with the (reversible) dehydration of this material (Appendix), with denitration 

occurring above 400 oC, as discussed in Section 5.3.1.1.1 and in agreement with previous work by 

Paulik et al. (1988).  XRD data for the products of calcination at 450 oC, show that the relative 

intensity of reflections associated with Mg(NO3)2.6H2O decrease with increasing reaction time, are 

consistent with denitration of this material above 400 oC.  The absence of Al(NO3)3.9H2O in all 

products is also in agreement with TGA data of this material, with dehydration and denitration 

occurring below 400 oC (Appendix), to produce a non-crystalline product (Pacewska and Keshr, 

2002).   

 

Figure 5.27 – XRD analysis of samples a) AMN1-350-5m,  

b) AMN1-350-10m and c) AMN1-350-15m using Cu Kα1 radiation (λ = 1.546 Å) 
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Figure 5.28 – XRD analysis of samples a) AMN1-450-5m, b) AMN1-450-10m  

and c) AMN1-450-15m using Cu Kα1 radiation (λ = 1.546 Å) 

 

 

Figure 5.29 – TGA analysis of samples AMN1-450-5m, 

AMN1-450-10m and AMN1-450-15m 
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Figure 5.30 shows XRD data of the products of calcination of AMN1-FD at 550 oC, for 5-15 mins; 

these data clearly show the formation of MgO.  All diffraction patterns exhibit significant diffuse 

scattering, implying the presence of an additional non-crystalline phase.  Consistent with these 

observations, TGA data (Figure 5.31) did not show clearly defined weight loss events in the 

temperature range 270-500 oC associated with the (reversible) dehydration and denitration of 

Mg(NO3)2.6H2O.  The absence of Al(NO3)3.9H2O in all products is in agreement with TGA data of 

this material, with dehydration and denitration occuring below 400 oC (Appendix); this is consistent 

with available literature in which decomposition of Al(NO3)3.9H2O at 350 oC is reported to produce 

non-crystalline product (Pacewska and Keshr, 2002).  The products of calcination of AMN1-FD at 

550 oC produced a total weight loss of 38 wt% at 1000 oC, irrespective of reaction time, which implies 

retention of substantial fraction of the nitrate inventory within the amorphous component.  Product 

AMN1-350-5m produced a total weight loss of 74 wt% at 1000 oC, compared to the total expected 

weight loss of 85 wt% corresponding to complete denitration and dehydration of the reagents to form 

the corresponding metal oxides.  This implies partial (up to 60 %) decomposition of Al(NO3)3.9H2O 

at 350 oC for 15 min, to form an amorphous nitrate bearing product which is likely also hydrated 

(assuming reversible dehydration of Mg(NO3)2.6H2O).  The total weight loss of products AMN1-450 

increased with increasing reaction time, from 72 wt% for 5 min reaction to 58 wt% for 15 min 

reaction, due to denitration of Mg(NO3)2.6H2O. 

 

 

Figure 5.30 – XRD analysis of samples a) AMN1-550-5m, b) AMN1-550-10m  

and c) AMN1-550-15m using Cu Kα1 radiation (λ = 1.546 Å) 
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Figure 5.31 – TGA analysis of samples AMN1-550-5m, 

AMN1-550-10m and AMN1-550-15m 

 

Overall, these data are consistent with experiments carried out for 3 h duration over the same 

temperature range, as discussed in Section 5.3.1.1.1, but provide some additional insight and clarity 

on the reaction kinetics and mechanism.  The key additional findings are that the unidentified 

intermediate phase formed at 450 oC for 3 h and layered double hydroxide phase  

(MgaAl(OH)3+2-c(NO3)c.xH2O formed at 550 oC for 3 h, result from the extended reaction time and are 

therefore unlikely to occur in the HAL calciner.  Experiments conducted using the freeze dried 

material at 550 oC for up to 15 min show that the kinetic product of calcination is MgO, which must 

then react with the non-crystalline Al nitrate hydrate phase to yield the double layered hydroxide 

phase observed in the AMN1-550-3h experiment. 

 

5.3.1.2.2 LMN1 

 

Figure 5.32 shows the XRD pattern for sample LMN1-FD, in which all reflections could be attributed 

to LiNO3 or Mg(NO3)2.6H2O (ICDD cards [8-466] and [14-101], respectively).  TGA data from 

LMN1-FD (Figure 5.33) produced a weight loss curve with a very similar profile to that produced 

from summation of the weighted summed data of LiNO3 and Mg(NO3)2.6H2O.  The weight loss 

achieved at 1000 oC was 98 wt%, somewhat greater than the 86 wt% expected from the weighted 

contribution of the individual components at this temperature (Figure 5.33).  This discrepancy is 

likely due to incomplete removal of water during the freeze drying process.  These data show that no 

observable reaction had taken place between the component nitrates during the freeze drying process. 
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Figure 5.32 – XRD analysis of sample LMN1-FD using Cu Kα1 radiation (λ = 1.546 Å) 

 

 

Figure 5.33 – TGA analysis of samples LMN1-FD,  

LMN1-350-15m, LMN1-450-15m and LMN1-550-15m 
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XRD analysis of product LMN1-350-15m (Figure 5.34) showed the retention of LiNO3 and 

Mg(NO3)2.6H2O.  TGA data of this product (Figure 5.33) afforded a weight loss profile very similar 

to that produced from summation of the weighted summed data of LiNO3 and Mg(NO3)2.6H2O, 

consistent with the retention of these crystalline compounds.  The weight loss achieved at 1000 oC 

was 83 wt% compared to the 86 wt% expected from the weighted contribution of the individual 

components at this temperature (Figure 5.33).  This supported the XRD data (Figure 5.34) which 

showed no reaction between LiNO3 and Mg(NO3)2.6H2O had occurred.  XRD and TGA data from the 

product calcined for 15 min at 350 oC were identical to those obtained from products calcined for 

shorter time periods, hence the latter are omitted for brevity.  

 

 

Figure 5.34 – XRD analysis of samples a) LMN1-350-15m,  

b) LMN1-450-15m and c) LMN1-550-15m using Cu Kα1 radiation (λ = 1.546 Å) 

 

XRD analysis of product LMN1-450-15m (Figure 5.34) afforded a complex diffraction pattern that 

could not be matched (in part) to any reference pattern in the ICDD database, relevant to the phase 

diagram; the presence of significant diffuse scattering implies the co-existence of a non-crystalline 

phase.  Reflections corresponding to crystalline LiNO3 and Mg(NO3)2.6H2O could not be identified in 

the diffraction pattern.  The unidentified phase(s) were different to that observed after reaction at 3 h, 

as described in Section 5.3.1.1.2 (Figure 5.6).  TGA data of this product (Figure 5.33) afforded a 

weight loss profile in which the denitration weight loss events characteristic of LiNO3 (at 600 oC) and 

Mg(NO3)2.6H2O (at 400 oC) were much less distinctive, particularly the latter.  The weight loss 

achieved at 1000 oC was 68 wt%, consistent with incomplete dehydration and denitration.  XRD and 

TGA data from the product calcined for 15 min at 450 oC were identical to those obtained from 

products calcined for shorter time periods, hence the latter are omitted for brevity.   These data imply 

reaction between LiNO3 and Mg(NO3)2.6H2O, involving partial denitration, to afford an unidentified 

crystalline intermediate(s), which are metastable, since calcination for 3 h produces a different 

unidentified product. 
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XRD analysis of product LMN1-550-15m (Figure 5.34) revealed the presence of Mg(OH)2 co-

existing with at least one other unidentified phase.  No reflections could be assigned to the unknown 

phase(s) formed by reaction at 450 oC, implying that these phase(s) have limited thermal stability.  

TGA data of this product (Figure 5.33) afforded a weight loss profile in which the denitration weight 

loss characteristic of Mg(NO3)2.6H2O (at 400 oC) was a minor contribution whereas that of LiNO3 (at 

600 oC) was absent.  The weight loss achieved at 1000 oC was 60 wt%, suggesting retention of a 

significant hydrate and nitrate inventory.  XRD and TGA data from the product calcined for 15 min at 

450 oC were identical to those obtained from products calcined for shorter time periods, hence the 

latter are omitted for brevity.   These data imply the unidentified crystalline intermediate(s) formed at 

450 oC decompose at higher temperature, yielding primarily Mg(OH)2 as a kinetic product.  An 

extended reaction time results in dehydroxylation of Mg(OH)2 forming MgO, as discussed in Section 

5.3.1.1.2. 

 

Overall, these data are consistent with experiments carried out for 3 h duration over the same 

temperature range, as discussed in Section 5.3.1.1.2, but show that different products are formed 

under kinetic control.  In summary, it is possible to infer the following sequence of reactions, relevant 

to the timescale of calciner operation: 

 Below 350 oC: LiNO3 and Mg(NO3)2.6H2O do not undergo any significant reaction. 

 Between 350-450 oC: the primary reaction is between LiNO3 and Mg(NO3)2.6H2O to form a 

metastable crystalline intermediate compound, likely a mixed nitrate hydrate of Mg and Li; a 

non-crystalline phase is also formed. 

 Between 450-550 oC: the metastable intermediate compound decomposes to form Mg(OH)2 

and a crystalline and amorphous phase, which must be a Li rich nitrate phase possibly 

incorporating a small amount of Mg.   

 

5.3.1.2.3 LAMN1 

 

Figure 5.35 shows the XRD pattern for sample LAMN1-FD, in which all reflections could be 

attributed to LiNO3, Mg(NO3)2.6H2O or Al(NO3)3.9H2O (ICDD cards [8-466], [14-101], [12-472], 

respectively).  TGA data from LAMN1-FD (Figure 5.38) produced a weight loss curve with a very 

similar profile to that produced from summation of the weighted summed data of LiNO3 and 

Mg(NO3)2.6H2O.  The weight loss achieved at 1000 oC was 8 wt%, identical to that expected from the 

weighted contribution of the individual components at this temperature (Figure 5.36).  These data 

confirm that no observable reaction had taken place between the component nitrates during the freeze 

drying process. 
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Figure 5.35 – XRD analysis of sample LAMN1-FD using Cu Kα1 radiation (λ = 1.546 Å) 

 

 

 

Figure 5.36 – TGA analysis of samples LAMN1-FD, LAMN1-350-15m,  

LAMN1-450-15m and LAMN1-550-15m 
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The XRD patterns of products LAMN1-350-5m and LAMN1-350-15m are shown in Figure 5.37 and 

reveal the presence of LiNO3 and Mg(NO3)2.6H2O in all products.  The absence of Al(NO3)3.9H2O in 

products calcined at 350 oC and above is in agreement with TGA data of this material, with 

dehydration and denitration occurring below 400 oC (Appendix), to produce a non-crystalline product 

(Pacewska and Keshr, 2002).  This would account for the observed diffuse scattering in the diffraction 

pattern, implying the presence of an additional non-crystalline phase. The weight loss of product 

LAMN1-350-15 at 1000 oC was 81 wt%, close to that expected from the weighted contribution of the 

individual components at this temperature (Figure 5.36).  These data suggest that no observable 

reaction had taken place between the component nitrates during calcination, except for the expected 

decomposition of Al(NO3)3.9H2O. 

 

 

Figure 5.37 – XRD analysis of samples LAMN1-350-5m and  

b) LAMN1-350-15m using Cu Kα1 radiation (λ = 1.546 Å) 

 

The XRD pattern of product LAMN1-450-5m (Figure 5.38) shows the retention of LiNO3 and 

Mg(NO3)2.6H2O after 5 min reaction time at 450 oC; the presence of significant diffuse scattering also 

implies the presence of an additional non-crystalline phase.  No reflections associated with 

Mg(NO3)2.6H2O were observed after a reaction time of 15 min at 450 oC, as shown by the XRD 

pattern of product LAMN1-450-15 (Figure 5.38).  Calcination of LAMN1-FD at 450 oC also leads to 

the formation of an unidentified crystalline phase, as shown in Figure 5.38, associated with 

unassigned reflections at 2θ = 17.12 o, 22.45 o and 36.93 o.  These reflections match those associated 

with the unidentified phase produced by calcination of AMN1 at 450 oC, suggesting the formation of 

the same phase, which was thought to be an Al bearing compound; these data are consistent with that 

hypothesis.  Product LAMN1-450-15 showed a lower weight loss of 70 wt% at 1000 oC, compared to 

the product of calcination at 350 oC, consistent with substantial denitration of Mg(NO3)2.6H2O. 
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Figure 5.38 – XRD analysis of samples LAMN1-450-5m and  

b) LAMN1-450-15m using Cu Kα1 radiation (λ = 1.546 Å) 

 

The XRD patterns of products LAMN1-550-5m and LAMN1-550-15m (Figure 5.39) show that 

calcination at 550 oC yields MgO plus γ-Al2O3; reflections attributed to the unidentified phase and 

LiNO3 observed at 450 oC were not apparent in these diffraction patterns.  The significant diffuse 

scattering in the diffraction pattern also implies the presence of an additional non-crystalline phase.  

Product LAMN1-550-15m showed a lower weight loss of 44 wt% at 1000 oC, consistent with further 

denitration of the freeze dried material.  The presence of the weight loss event at 560 oC is consistent 

with that observed after calcination for 3 h at 550 oC, though after 3 h, the formation of MgAl2O4 

appeared to have taken place.  This was due to LiNO3 acting as a molten salt, facilitating the reaction 

through a template-growth mechanism.  This type of reaction takes place through the following 

pathway (Safaei-Naeini, 2011): 

 

1. Diffusion of dissolved MgO (in the form of Mg2+) onto γ-Al2O3 particle surfaces. 

2. Diffusion of MgO (probably in the form of Mg2+) to the unreacted γ-Al2O3 core through the 

formed continuous MgAl2O4 spinel layer.  

3. Reaction between diffused MgO and unreacted γ-Al2O3. 

 

The fact that this takes place through a diffusion mechanism suggests the reaction requires a 

significant time factor to allow it to occur.  This is consistent with the observation of both MgO and  

γ-Al2O3 after 15 mins, with MgAl2O4 being formed after 3 h.  These data imply that after calcination 

at 550 oC, MgO and γ-Al2O3 are formed with Li being incorporated into the non-crystalline phase, 

same as seen after 3 h.  This suggests that MgO and γ-Al2O3 are the kinetic products, relevant to the 

timescale of the full-scale calcination process, with further reaction yielding MgAl2O4 at longer 

residence times. 
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Figure 5.39 – XRD analysis of samples LAMN1-550-5m and  

b) LAMN1-550-15m using Cu Kα1 radiation (λ = 1.546 Å) 

 

Figure 5.40 compares 7Li MAS NMR data from LiNO3, LAMN1-FD, and LAMN1-350-15m, 

measured relative to LiCl (the estimate accuracy of the derived chemical shifts is ± 0.02 ppm).  The 

spectrum of LiNO3 shows a resonance centered at -0.09 ppm, with a small broad component centered 

at -1.33 ppm attributed to a small fraction of hydrated non crystalline material.  The 7Li NMR 

spectrum of the freeze dried material, LAMN1-FD, exhibits a broad resonance at -0.11 ppm and a 

very broad resonance -1.47 ppm; the former resonance is therefore attributed to chemical environment 

LiNO3, whereas the latter is attributed to a distribution of chemical environments present in the 

amorphous phase(s), consistent with the analysis of XRD data.  The 7Li NMR spectra of products 

LAMN1-350-15m and LAMN1-450-15m were dominated by a sharp and intense resonance centred at 

– 0.10 ppm, associated with the Li chemical environment in crystalline LiNO3, consistent with 

analysis of XRD data.  An additional broad signal centered at -1.48 ppm, attributed to the presence of 

a non-crystalline phase in freeze dried material, was apparent in the spectrum of product LAMN1-

350-15m but not LAMN1-450-15m (Figures 5.40 and 5.41).  These data therefore suggest that Li is 

consumed from the non-crystalline component as the reaction proceeds.  The 7Li NMR spectra of 

products LAMN1-550-15m and LAMN1-550-3h (Figure 5.41) were dominated by a single, but 

asymmetric intense resonance centered at -0.06 ppm.  The relatively sharp nature and significantly 

lower chemical shift of this signal suggest that it is associated with a crystalline chemical environment 

different from LiNO3 (consistent with the absence of the latter in XRD data of these products).  Since 

product LAMN1-550-3h was found to comprise highly crystalline γ-Al2O3, by XRD analysis, the 
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NMR data may suggest incorporation of Li in this phase (and its metastable precursors) by a solid 

solution mechanism.  This is somewhat contradictory to the XRD data, which suggested a non-

crystalline phase, likely to contain Li, was formed.  It should be noted, however, that the XRD and 7Li 

MAS NMR were carried out several months apart.  It was therefore possible that either, through 

further diffusion reactions, Li was incorporated into the highly crystalline γ-Al2O3 structure, or the 

non-crystalline phase becomes crystalline over time.  Balsamo et al. (2012) showed that lithium can 

be incorporated into the MgAl2O4 structure to form a mixed metal oxide, comprising Li, Mg and Al. 

 

From these data we can infer and conclude the following relevant to the timescale of calciner 

operation: 

 No observable reaction had taken place between the component nitrates during the freeze 

drying process. 

 Below 350 oC: No observable reaction had taken place between the component nitrates during 

calcination, except for the expected decomposition of Al(NO3)3.9H2O. 

 Between 350-450 oC: An unidentified phase, thought to be an Al bearing compound was 

formed.  At longer reaction times, substantial denitration of Mg(NO3)2.6H2O occurred.  

LiNO3 remained unreacted in the product. 

 Between 450-550 oC: MgO and γ-Al2O3 were identified by XRD.  The reflections attributed 

to the unidentified phase observed at 450 oC and those associated with LiNO3 were not 

apparent in these diffraction patterns.  The significant diffuse scattering in the diffraction 

pattern also implies the presence of an additional non-crystalline phase likely containing Li. 

 

Figure 5.40 – 7Li MAS NMR spectra of samples 

LAMN1-FD and LAMN1-350-15m 
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Figure 5.41 – 7Li MAS NMR spectra of samples 

LAMN1-450-15m, LAMN1-550-15m and LAMN1-550-3h 

 

5.3.1.3 Small scale calciner experiments 

 

5.3.1.3.1 LAMN1 

 

In order to determine a best estimate of the temperatures which the calcine experiences in the full 

scale calcination process, some of the short simulants were run through the small scale calciner.  The 

rotating kiln section (calciner) is approximately a third of the size of the full scale and was the closest 

representation of the actual process available.  By comparing the analysis carried out on the small 

scale calciner samples with the lab scale and freeze dried samples, the temperatures experienced in the 

calcination process could be estimated. 

 

The XRD patterns of product LAMN1-SSC-600 (Figure 5.42) showed a set of reflections attributed to 

poorly crystalline MgO with significant diffuse scattering in the diffraction pattern also implying the 

presence of an additional non-crystalline phase.  No reflections attributable to Al2O3 or LiNO3 were 

observed.  TGA analysis (Figure 5.43) showed a weight loss of 44 wt% at 1000 oC, identical to that of 

sample LAMN1-550-15m, with the same sharp weight loss event at 560 oC.  Identification of MgO by 

XRD analysis, plus significant diffuse scattering indicating a non-crystalline component, was also in 

agreement with data from the product calcined at 550 oC for 15 mins.   
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Figure 5.42 – XRD analysis of sample LAMN1-SSC-600  

using Co Kα1 radiation (λ = 1.789 Å) 

 

 

Figure 5.43 – TGA analysis of sample LAMN1-SSC-600  
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Overall, these data imply that the conditions experienced in the small scale calciner are very similar to 

those experienced after freeze-drying, followed by calcination in a muffle furnace at 550 oC for 15 

mins.  It must be noted, however, that the particle size of the calcine product was almost exclusively 

below 500 µm.  The temperatures experienced by the calcine in the calcination process are known to 

depend on particle size. 

 

5.3.1.3.2 LMN1 

 

XRD analysis of sample LMN1-SSC-600 (Figure 5.44) showed the formation of LiNO3 and MgO, 

which were identified using the ICDD database (cards [8-466] and [45-946] respectively).  TGA 

analysis (Figure 5.45) showed a weight loss of 45 wt% at 1000 oC, comparable to the 49 wt% weight 

loss experienced by product LMN1-550-3h.  The weight loss profile for product LMN1-SSC-600, 

however, showed a broad weight loss event between 400-550 oC which was not seen in the product 

calcined for 3 h at 550 oC.  The weight loss above 600 oC, attributable to denitration of LiNO3 

(Appendix; Chun, 1977) was present, consistent with identification by XRD.  The only calcination 

conditions which led to the formation of MgO and LiNO3 in the LMN1 series of experiments were at 

550 oC for 3 hours.  It is possible that, due to the fact that lithium nitrate has a melting point of 255 oC, 

the product was stuck in the calciner tube for the duration of the experiment, until the tube had cooled, 

which was approximately 3 hours.  This would also explain the low yield produced from this 

experiment.   

 

 

Figure 5.44 – XRD analysis of sample LMN1-SSC-600  

using Co Kα1 radiation (λ = 1.789 Å) 
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Figure 5.45 – TGA analysis of sample LMN1-SSC-600 

 

5.3.1.4 Discussion 

 

Aluminium and magnesium nitrates are two of the main components present in the Magnox waste 

stream after nuclear waste reprocessing.  It was therefore important to investigate the reactions which 

occurred between them and any competing reactions, with other major components within the HAL 

which may occur in the calcination process.   

 

The analysis of sample AMN1 (Table 5.5) showed that the reactions between Al and Mg nitrates were 

dependant on both time and temperature.  When calcined at 350 oC, no reaction between 

Mg(NO3)2.6H2O and Al(NO3)3.9H2O was observed over any timescale, though the partial dehydration 

and denitration of Al(NO3)3.9H2O was apparent, resulting in the formation of a non-crystalline 

product, in agreement with available literature (Pacewska and Keshr, 2002).  After calcination at  

450 oC for both 5 and 15 minutes, a portion of the Mg(NO3)2.6H2O starting material remained un-

reacted in the sample.  There was, however, the formation of a crystalline species after 5 mins, which 

was unidentified, thought to be an Al containing phase, with the reflections increasing in intensity 

after calcination for 15 mins.  When the residence time was increased to 3 hours, a different 

unidentified product was discovered, alongside the formation of MgO and γ-Al2O3.  This suggested 

that the unidentified products formed were metastable intermediates which undergo further reaction / 

decomposition to form MgO and γ-Al2O3.   
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When Mg and Al nitrates were reacted together at 550 oC for 5 and 15 minutes, XRD analysis showed 

the formation of poorly crystalline MgO, with a non-crystalline component being apparent through 

significant diffuse scattering in the diffraction pattern.  It was possible that γ-Al2O3 was formed as it is 

poorly crystalline so would not appear in the XRD pattern.  After 3 hours at 550 oC the products 

MgaAl(OH)3+2a-c(NO3)c.xH2O, MgO and γ-Al2O3 were formed.  Available literature (Mascolo and 

Marino, 1980; Pausch et al., 1986; Roy et al., 1953) showed that the reaction between MgO and  

γ-Al2O3 yielded the Mg-Al-LDH product.  On the addition of more nitric acid to the reaction between 

Mg(NO3)2.6H2O and Al(NO3)3.9H2O (sample AMN2), MgO and γ-Al2O3 were no longer observed, 

suggesting the reaction had gone to completion, with MgaAl(OH)3+2a-c(NO3)c.xH2O being the only 

crystalline phase observed in the product.  However, in the timescale of calcination, this reaction 

would not be expected to occur, with the kinetic products of the reaction between Mg(NO3)2.6H2O 

and Al(NO3)3.9H2O being MgO and a non-crystalline Al containing phase, likely to be γ-Al2O3.   

 

Table 5.5 – Summary of the products formed in sample AMN1 

  Temperature (oC) 

  350 450 550 

T
im

e 
(m

in
u
te

s)
 

1
8
0

 

 

Mg(NO3)2.6H2O 

 

Non-crystalline Al 

nitrate hydrate 

 

MgO 

 

γ-Al2O3 

 

Unidentified 

Intermediate9 

 

 

MgO 

 

γ-Al2O3 

 

MgaAl(OH)3+2a-c(NO3)c.xH2O 

1
5

 

 

Mg(NO3)2.6H2O 

 

Non-crystalline Al 

nitrate hydrate 

 

 

Mg(NO3)2.6H2O 

 

Unidentified 

Intermediate 

 

Poorly Crystalline MgO 

 

Non-crystalline Al containing 

phase (possibly γ-Al2O3) 

5
 

 

Mg(NO3)2.6H2O 

 

Non-crystalline Al 

nitrate hydrate 

 

 

Mg(NO3)2.6H2O 

 

Unidentified 

Intermediate 

 

Poorly Crystalline MgO 

 

Non-crystalline Al containing 

phase (possibly γ-Al2O3) 

 

 

 

                                                           
9 The unidentified intermediate formed after 180 minutes was different to those formed after 5 and 15 minutes. 
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The addition of LiNO3 to the reaction between Al and Mg nitrates (Table 5.6) also had a significant 

impact on the products formed over a range of calcination conditions.  After calcination at 350 oC for 

5 mins, no reaction had occurred.  However, after 15 mins, weak reflections were observed which 

matched the unidentified intermediate formed in products AMN1 calcined at 450 oC, as well as after 

calcination at 450 oC for both 5 and 15 minutes in products LAMN1.  LiNO3 remained un-reacted in 

these products.  The increase in intensity of reflections attributable to the unidentified intermediate 

combined with the diminishing of Mg(NO3)2.6H2O reflections at higher temperatures suggested that 

the intermediate is a metastable nitrate phase containing both Al and Mg.  As reflections attributable 

to Mg(NO3)2.6H2O were still present in sample AMN1-450-15m, but not LAMN1-450-15m and with 

the addition of LiNO3, the reaction is observed at 350 oC for 15 mins suggests the LiNO3 facilitates 

this reaction through acting as a molten salt, allowing it to occur more rapidly and at lower 

temperatures.  This metastable intermediate decomposes after calcination at 550 oC, with the 

formation of MgO and γ-Al2O3 being observed, suggesting these are the kinetic products over the 

timescale of calcination on the full scale process. 

 

After calcination at 350 oC for 3 hours, unidentified crystalline product(s) were formed.  This was 

thought to be complex nitrate hydrate phase(s) containing Li, Al and Mg due to the fact that LiNO3 

does not react with either Mg(NO3)2.6H2O or Al(NO3)3.9H2O under these conditions (sections 

5.3.1.1.2 and 5.3.1.1.3).  These phase(s) were found to be metastable, as after calcination at 450 and 

550 oC for 3 h, dehydration and denitration had occurred resulting in the formation MgAl2O4 and a 

non-crystalline phase containing Li and Mg.  These are different products than observed without the 

addition of LiNO3, showing Li had a significant effect on the reactions which occur, especially over 

longer residence times.   

 

The differences in the reaction products between AMN1 and LAMN1, under all calcination 

conditions can be attributed to the LiNO3 acting as a molten salt in the calcination process.  At shorter 

residence times (5 and 15 mins), the products were essentially the same but the reactions between 

Mg(NO3)2.6H2O and Al(NO3)3.9H2O occurred at lower temperatures and residence times in the 

presence of LiNO3.  After calcination at 550 oC for 5 and 15 mins, poorly crystalline MgO was 

observed in product AMN1, with a non-crystalline Al containing phase (possibly γ-Al2O3) observed 

through diffuse scattering in the diffraction pattern.  On addition of LiNO3, crystalline MgO and  

γ-Al2O3 were formed, showing the oxidation reactions had progressed further.  This is consistent with 

the fact that LiNO3 acts as a Lux-Flood base (Afanasiev and Geantet, 1998) and is therefore a good 

O2- donor.  Over longer residence times (3 h) at temperatures of 450 and 550 oC, MgO and γ-Al2O3 

appeared to undergo further reaction to form MgAl2O4 in the presence of LiNO3.  This is indicative of 

a template-growth synthesis in a molten salt media, where MgO undergoes diffusive processes into 

the γ-Al2O3 structure, resulting in the retention of the γ-Al2O3 structure after reaction (Safaei-Naeini et 

al., 2011; Fazli et al., 2013).  The template-growth reaction is not observed without the presence of a 
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molten salt, and the formation of MgAl2O4 usually takes place at much higher temperatures in the 

absence of a molten salt synthesis route (Fazli et al., 2013).  The reaction of MgO and γ-Al2O3, 

without the presence of Li (product AMN1-550-3h), therefore resulted in the formation of 

MgaAl(OH)3+2a-c(NO3)c.xH2O, which in turn decomposes to form MgO and MgAl2O4 at higher 

temperatures (Zhang et al., 2013).  Overall, these observations, combined with the available literature, 

implied that LiNO3 acts as a molten salt, helping to facilitate the reactions between Mg(NO3)2.6H2O 

and Al(NO3)3.9H2O (and their decomposition products).   

 

Table 5.6 – Summary of the products formed in sample LAMN1 

  Temperature (oC) 

  350 450 550 

T
im

e 
(m

in
s)

 

1
8
0
 

Unidentified 

Complex Nitrate Hydrate 

containing Li, Al and Mg 

 

MgAl2O4 

 

Non-crystalline phase 

containing Li and Mg 

 

 

MgAl2O4 

 

Non-crystalline phase 

containing Li and Mg 

1
5

 

 

Mg(NO3)2.6H2O 

 

Unidentified 

Intermediate  

 

LiNO3 

 

 

 

 

Unidentified 

Intermediate10  

 

LiNO3 

 

 

MgO 

 

γ-Al2O3 

 

Non-crystalline phase 

containing Li and Mg 

5
 

 

Mg(NO3)2.6H2O 

 

Non-crystalline Al  

nitrate hydrate  

 

LiNO3 

 

 

Mg(NO3)2.6H2O 

 

Unidentified 

Intermediate 

  

LiNO3 

 

 

MgO 

 

γ-Al2O3 

 

Non-crystalline phase 

containing Li and Mg  

 

 

The reaction of Li and Mg nitrates (sample LMN1) resulted in the formation of Mg(OH)2 after 

calcination for 5-15 mins at 550 oC, which decomposes to form MgO after 3 h.  At 450 oC, metastable 

intermediate(s) were formed, likely to be a mixed nitrate hydrate phase containing Mg and Li, with no 

reaction being observed at 350 oC over any timescale.   

 

                                                           
10 The unidentified intermediate was the same as that formed in the sample AMN1 under the same calcination 

conditions. 
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One of the primary reasons for the addition of LiNO3 to the HAL simulant is to reduce the amount of 

refractory oxides containing Al and Fe (which are difficult to incorporate into the glass matrix) 

through reactions to form the corresponding Li aluminates and ferrates (Magrabi, 1981; Brace 2004).  

In these experiments, the reaction between Li and Al nitrates yielded LiAl2(OH)6(NO3).xH2O as the 

major product after calcination at 450 and 550 oC for 3 h, in agreement with previous work 

(Besserguenev et al., 1997).  LiAl2(OH)6(NO3).xH2O undergoes decomposition to form LiAlO2 and 

LiAl5O8 at 500 oC (Nayak et al., 1997), which suggests the addition of LiNO3 will result in a reduction 

in the formation of Al2O3 in the calcine, though the experiments were not carried out over the relevant 

timescales corresponding with full scale calcination.  The formation of the Fe analogue of the layered 

double hydroxide structure, however, is known not to occur, though the Fe3+ cation can be substituted 

for Al3+ in the LiAl2(OH)6(NO3).xH2O structure (Kustrowski et al., 2005).  The calcination of Li and 

Fe nitrates, for 3 h at 550 oC, showed no reaction occurred between them, except for the expected 

decomposition of Fe(NO3)3.9H2O to Fe2O3 (Melkinov et al., 2014).  Available literature, however, 

showed the formation of LiFeO2 and LiFe5O8 does occur though a variety of pathways (Li et al., 

2011) at different residence times and temperatures. 

 

Throughout this series of experiments, it was shown that Fe(NO3)3.9H2O did not undergo any 

significant reaction with LiNO3, Mg(NO3)2.6H2O or Al(NO3)3.9H2O under any calcination conditions.  

However, due to the similar sizes of the atomic radii of Al3+ and Fe3+ these can be substituted with 

each other forming solid solutions (Tsuchida and Sugimoto, 1990).   

 

When samples LMN1 and LAMN1 were run through the small scale calciner, with temperature set 

points of 400, 400 and 600 oC, in Zones 1, 2 and 3 respectively, they yielded products comparable to 

those formed after freeze drying, followed by calcination at 550 oC for 15 mins in a muffle furnace.  

However, the products did not replicate the particle size distributions of full HAL simulants, with the 

short simulants showing a much smaller particle size.  The temperatures experienced in the calciner 

are known to be dependent on particle size (Chapter 6).  Calcines high in Li are known to be sticky 

due to the low melting point (255 oC) and high decomposition temperature (600 oC), meaning it 

spends longer in the calciner tube than a simulant without LiNO3 added (Brace, 2004), in agreement 

with observations of the calcine coming out of the tube on cooling and therefore increasing exposure 

to the rabble bar, breaking down the calcine to fine particles.  This would lead to an increase in the 

temperature experienced by the calcine compared to other simulants, as shown when PZN2 was 

processed (section 5.3.2.3.1), with particles above 2 mm in diameter experiencing conditions 

comparable to calcining at 350 oC and particles below 500 µm, 450 oC for 10 mins.  This showed that 

calcines with a high Li content are unsuitable to run on the small scale calciner to give comparable 

results to full calcine samples and to simulate conditions in the full scale process. 
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Overall, these data showed that the reactions between Al and Mg nitrates didn’t reach completion 

after 15 mins, which suggested that the reactions in the calcination process do not go to completion.  

The kinetic products of calcination depend primarily on temperature over the differences in residence 

time associated with full scale calcination (5-15 mins), though some differences are observed with 

changing residence time. 

 

5.3.2 Reactions between phosphomolybdic acid and zirconyl nitrate 

 

5.3.2.1 Lab scale experiments 

 

5.3.2.1.1 PZN1 and PZN2 

 

XRD and TGA data from the products PZN1 and PZN2 showed almost identical results, therefore 

results from the former have been omitted for brevity.  XRD analysis of sample PZN2-350-3h (Figure 

5.46) demonstrated the presence of poorly crystalline phosphomolybdic acid (H3PMo12O40.xH2O, 

PMA), corresponding to ICDD card [43-317].  No reflections attributable to ZrO(NO3)2 were apparent 

in the diffraction pattern.  Additional weak reflections could not be reliably assigned to additional 

phases as a result of their broad and weak nature, characteristic of a poorly crystalline material.  TGA 

analysis of PZN2-350-3h confirmed the presence of residual PMA, demonstrating a weight loss event 

at ca. 100 oC characteristic of dehydration of this material (consistent with TGA analysis of PMA and 

literature data – Appendix, Tatibouet et al., 1997).  TGA data from reaction products derived from 

PMA and ZrO(NO3)2 demonstrate significant weight loss occurring at 800 oC (Figure 5.47).  This is 

attributed to volatilisation of MoO3 above the melting point of this compound (795 oC, Smolik et al., 

2000) the rate of volatilisation is known to increase rapidly above the melting point (Saburi et al., 

2001).  This hypothesis was confirmed by annealing experiments at 900 oC as discussed below.  The 

overall weight loss of product of PZN-350-3h at 700 oC was 10 wt%, compared to the expected 

weight loss of 15 wt%, assuming complete denitration and dehydration of the reagents.  The TGA 

data of PZN-350-3h show a distinct weight loss event at 200 oC characteristic of the denitration of 

ZrO(NO3)2, consistent with TGA data of this compound and previous investigation by Hagiwara et al. 

(1975), which show thermal decomposition proceeds to completion at 450 oC.  From these data it is 

possible to infer dehydration of PMA and dehydration and partial denitration of ZrO(NO3)2 after 3 h 

at 350 oC, with the latter yielding poorly crystalline or amorphous ZrO2, consistent with the report of 

Hagiwara et al. (1975); no evidence of reaction between PMA and ZrO(NO3)2 was apparent under 

these conditions. 



