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Abstract 

In this thesis the viability of a wireless interconnect network for a highly parallel 

computer is investigated. The main theme of this thesis is to project the performance of 

a wireless network used to connect the processors in a parallel machine of such design. 

This thesis is going to investigate new design opportunities a wireless interconnect 

network can offer for parallel computing. 

A simulation environment is designed and implemented to carry out the tests. The 

results have shown that if the available radio spectrum is shared effectively between 

building blocks of the parallel machine, there are substantial chances to achieve high 

processor utilisation. The results show that some factors play a major role in the 

performance of such a machine. The size of the machine, the size of the problem and the 

communication and computation capabilities of each element of the machine are among 

those factors. The results show these factors set a limit on the number of nodes engaged 

in some classes of tasks. They have shown promising potential for further expansion 

and evolution of our idea to new architectural opportunities, which is discussed by the 

end of this thesis. 

To build a real machine of this type the architects would need to solve a number of 

challenging problems including heat dissipation, delivering electric power and 

Chip/board design; however, these issues are not part of this thesis and will be tackled 

in future. 
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Chapter 1: Introduction 

In this thesis the viability of a wireless interconnect network for a highly parallel 

computer is tested with the focus on connectivity. It starts with an introduction chapter 

in which a general overview of the idea is presented very briefly. More detailed 

discussions are available in next chapters (chapter 3 in particular). Following the 

overview is a discussion on the motivations behind the idea. It will discuss the 

importance of workong on this topic, the gaps in the literature it fills, the advantages of 

proposed model over current parallel computers and why it is the right time to work on 

it,. Furthermore, the main scientific contributions of the thesis are listed which will be 

discussed in more details throughout the rest of the thesis. The chapter finishes with 

presenting an outline for the rest of the thesis. 

1.1) Overview 

In this thesis we want to show whether wireless interconnect networks are suitable for 

massively parallel computers. A wireless interconnect network has the chance to reduce 

a supercomputer’s production costs due to eradication of extensive wiring between 

processing nodes. Also, wireless networks are more flexible than wireline networks 

because nodes can join a wireless network just by tuning to proper channel; while in a 

wireline network the nodes are located on process boards with fixed capacity and the 

capacity of each shelf and rack is also fixed. Therefore, it is anticipated that a wireless 

interconnect network will be more flexible and less complex than wireline networks. 

The idea of building a wireless platform for parallel processing raises questions such as: 

1. Is there any wireless technology at the moment that suits this purpose? 

2. How high the performance of such a computer will be? 

3. What are the benefits of having such a platform? 

4. How Hidden Node Problem is going to be tackled? 

5. How such a computer may look like? 

6. How the electrical power is delivered to processing nodes? 

7. How the heat generated by nodes is dissipated? 

The ultimate goal is to build a parallel computer with wireless interconnects containing 

at least thousands of nodes that is able to compete with modern commercial parallel 

computers; however, this thesis does not deal with all the questions listed above. The 

main questions this thesis answers are: 

1. Is there any wireless technology at the moment that suits for this purpose? 

2. What are the benefits of having such a platform? 
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3. How a wireless parallel computer may look like? 

4. How Hidden Node Problem is going to be tackled? 

5. How high the performance of such a computer will be? 

To have a picture about the available wireless choices, a broad survey on different 

wireless technologies has been carried out. The results of that survey are included in the 

thesis. 

A number of implementation challenges have been researched separately by Richard 

Hind [1]. Among other things he has investigated solutions for wire-free technologies 

for power transmission and cooling techniques for a large 3D grid. Those issues are not 

covered in this thesis but this chapter will have a brief look at some of those solutions. 

Another major target of this thesis is measuring the performance of a proposed wireless 

network connecting the processors in a parallel machine with a 3D physical topology. 

To do such measurements, a simulation and data visualisation tool kit is designed and 

developed. The thesis also tackles a number of challenges like packet collision and 

network partitioning. 

The proposed concept 3D wireless parallel architecture is called Ball Computer (BC). 

Each element of a BC (a ball) is a standalone processing and communicating entity in 

form of an electronic board with a processor of a reasonable computational ability 

equipped with a series of wireless transceivers. Based on the current level of electronic 

technology the whole package is sought to occupy not more than a couple of square 

centimetres. When massed produced, the balls can be available with reasonably low 

prices. The whole package will be put in a plastic (or any other suitable substance) to 

avoid electrical contact between balls. The whole collection of the balls will be 

submerged in water (or any other suitable liquid). The liquid will be in charge of heat 

dissipation and perhaps power delivery as well. To minimise the space occupied by the 

nodes and also to maximise the number of neighbours per node, a 3D hexagonal 

topology is selected for the network. In this scheme each node is in physical contact 

with 12 direct neighbours. Should a 2D hexagonal topology used for the network; the 

number of neighbours would be 6. 

Regarding the novelty of the idea, there are a number of challenges in making such a 

computer. This thesis focuses on connectivity issues including solving Hidden Node 

Problem and packet collision by introducing a multi-channel transmission scheme 

enhanced with a two-stage network partitioning algorithm to assign proper channels to 

wireless devices. 
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Another big question is how to deliver electrical power to nodes. Since the idea of BC is 

implemented in a simulation environment, the answer to the power delivery question 

does not directly affect the plan at its current state. At the time of implementation an 

effective power delivery mechanism is required. To be faithful to the original idea of an 

entirely wireless computer, the priority is to have a wire-free power delivery mechanism 

but other mechanisms may be considered should it is proven that wired solutions have 

significant benefit over the wireless options. 

Hind [1] has listed a number of wire-free power delivery mechanisms including: 

 Inductive Coupling; 

 Capacitive Coupling; 

 Radio Frequency; 

 Optical; 

 Piezoelectric; 

 Dynamo; 

 Chemical. 

It is shown in the aforementioned source that all those approaches have some 

shortcomings. Also, there are chances that a hybrid solution (a combination of two or 

more mechanisms) may have better performance in terms of power delivery to the 

circuitry envisaged in this thesis (a processor and a set of fast wireless devices). Hind 

[1] particularly suggests the combination of RF and inductive (or optic) methods may be 

effective (each operating over different distances). 

Among the methods listed above, inductive and capacitive coupling methods are 

efficient in distances shorter than what is envisaged in this thesis; but their performance 

drop significantly over longer distances. The possibility of using the cooling liquid to 

deliver the electrical power is another option. A properly chosen conductive liquid 

solution may be able to deliver electrical power to nodes and at the same time help 

dissipating the heat out of the nodes. There are; however, concerns about how to deal 

with the potentially toxic nature of the substances used in this method. The idea of 

storing power for transmission to other nodes is another idea that can improve any 

power delivery mechanism. Apart from wire-free power delivery mechanisms, direct 

(wired) power delivery solutions can also be considered. In this scheme nodes are 

placed on trays that not only fix their positions but also accommodate power lines to 

support nodes. 

Another issue that is not part of this thesis is heat dissipation. Like standard High 

Performance Computing (HPC) systems, gas and/or liquid substances are candidates for 
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cooling the proposed platform. It is anticipated that the circuitry envisaged in the 

proposed architecture will generate high level of heat per volume unit. This may rule 

out heat dissipation strategies based on air flow. It is already mentioned in this thesis 

that a liquid-based heat dissipation mechanism can also be used as a means for power 

delivery as well. More information about different aspects of BC architecture is 

available in chapters 3 to 6. 

A simulation test bed helps investigating the behaviour of the proposed network without 

dealing with any hardware implementation challenges. In real world, modern parallel 

computers usually use hundreds of thousands of processors. A quick survey on the 

network simulators already available showed that it is a challenge for all of them to 

accommodate networks with such a volume. For this reason designing and 

implementing a simulation and data visualisation tool set is part of the thesis. However, 

there are limitations on the number of simulated nodes in the simulation tool due to the 

size of memory needed for running the software. Another reason for building a new tool 

kit is the level of abstraction required for this research which does not match existing 

network simulation tools.  

There has been very little research on this topic. For this reason, we have to be careful 

in how we compare our work with other research. Also it is tricky to evaluate the cost of 

such a computer. This makes it hard to have an accurate cost-benefit analysis. Since no 

wireless parallel machine is made yet, all the performance measurements presented in 

this thesis are based on simulated models. Some aspects of the simulator are based on 

ideal models rather than realistic ones for simplicity; therefore, the measurements are 

approximations of real figures. More accurate simulated models are envisaged for the 

next stages of this research. To have a justifiable quantitative comparison in terms of 

performance between this research and available massively parallel computers we need 

to have both an implementation of the proposed concept computer in real world and a 

very precise cost valuation of that platform. At this stage, what this thesis is going to 

investigate are the new design opportunities a wireless interconnect network can offer to 

parallel computer architects. 

To tackle the problem with packet collision, a Multi-Radio-Multi-Channel (MRMC) 

scheme is devised for nodes. The radio devices should be tuned to proper frequency 

channels to make sure no packet collision occurs. As part of this thesis a novel two-

stage network-partitioning algorithm is designed and implemented. This is a collision 

avoidance scheme to guarantee that, by using different channels for communication 

between different (yet overlapping) groups of neighbouring nodes (zones), there would 
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be no interference between any two packets all over the network. In the thesis it is 

shown that the network size plays no major role in determining the number of channels 

needed. In fact the network topology and the radio range (and the interference range) of 

nodes dictate the number of channels. 

MRMC technologies have been used in different applications including mobile phone 

networks and wireless Internet access devices. Also, in all of these applications a 

network partitioning algorithm is essential to assign frequency channels to partitions of 

the wireless network. The differences between those algorithms are mainly in the 

criteria they satisfy and the topology of the network they are applied to. It is proven in 

the thesis that the proposed network partitioning is capable of solving the Hidden Node 

Problem and eradicating packet collision both in theory and practice. 

To evaluate the performance of the network in the simulated environment, tasks are 

reduced to a degree of abstraction so that just their pattern of communication and 

computation are retained. By doing this, the communication to computation ratio, the 

rate of occurrence, the duration, the order and the pattern of the communication and 

computation intervals are preserved. Furthermore, any possible dependencies between 

communication and computation intervals are left untouched. Therefore, a level of task 

abstraction, called a task-model, is achieved which is a virtual traffic generator that 

mimics a class of real world tasks in terms of processor and channel usages patterns. 

When task X is turned to a task-model the computational nature of X is not preserved. 

As a result, the task-model is no longer dependent on the software implementation of its 

original task. 

To have an overall understanding of the behaviour of the proposed parallel machine, its 

performance is studied over a range of network sizes, transfer rates and computational 

ability of the nodes. The results are shown and analysed in the thesis. A visualisation 

tool is also developed to improve our understanding of the behaviour of the proposed 

system through graphical description of its performance at different points. 

To have a cost-benefit analysis for the proposed BC architecture, we need to have 

information about the cost of processors as well as the cost of data links. A brand new 

processor is not going to be designed for the nodes in a BC platform. The nodes will use 

off-the-shelf processors with known prices. But to have a cost-benefit analysis an 

estimation of the cost of the wireless links sought in this thesis is required. The links 

surveyed in this thesis are all in research stages and there is still no commercial price tag 

on them. Also some data rates used in simulated experiments are not available at the 

moment. They were chosen only to cover a range of possible data rates from the past, 
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the present and the future. It does not mean that they are completely unrealistic; instead, 

the range of data rates chosen for experiments matches the expected technologies 

overseen for the near future. 

It is possible; however, to check the costs for existing parallel processing. Table 1 

shows how the cost for HPC has decreased over time.  This table just concerns the 

processors rather than networking (which is of particular interest in this thesis), cooling 

and other issues that contribute in total finished cost. A more accurate estimation on a 

whole parallel computer or its interconnect network is needed to have a precise figure of 

how much should a BC cost to be as commercially efficient as modern commercially 

available parallel platforms. 

Date Approximate cost per 

GFLOPS 

Technology 

1961 US$1.1 trillion, or US$1,100 

per FLOPS 

About 17 million IBM 1620 units costing $64,000 each 

1984 US$15,000,000 Cray X-MP 

1997 US$30,000 Two 16-processor Beowulf clusters with Pentium Pro CPUs 

2000, Apr. $1,000 Bunyip Beowulf cluster 

2000, May $640 KLAT2 

2003, Aug. $82 KASY0 

2007, Mar. $0.42 Ambric AM2045 

2009, Sep. $0.13 ATI Radeon R800 

2009, Nov. $0.59 (double precision); 

$0.14 (single precision) 

AMD Radeon HD 5970 Hemlock 

Table 1: Comparing the cost for 1GFLOPS worth of computation during last decades.1 

In lack of such numbers what we can do is to base our comparison on prices announced 

for (possibly isolated cases of) parallel platforms. Such a price also includes an 

unknown - and possibly considerably high- profit margin. To have a very rough 

estimation, a BC can be valuated based on the cost announced for a number of the most 

powerful supercomputers in the world. Table 2 lists a few of such supercomputers as in 

June 2014. It should be noticed that supercomputers are not usually mass produced and 

therefore in many cases their construction cost are not publically known. 

The table shows that at the moment 1GFLOPS of computation costs approximately $10. 

Based on available processors in the market it is realistic if we assume each node in a 

BC have 1GFLOPS of computational ability. In this case –and based on Table 2- a 

single node (processor plus all the wireless modules) has a price tag of $10. According 

to Table 1, the processors have just a very narrow share in that overall cost (something 

                                                 

1
 Shortened from a table presented in: http://en.wikipedia.org/wiki/FLOPS. 
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in range of $0.5 as announced in 2009). The remainder can be allocated to the wireless 

modules and other costs like cooling. This is just a case for comparison and should not 

be regarded as a scientific conclusion. The comparison above lacks high precision as 

there are many unknown issues on both sides of the comparison (i.e. the real cost of 

many supercomputers as  well as the costs for components of a node in BC interconnect 

network). Therefore, it is not a scientific analysis. However, this can be a good starting 

point for further investigation to achieve more accurate cost-benefits analysis. 

Construction 

Date 

Rank 

(as in Jun. 2014) 

Computer 

Name 

Speed 

(PFlops) 

Cost 

(USD million) 

Approximate cost 

per GFLOPS ($) 

Jun. 2003 1 Tianhe-2 33.86 390 11.52 

Oct. 2012 2 Titan 17.59 92 5.23 

2012 5 Mira 8.586 502 5.82 

Table 2: The cost of a number of most powerful parallel computers in the world derived from Wikipedia3. 

This thesis shows at least some of the existing on-chip wireless technologies can be 

used in a wireless interconnect for an HPC system; although, they are not originally 

designed for this purpose. The results demonstrated in this thesis show that for a given 

set of network attributes (in particular when the ratio of the links’ transfer rate to the 

processors’ computational ability is more than 1000) the performance is between 70% 

and 85% in terms of processor utility. 

1.2) Motivation 

The platform presented in this thesis is based on a number of technologies and 

algorithms some of which are separately researched and developed in other fields. Some 

others are inspired by existing algorithms and techniques. In this thesis we will see if 

these algorithms and techniques are mature enough to construct a new wireless HPC 

platform. 

Wireless devices are available in different shapes, sizes and prices. They are used in a 

wide range of applications including sensor networks, mobile networks, ad-hoc 

networks and wearable devices. But at the same time there are applications in which 

wireless modules are not traditionally considered as good choices. Time critical 

applications, applications requiring high data rates, applications in which energy 

consumption should be kept very low and applications with high load of data transfer 

are among such applications. On the positive side, wireless devices increase the 

flexibility and scalability of a transmission scheme. They also reduce cost and 

complexity by removal of wirings. 

                                                 

2
 It is an estimated cost. 

3
 http://en.wikipedia.org/wiki/TOP500. 
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It should be noticed that wireless devices have improved in terms of data rates and 

energy consumption in recent years. Until very recently, traditional wireless 

technologies have not been a good choice for time-critical applications like parallel 

processing.  

The main motivation behind the idea of using wireless devices in parallel platforms is 

the new emerging wireless technologies. The recent developments in low-range high-

speed wireless communication have already opened their way into some time-critical 

applications including inter- and intra-chip applications. Some advantages of a wireless 

interconnect scheme from a systems composition viewpoint are scalability, simplicity of 

assembly, potential for reduced power consumption, the obvious elimination of 

complex wiring problems and the ability to achieve economical three-dimensional 

physical packing of components. 

The main disadvantages of radio devices are their low bandwidth compared to wireline 

networks, packet collision which ends up in re-transmission of the data and the energy 

consumption which needs even more reductions to compete with wireline solutions. 

There are a number of bottlenecks in field of HPC, each of which are subject of intense 

research. The interconnect network has always been one of these bottlenecks. Among 

others are power consumption, software tools (operating systems, compilers and 

communication APIs) and management of high volume of data generated by these 

systems. Thus, the quest for novel network architectures is as lively as ever. 

Traditionally wired network technology has been the only candidate for connecting 

processors in a parallel machine. Wireless devices have seriously suffered from a 

number of shortfalls, which do not let it be a favourite option for a parallel computer. 

On the other hand a typical wireline network is usually made of compute boards with 

fixed capacity for processors, shelves with fixed capacity for compute boards (and/or IO 

boards) and racks with fixed capacity for shelves. Adding new processing elements to 

such a system is not always easy and straightforward because this may need some 

changes in the design and instalment of the network. But wirelessly communicating 

processing elements can be tuned to proper channels and join a 3D wireless network. 

This means that wireless networks can scale easier than their wired counterparts. The 

reduction of the wiring complexity and expense are also among the attractive aspects of 

a wireless architecture; however, the deficiencies of wireless technologies have 

outweighed their benefits and have discouraged the architects to use them so far. 

In light of new developments in wireless technologies it is now a good time to see if 

high speed wireless transceivers can be used to make a wireless network for HPC 
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applications. It is shown in different surveys that the gap between the bandwidth 

supported by wired and wireless technologies is narrowing during recent years. Kürner 

[2] has shown that although wireline technologies were always faster than their wireless 

counterparts, the difference between their data rates is constantly narrowing. There is a 

healthy chance to have commercially available THz-scale wireless (RF, inductive and 

capacitive coupling) devices in future which means the gap between wireline and 

wireless communication links is expected to become even narrower. Figure 1 compares 

the wireline and wireless technologies for local area networks during the last forty years 

to illustrate this point. 

 

Figure 1: Evolution of data rates in wireless as projected in [2] 

Improvements in signalling techniques and coding/decoding methods are among the 

reasons why wireline data rates are increased. Many of these improvements can be used 

to improve wireless technologies as well. Parallel to these improvements, researchers 

have tackled other restrictions exclusively concern wireless communications including 

power consumption. This means that there were more improvements in wireless devices 

than wireline technologies. This can explain why the gap between these two categories 

of technologies is narrower than past. 

In inter- and intra-chip communication the same reduction in difference between these 

two types of technologies can be observed. Moore et al [3] has shown that there is a cap 

in transmission speed on wires in those applications. This gives a chance for narrowing 

the gap between wireline and wireless devices in terms of data rates. 

Latency and bandwidth are two issues in any communication network. The bandwidth 

in both wired and wireless networks is now higher than ever. But the signal latency is 

not changed as much because to a great extent it depends on the communication media. 

This means that now signal latency plays a bigger role in network performance 
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compared to bandwidth. Sources of signal latency (AKA packet delivery time) can be 

hardware-based and/or software-based. Hardware latency can be expressed as: 

Eq. 1  𝑳𝒂𝒕𝒆𝒏𝒄𝒚 = 𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 + 𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏 𝑫𝒆𝒍𝒂𝒚 

These two factors should not be confused with each other. For a piece of data of size n, 

the transmission time is defined as: 

Eq. 2  𝑻𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 = 
𝒏

𝑻𝒓𝒂𝒏𝒔𝒇𝒆𝒓 𝑹𝒂𝒕𝒆
 

The propagation delay is related to the medium of communication and is the time from 

sending a bit of data in the transmitter side until its reception in the receiver side (Eq. 3). 

Eq. 3  𝑷𝒓𝒐𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏 𝑫𝒆𝒍𝒂𝒚 =  
𝒅

𝒔
 

Where d is the distance between the transmitter and receiver of signal, and s is the 

propagation speed. The propagation delay is not expected to be very significant 

regarding the high propagation speed of electromagnetic waves (300000000 m/s) and 

very short communication distances sought in the platform proposed in this thesis. For a 

1 cm wireless link the propagation time is around 33.3 ps (3.33 * 10
-11

). The 

transmission time in both wired and wireless networks are higher than such a number. 

As an example, transmission time of a packet of data of size 1 kb over a 10 Gb/s link is 

10
-7

 s. As a result, the hardware latency can be estimated by transmission time. In the 

absence of parallel transmission of data in wireless transceivers the transmission time 

relates to the inverse bandwidth of the data link. 

Software latency is believed to be around two degrees of magnitude higher than the 

hardware latency (An example is given in [4]). The coding/decoding procedure, queuing 

time, resource competition are among major contributors of software latency. Many of 

the contributors to software latency are common between wired and wireless networks 

and therefore do not play a major role in their comparing. 

In addition to latency, the bisection bandwidth and overall throughput are other issues 

that are envisaged to be improved by the platform proposed in this thesis. Details about 

these factors can be found in coming chapters. All these have encouraged us to think if 

high speed low latency short range wireless modules can perform the same as wireline 

connections in parallel processing platforms. 

MRMC devices have already been used in applications like wireless internet access 

networks. The same idea can be adopted over much shorter distances for on-chip 

wireless modules to accommodate in the platform proposed in this thesis. The number 

of channels and the mechanism used to manage them are different from previous 

applications. 
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A wireless HPC platform should have a solution for packet collision caused by the 

Hidden Node Problem. A variety of network-partitioning methods have been developed 

for different applications. These algorithms fall into two main categories: centralized 

(e.g. [5] [6] [7]) and distributed algorithms (e.g. [8] [9] [10]). These methods are used as 

part of a solution for packet collision in different wireless networks. This gives a chance 

to the author of this thesis to adopt a network partitioning algorithm that matches the 

characteristics of the proposed network. This is necessary to avoid excessive packet 

collision while all nodes in a localised group communicate on a same frequency. This is 

a crucial factor to build a multi-channel wireless grid for parallel computing. 

Some crucial elements of a wireless HPC system have been researched and developed 

separately and some of them have been used in different (yet relevant) applications. 

This implies that there are substantial chances to borrow and adopt technologies and 

algorithms to make a wireless parallel computer. The cost and complexity of such a 

computer will be reduced due to removal of the wiring system; however, the extra cost 

imposed by adding the wireless modules to nodes are yet to be measured. Also, such a 

system scales easier as there is no restriction imposed by wiring system. 

The idea of a wireless HPC platform has never been researched before. In addition to 

the novelty of the idea, its potential benefits over the traditional wireline interconnect 

networks and the fact that some crucial aspects of the plan are already researched and 

developed separately are the main motivations behind this thesis. Since the field is new, 

it can open new fields of research to researchers from different disciplines to explore its 

different aspects and even expand the idea to yet unknown territories. This thesis can be 

a start point for all those efforts. 

1.3) Main Contributions 

This thesis will investigate positive and negative aspects of using wireless interconnect 

networks for massively parallel computers. This thesis will show that the state-of-art on-

chip radio devices are the best choice for such a platform. However, we will see that 

those devices still need to improve in transfer rate and more importantly in energy 

consumption. 

A novel network partitioning algorithm will be proposed to solve Hidden Node Problem 

and eliminate packet collision. This thesis uses series of simulation experiments to show 

that the platform it has proposed yields excellent results (in terms of processor utility as 

well as link utility) for a certain range of networks. We will see that the best results are 

achieved when the ratio between the link’s communication speed (in bit/sec) and the 
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processor’s computational ability (in instruction/sec) is more than 1000. Also we will 

see that the performance of the proposed is higher when it deals with larger data sizes. 

The weaknesses of the proposed network are also investigated. The thesis shows that 

the main problem is in the type of routing and buffer management strategy adopted for 

this platform. Suggestions for improvement are made for future work. 

The main scientific contributions of the thesis are listed below: 

1. Introducing the concept of Ball Computer as a wireless infrastructure for HPC. 

Designing a simulated wireless-enabled processing module in order to be used 

as a member of a Ball Computer in a simulation environment. 

a. Introducing the concept of Ball Computer as a wireless HPC 

infrastructure. 

b. Designing a layered structure for nodes. 

c. Designing a two-layer message passing protocol for communications 

between layers of a node as well as different nodes in the network. 

d. Evaluating the network performance in the simulated environment. 

i. Studying how size of packets and other network parameters can 

be chosen to yield best performance for two major task-models. 

ii. Optimising the number of branches for a divide-and-conquer 

task-model in the proposed topology. 

e. Studying the behaviour of the Ball Computer under different 

circumstances. 

i. Running two sets of experiments with both FFT and Simple 

parallel task-models on a Ball Computer of sizes 1000 and 2000 

nodes when other network attributes change. 

ii. Analysing the results of those sets of experiments to demonstrate 

the benefits and limitations of Ball Computer under different 

circumstances. 

iii. Investigating the role of each chosen network attributes on the 

behaviour of the network. 

iv. Demonstrating the significance of the role of communication to 

computation ratio in determining the behaviour of the network. 

v. Finding if there is a limit on the size of workload in a wireless 

parallel machine. 

2. Solving the hidden node problem for the particular network proposed in this 

thesis and eliminating packet collision problem by using multiple radio devices. 
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a. Designing a multi-radio-multi-channel (MRMC) scheme. 

b. Designing a two-stage network-partitioning algorithm to partition the 

network into zones in first stage. 

c. Introducing a systematic method (second stage of the partitioning 

algorithm) to assign channels to zones to solve the hidden node problem 

and minimise the number of channels at the same time. 

3. Designing a set of task-models to study the behaviour of different tasks in 

simulated environment. 

a. Introducing the concept of task-models as communication/computation 

pattern generators. 

b. Demonstrating how a class of tasks can be converted to a common task-

model. 

c. Generating two task-models with very different communication patterns 

inspired by real-world tasks. 

d. Design and implementation of a communication protocol for each of 

those task-models. 

4. Studying tailor-made load balancing methods which fit the characteristics of the 

network. 

a. Showing how the unique topology of Ball Computer gives space for 

balancing workload to increase the performance of a Ball Computer. 

b. Introducing two load balancing metrics for a divide-and-conquer task. 

c. Discussion about potential benefits and limitations of each of those two 

load balancing metrics. 

d. Measuring the increase of performance using multi-tasking and multiple-

workloads using one of introduced load balancing methods. 

e. Introducing new task-models with load balancing for a better 

performance. 

In addition to the scientific contributions of this thesis, a set of software tools are 

designed and implemented which can be used and/or modified by other researchers who 

work on the same level of abstraction. They are listed below: 

1. Discussing the potential benefits and restrictions of using wireless technologies 

in parallel processing. 

a. Discussion on the advantages and limitations of wireless technologies for 

a 3D wireless parallel computer. Showing from what aspects and how 
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wireless technologies can be better than their wired equivalents in this 

application. 

b. Listing a number of available research technologies which can be 

candidates for wireless links in the proposed grid. 

2. Implementation of a novel large wireless network simulation and visualisation 

tool kit. 

a. Developing a simulation tool to measure the performance of a very large 

wireless network. 

b. Designing and implementing ideal wireless links for such a simulated 

network. 

c. Giving an independent identity to channels as software modules in the 

simulation tool which leads to easier and more perfect control over their 

activities and guarantees their robust performance. 

d. Making two different versions of the simulator (with and without clusters 

of nodes). Testing the benefits of both approaches. 

e. Studying the geometric and task-related attributes of a wireless parallel 

machine. 

f. Design and implementation of a set of visualisation tools to find the 

network’s bottlenecks. 

g. Using the visualisation results to analyse the performance of simulated 

network. 

3. Design and implementation of a distributed simulation tool. 

a. Design and implementation of independent software agents capable of 

communicating with each other to run a simulated large wireless grid. 

b. Design and implementation of a communication protocol for the 

distributed simulation tool. 

c. Running simulation experiments to test the performance of the 

distributed simulator. 

4. Design and implementation of a communication protocol for a multi-part packet 

transfer mechanism. 

a. Design and implementation of extra software layers to handle multi-part 

messages. 

b. Design and implementation of a communication protocol for a multi-part 

packet transfer mechanism. 
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c. Running simulation experiments to test the performance of the multi-part 

packet transfer mechanism. 

1.4) Organisation 

This thesis consists of ten chapters. Chapter 1 is the introduction chapter which gives a 

general idea about the subject of the thesis and the motivations behind it. It contains 

answers to the questions like why this topic has attracted our attention, how important 

this topic is and how the results from this thesis help filling some gaps in the research 

literature. Also the main contributions of this PhD thesis are listed. 

Chapter 2 takes us through a brief background review of the relevant fields of research 

to be prepared for the main part of the thesis in which some of those related researches 

are being used.  

Chapters 3 to 7 are dedicated to design and implementation of the proposed platform. In 

chapter 3 the main research question and the main hypothesis backing the research is 

presented and explained. It shows what the scope of the thesis is and defines the 

objectives of the thesis. It also shows what experiments are going to be run and how 

they are going to be measured to check the level of satisfaction. 

In chapter 4 we will see what kind of communication media is going to be adopted for 

the proposed network and why it looks fit for this specific purpose. This does not 

contain many electronic details as this thesis is entirely based on a simulation of 

wireless networks in which not all the electrical characteristics of the elements are (and 

are needed) to be implemented. In this chapter it is shown what attributes of the network 

are important from the simulator’s point of view. 

Inspired by what was reviewed in previous chapters, a novel network-partitioning 

algorithm is presented in chapter 5 which is tailor-made for this research. The criteria 

against which this algorithm is designed are listed. It will be explained why those 

criteria are chosen and how they are different from the other network-partitioning 

algorithms.  

In chapter 6 it is explained what is meant by “task-model” in this thesis and why it is 

important to use task-models instead of real tasks. It will be shown how real world tasks 

can be transformed to task-models to be fit for simulations. It will be shown how task-

models can be used to decrease the test and analyse time for a potentially large number 

of tasks in real world. 

Chapter 7 goes through implementation details of the simulation and data visualisation 

tool kit implemented in this research. Key data structures and communication protocols 

are presented in this chapter. It will be shown how the ideas originated from previous 
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chapters are translated to data structures and pieces of code. In addition to the main 

simulator, an off-line data visualisation tool is implemented and introduced in this 

chapter to present the results in an illustrative form to help analysing the results and 

verifying the initial hypothesis of the thesis. 

The next two chapters are dedicated to results derived from the simulation tests. One of 

the main targets of the thesis is solving the Hidden Node Problem and elimination of 

packet collision. In chapter 8 results will be presented to back the claim that the packet 

collision is completely eliminated. Also other preliminary results are presented in this 

chapter. The results show how the performance of the proposed system changes when 

network nodes are multi-tasking. Also it is shown how using multiple independent 

workloads improves the overall performance of the system. Included in this chapter are 

results that show how successful the idea of load balancing is and how the task-models 

used need to be changed to let the load balancing mechanism work effectively. Another 

part of this chapter is dedicated to a comparison between two main task-models 

introduced in this thesis. As it will be discussed in details later in this thesis, the main 

difference between these two task-models is the degree of dependency between tasks in 

different nodes of the network. This chapter finishes with a set of experiments on the 

optimal number of child nodes per parent node in a divide-and-conquer task-model in a 

2D and 3D grid. 

Chapter 9 covers one of the major parts of this thesis in which the behaviour of the 

system is studied when its four most important parameters change. The parameters are 

the network size, the transfer rate of links, the computation ability of nodes and the 

workload (data) size. Two different task-models and two different network sizes are 

used in this set of experiments. 

Chapter 10 is dedicated to the conclusion and future work. This chapter contains final 

analysis of the results presented in last two chapters. Results from previous chapters are 

used to assess how beneficial the idea of ball computers can be. It shows for what 

values for network parameters the proposed platform yields good results and for what 

values for those parameters the performance is not satisfactory. This chapter concludes 

with a look at how this thesis can be expanded. A number of new fields of research 

derived from this research are listed. 
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Chapter 2: Literature Review 

A wireless platform for a parallel computer needs to borrow ideas, algorithms and 

technologies from a variety of fields of research. Throughout this chapter some of these 

fields are reviewed to choose or tune those that best fit the wireless grid proposed in this 

thesis. Some background on the parallel processing and interconnect networks are also 

included in this chapter. 

2.1) Parallel Processing 

From the early days of computing history researchers have been challenged by problems 

that need excessive computation labour. This put a constant pressure on the architects to 

come up with new machines that can handle larger numbers of calculations in a given 

time. Some of the grand challenges are plotted in Figure 2 to present their storage and 

computational requirements as in 1999. 

 

Figure 2: Grand challenges as projected in 1999 in [11]  

The term “grand challenges” is first used in 1980’s in US governmental documents to 

refer to the main challenges for the future in the field of HPC. At present the challenges 

are almost the same with the exception that the computational performance and storage 

requirements are increased now. A 2011 report published by USA’s National Science 

Foundation [12] lists the grand challenges as: 

 Advanced new materials; 

 Prediction of climate change; 

 Energy through fusion; 

 Water sustainability; 

 Condensed matter theory and Quantum 

chromodynamics; 

 Semiconductor design and 

manufacturing; 

 Assembling the tree of life; 

 Drug design and development; 

 Understanding biological systems; 

 New combustion systems; 
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 Astronomy and cosmology; 

 Hazard analysis and management; 

 Human sciences and policy; 

 Virtual product design; 

 Cancer detection and therapy; 

 CO2 sequestration. 

Some of the 2011’s challenges can be found in Figure 2 (dated 1999) and others are 

new. The challenges in present time have more computational and storage demands 

compared to the last years of 20
th

 century. This is mainly because those challenges deal 

with larger data sizes now. 

Weather forecast, for example, is projected in Figure 2 as a 48-hour forecast which 

needs around 100 MFLOPS of computational capability and a 72-hour forecast with 

less than 10 GFLOPS; but today’s challenge in this filed is forecasting for longer 

periods and demanding higher computational capability. As theorized by DeBenedictis 

[13] in 2005, the climate modelling needs zettaFLOPS-scale computational capacities 

for a time span of a couple of weeks. 

A single simulation of gamma ray bursts needs around 18 million PFLOPS [12]. This 

means with a PFLOPS-scale parallel computer it is practically impossible to run a single 

simulation of that type in less than 100 days. 

To simulate a high pressure turbine blade needs a total of 1000 PFLPS and 1PB of 

memory [14]. These are just a few examples of present challenges for current PFLOPS-

scale computers
4
 which push HPC community to head for Exascale computing. 

To fulfil such high demands there are two basic solutions: first, using a single processor 

computer with very powerful processing unit; and second, using a number of processors 

and try to use their collective power to solve a problem that is too big to solve for each 

of them individually. The first approach has led to using transistors instead of vacuum 

bulbs; integrating transistors into ICs, increasing the density of transistors in chips and 

so on. The problem with this method is that even the best processors built cannot even 

get near what aforementioned grand challenges need in terms of computation ability. 

For example the 4 most powerful supercomputers as in June 2014 [15] use Intel Xeon 

E5 series, AMD Opteron 6274, IBM Power BQC 16C, SPARC64 processors which are 

capable of executing 17.6, 48.36, 12.8, 16.0 GFLOPS per core respectively (The rest of 

the top 10 supercomputers use the same processors or a processor of the same family as 

the top 4); while, based on the aforementioned figures thousands or even millions of 

PFLOPS worth of computational ability is needed for handling today’s grand 

challenges. 

                                                 

4
 At the moment the highest peak performance is reported by Tianhe-2 in China which is 33,862.7 

TFlop/s [15]. 
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The latter solution is the basis of what is now known as parallel processing. Almasi and 

Gottlieb [16] define a highly parallel machine as “A large collection of processing 

elements that can communicate and cooperate to solve large problems fast.” This is a 

very generic definition and many questions are left unanswered, including: 

1. How many processors are needed? 

2. How these processors are going to “communicate and cooperate”? 

3. How fast the problems can be solved? 

This is the architects’ duty to find answers to questions of this type to maximise the 

performance. These questions construct the key elements of any parallel machine. 

The key point in a successful parallel execution of tasks is that the processing elements 

can execute instruction at the same time. A Speedup factor is introduced to have a 

quantitative measure of how good a parallel machine works. It is simply the 

performance of a task on a parallel machine divided by the performance of the same 

task on a sequential machine. 

Eq. 4  𝑺𝒑𝒆𝒆𝒅𝒖𝒑(𝑵) =
𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆(𝑵)

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆(𝟏)
 

Arguably in almost all cases raw performance can be reduced to the execution time. 

Therefore Eq. 4 can be rewritten as Eq. 5: 

Eq. 5  𝑺𝒑𝒆𝒆𝒅𝒖𝒑(𝑵) =
𝑻𝒊𝒎𝒆(𝟏)

𝑻𝒊𝒎𝒆(𝑵)
 

However, no matter how good it is written, almost every piece of code has some parts 

that cannot be parallelised; i.e. for a programme it is impossible to run it fully in 

parallel. As a result, any program has its own serial and parallelizable parts. Amdahl 

[17] proved that if there are infinite processors available in a piece of code which takes l 

time units to execute and its parallelisable part p time units, the best parallel 

performance would be like Eq. 6: 

Eq. 6  𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝒍

𝒍−𝒑
 

Eq. 7 states that if there are just N processors involved, the maximum speedup is: 

Eq. 7  𝑺𝒑𝒆𝒆𝒅𝒖𝒑(𝑵) =
𝒍

𝒍−𝒑+
𝒑

𝑵

 

Whether this theoretical peak performance is achievable or not depends on how efficient 

the connection between the processors is. The interconnection between the processors 

can provide facilities for the processors to communicate with each other without which 

the whole idea of parallel processing will simply fail. In practice the speedup is even 

more limited by other factors. Figure 3 shows how an increase in the number of 

processors does not necessarily improve the performance. In this figure the horizontal 

axis represent the number of processors. Parameter “r” in this figure is the ratio of 

computation to communication times. 
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According to Figure 3, from a certain point increasing the number of nodes may 

decrease the performance because of the excessive packets sent over the network. This 

makes it harder for processors to find a free communication channel and as a result the 

performance drops. 

 

Figure 3: Different factors limiting the speedup factor presented in [16] (x axis represent the number of 

processors) 

The above figure is based on data from 1994 but the relationship between the speedup 

and the number of processors has remained almost unchanged despite the claims that 

Amdahl’s model may not hold any more. This does not mean that there is no limitation 

on speedup anymore; instead as, for instance, Hill and Marty [18] explain, because of 

new developments including introduction of multicore processors the form of threshold 

suggested by Amdahl’s law is now changed. Like Figure 3, in new parallel computers 

an increase in number of processors means more communication which is potentially 

taking place over longer distances and more congested long routes. This increases the 

chance for more delays during communication. Also, the comm/comp ratio still plays a 

role in the speedup factor. The finer grain the parallelism (corresponding with lower 

comp/comm ratio) the communication and synchronization overhead between tasks 

takes longer than the computation. On the other hand for coarse grain parallelism 

(corresponding with higher comp/comm ratio) there is a chance to reach higher 

speedups by saving time due to less number of task synchronisations. Also, Data 

derived from real-world measurements confirms that the assumptions suggested by 

Figure 3 still hold ( [19] [20]). 

Gustafson and Barsis had a rather different analysis on parallel computing which is led 

to what is known in literature as Gustafson’s law. The law is introduced in their article 

[21] published in 1988 which is different form Amdahl’s law as the former assumes that 

the data size is not fixed; while the latter deals with fixed data sizes. Gustafson’s law 
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states that in a process with a given non-parallelizable fraction any speedup ratio can be 

achieved by choosing the right data size. Amdahl’s law, on the other hand, deals with a 

fixed data size that means with a known non-parallelizable fraction of a process the 

speedup cannot exceed a certain limit. Eq. 8 formulates Gustafson’s law: 

Eq. 8  𝑺(𝑷) = 𝑷 − 𝜶 ∙ (𝑷 − 𝟏) 

Where P is the number of processors, S is the speedup and  is the non-parallelizable 

fraction of the process. 

While Amdahl’s law explains why adding too many processes to perform a task (with 

both parallelizable and non-parallelizable fractions) in parallel may not lead to a 

substantial performance improvement; Gustafson’s law tries to find how the size of the 

data processed with a parallel system in a given time can be increased by increasing the 

number of processors. Gustafson’s law does not apply to tasks that do not 

fundamentally deal with large data. Such tasks are not good parallel tasks as far as it is 

concerned with Gustafson’s law. The term “Scalable Parallelism” is used for tasks for 

which Gustafson’s law holds. 

2.2) Network Topologies 

Network interconnection has always been a hot topic in parallel processing. A wide 

range of topologies and technologies are used to let processors communicate as 

effectively as possible. 

Figure 4 illustrates three classes of interconnect networks. In part (a) a crossbar switch 

is used to connect processors and other elements. The advantage of this technology is 

that the bandwidth available for each node does not decrease when new elements are 

added as it uses a different set of connection lines. One negative point is the extra cost 

needed for the switch itself. Another problem is its expansion cost. To add a new 

element the switch may need to be replaced with a bigger one if no spare ports are 

available on the old switch. An increase in the size of a switch may leave some switch 

ports unused which means they have paid for a hardware which is partially of no use. 

 

Figure 4: Network interconnect topologies presented by [11] 
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In contrast to crossbar switches, bus technology (Figure 4.c), has the apparent 

advantages of simplicity, scalability and low cost (since there is no need for any extra 

network control device). However, the bandwidth available for each element drops as 

the network scales up. This is because all elements use the same physical 

communication medium. The length of the bus is also another restricting factor. Any 

type of cable has a length limit over which the signal send over it is not guaranteed to be 

decoded correctly. 

In part (b) a multistage switch network is used to solve the problem crossbar switches 

had with expansion and at the same time do not decrease the bandwidth when adding 

elements. Butterfly and Dragonfly networks are examples of modern multistage 

interconnect networks. The number of switches needed in these topologies still depends 

on the number of processing elements; but the number of switches relate to logarithm of 

the number of nodes that is significantly better than crossbar switches that have a linear 

relation between switch size and the number of nodes. 

In a crossbar network no message from node a to b can never block another 

simultaneous message from node s to t as these two messages use completely separate 

paths. From this sense a crossbar network is non-blocking. An issue with this type of 

network is that if the same situation occurs in some multistage switches, the correct 

delivery of those messages cannot be guaranteed. This means that some multistage 

switch networks are blocking networks. Whether a multistage network is non-blocking 

depends on the type of the network, the number of switches and their capacity (radix) of 

among other factors. 

Rank Computer Site Made by Network 

1 Tianhe-2 National Super Computer Center in Guangzhou, China NUDT TH Express-2 

(Fat Tree) 

2 Titan  DOE/SC/Oak Ridge National Laboratory, USA Cray Cray Gemini 

3 Sequoia DOE/NNSA/LLNL, USA IBM Blue Gene/Q 

4 K computer RIKEN Advanced Institute for Computational Science 

(AICS) – Japan 

Fujitsu Tufo 

(6D Torus) 

5 Mira DOE/SC/Argonne National Laboratory, USA IBM Blue Gene/Q 

6 Piz Daint Swiss National Supercomputing Centre (CSCS), 

Switzerland 

Cray Cray Aries 

7 Stampede Texas Advanced Computing Center/Univ. of Texas, USA Dell Infiniband 

FDR 

8 JUQUEEN Forschungszentrum Juelich (FZJ), Germany IBM Blue Gene/Q 

9 Vulcan DOE/NNSA/LLNL, USA IBM Blue Gene/Q 

10 - Government, USA Cray Cray Aries 

Table 3: 10 most powerful supercomputers in the world derived from [15] 
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Apart from these three categories there are some other topologies with no switches in 

which processing nodes are connected directly to each other. That is why they are given 

the general name of Direct Networks. In fact bus topology is also an example of direct 

networks but there are many more topologies which fall into this category. Trees, fat 

trees, Meshes and tori are among other direct network topologies. 

The most powerful supercomputers at the present time are also divided when it comes 

to using switches. Table 3 lists the 10 most powerful supercomputers as in June 2014 

according to TOP500 website. Here we review some of widely used network 

architectures some of which use switches and some others are direct networks. But 

before that we will review a number of metrics for network performance measurements. 

2.2.1) Network Properties and Performance Metrics 

There are a number of metrics to measure the performance of an interconnect network. 

We have already had some short discussions about latency and bandwidth. Other 

network properties and performance metrics are introduced in this section. 

2.2.1.1) Diameter 

In a network the diameter is the maximum number of hops in the shortest path from any 

given two nodes. In a bus topology, for instance, the network diameter is 1. Also, in a 

fully connected network (a network in which every node is connected to any other 

nodes via a dedicated direct link) the diameter is 1 as well. The shortest path between 

two nodes sometimes is referred to as minimal path. In some occasions non-minimal 

paths may be chosen for a data transaction, for instance, because of minimal paths being 

blocked by other transactions. 

In light of developments in packet routing methods the importance of number of hops in 

an interconnect network is reduced. In older methods (e.g. store-and-forward) the 

number of hops is one of main factors in determining the overall latency (hardware 

latency plus software latency). But newer methods like cut-through switching and 

wormhole routing are capable of hiding most of the hop cost; therefore, the number of 

hops is less important when these methods are used [4]. The aforementioned categories 

of routing algorithms will be briefly reviewed later in section 2.3. 

2.2.2.2) Bisection Bandwidth 

Bisection bandwidth (sometimes known as Bisection width) is the bandwidth across 

smallest cut that divides network into two equal halves. This metric is important 

particularly for algorithms in which all processors need to communicate with all others. 

If the network is not symmetric along its different axes, the bisection bandwidth is 
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measured across the narrowest part of the network. The bisection bandwidth of a bus 

network is the same as the bandwidth of a single link; while the same metric for a ring 

topology is twice the bandwidth of a single link. 

2.2.2.3) Throughput 

The aggregate rate of successful message delivery over all links in a network is known 

as the overall throughput of that network. The throughput is usually measured in bits per 

second. Packet per second and packet per time slot are also used. The throughput of a 

network is different from the aggregate bandwidth as throughput is only about real data 

transmitted over data links rather than packet overheads added by communication 

protocols. In theory, the maximum throughput is equal to available bandwidth; but in 

real world bandwidth is just an upper margin for throughput, and throughput cannot 

reach that limit for reasons including transaction overheads. 

2.2.2) Fat Tree and Hypertree 

First introduced by Leiserson [22], fat trees have the standard tree topology with one 

exception which is the links are not all of the same width. Here the word width is used 

to refer to the transfer capacity of a link. The links closer to the root of the tree are fatter 

than those further from the root. In other words, the root of a fat tree is connected to its 

direct children with high bandwidth links and the bandwidth decreases as we traverse 

down towards the leaves. 

Based on the assumption that the root of the tree and nodes close to it face higher 

amount of traffic, faster links are dedicated to those nodes while leaves of the tree (or 

nodes close to them) do not experience heavy traffic over their links. A fat link can be 

either a single high bandwidth link or more than one low bandwidth link (Figure 5). 

Tianhe-2, the world’s fastest supercomputer (June 2014) has a network called TH 

Express-2 which is a fat tree with 13 switches, each with 576 ports at the top level [23].  

   

Figure 5: Two implementations of fat trees. The widths of the edges represent the link bandwidth. 

The idea of fat trees has also been expanded to something called Hypertrees. A 

hypertree is a combination of two topologies: binary trees and fat trees both of which 
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can be visualised as 2D structures; however, in contrast with both of those topologies, a 

hypertree is a 3D topology. A hypertree can be visualised as a tree (binary or k-ary) of 

depth x while at the same time it can be regarded as a number of upside down binary 

trees of the same depth (Figure 6). Because of this dual nature of hypertrees, they are 

not trees as we know in graph theory. This is because in this topology a node can have 

more than one parent nodes. 

 

Figure 6: (a) A k-ary tree; (b) An upside down binary tree and (c) a hypertree as a combination of (a) and (b)5  

Some applications well suit fat tree and hypertree networks. The divide-and-conquer 

nature of FFT, for instance, matches the hierarchical structure of fat trees. This makes 

these networks different from networks like mesh or torus in which the network has a 

more uniform structure. 

2.2.3) Butterfly 

Butterfly topology is one of the most well-known multistage interconnect networks. In a 

multistage network nodes are connected via one or more layers of switches. The number 

of switches and the number of inputs of each switch (AKA the switch radix) depend on 

design criteria. Kim et al. [24] has shown that the radix of the switches for a massively 

parallel computer with multistage interconnect network is beyond any technology 

available in present or foreseen for near future if data is about to be switched to its 

destination in only one hop (Figure 7). 

