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A B S T R AC T

The employment of cognitive (intelligent) radios presents an opportunity to effi-

ciently use the scarce spectrum with the condition that it causes a minimal distur-

bance to the primary user. So the cognitive or secondary users use spectrum sensing

to detect the presence of primary user.

In this thesis, different aspects related to spectrum sensing and cognitive radio

performance are theoretically studied for the discussion and in most cases, closed-

form expressions are derived. Simulations results are also provided to verify the

derivations.

Firstly, robust spectrum sensing techniques are proposed considering some re-

alistic conditions, such as carrier frequency offset (CFO) and phase noise (PN).

These techniques are called the block-coherent detector ( N
2 -BLCD), the second-

order matched filter-I (SOMF-I) and the second-order matched filter-II (SOMF-II).

The effect of CFO on N
2 -BLCD and SOMF-I is evaluated theoretically and by sim-

ulation for SOMF-II. However, the effect of PN is only evaluated by simulation for

all proposed techniques.

Secondly, the detection performance of an energy detector (ED) is analytically

investigated over a Nakagami-m frequency-selective (NFS) channel.

Thirdly, the energy efficiency aspect of cooperative spectrum sensing is addressed,

whereby the energy expenditure is reduced when secondary users report their test

statistics to the fusion center (FC). To alleviate the energy consumption overhead,

a censored selection combining based power censoring (CSCPC) is proposed. The

accomplishment of energy saving is conducted by not sending the test statistic that

does not contain robust information or it requires a lot of transmit power. The de-

tection performance of the CSCPC is analytically derived using stochastic geome-

try tools and verified by simulation. Simulation results show that that the CSCPC
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technique can reduce the energy consumption compared with the conventional tech-

niques while a detection performance distortion remains negligible.

Finally, an analytical evaluation for the cognitive radio performance is presented

while taking into consideration realistic issues, such as noise uncertainty (NU) and

NFS channel. In the evaluation, sensing-throughput tradeoff is used as an exami-

nation metric. The results illustrate the NU badly affects the performance, but the

performance may improve when the number of multipath increases.
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AC RO N Y M S

NTIA National Telecommunications and Information Adminstrations

FCC Federal Communications Commission

OFCOM Office of Communications

UWB Ultra wide band

RF Radio Frequency

DSA Dynamic spectrum access

ED Energy detector

MF Matched filter

FC Fusion center

SU Secondary user

PU Primary user

PPP Poisson point process

MPPP Marked poisson point process

PGF Probability generating function

N
2 −BLCD Block-coherent detector

SOMF− I Second-order matched filter I

SOMF− II Second-order matched filter II

AD Autocorrelation detector
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CFO Carrier frequency offset

PN Phase noise

ATSC Advanced Television Systems Committee

SUTX Secondary user transmitter

SURX Secondary user receiver

PUTX Primary user transmitter

PURX Primary user receiver

CP Cyclic prefix

NFF Nakagami-m flat-fading

NFS Nakagami-m frequency-selective

NU Noise uncertainty

PPP Homogeneous poisson point process

CSC Censored selection combining

CSCPC Censored selection combining based power censoring
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L I S T O F S Y M B O L S

H0 Null hypothesis

H1 Alternative hypothesis

s(n) Primary signal

w(n) Noise signal

x(n) Received signal by the secondary user

N Number of received samples

Pp Primary user transmit power

σ2
w Noise power

CN (a, b) Notation for a complex Gaussian distribution with mean a and variance

b

N (a, b) Notation for a real Gaussian distribution with mean a and variance b

4 f Carrier frequency offset

ϕ(n) Phase noise process

PFA False alarm probability

PD Detection probability

TED Test statistic when ED is used for sensing

TBLCD Test statistic when N
2 -BLCD is used for sensing

TMF,CFO Test statistic in the presence of CFO when MF is used for sensing

TSOMF−I Test statistic when SOMF-I detector is used for sensing

TSOMF−I I Test statistic when SOMF-II detector is used for sensing

TAD Test statistic when AD is used for sensing

τED Decision threshold for ED
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τBLCD Decision threshold for N
2 -BLCD

