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Abstract 
 

Prognosis for patients with cholangiocarcinoma (CCA) continues to be poor as a result 

of the difficulty in distinguishing malignant from benign bile duct disease, late stage 

diagnosis and a lack of sufficiently sensitive and specific diagnostic markers.  These 

factors underlie the pressing clinical need for novel disease biomarkers. 

 

The utility of bile as a proximal fluid for biomarker discovery (compared to serum) was 

investigated using two dimensional difference gel electrophoresis (2D DIGE). 

Significant differences between the proteomes of bile and serum were identified, 

supporting the hypothesis that bile offers a potentially enriched microenvironment of 

proteins shed/secreted by tumour. However, as with serum, a few major abundant 

proteins dominate the bile proteome, therefore an albumin/IgG depletion technique was 

optimised to improve biomarker identification.  

 

The bile proteome was initially characterised in samples from patients with hilar CCA. A 

protein mastermap was generated by two dimensional polyacrylamide gel 

electrophoresis (2D PAGE) and a catalogue of proteins by liquid chromatography – 

tandem mass spectrometry (LC-MS/MS), which identified 80 and 813 unique proteins 

respectively. This represents one of the largest compendiums to date and forms a 

basis for future proteomic-based biomarker studies.  

 

A comparative analysis of biliary proteins in CCA and benign biliary disease was 

performed using a label-free proteomic approach to identify potential diagnostic 

biomarker(s). Comparative analysis of bile protein profile in 5 patients with CCA versus 

benign biliary disease identified 13 proteins which were at higher levels in malignant 

disease of which metalloproteinase-9 (MMP-9), Rho GDP-dissociation inhibitor 2 (also 

known as Ly-GDI), Annexin A3 and pre-B-cell colony-enhancing factor (PBEF) were 

taken forward in immunoblotting-based validation. MMP-9 was shown to be 

overexpressed in bile of CCA and represents a potential diagnostic marker. In addition 

analysis of bile samples showed lipocalin-2 and its complex with MMP-9 were present 

in greater amounts in CCA compared to benign biliary disease. 
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1.0	
  Introduction	
  

1.1.0	
  Cholangiocarcinoma	
  

 

Cholangiocarcinoma (CCA) results from the neoplastic transformation of 

cholangiocytes lining the biliary tree, causing biliary strictures and obstruction and 

represents 10-15% of all hepatobiliary and 3% of all gastrointestinal malignancies (1), (2). 

CCA remains a devastating disease, limited by effective therapies and universal poor 

prognosis with median survival of 6-12 months without treatment (3). 

1.1.1	
  Classification	
  and	
  clinical	
  presentation	
  

   

CCA can be classified anatomically into cancers originating in the intrahepatic bile 

ducts or the extrahepatic bile duct within the hepatoduodenal ligament. The latter is 

further divided into proximal, middle and distal CCA depending on location within the 

extrahepatic biliary system. More recent literature has abbreviated extrahepatic CCA 

into proximal and distal, as middle duct tumours are clinically rare (Figure 1A) (4). 

Proximal CCA are also known as hilar CCA or Klatskin tumours and represent the 

majority of cases (60-70%) followed by distal (20-30%) and intrahepatic CCA (5-10%) 

(5),(6). The Bismuth-Corlette classification of hilar CCA describes tumour location and its 

spread within the biliary tree in more detail and is utilised in the surgical management 

algorithm (Figure 1B) (7). In addition to this traditional anatomic classification, a sub-

classification based on macroscopic growth identifies tumours as mass-forming, 

periductal infiltrating or intraductal growing (8). In intrahepatic disease, tumours develop 

as solid masses, infiltrate periductal tissue and/or grow within the duct. In contrast 
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extrahepatic CCAs develop sclerosing strictures (most common), nodular lesions, or 

more rare papillary growth patterns (9). Preoperative recognition of such variation can 

provide information on potential resectability and prognosis.  Histologically more than 

95% of CCA are adenocarcinomas, and the remainder of squamous cell origin (10).  

Although intra and extrahepatic CCA share similar features including being clinically 

silent and exhibiting non-specific complaints in early stage disease, they have distinct 

epidemiological, clinical, pathological, and therapeutic features. In intrahepatic CCA, 

radiological imaging may identify a hepatic mass, often incidentally, which is difficult to 

distinguish from secondary metastatic disease. Painless progressive jaundice and 

deranged liver function tests are a presenting feature of extrahepatic CCA. CCA results 

in a progressive clinical state of biliary sepsis, liver failure and malnutrition which in 

combination are the leading causes of death. 
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       1A 

  

 

 

                                                              1B 

 
  Figure 1.  Classification of CCA 

(A) Anatomical classification of CCA.  

The intrahepatic bile ducts unite draining the right and left parts of the liver to form the common 

hepatic duct which joins the cystic duct from the gallbladder and is directed to its opening in the 

duodenum.  Intrahepatic CCA by definition originates from the second (segmental) or peripheral 

branch of the bile duct. Perihilar CCA is located in the extrahepatic biliary tree proximal to the 

origin of the cystic duct. Distal CCA involves the common bile duct. 

(B) Bismuth – Corlette classification of perihilar CCA. 

Type I: Limited to the common bile duct; >2cm from the confluence of the right and left hepatic 

ducts 

Type II: <2cm. from the confluence and +/- involving the confluence 

Type IIIa: Type II + right hepatic duct involvement 

Type IIIb: Type II + left hepatic duct involvement 

Type IV: extending to both right and left hepatic ducts or multifocal involvement. 
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1.1.2	
  Epidemiology	
  

CCA is the second most common primary liver tumour after hepatocellular carcinoma 

(HCC) and is now the main cause of death from a primary liver tumour (11). Significant 

variation exists in the worldwide incidence and prevalence of CCA with the highest 

proportional incidence in north-east Thailand (96 per 100,000 men), 1-2 per 100,000 in 

the UK and USA and the lowest rates observed in Australia (12). It has a male to female 

ratio of 1.5 and individuals present most commonly in their seventh decade (12).  

Several epidemiological studies have shown a significant rise in the incidence and 

mortality of intrahepatic CCA in the western world (13). From 1968 to 2001, the age-

standardized mortality rate (ASMR per 100,000 population) for intrahepatic CCA 

increased from 0.10 to 1.49 in males and 0.05 to 1.24 in females and the annual 

number of deaths increased 30-fold, from 36 in 1968 to 1003 in 2004 in the UK (14). 

Data from the World Health Organisation and others also demonstrate an almost 

universal increase in ASMR for intrahepatic CCA in both sexes across US, Europe and 

Australasia between 1979 – 1998 (15-16). In the US this observation is seen to be 

highest in black followed by white men, white and black women respectively (17).  

The cause of increase in intrahepatic CCA remains unclear. Even with improvements 

in diagnostic tools, correction for previous errors in misclassification of hilar tumours as 

intrahepatic and with up to 40% of primary liver tumours as adenocarcinoma instead of 

more specifically CCA or HCC, the phenomenon is considered genuine (2),(18-19). Data 

from the Far East and the US has implicated the increasing prevalence of hepatitis B & 

C related liver cirrhosis and cirrhosis in general to explain in part the rising incidence 

(20-21).Evidence of environmental carcinogens particularly related to rural/ agricultural 

areas have been considered to account for some of the geographical variation in the 
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UK but specific agents have yet to be characterised (14). Proquinazid (6-iodo-2-propoxy-

3-propyl-3H-quinazolin-4-one) is a new fungicide intended for use in agriculture and 

control of powdery mildew in cereals and grapes has been noted to carry a mutagenic 

risk and higher CCA incidence in rats (http://www.iacom.org.uk/ statements 

/COM05S4.htm, accessed 12/07/12). 

The trend for extrahepatic CCA is in marked contrast, with incidence and mortality 

rates being stable or in decline (12).  The ASMR has been shown to decrease from 0.6 

to 0.3 over twenty years from 1979 to 1998 in the US and 0.7-0.8 to 0.23 in the UK (15), 

(22). 

1.1.3	
  Risk	
  Factors	
  

Most CCA arise in the absence of any known predisposing factors (23). In the western 

world primary sclerosing cholangitis (PSC) confers the highest risk of developing CCA, 

with an annual risk between 0.6-1.5% and lifetime risk of 20% (24). PSC is an 

autoimmune disease causing progressive bile duct inflammation and strictures leading 

to chronic cholestatic liver disease and the requirement for regular surveillance for 

transformation of malignant biliary strictures (25-26). However up to 36% of explanted 

livers from PSC patients undergoing liver transplantation exhibit occult pathological 

features of CCA and highlight the current limitations in surveillance strategies (27). The 

majority of PSC patients who subsequently develop CCA will have done so within 2.5 

years of diagnosis and overall individuals will present at a younger age (30-50 years) 

compared to the general population (28-29). Additional risk of CCA in PSC is conferred by 

concomitant PSC-associated inflammatory bowel disease, advanced age at time of 

PSC diagnosis, previous colonic carcinoma, history of smoking and alcohol 

consumption >80 g a day (24),(30).  
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A number of other risk factors for CCA exist and these are summarised in Table 1.0. 

The exact mechanism in each case is not fully understood but in principle they revolve 

around the creation of a chronic inflammatory environment, release of inflammatory 

signalling molecules, cell stress and subsequent DNA damage and increased 

malignant potential (31-33). Factors exhibiting such features include viral (Hepatitis B & 

C), and parasitic (Opisthorchis viverrini, Clonorchis sinensis) infections and account for 

increased risk of CCA in endemic areas such as the Far East (34-36). 

Obesity and type II diabetes are considered to confer increased risk of CCA (37). Since 

both conditions are linked with insulin resistance it is of interest to note that 

investigators have also shown polymorphism of selected genes relating to insulin 

sensitivity and elevated risk of biliary cancer in a population-based case-control study 

in Shanghai, China (38).  

In hepatolithiasis, bile stasis and recurrent secondary infection result in inflammatory 

bile duct changes, promoting further stone formation, chronic inflammation and CCA 

risk. Similarly in 5-15% of patients with the congenital anomaly of choledochal cyst and 

its associated pancreaticobiliary mal-junction, bile stasis and pancreatic fluid reflux 

activate bile acids, resulting in chronic inflammation and a “hyperplasia – carcinoma 

sequence” (39). Thorotrast containing thorium dioxide was used as a common 

radiological contrast agent until 1950-60 and has since then been implicated in several 

cancers including biliary, pancreatic, gastric, hematological and renal (40-42).  
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Table 1.0 Known risk Factors for CCA.  

Risk Factor 

General 

Obesity 
Type II Diabetes 

Infection 

Viral Hepatitis B  
Viral Hepatitis C 
Opisthorchis viverrini 
Clonorchis sinensis   
                                      
Inflammation 

Primary sclerosing cholangitis (PSC) 
Hepatolithiasis                                                
Liver cirrhosis 

Genetic - Polymorphisms  

cytochrome P450 1A2,                   
arylamine N-acetyltransferase 2 

Environmental 

Organic solvents (aromatic, alicyclic & 
chlorinated hydrocarbons) 
Thorotrast 

Others 

Choledochal cysts                                     
Caroli’s syndrome/congenital hepatic 
fibrosis                                                         
Bilio-enteric anastomosis 
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1.1.4	
  Staging	
  of	
  CCA	
  

Accurate staging can direct optimal therapeutic strategies and allow for accurate 

prognostication. The staging for intra and extrahepatic CCA are different and several 

systems have been proposed. The Tumour Node Metastasis (TNM) staging is a 

common system applied to cancer proposed by the International Union against Cancer 

(IUCC) and the American Joint Committee on Cancer (AJCC) (43) and is currently used 

internationally in CCA.  It collectively describes the tumour and its degree of lateral 

extension, related lymph node involvement and spread to distant sites. The results are 

combined to formulate a clinical stage from 0 – IV. The TNM classification and stage 

for intra and extrahepatic CCA is shown in Tables 1.1 & 1.2 respectively. Node and 

metastasis status classification are identical in both intra and extrahepatic CCA. 

The Memorial Sloane Kettering Cancer Centre (MSKCC) has advocated the T-stage 

criteria for hilar CCA and corresponds to what can be assessed by evaluating the 

longitudinal and lateral spread pattern based on the Bismuth-Corlette classification and 

TNM staging system but irrespective of lymph node or metastasis status (Table 1.3) 

(44). A more detailed staging system for extrahepatic CCA has been used by the 

Japanese Society of Biliary Surgery (JSBS) since 1981 (Table 1.4) with the final score 

calculated by including surgical and pathological findings (45). 

However the late presentation of CCA, sensitivity of preoperative radiological imaging 

and challenges in practical application of current systems has resulted in no single 

system being ideal in determining resectability and predicting survival. Resection rates 

show considerable variation in range of between 25-85% in surgical centers and 

unresectable disease is often only confirmed at laparotomy (46). Both the AJCCS/UICC 

and JSBS classifications are formed with significant data reliant upon histopathological 
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features and limit preoperative applicability and potential postoperative adjunct 

therapies. The Bismuth – Corlette system (described in Figure 1.2) stratifies patients 

based on the extent of duct involvement and while it can facilitate surgical planning has 

not been shown to be indicative of survival (47).  To date no biomarkers exist or have 

been evaluated in integration with current staging systems to improve accuracy and the 

focus still remains on the refinement of existing clinical and pathological based 

systems.  
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Table 1.1 TNM staging of intrahepatic CCA. 

Primary tumour (T)  

TX 

T0 

T1 

                         

T2 

 

                         

T3 

 

                         

T4 

The primary tumour cannot be assessed 

There is no evidence of a primary tumour 

The tumour is only a single tumour and does not involve adjacent  

blood vessels                                                                                                            

Either of these conditions: 

Any tumour that involves adjacent blood vessels is present 

 Multiple tumours, none larger than 5 cm are present 

Either of these conditions: 

More than one tumour larger than 5 cm is present 

The tumour involves the major veins within the liver 

Either of these conditions: 

The tumour has spread to the organs near the liver (except gallbladder) 

The tumour is present with perforation of the visceral peritoneum  

 
Regional lymph nodes (N) 

NX 

N0 

N1 

The regional lymph nodes cannot be assessed 

No regional lymph node involvement 

Regional lymph node involvement 

Distant metastasis (M) 

MX 

M0 

M1 

The tumour cannot be assessed 

No distant metastases 

Distant metastases 
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Table 1.1 TNM staging of intrahepatic CCA (continued) 

Stage grouping 

Stage I 

Stage II 

Stage IIIA 

Stage IIIB 

Stage IIIB 

Stage IV 

T1 

T2 

T3 

T4 

Any T 

Any T 

N0 

N0 

N0 

N0 

N1 

Any N 

M0 

M0 

M0 

M0 

M0 

M1 

  

Table 1.2 TNM staging of extrahepatic CCA (AJCC 6th Edition). 

Primary tumour (T)  

TX 

T0 

Tis 

T1 

T2 

T3 

                         

T4            

The primary tumour cannot be assessed 

There is no evidence of a primary tumour 

Carcinoma in situ 

The tumour is confined to the bile duct 

The tumour has spread beyond the wall of the bile duct 

The tumour has spread to the liver, gallbladder, pancreas, and/or an 

unilateral branch of the veins and/or arteries within the liver 

The tumour has spread bilaterally (both sides) to the veins or arteries 

within the liver and/or adjacent structures, such as the colon, stomach, 

duodenum, or abdominal wall 
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 Table 1.2 TNM staging of extrahepatic CCA (continued) 

  Stage grouping 

Stage 0 

Stage IA 

Stage IB 

Stage IIA 

Stage IIB 

 

 

Stage III 

Stage IV 

Tis 

T1 

T2 

T3 

T1 

T2 

T3 

T4 

Any T 

N0 

N0 

N0 

N0 

N1 

N1 

N1 

Any N 

Any N 

M0 

M0 

M0 

M0 

M0 

M0 

M0 

M0 

M1 

 

Table 1.3 T Stage criteria (MSSK) for hilar CCA. 

  Stage grouping 

T1 Tumour confined to confluence and/or right or left hepatic duct without portal 

vein involvement or liver atrophy   

T2 Tumour confined to confluence and/or right or left hepatic duct with ipsilateral 

liver atrophy. No portal vein involvement demonstrated 

T3 Tumour confined to confluence and/or right or left hepatic duct with ipsilateral 

portal venous branch involvement with/without associated ipsilateral lobar liver 

atrophy. No main portal vein involvement (occlusion, invasion or encasement)  

T4 Any of the following:  

i) Tumour involving both right and left hepatic ducts up to secondary radicles 

bilaterally  

ii) Main portal vein encasement  
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Table 1.4 JSBS (2nd Edition) staging classification of extrahepatic CCA. 

 Primary tumour (T)  

T1 S0 Hinf0 Panc0 PV0 A0 

T2 S1 Hinf1 Panc1 PV0 A0 

T3 S2,3 Hinf1 Panc2 PV0 A0 

T4 Any Hinf2,3 Pancc2,3 PV1,2,3 A1,2,3 

 
Key:   

(S) Serosa found in a part of the anterior and right posterior wall of portal, superior and middle bile duct 

S0 No invasion of the serosa  
 
S1 Doubtful invasion of the serosa and/or serosal surface  
 
S2 Definite invasion of the serosa  
 
S3 Invasion of other organs or structures: the stomach, abdominal wall, colon, and inferior vena cava  
 
(H) Hepatic 

Hinf0 No direct invasion of the liver  

Hinf1 Doubtful direct invasion of the liver  

Hinf2 Definite direct invasion of portal bile ducts  

Hinf3 Definite direct invasion beyond portal bile ducts 

(Panc) Pancreas 

 
Panc 0 No invasion of the pancreas 

Panc 1 Doubtful invasion of the pancreas 

Panc 2 Definite invasion of bile duct around the pancreas 

Panc 3 Severe invasion of the pancreas 

(DU) Duodenum 

DU 0  No invasion of the duodenum  

DU1 Doubtful invasion of the duodenum  

DU 2 invasion of duodenum around bile duct  

DU 3 Definite invasion of the duodenum 
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Key (continued): (PV) Portal vein 

PV 0 No invasion of the portal vein 
 
PV 1 Doubtful invasion of the portal vein 
 
PV 2 Definite invasion of the portal vein 
 
PV 3 Severe invasion of portal veins (narrowing or obstruction)  

(HA) Hepatic artery 

 
HA 0 No invasion of the hepatic artery 
 
HA 1 Doubtful invasion of the hepatic artery 
 
HA 2 Definite invasion of the hepatic artery 
 
HA 3 Severe invasion of the hepatic artery (narrowing or obstruction)  

Lymph Node - JSBS classification of extrahepatic CCA 

N0 No evidence of lymph node metastasis  

 

N1 Metastasis to group 1 lymph nodes, but no metastasis to group 2 and 3 lymph 
nodes  

 

N2 Metastasis to group 2 lymph nodes, but no metastasis to group 3 lymph nodes  

 

N3 Metastasis to group 3 lymph nodes  
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Metastasis - JSBS classification of extrahepatic CCA. 

 

Liver metastasis   

H0  No evidence of liver metastasis 

H1 Metastasis limited to one lobe  

H1(r)  Metastasis limited to the right lobe 

H1(l)  Metastasis limited to the left lobe 

H2  A few metastases to both lobes 

H3  Numerous metastases to both lobes 

Peritoneal metastasis  

P0 No evidence of peritoneal metastasis  

P1 Metastasis to the peritoneum adjacent to extrahepatic bile ducts  

P2 A few metastases to the distant peritoneum  

P3 Numerous metastases to the distant peritoneum  

Distant metastasis   

M(-)  No evidence of distant metastasis other than peritoneal and/or liver 
metastases  

M(+)  Distant metastases other than peritoneal and/or liver metastases  

  
 

JSBS stage classification of extrahepatic CCA. 

 H0, P0, M (-)  

H1,2,3, P1,2,3,     
M (+)  N0 N1 N2 N3 

T1  I II  Iva  

 

IVb 
T2  II III  

T3    Iva 

T4  Iva  
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1.1.5	
  Molecular	
  pathogenesis	
  of	
  CCA	
  

Exact molecular mechanisms remain to be clearly defined in the multi-modal 

development and growth of CCA but remain important in directing studies focused on 

diagnostics and therapeutics. Nevertheless inflammation and its mediators in response 

to biliary duct epithelium damage, bile flow dysfunction, increased cholangiocyte 

turnover and accumulation of DNA damage ultimately leading to malignant 

transformation are important common features (31). In addition aberrations in cell cycle 

regulation mediators and factors implicated in malignant transformation including 

enhanced proliferative signalling, evasion of apoptosis, angiogenesis, invasion and 

metastasis have all been described. 

The release of key pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumour 

necrosis factor alpha (TNFα) inducing activation of reactive nitrogen species (RNS) 

such as nitric oxide (NO), reactive oxygen species (ROS) and increased malignant 

potential are well cited in human cancers (49),(50) including  CCA (31),(51-52). During this 

process cholangiocytes secrete mitogens that activate local cellular receptors and 

several intracellular pathways resulting in prolonged cellular stress, increased cell 

turnover, accumulation of DNA damage and failure of DNA repair.  

Overproduction of NO by inducible nitric oxide synthase (iNOS) and ROS results in 

DNA damage recognisable by several markers including the generation of 8-

nitroguanosine and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), deamination of 

guanine and guanine to tyrosine transversions (53). Overexpression of both 8-oxodG 

and 8-nitroguanosine have been demonstrated in the biliary epithelium of intrahepatic 

CCA and correlated to known adverse prognostic factors of perineural and lymphatic 

invasion (54). 
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Tumour growth can lead to surrounding tissue hypoxia and is associated with up 

regulation of hypoxia inducible factor (HIF)α subunits, which can mediate transcription 

of various genes including iNOS (55). The over expression and co-localisation of HIF1α 

and iNOS in CCA tissue has raised interest in a reciprocal link (54). In this hypothesis 

model, NO accumulation results in DNA damage and HIF1α over expression. 

Subsequent tumour growth-related oxidative stress leads to a positive feedback loop 

resulting in further HIF1α and iNOS activation.  

NO can activate cyclooxygenase-2 (COX-2), a molecule implicated in a number of 

gastrointestinal cancers (56). COX-2 over expression has been demonstrated in CCA 

cell lines exposed to bile acids and subsequent immunohistochemical studies 

comparing CCA and normal tissue showed a stepwise increase in levels as cells 

progressed from inflammation to dysplasia to carcinoma (19),(57-58). Its role in 

cholangiocarcinogenesis is thought to involve Fas-mediated inhibition of apoptosis and 

proliferation via induction of p21waf/cip and p27kip1 pathways (59-60).  

Under normal states cholangiocytes produce little IL-6 but significant increases are 

seen in conditions associated with inflammation such as PSC and in CCA (61-62). The 

autocrine release of IL-6 by CCA tumour cells has been shown to enhance tumour 

growth by activating pro-survival p38 mitogen-activated protein kinase and causing 

evasion of apoptosis via upregulation of myeloid cell leukaemia-1 (MCL1) through 

STAT3 and AKT related signalling pathways (63-64). COX-2 and phospholipase A2 

inhibitors have been shown to reduce IL-6 stimulated tumour growth (65). 

TNFα, in addition to having an inflammatory role, has been shown to be overexpressed 

in CCA associated with hepatolithiasis and promote invasiveness and migration of 

malignant cells via interaction with its receptor TNFR2, tumour expressed CXCR4 and 
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activation of matrix metalloproteinase-9 (MMP-9) (66-67).  More recently, TNFα induced 

aberrant production of activation-induced cytidine deaminase in CCA and PSC was 

shown to result in mutations in tumour suppressor genes (p53, c-myc), providing 

further evidence linking bile duct inflammation and enhanced predisposition to CCA (68). 

CCA cells are highly infiltrative and are supported by neovascularisation and 

angiogenesis networks (69) as has been recently reviewed (70). Increased levels of 

vascular endothelial vascular growth factor (VEGF) and VEGF-C (a factor associated 

with lymphogenesis) have been detected in CCA tumour tissues and cell lines and 

shown to be important in cholangiocyte proliferation during bile stasis in animal models 

(71-72). More recently VEGF has been shown to have an important role in mediating the 

proliferative effects of oestrogens on human CCA (73). Several angiogenic-associated 

factors including angiopoeitin 1 & 2 and thrombospondin-1 have been investigated for 

prognostic utility in CCA but no relationship with clinico-pathological factors has been 

detected (74). 

Effective tumour invasion and neovascularisation requires the surrounding stromal 

matrix to be degraded. The family of MMPs play an important role here and have been 

studied in cholangiocarcingenesis with MMP-2, MMP-7 and MMP-9 being shown to 

enhance breakdown of basement membrane during tumour invasion (75-76). 

Overexpression of human aspartyl (asparaginyl) B – hydroxylase (HAAH) – an enzyme 

that catalyzes the hydroxylation of b carbons of specific residues on EGF like domains 

on keratin proteins - has been shown to be overexpressed in CCA cell lines and confer 

increased motility and invasion properties (77). 