Therefore it is believed that a single stage switch network is impractical for modern day 

large supercomputers. A layered switch network saves the network installation cost 

since a high radix switch is more expensive than a number of smaller radix switches 

with the same number of aggregate inputs. On the other hand, the wiring costs increase 

                                                 

5
 This figure is a reconstruction from an Internet page: http://blog.yam.com/snese1007/article/5659839. 
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hen the number of switches increases. The bandwidth of each input/output line and its 

effect on the number of lines is also an architecture issue. Using lower radix switches 

means that each line can have a higher bandwidth (given a fixed bandwidth for the 

whole switch); while higher radix switches need to be implemented using lower 

bandwidth cables. The trend in state-of-art HPC systems is to use higher radix switches 

with lower bandwidth lines (larger number of thinner inputs to switches) [25]. 

 

Figure 7: “Radix (k) of the routers required to scale the network 

(N) if only one global hop is required for each packet” [24]. 

The simplest building block of a Butterfly network is a 2*2 switch (Figure 8.a) which 

operates in two modes: pass-through and cross-over. An Omega network (Figure 8.b) is 

a three layer network made of those switches. In this network the IDs assigned to nodes 

help switches decided how to operate. At each stage if the corresponding bits of sender 

and receiver nodes IDs are the same the data passes through otherwise it crosses over 

the switch. Switches of higher radix can be implemented by combining proper number 

of 2*2 switches. As Figure 8 shows, the number of stages needed relates to logn(N), 

where n is the switch radix and N is the number of nodes. In Figure 8, n=2 and N=8. An 

increase in the number of nodes affects the total number of switches in two ways: first: 

more switches are needed in any stage; second: more number of stages may be needed. 

Knowing that the network cost directly relates with the number of switches, the 

relationship between the network installation cost and the number of nodes can be 

expressed by Eq. 9: 

Eq. 9  𝑪𝒐𝒔𝒕(𝑵) = 𝑪𝒐𝒔𝒕(𝟏) ∗𝒎 = 𝑪𝒐𝒔𝒕(𝟏) ∗
𝑵

𝒏
∗ 𝒍𝒐𝒈

𝒏
𝑵 = 𝑶(𝑵 ∗ 𝒍𝒐𝒈

𝒏
𝑵) 

Where N is the number of nodes, m is the number of switches and n is their radix. 

The Butterfly topology is derived from such a network. A k-ary n-fly Butterfly network 

consists of n layers of switches each of which having k switches of radix k. The overall 

capacity of this network is k
2
. The idea of Butterfly topology has then been extended to 

Flattened Butterfly topology [26]. Figure 9 shows two Butterfly networks (a, c) turned 

to Flattened Butterfly (b, d) by replacing all layers of switch with a single switch.  
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Figure 8: (a) Two modes of a 2*2 switch; and (b) an omega network made of 2*2 switches6 

All unidirectional connections between different layers of switches is now replaced by 

bidirectional (or two unidirectional) connections (red lines in Figure 9). This simplifies 

the network and also decreases the number of switches needed for the network and 

therefore decreases the cost. 

 

Figure 9: Butterfly topologies (a, c) and Flattened Butterfly topologies (b, d) as projected in [26] 

2.2.4) Dragonfly 

Dragonfly is the second multistage interconnect network discussed in this thesis. This is 

a topology mainly designed and developed by Cray and Stanford University [24]. This 

topology is inspired by both Butterfly topology and direct networks. It has a layered 

structure. In the low layer processing nodes are connected via switches to make 

“groups” of nodes (Figure 10.a). 

This can be a Flattened Butterfly network, a fully connected network or any other 

topology the architects find suitable for the specific purpose of a network. In the top 

layer Dragonfly is a direct network which connects groups as a fully connected (all-to-

all) network via optical or electrical connections (Figure 10.b). A Dragonfly topology is 

                                                 

6
 The images are taken from [290]. 



Chapter 2: Literature Review 

 

44 

described by the group size, the number of groups and the number of links connecting 

each group to all of the other groups. Figure 11 shows a sample implementation of 

Dragonfly topology. 

 

Figure 10: (a) Diagram of a group and (b) block diagram of a Dragonfly topology made of many groups [24]. 

Cray XC30 (Aries) technology is an implementation of Dragonfly topology. A Cray 

XC30 group consists of two cabinets (6 chassis). The number of XC30 groups depends 

on the maximum allowed length of optical or electrical cables used for inter-group 

connections (Figure 12). 

 

Figure 11: A sample implementation of Dragonfly topology as presented in [25] 

The maximum group size depends on the maximum length of electrical links which in 

turn is determined by links’ data rates. The actual length of copper links which connect 

chassis is 3m or less [27]. 
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Figure 12: Structure of a Cray XC system’s electrical group as projected in [27]. 

2.2.5) Mesh, Torus and Hypercube 

 

Figure 13: Mesh and torus topologies in 1D, 2D and 3D 

In contrast with Butterfly and Dragonfly topologies, mesh, torus and hypercube are all 

instances of direct network topologies. All three of topologies can be implemented in n 

dimensions (n ≥ 1). A 1D Mesh topology is basically a string of nodes connecting to 

each other in a linear way. A 1D torus is the same as 1D mesh with the exception that 

the first and last nodes are connected to each other via a direct link. A 1D torus is in fact 

a ring topology. A 2D mesh and a 2D torus are 2D expansions of the 1D mesh and 

torus. Higher order mesh and torus can also been made in the same way (Figure 13). 

A hypercube is an expansion of the idea of cubic topology in which all neighbours of a 

node are orthogonal with it. Having orthogonal neighbours is an advantage for this 
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topology because a network of this type has a low diameter while it accommodates a 

considerably large number of nodes (i.e. nodes can be reached by any other nodes in 

relatively low number of hops). Figure 14 shows cubes and hypercubes of up to 5D. 

Higher dimension hypercubes are implemented with the same fashion. Cray’s Gemini 

[28] is an example of using 3D mesh networks. IBM’s Blue Gene/Q is based on the idea 

of using a 5D hypercube as interconnect network. 

 

Figure 14: Cube and hypercube topologies of dimension 0 to 5 

2.2.5) Infiniband 

IBA Architecture (IBA) is a standard designed and promoted by key players in 

electronics industry emerged from merging of two previously proposed standards. 

Supported by Intel, Microsoft and Sun Next Generation I/O was merged with Future 

I/O (ngio), which was developed by Compaq, IBM and HP, in 1999 to make the first 

drafts of IBA. 

The association behind this standard is called the Infiniband
SM

 Trade Association 

(IBTA) co-chaired by IBM and Intel. Other major contributors are Dell, Compaq, HP, 

Microsoft and Sun. Sponsor companies include 3Com, Cisco Systems, Fujitsu-Siemens, 

Hitachi, Adaptec, Lucent Technologies, NEC and Nortel Networks. According to [29] 

IBA is introduced in order to standardise reliability, availability, performance and 

scalability on different levels to solve some issues bus-oriented approaches have. IBA 

standardises servers’ I/O models as well as inter-server transactions. 

IBA is not a fixed architecture for one or more purposes; instead, it gives the architects 

a range of options on switches, links, endnodes and subnet managers to find the best 

design for their networks. IBA suggests a network of switches as a backbone for the 
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interconnect network. Subnet managers are in charge of establishing and managing 

subsets of the whole network. Switches facilitate finding proper path for messages from 

sender and receiver endnodes. 

In addition to its original usage (in server systems) it is now a favourite architecture for 

HPC platforms and data centres. Major data base software developers like Oracle has 

invested a lot in using IBA’s potentials and it has become the most powerful 

architecture for enterprise data centres.  

IBA uses serial data links that can be used in one of the following data rates: 

 Single data rate (SDR), 

 Double data rate (DDR), 

 Quad data rate (QDR), 

 Fourteen data rate (FDR) 

 Enhanced data rate (EDR). 

Infiniband 2010 roadmap [30] has announced that two more data rates are going to be 

added: high data rate (HDR) which is due in 2014 and next data rate (NDR) which is 

not yet due for a specific time. The data rate of these two is unknown at the moment. 

IBA gives the option to vendors to aggregate 2, 4, 8 and 12 links to make them more 

powerful. Figure 15 illustrates the present and future data rates IBA supports in 

different modes. 

 

Figure 15: IBA’s current and future data rates adopted from 2010 roadmap [30] 

There are three types of devices involved in an IBA network: endnodes, switches and 

subnet manager. The first two are passive entities while subnet managers are active. A 

network needs at least one subnet manager but it can accommodate more than one 

subnet manager. In this case the subnet manager that has initialised the network is called 

the master subnet manager. To cover all types of communication needed in different 

applications, IBA supports a number of communication service types listed below: 

 Reliable Connection (RC) 



Chapter 2: Literature Review 

 

48 

 (Unreliable) Datagram (UD) 

 Unreliable Connection (UC) 

 Reliable Datagram (RD) 

 Raw IPv6 Datagram and Raw Ethertype Datagram (optional) 

Among the services listed above reliable datagram is of importance because there are 

some analogy between that type of service and the communication mechanism adopted 

for this thesis. In a network of multicore processors up to thousands of connections 

between different processes on different cores on different processors may be needed. 

To handle such a complex situation what many commercial databases do is to dedicate a 

process on each processor for communication purposes. Such a process gathers all the 

messages from local cores and sends them to target nodes. It also receives and processes 

all incoming messages to decide what process on local node should receive the 

message. Even such a solution can increase the complexity of the system especially 

when the number of nodes increases. What IBA suggests is to use RD services. In this 

type of communication each node has a set of software entities called End-to-End (EE) 

context. All messages to and from a remote node go through that remote node’s 

dedicated EE. It reduces the complexity of the system and scales well with the number 

of processes and the number of nodes. 

IBA-based networks facilitate memory access through three software entities: memory 

region, memory windows and protection domains. In most cases each system process 

has its own protection domain. It is also possible for a group of processes that are 

related through a shared memory to have a single protection domain for all the members 

of the group. Inside a protection domain it is possible to have one or more memory 

regions. Memory regions are in charge of mapping between physical and virtual 

addresses. A registration process is needed to create a new region which will generate a 

key called the L_Key which is necessary for memory accesses to the same region. The 

key is used to find the actual map as well as checking the access rights. A different key 

called the R_Key is needed for accesses to remote locations (e.g. to different endnodes). 

Memory windows are the smallest of the three with byte granularity and are used to 

restrict an individual operation to a specific set of data. 

To regulate the relations between hosts and their clients in a network of multiple hosts a 

partitioning mechanism is introduced in IBA. It uses a separate set of keys and key 

tables to ensure that remote hosts cannot access local devices unless such a transaction 

is done through local host. 
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2.2.6) Blue Gene/Q 

Blue Gene is a platform made by IBM for massively parallel computing. Three 

generations of this system are introduced. Blue Gene/Q is the latest version. The system 

architecture of Blue Gene/Q (which is the latest version of Blue Gene at the moment) is 

shown in Figure 16. What is particularly of interest is the internal structure of the 

processor network of Blue Gene. Some other parts of the system including the 

functional LAN can be implemented by Infiniband standards. Site LAN and functional 

LAN can be merged or they can be separated. Since Blue Gene is a diskless system, it 

needs a separate file system that is connected to the main racks through the functional 

LAN. 

 

Figure 16: IBM Blue Gene/Q system architecture as illustrated in [31] 

Figure 17 shows how multi-core processors come together to form a rack of processors 

and finally build the whole Blue Gene system. The processors usually used are 16 cores 

IBM PowerPC processors. The nodes in a node board form a 5D (of size 2*2*2*2*2) 

torus to have the fastest access time between nodes. The signalling rate between these 

nodes is 4Gbps. Midplanes are also 5D tori (of size 4*4*4*4*2). This means that each 

midplane accommodates 512 nodes. A rack can have one or two midplanes and the 

whole Blue Gene/Q system can scale up to 512 racks. The network size of a full scale 

Blue Gene/Q system can be 32*32*16*16*2. Knowing that a torus has a round 

formation (i.e. the nodes on two ends on each dimension are directly connected) the 

maximum number of hops between nodes in that scale is 16+16+8+8+1=49. 

The connection between nodes on a node board is through optical fibres. Electrical, 

Ethernet and Infiniband links are also used on different parts of the system. The data 

rates of the links are in Gigabit per Second range (1Gbps, 10Gbps and 40Gbps as 

dictated by design criteria). I/O drawers are made of the same processors but each 
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drawer has 8 processors and is just used for I/O purposes. They can be placed on racks 

(one, two or four drawers per rack); alternatively a separate I/O rack can be used. 

The cooling system of I/O compute cards is based on air cooling; while, water is used 

for cooling the compute cards. According to an IBM document [31] 91% of cooling 

system is based on water and the rest is by air. The power consumption for each rack is 

80kW (typical) and 100kW (maximum). The theoretical performance of a rack is 209.7 

TFlops. A sustained 170 TFlops performance is reported [31]. It can be concluded form 

the above numbers that the typical power efficiency of a Blue Gene/Q rack is 0.47 

kW/TFlops. 

 

Figure 17: Blue Gene/Q hardware overview as illustrated in [31] 

2.2.7) Network Topology Comparison 

After reviewing a number of interconnect network topologies we are able to compare 

them based on a number of network properties and performance metrics. Table 4 is a 

comparison between some of the most popular topologies based on the Degree of nodes 

(the number of connections a node has to other nodes), the network diameter (minimal 

path) and the dissection bandwidth of the network. It is also assumed that all links have 

the same bandwidth of x. In fat tree topology the nodes are connected through switches; 

therefore instead of degree of nodes the radix of switches is included in Table 4. 

Another point is that Dragonfly topology is not included in Table 4 because its metrics 

depends on the design decisions and varies from one supercomputer to another. 

However, the minimum number of hops between two nodes (including inter-group 

connections) via a minimal path is 5. Not all the transactions are guaranteed to take 

place via minimal paths. According to Alverson et al. [27] although in most cases 

(except for the largest systems) non-minimal transactions have six or seven hops, the 

absolute maximum number of hops in non-minimal paths is 10. The bisection 
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bandwidth is defined by the inter-group connections which are typically high-speed and 

expensive optical links (compared to cheaper electrical intra-group connections). 

Network Topology Nodes Degree Diameter Bisection Bandwidth (*x) 

Bus K K-1 1 1 

Ring K K-1 1 2 

Crossbar K
2
+2K 4 2(K+1) K 

1D mesh K 2 K-1 1 

2D mesh K
2
 4 2(K-1) K 

3D mesh K
3
 6 3(K-1) K

2
 

nD mesh K
n
 2n n(K-1) K

n-1
 

1D torus K 2 K/2 2 

2D torus K
2
 4 K 2K 

3D torus K
3
 6 3K/2 2K

2
 

nD torus K
n
 2n nK/2 2K

n-1
 

kD hypercube 2
K
 K K 2

K-1
 

Fat tree (n-ary) n
K
 n 2logn

K
 K/2 

Butterfly (K+1)2
K
 4 2K 2

K
 

Table 4: Comparing some of the most popular HPC interconnect network topologies (mainly based on data 

from [32]) 

There are other performance metrics like latency and energy consumption that depend 

not only on the network topology but also on the design and implementation of the 

supercomputer. Different implementations of a single topology may differ in latency 

and energy consumption. For example, the length of the electric/optic cables plays a big 

role in determining those performance metrics. 

Some other metrics are also affected by software (e.g. message passing API and routing 

algorithm) and operating system installed on a supercomputer. Network throughput is 

usually measured using the volume of real data transferred through a network; 

therefore, the amount of overhead attached to real data is important in determining the 

network throughput. Such overhead depends on I/O protocol, routing algorithm and 

underlying operating system among other factors. 

For these reasons, the aforementioned network performance metrics should be 

compared on a system-by-system basis rather than a topology-by-topology basis. Here 

are a number of comparisons and measurements on different topologies. 

The hardware latency in different supercomputers of different sizes and topologies are 

mostly in microseconds range. According to Chen et al. [33] a 16*16*16*12*2 Blue 

Gene/Q computer operates with a hardware latency of 6.5 µs. The latency for a 

dragonfly network in a situation in which there is low traffic (quiet network) is 

estimated 2 µs or less [27]. On an older HPC platform like IBM SP system the hardware 
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latency is reported to vary from 0.5 µs to 1.5 µs; while the user-level software latency is 

around 36 µs [4]. Kim et al. [26] have studied the effect of routing algorithm on latency 

in a Flattened Butterfly topology. They have also measured how choice of topology 

affects the latency. Also included in their paper are studies on how changes in number 

and radix of switches can affect the hardware latency in Flattened Butterfly topology. 

As reported by Cray [28], the end-point latency for a Gemini network is 1.0μs or less 

for a remote put, 1.5μs or less for a small MPI message (all measured for a quiet 

network). 

The optical and electrical cables used in Dragonfly technology are tested to measure 

their energy consumption. Results are reported by Kim et al. [24]. Those results are 

shortened and shown in Table 5. The table compares two types of optical cables used 

for long inter-group connections and one shorter electrical cable used for intra-group 

connections. In the same document the effect of routing algorithm on network latency is 

studied. 

Cables Distance Data Rate Power E/bit 

Intel Connects Cable <100m 20Gb/s 1.2W 60pJ 

Luxtera Blazar <300m 42Gb/s 2.2W 55pJ 

conventional electrical cable <10m 10Gb/s 20mW 2pJ 

Table 5: The data rate and power consumption of a number of cables used in Dragonfly topology 

Dally [25] estimates a 10pJ energy consumption for a floating point operation in yet-to-

build Exascale computers. To compare this with the data communication energy cost, 

he says a single word transaction between two nodes in a cabinet is equivalent to 32 

FLOPS in terms of energy consumption. For the same transaction between cabinets his 

estimation is as energy consuming as 256 FLOPS. 

2.3) Routing Algorithms 

In previous section it is briefly stated that the packet routing algorithm (AKA packet 

switching algorithm) plays a role in the performance of an HPC system. Here we will 

briefly review three important categories of routing algorithms used for interconnect 

networks of supercomputers. The difference between these methods is in the way they 

handle multi-hop communications. 

2.3.1) Store-And-Forward 

Store-and-forward algorithms are based on the idea of relaying a message only after 

receiving all of it in an intermediate node (i.e. a node that is not neither the sender nor 

the receiver of the packet). It is important for intermediate nodes using this category of 
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algorithms to check the integrity of the packets before transferring them to the 

destination (or another intermediate) node and for this reason they cannot start the relay 

process before having the entire packet. The advantage of such algorithms is the 

simplicity of implementation compared to other two categories. 

Store-and forward is a good idea especially for networks with intermittent connectivity. 

Examples of such networks are highly mobile networks and networks of nodes scattered 

over open rural areas in which there is a lower control over the connectivity of nodes. 

This category of routing algorithms offers maximum error checking by sacrificing 

forwarding speed. 

2.3.2) Cut-Through 

The main objective of a cut-through routing algorithm is to start relaying a packet in an 

intermediate node before receiving all of its contents in order to increase the forwarding 

speed. Such an idea saves some transmission time as there will be some overlap 

between the reception of the packet from the transmitter and sending it to the receiver. 

This means that intermediate nodes may keep transmitting corrupt packets because they 

can only decide if a packet is corrupt after receiving the entire packet (although it can 

eventually detect the error by checking the packet CRC). In real world the relay of 

packet starts after reading the first 14 bytes of incoming packet [34]. For links with data 

rates of 10Mbps and 100Mbps it makes a 25µs and 7.5µs of latency respectively. A 

restriction this idea has is that in some circumstances it cannot be used because of the 

nature of the network. To implement this idea it is important to have a guaranteed 

continuation of stream of data in both receiver and transmitter links. Also the 

transmission speed on both sides should be almost the same. 

A partial solution to this problem is introduced by a modification of this method called 

fragment free. In this method, the intermediate node starts relaying the packet after 

receiving the first 64 bytes of the packet. This is historically based on the fact that the 

minimum length of packets in IEEE 802.3 protocols is 64 bytes. Fragment free methods 

do not sent packets with less than 64 bytes (AKA runts) assuming that they are typically 

produced as a result of packet collision [34]. This method is expected to be a bit slower 

than pure cut-through algorithms when there is no collision (around 60 µs of latency 

according to [34]). Compared to cut-through, fragment free algorithms are capable of 

detecting more errors. The problem both pure cut-through and fragment free algorithms 

have is that it is assumed that the packet corruption occurs (or is detected) in the 

transmitter side. This is not always the case with wireless connections. This issue should 
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be taken into consideration if such algorithms are chosen for a platform like the one 

proposed in this thesis. 

Another approach would be having a compromise between pure store-and-forward and 

pure cut-through in a way that the node operates in cut-through mode when it is 

possible; otherwise it retreats to store-and-forward. In practice, nodes change their 

switching mode if the number of runts and CRC errors cross a threshold. The Table 6 

summarises how the change in switching strategy happens: 

Switching mode Detects 
Then adaptive mode 

changes switching mode to 

Cut-through 
High number of CRC errors Store-and-forward 

High number of runts Fragment-free 

Fragment-free 
High number of CRC errors Store-and-forward 

Low number of runts Cut-through 

Store-and-forward 
Low number of CRC errors Fragment-free 

Low number of CRC errors and Runts Cut-through 

Table 6: Adaptive switching strategy based on Intel documents [34] 

2.3.3) Wormhole 

This category of routing algorithms extends the idea of cut-through routing by 

introducing the concept of virtual channels. It is based on the idea of splitting a packet 

into smaller pieces called flits (flow control digits). The first flit of a packet is called the 

header flit contains the data needed for routing (e.g. the destination node’s ID) with or 

without part of real data. The header flit can be followed by none, one or more than one 

data flits. 

The difference between a flit and a packet is that two packets with the same source and 

destination may go through different paths and do not receive in the same order as they 

have been sent. But two flits of a packet always pass through the same path and in the 

exact order as they have been sent. Also, a packet has everything needed for routing; but 

flits do not have such additional data (except for the header flit). In fact it is the virtual 

channel mechanism that handles the routing tasks for header-less flits. If every flit had 

to carry the packet header it would have imposed a significant traffic overhead and 

consequently it would be very hard to compensate for such a loss in transmission time. 

It can be said that one of the main differences between cut-through and wormhole 

routing is that in cut-through routing the buffers allocated in packet-level while in 

wormhole routing the buffers are allocated in flit-level. This saves considerable buffer 

size over the network. 
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A header flit needs to be allocated proper network resources in the intermediate node 

before being sent to it. The channel used for data transaction and a space on flit buffer 

are among those resources. These resources are adopted for other flits as well. That is 

why non-header flits do not need to carry the routing information with them. The 

process of resource allocation repeats as the header flit moves from one node to another. 

However, there is a common problem with both cut-through and wormholing methods 

and that is they do not let another packets cannot cut in until the whole packet is sent. 

But the good news is, in wormhole methods the physical and virtual channels are 

separated and a physical channel can be associated with several virtual channels. This 

means that different packets can use different virtual channels on the same physical 

channel at the same time. 

Wormhole routing (switching) is the algorithm of choice for many modern 

supercomputers including Cray’s 3D torus Gemini, Dragonfly-based Cray’s Aries and 

Flattened Butterfly technologies. It helps reducing the overall software latency and 

increasing the throughput. 

2.4) Parallel programming Models 

Regardless of the network topology choice, the model of parallel programming can be 

classified into a number of classes. Two of the most popular among these models are 

shared memory and message passing. The main difference between these two is in their 

global image of the system (and memory in particular) [35]. 

Shared memory models (Figure 18) look at the whole set of processors, memory 

modules and other elements as a single machine. The key point is that there is only one 

memory address space [11]. All memory modules are subsets of this global space. 

Shared memory multi-processor machines can be compared with multi-threading in 

single-processor systems. The only difference is now we are dealing with real 

parallelism while in multi-threading a single processor uses time sharing techniques to 

give the users the impression of parallel multi-tasking. 

Like multi-thread systems, in the shared memory, each processor has its fair share of 

private and public memory space but all public and private memories are parts of a 

global memory space. Since there is a global and single memory space, all the memory 

accesses are handles by simple read/write instructions. There are two major shared 

memory schemes regarding the memory access time [36]. The memory access time can 

be uniform or non-uniform based on the system design. Uniform memory access times 

can be seen in Symmetric Memory Multiprocessors (SMP) [36] (Figure 19). 
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Figure 18: Shared Memory model and its similarity to multi-threading in single-processor systems; from [11] 

This is in fact a natural generalisation of bus technology in parallel machines. All 

processors and memory modules are connected to a single bus; therefore, there is a 

unique memory access time for all the processors. 

 

Figure 19: An SMP architecture as shown in [11] 

In many applications processors prefer to keep some of their most frequently used data 

as close to them as possible while other processors may not necessarily so eager to have 

fast access to those pieces of data. Such an imbalance between memory access times 

leads us to another major group of shared memory methods called Non-Uniform 

Memory Access (NUMA) methods [36] (Figure 20). Both these methods are popular 

between computer architects. 

 

Figure 20: A NUMA architecture as shown in [11] 
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In contrast to shared memory approaches, in message passing method (Figure 21) there 

is no global memory address space; instead, each processor is in charge of its own local 

memory space. The processors can communicate with each other to access other 

processors’ private memory locations. In this method read/write instructions are 

replaced by send/receive instructions when it comes to remote memory location access. 

 

Figure 21: A message passing communication method derived from [11] 

2.5) Wireless Communication 

There is a range of commercially available radio devices already used in different 

applications. At the current stage, this thesis is only based on a simulated form of BC; 

therefore, the following review of available radio technologies is just for having a 

picture of the current level of technology rather than choosing between them for this 

thesis. Apart from off-the-shelf radios, researchers are constantly increasing the baud 

rate of wireless transceivers. Reviewing the state-of-art radio technologies still in their 

early stages is another part of the background reading in this thesis. 

2.5.1) IEEE Wireless Protocols 

IEEE 802 [37] is a family of protocols dealing with local area and metropolitan area 

networks. Among its 23 sub-protocols it is the IEEE 802.15 family that deals with 

wireless personal area networks (WPANs). IEEE 802.15 [38] consists of 7 task groups 

covering different aspects of wireless communications. Among these 7, two task groups 

are of particular interest namely IEEE 802.15.1 (Bluetooth) and IEEE 802.15.4 

(ZigBee). These are protocols for short and medium range radio communications. Both 

protocols are widely used in domestic and industrial applications; however the baud 

rates they are designed for, are not high enough to be considered in the field of HPC. 

Figure 22 compares the ranges and data rates of IEEE 802 family members [39]. 

None of the protocols are specifically designed for very high data rate communications; 

however, they are good for low-energy communications in noisy environments. ZigBee 

[40] is a low-cost, low-power, wireless mesh network standard built based on IEEE 
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802.15.4 and is widely used in a range of applications including home entertainment 

and control, wireless sensor networks, industrial control, medical data collection and 

building automation. 

 

Figure 22: Comparing IEEE 802 protocols as projected by [39] 

What all these applications have in common is that they do not need high data rates. 

Also in a normal situation for a large majority of its life time a ZigBee device is inactive 

(sometimes referred to as sleep mode) and they just send/receive data when they receive 

a signal (mostly from a local sensor). This way, they can keep the power consumption 

to a very low level for most of their time. As far as it is concerned with our research, 

ZigBee’s biggest drawback is its data rate that is no more than 250 Kbits/Sec. Bluetooth 

[41] is another protocol built based on IEEE 802.15.1 protocol for low power short 

range communication and has become the dominant communication protocol for 

personal area network applications especially in home and entertainment, mobile phone 

interfaces and wireless connections between PCs and other devices. Its maximum data 

rate differs between its different versions and varies from 1Mbit/s to 24Mbit/s. Later on 

this report it will be shown why bandwidths supported by both ZigBee and Bluetooth 

are too low to be used in this research.  

The highest data rates within IEEE 802 family belong to IEEE 802.15.3 and 802.11 

(commonly known as Wi-Fi). IEEE 802.15.3‘s data rate varies between its different 

versions. Its 2003 version supports up to 55Mbit/s while its more recent versions 

including that of 2009 supports up to 3Gbit/s. IEEE 802.11 is designed for wireless 

local area networks. The communication range it is designed for does not match with 

what this thesis is dealing with. 

The data rates supported by Wi-Fi differ between its numerous versions. Different 

characteristics of different versions of IEEE 802.11 protocol is summarised in Table 7. 
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The interesting point in this table is that the latest versions of 802.11 protocol supports 

Multiple-Input Multiple-Output technologies, which - as shown later in the thesis - has 

some similarities with the network presented in this thesis. 

Version Release 
Freq. 

(GHz) 

Bandwidth 

(MHz) 

Data rate per 

stream 

(Mbit/s) 

Allowable 

MIMO 

streams 

Modulation 

Approximate 

indoor range 

Approximate 

outdoor range 

(m) (Ft.) (m) (Ft.) 

— Jun 1997 2.4 20 1, 2 1 DSSS, FHSS 20 66 100 330 

a Sep 1999 
5 

20 
6, 9, 12, 18, 24, 

36, 48, 54 
1 OFDM 

35 115 120 390 

3.7 — — 5,000 16,000 

b Sep 1999 2.4 20 1, 2, 5.5, 11 1 DSSS 35 115 140 460 

g Jun 2003 2.4 20 
6, 9, 12, 18, 24, 

36, 48, 54 
1 OFDM, DSSS 38 125 140 460 

n Oct 2009 2.4/5 

20 

7.2, 14.4, 21.7, 

28.9, 43.3, 57.8, 

65, 72.2 4 

OFDM 

70 230 250 820 

40 
15, 30, 45, 60, 90, 

120, 135, 150 
70 230 250 820 

ac (Draft) 
Nov. 

2011 
5 

20 up to 87.6 

8 

    

40 up to 200     

80 up to 433.3     

160 up to 866.7     

Table 7: 802.11 Network Standards derived from [42] 

Regarding the size of a parallel computer, it is not expected that long distances of 

communication is needed; therefore, protocols like IEEE 802.16, 802.20 and 802.22 are 

not going to be considered. 

The maximum number of nodes in a protocol is another concern. This is particularly 

important since the proposed system is supposed to accept large number of nodes 

(something in the range of hundreds of thousand or even a million nodes). This is a 

common deficiency of all IEEE 802 protocols. 

As a conclusion all IEEE 802 family members support the communication range needed 

but they have a number of limitations. The first limitation is on the data rates which are 

mostly below 1 Gb/s and are not high enough for HPC systems. Another problem with 

most of the wireless modules of this family is their physical size. Although some 

ZigBee devices are made in very small sizes but the majority of IEEE 802 wireless 

modules occupy in large spaces particularly because they need large antenna. Also, the 

network sizes supported by this family of protocols do not look very promising. For 

these reasons it is necessary to look for other wireless communication technologies for 

the application sought in this thesis. 

2.5.2) Inter-chip 3D Network of processors 

In addition to parallel processing applications, the idea of arranging processors in a 3D 

grid has been investigated for inter-chip applications. Akasaka’s article in 1986 [43] 

http://en.wikipedia.org/wiki/IEEE_802.11_(legacy_mode)
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emphasises on the restrictions of a 2D grid of modules in a chip and encourages the 

researchers to look for 3D solutions for future ICs. The use of wireless connection 

makes it even easier to think about stacking chips on top of each other. 

 

Figure 23: Different solutions for 3D stack of processor interfaces as projected in [44] 

Basically there are four strategies for 3D assembly of chip stacks (shown in Figure 23). 

The first two, which are not wireless in fact, are microbumps and Through-silicon-via 

(TSV). The former introduces very tiny microscopic metal bumps on the surface of two 

chips that facilitate the transfer of data between them. In the latter solution a metallic 

rod that goes through the two (or more) adjacent chips are used to connect the data lines 

of the chips. 

The other two solutions are capacitive and inductive coupling techniques. In these 

methods, the energy (in electric or magnetic form) saved by capacitors or inductors is 

used to transfer the electronic signal between two (or more) chips that otherwise have 

no other data connection. These two techniques are discussed in more details on section 

2.5.3 when reviewing On-chip Short-Range High-Speed wireless communication 

technologies. 

The restriction of both microbump and capacitive coupling is that both of them can 

connect no more than two chips. Moreover, the capacitive coupling can support only 

very short distances of 1 to 2 m. On the other hand, although inductive coupling 

supports longer distances, it was not originally suitable for parallel communications 

because of its large power consumption. There are, however, some successful attempts 

(including Sasaki et al. [45]) to reduce the power consumption. Therefore inductive 

coupling is the most favourable technique in this field to date. As stated by Miura et al. 

[46] in January 2007: “The state-of-the-art inductive-coupling transceiver achieves the 

second highest bandwidth with the second lowest power and the smallest layout area”. 
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Figure 24 compares some wireline and wireless inter-chip communication technologies 

in terms of performance and cost. Wireless approaches have a number of advantages 

over using wirelines or even over microbumps and TSV. 

 

Figure 24: Cost/Performance Comparison between Wire Bonding, TCI and TSV as depicted by [47] 

Miura et al. [46] list five advantages of wireless approaches over using wirelines, 

microbumps and TSV: 

1) Since the coupling elements can be created at the same time as the other 

parts of the chip (as opposed to wireline methods that needs an additional 

mechanical process) the cost and time of the process is saved. 

2) A micrometre distance between face-to-face chips can be achieved because 

of the elimination of an extra mechanical process in coupling techniques, 

which makes it easier to reduce the size of the finished product. 

3) The non-contact wireless connection does not need an electrostatic 

discharge (ESD) protection module. This leads to even more cost and area 

reduction as well as higher communication speed. 

4) Due to chips being detached from each other the reliability of the whole 

package is increased. It is also easier to test chips. According to Salzman and 

Knight [48] this can solve the known-good-die (KGD) problem
7
. 

5) Particularly for inductive coupling it is possible to save even more layout 

area by placing the transceiver circuits under the metal inductor. 

When facing high demand for high-performance and high scaling one may consider use 

TSV for power delivery for chip stacks. There are, however, some concerns over the 

heat dissipation of such a scheme. The number of elements in such a plan is restricted. 

                                                 

7
 As defined in [287]:” The issue of not being able to test bare silicon is referred to as KGD (known good 

die) problem”.     
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2.5.3) On-chip Short-Range High-Speed wireless communication 

Short-range high-speed and low-power wireless communication has been a hot topic in 

VLSI design. This is mainly because the gap between the bandwidth inside chips and 

the bandwidth between chips is increasing. One of the solutions to fill this gap is the 

idea of replacing wirelines with wireless connections between modules in a chip (or to 

connect two chips). Matsuzawa investigates possible solutions for an RF System-on-

Chip (RF-SoC) IC based on main design criteria. In his work [49] he concludes that 

CMOS and SiGe can be used to embed RF technology but the keys to massive use of 

RF in inter-chip applications are “continuous cost reduction, ease of function and 

specification change” and also it is important to resolve process portability issues. 

Basically there are three categories of short-range wireless communication: 

 Capacitive coupling; 

 Inductive coupling; 

 Radio waves. 

On 2008 Moore et al. [3] did a survey on chip-to-chip communication technologies. 

They concluded that compared to other technologies inductive coupling is a better 

choice for that purpose. According to them the radio devices will struggle crossing 

1Gbps line unless they resort to MIMO. Although recent developments have proven that 

conclusion was not 100% correct, it seems that their prediction over the restriction over 

power consumption of radio devices is legitimate. Their analysis over the crossover 

point is of importance. 

The crossover point as they define it is a critical distance between sender and receiver in 

which the nature of communication switches from reactive to radiation.  A reactive 

communication is based on data transfer using electrical fields (e.g. inductive and 

capacitive coupling); while radiation communication is based on transfer of data over 

electromagnetic (radio) waves. They stated that the crossover point increases with 

transmission frequency of a radio device. 

For a 1GHz frequency the crossover point is 2mm and it decreases to 0.5mm for 10GHz 

signals. This explains why it is hard to find a good inductive or capacitive coupling 

technology for cm-range transactions when the data rate is tens of Giga bits per second 

or more. We will see more evidence on this issue later in this section. Appendix A 

contains a list of different research projects on all the aforementioned technologies 

during the last decade or so. Some of those are as follow: 
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2.5.3.1) Capacitive Coupling 

Capacitive coupling (also called AC-coupling) is based on the electrical field created by 

capacitors to transfer power. It is particularly useful when DC-isolation is an important 

design issue; but it has also been used for data transfer purposes recently. 

Capacitive coupling has lower power consumption compared to other wireless 

techniques. On 2007 Fazzi et al. [50] reported a capacitive channel that consumes 

0.08pJ/bit and 0.12pJ/bit of energy in Mono- and bi-directional modes respectively. The 

main problem with capacitive coupling is that it cannot support long distance 

communications. Almost all the recent research on this field is dealing with distances 

not longer than 10 μm. 

Due to small facing pads of capacitors it is very crucial to align the pads correctly. 

Capacitive coupling is very sensitive to misalignment of pads. Compared to intra-chip 

applications, it is easier to meet the alignment criteria for inter-chip applications. This is 

another shortfall of this method for millimetre- or centimetre-range communications. 

It is possible to use multiple parallel capacitors to send parallel data in order to increase 

the data rate. The small area each channel occupies on chip has made it possible to 

accommodate multiple parallel channels on a relatively small chip area. It may in some 

cases be possible to utilise overlying top-metal layers to reduce area utilisation. 

As an example Drost et al. [51] used 16 parallel channels each with 1.35Gbps data rate. 

They managed to achieve 21.6Gbps data rate. Aung et al. [52] with two channel 

capacitors with 6Gbps and 0.015pJ/bit, Canegallo et al. [53] with 128 parallel 

capacitors with 32Gbps and 1.12mW power, Gu et al. [54] who reported a capacitive 

link with 11Gbps and 0.39pJ/bit and Kim et al. [55] with a 15Gbps link (0.47pJ/bit) are 

other examples of parallel high data rates with very low power consumption. Even 

higher data rates are reported including Hopkins et al. [56] who reported 230Gbps and 

260Gbps parallel links (144 links) with 3pJ/bit energy measured for the latter case. 

Some capacitive coupling model analysis can be found at Lee et al. [57]. 

 

Figure 25: An approximation of the energy for sending a bit over one m using capacitive coupling 
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It is not easy to compare the energy consumption of different research projects. This is 

because the research differs with taking different design choices (e.g. the distances 

supported by them are not always the same). Therefore, such a comparison in energy 

consumption is hard to be very accurate. Figure 25 is not very accurate; but it shows the 

overall trend of reduction of energy consumption per distance unit over the last decade. 

It means data can be sent over short distances with less energy year after year. 

2.5.3.2) Inductive Coupling 

The magnetic fields made by micro coils embedded on chips are the basis for data 

transfer using inductive coupling. Inductive coupling is popular in inter-chip 

applications especially for making 3D stacks of chips. 

Compared to capacitors, inductors can transmit data over longer distances. Distances up 

to a few hundred micrometres can be easily achieved. Over such a distance it is possible 

to achieve data rates in range of Gigabits per second. There are some reports on using 

inductive coupling in cm-range (less than 10cm) mostly in wearable Body Area 

Networks (BAN) applications (Lee et al. [58]). Such a distance is achieved with the 

expense of sharp drop in data rate to tens of Megabit per second. Other applications 

include high-speed wireless proximity communication (e.g. Matsubara et al. [59]). 

A series of projects led by Kuroda (including [60] [61] [62] [63] [46] [64] [65] [66]) has 

demonstrated the possibility of such a communication scheme for a range of 

bandwidths, distances and power targets. The team has reported up to 12.4Gb/s/channel 

bandwidth [67] (and 30Gbps in a simulation environment [68]) and energy consumption 

as low as 0.02pJ/bit [69]. The idea of using parallel links is also tested and brought 

successful results including 1024 parallel 1Gbps lines (1Tbps in aggregate) [46] in 2006 

and 1024 parallel 8Gbps lines (8Tbps in aggregate) [70] in 2010. Researchers like Han 

and Wentzloff have presented the numerical analysis of the advantage of resonant 

inductive coupling over standard inductive coupling in wireless power transfer [71].  

Analytical models [72] and lab experiments [73] reinforce that idea as well. 

There were also some researches on transmitting clock signal using inductive coupling. 

Kumar et al. [74] present an inductive coupling scheme to transfer a 1GHz clock signal 

over a 15μm with a power dissipation of 1.55mW and 0.75mW. Miura et al. [75] 

introduce a twofold strategy to reduce the crosstalk effect in inter-chip inductive 

coupling communication that involves finding a critical distance between adjacent 

parallel inductors
8
 and use of time interleaving (TDMA) technique. Miura et al. [69] 

                                                 

8
 Their measurements show that the critical distance varies when the number of parallel channels changes. 
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projected an improved version of their wireless clock and data transfer in which no time 

interleaving was used and still managed to transfer a 3.3GHz clock signal. When it 

comes to the communication distance it is the inductive method that can transmit data to 

longer distances compared to capacitive coupling. It is shown in [76] and [67] that data 

can be transmitted on high rates (2.4Gbps/channel, 12Gbps and 12.5Gbps respectively) 

over much longer distances (3.6mm, 0.5mm and 1mm respectively). 

Like capacitive coupling, it is possible to send parallel data using a number of parallel 

inductors and increase the aggregate data rate. The alignment problem still exists in 

inductive coupling but it is not as crucial as capacitive coupling. Single links of up to 8 

GB/s are reported by Miura et al. [70] in 2010. They use 1024 parallel links to form an 

8Tb/s communication scheme. This is way beyond the current links used by 

commercially available best supercomputers in the world which is in range of tens of 

gigabit per second (node-to-node) but the distance over which this type of 

communication is possible is less than a hundred of micrometres. 

Here, the energy consumption is reasonably low for on-chip applications. Although the 

transmission distance is typically longer than capacitive coupling, though still not long 

enough for the application envisaged in this thesis. On the other hand, cm-range 

inductive coupling devices have two major problems; first: they do not support high 

data rates; and second: they consume too much energy. 

Figure 26 shows how the energy consumption per bit per micrometre has been 

improved over the last decade. The discussion about the lack of accuracy in 

normalisation of results in capacitive coupling is also valid for inductive coupling. 

However, Figure 26 is good for an approximation of normalised energy consumption of 

inductive coupling and shows its shard drop over time.  

 

Figure 26: An approximation of the energy for sending a bit over one m using inductive coupling 

The area occupied by inductive coupling devices is particularly small because they do 

not need an electrostatic discharge (ESD) protection module. This means a potential for 

these devices to save some space (and cost). 
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2.5.3.3) Radio Waves 

Radio waves have also been tested for longer distances (less than a meter) for 

communication between devices and chips. The big problem with radio technology is its 

high power consumption compared with other methods. The low data rate is also 

another issue. 

On 2006 Reynolds et al. [77] demonstrated a 2Gbps on-chip radio. On 2007 Daly et al. 

[78] presented their 1.5Gbps on-chip radio. As both these projects were designed to 

work for long distances (2.5m and 10m respectively) there is no surprise that they 

consume large volume of energy (1.3W and 0.87W respectively). On 2008 Laskin et al. 

[79] successfully transmit 4 Gb of data per second over a 1.15m-link with the cost of 

1.5W. This shows an improvement but the power is still a big issue. On 2009 Chen et 

al. [80] made a 6Gbps radio with 117mW power consumption for a link of up to 4cm. 

On the same year Tomkins et al. [81] presented an on-chip radio with 6Gbps bandwidth 

over 2m that consumes 232mW to 374mW of power. The constant push for lower 

power consumption and higher data rates in recent years brought much better results. 

On 2010 Deb et al. [82] managed to transfer 16Gbps signal over a 2cm-link that only 

needed 90mW of electrical power. 

Data rates of around 10 Gb/s have been reported several times in recent years by 

different researchers. Some attempt to increase the data rate using different methods. As 

an example, on 2011 a team from Sony in collaboration with CalTech (Fukuda et al. 

[83]) demonstrated how using plastic stripes as waveguides can improve the 

performance of an on-chip radio. Their 25Gbps on-chip radio over a 12cm-link 

consumes 140mW of power. Recently on 2012 the same team (Tanaka et al. [84]) hit 

the record of 26Gbps over the same distance that consumes only 137mW over the same 

distance. 

Figure 27 summarises the consumption of energy for transmission of a bit over a 

millimetre over the last decade. Like Figure 25 and Figure 26, this figure cannot be 

100% accurate but the general trend of sharp reduction in energy can be detected. 

Among other factors, the bit error rate target is different in different projects. 

Ishigaki et al. [85] have announced a 1TeraHz transceiver using resonant tunnelling 

diodes (RTD). Using a 542 GHz signal with a cut-off frequency of 1.1 GHz they 

reported a successful transmission of an ASK signal of up to 3.25Gbps with reasonable 

bit error rate over a 1cm distance. They anticipated higher data rates by using higher 

cut-off frequencies. Projects like this can create opportunities for developing high-speed 

wireless communication for a wide range of distances. A wide range of chip-area is 
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reported for different projects to accommodate the radio devices embedded on chip. In 

some cases like Foulon et al. [86] an area of 0.05 mm
2
 is enough for their radio module 

while in other cases like Miyashita et al. [87] 56 mm
2
 is needed for that purpose. 

 

Figure 27: An approximation of the energy for sending a bit over one mm using radio waves 

In addition to pure radio communication solutions some hybrid methods are tested. Deb 

et al. [82] showed how a mixture of wired and low power mm-wave wireless inter-chip 

links can significantly improve the performance of a NoC system. Another example is 

what Chang et al. [88] have done in which a number of wireless shortcuts are used in a 

multi-processor integrated circuit to reduce the total power consumption. 

 

Figure 28: Comparing the distance of data links in (a) wireless and (b) wired networks. 
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link is a straight line between the sender and receiver of data while this is not 

necessarily always the case in a wired network. Wired networks are made of CPU 

boards, shelves and racks. The processors in a CPU board can be connected via a fairly 

short set of wires. But to connect boards, shelves and racks a considerably long data link 

is needed. Figure 28 shows how a wireline link can be much longer than its wireless 

equivalent. This means that the power consumption in a wireline link should not be 
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compared with that of a wireless link of the same length. To identify the exact 

equivalent length of a wireline link one should have detailed design information of both 

the wired and wireless networks. 

2.5.4) Multi-Channel Communication 

It was back in 1941 when a famous actress of that time called Hedy Lamarr inspired by 

pieces made by her composer neighbour, George Antheil, accidentally came up with the 

idea of switching between communication channels during a transmission time of a 

signal
9
. Their invention [89] was the first single-radio multi-channel (SRMC) radio 

device. The idea is also known as frequency hopping and is widely used in spread 

spectrum communication. 

The main difference between their works and an MRMC device is that in MRMC 

multiple radio modules are used while in SRMC devices there was only one radio 

module switching between channels. Around 30 years later Kaye and George [90] 

introduced something that later was recognised as the first Multiple-input and multiple-

output (MIMO) module. (MIMO); however, is not restricted to the radio wave medium 

and includes other communication media like fibre optics. In 1974 Brundenburg and 

Wyner [91] derived a formula to describe the performance of a multi-channel system in 

presence of Gaussian noise. Van Etten’s linear multichannel transmitter/receiver [92] 

and Van Etten and de Jong’s optimisation [93] are also among the early works on this 

field. Golden et al. introduce the first lab prototype of MIMO systems [94] in Bell Labs 

in 1998. 

Wireless Internet access is one of the main applications of MRMC today. Moreover, a 

slightly different form of multi-channel communication is used in mobile phone 

technologies. Mobile handsets switch between channels when they join a new base 

station. From this point of view they can be categorised as a single-radio multi-channel 

device. However, most of today’s mobile phones, tablets, laptops and desktop 

computers can all be regarded as MRMC devices as most of them can use Bluetooth, 

Wi-Fi and other radio technologies at the same time. 

2.6) Packet Collision in Wireline and Wireless Networks 

In all types of network (wireline or wireless) packet collision is a major problem which 

causes long transmission time due to back-off times’ overhead and possibly 

                                                 

9
 At that time they anticipated their idea being used in radio-guided torpedoes to switch between 

frequencies to make it harder to detect, decode or jam. However, their idea did not attract proper attention 

until 1962 by USA military when their original patent was expired. 
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retransmission of packets after acknowledgment packet’s timer expired. Any node that 

wants to send data on a shared communication media first listens to the link in order to 

detect a silent link and then starts the transmission process. This is called Carrier 

sensing, which is the basis for many communication strategies on shared transmission 

media. Carrier Sense Multiple Access (CSMA) method of multiplexing is introduced by 

Kleinrock and Tobagi [95] in 1975. In this method, nodes do not start the transmission 

when the shared link is already busy with another transmission; therefore, the collision 

just happens when two or more nodes detect a silent link and initiate their transmission 

process all exactly at the same time (in practice this may happen in a certain time period 

around the start of transmission rather than the exact start time of transmission). In this 

case an arbitration mechanism is needed to decide which of those nodes have the 

permission or the priority to use the link. Like other types of resource contention 

problems there are two major strategies to tackle packet collision: collision detection 

and collision avoidance. 

Tobagi and Hunt [96] added collision detection feature to the original CSMA 

(CSMA/CD) in which transmitters stop transmission over a link as soon as they detect a 

collision. Then they wait for a period of time of a randomly selected length and then 

start again. This cannot guarantee that collision will not happen for a second time. In 

theory, the transmission time is not deterministic and it can be even infinitely long. But 

in practice, the chance for more consecutive collisions is very low. 