τMF Decision threshold for MF

τI Decision threshold for SOMF-I

τI I Decision threshold for SOMF-II

τAD Decision threshold for AD

χ2
2N Central chi square random variable with 2N degrees of fredom

χ2
2N(β) Non central chi square random variable with 2N degrees of fredom

and non central parametr β

Φ Point process

Q(.) Q-function

erf(.) Error function

erfc(.) Complementry error function

Qχ2
2N
(.) Right-tail probability of the chi square random variable

Qχ2
2N(β)(.) Right-tail probability of the non central chi square random variable

Γ(., .) Upper incomplete Gamma function

Q(., .) Marcum Q-function

Q−1 (.) Inverse Q-function

Γ−1 (., .) Inverse upper incomplete Gamma function

L Number of multitaps

γave Average signal to noise ratio at secondary user

δ Target probability detection

ε Target false alarm probability

hl The l th tap (channel gain) between the primary user transmitter and

the secondary user transmitter.

|hl| The amplitude of hl.

h Impulse response vector of the NFS channel bewteen the PUTX and the

SUTX with length L
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g Impulse response vector of the NFS channel bewteen SUTX and SURX

with length L

f Impulse response vector of the NFS channel bewteen the PUTX and the

SURX with length L

Pout Outage detection probability

θ Maximum tolerable value for Pout

δ Target detection probability

γδ Signal to noise ratio for PD = δ

τEDθ Threshold value at Pout = θ

τADθ Threshold value at Pout = θ

Ta It is a random variable which is a function in a random variable a.

f̂Ta(t) Approximated probability density function of a random variable Ta.

KTa Shape parameter of the Gamma distribution.

φTa Scale parameter.

wi(n) i.i.d. circularly symmetric complex Gaussian noise for the ith cognitive

radio.

xi(n) The signal received by ith cognitive radio.

Pp Primary user transmitted power.

Φ A homogeneous Poisson point process with intensity λ.

A A total area in which the secondary users are located

(θi, ri) θi is the angle between the ith cognitive radio and the positive x-axis

and ri is the distance of the ith cognitive radio and the fusion

θpr A fixed angle bewteen the primary user and the positive x-axis.

Rpr A fixed distance between the primary user and the fusion center.

rpri A distance between the primary user and ith cognitive radio.

α Path loss exponent.

κ Frequency dependent constant
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q(θi, ri) Is the path loss between the location (θi, ri) and the primary user

(θpr, Rpr).

Ka A shape parameter for a random variable a.

θa A scale parameter for a random variable a.

Hi A Gamma distribution for the Nakgami-m fading channel between the

ith cognitive radio and the primary user.

Gi A Gamma distribution for the Nakgami-m fading channel between the

ith cognitive radio and the fusion center.

TEDi Test statistic at the ith cognitive radio (when energy detector is used).

Tmax A global test statistic at fusion center for selection combining.

pi The required transmit power for the ith cognitive radio.

pt Transmit power threshold.

pre f Reference power.

z(θi, ri) The path loss between the ith cognitive radio and the fusion center.

Pa1 Activity probability underH1.

Pa0 Activity probability underH0.

fH(h) the probability density function of the random variable H.

fG(g) the probability density function of the random variable G.

KG Shape parameter of the random variable G.

φG Scale parameter of the random variabke G.

γs Secondary user’s desired SNR threshold (or SINR when the primary is

present)

Pp Primary transmit power

Ps Secondary transmit power

σ2
v Noise variance at secondary receiver

Nd The data length of the OFDM symbol.

Nc The cyclic prefix length
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Sm(n) The nth complex symbol in the frequency domain of the m- OFDM

symbol.

Sm Nd complex symbols in the frequency domain of the m- OFDM

symbol.

sm(n) the nth symbol of the m- OFDM symbol in time domain.

hl The l th tap (channel gain) between the primary user transmitter and

the secondary user transmitter.

h Impulse response vector (each componet is hl ) of the frequency

selective channel bewteen the primary user transmitter and the

secondary user transmitter L.

gl The l th tap (channel gain) between the secondary user transmitter and

the secondary user receiver.

g Impulse response vector (each componet is gl ) of the frequency

selective channel bewteen the secondary user transmitter and the

secondary user receiver with length L.