137 

 

 

 

Figure 5.46 - XRD analysis of samples a) PZN2-350-3h, b) PZN2-450-3h  

and c) PZN2-550-3h using Co Kα1 radiation (λ = 1.789 Å) 

 

 

Figure 5.47 - TGA analysis of samples PZN2-350-3h,  

PZN2-450-3h and PZN2-550-3h  
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XRD data from product PZN2-450-3h (Figure 5.46) demonstrated the presence of broad reflections 

characteristic of poorly crystalline MoO3 [01-073-6497], ZrO2 [01-074-1201], and Zr(MoO4)2 [01-

077-1784]; the presence of significant diffuse scattering implies the co-existence of a non-crystalline 

material.  No reflections attributable to PMA or ZrO(NO3)2 were apparent in the diffraction pattern.  

TGA analysis of PZN-450-3h (Figure 5.47) demonstrated an overall weight loss of 4 wt% at 700 oC 

and no weight loss event at 200 oC was apparent.  These data are consistent with near complete 

thermal decomposition of PMA and ZrO(NO3)2, consistent with TGA analysis of these materials and 

available literature data (Appendix, Tatibouet et al., 1997; Hagiwara et al., 1975).  The non-crystalline 

component is likely to be ZrO2, since it is known that thermal decomposition of ZrO(NO3)2 produces 

non-crystalline or poorly crystalline ZrO2 in the temperature range 400-450 oC. 

 

XRD data from product PZN2-550-3h (Figure 5.46) demonstrated the presence of sharp reflections 

attributable to MoO3, ZrO2, and Zr(MoO4)2; the lack of significant diffuse scattering implies the 

absence a significant non-crystalline component.  TGA analysis of PZN-450-3h (Figure 5.47) 

demonstrated an overall weight loss of 0.7 wt% at 700 oC, consistent with complete thermal 

decomposition of PMA and ZrO(NO3)2.   

 

Overall, these data imply a sequence of reactions initiated between 350-550 oC: 

 Dehydration and denitration of ZrO(NO3)2 proceeds to completion, yielding ZrO2 which is 

poorly or non-crysalline at 350 oC. 

 Above 350 oC, dehydrated PMA reacts with ZrO2 to yield Zr(MoO4)2 and MoO3, presumably 

with the evolution of H3PO4. 

 Above 450 oC, crystallisation of the products is assisted by enhanced diffusion at higher 

temperature. 

Significant evaporation of MoO3 from the reaction above 800 oC was confirmed by annealing PZN-

350-3h at 900 oC for 1 h, XRD data of the product of this reaction (Figure 5.48) revealed only the 

presence of ZrO2 and Zr(MoO4)2. 

 

 

 

 



139 

 

 

 

Figure 5.48 – XRD analysis of sample PZN2-350-3h after calcination  

at 900 oC for 1 hour using Co Kα1 radiation (λ = 1.789 Å) 

 

 

5.3.2.1.2 LPN1 

 

XRD analysis of product LPN1-350-3h (Figure 5.49) showed the formation of Li2MoO4  

[12-763], MoO3 [01-073-6497] and Li2Mo2O7 [24-461], demonstrating reaction between PMA and 

LiNO3.  The low signal-to-noise ratio of these data suggested the co-existence of a non-crystalline 

phase.  TGA analysis of product LPN1-350-3h (Figure 5.50) showed a total weight loss of 23 wt% at 

700 oC, compared to the expected weight loss of 29 wt%, assuming complete denitration and 

dehydration of the reagents.  The TGA data did not exhibit a weight loss event at 600 oC, 

characteristic of the denitration of LiNO3 (Appendix, Chun, 1977).  However, a distinct weight loss 

event at 300 oC was observed, which was attributed to the reaction of PMA and LiNO3, with the 

liberation of NO2 and presumably H3PO4.  The residual weight loss of the reaction product 

demonstrates that this reaction had not completed after 3 h at 350 oC, which would also be consistent 

with the presence of a non-crystalline phase. 
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Figure 5.49 – XRD analysis of sample LPN1-350-3h  

using Co Kα1 radiation (λ = 1.789 Å) 

 

 

Figure 5.50 – TGA analysis of samples LPN1-350-3h, 

LPN1-450-3h and LPN1-550-3h 
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XRD analysis of products LPN1-450-3h and LPN1-550-3h (Figure 5.51) also showed the formation 

of Li2Mo2O7, with signal-to-noise ratio improving with increased reaction temperature.  Reflections 

associated with Li2MoO4 and MoO3 were no longer present, suggesting a reaction had occurred to 

form Li2Mo2O7.  TGA analysis of products LPN1-450-3h and LPN1-550-3h (Figure 5.50) showed a 

total weight loss of 1.4 wt% and 0.4 wt%, respectively, at 700 oC.  The distinct weight loss event at 

300 oC observed for product LPN1-350-3h was not apparent, suggesting the reaction between PMA 

and LiNO3 had proceeded to completion.  Interestingly, no evidence for significant volatilisation of 

MoO3 from the reaction product was observed above 800 oC, this is somewhat surprising given the 

reported melting point of Li2Mo2O7 is 530 oC (Cascales et al., 2005). 

 

Figure 5.51 – XRD analysis of samples a) LPN1-450-3h and  

b) LPN1-550-3h using Co Kα1 radiation (λ = 1.789 Å) 

 

Overall, it is possible to infer and conclude: 

 PMA and LiNO3 react below 350 oC to yield Li2MoO4, MoO3 and Li2Mo2O7, but the reaction 

is incomplete after 3 h at 350 oC. 

 Above 350 oC, the reaction between PMA and LiNO3 proceeds to completion, with Li2MoO4 

and MoO3 further reacting to yield Li2Mo2O7. 

 Li2Mo2O7 does not undergo significant volatilisation below 1000 oC. 

 

 

 

 

 

 

 

10 20 30 40 50 60 70

2Theta (degrees)

In
te

n
s
it

y
 (

a
.u

.)

1 11
1 1

1

1

1 = Li2Mo2O7

a)

b)
1

1
1

1 1
1

1

111 1 1



142 

 

 

5.3.2.1.3 LPZN1 

 

Dissolving PMA, LiNO3 and ZrO(NO3)2, sequentially, in water led to formation of a bright yellow 

precipitate, which was found to be non-crystalline by XRD (discussed further in section 5.3.2.2.3).  

XRD analysis of product LPZN1-350-3h (Figure 5.52) demonstrated reaction between LiNO3, PMA 

and ZrO(NO3)2 yielding Li2MoO4, MoO3 and Li2Zr(MoO4)3, ICDD cards [12-763], [01-073-6497] 

and [01-084-0171], respectively.  TGA analysis of product LPZN1-350-3h (Figure 5.53) showed a 

total weight loss of 17 wt% at 700 oC, compared to the expected weight loss of 32 wt%, assuming 

complete denitration and dehydration of the reagents.  The TGA data did not exhibit a weight loss 

event at 600 oC, characteristic of the denitration of LiNO3 (Appendix, Chun, 1977).  A distinct weight 

loss event at 300 oC was observed, similar to that reported for product LPN1-350-3h, this is therefore 

attributed to the reaction of PMA and LiNO3, with the liberation of NO2 and presumably H3PO4.  The 

residual weight loss of the reaction product demonstrates that this reaction had not completed after 3 h 

at 350 oC. 

 

 

Figure 5.52 – XRD analysis of the samples a) LPZN1-350-3h, b) LPZN1-450-3h  

and c) LPZN1-550-3h using Co Kα1 radiation (λ = 1.789 Å) 

 

XRD analysis of products LPZN1-450-3h and LPZN1-550-3h (Figure 5.52) also showed the 

formation of Li2Zr(MoO4)3, with trace Li2MoO4.  TGA analysis of products LPZN1-450-3h and 

LPZN1-550-3h (Figure 5.53) showed a total weight loss of 1.2 wt% and 0.2 wt%, respectively, at  

700 oC. The distinct weight loss event at 300 oC observed for product LPZN1-350-3h was not 

apparent, suggesting the reaction had proceeded to completion.  Consequently, it is inferred that the 

reaction mechanism involves: 
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 At 350 oC and below: formation of Li2MoO4 by reaction between PMA and LiNO3, and 

formation of Li2Zr(MoO4)3 by two possible pathways – i) reaction between Li2MoO4 and 

ZrO(NO3)2 or ZrO2 (produced by denitration of ZrO(NO3)2); ii) reaction between PMA, 

LiNO3 and ZrO(NO3)2 or ZrO2.  These reactions presumably involve evolution of NO2 and 

H3PO4. 

 In the temperature window 350-450 oC, Li2MoO4 reacts with residual non-crystalline ZrO2, to 

yield Li2Zr(MoO4)3.  The presence of non-crystalline ZrO2 is inferred from residual TGA 

weight loss and XRD data of product PZN2-350-3h, and investigation of the reaction between 

PMA and ZrO(NO3)2 (See Section 5.3.2.1.1). 

Overall, these experiments reveal a strong influence of the effect of LiNO3 on the reaction between 

PMA and ZrO(NO3)2, involving the formation of Li2MoO4 and Li2Zr(MoO4)3, in preference to 

Zr(MoO4)2. 

 

 

Figure 5.53 – TGA analysis of samples LPZN1-350-3h, 

LPZN1-450-3h and LPZN1-550-3h 
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5.3.2.2 Freeze dryer experiments 

 

5.3.2.2.1 PZN2 

 

XRD data from sample PZN2-FD (Figure 5.54) showed reflections attributable to PMA together with 

considerable diffuse scattering associated with an additional non-crystalline product.  TGA data from  

PZN2-FD (Figure 5.55) produced a weight loss curve with a very similar profile to that produced 

from summation of the weighted summed data from of PMA and ZrO(NO3)2.  The weight loss 

achieved at 700 oC (prior to significant volatilisation of MoO3) was 14 wt%, identical to that expected 

from the weighted contribution of the individual components at this temperature.  From these data it is 

apparent that ZrO(NO3)2 was retained in the freeze drying step and, consistent with diffuse scattering 

observed in XRD data, is present in a non-crytsalline form.  The possibility of reaction between PMA 

and ZrO(NO3)2 in the freeze drying step, to yield a non-crystalline product, cannot be excluded; 

however, this is thought to be unlikely because the evidence is that significant reaction occurs only 

above 350 oC (see Section 5.3.2.1.1 and below). 

 

 

Figure 5.54 – XRD analysis of sample PZN2-FD  

using Co Kα1 radiation (λ = 1.789 Å) 
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Figure 5.55 – TGA analysis of samples PZN2-FD, 

PZN2-350-10m, PZN2-450-10m and PZN2-550-10m 

 

XRD analysis of products PZN2-350-5m, PZN2-350-10m, and PZN2-350-15m (Figure 5.56), all 

showed weak and broad reflections characteristic of PMA together with significant diffuse scattering.  

The TGA analysis of these products produced identical weight loss curves, hence, for clarity, only 

that for PZN2-350-10m is shown in Figure 5.55.  The TGA data from product PZN2-350-10m 

confirmed the presence of residual PMA, demonstrating a small weight loss event at ca. 100oC 

characteristic of dehydration of this material (consistent with TGA analysis of PMA and literature 

data – Appendix, Tatibouet et al., 1997).  The overall weight loss of product of PZN2-350-10m at  

700 oC was 7.8 wt%, compared to the expected weight loss of 15 wt%, assuming complete denitration 

and dehydration of the reagents.  From these data it is possible to infer dehydration of PMA and 

dehydration and partial denitration of ZrO(NO3)2 after 3 h at 350 oC, with the latter yielding poorly 

crystalline or amorphous ZrO2, consistent with the report of Hagiwara et al. (1975); no evidence of 

reaction between PMA and ZrO(NO3)2 was apparent under these conditions.  These data are 

essentially in agreement with reactions carried out on mixed metal nitrate solutions calcined at 350 oC 

for 3 h. 
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Figure 5.56 – XRD analysis of samples a) PZN2-350-5m, 

b) PZN2-350-10m and c) PZN2-350-15m using Cu Kα1 radiation (λ = 1.546 Å) 

 

XRD analysis of products PZN2-450-5m showed weak and broad reflections characteristic of PMA 

together with significant diffuse scattering.  These reflections were barely discernable in the XRD 

data of product PZN2-450-10m, which showed reflections attributable to ZrO2, MoO3, and 

Zr(MoO4)2, in addition to significant diffuse scattering.  Increasing the reaction time to 15 mins, 

product PZN2-450-15m, eliminated all reflections associated with PMA and reduced the contribution 

of diffuse scattering.  The diffuse scattering in these diffraction patterns is attributed to non-crystalline 

ZrO2, consistent with literature data on the low temperature decomposition of ZrO(NO3)2, as 

described in Section 5.3.2.1.1.  The TGA analysis of these products produced similar weight loss 

curves, hence, for clarity, only that for PZN2-450-10m is shown in Figure 5.55.  The TGA data from 

product PZN2-450-10m demonstrated a weight loss of 3.8 wt% at 700 oC, suggesting near complete 

thermal decomposition of PMA and ZrO(NO3)2, consistent with TGA analysis of these materials and 

available literature data (Section 5.3.2.1.1, Appendix, Tatibouet et al., 1997; Hagiwara et al., 1975).  

These data are essentially in agreement with reactions carried out on mixed metal nitrate solutions 

calcined at 450 oC for 3 h. 
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Figure 5.57 – XRD analysis of samples a) PZN2-450-5m, 

b) PZN2-450-10m and c) PZN2-450-15m using Cu Kα1 radiation (λ = 1.546 Å) 

 

XRD analysis of products PZN2-550-5m, PZN2-550-10m and PZN2-550-15m (Figure 5.58) showed 

reflections attributable to ZrO2, MoO3, and Zr(MoO4)2.  The contribution of diffuse scattering in the 

XRD patters products derived from calcination of freeze dried material at 550 oC was much less than 

that observed in the diffraction patterns acquired from products calcined at lower temperature.  In 

addition, an increase in the relative intensity of reflections associated with ZrO2 was discernable, with 

increasing reaction time, suggesting crystallisation of this phase. The TGA data from product PZN2-

550-15m demonstrated a weight loss of 0.8 wt% at 700 oC, suggesting the reaction between PMA and 

non-crystalline ZrO2 had essentially progressed to completion.  These data are essentially in 

agreement with reactions carried out on mixed metal nitrate solutions calcined at 550 oC for 3 h. 

 

 

Figure 5.58 – XRD analysis of samples a) PZN2-550-5m, 

b) PZN2-550-10m and c) PZN2-550-15m using Cu Kα1 radiation (λ = 1.546Å) 
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In conclusion, these data confirm the sequence of reactions proposed in Section 5.3.2.1.1 and, 

therefore, further extended discussion is not warranted.  The observation of identical products and 

comparable residual weight loss after reaction for 5 mins and 3 h implies that these reactions are 

governed by rapid kinetics. 

 

5.3.2.2.2 LPN1 

 

XRD data from sample LPN1-FD (Figure 5.59) showed reflections attributable to LiNO3 and PMA 

together with considerable diffuse scattering associated with an additional non-crystalline component.  

TGA data from LPN1-FD (Figure 5.60) demonstrate a substantial weight loss of 28 wt% up to 150 oC, 

attributed to dehydration of the freeze dried material.  By comparison with the weighted summed 

TGA weight loss profiles of the reaction components, which show a weight loss of 5.1 wt%, up to  

150 oC, it can be inferred that the freeze drying process did not remove the full inventory of water.  

Loss of this water accounts for the apparent difference between the weight loss achieved at 700 oC for 

sample LPN1-FD (53 %) and the weighted summed TGA weight loss profiles of the reaction 

components (29 %).  These data suggest that no reaction occurs between PMA and LiNO3 in the 

freeze drying step; this cannot be concluded definitively, due to the presence of a significant non-

crystalline component, although this is always observed in the diffraction pattern of PMA. 

 

 

Figure 5.59 – XRD analysis of sample LPN1-FD using Co Kα1 radiation (λ = 1.789Å) 
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Figure 5.60 – TGA analysis of samples LPN1-FD 

LPN1-350-5m, LPN1-450-5m and LPN1-550-5m 

 

Figure 5.61 shows the XRD patterns of products LPN1-350-15m, LPN1-450-15m and LPN1-550-

15m; the XRD patterns from products from 5 min and 10 min reactions at each temperature appeared 

identical to those from 15 min reactions and have therefore been omitted for the sake of brevity.  The 

XRD patterns from products LPN1-450-15m and LPN1-550-15m exhibited reflections which 

matched, almost exclusively, to the reference pattern of Li2Mo2O7 [24-461].  Interestingly, the XRD 

pattern from product LPN1-350-15m showed reflections attributable to Li2MoO4 and MoO3, with 

additional reflections attributed to unidentified phase(s).  TGA data of products LPN1-350-15m and 

LPN1-450-15m (Figure 5.62) showed similar weight loss of 22 wt% at 700 oC, suggesting incomplete 

reaction and retention of a substantial fraction of the volatile inventory.  In comparison, TGA data of 

product LPN1-550-5m (Figure 5.60) showed a weight loss of 14 wt% at 700 oC, demonstrating an 

increased extent of, but incomplete, reaction.  Overall these data are consistent with the conclusions 

on the reaction mechanism derived from experiments conducted for 3 h duration at the same 

temperatures.  However, XRD data from product LPN-350-5min suggests that Li2Mo2O7 is formed 

via Li2MoO4 as an intermediate.  Thus, the inferred sequence of reactions is: 

 

 PMA and LiNO3 react below 350 oC to yield Li2MoO4 and MoO3 as kinetic products.  At 

extended reaction time Li2Mo2O7 may be formed by reaction between PMA and LiNO3 and 

by reaction between Li2MoO4 and MoO3; however, these reactions are incomplete after 3 h at 

350 oC. 

 Above 350 oC, the reaction between PMA and LiNO3 proceeds to completion, yielding 

Li2Mo2O7. 

 Li2Mo2O7 does not undergo significant volatilisation below 1000 oC. 
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After calcination at 350 oC, the reaction between lithium nitrate and phosphomolybdic acid yielded 

Li2MoO4 and MoO3 as kinetic products.  After calcination at 450 and 550 oC for 15 mins, lithium 

molybdate, in the form Li2Mo2O7, was formed (Figure 5.61).  These reactions are consistent with the 

lab scale experiment where the sample was calcined for 3 hours.   

 

 

Figure 5.61 – XRD analysis of samples a) LPN1-350-15m, b) LPN1-450-15m  

and c) LPN1-550-15m using Cu Kα1 radiation (λ = 1.546 Å) 

 

5.3.2.2.3 LPZN1 

 

Dissolving PMA, LiNO3 and ZrO(NO3)2, sequentially, in 1.8 M HNO3 led to formation of a bright 

yellow precipitate, which was found to be non-crystalline by XRD (Figure 5.62).  The XRD pattern 

was unchanged after freeze drying.  There was a notable absence of reflections associated with 

LiNO3, ZrO(NO3)2 and PMA.  The absence of reflections attributable to the starting materials 

combined with the fact that the formation of this precipitate did not occur between any two of the 

components, without the presence of the third, suggested that LiNO3, ZrO(NO3)2 and PMA all play a 

role in its formation.  It is possible that the precipitate was a non-crystalline form of Li2Zr(MoO4)3, 

however, the amorphous nature of the precipitate made it difficult to identify.  It is known that 

caesium phosphomolybdate (Cs3PMo12O40.xH2O) is present in full HAL simulants as a yellow 

precipitate (Jiang et al., 2004), therefore formation of the lithium analogue (Li3PMo12O40.xH2O) in a 

non-crystalline form is a possibility.  ZrHPO4 is also known to be insoluble in HNO3 and is found in 

the insoluble fraction of material present in the HASTs at Sellafield.  Another possible explanation, 

therefore, is that non-crystalline forms of Li2MoO4 and ZrHPO4 were produced in the presence of 

LiNO3, ZrO(NO3)2 and PMA.  However, these reactions did not take place in solution without the 

presence of all three reagents. 
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Figure 5.62 – XRD analysis of sample LPZN1-FD using Cu Kα1 radiation (λ = 1.546 Å) 

 

Figure 5.63 shows the XRD patterns of products LPZN1-350-5m, LPZN1-350-10m and LPZN1-350-

15m.  The diffraction patterns of the products from reactions at 5 and 15 mins show only diffuse 

scattering, similar to the freeze dried product (Figure 5.62).  The formation of Li2MoO4 and 

Li2Zr(MoO4)3 can be identified in product LPZN1-350-15m, together with at least one other 

unidentified crystalline associated with unassigned reflections.  XRD data from calcination of the 

freeze dried products at 450 oC and 550 oC appeared identical, irrespective of the calcination time, 

hence selected data for products LPZN1-450-5m, LPZN1-450-15m and LPZN1-550-15m are shown 

in Figure 5.66.  These diffraction patterns show that the major reaction product formed at these 

temperatures is Li2Zr(MoO4)3.  Unfortunately, TGA data could not be obtained from the freeze dried 

products due to prohibitive reaction with the alumina sample pans. 

 

 

Figure 5.63 – XRD analysis of samples a) LPZN1-350-5m, b) LPZN1-350-10m  

and c) LPZN1-350-15m using Cu Kα1 radiation (λ = 1.546 Å) 
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Figure 5.64 – XRD analysis of samples a) LPZN1-450-5m, b) LPZN1-450-15m 

 and c) LPZN1-550-5m using Co Kα1 radiation (λ = 1.789 Å) 

 

Figure 5.65 compares 7Li MAS NMR data from LiNO3, LPZN1-FD, LPZN1-350-15m, LPZN1-350-

3h, and LPZN1-550-15m, measured relative to LiCl.  The spectrum of LiNO3 is dominated by a 

resonance centered at -0.09 ppm, with a small broad component centered at -1.33 ppm attributed to a 

small fraction of hydrated non crystalline material.  The 7Li NMR spectrum of the freeze dried 

material, LPZN1-FD, exhibits a broad resonance at -0.32 ppm and a very broad resonance -1.33 ppm; 

the former resonance is therefore attributed to the Li environment in the amorphous phase observed in 

XRD data.  The 7Li NMR spectrum of LPZN1-350-15m was characterised by two resonances, 

centered at -0.38 ppm and 0.14 ppm.  The chemical shift of the broad resonance at -0.38 ppm is 

consistent with that assigned to the non-crystalline phase in the freeze dried material and the 

observation of a significant non-crystalline phase in XRD data (Figure 5.62).  The chemical shift of 

the relatively sharp resonance at 0.14 ppm suggests it is associated with a chemical environment in 

one of the unidentified crystalline phases observed in XRD data (Figure 5.63), but not Li2Zr(MoO4)3 

(see below).  The 7Li NMR spectrum of LPZN1-550-15m exhibited two resonances, centered at -0.14 

ppm and -0.40 ppm.  The resonance centred at -0.14 ppm is also the dominant signal in the spectrum 

of product LPZN1-350-3h.  Consistent with XRD data of these products, the signal at -0.14 ppm is 

assigned to the Li environment in crystalline Li2Zr(MoO4)3.  The resonance centred at -0.40 ppm in 

the 7Li NMR spectrum of LPZN1-550-15m implies the retention of a significant non-crystalline 

fraction, incorporating Li, which is not detected by XRD. 
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Figure 5.65 – 7Li MAS NMR spectra of samples LiNO3,  

LPZN1-FD, LPZN1-350-15m and LPZN1-550-15m 

-10 -8 -6 -4 -2 0 2 4 6 8 10

In
te

n
s

it
y
 (

a
.u

.)

Chemical shift (ppm)

LPZN1-550-15m

LPZN1-350-15m

LPZN1-FD

LiNO3



154 

 

 

The backscattered electron image of product LPZN1-350-5m (Figure 5.66) showed that the sample 

was not homogeneous, proving the formation of multiple phases.   The X-ray maps revealed a 

generally intimate association of Zr and Mo (Figure 5.66), however, some small regions were 

observed to be deficient in one element.  This is consistent with the XRD data which showed 

amorphous phase(s) were formed.   

 

 

Figure 5.66 – Backscattered electron image (top) and X-ray maps showing the molybdenum and 

zirconium distribution (bottom) in sample LPZN1-350-5m  

 

After calcination at 550 oC for 15 minutes, the backscattered electron image of product LPZN1-550-

15m (Figure 5.67) showed homogeneneity throughout, with Zr and Mo showing an intimate 

association in all regions.  This supported the XRD and TGA data which showed the formation of 

Li2Zr(MoO4)3 had occurred.   
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Figure 5.67 – Backscattered electron image (top) and X-ray maps showing the molybdenum and 

zirconium distribution (bottom) in sample LPZN1-550-15m 

 

From these reactions it is possible to infer and conclude the following: 

 Dissolving PMA, LiNO3 and ZrO(NO3)2, sequentially, in water led to formation of a bright 

yellow precipitate, which was found to be non-crystalline by XRD (figure 5.64).  The freeze 

drying process did not alter the structure of the precipitate.  

 Below 350 oC:  After reaction times lower than 10 mins, there was no change to the reaction 

product.  After 15 mins, crystallisation of Li2Zr(MoO4)3 and Li2MoO4 occurred with an 

unidentified crystalline phase also being observed. 

 Between 350-550 oC: The formation of Li2Zr(MoO4)3 occurs, in agreement with the 3 h 

experiments, showing a kinetically fast reaction under these calcination conditions. 

Above 450 oC, the same reaction products are observed after 5 mins and 3h, showing under these 

conditions the reaction is governed by rapid kinetics. 
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5.3.2.3 Small scale calciner experiments 

 

5.3.2.3.1 PZN2 

 

The product of calcination for sample PZN2-SSC-600 was comprised of a variety of different particle 

sizes.  The portion greater than 2 mm in size was yellow in colour and will be referred to as PZN2-

SSC-600-yellow.  The calcine with a particle size less than 500 µm was mostly white in colour (with 

some brown, attributed to residual calcine in the tube from previous experiments) and will be referred 

to as PZN2-SSC-600-white. 

 

XRD data from sample PZN2-SSC-600-yellow (Figure 5.68) showed reflections attributable to PMA 

together with considerable diffuse scattering associated with an additional non-crystalline component, 

consistent with the presence of non-crystalline ZrO2 (Hagiwara et al., 1975).  TGA analysis of PZN2-

SSC-600-yellow (Figure 5.69) produced a weight loss curve with a very similar profile to that 

produced from product PZN2-350-15m, with the weight loss above 800 oC attributed to volatilisation 

of MoO3 (discussed in section 5.3.2.1.1).  The weight loss achieved at 700 oC (prior to significant 

volatilisation of MoO3) was 13 wt%, almost identical to that shown for sample PZN2 after calcination 

at 350 oC for 15 mins.  The XRD analysis showed the pattern of product PZN2-SSC-600-yellow was 

similar to that of the freeze dried sample, rather than when calcined at 350 oC, suggesting this 

temperature may not have been reached in the centre of the large particles. 

 

 

Figure 5.68 - XRD analysis of sample PZN2-SSC-600-yellow  

using Co Kα1 radiation (λ = 1.789 Å) 
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Figure 5.69 – TGA analysis of sample PZN2-SSC-600-yellow 

 

Figure 5.70 shows the XRD pattern for sample PZN2-SSC-600-white, with reflections attributable to 

PMA, MoO3, ZrO2 and Zr(MoO4)2 being observed.  There was also significant diffuse scattering in 

these diffraction patterns, which is attributed to non-crystalline ZrO2, consistent with literature data on 

the low temperature decomposition of ZrO(NO3)2, as described in Section 5.3.2.1.1.  The TGA 

analysis of product PZN2-SSC-600-white produced similar weight loss curve to that for PZN2-450-

10m (Figure 5.71).  The TGA data from product PZN2-450-10m demonstrated a weight loss of  

3.8 wt% at 700 oC, the same as PZN2-SSC-600-white, suggesting near complete thermal 

decomposition of PMA and ZrO(NO3)2, congruent with TGA analysis of these materials and available 

literature data (Section 5.3.2.1.1, Appendix, Tatibouet et al., 1997; Hagiwara et al, 1975).  This is also 

consistent with the XRD data for PZN2-450-10m, as the only sample in this series of experiments to 

have PMA retained in the product, as well as showing the formation of MoO3, ZrO2 and Zr(MoO4)2.   

 

 

Figure 5.70 - XRD analysis of sample PZN2-SSC-600-white  

using Co Kα1 radiation (λ = 1.789 Å) 
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Figure 5.71 – TGA analysis of sample PZN2-SSC-600-white 

 

Overall, these data imply that the temperature experienced by the calcine in the calcination process is 

highly dependent on particle size (shown in Chapter 6).  Small particles (<500 µm) of product PZN2 

appeared to experience temperatures of approximately 450 oC for 10 mins, with the large particles 

(>2 mm) not reaching 350 oC, by comparison to freeze dried results, with a zone 3 temperature set 

point of 600 oC.  Previous residence time studies revealed the average time spent in the calciner is 

between 8-12 mins (Short, 2012) which is in agreement with these experiments.  This is in contrast to 

products LMN1-SSC-600 and LAMN1-SSC-600, which appeared to experience temperatures of  

550 oC or above, however, this can be explained by the fact that lithium creates a ‘sticky’ calcine due 

to its low melting point, increasing the residence time in the calciner. 

 

5.3.2.3.2 LPN1 

 

The XRD patterns from product LPN1-SSC-600 (Figure 5.72) exhibited reflections which matched, 

almost exclusively, the reference pattern of Li2Mo2O7.  TGA data of product LPN1-SSC-600 (Figure 

5.73) showed a weight loss of 11 wt% at 700 oC, suggesting incomplete reaction and retention of a 

portion of the volatile inventory.  In comparison, TGA data of product LPN1-550-15m (Figure 5.73) 

showed a weight loss of 14 wt% at 700 oC, demonstrating that product LPN1-SSC-600 had undergone 

a more complete reaction that that of the sample calcined at 550 oC for 15 mins.  The reaction product 

is consistent with this series of experiments, identified as Li2Mo2O7 by XRD (Figure 5.72).  These 

data suggest that the product may either have been in the calciner longer than 15 mins, or experienced 

a higher temperature than 550 oC (possible as the tube temperature was 600 oC in Zone 3).  It is 

known that high lithium content creates a ‘sticky’ calcine as its melting point is 255 oC.  This leads to 

longer residence times in the calciner. 
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Figure 5.72 – XRD analysis of sample LPN1-SSC-600  

using Co Kα1 radiation (λ = 1.789 Å) 

 

 

Figure 5.73 – TGA analysis of sample LPN1-SSC-600 
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5.3.2.4 Discussion 

 

The reaction between PMA and ZrO(NO3)2 yielded Zr(MoO4)2 as the major reaction product, 

however, on addition of LiNO3 there was a preference to the formation of Li2Zr(MoO4)3 via reaction 

of Li2MoO4 with ZrO2 and MoO3 under calcination conditions relevant to full scale calcination.  The 

reaction products identified for samples PZN2, LPN1 and LPZN1 after calcination at 350, 450 and 

550 oC for 15 mins are summarised in Table 5.7. 

 

The reaction mechanism for the formation of Zr(MoO4)2 from PMA and ZrO(NO3)2 is thought to be: 

 

OxHMoOPOHOxHOPMoH 2343240123 12.   

 

32223 2)( HNOZrOOHNOZrO   

 

2432 )(2 MoOZrMoOZrO   

 

This is consistent with ZrO2, MoO3 and Zr(MoO4)2 being the reaction products observed after 

calcination at 450 oC for 15 mins, with increased crystallisation occurring at 550 oC.  The formation of 

these products on processing through the small scale calciner also show that it is possible to form 

Zr(MoO4)2 under conditions comparable to the full scale process.  However, on addition of LiNO3, the 

mechanism changes resulting in the formation Li2MoO4 and then Li2Zr(MoO4)3 in preference to 

Zr(MoO4)2: 

 

342233 22 HNOMoOLiOHMoOLiNO   

 

3422342 )(2 MoOZrLiZrOMoOMoOLi   

 

Without the addition of ZrO(NO3)2, Li2Mo2O7 was formed due to the ratio of Mo:Li in the product 

leaving free MoO3 to further react, in agreement with available literature (Tangri et al., 1994). 

 

722342 OMoLiMoOMoOLi   

 

These data suggest that the reaction between PMA and ZrO(NO3)2 yields Zr(MoO4)2 after calcination 

above 450 oC.  However, the addition of LiNO3 to a HAL simulant will prevent the formation of 

Zr(MoO4)2 in the calcination process, instead yielding Li2Zr(MoO4)3.   
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Table 5.7 – Summary of the products formed in samples PZN2, LPN1 and LPZN1 after 

calcination for 15 mins at 350, 450 and 550 oC 

 

Temperature (oC) 

350 450 550 

PZN2 

 

H3PMo12O40.xH2O 
 

Non-crystalline ZrO2  

 

MoO3 
 

ZrO2 

 

Zr(MoO4)2 
 

 

MoO3 
 

ZrO2 

 

Zr(MoO4)2 
 

LPN1 

 

MoO3 
 

Li2MoO4 
 

Li2Mo2O7 
 

 

 
 

 
 

Li2Mo2O7 
 

 

 
 

 
 

Li2Mo2O7 
 

LPZN1 

 

Non-crystalline phase 
 

Li2MoO4 
 

Li2Zr(MoO4)3 
 

 

 
 

 
 

Li2Zr(MoO4)3 

 

 
 

 
 

Li2Zr(MoO4)3 

 

These reaction products were essentially the same after calcination for 3 h as they were after 15 mins, 

showing the reactions are governed by rapid kinetics and will occur in the timescales relevant to 

calcination on the full scale process.  This is important as one of the major causes of blockages in the 

off-gas system is the formation of Zr(MoO4)2 (or its hydrated form ZrMo2O7(OH)2(H2O)2) in the dust 

scrubber (Short, 2010).  In full HAL simulants, caesium phosphomolybdate (CPM) is known to be 

present as a yellow precipitate (Neepa et al., 2013) and converts to ZrMo2O7(OH)2(H2O)2 over a 

period of time (Edmondson et al., 2012) in the presence of ZrO(NO3)2 in solution.  Recent studies by 

Taylor et al. (2014) showed that the reaction between LiNO3 and ZrMo2O7(OH)2(H2O)2 yielded 

Li2MoO4 and ZrO2 when run on the small scale calciner.  This is consistent with these studies which 

showed Li2MoO4 was formed along with Li2Zr(MoO4)3 in preference to Zr(MoO4)2 on the addition of 

LiNO3.  It is also in agreement with the formation of yellow-phase in the glass melt, of which 

CsLiMoO4 is a known component (Morgan, 2004).  Previous work by Short (2005) showed that the 

insoluble component of the calcine was high in Zr with a structure in the Fm-3m space group.  

Structures of this type include Zr2Gd2O7 and Sm0.5Zr0.5O1.75 (Short, 2005).  These data suggest that 

Zr(MoO4)2, or its hydrated form, are not produced in the calcination process on full HAL simulants, 

however, they are known to form in the off-gas system (Short, 2010).  An investigation by Izumida 

and Kawamura (1990) showed the precipitation of zirconium molybdate hydrate, 

ZrMo2O7(OH)2(H2O)2 occurred from HAL simulant.  The following reactions were used to explain 

this: 
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This suggests that the formation of ZrMo2O7(OH)2(H2O)2 takes place in solution, and is known to 

occur in the highly active storage tanks (HAST’s) under aqueous conditions (Magnaldo et al., 2007; 

Richardson, 2000; Doucet et al., 2002).  This investigation, combined with a review of the available 

literature, showed that Zr(MoO4)2 could be formed under the relevant conditions attributed to the 

calcination process, however, in a full HAL simulant and / or in the presence of LiNO3 this would not 

occur due to competing reactions on heating and in the solid state.  This showed that in the full HAL 

simulant there are many competing reactions due to the wide variety of species present in solution and 

formed in the calcination process.  This highlights the limitations of this study in investigating the 

reactions which occur in the calcination process. 

 

5.4 CONCLUSIONS 

 

5.4.1 Reactions between aluminium and magnesium nitrates  

 

 In the timescales relevant to full scale calcination, the kinetic products of the reaction between 

Al(NO3)3.9H2O and Mg(NO3)2.6H2O at 550 oC were poorly crystalline MgO and a non-

crystalline phase thought to be γ-Al2O3 via decomposition of an unidentified metastable 

intermediate formed at 450 oC.  No observable reaction occurred after calcination at 350 oC. 