Perineural invasion is a poor prognostic feature in CCA and its importance has been 

reviewed (78). The proliferation of CCA through perineural invasion is a process with 
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multiple factors and pathways and includes the overexpression of molecules such as 

nerve growth factor (NGF) (79), ErbB2 and MMP-9 (80) and Neural Cell Adhesion 

Molecule (NCAM) (81). A summary of the key mechanisms regulating carcinogenesis is 

illustrated in Figure 2. 

 

 

Figure 2: Summary of key mechanisms regulating carcinogenesis in CCA. 

A common and important factor in the malignant transformation of cholangiocytes is chronic 

inflammation. Injury of the bile duct epithelium and bile stasis results in proliferation of 

cholangiocytes. Highlighted are proteins and genes implicated in the autologous promotion of 

proliferative signalling, evasion of apoptosis, angiogenesis, stromal invasion, and metastasis 

observed in CCA. 

 



20 

 

1.1.6	
  Treatment	
  and	
  Surgical	
  Resection	
  Outcomes	
  

At present, surgical resection or transplantation in selected cases remains the only 

potential cure for patients with CCA. In those assessed as eligible for surgical resection 

based on co-morbid status and absence of extrahepatic disease, current BASG/BASL 

guidelines recommend en bloc resection of the extrahepatic bile ducts and gallbladder, 

regional lymphadenectomy and roux en y hepaticojejenostomy for perihilar type I & II 

tumours (Bismuth-Corlette classification), and in addition a right or left hepatectomy 

and extended right or left hepatectomy respectively in type III and IV patients (82). At St 

James University Hospital, Leeds, all patients with type II-IV disease will undergo 

caudate (segment 1) lobectomy in addition to the above guidelines (83). Intrahepepatic 

and distal CCA are treated by resection of the involved hepatic segment and 

pancreaticoduodenectomy respectively (82).  

Despite significant progress improving the operative morbidity and mortality of 

aggressive liver surgery in recent years, survival outcomes for CCA remain poor. In 

hilar CCA outcomes have not changed significantly in the last 30 years and even after 

R0 resection (microscopic clear resection margin) 5-year survival is around 20-40% (84). 

Analyses of the St James University Hospital, Leeds surgical experience in resection 

outcomes show overall 5-year survival of 20%. As in extrahepatic CCA, achievement of 

R0 resection is paramount to confer long-term survival in intrahepatic CCA. However 

resectability and 5-year survival rates are still low and vary considerably between 18-

70% and 20-40% respectively (85). In distal CCA, pancreaticoduodenectomy is reported 

to achieve 5-year survival rates of 20-30% (86). Chemo and radiotherapy have to date 

failed to confer significant survival advantage and no standard adjuvant protocols have 

been established in CCA. However results of the first UK randomised clinical trial 
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evaluating adjuvant chemotherapy with capecitabine compared to expectant treatment 

alone (BILCAP) following surgery for CCA are still pending.  

CCA in PSC has previously been considered a contraindication for liver transplantation 

due to universally poor results. However recent experimental protocols using 

chemo/radiotherapy prior to transplantation have reported survival rates comparable to 

patients without the diagnosis of CCA (87). Furthermore, data from patients undergoing 

transplantation for PSC found to have incidental early CCA were associated with 70-

80% survival at 5-years, providing proof of principle that early detection and surgery 

can be associated with improved outcomes (88).  

 

However more than two-thirds of patients are not amenable to resection due to late 

presentation and stage of disease with median survival between 9-12 months, 

reflecting the inability to diagnose disease early (3). More recent outcomes of 

photodynamic therapy in combination with biliary stenting for unresectable disease 

have shown improvement in quality of life and overall survival (89).  

1.1.7	
  A	
  Diagnostic	
  Challenge	
  

 

Current diagnostic modalities lack the sensitivity and specificity to facilitate early 

identification of CCA and distinguish between benign and malignant biliary strictures 

(particularly in PSC). At present, clinical suspicion together with biochemical 

abnormalities in liver function, tumour biomarkers like CA19-9, radiological imaging 

features (ultrasound, computed tomography and magnetic resonance 

cholangiopancreaticography), endoscopic retrograde cholangiopancreatography 

(ERCP) and combinations of endoscopic ultrasound guided fine needle aspiration 

(FNA), tissue biopsy, immunohistochemistry, and cytology help support a diagnosis of 
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CCA. Each of the described modalities has limitations and these have been reviewed 

(22), (90-95). 

In brief, pathological diagnosis remains a considerable challenge as a result of tumour 

location, size and associated desmoplastic reaction. FNA is not utilised in hilar CCA 

due to close proximity of vascular structures, and representative tissue obtained at 

endoscopy is limited by the intense fibrotic reaction in and around the tumour resulting 

in poor diagnostic accuracy.  Cytological assessments of bile and endobiliary brushings 

of the main duct have a sensitivity of 33-56% and 62% respectively (96-97). Indeed 15% 

of patients who go onto surgical resection are subsequently found to have non-

neoplastic lesions such as chronic fibrosing or erosive inflammation, sclerosing 

cholangitis, or a granular cell tumour (98). In patients with stable asymptomatic PSC, 

routine screening by ERCP is not recommended due to the risk of iatrogenic 

pancreatitis (99).  

 

At present no single or panel of biomarkers have sufficient accuracy to independently 

confirm a diagnosis of CCA or distinguish malignant and benign biliary strictures. 

Potential serum and bile biomarkers in CCA have been reviewed (100-102). The use of the 

most common circulating tumour biomarker, carbohydrate antigen 19-9 (CA19-9) and 

several biliary markers are discussed below. 

1.1.8	
  Carbohydrate	
  Antigen	
  (CA)	
  19-­‐9	
  and	
  Circulating	
  

Biomarkers	
  

CA19-9 is a carbohydrate tumour-associated antigen, also known as sialylated Lewis 

A, originally isolated from mice immunised with a human colorectal cancer cell line (103). 

It is elevated in cancers of the gastrointestinal tract, including biliary, pancreatic, 
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hepatocellular, gastric and colorectal. In patients without PSC, a value greater than 

100U/l has a sensitivity of 53% and specificity of 75-90% for CCA (90). However its 

role is limited by several factors. The Lewis phenotype is absent in 7% of the 

population, CA19-9 is elevated in benign conditions of the biliary tree (cholethiasis, 

pancreatitis, cholangitis), and particularly relevant in extrahepatic CCA, is raised in 

benign causes of jaundice (104-106). Indeed the British Association for the Study of the 

Liver, British Society of Gastroenterology and American Society of Clinical Oncology 

do not advocate the use of CA19-9 for screening, evaluation of resectability or disease 

follow-up (82), (107).  

CA19-9 is still measured in patients with stable, asymptomatic PSC undergoing annual 

non-invasive surveillance. A value greater than 100U/l has a sensitivity of 75-89% and 

specificity between 80-86% for diagnosis for CCA and greater accuracy can be 

achieved in combination with radiological imaging (90). However less than 25% of 

patients are actually amenable to surgical resection using such cut off values and 

ultimately this limits the clinical utility of such a biomarker in CCA (108). Furthermore, 

there are no significant outcome studies or cost effectiveness models advocating this 

surveillance approach (109).  

Combination of CA19-9 with other tumour markers including carbohydrate antigen 125 

(CA 125), carcinoembryonic antigen (CEA), IL-6, apolipoprotein AII, MUC5AC and 

MAC-2-binding protein (identified by a proteomic approach and discussed below) have 

been promising but await large-scale validation studies.  
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1.1.9	
  Biliary	
  markers	
  of	
  CCA	
  

Efforts have been made to incorporate knowledge of the pathogenesis of CCA into the 

analysis of markers in bile as it represents a proximal biofluid favouring the enrichment 

of tumour-derived products. Bile insulin-like growth factor-1 (IGF-1) measured in 

patients with biliary obstruction undergoing ERCP with extrahepatic CCA was 15-20 

fold greater than from pancreatic cancer and benign biliary disease (48). The pancreatic 

elastase/amylase ratio, CA19-9, CEA, minichromosome maintenance (MCM) 2 & 5 

proteins have all been assessed but no single marker has been subjected to large-

scale validation (100). 

Albin et al have demonstrated differential (1) H magnetic resonance spectrometry 

profiles of phosphatidylcholine, lipid, cholesterol and bile acid in patients with CCA, 

PSC and benign biliary disease (110). However the role played by factors such as 

degree of biliary obstruction, liver dysfunction was not accounted for and limit its use in 

clinical practice. Early proteomic approaches to bile biomarker discovery have also 

identified relevant molecules and are discussed below. 

Hence there exists a pressing clinical need for biomarkers enabling the early diagnosis 

of CCA and distinguishing between benign and malignant biliary strictures, 

distinguishing CCA from metastatic adenocarcinoma (especially pancreatic carcinoma) 

and poorly differentiated HCC with pseudo-glandular growth patterns and monitoring 

therapeutic response if current survival outcomes are to improve. 
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1.2	
  Proteomics	
  

1.2.1	
  Biomarker	
  Discovery	
  and	
  Proteomics 

  
Biomarkers are defined as measurable molecular indicators of normal, pathological 

processes, or pharmacologic responses to therapeutic intervention (111). In addition they 

may have potential as therapeutic targets or offer options for individualised treatment 

for cancer patients. Current clinical examples include Prostate Specific Antigen (PSA) 

and precursor PSA isoforms in identifying those at risk of prostate cancer and 

recurrence after treatment, and KRAS mutation detection in colon cancer patients to 

select optimal chemotherapies (112-113). Efforts still continue for the development of more 

accurate and cost efficient biomarkers for clinical translation.  

 

Proteomics refers to the study of the entire protein complement expressed by the 

genome of a tissue/cell type, biological fluid or organism (114). It has several advantages 

over genomic approaches for identification of biomarkers or pathways altered in cancer 

progression. Proteomics allows the measurement of changes in protein level occurring 

as a result of post-transcriptional regulation of gene expression, including protein 

turnover which are not always apparent at the mRNA level and facilitates the study of 

posttranslational modifications (PTM) altering the form but not the level of protein. 

PTMs such as glycosylation have been implicated in HCC (115), and phosphorylation 

plays a key role in EGF/EGFR downstream signaling cascades relevant to several 

cancer pathways (116). The proteome is highly dynamic and responsive to subtle 

changes in the intra and extracellular environment induced by normal physiological and 

pathological states. 
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Proteomic approaches to the discovery of biomarkers in human body fluids and tissue 

have received increasing interest in the last decade, raising hope for the early 

detection of malignancy, recurrence and prognostication (117). To date more than 

several hundred potential cancer biomarkers have been proposed but very few have 

been translated into clinical practice. The recent FDA approval of the ovarian tumour 

triage test (OVA1) identified using surface-enhanced laser desorption/ionisation 

(SELDI) is one exception. Investigators have shown that this test, in combination with 

clinical assessment, has >90% sensitivity and negative predictive value in patients with 

cancer and can facilitate earlier referral and potentially improve treatment outcomes 

(118).  

1.2.2	
  	
  Proteomic	
  techniques	
  

Proteomics can be applied to cell lines, tissues and/or biological fluids and the 

proteome can be analysed using a range of complementary proteomic techniques for 

biomarker identification. In simple terms the approaches can be divided into ‘top down’ 

where separation and quantitation are carried out at the protein level followed by 

protein identification by mass spectrometry (MS) and ‘bottom up’ where protein 

mixtures are digested with a protease (most often trypsin) and the resultant peptides 

subjected to initial LC separation and MS/MS sequencing. Both these approaches are 

discussed in more detail in 1.2.2.3 & 1.2.2.4. Mass spectrometry has become a central 

driving tool in proteomic based experimental design and to identify peptide sequences 

from MS spectra various search engines exist (MASCOT, Sequest, MAXQUANT) 

which can compare observed fragment ions against theoretical ion masses and/or 

present a calculated score predicting the chance of generating the observed 

fragmented ions spectra against known sequences in a protein database. To estimate 
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the chance of false identification, decoy bases are used allowing searches to be given 

a false positive rate. Typical proteomic experimental designs are shown in Figure 3. 
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Figure 3. Typical proteomic analysis work streams.  

A. Samples are prepared to reduce sample complexity and enrich potentially interesting parts of 

the proteome before being subjected to two main forms of proteomic approaches B. Top down 

refers to the analysis of proteins in their intact form and can be studied using 2D PAGE or 

MALDI/SELDI. In contrast bottom up approaches involves initial protease digestion (usually by 

trypsin) of protein samples into peptide fractions and separation by high performance HPLC 

before MS. This is a powerful approach used in current proteomic studies able to detail 

thousands of proteins, quantify difference in abundance and extend the proteome coverage 

beyond traditional 2D PAGE limits of resolution. MS remains the central driving tool to identify 

protein/peptides in combination with vast protein databases. C. After identification of proteins 

from data sets preliminary validation is undertaken using several techniques include ELISA, 

immunoblotting and immunohistochemistry. 
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1.2.2.1	
  Sample	
  Collection	
  and	
  Preparation	
  

 

Irrespective of the technique chosen, a crucial aspect of any proteomic investigation is 

attention to pre-analytical factors, sample integrity and handling to ensure experiment 

validity and reproducibility (119-121). No one set of conditions is ideal for all proteins in 

tissue and biological fluids but attention to consistency in sample banking, with the use 

of standard operating procedures, careful handling of specimens to avoid degradation 

and artefactual bias is crucial. Important considerations include the duration and 

temperature of storage of sample, the type of collection tube, delays in specimen 

processing and heterogeneity in patient characteristics (122-123). 

Tissue can be contaminated by blood and other cells at time of collection and this can 

be a challenge in quantitative analysis. Laser capture microdissection can be used to 

overcome tissue heterogeneity by isolating specific cell types and has been employed 

in a recent study in combination with accurate mass tags to identify several 

differentially expressed proteins in CCA including in particular vimentin, annexin A2, 

and actin binding proteins (cofilin-1, profilin-1, and transgelin-2) (124). Cell lines are an 

alternative source of homogenous enriched populations of normal and cancer cells 

used in proteomic studies including all main hepatopancreaticobilary malignancies (125-

127). However one main limitation of their use is that not all in vitro changes are 

consistently reflected in vivo. 

With respect to bile a number of factors have limited biomarker discovery to date 

including the collection of suitably large sample banks from patients with CCA and 

appropriate controls such as patients with PSC and benign disease and the invasive 

method (ERCP/surgery) required obtaining bile. Furthermore the protein content of bile 

represents only 7% of the total solute and a large component is represented by bile 
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salts, phospholipids, bilirubin, fatty acids and cholesterol (128). These non-protein 

components (particularly salts) can hinder analysis based on electrophoretic protein 

separation and require centrifugation, desalting and delipidation of samples to improve 

improved resolution in gel-based approaches.  

1.2.2.2	
  Sample	
  Prefractionation	
  

An extension to sample preparation is prefractionation to reduce complexity in an effort 

to improve proteome coverage. In the case of biological fluids such as plasma/serum, 

the range of protein levels exceeds at least 10 orders of magnitude with a small 

number of proteins (approx. 40 main plasma proteins) dominating the profile. Serum 

albumin and immunoglobulins are the most abundant circulating proteins accounting 

for more than 85-90% of the plasma profile.  The removal of the most abundant 

proteins using commercially available products such as Multiple Affinity Removal 

System (MARS) Human-14 (Agilent Technologies) and ProteoPrep®20 (Sigma) has 

been adopted as one strategy but as yet failed to show a paradigm shift in the 

detection of lower abundant proteins (129). An alternative approach is the purification of 

particular protein groups such as glycoproteins or phoshoproteins from samples of 

interest to reduce sample complexity prior to proteomic analysis (130).  

1.2.2.3	
  Top-­‐down	
  proteomic	
  approaches	
  

The classical technique used in top down approaches is two dimensional 

polyacrylamide gel electrophoresis (2-D PAGE) (130). Proteins are separated based on 

isoelectric point, pl (pH at which a particular molecule or surface carries no net 

electrical charge) in the first dimension by focussing with immobilised pH gradients and 

subsequently based on separation by molecular weight (MW) by sodium 
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dodecylsulphate (SDS) PAGE in the second dimension. A single format gel can resolve 

between several hundred and more than two thousand protein species and detect 

<1ng of protein per spot (130). After separation, proteins are visualised by various 

staining techniques (Coomassie Blue, silver or fluorescent dyes such as SyproRuby) 

and image analysis carried out to identify proteins that differ in intensity between 

sample groups. The majority of 2D PAGE studies currently adopt difference in gel 

electrophoresis (DIGE) where proteins are labelled with spectrally resolvable, size and 

charge-matched fluorescent lysine reactive cyanine (Cy) dyes (Cy2, Cy3 and Cy5), and 

simultaneously resolved by 2D PAGE (131). Incorporation of a pooled internal standard 

labelled with one of the Cy dyes and run on every gel improves gel matching and 

quantitation, thereby improving the identification of differentially expressed proteins 

(132). Standard DIGE experiments useminimal labelling, where each protein carries a 

maximum of one dye molecule and a total of <5% proteins are labelled in the reaction. 

An alternative is saturation labelling where all of all the cysteine residues are coupled 

with dye, which can be used in cases requiring increased sensitivity. To increase 

proteome coverage zoom gel electrophoresis with narrow range immobilised pH 

gradients can be used although in some cases this may only identify further isoforms of 

the same proteins rather than reveal novel proteins (133). A major advantage of 2D gels 

is their ability to detect posttranslational modifications that alter spot position whilst 

limitations include sample throughput and under-representation of proteins of extreme 

pI or MW and hydrophobic membrane proteins (134-135).  

Alternative top down approaches include the use of other (usually two dimensional) 

separation techniques such as the ProteomeLab™ PF 2D system (Beckman Coulter) 

which separates proteins by chromatofocussing and followed by reverse phase 

chromatography. Matrix-assisted laser desorption/ionisation (MALDI)-based peptide 

profiling, often following chromatographic separations for example using ProteinChip 
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arrays with SELDI technology or magnetic beads coated with different chromatographic 

surfaces such as the CLINPROT system is an alternative approach (136). An extension 

of this is imaging MS where tissue sections are directly analysed by MALDI allowing 

spectral profiles to be linked to histology (137).  

1.2.2.4	
  Bottom-­‐up	
  proteomic	
  approaches	
  

 

In bottom-up – often termed shotgun or multidimensional protein identification 

technology (MudPIT)  – approaches, protein mixtures are initially digested with a 

protease generating peptides that are separated by (multidimensional) liquid 

chromatography (LC) and analysed by tandem MS generating a catalogue of protein 

identities. In addition to simply profiling proteins in a biological sample, the field of 

quantitative proteomics has emerged as an important speciality in biomarker studies to 

demonstrate differential protein levels between disease and non-disease. Broadly 

speaking these can be separated into the use of stable isotope labelling or label-free 

techniques. Common labelling techniques include stable isotope labelling of amino 

acids in culture (SILAC), which involves metabolically labeling with light/heavy versions 

of amino acids lysine and arginine, generating peptide pairs - the intensity of which 

indicates relative abundance (138). Other approaches for introduction of stable isotope 

labels include digesting in 18O labeled H2O (139) and iTRAQ (isobaric tags for relative 

and absolute quantification) which uses families of 4 (or 8) tags that are 

indistinguishable in MS but fragment to give different reporter ions in MS/MS allowing 

comparative analysis of up to 8 samples (140). After labelling different proteins, samples 

are combined and pooled before analysis by LC-MS/MS. Labelling strategies are 

considered to be more accurate in quantifying protein abundance however this is at the 

expense of cost, complex sample preparation, and runs the risk of incomplete labelling. 
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In response to these challenges interest has developed in ‘label-free’ approaches for 

quantitation in shotgun investigations (141). Like all other proteomic techniques label free 

methods involve all the principal steps of protein extraction, reduction, and digestion 

followed by sample separation using LC before analysis by MS. The data output allows 

for identification of proteins, their relative abundance and statistical analysis between 

samples. However in contrast to labelling methods each sample is separately prepared 

before individual LC-MS/MS runs (i.e. not pooled). Protein quantification is generally 

based on two main techniques: spectral counting or ion intensity (peptide peaks areas 

or heights in chromatography). 

In the spectral counting approach, the relative protein quantification is achieved by 

comparing the number of identified MS/MS spectra from the same protein in each of 

the multiple LC-MS/MS runs. It relies on the basis that an increase in protein level will 

result in a greater number of proteolytic peptides and hence greater protein sequence 

coverage, unique peptides and the number of identified total MS/MS spectra (spectral 

count) for each protein. Examples of relevant protein biomarker studies utilising this 

technique include identification of serum biomarkers for colorectal cancer metastasis, 

in the differential analysis of the A549 lung carcinoma cell line and in identifying 

elevated levels of neutrophil gelatinase-associated lipocalin (NGAL; lipocalin-2) in bile 

from patients with malignant pancreaticobiliary disease (142-144). 

The fundamental concept in using peptide peak intensity approach relies on an ion with 

a particular mass to charge ratio to be recorded in an LC-MS run and its intensity (as 

measured by the height or the area under the peak) being correlated with ion 

concentration (145). The technique is subject to variation between different runs of 

samples as a result of any difference in sample preparation and injection. As a result 

normalisation methods are employed together with complex computer algorithms to 
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enable more accurate matching and quantification (146). Such an approach has 

demonstrated differences between control and radiated human colon cancer cells and 

proteins associated with metastasis in melanoma (147-148). However the spectral 

counting approach is reported to be more reproducible and with a larger dynamic range 

than peptide ion based quantification (149).   

1.3	
  Proteomics	
  in	
  CCA	
  	
  

1.3.1	
  Tissue	
  and	
  Serum-­‐Based	
  Approaches	
  

 
Kawase and colleagues identified 38 differentially expressed proteins in two paired 

cancer and normal bile duct tissues using a label-free LC-MS/MS approach and 

validated findings in further tissue samples (150). A number of proteins previously 

reported in CCA including MUC5AC (151), moesin (152), galectin 1 (153) and keratin 903 

(154) were increased in CCA tissues. Western blotting and immunohistochemical 

validation of four novel proteins (actinin-1, actinin-4, protein DJ-1 and cathepsin B) in 

the original samples and four additional CCA cases showed all were overexpressed 

compared with normal bile duct cells.  

Actinin 1 and 4 play an important role in the actin cytoskeleton and cell mobility and 

confer cell invasion and metastatic properties (155) and studies confirmed 

overexpression to be associated with aggressive phenotype in colorectal and 

pancreatic cancer (156-157). Protein DJ-1 is an oncogene that can promote cell 

proliferation and carcinogenesis in several cancers (esophageal, pancreatic, glottic) 

through activation of AKT, mTOR and HIF1 pathways and inhibition of p53 – mediated 

apoptosis (158). Cathepsin B belongs to a family of lysosomal proteases and is active at 

the normal physiological pH range of bile (7-7.7). Its role in cancer is multifaceted 
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including extracellular matrix invasion; promotion of angiogenesis, cell migration and 

metastatic potential (159), and overexpression has been demonstrated previously in 

chemically induced CCA animal models (160).   

In an effort to focus on more lower abundance and secreted proteins Kristiansen et al 

applied a membrane enrichment strategy coupled with a 18O labeling based 

quantitative proteomic approach in two CCA patients (152). In addition to several 

proteins previously identified in CCA, MUC-5AC, golgi membrane protein 1, annexin IV 

and EGFR pathway substrate 8  (EPS8) were shown to be overexpressed. Golgi 

membrane protein 1 is a transmembrane protein located on epithelial cells (including 

cholangiocytes) of unclear function. It has relevance to various inflammatory and 

chronic liver diseases and has been identified in urine of patients with prostate cancer 

and shown to be superior to the use of AFP alone in HCC surveillance in cirrhotic 

patients (161-163). Annexin IV belongs to a family of Ca2+ regulated phospholipid binding 

proteins and believed to be involved in exocytosis and regulation of epithelial chloride 

ion secretion (164). In cancer its role is not clearly established, although proteomic data 

from RCC and colorectal cancer implicate changes in cell migration by way of loss of 

cell to cell adhesion (165-166). EPS8 forms a complex with Sos 1 and Abi1 facilitates the 

activation of specific proteinases involved in actin remodeling and increasing 

metastatic potential (167).  

Malignant cholangiocytes tend to be embedded in and around desmoplastic tissue (168) 

and can render identification of tumour-derived protein signatures difficult in proteomic 

studies. However, using laser microcapture dissection and accurate mass and time tag 

approaches, Santos and colleagues produced enriched cancer cell lysates from 4 

patients with intrahepatic CCA and compared them to control bile duct tissue (124). 