G(k) Complex channel gain (in frequency domain) at the kth subcarrie

between the secondary user transmitter and the secondary user receiver.

G Vector of subcarriers gains in frequency domain (each componet is

G(k) ) with length J, between the secondary user transmitter and the

secondary user receiver.

fl The l th tap (channel gain) between the primary user transmitter and

the secondary user receiver.

F(k) Complex channel gain (in frequency domain) at the kth subcarrie

between the primary user transmitter and the secondary user receiver.

f Impulse response vector (each componet is fl ) of the frequency

selective channel bewteen the primary user transmitter and the

secondary user receiver with length L.
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F Vector of subcarriers gains in frequency domain (each componet is

F(k)) with length J, between the primary user transmitter and the

secondary user receiver.

Ωgl Is a controlling spread parameter for the l -th tap of channel g bewteen

the secondary user transmitter and the secondary user receiver.
_
mG Nakagami parameter for G(k).
_
ΩG Is a controlling spread parameter for the k-th tap of channel in

frequency domain, G, bewteen the secondary user transmitter and the

secondary user receiver.

G( _
mG,

_
ΩG_
mG

) Gamma distribution with a shape parameter
_
mG and scale parameter

_
ΩG_
mG

.

Ω fl
Is a controlling spread parameter for the l -th tap of channel f bewteen

the primary user transmitter and the secondary user receiver.
_
mF Nakagami parameter for F(k).
_
ΩF Is a controlling spread parameter for the k-th tap of channel in

frequency domain, F, bewteen the primary user transmitter and the

secondary user receiver.

Ta It is a random variable which is a function in a random variable a.

Tab It is a random variable which is a function in two random variables a

and b.

KTa Shape parameter of the Gamma distribution random variable Ta.

φTa Scale parameter of the Gamma distribution random variable Ta.

KTab Shape parameter of the Gamma distribution random variable Tab.

φTab Scale parameter of the Gamma distribution random variable Tab.

SNRglobal0 Global signal to noise ratio at secondary receiver side underH0.

SNRglobal1 Global signal to noise ratio at secondary receiver side underH1.

Pp(k) Primary transmit power for the kth subcarrier.

Ps(k) Secondary transmit power for the kth subcarrier.
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σ2
v (k) Noise variance for the kth subcarrier at the secondary receiver.

fxy Joint probability density function for a bivariate Nakagami distribution

C0 Throughput of the secondary link (SUTX → SURX) underH0

C1 Throughput of the secondary link (SUTX → SURX) underH0

C Average secondary throughput

Psucss0 Success probabilitiy underH0 for the secondary link

Psucss1 Success probabilitiy underH1 for the secondary link

CED Secondary throughput when ED is used for spectrum sensing

CAD Secondary throughput when AD is used for spectrum sensing

R{.} Real part of a complex number

Nd The data length of the OFDM symbol

Nc The cyclic prefix length

B Noise uncertainty bound

ρ Noise uncertainty random variable

Ωhl
Is a controlling spread parameter for the l -th tap of channel h bewteen

the primary user and the secondary receiver.

σ̂2
w estimated noise power
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1
I N T RO D U C T I O N

1.1 B AC K G RO U N D

Today, frequency spectrum is as precious as gold and oil. Service providers must

pay millions of dollars to buy the rights to use a certain band of frequency. With

the proliferation of wireless communication technologies over the last few decades,

new wireless applications have become widespread co-existing in the same geolo-

cation. Because of these technologies, the demand for higher data rates has become

essential as the number of wireless subscribers has increased, leading to a saturated

frequency spectrum.