   

 Al and Mg nitrates underwent further reaction after calcination at 550 oC for 3 h to form a 

Mg-Al-LDH of the form MgaAl(OH)3+2a-c(NO3)c.xH2O, through the reaction between MgO 

and γ-Al2O3, formed at 450 oC.  When excess nitric acid was added, the absence of MgO and 

γ-Al2O3 suggested the reaction had gone to completion yielding  

MgaAl(OH)3+2a-c(NO3)c.xH2O. 

 

 On addition of LiNO3 to the reaction between Al(NO3)3.9H2O and Mg(NO3)2.6H2O, 

crystalline MgO and γ-Al2O3 were formed at 550 oC for between 5-15 mins, with Li being 

present in a non-crystalline form.  The same unidentified metastable intermediate as formed 

in product AMN1 at 450 oC was observed, though the formation occurred at a lower 

temperature and faster rate in the presence of LiNO3.   

 

 Further reaction at 450 and 550 oC for 3 h resulted in the formation of MgAl2O4 through a 

template-growth reaction, where LiNO3 acted as a molten salt facilitating this reaction.  

However, this would not occur within the timeframe associated with full scale calcination. 
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 Li and Al nitrates reacted together after calcination between 350 oC and 450 oC for 3 h 

forming LiAl2(OH)6(NO3).xH2O and an unidentified intermediate thought to be Li rich.  This 

reaction went to completion at 550 oC. 

 

 No observable reactions occurred between Mg or Al nitrates with Fe(NO3)3.9H2O.   

 

 The reactions between Al(NO3)3.9H2O and Mg(NO3)2.6H2O appear to be kinetically slow and 

therefore would not go to completion within the calcination process. 

 

5.4.2 Reactions between phosphomolybdic acid and zirconyl nitrate 

 

 PMA and ZrO(NO3)2 appeared to undergo decomposition between 350 and 450 oC to form 

MoO3 and ZrO2, with these resultant products undergoing further reaction to form Zr(MoO4)2.  

On further calcination above 800 oC, any un-reacted MoO3 was volatilised.  

 

 When LiNO3 was added to the reaction between PMA and ZrO(NO3)2, Li2Zr(MoO4)3 was 

formed above 350 oC via the intermediate Li2MoO4 formed through the reaction between 

LiNO3 and PMA. 

 

 Without the presence of ZrO(NO3)2, LiNO3 and PMA undergo reaction to first form Li2MoO4 

and MoO3 at 350 oC for 5-15 mins, with further reaction occurring at longer residence times 

and higher temperature to form Li2Mo2O7. 

 

 These reactions are kinetically rapid and therefore would occur in the timescales of full scale 

calcination. 

 

5.4.3 Small scale calciner experiments 

 

 The short simulants containing high concentrations of LiNO3 were held up in the calciner tube 

due to the low melting point of 255 oC, resulting in higher than normal residence times in the 

calciner.  This made these simulants unsuitable for comparable runs to full HAL simulants. 

 

 Short simulant PZN2 appeared to experience different temperatures at the different particle 

sizes which were formed during the calcination process.  The larger particles were yellow in 

colour and contained a large portion of the PMA starting material, suggesting they 

experienced temperatures below 350 oC. 

 

 The smaller particles were white in colour and appeared to have experienced temperatures of 

approximately 450 oC for a residence time of 10 minutes.  This was much more representative 

of the full HAL simulants than the Li containing simulants. 
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5.5 FUTURE WORK 

 

PMA was used as a starting material during these experiments as this is the compound used in the 

make-up of the full HAL simulants.  However, CPM is known to to be present in full HAL simulants 

as a yellow precipitate.  Therefore, carrying out a set of experiments using CPM as the starting 

material could yield further answers into the reactivity of Mo containing compounds in the calciner.  

This would be beneficial as CsLiMoO4 is known to form during the calcination of full HAL simlants 

(Morgan, 2004) resulting in the formation of yellow-phase, which is causes issues in the final vitrified 

glass product.  Zr(MoO4)2 (or ZMH in its hydrated form) is also responsible for causing blockages in 

the off-gas system, highlighting the importance of being able to model the reactivity of Mo 

throughout the vitrification process. 

 

Work carried out by Short (2005b) suggested that Zr reacts with RE elements at high temperatures in 

full HAL simulamts.  Therefore, the reactivity of Zr at higher calcination temperatures with other 

HAL components should be explored.  This would help determine whether ZMH is formed in the 

cacination process and transported to the off-gas system through the dust, or if Mo and Zr are 

transported in separate compounds and react together in solution.   

 

The small scale calciner experiments highlighted the need to determine the temperatures experienced 

in the calcination process, as the addition of LiNO3 changed the perceived results as it produced 

‘sticky’ calcine, increasing the residence time.  The determination of the temperatures experienced in 

the calciner was the main focus of the work carried out in chapter 7, however, this only covered the 

short simulant PZN2.  Futher exploration of the effects of simulant composition on particle size, and 

thus temperatures experienced in the calcination process would allow better modelling of the 

processes which occur in the calcination process. 
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6. Effects of Lithium Nitrate on HAL 

Simulants in the Calcination Process 
 

6.1 INTRODUCTION 

 

The first of the two main focuses from this work was to compare the full HAL simulant samples with 

the short simulants analysed in chapter 5, to determine whether any comparisons could be drawn.  

Previous work on lab scale calcination of Magnox and Blend HAL simulants (Owens et al., 1985; 

Brace, 2005b) have shown that increasing Li concentration and decreasing temperature cause an 

increase in residual nitrate to be present in the calcine samples.  Owens et al. (1985) showed that 

LiNO3 had reacted with a Magnox HAL simulant below 300 oC, however the reaction of lithium 

nitrate in solution remains unknown.  Analysis of a freeze dried HAL simulant, without further heat 

treatment, has never been carried out.  This will help provide an insight of the reactions which occur 

in solution, before any heat treatment is carried out.  Analysis of this material will give a starting point 

to look at further reactions which take place at higher temperatures.  The effects of LiNO3 addition, 

temperature and simulant composition were monitored through a series of systematic experiments. 

 

There is an interest in discovering the composition and particle size of calcine particles which are 

carried from the calciner to the dust scrubber during VTR and WVP operations.  This would allow the 

determination of the dust composition to see if is the same as the calcine or whether the insoluble 

components, such as ZrMo2O7(OH)2(H2O)2, are preferentially carried over to the off-gas system.  The 

particle size is also important, as small particles are difficult to remove from the dust scrubber recycle 

vessel (DSRV) on the VTR.  Collecting the dust on the VTR is not possible, as the first sampling 

point on the VTR in the off-gas system is that of the dust scrubber liquor.  As the majority of the dust 

is dissolved in the nitric acid, it is not possible to measure the size and densities of the soluble calcine 

particles.  The second main focus of this section of work was, therefore, to use the small scale calciner 

to capture these dust particles11 under a range of different calcination conditions so further analysis 

could be carried out.  An investigation of the effects of temperature, simulant flow rate and Li 

addition on dust and calcine compositions and particle sizes was undertaken. 

 

 

 

 

 

 

 

 

                                                           
11 The small scale calciner was modified for the purpose of capturing dust particles, as this had not been possible 

previously.  The design, installation and issues with these modifications were discussed in Chapter 4. 
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6.2 EXPERIMENTAL 

 

6.2.1 Freeze dryer experiments 

 

As in Chapter 5, freeze drying of the HAL simulants was utilised to simulate the relatively short 

residence times in the calcination process.  This was not possible using liquid samples because 

introducing the samples at the reaction temperature led to flash boiling and loss of the crucible 

contents.  The samples were therefore first freeze-dried, to remove water, then the resultant solid was 

placed in the furnace at the desired temperature for 10 mins, shown to be the average residence time 

in the calciner (Brace, 2004).  This approach was thought to give a representative sample, since the 

freeze-drying simulated the action of calciner Zones 1 and 2 (without heating), and the furnace 

simulated the conditions in Zones 3 and 4.   

 

As an initial investigation, Blend12 and Magnox HAL simulants (referred to as WRW16 and WRW17 

respectively) with and without the addition of LiNO3 were freeze dried, giving the products WRW16-

RLF13, WRW16-RF, WRW17-RLF and WRW17-RF.  The resultant products were analysed without 

further heat treatment and after calcination in a muffle furnace at 350 oC and 550 oC for 10 mins.  The 

simulant compositions are given in Table 6.1. 

 

6.2.2 Small scale calciner experiments 

A preliminary investigation into the effects of LiNO3 and calcination temperature on the dust carry-

over from the calciner to the off-gas system was carried out using the VTR (Vickers, 2006a; Vickers, 

2006c).  A significant reduction in dust carry-over was reported on addition of LiNO3 to the HAL 

feed, with the reduction increasing with increasing Li concentration.  It was also reported that 

increased reaction temperatures gave rise to higher dust carry-over in the calcination process (Brace, 

2006b).  The mechanisms by which these observations occurred were unclear and the effects of 

increased reaction temperature and Li addition on the composition of the dust carried over were not 

determined.  To address this issue, a series of experiments were conducted using the small scale 

calciner rig, where a Magnox HAL simulant was calcined with and without the addition of LiNO3 to 

determine the effects on dust carry-over to the off-gas system.  The hypothesis for this work package 

is:  

 

Composition, particle size and amount of dust carried over to the off-gas system is dependent on 

calciner operating conditions and feed composition.   

 

                                                           
12 Blend HAL simulant is a 25%/75% Magnox/UO2 combined waste-stream. 

 
13 RLF stands for Ru and Li free.  Ru free simulants were used as the VTR was running an experimental 

campaign using Ru free simulants at the time of experimentation.  Ru is a very expensive product, adding 

significant cost to the simulant, plus there have already been extensive studies on the volatility of Ru in the 

calcination process.  Therefore it was not necessary to use a Ru containing simulant in these experiments. 
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Table 6.1 – Elemental composition of WRW16-RLF and WRW17-RLF simulants14 

 Concentration (g / l) 

Element WRW16-RLF WRW17-RLF 

Na 0.21  0.52 

Mg 7.00 22.00 

Al 7.00 18.21 

P 1.38 0.55 

S 0.07 0.27 

Cr 2.35 3.18 

Fe 10.32 16.00 

Ni 1.72 2.26 

Sr 2.63 1.86 

Y 1.70 1.08 

Zr 13.44 8.18 

Mo 10.81 7.53 

Te 1.45 1.04 

Cs 10.78 7.84 

Ba 6.27 3.36 

La 4.30 3.83 

Ce 8.30 7.20 

Pr 4.10 3.59 

Nd 14.32 12.48 

Sm 3.02 2.58 

Gd 25.80 0 

                                                           
14 Both simulant types were made up to between 1.5-1.7M HNO3.  LiNO3 was added as a 30wt% solution in 

1.5M HNO3 to the above simulants when required in pre-specified quantities as done on the VTR. 
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To answer this hypothesis, the range of experiments must explore the following: 

 

 Changes in calciner operating temperature 

 Changes in HAL simulant feed rate 

 Changes in HAL simulant composition 

 

These parameters were chosen as they are the range of variables which can be altered on the VTR and 

WVP plants.  Increasing calcination temperature is known to reduce the residual nitrate content of the 

calcine (Owens et al., 1985; Brace 2005b) and has been shown to have an effect on the amount of dust 

generated and transferred to the off-gas system (Brace, 2006c).  The rate at which HAL simulant is 

fed into the calciner is also known to have a significant impact on the residual nitrate of the resultant 

calcine and dust production (Brace, 2006a).  This is due to the fact that reducing the feed rate (if all 

other parameters are kept constant) effectively reduces the evaporation time (moving the evaporative 

front closer to the front end of the tube) in the calciner tube, leaving a longer residence time for 

denitration processes to occur, hence a change in calcine composition is observed.  In VTR trials, the 

temperature set-points of Zones 1 and 2 were increased to keep the evaporative front at the Zone 2/3 

interface (half way down the calciner tube) at increased feed rates to keep the calcine composition 

consistent (Brace, 2006e). 

 

When commissioning the small scale calciner rig, an initial investigation took place to determine the 

temperature set points and feed rates required to position the evaporative front approximately half 

way down the calciner tube (Brace, 2005c).  These conditions were found to be set points of 400 oC in 

Zones 1 and 2 and 600 oC in Zone 3, with a feed rate of 3 l / h.  This is thought to be as representative 

as possible in comparison to the VTR,15 and therefore provided a central point for this series of 

experiments.  Using these settings as a middle point, calcination temperatures of 500, 600 and 700 oC 

were chosen, with feed rates of 2, 3 and 4 l / h to give the experimental matrix (Table 6.2). 

 

This experimental matrix was used for Magnox HAL simulant both with and without the addition of 

LiNO3 (products WRW17-RLF and WRW17-RF).  Sample nomenclature is shown in Table 6.1 for a 

Magnox simulant (WRW17) with Li addition (–RF), where the simulant type is followed by reaction 

temperature (-600) and finally feed rate (-3 l / h).  Therefore, a Magnox simulant containing Li, 

calcined at 600 oC at a feed rate of 3 l / h would be named WRW17-RF-600-3l/h.  Experiments on 

Blend HAL simulant (WRW16) were also carried out without Li addition at calcination temperatures 

of 500, 600 and 700 oC.  However, due to time constraints and available simulant quantity, the full 

matrix of experiments could not be carried out using Blend HAL simulant. 

                                                           
15 The calciner tube on the VTR has 4 heating Zones as opposed to the small scale calciners 3 Zones.  Zones 1 

and 2 are used for evaporation of the HAL simulant on the VTR, with denitration processes occurring in Zones 

3 and 4, hence on the small scale calciner the evaporative front should be half way down Zone 2. 
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Table 6.2 – Experimental matrix for small scale calciner experiments 

 
Zone 3 Temperature (oC)16 

500 600 700 

F
ee

d
 R

a
te

 

(l
it

re
s/

h
o

u
r)

 

2 x WRW17-RF-600-2l/h x 

3 WRW17-RF-500-3l/h WRW17-RF-600-3l/h WRW17-RF-700-3l/h 

4 x WRW17-RF-600-4l/h x 

 

From each of the experiments, the calcine was collected in the pre-weighed calcine collection pot and 

subsequently weighed to find the mass of calcine produced.  This calcine was then sieved through 

meshes with pore sizes of 0.5 mm and 2 mm and separated into the 3 corresponding fractions (>2 mm, 

0.5-2 mm and <0.5 mm).  Each fraction was weighed and the mass recorded to give a particle size 

distribution.  Samples from each size fraction were analysed to determine the effects of particle size 

on the temperature experienced in the calcination process.  Dust samples were collected from the dirt 

trap and the flexible hose connecting the calciner to the off-gas system.  The combined mass was 

taken as the dust carry-over value17.  Mass balance calculations were then carried out, outlined in 

section 6.2.2.1. 

 

6.2.2.1 Calculating the expected yield from the small scale calciner experiments 

 

Each of the small scale calciner experiments were run for a total of 1 hour with the calciner in feed.  

The Magnox HAL simulant feed used in these experiments has a total waste oxide concentration of 

184.4 g / l18.  The first step, therefore, was to calculate the total amount of waste oxide processed in 

the experiment (Equation 6.1). 

 

WOFTTWO                                  (Equation 6.1) 

 

TWO is the total waste oxide throughput (g) 

T is the duration of the experiment (h) 

F is the feed rate of HAL simulant in the experiment (l / h) 

WO is the waste oxide concentration of the HAL simulant (g / l) 

                                                           
16 For simplicity, and to allow comparisons to be made between the samples at different temperatures, the 

decision was made to only alter the Zone 3 setpoint (the main denitration Zone), leaving Zones 1 and 2 set at 

400 oC for all experiments carried out on the small scale calciner. 

 
17 It should be noted that dust is also collected in the upper end fitting of the calciner, which was not possible to 

collect, and a fraction will have been carried through the trap and dissolved in the dust scrubber. 

 
18 If all of the metal nitrates were decomposed into their component oxides, then 184.4 g of product would be 

formed per litre of HAL. 
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In the calcination process, however, a residual nitrate component is retained in the product and thus 

must be taken into account when calculating the expected yield.  TGA analysis was carried out on 

each of the size fractions, giving a residual weight loss value for each.  As we know the mass of each 

of the calcine size fractions, the total expected weight can be calculated using Equation 6.2: 

 

)()()( 2225.025.05.05.0   WLCFTWOWLCFTWOWLCFTWOTWOEW  

(Equation 6.2) 

 

EW is the expected weight (g) 

CFx is the calcine fraction of particle size x (fraction) 

WLx is the weight loss observed by TGA of particle size x (fraction) 

 

These calculated expected weight values were then used in mass balance calculations to determine if 

the cumulative mass of the calcine and dust collected correlated with the expected throughput from 

the calcination experiments.   

 

6.3 RESULTS AND DISCUSSION 

 

6.3.1 Freeze dryer experiments 

 

6.3.1.1 WRW16-RLF (Blend HAL simulant – Ru and Li Free) 

 

The XRD pattern of the reaction product WRW16-RLF-FD (Figure 6.1) showed a set of intense 

reflections showing the presence of caesium phosphomolybdate (CPM), a known precipitate in HAL 

simulants (Neepa et al., 2013; Edmondson et al., 2012).  Other lower intensity reflections, attributable 

to Mg3RE2(NO3)12.24H2O19 and Al(NO3)3.9H2O [12-472], were also observed, suggesting they are 

minor products compared to CPM.  Some diffuse scattering was also apparent suggesting the presence 

of non-crystalline component(s).  TGA analysis of product WRW16-RLF-FD (Figure 6.2) showed a 

total weight loss of 68 wt% at 1000 oC.  This value must be the hypothetical weight loss for 

decomposition of all of the metal nitrates into their component oxides.  The weight loss profile 

demonstrated three events: a sharp weight loss at 200 oC, attributed mainly to dehydration, with partial 

denitration of some species also occurring in this temperature range, such as Al(NO3)3.9H2O 

(identified by XRD), by reference to thermal stability data for this compound (Appendix; Pacewska 

and Keshr, 2002); a sharp weight loss at 250 oC; and a sharp weight loss at 380 oC, consistent with 

denitration of Mg3RE2(NO3)12.24H2O, as shown by thermal analysis of a precipitate collected from 

WRW16-RLF simulant upon evaporation, verified using XRD to be Mg3RE2(NO3)12.24H2O 

                                                           
19 Mg3RE2(NO3)12.24H2O, where RE = La, Ce or Eu, are all present in the ICDD database and all have 

similar diffraction patterns (cards [12-761], [11-684] and [04-011-0137] respectively).  Quill et al. 

(1937) showed Mg RE nitrates, where RE = La, Ce, Pr, Nd, Sm or Gd, could be formed via reaction 

between the corresponding metal nitrates. 
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(Appendix 2).  The observation of Mg3RE2(NO3)12.24H2O in the freeze dried material is consistent 

with studies carried out on the highly active storage tanks (HAST’s) at Sellafield which showed 

precipitation occurs as evaporation of the HAL takes place (Richardson, 2002a).  As the freeze drying 

process removes water from the HAL, essentially concentrating it, this would be expected as a major 

product due to the high concentration of Mg and rare earth nitrates in solution (Short, 2010c).  

Mg(NO3)2.6H2O is known to form compounds of the type Mg3RE2(NO3)12.24H2O through reaction 

with rare earth nitrates.  These rare earth elements include La, Ce, Pr, Nd, Sm and Gd (Quill et al., 

1937).  The presence of Al(NO3)3.9H2O in the freeze dried product implies that it undergoes no 

observable reaction in solution or during the freeze drying process.  This is in agreement with the 

short simulant studies in chapter 5, which showed Al(NO3)3.9H2O did not undergo reactions with 

Mg(NO3)2.6H2O during the freeze drying process.  Overall, these data showed Mg and RE nitrates 

react together to form Mg3RE2(NO3)12.24H2O in solution, with subsequent precipitation during the 

evaporation process associated with freeze drying.  Al(NO3)3.9H2O remains unreacted in the product, 

which is consistent with TGA data showing a sharp weight loss at 200 oC.  CPM was observed as the 

major crystalline component in the freeze dried product, consistent with the presence of the precipitate 

in the HAL simulant (Neepa et al., 2013).  A co-existing non-crystalline component(s) was also 

shown to be present through significant diffuse scattering observed in the XRD pattern (Figure 6.1). 

 

 

Figure 6.1 – XRD analysis of products a) WRW16-RLF-FD, 

b) WRW16-RLF-350 and c) WRW16-RLF-550 
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After heating at 350 oC for 10 mins, XRD analysis of product WRW16-RLF showed a set of 

reflections attributed to Mg3RE2(NO3)12.24H2O.  This accounted for essentially all of the reflections 

shown, with no peaks attributable to Al(NO3)3.9H2O or CPM remaining in the product.  Absence of 

the former is consistent with the partial decomposition of Al(NO3)3.9H2O, to form an amorphous 

nitrate bearing product which is likely also hydrated, reported previously by Pacewska and Keshr 

(2002).  Significant diffuse scattering was also observed, showing the presence of non-crystalline 

component(s).  TGA analysis of product WRW16-RLF-350 (Figure 6.2) showed a total weight loss of 

45 wt% at 1000 oC.  This showed that significant dehydration and denitration of the freeze dried 

product had occurred.  The weight loss profile demonstrated two events: a sharp weight loss at  

200 oC, attributed to dehydration; and a sharp weight loss at 380 oC, consistent with denitration of 

Mg3RE2(NO3)12.24H2O (Appendix 2).  The former weight loss event was lower in intensity than for 

product WRW16-RLF-FD, which is in agreement with the XRD data showing Al(NO3)3.9H2O had 

undergone partial decomposition to form a non-crystalline phase (consistent with previous work by 

Pacewska and Keshr, 2002).  There was a notable absence of the sharp weight loss at 250 oC in 

product WRW16-RLF-350.  Available literature (Zalewicz and Trzesowska, 2004) suggested this 

weight loss could be due to partial denitration of rare earth nitrates to form metastable intermediates 

of the type REO(NO3), where RE = La, Nd, Sm, Gd, Tb, Dy, Er or Lu.  This is in agreement with the 

absence of this weight loss event in Magnox simulants (sections 6.3.1.3 and 6.3.1.4), as the increased 

Mg concentration coupled with reduced amounts of RE elements in solution results in the 

consumption of the RE elements to form Mg3RE2(NO3)12.24H2O.  The absence of the intense 

reflections, attributable to CPM, suggests it must react after calcination at 350 oC for 10 mins, with 

the resultant product being non-crystalline in nature.  CPM is known to undergo transformation to 

Zr(MoO4)2 at increased temperatures (Doucet et al., 2002), suggesting a reaction would occur in the 

calcination process.  Overall, these data showed Mg3RE2(NO3)12.24H2O was retained in the reaction 

product, consistent with TGA.  Al(NO3)3.9H2O was not observed in the reaction product, in 

agreement with a reduction in weight loss at 200 oC and in agreement with available literature 

(Pacewska and Keshr, 2002).  The absence of CPM after calcination at 350 oC for 10 mins is 

consistent with it undergoing a reaction to form an amorphous phase, with significant diffuse 

scattering, observed in the XRD pattern (Figure 6.1), showing non-crystalline component(s) were 

present in the product WRW16-RLF-350. 
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Figure 6.2 – TGA analysis of products WRW16-RLF-FD, 

WRW16-RLF-350 and WRW16-RLF-550 

 

XRD analysis of product WRW16-RLF-550 (Figure 6.1) showed a diffraction pattern with diffuse 

scattering and very low signal-to noise ratio, indicating the presence of non-crystalline components.  

A set of very weak, broad reflections associated with the presence of CeO2 [04-593] were observed.  

TGA analysis of product WRW16-RLF-550 (Figure 6.2) exhibited a total weight loss of 14 wt% at 

1000 oC, showing retention of the nitrate and hydrate inventory, though a reduction in the residual 

volatile portion of the product was observed with increasing temperature.  The weight loss profile 

showed no distinct events, with a broad weight loss occurring between 100-600 oC.  The sharp weight 

losses at 200 oC and 380 oC, present in the freeze dried sample and after calcination at 350 oC, were 

not present in product WRW16-RLF-550 (Figure 6.2).  This is in agreement with the absence of 

reflections attributable to Mg3RE2(NO3)12.24H2O in the diffraction pattern (Figure 6.1) and thermal 

analysis carried out on the precipitate from evaporation of WRW16-RLF simulant (Appendix 2).  

Denitration of Ce(NO3)3 is known to occur between 220-240 oC (Strydom and van Vuuren, 1987) to 

form CeO2 in a single irreversible step, suggesting CeO2 is also present in product WRW16-RLF-350.  

However, the presence of CeO2 was not observed in the diffraction pattern after calcination at 350 oC, 

consistent with previous studies (Dunnett et al., 2009) which showed no reflections attributable to 

CeO2 were observed at 400 oC, but were present in a highly crystalline form after calcination at 1050 

oC.  This implies the crystallisation of CeO2 increases as a function of increasing temperature, shown 

by the presence of poorly crystalline reflections at 550 oC (Figure 6.1).  These data showed that none 

of the crystalline phases, present in the freeze dried product, were present after calcination at 550 oC 

for 10 mins, in agreement with TGA analysis showing no distinct weight loss.  The crystallisation of 

CeO2 was observed as very weak, broad peaks in the diffraction pattern (Figure 6.1). 
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From these experiments, it is possible to infer and conclude the following sequence of reactions: 

 In the freeze dried sample, without further heat treatment, CPM, Mg3RE2(NO3)12.24H2O and 

Al(NO3)3.9H2O were observed in the diffraction pattern with co-existing amorphous phase(s).  

These observations implied that Mg reacted with the RE elements in solution which then 

precipitated during the freeze drying process.  The presence of Al(NO3)3.9H2O in the product 

suggests that it does not react in solution or in the freeze drying process.  CPM is observed as 

a yellow precipitate in the HAL simulant and therefore undergoes no further reaction during 

the freeze drying process. 

 After calcination at 350 oC, Mg3RE2(NO3)12.24H2O appeared to be the only crystalline phase 

present in product WRW16-RLF-350.  Reflections attributable to Al(NO3)3.9H2O or CPM 

were not observed, suggesting they undergo decomposition / reaction to form non-crystalline 

components.  Absence of Al(NO3)3.9H2O is consistent with thermal analysis and available 

literature (Appendix; Pacewska and Keshr, 2002) which showed the formation of an 

amorphous product after calcination at 350 oC.   A significant amount of non-crystalline 

material was shown to be present by the strong diffuse scattering in the XRD pattern. 

 Between 350-550 oC, there was no significant crystalline contribution to the diffraction 

pattern, though the crystallisation of CeO2 was observed.  This showed that 

Mg3RE2(NO3)12.24H2O had decomposed to form a non-crystalline phase, in agreement with 

thermal analysis carried out on this compound (Appendix 2) and consistent with the absence 

of distinct weight loss events in the TGA analysis.  

 

6.3.1.2 WRW16-RF (Blend HAL Simulant – Ru free) 

 

XRD analysis of the reaction product WRW16-RF-FD (Figure 6.3) showed reflections matching 

CPM, Mg3RE2(NO3)12.24H2O and Al(NO3)3.9H2O in the diffraction pattern, as observed in the 

product without the addition of Li (Figure 6.1).  Significant diffuse scattering was observed, 

suggesting the presence of non-crystalline component(s).  The only major difference in the diffraction 

patterns of WRW16 with and without the presence of LiNO3, was the presence of an additional 

intense crystalline reflection at 2θ = 38.57 o (Figure 6.3).  This reflection did not correspond to LiNO3 

(or any of its hydrated forms) by reference to the ICDD database.  TGA analysis of product WRW16-

RLF-FD (Figure 6.4) showed a total weight loss of 71 wt% at 1000 oC, slightly higher than the 68 

wt% of the Li free product.  This is consistent with available literature (Vickers, 2006c) which 

showed a small increase in weight loss with the addition of LiNO3 in Blend HAL simulant.  The TGA 

profile demonstrated the same three events as in sample WRW16-RLF-FD with sharp weight losses 

being observed at 200, 250 and 380 oC which were attributable to dehydration and partial denitration 

of Al(NO3)3.9H2O (identified by XRD), decomposition of RE nitrates and denitration of 

Mg3RE2(NO3)12.24H2O respectively, by reference to thermal stability data for these compounds 
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(Appendix; Pacewska and Keshr, 2002; Zalewicz and Trzesowska, 2004; Appendix 2).  There was a 

notable absence of a weight loss event above 600 oC, which is typical of the denitration of LINO3 

(Appendix; Chun, 1977).  This, as well as the absence of reflections attributable to LiNO3 in the 

diffraction pattern, implies that LiNO3 undergoes a reaction with components of the HAL simulant in 

solution, forming a non-crystalline product.  This is in agreement with reactions in chapter 5, which 

showed the formation of a non-crystalline precipitate in solution arising from the reaction of LiNO3 

with PMA and zirconyl nitrate (chapter 5, section 5.3.2.2.3).  The presence of Mg3RE2(NO3)12.24H2O 

and Al(NO3)3.9H2O in the product showed that LiNO3 does not react with these components in 

solution or during the freeze drying process, also in agreement with work carried out in chapter 5.  

Overall, these data imply that the addition of LiNO3 to Magnox HAL simulant does result in extra 

reactions occurring, though seemingly not with the crystalline phases.  An additional reflection does 

appear at values of 2θ = 38.57 o (Figure 6.3), but was unidentified and was not present in product 

WRW16-RLF-FD.  This was the only major observable change by XRD and TGA analysis.  CPM, 

Mg3RE2(NO3)12.24H2O and Al(NO3)3.9H2O were still observed in the diffraction pattern, as formed in 

Li free product, with co-existing non-crystalline component(s).  

 

 

Figure 6.3 – XRD analysis of products a) WRW16-RF-FD, 

b) WRW16-RF-350 and c) WRW16-RF-550 

 

10 20 30 40 50 60

2theta (degrees)

In
te

n
s
it

y
 (

a
.u

.)

1
1

1,3
1

1

1

1,3
1

1,3

1 1,3 1

1
1

1,3

2 2

2
2

2
2

2

22
2

2

2
2

2
2 2

2 2
2

2 2 2

3

3

3
3

3

1 = Al(NO3)3.9H2O                 4 = Unidentified Reflection

2 = Mg3RE2(NO3)12.24H2O    5 = BaCeO3

3 = Cs3PMo12O40.xH2O          6 = CeO2

FD

350
o
C

550
o
C

a)

b)

c)

4

5

5

5 5
5 5

6

6
6

6
6

33
33



 

176 

 

Figure 6.4 – TGA analysis of products WRW16-RF-FD, 

WRW16-RF-350 and WRW16-RF-550 

 

XRD analysis of product WRW16-RF-350 (Figure 6.3) showed a set of reflections attributed to 

Mg3RE2(NO3)12.24H2O.  These accounted for essentially all of the reflections shown in the diffraction 

pattern.  No peaks attributable to Al(NO3)3.9H2O were observed in the product, consistent with 

findings from the Li free product and in agreement with the partial decomposition of Al(NO3)3.9H2O, 

to form an amorphous product, reported previously by Pacewska and Keshr (2002).  The intense 

reflections, associated with CPM, were no longer observed after calcination at 350 oC.  Significant 

diffuse scattering was also observed, showing the presence of non-crystalline component(s).  TGA 

analysis of product WRW16-RF-350 (Figure 6.4) showed a total weight loss of 47 wt% at 1000 oC, 

slightly higher than the 45wt% observed without the addition of LiNO3, consistent with available 

literature (Vickers, 2006c).  The weight loss profile again demonstrated two sharp weight loss events 

at 200 oC and 380 oC respectively, with the former attributed to dehydration and the latter denitration 

of Mg3RE2(NO3)12.24H2O (Appendix 2).  The sharp weight loss events at 200 oC and 250 oC were not 

observed after calcination at 350 oC, which is in agreement with the XRD data showing the absence of 

Al(NO3)3.9H2O and CPM and consistent with available literature (Pacewska and Keshr, 2002; Neepa 

et al., 2013).  These data showed that Mg3RE2(NO3)12.24H2O was the only major crystalline product 

retained in the reaction product, consistent with TGA analysis (Figure 6.4).  Reflections attributable to 

Al(NO3)3.9H2O and CPM were no longer present in the reaction product, which is consistent with a 

reduction in weight loss at 200 oC (compared to the freeze dried product) and in agreement with 

available literature (Pacewska and Keshr, 2002).  Strong diffuse scattering was observed in the XRD 

pattern (Figure 6.3), which showed non-crystalline component(s) were also present in product 

WRW16-RF-350. 
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XRD analysis of product WRW16-RF-550 (Figure 6.3) showed a set of sharp reflections attributable 

to BaCeO3 [04-012-0212] and a series of broad, weak reflections associated with poorly crystalline 

CeO2 [04-593].  The reflections associated with BaCeO3 were not observed without the addition of 

LiNO3 to the Blend HAL simulant.  Significant diffuse scattering showed the presence of amorphous 

component(s) in product WRW16-RF-550.  TGA analysis of product WRW16-RLF-550 (Figure 6.4) 

showed a total weight loss of 17 wt% was observed at 1000 oC, similar to that of the Li free product.  

This showed retention of a portion of the volatile inventory, though a reduction in the total weight loss 

was observed with increasing temperature.  The weight loss profile showed a broad weight loss 

occurring between 450-550 oC.   The absence of weight loss events at 200 and 380 oC, present in the 

freeze dried sample and after calcination at 350 oC, showed that Mg3RE2(NO3)12.24H2O had 

decomposed after calcination at 550 oC, in agreement with the absence of reflections in the diffraction 

pattern (Figure 6.3) and thermal analysis carried out on the precipitate from evaporation of WRW16-

RLF simulant (Appendix 2).  Crystallisation of CeO2 at higher calcination temperature was consistent 

with available literature (Dunnett et al., 2009).  Previous studies (Short, 2005) showed that on addition 

of LiNO3 to a Blend HAL simulant, there were two additional phases seen using XRD analysis that 

are not present when the sample was Li free.  The first additional phase which arose, belonged to the 

Pm-3m space group (Short, 2005) consistent with the structure of BaCeO3.  It should be noted, 

however, that the Pm-3m structure can incorporate a wide range of elements and therefore other 

complex oxides are likely to be present.  The other additional phase observed by Short (2005) and 

Morgan et al. (2004) was that of CsLiMoO4, which is part of yellow-phase formation in the vitrified 

product.  This phase, however, was not observed in these experiments.  The fact that the addition of 

LiNO3 gave rise to the formation of complex oxides suggests that it may have acted as a molten salt in 

the calcine, helping to facilitate reactions which would not otherwise occur in the solid state.  LiNO3 

acts as Lux-Flood base, making it a good O2- donor, and can therefore lower the temperatures needed 

for an oxidation reaction to occur (Afanasiev and Geantet, 1998).  LiNO3 is the most powerful O2- 

donor in the alkali metal series, giving it the highest reactivity (Afanasiev, 2007), which in 

combination with its low melting point makes it a good molten salt to use in the synthesis of metal 

oxides.  This is a likely explanation for the formation of complex oxide phases which are not observed 

without the presence of LiNO3.  Overall, these data suggested that the formation of BaCeO3 (or other 

complex oxides with the same structure) is a consequence of the addition of LiNO3 acting as a molten 

salt, facilitating the formation of these phases, not seen in the Li free product.  As LiNO3 acts as an 

O2- donor, it will no longer be present in its original crystalline form, accounting for the absence in the 

diffraction pattern.   
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From these experiments, it is possible to infer and conclude the following sequence of reactions: 

 In the freeze dried sample, without further heat treatment, CPM, Mg3RE2(NO3)12.24H2O and 

Al(NO3)3.9H2O were observed in the diffraction pattern with co-existing amorphous phase(s).  