Proteins were separated by SDS PAGE and subjected to in-gel tryptic digestion and 
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LC-MS/MS to generate a list of more than 500 proteins of which 39 were differentially 

expressed and related to cancer-associated pathways. Many of these differentially 

expressed proteins were involved in glycolysis and regulation of the cytoskeleton and 

specifically, Mac 2 binding protein and vimentin (previously identified by proteomic 

approaches in CCA) were increased in intrahepatic CCA (169-170). Other elevated 

proteins included actin binding proteins (profilin-1, cofilin-1 and transgelin) associated 

with cell transformation and motility, S100A11 (calgizarin) involved in Ca2+ signalling, 

cell regulation and motility and TGFβ which can promote metastatic potential by 

inducing epithelial to mesenchymal transition (171).  

Studies in serum have mainly used SELDI to identify a number of differentially 

expressed peptides in CCA (172-173). Liu et al analysed 427 serum samples from patients 

with CCA (n=56), benign hepatobiliary diseases (n=49), other cancer controls (n=269), 

and healthy individuals (n=53). Peaks with m/z 13.760, 13.880, and 14.040 were 

significantly decreased in CCA compared with the control groups and identified as 

native transthyretin and its two variants. Further studies incorporating enzyme-linked 

immunosorbent assay (ELISA) of transthyretin and CA19-9 demonstrated significantly 

down-regulated levels of transthyretin in sera of CCA patients. 

Wang et al analysed serum samples from 60 patients with CCA, 60 with benign 

hepatobiliary disease and 53 normal individuals and detected apolipoprotein A-I as 

being significantly decreased in CCA and able to discriminate between the groups (173). 

However, no single serum marker identified by a proteomic approach has been 

subjected to a large validation experiment.  
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1.3.2	
  	
  Proteomics	
  studies	
  in	
  CCA	
  –	
  Cell	
  lines	
  

 

The CCA cell line HuCCA-1 was established in 1991 (174) and only a few studies have 

been reported using it in proteomic studies (126), (170), (175-176). Srisomap et al compared 

the protein pattern of the HuCCA cell line to the human HCC (HepG2 and HCC-S102), 

and breast (MCF-7) cancer cell lines using a 2D PAGE and LC-MS-MS approach. 

They established the first proteomic map of a HuCCA-1 cell lysate and identified 43 

major proteins. Of these cytokeratin 7 and 19 were present only in CCA and although 

there was one patient in the study, the differential expression of cytokeratin 19 had 

been reported previously in immunohistochemical studies (177).  

To determine the effects of C. sinensis infection (a known risk factor for CCA) and their 

excretory secretory products (ESP) on protein expression in host bile duct epithelium, 

Pak et al analysed differences in HuCCT1 cells treated with ESP (176).  Using a 

combination of 2D PAGE and MALDI-TOF MS analysis, 83 proteins were differentially 

expressed in response to ESP, of which 49 were up-regulated and 34 down-regulated. 

Specifically ESP induced the expression of redox-regulating proteins, including 

peroxiredoxins (Prdx 2, 3, and 6) and thioredoxin 1 (Trx 1), potentially via intracellular 

ROS generation.  

In an effort to provide a comprehensive proteome-wide analysis of tumour surface 

membrane proteins, Yonglitthipagon et al utilised a sequential protein extraction 

method to study four CCA cell lines with different malignant potential and a non-

malignant H69 biliary cell line control (175). Using 2D PAGE and MALDI-TOF-MS 

differentially expressed proteins were identified. Annexin A2 upregulation was validated 

by western blotting and tissue microarray in 300 CCA patients and found to be 

associated with lymphatic invasion, metastasis and prognosis.  
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1.4	
  Proteomics	
  approaches	
  in	
  Bile	
  
 

Only a small number of studies have reported the proteomic investigation of human 

bile and these have been reviewed (128), (178). One of the earliest studies described the 

successful application of 2D PAGE to bile samples from individuals with cholethiasis 

and identified 77 proteins (179). The same investigators subsequently reported a more in 

depth analysis of vesicular and micellar protein profiles in gallbladder bile (180). Bile was 

analysed by 2D PAGE after purification steps involving ultracentrifugation, delipidation 

and gel filtration chromatography resulting in identification of nearly 500 (mainly 

plasma) proteins. Efforts to identify hydrophobic proteins in bile in subsequent studies 

using extraction with organic solvents and subsequent chromatography and MALDI-

TOF MS resulted in the discovery of three previously unknown biliary proteins: MAC-2 

binding protein, CD14 and ATP synthase lipid binding protein (181).   

Kristiansen et al produced a comprehensive catalogue of proteins from bile of a patient 

with CCA, sampled in the common bile duct by ERCP (182). Bile was centrifuged, 

delipidated and concentrated by 3 kDa size exclusion filter prior to analysis by SDS 

PAGE and LC-MS/MS directly or following lectin affinity chromatography -/+ 

immunoglobulin depletion. Overall 87 unique proteins were identified, the majority of 

which were proteins derived from hepatocytes or of pancreatic origin. In addition to 

several known “cancer-associated proteins” such as CA125, MAC-2 binding protein 

and MUC 2, two proteins not described in the context of CCA were reported: lipocalin-2 

and deleted in malignant brain tumours 1. MAC-2 binding protein was evaluated as a 

potential diagnostic marker using ELISA in bile and serum from patients with CCA, 

PSC and benign biliary diseases (169). Results demonstrated a 3-fold increase in biliary 

MAC-2 binding protein in patients with CCA compared to non-neoplastic diseases, and 

giving a similar receiver operator characteristic value (0.7) as biliary CA19-9 and 
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greater diagnostic accuracy when used in combination with CA19-9. However MAC-2 

binding protein was not elevated in serum from patients with CCA. 

Zhou et al used the complementary techniques of 2D PAGE and shotgun proteomics to 

analyse gallbladder bile from an individual with cholethiasis (183).  Following dialysis, 

precipitation and delipidation, samples underwent 2D PAGE or direct protein digestion, 

separation of peptides by strong cation exchange and reversed-phase chromatography 

prior to 2D-LC-MS/MS. A total of 222 (mainly plasma) proteins were identified (48 and 

218 from 2D PAGE and shotgun approaches respectively), 44 of which were common 

to both techniques and 27 proteins in common with the Kristiansen study.  

In the only other study comparing bile from an individual with CCA to benign biliary 

disease (control), a 2D PAGE approach resolved 250 and 216 spots on pH 3-10 and 

182 and 175 spots on pH 4-7 IPG strips respectively (184). There were 16 and 23 spots 

differentially expressed between malignant and non-malignant disease using the 

different IPG strips. The study did not provide MS identification of proteins of interest 

but highlighted a reproducible methodology for high-resolution separation of biliary 

proteins and formation of 2D bile maps. 

In contrast, Guerrier et al studied the pooled gallbladder bile of nine patients with no 

biliary tract disease. In addition to ultracentrifugation and delipidation, samples were 

treated with immobilised hexapeptide ligand libraries in an effort to concentrate and 

reduce levels of low and high abundance proteins respectively (185). Samples were then 

subjected to three distinct elution steps using solutions with different ionic strengths 

and pH before comparison with unfractionated bile using LC-MS/MS or SELDI-MS. 

Including proteins identified with a single peptide, 141 and 222 proteins were identified 

in unfractionated and fractionated bile respectively, of which 143 had not been 
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previously reported in proteomic studies, and 81 proteins were a result of application of 

ligand libraries. 

The most recent large-scale proteomic investigation of bile sampled from the bile duct 

of two patients with pancreatic cancer by ERCP identified more unreported biliary 

proteins (186). Samples were subjected to ultracentrifugation, non-ionic adsorbents and 

size exclusion filtration before analysis by SDS PAGE and LC-MS/MS. Some samples 

underwent further purification steps involving acetone/ethanol precipitation, 

methanol/chloroform extraction or albumin/immunoglobulin depletion. Furthermore 

pellets after ultracentrifugation were included in the analysis revealing proteins that 

would have otherwise been lost. Overall 127 proteins, of which 34 were identified by 

two or more significant peptides and 38 by a single significant peptide, were not 

previously described in bile. 

In summary, studies to date have demonstrated the proof of concept of proteomic 

analysis of samples including bile in CCA but have yet to include a significant number 

of patient samples in investigations, malignant bile obtained from within the biliary 

ducts, perform more intensive prefractionation strategies including the concentration of 

low abundance proteins, produce comprehensive protein maps and investigate protein 

expression profiles between intra and extrahepatic CCA. 
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1.5	
  Aims	
  of	
  Study	
  

Principal Aim 

To identify potential circulating tumour derived biomarkers utilising proteomic 

techniques applied to bile. 

Work streams 

1. To investigate the differences in protein profiles between serum and bile using 2D 

PAGE. 

2. To develop and optimise antibody-based depletion strategies of highly abundant 

proteins from bile to facilitate the discovery of lower abundance molecules more likely 

to represent potential biomarkers.  

3. To characterise the malignant proteome in bile of four patients with hilar CCA using 

complementary approaches of 2D DIGE and shotgun GeLC-MS/MS.  

4. To perform a quantitative comparative analysis of prefractionated bile samples from 

patients with CCA, and benign biliary disease using a label free proteomic approach. 

5. To analyse molecules of interest using antibody-based approaches (Western 

blotting) in validation studies on larger bile sample groups. 
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2.0	
  Materials	
  and	
  Methods	
  

2.1	
  Materials	
  

Milli-Q water was used throughout. General chemicals (AnalaR grade or equivalent) 

were purchased from Sigma (Poole, UK), ICN Biomedicals (Cambridge, UK), and VWR 

(Poole, UK). IPG strips, Bromophenol Blue, Albumin/IgG Removal Kit, CyDye DIGE 

fluor Cy3 and Cy5 minimal dyes, Hybond-C super nitrocellulose membrane (GE 

Healthcare, Buckinghamshire, UK), Criterion Precast Gels 10.5-14%, Bio-Rad protein 

assay (Bio-Rad, Hemel Hempstead, UK), ProteoSilver™ Silver Stain, Protease Inhibitor 

cocktail, Coomassie Colloidal Blue Stain (Sigma, Poole, UK), InstantBlue™ Coomassie 

Colloidal Stain (Expedeon, Cambridgeshire, UK), PAG backing (Lonza, UK), Trypsin 

(Promega, Southampton, UK), Acrylamide (National Diagnostics, Hessle UK), Agarose 

LMP (Invitrogen, Paisley, UK), CHAPS (Merck, Nottingham, UK), Swell Gel Blue 

Albumin Removal Kit, Supersignal West Extended Dura Substrate, BCA assay (Pierce, 

Tattenhall, UK), silicone thin walled tubes (Bioquote, York, UK), MMP-9/Lipocalin 

Complex (Calbiochem, Darmstadt, Germany) and Omnipaque dye (Amersham Health, 

Cork, Ireland), anti-mouse and anti-rabbit HRP– conjugated Envision + reagents 

(Dako, Ely, UK). Full details of suppliers and constituents of all solutions and buffers 

are listed in Appendix 1 and 2 respectively. 

2.2	
  Clinical	
  Samples	
  

All bile and serum samples were obtained following informed consent and ethical 

approval (REC 06/Q1206/136 Appendix 5) and included samples from the following 

groups of patients: (a) Malignant disease (CCA), (b) predisposed disease (PSC), (c) 

benign disease (cholethiasis, strictures), and (d) ‘normal’ (transplant organ donors). 
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Specifically consent was taken by specialist donor coordinators in cases where bile 

was obtained from organ donors. No bile was collected from the gallbladder or via 

percutaneous transheptic drains to ensure bile samples were obtained in a 

homogenous pattern. Appendix 3 lists all samples collected including basic 

demographics and group status.  

2.2.1	
  Bile	
  Sample	
  Collection	
  –	
  Surgery	
  

For patients undergoing surgery for CCA, or during multiorgan procurement for 

transplantation the common bile duct (CBD) was isolated and ligated at its distal end to 

allow accumulation of bile for 5-15 minutes before collection through a 22 FG silastic 

catheter into a 10 ml syringe and transferred to a Falcon tube under sterile conditions. 

In cases of resection and organ donors bile was obtained before division of the CBD. 

Only donors who are classified as ‘heart beating – brain dead’ donors were used. 

Donation after cardiac death donors were excluded from sample collection. All 

attempts were made to prevent the contamination of bile samples with blood and 

tissue. Bile was transported to the processing laboratory on ice within 15 minutes.. To 

ensure samples reached the laboratory in 15 minutes, bile obtained from multiorgan 

procurement operations only occurred at St James Universoty Hospital or Leeds 

General Infirmary. Only bile from donors in which the liver was implanted and the 

status of the parenchyma known was used.  

2.2.2	
  Bile	
  Sample	
  Collection	
  –	
  ERCP	
  	
  

Bile was collected from patients undergoing ERCP diagnostic/therapeutic interventions 

for biliary disease (benign and malignant) and without a pre-existing CBD stent in situ. 
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After cannulation and placement of catheter, 5-20ml Omnipaque dye was inserted to 

confirm its position within the bile duct. An equal volume of fluid to dye injected was 

discarded to minimise contamination, before collection of bile into a sterile syringe and 

transfer to a Falcon tube. Bile was transported to the processing laboratory on ice 

within 15 minutes. In those with ERCP for CBD stones liver function tests were also 

recorded to allow optimal matching of representative samples in comparative 

proteomic analysis. 

2.2.3	
  Blood	
  Sample	
  Collection	
  	
  

Blood was obtained prior to surgery and ERCP from a peripheral site via standard 

technique into a 6 ml Vacuette serum clot activator and two 4ml Vacuette EDTA tubes. 

Blood was transported on ice to the laboratory within 15 minutes. 

2.2.4	
  Sample	
  Processing	
  	
  

Aliquots of bile in 1.5 ml eppendorf tubes were subjected to centrifugation at 4°C for 15 

minutes at 13,000 x g, aliquotted and stored at -80°C. Venous blood samples were left 

to clot at room temperature for 60 minutes before centrifugation at 20°C for 10 minutes 

at 2,000 x g. Serum was removed using a fine point pastette, aliquotted and stored at -

80°C.  

2.3	
  Protein	
  Assay	
  

Protein concentration was determined using the modified Bradford assay following the 

manufacturer’s instructions or alternatively by densitometric analysis of Coomassie 
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stained gels using a standard curve (0-5mg/ml) formed with a serial dilution of albumin 

depleted serum (ADS). ADS was prepared using Swell Gel Blue Albumin Removal Kit 

following the manufacturers instructions. 

2.4	
  Sample	
  Purification	
  and	
  Prefractionation	
  	
  

2.4.1	
  Trichloroacetic	
  Acid	
  (TCA)	
  Precipitation	
  of	
  Bile	
  

Desalting and concentration of bile samples was carried out by TCA precipitation. In 

brief, an equal volume of 20% w/v TCA was added to bile and the mixture allowed to 

precipitate on ice for 30 minutes before centrifugation for 10 minutes at 4°C and 18000 

x g. The supernatant was removed without disturbing the pellet, 1 ml of ice-cold 

acetone wash was applied to the pellet and centrifugation repeated. The acetone was 

removed, the pellet was left to stand for 2 minutes to allow evaporation of any residual 

acetone then resuspended in DIGE lysis buffer (7M urea, 2M thiourea, 4% w/v 

CHAPS). 

2.4.2	
  Albumin	
  and	
  IgG	
  Depletion	
  of	
  Serum	
  and	
  Bile	
  

To improve the detection/coverage of lower abundance proteins, two components 

predominating the serum and biliary proteome - albumin and immunoglobulin G -were 

removed using the Albumin/IgG Removal Kit. The kit was originally designed for 

albumin/IgG depletion from serum, and optimisation experiments were undertaken to 

assess the efficiency of depletion in bile. SDS PAGE and Coomassie staining and 2D 

DIGE were used to compare the depleted samples to unprocessed bile to assess 

removal of albumin/IgG. More detail for experimental technique is described in 3.2.2.  
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2.5	
  1D	
  SDS-­‐PAGE	
  

Serum and bile samples were adjusted to 1X Laemmli buffer (62.5mM Tris-HCI pH 6.8, 

10% v/v glycerol, 5% v/v β-mercaptoethanol, 2% w/v SDS, 0.0025% w/v bromophenol 

blue (BPB)). Protein (typically 5-7.5 µg) was separated on 10% polyacrylamide gels 

using the Bio-Rad Mini Protean II electrophoresis system or using Bio-Rad Criterion 

Gel System with precast 18 well 10.5-14% Tris-HCI gels and SDS PAGE running 

buffer (24mM Tris, 192mM glycine, 0.1% w/v SDS).  

2.6	
  Coomassie	
  Blue	
  and	
  Silver	
  Staining	
  

Gels were fixed in 40% v/v methanol, 7% v/v acetic acid for 30 minutes before staining 

with Coomassie Colloidal Blue Stain for 2-24 hours. Gels were destained in 25% v/v 

methanol, 10% v/v acetic acid for 1 minute then in 25% w/v methanol for up to 6 hours. 

Mini 2D gels were fixed and silver stained using the ProteoSilver™ Silver Stain kit 

according to manufacturers instructions. Gels were scanned as 12 bit images using a 

personal densitometer SI (GE Healthcare).  

2.7	
  2D	
  PAGE	
  

2.7.1 First dimension 

First dimension isoelectric focusing was carried out using the IPGphor system (GE 

Healthcare). Samples were prepared in DIGE lysis buffer (7M urea, 2M thiourea, 4% 

w/v CHAPS). 5 µg of sample was loaded on to 7cm pH 4-7 IPG strips in a total volume 

of 125µl of reswell buffer (7M urea, 2M thiourea, 4% w/v CHAPS, 0.46% w/v (30mM) 

DTT, 0.2% v/v pharmalyte pH3-10, trace BPB and applied by in-gel rehydration (30 V 
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14 hours).  Isoelectric focussing was carried out to give a total of 9.1 kVh (200 V 1 

hour, 500 V 1 hour, 500-3500 V 30 minutes, and 3500 V to end) at 20°C with a current 

limitation of 50 µA/strip. 

2.7.2	
  Second	
  dimension	
  

Strips were reduced in 5ml equilibration buffer (6M urea, 30% w/v glycerol, 2% w/v 

SDS, 50mM Tris-HCl pH6.8) containing 1% w/v DTT for 15 minutes, and alkylated in 

5ml equilibration buffer containing 4% w/v iodoacetamide for 10 minutes. Strips were 

placed on 10% T polyacrylamide gels and SDS PAGE was carried out using the Bio-

Rad Mini Protean II electrophoresis system as described in section 2.5.   

2.8	
  2D	
  DIGE	
  

Bile samples were resuspended in DIGE lysis buffer (7M urea, 2M thiourea, 4% w/v 

CHAPS).  Samples were then diluted to 1 mg/ml and a sample volume equivalent to 

50µg was used for DIGE labelling. The pH of the sample was adjusted to pH 8.5 using 

Tris-HCl pH 8.5, giving a final concentration of 50 mM, and then samples were 

vortexed, pulsed in a microfuge and placed on ice.  

1 mM stock cyanine dye (CyDye DIGE fluor Cy3 and Cy5 minimal dyes) was diluted 1 

in 5 with fresh anhydrous DMF to give a dye solution of 200 µM. Samples were labelled 

with Cy3 or Cy5 in the ratio 50 µg protein: 200 pmol dye and left on ice for 30 minutes 

in the dark. The reaction was stopped by the addition of 1µl 10mM lysine per 200 pmol 

dye used, samples were vortexed and left on ice for 10 minutes in the dark. 



48 

 

An equal volume of 2x DIGE buffer (7M urea, 2M thiourea, 4% w/v CHAPS, 2% w/v 

DTT, 1.6% v/v pharmalyte pH3-10) was added to restore DTT and pharmalyte levels to 

those required for IEF. Samples were left at room temperature for 15 minutes, covered 

in foil. Samples were either stored at -80oC until use or used immediately to rehydrate 

immobilised pH gradient (IPG) strips. 

2.8.1	
  First	
  dimension	
  isoelectric	
  focusing	
  

Samples to be run together (usually 50 µg of each of labelled Cy3 internal standard 

and Cy5 labelled individual sample) were combined and then made up to a total 

volume of 450µl with reswell buffer (7M urea, 2M thiourea, 4% w/v CHAPS, 0.46% w/v 

(30mM) DTT, 0.2% v/v pharmalyte pH3-10, trace BPB). Isoelectric focussing was 

carried out on pH4-7 IPG strips using the Ettan™ IPGphor™ 3 IEF system (GE 

Healthcare). Protein was applied by in-gel rehydration at 30V for 18 hours then 

focussing was carried out using the IPGphor Manifold Ceramic Tray (GE Healthcare) 

as per the manufacturer’s instructions (Table 3). Strips were stored at -80oC until use. 

Table 3.0 Voltage and Duration Times for IEF 

Step  VOLTAGE DURATION 

S1 Step 500V 0:01Hr 

S2 Gradient 3500V 1:30Hr 

S3 Gradient 3500V 72000VHr 

S4 Gradient 8000V 0:10Hr 

S5 Step 8000V 1:00Hr 

S6 Step 100V 10:00Hr 

   To 85,000VHr 
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2.8.2	
  Second	
  dimension	
  2D	
  PAGE	
  

 

SDS PAGE was carried out using the Ettan DALTtwelve Separation Unit (GE 

Healthcare) with 8-15% gradient gels cast in low fluorescence plates using a 

2DEoptimizer (NextGen Sciences Ltd, Huntington, UK). Strips were reduced in 10 ml 

equilibration buffer (6 M urea, 30% w/v glycerol, 2% w/v SDS, 50 mM Tris-HCl pH 6.8) 

containing 1% w/v DTT for 15 minutes then alkylated in 10 ml equilibration buffer 

containing 4% w/v iodoacetamide for 10 minutes. Strips were rinsed with 1x running 

buffer (25 mM Tris, 192 mM glycine, 0.1% w/v SDS, pH8.3), applied to the top of gels 

and sealed in place with 1% w/v LMP Agarose in 1x running buffer containing a trace 

of BPB. Gels were run overnight at ~1-1.5W/gel at 15°C. 

2.9	
  Gel	
  scanning	
  and	
  Analysis	
  

Gels were scanned using a Typhoon Trio (GE Healthcare). Initial scans at 1000µm 

were done to optimise the PMT voltage to give a maximum intensity of 80 000 - 90 000 

for the second most abundant spot after albumin or the most abundant spot following 

albumin depletion. Final scans were done at 100µm. Gels were analysed using 

Progenesis SameSpots version 3.3 (NonLinear Dynamics, Newcastle, UK). 
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2.10	
  Protein	
  Identification	
  

2.10.1	
  For	
  2D	
  PAGE	
  Mastermap	
  Experiments	
  	
  

Preparative gels were generated using 500 µg protein pooled from 4 bile samples from 

patients with hilar CCA. Gels were backed with polyester backing and were silver 

stained using a modified version of the ProteoSilverTM protocol using lower percentage 

alcohol to reduce gel volume variations and to avoid gels detaching from the PAG 

backing. The following amendments were made to the protocol: Gels were fixed with 

30% v/v ethanol, 5% v/v acetic acid for a minimum of 40 minutes, and the 15% v/v 

ethanol wash was carried out for 20 minutes. Pick lists were created and data were 

imported from Progenesis SameSpots into the Ettan Spot Picker V1.2 software. Gel 

spots with a diameter of 1.4mm were collected directly into in a 96-well plate in water 

using the Ettan Spot Picker(GE Healthcare). 

2.10.2	
  Tryptic	
  digestion	
  

Gel pieces were destained in 50 mM sodium thiosulphate/15 mM potassium 

ferricyanide, washed in water and equilibrated in 25 mM ammonium bicarbonate. They 

were then dehydrated with acetonitrile, rehydrated in 25 mM ammonium bicarbonate, 

further dehydrated with acetonitrile and dried in a SpeedVac. Gel pieces were 

incubated on ice for 45 minutes in 5 µl (200ng) sequencing grade modified trypsin 

solution (0.1mg/ml trypsin, 16000U/mg prepared in ice-cold resuspension buffer 

supplied with the enzyme then diluted with 25 mM ammonium bicarbonate, to 40 

µg/ml), followed by the addition of 30 µl ammonium bicarbonate. After digestion for 4 

hours at 37°C, the supernatant was transferred in to a 0.2 ml siliconised thin walled 
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tube. Extraction of tryptic peptides was carried out twice through incubation in 5% (v/v) 

formic acid for 15 minutes in a sonicating water bath, the supernatants combined and 

dried in a SpeedVac. Peptides were resuspended in water and dried in a SpeedVac 

twice and finally reconstituted in 5 µl of 50 % (v/v) acetonitrile / 0.1% (v/v) trifluoroacetic 

acid. Samples were stored at -80oC until analysis. 