 In case of simultaneous attempt of two or more nodes to gain control over the 

communication media, what usually happens is that one of the nodes is permitted to 

continue with sending data and other nodes wait for some time and try again. As 

mentioned before, by using this technique, the correct transmission of all packets is 

guaranteed but there is no deterministic value for the transmission time. The key point is 

that these algorithms cannot avoid the situation. In time critical applications (including 

parallel processing) a high number of collision incidents increases the overall task time 

and decreases the efficiency of the network. Another key point is that in CSMA/CD 

collision is detectable on the transmitter side while in a wireless network not all 

collisions can be detected on transmission side (Hidden node problem [97]).  

On the other hand, CSMA with collision avoidance (CSMA/CA) techniques act to 

prevent collision in first place (compare with CSMA/CD that tries to solve the packet 

collision problem). IEEE 802.11 [98] is a family of protocols that defines CSMA/CA 

among some other Media Access Control (MAC) and Physical (PHY) layer protocols 

for Wireless Local Area Networks (WLAN). Sometimes CSMA/CA focuses on 
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separating potential transmitters over time or transmission media. One of the collision 

avoidance techniques is based on dedicated timeslots to each node to send their data. 

This means no other node initiates a transaction during that timeslot. This makes it 

impossible to have interference between two competing nodes to access the shared link. 

In practice there should be a guard band after each timeslot to solve the problem with 

off-sync nodes. During these periods no node initiates a transaction. Solving the 

problem with off-sync nodes comes with a drop in effective bandwidth of the link. 

Another technique is to use a pair of signalling packets called Ready-to-Send (RTS) and 

Clear-t-Send (CTS). When a node wants to send a packet to another node it sends an 

RTS packet before the main data packet. If the receiver is ready to receive the packet it 

sends back a CTS packet which in the transmitter side is interpreted as a signal to start 

the main data transaction. This type of communication is particularly useful in wireless 

networks in which existence of hidden nodes is a problem. Hidden nodes are nodes that 

cannot be detected by one node or a group of nodes. When a node (e.g. node A in 

Figure 29) detects a silent channel, the channel can be used for a data transaction. But, 

the problem is the silence of that channel is guaranteed just inside the transmitter’s 

collision domain (i.e. interference range); at the same time, there can be other nodes out 

of this domain (like node D in Figure 29) that are still capable of interfering with the 

signal in the receiver side
10

. This is one of the main differences between wireless and 

wireline networks. In wireline networks packet collision can be detected in transmitter’s 

side; whereas, in wireless networks it is the receiver that can detect the collision. The 

difference is because in a shared wireline link all node members have the same collision 

domain; but in wireless networks the collision domains of different nodes are not 

necessarily the same. 

The RTS/CTS technique gives both the transmitter and receiver the chance to inform all 

nodes in their collision range about the data transaction. This is the basis for Multiple 

Access with Collision Avoidance (MACA) methods for wireline networks. In view to 

solve the hidden node problem in wireless networks a variation of MACA algorithm is 

introduced called MACAW (MACA for Wireless) [99] in which each data packet 

should be followed with an acknowledgment packet from the receiver to transmitter. 

Another collision avoidance solution is called Carrier Sense Multiple Access with 

Collision Avoidance and Resolution using Priorities (CSMA/CARP) which is also 

                                                 

10
 There is a similar, yet slightly different, problem called Exposed Node Problem [291], in which it is the 

transmitter of a message that is receiving a signal from other node while the receiver of its own message 

is out of the interference range of the second signal. 
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defined in IEEE 802.11. In this method a modified version of RTS/CTS mechanism is 

used. After sending the RTS packet the transmitter does not start transmitting the main 

data right after receiving the CTS signal. Instead, it waits for a period of time called 

inter-frame space (IFS). The value of IFS varies with the type of packet. This is 

basically a prioritising mechanism. High priority packets have smaller IFS while low 

priority packets have bigger IFS. 

 

Figure 29: Hidden node problem in wireless networks. Black circles represent Radio range of nodes A and D. 

Grey circles represent interference ranges of A and D. 

In wireless networks RTS/CTS mechanism can be used to avoid packet collision but it 

is the timeslot scheme that is proven to be a nearly perfect solution for packet collision 

in an environment in which packet collision can just be detected on the receiver side. 

2.7) Network-partitioning 

In this thesis the term “network partitioning” is used to refer to methods and algorithms 

used to divide a wireless network into subsets to let them operate on a given radio 

frequency. It can be compared with graph colouring problem (or a variation of that). As 

part of this thesis we are dealing with this concept and so it is necessary to know about 

what is already done on this field by other researchers. Network partitioning is a matter 

of interest in two separate fields: first: mobile phone networks and second: wireless 

Internet access networks and wireless mesh networks. In a majority of applications in 

both of these fields a network-partitioning algorithm has two stages. On the first stage a 

given network is split into overlapping or non-overlapping subnets and on the second 

stage a radio channel is assigned to each of these subnets. The latter stage is usually 

known as channel assignment. 

In a mobile phone network the objective of a network partitioning and channel 

assignment algorithm is to optimally use the available radio spectrum while 

guaranteeing the network connectivity and safety of calls for mobile users when they 

cross the partition borders. A wide range of algorithms are designed and implemented 

for this purpose. [100] is a good survey on channel assignment and resource allocation 
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algorithms for mobile phone networks. What mobile handsets need to do in a properly 

partitioned network is to detect different signals received from different land antennas 

and decide which one is best to choose to communicate on. No two adjacent partitions 

should have the same channel. The size of the partitions and the bandwidth allocated to 

each of them are (either statically or dynamically) determined by the network-

partitioning algorithm. 

Network-partitioning and channel assignment have also been investigated in Internet 

access networks and wireless mesh networks. Most of the algorithms presented for these 

applications are dynamic algorithms as the characteristics of the network and the traffic 

measures are subject to change during the time. For these reasons bandwidth allocated 

to each branch of the network needs to be reviewed to minimise the latency and 

maximise the spectrum usage. Network-partitioning algorithms can be centralised or 

distributed. Weisheng et al. [101] have had a good review on different network-

partitioning methods in wireless mesh networks. Although the network proposed in this 

thesis is very different form wireless mesh networks for internet access, there are still 

some key design issues in common between mesh networks (as listed by Weisheng et al. 

[101]) and the network proposed in this thesis including: 

 Interference: To reduce the interference the variety of the channels used should 

be increased. The problem is due to some restrictions made by either 

governmental regulations or technical issues meaning the number of available 

channels is usually not sufficient for eliminating the interference. Another 

problem is the distance between access nodes and user nodes that is referred to 

in [101] as node deployment. In a mesh network node deployment can be 

considerably high; while in our proposed network that number is very low. 

Because of these two facts we think it is possible to eliminate the packet 

collision altogether. 

 Connectivity: This is a concept borrowed from graph theory and is dealing with 

the availability of paths from any given node in a network to any other given 

node in that network. In our proposed network connectivity also has a close 

relation with path redundancy which is the availability of several paths from any 

given node to any other given node. It has been one of the objectives of our 

network-partitioning method to increase these two factors by having as much 

overlapping partitions as possible. 

 Stability: The stability of a mesh network may normally be in danger from two 

sources: ripple effect and channel oscillation. As reported by Weisheng et al. 
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[101] the ripple effect is first described by Rainwala and Chiueh [8] and refers 

to consecutive channel switching caused by channel dependency among nodes 

leading to failure of packet delivery. A ripple effect typically occurs when a 

node switches to a new channel over one of its radio devices (say to avoid heavy 

load on the previous channel) and this makes the node(s) on the other end of the 

link(s) to switch to that new channel. This change can propagate throughout a 

large part of the network and cause problems. Channel oscillation is caused by 

repeating channel switching due to algorithm not converging. According to 

Weisheng et al. [101] this may happen when there is a dynamic metric for 

channel assignment. A decision to make a switch to a new channel based on 

such a metric can affect that metric which in turns may push the nodes to return 

to the old channel very quickly. In some cases this switch-back is so fast that do 

not let the nodes handle their communication duties properly. As an example, 

two nodes may detect an under-utilized channel; then they may simultaneously 

switch to that channel. As a result, the new channel may now face too much load 

and consequently both nodes decide to switch back to their older channels. This 

may keep repeating if the nodes are too vigilant in responding to traffic metrics. 

None of these two can happen in the network proposed in this thesis because 

both are related with dynamic channel assignment. 

 Throughput/latency: Like all wireless networks, throughput and latency are 

major issues for both mesh networks and our network. The difference is, in HPC 

interconnect networks there is a more urgent need for the least possible latency. 

In dynamic channel allocation techniques the bandwidth available to links can 

be increased to respond to temporal increase in traffic load. Such measures are 

not part of the present thesis. 

 Fault tolerance: The main fault tolerance tool in our algorithm is collision 

avoidance but in many mesh networks a collision detection and recovery 

approach is adopted. 

 Algorithm time: Since in mesh networks the channel assignment algorithm 

should be run on regular intervals it is important for the algorithm to be executed 

on a reasonable time otherwise the performance of the network is sacrificed to 

achieve precision. The wireless network presented in this thesis is static and 

therefore the channel assignment algorithm does not need to be run more than 

once. This can be done in advance and for this reason the algorithm execution 

time is not a major concern. 
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Some graph partitioning methods are inspired by biological systems like the research 

Hernández and Blum have done on the calling behaviour of Japanese tree frogs [102] to 

make a distributed graph colouring algorithm. 

To the best knowledge of the author of this thesis no 3D wireless grid for parallel 

processing is yet implemented. As a result no network-partitioning method for this 

purpose is designed yet. Such an algorithm on an MRMC network should satisfy the 

following criteria: 

 No signal interference occurs between any two data communication intervals; 

 Have the most path redundancy and partition overlapping; 

 Have the most channel reusability. 

2.8) Deadlock Detection/Avoidance/Recovery 

The simulated network developed and tested for this thesis can be regarded as a set of 

resources and consumers. From this point of view the wireless links can be treated as 

resources while the processors are the consumers who may compete for taking control 

over those resources to transmit their packets. Like any resource-consumer system there 

are chances for ending up in a situation which is known as deadlock. The deadlock 

situation is investigated for decades and different definitions for it can be seen in 

different sources and may vary based on the context of the sources. 

One of these is the definition of deadlock in operation systems introduced by 

Silberschatz et al. [103] and describes deadlock as a situation which occurs when a 

process or thread enters a waiting state because a resource requested is being held by 

another waiting process, which in turn is waiting for another resource. If a process is 

unable to change its state indefinitely because the resources requested by it are being 

used by another waiting process, then the system is said to be in a deadlock. Deadlock is 

very common in systems which are multithreaded, multiprocessor, parallel or 

distributed. Deadlock can also occur in databases
11

. 

In the BC platform introduced in this thesis deadlock can occur when two (or more) 

processing nodes have packets to send to the other node and at the same time the input 

and output queues of both nodes are full and therefore no transmission is possible. In 

this situation a free space in input queue of node number one is a resource that the node 

number two needs while node number one also needs a free space in input queue of 

node number two. In certain situations both input and output queues in both nodes can 

                                                 

11
 For further material on deadlock in databases refer to: https://docs.oracle.com/cd/ E17277_02/ 

html/TransactionGettingStarted/blocking_deadlocks.html 
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be full and therefore no progress is possible. This situation, how it may happen and how 

it has been tackled in this thesis will be discussed later in this manuscript; but in this 

section some background on classic ways to avoid and recover from a deadlock will be 

reviewed. 

2.8.1) Deadlock Conditions 

According to Silberschatz et al. [103] simultaneous occurrence of all the following four 

conditions are necessary for a deadlock. These conditions were first described by 

Edward G. Coffman, Jr. in 1971 [104] and therefore are known as Coffman conditions: 

1. Mutual Exclusion: At least one resource must be held in a non-shareable mode. 

2. Resource Holding (Hole and Wait): The process that gained the control over a 

resource and wants to gain control over other resource(s) which are being hold 

by other processes. 

3. No Preemption: The possession of the resource cannot be ended by anyone 

other than the process itself (e.g. after finishing its task). 

4. Circular Wait: Given a set of waiting processes P= {P1, P2, … , PN} P1 is 

waiting for a resource held by P2, P2 is waiting for a resource held by P3 and so 

on until PN is waiting for a resource held by P1 [105]. 

Prevention of any of the above conditions is enough for stopping the deadlock. 

2.8.2) Deadlock Detection 

Some systems simply ignore the possibility of a deadlock situation. This approach is 

only suitable for systems in which deadlock occurs very rarely so that its damage can be 

tolerated. In this approach deadlocks can occur, it will be detected and then the system 

tries to correct it. This may include tracing the processes involved in the incident, 

rolling those processes back and restarting them. The resource scheduler is the reference 

for detecting the deadlock and the processes involved in it. 

There are two options when it comes to correct a deadlock: first: terminating/restarting 

one or more processes involved in it; second: forcibly freeing one or more resources 

held by processes involved in the incident. 

2.8.3) Deadlock Prevention 

As mentioned before to prevent a deadlock situation, the system should make sure that 

at least one of the Coffman’s conditions will not happen. This is the basis for all 

deadlock prevention techniques. 

It is not always possible to prevent mutual exclusion because some resources cannot be 

spooled and shared by their nature. For other resources that can be shared between 



Chapter 2: Literature Review 

 

76 

processes it is the duty of the resource allocator to make sure that the resources are 

properly allocated and no resource can exclusively take control over any resources. 

If it is not possible to avoid mutual exclusion, another option is to prevent resource 

holding situation. This can be done by urging processes to ask for taking control of all 

their resources at the same tie so that in case of failure in holding any of those resources 

is equal to failing in holding all of them. Despite its simplicity, this approach is both 

inefficient and (sometimes) hard to implement. It can be inefficient because it holds all 

the resources from the start of the process some of which may be needed only in a short 

period of time. This is also hard to implement because in some occasions the resources 

needed for a process may be determined by the dynamism of the process and can bot be 

predict beforehand. 

To prevent the third condition, the operating system should have the authority to take 

back a resource from a process but in many cases it can be difficult or impossible. 

Preemption in many cases ends up in rolling the process back otherwise the results of 

the process could be inaccurate or inconsistent. Also, rolling back adds extra time and 

resource costs. As a result there are situations that preemtion do not resolve the 

deadlock situation in an efficient way. 

Disabling interrupts during critical sections is one of the solutions to prevent circular 

wait. If the nature of the process and resources permits, creating a hierarchy for 

resources is also a solution for preventing this condition. 

2.8.4) Deadlock Avoidance 

If the nature of the processes is known to the resource allocator (e.g. operating system), 

then there can be chances to avoid a deadlock situation beforehand. This means that the 

resource allocator should have an information about: resources currently available; how 

many resources a process needs; what type of resources it needs; what resources it has 

already held; when resources are needed and for how long they are going to be held. 

Given that at the start time the system is in a safe state (i.e. free of deadlock); using the 

aforementioned information the resource allocator can decide if allocating a resource to 

a process can put it in an unsafe state (i.e. on its way to a deadlock). A deadlock will not 

occur if the resource allocator makes sure that no request for accessing to a resource is 

granted unless the system remains in a safe state as a result of that action. This should 

be noticed that the an unsafe state does not mean that the deadlock has already occurred 

but it means that deadlock can happen; therefore, the system can be in an unsafe state 

but does not end up in deadlock (e.g. by releasing some resources to prevent circular 

wait). 



Chapter 2: Literature Review 

 

77 

2.9) Network Simulation tools 

This thesis needs a network simulator to run experiments to study the behaviour of the 

concept of BC platform. This needs a survey on a number of most popular network 

simulators. In this section we will review some of these network simulators. A longer 

list of network simulation tools can be found in [106]. 

2.9.1) NS Family 

Ns (stands for Network Simulator) is a family of discrete event network simulators 

including three well known simulators: ns-1, ns-2 and ns-3. They are open source tools 

which are made mainly for teaching and research use [107]. Regarding the scale of 

work needed to develop such a simulation tool which covers different networks, 

implementation of the tools is spread over a large number of developers. 

The first version which was originally called the LBNL Network Simulator and later 

was known as ns-1 was based on an older simulator called REAL developed by S. 

Keshav. It had a C++ core and was developed in Lawrence Berkeley National 

Laboratory (NLBL) between 1995 and 1997 by Steve McCanne, Sally Floyd, and Kevin 

Fall among others. Sun microsystems, UC Berkeley and Carnegie Mellon University are 

among long-running contributors [108]. Ns-2 was released in 1996-97 followed by ns-3 

in June 2008. 

In its current version, ns-3 has several so called modules each of which contains models 

for one or more devices and protocols in real-world. It is reported that a large majority 

of ns-3 users are using it to simulate wireless networks [107]; therefore, wireless 

networks such as Wi-Fi and WiMAX are supported by ns-3. A simulator written in C++ 

can use ns-3 as a library which can be statically or dynamically linked to it [109]. 

Almost all ns-2 APIs are now exported to Python as well. 

There are some steps for creating a simulation using ns-3 [107]: 

1. Topology definition: Creation of basic facilities and their interrelationships; 

2. Model development: Other components of a model is added (e.g. IPv4, Point-to-

point devices and links, applications); 

3. Node and link configuration: Setting default values of the model; 

4. Execution: Generating events and logging data requested by the user; 

5. Performance analysis: Draw conclusions by analysing the time-stamped event 

traces of data; 

6. Graphical visualisation: tools are provided to graphically represent the 

simulation results. 
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Figure 30: Software organization of ns-3 as plotted in [109]. 

Figure 30 shows the internal software organisation of ns-3. As described in [109], the 

core of the simulator contains the components common across all protocol, hardware 

and environmental models. Packets are implemented in network section. These two 

sections are independent of any specific network and device models. The higher 

sections of ns-3 are application specific and may vary depending on the simulated 

network. The propagation section can be of interest in this thesis as it defines how the 

signal propagates and what the loss pattern is. 

2.9.2) OPNET 

OPNET
12

 was a software provider specialist in performance management for computer 

network founded in 1986 and was acquired by Riverbed in October 2012. Its object 

oriented discrete event network simulation toolkit is known by either its old name, 

OPNET, or its new name, Riverbed Modeller. More than 400 protocols and 

technologies are covered by this tool kit including VoIP, TCP, OSPFv3, MPLS, and 

IPv6 [110]. It has an open interface for integrating external object files, libraries, and 

other simulators [111]. Simulating 3D networks is also possible with OPNET. The 

OPNET modelling covers details about different aspects of a network including network 

protocols, resources, algorithms, applications, and queuing policies. Data visualisation 

tools are also part of this tool kit. 

2.9.3) NetSim 

NetSim
13

 is developed by TETCOS
14

 and is a popular stochastic discrete event network 

simulation tool that covers many technologies including Wireless Sensor Networks, 

                                                 

12
 http://www.riverbed.com/products/performance-management-control/opnet.html?redirect=opnet 

13
 http://www.tetcos.com/netsim_gen.html 

14
 http://www.tetcos.com/index.html 
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Wireless LAN, Wi Max, TCP and IP [112]. It is mainly written in C and Java and its 

first release was in June 2002. Its libraries code are open for user modification. 

Different levels of abstraction are available when it comes to provide performance 

metrics. The abstraction level can be network, sub-network, node and a detailed packet 

trace [112]. To have an interface between the users’ code and libraries and kernel 

NetSim provides an in-built development environment. Also facilities for debugging 

and tracing the code on different levels are provided. 

2.10) Some Related Works 

To the best knowledge of the author of this manuscript the idea of using wireless links 

for parallel computers is something new; therefore, there is almost no previous work on 

this particular topic. On the other hand the idea of incorporating large number of 

processors for different applications is widely researched previously. There is not 

enough room in this thesis to introduce all those projects; instead, it is decided to choose 

just a few of them which have some similarities with the proposed plan. Some of the 

projects presented here are not directly related to parallel processing; they are chosen 

just for the sake of diversity. 

2.10.1) SpiNNaker 

SpiNNaker [113] [114] is a computer architecture to simulate the human brain. It uses 

ARM processor in a massively parallel computing platform. A six-layer thalamocortical 

model developed by Eugene Izhikevich [115] is the basis of SpiNNaker’s architecture. 

Instead of modelling conventional artificial neural networks, SpiNNaker models real 

spiking neurons. The architecture is sought to achieve modelling of a billion neurons 

using a million SpiNNaker chips. 

SpiNNaker’s connection network [116] has a wireline 2D mesh topology with six 

neighbours per node. Nodes have external 6-ports in the SpiNNaker chip which allow 

for a three-dimensional (3D) torus arrangement. Based on the SpiNNaker 

documentations their network is not as good as a 3D torus in terms of bisection 

bandwidth and distance; but their network has advantage over 3D torus in terms of 

simplicity of manufacture and deploy, extra link redundancy due to diagonal links 

(Southwest and northeast in addition to usual 2D east, west, north and south) and ease 

of implementation of their own routing algorithm on that topology. 

Their communication medium, the number of neighbours and the topology of the 

network is different from the proposed platform in this thesis. Also, SpiNNaker’s prime 

usage is in simulating the operation of part of a human brain which is not the same as 
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the target of this thesis. But what is common between SpiNNaker architecture and the 

network proposed in this thesis is the idea of using large number of processors in a 

massively parallel platform with large number of connections between nodes. 

Part of the SpiNNaker project concerns designing new processors and boards for their 

parallel platform. Designing processors is out of the scope of the current thesis; but the 

idea of incorporating large number of processors to shape a 3D grid for parallel 

processing is common between the two ideas. 

2.10.2) Amorphous computing 

In 1996 a project was started in MIT to use large number of processing elements that are 

identical, capable of local communication, limited in terms of computational capability 

and prone to faulty functioning used as a massively parallel system. The number of 

processors depends on the application and they may also be equipped with actuators so 

that, at least in theory, they can be in physical contact with each other and even form 

geometric shapes [117]. Inspired by biological systems, the basic idea was to see if a 

large number of not-very-reliable and not-very-powerful processing elements can 

collectively show very strong computational power and higher level of intelligence. 

They called their effort the study of amorphous computing [118]. 

The nodes in MIT’s proposed network are distributed randomly and densely on a 

surface (a 2D plane in some simulations); therefore, there is no information about a 

node’s neighbour in advance. Their self-organising network is implemented in two 

ways [119]: a group-based hierarchical network and a self-exploring emergent network. 

In the first method nodes come together and make groups of nodes with a leader for 

each node which is in charge of inter-group communications. The groups can have 

overlaps. In second method each node explores its environment with sending a search 

message to find a given destination. All neighbours respond to this message by either 

relaying it or sending back a path setup message in case they are the final destination. 

Nodes react to the first search message of the same origin to help the original node have 

the shortest path. In other words, a search message works in a breath-first search 

manner. On reception of the path setup message, the original node adds an entry to its 

routing table which is limited in the number of entries. The positive point about this 

method is that it can react to presence of barriers and blockage of links. This method is 

more applicable to the platform presented in this thesis, but since the BC network is 

static and all information about the neighbours is available to all nodes then there is no 

need to none of these methods in a BC.  
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Their idea was to have a self-organising, self-healing network that performs tasks 

through collaboration between large number of elements, each of which has limited 

resources and little global knowledge [120]. They have made both simulated and small 

real-world pilot networks [121]. Part of their work is to make the nodes the ability to 

learn how to communicate between and learn from each other. The concept of 

Bootstrapping Communications was introduced by Beal [122] in order to “bootstrap a 

simple communication system from observations of a shared environment”. This is part 

of their plan to have a robust network in which each element may fail to operate 

occasionally. 

The idea of using large number of processors with limited communication abilities is 

shared between the platform proposed in this thesis and amorphous computing. 

Amorphous computing; however, investigates the cases in which faulty elements can be 

tolerated by the group. The performance of the group is proven not hugely infected by 

the isolated failure of nodes. This is one of the main themes in their research. The Ball 

Computer (BC) concept (at least at its current stage) is not aiming for adding fault 

tolerance capabilities. Amorphous computing has a heterogeneous network in which 

some nodes (faulty nodes) are not performing as well as the majority of nodes (healthy 

nodes). On the other hand the current version of the BC platform is a homogeneous 

network in which all nodes are equally good at performing their tasks. The idea of 

emerging higher level of intelligence out of a large collection of rather modest 

processors is not also an objective in the BC project. The BC is sought as a pure parallel 

computer while the MIT’s project is sought more as a platform to study the collective 

behaviour of agents. In amorphous computing the platform is going to look a bit like an 

alive entity that uses its numerous simple elements to achieve high level of capabilities. 

Redundancy of processors is a key factor in amorphous computing while in the BC 

platform all the nodes are tested to carry out their own tasks. It should be noticed that 

the redundancy in communication channels plays a big role in the BC platform. 

Another difference is that the nodes in MIT’s plan are sought to be very simple and 

limited in memory size while in a BC although it is tried to keep the cost as low as 

possible, the simplicity of nodes is not a vital factor. Also, in MIT’s plan the processing 

nodes do not have any information about the topology of the network and their own 

coordination before the start of the network. Parts of these data may be explored by the 

nodes during the run time if needed. But in the BC the network is a static wireless 

network in which nodes know everything about their coordination and the topology of 

the network beforehand. 
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2.10.3) Multicore Processors 

The early computers have been made with just one processing unit. The idea of having 

more than one processor once only belonged to high performance computers. In light of 

reduction in manufacture cost, more and more commercially available computers are 

now equipped with at least two processors. Having more than one processing core is 

something usual even in mobile phones, tablets, laptops and desktop computers today. 

Many companies have produced different multicore processors for general or specific 

purposes. Most multicore processors for domestic usages have two or four processors. 

Eight and sixteen cores (in smaller quantities) are also available even for personal 

computers. Processors with larger number of cores are rarely used for home or office 

uses. 

The most famous multicore processors of the date may be Intel’s Core processor family 

including Core i3, Core i5 and Core i7 processor series with 2 to 4 cores (Used in many 

desktop and laptop computers), Intel’s Xeon processor family with up to 15 cores (Used 

in many HPC platforms including CRAY XC30
15

) and IBM’s PowerPC processor 

series with up to 18 cores (Used in Blue Gene/Q HPC platform
16

). Higher number of 

cores are embedded in a processor by other manufacturers. Tilera Corporation
17

 is just 

one of those manufacturers that has produced a series of scalable multicore processor 

chips including TILE64, TILEPro64, TILEPro36, TILE-Gx72, TILE-Gx36, TILE-Gx16 

and TILE-Gx9. It is chosen just as an example (not necessarily the best or the first one 

in this field) to see the similarities and differences of multicore processor platforms with 

the platform proposed in the present thesis. Tilera is chosen only to reflect the diversity 

of products and producers. 

Figure 31 shows the block diagram of a TILEPro64 processor. A 2D array of 64 cores 

(tiles) are embedded in each TILEPro64 processor with Tilera’s iMesh in-chip network 

[123]. Each tile has a complete, full-featured processors with L1 and L2 caches and a 

switch to connect the tile to the rest of the network (Figure 31-right). The interesting 

point about these tiles is that a core is able to run a full operating system on its own or 

multiple cores can be used to run a symmetrical multi-processing operating system like 

SMP Linux. 

In this manuscript we just focus on the mesh interconnect network connecting the tiles 

inside the Tilera processors and do not go through any details of other building blocks 

                                                 

15
 http://www.cray.com/Products/Computing/XC/ 

16
 http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/bluegene/ 

17
 http://www.tilera.com 
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of those processors. According to Tile processor architecture overview for the TilePro 

series [124] there are 6 separate and independent networks connecting tiles in a 

TilePro64 processor (this number is 5 in Tile64). 

 

Figure 31: Block diagram of the TILEPro64 Processor as projected in [123] 

One of the networks is a static network and the other five are dynamic networks. Of 

these six networks only one of them are visible to users and the others are used for the 

processor’s internal operation. The networks are: 

 

Figure 32: Tile-Gx8072 processor block diagram as projected in [125] 

 STN: The Static Network switches scalar data (not in form of packets) between 

tiles with very low latency. 
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 UDN: The User Dynamic Network that is the only network accessible by the 

user (usually through C library routines).  

 IDN: The I/O Dynamic Network that is used for transfers between tiles and I/O 

devices and between I/O devices and memory. 

 MDN: The Memory Dynamic Network is used for memory data transfer   

between tiles themselves, and between tiles and external memory. Only the 

Cache Engine has a direct hardware connection to the MDN. 

 CDN: Coherence Dynamic Network is used to carry cache-coherence invalidate 

messages. This network is not implemented in Tile64 processors. 

 TDN: Tile Dynamic Network’s usage similar to the MDN and supports memory 

data transfer between tiles. Only the Cache Engine has a direct hardware 

connection to the TDN. 

Newer processors like Tile-Gx8072 are made with larger number of tiles and with 

similar (yet slightly different) network (Figure 32). 

What any scalable multicore processor has in common with the BC is the parallelism 

achieved by using large number of processors (e.g. 64 cores for a TILE64, TilePro64) 

located very close to each other. The differences between these two platforms are: 

 A BC is a collection of independent nodes each having their own processor, 

memory and I/O. The memory address space of each node either exclusively 

belongs to the node. In a multicore processor there can be a variety of memory 

modules with different access mechanism from different cores. Parts of the 

memory are dedicated to nodes. Others parts of memory can be shared between 

cores and are connected through an on-chip interconnect network. 

 The connection network in a multicore processor is usually a wired network; 

however, there have been some experiments with wireless inter-chip networks 

for multicore ICs. 

 Some multicore processors implement several parallel networks some of which 

designated to processor’s internal signal and others are used for data transfer 

(e.g. Tilera’s 6 independent networks). Separation between signal and data is not 

part of the current stage of the BC platform. 

 The data link distances in a multicore IC are much smaller than those envisaged 

in a BC. This means that the same technology may not be used for a BC. 

 In most of the cases the multicore networks are 2D networks that reduce the 

number of neighbours for each core compared to nodes in a 3D hexagonal 

network like BC. 
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2.10.4) Net-X 

Being developed by the Distributed Algorithms and Wireless Networking (DAWN) 

Group at University of Illinois at Urbana-Champaign (UIUC) Net-X [126] is a test bed 

for experiments with multi-channel wireless mesh networks. Earlier in this chapter it is 

discussed that for a wireless mesh network, routing is a major issue. Routing for the 

Net-X platform also seems to be a topic for research. Some of their publications concern 

methods of routing designed for their network (e.g. [127], [128], [129]). They also did 

some work on reducing adjacent channel interference through channel assignment [130] 

[131]. Their channel assignment algorithm is based on gathering information from one- 

and two-hop neighbours of each node and the number of such neighbours that use a 

given channel i. The minimum, maximum and mean value of each channel’s data is then 

passed to their local balancing and channel assignment algorithm to decide about the 

channel of the links of a node. The same procedure repeats periodically (in some of their 

experiments the algorithm repeats every 5 seconds). 

Since it uses multi-channel wireless devices it has some similarities with the BC 

platform but it should be noticed that the number of channels in Net-X is lower than 

those in BC. The application and the network being set up for that application are 

different from what sought in the current thesis. The distances it supports (it is sought 

for application inside a house or working place) and the physical size of the nodes are 

also different from a BC. The data rates Net-X deals with are in range of tens of Mb/s 

[130]; while the data rates sought in this thesis are in range of up to tens of Gb/s. The 

applications sought for this platform are not as time-critical as those of a parallel 

computer; therefore, the latency and packet collision are not issues of such an 

importance compared to the BC platform. 

2.11) Summary 

The literature reviewed in this chapter covers components that can be building blocks of 

the wireless 3D grid proposed in this thesis. 

Different network topologies for HPC systems have been reviewed. Direct and indirect 

interconnect networks have been used for this purpose. Multistage switch networks 

offer lowest number of hops but our survey showed the cables, particularly used by 

Dragonfly and Flattened Butterfly networks, are rather long. Direct networks including 

multi-dimensional tori used in Cray’s Gemini and IBM’s Blue Gene/Q save the cost for 

switches but they suffer from larger maximum number of hops which increases as the 

network expands. 
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The short review on routing algorithms has been presented in this chapter which shows 

that there are chances for direct networks to compensate one of their deficiencies over 

switch-based networks that is their larger maximum number of hops. This is particularly 

possible by incorporating cut-through and wormhole routing with virtual channels. 

When it comes to choosing the wireless technology for physical links our survey 

showed that there are three possibilities: inductive coupling, inductive coupling and on-

chip radio. All these technologies have their own deficiencies. While inductive and 

capacitive coupling technologies can offer data rates of hundreds of Gigabits per second 

(or even Terabits per second) with low energy consumption, they cannot extend their 

communication over cm-range. On the other hand, on-chip radio modules can deliver 

data over cm-range but at the moment the data rates such devices support are up to tens 

of Gigabits per second which in a multi-channel platform like the one proposed in this 

thesis is not quite high enough. On-chip radio’s bigger issue is with energy consumption 

that at the moment is unable to match the equivalent wireline platforms. Radio modules 

reviewed in this chapter consume around five Pico Joules per bit in the best case while 

energy consumption of one Pico Joules or less is common between wireline networks 

over cm-range distances. This should be taken into consideration that electrical/optical 

links in supercomputers are not in cm-range. It has been shown in this chapter that in a 

dragonfly network, like Cray’s Aries, the energy needed for sending a bit of data over a 

minimal path can be in range of 60 to 70 of Pico Joules. This is roughly equal to ten to 

twelve on-chip radio hops (based on on-chip radio technologies surveyed in this thesis). 

Those technologies are not designed and developed for applications sought in this 

thesis. This implies that it is yet to be determined how far the current technologies can 

be stretched to fulfil the criteria imposed by the Ball Computer wireless platform. 

The review presented in this chapter on network partitioning and channel assignment 

algorithms showed that the Hidden Node Problem and packet collision can be solved 

using a multi-radio-multi-channel platform. However, the criteria current algorithms try 

to satisfy are different from what we need in this thesis. This means that a new 

algorithm should be designed to match the particular needs of the platform proposed in 

this thesis. 

Now we are ready to discuss our plan for a wireless 3D wireless massively parallel 

computer. To test the idea, a pilot concept machine is presented later in this thesis called 

the Ball Computer (BC); but before that, in the next chapter (hypothesis and Rationale) 

the main research question of this thesis is presented and we will see what this thesis is 

particularly wants to achieve. 
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Chapter 3: Hypothesis and Rationale 

Based on the literature reviewed in previous chapter it is the time to ask the main 

research question and define the boundaries of this thesis. Later in this chapter the 

platform briefly proposed in introduction chapter is discussed in more details. Next 

three chapters, also, contain detailed information about that platform. 

3.1) Research Question 

This thesis is part of a bigger plan to test the viability of a massively parallel computer 

with wireless interconnect network. The question of viability raises a number of other 

questions such as: 

 Is a wireless network capable of serving a parallel processing system? 

 Is there any advantage for a wireless network over a wired one in a parallel 

system? 

 What are the minimum technical requirements of a wireless network to work 

properly in a parallel system? 

 Can available wireless technologies produce satisfactory results? 

 If available wireless devices cannot deliver satisfactory results, what are the 

major problems with them? 

 How an improvement in wireless technology can facilitate use of wireless 

devices in such a system? 

 How restricting a wireless network in a parallel system is? 

 What characteristics such a system may have? 

 What range of applications may execute with acceptable performance on such a 

system? 

 How large a parallel system of this type can be? 

 How costly such a system is? 

From the technological point of view there are a number of challenges in building a 

wireless HPC system. Each of the following issues should be tackled with proper 

attention: 

 Connectivity issues including latency incurred by hidden node problem and 

packet collision; 

 Buffer flow control strategy; 

 The power delivery strategy (wired/wireless); 

 Heat dissipation. 

Answering all these questions is beyond the scope of this thesis. This thesis restricts 

itself to only some of aforementioned challenges. Network connectivity is the focal 

point in this thesis; therefore, the main research question of this thesis is: 
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Is there an effective solution for connectivity in a massively parallel computer with 

wireless interconnect network? 

We want to know if (and how) replacing a wireline interconnect network with a wireless 

network in an HPC system affects the performance of that system. In particular this 

thesis investigates solutions for reducing communication latency via eradicating packet 

collision problem and implementing a suitable buffer flow control strategy. Regarding 

the other challenges that this thesis does not cover, this thesis cannot be regarded as a 

blue print for a wireless parallel computer. There are still serious issues that need 

tackling before having a prototype of a wireless parallel computer of any type. What 

this thesis is going to answer is: 

 What hardware and software technologies are needed to build a wireless parallel 

machine? 

 How such a computer may look like? 

 Can packet collision be eliminated by proposing a multi-channel multi-radio 

platform enhanced with effective network partitioning and channel assignment 

algorithms? 

 What routing strategy is suitable for it? 

 How the performance of such a computer may be? 

By the end of this thesis we will find answers to the question if the current state-of-art 

wireless technologies suit the proposed platform in terms of the area they occupy, their 

transfer rates and energy they consume. These should particularly be tested against a 

dense and multi-channel platform like the one proposed in this thesis. Also it will be 

shown that: 

 The proposed network partitioning and channel assignment algorithm is capable 

of solving hidden node problem and eradicating packet collision. 

 The save-and-forward algorithm implemented in this thesis yields good 

performances for a given network attributes; although its performance is not 

good enough for other values of network attributes. 

 A wormhole switching (routing) mechanism with virtual channels is needed to 

have a communication scheme which offers low latency over a wide variety of 

network attributes. 

3.2) Ball Computer 

Section 1.1 has briefly introduced our wireless architecture that –to the best knowledge 

of the author of this thesis – has not been used for HPC purposes yet. The name Ball 

Computer (BC) is chosen for this concept machine. A BC is basically a collection of 
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independent processing elements in a 3D hexagonal wireless grid which operates as a 

massively parallel computer. Each node in the proposed interconnect network consists 

of a processor and a series of wireless transceivers to give it the ability to share data 

with other nodes. The type of the wireless module will be determined later in this 

chapter. Based on the current level of electronic technology, it is anticipated that such a 

collection of circuitry (a processor and a series of wireless transceivers) can be 

implanted on electronic boards of size 1cm
2
 or 2cm

2
; however, the actual process of 

making such a circuit is beyond the scope of this thesis. It is anticipated that when mass-

produced, the price per node is reasonable. An exact cost analysis for the proposed 

network is not available at this stage because the network is only implemented in 

simulation tools rather than real world. 

The whole electronic board is envisaged to be placed inside a plastic (or any suitable 

dielectric material) sphere to prevent it from direct and uncontrolled electrical charges 

from outside. These so called Balls are then packed to form a 3D wireless interconnect 

network which in this thesis is referred to as Ball Computer (BC). Each ball is 

envisaged to have a size of 1cm to 2cm in diameter. Deciding about power delivery 

mechanism is beyond the scope of this thesis, but to have a general idea about this issue, 

there can be wireless, wireline or hybrid solutions for the issue of power delivery. Some 

of the available options and their benefits and limitations have been already discussed in 

chapter 1. Another very important issue is heat dissipation which, again, is out of the 

scope of this thesis. This issue is also briefly discussed in chapter 1. The fact that these 

two issues are not discussed in this thesis does not undermine the important role of these 

two issues in shaping a 3D wireless interconnect network of any type in real world. 

The number of wireless modules per node depends mainly on the topology chosen for 

the network and the relative position of the nodes. In the next chapter more discussions 

on selecting the network topology are included. It will show that a Face-Centred Cubic 

(FCC)
18

 topology is chosen for this grid to let a maximum number of nodes to be 

packed into a given space. Each node in this topology has 12 neighbours. 

This thesis is solely concentrated on simulation analyses; however, even in next stages 

in which a prototype of the proposed platform is to be built, the design of processing 

elements is not a priority. Instead, a processor should be chosen from commercially 

available processor that satisfies some criteria mainly concerning the processing ability, 

the energy consumption and heat generation. At the current stage, this thesis can only 

help having an overall idea about what these criteria are. 

                                                 

18
 FCC topology will be explained in chapter four. 
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A candidate wireless technology should be comparable to wireline networks used in 

parallel computers. This comparison is on a number of characteristics. To have a chance 

to replace conventional connection networks, a wireless technology should prove that it 

is better than (or at least comparable to) wireline technology on the following items: 

 Data communication rate; 

 Communication distance; 

 Power consumption; 

 Occupied area;  

 Locality of communication. 

An on-chip wireless communication mechanism can be based on capacitive coupling, 

inductive coupling or radio waves. Each of these is strong on some of the items listed 

above. The target of this manuscript is to show that there is either an existing wireless 

technology which is better than wireline on the items listed above, or the wireless 

technology is heading to the direction of making such a technology in near future. For 

this reason the author of this thesis believes that it is the right time to start thinking 

about considering wireless technology in parallel platforms. 

3.3) Data Communication Rate 

One of the strengths of reactive methods (i.e. capacitive and inductive coupling) is the 

high data rates they support. As far as it is concerned with data rates, there are some 

promising results reported by several researchers and it is anticipated that in the short or 

middle term wireless devices can be compared to their wireline counterparts in terms of 

data rate. Figure 33 shows some reported results on all the main three categories of 

wireless mechanisms. It shows that radio waves are more capable of supporting longer 

distances but it comes with the cost of lower data rates. 

Coupling techniques have the chance to use parallel data lines to increase the data rate. 

In fact there is no theoretical limitation on the number of parallel links except for the 

device size as there is a threshold on how close two consecutive parallel links can be. 

The idea of parallel links is very popular in coupling methods and gives an upper hand 

to them especially to inductive coupling techniques. This is the main reason why there 

are inductive coupling mechanisms with data rates of up to 8Tb/s. Parallel transfer of 

hundreds (e.g. [63] and [132]) or even one thousand parallel links (e.g. [46] and [70]) 

have already being reported. 

For radio waves there is no such chance to have parallel independent links, as parallel 

links interfere with each other. For this reason, radio devices should stick to serial 

communication of data that stops the radio data rates reaching the Terabits or even 
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hundreds of Gigabits range. The best performance in terms of bit rate the author of this 

thesis came up with is around 26 Gb/s [84] in 2012.  

 

Figure 33: Comparing wireless technologies in terms of data communication rate 

Another point is the frequency of radio waves used for present on-chip radios. At the 

moment 60 GHz waves are used by most of researchers in this field. There are some 

attempts to test higher frequencies like 120GHz (Including earlier works of Kosugi et 

al. [133] in 2004, Deferm and Reynaert [134]in 2010 and Fojimoto et al. [135] in 2010 

which is followed by Katayama et al. [136] in 2012). Some other impressive results like 

Fukuda et al. [83] in 2011 which is developed further by Tanaka et al. [84] in 2012 use 

a full-duplex multi-carrier scheme which uses 57GHz and 80GHz frequencies. In light 

of new developments in the terahertz on-chip radios (e.g. Ishigaki et al. [85] and Hu et 

al. [137]) it is highly anticipated that much higher data rates can be achieved by using 

suitable modulation/demodulation methods. 

 

Figure 34: Improvement of data rates in radio devices during last decade 

The increase in data rates in on-chip radio devices during last decade can be observed in 

Figure 34. The data rates plotted in this figure is high enough for a single-channel on-

chip radio device but if the bandwidth is going to be shared by more than one channel. 

Terahertz radio modules can help increasing the data rate of digital signals (e.g. at 

hundreds of gigabits per second or more) in future when Terahertz on-chip radio 

devices are mature enough. 
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3.4) Communication Distance 

The major problem with coupling methods (both capacitive and inductive) is the very 

short communication distance they can support. The only exceptions are inductors used 

in wireless BANs which operate in cm-range distances; however, their data rates are 

considerably lower than 1 Gb/s and therefore cannot be considered in this thesis. 

The other deficiency of coupling methods is their high sensitivity to alignment of 

coupled elements (capacitors or inductors). The fact that both of these schemes are 

mainly developed for inter-chip communication applications explains why none of them 

push for neither supporting longer distances nor more robustness against misalignment 

of coupled elements. Long-range reactive methods consume high amounts of energy 

and therefore are not favourite options for the platform proposed in this thesis. 

Wireless communication is mostly based on transferring data in a straight line from 

transmitter antenna to the receiver antenna; while, in most of wireline schemes a straight 

line from transmitter to receiver is not available and wires run through longer distances 

and may pass different circuits to deliver data to the receiver. This should be considered 

when finding a wireline equivalent for the wireless scheme proposed in this thesis. It is 

not possible for the author of this thesis to find an exact length of wire that is equivalent 

to a 1cm wireless link because of differences in architecture of both categories of 

technology. In a multi-processor board the number of processors are fixed; therefore, for 

a processor on a board a transaction with processors on other boards should go through 

board connectors and then data busses. In many parallel platforms separate I/O boards 

(possibly on separate racks) are used to send a packet from a processor board to another. 

This makes the actual average length of wires between a transmitter and a receiver 

much longer than 1cm (as envisaged in the proposed platform). 

According to Figure 33 no capacitive coupling technology is suitable for the distance 

envisaged in this thesis (i.e. 1-2cm). A few inductive coupling transceivers satisfy the 

criteria. A much larger number of embedded radio devices are suitable for such a link in 

terms of communication distance. This means that there are many suitable options when 

it comes to the length of link; however, as it will be seen later in this chapter many of 

those candidates do not meet other design requirements. 

3.5) Power Consumption 

One of the strengths of reactive methods (i.e. capacitive and inductive coupling) is the 

low electrical power they consume. The consumed power for radio devices in cm-range 

is higher compared to reactive technologies. This is because of first: the nature of 
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electromagnetic waves; and second: radio devices are usually used over longer distances 

compared to the other two methods. 

Different design choices have been made in different papers reviewed by this thesis. 

The main differences are in: 

 Communication distance: Theoretically the power consumption is related to the 

square of the length of the link. It should be noticed that not all the power in the 

transmitter side is consumed in the amplifier and antenna; therefore, the 

transmitter’s total power consumption does not scale with the length of the link. 

 Target Bit Error Rate (BER): A wide range of BER is reported in different 

projects (See Appendix A, Table 46, Table 47, Table 49). The BER of inductive 

coupling technologies surveyed in this thesis vary between 10
-10

 and 10
-16

 

(excluding wearable devices that have BERs in range of 10
-3

). Surveyed 

capacitive coupling devices have almost the same nature as inductive coupling 

in terms of BER as their BER range between 10
-10

 and 10
-15

. But BERs reported 

for on-chip radio devices surveyed in this thesis vary between 10
-3

 and 10
-12

. 

Among the factors that may affect BER are data rate, transmitter’s power and 

even the chosen type of modulation and coding method. Very weak signals are 

hard to be detected and correctly decoded in the receiver side while too strong 

signals may contribute in cross-talk interference. Both these situations may lead 

to high BERs. Since the reviewed technologies vary in BER, it will be very 

inaccurate and misleading if the power consumed by those projects are 

compared with each other. 

The current thesis has set a fixed communication distance between the transmitter and 

the receiver (1-2 cm). To compare the results reported by other researchers those results 

should be normalised to the envisaged distance. In the absence of an accurate 

normalisation mechanism (as discussed in previous paragraphs) approximation of 

normalised values are used. This approximation is based on the theoretical square 

distance rule. 

Comparing wireline and wireless is even harder because the actual length of wire in a 

wireline equivalent of the proposed wireless scheme is not 1-2 cm. Figure 28 shows that 

the data in a wireline network does not always choose a straight line between the 

transmitter and receiver; but in a wireless link the signal chooses the shortest distance 

which is a straight line. The average link distance in a wireline network with the same 

design targets of the proposed wireless network is higher than 1-2 cm; but an accurate 
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estimation of such a wire length needs detailed technical information of the equivalent 

wireline network which is not available at the moment. 

In 2004 Cho et al. [138] compared wireline and fibre optics connections for short 

distances. Their comparison on power consumption is shown in Table 8. As this table 

shows when the distance is short, wirelines are better in terms of energy consumption 

and for longer distances fibre optics outperform wirelines on this matter. Regarding the 

date of the paper, the results cannot necessarily reflect the current state for wireline and 

fibre optic connections but it helps having a taste of the range of energy electrical and 

optical links in sub-100 cm links consume. 

Technology Data Rate (Gb/s) Distance (mm) Energy per bit (pJ/bit) 

Wireline 

4 100 0.75 

4 1000 2.5 

4 1000 8.75 

6 100 0.75 

6 800 2.5 

6 800 7.5 

Fibre Optics 

4 100 2.5 

4 1000 6.25 

6 100 2.67 

6 1000 5.83 

Table 8: Comparing wirelines and fibre optics in term of energy per bit as projected by [138] 

In 2007 Koo et al. [139] compared fibre optic and copper communication lines over 

short ranges
19

. They tested these two media of communication using different transistor 

technologies and measured the energy consumption, latency and bandwidth density. 

The results (Table 9) demonstrate a reduction in reported energy consumptions 

Another comparison is made by Stucchi et al. [140] in 2013. Table 10 summarises their 

comparison between two types of wireline and two types of fibre optic devices. 

