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Abstract

This thesis introduces a novel technique for the automated analysis of compiled pro-

grams, which is focused on, but not restricted to, pointer safety properties. Our

approach, which we refer to as Symbolic Object Code Analysis (SOCA), employs

bounded symbolic execution, and uses an SMT solver as execution and veri�cation

engine. Analysing the object code enables us to bypass limitations of other software

model checkers with respect to the accepted input language, so that analysing code

sections written in inline assembly does not represent a barrier for us. Our tech-

nique is especially designed for programs employing complex heap-allocated data

structures and provides full counterexample paths for each error found. In di�er-

ence to other veri�cation techniques, our approach requires only a bare minimum

of manual modelling e�orts. While generating counterexamples is often impossible

for static analysis techniques due to precision loss in join and widening operations,

traditional model checking requires the manual construction of models or the use of

techniques such as predicate abstraction which do not work well in the presence of

heap-allocated data structures. Hence, symbolic execution is our method of choice

over static analysis and model checking.

We also present the SOCA Veri�er as a prototypical implementation of our tech-

nique. We show that the SOCA Veri�er performs competitively with state-of-the-art

software model checkers with respect to error detection and false positive rates. De-

spite only employing path-sensitive and heap-aware program slicing, the SOCA Ver-

i�er is further shown to scale well in an extensive evaluation using 250 Linux device

drivers. An in-depth case study on the Linux Virtual File System illustrates that the

SOCA technique can be applied to verify program properties beyond pointer safety.

Our evaluation testi�es SOCA's suitability as an e�ective and e�cient bug-�nding

tool.



Extended Abstract

A major challenge in validating and verifying complex software systems lies in the

proper analysis of pointer operations: if a program dereferences a pointer pointing

to an invalid memory cell, the program may either crash or behave in an unde�ned

way. Writing software that is free of such errors is di�cult since many pointer safety

problems result in program crashes at later points in program execution. Hence,

the statement causing a memory corruption may not be easily identi�able using

conventional testing techniques. On the other hand, automated means of program

analysis and program veri�cation either do not cover pointer safety or are often not

applicable due to limitations regarding the programming language a program to be

analysed may be written in.

A major disadvantage of today's software veri�cation tools, regarding the ability

to correctly handle pointer operations, results from the tools being restricted to

the analysis of the source code of a given program. Source-code-based tools usually

ignore powerful programming constructs such as pointer arithmetic, pointer aliasing,

function pointers and computed jumps. Furthermore, they su�er from not being

able to consider the e�ects of program components that are not available in the

desired form of source code. Functions linked from libraries and the use of multiple

programming languages including inlined assembly code are common examples to

this. In addition, many pointer safety problems exist because of platform-speci�c

and compiler-speci�c details such as memory layout, padding between structure

�elds and o�sets.

In this thesis we introduce a novel technique for the automated analysis of com-

piled programs, which is focused on, but not restricted to, pointer safety properties.

Our approach, which we refer to as Symbolic Object Code Analysis (SOCA), employs

bounded symbolic execution, and uses an SMT solver as execution and veri�cation

engine. Analysing the object code enables us to bypass limitations of other software

model checkers with respect to the accepted input language, so that analysing code

sections written in inline assembly does not represent a barrier for us. Our tech-

nique is especially designed for programs employing complex heap-allocated data

structures and provides full counterexample paths for each error found. In di�er-
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ence to other veri�cation techniques, our approach requires only a bare minimum of

manual modelling e�orts, namely the abstract speci�cation of a program's execution

context that symbolically speci�es input and initial heap content. While generating

counterexamples is often impossible for static analysis techniques due to precision

loss in join and widening operations, traditional model checking requires the manual

construction of models or the use of techniques such as predicate abstraction which

do not work well in the presence of heap-allocated data structures. Hence, symbolic

execution is our method of choice over static analysis and model checking.

The thesis also introduces the SOCA Veri�er as a prototypical implementation of

our technique. Using the Verisec benchmark suite we show that the SOCA Veri�er

performs competitively with state-of-the-art software model checkers in respect to

error detection and false positive rates. Despite only employing path-sensitive and

heap-aware program slicing, the SOCA Veri�er is further shown to scale well in an

extensive evaluation using 250 Linux device drivers. In an in-depth case study on the

Linux Virtual File System implementation we illustrate that the SOCA technique

can be applied to verify program properties beyond pointer safety. Our evaluation

testi�es SOCA's suitability as an e�ective and e�cient bug-�nding tool during the

development of operating system components.
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Chapter 1

Introduction

During the past decades, safety and security of computer programs has become an

increasingly important issue. Indeed, more and more problems arise from the high

complexity of modern software systems and the di�culties of locating subtle errors

in them. Common software defects such as bu�er over�ows and deadlocks decrease

system's reliability, rendering them unusable as components of dependable systems.

Frequently, these defects also have security implications.

In recent years, automated approaches to discover errors in software components

via runtime checks or source code analysis have been explored. However, a major

challenge in validating and verifying complex software systems remains in the thor-

ough handling of pointer operations. While programming errors related to pointer

safety � e.g. dereferencing null-pointers, bu�er over�ows or accessing memory that

has already been deallocated � are a common source of software failures, these er-

rors frequently remain undiscovered until they are exploited in security attacks or

are found �by accident�. One reason for this is that accessing invalid pointers often

results in memory corruption, which may lead to unde�ned behaviour or program

crashes at later points in program execution. Hence, the statement causing such

an error may not be easily identi�able using conventional testing techniques. How-

ever, automated means of program analysis and program veri�cation either do not

cover pointer safety or are often not applicable due to limitations regarding the

programming language a program to be analysed may be written in.

Especially in the development of operating system components such as device

drivers, memory safety problems have disastrous consequences. They render all

application level programs relying on the operating system unsafe and give way to

serious security problems. Recent literature shows that a majority of all errors found

in device drivers are related to memory safety issues [Chou et al., 2001]. Despite

being relatively small in size, device drivers represent an interesting challenge as

they implement hardware access and are usually written in a mixture of C code and

inlined assembly. This combination makes them particularly hard to test and to
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analyse with currently available testing and veri�cation tools.

A big disadvantage of today's veri�cation tools regarding the ability to analyse

operating system components for pointer safety issues results mainly from being

restricted to the analysis of a program's source code. Source-code-based tools usually

ignore powerful programming constructs such as pointer arithmetic, pointer aliasing,

function pointers and computed jumps. Furthermore these tools su�er from not

being able to consider the e�ects of program components that are not available

in the desired form of source code. Functions linked from libraries and the use of

multiple programming languages including inlined-assembly are a common examples

for this. In addition, many memory safety problems exist because of platform-

speci�c and compiler-speci�c details such as the memory-layout, padding between

structure �elds and o�sets [Balakrishnan et al., 2008]. Thus, software model checking

tools such as SLAM/SDV [Ball and Rajamani, 2001] and others assume either that

the program under consideration �does not have wild pointers� [Ball et al., 2006]

or, as we explain in Chapter 3 along the lines of a case study on Blast [Henzinger

et al., 2002a], perform poorly for memory safety issues. We also show that these tools

usually require substantial manual simpli�cation of the source code of a program to

be analysed in order to work around unsupported language features. Hence, many

available tools are hard to use by practitioners during software development.

1.1 Defects in Operating Systems

Due to their complicated task of managing a system's physical resources, operating

systems are di�cult to develop and even more di�cult to debug. As recent publica-

tions show, most defects causing operating systems to crash are not in the system's

kernel but in the large number of operating system extensions available [Chou et al.,

2001; Swift et al., 2005]. In Windows XP, for example, 85% of reported failures are

caused by errors in device drivers [Ball, 2005]. As [Chou et al., 2001] explains, the

situation is similar for Linux and FreeBSD. Error rates reported for device drivers

are up to seven times higher than error rates stated for the core components of

these operating systems. However, errors in kernel extensions such as device drivers

a�ect the whole operating system and hence have deep impact on the reliability of

programs at application level.

There are several reasons for the high number of errors in device drivers. Firstly,

a device driver is a nondeterministic reactive system. It continuously responds to dif-

ferent events, e.g., user requests and hardware interrupts. For these events, neither

order nor time of occurrence are predictable in advance. Furthermore, operating

systems are often required to provide timely responses to events. To do this, drivers
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must be able to run in a preemptive operating system kernel where the driver's

normal operation may be interrupted at any time [Corbet et al., 2005].

Secondly, and as pointed out in [Ball, 2005], drivers run in a highly concurrent

environment provided by the operating system. This concurrency is exposed to the

driver programmer, who needs to take reasonable means of resource locking in order

to enable the driver to safely deal with concurrent calls of its functions. Concurrent

operating systems are running in two or more simultaneous threads of control. While

these threads perform sequential operations, they dynamically depend on each other

and access the same physical resources, often resulting in race conditions.

Thirdly, device drivers are frequently written by developers who are less experi-

enced in using the kernel's interface than those who built the operating system itself

[Swift et al., 2005]. As a result, driver developers tend to be unaware of side-e�ects

of the kernel's Application Programming Interface (API), and thereby introduce

subtle errors that break the operating system's safety and security, and that are

often di�cult to locate. All this renders driver development rather di�cult.

The current practice of �nding memory safety related bugs in device driver devel-

opment is debugging and testing. However, the state-of-the-art in research on soft-

ware development lies in veri�cation techniques such as static analysis and software

model checking. By having the potential of being exhaustive and fully automatic,

these methods allow errors to be detected early, with reduced e�ort, and provide a

high level of con�dence in the safety of a program with respect to a given property.

1.2 This Thesis

This thesis deals with the problem of �nding software defects related to pointer

safety in computer programs. By the term �pointer safety� we mean that a given

program does not violate basic safety rules of the involved programming interfaces

by de-referencing invalid pointers, exceeding boundaries of memory structures or

calling de-allocation functions in an erroneous context.

In Chapter 3 we evaluate, via case studies and from a practitioner's point of view,

the utility of the popular software model checker Blast for revealing errors in Linux

kernel code. The emphasis is on memory safety in and locking behaviour of device

drivers. Our case studies show that, while Blast's abstraction and re�nement

techniques are e�cient and powerful, the tool has de�ciencies regarding usability

and support for analysing pointers. These limitations are likely to prevent kernel

developers from using Blast.

Motivated by the case study on Blast, we present a novel approach to iden-

tifying violations of pointer safety properties in compiled programs in Chapter 4.
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Our research hypothesis is that symbolic execution of object code programs is a

feasible veri�cation technique with respect to pointer safety properties. Our tech-

nique, Symbolic Object Code Analysis (SOCA), is based on bounded path-sensitive

symbolic execution of compiled and linked programs. More precisely, we translate

a given program path-wise into systems of bit-vector constraint that leave the in-

put to the program largely unspeci�ed. The analysis has to be bounded since the

total number of paths as well as the number of instructions per path is potentially

in�nite. In order to deal with the vast amount of instructions available in today's

CPUs, we decided to base our analysis on an intermediate representation borrowed

from the Valgrind binary instrumentation framework [Nethercote and Fitzhardinge,

2004]. We employ the Yices SMT solver [Dutertre and de Moura, 2006] to check the

satis�ability of the generated constraints systems. Our approach allows us to express

a range of memory safety properties as simple assertions on constraint systems. In

contrast to other methods for �nding pointer safety violations, our technique does

not employ program abstraction. The program's input and initial heap content is

initially left unspeci�ed in order to allow the SMT solver to search for inputs that

will drive the program into an error state.

For evaluating our work, we present a prototypical implementation of the SOCA

technique for programs in ELF format [Tool Interface Standards (TIS) Committee,

1995] compiled for the 32-bit Intel Architecture (IA32, [Intel Corporation, 2009]),

which we apply to the Verisec benchmark suite [Ku et al., 2007]. As we explain

in Section 4.5.2, Verisec consists of 298 test cases for bu�er over�ow vulnerabilities

taken from various open source programs. Our results show that the SOCA Veri�er

performs competitively with state-of-the-art software model checkers with respect

to error detection and false positive rates.

We chose Linux device drivers as our application domain for large-scale evalua-

tion of the SOCA Veri�er. The Linux operating system kernel consists of a freely

available, large and complex code base implementing key tasks such as process man-

agement, memory management, �le system access, device control and networking for

about 20 di�erent computer architectures. It features a relatively small monolithic

core of components such as the scheduler and the memory management subsystem.

However, the majority of its functionality is implemented in terms of kernel modules

or device drivers that can be built separately from the kernel and loaded at run-

time. These modular components of the Linux kernel are responsible, for example,

for making a particular physical device attached to the computer respond to a well-

de�ned internal programming interface. Hence, user access to this device can be

performed by means of standardised functions, the System Call Interface, which are

independent of the particular driver or device. Kernel modules amount to roughly
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two-thirds (≈200 MBytes of code) of the entire Linux kernel distribution.

We present the results of an extensive case study on applying the SOCA Veri�er

to 9296 functions taken from 250 device drivers compiled for IA32, which is the

hardware platform for which the majority of drivers of recent Linux kernel distribu-

tions can be compiled. By being able to successfully analyse 95% of this sample of

functions and revealing a total of 887 program locations at which a null-pointer may

be dereferenced, our experimental results show that the SOCA Veri�er scales well

for that particular application domain. Our bounded symbolic analysis approach is

even able to achieve exhaustiveness for 27.8% of the sample, while for the remaining

functions it was possible to perform the analysis until bounds were exhausted.

In Chapter 5 we present a case study on retrospective veri�cation of the Linux

Virtual File System (VFS). Since VFS maintains dynamic data structures and is

written in a mixture of C and inlined assembly, modern software model checkers

cannot be applied. We demonstrate that the SOCA technique can be utilised to

check for violations of API usage rules regarding commonly used locking mechanisms

of the Linux kernel. Despite not considering concurrent executions of the VFS

functions, we demonstrate that our technique can be applied to check program

properties clearly beyond pointer safety issues. Our results show that the SOCA

Veri�er is capable of reliably and e�ciently analysing complex operating system

components such as the Linux VFS, thereby going beyond traditional testing tools

and into semantic niches that current software model checkers do not reach. This

testi�es the SOCA Veri�er's suitability as an e�ective and e�cient bug-�nding tool

during the development of operating system components.

The thesis is summarised and concluded in Chapter 6. We also outline open

issues and future work in this chapter.



Chapter 2

Background and

Related Work

In this chapter we outline open issues, ongoing research, techniques and tools for the

analysis of computer programs. We centre on the veri�cation and testing of pointer

programs, especially operating system components, alias analysis, software model

checking and abstraction techniques.

2.1 Common Defects in

Operating Systems

There are a large number of commonly found operating system errors. An insightful

study on this topic has been published in [Chou et al., 2001]; see Table 2.1 for a

summary of its results. The authors of [Chou et al., 2001] highlight that most errors

are related to problems causing either deadlock conditions or driving the system

into unde�ned states by de-referencing invalid pointers. While problems resulting

in deadlock conditions are well covered by several formal software engineering tools

such as SLAM/SDV [Ball and Rajamani, 2001], an industry strength software model

checker for Microsoft Windows device drivers, memory safety remains a major is-

sue. Likewise our case study on the Blast software veri�cation tool (Blast, cf.

Chapter 3) comes to the result that this state-of-the-art veri�cation toolkit does not

cover pointer and memory safety in full.

Although memory safety problems have a direct impact on an operating system's

reliability, API safety rules for operating system kernels are usually described in an

informal way. For example, it is stated in the Linux device driver handbook [Corbet

et al., 2005, p. 61] that one �should never pass anything to kfree that was not

obtained from kmalloc� since, otherwise, the system may behave in an unde�ned

way. As a result of this, an exhaustive set of safety rules that can be used as
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% of Bugs Rule checked

63.1% Bugs related to memory safety

38.1% Check potentially NULL pointers returned from routines.
9.9% Do not allocate large stack variables (> 1K) on the �xed-size kernel

stack.
6.7% Do not make inconsistent assumptions about whether a pointer is

NULL.
5.3% Always check bounds of array indices and loop bounds derived

from user data.
1.7% Do not use freed memory.
1.1% Do not leak memory by updating pointers with potentially NULL

realloc return values.
0.3% Allocate enough memory to hold the type for which you are allo-

cating.
33.7% Bugs related to locking behaviour

28.6% To avoid deadlock, do not call blocking functions with interrupts
disabled or a spinlock held.

2.6% Restore disabled interrupts.
2.5% Release acquired locks; do not double-acquire locks.
3.1% Miscellaneous bugs

2.4% Do not use �oating point in the kernel.
0.7% Do not de-reference user pointers.

Table 2.1: Results of an empirical study of operating system errors [Chou et al.,
2001]

properties in static program veri�cation is hard to identify. Nevertheless, analysis

techniques such as [Engler et al., 2000] have been applied to open-source operating

systems, identifying hundreds of bugs related to memory safety based on restricted

sets of such rules.

Correct locking of resources is another major issue causing problems in operating

system code. As shown in [Chou et al., 2001], de�ciencies resulting in deadlocks in

the Linux and BSD kernels make up a large amount of the overall number of errors

found. In the documentation explaining the API of the Linux kernel, quite strict

rules about the proper use of functions to lock various resources are stated. For

example, in [Corbet et al., 2005, p.121], one of the most basic rules is given as

follows: �Neither semaphores nor spinlocks allow a lock holder to acquire the lock

a second time; should you attempt to do so, things simply hang.� The rational for

this lies in the functionality provided by spinlocks: a kernel thread holding a lock is

spinning on one CPU and cannot be preempted until the lock is released. Another

important rule is that any code holding a spinlock cannot relinquish the processor

for anything except for serving interrupts; especially, the thread must never sleep

because the lock might never be released in this case [Corbet et al., 2005, p.118].
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2.2 Finding Bugs in Device Drivers

The problem of locating programming errors in device drivers is mainly addressed in

testing. However, there are two main di�culties that limit a driver's testability. As

Ball et al. state in [Ball et al., 2006], these are related to the restricted observability

inside operating system kernels and to the limited chances of achieving a high test

coverage using traditional testing techniques. Ball et al. point out that, for example,

the Windows operating system provides several di�erent kernel-level programming

interfaces, �which gives rise to many ways in which a driver can misuse these APIs�.

Most of the Application Programming Interface violations do rarely result in imme-

diate failures but leave the operating system in an inconsistent state. This may be

a crash or improper behaviour at a later time, mostly without revealing the source

of the error.

2.2.1 Runtime analysis

While popular runtime analysis tools that target memory safety problems are mainly

available for the development of software at the application level, the large domain

of operating system kernels and device drivers is rarely covered. Toolkits such as

Purify [Purify, 2009] and Valgrind [Valgrind, 2009] provide debugger-like runtime

environments that observe the memory access of an application program under con-

sideration. While these tools can deal with concurrency issues and unbounded allo-

cations, they are not meant for automatic and exhaustive code inspection: In order

to �nd problems, the program needs to be run with a set of test cases or tested

manually. This results in the fact that erroneous program behaviour may not be

revealed due to a lack of coverage. Furthermore, the use of the extensive pro�ling

support slows program execution down by a factor between 20 and 100. Also the

Electric Fence [Perens, 2009] library provides an additional runtime environment by

linking a program against it. Electric Fence replaces standard functions for allo-

cation and de-allocation with customised versions that perform additional runtime

checks.

On the kernel level, tools such as �kmdb� [KMDB, 2009] for Solaris or the Nov-

ell Linux Kernel Debugger [NLKD, 2008] provide an extensive analysis and testing

framework for software development. As for the above tools, they are neither auto-

matic nor exhaustive.

The major advantages of debugging tools lie in their relative e�ciency and the

fact that they are not operating on a program's source code but directly on the

compiled object code. Therefore, testing tools perform better for detecting faults

that are closely related to the actual architecture. However, due to the lack of
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exhaustiveness, results obtained from software testing are not as strong as those

gained from more formal veri�cation approaches such as software model checking

[Clarke et al., 2000]. Formal veri�cation can establish a much higher con�dence

in a program under consideration by assuring that a certain property holds for all

possible executions.

2.3 Static Analysis and

Software Model Checking

Static analysis is a powerful technique for inspecting source code for bugs. Indeed,

hundreds of bugs related to memory safety and erroneous locking behaviour had been

detected in Linux device drivers via an approach based on system-speci�c compiler

extensions, known as meta-level compilation [Engler et al., 2000]. This method is

implemented in the tool Coverity [Coverity, Inc.] and was used in an extensive

study on operating system errors [Chou et al., 2001]. Also most of the examples for

memory safety bugs in the Linux kernel analysed in our case study on Blast (cf.

Chapter 3) have previously been detected using this technique.

A further recent attempt to �nd bugs in operating system code is based on

abstract interpretation [Cousot and Cousot, 2002] and presented in [Breuer and

Pickin, 2006]. The authors checked about 700k lines of code taken from recent

versions of the Linux kernel for correct locking behaviour. The paper focuses on the

kernel's spinlock interface and problems related to sleep under a spinlock. Several

new bugs in the Linux kernel were found during the experiments. However, the

authors suggest that their approach could be improved by adopting model checking

techniques in order to guide the analysis in situations where the current method has

to consider all, even unreachable paths within the control �ow.

An extensive survey on automated techniques for the formal veri�cation of soft-

ware, focusing on abstract static analysis, software model checking and bounded

software model checking has recently been published in [D'Silva et al., 2008]. On

the following pages we focus on approaches and techniques for the analysis and

veri�cation of pointer programs.