These observations implied addition of LiNO3 did not affect the reaction between Mg and the 

RE elements in solution.  The presence of CPM and Al(NO3)3.9H2O also suggested these 

products do not react with LiNO3.  The absence of reflections attributable to LiNO3 in the 

diffraction pattern and the observation of an additional unidentified reflection showed that a 

reaction had occurred involving LiNO3 in solution.     

 After calcination at 350 oC, Mg3RE2(NO3)12.24H2O appeared to be the only crystalline phase 

present in product WRW16-RLF-350.  Reflections attributable to CPM, Al(NO3)3.9H2O or 

the unidentified crystalline phase were not observed, suggesting they undergo (partial) 

decomposition / reaction to form non-crystalline components.  Non-crystalline material was 

shown to be present by the strong diffuse scattering in the XRD pattern. 

 Between 350-550 oC, Mg3RE2(NO3)12.24H2O had decomposed to form a non-crystalline 

phase, in agreement with thermal analysis carried out on this compound (Appendix 2) and 

consistent with the absence of distinct weight loss events in the TGA analysis.  BaCeO3 and 

poorly crystalline CeO2 were identified in the XRD pattern, with the former not being 

observed without the addition of LiNO3.  This suggested that LiNO3 facilitates the formation 

of BaCeO3 (or other complex oxides), acting as a molten salt in the calcination process. 

 

6.3.1.3 WRW17-RLF (Magnox HAL Simulant – Ru and Li free) 

 

XRD analysis of product WRW17-RLF-FD (Figure 6.5) showed reflections attributable to 

Mg(NO3)2.6H2O [14-101], Mg3RE2(NO3)12.24H2O and Al(NO3)3.9H2O [12-472], were present in the 

diffraction pattern.  There appeared to be very strong diffuse scattering in the XRD pattern, compared 

to the Blend simulant, suggesting the presence of a higher proportion of non-crystalline component(s).  

There was a notable absence of reflections corresponding to CPM, present in Blend simulants.  CPM 

is observed in Magnox HAL simulants, but is present in a smaller quantity due to the lower 

concentration of Mo in this simulant type.  Added to this, Mg and Al are present in much greater 

quantities in Magnox simulant than in Blend (Short, 2010b; Short, 2010c).  It is possible, therefore, 

that the peaks attributed to CPM were too weak in intensity to be observed in the diffraction pattern.  

TGA analysis of product WRW17-RLF-FD (Figure 6.6) showed a total weight loss of 76 wt% at  

1000 oC, corresponding to dehydration and denitration of all of the metal nitrates into their component 

oxides.  This is much higher than the 68 wt% weight loss observed in the freeze dried blend simulant.  

The weight loss profile demonstrated two events: a sharp weight loss at 200 oC, attributed with partial 

denitration of Al(NO3)3.9H2O (identified by XRD), by reference to thermal stability data for this 

compound (Appendix) in agreement with previous work by Pacewska and Keshr (2002); and a sharp 
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weight loss at 380 oC, attributed to the denitration of Mg3RE2(NO3)12.24H2O, as shown by thermal 

analysis of this compound (Appendix 2).  Mg(NO3)2.6H2O undergoes denitration at 400 oC 

(Appendix; Paulik et al., 1988), and would therefore coincide with the weight loss event associated 

with Mg3RE2(NO3)12.24H2O.  There was an absence of a weight loss event at 250 oC, as observed in 

Blend HAL simulants, attributed to the decomposition of RE nitrates (Zalewicz and Trzesowska, 

2004).  This will be due to the increased Mg and reduced RE element concentrations compared with 

Blend simulants (Short, 2010b; Short, 2010c) resulting in the consumption of RE elements in the 

formation of Mg3RE2(NO3)12.24H2O.  The presence of Mg3RE2(NO3)12.24H2O is in agreement with 

available literature which showed the precipitation of Mg rare earth nitrates occur in the HAST’s at 

Sellafield (Richardson, 2002a), with formation of these components increasing with Mg concentration 

(Richardson, 2002b).  Mg(NO3)2.6H2O is observed in Magnox simulants, but not in Blend.  This is 

due to the reduction in concentration of the RE elements and increase in Mg present in WRW17 

(Short, 2010b).  The presence of Al(NO3)3.9H2O showed that no reaction took place in solution or 

during the freeze drying process, consistent with the short simulant studies in chapter 5, which 

showed Al(NO3)3.9H2O did not undergo reactions with Mg(NO3)2.6H2O during the freeze drying 

process.  Overall, these data showed Mg and RE nitrates react together in solution resulting in the 

formation of Mg3RE2(NO3)12.24H2O.  Al(NO3)3.9H2O remains unreacted in the product, which is 

consistent with TGA data showing a sharp weight loss at 200 oC, with some unreacted 

Mg(NO3)2.6H2O still present in the reaction product.  A co-existing non-crystalline component(s) was 

also shown to be present through significant diffuse scattering observed in the XRD pattern (Figure 

6.5). 

 

 

Figure 6.5 – XRD analysis of products a) WRW17-RLF-FD, 

b) WRW17-RLF-350 and c) WRW17-RLF-550 
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Figure 6.6 – TGA analysis of products WRW17-RLF-FD, 

WRW17-RLF-350 and WRW17-RLF-550 

 

The diffraction pattern of product WRW17-RLF-350 (Figure 6.5) showed a set of reflections 

attributable to Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O.  This accounted for essentially all of the 

reflections shown, with no peaks attributable to Al(NO3)3.9H2O remaining in the product, in 

agreement with  Pacewska and Keshr (2002), who showed the partial decomposition of 

Al(NO3)3.9H2O forms an amorphous nitrate bearing product.  Strong diffuse scattering was apparent, 

showing a non-crystalline phase(s) was present.  TGA analysis of product WRW17-RLF-350 (Figure 

6.6) showed a total weight loss of 61 wt% at 1000 oC.  This showed Magnox simulants, after 

calcination at 350 oC, have higher residual nitrate contents than Blend simulants, consistent with 

historic studies (Vickers, 2006a; Vickers, 2006c).  The weight loss profile demonstrated two events: a 

sharp weight loss at 200 oC, attributed to dehydration; and a sharp weight loss at 380 oC, consistent 

with denitration of Mg3RE2(NO3)12.24H2O (Appendix 2).  The weight loss associated with unreacted 

Mg(NO3)2.6H2O would be expected to occur at 400 oC (Appendix; Paulik et al., 1988) and would 

therefore be incorporated into the weight loss event observed at 380 oC.  Overall, these data showed 

Mg3RE2(NO3)12.24H2O and the unreacted Mg(NO3)2.6H2O were retained in the reaction product after 

calcination of the freeze dried product at 350 oC.  Al(NO3)3.9H2O had undergone partial dehydration 

and denitration to form a non-crystalline product, with strong diffuse scattering showing the presence 

of non-crystalline component(s) in the product WRW17-RLF-350. 
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XRD analysis of product WRW17-RLF-550 (Figure 6.5) showed a diffraction pattern with diffuse 

scattering and very low signal-to noise ratio, indicating the presence of non-crystalline components.  

A set of very weak, broad reflections associated with the presence of CeO2 [02-1306] were observed, 

as also observed in the Blend simulants (sections 6.3.1.1 and 6.3.1.2).  TGA analysis showed a total 

weight loss of 19 wt% was observed at 1000 oC after calcination at 550 oC (Figure 6.6).  The weight 

loss profile showed no distinct events, with a broad weight loss occurring between 100-600 oC.  The 

sharp weight losses at 200 oC and 380 oC, present in the freeze dried sample and after calcination at 

350 oC, were not present in product WRW17-RLF-550.  This is in agreement with the absence of 

reflections attributable to Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O in the diffraction pattern 

(Figure 6.5) and thermal analysis carried out on these compounds (Appendix 1; Appendix 2).  These 

data showed that none of the crystalline phases, present in the freeze dried product, were present after 

calcination at 550 oC for 10 mins, in agreement with TGA analysis showing no distinct weight loss 

events.  The crystallisation of CeO2 was observed as very weak, broad peaks in the diffraction pattern 

(Figure 6.5). 

 

The backscattered electron image of product WRW17-RLF-FD showed that this material had a varied 

composition, with a number of phases being apparent.  EDS analysis of the freeze dried product of 

WRW17-RLF revealed a generally intimate association of Al and Mg, as shown by X-ray maps 

(Figure 6.7), however, some regions were observed to be deficient in one element.  This is consistent 

with XRD analysis which showed Al(NO3)3.9H2O remained unreacted in the freeze dried product and 

Mg3RE2(NO3)12.24H2O was formed.  This was also shown by the intimate association of Mg and Nd 

throughout the product (Figure 6.7).  After calcination of the freeze dried product at 550 oC, the 

backscattered electron image (Figure 6.8) showed a high degree of homogeneity throughout the 

sample.  This was confirmed by EDS analysis which revealed an intimate association of all the 

selected elements analysed.  These data are consistent with the phase assemblage determined from 

XRD and TGA data. 

 

From these experiments, it is possible to infer and conclude the following sequence of reactions: 

 

 In the freeze dried sample, without further heat treatment, Mg3RE2(NO3)12.24H2O, 

Mg(NO3)2.6H2O and Al(NO3)3.9H2O were observed in the diffraction pattern with co-existing 

amorphous phase(s).  These observations showed the reaction of Mg with the RE elements in 

solution, consistent with observations of precipitation in the HAST’s (Richardson, 2002).  

The presence of unreacted Mg(NO3)2.6H2O is consistent with the chemical composition of the 

Magnox HAL simulant being high in Mg and lower in RE elements than in Blend (Short, 

2010b; Short, 2010c).  The presence of Al(NO3)3.9H2O in the product implies that no reaction 

is undertaken in solution, in agreement with previous findings in chapter 5.   
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 After calcination at 350 oC, Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O were observed in 

product WRW16-RLF-350.  Reflections attributable to Al(NO3)3.9H2O or the unidentified 

crystalline phase were not observed, suggesting they undergo dehydration and denitration to 

form non-crystalline components, consistent with thermal analysis and available literature 

(Appendix; Pacewska and Keshr, 2002).  A significant amount of non-crystalline material 

was shown to be present by the strong diffuse scattering in the XRD pattern. 

 Between 350-550 oC, there was no significant crystalline contribution to the diffraction 

pattern, though the crystallisation of CeO2 was observed as very weak, broad reflections.  

This showed that Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O had decomposed to form a 

non-crystalline phase, in agreement with thermal analysis carried out on these compounds 

(Appendix 1; Paulik et al., 1988; Appendix 2) and consistent with the absence of distinct 

weight loss events in the TGA analysis.   

 

 

Figure 6.7 – Backscattered electron image and X-ray maps 

of product WRW17-RLF-FD 

 

 

Figure 6.8 – Backscattered electron image and X-ray maps 

of product WRW17-RLF-550 
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6.3.1.4 WRW17-RF (Magnox HAL Simulant – Ru free) 

 

The diffraction pattern of product WRW17-RF-FD (Figure 6.9) was almost identical to that of the 

Magnox simulant without the addition of LiNO3, with reflections attributable to Mg(NO3)2.6H2O [14-

101], Mg3RE2(NO3)12.24H2O and Al(NO3)3.9H2O [12-472] being observed.  Very strong diffuse 

scattering suggested a significant portion of the product was comprised of non-crystalline 

component(s).  No reflections associated with LiNO3 (or any of its hydrated phases) were apparent in 

the XRD pattern.  TGA analysis of product WRW17-RF-FD (Figure 6.10) showed a total weight loss 

of 76 wt% at 1000 oC, corresponding to dehydration and denitration of all of the metal nitrates into 

their component oxides.  This was identical to the weight loss observed in the freeze dried Magnox 

simulant without Li addition.  The weight loss profile showed the same two events as observed in the 

Li free simulant with sharp weight losses occurring at 200 and 380 oC, attributed with denitration of 

Al(NO3)3.9H2O and Mg3RE2(NO3)12.24H2O respectively, in agreement with thermal analyses of these 

compounds (Appendix; Appendix 2; Pacewska and Keshr, 2002).  The absence of a weight loss event 

above 600 oC, typical of LiNO3 (Chun, 1977) suggested that a reaction had taken place in solution, 

consistent with XRD analysis (Figure 6.9) and the work carried out in chapter 5.  Overall, these data 

showed Mg and RE nitrates react together in solution resulting in the formation of 

Mg3RE2(NO3)12.24H2O, with a portion of Mg(NO3)2.6H2O remaining unreacted.  Al(NO3)3.9H2O 

remained in the product, consistent with TGA data showing a sharp weight loss at 200 oC.  The 

absence of reflections attributable to LiNO3 in the diffraction pattern, coupled with the absence of a 

weight loss event at 600 oC, associated with the denitration of LiNO3, imply that a reaction had taken 

place resulting in the formation of a non-crystalline product(s).  A co-existing non-crystalline 

component(s) was also shown to be present through significant diffuse scattering observed in the 

XRD pattern (Figure 6.9). 

 

 

Figure 6.9 – XRD analysis of products a) WRW17-RF-FD, 

b) WRW17-RF-350 and c) WRW17-RF-550 
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Figure 6.10 – TGA analysis of products WRW17-RF-FD, 

WRW17-RF-350 and WRW17-RF-550 

 

The XRD patterns of products WRW17-RF-350 and WRW-RF-550 (Figure 6.9) were almost identical 

to the corresponding products without the addition of LiNO3.  This suggested that the Li containing 

phases are all non-crystalline in nature in Magnox simulants.  After calcination at 350 oC, reflections 

attributable to Mg(NO3)2.6H2O and Mg3RE2(NO3)12.24H2O were observed and accounted for 

essentially all of the reflections.  After calcination at 550 oC, the only observed reflections were 

associated with poorly crystalline CeO2.  Strong diffuse scattering was apparent in both products, 

showing the presence of non-crystalline phase(s).  TGA analysis of products WRW17-RF-350 and 

WRW17-RF-550 (Figure 6.10) showed total weight losses of 61 wt% and 19 wt% respectively at 

1000 oC, similar to those observed in the Li free samples.  The weight loss profiles were also similar 

to the corresponding Li free products, demonstrating weight loss events attributed to dehydration and 

denitration of Mg3RE2(NO3)12.24H2O (Appendix 2) at temperatures of 200 oC and 380 oC respectively 

after calcination at 350 oC, with these weight losses disappearing after calcination at 550 oC, 

consistent with XRD data.  Overall, these data showed Mg(NO3)2.6H2O and Mg3RE2(NO3)12.24H2O 

were retained in the reaction product at 350 oC, but underwent decomposition between 350-550 oC, 

with the crystallisation of CeO2 occurring in the same temperature range.  Al(NO3)3.9H2O had 

undergone partial dehydration and denitration to form a non-crystalline product below 350 oC.  

Significant diffuse scattering showing the presence of non-crystalline component(s) was apparent in 

both products WRW17-RF-350 and WRW17-RF-550. 
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The backscattered electron image of WRW17-RF-FD showed that the product had a varied 

composition, with a number of phases being apparent.  EDS analysis of the freeze dried product of 

WRW17-RLF revealed distinct Al containing phases with little association between Al and Mg shown 

by X-ray maps (Figure 6.11).  This is consistent with XRD analysis which showed Al(NO3)3.9H2O 

and Mg3RE2(NO3)12.24H2O were present in the product.  An intimate association of Mg and Nd was 

observed throughout the product (Figure 6.11) confirming the presence of Mg3RE2(NO3)12.24H2O in 

the reaction product.  A clear association of Zr and Mo could also be seen in the freeze dried product, 

consistent with work carried out in chapter 5. 

 

After calcination of the freeze dried product at 550 oC, the backscattered electron image (Figure 6.12) 

showed a high degree of homogeneity throughout the sample, same as observed in the Li free product.  

This was confirmed by EDS analysis which revealed an intimate association of all the selected 

elements analysed.  This is consistent with XRD and TGA data. 

 

From these experiments, it is possible to infer and conclude the following sequence of reactions: 

 

 In the freeze dried sample, without further heat treatment, Mg(NO3)2.6H2O, 

Mg3RE2(NO3)12.24H2O and Al(NO3)3.9H2O were observed in the diffraction pattern with co-

existing amorphous phase(s).  These observations implied that Mg reacted with the RE 

elements in solution which are then precipitated during the freeze drying process.  The 

presence of Al(NO3)3.9H2O in the product suggests that it does not react in solution or in the 

freeze drying process.  The absence of both reflections in the XRD pattern and a weight loss 

event above 600 oC, attributable to LiNO3, suggest that it underwent a reaction resulting in the 

formation of a non-crystalline product.  The association of Mo and Zr, observed in EDS 

analysis, coupled with the work carried out in chapter 5 suggest that LiNO3 may react with 

Mo and Zr forming an amorphous product. 

 

 After calcination at 350 oC, Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O were apparent in the 

diffraction pattern of product WRW16-RLF-350.  Reflections attributable to Al(NO3)3.9H2O 

were not observed, suggesting this undergoes dehydration and denitration to form a non-

crystalline phase, consistent with thermal analysis and available literature (Appendix; 

Pacewska and Keshr, 2002).  A significant amount of non-crystalline material was shown to 

be present by the strong diffuse scattering in the XRD pattern. 
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 Between 350-550 oC, there was no significant crystalline contribution to the diffraction 

pattern, though the crystallisation of CeO2 was observed.  This showed that 

Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O had decomposed to form non-crystalline phases, 

in agreement with thermal analysis carried out on these compounds (Appendix 1; Paulik et 

al., 1988; Appendix 2) and consistent with the absence of distinct weight loss events in the 

TGA analysis and the homogeneous nature of product WRW17-RF-550 observed in the 

backscattered electron image and X-ray maps of selected elements (Figure 6.12).   

 

 

Figure 6.11 – Backscattered electron image and X-ray maps  

of product WRW17-RF-FD 

 

 

Figure 6.12 – Backscattered electron image and X-ray maps  

of product WRW17-RLF-550 
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6.3.2 Small scale calciner experiments 

 

6.3.2.1 WRW17-RLF 

 

Table 6.3 shows the masses of the calcine and dust collected for WRW17-RLF calcined under various 

conditions using the small scale calciner.  The expected weights were calculated by first calculating 

the total waste oxide throughput during the experiment, then taking into account residual weight loss 

values (measured by TGA analysis) for each of the calcine size fractions (Table 6.4) and weighting 

the values accordingly (see section 6.2.2.1).  The dust collection was normalised by working out a 

percentage dust carry-over against the actual weight of calcine collected20 thus allowing comparisons 

to be made on the effects of changing temperature and feed rate on the dust carry-over from the 

calciner to the off-gas system (sections 6.3.2.1.2.1 and 6.3.2.1.2.2 respectively). 

 

Table 6.3 – Mass of calcine and dust products collected 

Sample 

Expected  

Weight 

(g) 

Actual 

Weight 

(g) 

Amount of 

Dust Collected 

(g) 

Dust 

Collected 

(wt%) 

WRW17-RLF-500-3l/h 820.66 815.41 26.48 3.25 

WRW17-RLF-600-3l/h 794.60 751.00 26.29 3.50 

WRW17-RLF-700-3l/h 766.78 691.78 32.98 4.77 

WRW17-RLF-600-2l/h 494.55 435.26 18.73 4.30 

WRW17-RLF-600-4l/h 1050.23 1037.26 36.17 3.49 

 

In the experiments carried out at low temperature (WRW17-RLF-500-3l/h) and high feed rate 

(WRW17-RLF-600-4l/h), the combined value of the actual weight and dust collected was greater than 

the expected weight.  This could be due to the fact that TGA analysis was carried out on a 50 mg 

sample of each of the calcine fractions, compared with the much higher yields produced by the 

calciner.  However, trends were observed with increasing temperature and lower feed rates, which 

resulted in the combined mass of calcine and duct collected being much lower than the expected yield 

from the experiment.  This could be attributed to a higher dust carry-over, as not all of the dust 

generated during these experiments will have been collected.  This is due to the design of the small 

scale calciner, in which the dust must pass through a chamber and be carried vertically through a pipe  

25 mm in diameter before getting to the flexible hose and dirt trap from which the dust samples were 

collected.  Therefore, some dust is not able to be recovered during these experiments.  However, a 

representative yield is thought to be recovered, allowing trends to be recognised (e.g. higher dust 

levels observed at higher temperatures). 

                                                           
20 The dust carry-over was worked out against the actual amount of calcine as this was a measured value, rather 

than calculated, and was therefore thought to give a more representative value. 
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Table 6.4 – Size fractions of product WRW17-RLF calcined under varying conditions 

Sample 
Fraction above 

2 mm 

Fraction between 

0.5 – 2 mm 

Fraction below 

0.5 mm 

WRW17-RLF-500-3l/h 0.64 0.25 0.11 

WRW17-RLF-600-3l/h 0.64 0.23 0.13 

WRW17-RLF-700-3l/h 0.78 0.12 0.10 

WRW17-RLF-600-2l/h 0.56 0.29 0.15 

WRW17-RLF-600-4l/h 0.64 0.26 0.10 

 

Historically, dust has been thought of as the smallest particles of calcine being carried over to the off-

gas system, therefore, a higher fraction of small particles (<0.5 mm) would be expected to correlate 

with higher dust carry-over21.  However, this is not necessarily the only way in which dust could be 

generated.  In these experiments, a higher normalised dust carry-over is observed at higher calcination 

temperatures, but there is no clear trend in the fraction produced below 0.5 mm.  In fact, a higher 

fraction of larger particles (>2 mm) were found after calcination at 700 oC, correlating with an 

increased dust carry-over.  It is therefore possible that generation of dust is caused by abrasion of the 

larger calcine particles, as discussed further in sections 6.3.2.1.1.1 and 6.3.2.1.2.1. 

 

At higher feed rates, a greater mass of dust was collected due to the higher throughput.  However, 

when the data was normalised, a reduction in dust carry-over was realised at higher feed rates.  This is 

due to the fact that at a higher feed rate it takes longer to evaporate off the water, pushing the 

evaporative front further down the calciner tube (Short, 2012).  This effectively shrinks the area of the 

tube in which denitration processes occur, lowering the residence time in which the calcine 

experiences increased temperature.  In these experiments, a higher fraction of small particles were 

formed at a feed rate of 2 l / h (Table 6.4), in contrast to the formation of larger particles at higher 

temperature, correlating with a higher dust carry-over.  It is possible that there are competing 

processes responsible for this discrepancy.  The effects of feed rate on dust carry-over are discussed 

further in sections 6.3.2.1.1.2 and 6.3.2.1.2.2. 

 

 

 

                                                           
21 To clarify, dust is the term applied to the sample collected from the flexible hose and dirt trap in the off-gas 

system and small particles (<0.5 mm) refers to the calcine fraction collected in the calcine collection pot. 
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6.3.2.1.1 Calcine Analysis 

 

6.3.2.1.1.1 Effects of temperature 

 

Figure 6.13 shows the particle size fractions collected as a function of temperature.  This showed that 

an increase in the mass fraction of particles >2 mm was observed after calcination at 700 oC, with the 

values at 500 and 600 oC being identical.  The particle size range 0.5-2 mm showed a general decrease 

in the mass fraction at higher calcination temperature, due to the increase in larger particles in the 

product.  There was no specific trend observed of the mass of the <0.5 mm particle size range 

collected, with the values for 500 and 700 oC being similar.  A 5 % error has been assigned to each of 

the values to account for the residual calcine which will be left in the calciner tube during these 

experiments.  This value was taken from previous small scale calciner trials which showed a 95 % 

mass recovery was observed (Brace, 2004), although this did not take into account dust carry-over.  

Therefore, this error is thought to be high, however, it will ensure true trends are observed and are not 

influenced by the errors associated with the small scale calciner.  These errors, associated with 

residual calcine being left uncollected in the calciner tube, were thought to be more significant than 

those associated with weighing the samples, since the error associated with the balance used was  

±0.005 g.  As the total mass of the calcine samples were in the order of 800 g, and collection pot was 

pre-weighed to reduce the error, this was deemed insignificant compared to errors associated with 

collection from the small scale calciner and were therefore not taken into account. 

 

Figure 6.13 – Particle size fractions from product WRW17-RLF  

calcined at 500-700 oC at a feed rate of 3 l / h 
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XRD analysis of WRW17-RLF products calcined at 500, 600 and 700 oC with particle sizes <2 mm 

(Figures 6.14 and 6.15) all showed weak, broad reflections associated with the formation of poorly 

crystalline CeO2, with high levels of diffuse scattering, indicating the presence of non-crystalline 

component(s) also being observed.  After calcination at 500 oC, weak reflections attributable to 

Mg3RE2(NO3)12.24H2O were observed in the product, though the low signal-to-noise ratio in the 

diffraction pattern obscures some of the reflections assigned by reference to the ICDD database (card 

[12-761]).  The intensities of these reflections diminish as a function of increasing temperature and 

decreasing particle size (Figures 6.14 and 6.15).  TGA analysis of products WRW17-RLF-500-3l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h showed decreasing weight loss as functions of 

increasing temperature and a reduction in particle size (Figure 6.17).  This is consistent with retention 

of a higher fraction of the hydrate and nitrate inventory at lower calcination temperatures.  The larger 

particles are thought to experience a lower temperature in the calcination process due to the fact only 

the surface of the particle comes into contact with the heated calciner tube.  The weight loss profiles 

of products WRW17-RLF calcined between 500-700 oC at a feed rate of 3 l / h, with a particle size 

<2mm (Figures 6.14 and 6.15) all show three distinct events: a broad weight loss below 300 oC, 

typical of dehydration; a relatively sharp weight loss at 380 oC, associated with the denitration of 

Mg3RE2(NO3)12.24H2O (Appendix 2); and a broad weight loss between 450-600 oC, attributable to 

further denitration of the more stable nitrate components which make up the HAL simulant, by 

reference to thermal stability data for individual component nitrates of which the HAL is comprised 

(Chun, 1977).  The weight loss event at 380 oC, attributable to the denitration of 

Mg3RE2(NO3)12.24H2O, was more pronounced at lower temperatures and larger particle sizes, as 

expected, but was still present in all three products.  This is in agreement with XRD analysis which 

showed a reduction in intensity of the peaks associated with Mg3RE2(NO3)12.24H2O with increasing 

calcination temperature and a reduction in particle size.  The presence of reflections attributable to 

CeO2 is consistent with previous studies (Dunnett et al., 2009), which showed that CeO2 is not 

observed after calcination of Magnox HAL simulant at 400oC but is highly crystalline at 1050 oC.  

The freeze dried experiments (section 6.3.1) showed the formation of poorly crystalline CeO2 after 

calcination at 550 oC, but not at 350 oC.  This observation, in conjunction with the available literature 

(Dunnett et al., 2009), suggest that the temperatures experienced by a portion of the particles less than 

2 mm in diameter is above 400 oC, even at the lowest Zone 3 setpoint of 500 oC.  The presence of 

Mg3RE2(NO3)12.24H2O, however, shows a portion of the particles experience temperatures lower than 

380 oC (in agreement with Appendix 2) in the calcination process.  This is consistent with the 

processes which take place within the calciner, in which each particle of calcine will spend different 

amounts of time in contact with the heated calciner wall and therefore experience slightly different 

temperatures.  At higher Zone 3 temperatures, Mg3RE2(NO3)12.24H2O will decompose more quickly, 

resulting in a reduction in the amount present in the reaction product, as observed in the diffraction 

patterns (Figures 6.14 and 6.15). 
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Figure 6.14 – XRD and TGA analysis of product WRW17-RLF-500-3l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h with a particle size of <0.5 mm 

 

Figure 6.15 – XRD and TGA analysis of product WRW17-RLF-500-3l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h with a particle size of 0.5 – 2 mm 

 

Figure 6.16 - XRD and TGA analysis of product WRW17-RLF-500-3l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h with a particle size of >2 mm 
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Figure 6.17 – Weight loss of the different size fractions of products  

WRW17-RLF-500-3l/h, WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h  

 

At particle sizes greater than 2 mm in diameter relatively intense reflections attributable to 

Mg3RE2(NO3)12.24H2O were observed in all XRD patterns of products WRW17-RLF calcined 

between 500-700 oC at a constant feed rate of 3 l / h (Figure 6.16).  These reflections essentially 

accounted for all of the reflections shown in the diffraction patterns.  Strong diffuse scattering was 

also apparent showing the presence of non-crystalline component(s).  TGA analysis of products 

WRW17-RLF, with a particle size >2 mm (Figure 6.17), showed much greater weight losses than 

observed in the smaller particle sized samples, with the weight loss decreasing at higher calcination 

temperatures.  This was consistent with previous observations which showed increasing temperature 

and a reduction in particle size led to lower residual weight losses being recorded.  The weight loss 

profiles for products WRW17-RLF-500-3l/h, WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h, 

with a particle size >2 mm, showed the same three distinct events as observed with smaller particle 

sizes, however, the events below 300 oC (attributable to dehydration), and at 380 oC (associated with 

denitration of Mg3RE2(NO3)12.24H2O) showed much greater intensities, showing a higher portion of 

the volatile inventory was retained.  This is in agreement with XRD analysis, which showed 

Mg3RE2(NO3)12.24H2O was observed in the reaction products with a particle size >2 mm. 
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Figure 6.18 shows the effects of particle size on the calcine properties through XRD and TGA 

analysis for product WRW17-RLF-700-3l/h.  These data show a similarity in weight loss and 

chemical composition in particle size fractions <0.5 mm and 0.5-2 mm, but exhibited significant 

differences from the size fraction greater than 2 mm.  XRD and TGA analysis of the dust sample 

collected from this experiment showed a close match to the particle size fraction >2 mm but not to the 

smaller fractions.  This implies that the dust is generated from the large particles, which have higher 

residual nitrate contents.  In general, metal nitrates have a much lower density than their component 

oxides (Phillips, 1995; Perry, 2011).  This implies that they will be preferentially carried over to the 

off-gas system compared to the component oxides of a comparable particle size, consistent with 

studies of particle movement in a constant air flow, which were found to be dependent on both 

particle size and density (Dong et al, 2003).  Further analysis of the dust carry-over is discussed in 

section 6.3.2.1.2.1. 

 

Figure 6.18 – XRD and TGA analysis of product WRW17-RLF-700-3l/h dust  

and calcine with particle sizes of <0.5 mm and >2 mm 

 

6.3.2.1.1.2 Effects of feed rate 

 

At higher feed rates, it takes longer to evaporate off the water, pushing the evaporative front further 

down the calciner tube (Short, 2012).  This effectively shrinks the area of the tube in which 

denitration processes occur.  The effect of this is that products formed at high feed rates have a higher 

residual nitrate content due to the fact that the residence time at high temperature is cut.  As a result, 

there were a higher fraction of small particles formed at lower feed rates (Figure 6.19).  These 

experiments are therefore in agreement with previous work carried out on both the small scale 

calciner and VTR (Short, 2012; Brace, 2004). 
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Figure 6.19 – Particle size fractions from product WRW17-RLF-600 calcined at 2-4 l / h 

 

XRD analysis of products WRW17-RLF-600 run at feed rates of between 2-4  l / h, with particle sizes 

<2mm (Figures 6.20 and 6.21) all showed high levels of diffuse scattering, indicating the presence of 

non-crystalline components.  After calcination at 600 oC with a feed rate of 4 l / h, weak reflections 

attributable to Mg3RE2(NO3)12.24H2O were observed in the product.  These reflections became less 

intense as a function of reducing feed rate.  These same effects were observed as a function of 

increasing temperature (section 6.3.2.1.1.1), showing that reducing the feed rate increases the 

effective temperature through an increase in residence time at higher temperature.  The total weight 

losses at 1000 oC of products WRW17-RLF-600, calcined at feed rates of between 2-4 l / h, as 

functions of temperature and particle size are shown in Figure 6.23.  Higher weight loss values are 

observed after calcination at higher feed rates due to the retention of a higher portion of the volatile 

inventory as the residence time is reduced in the heated calciner tube.  This shows a higher residual 

hydrate and nitrate inventory is retained at higher feed rates due to the fact that more liquid has to be 

evaporated in the calciner tube, therefore the evaporative front is moved down the tube and there is a 

lower residence time in the area of the tube where denitration occurs.  The weight loss profiles of 

products WRW17-RLF-600 calcined at a feed rates of 2-4 l / h, with a particle size <2 mm (Figures 

6.20 and 6.21) all show three distinct events (as observed previously in section 6.3.2.1.1.1) attributed 

to dehydration, denitration of Mg3RE2(NO3)12.24H2O and further denitration of the more stable nitrate 

components respectively.  The weight loss event associated with the denitration of 

Mg3RE2(NO3)12.24H2O, at 380 oC, was more pronounced at higher feed rates and larger particle sizes.  

This is consistent with XRD analysis, showing the peaks associated with Mg3RE2(NO3)12.24H2O 

diminished with reducing feed rates and particle size. 
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Figure 6.20 – XRD and TGA analysis of product WRW17-RLF-600-2l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-600-4l/h with a particle size of <0.5 mm 

 

 Figure 6.21 – XRD and TGA analysis of product WRW17-RLF-600-2l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-600-4l/h with a particle size of 0.5 – 2 mm 

 

Figure 6.22 – XRD and TGA analysis of product WRW17-RLF-600-2l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-600-4l/h with a particle size of >2 mm 
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Figure 6.23 – Weight loss of the different size fractions of products 

WRW17-RLF-600-2l/h, WRW17-RLF-600-3l/h and WRW17-RLF-600-4l/h 

 

XRD analysis of products WRW17-RLF-600, calcined with feed rates of 2-4 l / h and a particle size 

>2 mm, showed reflections attributable to Mg3RE2(NO3)12.24H2O were observed in all the diffraction 

patterns.  These reflections essentially accounted for all of the reflections shown in the XRD patterns, 

with strong diffuse scattering also present, suggesting the co-existance of an amorphous phase.  TGA 

analysis of products WRW17-RLF-600-2l/h, WRW17-RLF-600-3l/h and WRW17-RLF-600-4l/h, 

with a particle size >2 mm (Figure 6.22), showed higher weight losses than the smaller particles 

formed in these experiments, with the weight loss increasing at higher feed rates.  The weight loss 

profiles these products showed the same three distinct events as seen at smaller particle sizes, 

however, the events below 300 oC (attributable to dehydration), and at 380 oC (associated with 

denitration of Mg3RE2(NO3)12.24H2O) showed much greater intensities.  This was consistent with 

XRD analysis, which showed Mg3RE2(NO3)12.24H2O was observed in all reaction products with a 

particle size >2 mm. 
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6.3.2.1.2 Dust Analysis  

 

During this project, the small scale calciner was partially re-built and modified to allow the collection 

of dust particles carried from the calciner tube to the off-gas system in their solid state.  This has not 

previously been possible as there was no sample collection point on the small scale calciner before 

modifications were put in place, and the first sample point on the VTR is the dust scrubber liquor, in 

which the dust is mostly dissolved in nitric acid.  This allowed analysis to be carried out on the dust to 

determine particle size, density and composition which has not been possible in historic studies. 

 

6.3.2.1.2.1 Effects of temperature 

 

There was an increase in the mass of dust collected in the off-gas system as the calcination 

temperature was increased.  The mass values were normalised by conversion to a percentage of the 

actual yield so they could be compared.  This gave a range of dust carry-over values of 3.25 wt% after 

calcination at 500 oC, up to 4.77 wt% at 700 oC, showing an increasing in dust carry-over as a 

function of increasing temperature (Figure 6.24).  As discussed previously (section 6.3.2.1) this is in 

correlation with an increase in the calcine fraction with a particle size >2 mm.  As with the calcine, a 

5 % error was associated with the collection of dust from the small scale calciner to take into account 

the fact that not all of the dust would be recovered in these experiments. 

 

 

Figure 6.24 – Dust collected as a percentage of the expected yield  

from products WRW17-RLF calcined between 500-700 oC at a feed rate of 3 l / h 
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XRD analysis of the dust samples produced from WRW17-RLF calcined at 500, 600 and 700 oC 

(Figure 6.25), at a feed rate of 3 l / h, all showed a set of matching reflections attributable to 

Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O [14-101].  These reflections essentially accounted for all 

of the reflections shown in the diffraction pattern.  As the calcination temperature was increased, the 

crystallinity of these phases improved.  Significant diffuse scattering was observed, showing the 

presence of a non-crystalline component.  TGA analysis showed weight losses of between 45-55 wt% 

at 1000 oC (Figure 6.26), which were comparable to the values attained from the calcine fraction with 

a particle size greater than 2 mm.  Similar weight loss profiles were also observed for the dust samples 

as was shown in products WRW17-RLF calcined between 500-700 oC, with a particle size >2 mm.  