2.10.3	
  Samples	
  and	
  Mass	
  Spectrometry	
  for	
  GeLC-­‐MS/MS	
  

‘Shotgun’	
  Based	
  Experiments	
  

Protein (100 µg) from each bile sample was separated on 10% SDS PAGE using the 

Hoefer SE600X Chroma Deluxe Electrophoresis Unit. Gels were stained with 

InstantBlue Coomassie® and each lane was divided into 51 gel slices by hand using a 

sterile scalpel. The gel pieces were sliced into smaller pieces washed with water then 

with 25 mM ammonium bicarbonate and dehydrated with ACN. Samples were then 

reduced with DTT, alkylated with iodoacetamide and digested with trypsin as described 

in the Section 2.10.2.                                                                    

Tryptic digests were analysed by LC-MS/MS using a nano-HPLC (Agilent, USA) and a 

QSTAR-XL quadrupole time-of-flight hybrid mass spectrometer (Applied Biosystems, 

UK) as previously described (Aggelis et al., 2009) which was performed by Dr Jianhe 

Peng, University of Leeds. 

The mass spectrometer was operated in a data dependent mode: a MS scan from 

400–1800 m/z was performed for 1 s, the three most abundant doubly- and triply-

charged ions (m/z 400–1000) with intensities over 40 counts were selected for MS/MS 

analysis which was acquired from 80–1800 m/z for 1 s in the Enhance All mode and 
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precursors were then excluded for 200 s. The MS/MS data was processed by Analyst 

(version 2.0, Applied Biosystems) and searched using a local Mascot search engine 

(version 2.3, Matrix Science, London) with the following parameters – database: IPI 

human (89652 sequences, version 3.74); enzyme: trypsin; fixed modification: 

carbamindomethyl (c); variable modification: oxidation(M); peptide mass tolerance: +/-

0.15 Da; fragment mass tolerance: +/- 0.1Da; maximum missed cleavages: 1; 

instrument type: ESI-QUAD-TOF.  Peptides were considered identified with scores 

above identity level, p< 0.05. 	
   	
  For each patient, the intermediate files produced by 

Mascot were combined, peptides with probability scores with p>0.05 were excluded 

and redundancy then removed. Furthermore peptides were filtered to remove trypsin 

autolysis peptides and keratins. Proteins required at least one unique significant 

peptide to be considered identified. For proteins identified with a single peptide, spectra 

were inspected manually and only those passing this quality control were included.  

2.10.4	
  Filter	
  Aided	
  Sample	
  Preparation	
  and	
  Tryptic	
  

Digestion	
  

Following TCA precipitation and albumin/IgG depletion, samples for experiments in a 

label-free quantitative ‘shotgun’ approach to compare bile from patients with hilar CCA 

and benign biliary disease were subjected to tryptic digestion using filter-aided sample 

preparation (FASP) prior to HPLC-MS/MS.  

In brief, 25 µl of bile sample (50 µg protein) was mixed with 225 µl of UA (8 M urea in 

0.1 M Tris/HCl pH 8.5) and added to a filter unit (Amicon Ultra-0.5, Ultracel-30 

membrane, 30 kDa) and centrifuged at 14,000 x g for 10 minutes. The flow through in 

the collection tube was discarded and the remaining sample washed twice with 250 µl 

of UA with centrifugation 10 minutes at 14,000 x g and the flow through again 
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discarded. 100 µl IAA solution (0.04 M iodoacetamide in UA) was added to the filter 

unit and mixed at 500 rpm in a thermo-mixer for 1 minute and incubated without mixing 

for 10 minutes prior to centrifugation. The flow through was again discarded and a 

further 250 µl of UA added and centrifuged at 14,000 x g for 10 minutes. The sample 

was subjected to a further four cycles of centrifugation at 14,000 x g for 10 minutes 

with 250 µl of ABC (0.05M NH4HCO3) added to the filter unit. 

The filter units were transferred to new collection tubes, 45 µl of ABC and trypsin 

(16000U/mg prepared in ice-cold resuspension buffer supplied with the enzyme then 

diluted with 25 mM ammonium bicarbonate, to 40 µg/ml, enzyme to protein ratio of 

1:100) was added to the samples, which were mixed at 600 rpm in a thermomixer for 1 

minute. The filter units were incubated in a wet chamber at 37 oC for 18 hours and 

peptides collected by centrifugation at 14,000 x g for 10 minutes. Finally 100 µl of H2O 

was added to the filter unit and centrifuged at 14,000 x g for 15 minutes and this flow 

through was combined with the initial elute. Concentration of peptides was determined 

using a NanoDrop 8000 Spectrophotometer (Thermo Scientific, Stafford House, Hemel 

Hempstead, UK) assuming that a 1 mg/ml protein solution produces an absorbance of 

1.0 at 280nm when the path length is 1cm.  

2.10.5	
  Samples	
  and	
  Mass	
  Spectrometry	
  for	
  Label-­‐Free	
  

Comparative	
  Proteomic	
  Analysis	
  

Protein loading of bile for experiments was determined by parallel Coomassie. All mass 

spectrometry in the experiments in the comparative label free approach of analysis of 

malignant vs. benign bile were performed by Dr Alexandre Zougman, and biostatistics 

by Dr David Cairns, both of University of Leeds. 
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Peptide mixtures (3 µg) were separated by online reversed-phase capillary liquid 

chromatography and analyzed by electrospray tandem mass spectrometry. Each 

sample was analysed in triplicate. Samples were injected onto a 20 cm reversed phase 

capillary emitter column made in-house (inner diameter 75 µm, packed with 3.5 µm 

Kromasil C18 media) using an UltiMate 3000 RSLCnano nanoflow system (Dionex). 

The LC setup was connected to a linear quadrupole ion trap-orbitrap (LTQ-Orbitrap) 

Velos mass spectrometer (Thermo Scientific) equipped with a nanoelectrospray ion 

source (Proxeon). The total acquisition time was 240 min, the major part of the gradient 

(from 10 to 220 min) being 4–25 % ACN in 0.1% formic acid at a flow rate of 400 

nl/min. Survey MS scans (scan range 300-1500 amu) were acquired in the orbitrap 

with the resolution set to 60000. Up to 20 most intense ions per scan were fragmented 

and analysed in the linear trap.  

2.10.6	
  Protein	
  Identification	
  and	
  Statistical	
  Analysis	
  

The acquired data were searched against an International Protein Index (IPI 3.68) 

human protein sequence database with MaxQuant 1.1.1.14 (187). The maximum protein 

and peptide false discovery rates were set to 0.01. The subsequent complete data 

output was analysed using a Wilcoxon Mann Whitney test to compare the two groups 

of 5 samples with a permutation strategy used to estimate the false discovery rate (188-

189).  

2.11	
  Western	
  Blotting	
  

 

After 1D SDS-PAGE, gels were rinsed in Towbin buffer (25 mM Tris, 192 mM glycine, 

10% v/v methanol, pH 8.3) for 15 minutes before protein transfer to Hybond- C Super 
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nitrocellulose membrane in Towbin buffer using the BioRad Mini Trans-Blot® 

Electrophoretic Transfer Cell (100 V, 1 hour). Blots were allowed to air dry for 1 - 24 

hours at room temperature before being blocked in TBS-T (TBS, 0.1% v/v Tween 20), 

10% w/v dried skimmed milk for 1 hour at room temperature. Blots were then incubated 

in primary antibody (Table 4) diluted in TBS-T 1 % w/v dried skimmed milk for 1 hour at 

room temperature, subjected to 4 x 5 minute washes in TBS-T before final incubation 

with anti-mouse or rabbit horseradish peroxidase (HRP) - conjugated Envision+ reagent 

diluted 1:100 in TBS-T, 5% dried skimmed milk for 1 hour at room temperature. 

Repeated washes (4 x 5 minutes) of blots in TBS-T were made prior to being 

developed using Supersignal West Dura Extended Substrate and exposed to Kodak 

Biomax MS film. Western blots were normalised using parallel Coomassie stained gels 

and probing with a Complement-3a antibody. Negative control blots were probed with 

matched irrelevant antibodies used at the same concentration. In order to determine 

antibody concentrations, a sample of processed bile was probed with serial dilutions of 

primary antibody and linearity was shown by probing a serial dilution of bile. Films were 

scanned using a Personal Densitometer SI and analysed with ImageQuant software.  
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Table 4. Details of antibodies used in Western Blotting. 

Antigen Species/clone Concentration Source 

MMP-9 
mouse 

clone 56-2A4 
1:1000 (1ug/ml) 

Abcam, Cambridge 

UK 

Lipocalin-2 
mouse 

clone 5G5 
1:80000 (12.5ng/ml) 

Abcam, Cambridge 

UK 

Complement 3a 
mouse 

clone H13 
1:1000(0.1ug/ml) Abcam, Cambridge 

UK 

PBEF 
rabbit 

(polyclonal) 
1:500 Bethyl Laboratories 

Annexin A3 
rabbit 

clone 693510 
1ug/ml 

R&D systems 

Abingdon UK 

Lygdi 
mouse 

clone 97A1015 
1:4000 

Abcam, Cambridge 

UK 
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3.0	
  The	
  Utility	
  of	
  Bile	
  in	
  Biomarker	
  Discovery	
  

3.1	
  Introduction	
  and	
  Aims	
  

3.1.1	
  Biliary	
  Proteins	
  

Bile has multiple functions including fat and mineral absorption and excretion of a wide 

range of metabolic breakdown products. Its chemical composition is complex and 

varies with nutritional status but comprises of in the main; bile salts (61%), fatty acids 

(12%), cholesterol (9%), phospholipids (3%), bilirubin (3%), inorganic salts and metals 

(5%) (190). Proteins account for only 7% of bile and its profile has only recently been 

investigated in detail (128). Protein concentration of bile obtained from the gallbladder 

ranges from 0.2 - 31 mg/ml compared to 0.34 – 13 mg/ml from the CBD (191-192).  

The majority of protein content in bile is derived from plasma or secretion by the 

hepatobiliary system (190). Under physiological conditions major fractions of serum 

proteins found in bile are thought to cross the tight junctions separating the sinusoids 

from the bile caniculi (193). However, since the liver is responsible for the production of 

the large proportion of serum proteins, it can be difficult to determine whether a bile 

protein is derived from the serum crossing the tight junctions or active secretions from 

hepatocytes or cholangiocytes. Bile, like serum, is dominated by a small number of 

highly abundant proteins including albumin, α2 macroglobulin, apolipoproteins, and 

ceruloplasmin (194-195). Examples of other common proteins found in high abundance in 

serum and bile are shown in Table 5.  Prior to the present study the largest catalogue 

of bile proteins to be derived from a proteomic approach in CCA was 87, in normal 

gallbladder bile was 222 and in pancreatic cancer was 127 (182), (185-186). 

 



58 

 

Table 5. Abundant proteins found in serum and bile. 

Protein 

Albumin 
Orosomucoid 
α1 – antitrypsin 
α2 – macroglobulin 
Apolipoprotein A-I, A-II, B, C-II, C-III 
Ceruloplasmin 
Haptoglobin 
Hemoglobin 
Immunoglobulin (IgG, IgM, IgA) 
Transferrin 
Mucin 
Alkaline phosphatase 
Alkaline phosphodiesterase I 
β- galactosidase 
β- glucoronidase 

Since bile is stored, concentrated and transported in the biliary tract after being 

secreted by hepatocytes and cholangiocytes, it represents a “proximal” fluid to bile duct 

cancer. It potentially contains higher levels of marker proteins compared to those in 

serum, which is predominated by abundant proteins, limiting the ability to detect 

proteins of interest present in lower abundance. To investigate the potential utility of 

bile for biomarker discovery, a preliminary analysis was performed to detect if 

differences exist between bile protein profiles and serum, which confer an advantage to 

bile analysis and justify its more invasive collection methods.  

 
Several commercially available products exist that can deplete abundant proteins to 

improve the profiling of proteins of lower abundance of potential biological relevance to 

disease.  Examples include Cibacron Blue, Protein A or G, Multiple Affinity Removal 

System (MARS), Human-14 (Agilent Technologies) and ProteoPrep 20 (Sigma). Here 

we utilised an antibody affinity resin-based Albumin/IgG Removal Kit (GE Healthcare) 

commonly applied to serum, and optimised its use with bile. The impact on the 2D 

PAGE protein profiles was tested in bile samples from 4 patients with CCA to provide 

evidence for its application in subsequent bile biomarker discovery investigations. 
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3.1.2	
  Aims	
  

In summary the aims of this part of the work were: 

(a) To compare the 2D DIGE profiles of bile and serum from 4 patients with CCA  

(b) To optimise an albumin/IgG depletion strategy for use with bile  

(c) To analyse the effect of albumin/IgG depletion on the protein profile bile from 4 

patients with CCA 
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3.2	
  Results	
  	
  

3.2.1	
  2D	
  DIGE	
  Profiles	
  in	
  Bile	
  and	
  Serum	
  

Samples from 4 patients with CCA (8628, 8662, 9037, 9369) were analysed by 2D 

DIGE to compare the protein profiles of bile and serum. Serum was processed both in 

its ‘neat’ form and after TCA precipitation to simulate the sample processing of bile. 

The experimental workflow is illustrated in Figure 4. In brief, TCA precipitated protein 

was resuspended in DIGE lysis buffer and 50 µg of protein from each patient was 

labelled with Cy5. The incorporation of a pooled internal standard labelled with Cy3 

that was run on every gel allowed for more accurate gel matching and quantitation. 

Samples were separated using pH 4-7 IPG strips for IEF and 5-18% gels for SDS 

PAGE.  

Representative gels of bile and serum following TCA precipitation are shown in Figure 

5. In this figure, major abundant serum proteins including albumin, serotransferrin, and 

haptoglobin, which are clearly present in bile gels, are indicated. However there are 

very significant differences in the protein profiles of bile and serum, which are also 

highlighted. The number of spots detected following visual confirmation and manual 

editing (deleted/merged/split/redrawn) in each bile and serum analytical gel ranged 

between 287 - 392 and 308 – 452 respectively. 
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Figure 4. Summary of 2D DIGE experiment. 

50 µg of pooled internal standard and individual sample were labeled with Cy 3 and Cy 5 

respectively and separated on pH 4-7 IPG strips and 8-15% gradient gels. Number of gels = 12. 
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Figure 5. Comparison of bile vs. TCA serum in CCA. 

Typical gel profiles following separation of 50µg of TCA precipitated serum (A) and bile (B) 

using 24 cm, pH 4-7 IPG strips and 8-15% gels for SDS PAGE. Major abundant proteins 

present in both gels are shown in red and areas of difference in bile in green. 
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An ‘unedited’ analysis of the gel images using Progenesis SameSpots™ software 

detected 1742 features of which 713 were found to have a statistically significant 

difference in abundance between bile and serum (p ≤ 0.05, ANOVA). Principal 

component analysis (PCA) was used to provide a visual representation of relationships 

within the data i.e. between samples or disease groups. The separation shown 

between bile and serum gels are derived from an unsupervised multivariate analysis in 

which the PCA accounts for 75.74% of the variation in the dataset (PC 1 = 68.56%; PC 

2 = 7.18%, Figure 6). There was little separation across PC 2 indicating similarity of 

spot representation within the bile and serum gel sets.  TCA precipitation of serum 

induced little difference compared to the untreated serum. 

 

 

 

Figure 6. Principal Component Analysis (PCA) of Gel Profiles using Progenesis Same 
Spots Software. 

An ‘unedited’ PCA of all 713 statistically significant spots (p ≤ 0.05) is shown. Clear separation 

of the gels was seen with serum gels clustering together away from the bile gels.  Green 

indicates spots of decreased abundance in bile and red indicates spots of increased abundance 

in bile. 

Bile Gels Serum Gels TCA Serum Gels 
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In Figures 7 and 8, representative examples of spots of increased and decreased 

abundance in bile and serum are illustrated.  

 

Figure 7. Protein spot 1058 and its relative abundance in bile and serum. 

A. The position of spot of interest (1058) on the reference gel profile is indicated. B. Relative level of spot 

1058 in the gels of serum and bile displaying higher abundance in bile gels compared to serum in the 

same patient with CCA.  
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Figure 8.  Protein spot 1386 and its relative abundance in bile and serum. 

A. The position of spot of interest (1386) on the reference gel profile is indicated. B. Relative level of spot 

1386 in the gels of serum and bile displaying higher abundance in serum gels compared to bile in the 

same patient with CCA. 
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3.2.2	
  Albumin	
  and	
  Immunoglobulin	
  Depletion	
  of	
  Bile	
  and	
  

2D	
  DIGE	
  Profile	
  to	
  Facilitate	
  Visualisation	
  of	
  Lower	
  Abundance	
  

Proteins	
  

The bile and serum proteomes contain proteins with a wide dynamic range and efforts 

to identify potential markers are facilitated by removal of major abundant proteins. 

Removal of albumin and immunoglobulin is one strategy used in serum studies in an 

effort to allow deeper proteome coverage but its application in bile is yet to be reported. 

The Albumin/IgG Removal Kit was optimised for application to bile. Given the 

difference in protein concentration between bile and serum, an assessment of the 

maximum concentrations of bile that could be used with the kit and the effectiveness in 

removing albumin and IgG was investigated. Increasing amounts of bile (9089 CCA - 

2.7µg/µL) were subjected to depletion according to manufacture instructions utilising 

750 µl of slurry (Figure 9). The maximum volume that can be applied to the depletion 

column including slurry is 870 µl. Successful depletion was achieved in a bile sample 

ranging from 60 - 120 µl (162 - 324 µg). Relative densitometry after depletion 

demonstrated a range of protein recovery of 48 -51%. 
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Figure 9. 1D PAGE of Bile Subjected to Albumin/IgG depletion.                                      

Increasing amounts of bile (60, 80,100, 120 µl) were subjected to albumin/IgG depletion and compared to 

10 µL of a non-depleted sample (Ref 1 - 9089 CCA). Samples were separated by SDS PAGE and 

visualised by Coomassie staining.  The albumin band is observed to be depleted. 

 

Given the effectiveness of depletion of bile samples containing up to 324 µg of protein 

in 750 µl of slurry, further experiments were undertaken to determine the maximum 

amount of protein that could be applied to a depletion column containing 500 µl of 

slurry (Figure 10). 1D PAGE illustrates successful depletion of albumin up to 540 µg 

(200 µl) of bile protein after which albumin reappeared. All subsequent experiments in 

the study utilised 500 µl of slurry with no more than 540 µg of bile protein. Effective 

depletion of heavy and light chain immunoglobulins was shown using ‘mini’ 2D PAGE 

gels (Figure 11). 
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Figure 10. 1D PAGE of increasing amounts of bile subjected to albumin/IgG depletion.                                             

1D PAGE of (REF1-9089 CCA) increasing amounts of bile subjected to albumin/IgG depletion using 500µl 

slurry. 10 µg of original bile sample and equivalent volume of depleted bile were separated by SDS PAGE 

and visualised by Coomassie staining.  The predominant albumin band begins to appear with protein load 

> 540 µg. 
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Figure 11. 2D PAGE of bile with and without albumin/IgG depletion. 

5 µg of original sample (9089 – 2.7µg/µl) and equivalent volume of depleted bile were separated 

on to 7cm pH 3-10 IPG strips , separated by SDS PAGE and visualised by ProteoSilver™ Silver 

Stain. Albumin, heavy and light chain immunoglobulin shown in (A) are depleted in (B).  
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3.2.3	
  2D	
  DIGE	
  Profiles	
  of	
  Bile	
  with	
  and	
  without	
  

Albumin/IgG	
  Depletion	
  

540 µg of bile samples from 4 patients (9369, 8397, 10312, 10319) were subjected to 

albumin/IgG depletion using 500 µl of slurry and 2D DIGE profiles compared to 

samples without depletion (Figure 12 A-D). Average protein recovery after depletion 

was 47.5% (45.2-49.2), consistent with optimisation results. On visual inspection, 

depletion of albumin was apparent with no gross overall change in appearance of the 

rest of the protein profile. 

 

Progenesis SameSpots™ software detected 1434 features of which only 68 spots were 

found to change by greater than two-fold (p ≤ 0.05, ANOVA) between gels with and 

without albumin/IgG depletion in an unsupervised multivariate analysis. In PCA of the 

entire profile little separation existed between samples of individual patients subjected 

to albumin/IgG depletion (Figure 13). However there was clear separation between 

different patients indicating that patient variability exerted a greater effect than 

depletion.  
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Figure 12 A - D. 2D gel profiles of bile with and without albumin/IgG depletion.  

50 µg of bile protein (A) & (C) and albumin/IgG depleted bile (B) & (D) were labelled with Cy 3 

and Cy 5 respectively and separated using pH4-7 IPG strips. Removal of albumin is clearly 

seen without significant change in the overall gel. 
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Figure 13.  Principal Component Analysis (PCA) of Gel Profiles with and without 
Albumin/IgG depletion using Progenesis Same Spots Software. 

A PCA of 1434 detected features in the dataset of 4 patients with and without albumin/IgG depletion. The 

PCA accounts for 63.3% of the variation in the dataset (PC 1=32.2%; PC 2=31%). Individual patients are 

shown circled in red and highlight minimal change with sample treatment. Clear separation was observed 

between patients. 

 

A preliminary correlation analysis between the normalised volumes of detected 

features in each patient before and after depletion provided further evidence that little 

change was conferred on the overall profiles. Results using the Spearman Rank 

correlation test for all patients are shown in Table 6 and a representative graph in 

Figure 14.   

    Patient       N R2 P value 

1              1434 0.972 4.51e-264 

2              1434 0.933 5.51e-274 

3              1434 0.961 3.45e-290 

4              1434 0.915 4.194e-264 

 
Table 6 Spearman Rank Correlation Analysis.                                                           
Correlation analysis of normalised volumes of each feature in gels with and without albumin/IgG depletion. 

N= no of features, R= Spearman Rank correlation coefficient. 
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Figure 14.  Correlation plot of normalized spot volumes. 

A graph of normalised volumes for each feature detected in samples with and without albumin/IgG 

depleted bile. 
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3.3	
  Discussion	
  

In this chapter experiments were undertaken to provide information regarding: 

(a) The difference in 2D DIGE profiles of patient-matched bile and serum  

      (b) The application of an albumin/IgG depletion strategy to bile  

      (c) The effect of this depletion on the overall protein profile 

with a view to optimising a methodology for the indepth analysis of the CCA bile 

proteome  and a comparative analysis of bile in malignant and benign disease. 

3.3.1	
  Performance	
  of	
  2D	
  DIGE	
  in	
  Bile	
  and	
  Serum	
  

In preliminary work carried out prior to this study, a protocol for analysis of bile using 

proteomic platforms including 2D DIGE highlighted the requirement for removal of 

contaminants by techniques such as TCA precipitation to prevent interference with 

subsequent electrophoresis, facilitating better gel resolution and reproducibility. Indeed 

all bile/serum gel profiles in this study display good resolution and quality compared to 

recent published studies (196-198).  

 

The results confirmed a difference in the profiles of bile and serum with differential 

expression of 713 potential spots highlighted in an unedited automated analysis and 

clear separation of groups in PCA. TCA treatment of serum induced little difference in 

profile compared to non-treated serum and discounts potential bias in comparing bile 

and serum in our study. While the proteins of increased abundance in bile were not 

identified by way of gel excision and MS formally in this series of experiments, the 

differentially displayed proteomes between bile and serum indicate potential utility of 

bile over serum to identify disease-associated biomarkers. To date no other 

investigations using DIGE labelling has been applied to proteomic investigation of bile 
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in CCA. Chen et al used 2D PAGE to compare proteins profiles from a patient with 

CCA and benign biliary disease and separated in 2D maps, with means of 182 and 176 

spots on pH 4-7 IPG strips and detected 16 spots unique to the malignant group but 

did not incorporate Cy dye labelling (184). While the identity of these proteins was not 

reported it does provide proof of concept in the ability to identify potential biomarker 

proteins. Indeed proteins of interest detected in bile could be taken forward in larger 

scale validation studies in serum requiring less invasive collection methods and 

facilitate more applicable clinical diagnostic tests. 

3.3.2	
  An	
  Analytical	
  Challenge:	
  Detecting	
  Low	
  Abundance	
  

Proteins	
  

Albumin and immunoglobulins comprise around 80% of the total plasma proteome and 

the presence of a few high abundance proteins can effectively mask the detection of 

more relevant lower abundance proteins which presents a challenge in proteomic 

based approaches in biomarker discovery (199). The depletion of highly abundant 

proteins is one effective method used to reduce the dynamic range of the proteome 

and shift the focus towards proteins of lower abundance with potential biomarker 

relevance. Attempts have ranged from the removal of albumin to more than 20 of the 

most abundant proteins accounting for more than 85-90% of the serum proteome. 

Cibacron Blue is a chlorotriazine dye with affinity for albumin but has been also shown 

to co-deplete other proteins (200). Similarly Protein A and G which have affinity for 

immunoglobulin do not bind all of the subgroups. Comparative studies indicate that 

using antibody affinity ligands for HSA and IgG result in more specific depletion 

compared to the traditional Cibacron blue/Protein A or G depletion methods (201-202). 