2.3.1 Analysing Pointer Programs

The automated, static analysis of pointer programs has been an important but still

unsolved issue in computer science for more than thirty years. In [Wilhelm et al.,

2000], Wilhelm et al. give a summary of questions that should be answered by

automatic reasoning about memory structures used by pointer programs:
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Null-Pointers. Does a pointer contain the value NULL at a certain point in

program execution?

Aliasing and Sharing. May two pointer variables point to the same heap

cell? Do they always point to the same heap cell? Is more than one pointer

component pointing to a certain heap cell?

Reachability. Is a heap cell reachable from any pointer variable or pointer

component?

Disjointness. Do allocated data structures have common elements?

Cyclicity. Are heap cells parts of cyclic data structures?

Shape. What do data structures on the heap look like? Can we derive safety

properties from regularities in their structure?

The above list is not exhaustive. For example from [Balakrishnan et al., 2008] we

can obtain questions that are more related to the security of software systems:

Con�dentiality. Does the program leak any sensitive information like keying

material or passwords?

Early work on analysing pointer programs goes back to Burstall, who published

on �techniques for proving correctness of programs which alter data structures� in

1972 [Burstall, 1972]. In this paper, Burstall introduces a novel kind of assertion

called �distinct nonrepeating tree system�. This approach utilises a sequence of such

assertions where each element of the sequence describes a distinct region of storage

[Burstall, 1972]1. The basic idea of Burstall's work provides a �store-based� opera-

tional semantics [Kirchner, 2005] for heap usage by modelling the heap used by a

program under consideration as a collection of variables providing a mapping from

memory addresses to values. Analysis and Veri�cation are then done by reasoning

about this model using Hoare logic [Hoare, 1969]. The approach has been applied

in recent research on verifying pointer programs using separation logic with spatial

conjunction [Kuncak and Rinard, 2004; Reynolds, 2000, 2002] and on proof automa-

tion by providing integration in existing theorem proving infrastructures [Mehta and

Nipkow, 2005]. Techniques based on store-based semantics have several advantages.

Firstly, they are very natural because they correspond closely to the architecture of

current computer hardware, operating systems, as well as imperative programming

languages that allow the direct manipulation of pointers. Furthermore, store-based

techniques can be assumed to scale well to large programs because it is possible to

1As cited by Reynolds in [Reynolds, 2000].
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compute the e�ect of procedures on the global heap from their e�ect on sub-heaps

[Rinetzky et al., 2005].

However, with the emergence of programming languages such as Java, store-less

semantics for heap access have been developed [Bozga et al., 2003]. By abstracting

away from speci�c memory addresses, these heap representations provide a concep-

tual and compact view on the memory usage of a program.

2.3.2 Aliasing

Identifying sharing relationships between memory cells and variables in computer

programs is the central problem to be solved in order to answer most of the above

questions. Thus, alias analysis is a wide research area. Several generic shape graph-

based approaches for performing shape analysis for imperative programs have been

published [Sagiv et al., 1998; Wilhelm et al., 2000]. However, most practical work on

this topic has been conducted by the compiler construction and optimisation com-

munity. In order to give a simple systematics for these approaches, we distinguish

between algorithms based on source code analysis and those working on executable

object code.

Analysing source code. In [Deutsch, 1992, 1994], Deutsch provides a very exact

alias analysis for high-level programs based on a store-less semantics and abstract

interpretation (cf. Section 2.3.3). The algorithm can deal with dynamic allocation

and de-allocation of heap objects as well as recursive program structures. However,

the analysis makes heavy use of explicit data type declarations de�ning the shape

of allocated structures. Therefore, the algorithm is not usable for untyped pro-

gramming languages or languages that allow pointer arithmetic and unchecked type

conversion such as type casts in C. Deutsch's work has been extended in several re-

cent publications. In [Venet, 1999], Venet proposes an algorithm based on Deutsch's

research that does not rely on correct type information but works for untyped pro-

grams. The core idea behind this algorithm is to represent access paths within data

structures as �nite-state automata. Alias pairs are then described using numerical

constraints on the number of times each transition of an automaton may be used.

However, pointer arithmetic remains an unsolved issue in all approaches on alias

analysis for high-level programs. The problem is partially covered by algorithms

such as the one proposed by Wilson and Lam in [Wilson and Lam, 1995], but makes

conservative assumptions about aliasing for several cases in which the analysis will

fail.

Recently, compositional approaches [Calcagno et al., 2009; Yang et al., 2007] to

shape analysis [Wilhelm et al., 2000] for proving pointer safety have been proposed.
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However, all available work in this area is based on analysing the source code of

a program under consideration. Hence, calls to library functions or switches to

another programming language as well as programming constructs such as function

pointers are treated as non-deterministic assignments.

A major restriction for pointer analysis techniques based on abstractions of high-

level programming languages lies in the control �ow of many programs. Since analy-

sis techniques need to follow the program execution in order to trace memory access,

program constructs like function pointers, computed jumps and calls of external li-

brary functions constrain the practicability of these algorithms.

Analysing object code. The limitations of source code-based algorithms lead

to the development of alias analysis techniques that operate on object code. This

group of algorithms is of interest for the optimisation of systems that manipulate

executable code directly � runtime linkers are an interesting examples for this. In

[Debray et al., 1998], Debray et al. introduce a simple and e�cient �ow-sensitive

alias analysis for executable code which has been used link-time optimisation. De-

spite the fact that this algorithm explicitly sacri�ces precision for e�ciency in several

cases, it can handle complex program �ows and pointer arithmetic. In a modi�ed

version, Debray's algorithm has also been considered for the use on the intermediate

language of the gcc compiler family [Gupta and Sharma, 2003]. Another recent

approach for a memory analysis algorithm based on the inspection of object code is

given by Balakrishnan and Reps in [Balakrishnan and Reps, 2004]. Their algorithm

�value-set analysis� uses �an abstract domain for representing over-approximation of

the set of values that each data object can hold at each program point�. Therefore,

the algorithm tracks addresses and integer values simultaneously.

2.3.3 Abstraction and

Partial Order Techniques

One of the major limitations of exhaustive veri�cation techniques such as model

checking lies in the complexity of modern software systems. While early approaches

in model checking aimed on the veri�cation of the alternating bit protocol with 20

states [Clarke et al., 1983], current software systems, especially in the domain of

operating system veri�cation, are in�nite-state systems. Constructing their state

space leads to the state explosion problem as explained by Godefroid in [Godefroid,

1994]. Therefore, model checking such systems requires the use of e�cient data

structures for storing and manipulating large sets of states, as well as automatic

techniques that reduce a systems state space by abstracting away from unneeded
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details [Clarke et al., 1992].

Predicate abstraction. Most abstraction techniques currently used in software

model checking are based on the work of Graf and Saïdi in [Graf and Hassen Saïdi,

1997]. The author's approach employs abstract interpretation [Cousot, 1996] to

compute program invariants in order to map the concrete states of a system to

abstract states according to their evaluation under a �nite set of predicates. This

results in reducing an in�nite-state model under consideration to a �nite-state one,

in which, for example, boolean variables correspond to assertions over the concrete

model.

Recently, algorithms performing predicate abstraction directly on the source code

of a program under consideration have been developed [Ball et al., 2001; Henzinger

et al., 2002b] and implemented in tools such as SLAM [Ball and Rajamani, 2001]

and Blast [Henzinger et al., 2002a]. Despite the fact that these algorithms and

tools provide a valuable contribution to the �eld of static source code analysis, their

capabilities are limited by not covering the problem of memory safety in full. This is

mainly because of unspeci�ed constructs in high-level programming languages and

the use of function pointers and computed jumps, which are decided at compile-time

or runtime. Furthermore, the aliasing problem has a deep impact on such analysis

techniques. As we show in a case study on the BLAST toolkit provided in Chap-

ter 3, this exemplarily but state-of-the-art tool does not provide su�cient facilities

for tracking values that are passed in a call-by-reference manner to functions with-

out manually instrumenting the program or providing additional alias information.

The techniques also turned out to be inapplicable for keeping track of unbounded

numbers of allocations and concurrent program �ow.

Partial order techniques. Veri�cation techniques based on state space explo-

ration are limited by the excessive size of the state space. Especially for modelling

concurrency the state explosion problem has a high impact because one has to

consider interleaving program executions. However, one can assume that many in-

terleavings of concurrent events corresponding to the same execution contain related

information. Therefore, model checking or simulating all interleavings possible in a

program under consideration may not be required. This has been discussed by the

model checking community under the term �partial-order methods� as a technique

that reduces the impact of the state-explosion problem [Godefroid, 1994]. The intu-

ition behind these techniques is that instead of exploring all interleaving executions

only a part of the state space is explored. This part is chosen in a way that makes

it provably su�cient to check a given property. Partial order techniques have been
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implemented in model checking frameworks such as Spin [Holzmann, 2003] for com-

munication protocols as well as VeriSoft for verifying software systems [Chandra

et al., 2002; Godefroid, 1997]. The VeriSoft approach is particularly interesting.

As summarised in [Chandra et al., 2002] its focus lies on verifying communication

related properties in concurrent software systems. VeriSoft involves model checking

by stateless guided program execution where program runs are chosen nondetermin-

istically.

Furthermore, partial order techniques have also been used in program testing

[Gälli et al., 2006, 2004; Memon et al., 2001]. These approaches aim on the reduction

of the total amount of test cases by identifying and removing cases, which are already

covered by others.

Program slicing. Another important abstraction technique and SOCA ingredient

is path-sensitive slicing. Program slicing was introduced by Weiser [Weiser, 1981] as

a technique for automatically selecting only those parts of a program that may a�ect

the values of interest computed at some point of interest. Di�erent to conventional

slicing, our slices are computed over a single path instead of an entire program,

similar to what has been introduced as dynamic slicing in [Korel and Laski, 1990]

and path slicing in [Jhala and Majumdar, 2005]. In contrast to those approaches,

we use conventional slicing criteria and leave a program's input initially unspeci�ed.

In addition, while collecting program dependencies is relatively easy at source code

level, it becomes di�cult at object code level when dependencies to the heap and

stack are involved. The technique employed by SOCA for dealing with the program's

heap and stack is an adaptation of the recency abstraction described in [Balakrishnan

and Reps, 2006].

2.3.4 Software Model Checking

By having the potential of being exhaustive and fully automatic, model checking,

in combination with abstraction and re�nement, is a successful technique used in

software veri�cation [Clarke et al., 2000]. Intensive research in this area has resulted

in software model checkers like Bandera [Corbett et al., 2000] for Java programs or

SLAM/SDV [Ball and Rajamani, 2001], Blast [Henzinger et al., 2002a], SatAbs

[Clarke et al., 2005] and CBMC [Clarke et al., 2004] for analysing C source code.

The major advantage of these tools over model-based model checkers such as Spin

[Holzmann, 2003] is their ability to automatically abstract a model from the source

code of a given program. User interaction should then only be necessary in order

to provide the model checker with a speci�cation against which the program can be

checked. Since complete formal speci�cations are not available for most programs,
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veri�cation will usually be relative to a partial speci�cation that covers the usage

rules of the Application Programming Interface used by the program. However,

up to now all releases of SLAM are restricted to verifying properties for Microsoft

Windows device drivers and do not cover memory safety problems [Microsoft Cor-

poration, 2004], while Blast is able to verify a program against a user de�ned

temporal safety speci�cation [Henzinger et al., 2002a] and thus allows checking of

arbitrary C source code. Such a temporal safety speci�cation in Blast is a mon-

itor automaton with error locations. It can re�ect detailed behavioural properties

of the program under consideration. As we will explain in Chapter 3, the Blast

toolkit has several shortcomings related to the detection of memory safety problems

and concurrency issues. Recent work [Sery, 2009] shows further that, again in con-

trast to our SOCA Veri�er, BLAST cannot analyse programs with multiplicities of

locks since its speci�cation language does not permit the speci�cation of observer

automatons for API safety rules with respect to function parameters.

In [Beyer et al., 2005], the use of CCured [Necula et al., 2005] in combination

with software model checking as implemented in Blast for verifying memory safety

of C source code is explained. This is done by inserting additional runtime checks

at all places in the code where pointers are de-referenced. Blast is then employed

to check whether the introduced code is reachable or can be removed again. The

approach focuses on ensuring that only valid pointers are de-referenced along the

execution of a program, which is taken to mean that pointers must not equal NULL

at any point at which they are de-referenced. However, invalid pointers in C do not

necessarily equal NULL in practice.

Model checking bytecode and assembly languages. In recent years, several

approaches to model checking compiled programs by analysing bytecode and assem-

bly code have been presented. In [Visser et al., 2003], Java PathFinder (JPF ) for

model checking Java bytecode is introduced. JPF generates the state space of a

program by monitoring a virtual machine. Model checking is then conducted on

the states explored by the virtual machine, employing collapsing techniques and

symmetry reduction for e�ciently storing states and reducing the size of the state

space. These techniques are e�ective because of the high complexity of JPF states

and the speci�c characteristics of the Java memory model. In contrast, the SOCA

technique to verifying object code involves relatively simple states and, in di�erence

to Java, the order of data within memory is important in IA32 object code. Similar

to JPF, StEAM [Leven et al., 2004] model checks bytecode compiled for the Internet

C Virtual Machine, while BTOR [Brummayer et al., 2008] and [mc]square [Noll and

Schlich, 2008; Schlich and Kowalewski, 2006] are tools for model checking assembly
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code for micro-controllers.

All the above tools are explicit model checkers that require the program's entire

control �ow to be known in advance of the analysis. As we have explained above,

this is not feasible in the presence of computed jumps. The SOCA technique has

been especially designed to deal with OS components that make extensive use of

jump computations.

Furthermore, BTOR and [mc]square accept assembly code as their input, which

may either be obtained during compilation of a program or, as suggested in [Schlich

and Kowalewski, 2006], by disassembling a binary program. As shown in [Horspool

and Marovac, 1980], the problem of disassembling a binary program is undecidable

in general. The SOCA technique focuses on the veri�cation of binary programs

without the requirement of disassembling a program at once.

Symbolic Execution and Bounded Model Checking Symbolic execution has

been introduced in [King, 1976] as a means of improving program testing by covering

a large class of normal executions with one execution in which symbols representing

arbitrary values are used as input to the program. A recent approach based on man-

ually instrumenting the source code of a program and then using symbolic execution

to derive inputs that make the program crash, has been proposed in [Cadar et al.,

2006]. In contrast to our work, [Cadar et al., 2006] relies on manual annotations, is

not focused on memory safety, and works at source code level.

Several frameworks for integrating symbolic execution with model checking have

recently been presented, including Symbolic JPF [P�as�areanu et al., 2008] and DART

[Godefroid et al., 2005]. Symbolic JPF is a successor of the previously mentioned

JPF. DART implements directed and automated random testing to generate test

drivers and harness code to simulate a program's environment. The tool accepts C

programs and automatically extracts function interfaces from source code. Such an

interface is used to seed the analysis with a well-formed random input, which is then

mutated by collecting and negating path constraints while symbolically executing

the program. Unlike the SOCA Veri�er, DART handles constraints on integer types

only and does not support pointers and data structures.

A bounded model checker for C source code based on symbolic execution and

SAT solving is SATURN [Xie and Aiken, 2007]. This tool is specialised on checking

locking properties and null-pointer de-references. The authors show that their tool

scales for analysing the entire Linux kernel. Unlike the SOCA Veri�er, the approach

in [Xie and Aiken, 2007] computes function summaries instead of adding the respec-

tive code to the control �ow, unwinds loops a �xed number of times and does not

handle recursion. Hence, it can be expected to produce more unsound results but
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scale better than our SOCA technique.

A language agnostic tool in the spirit of DART is SAGE [Godefroid et al.,

2008], which is used internally at Microsoft. SAGE works at IA32 instruction level,

tracks integer constraints as bit-vectors, and employs machine-code instrumentation

in a similar fashion as we do in [Mühlberg and Lüttgen, 2009]. SAGE is seeded

with a well-formed program input and explores the program space with respect to

that input. Branches in the control �ow are explored by negating path constraints

collected during the initial execution. This di�ers from our approach since SOCA

does not require seeding but explores the program space automatically from a given

starting point. The SOCA technique e�ectively computes program inputs for all

paths explored during symbolic execution.

Concolic testing. An area of research closely related to ours is that of concolic

testing [Kim and Kim, 2009; Sen et al., 2005]. This technique relies on perform-

ing concrete execution on random inputs while collecting path constraints along

executed paths. The constraints are then used to compute new inputs driving the

program along alternative paths. In di�erence to this approach, SOCA uses sym-

bolic execution to explore all paths and concretises only in order to resolve computed

jumps. Concrete execution in SOCA may also be employed to set up the environ-

ment for symbolic execution [Mühlberg and Lüttgen, 2009].

Alternative approaches to object code veri�cation. Alternative approaches

to proving memory safety, other than the kinds of software model checking dis-

cussed in previous sections, are shape analysis [Wilhelm et al., 2000] and separa-

tion logic [Reynolds, 2002]. All recent work in this area [Calcagno et al., 2009;

Josh Berdine and O'Hearn, 2005] is based on analysing the source code of a pro-

gram, and calls to library functions and programming constructs such as function

pointers are simply abstracted using non-deterministic assignments.

Techniques applying theorem proving to verify object code and assembly code

are presented in [Boyer and Yu, 1996] and [Yu and Shao, 2004]. In [Boyer and Yu,

1996] the Nqthm prover is employed for reasoning about the functional correctness

of implementations of well-known algorithms. [Yu and Shao, 2004] proposes a logic-

based type system for concurrent assembly code and uses the Coq proof assistant to

verify programs. In contrast to our work, both techniques do not support �higher-

order code pointers� including return pointers in procedure calls.
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2.3.5 Object Code Veri�cation vs.

Source Code Veri�cation

While research in programming languages, computer security and software engi-

neering has led to several tools for analysing source code for programming errors,

program testing has still one major advantage: It is based on the execution of ma-

chine code and not source code.

Shortcomings of Source Code Veri�cation. As Balakrishnan et al. explain

in [Balakrishnan et al., 2008], the analysis of source code has several drawbacks. It

is pointed out that severe defects in software may be introduced during compilation

and optimisation. As an example for this, compiler optimisations may remove write

operations to a memory area that occur directly before the area is freed. While

this behaviour appears to be reasonable at �rst glance � the values are never read

afterwards and therefore cannot have any impact on the further program execution

� it gives rise to con�dentiality issues if the memory contained sensitive information.

Furthermore, platform-speci�c details, such as memory-layout details, the positions

and o�sets of variables, as well as the padding between structure �elds or the register

usage of a program, are only visible after compilation [Balakrishnan et al., 2008].

More advantages of the use of object code lie in the fact that software components

may make use of modules such as libraries that are not available in source code

and hence, can only be analysed in object code representation. Also, quite a lot of

software is written in more than one programming language, e.g., device drivers often

contain inlined assembly, and language switches are rarely supported by veri�cation

tools operating on source code. However, for executing a program, all its fragments

are transformed into object code, either via compilation or interpretation. Hence,

the object code should be considered as a common representation for programs

that are written in multiple languages. [Balakrishnan et al., 2008]. Another serious

shortcoming of source code veri�cation is that high-level programming languages are

often described informally and do not have a formally de�ned semantics. Therefore,

assumptions about unde�ned programming constructs must be made. However,

those assumptions concerning the intended semantics of a high-level language are

not necessarily correct [Wahab, 1998].

Related to the veri�cation of memory safety properties is the un-decidability of

the aliasing problem. It is impossible to determine syntactically whether a pointer

identi�es a given variable and to distinguish syntactically between executable and

un-executable commands [Wahab, 1998]. The aliasing problem renders many ap-

proaches to verify memory safety futile since all source code-based analysis tech-

niques operate on program variables. Today, even industry strength veri�cation
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tools such as SDV which is specialised on device drivers, provide sound results only

based on the assumption �that the device driver does not have wild pointers� [Ball

et al., 2006]. This means that the tool does not check memory safety but assumes

it.

Advantages of Object Code-Based Veri�cation. For verifying properties re-

lated to memory safety, the object code representation has several advantages. While

the analysis of source code is limited by the aliasing problem, object code uses ex-

plicit addresses. Since there is no syntactical way of distinguishing between integer

values and addresses and the use of indirect addressing in object code, it is considered

to be hard to analyse. However, due to explicit addresses and compiler optimisations

such as advanced register allocation algorithms, reasoning about memory safety be-

comes easier. As an example, tracking the contents of registers is a less complex

task than tracking arbitrary heap cells or variables [Balakrishnan and Reps, 2005;

Xu et al., 2000]. Furthermore, the use of function pointers and computed jumps

(setjmp() and longjmp() in C), which breaks many source code based tools such

as Blast and SDV during the analysis of a program's control �ow, does not need

to be handled in a di�erent way than any other piece of object code.

Object code programs are in the native language of a speci�c CPU. Since they

are executed directly, no further errors may be introduced by a compiler or a runtime

environment. However, a processor language consists of a large number of highly

specialised instructions [Wahab, 1998], carrying out rather simple actions. This

results in the fact that object code programs consist of many more statements than

the original high-level program. Hence, in the step of abstracting a model from a

program under consideration, i.e. for software model checking, all instructions need

to be taken into account. This is because the program in in high-level source code.

In order to analyse an object code program, it needs to be disassembled �rst. As

explained in [van Emmerik, 2003], this step requires the separation of data from code,

which is not given in machine code programs. [Horspool and Marovac, 1980] show

this problem to be undecidable in general, thus requiring approximation. However,

recent work such as [Balakrishnan and Reps, 2005; Xu et al., 2000] demonstrates

that acceptable results can be achieved as long as self-modifying programs are not

considered.