These showed three distinct events: a broad weight loss below 300 oC, typical of dehydration; a 

relatively sharp weight loss at 380 oC, associated with the denitration of Mg3RE2(NO3)12.24H2O 

(Appendix 2); and a broad weight loss between 450-600 oC, attributable to further denitration of the 

more stable nitrate components which make up the HAL simulant, by reference to thermal stability 

data for individual component nitrates of which the HAL is comprised (Chun, 1977).  Taken together, 

the XRD and TGA data, along with the increase in the calcine fraction collected with larger particle 

size (>2 mm) as the calcination temperature was increased, correlating with an increase in dust carry-

over imply that the dust has a similar composition to the calcine fraction with a particle size >2 mm 

and is far removed from the smaller calcine particles formed in these experiments.  This suggests that 

the mechanism by which dust is created, and subsequently transported to the off-gas system, involves 

the abrasive breakdown of larger particles.   

 

 

Figure 6.25 – XRD analysis of products a) WRW17-RLF-500-3l/h, 

b) WRW17-RLF-600-3l/h and c) WRW17-RLF-700-3l/h dust samples 
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Figure 6.26 – TGA analysis of products WRW17-RLF-500-3l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h dust samples 

 

Chemical analysis was carried out, using ICP-OES22, on products WRW17-RLF-500-3l/h, WRW17-

RLF-600-3l/h and WRW17-RLF-700-3l/h with particle sizes of >2 mm and <0.5 mm as well as the 

dust collected during these experiments.  After calcination at 500 oC (Figure 6.27), the ICP analysis 

showed the composition of the dust was much closer to that of the fraction >2mm than the smaller 

particle size fractions, in agreement with TGA and XRD analysis.  Most of the elements were present 

in a higher concentration in the calcine fraction >2 mm than in the dust, however, Mo and Zr were 

both present in a higher concentration in the dust (though Zr matched that of the calcine with particle 

size >2 mm within error of the experiment), suggesting they were preferentially carried over to the 

off-gas system (discussed further in section 7.3.2).  Mg and the RE elements appeared to be present in 

a higher concentration in the calcine than in the dust, suggesting that Mg3RE2(NO3)12.24H2O is more 

difficult to transport to the off-gas system than other elements present in the Magnox HAL simulant 

under these calcination conditions, consistent with the relatively low intensity XRD reflections 

attributed to the Mg RE nitrate phase in product WRW17-RLF-500-3l/h dust sample.  After 

calcination at 700 oC, chemical analysis showed that (within error) all elements have the same 

concentrations in the dust and calcine fraction with a particle size above 2 mm, with the exception of 

Mo, which showed an increased concentration in the dust (same as after calcination at 500 oC) 

suggesting preferential carry-over of a Mo containing phase to the off-gas system (Figure 6.28).  Zr 

also had a higher concentration in the dust than the calcine fraction above 2 mm, though was within 

the error associated with the analysis.  All elements showed a higher concentration in the particle size 

fraction <0.5 mm, due to the lower residual nitrate and hydrate content in the product, consistent with 

                                                           
22 Cs, H, N and O concentrations could not be analysed using this technique. 
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TGA analysis.  This implied that the dust fraction bared a much closer resemblance to the calcine with 

a large particle size (>2 mm) rather than the smaller fraction, in agreement with XRD and TGA data 

which showed Mg3RE2(NO3)12.24H2O was formed in these phases.  These data supported the XRD 

and TGA analysis, along with the density measurements, which suggested that the dust had similar 

chemical properties to that of the calcine particles with a particle size >2 mm and was different from 

the small calcine particles (<0.5 mm).  This suggested that the dust was formed from the breakdown 

of the larger particles formed within the calcination process.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.27 – Chemical Composition of product WRW17-RLF-500-3l/h dust and  

calcine samples with particle sizes of <0.5 mm and >2 mm determined by ICP-OES 

 

 
 

Figure 6.28 – Chemical Composition of product WRW17-RLF-700-3l/h dust and  

calcine samples with particle sizes of <0.5 mm and >2 mm determined by ICP-OES 
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The backscattered electron image of the dust collected from calcination of product WRW17-RLF-700 

at 3 l / h (Figure 6.29) showed a strong co-association of Mg and Nd, consistent with TGA and XRD 

analysis showing the presence of Mg3RE2(NO3)12.24H2O.  Al, Mo and Zr all appeared to form phases 

independent from each other, though some co-habitation of the same areas as the other selected 

elements was observed due to the intimate mixing in the HAL simulant solution and during the 

calcination process.  The same trends were observed in the dust samples formed after calcination at 

500 and 600 oC. 

 

 

Figure 6.29 – Backscattered electron image and X-ray maps  

of product WRW17-RLF-700-3l/h-dust 

 

From these experiments, it is possible to infer and conclude the following: 

 

 An increase in dust carry-over to the off-gas system was observed at increasing temperature, 

in correlation with an increase in the formation of larger particles in the calcine. 

 XRD and TGA analysis showed the presence of Mg3RE2(NO3)12.24H2O in both the dust and 

larger calcine particles (>2 mm), with this diminishing in the smaller particles and as a 

function of increasing temperature.  This implied that dust is formed from the breakdown of 

larger calcine particles.   

 The ICP-OES and EDS analysis combined with the density measurements also showed 

similarities between the larger particles and the dust, with the smaller particles being 

significantly different in chemical composition.  The increase in density also suggested that 

these particles would not be as easily carried over to the off-gas system, supporting the 

evidence for the dust formation occurring from the abrasive breakdown of larger calcine 

particles. 
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6.3.2.1.2.2 Effects of feed rate 

 

There was an increase in the mass of dust collected in the off-gas system as the calcination feed rate 

was increased, due to the increases in throughput in the calciner.  However, when the mass values 

were normalised, by conversion to a percentage of the actual yield, the highest dust carry-over was 

observed at the lowest feed rate (Figure 6.30).  This was expected, as at lower feed rates, the water is 

evaporated more quickly, effectively increasing the residence time at a higher temperature.  At feed 

rates of 3 l / h and 4 l / h, the dust carry-over was almost identical, which correlated with identical 

fractions of calcine particles larger than 2 mm in diameter.  When the feed rate was 2 l / h, however, 

the fraction of large particles was lower, even though an increase in dust carry-over was observed.  

This is in contrast to previous experiments, where increased temperatures gave rise to a higher portion 

of large particles being formed.  It is thought that the effects of feed rate on the position of the 

evaporative front in the calciner will be affected more greatly by feed rate than Zone 3 temperature, as 

set-points 1 and 2 were kept the same (400 oC) throughout these experiments.  Therefore, at a feed 

rate of 2 l / h, the longer residence time in a ‘drier’ calciner tube would allow the rabble bar to break 

up the calcine over a longer portion of the tube, resulting in a decrease in particle size further down 

the calciner tube.  The initial abrasion of larger particles, thought to be responsible for formation of 

the dust which is subsequently carried over to the off-gas system, could therefore still be occurring 

initially, with further breakdown of the larger particles taking place due to the longer time in the 

hotter part of the tube where denitration processes occur.  These competing processes could explain 

the discrepancy in these results. 

 

Figure 6.30 – Dust collected as a percentage of the expected yield  

from products WRW17-RLF-600 calcined between 2-4 l / h 
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XRD analysis of the dust samples produced from WRW17-RLF-600 calcined at feed rates of 2 l / h,  

3 l / h and 4 l / h (Figure 6.31) all showed a set of matching reflections attributable to 

Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O [14-101], as observed previously at different calcination 

temperatures.  These reflections essentially accounted for all of the reflections shown in the 

diffraction pattern, with strong diffuse scattering also observed, showing the presence of non-

crystalline component(s).  TGA analysis showed weight losses of between 45-49 wt% at 1000 oC, 

with a slight decrease in weight loss as a function of reducing feed rates (Figure 6.32).  These weight 

loss values and the resultant profiles are comparable to the values attained from the calcine fraction 

with a particle size greater than 2mm.  These showed three distinct events at temperatures of below 

300 oC, 380 oC and between 450-600 oC, associated with dehydration, denitration of 

Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O, and further denitration of the more stable nitrate 

components respectively (Appendix 2; Paulik et al., 1988; Chun, 1977).  Taken together, the XRD 

and TGA data imply that the dust has a similar composition to the calcine fraction with a particle size 

>2 mm and is far removed from the smaller calcine particles formed in these experiments.  This again 

suggested that the mechanism by which dust was created, and subsequently transported to the off-gas 

system, was due to the abrasive breakdown of larger particles.   

 

 

Figure 6.31 – XRD analysis of products a) WRW17-RLF-600-2l/h, 

b) WRW17-RLF-600-3l/h and c) WRW17-RLF-600-4l/h dust samples 
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Figure 6.32 – TGA analysis of products WRW17-RLF-600-2l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-600-4l/h dust samples 

 

From these experiments, it is possible to infer and conclude the following: 

 

 At a low feed rate (2 l / h) there was a decrease in the amount of large particles formed in the 

calcine, though an increase in dust carry-over was observed, contradictory to the experiments 

described in section 6.3.2.1.2.1.  However, this can be explained by the breakdown of the 

calcine particles taking place in steps, with initial breakdown forming the dust, while the 

calcine is still high in residual nitrate and hydrate making the product less dense, and 

therefore easier to transport to the off-gas system.  On further heating, as the calcine travels 

down the calciner tube, further dehydration and denitration occurs, increasing the density 

making it harder to be carried over.  This would result in an increasing small particle fraction 

without significantly affecting dust carry-over, as observed in these experiments. 

 At feed rates of 3 l / h and 4 l / h, the dust carry-over was identical, correlating with similar 

fractions of large calcine particle being formed in the small scale calciner.  This suggested 

that only at low feed rates does the breakdown of calcine particles take place in different 

steps.   

 Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O were observed as the major crystalline products 

in the dust, consistent with the formation from the breakdown of larger particles by the rabble 

bar in the calciner. 
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6.3.2.2 WRW17-RF 

 

The masses of the calcine and dust collected for products formed by calcining Magnox HAL simulant 

WRW17-RF at various temperatures and feed rates using the small scale calciner are shown in Table 

6.5.  A combination of the total waste oxide throughput and residual weight loss values for each 

particle size fraction (measured by TGA analysis) were used to calculate the expected yield (see 

section 6.2.2.1).  The dust collection was converted to a percentage dust carry-over against the actual 

weight of calcine collected, allowing the effects of changing temperature and feed rate on the dust 

carry-over from the calciner to the off-gas system to be monitored.  The effects of the addition of 

LiNO3 were also taken into account. 

 

Table 6.5 - Mass of calcine and dust products collected 

Sample 

Expected 

Weight 

(g) 

Actual 

Weight 

(g) 

Amount of Dust 

Collected (g) 

Dust Collected 

(wt%) 

WRW17-RF-500-3l/h 786.96 777.10 15.61 2.01 

WRW17-RF-600-3l/h 767.32 704.78 16.94 2.40 

WRW17-RF-700-3l/h 722.13 630.54 18.72 2.97 

WRW17-RF-600-2l/h 484.90 430.82 12.73 2.95 

WRW17-RF-600-4l/h 1039.06 1027.52 20.11 1.96 

 

As was the case with the Li free HAL simulants, the experiments carried out at low temperature 

(WRW17-RF-500-3l/h) and high feed rate (WRW17-RF-600-4l/h), yielded a combined mass of dust 

and calcine greater than that of the expected weight.  The trend again showed a reduction in the yield 

collected, compared to the expected mass, with increasing calcination temperature and a reduction in 

the feed rate.  This discrepancy could therefore be attributed to a combination of the fact that the TGA 

analysis was carried out on a small sample (~50 mg) of each of the calcine fraction and the fact that 

not all of the dust would have been collected during these experiments.  However, a representative 

yield was thought to be recovered. 

 

As with the Li free experiments, a higher normalised dust carry-over is observed at higher calcination 

temperatures, which correlates with a higher fraction of larger particles (>2 mm) being formed (Table 

6.6).  The fraction produced below 0.5 mm in diameter stayed constant (within error) for the 

experiments carried out between 500-700 oC, with the increase in larger particles being off-set by a 

decrease in the particle size fraction between 0.5-2 mm.  This suggested the mechanism by which dust 

is generated is by abrasion of the larger calcine particles, resulting in small low density particles being 

formed and subsequently carried to the off-gas system. 
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Table 6.6 - Size fractions of product WRW17-RF calcined under varying conditions 

Sample 
Fraction above  

2 mm  

Fraction between  

0.5 – 2 mm 

Fraction below 

0.5 mm 

WRW17-RF-500-3l/h 0.44 0.38 0.18 

WRW17-RF-600-3l/h 0.47 0.35 0.18 

WRW17-RF-700-3l/h 0.51 0.30 0.19 

WRW17-RF-600-2l/h 0.25 0.45 0.30 

WRW17-RF-600-4l/h 0.41 0.41 0.18 

 

When the small scale calciner was run at a low feed rate, a reduced mass of dust was collected due to 

a decrease in throughput.  However, when the data were normalised, an increased dust carry-over was 

observed, as water is evaporated quickly, allowing a longer residence time to allow denitration 

processes to occur.  In these experiments (as was observed in the Li free products) a higher fraction of 

small particles were formed at a feed rate of 2 l / h (Table 6.6), in contrast to the formation of larger 

particles at higher temperature, correlating with a higher dust carry-over.   

 

On addition of LiNO3 to Magnox HAL simulant (WRW17-RF) a significant reduction in normalised 

dust carry-over values were apparent, in agreement with previous studies (Vickers, 2006a).  This also 

correlates with a much lower production of large particles (>2 mm) under the same calcination 

conditions.   

 

6.3.2.2.1 Calcine Analysis 

 

6.3.2.2.1.1 Effects of temperature 

 

Figure 6.33 shows the particle size fractions collected as a function of temperature.  This showed that 

an increase in the mass fraction of particles >2 mm was observed as the calcination temperature was 

increased.  The particle size range 0.5-2 mm showed a general decrease in the mass fraction at higher 

calcination temperature in order to off-set the increase in larger particles, with the mass of the  

<0.5 mm particle size range staying constant.  A 5 % error was again assigned to each of the values, 

taken from previous trials (Brace, 2004), where a 95 % mass recovery was observed from the calciner 

(not taking into account dust carry-over).  This will ensure the observed trends are not influenced by 

the errors associated with the small scale calciner.  Other errors, associated with weighing the 

samples, were deemed insignificant and were therefore not taken into account. 
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Figure 6.33 – Particle size fractions from product WRW17-RF  

calcined at 500-700 oC at a feed rate of 3 l / h 

 

Figure 6.34 – XRD and TGA analysis of products WRW17-RF-500-3l/h, 

WRW17-RF-600-3l/h and WRW17-RF-700-3l/h with particle size <0.5mm 

Figure 6.35 – XRD and TGA analysis of products WRW17-RF-500-3l/h, 

WRW17-RF-600-3l/h and WRW17-RF-700-3l/h with particle size >2mm 
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The diffraction patterns of products WRW17-RF-500-3l/h, WRW17-RF-600-3l/h and  

WRW17-RF-700-3l/h, with particle sizes <0.5 mm (Figure 6.34), all showed high levels of diffuse 

scattering, indicating the presence of non-crystalline component(s).  After calcination at 500 oC, weak 

reflections associated with Mg3RE2(NO3)12.24H2O were observed in the product.  These reflections 

show a reduction in intensity as the calcination temperature was increased.  A set of reflections which 

were broad and weak in nature were also apparent in the XRD patterns for products WRW17-RF after 

calcination at 500, 600 and 700 oC with a feed rate of 3 l / h and were attributed to CeO2.  These 

reflections show a slight increase in intensity as a function of increasing temperature.  The presence of 

CeO2 in Magnox simulants is in agreement with the freeze dryer experiments (sections 6.3.1.3 and 

6.3.1.4) which showed the formation of this phase occurred between 350-550 oC.  The addition of 

LiNO3 appeared to promote the formation of CeO2 in these reaction products.  TGA analysis of 

products WRW17-RF-500-3l/h, WRW17-RF-600-3l/h and WRW17-RF-700-3l/h showed decreasing 

weight loss as functions of increasing temperature and a reduction in particle size (Figure 6.34), 

consistent with retention of a higher fraction of the volatile inventory at lower calcination 

temperatures.  Larger particles are thought to experience a lower temperature in the calcination 

process due to the fact only the surface of the particle comes into contact with the heated calciner 

tube.  The weight loss profiles of products WRW17-RF calcined at 500 oC with a feed rate of 3 l / h 

and particle size <0.5 mm (Figure 6.34) showed three events: a broad weight loss below 300 oC, 

typical of dehydration; a relatively sharp weight loss at 380 oC, associated with the denitration of 

Mg3RE2(NO3)12.24H2O (Appendix 2); and a broad weight loss between 450-600 oC, attributable to 

further denitration of the more stable nitrate components which make up the HAL simulant (Chun, 

1977).  The weight loss event at 380 oC, attributable to the denitration of Mg3RE2(NO3)12.24H2O, was 

not observed after calcination at 600 and 700 oC.  No weight loss was observed above 600 oC, 

attributable to the denitration of LiNO3 (Chun, 1977), suggesting it had undergone a reaction, in 

agreement with sections 6.3.  This is in agreement with XRD analysis which showed a reduction in 

intensity of the peaks associated with Mg3RE2(NO3)12.24H2O with increasing calcination temperature.  

Overall, these data imply that LiNO3 promotes the crystalliation of CeO2 in the small particle size 

fraction (<0.5 mm) of the calcine, shown by an increase in intensity in the reflections compared to 

those seen in the Li free products.  At 500 oC, Mg3RE2(NO3)12.24H2O was observed, with the 

reflections attributable to this phase diminishing at 600 oC, and are not found after calcination at  

700 oC, consistent with the absence of a weight loss event at 380 oC in the TGA trace.   
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The diffraction pattern of products WRW17-RF-500-3l/h, WRW17-RF-600-3l/h and WRW17-RF-

700-3l/h with a particle size greater than 2 mm showed relatively intense reflections, attributable to 

Mg3RE2(NO3)12.24H2O (Figure 6.35).  Strong diffuse scattering was also observed showing the 

presence of non-crystalline component(s).  No reflections associated with LiNO3 or CeO2 were 

apparent in the diffraction patterns.  TGA analysis of products WRW17-RF calcined at 500, 600 and 

700 oC at a feed rate of 3 l / h, with a particle size >2 mm (Figure 6.35), showed much greater weight 

losses than observed in the smaller particle size fractions, with an increase in weight loss also being 

observed at higher calcination temperatures.  The weight loss profiles for products WRW17-RF-500-

3l/h, WRW17-RF-600-3l/h and WRW17-RF-700-3l/h, with a particle size >2 mm, showed the same 

three distinct events as seen at smaller particle sizes after calcination at 500 oC.  The weight loss event 

at 380 oC (associated with denitration of Mg3RE2(NO3)12.24H2O), however, showed a greater weight 

loss than observed in the smaller calcine particles.  This was in agreement with XRD analysis which 

showed the reflections associated with Mg3RE2(NO3)12.24H2O were more intense, in relation to the 

diffuse scattering, suggesting a higher portion remained in the reaction products with a particle size 

>2 mm.  The absence of a weight loss event above 600 oC (typical of denitration of LiNO3, Chun, 

1977) and reflections attributable to LiNO3 suggest that it had undergone a reaction resulting in the 

formation of a non-crystalline phase.   

 

Figures 6.36 and 6.37 compare 7Li MAS NMR data from WRW17-RF-500-3l/h, WRW17-RF-600-

3l/h and WRW17-RF-700-3l/h with a particle size greater than 2 mm (Figure 6.36) and <0.5 mm 

(Figure 6.37), measured relative to LiCl.  The spectra are all dominated by a very broad, asymmetric 

resonance centered at -0.90 ppm, with a series of asymmetric spinning side bands being observed.  

These spinning side bands grew higher in intensity as a function of increasing temperature and a 

reduction in particle size (due to the effective increase in temperature which the calcine experiences).  

Spinning sidebands in 7Li MAS NMR can be caused by (Tucker et al., 2002): 

 

 Quadrupolar interactions of the nucleus with a local electric field gradient. 

 Nuclear dipolar coupling to 7Li 

 Paramagnetic coupling to localised, unpaired transition metal electrons 

 Chemical shift anisotropy 

 Bulk magnetic susceptibility effects 
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Due to the complexity of the calcine products, it was not possible to isolate a single cause for the 

observation of the spinning sidebands in the 7Li MAS NMR spectra of products WRW17-RF-500-

3l/h, WRW17-RF-600-3l/h and WRW17-RF-700-3l/h.  Paramagnetic coupling to Mo and Zr is a 

possible explanation, due to the fact that Li is known to react with these elements (Chapter 5).  The 

fact that these sidebands increase in intensity as a function of increasing temperature supported this 

hypothesis, as increasing reactivity was observed at higher temperatures, which would result in more 

Mo and Zr being in close proximity to the 7Li nuclei.  Chemical shift anisotropy is known to cause an 

asymmetry in the resonances observed in 7Li MAS NMR (Tucker et al., 2002), as were seen in 

Figures 6.36 and 6.37.   

 

 

Figure 6.36 - 7Li MAS NMR spectra of samples WRW17-RF-500-3l/h,  

WRW17-RF-600-3l/h and WRW17-RF-700-3l/h with a particle size >2 mm 
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Figure 6.37 - 7Li MAS NMR spectra of samples WRW17-RF-500-3l/h,  

WRW17-RF-600-3l/h and WRW17-RF-700-3l/h with a particle size <0.5 mm 

 

From these experiments, it is possible to infer and conclude the following effects of the addition of 

LiNO3 to Magnox HAL simulant: 

 A reduction in large particles (>2 mm) was observed compared to the Li free samples, which 

correlated with a lower dust carry-over being observed.   

 As the calcination temperature was increased, there was a corresponding increase in the 

formation of particles with a diameter greater than 2mm.  This was off-set by a reduction in 

the middle fraction (0.5 – 2 mm) with the amount of small particles being constant.  A similar 

effect was seen without the addition of LiNO3. 

 The absence of reflections in the diffraction pattern and a weight loss event attributable to 

LiNO3 imply that a reaction had occurred, resulting in a non-crystalline product being formed. 

 Mg3RE2(NO3)12.24H2O was observed in all particle size fractions after calcination at 500 oC, 

though reflections reduced in intensity with decreasing particle size. 

 At higher calcination temperatures, Mg3RE2(NO3)12.24H2O was only retained in the larger 

particles (>2 mm).  Poorly crystalline CeO2 was observed in the smaller particle size 

fractions, same as in the Li free products, although the reflections appeared to be more intense 

(but still broad in nature) on the addition of LiNO3. 

 

From this, the main effect of the addition of LiNO3 to Magnox HAL simulant can be taken to be the 

effect on particle size distribution of the calcine product, therefore influencing the dust carry-over 

from the calciner to the off-gas system. 
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6.3.2.2.1.2 Effects of feed rate 

 

Figure 6.38 shows the particle size fractions collected as a function of feed rate, with the calcination 

temperature remaining constant at 600 oC.  A reduction in the mass fraction of particles >2 mm was 

observed at a feed rate of 2 l / h, same as seen in the Li free experiment.  An increase in the mass 

fraction of large particles was apparent in product WRW17-RF-600-3l/h, with a subsequent drop at a 

feed rate of 4 l / h.  The fraction of small particles produced at 3 l / h and 4 l / h were identical, in 

agreement with previous experiments.  The results for products formed at feed rates of 3 l / h and  

4 l / h are consistent with the hypothesis that larger particles are formed as a function of increasing 

temperature (lower feed rate equates to longer residence time at high temperature), resulting in an 

increased dust carry-over.  At a feed rate of 2 l / h, however, the fraction of large particles was lower, 

even though an increase in dust carry-over was apparent.  This observation was also made in product 

WRW17-RLF-600-2l/h and could be explained by the position of the evaporative front being closer to 

the inlet of the tube, as water is evaporated more quickly as a consequence of lower throughput.  

Therefore, a longer residence time in the hotter part of the calciner tube would allow the rabble bar to 

break up the calcine over a longer portion of the tube, resulting in a decrease in particle size.  The 

breakdown of larger particles, thought to be responsible for formation of the majority of the dust, 

could therefore still be occurring initially, with further abrasion giving rise to the formation of smaller 

calcine particles.  The presence of these competing processes could explain the discrepancy in these 

results. 

 

 

Figure 6.38 – Particle size fractions from product WRW17-RF-600 calcined at 2-4 l / h 
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XRD analysis of products WRW17-RF-600 run at feed rates of between 2-4 l / h, with particle sizes 

<0.5 mm (Figure 6.39) all showed a broad, weak set of reflections attributable to poorly crystalline 

CeO2.  After calcination at 600 oC with a feed rate of 4 l / h, weak reflections attributable to 

Mg3RE2(NO3)12.24H2O were observed in the product, with these reflections becoming less intense as 

a function of reducing feed rate.  These same effects were observed as a function of increasing 

temperature (section 6.3.2.2.1.1), showing that reducing the feed rate increases the effective 

temperature through an increase in residence time.  The total weight losses at 1000 oC of products 

WRW17-RF-600, calcined at feed rates of between 2-4 l / h (Figure 6.39), showed higher weight loss 

values were observed after calcination at higher feed rates.  This shows a higher residual hydrate and 

nitrate inventory is retained at higher feed rates, caused by a move in the evaporative front down the 

tube, resulting in a shorter residence time in the area of the tube where denitration processes occur.  

The weight loss profiles of products WRW17-RF-600 calcined at a feed rates of 2-4 l / h, with a 

particle size <0.5 mm (Figure 6.37) all show three distinct events, as observed previously (section 

6.3.2.2.1.1) attributed to dehydration, denitration of Mg3RE2(NO3)12.24H2O and further denitration of 

the more stable nitrate components respectively.  The weight loss event associated with the denitration 

of Mg3RE2(NO3)12.24H2O, at 380 oC, was more pronounced at higher feed rates and larger particle 

sizes.  This is consistent with XRD analysis, showing the peaks associated with 

Mg3RE2(NO3)12.24H2O diminished with reducing feed rates and particle size. 

 

 

Figure 6.39 – XRD and TGA analysis of products WRW17-RF-600-2l/h, 

WRW17-RF-600-3l/h and WRW17-RF-600-4l/h with particle size <0.5 mm 
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Figure 6.40 – XRD and TGA analysis of products WRW17-RF-600-2l/h, 

WRW17-RF-600-3l/h and WRW17-RF-600-4l/h with particle size >2 mm 

 

XRD analysis of products WRW17-RLF-600, calcined with feed rates of 2-4 l / h and a particle size 

>2 mm, showed reflections attributable to Mg3RE2(NO3)12.24H2O were observed in all the diffraction 

patterns (Figure 6.40).  These reflections essentially accounted for all of the reflections shown in the 

XRD patterns, with strong diffuse scattering also present, suggesting the co-existance of an 

amorphous phase.  Reflections associated with CeO2 were not observed in the XRD patterns.  TGA 

analysis of products WRW17-RLF-600-2l/h, WRW17-RLF-600-3l/h and WRW17-RLF-600-4l/h, 

with a particle size >2 mm (Figure 6.40), showed higher weight losses than the smaller particles 

formed in these experiments, with the weight loss increasing at higher feed rates.  The weight loss 

profiles of these products showed the same three distinct events as seen at smaller particle sizes, 

however, the events below 300 oC (attributable to dehydration), and at 380 oC (associated with 

denitration of Mg3RE2(NO3)12.24H2O) showed much greater intensities.  This was consistent with 

XRD analysis, which showed Mg3RE2(NO3)12.24H2O was observed in all reaction products with a 

particle size >2 mm.  These results are consistent with previous experiments without the addition of 

LiNO3.   

 

The major observations resulting from the addition of LiNO3 are the reduction in particle size 

distribution of the calcine, compared with the Li free experiments.  This corresponds to a reduction in 

the dust carry-over to the off-gas system, in agreement with full scale VTR trials (Vickers, 2006a).  

The absence of a weight loss event above 600 oC in the TGA analysis and reflections associated with 

LiNO3 in the XRD pattern imply that a reaction is undertaken during the calcination process resulting 

in the formation of a non-crystalline product.  This reactivity must be responsible for a reduction in 

the particle size of the calcine and subsequent dust formation and carry-over in the calcination 

process. 
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6.3.2.2.2 Dust Analysis  

 

6.3.2.2.2.1 Effects of temperature 

 

A general increase in the mass of dust collected in the off-gas system was observed as the calcination 

temperature was increased.  These values were normalised by conversion to a percentage of the actual 

yield so a better comparison could be made.  The normalised dust values showed a 2.01 wt% carry-

over after calcination at 500 oC, rising to 2.96 wt% at 700 oC in products WRW17-RF (Figure 6.41).  

This is consistent with previous work (section 6.3.2.1.2.1) which showed increasing temperature 

resulted in a higher dust carry-over in Li free products.  However, when compared to products 

WRW17-RLF, it was apparent that a much lower dust carry-over took place on addition of LiNO3 to 

the Magnox HAL simulant when calcined between 500-700 oC, in agreement with historic studies 

(Vickers, 2006a).  As discussed previously (section 6.3.2.2) this is in correlation with a decrease in the 

calcine fraction with a particle size >2 mm.   

 

Figure 6.41 – Dust collected as a percentage of the expected yield from products  

WRW17-RF and WRW17-RLF calcined between 500-700 oC at a feed rate of 3 l / h 
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XRD analysis of the dust samples produced from WRW17-RF calcined at 500, 600 and 700 oC, at a 

feed rate of 3 l / h (Figure 6.42), all showed a set of matching reflections attributable to 

Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O [14-101].  These reflections essentially accounted for all 

of the reflections shown in the diffraction pattern.  Significant diffuse scattering was also apparent, 

showing the presence of a non-crystalline component.  TGA analysis showed weight losses of 

between 46-52 wt% at 1000 oC (Figure 6.43), almost identical to the values observed in the calcine 

fraction with a particle size greater than 2 mm, with the weight loss profiles also showing the same 

weight loss events.  These showed three distinct events: a broad weight loss below 300 oC, typical of 

dehydration; a relatively sharp weight loss at 380 oC, associated with the denitration of 

Mg3RE2(NO3)12.24H2O (Appendix 2); and a broad weight loss between 450-600 oC, attributable to 

further denitration of the more stable nitrate components which make up the HAL simulant, by 

reference to thermal stability data for individual component nitrates of which the HAL is comprised 

(Chun, 1977).  The XRD and TGA analysis match closely to the results from the corresponding Li 

free experiments, showing the same mechanism for the formation and carry-over of dust is present on 

addition of LiNO3 to the Magnox HAL simulant.  However, the observation of a much lower dust 

carry-over in the presence of LiNO3 suggested that there was an alteration in the chemical and / or 

physical properties of the resultant calcine, which manifested as a reduction in the formation of large 

particles.  These data, combined with observation of an increase in the particle size fraction >2 mm 

with an increase in calcination temperature, resulting in a higher dust carry-over, imply that the dust 

and calcine fraction with a particle size >2 mm have similar compositions and are significantly 

different from the smaller calcine particles formed in these experiments.  This again suggests dust is 

created by the abrasive breakdown of larger particles.   

 

Table 6.7 – Density Measurements of products WRW17-RF and WRW17-RLF dust samples 

and the calcine fractions with particle sizes >2 mm and <0.5 mm 

 Particle Size Fraction 

Dust >2 mm <0.5 mm 

WRW17-RF-500-3l/h 2.29 2.16 2.84 

WRW17-RLF-500-3l/h 2.22 2.10 2.82 

WRW17-RF-600-3l/h 2.51 2.34 3.03 

WRW17-RLF-600-3l/h 2.38 2.22 2.96 

WRW17-RF-700-3l/h 2.55 2.41 3.29 

WRW17-RLF-700-3l/h 2.42 2.30 3.07 
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Table 6.6 shows the density measurements of the different size calcine fractions and dust of products 

WRW17-RLF and WRW17-RF calcined at 500, 600 and 700 oC at a feed rate of 3 l / h.  This showed 

that the dust has a slightly higher density than that of the larger calcine fraction (particle diameter  

>2 mm) and much lower than the fraction with a particle size <0.5 mm.  The relatively high density of 

the small particles, compared to the larger particles, is due to the fact that a higher fraction of the 

calcine had undergone dehydration and denitration, forming metal oxides.  In general, metal oxides 

are known to be higher in density than their nitrate forms (Perry, 2011; Phillips, 1995).  The fact that 

the density of the dust lies between these calcine fractions could be due to the fact that a portion of the 

dust could be generated from the smaller calcine fraction, with the major portion being formed from 

the abrasive breakdown of the larger particles (as suggested by the TGA and XRD analysis).   

 

There was a minor increase in the density of the calcine products observed on the addition of LiNO3 

to WRW17 HAL simulant (Table 6.7).  This could have been due to the fact that LiNO3 appeared to 

facilitate the decomposition reactions of metal nitrates to form their component oxides, despite LiNO3 

being relatively low in density at 2.38 g / cm3 (Perry, 2011; Phillips, 1995).  The higher oxide content 

would lead to an increased density being measured. 

 

 

Figure 6.42 – XRD analysis of products a) WRW17-RF-500-3l/h, 

b) WRW17-RF-600-3l/h and c) WRW17-RF-700-3l/h dust samples 
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Figure 6.43 – TGA analysis of products WRW17-RF-500-3l/h, 

WRW17-RF-600-3l/h and WRW17-RF-700-3l/h dust samples 

 

Chemical analysis was carried out, using ICP-OES, on products WRW17-RF-500-3l/h, WRW17-RF-

600-3l/h and WRW17-RF-700-3l/h with particle sizes of >2 mm and <0.5 mm as well as the dust 

collected during these experiments.  After calcination at 500 oC (Figure 6.44), chemical analysis 

showed the composition of the dust and calcine fraction >2 mm were similar in composition, in 

agreement with TGA and XRD analysis.  The majority of the elements in these fractions were present 

at the same concentrations (within error), however, Ba, Sr, Mo and Zr were all present in a higher 

concentration in the dust, suggesting they were preferentially carried over to the off-gas system.  After 

calcination at 700 oC, chemical analysis showed that (within error) all elements have the same 

concentrations in the dust and calcine fraction with a particle size above 2 mm, with the exception of 

Na (Figure 6.45).  All elements showed a higher concentration in the particle size fraction <0.5 mm, 

due to the lower residual nitrate and hydrate content in the product, after calcination at both 500 and 

700 oC, consistent with TGA analysis.  This implied that the dust fraction was closer in composition 

to the calcine with a large particle size (>2 mm) rather than the smaller fraction.  This was in 

agreement with XRD and TGA data which showed Mg3RE2(NO3)12.24H2O was formed in these 

phases.  These data supported the XRD and TGA analysis, along with the density measurements, 

which suggested that the dust had similar chemical properties to that of the calcine particles with a 

particle size >2 mm and was different from the small calcine particles (<0.5 mm).  This again implied 

that dust is created from the breakdown of the larger particles formed within the calcination process.   
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Figure 6.44 – Chemical Composition of product WRW17-RF-500-3l/h dust and  

calcine samples with particle sizes of <0.5 mm and >2 mm determined by ICP-OES 

 

Figure 6.45 – Chemical Composition of product WRW17-RF-700-3l/h dust and  

calcine samples with particle sizes of <0.5 mm and >2 mm determined by ICP-OES 
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EDS analysis showed a strong association of Mg and Nd within the dust sample formed from the 

calcination of product WRW17-RF-700-3l/h (Figure 6.46), in agreement with XRD and TGA analysis 

which showed the presence of Mg3RE2(NO3)12.24H2O.  Co-association of Mo and Zr was also 

apparent in the dust samples, consistent with available literature which showed the formation of 

Zr(MoO4)2 (or the hydrated phase ZrMo2O7(OH)2.2H2O) occurs in the dust scrubber on the VTR 

(Short, 2010; Morris and Haig, 2010).  However, the presence of Zr(MoO4)2 was not observed in 

XRD analysis, therefore if it was formed during these experiments, it was either present in a small 

quantity, or the phase was non-crystalline in nature.  The same observations were made for the dust 

formed from the calcination of WRW17-RF at 500 and 600 oC at 3 l / h. 