Media Technology (nm) Data Rate (Gb/s) Distance (mm) Energy (pJ/bit) 

Copper 

22 10 10 ≈1 

32 10 10 ≈1.25 

45 10 10 ≈1.7 

65 10 10 ≈2.35 

Fibre 

Optic 

22 10 10 ≈0.4 

32 10 10 ≈0.49 

45 10 10 ≈0.51 

65 10 10 ≈0.75 

Table 9: Comparison of energy consumption in copper and optic technologies by Koo et al. [139] 

                                                 

19
 Their paper also includes carbon nanotubes as well which is out of the scope of this thesis. 
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Technology Data Rate (Gb/s) Distance (mm) Energy (pJ/bit) 

Wireline (RC) 1.55/μm 10 0.58 

Wireline (TL) 50 (8/μm) 10 0.052 

Fibre Optic, off-chip laser, 45nm 50 (25/μm) 10 0.075 

Fibre Optic, on-chip laser, 45nm 50 (25/μm) 10 0.018 

Wireline (TL) 50 (8/μm) 20 ≈0.14 

Fibre Optic, off-chip laser, 22 nm 50 (25/μm) 20 ≈0.075 

Fibre Optic, on-chip laser, 22 nm 50 (25/μm) 20 ≈0.02 

Table 10: An energy consumption comparison between copper and fibre optic communication media over 1-2 

cm, reported by Stucchi et al. [140]. 

Some other results can be seen in Table 11 which concern distances less than one metre. 

Table 8, Table 9, Table 10 and Table 11 belong to different technologies and they might 

significantly differ in design criteria but those tables show a constant decrease in energy 

consumption for optical and electrical communication devices over cm-range among 

different platforms. These tables show that a sub-pJ/bit energy consumption for a cm-

range wireless link is not far from reality particularly when using fibre optic cables. 

Ref. Date Technology Data Rate (Gb/s) Distance (mm) Energy (pJ/bit) 

[141] 2010 Wireline 470 5.08 1.4 

[142] 2011 Wireline 40 200 11.43 

[143] 2011 Wireline 6.4 200 4.1 

[144] 2011 Wireline
20

 22 100 ≈0.35 

[144] 2011 Wireline
21

 ≈33 100 0.5 

Table 11: A number of short-range wireline links operating under 100 cm 

We have already seen in section 2.2.7 (Table 5) that how much energy a typical modern 

commercially available HPC system (Cray’s Aries) supplies to send a bit of data across 

a minimal/non-minimal path. We know that a minimal path in this technology includes 

one long range (optical) and up to four short (electrical) links. Also we know that, in 

practice, not all the paths in an Aries platform are minimal. Non-minimal paths have 10 

hops (as an absolute maximum) and 7 hops (as an average number of hops). In all these 

cases there is one long optical link involved in the transaction process. This means that 

a packet exchange over Cray’s Aries can consume between 60 to 70 pJ/bit depending on 

the number of hops. 

This thesis has surveyed more than 200 papers published during last decade on short-

range wireless communications in search for potential candidates for replacing wireline 

networks in HPC systems. A thorough list of those technologies is included in 

Appendix A. Here those technologies are compared based on three major factors: 

                                                 

20
 This minimises energy per bit. 

21
 This maximises data-rate to energy-per-bit ratio. 
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energy consumption, communication distance and data rate. The results belong to three 

major categories of wireless technologies: Inductive coupling, capacitive coupling and 

on-chip radio devices. Three thresholds are introduced as technology selection criteria: 

 1cm is the minimum distance needed for a link sought in the BC platform. 

 A data rate of 1 Gb/s is the minimum requirement for a successful candidate; as 

modern-day supercomputers extensively use cables with data rates of Giga bits 

or tens of Giga bits per second. 

 Later in this thesis it will be shown that BC platform proposed in this thesis 

needs up to 24 hops to send a piece of data from one node to another (given its 

number of nodes is the same as an operational Cray Aries)
22

. This means that 

each hop in the proposed topology should consume around 3 pJ/bit to have the 

same energy demand as a modern commercially available supercomputer. An 

energy threshold of 10 pJ/bit is chosen to choose any wireless technology with 

an energy consumption of the same degree of magnitude (3 pJ/bit). 

   

(a)                                                                                          (b) 

 

(c) 

Figure 35: Comparing data rate vs. energy per bit for (a) capacitive coupling, (b) inductive coupling and (c) 

radio wave technologies 

The results are shown in Figure 35, Figure 36, Figure 37 and Figure 38.  Figure 35 plots 

data rate against energy consumption per bit for three major categories of wireless 

                                                 

22
 The Cray Aries platform used for this comparison is Switzerland‘s Piz Daint with 14498 nodes 

(115,984 cores). A 3D BC grid of size 25*25*24 has almost the same number of nodes (14500). 
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technologies. To make the differences between these three even more visible, in next 

three figures surveyed technologies are plotted in three different ways.  In Figure 36 

current wireless technologies are compared based on the data rate and energy criteria for 

the proposed network. Energy consumption is plotted against communication distance 

in Figure 37; and Figure 38 plots data rate versus communication distance. 

 

Figure 36: Comparing wireless technologies in terms of power consumption and data rate 

These comparisons show that the power consumption of solutions based on radio waves 

are considerably higher than both two coupling methods. The best reported radio 

solution over 10s of millimeter is in range of 2 pJ/bit (which is a great achievement on 

its own); while both coupling schemes deal with power consumptions of 1pJ/bit or 

lower (not forgetting that they deal with distances much shorter than those of radio 

applications). Some technologies based on both coupling techniques have yield energy 

consumption in range of 0.01s pJ/bit that is even better than most wireline solutions. 

 

Figure 37: Comparing wireless technologies in terms of power consumption and communication distance 

The distinct difference in the energy consumption between the three methods is visible 

particularly in Figure 36. While most of reactive methods easily satisfy the energy 

consumption criteria, most of radio devices struggle satisfying this criteria. The 

deficiency of coupling methods are shown in Figure 37 and Figure 38 in which none (or 

very few) of them can mutually satisfy the energy consumption and data rate criteria or 

energy consumption and distance criteria. Energy consumption is known to be of the 

most importance. Reducing the energy consumed by both processing and 

communicating modules is the main objective in any parallel processing platform [145]. 
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Figure 38: Comparing wireless technologies in terms of data rate and communication distance 

Figure 36, Figure 37 and Figure 38 also show that the tightest constraint is in energy 

consumption versus communication distance (shown in Figure 37). According to this 

figure neither capacitive coupling technologies nor inductive coupling modules can 

satisfy both these criteria at the same time. Even among on-chip radio modules there are 

very few technologies that can deliver data to the envisaged distance (i.e. 1-2cm) with 

less than the energy threshold set in this thesis (i.e. 10 pJ/bit). 

But as Figure 39 -derived from surveyed papers (Appendix A) - shows this problem is 

not as severe as it was one decade ago. It is mentioned before that it is hard to normalise 

the network parameters of different projects because of their difference in design details 

but Figure 39 still can be used as an estimated measure of the energy consumed to send 

one bit over a 1mm link. This leaves us with the hope that following this trend we will 

see on-chip radios in future with much lower power consumption rate which makes 

them easier to be incorporated in the network proposed in this thesis. 

 

Figure 39: Mutual improvement in range and energy per bit for radio devices during last decade 

In comparison, reactive technologies have the best record in energy consumption 

(around 10 fJ/bit) but such a low energies do not let them send data over more than tens 

of micrometres. The energy consumption of radio devices is significantly higher but it is 

decreasing year by year (see Figure 27). During the same period the communication 

distance supported by capacitive and inductive coupling have not been improved 

enough to match the design necessities of this thesis. 
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Ref. Data Rate (Gb/s) Distance (mm) Power (mw) Energy per bit (pJ/bit) 

Deb.et al. [82] 16 20 90 5.63 

Kawasaki et al. [146] 11 14 70 6.4 

Yu et al. [147] 16 15 26.7 1.67 

Fukuda et al. [83] 25 120 140 5.6 

Foulon et al. [86] 10 10 21 2.1 

Tanaka et al. [84] 26 120 137 5.27 

Tanaka et al. [84] 20 5 137 5.85 

Table 12: Candidate wireless technologies suitable for a 3D wireless grid 

If the historic trend of reduction in energy consumption of on-chip radio continues there 

is a solid chance to have an on-chip radio option for the envisaged wireless network 

with reasonably low energy consumption in near future while no strong push for 

extending the range of communication for fast inductive or capacitive coupling 

technologies over cm-range distances can be detected. For this reason, to deliver the 

data over distances envisaged in this thesis, the best available option is radio waves, and 

this is despite the fact that they still need to improve their electrical power consumption. 

We are cautiously optimistic to see millimetre-wave on-chip radio communication 

technology is approaching the sub-Pico-Joules-per-bit scale. 

According to above figures and based on the papers surveyed in this thesis, there are a 

number of candidates that satisfy all three aforementioned criteria (Table 12). 

3.6) Occupied Area 

It is not possible to define an exact area each wireless module should occupy. Such an 

exact measure is derived during the design process. Designing a real node for a BC is 

out of scope of this thesis. A review of literature on all three major wireless 

technologies show that both capacitive coupling and inductive coupling do not usually 

occupy more than a square millimetre of chip area. Even hundreds or thousands of 

parallel capacitors or inductors can be easily fit into less than a square centimetre. 

Therefore, both of these two categories of wireless technologies satisfy the area criteria. 

On-chip radio modules usually need more area compared to the first two wireless 

categories. This is particularly because of the embedded antenna needed in this type of 

technology. However, mm
2
-range modules are quite common in this field. Figure 40- 

derived from surveyed papers (Appendix A) - shows how the density of communication 

rate over an area unit improves over the last decade or so. There is a substantial chance 

for future research projects to follow this trend of making smaller modules with faster 

communication rates available. For all these reasons the author of this thesis sees no real 

constraint over area occupied by wireless modules. 



Chapter 3: Hypothesis and Rationale 

100 

 

Figure 40: Improvement in data rate and occupied area in radio devices during last decade 

3.7) Locality of Communication 

Many of the current commercially available parallel computers are based on or inspired 

by Blue Gene/Q platform. The 5D structure of Blue Gene gives it a huge flexibility and 

a low number of hops between its nodes. It should be also noticed that the topology of 

Blue Gene is a round torus. This means that the nodes on the two ends of the network 

are directly connected. This halves the maximum number of hops. The BC architecture; 

instead, has a simple 3D structure. This is good in terms of system simplicity but the 

number of hops between nodes increases faster than Blue Gene as the number of nodes 

increases. Table 13 compares the maximum number of hops in Blue Gene platform and 

BC. The structure of a BC - as shown in detail in next chapter – gives the nodes the 

chance to communicate diagonally. For this reason in a 3D network of type N*N*N the 

maximum number of hops is N. 

Blue Gene/Q 

Dimension 

Number of 

Nodes 

Ball Computer 

Dimension 

(Range=d) 

Ball Computer 

Dimension 

(Range=2*d) 

Maximum Hops 

Blue 

Gene/Q 

Wireless 

FCC(r=d) 

Wireless FCC 

(r=2*d) 

Flat Torus 

Blue Gene 

2 2 2 2 2 32 3.17 1.59 5 4 2 10 

4 4 4 4 2 512 8 4 9 8 4 18 

16 16 4 4 2 8192 20.16 10.08 21 21 11 42 

16 16 16 16 2 131072 50.80 25.40 33 51 26 66 

32 32 16 16 2 524288 80.63 40.32 49 81 41 98 

32 32 32 32 2 2097152 128 64 65 128 64 130 

64 64 32 32 2 8388608 203.19 101.59 97 204 102 194 

64 64 64 64 2 33554432 322.54 161.27 129 323 162 258 

Table 13: Comparing the maximum number of hops in Blue Gene platform and Ball Computer 

Here two wireless schemes are tested and are compared to Blue Gene/Q’s 5 dimensional 

structure. In the first hypothetical scheme each node is just in contact with its direct 

neighbours; while in second scheme the radio range of each node covers all direct 

neighbours as well as all direct neighbours’ neighbours. As shown in Table 13 and 

Figure 41, the first architecture proposed in this thesis is better than Blue Gene in terms 

0

50

100

150

200

250

2004 2006 2008 2010 2012

D
at

a 
R

at
e

/A
re

a 
(G

b
/s

/m
m

2
) 

Year 



Chapter 3: Hypothesis and Rationale 

101 

of the number of hops for network sizes of 8K nodes or less. The second scheme is 

better than Blue Gene/Q in terms of number of hops even for very large networks. It 

should be noticed that the maximum number of nodes in a Blue Gene in real world 

never exceeds 32*32*16*16*2 nodes; therefore, the last three rows in Table 13 are 

extrapolations of existing Blue Gene/Q platform and just show hypothetical situations. 

 

Figure 41: Number of hops in Blue Gene/Q and Ball Computer 

The number of hops is not the only factor to determine the communication time 

between nodes. The latency in a one-hop communication is another important factor. 

The communication in a platform like Blue Gene goes through I/O boards which locate 

on different shelves that can locate in a separate rack. According to Blue Gene 

documentations a direct neighbour one-way latency is 0.3 μs [31].  The corresponding 

delay time for a BC is not measured yet as it is yet to be built. 

Based on the literature reviewed in this thesis the author of this manuscript believes that 

despite some concerns over the power consumption and number of hops, it is the right 

time to start thinking about using wireless devices in parallel platforms. 

3.8) Buffer Management, Routing, Deadlock Avoidance 

Among the buffer management methods reviewed in section 2.3 the store and forward 

method is chosen for BC platform. The writer of this manuscript is aware of the 

potential delays this method may impose but the main reason for this decision is that 

compared to other methods a store-and-forward mechanism is simpler to implement. In 

the literature review chapter it has been noted that cut-through and wormhole routing 

methods are not suitable for links with intermittent connectivity. At this stage it is 

believed that the links sought for the BC platform are fairly robust and reliable so there 

is no need to worry from this point of view; having said that the reliability of the 

physical radio links can be verified only when a prototype of the BC platform is built in 

real world. 
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By making this decision we expect having considerable delay times in data transactions 

incurred by long times packets spend in I/O buffers in intermediate nodes. Another 

drawback of this decision is that the total transfer time for a packet will be directly 

related to the number of hops. Regarding the fact that the BC network is a direct 

network the number of hops in a packet transaction can be considerably high which 

means that the total transaction time can be hugely affected by that. More efficient 

buffer management methods will be considered for next stages of this research after 

making sure about persistence of link connectivity. 

In lack of switches or routers in the BC platform packets will be routed using global and 

local information stored inside nodes. A simple routing algorithm is adopted for the BC 

platform which sets a fixed route between any two nodes. The route is determined by 

the coordination of the sender and receiver of the packet. The coordination of nodes in 

BC network is fixed; therefore, the selected route is fixed as well. The algorithm runs on 

all nodes on a path from the source and destination of a transaction including 

intermediate nodes and starts with calculating the distance between the current node and 

the final destination of the packet on all three dimensions. Then the packet is sent to a 

neighbour alongside the axis which had the largest distance calculated. This method is 

chosen mainly for the sake of simplicity of implementation and is not guaranteed to be 

flexible enough if there are some nodes or links in the path that are missing or out of 

order. 

This can be risky to have one and only one route because in case of a failure in even one 

of the intermediate nodes no alternative route is considered and no packet can be 

delivered. This may be less importance in the current stage of the research in which only 

a simulated BC platform is tested in which it is assumed that all nodes are up and 

running throughout the whole simulation time. This routing algorithm is used just to 

explore the routing method possibilities and will be changed or modified for next 

stages. 

A deadlock avoidance technique is sought for the BC platform to avoid deadlock 

situation when two or more neighbouring nodes are dealing with high rate of input and 

output packets. In this thesis this situation is referred to as a communication hot spot. 

There will be a communication hot spot when both input and output queues of a node 

(let’s call it node A) are full with packets to/from another node (node B) while the input 

and output queues of node B is also full with packets to/from node A. In this situation 

node A cannot find a free space in input queue of node B to send a packet and free one 

slot in its own output queue. The same thing happens in B as well and no progress is 
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possible. This particularly can happen when more than one workload are loaded to the 

BC network. 

A deadlock prevention technique is used for this thesis which is based on shifting some 

of the traffic load off the nodes that face a temporal high traffic load. Referring to 

situation discussed in previous paragraph, this means that when nodes A and B detect 

that there are many packets in their I/O buffers to/from each other, they signal other 

nodes to either stop sending them other packets or send packets to them in a lower rate. 

By doing this those two nodes have the chance to focus on sending/receiving packets 

left in their I/O buffers. The normal transmission of packets from other nodes can be 

resumed when the heavy load period is spent. This may not guarantee that no deadlock 

occurs but it can be shown that it can effectively delay a deadlock situation. More 

details about this deadlock prevention method can be found in chapter 7 of this thesis. 

3.9) Summary 

This chapter starts with introducing the main research question of this thesis which is: 

Is there an effective solution for connectivity in a massively parallel computer with 

wireless interconnect network? 

It is also discussed why we need to narrow down the scope of the thesis to connectivity 

issues in a wireless parallel platform. Other major issues are also briefly discussed but 

left for future works. A number of more detailed questions around the connectivity issue 

are also presented in this thesis. 

A simulated network is needed to test the idea of having a 3D wireless parallel 

computer. This platform is called Ball Computer (BC) in this thesis. Following a brief 

description of the concept of a BC in first chapter of this thesis, more detailed 

discussions is included in the current chapter. By the end of this chapter, one will have a 

clear picture of what a BC is and how it is supposed to operate. 

This chapter shows what is our expectations from a BC platform in terms of data 

communication rate, communication distance, power consumption, physical occupied 

area and maximum number of hops. 

The evaluations presented in this chapter shoes that the maximum number of hops in 

BC platform is comparable to most popular parallel platforms in networks of small and 

medium sizes. In large networks (e.g. a majority of most powerful supercomputers in 

the world today) the maximum number of hops of the 3D BC platform is higher than 

modern direct networks like CRAY Aries’s 5D network. This issue can be solved in 

future expansions to the idea of BC by incorporating more efficient buffer management 

methods (e.g. worm hole switching/routing). 
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This chapter also shows that there are two other important factors namely energy 

consumption and data rates in which wireless devices are yet to be improved to be able 

to match current wireline technologies. It is shown that the wireless-wireline gap is 

wider in terms of power consumption. 

Through chapters 4, 5 and 6 more detailed discussions are presented over some 

important aspects of BC architecture. These are network topology, network partitioning 

and task modelling respectively. 
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Chapter 4: Communication Media and Network Topology 

4.1) Communication Media 

The analysis in the previous chapter indicates that radio devices are the best choice for a 

3D wireless grid. The radio range and the area radio modules occupy match the criteria 

of this thesis. There are still some concerns over their data rate and power consumption. 

As it is shown in chapter 3, there are already a few on-chip radio technologies that can 

meet the energy requirements envisaged in this thesis. More suitable on-chip radio 

technologies (in terms of energy demands) for the proposed platform will be available 

in near future if the historic trend of reduction in power consumption continues. 

As mentioned before, heat dissipation and power delivery are two other big challenges 

which are out of the scope of this thesis. In real world these two factors can play a role 

in choosing communication technology. As an example, heat dissipation requirements 

may set a minimum distance between nodes. This can have a direct effect on the type of 

wireless technology. None of these two challenges; however, has any direct effect on a 

simulated environment like the one used in this thesis. 

The other option for communication media would be inductive coupling. The positive 

point about such a technology is its low energy consumption and high data rates. The 

big problems with inductive coupling are its short data links it supports and its high 

sensitivity to alignment of coupled elements. The short data link problem is already 

solved (e.g. in wireless BAN applications) but it comes with huge cost of sharp 

reduction in data rate. In case of a breakthrough in improving the length of the link 

while preserving the high data rate; inductive coupling can be a very favourite candidate 

for a 3D wireless grid for parallel applications. 

Regarding all the benefits and deficiencies of the two wireless categories mentioned 

above, it is decided to use radio modules in the BC platform. Each node of the grid in 

this network has a number of radio modules which can operate independently. The 

number of modules depends on the dimension of the grid and the ratio of radio 

interference range to the node’s diameter. 

4.2) Radio Modules per Node 

A 3D network is preferred to a 2D network in order to have the maximum connectivity 

between nodes. In a 2D network the maximum number of neighbours for a node is 6; 

while the same number for a 3D network is 12. Also to accommodate a large number of 
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nodes in a 2D network a relatively large area is needed; while the same number of nodes 

can be packed in a relatively smaller cube. 

Another important factor is the radio range of modules. The larger the radio range the 

larger the number of neighbours for a node which consequently leads to higher 

connectivity and lower average number of hops. But this comes with the cost of lower 

bandwidth available for each link given a fixed overall bandwidth available to a node. 

The communication range of a radio module is the range in which the radio signal is 

strong enough to be received and decoded in the receiver side. The interference range of 

a radio device is the range in which the radio signal can interfere with other signals but 

it is not necessarily strong enough to be decoded in the receiver. In many radio 

simulations as well as analytical papers the interference range of a radio device is 

approximated as twice the radio communication range. In this thesis the interference 

range is approximated as twice the communication range. The communication range 

plays a major role in determining the number of neighbours of a node as shown in Table 

14; while the interference range will affect the channel assignment process (discussed in 

next chapter). The channel assignment algorithm determines the total number of 

frequency channels needed for the whole network. The larger the interference range the 

larger the number of channels and consequently the narrower each channel will be. 

This shows that an increase in the radio range has a positive effect on the performance 

of the network as well as a negative impact. The positive effect is the larger number of 

neighbours and higher degree of connectivity. The negative impact is the higher number 

of channels needed for the whole network which means more restriction on the 

bandwidth on each channel. 

Table 14 shows how the number of neighbours increases with the radio range. It will be 

shown in next chapter that when there are just 12 neighbours the number of channels 

needed for each node is eight. When the number of neighbours is higher than 12, the 

number of channels needed is equal to the number of neighbours. 

Radio Communication 

Range 

Maximum number of 

neighbours for a node 

1*d 12 

2*d 54 

3*d 168 

4*d 356 

Table 14: The increase in the number of neighbours with increase in radio range (“d” is the diameter of the 

node) 
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When it comes to decide about the nodes’ radio communication range, it has been 

decided to keep the radio range as short as possible (i.e. “1*d” as shown in Table 14). In 

this case the number of neighbours for each node will be 12 and the number of radio 

modules for each node is 8. Larger communication ranges are practically impossible 

because of the sharp increase in the number of radio modules needed for each node. 

4.3) Hexagonal topology 

A 3D hexagonal topology is adopted for the wireless grid to maximise the number of 

nodes in a volume unit. We know from literature that there are two 3D topologies with 

maximum density: 

1. Hexagonal Close-Packed (HCP) 

2. Face-Centred Cubic (FCC; also known as Cubic Close-Packed) 

The space occupied by spheres in both these lattices is the highest among different 

lattices. Both these topologies are based upon surfaces of balls in a triangular tiling. 

FCC topology is chosen for this the BC platform. It is known from Gauss [148] that the 

packing density of the spheres (balls or nodes in this thesis) in such an arrangement is 

given by Eq. 10 which shows how much of a given space can be occupied by equal-size 

spheres in aforementioned topologies
23

: 

Eq. 10  𝑫𝒆𝒏𝒔𝒊𝒕𝒚 =
𝝅

𝟑∗√𝟐
≈ 𝟎. 𝟕𝟒𝟎𝟒𝟖 

There is little difference between the two lattices that is discussed in [149]. In Figure 42 

letters A, B and C resemble different layers. There are only two distinct layers in HCP 

matrix; while, the number of distinct layers in FCC is three. These two topologies can 

be converted to each other with a shift in FFC’s layer C. The shift is shown in Figure 42 

where a shift in white circle with letter C to the dashed circle converts layer C to layer A 

and consequently converts FCC to HCP. The shift is by “d” – which is the diameter of 

the nodes – and should be applied along Y-axis. 

 

Figure 42: HCP (left) and FCC (right) lattices as projected in [149] 

The reason why FCC is preferred to HCP originates from the zoning mechanism which 

is discussed in next chapter. The number of zones in both HCP and FCC topologies are 

                                                 

23
 Density is also called Atomic Packing Factor (APF). The term is borrowed from crystallography. 



Chapter 4: Communication Media and Network Topology 

108 

the same; but the zones are symmetric and balanced in FCC while in HCP the zones are 

not evenly distributed over all neighbours. In FCC each neighbour is a member of two 

zones. 

Figure 43 compares the grid in 2D and 3D
24

. It has been stated earlier in this thesis that 

the radio communication range of nodes just covers their adjacent neighbours. It means 

that each node is in direct contact with 6 nodes in 2D and 12 nodes in 3D. 

 

  (a)                                      (b) 

Figure 43: The topology of a ball computer in (a) 2D and (b) 3D 

The number of links between nodes is decided to be at its maximum. It is possible for a 

real-world prototype to reduce the number of links to reduce the implementation cost as 

well as the overall number of channels needed. This; however, comes with the expense 

of a reduction in network connectivity and possibly an increase in average number of 

hops between nodes. The actual number of links in a real prototype is a matter of trade-

off between these factors and cannot be determined at this stage. 

What is important at the moment is to make sure that connectivity of network is 

maximised by choosing a hexagonal topology (rather than cubic) for a 3D grid (rather 

than a 2D grid). If the actual area occupied by real radio modules is small enough, there 

would be another option which is increasing the number of radio modules from 8 to 12 

for each node. In this case each radio is dedicated to one and only one neighbour. This 

may increase the connectivity of the network and may lead to faster data 

communication and lower wait time for data packets. 

As a quantitative measure for the degree of connectivity in interconnect networks the 

connectivity matrix is used by a number of scholars including Fountain [150]. The basic 

connectivity matrix is a square matrix of size n*n where n is the number of processing 

elements. Each element (i,j) of this matrix is equal to 1 if there is a direct path between 

processing elements i and j. That element is zero otherwise. Connectivity matrices of 

higher degrees can also be made based on the basic matrix. For example in a second 

degree connectivity matrix the matrix element (i,j) is equal to 1 if processing elements i 

and j are connected in less than two hops; otherwise that element is zero. These matrices 

                                                 

24
In real world the size of nodes are bigger than what is shown in Figure 43. Nodes in real world will be 

in physical contact with their neighbours as shown in Figure 42 and Figure 46. 
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helps studying how effective a topology is when it comes to sending a message in least 

possible hops. Connectivity matrices can be illustrated as a checked board in which each 

small square (i,j) is painted white if the corresponding element in the matrix is zero; 

otherwise that square is painted black. 

Figure 44 shows illustrations of connectivity matrices of degrees 1 to 5 for a 5D torus 

which is the basis for connectivity network of a modern Blue Gene/Q parallel computer. 

The figure shows that the maximum number of hops between two nodes in such a 

network is five. 

   

(a)         (b) 

     

(c)         (d)          (e) 

Figure 44: Connectivity matrices of a 5D grid (2*2*2*2*2). Path degree varies from 1 to 5 in (a) to (d) 

respectively 

The same set of matrices is reproduced for a 3D hexagonal grid. The results are shown 

in Figure 45. It shows that the theoretical maximum number of hops for such a network 

is four. There are just two exceptions to this rule which is due to the connectivity 

limitation for the nodes in the corners and edges. 

Figure 44 and Figure 45 show that for small and medium size networks a 3D hexagonal 

network can send messages with less number of hops thanks to larger degree of 

connectivity compared to a 5D network. Since each node has 12 neighbours, it has 

many options to choose from and the message will be delivered in small number of 

hops. But for large scale network the orthogonally connected nodes in a 5D network 

show their strength and help delivering messages in smaller number of hops compared 

to a 3D hexagonal network. It should be noticed that although in a hexagonal network 
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each node has many neighbours but they are not orthogonal to each other and this 

hinders the performance of such a topology in large networks. These results reinforce 

the results presented in Table 13 and Figure 41. 

   

(a)         (b) 

     

(c)         (d)          (e) 

Figure 45: Connectivity matrices of a 3D hexagonal grid (3*3*4). Path degree varies from 1 to 5 in (a) to (d) 

respectively 

4.4) Performance Metrics 

The main performance metrics in this thesis are the execution time of tasks, processor 

utility, the network utility, the aggregate transaction time of all nodes and the aggregate 

link wait time which shows how much time nodes were waiting to access the control of 

a channel for packet transactions. The state and performance of a network can be 

evaluated using other metrics as well. Some of the most important of such metrics are 

degree, diameter, bisection bandwidth and throughput of the proposed platform. 

As discussed in chapter 2, the degree of a node in a network is the number of nodes in 

direct connection with that node. Regarding the 3D hexagonal structure of a BC 

platform the degree of a node (other than nodes on edges and corners) is 12 (See Table 

14 and Figure 43). The diameter of a network is the maximum number of hops between 

any two given nodes given the path is a minimal path. In a 3D BC of size N=n*n*n the 

diameters will be n. This is because of existence of vertical links in nodes from different 

layers of the network. 
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In a 3D BC of size  N=n*n*n each node in the network has up to 12 links with its 

neighbours among which 6 links are shared with neighbours on its right hand side and 

the other 6 with neighbours on its left. When such a network is sectioned into two equal 

pieces there are n*n nodes on the border on each side. Therefore the bisection 

bandwidth of a 3D BC of size N=n*n*n would be 6n
2
. 

These values can be compared to Table 4 which lists metrics of some of the most 

popular topologies already used in HPC systems. It can be seen that the BC platform’s 

metrics can match (or be better than) those topologies’ metrics. 
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Chapter 5: Network-partitioning 

5.1) Packet Collision Problem 

The main motivation for incorporating a network-partitioning algorithm in the platform 

proposed in this thesis is to solve the packet collision problem which is known to be the 

main source of delay in data transmission in wireless networks. 

Some of the most popular strategies to tackle packet collision are discussed in section 

2.6. The RTS/CTS mechanism effectively lowers the packet collision incidents but it 

comes with a drop in effective bandwidth because of the extra packets needed for each 

data packet. RTS, CTS and data acknowledgment are the extra packets needed to 

securely send a packet from the transmitter to the receiver. It should be taken into 

consideration that the packet collision is not guaranteed to be totally eliminated in this 

scheme; although the number of collision incidents is expected to be reduced 

dramatically. 

Another option is the timeslot mechanism which can guarantee total elimination of 

packet collision. But the bandwidth for each node is reduced because of the fact that the 

overall bandwidth available to all nodes is divided between them. 

The strategy adopted for the platform proposed in this thesis has a minor analogy with 

timeslots but it operates on the frequency domain rather than time domain. In other 

words, in timeslot scheme different time slots are dedicated to different nodes; whereas, 

in this thesis different channels are dedicated to different nodes to communicate with 

certain nodes. RTS/CTS mechanism is not used because of its overhead (extra packets 

per data packet) and the fact that it cannot reduce the collision incidents to zero. The 

current mechanism for avoiding packet collision is based on dividing available spectrum 

between nodes but it can be easily converted to timeslot scheme. From this point of 

view all the material in next three sections can be applied to the time domain as well to 

make an effective timeslot mechanism. A multi-channel approach is adopted for the 

wireless network used in the BC platform and by choosing right number of radio 

devices and right channels for each radio in each node the packet collision is guaranteed 

to be completely eliminated. 

5.2) Network-partitioning Criteria 

In previous section a multi-channel network was introduced as the backbone for the 3D 

wireless grid proposed in this thesis. Like all other multi-channel wireless networks 

(e.g. wireless internet access points and mobile phone networks), this network needs a 



Chapter 5: Network-partitioning 

113 

network-partitioning algorithm to divide the network into (overlapping or none 

overlapping) regions inside which a unique channel is used for communication between 

nodes. Network-partitioning algorithms differ mainly in the criteria they are going to 

satisfy. This has a direct effect on how the algorithm looks like and how it works. Two-

stage algorithms are very popular in network-partitioning. A two-stage network-

partitioning algorithm is designed and implemented against the following criteria: 

 Eliminating packet collision; 

 Maximising the network connectivity; 

 Minimising the number of channels. 

Referencing back to the design issues listed in section 2.7 it can be seen that some of 

those issues are included in the criteria while some others are not main issues in this 

thesis. Interference, Connectivity and fault tolerance are among the important issues in 

this algorithm. Stability is not an important issue in designing this algorithm. Dynamic 

measures to increase the throughput of the network are not included. It will be shown 

that the algorithm has a polynomial execution time but this should be noted that because 

of the static nature of the network there is no need to run the algorithm more than once. 

This can be done before running the main simulator. The results can be stored and used 

in next experiments as far as the network size and dimension are not changed. For this 

reason the algorithm time is not a main design-time concern for the network-

partitioning algorithm. In addition to the algorithm’s criteria the topology of the 

network is also very different from other applications like wireless Internet access 

devices and cell phone networks. The number of nodes, their 3D formation and their 

closed packed arrangement are some of this network’s unique features. These unique 

features make the network-partitioning algorithm designed for this network different 

form other algorithms in this field. The next two sections discuss the two stages of the 

network-partitioning algorithm in more details. The first sub-algorithm partitions the 

network and the second one assigns proper channels to the partitions. 

5.3) Zoning; Proposed Algorithm 

The zoning algorithm divides the network into overlapping sections (which are called 

zones in this thesis) in a way that: 

 Each node in a zone can hear from all other nodes in that zone; 

 The zone is in its maximal size; i.e. all nodes that satisfy the first criteria have 

joined the zone. 

This means that a zone is a sub section of the communication range of its members (see 

Figure 46). This figure shows that a zone is in fact the intersection of communication 
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range of three neighbours in a 2D hexagonal grid. In this figure r is the radius of the 

radio range and z is the radius of the zone. The same idea can be generalised to 3D 

networks as well. A zone in a 2D environment is a rounded triangle whereas in 3D it 

looks like a pyramid. The zone members are the corners of these triangles and pyramids. 

The idea is that all zone members can use a unique channel dedicated to that zone. The 

nodes near but outside the zone are banned from using that channel for any of their data 

transactions. The green and red areas in the bottom right image in Figure 46 show these 

two groups of nodes. In this figure it is assumed that the radio range just covers the 

node’s direct neighbours. The radio range plays a role in defining the inclusion area (i.e. 

the green area in Figure 46 which is the zone itself) while it is the interference range of 

the node which determines how big the exclusion area (i.e. the red area in Figure 46) is. 

Like many other simulations, in this simulation it is assumed that the interference range 

of a radio device is approximately twice as long as its radio range. 

     
 

     

Figure 46: The process of forming a zone. The channel inclusion and exclusion areas are defined. 

The zoning algorithm is designed so that each zone accepts as many member nodes as 

possible provided a new member can hear from all old members of the zone. This 

means that the zoning process stops only when no other nodes can join the zone. A node 

in the network can be a member of more than one zone. These zones are overlapping 

with each other. As a result, a node can communicate with some of its neighbours over 

more than one channel. In a 2D network there can be up to 6 zones per node (Figure 

47.b). This figure also shows that the central node can use two channels to communicate 

with either of its neighbours. This provides redundant paths for all nodes and increases 

the connectivity and robustness of the network. In case of a failure in a link between 

two nodes there are alternative routes and the connection is not necessarily lost. This 

also helps in case of heavy traffic over a link. In this case alternative paths can redirect 

the traffic and help balancing the traffic load. This degree of flexibility comes with the 
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price of an increase in the number of zones and consequently an increase in the overall 

number of channels needed to set the network up. 

     

(a)                                         (b)                                        (c) 

Figure 47: (a) and (b) A central node and its zones. (c) Compared the wireless connections with their wireline 

equivalent. 

Figure 47.c compares the proposed wireless network with its wireline equivalent. The 

equivalent wireline network can also be seen in Figure 48. Each zone is replaced by a 

small star wireline network which has just three members. Redundant independent star 

networks are the equivalent of overlapping zones in wireless version. 

 

Figure 48: A wireline equivalent of the proposed wireless network in 2D 

A greedy algorithm is designed and developed for zoning process. Its pseudo code is 

shown in Algorithm 1. The algorithm needs to know about the topology of the network. 

One standard way to represent a graph is via its adjacency lists. An adjacency list
25

 is a 

set of unordered lists in which ith member of the set (ith list) contains all neighbours of 

node i. The radio range of the nodes determines their neighbours. The adjacency list in 

proposed zoning algorithm is called Neighbours and is passed to the algorithm as an 

input. The output of the algorithm is sought to be a collection of zones called 

ZonesFound here (each zone is represented by a list of member nodes). The only thing 

the main function of the algorithm (called zoning here) does is calling a recursive 

function. This recursive function (called recursiveFindNodes) is the function that 

actually handles the zoning process. This sub-algorithm is called once for each of the 

members of the network in the main function (line 6 in Algorithm 1). 

Like any greedy algorithm two sets are involved in recursiveFindNodes function: 

Candidates and Answer. The Answer set contains a list of nodes that are chosen for a 

zone. In line 6, when the recursiveFindNodes sub-algorithm is called for the first time 

                                                 

25
 As defined in: http://en.wikipedia.org/wiki/Adjacency_list 
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for any node -which is referenced to as central node in this algorithm- the Answer set 

includes the central node only. If a zone is found by the recursive function, then it is 

added to the list of zones found so far (line 18). At any stage of the algorithm, the 

Candidates list contains all the nodes that have a chance for being added to the Answer 

list. At the top stage (line 6) this list contains all the neighbours of the central node. 

When the candidates set is empty it means that an answer (a zone) is found and no other 

node can be added to it (line 17); otherwise the same recursive function is called with 

the current Answer and Candidates lists (line 21) until the Candidates list is empty or all 

its members are checked. 

 

Algorithm 1: Zoning sub-algorithm 

Lines 18.a to 18.e are not part of the algorithm itself but they are added to facilitate the 

execution of the second part of network partitioning process (channel assignment sub-

algorithm). What these lines do is updating the Nodes data structure which is to be used 

in channel assignment algorithm (Algorithm 3). Those lines add a new entry to the Z list 

in Nodes and store the newly found zone in its M field. More information on Nodes data 

structure and its fields can be found later in this chapter. 

1: // Global variables: 

2: array-of-sets  Neighbours [] // Neighbour[i] is the adjacency list for the network’s ith node. 

3: set-of-sets ZonesFound  // An initially empty set of sets. At the end, it has all the zones. 

4: void Zoning () { 

5:  For i=0 to sizeOf (Neighbours) do // Neighbours has a list for any node in thee network. 

6:  recursiveFindNodes ({i} , Neighbours[i]) 

7: } 

8: void recursiveFindNodes (Answer, Candidates) { 

9: // Inputs: 

10: // Answer: an integer set representing one answer list (a zone) 

11: // Candidates: a set representing the candidates list (initially all neighbours of node i) 

12: int-set TempAnswer // A temp integer set representing an incomplete answer (zone) 

13: int-set TempCandidates // A temp integer set representing current state of candidates 

14: for i=0 to sizeOf(Candidates) do { 

15:  TempAnswer ← Answer ∪ Candidates[i] 

16:  TempCandidates ← Candidates ∩ Neighbours[Candidates[i]] 

17:  if (TempCandidates == ∅) then { 

18:   ZonesFound ← ZonesFound  ∪ TempAnswer 

18.a:   for j=0 to sizeOf(TempAnswer) do { 

18.b:    int nodeMember= TempAnswer[j] 

18.c:    int zoneNo= sizeOf(Nodes[nodeMember].Z) 

18.d:    Nodes[nodeMember].Z[zoneNo].M= TempAnswer 

18.e:   } 

19:  } 

20:  else 

21:   recursiveFindNodes (TempAnswer, TempCandidates) 

22: } 

23: } 
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The algorithm works correctly as long as it can guarantee that in any stage of the 

algorithm the Candidates list only contains all nodes that can be added to the Answer 

list. This means that each node in Candidates list is a neighbour to all the members of 

Answer list. Line 16 gives the aforementioned guarantee as in any run of the recursive 

function the candidates list is refined by performing a union operation with neighbours 

of the newly selected node for Answer list. Therefore, by performing the union 

operation in line 16, the new member of the Answer list is removed from the Candidates 

list (like any other greedy algorithms) followed by all members of the Candidates list 

which are not a neighbour of the new member of the Answer list. 

Compared to a standard greedy algorithm, the only twist in the algorithm is that all the 

members of the candidates list that are not neighbours of the new member of Answer set 

also leave the candidates list. To have overlapping zones it is important to let all 

different combinations of nodes be tested (refer to the loop in lines 14 and 15). The “if” 

statement in line 17 prevents premature termination in process of finding a zone. This 

way, it is guaranteed that zones will be in their maximal size and no other node can be 

added to any zone. 

The time complexity of the algorithm can be studied using big-O asymptotic notation. 

The notation O(.) is defined as follows: 

f(x) = O(g(x)) if and only if there are real numbers M and x0 such that f(x) ≤ M*g(x) for 

all x ≥  x0
26

. This notation is usually used to describe the behaviour of a function when 

its variable is very large (or infinite). We use this notation to study how the execution 

time of the proposed zoning algorithm increases as the number of nodes (its input) 

increases towards very large numbers. 

Execution of Algorithm 1 has three phases. The first phase which is not explicitly 

mentioned is the preparation of the inputs (Neighbours data structure). The second part 

is the Zoning function. This function just calls a recursive function once for each node 

which brings the algorithm to its third phase (recursiveFindNodes function). The 

execution times of these phases in terms of big-O are: 

 To construct the Neighbours data structure, the geometric coordination of each 

node should be adjusted which takes O(n) time units where n is the number of 

nodes in the network. Consequently, to define neighbours of each node, the 

location of a node should be checked with those of all other nodes via two 

nested loops each of length n (complexity of order O(n
2
)). Therefore the whole 

preparation phase is of order O(n)+O(n
2
). When the number of inputs increases 

                                                 

26
 The definition is based on: http://en.wikipedia.org/wiki/Big_O_notation 
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towards infinity, the O(n
2
) part dominates; therefore this phase has an execution 

time of order O(n
2
). 

 The Zoning function is called once per each node and therefore it has an order of 

O(n) multiplied by whatever the execution order of the function 

recursiveFindNodes (third phase) is. 

 The function recursiveFindNodes has a main loop (line 14) which repeats x 

times where x is the size of Candidates list. x has a finite value and does not 

scale with the number of nodes. There is also a second (inner) loop in this 

function (lines 18.a to 18.e) which is added to assist the execution of the channel 

assignment algorithm. This loop also executes for a limited number of times and 

is not related to the number of nodes. Parts of the algorithm that have a constant 

execution time do not take part in the big-O analysis of the algorithm. The only 

part of the main loop which its execution time depends on the number of nodes 

is the union operation (line 18). The union operation is needed because the 

algorithm as it is, may generate multiple copies of the same zones when treating 

different members of them as central nodes (on different executions of line 6). 

Depending on the implementation of set operations, the execution time of this 

operation varies. When a set is implemented with a heap, the execution time for 

a union operation can be of order O(log2(n)). 

As a result the aggregate operation time of both functions (recursiveFindNodes and 

Zoning) is of order O(n*log2(n)). Therefore, the overall time complexity of Algorithm 1 

is O(n
2
)+O(n*log2(n))= O(n

2
). 

The execution of the aforementioned functions can be improved by making two changes 

in Algorithm 1. In the enhanced version of the algorithm (Algorithm 2) the main loop in 

recursiveFindNodes function is altered so that it does not process members of 

Candidates list with indexes lower than the current central node. This is based on the 

fact that any zone with such members of Candidates list is definitely found before when 

that member of Candidates list was the central node. 

This means that there will be no duplicate zones in ZonesFound data structure. As a 

result, a newly found zone can simply join the ZonesFound without a need for union 

operation. This gives a constant operation time (O(1)) to the recursive function and 

consequently the Zoning function is of O(n) order. But the overall execution time of the 

algorithm is still dominated by the preparation process which is of order O(n
2
). 

Figure 49 shows a 3D neighbourhood in which 8 pyramid-shape zones exist around the 

central node. Each neighbour shares two zones with the central node. It can be seen that 
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the top most layer and the bottom most layer are not exactly the same. This means that – 

like all FCC lattices- there are three distinct layers in this topology. 

 

Algorithm 2: An enhanced version of Zoning sub-algorithm 

For many nodes in the network (except those locating on edges or corners of the 

network) there are eight zones per node. The algorithm imposes no limit on the number 

of zones and tries to find as many zones as it can. This may not be always desirable. If – 

due to technical considerations- the number of zones needs to be reduced, a 

modification in Algorithm 1 is needed to find just a limited number of zones (i.e. less 

than eight zones in 3D) for each node. The number of zones is the same for a node 

regardless of its position in the network. This lets the network have a monotonic 

connectivity. The algorithm can be modified by letting the position of a node in the 

network play a role in generating different number of zones for it. This may be 

particularly useful if some points in the network are proven to be communication hot 

spots and need higher degree of connectivity whereas other parts of the network can 

cope with lower connectivity. In this case, more zones are needed for a hot spot; and 

therefore the algorithm can respond to this demand by lowering the number of zone 

1: // Global variables: 

2: array-of-sets  Neighbours [] // Neighbour[i] is the adjacency list for the network’s ith node. 

3: set-of-sets ZonesFound  // An initially empty set of sets. At the end, it has all the zones. 

4: void Zoning () { 

5:  For i=0 to sizeOf (Neighbours) do // Neighbours has a list for any node in thee network. 

6:  recursiveFindNodes (i, {i} , Neighbours[i]) 

7: } 

8: void recursiveFindNodes (CentralNode, Answer, Candidates) { 

9: // Inputs: 

10: // Answer: an integer set representing one answer list (a zone) 

11: // Candidates: a set representing the candidates list (initially all neighbours of node i) 

12: int-set TempAnswer // A temp integer set representing an incomplete answer (zone) 

13: int-set TempCandidates // A temp integer set representing current state of candidates 

14: for i=0 to sizeOf(Candidates) do { 

15:  if (CentralNode < Candidates[i]) { 

16:   TempAnswer ← Answer ∪ Candidates[i] 

17:   TempCandidates ← Candidates ∩ Neighbours[Candidates[i]] 

18:   if (TempCandidates == ∅) then { 

19:    ZonesFound ← ZonesFound  + TempAnswer 

19.a:    for j=0 to sizeOf(TempAnswer) do { 

19.b:     int nodeMember= TempAnswer[j] 

19.c:     int zoneNo= sizeOf(Nodes[nodeMember].Z) 

19.d:     Nodes[nodeMember].Z[zoneNo].M= TempAnswer 

19.e:    } 

20:   }  

21:   else 

22:             recursiveFindNodes (CentralNode, TempAnswer, TempCandidates) 

23:  } 

24: } 

25: } 
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members and increasing the number of zones. At the current version of the algorithm 

there were no need for such modifications and it is simply assumed that all the nodes 

have the same communication demands. 

 

Figure 49: A 3D grid of wireless devices and the pyramid partitions around a central node 

5.4) Channel Assignment-Proposed Algorithm 

The channel assignment algorithm used in this thesis can be regarded as a variation of 

map colouring algorithm. Mathematicians in 19
th

 and 20
th

 century tried to find an 

answer to the question of how many colours are needed to colour a map (consisting of 

contiguous regions) so that any two adjacent regions have different colours
27

. In 1890 

P.J. Heawood [151] showed that any map can be painted with only five colours. Also it 

can be shown that three colours are not enough for maps in which a region is 

surrounded by an odd number of other regions that touch each other in a cycle. In 1976 

K. Appel and W. Haken proved that four colours are enough for colouring any sort of 

maps (their work was published in 1977 and 1989 in [152], [153], [154] and [155]). 

The algorithm proposed in this thesis differs from the original map colouring problem in 

the sense that in the current algorithm two zones cannot have the same channel 

(compare with colours in map colouring) if there are less than two zones located 

between them. 

In this sub-algorithm the zones found in previous stage (zoning) are used as an input to 

assign proper frequency channels to them. The word “proper” in this context means that 

the channels should be chosen in a way that in none of close neighbourhoods the same 

channel is used. The key parameter in determining what zones are “close” to each other 

is the interference range of nodes. Two zones can use the same frequency channel if and 

                                                 

27
 A more formal definition of the problem is presented in 2008 by Georges Gonthier [293] which states: 

“A planar map is a set of pairwise disjoint subsets of the plane, called regions. A simple map is one 

whose regions are connected open sets. Two regions of a map are adjacent if their respective closures 

have a common point that is not a corner of the map. A point is a corner of a map if and only if it belongs 

to the closures of at least three regions. Theorem: The regions of any simple planar map can be coloured 

with only four colours, in such a way that any two adjacent regions have different colours.” 
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only if none of the members of one of the zones falls inside the interference range of 

none of the members of the other zone. 

It should be mentioned that in the platform proposed in this thesis all nodes are assumed 

to have both the same communication range and the same interference range. This is not 

always the case in real-world applications. The radio range differs from a radio module 

to another. Among other reasons this can happen because of the difference in the level 

of electrical power applied to the devices and physical obstacles between the transmitter 

and receiver which cause different patterns of reflection, absorption and diffraction. 