Despite this we consider analysing the object code representation of programs

as a valuable technique for verifying memory safety properties of software systems.



Chapter 3

Evaluation of Existing Software

Model Checkers

In this chapter we investigate to which extent software model checking as imple-

mented in Blast (Berkeley Lazy Abstraction Software veri�cation Tool, [Henzinger

et al., 2002a]) can aid a practitioner during operating system software development.

To do so, we analyse whether these tools are able to detect errors that have been

reported for recent releases of the Linux kernel. We consider programming errors

related to memory safety (cf. Section 3.1) and locking behaviour (cf. Section 3.2). As

pointed out in [Chou et al., 2001] memory safety and incorrect handling of locks are

the main reasons for defects found in operating system components. Here, �memory

safety� is interpreted as the property that an operating system component never

de-references an invalid pointer, since this would cause the program to end up in

an unde�ned state. �Correct locking behaviour� means that functions that ensure

mutual exclusion on the physical resources of a system are called in a way that is

free of deadlocks and starvation. Both classes of problems are traceable by check-

ing whether an operating system component complies with basic usage rules of the

program interface provided by the kernel.

The code examples utilised in this chapter are taken from releases 2.6.13 and

2.6.14 of the Linux kernel. They have been carefully chosen by searching the kernel's

change log for �xed memory problems and �xed deadlock conditions, in a way that

the underlying problems are representative for memory safety and locking behaviour

as well as easily explainable without referring to long source code listings.1 Our

studies use version 2.0 of Blast, which was released in October 2005.

The focus of our work is on showing at what scale a give problem statement

and a program's source code need to be adapted in order to detect an error. We

1All source code used is either included or referenced by a commit key as provided by the source
code management system git which is used in the Linux kernel community; see www.kernel.org

for further information on git and Linux.

www.kernel.org
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discuss how much work is required to �nd a certain usage rule violation in a given

snippet of a Linux driver, and how di�cult this work is to perform in Blast.

Due to space constraints, we cannot present all of our case studies in full here;

however, all �les necessary to reproduce our results can be downloaded from http:

//www.beetzsee.de/blast/. The majority of this chapter has been previously

published in [Mühlberg and Lüttgen, 2007a]. There is also a technical report version

[Mühlberg and Lüttgen, 2007b] with additional details available.

The Blast toolkit The popular Blast toolkit implements an advanced ab-

straction algorithm, called �lazy abstraction� [Henzinger et al., 2002b], for building

a model of some C source code, and model-checking algorithm for checking whether

some speci�ed label placed in the source code is reachable. This label can either

be automatically introduced by instrumenting the source with an explicit temporal

safety speci�cation, be added via assert() statements, or be manually introduced

into the source. In any case, the input source �le needs to be preprocessed using a

standard C preprocessor like gcc. In this step, all header and source �les included

by the input �le under consideration are merged into one �le. It is this preprocessed

source code that is passed to Blast to construct and verify a model using predicate

abstraction.

Related Case Studies with Blast Blast has been applied for the veri�cation

of memory safety as well as locking properties before [Beyer et al., 2005; Henzinger

et al., 2004, 2002a, 2003]. In [Beyer et al., 2005], the use of CCured [Necula et al.,

2005] in combination with Blast for verifying memory safety of C source code is

explained. This is done by inserting additional runtime checks at all places in the

code where pointers are de-referenced. Blast is then employed to check whether

the introduced code is reachable or can be removed again. The approach focuses on

ensuring that only valid pointers are de-referenced along the execution of a program,

which is taken to mean that pointers must not equal NULL at any point at which

they are de-referenced. However, invalid pointers in C do not necessarily equal NULL

in practice. In contrast to [Beyer et al., 2005], we will interpret pointer invalidity

in a more general way and conduct our studies on real-world examples rather than

constructed examples.

A methodology for verifying and certifying systems code on a simple locking

problem is explained in [Henzinger et al., 2002a], which deals with the spinlock in-

terface provided by the Linux kernel. Spinlocks ensure that a kernel process can

spin on a CPU without being preempted by another process. The framework stud-

ied in [Henzinger et al., 2002a] is used to prove that calls of spin_lock() and

http://www.beetzsee.de/blast/
http://www.beetzsee.de/blast/
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spin_unlock() in Linux device drivers always alternate. In contrast to this work,

our case studies will be more detailed and thereby will be providing further insights

into the usability of Blast.

Two project reports of graduate students give further details on Blast's prac-

tical use. In [Mong, 2004], Mong applies Blast to a doubly linked list implemen-

tation with dynamic allocation of its elements and veri�es correct allocation and

de-allocation. The paper explains that Blast was not powerful enough to keep

track of the state of the list, i.e., the number of its elements. Jie and Shivkumar

report in [Jie and Shivaji, 2004] on their experience in applying Blast to a user

level implementation of a virtual �le system. They focus on verifying correct locking

behaviour for data structures of the implementation and were able to successfully

verify several test cases and to �nd one new error. However, in the majority of test

cases Blast failed due to documented limitations, e.g., by not being able to deal

with function pointers, or terminated with obscure error messages. Both studies

were conducted in 2004 and thus based on version 1.0 of Blast. As shown in this

chapter, Blast's current version has similar limitations.

A further case study on applying BLAST to a protocol stack is presented in [Kolb

et al., 2009], focusing on verifying the correct implementation of three API usage

rules in that stack. The authors agree with the limitations of the Blast toolkit we

are pointing out in [Mühlberg and Lüttgen, 2007a] and in this Chapter.

3.1 Checking Memory Safety with Blast

This section focuses on using Blast for checking usage rules related to memory

safety, for which we have analysed several errors in di�erent device drivers. The

examples studied by us include use-after-free errors in the kernel's SCSI2 and In�ni-

Band3 subsystems. The former is the small computer system interface standard for

attaching peripheral devices to computers, while the latter is an industry standard

designed to connect processor nodes and I/O nodes to form a system area network.

In each of these examples, an invalid pointer that is not NULL is de-referenced, which

causes the system to behave in an unde�ned way. This type of bug is not covered by

the work on memory safety of Beyer et al. in [Beyer et al., 2005] and cannot easily

be detected by runtime checks.

The example we will study here in detail is a use-after-free error spotted by the

Coverity source code analyser (www.coverity.com) in the I2O subsystem of the

Linux kernel (cf. Section 3.1.1). To check for this bug in Blast we �rst specify

2Commit 2d6eac6c4fdaa69656d66c80754d267be233cc3f.
3Commit d0743a5b7b837334cb414b773529d51de3de0471.

www.coverity.com
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drivers/message/i2o/pci.c:

300 static int __devinit

i2o_pci_probe(

struct pci_dev *pdev,

301 const struct pci_device_id

*id)

302 {

303 struct i2o_controller *c;

330 c = i2o_iop_alloc();

423 free_controller:

424 i2o_iop_free(c);

425 put_device(

c->device.parent);

432 }

Figure 3.1: Extract of drivers/message/i2o/pci.c.

a temporal safety speci�cation in the Blast speci�cation language. Taking this

speci�cation, Blast is supposed to automatically generate an instrumented version

of the C source code for analysis (cf. Section 3.1.2). However, due to an appar-

ent bug in Blast, this step fails for our example, and we are therefore forced to

manually instrument our code by inserting ERROR labels at appropriate positions

(cf. Section 3.1.3). However, it will turn out that Blast does not track important

operations on pointers, which is not mentioned in Blast's user manual and without

which our example cannot be checked (cf. Section 3.1.4).

3.1.1 The I2O Use-After-Free Error

The I2O subsystem bug of interest to us resided in lines 423�425 of the source

code �le drivers/message/i2o/pci.c. The listing in Fig. 3.1 is an abbreviated

version of the �le pci.c before the bug was �xed. One can see that function

i2o_iop_alloc() is called at line 330 of the code extract. This function is de�ned in

drivers/message/i2o/iop.c and basically allocates memory for an i2o_controller

structure using kmalloc(). At the end of the listing, this memory is freed by

i2o_iop_free(c). The bug in this piece of code arises from the call of put_device()

in line 425, since its parameter c->device.parent causes an already freed pointer to

be de-referenced. The bug has been �xed in commit d2b0e84d195a341c1cc5b45ec2

098ee23bc1fe9d, by simply swapping lines 424 and 425 in the source �le.

This bug o�ers various di�erent ways to utilise Blast. A generic temporal safety

property for identifying bugs like this would state that any pointer that has been an

argument to kfree() is never used again unless it has been re-allocated. A probably

easier way would be to check whether the pointer c in i2o_pci_probe() is never

used again after i2o_iop_free() has been called with c as its argument. Checking

the �rst, more generic property would require us to put function de�nitions from

other source �les into pci.c, since Blast considers only functions that are available
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in its input �le. Therefore, we focus on verifying the latter property.

Checking for violations even of the latter, more restricted property will lead to

a serious problem. A close look at the struct i2o_controller and its initialisation

in the function i2o_iop_alloc() reveals that i2o_controller contains a function

pointer which can be used as a �destructor�. As is explained in Blast's user manual,

the �current release does not support function pointers�; they are ignored completely.

Further, the manual states that �correctness of the analysis is then modulo the

assumption that function pointer calls are irrelevant to the property being checked.�

This assumption is however not always satis�ed in practice, as we will see later in

our example.

3.1.2 Veri�cation With a

Temporal Safety Speci�cation

Ignoring the function pointer limitation, we developed the temporal safety speci-

�cation presented in Fig. 3.2. The speci�cation language used by Blast is easy

to understand and allows the assignment of status variables and events. In our

speci�cation we use a global status variable allocstatus_c to cover the possible

states of the struct c of our example, which can be set to 0 meaning �not allo-

cated� and 1 meaning �allocated�. Furthermore, we de�ne three events, one for each

of the functions i2o_iop_alloc(), i2o_iop_free() and put_device(). All func-

tions have special preconditions and calling them may modify the status of c. The

special token $? matches anything. Intuitively, the speci�cation given in Fig. 3.2

states that i2o_iop_alloc() and i2o_iop_free() must be called alternately, and

put_device() must only be called when c has not yet been freed. Note that this

temporal safety speci�cation does not cover the usage rule for i2o_iop_free()

and put_device() in general. We are using one status variable to guard calls of

i2o_iop_free() and put_device() regardless of its arguments. Hence, the speci-

�cation will work only as long as there is only one pointer to an i2o_controller

structure involved.

Using the speci�cation of Fig. 3.2, Blast should instrument a given C input �le

by adding a global status variable and error labels for all violations of the precondi-

tions. The instrumentation is done by the program spec.opt which is part of the

Blast distribution. For our example taken from the Linux kernel, we �rst obtained

the command used by the kernel's build system to compile pci.c with gcc. We ap-

pended the option -E to force the compilation to stop after preprocessing, resulting

in a C source �le containing all required parts of the kernel headers. This step is nec-

essary since Blast cannot know of all the additional de�nitions and include paths



Evaluation of Software Model Checkers 35

global int allocstatus_c = 0;

event

{

pattern { $? = i2o_iop_alloc(); }

guard { allocstatus_c == 0 }

action { allocstatus_c = 1; }

}

event

{

pattern { i2o_iop_free($?); }

guard { allocstatus_c == 1 }

action { allocstatus_c = 0; }

}

event

{

pattern { put_device($?); }

guard { allocstatus_c == 1 }

}

Figure 3.2: A temporal safety speci�cation for pci.c.

used to compile the �le. Unfortunately, it expands pci.c from 484 lines of code

to approximately 16k lines, making it di�cult to �nd syntactical problems which

Blast cannot deal with. Despite spending a lot of e�ort in trying to use spec.opt,

we never managed to get this work. The program mostly failed with unspeci�c

errors such as Fatal error: exception Failure(�Function declaration not

found�). Finding such an error in a huge source without having a line number or

other hint is almost impossible, especially since gcc compiles the �le without any

warning. We constructed several simpli�cations of the preprocessed �le in order to

trace the limitations of spec.opt, but did not get a clear indication of what the

source is. We suspect it might be a problem with parsing complex data structures

and inline assembly imported from the Linux headers.

Given the bug inBlast and in order to demonstrate that our speci�cation indeed

covers the programming error in pci.c, we developed a rather abstract version

of pci.c which is shown in Fig. 3.3. Using this version and the speci�cation of

Fig. 3.2, we were able to obtain an instrumented version of our source code without

encountering the bug in spec.opt. Running Blast on the instrumented version

then produced the following output:

$ spec.opt test2.spc test2.c

[...]

$ pblast.opt instrumented.c

[...]

Error found! The system is unsafe :-(

In summary, the example studied here shows that the speci�cation used in this

section is su�cient to �nd the bug. However, the approach required by Blast has
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test2.h:

#include <stdio.h>

#include <stdlib.h>

typedef struct device

{

int parent;

} device;

typedef struct i2o_controller

{

struct device device;

} i2o_controller;

i2o_controller *i2o_iop_alloc

(void);

void i2o_iop_free

(i2o_controller *c);

void put_device (int i);

test2.c:

#include "test2.h"

i2o_controller *i2o_iop_alloc

(void)

{ i2o_controller *c;

c = malloc(

sizeof(struct i2o_controller));

return (c); }

void i2o_iop_free

(i2o_controller *c)

{ free (c); }

void put_device (int i) { }

int main (void)

{ i2o_controller *c;

c = i2o_iop_alloc ();

i2o_iop_free (c);

put_device (c->device.parent);

return (0); }

Figure 3.3: Manual simpli�cation of pci.c.

several disadvantages. Firstly, it is not automatic at all. Although we ended up

with only a few lines of code, it took quite a lot of time to produce this code by

hand and to �gure out what parts of the original pci.c are accepted by Blast.

Secondly, the methodology works only if the bug is known beforehand; hence we did

not learn anything new about unwanted behaviour of this driver's code. We needed

to simplify the code to an extent where the relation to the original source code

may be considered as questionable. The third problem lies in the speci�cation used.

Since it treats the allocation and de-allocation as something similar to a locking

problem, we would not be able to use it in a piece of code that refers to more than

one dynamically allocated object. A more generic speci�cation must be able to deal

with multiple pointers. According to [Beyer et al., 2004], such a generic speci�cation

should be possible to write by applying a few minor modi�cations such as de�ning a

�shadow� control state and replacing $? with $1. However, in practice the program

generating the instrumented C source �le failed with obscure error messages.
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3.1.3 Veri�cation Without a

Temporal Safety Speci�cation

Since Blast could not deal with verifying the original pci.c using an explicit

speci�cation of the use-after-free property, we will now try and manually instrument

the source �le so that our bug can be detected whenever an ERROR label is reachable.

When conducting our instrumentation, the following modi�cations were applied

by hand to pci.c and related �les:

1. A variable unsigned int alloc_status was added to the de�nition of struct

i2o_controller in

include/linux/i2o.h.

2. The prototypes of i2o_iop_alloc() and i2o_iop_free() were removed from

drivers/message/i2o/core.h.

3. The prototype of put_device() was deleted from include/ linux/device.h.

4. C source code for the functions put_device(), i2o_iop_free(), i2o_iop_

release() and i2o_iop_alloc() was copied from iop.c and drivers/base

/core.c into pci.c. The functions were modi�ed such that the new �eld

alloc_status of a freshly allocated struct i2o_controller is set to 1 by

i2o_iop_alloc(). i2o_iop_free() no longer de-allocates the structure but

checks whether alloc_status equals 1 and sets it to 0; otherwise, it jumps to

the ERROR label. put_device() was modi�ed to operate on the whole struct

i2o_controller and jumps to ERROR if alloc_status equals 0.

By feeding these changes into the model checker it is possible to detect duplicate

calls of i2o_iop_free() on a pointer to a struct i2o_controller, as well as

calls of put_device() on a pointer that has already been freed. Even calls of

i2o_iop_free() and put_device() on a pointer that has not been allocated with

i2o_ iop_alloc(), should result in an error report since nothing can be said about

the status of alloc_status in such a case.

After preprocessing the modi�ed source �les and running Blast, we get the out-

put �Error found! The system is unsafe :-(�. Even after we reduced the con-

tent of i2o_pci_probe() to something quite similar to the main() function shown in

Fig. 3.3 and after putting the erroneous calls of put_device() and i2o_iop_free()

in the right order, the system was still unsafe from Blast's point of view. It took

us some time to �gure out that Blast does not appear to consider the content of

pointers at all.
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test5.c:

1 #include <stdlib.h>

2

3 typedef struct example_struct

4 {

5 void *data;

6 size_t size;

7 } example_struct;

8

9

10 void init (example_struct *p)

11 {

12 p->data = NULL;

13 p->size = 0;

14

15 return;

16 }

17

18 int main (void)

19 {

20 example_struct p1;

21

22 init (&p1);

23 if (p1.data != NULL ||

p1.size != 0)

24 { goto ERROR; }

25 else

26 { goto END; };

27

28 ERROR:

29 return (1);

30

31 END:

32 return (0);

33 }

Figure 3.4: An example for pointer passing.

3.1.4 Blast and Pointers

We demonstrate this apparent shortcoming of Blast regarding handling pointers

by means of another simple example, for which Blast fails in tracing values behind

pointers over function calls.

As can be seen in the code listing of Fig 3.4, label ERROR can never be reached

in this program since the values of the components of our struct are explicitly set

by function init(). However, Blast produces the following output:

$ gcc -E -o test5.i test5.c

$ pblast.opt test5.i

[...]

Error found! The system is unsafe :-(

Error trace:

23 :: 23: Pred((p1@main).data!=0) :: 29

-1 :: -1: Skip :: 23

10 :: 10: Block(Return(0);) :: -1

12 :: 12: Block(* (p@init ).data = 0;* (p@init ).size = 0;) :: 10

22 :: 22: FunctionCall(init(&(p1@main))) :: -1

-1 :: -1: Skip :: 22

0 :: 0: Block(Return(0);) :: -1

0 :: 0: FunctionCall (__BLAST_initialize_test5.i()) :: -1
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This counterexample shows that Blast does not correlate the pointer p used in

init() and the struct p1 used in main(), and assumes that the if statement in line

23 evaluates to true. After adding a line �p1.data = NULL; p1.size = 0;� before

the call of init(), Blast claims the system to be safe, even if we modify init()

to reset the values so that they di�er from NULL (and 0).

We were able to reproduce this behaviour in similar examples with pointers to

integer values and arrays. Switching on the BDD-based alias analysis implemented

in Blast also did not solve the problem. The example shows that Blast does not

only ignore function pointer calls as stated in its user manual, but appears to assume

that all pointer operations have no e�ect. This limitation is not documented in the

Blast manual and renders Blast almost unusable for the veri�cation of properties

related to our understanding of memory safety.

3.1.5 Results

Our experiments on memory safety show that Blast is able to �nd the programming

error discovered by the Coverity checker. Out of eight examples, we were able to

detect two problems after minor modi�cations to the source code, and three after

applying manual abstraction. Three further programming errors could not be traced

by using Blast. Indeed, Blast has some major restrictions. The main problem is

that Blast ignores variables addressed by a pointer. As stated in its user manual,

Blast assumes that only variables of the same type are aliased. Since this is the

case in our examples, we initially assumed that our examples could be veri�ed with

Blast, which is not the case. Moreover, we encountered bugs and de�ciencies in

spec.opt which forced us to apply substantial and time consuming modi�cations

to source code. Most of these modi�cations and simpli�cations would require a

developer to know about the error in advance. Thus, from a practitioner's point

of view, Blast is not of much help in �nding unknown errors related to memory

safety. However, it needs to be mentioned that Blast was designed for verifying

API usage rules of a di�erent type than those required for memory safety. More

precisely, Blast is intended for proving the adherence of pre- and post-conditions

denoted by integer values and for ensuring API usage rules concerning the order in

which certain functions are called, regardless of pointer arguments, return values

and the e�ects of aliasing. A summary of our experience with Blast and memory

safety is given in Table 3.1.
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Table 3.1: Result summary for memory safety properties

Memory Safety Example
Error Type 1 2 3 4 5 6 7 8
NULL de-reference x
use-after-free x x x x
double free x
overrun error x
pointer arithmetic x
involves concurrency x

Error found by Blast M M f M f m f m

Key: d = directly; m = minor modi�cations; M = manual abstraction; f = failed

3.2 Checking Locking Properties

with Blast

Verifying correct locking behaviour is something used in almost all examples pro-

vided by the developers of Blast [Beyer et al., 2004; Henzinger et al., 2002a]. In

[Henzinger et al., 2002a], the authors checked parts of the Linux kernel for correct

locking behaviour while using the spinlock API and stated that Blast showed a

decent level of performance during these tests. Spinlocks provide a very simple

but quite e�cient locking mechanism to ensure, e.g., that a kernel thread may not

be preempted while serving interrupts. The kernel thread acquires a certain lock

by calling spin_lock(l), where l is a previously initialised pointer to a struct

spinlock_t identifying the lock. A lock is released by calling spin_unlock() with

the same parameter. The kernel provides a few additional functions that control the

interrupt behaviour while the lock is held. By their nature, spinlocks are intended

for use on multiprocessor systems where each resource may be associated with a

special spinlock, and where several kernel threads need to operate independently on

these resources. However, as far as concurrency is concerned, uniprocessor systems

running a preemptive kernel behave like multiprocessor systems.