 

 

Figure 6.46 – Backscattered electron image and X-ray maps  

of product WRW17-RF-700-dust 

 

Due to the solubility of the calcine in aqueous media, particle size analysis was not possible.  

However, the secondary electron images (Figures 6.47 and 6.48) showed a clear increase in the 

primary particle size of the dust from ~20-30 µm in products WRW17-RLF-500-3l/h and WRW17-

RLF-700-3l/h up to ~50-100 µm on the addition of LiNO3 to Magnox HAL simulant.  As this analysis 

was carried out on a small portion of the product (~50 mg compared to the 20-30 g collected during 

these experiments), however, the results are not conclusive.  As the addition of LiNO3 caused a slight 

increase in the density of the calcine and dust samples, it would be expected that the particle sizes 

would have been similar, or slightly smaller in the Li containing samples.  A possible explanation for 

this discrepancy, other than the small amount of product tested possibly not being a representative 

sample, is that LiNO3 acts as molten salt, binding the calcine together more strongly.  When the dust 

was removed from the flexible hose, the non Li containing sample could then have been more brittle, 

breaking up into smaller particles upon collection. 
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Another possible explanation for the increase in particle size observed in the Li containing samples 

was that LiNO3 was present as a liquid in the calcination process, resulting in the formation of a 

‘sticky’ calcine.  Upon collision, the dust particles could have agglomerated, causing an increase in 

particle size of the dust.  This could also have contributed to the lower dust carry-over observed in the 

Li containing samples, with larger, agglomerated particles being kept in the calcine fraction.  The 

evidence for this, however, is inconclusive.   

 

 

Figure 6.47 – Secondary electron images of WRW17-RF-500-3l/h-dust (left) 

and WRW17-RLF-500-3l/h-dust (right) 

 

Figure 6.48 – Secondary electron images of WRW17-RF-700-3l/h-dust (left) 

and WRW17-RLF-700-3l/h-dust (right) 
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Figure 6.49 compares 7Li MAS NMR data from WRW17-RF-500-3l/h, WRW17-RF-600-3l/h and 

WRW17-RF-700-3l/h dust samples, measured relative to LiCl.  The spectra are all dominated by a 

very broad, asymmetric resonance centered at -0.90 ppm, with a series of asymmetric spinning side 

bands being observed, as seen in the calcine fractions (Figures 6.36 and 6.37).  The relative intensities 

of these spinning side bands also increase at higher calcination temperature, which was also consistent 

with the trends observed in the corresponding calcined products.   

 

Figure 6.49 - 7Li MAS NMR spectra of dust collected from samples  

WRW17-RF-500-3l/h, WRW17-RF-600-3l/h and WRW17-RF-700-3l/h  

 

The relative intensities of the spinning sidebands of the dust sample in the 7Li NMR spectra of 

product WRW17-RF-500-3l/h lay in between those of the calcine fractions with particle sizes of  

<0.5 mm and >2 mm (Figure 6.50).  This could suggest that the dust carried over to the off-gas system 

is generated from both the larger particles (>2 mm), consistent with XRD data, as well as a portion 

arising from the carry-over of the smallest calcine fraction (<0.5 mm).  This is in agreement with the 

density measurements, which showed the density of the dust also lies between that of the calcine 

fractions <0.5 mm and >2 mm, implying both contributed to the formation of dust in the small scale 

calcination process.  It should be noted that the differences in the chemical shifts of the spinning 

sidebands was due to the different rates at which the samples were spun, not the differences in the 

samples.  Figure 6.50 does, however, highlight the differences in relative intensity of the varying 

particle size fractions. 
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Figure 6.50 - 7Li MAS NMR spectra of sample WRW17-RF-500-3l/h  

calcine fractions with particle sizes of >2 mm, 0.5-2 mm, <0.5 mm and dust sample 

 

From these experiments, it is possible to infer and conclude the following: 

 

 On addition of LiNO3 to the Magnox HAL simulant, before calcination, the resultant dust 

carry-over was reduced with a strong correlation to the reduction in large particles collected 

in the calcine.   

 An increase in dust carry-over to the off-gas system was observed at increasing temperature, 

also in correlation with an increase in the formation of larger particles in the calcine. 

 XRD and TGA analysis showed the presence of Mg3RE2(NO3)12.24H2O in both the dust and 

larger calcine particles (>2 mm), with this diminishing in the smaller particles and as a 

function of increasing temperature.  This implied that dust is formed from the breakdown of 

larger calcine particles, as observed in the Li free experiments.  The ICP-OES and EDS 

analysis showed similarities between the larger particles and the dust, in agreement with the 

hypothesis that dust was created from the breakdown of calcine particles above 2 mm in 

diameter.  The 7Li MAS NMR data combined with the density measurements suggested a 

portion of the dust is generated from the smaller particle size calcine fraction. 

 It is implied that the mechanism by which LiNO3 reduces the dust carry-over to the off-gas 

system involves the facilitation of oxidation reactions, increasing the density of the resultant 

calcine therefore making it more difficult to be carried to the off-gas system.  This is 

consistent with LiNO3 being a known O2- donor (Afanisiev, 2007) and the fact that it will be 

molten under the conditions of calcination used in these experiments, so will act as a molten 

salt, further facilitating reactions. 
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6.3.2.2.2.2 Effects of feed rate 

 

An increased mass of dust collected in the off-gas system was observed as a function of increased 

calcination feed rate due to a higher throughput in the calciner.  However, when the mass values were 

normalised, by conversion to a percentage of the actual yield, the highest dust carry-over was 

observed at the lowest feed rate (Figure 6.51).  This same trend was observed in the Li free 

experiments, which was expected, as at a reduced feed rate, evaporation takes place more rapidly, 

leaving a longer section of the tube for denitration to occur, increasing the residence time.  An 

increase in the mass fraction of large particles was apparent in product WRW17-RF-600-3l/h 

(compared to product WRW17-RF-600-2l/h), with a subsequent drop at a feed rate of 4 l / h.  The 

results for products formed at feed rates of 3 l / h and 4 l / h are consistent with the hypothesis that 

larger particles are formed as a function of increasing temperature (lower feed rate equates to longer 

residence time at high temperature), resulting in an increased dust carry-over.  At a feed rate of 2 l / h, 

however, the fraction of particles >2 mm was lower, even though higher dust carry-over was 

observed.  This is in agreement with the Li free experiments, as it is thought that the effects of feed 

rate on the position of the evaporative front in the calciner will be affected more greatly by feed rate 

than Zone 3 temperature, as set-points 1 and 2 were kept the same (400 oC) throughout these 

experiments.  This is thought to lead to competing process occurring in which initial abrasion of larger 

particles, thought to be responsible for formation of the dust takes place, with further breakdown of 

the larger particles taking place due to the longer time in the hotter part of the tube where denitration 

processes occur.  This is a possible explanation for the decreasing particle sizes formed at low feed 

rates. 

 

Figure 6.51 – Dust collected as a percentage of the expected yield from  

products WRW17-RF-600 and WRW17-RLF-600 calcined between 2-4 l / h 
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The XRD patterns of the dust samples produced from WRW17-RF-600 calcined at feed rates of  

2 l / h, 3 l / h and 4 l / h (Figure 6.52) all showed a set of matching reflections attributable to 

Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O [14-101], as observed previously at different calcination 

temperatures and in the Li free experiments.  The presence of significant diffuse scattering suggested 

the presence of non-crystalline component(s).  TGA analysis showed weight losses of between 45-51 

wt% at 1000 oC (Figure 6.53).  These weight loss values and the resultant profiles are comparable to 

the values attained from the calcine fractions with a particle size greater than 2 mm and to the 

corresponding Li free experiments.  These showed three distinct events at temperatures of below 300 

oC, 380 oC and between 450-600 oC, associated with dehydration, denitration of 

Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O, and further denitration of the more stable nitrate 

components respectively (Appendix 2; Paulik et al., 1988; Chun, 1977).  Taken together, the XRD 

and TGA data imply that the dust has a similar composition to the calcine fraction with a particle size 

>2 mm and is far removed from the smaller calcine particles formed in these experiments.  The data is 

also very similar to that observed in the experiments without the addition of LiNO3.  This again 

suggested that the mechanism by which dust was created, and subsequently transported to the off-gas 

system, was due to the abrasive breakdown of larger particles.  The formation of a lower fraction of 

large particles (>2 mm) at a lower feed rate is contradictory to this hypothesis, although this can be 

explained by the effective increase in residence time allowing further breakdown of the large particles 

further down the calciner tube. 

 

 

Figure 6.52 – XRD analysis of products a) WRW17-RF-600-2l/h, 

b) WRW17-RF-600-3l/h and c) WRW17-RF-600-4l/h dust samples 
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Figure 6.53 – TGA analysis of products WRW17-RF-600-2l/h, 

WRW17-RF-600-3l/h and WRW17-RF-600-4l/h dust samples 

 

From these experiments, it is possible to infer and conclude the following: 

 

 At a low feed rate (2 l / h) there was a decrease in the amount of large particles formed in the 

calcine, though an increase in dust carry-over was observed, the same as seen in the Li free 

experiment calcined under the same conditions.  However, this can be explained by the 

breakdown of the calcine particles taking place in stages, with initial breakdown forming the 

dust, with further breakdown forming the smaller particles with higher density and therefore 

are retained in the calcine. 

 At feed rates of 3 l / h and 4 l / h, the normalised dust carry-over decreased at higher feed 

rates, correlating with higher formation of large calcine particles being formed in the 

calcination process.  Higher feed rates caused the evaporative front to be pushed down the 

calciner tube, effectively reducing the residence time at high temperature where denitration 

occurs.  Therefore, calcines formed at higher feed rates are thought to correlate with a 

reduction in calcination temperature, causing the reduction in dust carry-over.  This again 

suggested that only at low feed rates does the breakdown of calcine particles take place in 

different steps.   

 Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O were observed as the major crystalline products 

in the dust, consistent with the formation from the breakdown of larger particles by the rabble 

bar in the calciner. 
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6.3.2.3 WRW16-RLF 

 

Blend HAL simulant is a 75 % / 25 % mix of UO2 and Magnox waste streams.  It has higher 

concentrations of Mo, Zr and RE elements with a reduction in Al and Mg compared to Magnox 

(WRW17) simulants (Short, 2010b; Short, 2010c).  With this change in simulant composition, the 

masses of the calcine and dust collected for WRW16-RLF showed a significant increase compared to 

the corresponding experiments carried out on Magnox HAL simulant (Table 6.8).  The increased 

calcine fraction was expected due to the higher amounts of heavier elements present in the Blend 

simulant, meaning the weight losses observed due to dehydration and denitration processes (measured 

by TGA) were lower.  This resulted in a higher yield being collected.  An increase in the dust carry-

over from the processing of Blend simulants in comparison with Magnox is in agreement with 

previous studies by (Ramshaw et al., 1992).  As with the Magnox experiments, the expected weights 

were worked out by first calculating the total waste oxide throughput during the experiment, then 

taking into account residual weight loss values (measured by TGA analysis) for each of the calcine 

size fractions (Table 6.9) and weighting the values accordingly (see section 6.2.2.1).  The dust 

collection was normalised by working out a percentage dust carry-over against the actual weight of 

calcine collected thus allowing comparisons to be made on the effects of changing temperature and 

feed rate on the dust carry-over from the calciner to the off-gas system.  

 

Table 6.8 – Mass of calcine and dust products collected 

Sample 

Expected 

Weight 

(g) 

Actual 

Weight 

(g) 

Amount of 

Dust Collected 

(g) 

Dust 

Collected 

(wt%) 

WRW16-RLF-500-3l/h 1227.87 1025.56 58.75 5.73 

WRW16-RLF-600-3l/h 1198.63 949.74 59.98 6.32 

WRW16-RLF-700-3l/h 1163.49 891.77 63.03 7.07 

 

The combined mass of calcine and dust collected in these experiments are lower than the expected 

yield, with the discrepancy becoming greater at increased temperature.  This could be partially 

attributed to a higher dust carry-over, as not all of the dust generated during these experiments will 

have been collected, in agreement with previous work in this chapter (section 6.3.2.1).  This is due to 

the design of the small scale calciner, meaning a portion of the dust was not able to be recovered 

during these experiments, however, a representative yield is thought to be recovered. 
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Table 6.9 – Size fractions of product WRW17-RLF calcined under varying conditions 

Sample 
Fraction above 

2 mm 

Fraction between 

0.5 – 2 mm 

Fraction below 

0.5 mm 

WRW16-RF-500-3l/h 0.28 0.44 0.28 

WRW16-RF-600-3l/h 0.23 0.48 0.29 

WRW16-RF-700-3l/h 0.20 0.51 0.29 

 

A lower mass fraction of particles >2 mm in diameter was observed as the calcination temperature 

was increased, in contrast to experiments carried out on Magnox HAL simulants.  An increased 

normalised dust carry-over was observed at higher temperature, in agreement with the Magnox 

experiments, however, this correlated with a reduction in the fraction of large particles, contradictory 

to Magnox experiments and the hypothesis that dust is created by the breakdown of large particles.  

The smallest particle size fraction (<0.5 mm) stayed constant with increasing temperature, which 

suggests that dust is not formed from this fraction of the calcine.  As with the issue of increasing feed 

rate, there appears to be competing processes resulting in dust creation and then further breakdown of 

the large particles which remain in the calcine collected from these experiments (discussed in section 

6.3.2.3.2.1). 

 

6.3.2.3.1 Calcine Analysis 

 

6.3.2.3.1.1 Effects of temperature 

 

Figure 6.54 shows the particle size fractions collected as a function of temperature.  This showed that 

a decrease in the mass fraction of particles >2 mm was observed as the calcination temperature was 

increased.  The particle size range 0.5-2 mm showed a general increase in the mass fraction at higher 

calcination temperature, due to the decrease in larger particles in the product, with the small particle 

fraction, <0.5 mm, remaining constant.  The trends in the larger particles were contradictory to those 

observed in Magnox simulants calcined under identical conditions, with a larger fraction of small 

particles being observed in Blend simulants.  This suggested that the Blend simulant was easier for the 

rabble bar to breakdown.  A 5 % error was again assigned to each of the values to account for the 

residual calcine and dust which will be left in the calciner tube during these experiments, taken from 

previous small scale calciner trials (Brace, 2004).  The error associated with weighing the products 

were deemed insignificant compared to errors associated with collection from the small scale calciner 

and were therefore not taken into account. 
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Figure 6.54 – Particle size fractions from product WRW16-RLF  

calcined at 500-700 oC at a feed rate of 3 l / h 

 

XRD analysis of products WRW16-RLF calcined at 500, 600 and 700 oC with particle sizes <0.5 mm 

(Figure 6.55) all showed weak, broad reflections associated with the formation of poorly crystalline 

CeO2, with high levels of diffuse scattering being apparent, indicating the presence of non-crystalline 

component(s).  After calcination at 500 oC, weak reflections attributable to Mg3RE2(NO3)12.24H2O 

were observed in the product, though the low signal-to-noise ratio in the diffraction pattern obscures 

some of the reflections assigned by reference to the ICDD database (card [12-761]).  The intensities of 

these reflections diminish as a function of increasing temperature (Figure 6.56).  This was observed 

previously in Magnox simulants, although the reflections attributable to Mg3RE2(NO3)12.24H2O had a 

lower signal to noise ratio, consistent with the lower amount of Mg present in the simulant.  TGA 

analysis of products WRW16-RLF-500-3l/h, WRW16-RLF-600-3l/h and WRW16-RLF-700-3l/h all 

showed decreasing weight losses as a function of increasing temperature (Figure 6.55).  This is 

consistent with retention of a higher fraction of the hydrate and nitrate inventory at lower calcination 

temperatures.  The weight loss values, however, were much lower than those observed after the 

calcination of Magnox simulants under the same conditions, consistent with the higher fraction of 

heavy elements present in Blend simulants.  The weight loss profiles of products WRW16-RLF 

calcined at 500 and 600 oC at a feed rate of 3 l / h, with a particle size <0.5 mm (Figure 6.56) both 

show two distinct events: a relatively sharp weight loss at 380 oC, associated with the denitration of 

Mg3RE2(NO3)12.24H2O (Appendix 2); and a broad weight loss between 450-600 oC, attributable to 

further denitration of the more stable nitrate components which make up the HAL simulant, by 
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reference to thermal stability data for individual component nitrates of which the HAL is comprised 

(Chun, 1977).  After calcination at 700 oC, the weight loss event at 380 oC was no longer observed, 

suggesting the denitration of Mg3RE2(NO3)12.24H2O had gone to completion.  This is in agreement 

with XRD analysis which showed the absence of reflections associated with Mg3RE2(NO3)12.24H2O 

after calcination at 700 oC in the particle size fraction below 0.5 mm.  The presence of reflections 

attributable to CeO2 is consistent with the corresponding Magnox experiments, freeze dryer work and 

previous studies (Dunnett et al., 2009), which showed that CeO2 is not observed after calcination at 

400 oC but is highly crystalline at 1050 oC.  These data suggest that in the small particle size fraction  

(<0.5 mm) the temperatures experienced in the calciner were above 400oC at all Zone 3 set-points.  

The temperatures experienced by the calcine also increases at higher Zone 3 temperatures, as 

expected, shown by the lack of reflections associated with Mg3RE2(NO3)12.24H2O when calcined at 

700 oC.   

 

Figure 6.55 – XRD and TGA analysis of product WRW16-RLF-500-3l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h with a particle size of <0.5 mm 

 

 

Figure 6.56 - XRD and TGA analysis of product WRW16-RLF-500-3l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h with a particle size of >2 mm 
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Figure 6.57 – Weight loss of the different size fractions of products  

WRW16-RLF-500-3l/h, WRW16-RLF-600-3l/h and WRW16-RLF-700-3l/h  

 

In the calcine fraction >2 mm in diameter, relatively intense reflections, attributable to 

Mg3RE2(NO3)12.24H2O, were observed in the XRD pattern of product WRW16-RLF500-3l/h, with 

these peaks reducing in intensity as the calcination temperature was increased.  Broad, weak 

reflections, associated with the formation of poorly crystalline CeO2, were also observed.  Strong 

diffuse scattering was also apparent showing the presence of non-crystalline component(s).  Weight 

loss values of between 24-32 wt% were observed in the TGA analysis of products WRW16-RLF, 

with a particle size >2 mm (Figure 6.56) compared to the 45-55 wt% seen from the calcination of a 

Magnox HAL simulant under the same conditions.  This was consistent with previous observations 

which showed Blend simulants have a lower residual nitrate content than Magnox due the heavier 

elements being present in a greater concentration.  The weight loss profiles for products WRW16-

RLF-500-3l/h, WRW16-RLF-600-3l/h and WRW16-RLF-700-3l/h, with a particle size  

>2 mm, showed the same two distinct events as seen at smaller particle sizes, however, the event at 

380 oC (associated with denitration of Mg3RE2(NO3)12.24H2O) showed a much greater intensity, in 

agreement with XRD analysis, which showed Mg3RE2(NO3)12.24H2O was observed in the reaction 

products with a particle size >2 mm. 

 

 

 

 

 



 

232 

6.3.2.3.2 Dust Analysis 

 

6.3.2.3.2.1 Effects of Temperature 

 

There was an increase in the mass of dust collected in the off-gas system as the calcination 

temperature was increased, consistent with the experiments carried out on Magnox simulants and with 

previous studies using the small scale calciner (Brace, 2006b).  The mass values were normalised by 

conversion to a percentage of the actual yield to give a range of dust carry-over values for comparison 

(Figure 6.58).  The normalised dust values range from 5.73 wt% after calcination at 500 oC up to  

7.07 wt% at 700 oC, higher than the values associated with the corresponding Magnox experiments, 

which showed dust carry-over values of 3.25 wt% and 4.77 wt% respectively.  In contrast to the 

Magnox experiments, however, this is in correlation with a decrease in the calcine fraction with a 

particle size >2 mm.  This suggested that competing processes occur in the calciner for both dust 

formation and the further breakdown of larger particles which are retained in the calcine.  As with the 

calcine, a 5 % error was associated with the collection of dust from the small scale calciner to take 

into account the fact that not all of the dust would be recovered in these experiments. 

 

 

Figure 6.58 – Dust collected as a percentage of the expected yield  

from products WRW16-RLF calcined between 500-700 oC at a feed rate of 3 l / h 
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XRD analysis of the dust samples produced from WRW16-RLF calcined at 500, 600 and 700 oC, at a 

feed rate of 3 l / h (Figure 6.59), all showed a set of matching reflections attributable to 

Mg3RE2(NO3)12.24H2O.  Significant diffuse scattering was also apparent, showing the presence of a 

non-crystalline component.  These observations are the same as those observed in Magnox 

experiments, although Mg(NO3)2.6H2O was not observed due to the reduction in Mg concentration in 

Blend simulants.  TGA analysis showed weight losses of between 31-34 wt% at 1000 oC (Figure 

6.60), higher than the values attained from the calcine fraction with a particle size greater than 2 mm 

and much greater than those seen in particles smaller than 0.5 mm.  The weight loss profiles of 

products WRW16-RLF calcined between 500-700 oC, with a particle size >2 mm were also similar to 

that observed in the dust samples, except there appeared to be a greater weight loss below 300 oC, 

associated with dehydration, in the dust samples.  It is possible that the large particles are broken 

down and carried over to the off-gas system (where the dust particles are trapped but have a constant 

stream of steam and nitric acid vapour passing over it) where they are rehydrated / adsorb water, 

resulting in a greater weight loss being observed.  The weight loss profiles showed three distinct 

events: a broad weight loss below 300 oC, typical of dehydration; a relatively sharp weight loss at  

380 oC, associated with the denitration of Mg3RE2(NO3)12.24H2O (Appendix 2); and a broad weight 

loss between 450-600 oC, attributable to further denitration of the more stable nitrate components 

which make up the HAL simulant, by reference to thermal stability data for individual component 

nitrates of which the HAL is comprised (Chun, 1977).  Taken together, the XRD and TGA data show 

that the dust has a similar composition to the calcine fraction with a particle size >2 mm and is 

different from the smaller calcine particles formed in these experiments.  This suggests that the 

mechanism by which dust is created, and subsequently transported to the off-gas system, involves the 

abrasive breakdown of larger particles.  However, the decrease in the fraction of large particles 

formed at higher calcination temperatures suggest that the process for the breakdown of large particles 

for the formation of dust and further breakdown of the calcine are contrasting.  It is possible that the 

formation of dust takes place at the start of the denitration process, towards the front of the calciner 

tube, where the higher residual nitrate will result in the particles being less dense23 and therefore 

particles of comparable size will be transferred to the off-gas system more easily, as the movement of 

particles in a consistent airflow is known to depend on both particle size and density (Dong et al., 

2003).  As the particles are subjected to a higher temperature, further denitration occurs causing an 

increase in density of the small particles.  The increase in density could result in a lower fraction of 

this material being carried over to the off-gas system, therefore manifesting as a reduction in the 

particle size distribution in the calcine without significantly affecting dust carry-over.  This is in 

agreement with XRD and TGA data, which show the dust has similar properties to the larger calcine 

particles, suggesting it is created from the breakdown of these particles with a diameter >2 mm.   

                                                           
23 In general, the metal nitrates present in the HAL have a lower density than their corresponding oxides (Perry, 

2011; Phillips, 1995) 
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Figure 6.59 – XRD analysis of products a) WRW17-RLF-500-3l/h, 

b) WRW17-RLF-600-3l/h and c) WRW17-RLF-700-3l/h dust samples 

 

 

Figure 6.60 – TGA analysis of products WRW17-RLF-500-3l/h, 

WRW17-RLF-600-3l/h and WRW17-RLF-700-3l/h dust samples 
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From these experiments, it is possible to infer and conclude the following: 

 

 A greater dust carry-over is observed as a function of increasing temperature, consistent with 

the Magnox experiments.  However, this, correlated with a reduction in the formation of 

larger particles, is contradictory to observations made in the Magnox experiments.  This 

suggested that calcine composition has a significant effect on dust carry-over. 

 The major crystalline product in the dust was Mg3RE2(NO3)12.24H2O, as observed in the 

Magnox simulant experiments.  The presence of Mg3RE2(NO3)12.24H2O was again seen in 

both the dust and larger calcine particles (>2 mm), with this diminishing in the smaller 

particles and as a function of increasing temperature.  This implied that dust is formed from 

the breakdown of larger calcine particles. 

 There was a notable decrease in the residual nitrate in Blend simulants compared with 

Magnox, calcined under the same conditions.  This is associated with the increase in heavier 

elements present in the Blend simulant.  The presence of a lower volume of metal nitrates in 

the calcine suggest that there will be less molten material binding the calcine together, 

allowing the rabble bar to breakdown the calcine more efficiently.  This would result in the 

lower mass fraction of large particles being formed in calcine resulting from the calcination of 

Blend simulant, compared to Magnox, as seen in these experiments. 

 

6.3.3 Discussion 

 

6.3.3.1 Freeze dryer experiments 

 

The freeze drying of both Magnox and Blend simulants (WRW16 and WRW17) showed that 

Mg3RE2(NO3)12.24H2O was formed in the freeze dried product, in agreement with previous studies on 

crystallisation in the HAST tanks at Sellafield (Richardson, 2002a).  This suggested that Mg and RE 

nitrates react together in solution, where RE = La, Ce, Pr, Nd, Sm or Gd, to form 

Mg3RE2(NO3)12.24H2O via reaction between the corresponding metal nitrates (Quill et al., 1937).  All 

of the Mg(NO3)2.6H2O appeared to be consumed in the Blend simulant due to the high levels of RE 

elements compared to Mg, whereas in the Magnox simulant, Mg(NO3)2.6H2O was partially unreacted 

due to the reduction in concentration of RE elements and a higher Mg content within the simulant 

(Short, 2010b; Short, 2010c).  These data suggest this reaction goes to completion in the HAL 

simulant with no competing reactions involving Mg(NO3)2.6H2O taking place in solution.  After 

calcination at 350 oC for 10 mins, the presence of Mg3RE2(NO3)12.24H2O was still observed in the 

calcine product of both Blend and Magnox HAL simulants, but had decomposed at 550 oC, consistent 

with thermal analysis of this compound (Appendix 2).  The addition of LiNO3 had no observed effect 

on the formation or decomposition properties of Mg3RE2(NO3)12.24H2O.   
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Al(NO3)3.9H2O was present in both Blend and Magnox simulants after freeze drying (with no further 

heat treatment), which implied no reaction took place in solution.  This is consistent with findings in 

Chapter 5, which showed Al(NO3)3.9H2O was present in all the freeze-dried products.  After 

calcination at 350 oC, no reflections attributable to Al(NO3)3.9H2O were observed in the XRD patterns 

of WRW16 or WRW17, in agreement with available literature (Pacewska and Keshr, 2002) which 

showed formation of an amorphous product on the (partial) dehydration and denitration between 200-

550 oC.   

 

In Blend simulant, CPM was observed as the major crystalline component in the freeze dried product, 

due to the high levels of Mo (Short, 2010c) and is consistent with the observation of a yellow 

precipitate in the simulant (Neepa et al., 2013).  This precipitate is observed in Magnox simulants, 

though in a reduced amount.  XRD analysis, however, did not show the presence of CPM in the 

diffraction pattern of product WRW17-RLF-FD, which suggested it was not present in a large enough 

proportion to overcome the increased diffuse scattering observed.  On calcination at 350 oC, CPM was 

not observed in any of the products suggesting it had undergone a reaction, resulting in the formation 

of a non-crystalline product. 

 

The observation of an additional reflection in the diffraction pattern of WRW16-RF-FD, compared to 

the Li free product, and the absence of reflections attributable to LiNO3 (or any of its hydrated forms) 

suggested that a reaction had occurred in solution.  However, due to the fact that only one additional 

reflection was observed and the complexity of the HAL simulant, the reaction product(s) remained 

unidentified.   

 

After calcination at 550 oC, CeO2 was formed in both Magnox and Blend simulants.  This is in 

agreement with previous studies (Dunnett et al., 2009) which showed no reflections attributable to 

CeO2 were observed at 400 oC, but were highly crystalline at 1050 oC.  The addition of LiNO3 

resulted in the reflections attributable to CeO2 becoming more intense, suggesting that LiNO3 acted as 

a molten salt, increasing the rate at which the oxidation reaction occurred. 
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The formation of BaCeO3 (or complex oxide(s) with the same structure) was observed in Blend 

simulant with the addition of LiNO3, in agreement with previous studies (Short, 2005), which showed 

that on addition of LiNO3 to a Blend HAL simulant, there were 2 additional phases observed.  The 

first additional phase which arose, belonged to the Pm-3m space group (Short, 2005) consistent with 

the structure of BaCeO3.  The other additional phase observed was CsLiMoO4, which was not 

observed in these experiments.  LiNO3 is used in molten salt synthesis of metal oxides (Xu et al., 

2009; Li et al., 2008) as it has a low melting point and acts as Lux-Flood base, making it a good O2- 

donor, and can therefore lower the temperatures needed for an oxidation reaction to occur (Afanasiev 

and Geantet, 1998).  The fact that the addition of LiNO3 gave rise to the formation of complex oxides 

suggests that it may act as a molten salt in the calcine, helping to facilitate reactions which would not 

otherwise occur in aqueous media or in the solid state after evaporation had occurred.  This is a likely 

explanation for the formation of complex oxide phases which are not observed without the presence 

of LiNO3.   

 

Throughout these experiments, XRD was used as the main method of identifying species found within 

the HAL simulants.  However, this showed that a significant portion of the species were non-

crystalline in nature, thus highlighting a major limitation of this study.  EDX analysis was utilised to 

show the distribution of the major elements throughout the samples, but this did not provide 

information about the chemical environment in which elements such as Zr reside.  These elements 

were not identified as being part of the crystalline portion of the calcination products, therefore the 

form they take, both in the HAL simulant and after calcination, is unknown.  Further characterisation, 

through techniques such as solid state NMR, could be utilised to provide an insight into the chemical 

environment(s) of the elements not identified as being present in the crystalline phases of the 

calcination products.  

 

Previous work by Sutrisno et al. (2012) has shown that 91Zr SSNMR carried out on poorly crystalline 

zirconium phosphate materials led to characterisation of the metal centre environments, where XRD 

patterns did not provide conclusive information about the crystal structure.  This is due to 

advancements in SSNMR techniques.  Another possible use of SSNMR would be to show the 

decomposition of CPM by monitoring the chemical environment(s) of both 31P and 94Mo in samples 

calcined at various temperatures.  As a wide range of nuclei can be analysed using this technique, 

providing information about the chemical environment(s) of these elements, it could be utilised in 

future experiments to provide more information about the species which exist in both Magnox and 

Blend HAL simulants. 
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6.3.3.2 Small scale calciner experiments 

 

The small scale calcinier was modified to allow the capture of dust carried from the calciner to the 

off-gas system, which had not been possible previously.  On the VTR, dust carry-over is calculated 

from the solids present in the dust scrubber, as this is the first sample point in the off-gas system.  

However, the majority of the dust is soluble in the nitric acid and therefore analysis such as XRD, 

TGA and density measurements could not be carried out.  By collecting the dust as a solid, before 

reaching the dust scrubber, this analysis could be carried out, giving new information on the 

mechanism of dust formation and the chemical composition, density and particle size of the dust 

particles. 

 

XRD and TGA analysis of the collected dust samples, for all experiments, showed the presence of 

Mg3RE2(NO3)12.24H2O, known to decompose at ~380 oC, thus showing the dust does not experience 

temperatures above this during calcination.  This phase was also present in the larger calcine particles 

(>2 mm), with reducing quantities being present in smaller particles.  This showed the dust had a 

similar composition to the larger particles (>2 mm) formed in the calcination process and were 

different from the smaller particles (<0.5 mm) collected in the calcine, backed up by chemical 

analysis (ICP-OES).  Historically, dust was thought to be formed from the smallest calcine fraction, 

however, these experiments showed a correlation was observed between the dust and larger calcine 

particles.  The abrasive breakdown of larger particles is therefore thought to be responsible for the 

creation of dust in the small scale calciner, which is subsequently transported to the off-gas system.  

The following processes are thought to contribute to this: 

 

 Metal nitrates are generally lower in density than their corresponding oxides (Table 6.10; 

Perry, 2011; Phillips, 1995), allowing them to be transported more easily, as particle size and 

density are both known to influence the movement of particles in a constant airflow (Dong et 

al., 2003). 

 The larger, lower density particles will be broken down more easily by the rabble bar than the 

smaller, denser calcine fraction. 

 As only the surface of the larger particles come into contact with the heated calciner tube 

walls, small particles will be broken off as the remainder, in the centre of the large particle, 

will be held together by the molten metal nitrates. 
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These findings showed that the formation of dust is likely to occur through the abrasive breakdown of 

larger calcine particles by the rabble bar inside the calciner tube.  The calcination conditions and the 

addition of LiNO3 are known to affect the dust carry-over (discussed in sections 6.3.3.2.1 to 

6.3.3.2.3), however, all the small scale calciner experiments showed that the similarities in chemical 

composition and density between the dust and large particles of calcine, combined with the 

differences in the small calcine fraction, is strong evidence that the dust fraction is created through the 

breakdown of particles >2 mm in diameter during the calcination process. 

 

Table 6.10 – Densities of metal nitrates and oxides contained in HAL simulants and calcine 

(Perry, 2011; Phillips, 1995) 

Element Nitrate Oxide 

Al 1.72 g / cm3 3.97 g / cm3 

Fe 1.68 g / cm3 5.24 g / cm3 

Gd 2.33 g / cm3 7.41 g / cm3 

Li 2.38 g / cm3 2.01 g / cm3 

Mg 1.64 g / cm3 3.58 g / cm3 

Mo - 4.69 g / cm3 

Zr - 5.60 g / cm3 

 

6.3.3.2.1 The effects of lithium nitrate 

 

On addition of LiNO3 to a Magnox HAL simulant, processed on the small scale calciner, a significant 

reduction in the dust carry-over was observed at calcination temperatures between 500-700 oC.  This 

was in conjunction with a reduced mass faction of calcine produced with a particle size >2 mm.  

Together with XRD and TGA analysis, showing the similarities in the properties of the dust and large 

calcine particles (>2 mm) at all calcination temperatures and feed rates, this suggested that the 

breakdown of large particles was responsible for the creation of dust.  As a lower fraction of large 

particles were formed on addition of LiNO3, there was a lower dust carry-over observed.   
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LiNO3 appeared to react with the Magnox HAL simulant in solution, as shown in the freeze dryer 

experiments (section 6.3.1).  The products of these reactions, after calcination between 350-550 oC for 

10 minutes in a muffle furnace, or after calcination in the small scale calciner with a Zone 3 

temperature between 500-700 oC, appeared to be non-crystalline in nature so were not identifiable by 

XRD analysis.   

 

Metal nitrates, of which the HAL simulants are comprised, have low melting points and will therefore 

be molten in the calcination process until decomposition to the corresponding metal oxide occurs.  If 

the metal nitrates are molten, they will not be available to be broken down by the rabble bar and will 

agglomerate to form large particles.  TGA analysis of products WRW17-RLF-500-3l/h and WW17-

RF-500-3l/h (Figure 6.61) showed a significant decrease in weight loss after the addition of LiNO3 in 

the calcine fraction >2 mm, but an increased weight loss at smaller particle sizes.  This implies 

denitration is occurring faster in the early stages of calcination, when the particles are larger, but due 

to the extra nitrate from the stable LiNO3, this decreases as the reaction progresses in the smaller 

particles.  This suggests the LiNO3 could be acting as a molten salt, helping to facilitate reactions.  If 

the addition of LiNO3 facilitates reactions within the calciner, causing the oxidation to occur more 

quickly, the rabble bar will have longer to break up the calcine, resulting in a reduction in the large 

particles formed.  However, this would be expected to correlate with a higher dust carry-over, 

whereas the opposite was true in these experiments.  A possible explanation for this is that the 

increase in density of the metal oxides, compared to the nitrates, means that the increased smaller 

fraction are not as easily carried to the off-gas system.  This is in agreement with XRD analysis which 

suggests low temperature nitrate and hydrate containing phases, such as Mg3RE2(NO3)12.24H2O, are 

present in both the large particles and dust, but are decomposed at higher temperatures and smaller 

particle sizes.  The absence of weak reflections attributable to CeO2 in the large particles and dust 

(which are present in particle smaller than 0.5 mm in diameter) also imply that the smaller, denser 

fraction of the calcine (<0.5 mm) are not preferentially carried over to the off-gas system. 