However, in a controlled area and a dense network like the platform proposed in this 

thesis there is a legitimate chance to approximate all the radio ranges to one common 

distance. Algorithm 3 shows the pseudo code of the channel assignment algorithm used 

in this thesis. In the original version of the map colouring problem no neighbouring 

regions can have the same colour. What makes the channel assignment different from 

the original map colouring problem is that in channel assignment problem the shortest 

distance between two regions with the same colour should be greater than or equal to 

the interference range of nodes. 

The input to the proposed channel assignment algorithm is a data structure representing 

the nodes of the network. Each member in the Nodes structure contains a list of its 

zones (Z), a list of nodes locating in its interference list (I) and a list of channels that 

cannot be assigned to any zone of that node (E). Each member of the Z structure 

consists of a channel assigned to that zone (F) and a list of nodes belonging to this zone 

(M). The list of forbidden channels for a zone (called E, also known as exclusion list) is 

initially empty and new channels are added to it as the algorithm assigns channels to 

other zones. The interference list (I) is needed because the coordination of nodes are not 

included in Nodes structure. The information stored in list E and list M (in Z) could have 

been extracted from other members of the Nodes array; but it comes with the expense of 

increase in the algorithm’s execution time.  This means that there are some redundant 

data stored in the Nodes data structure. Although this increase the size of space needed 

by that array; but, in light of significant reduction in algorithm’s run time, it is decided 

to include those redundant data. 

The goal of the proposed algorithm is to assign values to the frequency channel of each 

zone (represented by Nodes[i].Z[j].F) so that the assigned frequency satisfies the 

criteria proposed in section 5.2. 

When a channel is going to be assigned to a zone, the smallest channel number which is 

not a member of the exclusion list (E) is selected (lines 13 to 19 in Algorithm 3). As 

soon as a channel is assigned to a zone (line 26), that channel is also added to exclusion 
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list of all zones in the interference range of all the zone members (lines 27 to 29). This 

guarantees that there would be no interference between none of the zones over the 

network. When a channel is assigned to a zone all the zones and zone members affected 

by that assignment are updated as well (lines 24 to 29). This saves execution time when 

checking other members of that zone (refer to if statement in line 25). 

Algorithm 3: Channel assignment sub-algorithm  

In many channel assignment algorithms in other applications it is tried to include a 

fairness criterion. This is mainly for balance in traffic of channels to minimise things 

like inter-channel crosstalk. Algorithm 3; however, does not include a fairness criterion 

mainly because it is designed for a simulated network and the algorithm should be as 

simple as possible. When the algorithm is going to be applied to a real-world network, 

the fairness criteria should be included. 

Figure 50 shows the results of the Algorithm 3 (with added fairness criterion) applied to 

a 2D grid. Each distinct colour represents a distinct frequency channel. The repetitive 

pattern of colours in these figures indicates that the total number of channels both in 2D 

and in 3D grids are fixed numbers and are irrelevant of the grid size. 

1: void ChannelAssignment (Nodes) { 

2: // Inputs: Nodes: A set of nodes, where each member N consists of: 

3: //  Z: A set of zones. Each zone consists of: 

4: //   F: An assigned frequency channel initially set to 'null' 

5: //   M: A set of nodes belonging to the same zone membership 

6: //  I: An interference list including nodes in the signal interference range 

7: //  E: An initially-empty set of frequencies forbidden for this zone 

8: int Frequency ← 1 

9: Boolean match ← FALSE 

10: for i=0 to sizeOf(Nodes) do 

11:  for j=0 to sizeOf(Nodes[i].Z) do { 

12:   if (Nodes[i].Z[j].F != null) then continue 

13:   Frequency ← 1 

14:   match ← FALSE; 

15:   repeat 

16:    if (Frequency ∈ Nodes[i].Z[j].E) then 

17:     Frequency++ 

18:    else 

19:     match ← true 

20:   until (match) 

21:   for k=0 to sizeOf(Nodes[i].Z[j].M)  do { 

22:    int zoneMem ← Nodes[i].Z[j].M[k] 

23:    Nodes[zoneMem].E ← Nodes[zoneMem].E ∪ Frequency 

24:    for m=0 to sizeOf(Nodes[zoneMem].Z) do 

25:     if (Nodes[i].Z[j].M == Nodes[zoneMem].Z[m].M) then 

26:      Nodes[zoneMem].Z[m].F ← Frequency 

27:    for m=0 to sizeOf(Nodes[zoneMem].I) do { 

28:     int interfer= Nodes[zoneMem].I[m] 

29:     Nodes[interfer].E ← Nodes[interfer].E ∪ Frequency 

30:    } 

31:   } 

32:  } 

33: } 
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The execution time of the algorithm is shorter than other channel assignment algorithms 

because in many applications the algorithm should be executed in specific intervals but 

in the platform proposed in this thesis the topology of the network is fixed and there is 

no need to run the algorithm more than once. Many channel assignment algorithms use 

heuristic measures to approximate the optimised answer otherwise their execution time 

would increase exponentially with the network size. Although the proposed algorithm 

can be executed only once before running the simulator for several times, it is still good 

to know how the execution time of Algorithm 3 increases with the network size. 

The preparation of the Nodes algorithm can take no time if the modified version of the 

zoning algorithm (Algorithm 2) is used in which the Nodes is loaded with information 

generated by that algorithm. The main body of the proposed algorithm consists of two 

nested for loops. The outer loop repeats n times; where n is the size of the network. The 

inner loop runs for z times; where z is the number of zones a node has. This is a fixed 

number and it is shown in Figure 49 that in a 3D grid z is less than or equal to 8. This 

means that the complexity of the main body of the proposed algorithm is of order 

O(n)*O(1)*Complexity of the contents of the inner loop. 

The repeat-until loop (lines 15 to 20) has a limited upper limit on its repetition because 

of the repetitive nature of the channels (see Figure 50). Therefore this loop has a time 

complexity of order O(1). There are also three other for loops in lines 21, 24 and 27. 

The latter two locate inside the former. All these loops have a constant execution time 

regarding their fixed repeat times. This means that the whole last three loops (lines 21 to 

29) have an execution time of order O(1). As a conclusion, the channel assignment 

algorithm has a linear execution time of order O(n)*O(1) *O(1)=O(n). 

   

Figure 50: Representing channel assignment as a variation of map coloring problem 

There is some room for improving the algorithm particularly in two ways. First is 

assigning orthogonal channels to neighbouring zones to decrease the interference. 

Second is choosing the channels so that all channels are assigned to an almost equal 

number of zones (to satisfy fairness criterion). In the present version of the algorithm a 

free channel (which is not a member of the exclusion list) with the smallest channel 

identifier is selected for a zone for the sake of simplicity of implementation. This means 

that there are chances that smaller channel IDs are assigned to larger number of zones. 
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This may cause problems in certain situations. It is not studied how this may affect the 

performance of the network and what the extent of this effect would be. This can be a 

subject of research in future work. 

5.5) Simulated Signal Interference Mechanism 

The signal interference mechanism adopted in the current version of simulator is using 

the geometric location of the nodes. The mechanism is as follows: 

Each node has two radio attributes: Radio range and interference range. The radio range 

of a sender node is the distance in which the signal can be successfully decoded. The 

interference range is a larger area in which the signal can be detected but it is too weak 

to be decoded. This means that although the signal cannot be accepted as valid data but 

it is still strong enough to interfere with another signal which otherwise may had a 

chance to be decoded correctly. The second signal, in this case, cannot be decoded 

because of high noise added to the channel because of the first (weak) signal. The 

interference range is twice the radio range in most of widely used radio simulators. It is 

the case with the current simulator as well. 

Apart from signal interference there are other sources of noise for radio signals in real 

world. As this is the first version of the simulation tool and for the sake of simplicity in 

implementation those sources of noise are not modelled in the current version of the 

simulator. They will be added to the signal propagation model in future versions of the 

tool kit. An independent channel object is implemented in the simulator programme to 

handle the whole signal propagation and check for any packet collisions. 

5.6) Summary 

Network-partitioning and channel assignment algorithms have been already used in 

applications like mobile phone networks and wireless internet access. From this point of 

view the twin algorithms (network-partitioning and channel assignment) introduced in 

this thesis are not 100% new concepts. What makes these algorithm novel and different 

from other similar algorithms is mainly the criteria against which these two algorithms 

are designed. In particular the elimination of packet collision is the main objective of 

the twin algorithms which is not sought in other algorithms of this type. Eradication of 

packet collision is achieved by solving the Hidden Node Problem which is a common 

problem in many wireless networks. 

The price paid for solving that problem is that the communication range of a node over 

a given frequency channel is reduced to something which is called a zone in this thesis. 

Figure 47 shows that a zone is only a fraction of the communication range of a node. 
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This means that not all the neighbours of a node are included in a zone and 

consequently that node needs more than a zone to communicate with all of its 

neighbours. 

In this chapter a systematic method is introduced to partition a network into zones so 

that the elimination of hidden node problem can be guaranteed. The algorithm has an 

execution time of order  O(N
2
) where N is the number of nodes in the network. Also a 

channel assignment algorithm is introduced which guarantees no signal intervention 

between any two zones happens and at the same time keeps the number of frequency 

channels as low as possible. This algorithm also has an execution time of order O(N
2
). 

In fact, the network-partitioning algorithm makes sure there is no signal intervention 

inside a zone while the channel assignment algorithm removes any chance for 

intervention between zones. Proofs for correctness of twin algorithms have been 

included in this chapter. Results in chapters 8 and 9 demonstrate their correct execution 

in practice. 
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Chapter 6: Task-modelling 

6.1) Tasks vs. Task-models 

Like other parallel platforms the proposed grid should run a set of workloads to evaluate 

its performance. LINPACK is one of the widely accepted toolkits for measuring the 

performance of a computer. Its parallel version is also available to measure the actual 

maximum performance of supercomputers (as opposed to their peak maximum 

performance which in most of the times cannot actually be achieved). Other 

benchmarks are also introduced including NASA’s parallel benchmark (NAS Parallel 

Benchmarks – NPB) which is a set of benchmark tasks applicable to highly parallel 

machines to determine how efficient these machines are. 

The parallel platform proposed in this thesis is implemented in a simulated 

environment; also this thesis is not about studying different implementations of different 

tasks in the real-world. What this thesis needs is a task abstracted from implementation 

details. Furthermore, the natures of the tasks are also not of great importance in this 

thesis. What this thesis is eager to find out is how the proposed BC architecture 

responds when it comes to handling network traffic in situations that looks like real 

situations. This similarity is in terms of the pattern of computation and communication 

periods real-world tasks have. In other words, we want to see how nodes react when 

they mimic the computation and communication behaviour of real tasks. 

To do this, it is decided to introduce a concept called task-model which as its name 

suggests models a task in a way that its pattern of communication and computation 

intervals are preserved while neither its internal operation nor the way it is implemented 

are of interest; and therefore those features are omitted from the model. 

A task-model is essentially an artificial traffic generator which mimics the pattern of 

packet generation of one or a set of real-world tasks. A task-model does not run a real 

task and therefore does not do any real computation. The packets a task-model generates 

do not contain real and meaningful data. The only things that are real in a task-model 

are the computation and communication intervals. This is the only thing a designer 

needs to extract for a task-model from a real-world task. All of these mean that a task-

model is a higher level of abstraction for modelling a real task in a way that only its 

communication behaviour is preserved. This level of abstraction is vital for this thesis 

particularly because the platform is going to be built only in a simulation environment. 
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Merge Sort algorithm
28

 is used as an example to demonstrate the task-model generation 

process: 

What Merge Sort algorithm does is basically dividing an input array of numbers into 

two sub-arrays, sorting each sub-array separately and then merging sorted sub-arrays 

into one sorted output array. Since each sub-array would be an input to another run of a 

sort algorithm of any type; the Merge Sort can be used recursively to split the two sub-

groups into even smaller sub-arrays. 

Merge Sort has the ability of being implemented as a parallel algorithm in the sense that 

each sub-array can be sorted in parallel on different processors. It is the balance 

between communication speed and the computational ability of processors that 

determines when processors should stop splitting the data for further parallel execution 

and sort the input data locally. 

Like any other task in real-world, the only aspect of Merge Sort algorithm which is of 

interest in this thesis is the pattern of communication and computation periods each 

processor has. This means that while the contents of the input and output data is not 

important; it is just the size of data which is of concern in this thesis. Also the time it 

takes to send and receive the data and also the time needed to sort the input array is 

important. 

This means that from this thesis’s point of view a Merge Sort task starts with a period of 

time in which the task splits the input data to two pieces. This typically does not depend 

on the size of data and therefore has an execution time of order O(1). Then the task 

starts looking for candidates among its neighbour processors that accept sorting each 

sub-array remotely. This is also of order O(1). Then the data will be sent to those 

processors. The time needed for this step is of order O(N) and depends on the data size 

(N) and the speed of the communication link. On the receiver side, the arrival of a data 

packet starts a new sort algorithm. In case Merge Sort is the algorithm of choice in the 

new node, the aforementioned process is repeated until the size of data is small enough 

to make it possible for a local processor to run the sort algorithm locally. In case of a 

local execution of Merge Sort on a processor the execution time is of order O(N*log2N). 

Returning the results (of size N) to the parent node is also of order O(N). On arrival of 

all result packets, a node merges the results which takes a time of order O(N). 

To construct a task-model for Merge Sort, an internal flag is used to model the status of 

the processor. This flag can have one of the following states: 

                                                 

28
 According to Donald E. Knuth [292] Merge Sort is invented by John Von Neumann in 1945. 
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 Communication: Indicates the node is sending/receiving a packet to/from 

another node. 

 Computation:  Indicates that he processor is busy. There is no real computation. 

 Waiting: Indicates that the node has sent sub-arrays to other nodes and waits for 

results. 

 Idle: Indicates that the node is not involved in any tasks. 

There is no need to develop a code for sort algorithm. Also no real data is needed. A 

task-model does not produce real results but what it does is: 

 It finds right number of nodes that among other things means it occupies the 

links for a right amount of time cycles for transactions needed for this search. 

This step takes an unknown number of time cycles which depends on the 

availability of channels and number of idle nodes in the neighbourhood. 

 It sends data packets to selected nodes with dummy contents but with right 

packet length, to the right receiver, over the right link and over the right time 

interval (N time cycles for Merge Sort). 

 It switches to Computation mode (but not really executes a task) for a right 

amount of time cycles (N*log2N time cycles for Merge Sort). 

 It sends the data back to the original node over the right link and over the right 

time interval (N time cycles for Merge Sort) but again the content of the result 

packet is not real. 

 All other computation (e.g. initialisation and merging results) and 

communication intervals mimic the real task (in Merge Sort it takes N time 

cycles to merge the results). 

An accurate task-model should accurately follow the computation and communication 

activities of a task without using real data and real code.  What follows are a number of 

task-models designed and implemented for the simulated platform. Frequency of 

communications plays a major role in a task-model. The frequency of communication 

has also a secondary effect on tasks and that is when the number of transaction between 

nodes increases the dependency between tasks on different nodes increases. This 

dependency in some tasks is very high and this means that finishing a task in a node 

depends on finishing the task on many other nodes. This explains why the main 

difference between the first two task-models below is the degree of dependencies 

between tasks on different nodes.  Back to grand challenges plotted on Figure 2 some 

challenges can be spotted with low communication dependency including weather 
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forecasting. Some other tasks like computational fluid dynamics (CFD) usually need 

many communications between processors. 

6.2) A Simple Parallel Task-model (SPTM) 

 

Figure 51: State diagram of SPTM in parent node 

The first task-model introduced in this thesis is a task with loose and casual connections 

with other tasks. Each task is in contact with some of its neighbours through sending 

and receiving data packets and from this point of view the execution of a task depends 

on the execution of tasks on some of its neighbours. But the scope of task dependency 

never exceeds a node’s direct neighbours. This can be compared to a number of 

workloads in real world. Weather forecasting and finite element method (FEM) analysis 

are among those tasks
29

. In all these tasks an object is divided into small partitions and 

each node in the parallel platform is in charge of applying the task to one of these 

partitions. The result of the computations on each partition can be exchanged with its 

neighbouring partitions for further computations. The point is, the exchange of results is 

restricted to the immediate neighbouring partitions. This restricts the degree of 

dependency between processing nodes. The number of synchronisation points 

(communications) is not too high in this category of tasks. 

                                                 

29
 This is a very general categorisation; and this thesis does not go through detailed parallel programming 

techniques used for applications like weather forecasting or FEM. 
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The task-model introduced in this section randomly selects some of its neighbours. 

Then it sends a data packet to them and waits for results. By receiving all results it 

executes a merging process and its operation is finished. On the receiver side, the 

process time of the packet is proportionate to its length. In other words, when a packet 

of size M is received the processor needs M instructions to process the input packet and 

prepare the results. As mentioned before, the actual transaction time and process time 

depends also on the data rate of the link and the instruction per second of the processor 

respectively. The actual transfer time and the actual compute time in this example are 

M/x and M/t respectively where x is the link’s transfer rate and t is the number of 

instruction per time cycle. 

 

Figure 52: State diagram of SPTM in child node 

Nodes can accept their neighbours’ packets while they are waiting for the results from 

other nodes and even when they are already finished with their own tasks. Our test 

results show that the linear execution time has no particular effect on the behaviour of 

the network. Other execution times like logarithmic or square execution time can also 

be adapted. For the sake of simplicity, a linear execution time (with regards to data size) 

is chosen for implementation. 

Packet Type Description Parameters passed 

nodeStatusRequest The source node asks for accessing over the target node Task-model identifier, Task identifier 

nodeStatusResponse The target node accepts the source node’s access request Index if free task, Number of busy tasks 

transferData The source node sends data to the target node Data transfer time 

transferDataACK The target node acknowledges the data “0” 

transferDataNACK The target node do not acknowledge the data  “0” 

transferResults The target node sends the results back to the source 

node 

Results transfer time 

transferResultsACK The source node acknowledges the results “0” 

transferResultsNACK The source node do not acknowledge the results “0” 

Table 15: List of packets in SPTM protocol. 

Figure 51 and Figure 52 are two state diagrams that show how the internal state of the 
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start/end of data processing). Nodes can play both parent and child roles 

simultaneously; i.e. the reception and processing of a data packet can be handled 

separately from sending a node’s own packet to other nodes. 

A communication protocol is introduced for SPTM based on the state diagrams in 

Figure 51 and Figure 52. Table 15 lists the packet types used to implement SPTM. 

6.3) A Highly Dependent Task-model 

At the other extreme of node dependency are tasks that are highly dependent on a vast 

number of other tasks. Many workloads of this type can be found among mathematical 

transformations adopted for parallel execution. Different parallel sort algorithms are 

also included in this category. Fast Fourier Transform (FFT), Merge sort and Bucket 

sort are just some of these workloads. Many scientific and industrial parallel 

applications have this type of workloads. A divide-and-conquer strategy is the basis of 

most of these tasks. Here the main idea is to split the workload into (equal or non-equal) 

pieces and recruit other processors to execute the task with these smaller chunks of data. 

The receiver processors can keep doing the same thing to split the data or task into even 

smaller bits depending on the granularity of data and code. This means that the 

execution of a task on a node not only can depend on the execution of the task on its 

direct neighbours but also it may depend on the execution of the task on many other 

processors; therefore, the scope of task dependency can easily exceed the small 

neighbourhoods and even can be over the whole parallel platform. 

FFT is an example of such tasks and is chosen to implement the task-model for the 

simulated platform proposed in this thesis. Theoretically an FFT workload can be split 

into any number of parts. In a radix-n FFT the original workload is split into n pieces. 

Different radix-n (and even variable-radix) FFTs with different values for n are 

implemented and adopted for parallel execution. Radix-2 is the most popular one and 

radix-4 is also used especially for 2D data like matrices. 

The version of FFT used to construct the task-model in this thesis is a variable-radix 

FFT with a limit of 4 for the number of pieces of data on each stage. The FFT task-

model (FFTTM) operation is as follows: 

A task starts with making a decision on whether to run the FFT entirely locally 

or try to do it in parallel. If the size of data is bigger than a given threshold the 

node starts finding up to 4 neighbours to do the FFT in parallel by sending 

polling packets to its neighbours. This stops when 4 idle neighbours are found or 

all the neighbours are contacted. The task will be executed locally if no idle 

neighbours are found. Another approach would be waiting for a bit and try again 
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but the first strategy is adopted in this thesis. It is assumed that the code does not 

exist on the receiver side; therefore, the code should be first sent to them. Then 

each piece of data would be sent to the receiver neighbours. On receiving the 

code and data the receivers take the same steps. 

 

Figure 53: State diagram of FFTTM 

If the data size is small enough (lower than the given threshold) the FFT code is 

executed locally. To remain faithful to the FFT tradition, the local execution 

time is n*log(n) where n is the size of data. The results then can be sent back to 

the parent node. 

On receiving all the results, a parent node need to merge them to construct its 

own results to send it back to its own parent node. The merge time depends on 

the implementation of the algorithm. The merge time is zero in this task-model 

implying that it is an on-place FFT. 
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An amendment to this task-model would be letting waiting nodes accept other 

workloads to save time and increase the utilisation of the network. This means that 

nodes that have already split their workload between their neighbours and are waiting 

for results can accept other workloads during their wait time. Different variations of this 

task-model are tested to accommodate multi-tasking and multiple workloads. 

Figure 53 shows the internal operations of an FFTTM in form of a state diagram. The 

architect of the task-model can decide on the maximum number of neighbours a node 

recruits for parallel FFT. In this thesis different numbers (e.g. 4 and 6) are tested. A 

discussion is included in chapter 8 on an optimum value for this parameter. 

A communication protocol is introduced to translate the state diagram in Figure 53 into 

command and response packets. Table 16 lists the packet types used to implement 

FFTTM. The results show that there is always a limit on the performance of this task-

model which is because of the imbalance between the pieces of workload sent to 

selected neighbours. For this reason its structure needs to be changed thoroughly. The 

following section discusses this new task-model. 

Packet Type Description Parameters passed 

nodeStatusResquest The parent node asks for accessing the child node Task-model identifier, Task identifier 

nodeStatusResponse The child responds to the parent’s access request Index if the free task, Number of busy tasks 

transferTask The parent sends task code to the child  Task transfer time 

transferTaskACK The child acknowledges the task code “0” 

transferTaskNACK The child do not acknowledge the task code “0” 

transferData The parent sends data to the child  Data transfer time 

transferDataACK The child acknowledges the data “0” 

transferDataNACK The child do not acknowledge the data  “0” 

transferResults The child sends the results back to the parent  Results transfer time 

transferResultsACK The parent acknowledges the results “0” 

transferResultsNACK The parent do not acknowledge the results “0” 

Table 16: List of packets in FFTTM protocol. 

6.4) Modified FFTTM 

The problem with the previous FFTTM is that it sends equal amount of data to all its 

neighbours. This is because it assumes that its selected neighbours have equal chances 

in finding idle neighbours. This is not always a valid assumption. The results show that 

in almost all experiments there is a big difference between the neighbours found by 

different nodes. This is mainly because of the topology of the network. This means that 

the dependency tree in many cases is highly imbalanced. The number of nodes and the 

depth of the sub-trees vary from one sub-tree to another. In such a situation sending an 

equal size of data to these highly unequal sub-trees end up in huge execution time on 

smaller sub-trees and consequently reduces the performance of the system. 
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This shows that although assigning equal workload for all neighbours is a very simple 

and easy to implement strategy but it can make a significant imbalance in workload in 

many cases. There are a number of solutions to tackle this problem. A lower imbalance 

in workload can be achieved when the workload is assigned to each sub-trees based on 

the number of nodes in each sub-tree. It means that the larger the number of members of 

a sub-tree the larger the size of the data assigned to that sub-tree. This solution is not as 

accurate as the second (following) solution but it is much easier to measure and the 

balancing factor (number of nodes in sub-trees) is easier to work with. This solution is 

chosen for the simulated platform proposed in this thesis to keep the system as simple as 

possible. The second solution can be tested in the future. 

The second solution is to take the number of link traverses in each sub-tree into account 

to assign workload to each sub-tree. The total number of links to traverse a sub-tree can 

be a clue to estimate the total transfer time of data (and result) packets. There are always 

a nondeterministic wait time for packets in I/O queues due to link blockages that cannot 

be presented in a closed form formula but it is definitely related to the number of 

traversed links. Therefore, it can be said that the traversed links affects the total transfer 

time but there is not a direct linear relation between these two. The simulator’s approach 

is to assign an index to each sub-tree of the dependency tree so that this index can 

represent how ready the sub-tree is for accepting workloads. Eq. 11 shows just two of 

the possible sub-tree indexes but other type of indexes can be used.  

 

 

  

 

 

Eq. 11: Two load balancing sub-tree indexes. n is the number of nodes in a sub-tree starting with node a. 

It should be noticed that the number of link traverses is not the same as the number of 

links in the sub-tree (see Figure 54). The total number of hops packets need to take from 

the root of a tree (a sub-tree) to all the other nodes can be used as a measure of how 

costly the communication can be. For simplicity it is assumed that the cost of all the 

hops (which correspond with the hop time) are the same. This is not always true 

because in some tasks (including FFT) there are some communication hotspots in which 

there are higher number of communications which makes it very probable to make the 

I/O queues of some of the nodes becoming full. This increase the number of transaction 

delays and consequently increases the average hop time. For tasks like FFT the 
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communication hot spots may create near the starting nodes of the task because all the 

data should be transmitted from and returned to those nodes. 

 

Figure 54: Total number of hops needed to contact all nodes in a tree from the root (black) node can be used as 

a tree index. 

Figure 55 shows how the three aforementioned approaches work. In part (a) the 

workload is not balanced and instead it is divided into equal pieces between two sub-

trees. In part (b) the workload is shared between two sub-trees based on the number of 

nodes belonging to each sub-tree. In part (c) the workload is sent to two sub-trees based 

on the index assigned to each sub-tree.  

 

(a)    (b)    (c) 

Figure 55: Three approaches for assigning workload to sub-trees. (a) Equal workload; (b) Workload balancing 

based on the number of nodes; (c) Workload balancing based on a sub-tree index 

 Figure 56 shows that the number of nodes in two trees can be the same while the 

number of links passed by packets are different. The depth and the width of a tree affect 

the number of link traversals from the root node to all other nodes. In part (a) all non-

root (white) nodes are directly connected to the root (black) node; therefore, to send a 

packet from the root to each of the nodes we need just 4 transactions. But in part (b) the 

number of nodes and even the number of links are the same as case (a) but since the tree 

is deeper than case (b) then there needs to be 10 transactions to communicate between 

the root node and other nodes. 
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Figure 56: Comparing the number of link traversals when the number of nodes and the number of links are 

equal in two cases: (a) when the width of the tree is large and its depth is small and (b) when the width of the 

tree is small and its depth is large 
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Figure 57: State diagram of the network exploration of modified version of FFTTM 

This difference can particularly be interesting because most of the transactions in part 

(a) can be handled in parallel in the proposed architecture while in the same platform all 

the transactions in part (b) should be serial. There is a considerably big difference in the 

overall transaction time between cases (a) and (b). An effective load-balancing strategy 

can use both the number of link traverses and the number of nodes of a sub-tree. 

 

Figure 58: State diagram of the modified version of FFTTM 
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The state diagram of the network exploration sub-task is shown in Figure 57 and also 

represented by state “B” in Figure 58. The sub-tree information generated during this 

process is vital in assigning workload to each node. Figure 58 shows how the FFTTM 

with load balancing support works. This figure can represent both of the workload 

balancing strategies. 

Regardless of the sub-tree index chosen for implementing the load balancing 

mechanism, the same state diagram applies to FFTTM with load balancing. The only 

difference is in the implementation of state “C” which concerns the calculation of the 

sub-tree indexes. There is another difference in two sub-tree indexes introduced in this 

thesis which is the number and size of the packets sent from the starter node to its 

selected neighbours. If the number of nodes in a sub-tree is used as the sub-tree index 

then the original data will be divided into larger number of smaller packets each sent to 

a node. The number of packets is equal to the overall number of nodes in the 

dependency tree. If the average number of branches or the ratio of the nodes to the hops 

is used as the sub-tree index then the original data is divided into smaller number of 

larger packets. The number of packets in these two cases are equal to the number of 

selected neighbours of the starter node. 

Table 17 summarises the communication protocol designed for FFTTM with load 

balancing. It is in fact a modification of the original FFTTM’s communication protocol 

presented in Table 16. 

Packet Type Description Parameters passed 

nodeStatusResquest The parent node asks for accessing over the child node Task-model identifier, Task identifier 

nodeStatusResponse The child responds to the parent s access request Index if the free task, Number of 

busy tasks 

nodeSelection The parent announces that the child is selected “1” for selection, “0” for rejection 

nodeStatusFinalResponse The child sends its sub-tree data back to the parent  A string representing the sub-tree 

data 

transferTask The parent sends task code to the child  Task transfer time 

transferTaskACK The child acknowledges the task code “0” 

transferTaskNACK The child do not acknowledge the task code “0” 

transferData The parent sends data to the child  Data transfer time 

transferDataACK The child acknowledges the data “0” 

transferDataNACK The child do not acknowledge the data  “0” 

transferResults The child sends the results back to the parent  Results transfer time 

accessDenied The child responses to a late or unauthorised contact “0” 

transferResultsACK The parent acknowledges the results “0” 

transferResultsNACK The parent do not acknowledge the results “0” 

Table 17: List of packet types in FFTTM with load balancing protocol. 
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6.5) Summary 

The level of analysis used in this thesis dictates that there is no need to be involved in 

the details of tasks running on a simulated BC platform. What do have real impact on 

the execution time of the whole tasks are the pattern of communications and 

computations, the timing of the communications and the length of packets (rather than 

their contents). For these reasons, it is decided to abstract tasks from their technical and 

implementation details to construct something which is called task-model in this thesis. 

A task-model is an artificial traffic generator which mimics the high-level behaviour of 

a group of tasks in real world. It is shown in this chapter that one important factor in a 

task-model is the degree of dependencies it creates between nodes in a network. Two 

task-models are designed and used in this thesis. They are called Simple Parallel Task-

Model (SPTM) and FFT Task-Model (FFTTM). This chapter has shown how they are 

extracted out of real-world tasks. Also, it is shown that SPTM creates a very local net of 

dependency between direct neighbours only; while FFTTM tends to create an expansive 

tree of dependency between many nodes (and possibly all the nodes) in the network. A 

modified version of FFTTM is also introduced in this chapter to support load balancing. 

Results presented in chapters 8 and 9 are all based on these three task-models. 
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Chapter 7: Simulation and Visualisation Tools 

In this chapter the simulation and data visualisation tools designed and implemented 

specifically for this thesis are discussed in detail. Other publically available network 

simulation tools do not have the suitable abstraction level; therefore, these tools are 

designed and implemented from scratch. 

The tool kit can be used for the next stages of this research as well as other researchers 

who work on the same level of abstraction from a physical environment. The code will 

be open and accessible for future changes and extensions. 

The main aim of the simulation tool is to measure the performance of the network 

expressed in terms of speedup factor and processor utility factor as defined by Eq. 12 

and Eq. 13. The physical and electrical details of the network are not implemented in 

this simulation. This does not mean that these details are not important; however, on the 

specific level of analysis in which the execution time and the high level I/O behaviour 

of the nodes are measured for this thesis those details do not play a major role and; 

therefore, it is decided to not include them in the simulation. 

The visualisation tools are designed and implemented to give a graphical explanation of 

the behaviour of the network during the simulation time. The state of nodes, the 

dependencies between them and the state of their I/O queues are among factors that 

these tools deal with. 

The time unit in these tools is equal to one iteration of the simulator which models a 

clock cycle of the processing nodes. All other timings including the transmission 

mechanism are measured based on this quantum of time. In next chapters when the 

experiment results are presented all the time axes are expressed in simulation iterations 

(which is equal to simulated clock cycle). 

7.1) Simulation Environment 

Making a real 3D wireless platform is left for the next stages of this research; therefore, 

the idea of ball computing is evaluated in the current stage using a simulation tool. The 

simulator is running on a level of abstraction so that it can avoid unnecessary hardware 

design details. This thesis analyses the efficiency of the proposed system from the 

execution time point of view. This does not mean that the hardware design details are 

trivial; but they need a separate analysis that is out of the scope of this thesis. 

The simulator should be able to simulate the I/O operation and to mimic the signal 

propagation for all radio devices on all nodes. The signal propagation in the real world 
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is affected by a number of factors including free space loss, refraction, diffraction, 

reflection, aperture-medium coupling loss, and absorption. The way these factors 

contribute in path loss is too low-level to be modelled in detail for this thesis. With a 

certain level of approximation signal propagation can be related to the inverse square of 

the communication distance
30

.  It should be mentioned that in a very precise analysis of 

signal propagation even the geometry of environment, the propagation medium even the 

minute change in position of the receiver and transmitter antenna can occasionally play 

a role in signal propagation pattern. 

7.1.1) Choice of Simulation tool 

There are a number of well-accepted network simulators already available to 

researchers including Network Simulator (ns-1, ns-2 and ns-3), OPNET and NetSim. 

The degree of details involved in such popular simulators is too much for the analysis 

presented in our research. To run our models on such simulators many details should be 

specified which are out of the concept of this thesis. The level of abstraction this thesis 

is dealing with plays a key role in choosing the simulation. To the best knowledge of the 

author of this thesis none of the well-known network simulation softwares operates 

exactly at the desired level of abstraction. Many network simulation tools model the 

physics of signal propagation while it is not the main issue in this thesis. As a result, 

such a level of precision does not add a great deal of value to the type of analysis made 

in this thesis and at the same time the computational overhead imposed by such a level 

of modelling consumes lots of computational power. 

Because of the abstraction of our ideal simulator from electrical details of signal 

propagation mechanism and many other physical layer issues, it is decided to design 

and develop a new network simulator for this thesis. 

Another reason for that decision was the size of the network this thesis was going to 

deal with. Our goal is to use as many wireless nodes in the simulator as possible. The 

number of nodes could be easily reach tens even hundreds of thousands. This cast a 

serious doubt over using current simulation tools in terms of their scalability. There are 

some data structures and pieces of code attached to each node as a software object. This 

makes it vital to rip off any unnecessary bits of data from the node objects to make 

room for more simulated nodes especially when the simulation is running on PCs with 

limited memory resources. In order to be as general purpose as possible, simulators 

                                                 

30
 As stated in many engineering sources including H.P. Westman [294]: in free space, all 

electromagnetic waves obey the inverse-square law which states that the power density of an 

electromagnetic wave is proportional to the inverse of the square of the distance from a point source. 
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developed by others deal with many details, many of which are trivial and unnecessary 

in this thesis. This means that they occupy potentially large amount of memory with no 

particular contribution in the analysis made in this thesis. 

7.1.2) Discrete Time Simulator vs. Discrete Event Simulator31 

For the first version of this simulation tool a discrete time structure (DTS) is chosen. In 

this structure a quantum of time is introduced for the whole simulated system. The 

objects in the simulated environment can exist, operate and communicate on this 

discrete time scale. The state of the system is updated on each step of time. To resolve 

the problem with simultaneous changes in a state of an object by more than one entity at 

the same time step some of the attributes of simulated objects should be buffered to let 

the simulator resolve any ambiguity about the new values for those attributes at the end 

of each time cycle. The attributes that deal with the internal operation of an object are 

not prone to be changed by other objects. On the other hand there are some attributes 

that can be manipulated by other objects. These are the attributes that need to be 

buffered in order to avoid any inaccurate operation of the simulator. 

The shortest meaningful period of time (quantum of time) in this simulator is the time in 

which a floating-point operation is executed. The real clock cycle of the processors are 

not directly involved in the design of simulator. Different CPUs in real world can 

perform a floating-point operation in different number of clock cycles. In many new 

CPUs more than one floating-point operation can be executed in a single clock cycle. 

This simulator is not going to deal with the internal structure of processors used in each 

node of the network and for this reason from an external point of view what is important 

in a CPU in a parallel scenario is its number of floating-point operations it can execute 

per second rather than its real clock cycle which is something related to its internal 

operation. Since this simulator simulates the network in a rather high level of 

abstraction, the simulator can avoid dealing with the real clock cycles. 

The fact that the quantum of time in this simulator is the floating-point operation time 

does not mean that nothing can happen in a time period shorter than that. Depending on 

the data rate of the links it is possible to transmit more than one bit of data in a quantum 

of time. This can cause a little bit of error in measuring transfer times as some I/O 

operations may finish in the middle of a quantum of time. Although this may add a bit 

to the system error but this error is neither scalable nor accumulative. Even if a bit 

                                                 

31
 More detailed information about these two types of simulations can be found in [295], [296], [297], 

[298] and [299]. Shorter introductions can be found at [300] and [301]. 
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transfer time was taken as the quantum of time the problem was not guaranteed to be 

solved. 

A more familiar structure for a simulator is the discrete event structure (DES) in which 

it is the events that are the source of progress in time rather than a global time cycle. In 

other words the simulator can progress in time with time steps of variable size. If the 

simulator has nothing to do for a period of time there is no point to pass this time in 

several time cycles; instead it can jump right to the next important point in time scale 

(which is the next event in the simulated network). In the second version of the 

simulation tool the simulator is modified to look a bit like a DES structure. However, it 

cannot be categorised as a real DES because in a DES in each step only the events fired 

at that time are handled. The reason why more familiar DES structure is not fully 

adopted in this thesis is that for a major part of the simulation time there are many 

events fired on each time cycle. This means that for a major period of the simulator’s 

run time the simulator jumps only one cycle on time scale and the idea of having a list 

of events sorted by their firing time is redundant. It is true that for some parts of the 

simulation time (particularly for its final stages) there are fewer simulated network 

nodes still active and this means that the time hops can now be longer to save execution 

time but the problem with shortage of memory space has dictated to save the precious 

system memory by not implementing a rather large data structure for handling events. 

This comes with the cost of wasting time on looking for events on inactive objects. The 

time lost in this way can be considerable but in a balance between simulation time and 

the system memory usage it is decided to modify the simulator in a way that it borrows 

some features from DES architecture while it keeps some other DTS features. 

7.1.2.1) A Discrete Time Simulator 

Figure 59 shows how the first version of the simulator works. During each iteration of 

the simulator (which represents a quantum of simulated time) all nodes have their 

chance to do: 

 Respond to input packets 

 Handle internal events e.g. timer expiration of packets waiting for 

acknowledgment. 

 Execute a bit of the task-model allocated to the node. 

All the above activities can be handled in parallel since it is assumed that the nodes in 

the network have separate processors for I/O activities and therefore the main 

processor’s activities will not be interrupted by I/O operations. 
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Figure 59: A discrete time architecture for the first version of the simulator 

Like all discrete time/event simulations there can be some data structures accessed by 

more than an object (nodes, in this application) at the same quantum of time. In this 

case different objects may want to update the value of those accessed data differently. 

This means that data shared between objects need an arbitration process at the end of 

each iteration of the simulation to verify what the final value of the shared data is. For 

this reason those pieces of data should be buffered on temporary locations to let the 

arbitration process decide on the final value. 

Most of the data structures used in this simulator are totally internal to the network 

nodes and therefore no other nodes can access and manipulate them directly. The only 

shard data structures are the packets that are in the middle of transmission process (on-

air packets) which are shared between the transmitter, the receiver and all the other 

nodes that are in the transmitter’s interference range. This piece of data remains shared 

until the transmission is finished or terminated. In case of an attempt by a second entity 

(node) to update the data structure representing an on-air packet the result would be: 

1. If the second node has accessed the communication channel in the middle of the 

first node’s transmission process, this means that a packet collision has occurred 

and as a result none of the packets can be received and decoded at the 

corresponding receivers correctly. In this case all the nodes in the interference 

range of both transmitter nodes should be informed about the packet collision, 

the transmission channel should return to idle mode, both transmitters should 

stop transmitting and both should back-off for a random time and try later. 

Resolving this situation does not need to be postponed to the end of simulations 

iteration and therefore no buffering mechanism is needed. 

2. If the second node has started its transmission at the same time as the first node, 

this means that there is a race between two nodes to access a shared 
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communication channel. One way to resolve this situation is to rate all nodes 

with a priority index. This index shows that which node wins the competition to 

access a channel in case of a simultaneous attempt. 

 

Figure 60: The block diagram of the internal structure of a simulated node 

Base on the above material there is no need to have a buffer for shared data in this 

simulation because in case of a multiple access to a shared data the priority of nodes 

decide what node can succeed and the other node backs off and tries later. The winner 

node does not even detect the simultaneous attempt of the other node and no additional 

time is imposed to its transaction process.  In none of the above cases no temporary 

buffer is needed. 

The internal block diagram of the simulated nodes can be seen in Figure 60. The 

physical layer consists of eight wireless tranceivers which can operate independently. 

Also, the main processor is just dealing with the task-model in the application layer and 

does not intervene with lower layers’ operation. The ACK packets are task-specific 

packets and stopping the ACK timers should be authorised from the application layer. 

If the input queue is full with packets waiting for being processed by the task-model 

there will be a risk of loosing new in-comming packets. At this version of the simulator, 

nodes never stop other nodes transmitting their packets and if the receiver’s input packet 

is full the new packet would be rejected without the transmitter node being informed. 

This shows the importance of having a mechanism of having the ability to stop other 
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nodes sending packts when a node’s is not ready to receive them; e.g. by updating other 

nodes about the situation of a node’s I/O buffers. 

7.1.2.2) Ideas from Discrete Event Architecture 

The incremental nature of time in a DTS structure can make the simulator run slow 

especially at the start and end of the simulation time. The simulation time can be 

shortened if the simulator can jump to a point in time in which the next event is going to 

take place.  There is no use in incrimentally increasing the current time when no activity 

is anticipated. 

Figure 61 shows how a DES architecture works. Compared to DTS, a data structure 

should be added to the simulator to store the data about the events scheduled for future. 

This structure should keep the track of the object the event is related to and the firing 

time of the event among other information about the event. The idea of buffering shared 

data should also be implemented in a DES architecture as the concept of time has a 

descrete nature in this architecture. 

 

Figure 61: An equivalent of the simulator with discrete event architecture 

The idea of jumping to next important point in time rather than simply take equal 

quantum steps looks very promising and can improve the execution time of the 

simulation tool. On the other hand, the necessity of storing events for future firings 

urges software designer and developers to dedicate an unknown and potentially large 

size of memory space for a new event-storing data structure. 

7.1.2.3) The Second architecture for a Discrete Simulator 

The second architecture proposed for the simulation tool has in fact borrowed the idea 

of taking variable time steps from DES architecture while like a DTS architecture does 

not save any data about the events that are going to be fired in the future. To take time 

steps of variable sizes it is needed to save the lowest firing time of all events at any time 

point of the simulation. 
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Unlike a pure DES architecture, the simulator saves neither the events nor all the firing 

times. This is because it can occupy a potentially large memory space. Also for a large 

part of the simulation time the simulator is under heavy work load (especially when the 

size of the simulated network is large) and this means that it has something to do at each 

quantum of time and the time step rarely is bigger than one. For this reason, the large 

data structure for storing future events has practically no use. 

It should be mentioned that at the early and final stages of the simulation the number of 

active nodes are low and therefore the number of events scheduled for future can drop 

dramatically. This means that the nodes that need to be checked for updates caused by 

this low number of events is also low in number. In this case, running methods from all 

the nodes to seek for any possible new activity wastes some time. This is the real 

sacrifice we make to keep the memory usage of the simulator as low as possible.  

 

Figure 62: The second version of the simulator which is a combination of discrete event and discrete time 

architectures 

Figure 62 shows this new architecture which is in some ways half way between DTS 

and DES. As this figure shows the only thing that is saved from an event is its firing 

time. Even the name or the object bound to it is not saved. The author of this thesis 

believes that this is a good -yet not necessarily the best- balance between the execution 

time and memory usage of the simulator. 

7.1.2.4) Multi-Tasking Network Nodes 

As early experiments show, the performance of the proposed parallel platform is 

affected by a drop in the number of active processing elements caused by an increase in 

the number of nodes waiting for some results from other nodes. It can be seen 

particularly in tasks like FFT in which a bigger workload is split into pieces and sent to 

other processors to be processed in parallel. In this case the original processor does 

nothing but waiting for results and is not an active node consequently. The idea of 
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multi-tasking comes into reality to use such a processing potential left unused in waiting 

processors. 

In a processing node enhanced by multi-tasking a new middleware should be introduced 

to facilitate the activity of the processor, I/O devices and several tasks running on the 

node. This software entity is called the task-manager in this thesis. A task manager also 

decides which task has access to node’s resources and can be executed. The task 

execution time and the order of the tasks are among things that this new object is in 

charge of. All these extra activities are added to the traditional computational duties of a 

processor. Therefore, the luxury of multi-tasking comes with the cost of time and 

processing overhead imposed by multi-tasking duties. The task (context) switching 

process is also time consuming. The switching time can be reduced when 

multithreading; but the tasks in this simulated network are sought to be single threaded 

for the sake of simplicity. Storing the old task’s data and restoring the new task’s data 

and re-activating the task take a bit of time which may translate into a decrease in the 

performance. In a balance of costs and benefits of a multi-tasking system it is decided to 

include this feature to the proposed system. The results presented in the next part of this 

thesis prove that this was a right decision and an apparent improvement in the 

performance can be seen. 

In a multi-tasking model the tasks are no longer in direct contact with the MAC layer 

objects, e.g. I/O queues. The newly introduced task manager object is the mediator 

between the application layer objects and those of lower layers. Each task, however, 

may have their own I/O queues to react to ripples in response speed of packet 

processing. The task manager controls the main I/O queues and decides which packet 

should be redirected to what task. 

A block diagram of a multi-tasking node can be found in Figure 63. The new task 

manager object and the array of tasks are among new objects in this architecture. Each 

task has its own I/O queues which are separate from the main I/O queues implemented 

in MAC layer. What the task scheduler does is not just giving equal processor time to 

each task. It can also prioritise tasks and assign processor time to them based on that 

priority. Those tasks that are just waiting for an external event (e.g. receive of code, 

data, results, ACK etc.) can yield the control to other active tasks to improve the 

performance. This is also part of the task scheduler’s duties. The task switching period 

is modelled in this simulator by a pre-specified period of waiting in which no tasks are 

active (remember that the tasks are just models of tasks and therefore there is no real 

task switching). In a real task switching the old task’s data and status should be saved 
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on memory for future and the new task’s status and data should be loaded to memory 

and the control should be transferred to that task. None of these are really done in task 

switching in this simulation tool. 

 

Figure 63: The block diagram of the internal structure of a simulated node with multi-tasking 

The question about the maximum number of tasks per node is experimentally answered 

and the results are presented in the results part of this thesis. As it is shown in the results 

part, the main effect of multi-tasking is to decrease the number of waiting nodes by 

recruiting them for other tasks which consequently increases the performance of the 

network. 

Algorithm 3 shows more details about how the task switching mechanism works. In 

addition to pass control to tasks that are already finished, it tries to maximise time 

efficiency as much as it can by not passing control to waiting tasks, tasks with no input 

and output packets to process and tasks with application layer input/output queues full 

of packets. The algorithm particularly does not pass control to a task that has some 

packet in its input queue but cannot process it because its output packet is full. 
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Algorithm 4: Task scheduling algorithm for a multi-tasking node. 

The same task switching algorithm can be used for any type of task-models. The 

algorithm does not care about the task type and does not use task-specific details during 

its decision time. For this reason the proposed task switching algorithm is task 

independent. 

1: Inputs: 

2: tasks: An array representing the type of tasks for each node. 

3: activeTask: An integer showing the current active task. 

4: numberOfActiveTasks: An integer showing the number of active tasks. 