Finding examples for the use of spinlocks is not di�cult since they are widely

deployed. While experimenting with Blast and the spinlock functions on several

small components of the Linux kernel we experienced that it performs well with

functions using only one lock. We focused on functions taken from the USB subsys-

tem in drivers/usb/core. Due to further unspeci�c parse errors with the program

spec.opt we could not use a temporal safety speci�cation directly on the kernel

source. However, in this case we were able to generate the instrumented source �le

and to verify properties by separating the functions under consideration from the
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global int lockstatus = 2;

event

{

pattern { spin_lock_init($?); }

guard { lockstatus == 2 }

action { lockstatus = 0; }

}

event

{

pattern { spin_lock($?); }

guard { lockstatus == 0 }

action { lockstatus = 1; }

}

event

{

pattern { spin_unlock($?); }

guard { lockstatus == 1 }

action { lockstatus = 0; }

}

event

{

pattern { $? = sleep($?); }

guard { lockstatus == 0 }

}

Figure 3.5: A temporal safety speci�cation for spinlocks.

remaining driver source and by providing simpli�ed header �les.

In Fig. 3.5 we provide our basic temporal safety speci�cation for verifying locking

behaviour. Variable lockstatus encodes the possible states of a spinlock; the initial

value 2 represents the state in which the lock has not been initialised, while 1 and 0

denote that the lock is held or has been released, respectively. The pattern within

the speci�cation varies for the di�erent spinlock functions used within the driver

source under consideration, and the speci�cation can easily be extended to cover

forbidden functions that may sleep. An example for a function sleep() is provided

in the speci�cation of Fig. 3.5.

Di�culties arise with functions that acquire more than one lock. Since all spin-

lock functions use a pointer to a struct spinlock_t in order to identify a certain

lock, and since the values behind pointers are not su�ciently tracked in Blast, we

were forced to rewrite parts of the driver's source and the kernel's spinlock inter-

face. Instead of the pointers to spinlock_t structs we utilise global integer variables

representing the state of a certain lock. We have used this methodology to verify

an example of a recently �xed deadlock4 in the Linux kernel's SCSI subsystem. In

Fig. 3.6 we provide an extract of one of the functions modi�ed in the �x. We see

that the spinlocks in this example are integrated in more complex data structures

referenced via pointers. Even worse, this function calls a function pointer passed

in the argument done in line 1581, which was the source of the deadlock before

the bug was �xed. To verify this special case, removing the function pointer and

4Commit d7283d61302798c0c57118e53d7732bec94f8d42.
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1564 int ata_scsi_queuecmd(struct

scsi_cmnd *cmd, void

(*done)(struct scsi_cmnd *))

1565 {

1566 struct ata_port *ap;

1567 struct ata_device *dev;

1568 struct scsi_device

*scsidev = cmd->device;

1569 struct Scsi_Host

*shost = scsidev->host;

1571 ap = (struct ata_port *)

&shost->hostdata[0];

1573 spin_unlock(shost->host_lock);

1574 spin_lock(&ap->host_set->lock);

1581 done(cmd);

1597 spin_unlock(&ap->host_set->lock);

1598 spin_lock(shost->host_lock);

1600 }

Figure 3.6: Extract of drivers/scsi/libata-scsi.c.

providing a dummy function done() with a precondition assuring that the lock on

shost->host_lock is not held is needed. However, we were able to verify both the

deadlock condition before the �x had been applied, as well as deadlock freedom for

the �xed version of the source.

During our experiments we analysed several other examples of deadlock condi-

tions. The more interesting examples are the spinlock problem explained above, and

another one in the SCSI subsystem,5 as well as a bug in a IEEE1394 driver6. We

were able to detect the locking problems in all of these examples and proved the

�xed source �les to be free of these bugs.

Results. Out of eight examples for locking problems we were able to detect only

�ve. However, when comparing our results with the conclusions of the previous sec-

tion, Blast worked much better for the locking properties because it required fewer

modi�cations to the source code. From a practitioner's point of view, Blast per-

formed acceptable as long as only one lock was involved. After considerable e�orts

in simplifying the spinlock API � mainly removing the use of pointers and manu-

ally adding error labels to the spinlock functions � we also managed to deal with

multiple locks. However, we consider it as fairly di�cult to preserve the behaviour

of functions that may sleep and therefore must not be called under a spinlock. Even

for large portions of source code, Blast returned its results within a few seconds or

minutes, on a PC equipped with an AMD Athlon 64 processor running at 2200 MHz

and 1 GB of RAM. Hence, Blast's internal slicing and abstraction techniques work

very well.

We have to point out that the code listing in Fig. 3.6 represents one of the easily

5Commit fe2e17a405a58ec8a7138fee4ebe101858b636e0.
6Commit 910573c7c4aced8fd5f45c334cc67862e3424d92.
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Table 3.2: Result summary for locking properties properties

Locking Properties Example
Error Type 1 2 3 4 5 6 7 8
deadlock condition x x x x x x
other API violation x x
involves concurrency x x

Error found by Blast M M f f f m m f

Key: d = directly; m = minor modi�cations; M = manual abstraction; f = failed

understandable programming errors. Many problems in kernel source code are more

subtle. For example, calling functions that may sleep is something that needs to

be avoided. However, if a driver calls a function not available in source code in the

same �le as the driver under consideration, Blast will only be able to detect the

problem if there is an event explicitly de�ned for this function. A summary of our

results including all 8 examples for locking issues is given in Table 3.2.

3.3 Summary of Results

This section highlights various shortcomings of the Blast toolkit which we experi-

enced during our studies. We also present ideas on how Blast could be improved

in order to be more useful for operating system software veri�cation.

Lack of documentation. Many problems while experimenting with Blast were

caused by the lack of consistent documentation. For example, a signi�cant amount

of time could have been saved in our experiments with memory safety, if the Blast

manual would state that almost all pointer operations are ignored. An in-depth

discussion of the features and limitations of the alias analysis implemented in Blast

would also be very helpful to have.

Non-support of pointers. The fact that Blast does not properly support the

use of pointers, in the sense of Section 3.1.4, must be considered as a major re-

striction, and made our experiments with the spinlock API rather di�cult. The

restriction forces one to carry out substantial and time consuming modi�cations to

source code. Furthermore, it raises the question whether all important predicates

of a given program can be preserved in a manual step of simpli�cation. In some

of our experiments we simply replaced the pointers used by the spinlock functions

with integers representing the state of the lock. This is obviously a pragmatic ap-
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proach which does not re�ect all possible behaviour of pointer programs. However,

it turned out that it is expressive enough to cover the usage rules of the spinlock

API. As such modi�cations could be introduced into the source code automatically,

we consider them as an interesting extension for Blast.

The missing support of function pointers has already been mentioned in Sec-

tion 3.1. It is true that function pointers are often used in both application space

and operating system development. In most cases their e�ect on the program execu-

tion can only be determined at run-time, not statically at compile-time. Therefore,

we assume that simply skipping all calls of function pointers is acceptable for now.

Usability. There are several issues regarding Blast's usability which are probably

easy to �x, but right now they complicate the work with this tool. Basically, if a

piece of C source is accepted by an ANSI C compiler, it should be accepted by

Blast rather than raising uninformative error messages.

A nice improvement would be to provide wrapper scripts that automate prepro-

cessing and veri�cation in a way that Blast can be used with the same arguments

as the compiler. It could be even more useful if functions that are of interest but

from other parts of a given source tree, would be copied in automatically. Since we

obviously do not want to analyse the whole kernel source in a single �le, this should

be integrated into Blast's abstraction/model checking/re�nement loop.



Chapter 4

Symbolic Object Code Analysis

In this chapter we present Symbolic Object Code Analysis (SOCA), a novel ap-

proach to identifying violations of memory safety properties based on bounded path-

sensitive symbolic execution of compiled and linked programs. More precisely, we

translate a given program path-wise into systems of bit-vector constraint using an

intermediate representation (IR) borrowed from the Valgrind dynamic binary in-

strumentation framework [Nethercote and Seward, 2007]. In Section 4.2 we outline

the features of this IR language, sketch a simple operational semantics and explain

how IR instructions can be translated into constraints for the Yices SMT solver

[Dutertre and de Moura, 2006].

As we describe in Section 4.3, the SOCA technique employs Yices as execution

and veri�cation engine, checking the satis�ability of the generated constraints sys-

tems. The analysis has to be bounded since the total number of paths as well as the

number of instructions per path in a program is potentially in�nite. Our approach

allows us to express a range of memory safety properties as simple assertions over

those constraint systems. In contrast to other methods for �nding memory safety

violations, our technique does not employ program abstraction other than leaving

the program's input initially unspeci�ed in order to allow the SMT solver to search

for inputs that will drive the program into an error state.

In Section 4.5 we present the results of and extensive evaluation of our technique

by applying a prototypical SOCA Veri�er to the Verisec benchmarking suite as well

as to almost 10,000 functions taken from Linux device drivers. For the evaluation

of our SOCA technique we chose Linux device drivers compiled for 32-bit Intel

architectures (IA32, [Intel Corporation, 2009]), as our application domain. Despite

being relatively small in size, device drivers represent an interesting challenge as

they implement hardware access and are usually written in a mixture of C code and

inlined assembly code. This combination makes them particularly hard to test and

analyse with currently available veri�cation tools.
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Figure 4.1: Overview of the Linux OS kernel

4.1 Background

The Linux operating system kernel consists of a large and complex code base imple-

menting key tasks such as process management, memory management, �le system

access, device control and networking for about 20 di�erent computer architectures.

As illustrated in Fig. 4.1, it features a relatively small monolithic core of compo-

nents such as the scheduler and the memory management subsystem. However, the

majority of its functionality, shown in dark gray in Fig. 4.1, is implemented in terms

of kernel modules or device drivers1 that can be built separately from the kernel and

loaded at runtime. These modular components of the Linux kernel are responsible,

for example, for making a particular physical device attached to the computer re-

spond to a well-de�ned internal programming interface. Hence, user access to this

device can be performed by means of standardised functions provided by the ker-

nel's System Call Interface, which are independent of the particular driver or device.

Kernel modules amount to roughly two-thirds (≈200 MBytes of code) of the entire

Linux kernel distribution.

De�ning memory safety. The scope we are aiming on is to develop a framework

that veri�es that every pointer in a given program is (1) valid in the sense that it

never references a memory location outside the address space allocated by or for that

program, and (2) valid with respect to a given set of API usage rules obtained from

the Linux kernel's documentation at every point in program execution the pointer

is dereferenced at. In detail the memory safety properties we are interested in may

be classi�ed as follows:

(a) Dereferencing invalid pointers. A pointer may not be NULL, shall be initialised

and shall not point to a memory location outside the address space allocated by or

1The terms kernel module and device driver are used synonymously within this paper.
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for the driver under consideration. A violation of this property leads to unde�ned

behaviour. (b) Uninitialised reads. Memory cells shall be initialised before they

are read. The program's behaviour becomes unde�ned, otherwise. (c) Violation

of memory permissions. When a program is loaded into memory, the di�erent seg-

ments (cf. [Tool Interface Standards (TIS) Committee, 1995]) of the program �le are

assigned with di�erent permissions determining whether that section can be read,

written or executed. Violations of those permissions may lead to program termina-

tion and are usually a sign of erroneous pointer arithmetics. Memory permissions

are not always strictly enforced by the operating system. (d) Bu�er over�ows. By

�bu�er over�ow� we mean out-of-bound read and write operations to objects on heap

and stack. These errors lead to memory corruption and give way to various security

problems. (e) Memory leaks. When a program dynamically allocates memory but

loses the handle to it, the memory cannot be deallocated anymore. Memory leaks

have an especially high impact on the reliability of OS components since they are

supposed not to terminate. In a long-term execution, a device driver losing only a

few bytes of dynamically allocated heap space per operation becomes a reliability

issue. (f) Proper handling of allocation and deallocation. The Linux kernel provides

several APIs for the dynamic (de)allocation of memory. The kernel's documenta-

tion speci�es precisely what pairs of functions need to be employed together in order

to safely (de)allocate heap space. Furthermore it is speci�ed that the deallocation

functions shall not be used more than once on a speci�c pointer unless it has been

re-allocated.

Aliasing in source code and object code. A major issue in the construction

of optimising compilers, as well as for source-code-based program analysis and ver-

i�cation tools, is presented by the aliasing problem. Aliasing means that a data

location in memory may be accessed through di�erent symbolic names in the pro-

gram. Considering the C programming language, this usually means that multiple

pointer variables in a program are referencing the same data object. Since those

aliasing relations between symbolic names and data locations often arise unexpect-

edly during program execution, they may result in erroneous program behaviours

that are particularly hard to trace and to debug.

Let us consider the C program given in Fig. 4.2. The program shows a rather

uncomfortable way of implementing an endless loop. It declares a counter i of 32 bit

length. In addition, two pointers p1 and p2 are used such that p2 points to i and

p1 to the least signi�cant 16 bits of i. Hence, p1 and p2 are pointing to the same

memory location. In the loop declaration (l. 8) we are now counting the data object

pointed to by p1 from 0 up to 10 while setting the data object pointed to by p2
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01 #include <stdio.h>

02 #include <sys/types.h>

03

04 int main (void) {

05 int32_t i, *p2=&i;

06 int16_t *p1=&((int16_t*) &i)[0];

07

08 for (*p1=0; *p1<10; (*p1)++)

09 { *p2=0; }

10

11 printf ("%08x: %d\n", p1, *p1);

12 printf ("%08x: %d\n", p2, *p2);

13 printf ("%08x: %d\n", &i, i);

14 return (0); }

Figure 4.2: Example for pointer aliasing in C: e_loop.c

$ gcc -O2 e_loop.c

$ ./a.out

bfc76f2c: 10

bfc76f2c: 0

bfc76f2c: 0

$ gcc -O2 e_loop.c

$ ./a.out

bfc7428c: 10

bfc7428c: 10

bfc7428c: 10

$ gcc -O1 e_loop.c

$ ./a.out

-> does not terminate

Figure 4.3: Output of the program given in Fig. 4.2 compiled with (a) gcc version
4.1.2 (left) and (b,c) gcc version 4.3.1 (right).

to 0 (l. 9) in every loop iteration. The code should loop forever and the printf()

statements in ll. 11 to 13 should never be reached. However possible behaviours of

the program are presented in Fig. 4.3.

The di�erent outcomes of the program execution can be explained as a result of

unsound/di�erent assumptions made about pointer aliasing by the developer and

the compiler, in connection with di�erent optimisations applied to the code. In the

�rst and second case, the compiler is invoked with the option �-O2�, enabling several

optimisations along with the assumption that pointers of di�erent types do not alias

(in compliance with ISO/IEC 9899:1999).

We may now look at the same program at assembly level. Fig. 4.4 shows an

80483ba: xor %eax,%eax ;; eax := 0;

80483c4: lea -0xc(%ebp),%ebx ;; ebx := ebp - 0xc

80483c8: add $0x1,%eax ;; eax := eax + 0x00000001

80483cb: cmp $0x9,%ax ;; (ax = 9)?

80483cf: movl $0x0,-0xc(%ebp) ;; *p2 (= ebp - 0xc) := 0

80483d6: mov %ax,(%ebx) ;; *p1 (= ebx = ebp - 0xc) := ax

80483d9: jle 80483c8 ;; if (ax <= 9) goto 80483c8

Figure 4.4: Excerpt of the disassembled code from Fig. 4.3.b.
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excerpt of the assembly code obtained by disassembling the program which produced

the output shown in Fig. 4.3.b using the objdump disassembler. We can easily spot

(at instructions 80483cf and 80483d6) that p1 and p2 are indeed pointing to the same

location in memory. We can also see that *p2 is actually written before *p1. This

is unexpected when looking at the source code, but valid from the compiler's point

of view as it assumes that the two pointers do not alias. As another consequence of

this assumption, eax is never reloaded from the memory location to which p1 and

p2 point.

The above example shows that source-code-based analysis tools have to decide

for a particular semantics of the source language, which may not be the one that is

actually used by a compiler to translate the code into an executable. Hence, results

obtained by analysing the source code may not necessarily meet a program's runtime

behaviour.

While the above example motivates the analysis of compiled programs, doing so

does not provide a generic solution for dealing with pointer aliasing. Consider the

following lines of C code:

01 int i, *p1 = &i, *p2 = NULL;

02 if (condition) { p2 = &i; }

03 ...

In this case, after line 2, we cannot determine whether p1 and p2 do alias or not,

regardless of the program representation we chose. However, we may attempt to do

a path-sensitive analysis of the program and consider the path in which condition

evaluates to true and hence p1 and p2 do alias, separated from the path in which

condition does not hold. Of course this is not feasible in general as programs may

have in�nitely many paths. Our assumption is that for the application domain of

device drivers � relatively short programs � our approach will scale well enough

in order to �nd previously unknown errors. Our results presented in Section 4.5

demonstrate that this is true.

4.2 Valgrind's Intermediate

Representation Language

A program under consideration is stored by us in an intermediate representation (IR)

borrowed from Valgrind [Nethercote and Seward, 2007], a framework for dynamic

binary instrumentation. The IR consists of a set of basic blocks containing a group

of statements such that all transfers of control to the block are to the �rst statement

in the group. Once the block has been entered, all statements in the group are
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<reg> ::= <CPU register number>

<treg> ::= <Temporary register number>

<type> ::= <I8 | I16 | I32>

<statement> ::=

| <treg>:<type>

| PUT (<reg>) = <<treg>|<<val>:<type>>>

| <treg> = GET:type (<reg>)

| ST (<<treg>|<<val>:I32>>) = <<treg>|<<val>:<type>>>

| <treg> = LD:type (<<treg>|<<val>:I32>>)

| GOTO (<<treg>|<<val>:I32>>)

| IF (<treg>) <statement>

| EXIT

| <treg> = ADD:type (<<treg>|<<val>:<type>>>, <<treg>|<<val>:<type>>>)

| <treg> = AND:type (<<treg>|<<val>:<type>>>, <<treg>|<<val>:<type>>>)

| ...

| <treg> = Xor:type (<<treg>|<<val>:<type>>>, <<treg>|<<val>:<type>>>)

Figure 4.5: Basic syntax of Valgrind's IR language

executed sequentially. Hence, a basic block has exactly one entry point but may have

multiple exit points. The IR is basically a typed assembly language in static-single-

assignment form [Cytron et al., 1991; Leung and George, 1999] using temporary

registers and some memory for storing the guest state, i.e., registers available in the

CPU the program is originally compiled for.

In Valgrind's IR all arithmetic expressions, including address arithmetic, are de-

composed into simple expressions with a �xed number of operands using temporary

registers for intermediate results. Furthermore, all load and store operations to

memory cells as well as to the guest state are made explicit. Hence, normalising a

program by transforming it into its IR increases the number of separate instructions

as each CPU instruction is usually expanded into multiple IR instructions. However,

this proceeding reduces the complexity of the program's representation because IR

instructions are relatively simple and free of side e�ects.

The basic syntax of Valgrind's IR is illustrated in Fig. 4.5. The meaning of the

the di�erent constructs in the language is as follows:

treg:type : temporary register declaration

PUT : stores a value or the contents of a temporary register in a CPU register

GET : load a CPU register into a temporary register
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IA32 Assembly IR Instructions

xor %eax,%eax t9 = GET:I32(0) ;; t9 := eax

t8 = GET:I32(0) ;; t8 := eax

t7 = Xor32(t9,t8) ;; t7 := t9 xor t8

PUT(0) = t7 ;; eax := t7

lea -0xc(%ebp),%ebx t42 = GET:I32(20)

t41 = Add32(t42,0xFFFFFFF4:I32)

PUT(12) = t41

Figure 4.6: First two instructions of Fig. 4.4 and their respective IR instructions.

ST : stores a value or the contents of a temporary register at a heap location

identi�ed by a value or a temporary register

LD : loads the contents of a heap location identi�ed by a value or a temporary

register to a temporary register

GOTO : Makes program execution proceed at the program location identi�ed by

a value or a temporary register

IF : Conditional execution of a statement if the �rst parameter equals 1

EXIT : �nish program execution

other operations : Apart from the instructions explained above, the IR language

consists of various statements for arithmetical operations and other transfor-

mations on temporary registers. These instructions do always have up to four

parameters. The result of the operation is stored in a previously declared

but not assigned temporary register, preserving the static single assignment

form of the IR. To give some examples, we have added the ADD and AND

instructions above. Their semantics is self-explanatory.

memory allocation : The IR does not provide mechanisms for allocating or deal-

locating objects on the heap or stack. Instead, the GOTO statement is used to

denote jumps to allocators and de-allocators provided by the operating system.

Since model checking the operating system's memory management facilities it-

self is currently not in the scope of our research, we do not translate functions

like malloc() or free() into their IR representation but provide a semantics

for the entire function call.

The example for IR instructions given in Fig. 4.6 shows that our chosen inter-

mediate representation consists of a few basic elements such as temporary registers
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IA32 Assembly IR Instructions

sub $0x8,%esp PUT(60) = 0x8048377:I32 ;; put PC

t4 = GET:I32(16) ;; get ESP into t4

t2 = Sub32(t4,0x8:I32) ;; t2 = t4 - 0x8

PUT(32) = 0x6:I32 ;; EFLAGS: operation

PUT(36) = t4 ;; EFLAGS: first operand

PUT(40) = 0x8:I32 ;; EFLAGS: second operand

PUT(16) = t2 ;; put new ESP

Figure 4.7: Valgrind IR: EFLAGS usage.

denoted with t<n>, GET and PUT statements to access machine registers iden-

ti�ed by integers, as well as arithmetic and boolean operations such as Add, And

and Xor. Note that the latter instructions operate on temporary registers or literals

only. In addition to those statements, there are also LD and ST instructions for

loading and storing data to and from the main memory, respectively. An impor-

tant feature of the IR is that all operations and registers are typed. While machine

registers are always 8 bits long, temporary registers may have a length of 1, 8, 16,

32 or 64 bits. As a result of this, the statement t9 = GET:I32(0) means that t9

is generated by concatenating the machine registers 0 to 3. As each IR block is in

static single assignment form with respect to the temporary registers, t9 is assigned

only once within a single IR block.