More developments in mono/polyclonal antibodies have improved the sensitivity of 
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depletion compared to these methods and in this study we elected to use an antibody 

affinity ligand based Albumin/IgG depletion kit (203). 

Prior to this no protocol for application in bile had been reported and the 

manufacturer’s protocol was established only for serum studies. Our results showed an 

effective and consistent depletion of albumin/IgG in bile and established a maximum 

value of 540 µg of bile protein that could be applied to a depletion column. The above 

process was repeated in further samples to ensure reproducibility. Relative 

densitometry after depletion demonstrated a range of protein recovery of between 48-

51% using 1D PAGE.  

Initially depletion was assessed by 1D PAGE where albumin is clearly visible. To check 

the effectiveness of IgG depletion, 2D PAGE was employed which showed shown 

effective depletion of both heavy and light IgG chains. No significant change was 

observed in a preliminary analysis of the rest of the profile. These initial experiments 

confirmed the ability of Albumin/IgG removal kit to be effectively applied to bile, 

provided limits regarding the amount of bile protein that could be applied and showed 

the method does not significantly increase the time required for sample preparation.  

However despite the efficiency of the immunoaffinity-based depletion of albumin and 

IgG studies suggest that removal of more abundant proteins (6, 14, 20 and 60) is 

required to enhance the detection of very low abundance proteins (204-205). An 

alternative and complimentary method to depletion strategies is to enrich low 

abundance proteins by the use of solid phase hexapeptides ligand libraries (206). Indeed 

such an approach by Guerrier et al in bile identified 81 proteins not reported in previous 

proteomic studies (185) and in plasma of individuals with liver diseases allowed for the 
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identification of gelsolin as possible candidate biomarker for hepatitis B-associated liver 

cirrhosis (207).  

3.3.3	
  	
  2D	
  DIGE	
  Profiles	
  of	
  Bile	
  with	
  and	
  without	
  

Albumin/IgG	
  Depletion	
  

Visual analysis of each of the large-format 2D DIGE bile gels with and without 

albumin/IgG depletion showed consistent depletion of albumin without significant 

change in the overall profile between the four samples.  

An ‘unedited’ analysis using Progenesis SameSpots™ software detected 1434 

features of which only 68 spots were nominally found to change by greater than two-

fold between the gels. PCA of the entire profile showed little separation between 

samples of individual patients resulting from albumin/depletion but did highlight 

separation between different patients indicating that patient (biological) variability 

exerted a greater effect than depletion. Furthermore a correlation analysis between the 

normalised volumes between detected features in each patient before and after 

depletion provided further evidence that little change is conferred to the overall profiles 

in gels by the treatment (R2=0.9).  

Limitations of the 2D approach include investigation of only a subset of proteins in the 

proteome. Furthermore depletion strategies applied to biological samples can lead to 

potential for other non-specific protein loss – the so-called ‘sponge effect’. Here small 

proteins and peptides can bind to larger carrier proteins that have been specifically 

depleted and result in losses of proteins of interest such as cytokines (208-209). The 

magnitude of this non-targeted loss also does not take in to account potential losses 
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due to non-specific binding to depletion matrices and few qualitative studies exist in 

serum and bile.  

Our evidence supports the use of albumin/IgG depletion in bile prior to proteomic 

investigation, allowing for removal of a significant proportion of the proteome 

comprised by highly abundant proteins without significantly altering the protein gel 

profiles. The question now is whether such an approach results in an increased 

detection of proteins not yet reported in the bile proteome and is in part the subject of 

the next chapter.  

3.3.5	
  Conclusion	
  

In conclusion, we have shown that despite the presence of highly abundant plasma 

proteins in bile, there are significant differences between the bile and serum proteomes 

supporting the use of bile as a proximal fluid in biomarker discovery. The dynamic 

protein range remains an issue and we have optimised a cost effective, time efficient 

and reproducible method for the depletion of two of the most abundant proteins in bile 

(albumin and IgG) without significant changes in the overall profile which has the 

potential to allow for the investigation of lower abundance of interest in biomarker 

discovery. 
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4.0	
  Characterisation	
  of	
  the	
  Biliary	
  Proteome	
  in	
  Hilar	
  

Cholangiocarcinoma	
  

4.1.	
  Introduction	
  

Protein biomarker discovery in biliary disease is facilitated by the availability of 

comprehensive descriptions of the malignant bile proteome. A small number of studies 

using different strategies, including 2D gel based analysis and LC-MS/MS have started 

to attempt such characterisation, either in the form of gel mastermaps or catalogues of 

proteins, generating a body of data that may direct subsequent comparative studies 

using bile (128), (183). However prior to this study only a limited number of biliary proteins 

had been identified. 

In this chapter the complementary approaches of 2D PAGE and GeLC MS/MS were 

utilised to provide a bile protein mastermap and a catalogue of proteins in malignant 

bile from four patients with hilar CCA. Demographics and liver function tests for each of 

the patients are summarised in Table 7. Bile obtained from four patients undergoing 

diagnostic or therapeutic ERCP was subjected to albumin/IgG depletion and TCA 

precipitation as previously described.  

Patient Age/Sex Bilirubin 
(µmol/l) 

ALP  
(µmol/l) 

ALT 
(µmol/l) 

 Liver Parencymal Status 

1   9416 72 F 121 878 71 Mildly fatty liver, evidence of 

steatohepatitis 

2  10938 64 F 76 513 89 Normal 

3   8445 73 M 121 776 67 Moderate degree of steatosis 

4   9089 72 F 88 591 59 Normal 
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Table 7. Patient demographics and liver function tests for each patient in bile 
protein catalogue. 

4.2	
  2D	
  PAGE	
  Analytical	
  Gels	
  of	
  Bile	
  in	
  Hilar	
  CCA	
  	
  

Bile samples from 4 patients with hilar CCA were subjected to albumin/IgG depletion, 

labelled with Cy5 and protein separated by 2D PAGE as previously described.  

Examples of one analytical gel per patient are shown in Figure 15.   

 

Figure 15. Analytical 2D PAGE gels in hilar CCA. 
50µg of TCA precipitated, albumin/IgG depleted bile was labelled with Cy5 and separated by 2D PAGE 

with 24cm pH 4-7 IPG strips for IEF and 8-15% gradient gels for each patient 1-4. 

 

 

1 2 

3 4 



81 

 

On visual inspection there was notable similarity between the bile profiles in the group 

of patients with hilar CCA selected with similar age, biochemical parameters and 

histological grade. There were 748 spots common to all 4 patients. Using the 

Spearman Rank correlation test for pairwise comparison between patients, R2 values 

of between 0.59 and 0.80 were obtained (Table 8). 

Patient N Pairwise 
comparison 

between patients 

R2 P value 

1 1336 1-2 0.80 2.31e-189 

  1-3 0.61 1.08e-111 

  1-4 0.69 1.34e-148 

2 1395 2-3 0.59 1.44e-97 

  2-4 0.64 1.67e-158 

3 1205 3-4 0.68 2.01e-195 

4 1317 - - - 

 

Table 8 Spearman Rank Correlation Analysis   

Correlation analysis of normalised volumes of each feature in gels in pairwise comparisons of gel profiles. 

N= no of features, R= Spearman Rank correlation coefficient.  
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4.2.1	
  Bile	
  Mastermap	
  in	
  Hilar	
  CCA	
  

To create a mastermap of bile from patients with hilar CCA a parallel preparative gels 

were generated using 500 µg of pooled bile protein from four patients of proteins 

visualised with silver staining and digital images analysed with Progenesis Same 

Spots. Spots of interest were imported to the Ettan Spot Picker V1.2. and excised 

directly into a 96 well plate. Tryptic digestion and MS analysis was performed as 

described in section 2.10.2 & 2.11.1. 

4.3	
  Results	
  

There were 632 distinct spots detected by SameSpots software overall. Of these 323 

spots were suitable for selection by the Ettan Spot Picker V1.2 for gel excision, tryptic 

digestion and MS/MS analysis.  Overall 254 spots (representing 80 unique proteins) 

gave valid identification based on two or more significant peptides (Table 9 and Figure 

16). Multiple proteins were identified in the same spot in 10 cases. Of the 80 proteins 

listed, 72 were annotated for molecular and biological processes using the Panther 

Classification system (www.pantherdb.org). The most common molecular processes 

were as follows: 48% protein binding; 19% for enzyme regulatory activity; 17% catalytic 

activity and 14% structural activity. The biological processes observed were as follows: 

metabolic 19%, immune system 14%, cellular processes 14%; transport 13%, 

response to stimulus 10% and cell communication 8.6%. 
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Table 9.  Proteins identified by MS.  
Spot number, gene name, protein name, protein coverage and number of peptides are given. 

Where the same protein was found in other spots, these are included in smaller font. The spot 

numbers relate to the gel master map in Figure 16. N= number of spots. 

N Spot  
Gene 
Name Protein Name 

Protein 
Coverage 
(%) 

No of     
Peptides 

1 1158 Q4VJB6 14-3-3 protein  9.4 2 
2 2155 Q13707 ACTA2 protein 24.5 5 

3 2156 ACTA 
Actin, aortic smooth 
muscle 18.6 6 

 932   18.6 4 
 2352   15.9 4 

4 2155 ACTB Actin, cytoplasmic 1 37.1 15 
 932   25.3 5 
 972   15.5 2 
 1476   10.1 2 
 877   12.8 3 
 2156   25.3 9 
 2351   22.7 5 
 2352   22.7 6 

5 2446 ACBP Acyl-CoA-binding protein 32.2 2 

6 2344 APMAP 

Adipocyte plasma 
membrane-associated 
protein 7.2 2 

7 2321 AACT Alpha-1-antichymotrypsin 31.4 10 
 770   22.9 8 
 775   14.7 4 
 786   18.9 8 
 789   7.1 2 
 796   26.5 8 
 840   20.6 7 
 1752   27.9 8 
 2074   16.5 6 
 2075   21.5 7 
 766   14.4 3 
 2323   28.8 8 

8 2293 A1AT Alpha-1-antitrypsin 43.8 15 
 523   18.2 5 
 738   18.4 5 
 821   20.3 5 
 868   24.2 3 
 874   26.6 7 
 877   29.7 9 
 882   22.2 6 

 888   26.8 5 
 891   31.1 8 

 1476   16.5 4 
 2094   20.3 5 

 2188   6.2 3 
 2190   20.1 3 

 2252   32.3 15 

 2293   43.8 15 

 2302   20.6 4 
 2319   41.6 12 
 2352   24.4 8 
 2364   30.4 10 
 2387   18.4 4 
 2394   16.5 4 

9 705 A1BG Alpha-1B-glycoprotein 34.7 13 
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 710   17.2 5 
 2307   30.9 11 
 2314   34.7 11 

10 840 FETUA Alpha-2-HS-glycoprotein 13.9 5 
 828   8.4 3 
 861   8.4 3 

11 620 A2MG Alpha-2-macroglobulin 12.1 9 

 618   4.8 6 
 574   5.6 5 
 627   7.3 4 
 631   3.9 3 
 634   2.3 3 
 2256   2.9 4 
 2430   10.2 5 

12 1411 SYUA Alpha-synuclein 35 3 
13 2445 ANXA1 Annexin A1 6.9 2 
14 1086 B2R9W6 Annexin A3 39 12 
15 1089 ANXA4 Annexin A4 23.8 6 
16 2183 ANT3 Antithrombin-III 22.8 6 

 2293   15.5 5 
17 1252 APOA1 Apolipoprotein A-I 50.9 14 

 1248   40.8 8 
 1294   40.8 6 
 1410   29.2 4 
 1553   17.2 3 
 1566   13.9 3 
 1570   14.2 2 
 2137   23.6 6 

 2472   28.8 6 
18 1294 APOA4 Apolipoprotein A-IV 5.6 2 

 2351   10.1 4 

19 1570 B0YIW2 
Apolipoprotein C-III 
variant 1 23.1 2 

20 1074 APOE Apolipoprotein E 7.6 2 
21 929 ACTBM Beta-actin-like protein 3 7.7 3 
22 1222 CRP C-reactive protein 13.8 3 
23 1752 CALR Calreticulin 6.2 2 
24 2314 CASPE Caspase-14 9.5 2 
25 2436 B4DPP6 Serum albumin 32.2 17 

 748   12.5 5 
 1323   9.7 4 
 761   19.6 10 
 2437   25.9 8 
 753   18.4 8 
 754   17.1 9 
 756   22.3 10 

26 2183 B4DPP2 Vitamin D-binding protein 15.6 5 
 2188   12.5 3 
 2273   15.6 4 

27 1476 B2R4M6 S100A9 44.7 2 
 1498   44.7 3 

 2038   51.8 5 

28 948 CO3 Complement C3 10.9 16 
 941   3.1 4 
 992   5.1 7 
 2003   5.9 6 

29 729 CO9 Complement C9 14.7 7 
 751   10.6 4 

30 579 B0QZQ6 Complement factor B 17.9 7 
 589   17.7 11 
 595   13.9 7 
 596   16.2 9 
 2429   13.1 4 

31 1751 CYTA Cystatin-A 24.5 2 
32 2314 DESP Desmoplakin 2.4 5 

33 1859 LACRT 
Extracellular glycoprotein 
lacritin 27.5 2 
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34 975 FIBB Fibrinogen beta chain 50.7 29 

 849   16.7 5 
 887   10.2 3 
 968   28.5 9 
 971   24.6 8 
 972   41.5 19 
 841   8.8 29 
 1669   49.9 27 

 1670   41.3 14 
 2335   36.5 10 

35 1999 FIBG Fibrinogen gamma chain 50.6 18 
 574   32.5 11 
 618   10.4 5 
 628   21.6 7 
 658   21 9 
 665   30.5 13 
 667   9.3 3 
 877   37.7 17 
 919   14.1 5 
 1689   31.8 12 
 1723   19.9 6 
 1743   17.4 7 
 1746   21 9 
 1774   23 7 
 1775   11.5 5 
 1962   35.8 16 
 572   32.5 11 
 2001   35.1 14 
 2254   33.6 14 
 2430   21 7 

36 1907 GELS Gelsolin 4.2 3 

37 1146 GSTO1 
Glutathione S-
transferaseomega 1 9.5 2 

38 972 HPT Haptoglobin 38.2 13 

 923   24.1 8 
 929   29.6 11 
 932   20.2 5 
 958   29.6 12 
 965   29.6 9 
 968   27.3 9 
 971   24.9 8 
 911   20 5 
 980   16 5 
 986   27.1 7 
 987   33.5 10 
 993   26.8 6 

 998   28.8 9 
 1010   21.2 5 
 1323   15.8 5 
 1344   11.8 5 
 1351   22.9 13 
 1357   11.3 5 

 1381   13.3 7 
 1388   15.5 4 
 1498   14.5 6 

 1670   29.6 10 
 2275   26.6 10 
 2302   29.8 13 
 2339   26.8 4 
 2387   31.3 9 

39 1419 HPTR 
Haptoglobin-related 
protein 6.6 5 

 2121   6.3 2 

40 745 HSP7C 
Heat shock cognate 71 
kDa  21.5 15 

41 1570 Q9BX83 
Hemoglobin alpha 1 
globin chain 24  
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42 1388 HBB Hemoglobin subunit beta 55.1 4 
 1351   40.8 3 
 1417   49 5 
 1482   40.8 4 
 1489   49 5 
 1579   32.7 3 

43 2360 HEMO Hemopexin 33.1 9 
 736   13.9 4 
 739   9.7 3 
 911   20 5 
 2434   28.1 8 
 2436   15.2 5 

44 971 Q6PEJ8 HP protein 40.8 7 
45 738 IGHA1 Ig alpha-1 chain C region 19.8 5 

 790   17.8 5 
 791   13.6 4 
 793   13 4 
 800   17.8 5 
 802   17.8 5 
 803   13 3 
 809   13 4 
 877   10.8 4 

46 2162 IGKC Ig kappa chain C region 34.9 2 
47 685 IGHM Ig mu chain C region 13.7 5 

 689   13.7 4 
 2403   10.4 4 

48 1262 Q6P5S8 IGK@ protein 23.7 2 

49 2107 Q0KKI6 
Immunoblobulin light 
chain 31.1 4 

50 1672 IGJ Immunoglobulin J chain 48.2 3 

51 904 A2GL 
Leucine-rich alpha-2-
glycoprotein 4.9 2 

52 1674 ILEU 
Leukocyte elastase 
inhibitor 37.5 10 

 940   26.6 7 
53 1859 LCN1 Lipocalin-1 21 3 

 965   12.5 2 
 745   12.5 2 

54 2240 REG1A Lithostathine-1-alpha 12.7 2 

55 1859 SG2A1 Mammaglobin-B 21.1 2 

56 1624 Q5J7W2 
Migration-inducing gene 9 
protein 26.1 2 

57 1488 MYL6 Myosin light polypeptide 6 43.7 5 

58 1411 ML12A 
Myosin regulatory light 
chain 12A 29.8 6 

59 1344 NDKA 
Nucleoside diphosphate 
kinase A 52.6 8 

60 1410 PRDX2 Peroxiredoxin-2 44.4 7 
 1294   19.2 3 

61 1219 PRDX6 Peroxiredoxin-6 30.8 5 
62 779 PLSL Plastin-2 15.5 7 

 877   3 2 

63 1388 PACAP 
Proapoptotic caspase 
adapter protein 13.2 2 

64 2447 B2R8F6 
Proteasome subunit alpha 
type 25.7 6 

65 1561 S10AB Protein S100-A11 27.6 3 
66 1602 S10A6 Protein S100-A6 16.7 2 
67 1559 S10A8 Protein S100-A8 38.7 3 

68 905 GDIB 
Rab GDP dissociation 
inhibitor β 15.7 4 

69 1388 RET4 Retinol-binding protein 4 25.9 5 
 1294   15.4 2 

70 1417 GDIR2 
Rho GDP-dissociation 
inhibitor 2 23.4 4 

71 2403 TRFE Serotransferrin 41.5 25 
 691   29.4 16 
 2151   36.4 18 
 2283   22.8 13 
 2331   36.5 21 
 685   20.5 8 

72 2434 ALBU Serum albumin 25.5 12 
73 1100 SAMP Serum amyloid P- comp 23.8 5 
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74 1474 TTHY Transthyretin 63.3 5 
 1476   48.3 4 

75 1498 TBCA 
Tubulin-specific 
chaperone A 18.5 3 

76 2448 A8K1N0 
Tyrosine 3-
monooxygenase 22.9 4 

77 2314 UBIQ Ubiquitin 44.7 2 
78 1411 B0YJC4 Vimentin variant 3 4.9 2 
79 2187 Q6GTG1 Vitamin D binding protein 39.5 28 

 1498   15.2 12 
 2319   16.9 6 

80 941 ZA2G Zinc-alpha-2-glycoprotein 29.5 5 
 2003   13.2 2 
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4.3.1	
  GeLC-­‐MS-­‐MS	
  ‘Shotgun’	
  Proteomic	
  approach	
  to	
  bile	
  

in	
  Hilar	
  CCA	
  

4.3.1.1	
  Sample	
  Processing	
  and	
  Protein	
  Identification	
  

 

In parallel ,protein (100ug) depleted of albumin/IgG and subjected to TCA precipitation 

from each bile sample was separated on 10% SDS PAGE using the Hoefer SE600X 

Chroma Deluxe Electrophoresis Unit and stained with InstantBlue Coomassie stain. 

Each lane was divided into 53 gel slices (Figure 17) and subjected to tryptic digestion 

and LC-MS/MS. 

 

 

 

Figure 17. GeLC-MS/MS analysis of bile. 

4 bile samples from patients with hilar CCA were processed by TCA precipitation and 

Albumin/IgG depletion. 100 µg of protein was loaded in each lane, analysed on a 10% SDS 

PAGE gel and visualized with InstantBlue Coomassie stain. 
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For each patient, the intermediate files produces by Mascot were combined, peptides 

with probability scores p>0.05 excluded and any redundancy removed. Proteins 

required at least one unique significant peptide to be considered as identified. The 

false discovery rate was determined as 1.8% by searching against a decoy database. 

For proteins identified by a single peptide, spectra were inspected manually to ensure 

quality control before inclusion. Full details of the proteins identified and including mass 

spectra for single peptide based identifications are provided as Supplementary Data 

Tables 1 & 2 respectively.  

4.3.1.2	
  Results	
  

Overall 3576, 2126, 2162 and 2298 peptides corresponding to 741, 509, 378, and 389 

proteins were identified in the four bile samples from patients with hilar CCA of which 

491, 350, 268, and 295 proteins respectively were identified by at least 2 significant 

peptides. Following the removal of keratins and immunoglobulins, redundancy was 

further reduced by taking the conservative approach of collapsing the data set down to 

the gene level (that is, removing the potential complexity arising from the presence of 

different or multiple forms of a particular protein in a particular bile sample). For protein 

entries with no gene, peptides were searched against MSDB (proteomics.leeds.ac.uk) 

to find this missing data; a small number of entries for which this was not possible were 

not considered in downstream analysis. Following this data reduction, products from a 

total of 813 unique genes were identified in the four patients, with 185 being present in 

4, 83 in 3 and 152 in 2 out of the 4 samples and 393 being unique to a single patient. 

The degree of overlap is shown in Figure 18 and identities of all proteins are provided 

in Supplementary Table 3. 
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Figure 18: Venn diagram illustrating the number of proteins in each patient and the degree of 

overlap between individual patients. A total number of 813 unique proteins were identified. 

Of the 185 proteins common to all patients, 21 specific proteins have been previously 

reported in the literature as being differentially expressed in CCA, which together with 

sub-cellular location and function, are highlighted in Table 10. The proteins identified in 

all 4 patients are listed in Supplementary Table 4.  
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Table 10 – Proteins associated with CCA and found in all four patients 

Gene Name Protein Location Functions Up/ down in CCA 

 
ANXA1 

 
Annexin A1 

 
extracellular 

 
Receptor/ligand binding 

 
up 

ANXA2 Annexin A2 extracellular Receptor/ligand binding up 

ANXA 4 Annexin A4 extracellular Receptor/ligand binding up 

DMBT Deleted in malignant 
brain tumours 1 

plasma 
membrane 

scavenger receptor activity up 

HSP90AA1 Heat shock protein 
HSP 90-alpha 

cytoplasm nucleotide/protein binding up 

MUC1 Mucin-1 plasma 
membrane 

pathogen binding, cell 
signalling 

up 

LIPOCALIN-2 Neutrophil 
gelatinase-
associated lipocalin 

extracellular ligand binding up 

PGK1 Phosphoglycerate 
kinase 1 

cytoplasm nucleotide binding, 
phosphorylation 

up 

PKM2 Pyruvate kinase  M2 nucleus nucleotide binding, apoptosis up 

VIM vimentin cytoplasm cytoskeleton, apoptosis 
up 

ENO1 enolase cytoplasm glycolysis, growth, hypoxia 
tolerance 

up 

MMP9 MMP 9 extracellular proteolysis extracellular 
matrix, leucocyte migration 

up 

GSTP1 Glutathione S-
transferase P 

cytoplasm transferase up 

APOAII Apolipoprotein A-II secreted metabolism up 

A1BG alpha-1-B 
glycoprotein 

extracellular unknown function down 

AMBP alpha-1-
microglobulin 

extracellular transporter activity; calcium 
channel inhibitor activity 

down 

C1S complement 
component 1 S 

extracellular serine-type endopeptidase 
activity 

down 

FGA Fibrinogen alpha 
chain 

extracellular Receptor/protein binding down 

GC group-specific 
component 
(vitamin D binding 
protein) 

extracellular Actin/vit D binding down 

HPX HPX Hemopexin extracellular heme transporter activity down 

KNG1 Kininogen-1 
 

extracellular peptidase inhibitor 
activity/receptor binding 

down 

 

 



93 

 

The gene products in the entire dataset were analysed using a combination of the 

Gene Ontology database version 7.0 (www.pantherdb.org) and Ingenuity Pathway 

Analysis. Cellular component analysis identified the majority of proteins as locating to 

cytoplasm (55%), extracellular (20%), membrane (10%) and nucleus (8%). The terms 

molecular function and biological processes were explored and in total 772 out of the 

813 unique proteins were annotated. Proteins involved in catalytic activity, followed by 

protein binding and structural activity were the most common molecular functions 

(Figure 19). Specifically, hydrolase proteins made up more than 50% of the catalytic 

proteins and the serine-type peptidases and metelloproteinases account for 50% and 

30% of them respectively. Calmodulin, cytosleleton, receptor and DNA/RNA binding 

proteins accounted for more 65% of the binding proteins.  

Focussing on biological processes, the proteins in our dataset in order of frequency 

relate to metabolism, cellular processes and cellular communication. All other biologic 

processes are shown in Figure 19. Further interrogation of the gene ontology for 

metabolism identifies more than 90% of proteins relating to cellular and cell – matrix 

adhesion proteins. It is important to highlight that a number of proteins listed in Figure 

19 occur in one or more categories. 
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Figure 19. Gene ontology classification.  