5: lastTimeHop: An integer representing the last time hop 

6: forceSchedule: A Boolean showing if the task scheduling is called unexpectedly 

 

7: Global Variables: 

8: taskRemainingTime: An integer showing the remaining time of a task in a time slot 

9: duringTaskSwitchingOverhead: A Boolean showing that two tasks are switching 

10: taskTimeSlot: An integer defining the time dedicated to each task 

11: taskSwitchTime: An integer defining the time needed for switching between tasks 

12: maxTasks: An integer showing the number of tasks per each node 
 

13: Output: newTask: An integer representing the new task activated 
 

14: taskRemainingTime -= lastTimeHop 

15: newTask= activeTask 

16: Boolean nextWaitingTaskFound= false 

17: if (forceSchedule || (taskRemainingTime <= 0)) 

18:  if (!forceSchedule && (numberOfActiveTasks < 2) && (activeTask > 0))  

19:    return (newTask) 

20:  int candidateTask= activeTask 

21:  Boolean nextTaskFound= false 

22:  if (duringTaskSwitchingOverhead) 

23:   taskRemainingTime= taskTimeSlot 

24:  duringTaskSwitchingOverhead= false 

25:  else 

26:  for all i in available tasks    

27:    if (nextWaitingTaskFound  && tasks[candidateTask] != null) 

28:     W-C-T= candidateTask 

29:     nextWaitingTaskFound= true 

30:    if (outACKReady(W-C-T) || inACKReady(W-C-T) || (inReady(W-C-T) 

&& (NumberOfOutReady(W-C-T) >= NumberOfOutNeeded(W-C-T)))) 

31:    nextTaskFound= true 

32:    break 

33:   if (isReady(W-C-T) && (NumberOfOutReady(W-C-T) >=  

NumberOfOutNeeded(W-C-T)))) 

34:    nextTaskFound= true 

35:    break 

36:   candidateTask= (candidateTask +1) % maxTasks 

37:   if (!nextTaskFound) 

38:   if (nextWaitingTaskFound) 

39:    activeTask= W-C-T+1 

40:     taskRemainingTime= taskSwitchTime 

41:    duringTaskSwitchingOverhead= true 

42:   else 

43:    activeTask= candidateTask+1 

44:    taskRemainingTime= taskSwitchTime 

45:   duringTaskSwitchingOverhead= true 

46: return (newTask) 
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7.1.2.5) Priority Output Queues 

Some experiments have shown that one of the problems task-models like FFT have is 

the existence of communication hot spots. Unlike an application like weather 

forecasting in which a node is in touch with just a restricted number of neighbouring 

nodes, in a task like FFT there is a rather big chunk of data on a node which is going to 

be distributed over a subset of the network for parallel execution of the task. This means 

that the closer a node is to the source of the data, the higher the chance to have a heavy 

load of incoming and outgoing packets. This is what is described in this thesis as a 

communication hot spot. Part of the traffic load belongs to the acknowledgements sent 

to signal the safe receipt of a data packet to the original transmitter. These packets are 

particularly important not only because they occupy locations in the input queue but 

also because unprocessed ACK packets mean that there are some data packets in the 

output queue that are sent but still are in the queue waiting for the corresponding ACK 

packets. This may lead to a deadlock situation in which both input and output queues 

are full on both sides of a communication link and there is no actual progress potentially 

for ever. Deadlock is already reviewed in sections 2.8 of this thesis.  Also section 3.8 

briefly introduces a deadlock avoidance algorithm designed for this thesis. Later in this 

chapter (section 7.1.7) it is shown how the deadlock avoidance algorithm introduced in 

section 3.8 is implemented in this thesis. 

This shows that it is better to give the ACK packets a higher priority over data packets. 

The experiments show a significant improvement in the performance of the system 

when the output queues are replaced by priority queues. One way to implement a two-

level priority queue is to have two separate and parallel queues one for data packets and 

the other for ACK queues. 

7.1.3) Network Partitioning and Channel Assignment 

The algorithms introduced in chapter 5 for network partitioning are implemented in the 

simulation environment. Since the network is static (i.e. the position of the nodes do not 

change) there is no need to have a dynamic network partitioning algorithm. It is not 

even necessary to include the algorithm in the main simulation software. When the size 

of the network, its topology, the size of the nodes, their radio ranges, and the signal 

interference scheme are unchanged there is no need to run the network partitioning 

algorithm every time the simulation runs since it definitely produces the same results all 

the time. Therefore, the network partitioning algorithm can be both static and off-line. 

A separate Java software is implemented based on the algorithms proposed in chapter 5. 

The results are saved in a number of text files. These files are read at the beginning of 
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the main simulation and the whole network is built based on their contents. The files 

can be reused in following runs to save time. A new execution of the algorithm is 

needed only if at least one of the aforementioned parameters is changed. 

The structure of the data saved by the network partitioning for the main simulation can 

be found in appendix B at the end of this thesis. Appendix B also contains a detailed 

description of the structure of different packets used in different parts of the simulation. 

7.1.4) Independent Channel Objects 

To handle the signal propagation and radio interference in a more efficient way an 

independent channel object is implemented. In addition to simulating the behaviour of 

the radio channel, the radio devices of all nodes (which were previously implemented as 

part of the node data structure) are now moved to this new channel object. This makes it 

much easier to handle signal propagation and interference in all different circumstances. 

It is the geometrical coordination of nodes as well as the strength of the signal which 

determine if two or more signals on a channel interfere with each other. For this reason, 

the channel object has a record of the coordination of all the nodes working on that 

particular frequency. 

In the current version of the simulation a packet is labelled as corrupt (as a result of a 

packet collision) if and only if it is in the receiver list of a packet and at the same time in 

the interference list of another packet. In this case the receiver node cannot correctly 

decode the first packet. If that node is the intended receiver of the packet the packet 

transfer is failed. For the sender of the packet to be able to detect the packet failure, the 

sender should be in the interference list of the second packet as well. In this case the 

first sender tries again after a randomly selected wait time; otherwise, the sender of the 

first packet assumes that the packet is sent correctly. This is in fact the hidden node 

problem discussed earlier in this thesis. 

The channel object will detect any instances of such problem. As it is shown in the 

results chapters, the network-partitioning algorithm introduced in this thesis has 

successfully solved the hidden node problem by eliminating the packet collision. As a 

result of including the channel object the structure of the node object is also changed.  

The node object shown by Figure 63 is changed and now looks like Figure 64 

The components of the physical layer (previously implemented in node object) are now 

migrated to the newly created channel object. An array of channel objects are created 

each of which is assigned to one of the frequencies. Each input/output pair in the 

physical layer is a member of its own channel object; therefore, the physical layer does 
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not exist anymore. The channel object is shown in Figure 65 which exchanges data with 

node objects. 

 

Figure 64: The structure of the node object after introduction of channel object 

The dotted lines show a possible lead for extending the current version of the signal 

propagation mechanism in which other channels may interfere with the signals on the 

current channel because of the cross-channel interference effect. This effect is not 

implemented in the current version of the simulator yet. The internal block diagram of a 

member node of a channel object can be seen in Figure 66. 

 

Figure 65: The structure of the channel object which includes part of physical layer of all its member nodes 

Like Figure 65, the dotted line represents the cross-channel interference effect that is not 

implemented in the current version of the simulator yet. Most parts of the channel 

member objects are in fact the physical layer of the member nodes which have been 
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migrated to this object for the purpose of simplicity of implementation and more 

centralised and better control over the signal propagation scheme. 

 

Figure 66: The internal block diagram of a channel member node 

7.1.5) Decentralised Simulation platform 

The current version of the simulator consists of a single large Java program that handles 

all the simulation duties. Nodes, tasks, and the network are all modelled and simulated 

in this program. There are chances that separating these parts from each other and 

arranging them in independent programs reduce the complexity of the simulator and 

make it easier to test different nodes and/or tasks while leaving the rest of the simulation 

unaffected. 

Another potential benefit of a decentralised simulation is the possibility of running the 

components of the simulator in parallel and reduce the demand for resources for each of 

the components. Therefore, the simulator can be run easier on a grid platform. In such a 

distributed architecture the components of the simulator use message-passing 

techniques to interact between each other. 

A decentralised architecture for the simulator is designed and developed to test if it can 

yield better performances compared to the older centralised architecture. Node and 

channel objects are separated from the main network simulator. In the new architecture 

these two objects have evolved to two Java programs. A communication protocol is 

implemented to facilitate the message-passing mechanism between the three major 

programs. This protocol is independent from the communication protocols each task 

uses. The first protocol is implemented in MAC layer while the latter is implemented in 

application layer. Each of these two are transparent from the other’s point of view. 

Figure 67 shows how the proposed distributed and decentralised simulator looks like. It 

is hard to manage large number of small independent node objects. Therefore, for 

simplicity of implementation a number of nodes are aggregated to an object called 

cluster. 
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Detailed information about the distributed version of the simulator including the state 

diagrams of the three main objects in this architecture and the communication protocol 

and packet types can be found at Appendix B of this manuscript.  

 

 

Figure 67: Block diagram of proposed distributed simulator 

The distributed platform introduced in this section of the thesis is implemented but it 

did not yield expected performance. The delay imposed by the message-passing 

mechanism is the main reason for the poor performance. Also, a distributed platform 

needs additional software data structures that increases the complexity of the code and 

therefore makes it harder to maintain. For these reasons we decided to switch back to 

the original centralised architecture in which all the objects are implemented in a single 

large Java program. 

7.1.6) Multi-part packet delivery 

As part of the network optimisation we needed to answer this question: Does 

transmitting large data packets cause long waits for other nodes using the same channel? 

If the amount of wait imposed to the other nodes is significant then one may put a limit 

on the packet size. In case of sending larger bulk of data, the data should be sent in a 

number of packets. The receiver should merge those packets to reconstruct the original 

bulk of data on the receiver side. This needs a new split/merge mechanism in MAC 

layer. The whole split/merge mechanism should be transparent to application layer. 

Also the physical layer is too low-level to deal with such an issue. 
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Figure 68: Block diagram of a network node with split/merge mechanism 

Figure 68 shows the new node architecture with split/merge mechanism. The “Split 

Packet” block splits large output packets, generates a number of smaller packets and 

puts them into the output queue as independent packets. An input packet in the MAC 

layer first is checked in the “Merge Packets” block to determine if they are part of a 

bigger bulk of data. Small independent packets pass through this block towards MAC 

layer input queue with no changes. 

If a packet is part of a larger data the “Merge Packet” block buffers them and waits for 

other pieces of the original bulk of data. When all the pieces of data are received the 

“Merge Packets” block merges them and sends the big packet to the MAC layer input 

Packet. To distinguish between different parts of a big data a new field is added to the 

header of packets. This field shows what part of data the packet is. 
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The multi-part packet delivery mechanism is implemented in the simulator but the 

experimental results show there is no significant improvement in the performance of the 

network after introducing this mechanism. Regarding the time and software overhead 

imposed by this mechanism and also because of very little (if any) improvement in 

performance, it is decided not to include this mechanism in the final version of the 

simulator. The results shown in next chapters are derived from a simulator without 

multi-part packet support. 

7.1.7) Buffer Management Strategy and Deadlock Avoidance 

To choose a buffer management and routing method for the BC platform the top priority 

was simplicity of implementation. As the first stage of research in using wireless links 

in HPC, we were only exploring some options for routing algorithm rather than looking 

for the most efficient and robust method. Another reason for choosing this method over 

others is that SPTM which is one of the task-models introduced in this thesis has no 

multi-hop transactions at all (except an exception which will be discussed shortly); 

therefore, it does not any routing mechanism altogether. The other task-model (FFTTM) 

treats multi-hop transactions as several single-hop transactions and again does not need 

a complex routing algorithm. This means that the staring node in an FFTTM task-model 

just knows what its direct children in the dependency tree are. The starting node only 

knows about the number of packets sent to each of its children but it does not specify 

which packet should be received by which leaf in the dependency tree. It is the duty of 

its children to decide to what node the packets should be sent. 

The only time the routing method will be used is when all direct channels between two 

nodes are busy and as a result the source node decides to send the packet indirectly via a 

mutual neighbour of both the source and the destination of the packet. The routing 

algorithm is tuned so that this will happen only once in a packet’s life time. 

As discussed in sections 2.3 and 3.8, the algorithm which is the simplest to implement 

but not necessarily the most efficient one is store-and-forward. In this method an 

intermediate node (a node that is neither the original source nor the final destination of a 

packet) no packet will be relayed to its next destination until it is fully received and then 

it will be added to the node’s output queue for its next hop of its journey. It is expected 

that using this method of routing substantially increases the amount of queuing time (the 

time a packet spends in different I/O queues). This is enforced by the simulation 

experiments presented in chapter 9. 
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For next stages of this research a wormhole routing algorithm with virtual channels are 

sought to be incorporated. By doing this it is expected to decrease the overhead imposed 

by long queuing times the BC platform faces at its present form. 

In an interconnect network like BC platform deadlock situation can occur in areas that is 

called communication hot spots in this thesis. In this manuscript a communication hot 

spot is a subset of the network with a (persistent or temporary) high rate of packets both 

inwards and outwards. As an example, the simulation experiments show that in cases 

that there are multiple workloads running at the same time it is possible to end up in a 

situation in which a number of nodes are sending many packets to a node (let us call it 

node A) all of which are going to be relayed to another node (node B). This can be 

particularly the case with FFTTM with a rigid tree-like structure of dependencies 

between nodes. In existence of multiple workloads sometimes there are also a large flux 

of packets from some nodes to node B which need to be relayed to node A. In this case, 

these two independent streams of packets (one from node A to node B and the other one 

on the opposite direction) can occupy the whole input and output queues of both nodes 

A and B. 

In this communication hot spot node A wants to read a packet from its input queue to 

free a slot for new inward packets but it fails because it should be forwarded to node 

A’s output queue (which is also full) to be relayed to node B. This is also exactly the 

case in node B. In this situation the processes on both nodes are looking for resources 

(places in each other’s input queues) which cannot be freed by the other process. 

To tackle the deadlock situations a deadlock avoidance algorithm is used in this 

simulation tool. The core idea of this algorithm is to avoid input and output queues of 

nodes (especially in communication hot spots) become full at the same time
32

. 

To start with, each node dynamically indexes its neighbours based on the number of 

packets in the input queue and output queue from/to its neighbours. This index (known 

as hot spot index inn this thesis) assigns a number to each of the neighbours which 

resembles how much a node is in communication with any of its neighbours (both in 

receiving and sending mode). The higher the hot spot index for a neighbour, the higher 

the communication dependency between the node and corresponding neighbour and 

                                                 

32
 When one of the input or output queues is full it implies nothing more than a heavy load of packets in 

corresponding direction. This may put a bit of pressure on communications but it needs only a bit of time 

to return that queue to normal situations by sending packets stored in output queue or processing/relaying 

the packets in input queue. This situation is not a deadlock. To have a deadlock both queues on at least 

two nodes should be full. 
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consequently a higher chance for having a communication hot spot with substantial 

risks to end up in a deadlock situation between the node and that particular neighbour. 

In case a node detects an increase in a neighbour’s hot spot index, it signals other nodes 

to send less packets to it to let the node sort out the packets to/from that hot spot. To let 

the situation relax other nodes should send either no packet or few packets to those two 

nodes in the hot spot. 

This is implemented by introducing some network management command packets sent 

over ACK input/output queues. By receiving such a packet the receiver refuses to send 

some packets to the hot spot members. This can be either a complete ban on sending 

those packets or send only a fraction of packets to the hot spot. In case of choosing the 

second approach, one option is to use a random function to decide whether to send or 

not to send the packet to the hot spot. 

The actual deadlock avoidance method implemented for the simulation tool uses the 

aforementioned network management commands with a random function to decide if 

the packet should be sent. As the hot spot index increases that random function tunes 

itself to increase the restrictions over sending new packets to the hot spot. 

This can help decreasing the chance for having a deadlock situation but it can not 100% 

guarantee that deadlock will never happen. An extra feature is added to the deadlock 

avoidance method as the last solution based on which if a hot spot exists and nodes 

inside it are in deadlock situation, they discard all packets in their both queues and 

signal other nodes about end of communication hot spot. This will add an overhead 

caused by retransmission of timer expired packets which is not desirable. In practice 

this incident has not happened in the simulation experiments. 

Figure 69 helps explaining how two separate FFTTM workloads (in node A and node 

B) can contribute in a deadlock situation. Like any FFTTM workload nodes A and B 

first create their own dependency tree which is shown in Figure 69.(a) and (b) in green 

and blue respectively. Nodes C and D on those dependency trees play important roles. 

The green and blue boundaries shown in parts (a) and (b) defines relatively large sub-

trees headed by nodes D and C respectively. When those two workloads are running at 

the same time the link between nodes C and D will be very busy and therefore those two 

node’s input/output queues are at risk of getting full with packets from the other node. 

The risk is high regarding the size of both sub-trees which implies that many packets 

need to pass the link between nodes C and D. This means that a hot spot is very 

probable to create containing nodes C and D as shown with red borders in Figure 69.(c). 

This situation is far less probable in links between nodes E-F and F-G. Although like 
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link C-D, links E-F and F-G are used by both workloads but deadlock is not expected 

because of the small sub-trees attached to nodes E, F and G. 

     

(a)    (b)    (c) 

Figure 69: How two separate FFTTM workloads can contribute in forming a deadlock 

When nodes C and D detect a growth of number of packets to/from each other in their 

input/output queues, they will signal their other neighbours (C signals C1, C2 and C3; D 

signals D1 and D2) to ask them either to slow down the rate of packets to C and D or to 

stop sending packets to C and D. This lets nodes C and D empty their I/O queues by 

transmitting packets left in their queues and avoid deadlock situation consequently. 

7.2) Visualisation tools 

The visualisation tools are implemented to project the behaviour of the network during 

the simulation time. Two separate tools are developed, each of which projects different 

attribute of the network and its performance. 

7.2.1) Process Visualisation 

The first tool of the visualisation tool set is called process visualizer. The software 

animates how nodes in the network are involved in a workload. This gives a measure of 

the utilisation of the network during the simulation time. The performance of the 

network (as expressed by Eq. 12 and Eq. 13 introduced later in this thesis) is also 

projected in this tool. The state of nodes and the dependency relations between them are 

graphically presented. This was initially used to debug the simulator but now after 

having stable simulation software the tool can be used for its envisaged purpose which 

is graphical representation of the behaviour of the network. 

The data needed for the visualizer is stored by the simulator to a number of log files. 

The data contains information about the location of the nodes, the state of the nodes, the 

task dependencies between them and the packets transmitted between them. More 

details about the contents of the log files can be found in appendix D. 
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Figure 70: Two snapshots of the process visualizer tool for an SPTM on a 3D network of size 10*10*10 nodes. 

   

 

Figure 71: Three snapshot of the process visualizer tool for an FFTTM on a 3D network of size 10*10*10 

nodes. 

Those pieces of data are used to show how exactly a given task-model behaves in a 

given network. Bottlenecks in the network can be detected through such log files. The 

process visualizer also uses this logged data to plot the utilisation of the network during 

the simulation time. The process visualizer is an animation resembling the performance 

of the simulator. Therefore, its performance cannot be shown fully in this thesis but a 

number of snapshots of the process visualizer can be seen in Figure 70 and Figure 71. 

Two snapshots of the visualizer can be seen in Figure 70 which shows two points of 

running an SPTM on a 3D network of 1000 nodes. The figure below shows that on this 

occasion the tasks on different nodes were executing with an almost constant rate until 

the very final stage of the simulation. In contrast to SPTM an FFTTM has very dramatic 

changes during its execution time. 

It is mainly because of the high degree of task dependency between nodes and its effect 

on creating traffic hot spots. Figure 71 shows how the number of nodes involved rises 

and falls during a typical experiment with FFTTM. This number is affected by the 

number of tasks per node as well as the number of workloads imposed to the network 

among other factors. 
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7.2.2) Results Visualisation 

A second data visualizer tool is developed to graphically show the overall value of a set 

of network parameters. These are particularly of interest when the bottlenecks of the 

network are under scrutiny. At the current version of the visualizer there are six network 

measures that are plotted by the visualizer. They are: The time when channels are busy 

and waiting, the time when tasks are busy and waiting, the overall execution time of 

nodes and the task finish time of nodes. Figure 72 is a snapshot of the results visualizer 

tool showing how nodes are busy with their internal tasks as well as I/O transactions. 

Eight FFTTMs are used as initial workloads each starting on different times. The size of 

the network is 10*10*10. Multi-tasking nodes support up to eight tasks at the same 

time. 

 

Figure 72: A snapshot of the results visualizer for a 3D 10*10*10 network 
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Chapter 8: Primary Network Optimisation 

8.1) Performance Metrics 

This chapter mainly focuses on tuning some network parameters to maximise the 

performance of two main task-models introduced in this thesis. The results presented in 

this chapter are produced by the discrete event simulator developed particularly for this 

thesis. In section 8.1 a simulated 2D network was used. All results reported in other 

sections (as well as chapter 9) belong to different 3D wireless networks.  

The performance of the simulated BC platform is mainly measured based on two 

factors: the processor utility and the link utility. It was shown in chapter 7 that the 

iterations of the simulator resemble the clock cycle of processors. The total number of 

iterations a node is busy with computation, communication or waiting for some internal 

or external events estimate the computation, communication and wait time of the node 

in real-world. The overall compute time is calculated as the sum of compute times of all 

nodes in the network. The overall communication time, the overall wait time and other 

important times are calculated the same way. 

The speedup factor (Eq. 12) in a parallel task is the ratio of the overall compute time to 

the execution time of that task. In a simulated environment the speedup factor is 

estimated by the overall compute time divided by the simulation time both expressed in 

simulation iterations. Speedup factor can be regarded as the average number of nodes 

that are busy with computation throughout the entire simulation. 

The processor utility factor depends on the speedup factor and the number of nodes 

involved in the task. Eq. 13 formulates the processor utility factor which is expressed in 

percentages in this thesis. Other definitions for these two factors may be introduced in 

other sources. 

Eq. 12  𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝒕𝒐𝒕𝒂𝒍 𝒄𝒐𝒎𝒑𝒖𝒕𝒆 𝒕𝒊𝒎𝒆

𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆
 

Eq. 13  𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓 𝑼𝒕𝒊𝒍𝒊𝒕𝒚 =
𝑺𝒑𝒆𝒆𝒅𝒖𝒑

𝒏
 

Where n is the number of nodes involved in the simulated task (not necessarily the total 

number of nodes). 

These two metrics show how fast a task is finished and how efficiently a task is using 

the processors. Besides these metrics other metrics are needed to measure how 

efficiently the links are used throughout a simulation. Three metrics of this type are 

introduced in this thesis: 

 Overall link busy time (OLBT); 

 Average link utility (ALU); 
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 Overall link wait time (OLWT). 

OLBT is defined in this thesis as the aggregate link busy times of all links involved in a 

task (Eq. 14). The busy time of a link is the total number of iterations of the simulation 

in which the link is busy with data transmission. 

Eq. 14  𝑶𝑳𝑩𝑻 =  𝑳𝑩𝑻𝒏
𝑵
𝒏=𝟏 

Where N is the total number of links involved in the task and LBTn is the link busy time 

of link n. This metric is related but not equal to network throughput. Throughput is 

about the rate of successful message delivery usually expressed in bit/sec, packet/sec or 

packet/timeslot; while the OLBT only estimates the time spent on communication over 

all links involved in a task. 

The other metric used in this thesis is called Average Link Utility (often expressed in 

percentage) and is used to show how much of a link’s time during a simulation is spent 

on transmitting data rather than being idle waiting for a node’s internal or external 

event. Eq. 15 is the formal definition of ALU: 

Eq. 15  𝑨𝑳𝑼 =
𝑶𝑳𝑩𝑻

𝑵∗𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆
 

Where N is the number of links involved in a task and Simulation Time is measured as 

the number of simulation iterations (not in seconds). By dividing OLBT by N we will 

have an average link busy time; and by dividing this value by Simulation Time we will 

have an idea about what portion of a link’s time is dedicated to data transmission. 

The last metric is OLWT which is defined same as OLBT. Overall link wait time (Eq. 

16) is the aggregate link wait time of all links involved in a task. The wait time of a link 

(assumed to be in working condition) is the total number of simulation iterations in 

which a node is trying to take control of that link but denied regardless of its reason. 

Eq. 16  𝑶𝑳𝑾𝑻 =  𝑳𝑾𝑻𝒏
𝑵
𝒏=𝟏 

Where N is the total number of links involved and LWTn is the link wait time of link n.  

Speedup and processor utility are used to analyse simulation experiments in both 

chapters 8 and 9. Also in chapter 9 OLBT, ALU and OLWT metrics will be used to 

measure the performance of the links as well. 

8.2) Hidden Node Problem and Packet Collision 

The two-stage network-partitioning algorithm introduced in this thesis is envisaged to 

solve the Hidden Node Problem and eliminate the packet collision in the network. To 

test this, a 2D network is simulated. To test the efficiency of the network-partitioning 
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algorithm an ideal propagation method is implemented in which radio signals can be 

detected and decoded only in their communication range; however, they can interfere 

with other signals beyond their radio range. This range is called “interference range” in 

this thesis and is twice the size of the radio range. If a receiver receives some noise from 

a node while receiving a signal from the transmitter, the signal is assumed corrupt and 

the packet would be rejected as corrupt packet. The number of packet collisions is 

counted in three cases. A 2D version of a BC with 10*10 nodes with SPTM was used in 

an experiment to see if network-partitioning algorithm can eliminate packet collision. 

The results are shown in Table 18. When all the nodes use one channel there is high 

number of collisions. When just two channels are used the number of collision incidents 

decreases but it is only when the full channel assignment algorithm is applied that no 

traces of packet collision is detected. 

Number of frequencies Number of packet collisions 

1 1731342 

2 665271 

6 0 

Table 18: Packet collision in a 2D hexagonal array with different frequencies per node. 

The network partitioning algorithm introduced in chapter 5 shows perfect results for 3D 

networks as well. During all the experiments reported in this thesis not even a single 

instance of packet collision occurred which shows that the proposed algorithm works 

correctly for both 2D and 3D networks. 

8.3) Cubic Networks vs. Spherical Networks 

A 3D hexagonal topology is chosen for the BC network. In this section of the thesis it is 

investigated if the same topology behaves differently if it fills a cubic or a spherical 

space. It should be noticed that in both cases the topology of the network remains 

unchanged (3D hexagonal FCC). 

In fact the only difference between those two cases is the state of the network in its 

edges and corners. In an infinite 3D hexagonal grid all nodes have exactly 12 

neighbours. But it is not the case with 3D hexagonal topologies with finite sizes. In such 

a network the number of neighbours is less when a node is located on the edges or in the 

corners. This translates to lower connectivity for those nodes. Consequently, there is a 

chance that a network with lower average connectivity is more susceptible to have 

poorer performances compared to networks with larger average connectivity. It has 

already been observed in Figure 45 that although in theory a hexagonal network of size 

3*3*4 needs no more than 4 hops to link a node to any other nodes, since the nodes on 

the corners are suffering from low connectivity the actual maximum number of hops for 

such a network is 5. For this reason, the same topology is used to fill two different 
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containers to study the effect of low connectivity on the edges. A spherical shape may 

increase the number of neighbours for nodes on edges and corners as the edges and 

corners in a (semi-) spherical container are smoother compared to a cubic container. 

A series of experiments has been conducted to test the effect of container on the average 

number of neighbours per node and consequently on the performance of the network. In 

these experiments FFTTM is applied to two shapes for a 3D hexagonal networks of 

almost same number of nodes: a cubic container for 800 nodes and a (semi-) spherical 

container for 783 nodes. The number of nodes are not exactly equal to keep the cubic 

and spherical shapes as accurate and symmetric as possible. In both cases the nodes can 

execute 32 million instructions per second. The data rate of links is 10 Gb/s which is the 

same in both cases. The size of data packets varies from 10 Bytes (real data) to 20 

KBytes (real data). Such values may not be usual in real-world applications but they are 

included to have a wider understanding of the behaviour of the BC platform. 

A range of intervals between packets are tested to understand how important the interval 

between packets is. In all tests the processor utility of the network (in form of 

percentage as defined by Eq. 13) is measured. The results for the cubic container are 

listed in Table 19 and graphically shown in Figure 73. 

                       Packet Size 

  Time Interval 
10 50 100 500 1000 2000 5000 10000 20000 

1 27.42 76.29 86.37 90.39 90.08 89.07 86.98 88.26 91.45 

5 16.78 66.96 81.97 90.49 90.60 89.09 88.50 91.68 88.35 

10 15.36 62.72 83.21 89.95 87.74 89.44 90.98 90.43 91.32 

20 12.80 54.34 76.44 89.50 91.52 89.92 89.65 89.57 90.62 

50 8.40 36.28 62.31 88.05 87.57 89.29 91.68 91.09 89.88 

100 5.28 24.17 41.22 80.49 84.70 89.99 89.07 91.65 91.16 

200 3.01 14.37 29.00 70.63 82.04 87.61 90.65 91.36 88.73 

500 1.32 6.70 12.82 49.67 64.84 81.63 88.39 90.76 88.39 

1000 0.73 3.66 6.97 29.42 53.63 66.24 84.79 88.44 91.16 

2000 0.37 1.83 3.60 16.12 30.15 53.25 73.43 82.83 89.31 

Table 19: Processor Utility (%) of a cubic ball computer consisting of 800 nodes. 

 

Figure 73: The Processor Utility of a cubic ball computer with different packet sizes and intervals between 

packets. 
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The results for the spherical container is also listed in Table 20 and graphically plotted 

in Figure 74. Based on the results in these tables and figures a cubic container yields 

just a little bit better performances compared to a spherical container. It should be 

mentioned that because the containers are not very large and also because of the 

hexagonal topology used for both cases, the actual shape of the network is neither 

perfect cubic nor perfect spherical. 

                       Packet Size 

  Time Interval 
10 50 100 500 1000 2000 5000 10000 20000 

1 27.64 78.75 86.32 90.34 92.20 87.19 91.84 91.63 92.46 

5 16.48 63.47 79.12 87.63 89.12 86.50 89.39 89.05 92.13 

10 14.42 55.91 78.82 82.34 88.70 89.57 86.92 91.60 92.12 

20 12.72 52.12 73.26 87.12 81.51 82.60 92.06 91.38 89.84 

50 8.07 36.68 59.58 86.21 89.46 82.36 89.14 89.53 91.96 

100 5.38 24.60 42.92 82.61 85.67 90.07 90.97 92.28 91.75 

200 3.11 14.86 28.42 73.94 83.36 84.96 87.02 91.39 89.61 

500 1.44 6.63 13.35 50.48 69.28 80.12 88.45 90.53 91.49 

1000 0.72 3.45 6.99 30.14 47.08 70.11 83.26 88.67 90.60 

2000 0.37 1.87 3.56 15.82 30.51 53.41 73.94 85.38 89.57 

 Table 20: Processor Utility (%) of a spherical ball computer consisting of 783 nodes. 

 

Figure 74: The Processor Utility of a spherical ball computer with different packet sizes and packet intervals. 

The average number of neighbours per node in a cubic container of 800 nodes is 10.02. 

The same number for a spherical container of 783 nodes is 10.25. 

This explains why the differences between results in Table 19 and Table 20 are not 

significant. The size of two networks in these experiments are a bit different; therefore, 

it can be assumed that the slightly different size of the networks cannot make a big 

difference in these experiments. Since the spherical containers do not have a meaningful 

advantage over cubic containers, cubic containers are used for their simplicity. 

8.4) Multi-Tasking and Multiple Workloads 

The performance of a divide-and-conquer task-model like FFTTM may be enhanced by 

using its idle times for other tasks. To find the extent of this improvement a set of tests 

are running on FFTTM. Two different data sizes are assigned to the starter nodes: 48K 
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and 240K Bytes. By choosing these data sizes we will not have a wide picture of how 

multiple instances of FFTTM react to different data sizes; they are just examples to 

show how that task-model deals with small and medium sizes of data.  

Up to 8 independent workloads are used in this set of experiments. Regarding the cubic 

shape of the network it is a reasonable choice to have 8 workloads. Workloads are 

located near the eight corners of the cubic container of the network which gives balance 

and symmetry to the workloads. A 3D network of size 10*10*8 nodes is used. 

For the first set of tests a single FFTTM workload are applied to single-task nodes. 

Then the same tests are repeated with multi-task nodes. The data rates of all links in all 

tests in this series of experiments are 10 Gb/s. Also all nodes execute 32 million 

instructions per second. The single task results are shown in Figure 7533. 

   

(a) (b) 

Figure 75: Nodes involved in a single-task FFTTM with a) 48K bytes, Max Nodes Involved= 547, b) 240K 

Bytes Max Nodes Involved= 799. 

The important issue is the number of waiting nodes which in both cases are significantly 

high. The figure shows that during a large part of the simulation time a large number of 

nodes are just waiting for results from other nodes’ without actively participating in the 

task given. This is interpreted as inefficiency of the single-task FFTTM. 

When the multi-tasking feature is added to nodes they produced results which can be 

found in Figure 76
34

. What is apparent in these graphs is the sharp drop in the number 

of waiting nodes. This means that the idea of recruiting waiting nodes for other tasks 

has worked. The figures show the simulation time does not change very much while the 

number of nodes involved and the waiting nodes in particular are dropped significantly. 

The tasks on different nodes do not finish at the same time. This means that at some 

parts of simulation time the number of nodes that are involved in the task can be very 

low. This can be seen in Figure 75 and Figure 76. In both single-task and multi-task 

nodes the number of nodes involved in a task rises quickly and then falls. This is the 

right time for a new task to reuse the nodes that have just finished their old task. We 

                                                 

33
 Each test is repeated three times. The variance of results are 3076.22 (48K) and 29400.89 (240K ). 

34
 Each test is repeated three times and the variance of results are 231889.56 and 383308.67 for 48K and 

240K respectively. 
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have already seen the effect of multi-tasking with single workloads; but it is anticipated 

to show its real strength when combined with multiple workloads. 

   

(a)      (b) 

Figure 76: Nodes involved in a multi-task FFTTM with a) 48K bytes, Max Nodes Involved= 247, b) 240K Bytes 

Max Nodes Involved= 386. 

To test the effect of using multiple workloads a set of experiments are run using 

FFTTM with data sizes of 48K Bytes and 240K Bytes. These two data sizes are chosen 

to see if the task-model’s behaviour changes with a change in data size. The number of 

workloads varies between 1 and 8. For the first test there is only one workload located 

near one of the corners of the network. Then for the second test another workload is 

placed near another corner of the network. This repeats until in the eighth experiment 

there are 8 workloads each located near one of the corners of the network. 

The number of nodes involved in an FFTTM is measured with two data sizes and 

different number of tasks per node (Figure 77). Figure 77.a
35

 - in particular - shows that 

the number of nodes involved stays reasonably low when new workloads are added. 

Both graphs (especially part b
36

) show the task execution time does not increase 

dramatically when new workloads are introduced. When the data size increases the 

number of nodes involved gets close to its maximum number but with low data sizes 

even with multiple workloads the number of nodes involved is not very significant. 

  

(a)      (b) 

Figure 77: Nodes involved in a set of multi-task FFTTM with a) 48K bytes, b) 240K Bytes. 

                                                 

35
 Each test is repeated three times and the variance of results are 3748.67, 361243.56, 244322.89, 

106568.22, 660404.22, 319970.67, 769690.89, 407490.89 for 1 to 8 workloads respectively. 
36

 Each test is repeated three times and the variance of results are 485810.67, 22190.89, 33950.00, 

20393.56, 409482.67, 1763764.67, 100002.89, 144697.56 for 1 to 8 workloads respectively. 
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The effect of multi-tasking on the performance of the FFTTM is also studied in a 

separate set of experiments in which the network consists of 800 (8*10*10) nodes; each 

node does 32 million instructions per second and the links’ data rate is 10 Gb/s. The 

task used is the original FFTTM (with no load balancing). The results (Table 21) show 

for the majority of cases a node yields better results when it accommodates more tasks. 

In these experiments the network’s processor utility (Eq. 13) is measured. 

Data Size 

(KB) 

Tasks/ 

Node 

Nodes 

Involved 

Packet 

Size 

Processor 

Utility (%) 

Data Size 

(KB) 

Tasks/ 

Node 

Nodes 

Involved 

Packet 

Size 

Processor 

Utility (%) 

48000 

1 

170 282 

8.76 

2400000 

1 

800 3000 

39.26 

2 11.13 2 45.60 

4 10.60 4 39.38 

8 10.64 8 67.44 

240000 

1 

800 300 

6.82 

4800000 

1 

800 6000 

43.2 

2 6.85 2 39.35 

4 13.24 4 56.76 

8 12.09 8 67.50 

480000 

1 

800 600 

13.87 

9600000 

1 

800 12000 

39.70 

2 12.17 2 44.97 

4 13.76 4 57.74 

8 22.10 8 70.57 

Table 21: The effect of multi-tasking in an FFTTM with different data sizes. 

It should be noticed that for a majority of the tests the whole network is saturated by the 

task and all the nodes are involved in the test except for the smallest data size (48KB). 

That is because the task-model is designed to have a lower limit on the data size for a 

local FFT. When the original data size is small it splits into smaller number of pieces. 

Figure 78 is the graphical representation of data presented in Table 21. In addition to 

testing the idea of multi-tasking, the graph also reinforces the results derived from other 

tests in which higher performances are usually achieved with larger data sizes. 

 

Figure 78: The improvement of performance as the number of tasks per node increases 

Studying the number of nodes involved in a multi-tasking FFT is the subject of another 

set of tests. Two different data sizes (48KB and 240KB) are used in this series of tests. 

There are four different experiments for each data size in which the number of tasks per 

node is chosen from the values 1, 2, 4 and 8. The number of workloads is also 1, 2, 4 
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and 8. In all experiments the number of busy nodes and the waiting nodes are measured 

during the execution time of the simulation. 

   

(a)                  (b) 

Figure 79: (a) Busy and (b) Waiting nodes in a 48K FFTTM when each node has 1 task. 

   

(a)                  (b) 

Figure 80: (a) Busy and (b) Waiting nodes in a 48K FFTTM when each node has 2 tasks. 

   

(a)                  (b) 

Figure 81: (a) Busy and (b) Waiting nodes in a 48K FFTTM when each node has 4 tasks. 

   

(a)                  (b) 

Figure 82: (a) Busy and (b) Waiting nodes in a 48K FFTTM when each node has 8 tasks. 
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Figure 79, Figure 80, Figure 81 and Figure 82 show the busy and waiting nodes for an 

FFTTM of size 48K. The network is a 3D hexagonal grid of size 800 (8*10*10), the 

data rate of links is 10 Gb/s and each node can perform 32 million operations per 

second. 

Figure 83, Figure 84, Figure 85 and Figure 86 plot the busy and waiting nodes for 

FFTTMs of size 240K. Part (b) of all these figures show that the number of waiting 

nodes sharply reduces when multi-tasking is involved. This is because there are many 

waiting nodes in a single-task node that will have the chance to get busy with another 

task in a multi-tasking node. This changes their status from a waiting node to a busy one 

and therefore the number of waiting nodes reduces with a rise in the number of tasks per 

node. This reduction intensifies when the number of tasks per node increases. Figure 

82.b and Figure 86.b show that the number of waiting nodes is almost zero when each 

node handles 8 tasks at the same time regardless of the number of workloads. 

   

(a)                  (b) 

Figure 83: (a) Busy and (b) Waiting nodes in a 240K FFTTM when each node has 1 task. 

   

(a)                  (b) 

Figure 84: (a) Busy and (b) Waiting nodes in a 240K FFTTM when each node has 2 tasks. 

On the other hand the number of busy nodes plotted on part (a) of above figures are 

almost unaffected by the number of tasks per node while it is affected by the number of 

workloads. When the number of workloads is fixed the number of busy nodes is solely 

determined by the internal mechanism of the divide-and-conquer task (FFT in this 

example). The speedup factor (as defined by Eq. 12) increases when either the number 

of tasks per node or the number of workloads increase. 
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(a)                  (b) 

Figure 85: (a) Busy and (b) Waiting nodes in a 240K FFTTM when each node has 4 tasks. 

   

(a)                  (b) 

Figure 86: (a) Busy and (b) Waiting nodes in a 240K FFTTM when each node has 8 tasks. 

There are seemingly some anomalies in some parts of graphs especially when 

comparing 1 workload against 2 workloads. Sometimes during their execution times it 

happens that the number of busy nodes with one workload increases that of two 

workloads. This happens just for a fraction of the execution time of the tasks. However, 

this cannot be regarded as a real anomaly since there is no strong relation between the 

statuses of the network in a given iteration of the simulation in those two cases. As an 

example, in Figure 79.an approximately around iteration 4000 there are more busy 

nodes with 1 workload (blue graph) than that of 2 workloads (red graph). This is not a 

permanent and/or dominant situation and can be regarded as a temporal fluctuation in 

the number of busy nodes caused by the randomness of transactions in both simulations. 

Not all workloads start their execution right from the start of the simulation. This is to 

have a lag between workloads to let them start after the peak of operations of the 

previous one is passed. The workload execution timing is based on an estimation and 

this thesis has not tried to optimise the timing of the workloads execution. Therefore, a 

non-optimal workload execution timing may contribute in minor temporal anomalies in 

results. 

In general these experiments show that a multi-tasking node in BC platform running 

FFTTM can help reducing the number of waiting nodes although it cannot make a big 

change in the execution time since multiple tasks engaging with different workloads 
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occupy their share of CPU time. Because the CPU computational ability is unchanged 

in these two cases (single-task and multi-task), the overall time needed for running all 

workloads is expected to have no meaningful change. 

8.5) Task-model Modifications and Load Balancing 

In this part of the thesis it will be tested that to what extent the simple load balancing 

technique adopted by this thesis has improved the efficiency of the network. In theory 

the performance should improve when the workload is shared between different sub-

trees of a dependency tree proportionate to their sizes. In practice two different versions 

of FFTTM (with and without load balancing) are run on the same network with the 

same parameters and with the same data size. The results endorse the theoretical 

conclusion that the load balancing technique improves the performance. Testing other 

versions of load balancing algorithm is left for future work. 

In this set of experiments two 3D network of 1000 nodes (10*10*10) and 2028 nodes 

(12*13*13) are used. The transfer rate of all links is set to 10 Gb/s. All nodes can 

process 32 million instructions per second. Only one workload is applied to the network 

in each experiment. The performance of the network is measured with different data 

sizes (i.e. 100K Bytes and 10M Bytes). These two values are chosen only to represent 

low and high data sizes. Therefore, this particular experiment cannot be regarded as a 

comprehensive study on the effect of data size on load balancing. The results of the 

experiments are listed in Table 22. The processor utility factors (in percentages) are 

measured based on Eq. 13. 

Network Size Data Size Load Balancing Included Processor Utility (%) 

1000 Nodes 

100K Bytes 
No 4.73 

Yes 10.13 

10MBytes 
No 20.12 

Yes 96.27 

2028 Nodes 

100K Bytes 
No 2.74 

Yes 2.23 

10MBytes 
No 10.19 

Yes 87.31 

Table 22: Comparing the performance of two versions of FFTTM; with and without load balancing. 

As the table shows in almost all values for network size and data size the FFTTM with 

load balancing yields much better performances compared to the task-model without 

load balancing. The only exception is when the FFTTM with 100K Bytes of data is 

applied to a network of around 2K nodes. Regarding the larger size of the network 

(compared to 1K nodes), the smaller data size (compared to 10M Bytes) and the nature 

of the task-model (which engages all nodes) the performance is so poor that even load 
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balancing cannot help improving it. The reason for slight decrease in performance with 

load balancing in this test is unknown at the moment. 

The reason why the performance of the network under 2K nodes drops compared to the 

1K node network is discussed later in chapter 9. 

8.6) Tuning the Number of Branches per Node 

A divide-and-conquer task-model like FFTTM follows a repetitive pattern of finding 

new candidates and sharing the task with them. The number of nodes each node finds 

determines the shape of the dependency tree of a task, which in its turn plays an 

important role on how fast the task finishes. This parameter should be tuned and 

optimised to maximise the performance of the task-model by decreasing the total 

number of hops. 

A set of experiments is conducted to find the best number of branches per node. In this 

set of experiments an enhanced FFTTM is used. 2D and 3D grids are tested separately. 

The number of branches varies from 4 to 8 in 3D in a network of 1000 (10*10*10) 

nodes. Each 3D case is repeated 8 times. The number of branches varies from 3 to 6 in 

2D in a network of 1024 (32*32) nodes. Each 2D case is repeated 4 times. Each 2D or 

3D case is run on a hexagonal topology as well as a cube topology. In all tests the 

FFTTMs are applied to a data of size 100K bytes. The results are projected in Figure 87. 

  

(a)      (b)  

Figure 87: Total number of hops in Hexagonal and cubic topologies in (a) 2D and (b) 3D. 

The best network performance is achieved when the total number of hops is the lowest. 

The results show that the optimum number of branches for a divide-and-conquer task 

like FFT is 5 in 2D grids and 6 in 3D grids using hexagonal topology. The same 

numbers for a cubic topology are 3 and 6 respectively. With those values for branches 

the lowest total number of hops is achieved. 
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Chapter 9: Overall Study of the Behaviour of the Network 

So far, the performance of the network (in terms of processor utility) has been measured 

in a fixed set of network attributes. The most important network attributes are network 

size, data size, transfer rate of links and the number of instructions each node executes 

in a second. Running experiments with such a pre-fixed set of attributes do not give a 

general understanding of the behaviour of the network. To have a broader view of how 

the network performs in different situations, it is important to test the network with 

different network attributes. 

In the final set of experiments in this thesis the behaviour of the network is studied 

when the main four network attributes listed above are changing. Table 23 lists the 

range of values chosen for the aforementioned network attributes. In all these 

experiments what is measured is the network’s processor utility factor (as defined in Eq. 

13), link utility (Eq. 13), link’s busy time (Eq. 13) and link wait time (Eq. 13). The 

range of values for these attributes start from rather low values which can be easily 

achieved with the current level of technologies with a rather low price (e.g. 10MIPS of 

processing ability, 100 Mb/s links and 100 KB of data). The higher values for the 

network attributes are not necessarily available with the state-of-the-art technology at 

the moment (e.g. processing ability of 100 GIPS and links with 100 Gb/s transfer rate). 

Such currently-unrealistic values are included to give an idea about the effect of future 

technological improvements on the performance of the proposed BC network. 

Network Attributes Values 

Number of Nodes 1000 2000    

Number of Instructions per Second 10 MIPS 100 MIPS 1 GIPS 10 GIPS 100 GIPS 

Data Rate (bits per second) 100 Mb/s 1 Gb/s 10 Gb/s 100 Gb/s  

Data Size (Bytes) 100 KB 1 MB 10 MB 100 MB  

Table 23: Range of values for four major network attributes in the last set of experiments. 

The simulations were running on an HPC grid partially owned by the University of 

York called the White Rose Grid (WRG)
37

. On each set of experiments 80 tasks were 

submitted to the grid. The results are presented and discussed in following sections. 

9.1) FFTTM on 1000 Nodes 

In the first part of these experiments the network size is 1000 nodes. There are 8 

FFTTM workload in each test. A total number of 80 simulation tests produce results 

shown in Table 24 (a to d) and plotted in Figure 88 (a to d). 

                                                 

37
 http://www.wrgrid.org.uk/ 
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    Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 1.08 7.81 14.1 14.90 1.21 21.48 67.29 71.06 

100MIPS 0.11 0.95 6.57 14.93 0.097 1.80 17.08 68.69 

1GIPS 0.01 0.12 0.64 8.41  0.11 1.55 18.60 

10GIPS  0.01 0.093 1.47   0.20 1.38 

100GIPS   0.01 0.13    0.22 

      (a) Data size= 100 KB          (b) Data size= 1 MB 

    Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 3.31 29.95 83.90 85.04 41.83 68.40 86.72 

100MIPS  3.23 32.54 83.54  49.75 77.98 

1GIPS   3.063 30.74   62.46 

10GIPS    2.96    

       (c) Data size= 10 MB        (d) Data size= 100 MB 

Table 24: Processor Utility in a set of FFTTMs on a network of 1000 nodes with different network attributes. 

Data sizes varies: (a) 100 KB, (b) 1MB, (c) 10MB and (d) 100MB. 

  

(a)         (b) 

  

(c)            (d) 

Figure 88: Processor Utility for FFTTM on 1000 nodes with different network attributes. 

The results show that the performance of the network improves as the data size 

increases. Also, in general, higher transfer rates means better performances. Another 

point in the above tables is that the performance of the network relates with the ratio of 

the transfer rate to the number of instructions per second (called comm/comp ratio in 

this thesis). A higher value for such a ratio usually means high network performances
38

. 

                                                 

38
Some values in Table 24 and Figure 88 are missed. These numbers can be regarded as zero based on the 

log files keeping a record of the simulator’s operations which showed very poor performances in those 
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OLBT and OLWT are also measured in this set of experiments (Table 25 and Table 26). 

The network parameters are chosen from Table 23 with only two exceptions: Data of 

size 100MB and computational ability of 100GIPS (except for two tests) are excluded 

from this part of the experiments. 

    Data Rate 
 

Instr./Sec 

100 

Mb/s 
1 Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 2490.51 263.73 57.95 43.30 49016.35 1745.95 154.76 42.52 

100MIPS 2557.00 245.81 33.16 5.51 22270.63 2802.69 174.27 15.78 

1GIPS  246.48 24.77 2.66  755.04 204.93 16.95 

10GIPS  244.02 67.24 2.48  696.15 209.05 20.42 

100GIPS   26.21 2.80     

       (a) Data size= 100 KB            (b) Data size= 1 MB 

    Data Rate 
 

Instr./Sec 
100 Mb/s 1 Gb/s 10 Gb/s 

100 

Gb/s 

10MIPS 391004.23 16415.70 1294.13 163.35 

100MIPS 63114.27 12568.77 1520.68 134.57 

1GIPS  21604.61 5903.79 154.02 

10GIPS  2172.28 401.24 41.68 

              (c) Data size= 10 MB 

Table 25: OLBT (in mSec) measured in a set of FFTTMs on a network of 1000 nodes with different network 

attributes. Data sizes varies: (a) 100 KB, (b) 1MB and (c) 10MB. 