Valgrind's IR takes special care of the EFLAGS register of Intel x86 microproces-

sors. The EFLAGS register is the status register of these CPUs, containing the current

state of the processor. The register may be updated by various instructions. Es-

pecially arithmetical operations may update the register's Carry, Zero and Signed

bits depending on the result of the operation. Valgrind's IR does not force the

computation of these �ags for each arithmetic operation. Instead, IR-instructions

storing the parameters of the last operation that may have updated the EFLAGS

register are generated so that the actual �ag assignment may be computed when it

is needed at a later point in program execution, i.e. for evaluating a guarded jump

statement. An example for these additional IR instructions is given in Fig. 4.7:

the IR instructions marked with the comment �EFLAGS:� denote the storing of the

Sub32 operation and the two operands in additional machine registers that have no

corresponding representation in actual IA32 CPUs.
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4.2.1 A semantics for Valgrind's IR

We de�ne a simple operational semantics for for the operations in Valgrind's IR

language in terms of bit vector arithmetic.

De�nition 1 (Bit Vector) A bit vector b is a vector of bits with a given length l

(or dimension):

b : {0, ..., l − 1} → {0, 1}

The set of all 2l bit vectors of length l is denoted by bvecl. The i-th bit of the bit

vector b is denoted by bi [Kroening and Strichman, 2008].

To give a semantics to the di�erent IR instructions we use command-state pairs

〈c, (t, r, h)〉 where c is a command (i.e. an IR instruction with its parameters) and

the triple (t, r, h) represents the program state with t holding the temporary register

assignment, r the CPU register assignment and h the current heap. As shown in De�-

nition 3, our semantics is based on three partial functions Registers, TempRegisters

and Heap representing the program state.

De�nition 2 (Basic De�nitions)

Types = {I1, I8, I16, I32}

Addresses = bvec32

V alues = bvec1 ∪ bvec8 ∪ bvec16 ∪ bvec32

De�nition 3 (Program State)

Registers = Int→ bvec8

TempRegisters = Int→ (type ∈ Types, val ∈ V alues ∪ {⊥})

Heap = Addresses→ bvec8

States = TRegisters×Registers×Heap

Note that programs compiled for IA32 may make use of 64-bit operations and

registers. Common examples for this are Intel's Multi Media Extension (MMX)

instructions and registers. However, as the handling of those 64-bit data types is

largely equivalent to 32-bit register handling. For the sake of conciseness we omit

these types here. Of course, they are supported by the SOCA Veri�er. Further
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details on Intel's architecture, instructions and register layout can be found in [Intel

Corporation, 2009].

CPU register access. CPU registers are accessed via the PUT and GET instruc-

tions. The simplest case for those is probably the PUT instruction with only literal

parameters, which we use as an example for explaining our notation below.

De�nition 4 (PUT with literal parameters)

〈PUT(reg) = val ∈ V alues:type ∈ Types, (t, r, h)〉

 


(t, [r|reg : val], h) if type = I8

(t, [r|〈reg..reg + 1〉 : val], h) if type = I16

(t, [r|〈reg..reg + 3〉 : val], h) if type = I32

Let us explain this de�nition: The PUT instruction has three parameters. The

�rst of those is reg and denotes the �rst CPU register we are going to write to. The

second parameter is val, the value we are going to write to reg. The last parameter

is type and tells us what size the bit vector val has, and respectively, how many

CPU registers we have to use in order to store it.

The most complicated case arises if type equals I32 and hence val has to be

handled as a bit vector of length 32. Since the CPU registers store bit vectors of

size 8, we have to store val in four of those registers such that the concatenation of

those four registers again results in val. We write

(t, r, h) (t, [r|〈reg..reg + 3〉 : val], h)

which means that only the r component of the originating (t, r, h) is updated by the

PUT instruction in such a way that after the execution of the PUT (denoted by  ),

the CPU registers reg, reg+ 1, reg+ 2 and reg+ 3 will together hold the value of

val, and hence

r(reg) ◦ r(reg + 1) ◦ r(reg + 2) ◦ r(reg + 3) = val

holds true. The ◦-operator denotes the concatenation of two bit vectors.

Similar to the above de�nition of the PUT instruction with a literal operand, we

can now easily give a semantics for more complicated cases such as PUT and GET

with temporary registers being used as operands:

De�nition 5 (PUT with temporary registers)
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t(treg).val 6= ⊥
〈PUT(reg) = treg, (t, r, h)〉

 


(t, [r|reg : t(treg).val], h) if t(treg).type = I8

(t, [r|〈reg..reg + 1〉 : t(treg).val], h) if t(treg).type = I16

(t, [r|〈reg..reg + 3〉 : t(treg).val], h) if t(treg).type = I32

De�nition 6 (GET with temporary registers)

t(treg).type = type ∧ t(treg).val = ⊥
〈treg = GET : type(reg), (t, r, h)〉

 


([t|treg.val : r(reg)], r, h) if type = I8

([t|treg.val : r(〈reg..reg + 1〉)], r, h) if type = I16

([t|treg.val : r(〈reg..reg + 3〉)], r, h) if type = I32

Byte ordering. Importantly, Valgrind provides support for multiple di�erent

CPU architectures including our target architecture IA32, but also Motorola's Pow-

erPC CPUs and Acorn's ARM processors. As a result, tools building upon Valgrind's

internals have to take special care in order to interpret word-aligned register and

memory access correctly. For example, the IA32 supports only the use of the little-

endian format for storing word-aligned data, which means that the least signi�cant

byte of a word-aligned data object is stored at the lowest address. PowerPC and

ARM, on the other hand, support both, little-endian and big-endian (most signif-

icant byte �rst). However, in order to simplify logical and arithmetical operation

that are carried out on temporary registers, we want those registers to hold val-

ues in the more natural big-endian format only, leaving byte-ordering conversions

to the PUT and GET instructions, respectively. For the sake of simplicity, the se-

mantic de�nitions of Valgrind's IR language in this section are given for big-endian

architectures.
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Arithmetic functions. Besides PUT and GET, Valgrind's IR provides a large set

of logical and arithmetical functions ranging from negation over widening, narrow-

ing, bit-shifting and logical conjunction and disjunction to addition, multiplication

and division. All these instructions require a �xed number of temporary registers

or literals as parameters and store the output in a temporary registers. Since con-

ventions for the widths of input and output bit-vectors as well as operation-speci�c

information, i.e. on over�ow handling, are provided in Valgrind's public header �les,

we only give an example for the ADD instruction here:

De�nition 7 (ADD with temporary registers)

t(sum).type = type ∧ t(sum).val = ⊥ ∧
t(add1).val 6= ⊥ ∧ t(add2).val 6= ⊥
〈sum = ADD : type(add1, add2), (t, r, h)〉

 


([t|sum.val : (t(add1) + t(add2)) mod 28], r, h) if type = I8

([t|sum.val : (t(add1) + t(add2)) mod 216], r, h) if type = I16

([t|sum.val : (t(add1) + t(add2)) mod 232], r, h) if type = I32

In the above de�nition + denotes arithmetic addition of two bit-vectors. As the

resulting bit-vector is required to have the same size as the parameters, we truncate

the result using the modulo operation. Other arithmetic functions can be de�ned

along the lines of ADD.

Memory access Memory access is similar to register access. Here, ST (store)

corresponds with PUT and LD (load) resembles the GET instruction. However, LD and

ST are used to access the main memory of the computer system. The major di�erence

to PUT and GET is that memory addresses are provided as 32-bit-wide parameters,

either as literals or as temporary registers whose content has been computed by

instructions preceding the current memory access. Hence, in di�erent executions of

the same code fragment, the location addressed by LD and ST is not static as with

PUT and GET.
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Again, we start with a simple case, namely ST with literal operands:

De�nition 8 (ST with literal operands)

〈ST (addr ∈ V alues : I32) = val ∈ V alues : type, (t, r, h)〉

 


(t, r, [h|addr : val]) if type = I8

(t, r, [h|〈addr..addr + 1〉 : val]) if type = I16

(t, r, [h|〈addr..addr + 3〉 : val]) if type = I32

More commonly found are cases where temporary registers are used as parameters

to the instructions:

De�nition 9 (ST with temporary registers)

t(addr).type = I32 ∧ t(addr).val 6= ⊥ ∧
t(src).val 6= ⊥

〈ST (addr) = src, (t, r, h)〉

 


(t, r, [h|t(addr).val : t(src).val]), if t(src).type = I8

(t, r, [h|〈t(addr).val..t(addr).val + 1〉 : t(src).val]) if t(src).type = I16

(t, r, [h|〈t(addr).val..t(addr).val + 3〉 : t(src).val]) if t(src).type = I32

De�nition 10 (LD with temporary registers)

t(target).type = type ∧ t(target).val = ⊥ ∧
t(addr).type = I32 ∧ t(addr).val 6= ⊥

〈target = LD : type(addr), (t, r, h)〉

 


([t|target.val : h(t(addr).val)], r, h) if type = I8

([t|target.val : h(〈t(addr).val..t(addr).val + 1〉)], r, h) if type = I16

([t|target.val : h(〈t(addr).val..t(addr).val + 3〉)], r, h) if type = I32

Memory allocation and de-allocation. For supporting memory allocation and

de-allocation using APIs such as malloc() and free() as de�ned for ANSI-C, we

extend the program state by a function HeapLocations. This function provides a

mapping from addresses to meta-information on the respective memory cell. Note

that the HeapLocations function has no meaning for the execution of the program

under consideration and does not in�uence its results. Instead, it provides additional

information that is usually hidden inside the operating system's memory manage-

ment facilities. Hence, the information stored here may vary with the properties to

be checked.
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De�nition 11 (Heap Locations)

HeapLocations = Addresses→ (alloc : Bool, init : Bool

start ∈ Addresses, size ∈ bvec32)

States = TRegisters×Registers×Heap×HeapLocations

In the context of this thesis we are interested in checking whether a particular

pointer may only point to an address that belongs to a previously allocated location

of the heap, and whether the respective memory cells have been initialised, i.e. writ-

ten to, before they are read. Furthermore the start address and size of that location

are required in order to be able to identify out-of-bounds access or invalid use of

the de-allocators provided by the runtime environment of the program. According

to De�nition 11 we use alloc, init, start and size to retain the above information,

respectively. The HeapLocations is denoted wit l in the command-state pairs of

the semantic de�nitions given below. The command-state pair has to be extended

to 〈c, (t, r, h, l)〉.
Below we give semantic de�nitions for a generic allocator MALLOC and de-

allocator FREE :

De�nition 12 (MALLOC)

t(addr).type = I32 ∧ t(addr).val = ⊥ ∧
t(size).type = I32 ∧ t(size).val 6= ⊥ ∧
((l(loc..(loc+t(size).val−1)).alloc = false∨ loc = 0)u loc =

0)
〈addr = GOTO MALLOC(size), (t, r, h, l)〉

 


([t|addr.val = 0], r, h, l) if t(size).val = 0 ∧ loc = 0

([t|addr.val = loc], r, h, [l|〈loc..(loc + t(size).val − 1)〉 :

(true, false, loc, t(size).val)) if t(size).val 6= 0 ∧ loc = 0

Here the u-operator denotes a non-deterministic choice between the two cases

l(loc..(loc + t(size).val − 1)).alloc = false ∨ loc = 0

success or failure due to lack of free memory or fragmentation and

loc = 0

non-deterministic failure.
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De�nition 13 (FREE)

t(addr).type = I32 ∧ t(addr).val 6= ⊥
〈GOTO FREE(addr), (t, r, h, l)〉

 


(t, r, h, l) if t(addr).val = 0

(t, r, h, [l|〈t(addr).val..(t(addr).val + l(t(addr).val).size− 1)〉 :

(false, false, 0, 0)]) else

Of course, extending the de�nition command-state pair also requires us to provide

a new de�nition of the ST operation:

De�nition 14 (ST with temporary registers)

t(addr).type = I32 ∧ t(addr).val 6= ⊥ ∧
t(src).val 6= ⊥

〈ST (addr) = src, (t, r, h, l)〉

 



(t, r, [h|t(addr).val : t(src).val],

[l|t(addr).val.init : true]), if t(src).type = I8

(t, r, [h|〈t(addr).val..t(addr).val + 1〉 : t(src).val],

[l|〈t(addr).val..t(addr).val + 1〉.init : true]) if t(src).type = I16

(t, r, [h|〈t(addr).val..t(addr).val + 3〉 : t(src).val],

[l|〈t(addr).val..t(addr).val + 3〉.init : true]) if t(src).type = I32

All other instructions require minor changes only as they do not perform updates to

HeapLocations. For conciseness we do not present these minor modi�cations here.

When looking at real operating system kernels, we will notice that there are

usually additional allocators and de-allocators available. Also functions mapping

and unmapping parts of the �le system or memory from devices attached to the

system bus into the address space of the program to be analysed, are currently

considered as if they were performing allocation, de-allocation as well as initialisation

of memory cells. Furthermore, those functions may have additional parameters

identifying a particular area of the heap in which the newly allocated memory chunk

should be placed in, or control other aspects of the allocator's behaviour. For the

sake of simplicity we ignore these details here. Of course, an implementation of our

analysis framework has to account for some of those details while others may be

irrelevant with respect to the properties we want to check.

Please note that the preconditions of the semantic de�nitions above only consider

integrity properties of the intermediate representation. Let us for example have

another look at the LD instruction. Its preconditions are:

t(treg).type = type ∧ t(treg).val = ⊥
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We only require the type of the target register matching the type of the load

instruction and the target register not being previously initialised. The �rst pre-

condition makes sure that we are neither loosing some bits of the result nor adding

uninitialised data to the program's execution. The latter condition guarantees that

the static single assignment form of the IR is preserved.

As we are reasoning about pointer safety,

t(addr).val 6= 0

would be another important safety property of the program, expressing that the

address to be dereferenced shall not hold the value NULL. However, since NULL is a

valid register assignment that solely has a special semantics with respect to pointer

operations, it is not a integrity property of the IR.
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4.3 Symbolic Execution

In this section we introduce a novel approach to verifying properties in software

components based on bounded path-sensitive symbolic execution of compiled and

linked programs as illustrated in Fig. 4.8. The basic idea behind our approach

employs well-known techniques including symbolic program execution, SMT solving

and program slicing. However, implementing it in a way that renders the techniques

scalable up to the application domain of Linux device drivers is a challenging task.

As shown in the illustration, we automatically translate a program given in its

object code into an intermediate representation (IR), borrowed from the Valgrind

binary instrumentation framework [Nethercote and Seward, 2007], by iteratively

following each program path and resolving all target addresses of computed jumps

and return statements. From the IR we generate systems of bit-vector constraints

for each execution path, which re�ect the path-relevant register and heap contents

of the program under analysis. We then employ the Yices SMT solver [Dutertre

and de Moura, 2006] to check the satis�ability of the resulting constraint systems

and thus the validity of the path. This approach also allows us to add in a range of

pointer safety properties, e.g., whether a pointer points to an allocated address, as

simple assertions over those constraint systems.

In contrast to other methods for software veri�cation, our technique does not

employ program abstraction but only path-sensitive and heap-aware program slicing,

which means that our slices are not computed over the entire program but only over

a particular path during execution. Furthermore, we do not consider the heap as

one big data object but compute slices with respect to those heap locations that are

data-�ow dependents of a location in a program path for which a property is being

checked. A safe over-approximation is used for computing these slices. In addition,

our technique leaves most of the program's input (initially) unspeci�ed in order to

allow the SMT solver to search for subtle inputs that will drive the program into an

error state. Obviously, our analysis by symbolic execution cannot be complete: the

search space has to be bounded since the total number of execution paths and the

number of instructions per path in a program is potentially in�nite. However, our

experimental results will show that this boundedness is not a restriction in practice:

many programs are relatively �shallow� and may still be analysed either exhaustively

or up to an acceptable depth.
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Figure 4.8.a: Starting from a given function entry point, each instruction is translated into IR.

Figure 4.8.b: In order to construct paths, the IR is systematically traversed in depth-�rst fashion
up to a certain width and and depth.

Figure 4.8: Illustration of the SOCA technique.
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Figure 4.8.c: To decide which paths of the program are feasible, assertions are generated at
decision points. For program statements facilitating memory access, we also generate assertions
expressing the relevant pointer-safety properties at this instruction.

Figure 4.8.d : For each assertion we compute a path-sensitive program slicing containing only
those program statements that a�ect the decision variable or pointer, and hence are required for
checking the satis�ability of assertions.

Figure 4.8: Illustration of the SOCA technique.
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Figure 4.8.e: The slice and assertions are translated into a bit-vector constraint problem, which
then checked for satis�ability by invoking the Yices SMT solver.

Figure 4.8: Illustration of the SOCA technique.
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Using the operational semantics for Valgrind's IR language as outlined in the

previous section, we are now able to translate IR instructions into bit-vector con-

straint systems for Yices2 [Dutertre and de Moura, 2006]. Given that the IR is in

static single assignment form we can simply translate an instruction such as the �rst

PUT statement from Fig. 4.6 as follows:

IR Instruction Constraint Representation

PUT(0) = t7 (define r0::(bitvector 8)(bv-extract 31 24 t7))

(define r1::(bitvector 8)(bv-extract 23 16 t7))

(define r2::(bitvector 8)(bv-extract 15 8 t7))

(define r3::(bitvector 8)(bv-extract 7 0 t7))

Note that the CPU registers are assigned in �reverse byte order�, i.e. with the

least signi�cant 8 bits in r0 and the most signi�cant bits in r3, to the temporary

registers. That is because the above constraints are generated from a binary com-

piled for IA32 which uses this particular encoding, while arithmetic expressions in

Yices are implemented for bit-vectors that have the most signi�cant bit at position

0. Since access operations to the guest state may be 8, 16, 32 or 64 bit aligned, we

have to use two di�erent encodings here.

Similar to the PUT instruction we can express GET or the Xor and Add in-

structions in terms of bit-vector constraints for Yices:

IR Instruction Constraint Representation

t9 = GET:I32(0) (define t9::(bitvector 32) (bv-concat

(bv-concat r3 r2) (bv-concat r1 r0))

t7 = Xor32(t9,t8) (define t7::(bitvector 32) (bv-xor t9 t8))

t41 = Add32(t42,

0xFFFFFFF4:I32)

(define t41::(bitvector 32)

(bv-add t42 (mk-bv 32 4294967284)

Since our analysis handles loops by unrolling them while exploring a path, a

single instruction might appear multiple times in that path. Furthermore, the IR is

in static single assignment form only with respect to the temporary registers within a

2The syntax of Yices' input language is explained at http://yices.csl.sri.com/.

http://yices.csl.sri.com/
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single IR block. Hence, we have to be more precise when generating variable names.

The rule applied by the implementation of our technique appends the instruction's

location and the invocation number to each variable.

While the translation method explained above can be applied for operations

working on registers and temporary registers only, it cannot be used for operations

accessing the heap or stack. To explain this, let us consider the two IR statements:

01 STle(t5) = t32

02 t31 = LDle:I32(t7)

The semantics of those two statements is quite similar to that of PUT and

GET. In order to be as close as possible to the actual IA32 architecture, we de�ne

the underlying memory representation as an array of memory cells of eight bits each

that are accessed using an index of 32 bit length. Now we can de�ne that the ST

will update the memory cells indexed by t5..t5 + 3 by storing the value held by

the 32-bit-wide temporary register t32. Of course, in order to do this, t32 needs to

be disassembled into 8-bit-wide bit-vectors in the same way as shown for the PUT

instruction above. Respectively, the LD instruction will write the concatenation of

the memory cells indexed by t7..t7 + 3 to t31. Byte ordering issues apply in the

same way as explained for register access above.

The main di�erence of these instructions to PUT and GET is that the target of

the store or the source of the load instruction is variable and may be computed at

runtime. In order to include these statements in our symbolic execution framework

we have to express them in a very �exible way in order to allow the SMT solver to

identify cases in which safety properties are violated.
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Our representation of the main memory in Yices is that of a function from 32 bit

wide bit-vectors (the pointer) to bit-vectors of size 8 (the memory cell, respectively).

We write:

(define heap::(-> (bitvector 32) (bitvector 8)))

Now the above store instruction can be expressed as an update of that function:

(define heap.0::(-> (bitvector 32) (bitvector 8))

(update heap ((bv-add t5 (mk-bv 32 3))) (bv-extract 7 0 t32)))

(define heap.1::(-> (bitvector 32) (bitvector 8))

(update heap.0 ((bv-add t5 (mk-bv 32 2))) (bv-extract 15 8 t32)))

(define heap.2::(-> (bitvector 32) (bitvector 8))

(update heap.1 ((bv-add t5 (mk-bv 32 1))) (bv-extract 23 16 t32)))

(define heap.3::(-> (bitvector 32) (bitvector 8))

(update heap.2 ((bv-add t5 (mk-bv 32 0))) (bv-extract 31 24 t32)))

Constraints for the load instruction are generated analogous to theGET as explained

above.

Encoding safety assertions. Being able to translate the entire program into

constraints makes it rather easy to express our properties given in Section 4.1 in

terms of assertions on the resulting constraint systems. The simplest case for such

an assertion is a null-pointer check. For the store instruction in the above example,

we could state this assertion as:

(assert (= t5 (mk-bv 32 0)))

If the resulting constraint system is satis�able, Yices will return an evidence, i.e.

a possible input assignment that will drive the program into a state in which t5 will

be NULL at the above program point.