Classification of molecular function (upper panel) and biologic process (lower panel) determined 

using gene ontology is shown for entire data set and proteins common to all four samples. 
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4.4	
  Discussion	
  

A number of studies to date have started to characterise the bile proteome, generating 

a body of data that will underpin future studies using bile in comparative analyses to 

look for disease biomarkers. In this chapter the complementary approaches of 2D 

PAGE and shotgun MS were used to compile a comprehensive compendium of bile 

proteins specifically in CCA.  

4.4.1	
  2D	
  PAGE	
  Bile	
  Mastermap	
  in	
  Hilar	
  CCA	
  

To date no 2D PAGE protein master map of bile in CCA has been reported. We have 

produced a protein master map of high resolution of 80 unique proteins, the vast 

majority of which represented abundant serum proteins. Gene ontology classification 

identified the majority of proteins relating to molecular processes involving protein 

binding, enzyme regulation, catalytic and structural activity. The biological processes 

range equally across metabolic, immune system, transport, response to stimulus and 

cell communication.  

An important advantage of 2D PAGE is the ability to visualise up to 2000 intact proteins 

and enable the resolution of isoforms and post-translational modifications of proteins 

that would be lost with shotgun strategies. In bile, as with other biological fluids, fewer 

proteins were visualised probably reflecting the presence of a small number of highly 

abundant proteins which dominate the profile. Although there were more than 600 

hundred protein spots visualised in our gels less than half were amenable to 

automated robotic spot cutting. Furthermore several factors may explain the failure to 

obtain identifications for some spots cut from preparative gels. Spots may not contain 

sufficient protein to generate adequate mass spectra for identification and there may 
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have been failure of tryptic digestion. Furthermore keratin contamination during 

sampling handing and tryptic digestion can mask the identity of lower abundance 

proteins undergoing MS analysis. Finally the human proteome has yet to be fully 

described and some of the proteins may not be present in the current databases. The 

high throughput analysis of proteomes using this technique remains challenging as 

observed for the time consuming process of spot picking (even if automated) and 

subsequent spot digestion and analysis of each spot from a 2DE gel. Other limitations 

of this approach are the relative inability to detect lower abundance and proteins of 

extreme pI and hydrophobic proteins (210). 

Nevertheless 2D PAGE approaches have been applied to the analysis of bile in 

disease. Chen et al compared 2D PAGE profiles between bile from malignant (CCA) 

and non-malignant disease and identified 16 differentially expressed protein spots in 

cancer (184). However the identities of these protein spots were not reported. Zhou et al 

used a complementary approach of 2D PAGE and shotgun proteomics without 

depletion strategies to study bile obtained from gallbladders of patients undergoing 

surgery for gallstones (183). Given bile protein is more concentrated in the gallbladder 

than from the bile duct it is of interest to note that the number of proteins identified by 

their study was 48 (from 106 spots excised) compared to 80 (from 323 spots) in this 

study. Both studies reported abundant serum proteins such as albumin, transferrin, 

immunoglobulins, and complement. These studies and results from our experiments 

support the feasibility and scope for development of this proteomic approach in bile 

biomarker discovery. 
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4.4.2	
  GeLC/MS/MS	
  –	
  ‘Shotgun’	
  Proteomic	
  Analysis	
  of	
  Bile	
  

in	
  Hilar	
  CCA	
  

Prior to this work, the first large scale effort to generate a bile catalogue was 

undertaken in 2004 in an unfractionated sample of bile taken at ERCP from one CCA 

patient and analysed by GeLC-M/MS, which identified 59 unique proteins (182). A further 

28 proteins were identified after prefractionation incorporating lectin affinity 

chromatography using Con A and WGA. Three proteins not previously related to CCA 

were focussed on: MAC-2 binding protein, lipocalin-2 and deleted in malignant brain 

tumours 1 protein.  

 

An alternative approach using hexapeptide libraries to concentrate and reduce low and 

high abundance proteins respectively in pooled gallbladder bile by Guerrier et al, 

identified 222 gene products, of which 143 had not been previously reported (185). In 

another study examining biliary stenosis caused by periampullary tumour, GeLC-

MS/MS of bile obtained at ERCP identified 127 proteins (of which 34 were novel) 

based on more than one tryptic peptide; of these more than 80% were intracellular, 

most likely reflecting that this study profiled both the pellet and supernatant generated 

by centrifugation of bile (186). 

 

The small number of studies to date attempting to extend the biliary proteome have 

incorporated the analysis of mainly single patients, utilised different sampling 

techniques and processing protocols. Furthermore investigations have sampled bile 

from with a variety of pathologies and explain some of the differences in the proteins 

identified. Overall using both 2D PAGE and shotgun approaches, there have been 

<300 proteins identified in the four major bile-profiling studies published prior to ours 

and these are summarised in Figure 20.  
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Author Farina et al    2009 Guerrier et al 2007 Kristiansen et al 
2004 

Zhou et al    
2005 

Bile source ERCP Cholecystectomy ERCP Cholecystectomy 

Disease Pancreatic Ca Normal bile CCA Gallstones 

Prefractionation Immunodepletion No immunodepletion No 
immunodepletion  

No 
immunodepletion 

Proteomic 
approach 

SDS PAGE 
LC/MS/MS 

SDS PAGE 
LC/MS/MS       
SELDI TOF/MS 

SDS PAGE 
LC/MS/MS 

2DE/2D 
LC.MS/MS 

No of proteins 
identified with > 2 
peptides 

180 170  73 61 

 

Figure 20. Summary of number of proteins reported in bile to date from 

proteomic analysis. In green are proteins found in common in all studies and in 

yellow proteins not identified in other studies 

 Overall 813 unique proteins were identified in this study after removing keratins 

immunoglobulins and albumin and reducing redundancy further by collapsing the data 

down to gene level. As expected there was considerable overlap between previous 

studies and the proteins identified in our dataset. 28 proteins from other studies were 

not identified witin the 813 proteins compiled in our catalogue. This can arise from the 

variation in the analytical methodology, sample collection/preparation, and the different 

disease categories. 
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Proteins identified were largely of cytoplasmic origin, involved in catalytic and structural 

molecular activity and involved with metabolic and cellular communication activity. A 

significant proportion of our proteins and those from other studies are known major 

abundant plasma proteins but include a number of known CCA associated proteins as 

summarised in Table 10 and confirm the utility of analysis of proximal fluids such as 

bile.   

There was significant variability between the bile samples analysed here, probably 

reflecting individual and disease heterogeneity, the level of sample contamination as 

well as under-sampling, which is a characteristic of the shotgun strategy adopted. 

Nevertheless it represents the largest GeLC-MS/MS derived catalogue of biliary 

proteins identified in multiple patients with hilar CCA and extends the biliary proteome 

considerably with the largest previous report identifying 170 proteins (222 proteins if 

based upon single hit peptides).. 

 

Both lipocalin 2 and deleted in malignant brain tumours 1 protein were identified in all 

four patients with CCA in our study. Elevated levels of lipocalin 2 in bile were shown to 

be able to distinguish between malignant from benign disease and when incorporated 

with the currently used serum marker CA19-9 improved the diagnostic accuracy 

achieved (144). However translation to levels in lipocalin 2 in urine and serum samples 

failed to show significant differences between benign and malignant biliary disease.  
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4.4.3	
  Comparison	
  of	
  Proteins	
  Identified	
  by	
  2D	
  PAGE	
  and	
  

Shotgun	
  Approaches	
  

A total of 813 unique proteins were identified in a GeLC/M/MS approach and 81 

proteins using a 2D PAGE resulting in a total of 824 unique proteins. There were 11 

proteins (Acyl-CoA-binding protein, Alpha-synuclein, Cystatin A, Alpha-2-glycoprotein, 

Lithostathine-1-alpha, Migration-inducing gene-9, Myosin regulatory light chain 12A, 

Plastin-2, Proapoptotic caspase adapter protein, Retinol-binding protein 4, Tubulin-

specific chaperone A) were identified in the master map and not included in the 

shotgun catalogue. Analysis using a combination of 2D PAGE and ‘shotgun’ 

approaches to analyse gallbladder bile without any depletion steps from an individual 

with cholethiasis, identified a total of 222 (mainly plasma) proteins – (48 and 218 from 

2DE LC-MS/MS and 2D-LC-MS/MS, respectively) (182). 44 of these proteins were 

common to both the techniques and 27 and 143 proteins in common with our study 

results.   

4.4.4	
  Conclusions	
  

In summary we present a comprehensive catalogue of bile proteins in four patients with 

hilar CCA and have considerably extended current knowledge of the malignant bile 

proteome. Prior to the current study, work carried in our laboratory using a similar 

parallel proteomic approach in a single patient with CCA identified 32 and 447 unique 

proteins. The shotgun approach used here shows clear advantages over gel-based top 

down techniques in speed, sensitivity and scope of analysis. 
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Profiling studies such as the one described here have formed the basis for examining 

the expression of a number of proteins in bile in relation to disease, as illustrated by the 

work taken forward on Mac2 binding protein, which was identified as a bile protein in a 

shotgun study of bile from a CCA patient and subsequently shown to have some 

potential as a biomarker (169). In the period after our completion of out work two further 

studies have added to and extended the catalogue of biliary proteins albeit in non-

cancerous disease or pancreatic carcinoma. Barbhuiya et al fractionated non-

cancerous bile and used a multipronged proteomic platform approach (SDS PAGE, 

SCX, OFFGEL) followed by MS analysis using a more powerful mass spectrometer 

(LTQ-Orbitrap-Velos) than in our study. Overall 2552 proteins were identified - the 

largest number of proteins reported in human bile to date (211). In malignant bile 

obtained by ERCP in a single a patient with pancreatic carcinoma 445 unique proteins 

with at least 2 significant peptides (812 proteins if single-hit proteins were included) 

were identified by SDS PAGE, in gel tryptic digestion and LC-MS/MS (212).  The current 

dataset together with other studies in the literature constitute an important prelude 

highlighting the potential promise of comparative quantitative proteomic studies in CCA 

biomarker discovery.   
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5.0	
  Label-­‐Free	
  Quantitative	
  Proteomic	
  Comparison	
  of	
  

Bile	
  in	
  CCA	
  and	
  Benign	
  Biliary	
  Disease	
  

5.1	
  Introduction	
  

The ability to quantitate changes in protein expression that occur in disease is an 

important goal in proteomics. Studies have identified differences in protein profiles in 

bile from patients with malignant biliary disease compared to benign disease and a few 

proteins have gone on to demonstrate potential biomarker utility in initial validation 

studies. Examples include CEACAM-6 and MUC-1 (CA19-9) which were shown to be 

higher in the bile of CCA and pancreatic carcinoma patients compared to benign 

controls using an SDS PAGE and LC-MS/MS approach (186). Kawase and colleagues 

identified 38 differentially expressed proteins in two paired cancer and normal bile duct 

tissues using a label free LC-MS/MS approach and validated findings in further tissue 

samples (150). A number of proteins previously reported in CCA including MUC5AC (151), 

moesin (152) galectin 1 (153) and keratin 903 (154) were increased in CCA tissues. Western 

blotting and immunohistochemical validation of four novel proteins (actinin-1, actinin-4, 

protein DJ-1 and cathepsin B) in the original samples and four additional CCA cases 

showed overexpression compared with normal bile duct tissue.  

To build on our previous shotgun-based characterisation of the bile proteome, a 

comparative analysis of bile from patients with benign and malignant disease was 

carried out. A label-free approach for quantitation was selected, as it does not require 

expensive labelling reagents and multistep labelling protocols, which can potentially 

raise issues with reproducibility and loss of target peptides. At the time of this study a 

profiling pipeline was being developed in the lab using an LTQ-Orbitrap Velos mass 
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spectrometer and MaxQuant-based quantitation. The application of such an approach 

to bile has been recently reported after completion of our study in a comparative 

analysis of pancreatic cancer and benign biliary disease in which samples from 8 

patients were subjected to 1D SDS PAGE and subsequent MS analysis using an LTQ 

linear ion trap mass spectrometer (144). Over 200 unique proteins were identified with 10 

proteins varying significantly between study groups. The investigators took forward 

lipocalin-2 as a potential biomarker in differentiating malignant and biliary obstruction 

and confirmed its higher abundance in cancer. The application of label free sample 

preparation in combination with a LTQ-Orbitrap Velos mass spectrometer offers a 

technological advance in identifying a higher number of proteins with less potential of 

sample preparation bias.  

5.1.1	
  Aims	
  

(1) To use shotgun MS with label free quantitation to identify differences in abundance 

of biliary proteins between samples from 5 patients with CCA and 5 patients with 

benign biliary disease (common bile duct stones). 

(2) To take forward selected proteins displaying increased abundance in bile from 

patients with malignant disease by immunoblotting in a larger patient cohort (13 CCA 

vs. 13 benign disease) to explore whether selected proteins may have clinical utility as 

biomarkers. 
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5.2	
  Sample	
  processing	
  and	
  MS	
  analysis	
  for	
  Label	
  Free	
  

Quantitative	
  Proteomic	
  Comparison	
  of	
  Bile	
  

Bile samples were obtained from patients undergoing diagnostic or therapeutic ERCP 

for evaluation/treatment of biliary obstruction either as a result of malignancy or 

common bile duct stones. Demographics and clinical details are provided in Table 11. 

Patients were age and sex matched. Bilirubin, AST and ALT values were all higher in 

malignant patients, but this was not statistically significant. Samples underwent in-

solution tryptic digestion using FASP and MS analysis as described in Sections 2.11.2 

and 2.11.3 respectively.  Data was searched against an International Protein Index (IPI 

3.68) human sequence database with MaxQuant 1.1.1.14 and Wilcoxon-Mann-Whitney 

used to compare intensities between the two groups. 
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Table 11. Demographic and clinical data for the patients used in the discovery screen. 

Patient Age Sex Disease  Bilirubin 
(mmol/l) 

  ALP  

(U/l) 

ALT 

(U/l) 

1   8386 63  M CBD stones 67 213 41 

2   8397 57  M CBD stones 47 222 55 

3   9074 81  F CBD stones 91 249 61 

4   9847 58  M CBD stones 65 289 41 

5   10844 36  F CBD stones 81 301 53 

6  8628 77  M HIlar CCA 98 321 41 

7  9075 54  F Hilar CCA 101 465 88 

8  9089 72  M Hilar CCA 87 354 67 

9  9417 65  F Hilar CCA 31 145 126 

10 10498 47  M PSC/Hilar 121 406 59 
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5.3	
  Results	
  	
  

In total 1608 proteins were identified in the total data set of which 1276 were identified 

with one or more peptides and with valid quantitative data.  Data for each protein in the 

study including intensity minimum, 1st quartile, median, mean, 3rd quartile, maximum 

and standard deviation in each group, followed by the p value and associated q value 

are provided in Supplementary Data Table 5. The overlap in proteins between the 

different samples in the benign and malignant disease groups is illustrated in Venn 

diagrams (Figure 21) and the number of unique proteins is summarised in 

Supplementary Data Table 6. In the benign and cancer samples there were 201 and 

215 proteins present in all biological replicates.  
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Figure 21. Venn diagram showing overlap in quantitated proteins in benign 

(above) and cancer (below) samples. 

The five-figure indicator above each number is a presence/absence binary indicator for a protein being 

present in a sample. For example, the central region, which is the overlap between all regions, is shown as 

11111, this indicates presence in all replicates.  
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The gene products in the entire data set were subjected to Gene Ontology Database 

classification (version 7.0 www.pantherdb.org) and of the 1276 proteins, 1201 were 

annotated and analysis of these is shown in Figure 22. The majority of proteins related 

to catalytic activity (38%), protein binding (30%) and structural molecular activity (10%) 

for molecular function.  Proteins involved in metabolism (27%), cellular processes 

(10%), cell communication (10%), immunity (10%) and transport (10%) formed the 

majority of biologic processes. Finally a wide range of classes of proteins existed with 

the most abundant relating to hydrolase activity (15%).  
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Figure 22. Gene ontology classification of 1201 proteins from dataset. 

 

Molecular	
  Function
Antioxidant activity (1%)

Biological	
  Process

Protein	
  Class

Binding (30%)

Catalytic activity (38%)
Enzyme regulator (7%)
Ion channel (1%)

Motor activity (1%)
Receptor activity (6%)

Structural molecule activity (10%)
Transcription regulator activity (1%)
Translation regulator activity (1%)

Transporter regulator activity (4%)

Apoptosis (2%)

Cell adhesion (4%)
Cell communication  (10%)

Cell cycle  (3%)
Cellular component organisation (9%)

Cellular process (16%)
Development process (6.5%)
Generation of precursor metabolites (2%)
Homoestasis (0.1%)

Immune system (10%)
Localisation(0.1%)
Metabolic process (27%)

Regulation of biological process (0.2%)
Reproduction (0.7%)

Response to stimuli (7%)
System process (3%)
Transport (10%)

Calcium binding (3%)
Cell adhesion molecule (3%)
Cell junction protein (0.1%)
Chaperone (3%)
Cytoskeletal (7%)
Defense/immunity (5%)
Enzyme modulator (8%)
Extracellular matrix (3%)
Hydrolase (15%)
Isomerase (2%)
Kinase (1.6%)

Ligase (1.2%)
Lyase (2%)
Membrane traffic (2%)
Nucleic acid binding (7%)
Oxidoreductase (7.5%)
Phosphatase (1.5%)
Protease (7%)
Receptor (5%)
Signalling molecule (5%)
Storage protein (0.1%)
Structural protein (1.2%)
Transcription factor (1%)

Transferase (3.6%)
Transfer (5.3%)
Transmembrane (1%)

Transporter  (4%)



110 

 

In total there were 37 proteins with differential abundance between study groups 

(p<0.05) of which 13 had higher abundance in CCA and these are summarised in 

Table 12. Of these, 5 were selected for downstream validation using Western blotting 

of bile samples: MMP-9, Chitinase -1, Ly-GDI, Annexin A3 and Nicotinamide 

phosphoribosyltransferase (PBEF). The intensity value for each protein in each patient 

is shown in Figure 23 and their biological functions and previous findings in CCA are 

summarised in Table 13.  
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Table 12. Protein identity and fold change of proteins differentially expressed in bile from 

patients with malignant and benign disease. 

No Protein ID Protein Name Fold 
Change 

p value 

1 IPI00027509 MMP-9 +5.4 0.03 
2 IPI00478217 Chitinase-1 +4.5 0.02 
3 IPI00003817 Ly-GDI (RhoGDP dissociation inhibitor 

2) 
+4.25 0.03 

4 IPI00024095 Annexin A3 +4 0.02 
5 IPI00018873 Nicotinamide 

phosphoribosyltransferase (PBEF) 
+3.5 0.03 

6 IPI00022389 C-reactive protein +2.8 0.01 
7 IPI00304612 60S Ribosomal protein +2.6 0.02 
8 IPI00021827 Defensin, alpha 3 +2.5 0.01 
9 IPI00010154 Guanosine diphosphate dissociation 

inhibitor 
+2.5 0.02 

10 IPI00014625 Calcium activated chloride channel 
protein 

+2.3 0.02 

11 IPI00029039 Human proislet peptide +2.4 0.04 
12 IPI00010706 Glutathione synthase +2.1 0.02 
13 IPI00298994 Talin-1 +2.3 0.03 
14 IPI00022431 Alpha-2-HS glycoprotein -1.4 0.03 
15 IPI00022426 Alpha-1 microglycoprotein -1.4 0.03 
16 IPI00026199 Extracellular glutathione peroxidase -1.4 0.007 
17 IPI00550991 Alpha-1- antichymotrypsin -1.8 0.03 
18 IPI00032179 Antithrombin-III -1.8 0.015 
19 IPI00291867 C3B/C4B inactivator -1.9 0.015 
20 IPI00553177 Alpha-1 protease inhibitor -1.9 0.01 
21 IPI00021842 Apolipoprotein E -2.1 0.01 
22 IPI00021841 Apolipoprotein A1 -2.3 0.007 
23 IPI00744685 Biotinidase -2.3 0.007 
24 IPI00292950 Serpin peptidase inhibitor -2.4 0.04 
25 IPI00009896 Epoxide hydratase -2.4 0.04 
26 IPI00400826 Aging associated gene 4 protein -2.4 0.03 
27 IPI00843975 Cytovillin -2.6 0.01 
28 IPI00021854 Apolipoprotein A2 -2.6 0.007 
29 IPI00925635 Insulin like growth factor -3.0 0.04 
30 IPI00009802 Chondroitin sulphate proteoglycan core 

protein 
-3.0 0.04 

31 IPI00171411 Golgi membrane protein 1 -3.1 0.045 
32 IPI00465213 Annexin A13 -3.3 0.01 
33 IPI00010399 Serum amyloid a protein -3.6 0.03 
34 IPI00328609 Kallilrein inhibitor -3.6 0.007 
35 IPI00003527 Ezrin-radixin-moesinbinding 

phosphoprotein 
-3.6 0.01 

36 IPI00021000 Bone sialoprotein 1 -4.7 0.03 
37 IPI00006114 Cell proliferation inducing gene 35 

protein 
-4.7 0.04 
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Figure 23. MS data for proteins selected for downstream analysis.  

The relative abundance (LFQ intensity) of each protein in each patient is shown. 
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Table 13. Candidate biomarkers taken forward for downstream validation. 

Protein MW 
(kDa) 

Function Reported                                       
in disease 

Reported 
in CCA 

MMP-9 82 Belongs to family of metalloproteinases 
able to degrade all components of the 
extracellular matrix 

Cancer – including HCC, 
pancreatic, colorectal 

Inflammatory – 
Osteoarthritis, Aneurysm 

Yes (up) 

Chitinase-1 52 Human CHIT-1 is considered to provide 
defense against chitin containing 
pathogens: crustaceans, insects, fungi, 
parasites 

Chronic inflammatory: 
Gaucher disease, asthma, 

sarcoidosis, juvenile 
idiopathic arthritis, 
helicobacter pylori 

gastritis, coronary disease, 
periodontitis liver fibrosis, 

parasitic/fulipocalin-2 
infections 

No 

LyGDI 42-44 Belong to the inhibitors of Rho family 
GDPases and in cancer functions in 
metastasis by anchoring Rho proteins to 
the cell membrane 

Gastric, heamapeoic 
bladder cancer 

No 

Annexin A3 33-36 Belong to annexin family which have a 
range of functions including 
anticoagulation, anti-inflammatory, 
endocytosis and exocytosis, signal 
transduction, cell proliferation, cell 
differentiation and cell apoptosis 

Ovarian, pancreatic, 
hepatic, colorectal cancers 

No 

PBEF  55 PBEF catalyzes the first rate-limiting step 
in converting nicotinamide to NAD+, 
essential for cellular metabolism, energy 
production, and DNA repair 

Acute/Chronic 
inflammatory - acute lung 

injury, atherosclerosis, 
diabetes, rheumatoid 

arthritis, sepsis 

Cancer – colorectal, brain 

No 
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5.3.1	
  Validation	
  of	
  Selected	
  Differentially	
  Expressed	
  Proteins	
  in	
  

Bile	
  

Western blotting was used to compare the expression of annexin A3, chitinase -1, Ly-

GDI, MMP-9 and PBEF between 13 benign and 13 malignant bile samples. In initial 

antibody work up, antibodies to chitinase-1 failed to identify a band of the correct size 

so this was not taken further. All other antibodies passed this validation and identifying 

a band of appropriate size and showed linearity when probing serial dilutions of bile.  

Patient demographics of the cohort used for validation are shown in Table 14. A 

sample from the original label-free experiment (9089), which contained all the proteins 

selected above, was included as a positive control. Median age between groups was 

67 years. (IQR 55-74) and 70 years. (IQR 60-83), p=ns and the degree of biliary 

obstruction, as measured by bilirubin between cancer and benign patients was 

increased; 101 mmol/l (IQR 85-122) vs. 81 mmol/l (IQR 67-89) p=0.03. 
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Table 14. Demographics and clinical details for validation screen 

Patient Age Sex Disease  Bilirubin  
(mmol/l) 

ALP                
(U/l) 

ALT                 
(U/l) 

A      10319 61  F CCA (Hilar) 121 564 101 

B      11469 84  M CCA (Intra) 90 411 143 

C        9075 54  F CCA (Hilar) 101 465 88 

D        9037 67  M CCA (Intra) 66 322 71 

E        8619 57  M CCA (Hilar) 132 439 111 

F        8445 73  M CCA (Hilar) 119 399 81 

G      11162 82  F Benign 67 201 79 

H        9074 81  F Benign 47 222 55 

I          9059 62  F Benign 88 345 61 

J         9044 67  M Benign 110 301 100 

K        9741 87  F Benign 86 275 46 

L         8386 63  M Benign 67 213 41 

M        9066 70  M Benign 90 387 52 

N        9847 58  M Benign 65 289 41 

O      10844 36  F Benign 81 301 53 

P      11515 45  M Benign 98 222 41 

Q      11517 88  F Benign 80 351 67 

R      11162 82  F Benign 77 401 55 

S      10310 84  M Benign 90 377 61 

T        8628 77  M CCA (Hilar) 98 321 41 

U      10498 47  M CCA (Intra) 91 401 87 

V        8619 57  M CCA (Hilar) 123 512 70 

W     10092 75  M CCA (Intra) 76 499 89 

X      11451 73  F CCA (Hilar) 118 1019 102 

Y      11543 72  F CCA (Hilar) 126 766 89 

Z        9363 25  M CCA(Hilar)/PSC 80 400 58 
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Annexin A3 expression was observed in 4/13 cases of CCA compared with 2/12 

patients with benign disease (Figure 24).  Annexin A3 expression was only found in 

hilar CCA samples, 50% of which had detectable levels. Interestingly, the two patients 

with benign biliary disease showing expression had bilirubin levels of 91 and 61 mmol/l, 

which represented some of the highest values in the benign group.  