 

 



 

241 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.61 – Weight loss values for products WRW17-RF-500-3l/h 

and WRW17-RLF-500-3l/h with differing particle sizes 

 

6.3.3.2.2 The effects of temperature 

 

An increase in calcination temperature results in the transfer of a greater mass of dust to the off-gas 

system in all cases where the other parameters were kept constant.  In Magnox HAL simulants, both 

with and without Li addition processed on the small scale calciner, this correlated with an increasing 

fraction of calcine being formed with a larger particle size.  As there was an increased fraction of 

larger particles, there will have been more particles available to be broken up, resulting in a greater 

volume of dust created and therefore transported to the off-gas system.  As the set-points for Zones 1 

and 2 were kept constant at 400 oC throughout these experiments, with only the Zone 3 temperature 

changing, this was thought to have no significant effect on the position of the evaporative front, 

leaving the same portion of the tube available for denitration processes to occur.  The formation of a 

higher fraction of larger particles at higher temperature, therefore, is likely to be caused by an increase 

in the amount of molten material formed, which will agglomerate to form the larger particles.  This is 

consistent with the fact that at higher temperature there is the potential for more of the material to be 

above its melting point.  However, at a higher temperature, denitration would also be expected to 

occur at a faster rate, causing the particles to become denser and therefore more difficult to transport 

to the off-gas system.  It is therefore possible for Magnox simulants, that at a feed rate of 3 l / h, the 

residence time in the calciner tube was too short to allow the denitration to occur so the smaller 

particles are not formed efficiently from the breakdown of larger particles, as molten nitrates bind the 

calcine together.  This is consistent with the observation that there was no significant difference 

observed in the fraction of small particles formed as a function of temperature throughout these 

experiments. 

 



 

242 

In Blend simulants, there was a decrease in the fraction of larger particles formed as a function of 

temperature.  This implies that the breakdown of the larger particles had begun to occur at a feed rate 

of 3 l / h.  This is in agreement with the observation of a lower residual nitrate in the calcine formed 

from Blend simulants, compared to Magnox, suggesting there will be a lower fraction of molten metal 

nitrates binding the calcine together.  As a result, the agglomeration of larger particles will occur more 

quickly, with an initial increase in the fraction of large particles formed at higher temperature due to 

more molten material being formed at high temperature (i.e. the temperature will be above the melting 

point of a higher fraction of the material in the calciner as it is increased), resulting in the increased 

dust carry-over observed.  However, due to the higher temperatures, denitration will also occur more 

rapidly causing the breakdown of these large particles to form the smaller, denser fraction of the 

calcine product.  This accounted for the differences observed in the behaviours of Magnox and Blend 

HAL simulants in the calcination process. 

 

6.3.3.2.3 The effects of feed rate 

 

At a feed rate of 2 l / h, the calcination of Magnox HAL simulant both with and without Li addition, 

there was a significant reduction in the amount of large particles formed than at feed rates of 3 l / h 

and 4 l / h, though an increase in dust carry-over was observed.  An increase in the amount of small 

particles formed was also observed (Table 6.11).  It is known that at a lower feed rate, the residence 

time at higher temperature effectively increases the as the position of the evaporative front in the 

calciner moves further up the calciner tube.  This will be affected more greatly by feed rate than Zone 

3 temperature, as set-points 1 and 2 were kept the same (400 oC) throughout these experiments.  As 

the evaporative front is further up the tube, the large particles will also be formed higher up the tube.  

The initial abrasion of larger particles, thought to be responsible for formation of the majority of the 

dust which is subsequently carried over to the off-gas system, would therefore occur initially, with 

further breakdown of the larger particles taking place due to the longer time in the hotter part of the 

tube where denitration processes occur.  The increase in dust carry-over will therefore be due to the 

longer residence time (as opposed to a larger amount of large particles forming due to higher 

temperature), allowing the rabble bar to break up a larger portion of the large particles, causing the 

formation of more dust. 
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Table 6.11 – Table showing the patterns of dust carry-over and the relationship with the 

different particle size calcine fractions for WRW17-RF when processed at 3 l / h through the 

small scale calciner 

  Zone 3 Temperature (oC) 
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6.3.3.3 The mechanism of dust creation and breakdown of calcine 

 

Taking together all of the analysis carried out on this series of small scale calciner experiments, the 

following observations can be made:  

 

 The dust appeared to have been mostly formed from the abrasive breakdown of larger calcine 

particles as the properties of large particles and dust were similar.  The density and 7Li NMR 

measurements suggested that a portion of the dust may also have been generated from carry-

over of the smaller calcine fraction with a particle size <0.5 mm. 

 As the increase in temperature causes an increase in large particles formed in the calcine (at 

feed rates of 3 l / h and above), the formation of large particles appeared to occur from the 

agglomeration of molten nitrates.  A higher fraction of the calcine will be molten at higher 

temperature, increasing the mass of large particles formed. 

 At low feed rates, a decrease in the large fraction of calcine collected was apparent, as well as 

an increase in small particles formed.  This implied a further breakdown of the larger particles 

was occurring as the effective residence time was increased.  This was thought to occur in a 

later process than that of dust formation. 

 The significant differences in both chemical and physical properties of the dust and smaller 

calcine particles suggested the majority of the dust was not formed in the same manner as 

these smaller, denser particles. 

 

With this information, it was possible to postulate a mechanism for the formation of larger particles 

and subsequent breakdown to initially form dust, which is carried to the off-gas system, followed by 

further reduction in particle size, increasing the portion of fines within the calcined product.  This 

involved four main processes (Figure 6.62): 

 

 Evaporation of the HAL simulant, resulting in a stage where molten nitrate hydrates are 

formed. 

 Molten nitrates are agglomerated to form large calcine particles. 

 The large particles undergo initial breakdown to form the dust which is transported to the off-

gas system. 

 As the large particles get smaller and increase in density due to further denitration, they 

breakdown further to form the smaller calcine fractions, the smallest of which will be carried 

to the off-gas system as dust. 
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Figure 6.62 shows a simplistic overview of these processes occurring within the calcine tube.  Each of 

these processes would not occur in its own distinct section of the calciner tube, but overlap due to the 

different conditions each individual particle experiences.  This is due to the process giving rise to 

different amounts of time spent against the heated calciner tube walls, resulting in the range of particle 

sizes and residual nitrates observed in the calcine product.  The section of the tube in which these 

processes take place will be highly dependent on the calcination conditions, such as temperature, feed 

rate and chemical composition of the HAL simulant.  

          

Direction of HAL feed and calcine flow 

 

     Air flow to off-gas system 

 

 

  Zone 1    Zone 2    Zone 3 

 

             Liquid HAL  Molten Nitrates              Large Particle      Small Particle        Dust 

 

 

 

 

 

 

 

 

 

 

Figure 6.62 – Schematic diagram of the postulated mechanisms from which dust and  

calcine particles could be formed within the small scale calciner tube 

 

As feed rates and calcination temperatures can be changed in the vitrification process, and the 

composition of the HAL simulants stored in the HAST’s at Sellafield are well researched, the parts of 

the tube in which these processes occur can be controlled.  Futher experiments, utilising the small 

scale calciner and VTR, could lead to a quantifiable model being produced showing how different 

feed rates and calcination temperatures impact on the calcination process and thus affect the amount 

of dust generated.  This is important in reducing the amount of downtime on WVP caused by 

blockages in the off-gas system. 
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6.4 CONCLUSIONS 

 

6.4.1 Freeze dryer experiments 

 

6.4.1.1 Blended HAL Simulant (WRW16) 

 

 On freeze drying of WRW16-RLF, Mg3RE2(NO3)12.24H2O, Al(NO3)3.9H2O and CPM were 

identified as the three crystalline components.  This suggested that Mg and RE nitrates react 

together in solution, with Al(NO3)3.9H2O not undergoing any reaction without heating. 

 

 After calcination at 350 oC for 10 minutes, Mg3RE2(NO3)12.24H2O was the only crystalline 

component remaining in the calcine. 

 

 At 550 oC, Mg3RE2(NO3)12.24H2O appeared to have decomposed, with the formation of 

poorly crystalline CeO2 being observed. 

 

 On addition of LiNO3, an unidentified product was formed, implying that LiNO3 reacts in 

solution with component(s) of the WRW16 HAL simulant.   

 

 After calcination at 550 oC, with the addition of LiNO3, the formation of BaCeO3 (or 

compound(s) with the same crystal structure) was observed.  This was thought to arise 

through the facilitation of oxidation reactions by LiNO3 acting as a molten salt. 

 

6.4.1.2 Magnox HAL Simulant (WRW17) 

 

 Mg3RE2(NO3)12.24H2O, Mg(NO3)2.6H2O and Al(NO3)3.9H2O were identified as the 

crystalline products present in the freeze dried product WRW17-RLF.  Although observed in 

the solution as a yellow precipitate, CPM was not observed in the XRD pattern, implying it 

was a minor component. 

 

 After calcination at 350 oC, Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O remained in the 

calcined product WRW17-RLF. 

 

 At 550 oC, Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O underwent decomposition, with the 

formation of CeO2 being observed. 

 

 LiNO3 appeared to undergo a reaction in solution resulting in the formation of a non-

crystalline phase. 

 

 The addition of LiNO3 appeared to promote the formation of CeO2 through the facilitation of 

oxidation reactions by LiNO3 acting as a molten salt. 
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6.4.2 Small scale calciner experiments 

 

6.4.2.1 Calcine analysis 

 

6.4.2.1.1 Effects of temperature 

 

 Increasing the Zone 3 set-point on the small scale calciner led to the formation of a higher 

fraction of the calcine being >2 mm in diameter in Magnox HAL simulant.  The calcine 

fraction <0.5 mm remained relatively unchanged as a function of temperature. 

 

 There was a reduction in the quantity of Mg3RE2(NO3)12.24H2O and Mg(NO3)2.6H2O in the 

calcine fraction <0.5 mm, indicating the temperature acting on the calcine was increased. 

 

 The calcine fraction >2 mm contained significant quantities of Mg3RE2(NO3)12.24H2O and 

Mg(NO3)2.6H2O at all Zone 3 temperatures (500, 600 and 700 oC) suggesting the core of the 

larger particles are subjected to much lower temperatures than those of the smaller particles. 

 

6.4.2.1.2 Effects of feed rate 

 

 Decreasing the feed rate increased the temperature experienced by the calcine. 

 

 At a feed rate of 2 l / h, there was a significant reduction in the quantity of large particles  

(>2 mm) formed in the calcine and a subsequent increase in the fraction <0.5 mm in diameter. 

 

6.4.2.1.3 Effects of LiNO3 addition 

 

 The addition of LiNO3 to Magnox HAL simulant resulted in a reduction in the amount of 

larger particles formed in the calcined product. 

 

 The smaller particles appeared to have undergone further reaction to form a larger quantity of 

CeO2, suggesting that LiNO3 acts as a molten salt, helping to facilitate oxidation reactions in 

the calcination process. 

 

6.3.2.1.4 Effects of simulant composition 

 

Blended HAL simulant (WRW16) behaved in the same manner as Magnox HAL simulant (WRW17) 

except for the following observations: 

 

 A much higher fraction of the particles were <0.5mm in diameter in the Blended HAL 

simulant than in Magnox, with a subsequent decrease in the larger fraction (>2mm). 
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 As the temperature was increased, there was a slight reduction in the amount of larger 

particles formed, suggesting the rabble bar breaks down Blended HAL simulant easier than 

Magnox. 

 

6.4.2.2 Dust analysis 

 

6.4.2.2.1 Effects of temperature 

 

 The amount of dust generated from small scale calcine experiments increases at higher Zone 

3 temperatures.  This correlated with an increase in the fraction of larger particles formed at 

higher temperatures. 

 

6.4.2.2.2 Effects of feed rate 

 

 An increase in the normalised dust carry-over was observed at lower feed rates, due to the 

increase in effective temperature experienced.  The actual dust carry-over values, however, 

were higher at increased feed rate due to the higher throughput of material through the 

calciner. 

 

6.4.2.2.3 Effects of LiNO3 addition 

 

 The addition of LiNO3 to Magnox HAL simulant significantly reduced the dust carry-over to 

the off-gas system on the small scale calciner. 

 

6.3.2.2.4 Effects of simulant composition 

 

 The processing of Blended HAL simulant (WRW16) produced a much higher dust carry-over 

than was observed from Magnox. 

 

6.4.2.3 Mechanism of dust carry-over 

 

 The normalised amount of dust generated in small scale calciner experiments increases as a 

function of increasing temperature and a reduction in feed rate. 

 

 The physical and chemical properties of the dust are similar in nature to that of the calcine 

fraction with a particle size >2 mm for Magnox HAL simulants. 

 

 The mechanism by which the dust is formed in the small scale calciner appeared to occur first 

by the abrasive breakdown of larger calcine particles, which creates the majority of the dust, 

followed by carry-over of the smallest calcine particles, making up a minor fraction of the 

dust. 
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6.5 FUTURE WORK 

 

Due to the issues with the small scale calciner (see Chapter 4), the effects of LiNO3 addition and feed 

rate on Blended HAL simulants (WRW16) were not investigated.  WRW16 appeared to behave 

differently in the calcination process than WRW17 (Magnox simulant), in that the particle size 

distribution of the calcine showed a preference for the formation of smaller particles, with an increase 

in dust carry-over also being observed.  This was the opposite of the behaviour exhibited by WRW17, 

which showed an increasing particle size as dust carry-over increased.  It would therefore be of 

interest to determine whether the addition of LiNO3 and changing feed rate has similar effects on the 

calcination properties of Blended HAL simulant as was observed for Magnox.   

 

A parameter which was not investigated in these experiments was the effects of residence time on 

calcine properties and dust formation.  This could be altered by changing the calciner tube angle, 

speeding up the flow by increasing the slope down the tube or increasing the time in the calciner by 

flattening the angle.  By changing the residence time in the tube, the amount of time spent undergoing 

each of the four main processes which could take place in the calciner (Figure 6.62) will also change.  

The effects of this on the calcine properties and dust carry-over could then be monitored. 

 

It was discovered that Mg3RE2(NO3)12.24H2O was one of the major products formed in full HAL 

simulants, with Al(NO3)3.9H2O remaining unreacted.  Therefore, further studies on the reactivity of 

Mg3RE2(NO3)12.24H2O with other components of the HAL would be beneficial to understanding the 

processes which occur in the calciner.  At higher temperatures (above 550 oC) RE oxides and 

complexes were identified in full HAL simulants (especially in Blend) aided in their formation by 

LiNO3 acting as a molten salt.  Hence, a series of systematic experiments, similar to those undertaken 

during this project, should be conducted using Mg3RE2(NO3)12.24H2O as a starting material and 

reacting this with other HAL components over a range of temperatres and acidities. 

 

Mg3RE2(NO3)12.24H2O was found to be the major crystalline component found in the dust samples 

for both Blend and Magnox HAL simulants.  The available evidence suggested that this phase was 

carried over in the dust, formed from the abrasive breakdown of the larger calcine particles.  

However, another possible way Mg3RE2(NO3)12.24H2O could be formed in the dust, other than direct 

carry-over, is through dissolution and re-nitration of the calcine, as steam and nitric acid vapour are 

constantly passed over the dust during the experiments.  Mg3RE2(NO3)12.24H2O could then precipitate 

out, accounting for its presence in the dust.  To determine the possibility of this occurring, the calcine 

fraction with a particle size <0.5 mm could be placed in a tube, with a combination of steam and nitric 

acid vapours passing over it for a period of 1 hour.  Subsequent analysis of this calcine would 

determine whether Mg3RE2(NO3)12.24H2O can be formed in this manner. 
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Previous work has suggested that Ru is preferentially carried over to the off-gas system through the 

volatilisation of RuO4.  Though a substantial amount of research has been undertaken in this area, it 

has not been previously possible to collect and analyse dust samples.  Therefore the measurement of 

Ru carry-over had been carried out by analysis of the dust scrubber and condenser liquors.  If Ru is 

volatile, there should be very little present in the dust, as it will be carried over separately in a gaseous 

phase.  A series of experiments on the small scale calciner, using full Ru containing HAL simulants, 

could provide conclusive evidence of the mechanism by which Ru is transferred from the calciner to 

the off-gas system. 

 

Looking towards future feed stocks, there is an increasing interest in the behaviour of POCO waste-

streams in the vitrification process.  In these experiments, Mo and Zr appeared to be preferentially 

carried to the off-gas system whilst processing Magnox simulants.  The calcination of Blend HAL 

simulant (higher in Zr and Mo) resulted in a higher dust carry-over being observed, suggesting that for 

POCO waste-streams, the dust carry-over could be very high.  This could result in blockages forming 

in the WVP plant off-gas system.  There would therefore be an interest in running a POCO simulant 

on the small scale calciner, under a range of varying conditions, to determine the severity of the dust 

carry-over, and how different temperatures and feed rates affect this.  The effects of the addition of 

LiNO3, or other additives/dilutants, on the dust carry-over would also be beneficial at a lab scale, so 

any potential issues on the full scale processing of POCO waste streams can be identified. 

 

The ultimate aim for this area of research is to be able to model the processes which occur in the 

WVP’s at Sellafield.  By building up the knowledge base surrounding calcination chemistry, and the 

effects this has on dust carry-over, it gives a good base for understanding how different parameters 

affect the vitrification of HAL.   
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7. Determination of Temperatures 

Experienced in the Calcination Process 
 

7.1 INTRODUCTION 

 

Previous work carried out in this study (Chapters 5 and 6) have shown that the temperatures 

experienced in the calcination process are dependent on feed rate, calcine particle size and 

temperature set points.  However, the range of temperatures experienced by the calcine in the 

calcination process on the small scale calciner, VTR and WVP plants under different conditions is 

currently unknown.  This work, therefore, focusses on using lab scale results over a range of 

temperatures and comparing them to small scale calciner experiments to try to determine the 

temperatures experienced in the calciner.  An experimental programme was also drawn up for a series 

of full scale experiments using the VTR. 

 

7.2 EXPERIMENTAL 

 

Work carried out on the short simulant PZN2 in Chapter 5 showed that at short reaction times (5-15 

mins), the kinetic products changed as a function of temperature.  The small scale calciner experiment 

showed that the temperature experienced by product PZN2 was also dependent on particle size.  

However, this short simulant would not be suitable to run pure on the VTR due to the corrosive nature 

of the PMA on the calciner tube.  Therefore, a number of dilutants were tried, with Al(NO3)3.9H2O 

proving the best due to its unreactive nature with both PMA and ZrO(NO3)2 and the fact that it is non-

crystalline after calcination between 200-550 oC (Pacewska and Keshr, 2002).  The simulant used in 

this series of experiments was therefore a mix of PZN2 and Al(NO3)3.9H2O solutions (subsequently 

known as APZN1) made by combining the following reagents sequentially: 

  

Table 7.1 – Simulant make-up for both freeze dryer and small scale calciner experiments 

 Reagent Freeze dryer Small scale calciner 

1 Al(NO3)3.9H2O 9.22 g 737.6 g 

2 PMA 8.04 g 643.2 g 

3 ZrO(NO3)2 solution (161 g/l) 7.31 g 584.8 g 

4 Distilled Water 62.92 g 5,033.6 g 

5 16M Nitric Acid  9.18 g   734.4 g  

6 Sugar Solution (200 g/l) 3.33 g 266.4 g 

 

These simulants were mixed thoroughly then left overnight before being calcined under the 

appropriate calcination conditions. 
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7.2.1 Freeze dryer experiments 

 

As in Chapters 5 and 6, freeze drying of the HAL simulants was utilised to simulate the relatively 

short residence times in the calcination process.  This was not possible using liquid samples because 

introducing the samples at the reaction temperature led to flash boiling and loss of the crucible 

contents.  The samples were therefore first freeze-dried, to remove water, then the resultant solid was 

placed in the furnace at temperatures of 400, 450 and 500 oC for 10 mins, shown to be the average 

residence time in the calciner (Brace, 2004).  This approach was thought to give a representative 

sample, since the freeze-drying simulated the action of calciner Zones 1 and 2 (without heating), and 

the furnace simulated the conditions in Zones 3 and 4.   

 

7.2.2 Small scale calciner experiments 

  

To bridge the gap between lab scale and VTR experiments, the small scale calciner was used to carry 

out a preliminary investigation on the effects of the temperature set-points in Zone 3 on the 

temperature experienced by the calcine.  The short simulant APZN1 was therefore calcined at a feed 

rate of 3 l / h with Zone 3 temperatures of 500, 600 and 700 oC through the small scale calciner.  The 

resultant calcine product was passed through sieves with pore sizes of 0.5 and 2 mm to divide it into 

three size fractions (<0.5 mm, 0.5-2 mm and >2 mm).  These products, as well as the dust captured 

during these experiments, were analysed and compared to the lab scale results to determine the 

temperatures experienced at the different Zone 3 set-points and by the calcine samples with differing 

particle sizes. 

 

7.3 RESULTS AND DISCUSSION 

 

7.3.1 Freeze dryer experiments 

 

XRD data from sample APZN1-400-10m (Figure 7.1) showed reflections attributable to PMA 

together with considerable diffuse scattering associated with additional non-crystalline phase(s).  

From previous experiments and available literature (Hagiwara et al., 1975; Pacewska and Keshr, 

2002), it is known that the decomposition products of ZrO(NO3)2 and Al(NO3)3.9H2O are amorphous 

after calcination at this temperature.  The weight loss achieved at 800 oC (prior to significant 

volatilisation of MoO3) was 16 wt%.  The weight loss profile showed a broad weight loss below  

300 oC, consistent with retention of a portion of the volatile inventory, associated with Al nitrate 

(Pacewska and Keshr, 2002), with very little weight loss occurring between 300-900 oC.  The weight 

loss above 900 oC can be attributed to the volatilisation of MoO3, in agreement with previous work 

(section 5.3.2.1.1) and available literature (Smolik et al., 2000).  These data are consistent with 

previous work carried out on short simulant PZN2 (section 5.3.2.2.1) which showed reflections 
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attributable to PMA were observed in the product after calcination at both 350 and 450 oC.  The 

reaction to form Zr(MoO4)2 did not occur after calcination for 10 minutes at 400 oC. 

 

Figure 7.1 – XRD analysis of samples APZN1-400-10m,  

APZN1-450-10m and APZN1-500-10m 

 

 

Figure 7.2 – TGA analysis of samples APZN1-400-10m,  

APZN1-450-10m and APZN1-500-10m 
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XRD analysis of product APZN1-450-10m (Figure 7.1), showed reflections characteristic of PMA 

were still present as well as extra reflections attributable to ZrO2, MoO3 and Zr(MoO4)2. Significant 

diffuse scattering was also present in the diffraction pattern.  The overall weight loss of product 

APZN1-450-10m at 800 oC was 13 wt% (Figure 7.2), with the weight loss profile being similar in 

nature to product APZN1-400-10m.  From these data it is possible to infer, for a residence time of 10 

minutes, that the partial decomposition of PMA to form MoO3 occurs between 400-450 oC, with 

further reaction between MoO3 and ZrO2 resulting in the formation of Zr(MoO4)2.   

 

The diffraction pattern of product APZN1-500-10m (Figure 7.1) showed reflections attributable to 

ZrO2, MoO3, and Zr(MoO4)2, in addition to significant diffuse scattering.  The reflections associated 

with ZrO2, MoO3, and Zr(MoO4)2 were much higher in intensity than after calcination at 450 oC for 10 

minutes.  There was a noticeable absence of reflections associated with PMA, suggesting complete 

decomposition had occurred.  TGA analysis of APZN1-500-10m is shown in Figure 7.2.  The TGA 

data demonstrated a weight loss of 9.3 wt% at 700 oC, with the weight loss profile again showing a 

broad weight loss below 300 oC.  This was in agreement with findings by Pacewska and Keshr (2002) 

showing some retention of the volatile inventory associated with dehydration and denitration of 

Al(NO3)3.9H2O under these calcination conditions.  Overall, these data showed PMA underwent 

complete decomposition to form MoO3 after calcination at 500 oC for 10 minutes.  ZrO2 and MoO3 

reacted together to form Zr(MoO4)2, although this reaction did not go to completion. 

 

From this series of experiments, it is possible to infer and conclude the following series of reactions: 

 Below 400 oC: PMA was the only crystalline species observed in the diffraction pattern, 

consistent with available literature (Hagiwara et al., 1975; Pacewska and Keshr, 2002) which 

showed the decomposition products of ZrO(NO3)2 and Al(NO3)3.9H2O are amorphous after 

calcination at this temperature.  This suggests no reaction occurred between PMA, ZrO(NO3)2 

and Al(NO3)3.9H2O under these calcination conditions. 

 Between 400-450 oC: Reflections associated with ZrO2, MoO3 and Zr(MoO4)2 are all 

observed in the diffraction pattern as well as some retention of the PMA starting material.  

This suggested that PMA underwent partial decomposition to form MoO3, which reacted 

further with ZrO2 to form Zr(MoO4)2.  The decomposition product of Al(NO3)3.9H2O 

remained non-crystalline in nature. 

 Between 450-500 oC: Reflections attributable to ZrO2, MoO3 and Zr(MoO4)2 showed 

increased intensity.  PMA was not observed in the XRD pattern, showing complete 

decomposition had occurred.  Further reaction between MoO3 and ZrO2 has occurred, though 

the reaction had not gone to completion after calcination at 500 oC for 10 minutes. 

 

Using these data, we can estimate the temperature ranges experienced in the small scale calciner and 

full scale VTR and WVP processes under variable conditions can be determined. 
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7.3.2 Small scale calciner experiments 

  

Table 7.2 shows the masses of the calcine and dust collected for short simulant APZN1 calcined under 

various conditions using the small scale calciner.  The expected weights were calculated by first 

calculating the total waste oxide throughput during the experiment, then taking into account residual 

weight loss values (measured by TGA analysis) for each of the calcine size fractions (Table 7.3) and 

weighting the values accordingly (see section 6.2.2.1).  The dust collection was normalised by 

working out a percentage dust carry-over against the actual weight of calcine collected thus allowing 

comparisons to be made on the effects of changing temperature and feed rate on the dust carry-over 

from the calciner to the off-gas system. 

 

Table 7.2 – Mass of calcine and dust products collected 

Sample 

Expected  

Weight 

(g) 

Actual 

Weight 

(g) 

Amount of 

Dust Collected 

(g) 

Dust 

Collected 

(wt%) 

APZN1-SSC-500 355.05 314.73  18.74 5.95 

APZN1-SSC-600 329.83 275.52  20.16 7.32 

APZN1-SSC-700 326.20 252.38 27.11 10.33 

 

There is a notable discrepancy between the combined mass of calcine and dust collected to the 

expected yield for these experiments.  This could be attributed to a higher dust carry-over, as not all of 

the dust generated during these experiments will have been collected.  This is due to the design of the 

small scale calciner, in which the dust must pass through the upper end fitting before getting to the 

flexible hose and dirt trap from which the dust samples were collected.  Therefore, some dust could 

not be recovered during these experiments.  However, a representative yield was thought to be 

recovered, allowing trends to be recognised (e.g. higher dust levels observed at higher temperatures). 

 

Table 7.3 – Size fractions of product APZN1 calcined under varying conditions 

Sample 
Fraction above  

2 mm  

Fraction between  

0.5 – 2 mm 

Fraction below 

0.5 mm 

APZN1-SSC-500 0.22 0.68 0.10 

APZN1-SSC-600 0.20 0.61 0.19 

APZN1-SSC-700 0.25 0.38 0.37 
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Table 7.2 showed that there was an increase in the dust carry-over as a function of increasing 

temperature whilst processing simulant APZN1 on the small scale calciner.  This correlated with an 

increase in the fraction of particles <0.5 mm in diameter (Table 7.3), suggesting the formation of 

small particles played a significant role in the creation of dust carried to the off-gas system.  There 

was a subsequent fall in the fraction of calcine produced with a particle size between 0.5-2 mm due to 

the increase in small particles formed, with the fraction >2mm showing no significant differences.  

This differed from the trends observed from the calcination of Magnox simulants (WRW17) but did 

show some similarities to Blended simulants (WRW16) which are higher in Mo and Zr.  This implies 

that ZrO2, MoO3 and Zr(MoO4)2 were more easily broken down to form smaller particles than the full 

HAL simulants and therefore significantly contribute to the dust generated through this process.  This 

is also a possible explanation for the elevated levels of Mo and Zr in the dust formed in the full HAL 

simulant experiments. 

 

7.3.2.1 Calcine Analysis 

 

Figure 7.3 shows the particle size fractions collected as a function of temperature.  This showed that 

an increase in the mass fraction of particles <0.5 mm was observed as the Zone 3 temperature was 

increased.  The particle size range 0.5-2 mm showed a general decrease in the mass fraction at higher 

calcination temperature, due to the increase in smaller particles in the product.  There was no specific 

trend observed of the mass of the >2 mm particle size range collected, with the values for 500 and  

700 oC being similar.  A 5 % error has been assigned to each of the values to account for the residual 

calcine which will be left in the calciner tube during these experiments.  This value was taken from 

previous small scale calciner trials which showed a 95 % mass recovery was observed (Brace, 2004), 

and is the same as used in the small scale calciner experiments in Chapter 6. 

 

Figure 7.3 – Particle size fractions from product APZN1  

calcined at 500-700 oC at a feed rate of 3 l / h 
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XRD analysis of APZN1 calcined at 500 oC with particle sizes <0.5 mm (Figure 7.4) showed 

reflections associated with PMA, with significant diffuse scattering, indicating the presence of non-

crystalline component(s) also being observed.  This is consistent with previous experiments and 

available literature (Hagiwara et al., 1975; Pacewska and Keshr, 2002), which showed the 

decomposition products of ZrO(NO3)2 and Al(NO3)3.9H2O are amorphous after calcination at this 

temperature.  TGA analysis of APZN1-SSC-500 (Figure 7.4) showed a total weight loss of 16 wt% at 

800 oC.  The weight loss profile of product APZN1-SSC-500 showed a distinct weight loss at 100 oC, 

associated with dehydration of PMA (Tatibouet et al., 1997) with a further gradual weight loss taking 

place between 200-700 oC, attributable to the partial dehydration and denitration of Al(NO3)3.9H2O to 

form Al2O3 (Pacewska and Keshr, 2002).  Further weight loss above 900 oC, associated with the 

volatilisation of MoO3 (Smolik et al., 2000), was also observed.  These data suggested that product 

APZN1 calcined with a Zone 3 temperature of 500 oC using the small scale calciner and with a 

particle size <0.5 mm experiences a temperature of approximately 400 oC, assuming a residence time 

of 10 minutes (Brace, 2005a).  This is consistent with the freeze dryer experimental results, which 

showed PMA was the only identifiable crystalline component in product APZN1-400-10m with an 

observed weight loss of 16 wt%.  This was identical to product APZN1-SSC-500 with a particle size 

<0.5 mm. 

 

 

Figure 7.4 – XRD and TGA analysis of product APZN1-SSC-500, 

APZN1-SSC-600 and APZN1-SSC-700 with a particle size of <0.5 mm 
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Figure 7.5 - XRD and TGA analysis of product APZN1-SSC-500, 

APZN1-SSC-600 and APZN1-SSC-700 with a particle size of >2 mm 

 

XRD analysis of APZN1 products calcined at 600 and 700 oC with particle sizes <0.5 mm (Figure 

7.4) showed reflections attributable to ZrO2, MoO3 and Zr(MoO4)2, with some diffuse scattering 

observed, indicating the presence of non-crystalline component(s).  These reflections showed 

increased intensity at higher temperature.  There was a notable absence of reflections associated with 

PMA in the diffraction pattern.  TGA analysis of APZN1-SSC-600 and APZN1-SSC-700 (Figure 7.4) 

showed total weight losses of 5.9 wt% and 4.6 wt% respectively at 800 oC.  The weight loss profiles 

showed a gradual weight loss taking place between 100-700 oC attributable to the partial dehydration 

and denitration of Al(NO3)3.9H2O to form Al2O3 (Pacewska and Keshr, 2002) with further weight loss 

above 900 oC, associated with the volatilisation of MoO3 (Smolik et al., 2000), also being observed.  

There was an absence of the distinct weight loss at 100 oC, associated with dehydration of PMA, 

consistent with the absence of reflections attributable to PMA in the XRD pattern.  These data 

suggested that product APZN1-SSC-600 with a particle size <0.5 mm experiences a temperature of 

between 450-500 oC, again assuming the residence time in the small scale calciner was approximately 

10 minutes (Brace, 2005a).  The freeze dryer experimental results for product APZN1-500-10m 

showed an absence of reflections associated with PMA and a total weight loss of 9.3 wt% at 800 oC.  

However, the XRD pattern for sample APZN1-SSC-600 showed lower intensity reflections 

attributable to ZrO2, MoO3 and Zr(MoO4)2 than for product APZN1-500-10m, suggesting the 

temperature experienced was lower than 500 oC, despite the total weight loss being lower.  This could 

have been due to adsorption of atmospheric water, after calcination, in the freeze dryer experiments 

and would explain the discrepancy between the XRD and TGA results for product APZN1-SSC-600 

compared to APZN1-500-10m.  Product APZN1-SSC-700 with a particle size <0.5 mm appeared to 

experience temperatures above 500 oC, shown by the high intensity reflections in the diffraction 

pattern and the low weight loss of 4.6 wt% in the TGA analysis. 
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At particle sizes >2 mm in diameter, relatively intense reflections attributable to PMA were observed 

in the XRD patterns of products APZN1 calcined with Zone 3 temperatures 500, 600 and 700 oC at a 

constant feed rate of 3 l / h using the small scale calciner (Figure 7.5).  These reflections essentially 

accounted for all of the reflections shown in the diffraction pattern of product APZN1-SSC-500, but 

products APZN1-SSC-600 and APZN1-SSC-700 also showed reflections associated with ZrO2, MoO3 

and Zr(MoO4)2, with these becoming more intense at increasing temperature.  Strong diffuse 

scattering was also apparent showing the presence of non-crystalline component(s), consistent with 

previous experiments and available literature (Hagiwara et al., 1975; Pacewska and Keshr, 2002), 

which showed the amorphous nature of the decomposition products of ZrO(NO3)2 and Al(NO3)3.9H2O 

after calcination at this temperature.  TGA analysis of products APZN1-SSC-500, APZN1-SSC-600 

and APZN1-SSC-700, with particle sizes >2 mm, showed weight losses of 45 wt%, 42 wt% and  

40 wt% respectively at 800 oC.  The weight loss profiles all demonstrated three weight loss events: a 

small weight loss at 100 oC, associated with dehydration of PMA (Tatibouet et al., 1997); an event 

between 200-500 oC, typical of partial dehydration and denitration of Al(NO3)3.9H2O (Pacewska and 

Keshr, 2002); and a third weight loss above 900 oC, attributable to the volatilisation of MoO3 (Smolik 

et al., 2000).  TGA results are consistent with the presence of PMA being observed in the diffraction 

patterns of APZN1-SSC-500 and APZN1-SSC-600, with a significant portion of the volatile 

inventory, attributable to the decomposition products of ZrO(NO3)2 and Al(NO3)3.9H2O, remaining in 

the products with a particle size >2 mm.  These data suggest that a portion of the calcine with a 

particle size >2 mm experiences temperatures well below 400 oC, shown by the large weight loss of 

the calcine.  However, in products APZN1-SSC-600 and APZN1-SSC-700, the XRD pattern showed 

weak reflections attributable to ZrO2, MoO3 and Zr(MoO4)2, showing the outer surface of the calcine 

experienced temperatures of at least 400 oC, possibly up to 500 oC.  This was to be expected, as only 

the outer surface of the calcine particles will come into contact with the heated calciner tube walls, 

which would result in the core of the calcine particles (especially the larger particles) experiencing a 

much lower temperature than the surface.  
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From these experiments, it is possible to infer and conclude the following: 

 

 With Zone 3 temperature set at 500 oC, the small calcine particles (<0.5 mm) experience 

temperatures of approximately 400 oC in the small scale calciner.  The bulk of the material 

within the larger particles (>2 mm) appeared to experience temperatures much lower than  

400 oC, due to the fact that only the surface of the particle comes into contact with the heated 

calciner walls. 