However, most memory safety properties require additional information to be

known about the program's current execution context. In particular, answering the

question whether a pointer may point to an �invalid� memory area requires us to

know, which cells are currently allocated. We retain this information by adding a

function named HeapLocations to our model that is updated whenever memory is

allocated or de-allocated:

(define heaploc::(-> (bitvector 32) (record alloc::bool init::bool

start::(bitvector 32) size::(bitvector 32))))

We can now express a property saying that the pointer t5 has to point to an

allocated address at the program point where it is dereferenced as:
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(assert (= (select (heaploc t5) alloc) false))

All other properties mentioned in Section 4.1 may be expressed along the lines

of those two examples. Most of them require further additional information, such

as the API that has been used to allocate or deallocate some memory cells, to be

added to the HeapLocations function. In order to reduce the size and search space

of the resulting constraint systems, we check assertions one-by-one with a specialised

HeapLocations function for each property.

Symbolic execution. The core component of our symbolic execution framework

translates a given program starting from some entry point into its intermediate

representation and then into bit-vector constraints. There are three cases in which

we have to call Yices in order to check the generated constraints for satis�ability:

(a) a given statement is a computed jump, e.g. goto t7 or a function return. In

those cases we have to compute the target address of the jump or return statement

in order to be able to continue analysing this path of the program. (b) the statement

contains a guard for a jump statement, e.g. if (t13) goto 0x80483C8:I32. Here

we have to check whether the guarding condition may evaluate to true or false in

order to be able to follow only branches for which the guard is satis�able. (c) The

last and most interesting case occurs when a temporary register is dereferenced as a

pointer, e.g. STle(t7) = t12. In that case we want to check whether our memory

safety assertions are satis�able. This is done as described above.

However, in any case we do not run Yices on an entire path's constraint system.

Instead we compute a path-sensitive slice of that path. Program slicing, introduced

in [Weiser, 1981], is a technique for automatically selecting only those parts of a

program that may a�ect the values computed at some point of interest, based on its

control and data �ow. Within the last years, various slicing techniques have been

developed. A comprehensive survey on these techniques is given in [Tip, 1994]. The

approach to program slicing used in this paper employs a slicing algorithm based

on program dependence graphs as introduced in [Ottenstein and Ottenstein, 1984]

and extended for slicing multi-procedure programs in [Horwitz et al., 1990], using

the notion of a system dependence graph. In di�erence to conventional slicing as

discussed above, our slices are computed over a single path instead of the entire

program's control �ow. In that aspect, our approach to program slicing is similar

to what has been introduced as dynamic slicing in [Korel and Laski, 1990] and

path slicing in [Jhala and Majumdar, 2005]. By contrast with those approaches'

methods, we use conventional slicing criteria (L, var) denoting a variable var that

is used at program location L. Slicing criteria for dynamic slicing and path slicing

are given in terms of a well de�ned input to a program or a (potentially infeasible)
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counterexample trace, as well as a location of interest and a set of variables. In

di�erence to that, our approach aims to compute inputs that will lead to a particular

path being executed. Hence, we leave the program's input initially unspeci�ed. The

slice is then computed by collecting all statements of which var is data dependent by

tracing the path backwards, starting from L up to the program entry point. While

collecting �ow dependencies is relatively easy for programs that do only use CPU

registers (and temporary registers in our IR), it becomes di�cult when dependencies

to the heap and stack are involved.

Handling memory access in slicing. Let us have a second look at the LD and

ST statements from page 66. In order to compute a small slice for (02, t31) we have

to know whether the store statement in l. 1 may a�ect the value of t31, i.e., whether

t5 and t7 may alias. We obtain this information by using Yices to iteratively compute

the potential address range that can be accessed through t5. This is done by making

Yices compute an evidence, i.e. a possible assignment, e for t5, and the computing

further evidences e′ such that e > e′ or e < e′ holds, until the range is explored.

Of course this is an over-approximation as not the entire range may be addressable

by the pointer. However, using this abstraction presents a trade-o� concerning only

the computation of minimal slices. That means, instead of computing and storing

all satisfying assignments for a particular pointer (232 in the worst case), we are able

to keep the number of Yices runs as well as the amount of data to store small. As

a drawback, our technique may produce unnecessarily large slices in the presence of

symbolic pointers. Nevertheless, our approach is conservative with respect to the

property to be veri�ed.

We store those ranges in a memory tree, an idea borrowed from [Ferdinand et al.,

2007], a model handling memory accesses and their access widths dynamically. The

approach uses a binary tree structure where each node is labelled with an interval

denoting the boundaries of the memory cells it represents. A leaf is labelled with a

set of points denoting the program points de�ning the memory cells represented by

the leaf.

By computing the address range possibly accessed by a pointer used in a load

statement, i.e. t7 in our case, and traversing the memory tree looking for memory

intervals overlapping with the range of t7, we can now determine which store oper-

ations may a�ect the result of the load operation. Despite being conservative when

computing address ranges, our experience shows that most memory access opera-

tions end up having very few dependencies as most pointers evaluate to a concrete

address and not a range.
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4.4 Complications and Optimisations

Handling computed jumps. A major issues when analysing compiled programs

arises from the extensive use of code pointers and jump target computations. While

most source-code based approaches simply ignore function pointers, this cannot be

done when analysing object since code jump computations are too widely used here.

Two examples for this are:

01 ;; Return statement:

02 t8 = GET:I32(16)

03 t9 = LDle:I32(t8)

04 t26 = Add32(t8,0x4:I32)

05 PUT(16) = t26

06 goto {Return} t9

01 ;; Call to a library function:

02 t0 = LDle:I32(0x80495D8:I32)

03 goto {Call} t0

In both cases the target address of the jump has to be loaded from the memory

and may di�er in multiple invocations of the same instruction from di�erent program

contexts. In our approach, jump target addresses are determined in the same way

as addresses for load and store operations. This is done by computing slices for

(06, t9) or (03, t0) for the return statement or the function call, respectively and

then iteratively computing the address ranges for the two pointers.

If Yices returns only one possible target address, we extend the program's control

�ow representation and the current path dynamically with the instruction blocks

reachable for that target. On the other hand, if t9 or t0 are symbolic pointers, we

terminate the path at this point since following each possible address would lead

to an explosion in the number of paths, and also to unsound results since many

pointer assignments may be due to missing information in the initial memory state,

and hence may actually be infeasible in practice. However, the latter case happens

rarely, practically only in case a function to be analysed gets a function pointer

passed as its argument. We show in Section 4.5 that only a small percentage of

drivers of our sample exhibit this behaviour, while the majority of drivers can be

analysed exhaustively despite this limitation.

Optimising GET and PUT statements. One major problem with respect to

the scalability of our approach arises from the vast number of GET and PUT state-

ments shown in Fig. 4.6. The reason for this is in our adaptation of Valgrind's IR:

temporary registers are usually stored in the guest state at the end of each CPU

instruction and may be reloaded in several following instructions. In fact, Valgrind

is able to optimise the IR in a way that removes a majority of those statements.
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However, in order to simplify the handling of jumps, we decided to turn this optimi-

sation o�. This allows each IR block to be entered at various points and hence saves

us time and memory for translating and maintaining multiple IR blocks holding sub-

sets of the instructions of another block. However the frequent de- and re-composing

of temporary registers into 8-bit-wide guest-state registers and back into temporary

registers introduces lots of additional variables in the SMT solver and makes it run

out of memory rather quickly.

An e�cient way around this issue is to optimise unnecessary GET and PUT

operations away based on the actual path we are analysing. Let us look at another

piece of IR obtained from the example program shown in Fig. 4.4:

;; 0x80483cb (cmp)

t25 = GET:I16(0)

IR-NoOp

PUT(32) = 0x5:I32

t43 = 16Uto32(t25)

PUT(36) = t43

PUT(40) = 0x9:I32

PUT(44) = 0x0:I32

...

;; 0x80483d9 (jle)

t49 = GET:I32(32)

t50 = GET:I32(36)

t51 = GET:I32(40)

t52 = GET:I32(44)

t53 = x86g_calculate_condition[mcx=0x13]

{0x808c940}(0xE:I32,t49,t50,t51,t52):I32

t48 = 32to1(t53)

if (t48) goto {Boring} 0x80483C8:I32

We see that the cmp instruction is decomposed into several instructions. Four of

those are PUT statements storing values to registers of the guest state. The same

registers are read by the GET statements at the beginning of the jle instruction

and there are no further write operations to these registers in between, while the

temporary registers are in static single assignment form in any case. However, we

can also see that the temporary registers written to the guest state have the same

size as the ones that are read; hence they will hold the same values and no byte-

ordering conversions are required. Hence, we may simply remove the a�ected PUT

and GET statements by assigning, for example t50 = t43, or go even further and

replace the temporary register t50 in the x86g_calculate_condition statement with

t43.

There are several cases where this optimisation is not possible. Examples for this

are code sequences in which a 32-bit value is written to the guest state and a 16-bit

value is read at a later point in the program �ow from the same register. In those

cases the changes of the byte-ordering performed by PUT and GET operations are

required to preserve the semantics of the program we are analysing.

Practical results show that this simple optimisation reduces the memory con-

sumption of Yices for large constraint systems (> 10,000 constraints) by up to 90%.



Symbolic Object Code Analysis 72

Hence it prevents a large quantity of Yices runs from terminating without returning

a result due to timeouts or memory exhaustion.

Determining a valid initial memory state. Another challenge when imple-

menting symbolic execution as an SMT problem is given by the enormous search

space that may result from leaving the program's initial memory state unde�ned.

As a result, the SMT solver tends to run out of memory regularly, or slows down

the whole analysis. Furthermore, even unsound results in pointer computations are

possible as those regularly employ �xed values taken from the initial heap or stack

of the binary program.

To make our approach scale to the desired application domain, we compute an

initial memory tree from the information given in the device driver's object code. For

all loadable program sections assigned in the binary (cf. [Tool Interface Standards

(TIS) Committee, 1995]), we create leave nodes in the memory dependency tree as

explained in Section 4.3. If our analysis determines that a particular address or

range of addresses is accessed by a pointer within a slice, we generate constraints for

the initial memory cell assignment of that particular range of addresses and prepend

them to the constraints in the slice before passing the entire constraint system to

the SMT solver.

As we explain in Chapter 5, OS components including functions taken from de-

vice drivers, make regularly use of an external data environment consisting of heap

objects allocated and initialised by other modules of the OS. Hence, this data envi-

ronment cannot be inferred from the information available in the program binary. In

Chapter 5 we show that data environments can easily be embedded into the analysis

by adding just a few lines of C code as a preamble to our analysis. However, doing

so requires one to have speci�c knowledge of the employed data objects employed

by a function to be analysed. Hence, doing so is not a di�cult task in general but

could not be done for the large number of functions analysed in Section 4.5. As a

result of this, our analysis reports higher ratios of false-positive errors than initially

expected.

4.5 Experimental Results

In order to evaluate the SOCA technique with respect to its ability to correctly

identify pointer safety issues as well as to evaluate its performance when analysing

operating system components, the SOCA Veri�er, which implements our technique,

was developed. In this section we outline the SOCA Veri�er's architecture and report

on extensive experiments conducted by applying the SOCA veri�er to a benchmark
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Figure 4.9: Software architecture of the SOCA Veri�er

suite for software model checkers as well as to a large set of Linux device drivers.

4.5.1 Tool Development

The current implementation of the SOCA Veri�er is written in C, mainly for fa-

cilitating integration with Valgrind's VEX library (cf. [Nethercote and Seward,

2007], [Valgrind, 2009]). In Fig. 4.9 we outline the Veri�ers software architecture.

The components developed for this thesis are those labelled as �SOCA Core com-

ponents�, comprising of a total of 15,000 lines of code (LOC). We interface with

three external components that are used for parsing binary program �les in the

ELF format (libELF, [Koshy, 2009]), translating CPU instructions into IR (Val-

grind's VEX Library, [Valgrind, 2009]) and for solving bit-vector constraint prob-

lems (Yices, [Dutertre and de Moura, 2006]). All these components are available

for multitude of di�erent computer architectures. Hence, we believe that the SOCA

Veri�er can be easily adapted to check programs for platforms other than IA32.

As shown in Fig. 4.9, the core components of the SOCA Veri�er comprise a

Program Flow Analyser, a Slicer, a Constraint Generator and a Constraint Opti-

miser. The Program Flow Analyser is the central component of our tool. It consists

of about 4300 LOC implementing the systematic traversal of the object code in a

depth-�rst manner, passing every instruction reachable from a given program entry

point to the VEX library in order to obtain its IR. The Flow Analyser then iden-
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ti�es control dependencies and data dependencies for each IR statement based on

traditional data �ow analysis (cf. [Nielson et al., 1999]), and generates assertions

for branching conditions and pointer dereferences. The assertions are then used as

slicing criteria by the Slicer (1400 LOC), which computes a path-slice for the slicing

criterion with respect to the path currently analysed. Slices are passed to the Con-

straint Generator and further to the Constraint Optimiser which transform the IR

statements of a slice into bit-vector constraints for Yices as explained above. These

two components are the biggest part of the SOCA Veri�er, consisting of 5800 LOC

which is due to the multitude of di�erent IR instructions that have to be translated

into constraints.

For the purpose of analysing operating system components, our implementation

of the Constraint Generator is fairly complete with respect to the supported IR

statements. We currently support 74 out of about 110 instructions commonly used

in optimised driver binaries. Floating point arithmetic (which is not used within the

Linux kernel), operations working on 64-bit registers and a large number of CPU

extensions recently integrated into IA32 processors for multimedia acceleration, are

largely unsupported at the moment. However, with the existing tool framework we

have available implementing a new CPU instruction usually takes not more than

30 LOC and can be done within hours. Hence, we believe that our tool can easily

be completed and even extended to cope with new application domains such as

analysing application level programs rather than operating system components.

4.5.2 Small Benchmarks: Verisec

For enabling qualitative comparison of our technique with other tools we applied the

SOCA veri�er to the Verisec benchmark suite [Ku et al., 2007]. Verisec consists of

298 test cases (149 faulty programs and 149 corresponding �xed programs) for bu�er

over�ow vulnerabilities taken from various open source programs. These test cases

are given in terms of C source code and provide a con�gurable bu�er size, set to 4

in the experiments conducted by us. The test cases had to be compiled to binaries

using gcc in order to be analysed by the SOCA veri�er. In previous work [Kroening

et al., 2008; Ku et al., 2007] the benchmark suite has been used to evaluate the

C-code model checkers SatAbs [Clarke et al., 2005] and LoopFrog [Kroening et al.,

2008]. For comparison of our technique, we use the metrics proposed in [Zitser et al.,

2004]3: in Table 4.1 we report the detection rate R(d), the false positive rate R(f)

and the discrimination rate R(¬f |d). The latter is de�ned as the ratio of test cases

for which an error is correctly reported, while it is, also correctly, not reported in

3We do not use Zitser's test suite as it is not publicly available.
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Table 4.1: Detection rate R(d), false positive rate R(f) and discrimination rate
R(¬f |d) for SatAbs, LoopFrog and SOCA

R(d) R(f) R(¬f |d)
SatAbs (from [Ku, 2008]) 0.36 0.08 n/a
LoopFrog (from [Kroening et al., 2008]) 1.0 0.26 0.74
SOCA 0.66 0.23 0.81

the corresponding �xed test case. Hence tools are penalised for not �nding bugs,

but also for not reporting a �xed program as safe.

As the above table shows, our technique reliably detects the majority of bu�er

over�ow errors in the benchmarking suite. However, our detection rate is still lower

than the one reported for the LoopFrog tool. An explanation for this can be found

in the nature of the given test cases: in most test cases, static arrays are declared

together with other program variables at the beginning of a main() function. This

program setup renders the benchmarking suite easily comprehensible for source-code

based veri�cation tools since the bounds of the di�erent data objects are clearly

visible in the source-code representation. However, in the object code obtained by

compiling the test case, the boundaries of data objects are not visible anymore. For

example, an array consisting of four one-byte elements followed by a 32-bit index

variable results in an 8-byte data section in the binary only, making it virtually

impossible to discriminate between the array and the index variable. While source-

code based techniques may be able to identify an over�ow error in this scenario as

soon as the array is accessed at a position greater than three, the SOCA technique

will only be able to notice it when an access exceeding the bounds of the program's

data segment (i.e. at indices greater than 7) occurs. This renders our tool less

e�cient for analysing programs with small, statically declared bu�ers.

However, the SOCA technique still shows a lower false positive rate and a better

discrimination rate than the other tools. Remarkable is also that the SOCA veri�er

failed for only four cases of the Verisec suite: once due to memory exhaustion and

three times due to unimplemented features in our tool which can easily be added by

investing more development e�orts. According to Ku [Ku, 2008], the SatAbs tool

crashed in 73 three cases and timed out in another 87 cases. Ku's experiments were

conducted with a timeout of 30 minutes. As shown in Fig. 4.10.a, the runtime of

the SOCA veri�er exceed this time in only 7 cases.

Despite having used a benchmark suite providing examples which are in favour of

source-code analysis, our results show that object-code analysis as implemented in

the SOCA Veri�er can compete with state-of-the-art source-code checkers. However,
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Figure 4.10: Performance results for the Verisec suite. Left: (a) numbers of test
cases veri�ed by time. Right: (b) numbers of constraint systems solved by time.

as our tool analysis object code, it can be employed in a much wider application

domain. Unfortunately, benchmarking suites that include dynamic allocation and

provide examples of pointer safety errors other than bu�er over�ows are, to our

knowledge, not available.

In addition to the above comparison with other veri�cation tools, Fig. 4.10 gives

an overview of the SOCA Veri�er's general performance for small-scale programs.

Fig. 4.10.a shows the CPU times consumed for analysing the di�erent test cases in

the Verisec suite. It can be seen that the vast majority of test cases is analysed

within less than three minutes per test case. Only in 38 cases this time is exceeded

due to extensive loop unrolling. However, as presented in Table 4.2, the average

computation time consumed per test case is 18.5 minutes. In total, about 92 CPU

hours have been used. Employing a 16-core compute box with 2.3 GHz clock speed

per CPU and a total of 256 GB of RAM, the experiment was conducted in about 6

hours.

In Fig. 4.10.b we show the behaviour of Yices for solving the constraint systems

generated by the SOCA Veri�er. For the Verisec suite, a total of 11,994,834 con-
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Table 4.2: Performance statistics for the Verisec suite

average standard min max total
deviation

per test case
total runtime 18m30s 1h33m 162ms 15h21m 91h54m
slicing time 28s150ms 41s808ms 28ms 5m15s 2h19m
Yices time 17m59s 1h33m 110ms 15h20m 89h19m
no. of CS 4025.11 173.76 11 8609 11994834
pointer operations 8.73 37.74 4 242 2603

per Yices invocation
runtime 267ms 4s986ms 1ms 5m 88h59m
CS size 891.64 7707.95 0 368087
memory usage 6.82MB 46.54MB 3.81MB 2504.36MB

straint systems are solved in 89 hours. With the timeout for Yices set to 5 minutes,

the solver timed out for 34 constraint systems, while 96% of the generated constraint

systems were solved in less than one second. A total of 2,250,878 (19%) constraint

systems is used to express veri�cation properties, while the other constraint systems

were required to correctly follow the program's control �ow, i.e., to decide branching

conditions and resolve computed jumps. Again, average timings, constraint system

sizes and memory consumptions are given in Table 4.2.

4.5.3 Large-Scale Benchmarks:

Linux Device Drivers

In order to evaluate the performance and scalability of the SOCA Veri�er, a large set

of 9296 functions originating from 250 Linux device drivers of version 2.6.26 of the

Linux OS compiled for IA32, is analysed. The selection criterion for the drivers is

to consider only those drivers that require only functionality provided by the kernel

and not by other drivers. This selection has been made because our tool chain does

currently not support analysing multiple drivers at once, however, implementing

this feature should be trivial.

The tool chain used in our experiments employs nm to obtain a list function

symbols present in the .text section of a given device driver object. The driver

object is then statically linked against the Linux kernel to resolve unde�ned symbols

in the driver, i.e., functions provided by the OS kernel that are called by the driver's

functions. The SOCA technique is then applied on the resulting binary �le to analyse

each of the driver's functions separately.

While our technique is in principle capable of tracing into all functions called by
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the target function, there are a few cases where we decided not to do so. Instead,

the current implementation of the SOCA technique provides a set of built-in in-

strumentations for certain functions of the kernel. The rationale behind this is that

various functions used by the driver perform I/O operations that have no meaning

with respect to the analysis since we do not include a model of the underlying phys-

ical devices a driver is supposed to operate in our symbolic execution runs. The

most common example for this are the printk() function, the kernel's equivalent

for printf(), which is used to write out messages. Our instrumentation of this

function does only dereference all given parameters and checks the alignments and

null-termination of strings the parameters point to. However, the code that actually

prints the message is omitted. A second group of functions we provide instrumen-

tations for, are those used for memory (de-)allocation. That is because the di�erent

(de-)allocation APIs provided by the kernel are assumed to behave the same with

respect to our heap model. Furthermore, functions like mmap() are considered as

simple memory allocation as well. Finally, all functions in�uencing the concurrent

behaviour of a driver are replaced with stubs as well. That is because calls to the

scheduler or the locking of resources are irrelevant for the sequential program execu-

tions our work focuses on. As most locking APIs get a pointer to a particular lock

passed as their arguments, we do check the validity of those pointers. Our instru-

mentations are done on the level of the IR, and hence no source code is required to

perform the analysis of any given function.