    Data Rate 
 

Instr./Sec 

100 

Mb/s 
1 Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 1976.85 210.04 39.07 8.99 63962.47 1593.80 19.66 1.51 

100MIPS 2566.20 194.51 41.36 1.22 32928.22 4095.57 124.66 2.04 

1GIPS  229.69 20.61 2.23  878.18 325.17 16.05 

10GIPS  231.32 60.09 2.14  785.83 254.11 25.18 

100GIPS   27.39 2.97     

       (a) Data size= 100 KB            (b) Data size= 1 MB 

    Data Rate 
 

Instr./Sec 
100 Mb/s 1 Gb/s 10 Gb/s 

100 

Gb/s 

10MIPS 624374.68 10744.92 159.32 10.72 

100MIPS 103566.50 27463.57 701.92 18.34 

1GIPS  49977.70 9871.67 87.54 

10GIPS  2340.13 787.21 114.01 

              (c) Data size= 10 MB 

Table 26: LWT (in mSec) measured in a set of FFTTMs on a network of 1000 nodes. Data sizes varies: (a) 100 

KB, (b) 1MB and (c) 10MB. 

These two metrics are measured in mSec rather than simulation iterations because a 

simulation iteration represents different time periods in different tests. The tables show: 

 With a fixed computational ability, both metrics reduce as data rate increases; 

 With a fixed data rate, both metrics reduce as computational ability increases; 

 It is not surprising that both metrics increase when data size increases. 

                                                                                                                                               

cases. In a high majority of those cases the simulation time exceeded a predefined threshold set by WRG 

(the platform used for simulations). 
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(a) Data size= 100 KB                (b) Data size= 1 MB 

 

              (c) Data size= 10 MB 

Figure 89: OLBT (in mSec) for FFTTM on 1000 nodes with different network attributes. 

   

(a) Data size= 100 KB                 (b) Data size= 1 MB 

 

              (c) Data size= 10 MB 

Figure 90: Link Wait Time (in mSec) for FFTTM on 1000 nodes with different network attributes. 

The results are also graphically presented in Figure 89 and Figure 90. The slope of 

reduction in both metrics varies with different values of network parameters but the 
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general trend is that both two link-related metrics decrease as the data rate and 

computational ability increase. 

9.2) FFTTM on 2000 Nodes 

To study the effect of network size on its performance a separate set of experiments are 

run in which the network size is increased to around 2000 nodes (2002=11*13*14 nodes 

to be more precise). The other three network attributes are changing the same as the 

experiments with 1000 nodes (section 9.1). There are 8 FFTTM workloads in each test. 

The measured processor utilities are listed in Table 27 and plotted in Figure 91. 

    Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS  2.26 4.97 4.73 0.40 6.08  48.01 

100MIPS 0.03  2.27 4.75   7.85 43.31 

1GIPS   0.16 2.23  0.09 0.60 7.14 

10GIPS    0.21    0.47 

100GIPS    0.02    0.12 

          (a) Data size= 100 KB            (b) Data size= 1 MB 

    Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 1.49 12.05 75.52 78.8 17.56 76.05 82.35 

100MIPS  1.14 14.44 76.21  16.53 78.48 

1GIPS   1.15 15   19.64 

10GIPS    1.22    

            (c) Data size= 10 MB         (d) Data size= 100 MB 

Table 27: Processor Utility (percentage) for FFTTM on a network of 2000 nodes with different network 

attributes. Data sizes varies: (a) 100 KB, (b) 1MB, (c) 10MB and (d) 100MB. 

In section 9.1 it was observed that the performance of the network improves when the 

comm/comp ratio increases. The same trend can be detected in this set of experiments 

as well. 

The results in the above table and graphs show that the performance of FFTTM is 

falling for the most of cases compared to the same network attribute values with 1000 

nodes (in section 9.1). This may suggest that for an FFTTM and a given set of network 

attributes there is an optimum network size with which the performance of the network 

is in its peak. For networks smaller and bigger than this threshold the performance of 

the network is anticipated to be lower. This does not suggest that the size of a BC 

cannot increase beyond that size. Instead, it means that the tasks should not be given the 

grant to expand beyond that limit even if the size of a BC exceeds that threshold. The 

threshold is not a solid limit and depends on many network attributes (e.g. transfer rate 

and number of instructions per second). The results show that the performances of 

almost all the tests have fallen. This suggests that the threshold is likely not to depend 
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on the problem size (or at least is very loosely related to the problem size). More tests 

with different network sizes are needed on this matter. 

   

(a)         (b) 

   

 (c)         (d) 

Figure 91: Processor Utility (percentage) of FFTTM on a 2000-node network with different sizes: (a) 100KB, 

(b) 1MB, (c) 10MB, and (d) 100MB. 

    Data Rate 
 

Instr./Sec 

100 

Mb/s 
1 Gb/s 10 Gb/s 

100 

Gb/s 
100 Mb/s 1Gb/s 10 Gb/s 

100 

Gb/s 

10MIPS 71811.93 5630.74 1121.81 356.23 284373.04 26589.06 2415.93  

100MIPS 49075.04 6690.20 521.41 114.61 403995.26 15712.56 2555.30 245.68 

1GIPS  6338.44 463.88 121.97  81721.32 2133.83 192.15 

10GIPS  4289.51 443.61 54.57  8543.12 3668.26 532.69 

      (a) Data size= 100 KB     (b) Data size= 1 MB 

    Data Rate 
 

Instr./Sec 
100 Mb/s 1 Gb/s 10 Gb/s 

100 

Gb/s 

10MIPS 5249580.19 200647.05 14788.25 2467.09 

100MIPS 564259.93 608751.91 38538.20 1549.97 

1GIPS  43383.73 21272.16 1973.62 

10GIPS    2211.93 

              (c) Data size= 10 MB 

Table 28: OLBT (in mSec) measured in a set of FFTTMs on a network of 2000 nodes with different network 

attributes. Data sizes varies: (a) 100 KB, (b) 1MB and (c) 10MB. 

Measurements of OLBT and OLWT metrics are also included in this section (Table 

27and Table 28). The network parameters are the same as FFTTM experiments on 1K-

node networks. 

Like the previous section, the metrics are measured in mSec rather than simulation 

iterations. The results show that like 1K-node networks, both link-related metrics 
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decrease when either transfer rate or computational ability increase. The results are also 

plotted in Figure 92 and Figure 93. 

    Data Rate 
 

Instr./Sec 

100 

Mb/s 
1 Gb/s 

10 

Gb/s 

100 

Gb/s 
100 Mb/s 1Gb/s 10 Gb/s 

100 

Gb/s 

10MIPS 67235.48 5330.02 362.83 156.80 391947.87 32019.35 390.41 286.66 

100MIPS 41437.43 6426.74 497.08 28.67 615012.11 15020.16 3040.84 50.38 

1GIPS  6282.90 323.74 115.05  156112.66 2962.68 108.05 

10GIPS  3448.18 412.88 82.99  22306.67 5600.73 587.89 

100GIPS         

      (a) Data size= 100 KB     (b) Data size= 1 MB 

      Data Rate 
 

Instr./Sec 
100 Mb/s 1 Gb/s 10 Gb/s 

100 

Gb/s 

10MIPS 10928436.25 136347.72 1349.66 187.93 

100MIPS 4565301.95 1280091.17 34766.51 146.27 

1GIPS  344539.15 17038.94 2425.33 

10GIPS    1821.37 

              (c) Data size= 10 MB 

Table 29: Link Wait Time (mSec) measured in a set of FFTTMs on a network of 2000 nodes with different 

network attributes. Data sizes varies: (a) 100 KB, (b) 1MB and (c) 10MB. 

   

(a) Data size= 100 KB                 (b) Data size= 1 MB 

 

              (c) Data size= 10 MB 

Figure 92: OLBT (in mSec) for FFTTM on 2000 nodes with different network attributes. 
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(a) Data size= 100 KB                 (b) Data size= 1 MB 

 

              (c) Data size= 10 MB 

Figure 93: Link Wait Time (in mSec) for FFTTM on 2000 nodes with different network attributes. 

9.3) SPTM on 1000 Nodes 

Earlier in this thesis it was discussed that the main difference between the two task-

models is their degree of dependency between nodes. In a divide-and-conquer task like 

FFTTM, tasks on nodes depend on those of many other nodes while in an SPTM a task 

running on a node only depends on tasks running on some of its direct neighbours. The 

discussion about the degree of dependency leads to a conclusion that the network size 

does not affect the performance of a network when running SPTM. This assumption is 

tested against experimental results in this section and the next section. Table 30 shows 

the processor utilities on a network of size 1000 nodes all running SPTM. 

The total data size has four different values: 800 KB, 8 MB, 80 MB and 800 MB. These 

values are chosen to match with the total size of data in the first two series of 

experiments (i.e. 8 FFTTM workloads of sizes 100 KB, 1 MB, 10 MB and 100 MB). 

     Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 6.65 35.83 55.53 54.38 2.02 62.84 74.62 80.90 

100MIPS 0.79 3.20 38.50 56.11 2.2 13.92 62.68 74.43 

1GIPS 0.07 1.09 1.50 37.81 0.21 2.22 3.77 62.73 

10GIPS 0.01 0.07 0.76 3.12 0.02 0.19 2.62 9.51 

100GIPS  0.01 0.08 0.06  0.02 0.20 2.24 

(a) Data size= 800 KB           (b) Data size= 8 MB 
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    Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 22.27 61.02 82.06 84.16 23.78 67.17 82.49 84.42 

100MIPS 2.72 25.30 66.69 81.27 0.08 23.85 65.54 82.08 

1GIPS 0.27 2.55 20.33 59.36  2.71 23.68 58.98 

10GIPS  0.27 2.96 22.95   2.89 20.80 

100GIPS   0.27 2.60    2.65 

            (c) Data size= 80 MB          (d) Data size= 800 MB 

Table 30: Processor Utility measured in a set of experiments with SPTM on a network of 1000 nodes with 

different network attributes. Data sizes varies: (a) 800 KB, (b) 8MB, (c) 80MB and (d) 800MB. 

   

(a)         (b) 

    

(c)            (d) 

Figure 94: Processor Utility of Simple Parallel tasks on a 1000-node network with different sizes: (a) 800KB, 

(b) 8MB, (c) 80MB and (d) 800MB. Data sizes varies: (a) 100 KB, (b) 1MB, (c) 10MB and (d) 100MB. 

In an SPTM all nodes are involved in sending and receiving packets. Therefore, in order 

to match the total data sizes in the first two series of tests in a network of size 1000 

nodes each node needs to send a total data of size of 800 B, 8 KB, 80 KB and 800 KB. 

Like other sections, the comm/comp ratio is important in the network performance. 

Measurements of OLBT and OLWT metrics are also included in this section (Table 31 

and Table 32). The network parameters are chosen from Table 23. 

The metrics are measured in mSec to cancel out the effect of variation in time periods 

represented by a single simulation iteration in different tests. The results show that like 

FFTTM, link-related metrics decrease with an increase in either transfer rate or 

computational ability. The results are graphically presented in Figure 95 and Figure 96. 
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           Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 10 Gb/s 

100 

Gb/s 

10MIPS 309.03 51.18 19.59 17.75 2072.15 470.31 242.17 227.59 

100MIPS 316.62 31.04 5.08 1.95 1562.87 193.92 46.45 24.13 

1GIPS 321.44 31.84 3.19 0.51 1807.97 157.92 19.61 4.55 

10GIPS 321.98 32.13 3.18 0.31 1881.18 184.66 15.87 1.96 

100GIPS 320.74 32.64 3.20 0.35   186.30 18.41 1.60 

        (a) Data size= 100 KB                  (b) Data size= 1 MB 

       Data Rate 

 

Instr./Sec 
100 Mb/s 1 Gb/s 10 Gb/s 100 Gb/s 100 Mb/s 1 Gb/s 10 Gb/s 100 Gb/s 

10MIPS 16949.58 4266.82 2448.16 2304.63 160306.46 41389.33 24296.26 23567.16 

100MIPS 14050.83 1696.12 431.80 245.69 150758.87 16050.13 4116.93 2423.40 

1GIPS 13627.58 1413.75 168.61 43.46  13674.94 1583.69 405.94 

10GIPS   1349.96 141.71 16.76   1335.75 159.85 

100GIPS     133.84 14.33    135.73 

       (c) Data size= 10 MB     (d) Data size= 100MB 

Table 31: OLBT (in mSec) measured in a set of SPTMs on a network of 1000 nodes with different network 

attributes. Data sizes varies: (a) 100 KB, (b) 1MB, (c) 10MB and (d) 100MB. 

           Data Rate 

 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 180.49 13.59 0.30 0.08 1207.23 150.41 6.15 1.23 

100MIPS 245.21 18.32 1.36 0.03 937.38 101.43 14.75 0.62 

1GIPS 259.39 24.20 1.96 0.15 1076.00 96.48 10.18 1.43 

10GIPS 259.74 26.00 2.40 0.19 1162.42 111.73 9.54 1.04 

100GIPS 257.68 26.34 2.53 0.29   114.17 11.23 0.98 

           (a) Data size= 100 KB   (b) Data size= 1 MB 

     Data Rate 

 

Instr./Sec 

100 

Mb/s 
1 Gb/s 

10 

Gb/s 

100 

Gb/s 
100 Mb/s 1 Gb/s 10 Gb/s 

100 

Gb/s 

10MIPS 10070.12 1515.57 81.00 12.92 101311.41 15804.40 1038.42 148.33 

100MIPS 8982.31 989.70 156.74 8.31 112739.08 9987.68 1544.66 99.91 

1GIPS 9520.80 907.98 98.54 15.82  9251.42 991.38 154.46 

10GIPS  930.00 91.94 9.87   910.07 101.79 

100GIPS   91.85 9.35    92.09 

       (c) Data size= 10 MB             (d) Data size= 100MB 

Table 32: Link Wait Time (mSec) measured in a set of SPTMs on a network of 1000 nodes with different 

network attributes. Data sizes varies: (a) 100 KB, (b) 1MB, (c) 10MB and (d) 100MB. 

The slope of graphs plotted in link-related metrics differ from case to case. At the 

moment explaining those differences and analysing their reason are not part of the 

thesis. This can be a subject of further research on this field. 

   

(a) Data size= 100 KB    (b) Data size= 1 MB 

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

100 1000 10000 100000

Li
n

k 
B

u
sy

 T
im

e 
(m

ill
is

ec
o

n
d

s)
 

Data Rate (MB/S) 

Link Busy Time; Data Size= 100 KB  

10MIPS

100MIPS

1GIPS

10GIPS

100GIPS

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

100 1000 10000 100000

Li
n

k 
B

u
sy

 T
im

e 
(m

ill
is

ec
o

n
d

s)
 

Data Rate (MB/S) 

Link Busy Time; Data Size= 1 MB  

10MIPS

100MIPS

1GIPS

10GIPS

100GIPS



Chapter 9: Overall Study of the Behaviour of the Network 

185 

   

                (c) Data size= 10 MB                  (d) Data size= 100 MB 

Figure 95: OLBT (in mSec) for SPTM on 1000 nodes with different network attributes. 

   

(a) Data size= 100 KB    (b) Data size= 1 MB 

   

(c) Data size= 10 MB    (d) Data size= 100 MB 

Figure 96: Link Wait Time (in mSec) for SPTM on 1000 nodes with different network attributes. 

9.4) SPTM on 2000 Nodes 

The nature of SPTM implies that the size of the network has no effect on its 

performance. To verify this assumption a final set of experiments are running in which a 

simulated BC of size 2000 nodes (precisely 12*13*14=2002 nodes) all running SPTM. 

The test is repeated 80 times with different values chosen from Table 23. The processor 

utility can be seen in Table 33. 

Figure 97 plots the data in Table 33. The table and the figure show that the difference 

between a network  of size 1000 nodes and a network of size 2002 nodes is less than 

1.5% in almost all the cases which cannot be regarded as a meaningful difference. 
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      Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 2.75 37.74 55.18 53.25 2.25 62.36 75.36 79.07 

100MIPS 0.80 1.042 41.77 56.86 2.66 19.50 64.41 75.67 

1GIPS  0.80 0.77 37.75 0.25 2.08 1.51 62.79 

10GIPS 0.01 0.09 0.048 8.20 0.02 0.24 2.51 8.41 

100GIPS  0.01 0.08 0.93  0.02 0.23 2.24 

(a) Data size= 800 KB            (b) Data size= 8 MB 

      Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 23.44 67.50 82.02 83.75 25.13  81.77 84.70 

100MIPS 3.03 24.71 66.84 81.60  24.37  80.24 

1GIPS 0.29 3.16 25.13 66.69  3.33 24.39 65.96 

10GIPS 0.03 0.29 2.93 24.08 0.04  3.33 25.48 

100GIPS   0.30 3.15    3.31 

(c) Data size= 80 MB           (d) Data size= 800 MB 

Table 33: Processor Utility measured in a set of experiments with SPTM on a network of 2000 nodes with 

different network attributes. Data sizes varies: (a) 800 KB, (b) 8MB, (c) 80MB and (d) 800MB. 

   

(a)         (b) 

   

(c)            (d) 

Figure 97: Processor Utility of SPTM on a 2002-node network with different sizes: (a) 800KB, (b) 8MB, (c) 

80MB and (d) 800MB. 

        Data Rate 
 

Instr./Sec 

100 

Mb/s 
1 Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 644.70 103.02 39.78  4075.54 951.01  459.47 

100MIPS 664.44  10.37 3.94  395.23  48.32 

1GIPS  66.55 6.60 1.03  321.67 40.54 9.43 

10GIPS 667.40 66.68 6.83 0.64 3788.90 377.43 31.91 3.98 

100GIPS 667.44 66.95 6.64 0.66  381.22 37.25 3.19 

         (a) Data size= 100 KB                 (b) Data size= 1 MB 
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      Data Rate 

 

Instr./Sec 
100 Mb/s 1 Gb/s 10 Gb/s 100 Gb/s 1 Gb/s 10 Gb/s 100 Gb/s 

10MIPS 34347.25 8675.91 4908.76 4651.91  48910.40 47145.57 

100MIPS 28415.88 3405.85 874.18 495.12 32293.55  4868.80 

1GIPS 26842.49 2834.96 341.12 86.67 27174.87 3175.08 823.61 

10GIPS 32223.97 2695.53 284.19 34.12  2713.06 321.62 

100GIPS   269.72 28.35   273.12 

        (c) Data size= 10 MB   (d) Data size= 100MB 

Table 34: OLBT (in mSec) measured in a set of SPTMs on a network of 2000 nodes with different network 

attributes. Data sizes varies: (a) 100 KB, (b) 1MB, (c) 10MB and (d) 100MB. 

This is mainly due to the very limited dependency range in SPTM. In other words, 

nodes do not care about any nodes other than their direct neighbours. The experimental 

results confirm the pre-experiment assumption of independence of SPTM from the 

network size. 

Measurements of OLBT and OLWT metrics are also included in this section (Table 34 

and Table 35). The network parameters are chosen same as SPTM for 1K nodes. 

Again, the metrics are measured in mSec rather than simulation iterations. 

           Data Rate 

 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 
1Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 357.86 25.10 0.61  2109.95 283.95  2.07 

100MIPS 477.12  2.54 0.06  197.44  1.05 

1GIPS  47.87 3.80 0.25  187.78 20.82 2.84 

10GIPS 498.59 50.05 5.05 0.35 2218.89 219.21 18.59 2.00 

100GIPS 499.83 50.09 4.99 0.48  224.52 21.71 1.87 

           (a) Data size= 100 KB                (b) Data size= 1 MB 

           Data Rate 

 

Instr./Sec 
100 Mb/s 1 Gb/s 

10 

Gb/s 

100 

Gb/s 
1 Gb/s 10 Gb/s 100 Gb/s 

10MIPS 19508.58 2920.90 140.81 21.89  1810.51 247.10 

100MIPS 17980.85 1928.87 294.21 14.11 20043.84  174.05 

1GIPS 18050.63 1786.42 193.69 29.50 18319.78 1907.19 296.24 

10GIPS 20889.94 1822.18 179.39 19.51  1826.65 196.52 

100GIPS   180.11 17.79   187.63 

(c) Data size= 10 MB   (d) Data size= 100MB 

Table 35: Link Wait Time (mSec) measured in a set of SPTMs on a network of 2000 nodes with different 

network attributes. Data sizes varies: (a) 100 KB, (b) 1MB, (c) 10MB and (d) 100MB. 

   

(a) Data size= 100 KB    (b) Data size= 1 MB 
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                (c) Data size= 10 MB                  (d) Data size= 100 MB 

Figure 98: OLBT (in mSec) for SPTM on 2000 nodes with different network attributes. 

The results show that like 1K-node networks, both link-related metrics decrease (with 

different slopes) with an increase in either transfer rate or computational ability in 

SPTM on a 2K-node networks. Graphical representation of the results are also included 

in this thesis (Figure 98 and Figure 99). 

   

(a) Data size= 100 KB    (b) Data size= 1 MB 

   

                (c) Data size= 10 MB                  (d) Data size= 100 MB 

Figure 99: Link Wait Time (in mSec) for SPTM on 2000 nodes with different network attributes. 

9.5) Network Size 

The main question in this section is if the size of the network affects its behaviour. The 

results presented in previous sections are used to study both FFTTM and SPTM. The 

data in sections 9.1 and 9.2 is rearranged and some of them are plotted in Figure 100 

which confirms classical literature in parallel computing (e.g. Figure 3). Some data in 
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aforementioned tables are too low in value to be used in this comparison. The data 

plotted below shows that when running an FFTTM for all network attribute values the 

performance of a 1000-node network is better than that of a 2000-node network. 

 

Figure 100: The effect of network size on the performance of an FFTTM 

The same comparison for an SPTM brings completely different results. The experiment 

results show that when a network runs an SPTM the performance of the network does 

not relate with its size. This is not a surprise result because a node with a task-model 

like SPTM does not build a large network of task dependencies and therefore the 

execution time of SPTM on a node only depends on its direct neighbours rather than the 

whole network. 

9.6) Transfer Rate 

Transfer rate influences the performance of both FFTTM and SPTM for different 

reasons. In SPTM the experiment results presented in Figure 94 show that when the 

transfer rate is higher the network processor utility is higher just because the data 

propagates faster between nodes. This fact can be clearly observed is all graphs plotted 

in Figure 94.  

But with FFTTM the link’s data rate has a different influence on the network 

performance. A task like an FFT operates on the rule that if there are high chances to 

finish the task remotely in parallel rather than sequentially and locally then the task will 

be divided into smaller parts and sent to other nodes for a parallel execution of FFT. 

This means that when the data transfer rate is high, nodes are more likely to lean to 
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share the task with their neighbours which consequently increases the degree of 

parallelism. All graphs plotted in Figure 88 and Figure 91 confirm this assumption. 

It should be noticed that in both task-models the best network utilities are achieved 

when the data rates are very high (10 Gb/s and 100 Gb/s). Such data rates are not 

available in off-the-shelf products. Even just a few scientific researches on wireless 

technologies yield such a high transfer rate. This can cast doubt over an imminent 

possibility of building a BC with high processor utility. A lower data rate like 1 Gb/s is 

more realistic at the moment. This means that based on the data presented in Table 24 

and Table 27 the best performance for an FFTTM with a 1 Gb/s data link is below 42% 

and 18% respectively. Such a number for SPTM with a 1 Gb/s is less than 62% 

according to Table 30. But as data rates of range 10 Gb/s are anticipated in near future 

(and even higher data rates in a longer perspective), the network performances of an 

FFTTM can improve to less than 84% and 77% (according to Table 24 and Table 27). 

Such a data link also enhances the performance of an SPTM to less than 83%. As a 

conclusion, as far as it is concerned with data rates, although the current data rate of 

wireless links are promising but to achieve processor utility comparable to current 

modern parallel computers, radio links need just a little bit of more improvement in 

their data rates. 

9.7) Computational Ability 

The effect of number of instructions a member of BC wireless network can execute per 

second on the processor utility is very interesting. In the first glance the higher the 

computational ability of nodes the higher the parallel capability. But the results shown 

in previous sections doubts such a sharp verdict. Figure 101 shows that the processor 

utility of a network of size 1000 nodes decreases in running FFTTM when the 

computation capability of nodes of a network increases. This can happen because the 

tasks that are supposed to be executed in parallel are now running tasks sequentially 

because of high number of instructions executed by processors and relatively low data 

rates of radio links. In other words, when a node sends a packet to a neighbour there are 

chances that during a second packet transmission the result in the first neighbour is 

ready to return to the original node. This ends up in a semi-sequential execution of 

tasks. The same trend is shared by a network of 2000 nodes running the same task-

model and a 1000- and 2000-node network running an SPTM. 
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(a)         (b) 

   

(c)         (d) 

Figure 101: Processor utility of a network of size 1000 nodes running FFT task-model when the computation 

capability changes. 

As expected, the comm/comp ratio has a more significant role than the data rate and 

computational ability separately. It can be seen in all tables and figures presented in this 

chapter that the absolute computational ability does not play a major role in a high 

processor utility; instead, it is the ratio of the computational ability to the data rate that 

decides how high the processor utility of a BC network is. 

It is observed in all tables of this chapter that when the communication to computation 

ratio of two test results are the same the network utilities are almost unchanged. The 

results show that the processor utility in BC platform is proportionate to the 

comm/comp ratio. Therefore, to have a network of high processor utility it is better to 

choose processors and radio modules so that the aforementioned ratio is maximised. 

As a consequence, with a higher margin on the radio data rates, an increase in the 

overall processing ability of a parallel computer can be achieved by increasing the 

number of processors rather than pushing for increasing the computational ability of 

processors. This guarantees the comm/comp ratio is high enough for an HPC machine. 

The role of comm/comp ratio can be easily observed when the data in Table 24 and 

Table 27 are rearranged based on their communication to computation ratio. The results 

can be seen in Table 36 and Table 37. This observation is not restricted to FFTTM only. 
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Results derived from an SPTM have the same characteristics (see Table 30 and Table 

33). 

           Comm/Comp 
 

Data Rate 
0.1 1 10 100 1000 10000 1 10 100 1000 10000 

10MIPS   1.08 7.81 14.09 14.90  1.21 21.48 67.29 71.06 

100MIPS  0.11 0.95 6.57 14.93  0.10 1.80 17.08 68.69  

1GIPS 0.01 0.12 0.64 8.41   0.11 1.55 18.60   

10GIPS 0.01 0.09 1.47    0.20 1.38    

100GIPS 0.01 0.13     0.22     

              (a) Data Size= 100 KB                (b) Data Size= 1 MB 

           Comm/Comp 
 

Data Rate 
10 100 1000 10000 100 1000 10000 

10MIPS 3.31 29.95 83.90 85.04 41.83 68.40 86.72 

100MIPS 3.23 32.54 83.54  49.75 77.98  

1GIPS 3.06 30.74   62.46   

10GIPS 2.96       

100GIPS        

       (c) Data Size= 10 MB             (d) Data Size= 100 MB 

Table 36: Processor Utility (%) measured for a network of size 1000 nodes running an FFTTM. 

           Comm/Comp 
 

Data Rate 
1 10 100 1000 10000 1 10 100 1000 10000 

10MIPS   2.26 4.97 4.73  0.40 6.08 27.05 48.01 

100MIPS 0.03 1.15 2.27 4.75    7.85 43.31  

1GIPS  0.16 2.23   0.09 0.60 7.14   

10GIPS  0.21     0.47    

100GIPS 0.02     0.12     

              (a) Data Size= 100 KB                (b) Data Size= 1 MB 

           Comm/Comp 
 

Data Rate 
10 100 1000 10000 100 1000 10000 

10MIPS 1.49 12.05 75.52 78.80 17.56 76.05 82.35 

100MIPS 1.14 14.44 76.21  16.53 78.48  

1GIPS 1.15 15.00   19.64   

10GIPS 1.22       

       (c) Data Size= 10 MB             (d) Data Size= 100 MB 

Table 37: Processor Utility (%) measured for a network of size 2000 nodes running an FFTTM. 

9.8) Data Size 

Tables and figures in this chapter show that in almost all the cases the size of the real 

data in a task-model is proportionate to the processor and network utilisation. It is much 

expected as with each bulk of real data in a packet there are some extra bytes used to 

guarantee a safe and secure stream of packets. This extra data (packet overhead) usually 

has a constant size. 

Given a constant size of packet overhead, the best network performance will be 

achieved when the size of real data sent by each packet is as large as possible. In other 
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words, when the size of real data is small a major part of the packet is occupied by extra 

data (packet overhead) which is apparently not an efficient way of data transmission. In 

case of sending a large size of data in a single packet the packet overhead is just a small 

part of the actual packet sent which consequently increases the transmission efficiency 

which in its turn contributes in increasing the network and processor utilisation. The 

experimental results derived from both task-models with different network attributes 

confirm this theoretical conclusion. 

9.9) Link Busy Time 

OLBT is introduced in this thesis as one of the metrics to measure the performance of 

the wireless links in a BC platform. The experiment results presented in sections 9.1 to 

9.4 include OLBT measurements. To the knowledge of the author of this thesis there is 

no similar wireless platform to compare BC’s results with; instead, these results can be 

compared to an ideal situation in which no transmission overhead exists. The 

transmission overheads include packet’s header and footer, network discovery packets, 

network management packets, acknowledgment packets and retransmission of packets 

due to acknowledgment timer expire. This ideal situation is called Overhead-Free 

situation and for each node consists of: 

 For SPTM: Six packets of data from the node to its neighbours and six result 

packets. Each of these packets have the same fixed size. 

 For FFTTM: Six packets to send task code to its neighbours; six data packets to 

selected neighbours and six result packets from those neighbours. The size of all 

packets are fixed and the size of data and result packets are the same. 

All the network parameters and data sizes are known before running a simulation; 

therefore, the Overhead-Free transmission time (OFTT) can be determined (which may 

vary from experiment to experiment). Comparing the experimental measures for OLBT 

with OFTT can be a good measure for the performance of the network. OLBT and 

OFTT are compared for different task-models and network parameters. Figure 102 plots 

OLBT and OFTT in a network of 1K nodes running SPTM under different network 

parameters. Regarding the role comm/comp ratio plays in determining OFTT, the data 

points are separated based on this ratio. A similar results are measured with a 2K-node 

network (Figure 103). In both sets of experiments the total data size is 100KB, 1MB, 

10MB and 100MB. The difference between the actual and ideal cases (OLBT and 

OFTT) are bigger with smaller data sizes. With large data sizes packet headers and 

ACK packets are smaller compared to the real data; therefore, the results are closer to 
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the ideal situation in parts c and d of both figures. Also when the computational ability 

is higher the difference between OLBT and OFTT is bigger. All times in this section are 

in milliseconds rather than simulation iterations (which is a variable unit). 

   

(a) Data Size= 100KB    (b) Data Size= 1MB 

   

(c) Data Size= 10MB    (d) Data Size= 100MB 

Figure 102: Comparison between OLBT and OFTT in a 1K-node network running SPTM 

   

(a) Data Size= 100KB    (b) Data Size= 1MB 

    

(c) Data Size= 10MB    (d) Data Size= 100MB 

Figure 103: Comparison between OLBT and OFTT in a 2K-node network running SPTM 

The same measurements are repeated with FFTTM on networks of size 1K and 2K 

nodes. The number of workloads are 8 to match the cubic form of the network 

containers. 
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(a) Data Size= 100KB    (b) Data Size= 1MB 

  

(c) Data Size= 10MB 

Figure 104: Comparison between OLBT and OFTT in a 1K-node network running 8 FFTTM workloads 

   

(a) Data Size= 100KB    (b) Data Size= 1MB 

  

(c) Data Size= 10MB 

Figure 105: Comparison between OLBT and OFTT in a 2K-node network running 8 FFTTM workloads 

The data sizes are 100KB, 1MB and 10MB. Results are plotted in Figure 104 and 

Figure 105 and similarities can be found between them and those from SPTM. The 

number of high OLBTs (compared to OFTTs) are slightly higher with FFTTM 

compared to SPTM. This can be because FFTTM is more susceptible to packet 

retransmission regarding its larger tree of dependencies. In both SPTM and FFTTM for 

some values for transfer rate, computational ability and data size OLBT and OFTT 
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values can be close which implies that the BC platform had handled communications 

efficiently in those cases.  

9.10) Link Utility 

Link utility is measured for both task-models under different values for network 

parameters. As mentioned before, link utility is an estimation for how much of a link’s 

time during a simulation test is dedicated to communication (including both real data 

and overhead). This is an average figure and does not resemble any specific link’s 

situation. All values in this section are expressed in percentages. 

The first set of results (Table 38) are derived from the raw data presented in section 9.1 

and concerns running 8 FFTTM workload on a network of 1K nodes. As expected the 

link utility is small when the comm/comp ratio is high. A high comm/comp ratio means 

that many bits of data can be transmitted over a small number of simulation iterations 

(an iteration is equal to a node’s internal clock cycle). In a situation like this most of a 

node’s time will be used for processing the tasks it has received and the actual 

transmission takes comparably shorter times. That is why the link utilisation is lower 

when comm/comp ratio is high. The data size is not playing a major role in link utility 

and this can be because a packet’s processing time and communication time both relate 

to the packet size in FFTTM. 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 3.03 2.73 0.77 0.61 2.61 2.35 0.67 0.19 

100MIPS 6.76 3.40 2.05 0.76 10.02 4.82 2.40 0.68 

1GIPS   4.49 3.93 2.70   17.13 4.56 1.98 

10GIPS   4.79 5.81 3.81   18.63 2.56 1.76 

           (a) Data Size= 100 KB                           (b) Data Size= 1 MB 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 5.14 2.31 0.26 0.03 

100MIPS 2.02 3.25 0.83 0.26 

1GIPS   3.37 2.36 1.11 

10GIPS  14.92 6.32 1.76 

       (c) Data Size= 10 MB 

Table 38: Average Link Utility (in percentages) of 8 FFTTMs running on a 1K-node network. 

Table 39 shows how link utility changes in a network of 2K nodes running 8 FFTTM 

workloads. The range of results are almost the same as those of a network of size 1K. 

The same trend of reduction of link utility due to increase in comm/comp ratio can be 

seen in this set of results as well. It should be mentioned that any possible congestions 

occurring in communication hotspots may not be detected in these results since they are 
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only average results which means high volume of transmissions on a few hotspots can 

be covered by lower traffic over a vast majority of links. This imbalance between 

communication demands is intrinsic to FFTTM. 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 2.07 2.06 0.72 0.07 0.79 1.13 0.79 0.41 

100MIPS 3.06 1.90 2.19 0.62 3.87 4.20 1.40 0.75 

1GIPS   2.69 1.77 0.003   4.90 4.61 1.47 

10GIPS   5.79 11.78 1.29   35.01 2.71 0.89 

           (a) Data Size= 100 KB                           (b) Data Size= 1 MB 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 2.66 1.23 0.58 0.10 

100MIPS 8.81 5.56 1.17 0.60 

1GIPS   7.87 1.24 2.38 

10GIPS     1.37 

       (c) Data Size= 10 MB 

Table 39: Average Link Utility (in percentages) of 8 FFTTMs running on a 2K-node network. 

The same comparison is made for SPTM running on networks of size 1K and 2K nodes 

(Table 40 and Table 41). The results are based on raw data presented in sections 9.3 and 

9.4. The first difference between FFTTM and SPTM results is the higher link utility 

values in SPTM compared to FFTTM. The range of changes with SPTM is also smaller 

compared to that of FFTTM. Another interesting point is how comm/comp ratio is 

related to link utility in SPTM. Despite a rather strong reverse effect of comm/comp 

ratio on link utility in FFTTM, no sign of such a strong influence can be detected with 

SPTM. Even in some cases link utility increases as comm/comp ratio increases which is 

in contrast to the observations with FFTTM. 

When running SPTM it is expected to have less restrictions imposed by network 

attributes as each node only communicates with some of its direct neighbours. But in an 

FFTTM a rather large dependency tree (which in many experiments cover all the 

network) gives a chance to the network parameters to highly influence the task-model 

process. 

This may play a role in a non-uniform response of an SPTM to variations in 

comm/comp ratio and other network parameters. More test and analysis are needed to 

have a more accurate explanation about different behaviour of SPTM and FFTTM in 

terms of link utility. 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 
1 Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 6.52 5.74 3.39 3.02 13.43 9.63 5.65 5.75 
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100MIPS 7.99 3.13 6.11 3.41 12.55 9.52 9.56 5.93 

1GIPS 9.33 11.50 1.52 6.86 14.27 12.61 2.44 9.50 

10GIPS 11.40 8.33 9.13 3.07 13.70 12.42 13.94 6.29 

100GIPS 11.49 12.49 10.34 12.03  14.16 12.56 13.03 

           (a) Data Size= 100 KB                           (b) Data Size= 1 MB 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 12.63 8.69 3.17 3.03 13.32 9.33 3.18 3.11 

100MIPS 6.74 7.01 4.72 3.15 6.88 6.53 4.55 3.16 

1GIPS 6.05 6.32 5.83 4.26  6.51 6.67 4.04 

10GIPS  6.04 7.09 6.56   6.80 5.78 

100GIPS   6.29 6.43    6.60 

           (c) Data Size= 10 MB           (d) Data Size= 100MB 

Table 40: Average Link Utility (in percentages) of SPTM running on a 1K-node network. 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

10 

0Gb/s 

100

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 2.85 7.03 3.42 3.04 4.02 9.74 6.00 5.66 

100MIPS 10.80 1.08 6.86 3.49 14.95 13.98 9.99 5.98 

1GIPS 0.04 10.90 0.81 6.88 15.38 12.02 8.79 9.74 

10GIPS 10.98 10.03 11.20 8.65 14.80 15.96 14.32 5.60 

100GIPS 11.35 11.02 10.92 13.01  16.06 15.71 13.08 

           (a) Data Size= 100 KB                           (b) Data Size= 1 MB 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100

Gb/s 

100

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 13.60 9.75 6.35 6.08 13.85  6.33 6.24 

100MIPS 15.17 14.35 9.70 6.38  13.90  6.19 

1GIPS 13.70 15.29 15.08 9.62  15.26 13.94 9.13 

10GIPS 14.78 13.98 14.83 14.53   16.10 13.99 

100GIPS   14.33 15.17    17.14 

           (c) Data Size= 10 MB           (d) Data Size= 100MB 

Table 41: Average Link Utility (in percentages) of SPTM running on a 2K-node network. 

9.11) Link Wait Time 

OLWT is the last network performance metric in this thesis. This is particularly used to 

determine how good the store-and-forward routing and buffer management algorithm 

adopted for this thesis is. An efficient routing algorithm should be able to demonstrate 

its ability to minimise the time packets of different types stay in I/O queues during their 

transmission time. OLWT can be a good estimation of such a time in a real-world 

situation. The raw OLWT data (expressed in milliseconds) have been presented in 

sections 9.1 to 9.4. 

To have a better idea about the performance of proposed BC platform from this point of 

view it is better to cancel out the effect of variation in simulation iteration time 

(modelled by an iteration of the simulation). Also it is better to consider the link busy 
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time when dealing with OLWT. For this reason, this thesis uses a ratio of OLBT over 

OLWT (called wait time ratio in this section) for analysing link wait time. 8 FFTTM 

workflows in a 1K-node network has produced wait time ratios listed in Table 42. The 

results show that in many cases OLWT is comparable to OLBT. Even in some cases 

OLWT is bigger than OLBT which means packets spend most of their times waiting in 

I/O queues to be sent. Only for high comm/comp ratio (e.g. 1000 and 10000) OLBT is 

considerably higher than OLWT. 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 1.26 1.26 1.48 4.82 0.77 1.10 7.87 28.22 

100MIPS 1.00 1.26 0.80 4.52 0.68 0.68 1.40 7.74 

1GIPS  1.07 1.20 1.19  0.86 0.63 1.06 

10GIPS  1.05 1.12 1.16  0.89 0.82 0.81 

           (a) Data Size= 100 KB                           (b) Data Size= 1 MB 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 0.63 1.53 8.12 15.23 

100MIPS 0.61 0.46 2.17 7.34 

1GIPS  0.43 0.60 1.76 

10GIPS  0.93 0.51 0.37 

       (c) Data Size= 10 MB 

Table 42: OLBT to OLWT ratio of 8 FFTTMs running on a 1K-node network. 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 1.07 1.06 3.09 2.27 0.73 0.83 6.19 4.88 

100MIPS 1.18 1.04 1.05 4.00 0.66 1.05 0.84 4.88 

1GIPS  1.01 1.43 1.06  0.52 0.72 1.78 

10GIPS  1.24 1.07 0.66  0.65 0.65 0.91 

           (a) Data Size= 100 KB                           (b) Data Size= 1 MB 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 0.48 1.47 10.96 13.13 

100MIPS 0.37 0.48 1.11 10.60 

1GIPS  0.38 1.25 0.81 

10GIPS    1.21 

       (c) Data Size= 10 MB 

Table 43: OLBT to OLWT ratio of 8 FFTTMs running on a 2K-node network. 

The wait time ratio is also found for 8 FFTTM workloads on a network of size 2K 

nodes (Table 43). The observations are almost the same as those of 1K nodes. The only 

difference is a minor increase in values especially for high comm/comp ratios. 

The raw OLWTs presented in section 9.3 are used to measure wait time ratios for 

SPTM workloads on a network of size 1K nodes (Table 44). There is a significant rise 
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in wait time ratio when comm/comp ratio is between 1000 and 10000. FFTTM has the 

same rise as well but the range of increase is much bigger with SPTM. For those 

comm/comp ratio values BC is very efficient running SPTM in terms of buffer 

management. 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 1.71 3.76 64.95 222.71 1.72 3.13 39.35 185.59 

100MIPS 1.29 1.69 3.72 56.48 1.67 1.91 3.15 39.02 

1GIPS 1.24 1.32 1.63 3.53 1.68 1.64 1.93 3.18 

10GIPS 1.24 1.24 1.33 1.67 1.62 1.65 1.66 1.88 

100GIPS 1.24 1.24 1.26 1.20  1.63 1.64 1.63 

           (a) Data Size= 100 KB                           (b) Data Size= 1 MB 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 
10 Gb/s 

100 

Gb/s 

10MIPS 1.68 2.82 30.22 178.41 1.58 2.62 23.40 158.88 

100MIPS 1.56 1.71 2.75 29.57 1.34 1.61 2.67 24.26 

1GIPS 1.43 1.56 1.71 2.75  1.48 1.60 2.63 

10GIPS  1.45 1.54 1.70   1.47 1.57 

100GIPS   1.46 1.53    1.47 

           (c) Data Size= 10 MB           (d) Data Size= 100MB 

Table 44: OLBT to OLWT ratio of SPTM running on a 1K-node network. 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 1.80 4.10 65.34 284.69 1.93 3.35 44.11 221.97 

100MIPS 1.39 1.76 4.08 70.25 1.70 2.00 3.37 46.24 

1GIPS 0.72 1.39 1.74 4.13 1.71 1.71 1.95 3.32 

10GIPS 1.34 1.33 1.35 1.83 1.71 1.72 1.72 1.99 

100GIPS 1.34 1.34 1.33 1.38  1.70 1.72 1.71 

           (a) Data Size= 100 KB                           (b) Data Size= 1 MB 

       Data Rate 
 

Instr./Sec 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

100 

Mb/s 

1 

Gb/s 

10 

Gb/s 

100 

Gb/s 

10MIPS 1.76 2.97 34.86 212.52 1.63  27.01 190.80 

100MIPS 1.58 1.77 2.97 35.09  1.61  27.97 

1GIPS 1.49 1.59 1.76 2.94  1.48 1.66 2.78 

10GIPS 1.54 1.48 1.58 1.75   1.49 1.64 

100GIPS   1.50 1.59    1.46 

           (c) Data Size= 10 MB           (d) Data Size= 100MB 

Table 45: OLBT to OLWT ratio of SPTM running on a 2K-node network. 

The same process is repeated with the data in section 9.4 for SPTM workloads on a 2K-

node network (Table 45). The effect of comm/comp ratio on wait time ratio is the same 

as previous table. In both tables the best results are achieved with smaller data sizes 

(part a in both tables) and they slightly decrease as data size increases.  
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Chapter 10: Conclusion 

Chapters 3 to 7 of this manuscript explained the process of designing and implementing 

a simulated wireless platform for a massively parallel computer known as Ball 

Computer (BC) in this thesis. Also the performance of BC platform is evaluated and 

analysed using series of simulation experiments. There are a number of major design 

questions involved in implementing such an idea some of which are tackled in this 

thesis. However, there are some important design issues that are left for future works. 

Two of these challenges are power delivery and heat dissipation. 

Back to the research question of this thesis, we want to know if an effective solution 

exists for connectivity in a 3D wireless massively parallel computer. The main focus of 

the thesis is on solving hidden node problem and investigating some possibilities for 

routing algorithm and deadlock avoidance strategy. 

The questions asked in section 3.1 of this thesis will be revisited later in this chapter to 

check if this thesis has been successful in answering those questions. The main 

questions in section 3.1 can be rephrased as: 

 Do the current state-of-art wireless technologies suit the proposed platform in 

terms of the area they occupy, their transfer rates and energy they consume? 

 Can packet collision be eliminated by proposing a multi-channel multi-radio 

platform enhanced with effective network partitioning and channel assignment 

algorithms? 

 How much load balancing improves the performance of the BC platform? 

 Does the save-and-forward algorithm implemented in this thesis yield good 

performances for at least a range of networks? What can be done to widen that 

range? 

 How the performance of such a computer may look like? 

10.1) Availability of Technology and Choice of Network Topology 

The literature review chapter has shown that the main hurdle for wireless devices in the 

BC platform would be their energy consumption which is still high despite the 

significant reduction in energy demand of those technologies over recent years. This is a 

major problem especially because the main priority of modern HPC systems is to reduce 

their power consumption. The transfer rates of current wireless devices are shown to be 

not far from what is needed in the BC platform. 
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In comparison between different categories of wireless devices, on-chip millimetre-

wave radio was selected to be used in the BC which has a large 3D hexagonal FCC 

topology. The nodes are in physical contact with their direct neighbours. Each node has 

a processor and eight on-chip radio transceivers. This topology is used to let the nodes 

have the highest number of neighbours. 

As a conclusion, on-chip radio devices are still consuming too much energy which is 

too costly for a modern parallel platform; but this thesis has demonstrated that this can 

be solved in near future should the historical trend of reducing energy consumption of 

on-chip radios continues. 

10.2) Packet Collision and Network Partitioning 

Packet collision happens when a node is sending a packet to another node unaware that 

the receiver is already busy with receiving another signal. This problem is known to 

researchers as Hidden Node Problem. To solve this problem and avoid any packet 

collisions a two-stage network partitioning algorithm is introduced. This algorithm 

partitions the network into overlapping zones and assigns channels to them in a way that 

no signal interference can happen. The algorithm is presented, explained and its 

correctness is proven in section 5. Also none of the simulation experiments presented in 

chapters 8 and 9 show any traces of even one instance of packet collision which shows 

that the algorithm has passed the tests as well. The thesis has been successful in solving 

Hidden Node Problem for a multi-channel wireless network like the BC platform. 

10.3) Routing and Deadlock Avoidance 

A store-and-forward routing and buffer management algorithm is developed for this 

thesis. This decision is made mainly because of simplicity of implementation. The 

results presented in chapter 9 apparently shows that link-related performance metrics 

(i.e. OLBT, OLWT and ALU) were badly affected by such a decision. The OLWT 

metric which estimates the time packets spend in output queues before they have the 

chance to be sent over radios is directly affected by choosing store-and-forward over 

other methods. Results in chapter 9 show that apart from very big comm/comp ratios the 

OLWT values are comparable to OLBT values and even in some cases the wait times 

are bigger than transmission times. This is because the chosen algorithm was not the 

best for a direct network (i.e. without routers) like the BC network. This problem can be 

seen in results reported from both task-models and with most of values for network 

attributes. 
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This thesis strongly recommends that a wormhole method with virtual channels or at 

least a cut-through method replace the current store-and-forward algorithm. It is 

anticipated that the performance of the network will be improved to a great extends by 

making that replacement. 

The deadlock avoidance algorithm used in this thesis is also designed only to explore 

some possibilities and cannot be regarded as the best algorithm of this type. But it has 

proven to be quite helpful as it successfully diverted heavy traffics from a 

communication hotspot towards its neighbouring nodes. However, as stated before, this 

algorithm cannot guarantee that a deadlock will not happen under any circumstances. 

10.4) Load Balancing 

A number of ideas for a load balancing algorithm has been discussed in section 6.4 and 

one of them is implemented for this thesis. The chosen algorithm was the easiest one to 

implement and is used just to explore some possibilities with load balancing. The 

proposed algorithm is used particularly for FFTTM since the other task-model has fixed 

load sizes and there is no room for optimising the size of workload a node dedicates to 

each of its neighbours. 

The results reported in section 8.5 show how efficient the proposed load balancing 

algorithm was in increasing the performance of the BC network. This is despite a minor 

overhead it imposes by an extra network discovery process added to the task-model. 