 

Figure 24. Expression of Annexin A3 in benign and cancer bile samples.  
Biliary protein (5µg) was separated by SDS-PAGE and analysed by immunoblotting with 

antibodies to Annexin A3. Signals were normalised by Coomassie staining of parallel gels (213). 

Samples labelled A-Z correspond to Table 14. 
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MMP-9 expression was shown to be at higher levels in bile from patients with 

malignant disease, being present in 11/13 cases compared with 4/13 with benign 

disease (Figure 24). The highest fold change in the initial screen was detected for 

MMP-9 (>5.4).  All patients with hilar CCA demonstrated expression of MMP-9.  

 
 

Figure 25. Expression of MMP-9 in benign and cancer bile samples.  
Biliary protein (5µg) was separated by SDS-PAGE and analysed by immunoblotting with 

antibodies to MMP-9. Signals were normalised by Coomassie staining of parallel gels (213). 

Samples labelled A-Z correspond to Table 14. 
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LyGDI expression was observed in 6/13 of cases CCA compared with 4/13 with benign 

disease (Figure 26A).  Its expression showed similar variation in both groups and did 

not differentiate based on type of cancer, degree of biliary obstruction or age. Similarly 

expression of PBEF was observed in all biological samples with no significant 

difference in the level of expression across groups (Figure 26B).  

 

 

 

Figure 26A & 26B. Expression of LyGDI and PBEF in benign and cancer bile samples  
Biliary protein (5µg) was separated by SDS-PAGE and analysed by immunoblotting with 

antibodies to LyGDI and PBEF. Signals were normalised by Coomassie staining of parallel gels. 

Samples labelled A-Z correspond to Table 14. 

 

A 

B 
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5.3.2	
  Preliminary	
  Analysis	
  of	
  MMP-­‐9	
  and	
  lipocalin-­‐2	
  and	
  its	
  

Complex	
  in	
  CCA	
  

Previous work in this laboratory showed higher expression of MMP-9 and lipocalin-2 in 

bile from a small cohort of patients with CCA (Bonney G, unpublished data). In human 

neutrophils, some of circulating MMP-9 exists in a covalent complex with lipocalin-2, 

which has a molecular weight of 125-130 kDa, and is reduction sensitive and able to 

bind to tissue inhibitor of metalloproteinase – 1 (TIMP-1) (214-215). The complex has been 

shown to be involved in regulating the activity and stability of MMP-9 by protecting it 

from auto degradation in in vitro and in vivo studies (215). 

In light of the observation of increased MMP-9 expression in our screen, the study was 

extended to investigate a potential role of the MMP-9 – lipocalin-2 complex in CCA. 

Initially the expression of lipocalin-2 was examined in bile from 7 patients with CCA and 

benign biliary disease then subsequent experiments went on to examine the MMP-

9/lipocalin-2 complex, which can be visualised using non-reducing gels. 
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5.3.3	
  Expression	
  of	
  lipocalin-­‐2	
  in	
  CCA	
  

Lipocalin-2 was detected at relatively low levels in bile from patients with benign biliary 

diseases (CBD stones) compared to CCA where there was higher abundance in 6/7 

cases, consistent with our earlier results (Bonney, unpublished data).  

 
 

Figure 27. Expression of Lipocalin-2 in bile from patients with CCA cancer and benign 
disease 

Expression of Lipocalin-2 was examined in bile from patients with CCA and benign biliary 

disease. Protein (5µg) was separated by SDS PAGE and analysed by immunoblotting with 

antibodies to Lipocalin-2. Signals were normalised relative to parallel Coomassie stained gels. 

Samples A-N corresponds to patients in Table 14. 

5.3.4	
  Expression	
  of	
  MMP-­‐9	
  -­‐	
  lipocalin-­‐2	
  Complex	
  in	
  Bile	
  in	
  CCA	
  

Using immunoblotting under non-reducing conditions (i.e. without β-mercaptoethanol) 

the MMP-9-lipocalin-2 complex was examined in bile from patients with CCA, which 

confirmed the presence of a 125 kDa band recognised by antibodies to MMP-9 and 

lipocalin-2 which co-migrated with recombinant MMP-9-lipocalin-2 complex. This band 

was not demonstrated in bile samples run on gels run under reducing conditions 

(Figure 28 A & B).  

. 
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Figure 28 A & B. Immunoblotting of MMP-9, Lipocalin-2 and the MMP-9- Lipocalin-2 complex.  

In total 8 patients with CCA were probed with antibodies to lipocalin-2 and MMP-9 respectively. 

Biliary protein (5µg) (lanes 1-8), and serial dilution of MMP-9-lipocalin-2 complex (lanes 5, 2, 1 

ng) were separated by SDS PAGE in the absence or presence of β-mercaptoethanoland (i.e. 

reducing and non reducing conditions) and analysed by immunoblotting with antibodies to 

lipocalin-2 and MMP-9. Signals were normalised by densitometry analysis of parallel 

Coomassie stained gels. Results confirmed the presence of the complex in non-reducing 

conditions using antibodies to both MMP-9 and lipocalin-2. 

 

 

A 

B 
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In a subsequent experiment the MMP-9-lipocalin-2 complex was compared in bile 

samples of patients with CCA and benign biliary disease (Figure 29). Results showed 

the presence of the complex in greater number /intensity in cancer compared to benign 

bile samples.  

 

Figure 29. Immunoblotting of MMP-9- lipocalin-2 complex in bile CCA vs. benign biliary disease.  

Biliary protein (5µg) and serial dilution of MMP-9-lipocalin-2 complex in sample 1 (9089) were 

separated by SDS PAGE in non reducing conditions and analysed by immunoblotting with 

antibodies to lipocalin-2. Signals were normalised by densitometry analysis of parallel 

Coomassie stained gels.  
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5.4	
  Discussion	
  

At the time of this study and to our knowledge, to date, this is the first shotgun study 

with label free-based comparative analysis carried out to identify differences in protein 

abundance between patients with CCA and benign biliary disease (common bile duct 

stones). The entire dataset yielded 1276 unique proteins and represents one of the 

largest bile protein compendiums generated at the time, extending our previous 

shotgun catalogue of bile proteins in hilar CCA by more than 400. 

The majority of proteins related to catalytic activity (38%), protein binding (30%) and 

structural molecular activity (10%) for molecular function. Proteins involved in 

metabolism (27%), cellular processes (10%), cell communication (10%), immunity 

(10%) and transport (10%) formed the majority of biologic processes. Finally a wide 

range of classes of proteins existed with the most abundant relating to hydrolase 

activity such as metalloproteinases (15%).   

The comparative screen comparing 5 patients in each of two groups (CCA and benign 

biliary disease) identified 37 proteins with significant differences in fold change with 13 

proteins being more than 2 fold increased in malignant samples. From this list the top 5 

proteins with the most abundant fold changes were selected for further validation: a 

nnexin A3, chitinase-1, Ly-GDI, MMP-9 and PBEF immunoblotting showed a clear 

pattern of overexpression of MMP-9 in bile from patients with CCA compared to benign 

disease. Of note all the patients in the screen with hilar CCA (n=8) demonstrated 

staining for MMP-9 compared to 3/5 with intrahepatic CCA. Annexin A3, PBEF and 

LyGDI did not demonstrate an ability to differentiate benign and malignant disease. 
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In light of previous experiments showing elevated levels of lipocalin-2 in CCA, other 

studies suggesting a protective role for lipocalin-2 against MMP-9 auto degradation, 

promoting angiogenesis and tumour growth in cancer and the finding that an MMP-9-

lipocalin-2 complex could differentiate pancreatic malignancy from benign disease in 

bile prompted further investigation (Bonney G et al unpublished data), (144), (216). 

In this study 7 patients with CCA were compared to 7 with benign biliary disease and 

increased lipocalin-2 expression was observed in in 6/7 patients with cancer. At the 

time of this study no studies had investigated the expression of the MMP-9/lipocalin-2 

complex in bile or bile duct tissue in CCA. We detected a 125 kDa band in bile from 

patients with CCA by probing with MMP-9 and lipocalin-2 antibodies which co-migrated 

with MMP-9 – lipocalin-2 complex under non-reducing conditions. Taking the results of 

the label free comparative experiment in identifying MMP-9, elevated levels of lipocalin-

2 in previous laboratory studies and here, and the presence of a complex in malignant 

bile, there is potential scope for further biomarker investigation. Indeed in a preliminary 

comparison of 5 cancer and 5 benign disease samples we did observe strong 

expression of the complex in cancer. 

  5.4.1	
  Matrix	
  Metalloproteinase	
  –	
  9	
  (MMP-­‐9)	
  

MMPs are a family of zinc and calcium dependent endopeptidases with the combined 

ability to degrade all components of the extracellular matrix. MMPs have been 

implicated in cell migration during cancer invasion, tumour growth, angiogenesis and 

metastasis in several gastrointestinal cancers including colorectal, esophageal and 

hepatopancreaticobiliary (217-221). Furthermore their ability to degrade cellular and 

extracellular matrices has seen them play a role in tissue damage caused by 
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inflammation (222-224). The detailed role of the 23 types and 6 groups of MMPs in 

disease has been reviewed elsewhere (225-226).  

MMP-9 is synthesised as a (92kDa) proenzyme form which is activated into a (82kDa) 

form that digests components of the basement membrane including gelatin (hence also 

known as gelatinase B), laminin and type IV collagen. MMP-9 is produced by 

myofibroblasts, monocytes, keratinocytes, tissue macrophages, and 

polymorphonuclear leucocytes and its expression/secretion induced and controlled by 

cytokines, chemokines and peptidoglycans. MMP-9 is usually only expressed at low 

levels in normal healthy, resting tissues and elevated in environments requiring tissue 

repair/remodelling or in inflammation and disease (225), (227). Secretion of MMP-9 is 

accompanied by a TIMP-1 which is the major endogenous regulator of its activity, 

ensuring a balance between matrix synthesis and degradation (226).  

Fibrosis is one hallmark of CCA caused by recurrent infection and inflammation within 

the bile ducts and is a dynamic process where progression and regression can be 

present alternatively during its evolution resulting in complex remodelling of the 

extracellular matrix. This dysfunction in the extracellular matrix alters normal cell 

function, leading to cell proliferation and myofibroblast-induced inflammation and 

angiogenesis to facilitate cancer development (228). Furthermore the secretion of MMPs 

by myofibroblasts can degrade the basement membrane and lead to tumour invasion 

and metastasis. 

The specific overexpression of MMP-9 in CCA was initially reported in 1996 in which 

Terada et al analysed the expression of MMPs and TIMP in 10 normal livers, 11 

surgically resected intrahepatic CCA and 6 surgically resected HCC. In normal livers, 

MMPs and TIMPs were infrequently and faintly expressed in bile ducts, but were not 
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expressed in hepatocytes. In the 11 CCAs, MMP-1, MMP-2, MMP3, MMP-9, TIMP-1, 

and TIMP-2 were expressed in tumour cells and/or tumour stroma in 11 (100%), 5 

(45%), 8 (73%), 3 (27%), 9 (82%), and 9 (82%), respectively (230). Their expression was 

stronger in CCA with severe invasion than in specimens with mild invasion. In contrast, 

MMPs and TIMP were not expressed in any cases of HCC. Their results showed that 

intrahepatic bile duct cells may neoexpress or overexpress MMPs and TIMPs after 

malignant transformation but hepatocytes do not, and suggest that in CCA, MMPs and 

TIMP play an important role in cell invasion by degrading extracellular matrix proteins. 

More recently studies in hamsters infected with Opisthorchis viverrini and injected with 

nitrosamine compounds were observed to be associated with increased peribilary 

fibrosis and CCA development (231). In this model, MMP-9 levels were increased and 

correlated with levels of myofibroblast activity, fibrosis and cholangiocarcinogenesis. 

The authors proposed that MMP-9 stimulates myofibroblast-mediated fibrosis leading 

to tumour formation, and then cancer-associated myofibroblasts promote tumour 

progression by secretion of further MMP-9.  

Overproduction of NO by iNOS and ROS results in activation of MMPs and 

degradation of the basement membrane (232).  In the same animal model above 

investigators confirmed co-localisation of MMP-9 and iNOS in inflamed and malignant 

tissue and provided further evidence to link iNOS expression and NO production 

mediated activation of MMP-9 leading to CCA development via matrix degradation. 

Furthermore MMP-9 expression was associated with expression of Rac1 and together 

can promote ROS mediated DNA damage and invasive potential (231). Other important 

inflammatory mediators of MMP-9 expression include TNF-α and fascin, which confer 

increased migration ability of CCA cells. 
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Given the close link between inflammation and cancer progression, the role of MMPs in 

immune response regulation is being studied. One mechanism of interest outlines the 

effect of TNFα on NF-kβ signaling in tumour cells creating a “feed-forward loop” 

stimulating chemokines, and MMPs (including MMP-9) in tumour and surrounding 

stromal cells (233). Chemical Inhibitors of iNOS and MMP-9 have been shown to reduce 

incidence of CCA in animal models and attenuate angiogenesis and tumour invasion in 

prostate cancer respectively (234-237). Currently no specific MMP-9 inhibitors have been 

assessed in patients with CCA.  

As a biomarker of diagnostic and prognostic value, MMP-9 has been studied in breast, 

colorectal, gastric, bladder and pancreatic cancers but is yet to be translated into the 

clinical (238-242). Expression of MMP-9 in these studies correlated with stage, degree of 

invasion and identified groups at highest risk of recurrence, which could be targeted 

with adjuvant therapies. Only a few studies have reported detection of MMP-9 in serum 

or tissue in CCA. Li et al analysed the expression of MMP-9 in tissue using reverse 

transcription – PCR and demonstrated higher levels in CCA compared to normal biliary 

tissue and showed that within CCAs, high levels conferred a more aggressive 

phenotype (243). Itatsu et al examined the expression of various MMPs in surgically 

resected specimens of CCA using immunohistochemistry and found that nearly 50% of 

specimens expressed MMP-9 and another study confirmed its presence in intra and 

extrahepatic CCA (221),(244). 

In serum, studies comparing MMP-7 and 9, combined with the established markers 

CEA and CA19-9 as biomarkers to differentiate benign and malignant biliary disease 

only MMP-7 demonstrated sufficient sensitivity and specificity (245). However this study 

did not address pre-analytical factors that may affect MMP-9 namely that citrate 

plasma is suggested as the sample of choice to measure circulating MMP-9 and not 
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serum collected with or without clot activator (246). No subsequent studies have 

investigated MMP-9 expression in blood in CCA. However, in the context of liver 

fibrosis (a predisposing factor for malignant conversion in CCA) MMP-9 plays an 

important role in matrix remodeling and is considered to represent an accurate 

biochemical marker of fibrotic activity and novel ELISA based assays have been 

developed to measure MMP-9 mediated changes in the extracellular matrix  (247), (248). In 

summary, while evidence implicating MMP-9 as a biomarker in the diagnosis and 

prognosis in other gastrointestinal cancers is growing, in CCA current focus remains on 

its biology in relation to matrix remodeling and tumour invasion in 

cholangiocarcinogenesis.  

5.4.2	
  Lipocalin-­‐2	
  	
  

Lipocalin-2 (also know as neutrophil gelatinase-associated lipocalin (NGAL), 

siderocalin, uterocalin and oncogene 24p3) is a 25-kDa protein belonging to the 

lipocalin superfamily. This includes 20 secreted lipoproteins, which are similar in 

molecular structure, that serve to bind and transport specific hydrophobic ligands 

(prostaglandins, retinoids, arachidonic acid, hormones) (249). 

Lipocalin-2 binds to iron particles and transports them intracellularly via the 24p3R 

membrane receptor. It is known as a “stress protein” that can be induced by various 

cells including neutrophils and epithelial cells in order to activate iron dependant 

enzymatic defence systems, inhibit bacterial growth and respond to oxidative stress 

(250). In humans, high levels of lipocalin-2 are found in epithelial tissues susceptible to 

infection including respiratory and gastrointestinal tracts, sites of inflammation 

(particularly in response to oxidative stress induced by ROS) and cancer (251-252). The 

greatest clinical interest in this molecule currently relates to it being an early biomarker 
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of acute kidney injury, graft rejection post transplantation and severity of heart failure 

(253-255). However, evidence continues to grow implicating a role in cell growth, 

development and differentiation from as early as the embryonic phase and lipocalin-2 

has subsequently received interest in tumorigenesis and tumor progression of various 

human cancers including breast, colorectal, liver and pancreatic (144),(256-259).  

Lipocalin-2 is expressed in CCA and knock down of the gene by siRNA has been 

shown to significantly suppress invasiveness of CCA cells in vitro (260). Proteomic based 

studies of the secretome of CCA cell lines have shown lipocalin-2 in conditioned media 

and subsequent small-scale validation confirmed increased lipocalin-2 in paired tumour 

versus normal tissue in 12 patients (261). However whether lipocalin-2 regulates CCA 

proliferation in vivo remains to be determined. 

In bile, a label free proteomic analysis comparing malignant (n=22) versus benign 

(n=16) bile showed lipocalin-2 levels were significantly elevated in the malignant group 

(144). Investigators then assessed biomarker utility by ELISA in serum and urine. No 

significant differences in serum and urine lipocalin-2 levels were found between benign 

and malignant disease but combining biliary lipocalin-2 and serum CA 19-9 improved 

diagnostic accuracy for distinguishing benign from malignant biliary obstruction 

(sensitivity 85%, specificity 82%, positive predictive value 79%, and negative predictive 

value 87%). In a clinical serum study, Leelawat et al compared lipocalin-2 in 

combination with CA19-9 in 50 patients with CCA and benign biliary disease and 

demonstrated increased CA19-9 and lipocalin-2 in CCA, a correlation between cancer 

stage and lipocalin-2 levels and the ability of both molecules in combination to provide 

the most accurate differentiation between malignant and benign biliary disease 

(sensitivity 90%, specificity 66%) (263). 
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Consistent with other studies in the literature, in our western blot anlaysis of lipocalin-2 

under non reducing conditions (Figure 28 A) we observed that in addition to the 

monomeric 25kDa form of the protein, additional bands were seen including the 

lipocalin-2-MMP-9 complex. This has implications for studies attempting to measure 

lipocalin-2 levels in biological samples and in comparing such studies as there may be 

differences in the detection of the free monomer or complexed forms of the molecule. 

Both the studies described above used the same research use only ELISA kits 

available from R&D Systems (NGAL; Abingdon, UK) for lipocalin -2 measurement but 

do not discuss the form of lipocalin that was detected (144), (263). Indeed variations in the 

relative amounts of lipocalin-2 forms have been reported depending on the assay and 

antibody configurations used in research studies (264), (265). Kift et al compared the 

analytical performance of five commercially available assays for measuring lipocalin-2 

in urine and highlighted that variability exists in the performance of several available 

kits and has to be taken into account when interpreting results (266). Furthermore, the 

investigators proposed that as the relative proportions of the different forms of lipocalin 

-2 change over time, for example following surgery, more meaningful information could 

be achieved if assays measuring specific forms were used. 

In conclusion, while there is increasing literature reporting the role of lipocalin-2 as a 

multifaceted modulator in various cancers, its study in CCA is limited. Proteomic 

investigations have shown it to be present at higher level in malignant bile and 

immunohistochemical staining confirmed lipocalin-2 overexpression in tumour 

compared to normal tissue whilst there are conflicting reports regarding its elevation in 

serum. The influence of lipocalin-2 on carcinogenesis is yet to be fully defined, but 

involves pathways related to apoptosis/survival and migration/invasion and blockade 

by monoclonal antibodies has been shown to halt development of metastases in 

animal models. Further studies investigating the mechanisms underlying its role may 
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raise the potential of use of lipocalin-2 as both a diagnostic/prognostic biomarker and a 

therapeutic target. From the results of this study the finding of both MMP-9 and 

lipocalin-2 expression in CCA raises further interest in the link between both molecules 

and their complex and this is discussed below. 

5.4.3	
  MMP-­‐9-­‐Lipocalin-­‐2	
  Complex	
  

As shown in human neutrophils, some of MMP-9 exists in a covalent complex with 

lipocalin-2, has a molecular weight of 125-130 kDa, and is reduction sensitive and able 

to bind to TIMP-1 (215). The complex has been shown to be involved in regulating the 

activity and stability of MMP-9 by protecting it from auto degradation in in vitro and in 

vivo studies. Zhang et al have shown that the activity of the MMP-9-lipocalin-2 complex 

correlated with the depth of oesophageal squamous cell tumour invasion and 

postulated that lipocalin-2 promoted metastasis by complex formation resulting in 

preservation of MMP-9 activity (259). In breast and gastric cancer this was reported to 

facilitate angiogenesis/tumour growth and result in poor prognosis (216), (260). Studies in 

serum and urine of patients with cerebral, breast and oesophageal cancer have 

assessed the utility of the complex as a diagnostic biomarker with some success but 

have yet to be validated in large scale studies (216), (267-269).    
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Lipocalin-2 knockdown by siRNA in CCA cells suppressed tumour invasion by reducing 

complex formation and its effect on MMP-9 activity (261). To relate their in vitro findings 

to the in vivo situation, the study was extended to immunohistochemistry of tumour 

specimens which demonstrated strong lipocalin-2 expression in 75% (18/24) of cases. 

However, in contrast to the study by Zhang et al in oesophageal cancer, the level of 

complex expression did not significantly correlate with tumour differentiation, lymph 

node involvement and metastatic status (267). A potential co-founding factor	
   in this 

finding may relate to the significant differences in the	
  biological features of the tumours 

and the limited number	
  of specimens. Nevertheless the authors provided new insights 

linking lipocalin-2 and direct promotion of cancer invasiveness by regulating cell motility 

and by stabilizing MMP-9 via complex formation, which may ultimately lead to potential 

therapeutic targets. Indeed in our preliminary immunoblotting analysis comparing CCA 

bile and benign bile we did observe strong presence of the complex in malignant 

samples and supports further investigation.                                                                                                                                                         

5.4.4	
  Limitations	
  of	
  current	
  study	
  and	
  future	
  directions	
  

In all studies attempting to quantify protein differences in biological fluids including bile 

from patients in different clinical groups, a major criticism remains the small number of 

samples (typically <10) used in the analysis and the fact that findings are not validated 

in larger patient cohorts (178). Furthermore the selection of proteins overexpressed in 

cancer for validation set with a fold change of 2 or more can be questioned as 

potentially excluding other proteins of interest. However a 2-fold change was selected 

as an appropriate cut-off as changes smaller than this would be below the range of 

technical variability expected for the label free MS approach. Similarly in the label-free 

comparative proteomic approach used here, a significant limitation in the study design 

was the restriction of including only 10 samples in the original screen (each with 3 
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injections). Reasons accounting for this included availability of mass spectrometry time 

and the life span of the LC columns used for LC-MS/MS. Consequently in the label - 

free screen, 5 patients with CCA were compared with 5 patients with benign disease. 

Examining the distribution of every pair -wise ratio of protein intensities in the dataset, 

the 95th percentile corresponded to a fold change of 6 as illustrated in scatter plots of 

protein abundance (Figure 30). This indicates that the screen had reduced power to 

identify differences associated with disease against a background of biological 

variation.  This may in part explain why some molecules selected from the original 

screen (Annexin A3, PBEF, Ly-GDI) did not validate by Western blotting (that is, they 

were false positives). Furthermore studies proposing the underlying biological 

mechanisms driving carcinogenesis between intrahepatic and hilar CCA being quite 

different, including both groups in the larger validation screen increases the variability 

and potentially masks relevant low abundance molecules specific to each form of 

cancer.  Therefore in retrospect the impact of biological variability could have been 

reduced by the inclusion of only hilar or intrahepatic CCA for proteomic driven 

biomarker discovery experiments.  