The bounds for the SOCA Veri�er were set to a maximum of 1000 paths to

be analysed, where a single instruction may appear at most 1000 times per path,

thereby e�ectively bounding the number of loop iterations or recursions to that

depth. The Yices SMT solver was set to a timeout of 300 seconds per invocation.

General results. Our test suite consists of a total of 9296 functions taken from

250 Linux device drivers. The promising result of our work is that 95.3% of the

functions in the sample could be analysed without failure in our tool chain. In

67.5% of the sample the exhaustion of execution bounds led to an early termination

of the analysis. However, the analysis reached a considerable depth in those cases,

analysing paths with a length of up to 22,577 CPU instructions. Most interestingly,

27.8% of those functions could be analysed exhaustively. Here exhaustiveness means,

that none of the bounds regarding the number of paths, the path length or the SMT

solver's timeout where ever reached. As shown in Fig. 4.11.a, in the majority of

cases, our analysis returns a result in less than 10 min, while the constraint systems

generated by our tool can usually be solved in less than 500 ms, and the timeout

for Yices (set to 5 min) is hardly ever reached (cf. 4.11.b). The analysis was
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Figure 4.11: Performance results for the Kernel modules. Left: (a) numbers of test
cases veri�ed by time. Right: (b) numbers of constraint systems solved by time.

carried out on a 1.5 GHz 8-core PC with and 12 GB of RAM and on a 16-core

PC with 2.3 GHz clock frequency and 256 GB of RAM. As we were not exclusively

using these machines � especially the 16-core PC was under heavy loads from other

experiments, we cannot determine the total CPU-hours used by our experiments and

all measures presented here are absolute times measured by our tool and Yices that

may include sleep times due to scheduling. The total time consumed for conducting

our experiment amounts to 9058 hours, we assume that this is equivalent to about

4500 CPU-hours on exclusively used machines.

In 0.98% (91 functions) of the sample functions our tool may have produced

unsound results due to non-linear arithmetic in the generated constraint systems,

which is currently not decidable by Yices. Our SOCA Veri�er failed in 5.6% (522

functions) of the cases due to memory exhaustion, missing support for particular

instructions or functions in our tool or Valgrind, as well as due to crashes of Yices.

We believe that all those issues can be solved by investing substantial e�ort in tool

development.
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Table 4.3: Performance statistics for the Kernel modules

average standard min max total
deviation

per test case
total runtime 58m28s 7h56m 21ms 280h48m 9058h32m
slicing time 8m35s 2h13m 0 95h39m 1329h46m
Yices time 48m36s 7h28m 0 280h30m 7531h51m
no. of CS 3591.14 9253.73 0 53449 33383239
pointer operations 99.53 312.64 0 4436 925277
no. of paths 67.50 221.17 1 1000 627524
max path lengths 727.22 1819.28 1 22577

per Yices invocation
runtime 845ms 8s765ms 1ms 5m2s 8295h56m
CS size 4860.20 20256.77 0 7583410
Memory usage 5.75MB 14.76MB 3.81MB 3690.00MB

Error reports and false positives. In this case study, our analysis of the device

drivers is focused on identifying possible null-pointer dereferences. The SOCA Veri-

�er revealed a total of 887 program locations at which a pointer may hold the value

NULL when it is dereferenced. Since our approach is based on unrolling loops, it may

report a single error location multiple times, namely as often as the loop is unrolled.

For the results presented here, the bound for loop unrolling is set to 1000 � indeed,

in a few cases, a single program location was reported up to 1000 times. The SOCA

veri�er issued a total of 472,351 warnings during the experiment conducted here.

However, only a small subset of these error traces has been analysed in detail yet.

That is because doing so currently requires one to manually establish a mapping

from the error trace and heap content reported by our tool and with respect to the

program's object code representation, to the source code and then decide whether

the reported initial heap state may actually be generated by the execution environ-

ment the function under analysis may be executed in. In general this is comprises

of several hours of work per program trace, which is currently not automated at all.

Provided that many functions utilised in this case study make use of external data

environments that have not modelled explicitly (i.e. not as in Chapter 5), this case

study can be expected to show a substantially higher false-positive-rate than the

comparison using the Verisec suite in Section 4.5.2.



Chapter 5

Beyond Pointer Safety:

The Linux Virtual File System

In the context of the grand challenge proposed to the program veri�cation com-

munity by Hoare [Hoare, 2003], a mini challenge of building a veri�able �le system

(FS) as a stepping stone was presented by Joshi and Holzmann [Joshi and Holzmann,

2007]. As FSs are vital components of operating system kernels, bugs in their code

can have disastrous consequences. Unhandled failure may render all application-level

programs unsafe and gives way to serious security problems.

In this chapter, we apply an analytical approach to verifying an implementation

of the Virtual File System (VFS) layer [Bovet and Cesati, 2005] within the Linux

operating system kernel, using our novel, automated Symbolic Object-Code Analysis

(SOCA) technique explained in Chapter 4. As described in Section 5.1, the VFS

layer is of particular interest since it provides support for implementing concrete

FSs such as EXT3 and ReiserFS [Bovet and Cesati, 2005], and encapsulates the

details on top of which C POSIX libraries are de�ned; such libraries in turn provide

functions, e.g., open and remove, that facilitate �le access. Our case study aims

at checking for violations of API usage rules and memory properties within VFS,

and equally at assessing the feasibility of our SOCA technique to reliably analysing

intricate operating system components such as the Linux VFS implementation. We

are particularly interested in �nding out to what degree the automatic veri�cation

of complex properties involving pointer safety and the correct usage of locking APIs

within VFS is possible.1

Since the Linux VFS implementation consists of more than 65k lines of complex

C code including inlined assembly and linked dynamic data structures, its veri�ca-

tion is not supported by current software model checkers such as BLAST [Henzinger

1Doing so is in the remit of Joshi and Holzmann's mini challenge: �researchers could choose
any of several existing open-source �lesystems and attempt to verify them� [Joshi and Holzmann,
2007].
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et al., 2002a] and CBMC [Clarke et al., 2004]. Thus, previous work by us focused on

the question whether and how an appropriate model of the VFS can be reverse engi-

neered from its implementation, and whether meaningful veri�cation results can be

obtained using model checking on the extracted model [Galloway et al., 2009]. This

proved to be a challenging task since automated techniques for extracting models

from C source code do not deal with important aspects of operating system code, in-

cluding macros, dynamic memory allocation, function pointers, architecture-speci�c

and compiler-speci�c code and inlined assembly. Much time was spent in [Galloway

et al., 2009] on extracting a model by hand and validating this model via reviews and

simulation runs, before it could be proved to respect data-integrity properties and to

be deadlock-free using the SMART model checker [Ciardo et al., 2006]. Our SOCA

technique addresses these shortcomings, providing automated veri�cation support

that does away with manual modelling and ad-hoc pointer analysis.

Figure 5.1: VFS environment and data structures, where arcs denote pointers.

5.1 The Linux Virtual File System

This section introduces the Linux FS architecture and, in particular, the Virtual File

System layer; the reader is referred to [Bovet and Cesati, 2005] for a more detailed

description. An overview of the VFS internals and data structures is presented in

Fig. 5.1.

The Linux FS architecture consists of multiple layers. The most abstract is the

application layer which refers to the user programs; this is shown as �process� in Fig.
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5.1. Its functionality is constructed on top of the �le access mechanisms o�ered by

the C POSIX library, which provides functions facilitating �le access as de�ned by

the POSIX Standard, e.g., open �le open(), delete �le remove(), make directory

mkdir() and remove directory rmdir(). The next lower layer is the system call

interface which propagates requests for system resources from applications in user

space to the kernel, e.g., to the VFS.

The Virtual File System layer is an indirection layer, providing the data struc-

tures and interfaces needed for system calls related to a standard Unix FS. It de�nes

a common interface that allows many kinds of speci�c FSs to coexist, and enables the

default processing needed to maintain the internal representation of a FS. The VFS

runs in a highly concurrent environment as its interface functions may be invoked

by multiple, concurrently executing application programs. Therefore, mechanisms

implementing mutual exclusion are widely used to prevent inconsistencies in VFS

data structures, such as atomic values, mutexes, reader-writer semaphores and spin-

locks. In addition, several global locks are employed to protect the global lists of

data structures while entries are appended or removed. To serve a single system call,

typically multiple locks have to be obtained and released in the right order. Fail-

ing to do so could drive the VFS into a deadlock or an unde�ned state, e�ectively

crashing the operating system.

Each speci�c �le system, such as EXT3 and ReiserFS, then implements the pro-

cessing supporting the FS and operates on the data structures of the VFS layer. Its

purpose is to provide an interface between the internal view of the FS and physical

media, by translating between the VFS data structures and their on-disk represen-

tations. Finally, the lowest layer contains device drivers which implement access

control for physical media.

The most relevant data structures in the VFS are superblocks, dentries and

inodes. As shown in Fig. 5.1, all of them are linked by various pointers inside

the structures. In addition, the data structures consist of sets of function pointers

that are used to transparently access functionality provided by the underlying FS

implementation. The most frequently used data objects in the VFS are dentries. The

dentry data structures collectively describe the structure of all currently mounted

FSs. Each dentry contains a �le's name, a link to the dentry's parent, the list

of subdirectories and siblings, hard link information, mount information, a link to

the relevant super block and locking structures. It also carries a reference to its

corresponding inode and a reference count that re�ects the number of processes

currently using the dentry. Dentries are hashed to speed up access; the hashed

dentries are referred to as the Directory Entry Cache, or dcache, which is frequently

consulted when resolving path names.
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In our initial veri�cation attempt to the VFS [Galloway et al., 2009], our work

was focused on manually abstracting these data structures and their associated

control �ow, so as to obtain a su�ciently small model for automated veri�cation via

model checking. Hence, much e�ort was put into discovering relations between the

di�erent data structures employed by the VFS [Galloway et al., 2009]. The focus of

this chapter di�ers in the sense that no models of data structures, memory layout or

control �ow are derived from the implementation. Instead, each path of the compiled

program is translated automatically into a corresponding constraint system which

is then analysed by an SMT solver, thus fully automating the veri�cation process.

5.2 VFS Execution Environment

and Properties

This section discusses our model of the VFS execution environment and also presents

the pointer safety properties and locking API usage rules relevant for the Linux VFS

implementation.

Modelling the environment. One problem for program veri�cation arises when

program functions make use of an external data environment, i.e., de-reference point-

ers to data structures that are not created by the function under analysis. This is

particularly common in case of the VFS as the majority of the VFS code operates

on dentries that are assigned either when an FS is mounted or during previous path-

lookup operations. The problem becomes particularly awkward since all these data

structures are organised as linked lists which contain function pointers for accessing

the speci�c �le system underlying the VFS layer. This is because symbolic execution

can easily cope with symbolic data objects of which only a pointer to the beginning

of the structure is de�ned, while the remainder of the structure is left unspeci�ed.

However, in the case of linked data structures, some unspeci�ed component of a

given data object may be used as a pointer to another object. Treating the pointer

symbolically will not only result in many false warnings since the pointer may lit-

erally point to any memory location, but may also dramatically increase the search

space.

In our case study we �close� the VFS system to be analysed by de�ning a small

number of dentries and associated data structures as static components of the kernel

binary. As far as necessary, these data structures are directly de�ned in the VFS C

source code by assigning a static task_struct (cf. include/linux/sched.h in the

Linux source hierarchy) de�ning the logical context, including the working directory

and a list of 15 dentries describing the FS's mount point and a simple directory
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hierarchy. The data objects are partially initialised by a handcrafted function that

is used as a preamble in our analysis process. Note that the actual parameters

to the VFS interface functions and the majority of data �elds in the prede�ned

data objects are still treated as symbolic values. Our modelling of the external

environment is conducted by successively adding details to the initial memory state

while carefully avoiding being over-restrictive. We only intend to reduce the number

of false warnings by eliminating impossible initial memory states to be considered

in our analysis.

Pointer safety properties. We check three basic safety properties for every

pointer that is de-referenced along an execution path:

1. The pointer does not hold value NULL.

2. The pointer only points to allocated data objects.

3. If the pointer is used as a jump target (call, return or computed jump), it may

only point inside the .text section of the kernel binary, which holds the actual

program code. Obviously, the program binary also has other sections such as

the symbol table or static data which are, however, invalid as jump targets.

A check of the above properties on the IR is performed by computing an over-

approximation of the address range the pointer may point to. That is, we assume

that the pointer may address any memory cell between the maximal and minimal

satisfying model determined by the constraint system for that pointer. For programs

involving only statically assigned data we can directly evaluate the above properties

by checking (a) whether the address range is assigned in the program binary and

(b) whether it belongs to appropriate program sections for the respective use of

the pointer. If dynamic memory allocation is involved, we keep track of objects

and their respective locations currently allocated within the program's constraint

representation. Checking the above properties is then performed as an assertion

check within Yices.

Locking API usage rules. Being designed for a range of multiprocessor plat-

forms, the Linux kernel is inherently concurrent. Hence, it employs various mecha-

nisms implementing mutual exclusion, and primarily locking, to protect concurrently

running kernel threads. The locking APIs used within the VFS are mainly spinlocks

and semaphores, and each of the VFS structures contains pointers to at least one

lock. In addition to these per-object locks, there exist global locks to protect access

to lists of objects.
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At a high level of abstraction, all locking APIs work in a similar fashion. If a

kernel thread attempts to acquire a particular lock, it waits for this lock to become

available, acquires it and performs its critical actions, and then releases the lock.

As a result of this, a thread will wait forever if it attempts to acquire the same

lock twice without releasing it in-between. Checking for the absence of this problem

in single- and multi-threaded programs has recently attracted a lot of attention in

the automated veri�cation community [Ball and Rajamani, 2001; Henzinger et al.,

2002a; Witkowski et al., 2007; Xie and Aiken, 2007]. For software systems like

the Linux kernel with its �ne grained locking approach, conducting these checks is

non-trivial since locks are passed by reference and due to the vast number of locks

employed. A precise analysis of pointer aliasing relationships would be required to

prove programs to be free of this sort of errors, which is known to be an undecidable

problem in general.

In our approach, locking properties are checked by instrumenting locking related

functions in their IR in such a way that a guarded jump is added to the control �ow

of the program, passing control to a designated �error location� whenever acquiring

an already locked lock structure is attempted or an unlocked lock is released. Our

symbolic analysis is then used to evaluate whether the guard may possibly be true

or not, and an error message for the path is raised if the error location is reachable.

5.3 Applying the SOCA Veri�er

to the VFS

For applying the SOCA Veri�er to the VFS, we used the VFS implementation of

version 2.6.18.8 of the Linux kernel, compiled with gcc 4.3.3 for the Intel Pentium-

Pro architecture. All con�guration options of the kernel were left as defaults. Our

experiments were then carried out on an Intel Core 2 Quad machine with 2.83 GHz

and 4 GBytes of RAM, typically analysing three VFS functions in parallel.

The bounds for the SOCA Veri�er were set to a maximum of 1000 paths to be

analysed, where a single program location may appear at most 1000 times per path,

thereby e�ectively bounding the number of loop iterations or recursions to that

depth. The Yices SMT solver was set to a timeout of 60 seconds per invocation,

which was never reached in our experiments. All these bounds were chosen so that

code coverage is maximised, while execution time is kept reasonably small.

Statistics and performance. Our experimental results are summarised in three

tables. Table 5.1 provides a statistical overview of the VFS code. We report the

total number of machine instructions that have been translated into IR by follow-
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Table 5.1: Experimental Results I: Code statistics by VFS function analysed

creat unlink mkdir rmdir rename totals

no. of instructions 3602 3143 3907 3419 4929 19000
lines in source code 1.4k 1.2k 1.6k 1.4k 2k 7.6k
no. of paths 279 149 212 318 431 1389
min. path length 91 41 87 72 72 41
max. path length 4138 3218 5319 3017 5910 5910
pointer operations 2537 2190 2671 2466 4387 14251
concrete 2356 2134 2458 2368 3989 13305
symbolic 181 56 213 98 398 946
locking operations 287 231 391 319 451 1679

Table 5.2: Experimental Results II: SOCA Veri�er statistics

creat unlink mkdir rmdir rename totals

total time 2h27m 1h22m 2h42m 1h34m 3h45m 11h50m
max. memory (SOCA) 1.03G 752M 1.15G 743M 1.41G 1.41G
max. mem. (SOCA+Yices) 1.79G 800M 1.92G 791M 2.18G 2.18G
exec. bound exhausted yes yes yes yes yes yes
path bound exhausted no no no no no no
paths reaching end 154 112 165 215 182 828
assertions checked 13.4k 12.4k 15.8k 11.8k 21.9k 75.3k
ratio of failed checks 0.043 0.012 0.041 0.019 0.049 0.033

ing each function's control �ow. The lines in source code give an estimate of the

checked implementation's size as the size of the C functions involved (excluding

type de�nitions and header �les, macro de�nitions, etc.). The next values in the

table present the numbers of paths and, respectively, the lengths of the shortest and

longest paths, in instructions explored by our veri�er with respect to the calling

context of the analysed function. The pointer and locking operations resemble the

numbers of pointer de-references and lock/unlock operations encountered along the

analysed paths, respectively.
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Table 5.3: Experimental Results III: Yices statistics

creat unlink mkdir rmdir rename totals

total Yices calls 27533 21067 31057 20988 44439 145k
total time spent in Yices 2h22m 1h11m 2h22m 1h24m 3h8m 10h28m
average time 311ms 192ms 271ms 198ms 376ms 248ms
standard deviation 3.7s 0.9s 5.2s 1.4s 5.9s 4.8s
max CS size in vars 450k 97k 450k 95k 450k 450k
average CS size in vars 2844 2871 2871 2862 2939 2877
standard deviation 14619 8948 14618 8898 16052 13521
max. memory consumption 766M 48M 766M 48M 766M 766M

In Table 5.2 we report the performance of the SOCA Veri�er, showing the total

time needed for analysing the kernel functions and our tool's maximum memory

consumption. The maximum memory consumption of our tool together with the

Yices solver engine is an estimate generated by summing up our tool's and Yices'

maximum memory usage as given in Table 5.3; however, these may not necessarily

hit their peak memory at the same time. The next two rows denote whether the

analysis bounds were reached. We also report the number of paths reaching the end

of the function analysed, the total number of assertions checked and the percentage

of failed checks. Paths not reaching a return statement in the target function are

terminated either due to bound exhaustion, or due to a property being violated that

does not permit continuation of that path.

Finally, we outline in Table 5.3 the usage and behaviour of the SMT solver Yices,

by reporting the number of times Yices was called when checking a particular VFS

function and the total and average time spent for SMT solving. We also give the

size of the checked constraint systems (CS) in boolean variables, as output by Yices

and show the maximum amount of memory used by Yices.

Our analyses usually achieve a statement and condition coverage of 60% to 80%

in this case study.2 The main reason for this, at-�rst-sight low percentage, is that

VFS functions often implement multiple di�erent behaviours of which only a few are

reachable for the given execution environment. For example, the implementation

of the creat() system call resides mainly in the open_namei() function alongside

di�erent behaviours implementing the open() system call. Taking this into account,

the coverage achieved by the SOCA Veri�er is remarkably high when compared to

testing-based approaches.

It should be noted that the above tables can only give a glimpse of the total

scale of experiments that we have conducted for this case study.2 Depending on how

2A complete account of the experiments will be made available on the SOCA website located
at http://swt-bamberg.de/soca/.

http://swt-bamberg.de/soca/
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detailed or coarse the execution environment is speci�ed, we experienced run times

reaching from a few minutes up to several days, achieving di�erent levels of statement

and condition coverage (ranging from 20% to 80%) and di�erent error ratios (ranging

from 0 to 0.5). The discriminating value in all these experiments is the total number

of �symbolic� pointers; a symbolic pointer is a pointer where the exact value cannot

be determined at the point at which it is de-referenced. This usually happens when

the entire pointer or some component of it (e.g., its base or o�set) is retrieved from

an incompletely speci�ed component of the execution environment or directly from

the input to the analysed function. While these symbolic values are generally bad

for the performance of the SOCA technique since slicing is rendered ine�cient and

search spaces are increased, they are important for driving the analysis into paths

that may be hard to reach in testing-based approaches to system validation.

Errors and false positives. As our veri�cation technique does not include in-

feasible paths, all errors detected by the SOCA Veri�er can actually be reproduced

in the code, provided that other kernel components match the behaviour of our

employed execution environment.

In advance of the experiments reported in this chapter, we had tested our imple-

mentation of the SOCA technique on a variety of hand-crafted examples and also

on the Verisec suite [Ku et al., 2007] which provides 280 examples of bu�er over�ow

vulnerabilities taken from application programs. In all these cases we experienced

low false-positive rates of less than 20%. However, as these examples represent

closed systems not using external data objects, they are handled more e�ciently by

the SOCA Veri�er than the VFS which makes heavy use of external data objects.

Our above result tables show that our analysis approach detects a number of

errors of about 3% of the total number of checked assertions in each VFS function

analysed. We have inspected each reported error in detail and discovered that all

of them are due to an imprecisely speci�ed execution environment. As explained in

the previous section, specifying a valid but non-restrictive environment is particu-

larly hard as all VFS functions operate on data structures that are allocated and

assigned by other kernel sub-systems before the VFS functions are executed. As

most of these structures form multiple lists, modelling them manually is tedious and

error-prone. Therefore, our strategy was to leave many �elds of those structures

initially unspeci�ed and successively add as much detail as necessary to eliminate

false positives. This proved to be a good way to specify valid and at the same time

non-restrictive execution environments.