 At a Zone 3 temperature of 600 oC, the calcine fraction <0.5 mm experiences a temperature of 

between 450-500 oC, shown by the absence of PMA in the diffraction pattern but the low 

intensity of reflections attributed to other components.  Larger particles showed weak 

reflections associated with ZrO2, MoO3 and Zr(MoO4)2, indicating the surface of the particles 

experience temperatures in the region of 450 oC, though the core will experience much lower 

temperatures, shown by the high portion of the volatile inventory remaining in the product. 

 At a Zone 3 temperature of 700 oC, the smaller particles appear to experience temperatures 

above 500 oC.  The larger particles also showed signs of being partially subjected to 

temperatures in the region of 500 oC, suggesting the surface of the calcine fraction >2 mm 

experiences similar temperatures to the smaller particles, but the core appears to remain 

relatively cold, holding on to a significant portion of the hydrate and nitrate inventory. 

 7.3.2.2 Dust Analysis  

 

There was an increase in the mass of dust collected in the off-gas system as the calcination 

temperature was increased whilst processing APZN1 through the small scale calciner.  The mass 

values were normalised by conversion to a percentage of the actual yield so they could be compared.  

This gave a range of dust carry-over values of 5.95 wt%, 7.32 wt% and 10.33 wt% after calcination at 

500, 600 and 700 oC respectively (Figure 7.6).  This showed an increase in dust carry-over as a 

function of increasing temperature.  This was in correlation with an increase in the calcine fraction 

with a particle size <0.5 mm, suggesting dust is formed, at least partially, from this size fraction.  As 

with the calcine, a 5 % error was associated with the collection of dust from the small scale calciner to 

take into account the fact that not all of the dust would be recovered in these experiments. 
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Figure 7.6 – Dust collected as a percentage of the expected yield  

from products APZN1 calcined between 500-700 oC at a feed rate of 3 l / h 

 

XRD analysis of the dust sample produced from APZN1 calcined at 500 oC (Figure 7.7), at a feed rate 

of 3 l / h, showed reflections attributable to PMA, with strong diffuse scattering showing the presence 

of non-crystalline component(s).  This is consistent with the decomposition products of 

Al(NO3)3.9H2O and ZrO(NO3)2 being amorphous (Hagiwara et al., 1975; Pacewska and Keshr, 2002).  

After calcination at 600 and 700 oC, reflections attributable to PMA remained, with reflections 

associated with ZrO2, MoO3 and Zr(MoO4)2 becoming more intense at higher calcination temperature.  

TGA analysis of the dust samples created from products APZN1-SSC-500, APZN1-SSC-600 and 

APZN1-SSC-700 showed weight losses of 28 wt%, 27 wt% and 22 wt% respectively at 800 oC.  

These values were lower than those observed in the calcine particles with a diameter >2 mm but 

higher than seen in the smaller particles (<0.5 mm). The weight loss profiles all demonstrated three 

weight loss events: a small weight loss at 100 oC, associated with dehydration of PMA (Tatibouet et 

al, 1997); an event between 200-500 oC, typical of partial dehydration and denitration of 

Al(NO3)3.9H2O (Pacewska and Keshr, 2002); and a third weight loss above 900 oC, attributable to the 

volatilisation of MoO3 (Smolik et al., 2000).  These data suggest that the composition of the dust 

produced from the calcination of product APZN1 between 500-700 oC was made up from component 

material from both small and large calcine particles.  The XRD pattern for product APZN1-SSC-600 

showed both PMA and the other components which make up the smaller particles (ZrO2, MoO3 and 

Zr(MoO4)2) and the TGA values are between the values observed for the particles >2 mm and  

<0.5 mm, which imply the dust as formed from a combination of these fractions.  This is consistent 

with the mechanism for dust formation postulated in chapter 6 for full HAL simulants, in which firstly 

the larger particles (>2 mm in diameter) are broken down followed by further breakdown to smaller 

calciner particles, of which the smallest (less than 0.1 mm in diameter) are carried over to the off-gas 

system.   
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Figure 7.7 – XRD analysis of products APZN1-SSC-500,  

APZN1-SSC-600 and APZN1-SSC-700 dust samples 

 

 

Figure 7.8 – TGA analysis of products APZN1-SSC-500,  

APZN1-SSC-600 and APZN1-SSC-700 dust samples 
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Figure 7.9 shows the TGA and XRD results for product APZN1-SSC-600 for the calcine fractions 

<0.5 mm and >2 mm, comparing them to the dust sample.  The XRD pattern for the dust sample 

showed reflections attributable to PMA, ZrO2, MoO3 and Zr(MoO4)2, whereas the calcine sample with 

a particle size >2 mm only showed reflections attributable to PMA and the fraction <0.5 mm showed 

reflections associated with ZrO2, MoO3 and Zr(MoO4)2, with no PMA being observed.  This 

suggested the dust comprised a mix of these calcine fractions being carried over to the off-gas system.  

It should be noted, that a different form of PMA was observed in the calcine than was found in the 

dust.  The PMA in the dust sample appeared to contain 30 water molecules compared to the 14 in the 

calcine sample, shown by the differences in the diffraction patterns.  The fact that the PMA in the dust 

is more hydrated than in the calcine can be explained by the fact that steam is constantly passed over 

the dust sample as it is being collected, allowing adsorption to take place.  The TGA results (Figure 

7.9) also supported the hypothesis that the mechanism for dust formation comes from both the larger 

and smaller particles, with the total weight loss of the dust sample being approximately half way 

between the two calcine fractions, despite the PMA containing more water.  The weight loss profile of 

the dust showed a more rapid weight loss below 200 oC, associated with the dehydration of the PMA, 

consistent with the XRD findings.  These data suggest that dust is formed initially from the abrasive 

breakdown of larger particles (>2 mm) followed by further breakdown to form smaller particles, 

which have experienced higher temperatures and therefore undergone further reaction, the smallest of 

which are transported to the off-gas system.  This is in agreement with the mechanism postulated in 

Chapter 6 for full HAL simulants. 

 

 

 

Figure 7.9 - XRD and TGA analysis of product APZN1-SSC-600 dust sample  

and calcine with particle sizes <0.5 mm and >2 mm 
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From these experiments, it is possible to infer and conclude the following: 

 

 An increase in dust carry-over to the off-gas system was observed at increasing temperature, 

in correlation with an increase in the formation of smaller particles (<0.5 mm) in the calcine. 

 XRD and TGA analysis showed the presence of PMA, ZrO2, MoO3 and Zr(MoO4)2 in the dust 

samples taken for product APZN1 calcined at 500, 600 and 700 oC.  PMA is not present in the 

small particles after calcination through the small scale calciner with a Zone 3 temperature of 

600 and 700 oC, thus implying that dust is partially formed from the abrasive breakdown of 

larger calcine particles.  However, the fact that the increasing dust correlates with an increase 

in smaller particles and the XRD pattern showing higher levels of ZrO2, MoO3 and Zr(MoO4)2 

in the dust than in the larger particles suggest the smaller, further reacted particles also play a 

role in the formation of dust carried over to the off-gas system. 

 The mechanism for dust formation is in agreement with that postulated for dust generation for 

the full HAL simulants (Chapter 6). 

 

7.3.3 Discussion 

 

When short simulant APZN1 was freeze dried, followed by calcination at 400, 450 and 500 oC for 10 

minutes, the reaction between PMA and ZrO(NO3)2 yielded different products at these various 

temperatures.  Using these results, knowing that the approximate residence time in the small scale 

calciner is 10 minutes (Brace, 2005a), the temperatures experienced in the calciner at different Zone 3 

set-points were determined (Table 7.4).  This showed that as the temperature was increased, the 

higher the temperature experienced by the calcine became for particles of all sizes.  However, in the 

calcine fraction >2 mm, the core of the particle appeared to experience temperatures much lower than 

the calciner set-points, shown by the high total weight loss values in the TGA analysis, due to the fact 

that only the surface of the particle would have come into contact with the heated calciner wall.  Due 

to this fact, the surface of all of the particles appear to experience similar temperatures, though the 

random nature of the path of the calcine particles through the heated tube will mean each individual 

particle spends varying amounts of time in contact with the heated calciner walls. 

 

Table 7.4 – Temperatures experienced in the small scale calciner 

 Zone 3 Temperatures (oC) 

Particle Size 500 600 700 

<0.5 mm ~400 450-500 >500 

>2 mm (surface) ~400 450-500 >500 

>2 mm (core) <400 <400 <400 
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The mechanism by which the dust was formed during the calcination of short simulant APZN1 in the 

small scale calciner appeared to be the same as for the full HAL simulants processed in Chapter 6.  

This was shown by the fact that reflections associated with PMA, ZrO2, MoO3 and Zr(MoO4)2 were 

all present in the XRD patterns for the dust samples whereas the calcine sample with a particle size 

>2 mm only showed reflections attributable to PMA and the fraction <0.5 mm showed reflections 

associated with ZrO2, MoO3 and Zr(MoO4)2, with no PMA being observed.  The TGA results (Figure 

7.9) also supported the hypothesis that the mechanism for dust formation comes from both the larger 

and smaller particles, with the total weight loss of the dust sample being in the middle of the calcine 

fractions >2 mm and <0.5 mm.  The evidence therefore suggested that dust was formed initially from 

the abrasive breakdown of larger particles (>2 mm) followed by further breakdown to form smaller 

particles, which are transported to the off-gas system.  This supported the mechanism postulated in 

Chapter 6 for the generation and transportation of dust to the off-gas system in the small scale 

calcination process. 

 

The determination of the temperatures experienced in the calcination process is important to allow a 

conceptual model to be proposed of the processes which occur in the calciner.  As the extent of 

reactions in the calcination process is highly dependent on temperature, controlling the temperature 

experienced by the calcine is an important parameter of the vitrification process.  As the small scale 

calciner is different to the full scale VTR, there are limitations to this work.  However, future 

experiments on the VTR (outlined in section 7.5.3) could provide a comparison between these two 

processes, possibly allowing SSC experiments to be run in the place of VTR experiments, resulting in 

a large cost saving. 

 

7.4 CONCLUSIONS 

 

7.4.1 Temperature experienced in the calcination process 

 

 When running the small scale calciner with Zone 1 and 2 temperatures of 400 oC and a Zone 3 

temperature of 500 oC, at a feed rate of 3 l / h, the temperature experienced by the calcine 

fraction <0.5 mm was approximately 400 oC.   

 

 When the Zone 3 temperature was increased to 600 oC, the temperature experienced by the 

calcine rose to between 450-500 oC. 

 

 At a Zone 3 temperature of 700 oC, the calcine experienced a temperature above 500 oC. 

 

 The larger calcine fraction (>2 mm) appeared to experience temperatures similar to the 

smaller particles at the surface but much lower than 400 oC in the core of the particle at all 

Zone 3 temperatures between 500 – 700 oC. 
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7.4.2 Dust generation in the small scale calciner 

 

 The formation of dust increased as a function of increasing temperature, which correlated 

with an increase in the formation of small calcine particles. 

 

 The mechanism by which dust was generated was firstly by abrasive breakdown of the larger 

particles, followed by further breakdown and reaction to form smaller particles, the smallest 

of which were carried to the off-gas system.  This was in agreement with the mechanism 

postulated in Chapter 6. 

 

7.5 FUTURE WORK 

 

7.5.1 Further freeze dryer experiments 

 

In order to more accurately determine the temperature experienced by the calcine in the small scale 

calciner (and ultimately the VTR), the freeze dried product APZN1 could be calcined in steps of 10 oC 

(410, 420, 430 oC etc) to narrow the temperature range in which the small scale calciner products are 

being compared to.  This would allow the temperatures at which ZrO2, MoO3 and Zr(MoO4)2 

crystallise to be more accurately observed by XRD analysis.   

 

7.5.2 Further small scale calciner experiments 

 

As this work was an initial investigation, only the effects of Zone 3 set-points on the effect of the 

temperature experienced took place.  Further experiments could therefore be carried out varying the 

feed rate, tube angle (residence time) and simulant composition, to determine whether these factors 

have any effect on the temperature experienced by the calcine.  It is possible that differing simulant 

composition will affect the temperature experienced in the core of the larger particles, either by being 

easier to break down to smaller particles or allowing better thermal conductivity through the calcined 

product.   

 

7.5.3 VTR experimental proposal 

 

To allow the temperatures experienced by the calcine on the VTR to be monitored, the APZN1 short 

simulant could be processed at a range of Zone 3 and 4 temperatures on the full scale facility and 

compared to results obtained from freeze drying and small scale calciner experiments.   
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The primary aims of this short simulant trial would be to:   

 

 Monitor the effects of Zone 3 and 4 set-points on the temperature experienced by the calcine 

in the calcination process.   

 Allow better understanding of the effects of temperature to be carried forward for future VTR 

and WVP campaigns.   

 

Completion of this experiment would allow a better understanding of the temperature experienced by 

the calcine in the tube at a range of calciner set-points.  It could also help with setting up zone 3 and 4 

set-points in future VTR and WVP campaigns to allow better control of the reactions occurring in the 

calcination process.  Lab scale trials have shown that both the residence time and temperature of the 

calciner will have an effect on the reactions which occur, greatly changing the chemical structure of 

the calcine product.  As monitoring the temperature within the calciner tube on the VTR calciner is 

very difficult, running the short simulant on the VTR will give valuable insight into the temperatures 

which are experienced by the calcine in the full scale process.  This will be done by analysing the 

calcine produced and comparing the results with those obtained in the lab scale trials.  By comparing 

VTR, small scale calciner and bench top prepared calcines, a link could be made to the differences in 

the samples due to scale-up issues.   

 

The short simulant APZN1 has been chosen due to the change in chemical composition which takes 

place after calcination over a range of different temperatures.  These changes can be seen in the XRD 

analysis (Figure 7.10) with the diffraction patterns changing as a function of temperature.  This would 

allow the approximate temperature experienced by the calcine in the calciner to be measured.  

 

 

Figure 7.10 – XRD analysis of APZN1 at a range of temperatures 
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A range of Zone 3 and 4 temperatures have been chosen, at the high and low end of the workable 

range of calciner settings, to monitor the effects of temperature on the reactions which occur in the 

calciner.  At the start of the experiment, zones 3 and 4 will be set to 550 oC as this is as low a 

temperature as the calciner is likely to be run at on WVP without the risk of causing blockages in the 

calciner.  Once the calciner has settled, the short stimulant LAMN1 (Table 1) will be fed at 40 litres 

per hour to give a waste oxide throughput of 3600 g per hour.  This will be run for 1.5 hours (1 hour 

for the calciner to reach equilibrium and 0.5 hours to take a sample) before the calciner is switched to 

water feed and the Zone 3 and 4 setpoints turned up to 600 oC.  The cycle will then be repeated at 

Zone 3 and 4 setpoints of 650 oC, 700 oC and 750 oC.  To run this experiment on the VTR it will take 

approx 15 hours, 1.5 hours of HAL feed for each of the 5 different Zone 3 and 4 setpoints and 1.5 

hours for the calciner to settle in water feed at each of the temperatures.  Feeding at 40 litres per hour 

for 7.5 hours of HAL feed will require 300 litres of simulant.  An extra 80 litres is also required to 

allow the feed to be taken from the feed tank, giving a minimum simulant requirement of 380 litres to 

run this experiment. 

 

Table 7.5 – Composition of short simulant APZN1 (400 litres) 

Chemical 
Concentration  

(g / l) 

Total Required  

(kg) 

Phosphomolybdic  

Acid 
80.40 32.16 

Aluminium Nitrate 

Nonahydrate 
92.20 36.88 

Zirconyl  

Nitrate 
11.77 4.707 

 

To make up this simulant the following solutions should be ordered from Johnson Matthey:   

 

 68.875 litres of PMA (466.9342 g / l) solution in nitric acid24.   

 331.125 litres of aluminium nitrate (111.3779 g / l) and zirconyl nitrate (14.2152 g / l) 

combined solution in nitric acid.   

 When the solutions are combined they should be at an acidity of 1.8 M.

                                                           
24 This is the same PMA solution concentration as is currently ordered from Johnson Matthey for WRW16 HAL 

simulant for use on the VTR. 
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 8.  Project Impact 
 

 

8.1 INTRODUCTION 
 

This chapter brings together all of the research detailed in this thesis and discusses the industrial 

relevance of the findings, a key differentiator between EngD and PhD projects.  The initial scope of 

this project was aimed at reducing the amount of blockages which would occur on WVP.  Reducing 

the amount of downtime on WVP would assist Sellafield Ltd in meeting the targets of lowering the 

HLLW stocks set by the NII (Bradshaw et al., 2007).  The approach taken throughout this thesis was 

to attempt to understand the chemical processes which take place in the calciner, resulting in the 

formation of dust from which these blockages arise.  Accordingly, two areas are discussed: the effects 

this work could have on future running of the VTR and WVP; and the benefits to NNL and Sellafield 

Ltd of the small scale calciner rebuild. 

 

8.2 PROJECT SUMMARY AND BENEFITS TO WVP 

 

8.2.1 Simulant composition 

 

The work carried out in Chapter 6 showed that the major crystalline components present in Blend 

HAL simulant solution, without heat treatment, were Mg3RE2(NO3)12.24H2O, Al(NO3)3.9H2O and 

CPM.  The same components were identified in Magnox HAL simulant with the addition of 

Mg(NO3)2.6H2O due to the high concentration of Mg present in the simulant.  This accounts for most 

of the elements present in high concentrations, except for Zr, which must have been present in a non-

crystalline form, consistent with freeze-drying work carried out in Chapter 5. 

 

On addition of LiNO3 to Blend HAL simulant an additional reflection was present in the diffraction 

pattern and there was a notable absence of reflections attributable to LiNO3, suggesting a reaction had 

occurred in solution.  However, this was unidentifiable due to the complexity of the XRD pattern.  In 

Magnox HAL simulants, the addition of LiNO3 showed no change to the diffraction pattern, 

suggesting it had reacted (due to the fact that no reflections associated with LiNO3 were observed by 

XRD) but the product was either non-crystalline in nature or present in a quantity such that it was 

obscured by the more intense reflections in the XRD pattern.  This was backed up by work carried out 

in Chapter 5, which showed LiNO3 had reacted with PMA and ZrO(NO3)2 in solution. 

 

The reactivity of LiNO3 in solution was previously unknown as analysis of freeze dried material had 

not been carried out.  This gives an idea of which species are present in both Blend and Magnox HAL 

simulants before calcination.  This adds to the knowledge base surrounding the calcination process, 

allowing for more accurate models to be postulated by WVP in the future. 
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8.2.2 The effects of lithium nitrate addition 

 

Historically, it had been noted that LiNO3 acts as a binding agent in the calciner, thus aiding the 

reduction of dust carry-over to the off-gas system (Magrabi, 1981).  However, these studies suggested 

that LiNO3 both acts as a molten salt, facilitating oxidation reactions and (at least partially) reacts in 

solution and during the calcination process.  This was shown to be the case in both sort simulants 

(Chapter 5) and in the full HAL simulants (Chapter 6). 

 

The addition of LiNO3 had a significant effect on the amount of dust carried over during the 

processing of Magnox HAL simulant on the small scale calciner rig (Chapter 6).  This showed a 

reduction in dust carry-over of from 3.50 wt% (without Li addition), down to 2.40 wt% on the 

addition of LiNO3.  This could be due to the fact that LiNO3 facilitates oxidation reactions, thus 

increasing the density of the calcine.  As the movement of dust in a constant air-flow is known to 

depend on both particle size and density (Dong et al., 2003), this increase in density would be 

expected to cause a reduction in dust carry-over.  It is likely that this is combined with the fact that 

LiNO3 has a melting point of 255 oC and therefore is molten in the calcination process, helping 

binding the calcine together (Magrabi, 1981), thus reducing dust carry-over to the off-gas system. 

 

Work carried out in Chapter 5 showed that the addition of LiNO3 stopped the formation of Zr(MoO4)2 

in the calcination process, preferably forming Li2Zr(MoO4)3 in the short simulant LPZN1.  A separate 

study, carried out in parallel by Taylor et al. (2014), showed the the addition of LiNO3 to ZMH 

resulted in the formation of Li2MoO4 and ZrO2, again showing that the formation of Zr(MoO4)2 (or it 

hydrated form, ZMH) would not occur in the presence of LiNO3.  This is evidence that ZMH, the 

major cause of blockages in the off-gas system, is formed in the dust scrubber and is not directly 

carried over from the calciner. 

 

These observations show that the addition of LiNO3 has a significant impact on dust carry-over, in 

agreement with previous studies (Magrabi, 1981; Brace, 2005b; Vickers, 2006a).  However, there is a 

better understanding of the different ways in which LiNO3 aids the reduction of dust generation in the 

calciner.  This will again aid in the postulation of an overall model of the processes and the variety of 

species which are formed during calcination. 

 

8.2.3 Temperatures experienced in the calciner 

 

The determination of temperatures experienced in the calcination process was carried out on the small 

scale calciner using short simulant APZN1, shown in Chapter 7.  This work showed that the 

temperature experienced is highly dependant on particle size as only the surface comes into contact 

with the heated calciner tube wall (Table 8.1).   

 

 



 

271 

Table 8.1 – Temperatures experienced in the small scale calciner 

 Zone 3 Temperatures (oC) 

Particle Size 500 600 700 

<0.5 mm ~400 450-500 >500 

>2 mm (surface) ~400 450-500 >500 

>2 mm (core) <400 <400 <400 

 

The small calcine particles (<0.5 mm in diameter) effectively appeared to experience a uniform 

temperature throughout the calcine particle due to their small size, with this temperature being 

dependant on the Zone 3 set-point (Table 8.1).  The larger calcine particles (>2 mm in diameter), 

however, appeared to experience much lower temperatures within the core of each particle (Table 

9.1), caused by the fact that only the surface of the particle contacts the calciner tube.   

 

As this work was carried out on the small scale calciner, scale-up issues must be taken into account 

when applying this to WVP.  Therefore, it is suggested that a similar series of experiments should be 

carried out on the VTR, as outlined in section 7.5.3.  Using this information, a more accurate model of 

the processes which occur during calcination could be proposed.  This had not been possible in 

previous studies as there is no current method of measuring temperatures within the calciner tube on 

both the small scale calciner, VTR or WVP, and no studies of this type had been considered. 

 

8.2.4 Conceptual model of dust generation 

 

From the work carried out in Chapter 6, a conceptual model for the processes which occur in the 

calciner tube was proposed (section 6.3.3.3).  This postulated that there are four main processes which 

occur during calcination: 

 

 Evaporation of the HAL simulant, resulting in a stage where molten nitrate hydrates are 

formed. 

 Molten nitrates are agglomerated to form large calcine particles. 

 The large particles undergo initial breakdown to form the majority of the dust which is 

transported to the off-gas system. 

 As the large particles get smaller and increase in density due to further denitration, they 

breakdown further to form the smaller calcine fractions, the smallest of which will be carried 

to the off-gas system as dust. 
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Each of these processes does not occur in its own distinct section of the calciner tube as each particle 

experiences different amounts of time in contact with the calciner tube wall and differing interaction 

with the rabble bar which breaks up the calcine.  The calcination conditions, such as temperature, feed 

rate and chemical composition of the simulant used, will also affect where these processes occur 

within the calciner tube. 

 

Historically, the generation of dust was thought to arise from the carry-over of the smallest particles 

of calcine to the off-gas system.  However, these studies have shown that the abrasive breakdown of 

large calcine particles (>2 mm in diameter) appears to be responsible for the production of the 

majority of the dust formed during calcination.  Higher dust formation appeared to correlate with the 

formation of a greater fraction of calcine particles with a diameter >2 mm in Magnox HAL simulant 

when processed at feed rates of 3 l / h or higher. 

 

A competing process to the abrasive breakdown of the larger calcine particles was also apparent and 

was prominent at a low feed rate of 2 l / h.  This resulted in an increased fraction of smaller particles 

being produced due to the increased residence time at high temperature, with the evaporative front 

moving up the tube as there was less water to evaporate.  The increased fraction of smaller particles 

correlated with a higher dust carry-over in these cases, showing a portion of the smaller particles were 

carried to the off-gas system.  This was also observed in simulants containing high levels of Mo and 

Zr, suggesting these components are more easily broken down by the rabble bar and thus more small 

particles are generated, resulting in a higher contribution to the overall dust carry-over value. 

 

As dust can not be collected on the full scale facilities, it would not be possible to determine the 

effects of each of these dust generation process on WVP.  However, the particle size of the calcine 

can be monitored on the VTR, which may give an indication of the effects of calcination conditions 

on the major method of dust generation.  These processes are thought to be competing and will 

therefore both contribute to the formation of dust in the calcination process.   

 

With Sellafield Ltd becoming more interested in POCO waste-streams, high in Zr and Mo, the 

findings from Chapter 6 suggest that these will result in a higher dust carry-over, increasing the risk of 

blockages occurring, and a calcine with a higher fraction of small particles.  To minimise dust carry-

over, the following operating conditions should be employed: 

 Low Zone 3 and 4 temperatures 

 High feed rate 

 Addition of LiNO3 

 Minimise the levels of Zr and Mo in the feed-stock 

 

VTR trials should be carried out to determine the correct balance between dust carry-over and the 

generation of a suitable calcine which would not cause blockages in the calciner tube. 
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8.3 BENEFITS OF THE SMALL SCALE CALCINER RIG REBUILD TO 

SELLAFIELD LTD 

 

The National Nuclear Laboratory maintains the capacity to create calcine on both lab scale and full 

scale facilities, using the small scale calciner and VTR respectively.  The small scale calciner is a vital 

tool in assessing the calcination characteristics of new simulant formulations.  The main benefits of 

running a preliminary experimental campaign using the small scale calciner, as opposed to the VTR 

include: 

 

 The small scale calciner is much cheaper to run than the VTR as: 

o Only 5-10 litres of simulant are required for a small scale calciner experiment as 

opposed to the 300 litres for the shortest of VTR experiments. 

o Only one operator is required to run the small scale calciner compared to the 

minimum shift team of four required to run the VTR. 

o From cold, the small scale calciner tube takes approximately an hour to reach 

temperature and stabilise at a constant tube expansion compared to four hours on the 

VTR. 

 An operational envelope for the VTR can be pre-determined, reducing the amount of 

experiments required at full-scale. 

 The small scale calciner is more versatile than the VTR, allowing quicker changes to tube 

angle, flowrates etc to be utilised, changing the residence time. 

 Much lower consequences using the small scale calciner when trying out the extremes of 

simulant processing 

o Blocking calciner tube on VTR might take three days to clear costing large amounts 

in shift time, whereas small scale calciner can be cleared in a day by one operator. 

o Spare parts are much cheaper to replace on the small scale calciner. 

o NOx releases are contained in the designated fumehood on the small scale calciner, 

but VTR releases go out into the open rig hall. 

 Dust can be collected and analysed using the small scale calciner rig, where as the first 

analysis point in the VTR off-gas system is the DSL. 

 

By running a small scale calciner campaign, therefore, new experimental simulants can be calcined 

under different conditions with minimal risk.  Determination of the operational envelope for the VTR 

reduces the amount of experiments which are required, again minimising risk and results in a large 

cost saving for Sellafield Ltd, as the lab scale facility is much cheaper to run than the VTR.   
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8.3.1 Future plans for the small scale calciner rig 
 

As a direct consequence of the issues with the small scale calciner during this project, there was a 

review into maintaining and developing the rig.  The major findings from this review were (Wilson, 

2013): 

 

 To design and install a simplified off-gas system. 

 To improve the seals on the upper and lower end fittings of the calciner tube. 

 To establish a maintenance regime for the small scale calciner. 

 To create a critical spares inventory to avoid significant periods of down-time. 

 To design and install a method of monitoring calciner tube temperature.  

 To design and implement a method of particle size reduction of the calcine produced on the 

small scale calciner rig. 

 

The most common causes of delay during this project stemmed from failures within the off-gas 

system, with the primary issue being with the off-gas fan.  Due to high in-leakage within the calciner, 

the off-gas fan had to be run at high speed in order to maintain the required depression throughout the 

system.  This resulted in the entrainment of condensate through the off-gas system, coming to rest in 

the off-gas fan casing.  This caused corrosion to occur within fan casing, resulting in the fan seizing 

on a regular basis.  This issue was improved (but not resolved) by replacing the seals in the upper and 

lower end fittings on the calciner, reducing the in-leakage and therefore lowering the fan speed 

required to maintain depression.  It was decided, however, that a new, simplified off-gas system 

would result in fewer issues being encountered.  This, combined with the implementation of a 

maintenance regime and a critical spares inventory, will lead to an improvement in the reliability of 

the rig for future experimental programmes.   

 

The main aim of conducting experiments on the small scale calciner and the VTR are to allow 

modelling of the processes which occur during vitrification.  Therefore, the collection of as much 

information as possible is beneficial.  As a consequence, there is a push to allow the tube temperature 

to be measured during an experiment on the small scale calciner, as is possible on the VTR.  Also, the 

calcine produced on the small scale calciner has some large agglomerates exiting the tube which are 

not seen on the VTR, due to the fact the VTR has a set of 4 mm slots which the calcine must pass 

through before being collected.  Previous attempts to achieve these objectives were unsuccessful, but 

new ideas are due to be tested in the future.  The proposed future uses of the small scale calciner rig 

include: 

 

 Carrying out preliminary testing of new simulants to determine an operating envelope for 

future VTR trials. 

 Producing calcine for use in a lab scale melter.   
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As the HALES facility enters its post operational clean out (POCO) phase, there is a greater demand 

for research investigating simulants which more closely represent these waste streams.  It will 

therefore be beneficial to run these previously untested simulants through the small scale calciner to 

assess their behaviour and develop an operational envelope before being run on the VTR.  This will 

result in significant cost savings compared to running all experiments on the VTR. 

 

The current methods for producing glass samples are either in a crucible, which is filled with glass frit 

and calcine and placed in a muffle furnace, or on the full-scale VTR.  However, there are plans to 

develop a new method using a lab scale melter.  In order to produce the required amount and variety 

of calcine samples, the small scale calciner rig will be utilised.  Therefore, the calciner rig must run 

efficiently to ensure there is sufficient feedstock to supply the melter.  The proposed improvements to 

the small scale calciner are therefore essential to the future plans for the rig, which has been brought 

about by the issues encountered during this project. 

 

In summary, by modifying and rebuilding the small scale calciner rig, the NNL maintain the capacity 

to produce calcine on a lab scale through a process which replicates, though is not identical to, full 

scale calcination.  The addition of the smooth bore flexible hose and the dirt trap loop allow dust 

samples to be collected and analysed, which was not possible previously and is not possible on the 

VTR or WVP.  This tool allows Sellafield Ltd to propose lab scale experiments on new simulant types 

and experiment with new operating conditions with a much lower risk and at much lower cost.  This 

has allowed a future plan to be drawn up for the calciner rig, whereas before this project it had sat idle 

for a number of years.  This will lead to a large cost saving for Sellafield Ltd, as the small scale 

calciner rig costs approximately £400-600 per day to run compared to ~£20,000 per day on the VTR.
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Appendix 2 – TGA and XRD analysis of Mg3RE2(NO3)12.24H2O 
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Appendix 3 - Sample Preparation Table 

 

Sample 

Name 

Anhydrous 

Lithium 

Nitrate 

Aluminium 

Nitrate 

Nonahydrate 

Magnesium 

Nitrate 

Hexahydrate 

Iron 

Nitrate 

Nonahydrate 

Chromium 

Nitrate 

Nonahydrate 

Phospho-

molybdic 

Acid 

Zirconyl 

Nitrate 

(161 g / l) 

Nitric 

Acid 

(16 M) 

Sugar 

Solution 

(200 g / l) 

 

Water 

LAN1 1.739 g 7.481 g - - - - - 4.588 g 3.349 g 36.192 g 

LMN1 1.885 g - 7.335 g  - - - 4.588 g 3.339 g 36.192 g 

LIN1 3.171 g - - 6.049 g - - - 4.588 g 3.494 g 36.192 g 

LPN1 2.711 g - - - - 6.509 g - 4.588 g 2.230 g 36.192 g 

LZN1 6.824 g - - - - - 14.875 g 4.588 g 4.199 g 23.713 g 

AMN1 - 4.841 g 4.379 g - - - - 4.588 g 3.053 g 36.192 g 

AIN1 - 6.387 g - 2.833 g - - - 4.588 g 3.033 g 36.192 g 

MIN1 - - 6.187 g 3.033 g - - - 4.588 g 3.001 g 36.192 g 

PZN1 - - - - - 8.044 g 7.307 g 4.588 g 1.517 g 30.061 g 

LAMN1 1.003 g 4.315 g 3.903 g - - - - 4.588 g 3.214 g 36.192 g 

LAIN1 1.279 g 5.502 g - 2.440 g - - - 4.588 g 3.244 g 36.192 g 

LMIN1 1.356 g - 5.726 g 2.587 g - - - 4.588 g 3.312 g 36.192 g 

LPZN1 2.457 g - - - - 5.899 g 5.357 g 4.588 g 2.323 g 31.697 g 

AMN2 - 4.315 g 3.903 g - - - - 5.936 g 3.214 g 36.192 g 

AIN2 - 5.502 g - 2.440 g - - - 6.307 g 3.244 g 36.192 g 

MIN2 - - 5.726 g 2.587 g - - - 6.411 g 3.312 g 36.192 g 

PZN2 - - - - - 5.899 g 5.357 g 7.891 g 2.323 g 31.697 g 

LAMCN1 0.959 g 4.126 g 3.731 g - 0.401 g - - 4.588 g 3.202 g 36.192 g 

AMCN2 - 4.126 g 3.731 g - 0.401 g - - 5.877 g 3.202 g 36.192 g 

AMCN1 - 4.607 g 4.167 g - 0.448 g - - 4.588 g 3.048 g 36.192 g 
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Appendix 4 - Molar ratios of elements 

 

Sample 

Name 

Molar Ratios of Elements Present in the Sample 

Li Al Mg Fe Cr P Mo Zr C 

LAN1 1.3 1.0 - - - - - - 0.5 

LMN1 1.0 - 1.0 - - - - - 0.4 

LIN1 3.1 - - 1.0 - - - - 0.7 

LPN1 1.0 - - - - 0.1 1.1 - 0.2 

LZN1 1.5 - - - - - - 1.0 0.2 

AMN1 - 1.0 1.3 - - - - - 0.7 

AIN1 - 2.4 - 1.0 - - - - 1.3 

MIN1 - - 3.2 1.0 - - - - 1.2 

PZN1 - - - - - 0.1 1.7 1.0 0.1 

LAMN1 1.3 1.0 1.3 - - - - - 0.8 

LAIN1 1.3 1.0 - 0.4 - - - - 0.6 

LMIN1 3.1 - 3.2 1.0 - - - - 1.5 

LPZN1 1.5 - - - - 0.1 1.7 1.0 0.3 

AMN2 - 1.0 1.3 - - - - - 0.8 

AIN2 - 2.4 - 1.0 - - - - 1.6 

MIN2 - - 3.2 1.0 - - - - 1.5 

PZN2 - - - - - 0.1 1.7 1.0 0.3 

LAMCN1 1.3 1.0 1.3 - 0.1 - - - 0.9 

AMCN2 - 1.0 1.3 - 0.1 - - - 0.9 

AMCN1 - 1.0 1.3 - 0.1 - - - 0.7 