10.5) Final Analysis 

A number of metrics has been introduced in this thesis to measure the performance of 

the proposed BC platform. The processor utility measures how effective the processors 

has been incorporated in a simulation experiment while OLBT, OLWT and ALU give 

an idea about how effectively radio links are used. Both FFTTM and SPTM are tested 

over a range of network sizes, transfer rates, computational abilities and data sizes. 

The results show that an increase in the comm/comp ratio has the biggest effect on 

improving the processor utility in both task-models. Also when using FFTTM, this 

metric improves with an increase in data size. The results show that there is a cap on the 

size of FFTTM growth beyond which the performance of the task-model decreases. 

This cap is shown to be between 1000 nodes and 2000 nodes. The SPTM is less 

sensitive to network attributes when it comes to measuring processor utility metric. 

The link-related metrics also are affected by changes in comm/comp ratio. The only 

exception is the ALU metric measured for SPTM. In this situation the results show that 

the performance does not always increase when comm/comp ratio increases. 
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In this thesis potential benefits and disadvantages of a 3D wireless parallel computer are 

investigated. It has been observed that there are some major obstacles. Energy 

consumption and – to a lesser extent – the transfer rate are emphasised as main 

concerns. The number of hops for large networks is also another issue which can be 

solved should an effective routing algorithm (e.g. wormhole with virtual channels) 

replaces current routing method. The scalability of the network and its simplicity in 

setup time are two major benefits. Another big benefit is the removal of all wirings 

between nodes which hugely reduces the complexity and cost of the network. Through 

extensive series of simulation experiments this thesis has shown that there are solid 

chances for the proposed BC platform to yield good performances under some types of 

networks and with certain types of tasks. This manuscript cannot suggest that there are 

enough technologies to make a wireless parallel computer right now; but it has shown 

that the there is a historical trend for pushing for coming up with faster radio links with 

lower energy demands that can end up in making a prototype for BC in the future. 

The simulation and data visualisation tools designed and implemented for this thesis can 

be used for its next stages as well as other researchers interested in research on the same 

level of abstraction. 

There are many interesting leads that need more investigations. Some of these 

possibilities for further expansions are listed and discussed in the next section. 

10.6) Future Work 

The future expansions and enhancement to this thesis can be put into three categories 

depending on the scope of expansion discussed in the following sections. 

10.6.1) Current Simulator 

The current simulation can be enhanced by introducing new task-models. Simulated 

tests with these new task-models give us a better understanding of how the network 

operates. Those task-models help covering more real-world tasks and identify how good 

the BC handles them. 

Another thing that can be considered is to expand the simulated radio range of nodes so 

that in addition to its direct neighbours it covers the neighbours of its neighbours as 

well. This will have two effects. One is that it dramatically increases the number of 

direct links most of which are redundant which can be a good news. But it comes with 

the cost of sharp reduction in transfer rate dedicated to each channel. In the current 

version of the simulation it is assumed that the latter effect will overshadow the former 

and for this reason such an extended radio range were never tested. For the future it 
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would be a good idea to test if an increase in the number of links can compensate for the 

reduction of transfer rates for each of them. This is particularly of interest in light of the 

fact that in many biological systems (e.g. a human brain) it is not the speed of the links 

that are key to their success but the large number of connections per node is one of the 

main contributors to their strength. 

Another important issue is to look for a more accurate cost-benefit analysis without 

which it would be very hard to head for further expansions in the simulation 

environment or the real world. 

10.6.2) Extending the Simulator 

A more accurate modelling of radio noises of different types definitely helps increase 

the accuracy of the network simulator. It is known that there are many sources of noise 

in a radio link which increases the path loss and ultimately decreases the transmission 

speed. At the current version of the simulator a very rough (and possibly not accurate 

enough) modelling of noise is imposed which plays its role mainly as a mild random 

nature of the packet transmission times. For the future, it should be determined what 

sources of noise are important enough to have an independent modelling. It should also 

be decided what is the most suitable form of modelling for those sources of noise 

regarding the level of abstraction of the simulator. 

The current simulation tool needs a thorough change in its routing and buffer 

management mechanism. Based on the results presented and analysed in chapter 9, the 

store-and-forward method used by the simulator is not effective under a considerably 

wide range of network parameters. The main reason why the platform cannot have 

higher link utilities and lower link wait times is believed to be the delays imposed by 

the store-and-forward method. It is expected that replacing it with a cut-through method 

or a wormhole method with virtual channels helps improve both link utility and link 

wait times. 

Another possibility is to investigate accommodating heterogeneous nodes in the 

network. This means having either processors with different computational abilities or 

radio modules with different transfer rates or even radio ranges. This is particularly 

interesting because it makes the BC look more like a biological system in which 

different parts of the system are better in doing a given sort of tasks rather than being a 

general purpose machine. 

Another reason for thinking about heterogeneous nodes is dictated by the options for 

power delivery. If the BC is going to have wireless solution for power delivery there are 

chances that not all the nodes receive the same amount of electrical energy. This means 



Chapter 10: Conclusion 

206 

that some nodes may receive less amount of electricity than others which consequently 

either impairs their computational capability or reduces their data transfer rates. For this 

reason it is recommended to study such a possibility to know how this may affect the 

overall performance of the network. 

10.6.3) Beyond Simulation 

The ultimate goal of this thesis is to build a prototype of a 3D wireless parallel 

computer in real world. All the simulations done thus far or anticipated for future are in 

fact helping us having a better and more accurate understanding of how such a machine 

may look like and what that computer is capable of. Therefore, we are gathering more 

and more data through simulation experiments to realise that goal. 

Whether that prototype is a pure wireless system (as sought in our most radical plan) or 

there will be some sort of wirelines included for performing minor tasks are yet to be 

understood. A more accurate cost-benefit analysis is vital for making decisions of that 

sort. 

Up to now making decisions on issues like power delivery and heat dissipation have 

been deliberately postponed to let us focus on other important aspects of the thesis. 

Before any attempts on making a prototype, issues like those two need to be thoroughly 

researched. These are very important issues that would be investigated in the future 

stages. 
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Appendices 

Appendix A: Summary of short-range on-chip wireless technologies 
A summary of the surveys done in this research thesis is listed in the following tables. They are mainly focused on different short-range on-

chip wireless technologies. Other wireless technologies are excluded since they do not satisfy all the criteria for the platform proposed in 

this thesis. 

Ref. Date Data Rate 

(Gb/s) 

Range (μm) Power (mW) Energy (pJ/bit) Comments 

[61] 2004 1.2 300 43Tx- 2.5Rx  More than 3 stacked chips 

[62], 

[156] 
2004, 2005 1.25 60 43Tx-2.6Rx  Chip thickness= 240 μm 

[62], 

[156] 
2004, 2005 1.25 60 1.1  Chip thickness= 30 μm 

[62], 

[156] 
2004, 2005 5 60 21  Chip thickness= 30 μm 

[63] 2005 195 15,28,36,43 4,9,15,19  195 lines 1Gbps each 

[132] 2006 195 15, 30, 45 1.2W, 2.2W, 4.1W  2, 3, and 4 stacked chips-195 lines 1Gbps each 

[46] 2006 1000 15 3W(2.2WTx, 0.6WRx, 

0.2WClk)-3mW/Gb 

3 1GHz - 1024 channels 1Gbps each, BER< 10
-12

 

[65] 2006 1 1 – 5 2.4  4-stage Daisy Chain x 2 

4-phase TDMA, BER< 10
-12

 

[157] 2006 1.2 300 46  In a 3D stack 

[158] 2007 1 15  0.33 Data -3.5Clk 1GHz - 90nm CMOS – BER < 10
-12

 

[158] 2007 1 15  0.14 Data 1GHz  - 180nm CMOS – BER < 10
-12

 

[159] 2007 0.02 1.2mm CLK: 14.3Tx-10.4Rx 

DATA: 0.5Tx-8.1Rx 

 BER < 10
-10

 

[160] 2007 1 70 1.31TX – 0.04Rx   

[68], 

[161] 
2008, 2009 11-10.5-8.5 15-30-45  1.4-1.5-1.8 0.18m CMOS- with burst transmission-BER <10

-14
 

[68] 2008 30 15  0.11 90nm CMOS (Simulated) 

[68] 2008 8.5 45  NA 0.18m CMOS 

[162] 2008 2 50  0.5 BER<10
-12

, Bi-directional Transceivers with 

Differential Inductors 

[163] 2008 1 15  0.065 BER<10
-12
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[164] 2008 0.48 800-1200 NA NA  

[165], 

[166] 
2009 2 120 307 15 2 channels - Programmable Bus - BER < 10

-12
 

[167] 2009 19.2 120  1 18 Channels between a 90nm CMOS Processor and a 

65nm CMOS SRAM 

[168] 2009 3.5 30 23.68 6.77  

[169] 2009 4.7 25 NA NA Inductive coupling interposer – BER <10
-12

 

[170] 2009 7.2 95  7.6 1.5GHz  - 16 transceivers and 16 processors in a chip 

[171] 2009 0.15 200 NA NA BER <10
-12 

- Interleaved power and data transmission 

[172], 

[173] 
2009 19.2 120  1 600 MHz  - 18 Channels between a 90nm CMOS 

Processor and two 65nm CMOS SRAMs 

[172], 

[173] 
2009 19.2 210  1 600 MHz  - 18 Channels between a 90nm CMOS 

Processor and two 65nm CMOS SRAMs 

[70] 2010 8000 25 8W 1 BER<10
-16

, 1024 links of 8Gb/s 

[174] 2010 2 2200-3600  1.8 128-Die NAND-Flash Memory Stacking 

[175] 2010 2.5 1000  6 BER < 10
-12

 

[176] 2010 6 250   BER<10
-14

-Simultaneous power and data 

transmission  

[69] 2010 1.1 22  0.02 BER<10
-12

-With wireless clock transfer 

[59] 2011 1.1 1000(Estimate) 1 0.91 Supply voltage = 0.5 

[59] 2011 1.7 1000(Estimate) 1 0.91 Supply voltage = 0.75 

[76] 2011 19.2 2200-3600 (By 

comparison) 

 0.9 BER < 10
-12

 – 8 Channels 2.4 Gb/s each 

[67] 2011 12.5 500 NA NA BER < 10
-13

 – Single Channel 

[67] 2011 12 1000 NA NA BER < 10
-13

 – Single Channel 

[177] 2011 30 30 2.1W 7 10 Channels 3 Gb/s each 

[45] 2005 1 100 0.95   

[178] 2008 5 30 6   

[179] 2008 0.2 30000  20  

[179] 2008 0.2 59000  32  

[180] 2009 1 100    

[181] 2009 0.05 70000  0.475TX+1.3Rx BER < 10
-3

 

[182] 2010 0.0071 30000  5.76 BER < 10
-3

 

[58] 2010 0.05 50000  0.475TX+0.825Rx BER < 10
-3 

[183] 2011 1.1 22  0.01 BER<10
-12

-With wireless clock transfer 

[184] 2011 1.2 NM  4.7  

[185] 2012 1000 20  1 Each link has 8Gbps - BER<10
-16
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Table 46: Comparing inductive coupling data transfer technologies 

 

 

Ref. Date Data Rate 

(Gb/s) 

Range (μm) Power (mW) Energy 

(pJ/bit) 

Comments 

[60] 2003 1.27 1-2 3   

[50] 2007 2.63 1  0.080 1.7-2.46GHz  - Mono-Directional-108 Links – min 

propagation delay= 380ps 

[50] 2007 1.79 1  0.120 1.8GHz  - Bi-Directional - BER<10
-12

-108 Links -min 

propagation delay= 560ps 

[186] 2008 100Kb/s 150? -  0.5 – 1.1 (by 

Comparison) 
9.73WTX-

0.97WRX 

107  

[186] 2008 0.008 150? - 0.5 – 1.1 (by 

Comparison) 

   

[187] 2005 0.795-0.975-0.9 1 0.11-0.14-13mW(?) 

 ? - 0.128 - ? mW 

 25*25 - 15*15 - 8*8μm
2
 

[188] 2007 1.23 0.5 – 1.1 0.17mW 0.14 BER<10
-13

 

[189] 2007 1.2 0.5 – 1.1  0.041 900MHz  - BER<10
-13

–15*15μm electrodes- Synchronous  

[189] 2007 1.23 0.5 – 1.1  0.08 1.7GHz - BER<10
-13

–8*8μm electrodes- Asynchronous  

[53] 2009 32 0.5 – 1.1 1.12  250MHz  -128 Channels 

[51] 2004 1.35 20 3.6 3.9 BER<10
-10

–16 Channels total=21.6Gb/s 

[190], [191] 2005, 2006 3 0.5 – 1.1 (by Comparison) 5Tx-10Rx  BER<10
-12

 

[54] 2007 10 3 2.7 0.27 BER<10
-14

 

[54] 2007 11 3 4.3 0.39 25GHz  - BER<10
-14

 

[55] 2010 15 4 7 0.47 BER<10
-10

 

[192] 2011 1 0.5 – 1.1 (by Comparison) 4.4  BER<10
-12

 

[56] 2007 1.8 9.5  3 144 channels total= 260Gb/s - BER<10
-15

 

[56] 2007 1.6 10.5 NA NA 144 channels total= 230Gb/s - BER<10
-14

 

[52] 2012 6 0.5 – 1.1 (by Comparison)  0.015 Two Channels 

[193] 2011 0.9 12 2.11Tx+5.18Rx  BER <10
−13

 

[194] 2009 2 4 4.87Tx+1.63Rx  BER <10
−10

 

Table 47: Comparing capacitive coupling data transfer technologies 
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Ref. Date Transferred Power (mW) Range (μm) Comments 

[195] 2006 2.5 600 (Based on Graph) Possibility of increase to 300mW 

[196] 2007 36-22-3 15-50-250 (Based on Graph) 

[171] 2009 56 200 33.6 V Ripple 

[197] 2009 48 15 33% increase in efficiency 

[176] 2010 10 250  

[198] 2011 6000 50-320 65mV – 8 power transmit channels 

[199] 2012 15 50  

Table 48: Wireless Power transfer technologies based on inductive coupling 

 
Ref. Date Data Rate 

(Gb/s) 

Range (mm) Power (mW) Energy per bit 

(pJ/bit) 

Area (mm
2
) Comments 

[200] 2004 0.01 2 0.44  -  

[200] 2004 0.05 2 2.5  -  

[201] 2005 0.001 950 0.7Tx+4.0Rx  0.035Tx+0.38Rx BER<10
-5

 

[201] 2005 0.001 1000 0.7Tx+4.0Rx  0.035Tx+0.38Rx BER<10
-3

 

[201], 

[202] 
2005 0.001 1000 1  0.035Tx+0.38Rx BER<10

-3
– LNA bias switching 

[203] 2007 0.75 NA  12 0.045Tx External Antenna - A Tx only 

[203], 

[204] 
2007 0.75  NA  41 0.29Tx Embedded Ant - A Tx only 

[205] 2007 0.3 NA  247 16.7 BER<10
-3

 

[205] 2007 0.4 NA  247 16.7 BER<10
-2

 

[206] 2007 0.01 NA  47 0.08 A Tx only 

[207] 2009 0.2 0.5 43  0.54 Integrated antenna 

[208] 2009 2 50 183Tx+103Rx  0.43Tx+0.68Rx On-board antenna - BER<10
-12

 

[208] 2009 2.5 40 183Tx+103Rx  0.43Tx+0.68Rx On-board antenna - BER<10
-12

 

[208] 2009 3 20 183Tx+103Rx  0.43Tx+0.68Rx On-board antenna - BER<10
-12

 

[80] 2009 2-6 5-40 117 17 0.62 Bond-Wire ant – BER=4*10
-13

 

[209] 2009 4 1000 308(170Tx+138Rx) 77 6.875 BPSK - BER<10
-11

 

[210] 2009 1-2 300 32(26Tx+6Rx) 32 0.45 OOK – On-chip antenna 

[211] 2010 3.5 1000 (by compare) 156Tx+108Rx (45Tx,31Rx)38   
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[82] 2010 16 20 90  1.12  

[212] 2010 1.2 50 51  3.8 (with on-chip ant) BER<10
-3

–On-chip ant-Rx only 

[212] 2010 1.8 50  28 3.8 (with on-chip ant) BER<10
-3

–On-chip ant-Rx only 

[213] 2010 16 15 11.6   Simulation- Rx only 

[146] 2010 11 14 29Tx+41Rx 6.4 0.06Tx+0.07Rx Bond-wire antennas 

[135] 2010 9 NA 80.9   BER=10
-9

 

[134] 2011 10 NA 200  1.55 Tx only 

[147] 2011 16 15 (By compare) 26.7   BER<10
-15

 

[214] 2011 1.7 2740 186Tx+106Rx  7.3 BPSK - Within 2.16GHz-BW 

[214] 2011 3.52 2700 186Tx+106Rx  7.3 QPSK - Within 2.16GHz-BW 

[214] 2011 5.28 200 186Tx+106Rx  7.3 8PSK - Within 2.16GHz-BW 

[214] 2011 7.04 170 186Tx+106Rx  7.3 16QAM - Within 2.16GHz-BW 

[214] 2011 8 2700 (By compare) 186Tx+106Rx  7.3 QPSK - With a wider-BW 

[214] 2011 11 170 (By compare) 186Tx+106Rx  7.3 16QAM - With a wider-BW 

[83] 2011 25 120 140 5.6 0.41 Full duplex – Plastic waveguide 

- BER<10
-12

 

[215] 2012 10 5000 (Not stated) 45 4.5 1.7 BER<10
-12

 

[86] 2012 10 10 21 2.1 0.05 Chip-to-chip 

[84] 2012 26 120 52Tx+85Rx  0.16Tx+0.26Rx Plastic waveguide  - BER<10
-12

 

[84] 2012 20 5 52Tx+85Rx  0.16Tx+0.26Rx Free Space  - BER<10
-12

 

[216] 2012 2 34 150 75 0.44Tx+0.81Rx BER<10
-3

 

[217] 2012 0.001 NA 1.8  0.76*0.56 Rx only 

[136] 2012 10 NA 28  0.11  

[81] 2008 3.5 2000(from [218]) 374  1.28*0.81  

[77] 2006 0.63 10000 500 (526)  3.4*1.7Rx + 4*1.6Tx QPSK-OFDM 

[77] 2006 1 8000 800Tx+500Rx  3.4*1.7Rx + 4*1.6Tx  

[77] 2006 2 2500 800Tx+500Rx  3.4*1.7Rx + 4*1.6Tx QPSK 

[219] 2010 NA NA 50.2  1.196 Rx only 

[220] 2001 NA NA 150Tx+162Rx  4*4.5  

[133] 2004 10 NA NA NA 3Tx+3Rx Large Antenna 

[78] 2007 0.001 <10000 3.8 to 9.1Tx - 0.5 to 2.6Rx 3800Tx+500Rx 0.27 BER<10
-3

 

[221] 2007 1.5 10000 420Tx+450Rx  4*3Tx+5.5*4Rx  

[222] 2007 4 NA 36.9BA+31LNA+30VCO  1.65*1.5  

[223] 2007 0.96 200 NA NA NA Theoretically up to 2Gbps 

[224] 2007 1.5 2000 37 <25 3  

[225] 2007 0.8 2500 1100  26*18 Tx only - BER=10
-11

 

[226] 2007 2.4 NA 85  NA DQPSK Rx only - BER=10
-9
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[227] 2008 0.000005 1800 1.1  NA  

[228] 2007 0.016(Implied) 1000 6.6 (implication)  0.23*0.22  

[229] 2008 7 NA 173Tx+189Rx  1.75*1.5Tx + 2.25*1.7Rx QPSK 

[229] 2008 15 NA 173Tx+189Rx  1.75*1.5Tx + 2.25*1.7Rx 16QAM 

[230] 2008 0.001 NA 19.3*1.2Tx+29.7*1.2Rx  3 GFSK 

[230] 2008 0.002 NA 19.3*1.2Tx+29.7*1.2Rx  3 DPSK 

[230] 2008 0.003 NA 19.3*1.2Tx+29.7*1.2Rx  3 8PSK 

[231] 2008 2.6 NA 133Tx+206Rx  1.5Tx+1.9Rx QPSK 

[232] 2008 0.1 5 (expected) 152  3  

[233] 2008 1 NA 55   Rx only 

[234] 2008 2 NA 19.2 9.6 0.41 Rx only 

[235] 2008 8 NA NA  0.61*0.3  

[236] 2008 1.5 NA NA  4*3Tx + 5.5*4Rx  

[237] 2008 1.5 NA 7.2  o.18 Demodulator only 

[238] 2009 2.5 NA 6  0.3 Demodulator only 

[239] 2009 6 2000 374 or 232  1.28*0.81 BPSK 

[79] 2008 4 1150 1500  1.44  

[240] 2010 1.5 380 183Tx+103Rx  0.43Tx+0.68Rx BER<10
-12

 

[240] 2010 1 610 183Tx+103Rx  0.43Tx+0.68Rx BER<10
-12

 

[240] 2010 3.3 20 183Tx+103Rx  0.43Tx+0.68Rx BER<10
-12

 

[241], [242] 2010 1.6 540 3800  6.5*6.75 

802.15.3C- 16 elements – 

OFDM – Nominal bias 

conditions 

[243] 2010 2 100 1.2*21.9 13.2 22*13  

[244] 2010 0.00025 50 
0.0625Tx+0.045Clk 

+0.00625Rx 
600 0.62*0.55  

[244] 2010 0.001 50 
0.254Tx+0.045Clk 

+0.028Rx 
373 0.62*0.55  

[244] 2010 0.016 50 1.75  0.62*0.55  

[245] 2010 0.015 12.5 1.2*(13.3Tx+20.2Rx)  0.014Tx+ 0.11Rx+1 ASK - BER<10
-5

 

[245] 2010 0.020 5   0.014Tx+ 0.11Rx+1 BER<10
-3

 

[14] 2010 0.64 NA 675  10.37 LDPC 

[14] 2010 0.14 NA 337  10.37 LDPC 

[14] 2010 0.14 NA 570  10.37 Turbo 

[246] 2010 1 1040 280Tx+150Rx+70PLL  1.4*0.9 BER<10
-12

 

[246] 2010 1.5 660 280Tx+150Rx+70PLL  1.4*0.9 BER<10
-12

 

[246] 2010 2 410 280Tx+150Rx+70PLL  1.4*0.9 BER<10
-12
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[247] 2010 1 NA 51Tx+116Rx  0.85Tx+1.92Rx Repeater 

[242] 2010 1.6 540 6400  6.5*6.75 

802.15.3C- 16 elements – 

OFDM – increased PA bias 

conditions 

[242] 2010 5.3 540 NM  6.5*6.75 802.15.3C-16 elements– 16QAM 

[248] 2010 1.5 NA 31.2  1.08 ASK - Tx only 

[249] 2010 1 NA 11.9Tx+11.4Rx  1.9 GFSK 

[250] 2010 2.5 NA 83.5  1.275*1.19 Rx only – OOK-BER<10
-12

 

[250] 2010 3.5 NA 83.5  1.275*1.19 Rx only –BPSK-BER<10
-9

 

[250] 2010 1.3 NA 83.5  1.275*1.19 Rx only–DBPSK-BER<10
-12

 

[251] 2010 10 2000000(Estimate) NA  20*8*25 mm
3
 BER<10

-10 
– Large Antenna 

[252] 2010 10 NA 8.7  NA Tx only 

[253], [254] 2011 5 200 14.7 2.94 0.32 Rx only 

[255] 2011 5 (Approx.) 9000 2700  NA 16 elements 

[256] 2011 7.14     WirelessHD 

[256] 2011 6.76     802.11ad 

[256] 2011 4 10000 895  8.95*8.12Src+8.64*8.93Snk Tx only - BER<10
-11 

- 8Tx 

[256] 2011 4 10000 1820  8.95*8.12Src+8.64*8.93Snk Tx only - BER<10
-11 

- 32Tx 

[256] 2011 4 10000 711  8.95*8.12Src+8.64*8.93Snk Rx only - BER<10
-11 

– 4Rx 

[256] 2011 4 10000 1250  8.95*8.12Src+8.64*8.93Snk Rx only - BER<10
-11 

– 32Rx 

[256] 2011 3.8 50000 NA  8.95*8.12Src+8.64*8.93Snk 32Src+32Snk - LOS 

[256] 2011 1.9 184000 NA  8.95*8.12Src+8.64*8.93Snk 32Src+32Snk – LOS 

[256] 2011 0.95 390000 NA  8.95*8.12Src+8.64*8.93Snk 32Src+32Snk - LOS 

[256] 2011 3.8 16000 NA  8.95*8.12Src+8.64*8.93Snk 32Src+32Snk - NLOS 

[256] 2011 1.9 58000 NA  8.95*8.12Src+8.64*8.93Snk 32Src+32Snk – NLOS 

[256] 2011 0.95 123000 NA  8.95*8.12Src+8.64*8.93Snk 32Src+32Snk - NLOS 

[256] 2011 3.8 13000 NA  8.95*8.12Src+8.64*8.93Snk 8Src+32Snk - LOS 

[256] 2011 1.9 47000 NA  8.95*8.12Src+8.64*8.93Snk 8Src+32Snk – LOS 

[256] 2011 0.95 101000 NA  8.95*8.12Src+8.64*8.93Snk 8Src+32Snk - LOS 

[256] 2011 3.8 4000 NA  8.95*8.12Src+8.64*8.93Snk 8Src+32Snk - NLOS 

[256] 2011 1.9 15000 NA  8.95*8.12Src+8.64*8.93Snk 8Src+32Snk – NLOS 

[256] 2011 0.95 32000 NA  8.95*8.12Src+8.64*8.93Snk 8Src+32Snk - NLOS 

[257] 2011 2 100 26.28 13.2 13*22*1.4 mm
3
 

Tx only + ant -1.4*10
-9

<BER< 

5.3*10
-3

 depending on Rx angle 

[258] 2011 2 1000 14.4  1.18*0.82 Tx only 

[254] 2011 2 200 14.4  21.2*11.6 Tx only 

[254] 2011 0.648 200   21.2*11.6Tx+25.5*10.5Rx  
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[259] 2011 2.5 1000 212Tx+166Rx  0.6Tx+0.8Rx BER<10
-11

 – QPSK 

[259] 2011 2.5 1000 202Tx+125Rx  0.6*0.8Tx+0.8Rx BER<10
-9

 – BPSK 

[260] 2011 3.8 1000 1090Tx+454Rx  3.05*2.75 16QAM OFDM 

[261], 

[262] 
2011 10 1000 181Tx+138Rx  4.8TRx+1.2PLL 13502 points -QPSK-BER<10

-3
 

[261], 

[262] 
2011 16 200 181Tx+138Rx  4.8TRx+1.2PLL 42024 points-16QAM-BER<10

-3
 

[261], 

[262] 
2011 3.52 1000 181Tx+138Rx  4.8TRx+1.2PLL 9506 points-QPSK-BER<10

-3
 

[261], 

[262] 
2011 7.04 200 181Tx+138Rx  4.8TRx+1.2PLL 19912 points-16QAM-BER<10

-3
 

[262] 2011 1.76 5-2740 186Tx+106Rx  3.5Tx+3.8Rx 1585 points - BPSK-BER<10
-3

 

[262] 2011 5.28 5-200 186Tx+106Rx  3.5Tx+3.8Rx 4755 points - 8PSK- BER<10
-3

 

[263] 2012 8 2700 186Tx+106Rx  3.5Tx+3.8Rx QPSK - BER<10
-3

 

[263] 2012 11 170 186Tx+106Rx  3.5Tx+3.8Rx 16QAM - BER<10
-3 

[264] 2011 2 200 14.4  21*12*0.5 mm
3
 Tx only – on-chip antenna 

[264] 2011 5 200 14.7 2.94 21*12*0.5 mm
3
 Rx only – on-chip antenna 

[87] 2012 0.522 30 1.2*(83.6Tx+185.3Rx) 190Tx+430Rx 56  

[265] 2011 3 2000 30.5+54  1.04*0.47 
Rx only - QPSK - BER= 9*10

-9 

– Large Antenna 

[266] 2002 1.25    82x53x7mm
3
  

[267] 2004 0.011 NA 3*(70Tx+60Rx)  3*2.5  

[268] 2005 1.047 7000 10  9.5*(27.2Tx + 22.0Rx) BER=10
-12

– Large Antenna 

[268] 2005 1.285 7000 10  9.5*(27.2Tx + 22.0Rx) BER=10
-12

– Large Antenna 

[269] 2006 0.1 3400 NA   QPSK 

[269] 2006 0.1 2000 NA   8PSK 

[269] 2006 0.2 1.5 NA   16QAM 

[270] 2002 1.5 NA NA  1.47*1.28Rx+1.4*1.45Ant Rx only 

[271] 2007 0.15 NA 50  0.39*0.48 Tx only – ASK 

[272] 2007 2 NA 2.7*(4Tx+12Rx)  0.03Tx+0.02Rx  

[273] 2009 0.48 NA 172Tx+230Rx  3.3*3.3  

[274] 2009 12 NA 1200  1.9*1.1 Large Antenna 

[275] 2009 1.5 100 42 28 1.38+1.43 
BER<10

-3 
–Rx only– on-chip 

ant 

[276] 2010 5.3 4500 1800  6.08*6.2 16QAM 

[277] 2010 5 10000 500  14.5 32 element phased-array 

[278] 2010 10 2000000 850Tx – 650Rx  2*2Tx+2*2Rx 120GHz-BER<10
-10

 – Large 
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Ant 

[279] 2010 18 NA 1220  1.9*1.1 Loop-back – Large Antenna 

[280] 2010 2 NA 14.4  1.18*0.82 Tx only 

[280] 2010 5 1000 (Implied) 14.7 2.94 0.85*0.37 Rx only 

[281] 2006 0.165 200 21Tx+99Rx  2.32*1.75  

[282] 2007 2 3500 822Tx+547Rx  4*1.6Tx+3.3*1.7Rx MSK 

[283] 2011 2.222 750 28Tx  0.7*0.5Tx Tx only 

[218] 2011 4.8 15000 1300  3.15Tx 
Tx only - OFDM signal with 

16QAM 

[284] 2011 0.002 13 0.003 0.33 1.1*1.1 For Implanted Neural Sensors 

[285] 2011 5 NM 29  2.5*3.5  

[137] 2012 10 NM 117.9Tx+0.00005*1.2Rx  2.9*0.6Tx+0.35*0.95Rx  

[286] 2010 7 50     

[286] 2010 8 9     

[286] 2010 7 100     

[286] 2010 11 14     

Table 49: Comparing short range radio data transfer technologies
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Appendix B: More Detailed Architectural Data about Simulation 

Network Partitioning and Channel Assignment 

The structure of the data saved by the network partitioning for the main simulation is as 

follows: 

The network partitioning program produces series of data for each node which is saved 

in a number of text files. The first set of data includes the data concerning the basic 

information about nodes. Table 50 shows the first row of such a data. 

Node 

Id 
X Y Z Row Col Level 

Task 

Type 

Initial 

Step 

Task Lag 

Time 

Data 

Size 

List of 

channels 

Table 50: The first row of the data saved by network partitioning algorithm. 

The second row includes a list of nodes which fall inside the node’s interference range. 

The rest of the nodes contain the data about the nodes in the communication range. Each 

row has a structure shown in Table 51. Each pair of neighbours can contact each other 

on at most two distinct channels. The two channels are listed for each neighbour of a 

node. 

Neighbour Id Channel 1 Channel 2 

Table 51: The third row of data saved by network partitioning algorithm. 

This is almost everything we need from a network partitioning software to produce for 

the main simulator. But to make it easier for the simulation and to shorten the start-up 

time of the simulator a number of redundant pieces of data are also saved on separate 

text files. The first set of redundant data is the data concerning the zones of a node as 

shown in Table 52. A zone consists of at least two and at most four nodes. In a 

contiguous 3D network each node has at least one and at most eight zones. 

Zone Id Assigned Channel Member 1 Member 2 Member 3 Member 4 

Table 52: Information about zones of a node. 

The first two files accommodate data used by node objects in the main simulator. A 

third set of text files stores redundant data which is used by channel objects in the 

simulator. Each file stores the data about a communication channel and zones operating 

on that channel. Table 53 shows what sort of data is stored by the network partitioning 

software to be used by the channel objects in the main simulator. The last part of the 

record is a list of nodes that are close enough to detect the data sent on a particular 

channel by a particular node. 

Zone Id Node Id X Y Z List of Interference Nodes 

Table 53: Data of a zone stored by the network partitioning software to be used by channel objects. 



Appendices 

217 

Packet Structure 

To let the simulator perform all its designated functions a simulated packet needs extra 

fields in addition to its real data. Some of these fields carry information that are just 

meaningful to the simulator and is used by it. In a real world prototype of a BC these 

fields are not used. However, there are some other fields that are needed even in a real 

world implementation of the network. 

A basic structure is used for packets in the simulator. This basic structure is extended to 

new structures to fit particular functionalities in some parts of the simulator. Table 54 

shows the fields included in the basic packet data structure. Extra fields are added to this 

structure to support multi-hop communication. Distinctions between the source and the 

sender of the packet on one side of the transaction and the receiver and the destination 

of the packet from the other side are made to facilitate this capability. The “source task 

index” and the “destination task index” fields are also added to support multi-tasking. 

To keep the track of timed out packets the “packet retry count” field is added. Field 

“Request Id” is used to distinguish between two different packets of the same type, 

same sender and same receiver. The “Hop” field is added for future use in case of 

implementation of a load balancing algorithm based on the distance of the destination 

nodes from the source node. The field “creation time” is used for simulator’s internal 

operations and can be omitted when implemented for a real world network. Also the 

“internal status” byte keeps some status of the packet all related to the internal 

operation of the simulator and is irrelevant in a real world prototype of the network. 

Sndr Rcvr Src Dst SrcTskIdx DstTskIdx Type Data RqstID Hop CrtnTm #PktRtry IntrStts 

Int Int Int Int Byte Byte Byte String Int Int Int Byte Byte 

Table 54: The basic structure of a packet implemented for the simulator. 

Where: 

Sndr: Sender of packet; 

Rcvr: Receiver of packet; 

Src: (Original) Source of packet; 

Dst: (Ultimate) Destination of packet; 

SrcTskIdx: The index of the task in the source node that issued the packet; 

DstTskIdx: The index of the task in the destination node for which the packet is issued; 

Type: The type of packet (Like those listed in Table 15, Table 16 and Table 17); 

Data: The real data of the packet; 

RqstID: Request ID, working as a packet identifier; 

Hop: The number of hops from the source node so far (not used at the present version of the simulator); 

CrtnTm: The creation time of the packet. It is just used for simulator’s internal operation; 

#PktRtry: The number of times the packet is sent due to timer expiration; 

IntrStts: Keeps status data used by the simulator only for its internal operation. 

The basic packet structure is used in application layer (task-model). The structure 

introduced in Table 54 is extended in a number of occasions to better fit in different 
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situations (for different software objects or for different layers of node object). Three of 

these extensions and modifications are introduced below. 

The separation of channel objects from the node objects is discussed in next section but 

in the older version of the simulator in which all the channel activities are implemented 

in a node’s physical layer, a modified version of the basic packet structure was used. 

This modification was essential particularly because in the older version of the 

simulator the packets transmitted between nodes should be treated as buffered data from 

the simulator’s point of view. The contents of the packet is susceptible to corruption as 

long as the transmission process is in progress. To guarantee the correct transmission of 

data and detection of possible packet collisions and simultaneous transmissions the 

packet fields should be kept in a buffer during transmission time. As shown in Table 55 

a duplicated version of the basic packet is used to keep the main and buffered fields. 

Packet structure (as defined in Table 54) Buffered packet (with the same structure as main packet) 

Table 55: Buffered packet structure designed for physical layer and used before separation of channel and 

node structures. 

After separation of channel and node structures an extension to the basic packet 

structure is designed for current physical layer I/O queues. This packet structure 

supports multi-part packet delivery. This is discussed in more details in section 7.1.7. At 

that section it will be shown that the physical layer of all nodes are implemented inside 

the channel object for the simplicity of implementation. Although multi-part packets are 

not part of the current version of the simulator anymore, the structure is still in use 

particularly to use its “status” field. Bits of this field are used to help the sender and 

receiver nodes process packets faster. The structure of the aforementioned packet 

structure can be found in Table 56. Another extension to the basic packet structure is the 

structure that is currently used by MAC layers in node objects and is shown in Table 57. 

Packet structure (as defined in Table 54) MaxPartNumber PartNumber Status 

Table 56: Packet structure used by channel objects which accommodates multi-part packet transmission 

(discussed in 7.1.7) as well. 

Compared to the basic packet structure what this new structure has are the physical 

layer timer and acknowledgement wait timer. These timers are transparent to application 

layer in which the basic packet structure is used. As its name suggests the “PHY Layer 

Retry Timer” is in charge of checking if the physical layer (in channel objects) are busy 

with other transactions. The “ACK Wait Timer” is also used for retransmission of 

application layer packets if their acknowledgements are not received on time. 

Packet structure (as defined in Table 54) PhyLayerRetryTimer ACKWaitTimer 

Table 57: A new packet structure extended to support ACK timer expiration mechanism. 
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Appendix C: More Detailed Architectural Data about a Distributed 
Simulation 
The state diagrams of the three main objects in this architecture are shown in Figure 

106, Figure 107 and Figure 108. The synchronisations between the three main object 

types are facilitated via a signalling mechanism shown in following figures. 

 

 

Figure 106: Main network simulator’s state diagram. The simulator uses signals to other objects to trigger 

their activities. 

The result is a multi-agent system in which each agent reacts to the inputs received from 

other agents and to changes in its own internal state. Table 58 describes how the major 

three agents of the simulation interact with each other at different stages of the 

simulation. A communication protocol is designed and implemented to let the agents 

interact between each other. A cluster agent aggregates all the packets sent by its 

members at the current timestamp and makes a big packet called mega-message in this 

thesis. The clusters also have their own mega-message packet using which all the 

packets that are transmitted at that timestamp are aggregated. The main simulator agent 

is in charge of splitting the channels’ and the clusters’ mega-messages and rearrange 

and sending them to the corresponding clusters and channels respectively. The 

operation described in Table 58 continues until all the tasks are finished. 

E 

Receive packets from 

clusters / Rearrange 

the packets. 

B 

C 

D 

Channels send initial signals / 

Send initial signal to clusters 

 

 

Signal from clusters  

(Last packet) / Send 

signal to channels. 

All tasks finished / Send terminate 

signal to all channels and clusters. 

 

At least one task not 

finished / Send next time 

hop to all and channels and 

append the next time hop 

to the mega-messages to all 

clusters (Signal to clusters) 

Receive packets from 

channels / Rearrange 

the packets. 

A 

Receive signal from 

channels (Last 

packet) / Ø 

A: Start, wait for channels’ initial signal; 

B: Wait for clusters to signal; 

C: Wait for channels to signal; 

D: Check if all tasks are finished; 

E: Terminate. 
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Iteration Current time = 1 Current time Current time Current time Current time (“X”) 

Next Hop 0 0 0 0 0 

Action 

The simulator Is 

created. 

Clusters are created. Channels are 

created. 

  + 

Send initial signal 

to the simulator. 

The 

simulator 

signals all 

the 

clusters. 

Clusters send packets to 

their receiver nodes. 

+ 

Nodes Process any input 

packets, do a bit of their 

tasks, check for any timer-

expired packets and send 

their packets. 

+ 

Clusters send their mega-

messages to the simulator 

including a suggested time 

hop and an indication of 

the number of finished 

tasks. 

Last packet works as a 

signal to the simulator. 

Simulator A A A A->B B 

Cluster  N/A A->B B B B->C 

Channel  N/A N/A A->B B B 

Iteration 
Current time Current time Current time Current time+= New Time 

Hop 

Next Hop Pending Pending Pending 0 

Action 

The simulator 

splits the mega 

messages from 

clusters 

+ 

Processes the 

suggested time 

hops 

+ 

Rearranges the 

packets into new 

mega-messages 

  + 

Sends the mega-

messages to the 

channels (Signal) 

Channels split the mega 

messages 

+ 

Apply the interference 

model to determine 

which new or old packets 

are corrupted and which 

one is still correct 

+ 

Make a mega-message 

out of new node status 

and any possible received 

packets 

+ 

Append their suggested 

next time hop to the 

mega-messages and send 

them to the simulator 

(Signal). 

The simulator Splits the mega-

messages from channels 

+ 

Checks if all the tasks are 

finished. If so, it sends a 

terminate signal to all the nodes 

and channels 

Otherwise 

Works out what the next time 

hop would be 

+ 

Rearranges the packets and node 

status in new mega-messages 

+ 

Sends the next time hop to all 

channels 

+ 

Appends the next time hop to all 

mega-messages and send them to 

all clusters (Signal). 

If the simulator has sent a 

terminate signal, then all 

the agents are stopped. 

Otherwise 

The channels update their 

“Current Time” variables 

+ Decrement the timer of 

on-air packets + append 

the packets with timer=0 to 

the mega-message. 

+ 

The clusters split the mega-

messages. 

+ 

Update their “Current 

Time” variable. 

+ 

The rest of the operations 

are the same as time slot 

“X” 

Simulator B->C C->D D->E or D->B E or B 

Cluster  C C C C->D or C->B 

Channel  B B->C C C->D or C->B 

Table 58: How the three groups of agents interact 
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Figure 107: Channel’s state diagram. 

The internal operations of neither channels nor nodes in a cluster are affected by 

switching from centralised simulation to distributed simulation platform. Also the 

communication protocol those objects use for their interactions are not affected by the 

introduction of the new protocol. 

 

Figure 108: Node/cluster’s state diagram.  

The communication protocol used by the agents is shown below. 

From Channel to simulator 

Signal Suggested_next_time_hop Node_1_Status Node_1_data ... Node_n_Status Node_n_data 

 

Node_i_data can be either: 

The IDs of both the sender and the receiver nodes: 

 Or 

A packet sent to ‘i’th node. 

D 

A B 

Ø / Send signal to 

the simulator 

Receive new time-hop / 

Update the current time 

and the current time hop 

+ Decrease the timers of 

on-air packets + If a 

timer is 0 then append 

the packet and the new 

status of all affected 

nodes to the mega-

message. 

Simulator sends a mega-message 

/ Split the mega-message+ Add 

new packets to the linked list of 

packets + in case of any collisions 

append changed status to mega-

message + Append the suggested 

next time hop to the mega-

message and send it to the 

simulator (Signal). 

C 

Simulator sends a 

terminate signal / Ø 

 

A: Start; 

B: Wait for simulator to Signal; 

C: Wait for new time-hop; 

D: Terminate. 

 

A B 

C 
D  

Simulator sends 

initial signal / Ø 

Ø / Process input 

packets + Do the task+ 

Send packets + Suggest a 

time hop (Signal to the 

simulator). 

Simulator sends a terminate signal / Ø 

Simulator sends a mega-

message / Split the mega-

message + Update the 

current time and channel 

states + Send input packets 

to receiver nodes. 

A: Start/Wait for simulator to signal; 

B: Process new status and input packets; 

C: Wait for new time hop; 

D: Terminate. 

Sender_node_id Receiver_node_id 
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The receiver node is the node that its status is changed and about to be informed of this 

change. The sender node is the node that has caused that change in the receiver’s node 

status. 

The state of the channel of a node is mentioned in the mega-message when it is recently 

changed; therefore, not all the nodes’ state should necessarily be included in a message. 

Also the number of packets sent from a node can be either 0 or 1. 

From Simulator to Channel 

Terminate 

 

Signal Next_time_hop 

 

Signal ioBusyTime_1 Packet_to_node_1 ioBusyTime_2 Packet_to_node_2 ... 

 

The number of packets sent from a node can be either 0 or 1. 

From Cluster to Simulator 

Signal Number_of_busy_tasks Suggested_next_time_hop Channel Id_1 ioBusyTime_1 Packet_from_node_1 ... 

From Simulator to Cluster 

Terminate 

 

Initial_signal 

 

Signal Next_time_hop Node_id Channel_id Node_status node_data ... 

 

The definition of the field “node_data” is the same as the field with the same name sent 

from channels to main simulator. The state of a node’s channel is mentioned in the 

mega-message when it is recently changed; therefore, not all the nodes and channels 

should necessarily be included in a message. Also the number of packets sent from a 

node can be between 0 and “n”, where “n” is the number of channels used by a node. 

Elements of a packet 

A packet sent from a cluster to the simulator has the following elements (The order of 

the elements is important): 
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Data Original node Sender Receiver Final node Task index Type Status 

  

Except for the first two elements, the rest of them have been extracted from the contents 

of the original packet. The channel Id is determined at the transfer time depending on 

the availability of channels. The length of the message and the transfer rate determine 

the IO busy time. 
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Appendix D: Details about visualisation tool log files 
Table 59 lists different types of data stored in the visualization log file. Some of them 

are used only once (e.g. data types “B” and “N”); while others can be used several times 

depending on the execution of task-model. 

Type Description 

B Basic data (size of the network) 

C Current step of a task 

N Neighbours of a node 

I Iteration completed 

P Packet sent or received 

L Memory location locked 

U Memory location unlocked 

Table 59: Different types of data stored in the visualization log file. 

Data type “B” (Table 60) is used to announce the number of a node. Since the network 

is static, this type of data only appears once for each node in the log file.  

 

Parameter Description 

x Number of nodes in X axis 

y Number of nodes in Y axis 

z Number of nodes in Z axis 

Table 60: The fields logged by data type “B”. 

Data type “C” (Table 61) is used to record a change in the status of a node (more 

precisely a task in a node). Depending on the behaviour of the task-model this data type 

can be used several times for each task of each node. 

Parameter Description 

N Node Id 

I Active task 

S New step 

T Task identifier 

Table 61: The fields logged by data type “C”. 

Data type “N” (Table 62) is only used once in the log file for each node. It includes a list 

of neighbours of a node which remains unchanged during the execution of the 

simulation. 

Parameter Description 

N Node Id 

----- A list of Ids of neighbouring nodes separated by “  “ 

Table 62: The fields logged by data type “N”. 

Data type “I” (Table 63) is used at the end of each iteration of the simulator. It keeps a 

record of the network performance parameters. These parameters are mainly about the 

execution times, the delay times and the number of nodes involved in tasks. 

Parameter Description 

I Iteration number 

TT Transfer Time 

CT Compute Time 

TWT Transfer Wait Time 

CWT Computation Waist Time 

BN Busy Nodes 

WN Waiting Nodes 

TF Tasks Finished 

Table 63: The fields logged by data type “I”. 
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Data type “L” (Table 64) is used to log the creation of a task dependency between two 

nodes. The field “M” is obsolete at the present version of the visualizer and is not used 

by any of the main two task-models introduced in this manuscript. 

Parameter Description 

S Source (The node that has accepted the request) 

D Destination (The node that has asked to access memory) 

M Memory Location 

T Task index 

Table 64: The fields logged by data type “L”. 

Data type “U” (Table 65) is the opposite of type “L” and is used to show the break of a 

dependency link between two nodes. 

Parameter Description 

S Source (The node that has accepted the request) 

D Destination (The node that had accessed the memory) 

M Memory Location 

T Task index 

Table 65: The fields logged by data type “U” 

Data type “P” (Table 66) is used to record different stages of a packet transaction. 

Different “P” type log data are recorded depending on the stage of the data transaction 

(From adding the packet to the application layer’s I/O queue to the reception of data by 

the receiver). 

Parameter Description 

S Source of the packet 

D Destination of the packet 

ST Source’s Task Index 

DT Destination’s Task Index 

T Packet type 

D Packet’s Data 

F Frequency channel Id 

S/R Send or receive? (“0”: Send; “1”: Receive) 

Z Packet size 

Q RequestID 

R Is a retry? (“1”: Yes; “0”: No) 

C Is a corrupt packet? (“1”: Corrupt; “0”: Not corrupt) 

A On Air? (“0”: No; “1”: Yes) 

B Blocked? (“0”: Not blocked; “1”: Blocked) 

L List of receivers separated by “ ;“ 

Table 66: The fields logged by data type “P”. 
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Glossary 

BC   Ball Computer 

CA   Channel Assignment 

MRMC  Multi-Radio Multi-Channel 

SMP   Symmetric Memory Processors 

NUMA  Non-Unified Memory Access 

TSV    Through-silicon-via (Through Si via) 

HCP   Hexagonal Close-Packed 

BER    Bit Error Rate 

BAN   Body Area Network 

RTS   Ready to Send 

CTS   Clear to Send 

FFT   Fast Fourier Transform 

DTS   Discrete Time Simulator 

DES   Discrete Event Simulator 

WRG   White Rose Grid 

HPC   High Performance Computing 

ACK   Acknowledgment 

FLOPS  Floating-point OPerations per Second 

SPTM   Simple Parallel Task-Model 

FFTTM  Fast Fourier Transform Task-Model 

OLBT   Overall Link Busy Time 

ALU   Average Link Utility 

OLWT   Overall Link Wait Time 

OFTT   Overhead-Free Transmission Time  
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