Not having discovered any real errors in the analysed VFS code contributes to

our high con�dence in the Linux kernel and is to be expected; the VFS consists of
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a well established and extensively used and tested code base, which is under active

development for many years. Indeed, our primary goal when setting up this case

study was not to �nd errors in the VFS code but to use the VFS as a complex,

real-world veri�cation project for stress-testing our SOCA Veri�er. With respect

to this task, our results demonstrate that the SOCA Veri�er is capable of reliably

and e�ciently analysing the complex Linux VFS implementation on o�-the-shelf

hardware.

5.4 Evaluating the E�ectiveness of SOCA

With the goal of further evaluating the e�ectiveness of SOCA as a bug-�nding tool,

we conduct a second case study which applies our SOCA Veri�er to consecutive

releases of the Linux kernel's VFS implementation. With its publicly available

source code, well documented bug reports and patches, and a release history reaching

back for almost 20 years, the Linux kernel is an ideal candidate for the sort of

�archaeological� study presented here. The question which we pursue is: If the

Linux developers would have had the SOCA Veri�er available, what ratio of newly

introduced bugs could have been detected automatically, and hence, could have been

�xed immediately?

5.4.1 Choice of VFS versions

For this case study we chose to analyse 23 patches committed to the current �stable�

2.6 development branch of the Linux kernel. The source repository3 contains all

contributions committed to Linux 2.6 between April 2005 (Linux 2.6.12-rc2) and

February 2010 (Linux 2.6.33-rc7). Our selection is made by choosing all commits

a�ecting the VFS and in which null-pointer issues are addressed, according to the

documentation of the patch. Due to the previously explained high complexity of

the VFS, involving linked data structures and computed jumps, restricting this case

study to null-pointers does not render the study trivial. The subject matter of the 23

patches considered here varies from actual bug �xes, to performance enhancements,

to the implementation of new features. Hence, the patches di�er substantially in

size, ranging from a few lines of code modi�cations in one �le, up to 300 lines of code

modi�cations that are distributed over several �les and changing data structures and

function interfaces. An overview of our sample is given in Table 5.4. The commit

keys given in the table are references to Linux's source code repository.

3The source repository of Linux 2.6 is available at http://git.kernel.org/?p=linux/kernel/
git/torvalds/linux-2.6.git.

http://git.kernel.org/ ?p=linux/kernel/git/torvalds/linux-2.6.git
http://git.kernel.org/ ?p=linux/kernel/git/torvalds/linux-2.6.git
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5.4.2 Case study setup

To conduct our case study we compile two versions of the Linux kernel for each of

the 23 patches. More precisely, we compile one kernel binary using the source code

directly before a patch was committed, and a second binary from the sources that

include the patch. In all cases is the kernel source con�gured for the IA32 archi-

tecture using the default con�guration shipped with the kernel sources. The SOCA

Veri�er is then applied to the functions a�ected by a particular patch in each of the

two kernel binaries compiled with respect to that patch. In di�erence to the �rst

case study presented in Sec. 5.3, SOCA is applied here without modelling an execu-

tion environment for the functions checked. The modelling step has been omitted

due to the large number of functions and kernels to be analysed, and especially due

to the changes in function interfaces and the kernel's data structures between these

releases. The bounds for the SOCA Veri�er are set to the values used in the previous

case study. The error traces reported by our tool are manually checked for validity,

i.e., whether the expected error has been found or whether traces not related to the

subject matter of the patch or false-positive traces are reported.

A detailed account of the results of the case study is given in Table 5.4. When

analysing a patch that is supposed to �x a bug, we expect the SOCA Veri�er to

report an error trace for that bug in the kernel binary compiled from the pre-

patched source, and also to report the patched version of the kernel to be free of

that bug. We denote this success case with a + in the Results column of Table 5.4.

With +/+ and −/+ we denote that the error was detected in the pre-patched kernel

but also in the patched kernel, or that the error was only reported for the patched

kernel, respectively. We write −/− if no error was detected at all. For patches

introducing new features or implementing performance improvements we expect the

pre-patched kernel and the patched kernel to be free of errors and denote that with

0 in Table 5.4. If SOCA issues false-positive errors for these cases, we write pre/post,

where pre and post denote the numbers of false-positive errors raised for the pre-

patched kernel and the patched kernel, respectively. If error traces that are not

related to the patch under consideration, are produced by the SOCA Veri�er, we

give the number of those reported error traces in column Unrelated Traces. Table 5.4

contains seven cases where the kernel source failed to compile for the pre-patched

kernel, the patched kernel, or both. Obviously, SOCA could not be applied to these

kernels.
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Table 5.4: Experimental Results IV: Evaluating the e�ectiveness of SOCA

No. of Unrelated
# Commit Key Type Functions Results Traces

1 08ce5f16ee466ffc5bf243800deeecd77d9eaf50 F 2 0 2
2 214fda1f6e1b8ef2a5292b0372744037fc80d318 P 2 does not compile
3 22d2b35b200f76085c16a2e14ca30b58510fcbe7 F 1 does not compile
4 2a737871108de9ba8930f7650d549f1383767f8b BF 5 +, 0 1
5 2f38d70fb4e97e7d00e12eaac45790cf6ebd7b22 P 4 0 0
6 322ee5b36eac42e762526b0df7fa432beba6e7a0 B 1 + 2
7 4a19542e5f694cd408a32c3d9dc593ba9366e2d7 F 1 does not compile
8 4ea3ada2955e4519befa98ff55dd62d6dfbd1705 BP 3 +/+, 2/1 0
9 520c85346666d4d9a6fcaaa8450542302dc28b91 BP 2 +, 0/2 3
10 6c5daf012c9155aafd2c7973e4278766c30dfad0 BP 2 +, 0/2 1
11 6ea36ddbd1abfe867f1e874a8312bfd811e5fd2c P 1 does not compile
12 73241ccca0f7786933f1d31b3d86f2456549953a FP 5 does not compile
13 745ca2475a6ac596e3d8d37c2759c0fbe2586227 B 1 0 1
14 7ed7fe5e82c9fc8473974fbd7389d169b8f17c77 BP 1 +, 0 2
15 acb0c854fa9483fa85e377b9f342352ea814a580 P 3
16 acd0c935178649f72c44ec49ca83bee35ce1f79e B 2 + 1
17 acfa4380efe77e290d3a96b11cd4c9f24f4fbb18 P 4 0/3 0
18 ad775f5a8faa5845377f093ca11caf577404add9 B 2 −/− 3
19 cb59861f03a626196a23fdef5e20ddbb8cca6466 P 1 0/1 0
20 cdb70f3f74b31576cc4d707a3d3b00d159cab8bb P 1 0/1 2
21 d0185c0882d76b8126d4a099c7ac82b3b216d103 B 2 + 1
22 e0e817392b9acf2c98d3be80c233dddb1b52003d B 1 + 2
23 e6c6e640b8b258dc7f60533e81f050d15fc0a9af P 1 does not compile

Commit Key: A patch referenced by <commitkey> can be viewed at
http://git.kernel.org/?p=linux/kernel/git/torvalds/

linux-2.6.git;a=commit;h=<commitkey>.
Type: B � bug �xed; F � feature introduced; P � performance improved

5.4.3 Results

The most important result of this case study relates to the patches labelled as bug

�xes. The SOCA Veri�er reliably reports 8 out of 10 of the pre-patched kernels as

buggy and the corresponding 8 patched kernels as safe. This means that 80% of

the total number of null-pointer bugs �xed in these kernel releases were successfully

detected by the SOCA Veri�er.

In a similar way, SOCA reports 5 of the 11 performance improvements and

feature introductions as safe (45.5%), which is to be expected when considering

the extensive amount of peer-review done for each patch submission by the kernel's

developers. Especially for the patches implementing performance improvements, the

SOCA Veri�er reports a number of false-positive error traces on the patched kernels.

This result can be explained when looking at the code modi�cations introduced by

these patches: most of them remove �super�uous� pointer checks from the code.

<commitkey>
http://git.kernel.org/?p=linux/kernel/git/torvalds/
linux-2.6.git;a=commit;h=<commitkey>
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This means, the kernel's developers consider these checks as redundant because

the patched functions will never be called with certain types of invalid parameters.

However, since we check these functions in isolation, i.e., without considering all

possible calling contexts, we cannot verify that an invalid pointer is never used as

an argument to the function, and hence report a potentially error trace.

The experiments conducted here consumed a total of 41.71 hours of CPU time

on an exclusively used Intel Xeon 8-core PC with 2.6 GHz per core and 12 GBytes of

memory. Of this time 9.67 hours were used for sequentially compiling 32 Linux kernel

binaries. The remaining 32 CPU hours were consumed by the SOCA Veri�er for

checking a total of 68 functions, which was done by invoking seven SOCA processes

in parallel. The memory consumption of the SOCA processes always stayed below

2 GBytes per process. Hence, the SOCA Veri�er can be used on a modern o�-

the-shelf PC without limitations. By exploiting the parallel machine architecture

we have available, the actual veri�cation was conducted within less than 6 hours.

These �gures show that the SOCA technique can be very well applied as a unit-level

bug-�nding tool during software development in large projects. The e�ective time

needed for verifying the small set of components usually modi�ed within a single

commit is typically shorter than the time the developer has to wait for compiling

the project.

5.5 Related Work on File System Veri�cation

The veri�cation of �le system implementations is studied in [Butter�eld and Catháin,

2009; Damchoom and Butler, 2009; Ferreira and Oliveira, 2009; Galloway et al., 2009;

Kim and Kim, 2009; Yang et al., 2006, 2004]. In [Yang et al., 2004], model checking

is used within the systematic testing of EXT3, JFS and ReiserFS. The employed

veri�cation system consists of an explicit-state model checker running the Linux ker-

nel, a �le system test driver, a permutation checker that veri�es that a �le system

can always recover, and a recovery checker using the fsck recovery tool. The veri�-

cation system starts with an empty �le system and recursively generates successive

states by executing system calls a�ecting the �le system under analysis. After each

step, the veri�cation system is interrupted, and fsck is used to check whether the

�le system can recover to a valid state. In contrast to this, our work focuses on

checking a di�erent class of properties, namely pointer safety and locking proper-

ties. Thanks to our SOCA technique we can analyse these properties precisely and

feed back detailed error traces together with speci�c initial heap state information

leading to the error.

In [Kim and Kim, 2009] an empirical study applying concolic testing [Sen et al.,
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2005] to the multi-sector read operation of a �ash memory implementation is pre-

sented. Concolic testing relies on performing concrete execution on random inputs

while collecting path constraints along executed paths. The constraints are then used

to compute new inputs driving the program along alternative paths. In di�erence

to this approach, SOCA uses symbolic execution to explore all paths and concre-

tises only in order to resolve computed jumps. Concrete execution in SOCA may

also be employed to set up the environment for symbolic execution. [Kim and Kim,

2009] discusses the advantages and weaknesses of concolic testing on the domain of

low-level �le system veri�cation as compared to model checking. The authors con-

clude that their approach achieved several experimental goals, namely automated

test case generation, high code coverage and the detection of bugs, but su�ers from

limitations including the low speed of the analysis and the lack of support for array

index variables in their tool chain.

A model in the process algebra CSP that covers the concurrent aspects of �ash

memory is described in [Butter�eld and Catháin, 2009]. The authors focused on

developing a low-level model covering the internal behaviour of Open NAND �ash

devices. They Apply the FDR model checker to prove the consistency of this model

with a speci�cation of the external interface of the device. While the authors de-

tected several deadlocks and sources of missinterpretation in the models, the analysis

could only be partially completed as the speci�cations proved to be too complex for

being analysed with FDR in full.

In [Damchoom and Butler, 2009] a model of a �ash-based �le store developed

in Event-B is given. In this paper, the authors centre on discussing their use of

re�nement in feature augmentation and as structural re�nement. The goal of their

work is to simplify the process of model construction and to relate an abstract �le

system model with the �ash speci�cation. The paper explains further, how machine

decomposition can be applied to separate parts of the �le system layer from the

interface layer in a complex �le system model.

Finally, the application of theorem proving techniques to build a formal methods

tool chain and apply it to an abstract �le system model is presented in [Ferreira and

Oliveira, 2009]. The paper shows how di�erent formal methods and tools, including

Alloy, VDM++ and HOL may be glued together by relation modelling. It also

advocates transparent integration and automation of formal methods in software

development processes.



Chapter 6

Summary and Conclusions

This thesis focusses on identifying pointer safety related errors in computer pro-

grams. We make �ve contributions in this area:

Blasting Linux Code. In Chapter 3, we present a case study on the software

model checker Blast. We exposed Blast to analysing 16 di�erent operating sys-

tem code examples of programming errors related to memory safety and locking

behaviour. In our experience, Blast is rather di�cult to apply by a practitioner

during operating system software development. This is because of (i) its limita-

tions with respect to reasoning about pointers, (ii) several issues regarding usability,

including bugs in within the program itself, and (iii) a lack of consistent documen-

tation. Especially in the case of memory safety properties, massive changes to the

source code were necessary which essentially requires one to know about a bug be-

forehand. However, it must be mentioned that Blast was not designed as a memory

debugger. Indeed, Blast performed considerably better during our tests with lock-

ing properties; however, modi�cations on the source code were still necessary in

most cases.

Symbolic Object Code Analysis. Our second contribution, given in Chapter 4,

is in introducing Symbolic Object Code Analysis, a technique for verifying pointer

safety properties by bounded symbolic execution of compiled programs. More pre-

cisely, the SOCA technique (i) systematically traverses the object code in a depth-

�rst fashion up to a certain depth and width, (ii) calculates at each assembly in-

struction a slice required for checking the relevant pointer-safety properties at this

instruction, (iii) translates the slice and properties into a bit-vector constraint prob-

lem, and (iv) executes the checks by invoking the Yices SMT solver.

Evaluation of SOCA. Our third contribution, also in Chapter 4, is in introducing

the SOCA Veri�er as a prototypical implementation of the SOCA technique. By
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means of extensive experimental results of the SOCA Veri�er, using the Verisec suite

and almost 10,000 Linux device driver functions as benchmarks, we show not only

that SOCA performs competitively to current source-code model checkers but that

it also scales well when applied to real operating systems code and pointer safety

issues. SOCA e�ectively explores semantic niches of software that current software

veri�ers do not reach.

Beyond Memory Safety: VFS. Our fourth contribution is given in an further

case study applying the SOCA technique to the Linux Virtual File System (VFS)

in Chapter 5. We demonstrate how complex veri�cation properties including in-

formation on heap-allocated data structures as well as pre- and post conditions of

functions, can be expressed for symbolic object-code analysis, for which two di�erent

approaches are employed. Firstly, properties may be presented to the SMT solver as

assertions on the program's register contents at each execution point. Alternatively,

the program may be instrumented during its symbolic execution, by adding test and

branch instructions to its control �ow graph. Verifying a particular property then

involves checking for the reachability of a speci�c code section. While the �rst ap-

proach allows us to express safety properties on pointers, we use the latter technique

for checking preconditions of kernel API functions re�ecting particular API usage

rules.

E�ectiveness of SOCA. Our �fth contribution is in providing evidence for the

e�ectiveness and reliability of the SOCA technique by conducting an �archaeological�

case study on the Linux VFS in Chapter 5. We apply the SOCA Veri�er to VFS

functions obtained from 32 releases of the Linux kernel, showing that up to 80% of

null-pointer related bugs �xed between these releases can be detected automatically.

We demonstrate further that the SOCA Veri�er can be applied as an e�cient, unit-

level bug-�nding tool since the e�ective time needed for verifying the set of software

components modi�ed between two releases is typically shorter than the time needed

for compiling the project. Therefore, adding automated software veri�cation to the

tool set of kernel software developers promises to signi�cantly improve the quality

assurance process for operating system kernels.

Veri�cation of the VFS. Our last, but not least, contribution is the formal

veri�cation of a group of commonly used VFS functions, namely those for creating

and removing �les and directories. By applying symbolic execution and leaving

the parameters of these functions as unspeci�ed as possible, our analysis covers

low-probability scenarios. In particular, we look for program points where pointers
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holding invalid values may be de-referenced or where the violation of API usage

rules may cause the VFS to deadlock. The experimental results show that the

SOCA technique works well on the Linux VFS and that it produces a relatively

low number of false-positive counterexamples while achieving high code coverage.

Therefore, the absence of any �agged errors contributes to raising con�dence in the

correctness of the Linux VFS implementation.

6.1 Conclusions

The initial motivation for our SOCA technique to automated program veri�cation

was to explore the feasibility of using symbolic execution for analysing compiled

programs with respect to pointer safety properties. Indeed, object-code analysis is

the method of choice for dealing with programs written in a combination of pro-

gramming languages such as C and inlined assembly. This is particularly true for

operating system code which is often highly platform speci�c and makes extensive

use of programming constructs such as function pointers. As we show in this chap-

ter, these constructs can be dealt with e�ciently in path-wise symbolic object-code

analysis, while they are usually ignored by static techniques or by source-code-based

approaches.

While the ideas behind the SOCA technique, namely symbolic execution, path-

sensitive slicing and SMT solving, are well-known, the way in which these are in-

tegrated into the SOCA Veri�er is novel. Much engineering e�ort went also into

our SOCA implementation so that it scales to complex real-world operating system

code such as the Linux device drivers analysed in this paper.

The main reasons for this scalability are in the structure of programs in the

application domain of Linux device drivers as well as in the proceeding followed by

the SOCA technique. Firstly, device drivers are relatively small programs consisting

of generally short functions with small data spaces, rendering a search-based anal-

ysis possible. We expect our technique to be applicable for large-scale application

software. However, this may require major adaption, probably including the use

of program abstraction. Hence, doing so may result in having to deal with di�er-

ent classes of false-positive results. Currently a valid counterexample-trace can be

produced for each violation of a safety property. That means, our technique issues

false-positive error reports only due to imprecisely de�ned initial memory states or

function parameters that are not to be expected in real program execution.

Secondly, our choice of path-wise analysing compiled code contributes a great

deal to the results presented above. That is because having a program represen-

tation with explicit memory access operations and exploring each path separately
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in a symbolic execution setting turned out to be su�cient for e�ciently handling

a majority of pointer aliasing problems and computed jumps, other approaches are

not able to cope well with.

6.2 Open Issues and Future Work

There are several open issues to be addressed in future work. The most pressing

problem is to gain the ability of automatically dealing with device drivers with large

data spaces and drivers that make use of complex, pointered data structures as their

input. In Chapter 5 we show that in general, constraints on the driver's input can be

easily prepended to the constraint systems and may even be considered by the slicer.

However, this has to be done manually. Extracting the required information from

the binary or from the public C header �les describing the interface implemented by

the driver, remains an open problem. Knowing whether the input is supposed to be

a cyclic list or a tree and at which o�sets pointers are supposed to be would reduce

the number of false-positive errors found by our approach substantially. We think

that current work on shape analysis [Calcagno et al., 2009], [Yang et al., 2007] may

provide results that can be integrated into our tool.

Another important and probably quickly achievable goal is to provide debugger

integration for our tool in such a way that analysis results can be presented as an

error trace in a program debugger, together with an program input that would lead

to a segmentation fault or similar when the program is executed.

We are also aiming too parallelising our analysis approach in order to bene�t from

currently available multi-CPU and multi-core PCs. This should be relatively easy

to achieve as constraint generation and constraint solving are already performed in

separated processes, and the constraint generation is much faster than the solving.

Hence, multiple paths could be explored by one constraint generating process while

several instances of the SMT solver are employed to boost analysis performance.

The probably biggest challenge is in regard of handling concurrency in the driver

to be analysed. Device drivers run in a highly concurrent environment in which their

interface functions may be invoked from multiple concurrently executing application

programs. Hence, computer architectures supporting symmetric multi-processing,

as well as normal process preemption caused by scheduling on single processor ma-

chines, gives rise to the indeterminate sequencing of the respective threads. There-

fore, mechanisms implementing mutual exclusion are widely used in order to prevent

inconsistencies arising in this context. Our approach currently ignores all memory

safety issues arising from interleaved writing to the heap and much more research

is required in this area. We believe that techniques such as partial order reduction
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[Godefroid, 1994], [Flanagan and Godefroid, 2005] may constitute a way to deal

with the potentially in�nitely large number of possible interleavings that have to be

considered in a �concurrent symbolic execution� setting.

Last but not least, the work presented within this thesis has not revealed a

previously unknown error in an operating system component. Although we know

from our experiments with the Verisec suite that our technique produces relatively

few false positives, we have no indication regarding the false-positive rate in the

device driver benchmark presented in Section 4.5.3. We have detected 887 program

locations at which potential null-pointers may be dereferenced. While we have not

checked whether those are real errors or whether they are the result of a too loosely

speci�ed execution environment, our second case study on the Linux VFS in Sec. 5.4

gives an indication on SOCA's e�ectiveness as a bug-�nding tool. To substantiate

this, future research should also aim at extending the SOCA Veri�er to support,

i.e., properties related to real-time components of operating system kernels kernels,

for which additional case studies would be required. A particularly worthwhile

project would be another �archaeological� study in the spirit of the one conducted

in Sec. 5.4 on projects like FreeRTOS [Barry, 2010] or implementations of �ash �le

systems [Hynix Semiconductor et al., 2008]: tracing that code's development line

over several releases and checking whether timing-related and scheduling-related

errors that were introduced or removed in subsequent releases can be found by

SOCA, could give a clear indication on the applicability of the SOCA technique in

the area of embedded and real-time systems.
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