Evidence from both in house laboratory experiments preceding this study and in the 

literature linking elevated lipocalin-2 in pancreaticobiliary malignancy adds further 

weight to our observation of increased expression of lipocalin-2 in a set of 7 patients 

with CCA by immunoblotting. A larger screen incorporated more than significant 

samples in each arm and validation by immunohistochemistry has been undertaken to 

confirm this in investigations following this study (Nair A et al personal communication, 

2013).  The finding of the MMP-9-lipocalin complex in bile from patients with CCA is 

important as it has yet to be reported elsewhere and the underlying biology of its 

actions implicating a possible role in cholangiocarcinogenesis. In our small comparison 

of 5 patients with CCA and benign biliary disease we did observe stronger expression 
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of MMP-9 – lipocalin-2 complex but would require further detailed comparative analysis 

between malignant and benign biliary disease. Validated overexpression of complex 

could then be extended to ELISA based assessment in serum of patients.  
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Figure 30. Overall reproducibility of protein abundance in benign and CCA bile.  

Scatter plots of abundance (log10LFQ intensity) versus log2 (ratio) for every possible pair-wise 

comparison are plotted for bile samples from patients with benign (upper panel) and malignant 

(lower panel) disease. In the dataset, the 95th percentile corresponded to a fold change of 6 as 

illustrated in scatter plots of protein abundance 
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5.4.5	
  Conclusions	
  

In this chapter we have undertaken the first reported label-free comparative analysis of 

bile protein profiles between patients with CCA and benign biliary disease caused by 

common bile duct stones. As a result we have catalogued more than 1200 proteins in 

bile, extending our previous shotgun catalogue in hilar CCA and at the time of study 

this represented the largest available compendium. There were 37 proteins displaying 

differential expression between malignant and benign disease bile and 4 specific 

proteins (Annexin A3, Ly-GDI, MMP-9 and PBEF) were taken forward in an 

immunoblotting based validation screen. Only MMP-9 was shown to more abundant in 

CCA.  Interestingly lipocalin-2 - a molecule not identified by the initial screen but of 

interest from previous in-house studies and its ability to form a complex with MMP-9 – 

was shown to be more abundant in the bile of CCA patients compared to those with 

benign biliary disease. Interest in the role of the protective effect of lipocalin-2 on MMP-

9 activity via complex formation resulted in one of the first reports of the 125kDa MMP-

9-lipocalin-2 complex in CCA. Developments from the results presented here should 

focus attention on experimental design that can incorporate greater sample numbers 

and with more homogenous disease (i.e. hilar or intrahepatic) to address the challenge 

of biological variability. MMP-9 and lipocalin-2 and more recently their complex 

continue to receive interest in disease associated with inflammation and matrix 

remodelling such as CCA and warrant further investigation.  
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6.0	
  Concluding	
  Remarks	
  

CCA is a devastating disease associated with late presentation and poor survival. 

Current diagnostic markers such as CA19-9 lack sufficient sensitivity and specificity to 

identify early disease and distinguish benign from malignant strictures in PSC.  A 

biomarker or panel of biomarkers is urgently required for earlier diagnosis and facilitate 

better survival outcomes following potentially curative surgical treatment. Proteomics is 

a discipline that holds promise to identify such molecules and its systematic application 

to bile in CCA remains in its infancy.  

The study herein builds on work carried out previously in the laboratory establishing 

protocols for the bile sample collection, processing and application to proteomic 

platforms. Specifically an attempt has been made to (1), investigate the differences in 

protein profiles between serum and bile using 2D PAGE, (2) apply albumin/IgG 

depletion strategies to bile before proteomic analysis, (3) compile a compendium of 

proteins found in the bile of patients with CCA and (4) compare the proteomic profiles 

between patients with CCA and benign biliary disease (cholethiasis) and identify 

potential biomarker proteins for preliminary validation. 

2D PAGE and DIGE is a powerful approach to separate a large number of proteins 

simultaneously with high throughput. In our experiment we have produced 2D gels with 

good resolution and reproducibility, reflecting optimal sample preparation and revealed 

more than 200 protein spots with difference in levels between bile and serum. The 

separation of bile and serum protein profiles supports the hypothesis that bile 

represents a sufficiently unique proximal bio fluid to warrant further analysis for 

disease-specific biomarker discovery. To date no other investigations using DIGE 

labelling has been applied to proteomic investigation of bile in CCA. 
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The bile proteome is similar to serum in having a large dynamic range, which limits 

proteome coverage. Depletion of abundant proteins is one strategy that can facilitate 

profiling of lower abundance proteins. Depletion of albumin and immunoglobulin from 

bile was reproducible and a 2D DIGE comparison of un-depleted and depleted 

samples showed that there were limited changes in the global protein profile. In PCA of 

the entire dataset little separation existed between samples from different patients 

subjected to albumin/depletion with patient variability giving much greater separation 

between gels. Thus depletion effectively removed major abundant proteins but did not 

confer significant changes to the overall proteome profile. However with any depletion 

strategy it is acknowledged that there is the issue of balance between increasing 

proteome coverage at the expense of co-depletion of potential proteins of interest. This 

protocol was subsequently used in compiling a compendium of proteins in bile of 

patients with CCA and applied to the comparative analysis of proteins between those 

with CCA and benign biliary disease. 

Protein biomarker discovery in biliary disease is facilitated by the availability of 

comprehensive descriptions of the malignant bile proteome. The complementary 

approaches of 2D PAGE and GeLC MS/MS were utilised to compose the first reported 

bile protein mastermap and the largest (at the time) catalogue of proteins in malignant 

bile from four patients with hilar CCA. A total of 80 proteins using 2D PAGE and 813 

proteins using a GeLC MS/MS approach were identified resulting in a total of 824 

unique proteins. Since then a multiplatform proteomic approach analysed non-

cancerous bile samples and identified 2552 proteins to establish the largest catalogue 

in human bile to date (271) and in another study using 2D PAGE, in-gel digestion and 

LC-MS/MS approach to malignant bile from pancreatic cancer revealed 445 unique 

proteins (212). Both studies have cited and acknowledged the work presented here. 
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Few studies were noted to have identified differences in protein profiles in bile from 

patients with malignant biliary disease compared to benign disease and few proteins 

have gone on to demonstrate potential biomarker utility. We have performed the first 

comparative analysis of protein profiles in bile with CCA and benign biliary disease 

using a label free proteomic approach. All together more than 1200 unique proteins 

were identified from all bile samples and 37 proteins with differential abundance 

between cancer and benign disease. Of these proteins 13 had higher abundance in 

CCA and ultimately 4 proteins: MMP-9, Ly-GDI, Annexin A3 and PBEF were taken 

forward in validation by immunoblotting. Only MMP-9 was overexpressed in bile from 

patients with CCA compared to benign biliary disease. This 82 kDa protein belongs to 

the family of zinc and calcium dependent endopeptidases with the combined ability to 

degrade all components of the extracellular matrix and reported to have an important 

role in call invasion, metastasis and tumour progression in several cancers including 

CCA.  

In light of previous work in our laboratory demonstrating lipocalin-2 overexpression in 

bile samples from patients with CCA (Bonney G, unpublished work) and the reported 

relationship of lipocalin-2 in forming a complex with MMP-9 and protecting it from auto 

degradation in other gastrointestinal cancers prompted further investigation in CCA. 

We have confirmed our previous findings of overexpression of lipocalin-2 in CCA and 

highlighted the presence of the complex in bile from patients with CCA. In humans, 

high levels of lipocalin-2 (25kDa) are found in epithelial tissues susceptible to infection, 

sites of inflammation (particularly in response to oxidative stress induced by ROS) and 

cancer (272). Our data offers some support to published data linking lipocalin-2 

promoting the invasiveness of the CCA cells by forming a complex with MMP-9, 

stabilizing its activity and rendering the cancer cells to be more invasive (261).  
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Despite advances in proteomics there remains a lack of successfully identified 

biomarkers of clinical utility in oncology and specifically in CCA. Proteomic platforms by 

their very nature require the integration and collaboration of both technology and 

specialist personnel respectively to facilitate robust, clinically relevant data. All of this 

requires considerable utilisation of economic and logistical resource and inclusion of 

high numbers of samples in study designs has to be balanced with this in mind. Bile 

sample collection remains invasive and as a fluid for proteomic analysis has innate 

challenges requiring robust processing protocols. Nevertheless continued efforts are 

required to focus expansion of samples with accurate clinical and staging detail to 

allow optimal selection for proteomic study design. 

Finally, future directions from the work presented here include the assessment of 

MMP-9, lipocalin-2 and its complex in tissue by immunohistochemistry and ELISA of 

plasma/serum samples. Indeed immunohistochemistry-based studies have now been 

initiated in our laboratories and early results have already demonstrated 

overexpression of MMP-9 and lipocalin-2 in CCA-tumour tissue compared to 

surrounding non-involved tissue (Nair A, 2013, unpublished work).  
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Appendix 1 – Contact details for the suppliers of the 

chemicals, consumables and equipment 

 

Agilent Technologies UK Ltd 
610 Wharfedale Road 

IQ Winnersh 

Wokingham 

Berkshire 

RG41 5TP 

Applied Biosystems 
120 Birchwood Boulevard 
Warrington 
Cheshire  
WA3 7QH 

BD Biosciences 
The Danby Building 

Edmund Halley Road 

Oxford Science Park 
Oxford 
OX4 4DQ 

Biotage AB 

Box 8  

SE-751 03 Uppsala 

Sweden 

BMG Labtech Ltd 

Unit 5 Merlin Centre 

Gatehouse Close 

Aylesbury 

Bucks 

HP19 8DP 

Dako 
Cambridge House  
St Thomas Place 
Ely  
Cambridgeshire 
CB7 4EX 
 

GE Healthcare 
Amersham Place 

Little Chalfont 

Bucks 

HP7 9NA 
 

ICN Pharmaceuticals Ltd 
Cedarwood Chineham Business Park 

Crockford Lane 

Chineham 

Basingstoke  

Hants 

RG24 8WG 
 

http://www.businessmagnet.co.uk/town/basingstoke.htm
http://www.businessmagnet.co.uk/postcode/rg24.htm


Invitrogen 
3 Fountain Drive 

Inchinnan Business Park 

Paisley  
PA4 9RF 
 

Janke & Kunkel  
Str-10  
D-79219  
Staufen  
Germany 
 

Merck 
Frankfurter Straße 250  

64293 Darmstadt  

Germany 

MRC-Holland 

Willem Schoutenstraat 6 

1057 DN Amsterdam 

The Netherlands 
 

Neomarkers 
47790 Westinghouse Drive  
Fremont 
California 94539 
United States 
 
 

Nonlinear Dynamics Limited 

Keel House 

Garth Heads 

Newcastle upon Tyne 

NE1 2JE 

Pierce Biotechnology Ltd 
Century House 
High Street 
Tattenhall 
Cheshire  
CH3 9RJ 

Promega UK 
Delta House  
Southampton Science Park  
Southampton 
SO16 7NS 
 
 
 



Qiagen 
House Fleming Way  
Crawley 
West Sussex 
RH10 9NQ 
 

Roche Diagnostics 
Charles Avenue 

Burgess Hill 

West Sussex 

RH15 9RY 
 

Sigma-Aldrich Company Ltd 
Fancy Rd 

Poole 

Dorset 

BH12 4QH 
 

Soft Genetics 
100 Oakwood Ave 
Suite 350 

State College 
PA 16803  

USA 
 

Thermo Shandon 
171 Industry Drive 
Pittsburgh 
Pennsylvania  
15275 
USA 

VWR International LTD 
Merck House 
Seldown Lane 
Poole 
Dorset 
BH15 1TD 

 
 



Appendix 2 - Buffer Recipes 

 

Laemmli Buffer 

62.5mM Tris-HCl pH 6.8 

10% (v/v) glycerol  

5% (v/v) β-mercaptoethanol 

2% (w/v) SDS 

A trace of bromophenol blue 

 

DIGE lysis buffer  

7 M urea 

2 M thiourea 

4% (w/v) CHAPS) 

 

SDS-PAGE running buffer 

25 mM Tris pH 8.3 

192 mM glycine 

0.1% (w/v) SDS 

 

Towbin’s transfer buffer 

25 mM Tris 

192 mM glycine 

10% (v/v) methanol 

pH 8.3 

 



DIGE buffer 

7 M urea 

2 M thiourea 

4% w/v CHAPS 

2% w/v DTT 

1.6% v/v pharmalytes pH 3-10 

 

Reswell buffer 

7 M urea 

2 M thiourea 

4% w/v CHAPS 

0.46% w/v (30 mM) DTT 

0.2% v/v pharmalytes pH 3-10 

A trace of bromophenol blue 

 

Equilibration buffer 

0.05 M Tris-HCl pH 6.8 

6 M urea 

30% (v/v) glycerol 

2% (v/v) SDS 

1% (w/v) DTT 

A trace of bromophenol blue 
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The need to find biomarkers for hepatobiliary diseases including cholangiocarcinoma (CCA)
has led to an interest in using bile as a proximal fluid in biomarker discovery experiments,
although there are inherent challenges both in its acquisition and analysis. The study
described here greatly extends previous studies that have started to characterise the bile
proteome. Bile from four patients with hilar CCA was depleted of albumin and immuno-
globulin G and analysed by GeLC-MS/MS. The number of proteins identified per bile sample
was between 378 and 741. Overall, the products of 813 unique genes were identified,
considerably extending current knowledge of the malignant bile proteome. Of these, 268 were
present in at least 3 out of 4 patients. This data set represents the largest catalogue of bile
proteins to date and together with other studies in the literature constitutes an important
prelude to the potential promise of expression proteomics and subsequent validation studies
in CCA biomarker discovery.

Keywords:
Bile / Biomedicine / Cholangiocarcinoma / Shotgun proteomics

Cholangiocarcinomas (CCAs) are neoplasms arising from
the bile ducts and are classified according to the involve-
ment of the intrahepatic and/or extrahepatic (hilar or distal)
portions. Overall, CCA accounts for 3% of all gastro-
intestinal malignancies and hilar CCA accounts for more
than 60% of cases [1]. At present, surgical resection or
transplantation in selected cases remains the mainstay for
treatment, but only a third of patients are amenable to this
potentially curative intervention [2]. Unfortunately, survival
outcomes have not changed significantly in the last 30 years
and even after R0 resection, that is, with a microscopically
clear resection margin, 5-year survival is around 20–40% in
most series [3]. Factors responsible for the poor outcome

associated with CCA include the limitations of diagnostic
modalities, with currently available biomarkers lacking
sensitivity and specificity to facilitate early detection of
disease. Development of better biomarkers would facilitate
earlier surgical intervention thereby improving prognosis.

Proteomics provides a powerful approach for the identi-
fication of biomarkers with potential clinical utility. Studies
of serum and plasma can be used for the discovery of such
molecules, but this approach is significantly limited by the
dynamic range of protein expression, which exceeds 410
orders of magnitude, with proteins originating from tumour
cells being of relatively low abundance. One approach to
overcome this problem, at least in part, is to use more
proximal fluids that would be likely to represent an enriched
source of tumour-derived proteins, thereby improving their
chance of detection. In the case of CCA, bile would be
predicted to be a good source of biomarkers shed or secreted
by malignant biliary epithelium [4]. However, a number of
factors make the study of bile in biomarker discovery studies
a challenge. First, there are difficulties with collection of
suitably large sample banks from patients with CCA andAbbreviation: CCA, cholangiocarcinoma
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appropriate controls such as patients with benign disease or
the predisposing condition primary sclerosing cholangitis
(PSC). Collection of bile is invasive, being possible during
endoscopic retrograde cholangiopancreaticography (ERCP)
or open surgery. Second, bile is a complex fluid with protein
comprising a relatively minor component compared with
other constituents such as bile salts and lipids, which can
interfere with protein separation and analysis.

A number of studies have started to characterise the bile
proteome, generating a body of data that will underpin
future studies using bile in comparative analyses to look for
disease biomarkers [5]. In one of the first large-scale efforts
to generate an inventory of bile proteins, unfractionated bile
from a patient with CCA was analysed by GeLC-MS/MS and
59 unique proteins were identified with a further 28 being
found by incorporating pre-fractionation by lectin affinity
chromatography using Con A and WGA [6]. More recent
studies have extended this catalogue of human bile proteins.
Analysis of bile from a cholesterol stone patient by 2-D
PAGE and 2-D-LC-MS/MS identified a total of 222 proteins,
98 of which were identified based on more than one tryptic
peptide [7]; strikingly, 114 of these proteins were predicted
to have a signal peptide. Using hexapeptide ligand libraries
to concentrate less abundant protein species, 222 gene
products were identified, 143 of which had not been
previously reported in bile [8]. Finally, in a study examining
biliary stenosis caused by pancreatic adenocarcinoma,
GeLC-MS/MS of bile identified 127 proteins (of which 34
were novel) based on more than one tryptic peptide; of
these, 480% were intracellular, most likely reflecting that
this study profiled both the pellet and supernatant generated
by centrifugation of bile [9]. The small number of studies to
date which often involve single patients, combined with
different sampling techniques and processing protocols
together with the variety of pathological conditions studied,
explains in part the differences between the proteins iden-
tified; however, taken together, approaching 300 proteins
have been identified in these four major studies published
to date [5]. The study described here markedly extends these
data sets, focusing on characterisation of the bile proteome
in four patients with CCA.

Bile was collected from patients undergoing diagnostic/
therapeutic ERCP intervention with ethics approval (REC
06/Q1206/136) and informed consent. After placement of
the catheter, 5–20mL Omnipaque dye (GE Healthcare,
Amersham, UK) was inserted to confirm its position within
the bile duct. An equal volume of fluid to dye injected was
discarded to minimise contamination, before bile was
collected into a sterile syringe and transferred to a Falcon
tube. Bile was transported to the processing laboratory on
ice within 15min of collection, centrifuged (13 000! g for
15min at 41C) aliquoted and stored at "801C until analysis.
To potentially improve the detection of lower abundance
proteins, two major bile constituents, albumin and immu-
noglobulin G, were largely removed using the Albumin/IgG
Removal Kit (GE Healthcare) following the manufacturer’s

instructions. Desalting and concentration of bile samples
was carried out by trichloroacetic acid (TCA) precipitation.
In brief, an equal volume of 20% w/v TCA was added to bile
(typically a volume equivalent to 150 mg protein), the mixture
was allowed to precipitate on ice for 30min before centri-
fugation at 18 000! g for 10min at 41C. The pellet was
washed with ice-cold acetone, allowed to dry and resus-
pended in DIGE lysis buffer (7M urea, 2M thiourea, 4% w/
v CHAPS). Protein concentration was determined by
densitometric analysis of InstantBlue Coomassies stained
gels (Expedeon, Cambridge, UK) of proteins separated by
SDS-PAGE using a standard curve formed using a serial
dilution of albumin-depleted serum (ADS) of known
concentration. Standard protein assays were not adopted as
they gave inconsistent results or did not show a linear trend
upon dilution of the bile samples being measured.

Protein (100 mg) from each sample was separated on 10%
SDS-PAGE gels using the Hoefer SE600X Chroma Deluxe
Electrophoresis Unit. Gels were stained with InstantBlue
Coomassies and each lane was divided into 53 gel
slices, which were reduced with DTT, alkylated with iodo-
acetamide and digested with trypsin. Extracted peptides
were analysed using an Agilent 1100 Series nano-LC System
(Agilent Technologies, South Queensferry, UK) coupled
online with a QSTAR XL quadrupole TOF hybrid mass
spectrometer (Applied Biosystems) as previously described
[10]. An MS scan from 400 to 1800m/z was performed
for 1 s; the three most abundant doubly and triply
charged ions (m/z 400–1000) with intensities over
40 counts were selected for MS/MS analysis, which was
acquired from 80 to 1800 m/z for 1 s in the Enhance All
mode and precursors were then excluded for 200 s. The MS/
MS data was processed by Analyst (version 2.0, Applied
Biosystems) and searched using a local Mascot search
engine (version 2.3, Matrix Science, London, UK) with the
following parameters – database: IPI human (89 652
sequences, version 3.74); enzyme: trypsin; fixed modifica-
tion: carbamindomethyl (C); variable modification:
oxidation (M), deamidated (NQ); peptide mass tolerance:
70.15Da; fragment mass tolerance: 70.1Da; maximum
missed cleavages: 1; instrument type: ESI-QUAD-TOF. The
false-positive discovery rate was determined as 1.81% by
searching against a decoy database. The Mascot Dat files
have been submitted to the PRIDE database (PRIDE
Converter 19587657; accession number 15872) and are
available at proteomics.leeds.ac.uk/supplementary_data/
bile. A summary of the dat files for each patient is provided
as Supporting Information Table 1.

For each patient, the intermediate files produced by Mascot
were combined, peptides with probability scores with p40.05
were excluded and redundancy then removed. Proteins
required at least one unique significant peptide to be consid-
ered identified. Details of the proteins and peptides identified
are supplied as Supporting Information Tables 2.1–2.4. For
proteins identified with a single peptide, spectra were inspec-
ted manually and only those passing this quality control were
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included; these are available at proteomics.leeds.ac.uk/data/
supplementary_data/bile. Overall 3576, 2126, 2162 and 2298
peptides corresponding to 741, 509, 378 and 389 proteins
were identified in the four bile samples from patients
with CCA, with 491, 350, 268 and 295 proteins being iden-
tified by at least two significant peptides, respectively.
Following removal of keratins and immunoglobulins,
redundancy was further reduced by taking the conservative
approach of collapsing the data set down to the gene level
(that is, removing the potential complexity arising from the
presence of different or multiple forms of a particular
protein in a particular bile sample). For protein entries with
no gene, peptides were searched against MSDB (proteo-
mics.leeds.ac.uk) to find this missing data; a small number
of entries for which this was not possible were not consid-
ered in downstream analysis. Following this data reduction,
products from a total of 813 unique genes were identified in
the four patients, with 185 being present in 4, 83 in 3 and
152 in 2 out of the 4 samples and 393 being unique to a
single patient. A summary of this data is available as

Supporting Information Table 3). The degree of overlap
between samples is shown in Fig. 1.

These gene products were analysed using the Gene
Ontology database version 7.0 (www.pantherdb.org/) and
Ingenuity Pathway Analysiss. Cellular component analysis
identified the majority of proteins to be cytoplasmic in
origin (55%), with extracellular space, membrane and
nucleus accounting for 20, 10 and 8%, respectively. The
terms molecular function and biological processes were
explored and in total 772 genes were annotated. Proteins
involved in catalytic activity were the most common
when looking at molecular function followed by protein
binding and structural activity (Fig. 2A). In biological
processes, proteins associated with metabolism, cellular and
immune processes and cell communication were dominant
(Fig. 2B).

As expected, there was considerable overlap between
previous studies and the proteins identified in our data set;
however, the catalogue reported here extends the biliary
proteome considerably with the largest published study

Figure 1. Venn diagram illustrating the
number of proteins in each patient and
degree of overlap between individual
patients. A total number of 813 unique gene
products were identified.

Figure 2. Diagram showing the assignment of gene ontology terms to the proteins identified in bile: (A) molecular function and (B)
biological process.

2136 S. G. Farid et al. Proteomics 2011, 11, 2134–2138
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reporting 222 proteins [7, 8]. As has been noted previously, a
significant proportion of these proteins are similar to major
abundant proteins found in plasma [11] but include known
CCA-associated proteins including MUC 1 [12], neutrophil
gelatinase-associated lipocalin (NGAL) [13] and vimentin
[14, 15] confirming the utility of analysis of proximal fluids
such as bile. A preliminary Ingenuity Pathway Analysis of
proteins reported in our data set has identified a number of
proteins previously reported to be differentially expressed in
studies of tissue, cell lines, serum and bile in CCA (Table 1).
There was significant variability between the bile samples
analysed here in terms of the number and identity of
proteins, probably reflecting individual and disease hetero-
geneity, the level of sample contamination as well as under-
sampling, which is a characteristic of the shotgun strategy
adopted.

In summary, we present a comprehensive catalogue of
bile proteins in four patients with hilar CCA and have
considerably extended current knowledge of the malignant
bile proteome. Profiling studies such as the one described
here have formed the basis for examining the expression of
a number of proteins in bile in relation to disease, as illu-
strated by the work taken forward on Mac2-binding protein,
which was identified as a bile protein in a shotgun study of
bile from a CCA patient [6] and subsequently shown to have
some potential as a biomarker [16]. The current data set
together with other studies in the literature constitute an
important prelude highlighting the potential promise of
comparative quantitative proteomic studies in CCA
biomarker discovery.

The Mascot Dat files have been submitted to the PRIDE
database (PRIDE Converter 19587657, accession number
15872).

Mr. Shahid Farid is supported by a Royal College of Surgeons
of England Research Fellowship. Ethical approval: Ethical
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