The National Telecommunications and Information Administration’s (NTIA) fre-

quency allocation chart illustrated in Figure 1.1 shows that most of the frequency

spectrum is allocated or licensed to traditional communications systems and ser-

vices [4]. However, statistics and measurements from the Federal Communications

Commission (FCC) state that the licensed spectrum is not used in some time-frequen-

cy intervals over certain geographic areas [5]. For example, the utilization of some

licensed bands is about 5% or even less [6]. This means 95% of the time or the area

is not exploited although there is another operator/service that requires a new band

to work on but the spectrum has no space or capacity to accommodate it.

The operation of spectrum allocation, e.g., issuing a license for a specific radio

spectrum for exclusive or shared usage, and proclaiming spectrum as unlicensed, is

supervised by governmental agencies which are called regulators such as the Office

of Communications (Ofcom) in the UK and the FCC in the USA. The traditional

1
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Figure 1.1: U. S. frequency allocations [1].

spectrum allocation policy allocates a static spectrum to a particular system and this

spectrum can not be used by other services by new users (even if it is underutilized).

Both emerging wireless technologies and the static spectrum allocation policy are

reasons for the shortage of frequency spectrum. Consequently, there is a request in

the communication community that the current spectrum allocation policy should

be reformed to be more flexible in order not to waste spectrum without exploitation

[7].

A solution for this problem is the recycling of the licensed bands which can be

done by cognitive radio (CR) and dynamic spectrum access (DSA). The CR, a term

coined by Mitola in 1991 [8], is a promising idea that has been suggested as a

solution linking spectrum scarcity and spectrum under-utilization which is an in-

telligent radio that is aware of its surrounding environment [9]. The DSA implies

the utilization of portions of radio spectrum in a flexible manner with respect to

technical regulatory and constraints. The DSA aims to change the current spectrum

allocation policy to make it more adaptable.
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Figure 1.2: A cognitive network [2].

1.2 C O G N I T I V E R A D I O

According to Haykin [6], a CR is “an intelligent wireless communication system

that listens to its surrounding environment and uses the methodology to learn from

the environment and adapts its internal states by making corresponding changes

in certain operating parameters (e.g., transmit-power, carrier frequency and modu-

lation strategy) in real time”. From the definition, the CR has two features which

are the capability and the reconfigurability which distinguishes the CR from tradi-

tional radio. The capability is defined as the ability to sense the surrounding radio

environment, analyze the acquired information and accordingly identify the best

available spectrum bands for operation. The reconfigurability is defined as the sec-

ondary user’s ability to adopt its operational parameters such as the transmit-power,

carrier frequency, bandwidth and modulation strategy, based to the data collected

from the surrounding environment and subsequently the secondary user can operate

optimally in the candidate spectrum bands.

The goal of CR technology is to elevate the utilization of the frequency spec-

trum to be more efficient [10]. In a cognitive radio network there are two opera-
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Figure 1.3: Dynamic spectrum access [3].

tors as shown in Figure 1.2. The first operator is a primary user who is defined as

the owner (or the licensee) of a particular part of the frequency spectrum and has

higher primacy rights to access this part of the spectrum. The second operator is

a secondary user/unlicensed device who (having lower rights on the usage of this

spectrum) attempts to harness the licensed band/primary band opportunistically in

a manner such that the primary receiver is protected from any harmful interference.

1.3 DY N A M I C S P E C T RU M AC C E S S ( D S A )

The driving force behind cognitive radio is DSA in which allows secondary users to

access the spectrum if the primary receiver will not be negatively effected. DSA may

be widely classified under three models namely; dynamic exclusive model, open

sharing model and hierarchical access model [3, 11, 12] as illustrated in Figure

1.3. In the dynamic exclusive model, the basic structure of the current spectrum

regulation is maintained. However, the difference is that the primary users can give
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secondary users the right to use at a specific band for a certain period of time or a

specific location. This model has two approaches:

1. The first approach is the spectrum property rights in which primary users can

sell and trade spectrum [13].

2. The second approach is the dynamic spectrum allocation in which, the spec-

trum at a given region and at a given time is reserved to service exclusive use

[14].

This approach could improve spectrum efficiency, but it cannot exploit white space

(licensed bands that are not in use for some points in space/time), spectrum holes,

or a spectrum opportunity that may occur when the primary user does not access its

band.

In open sharing models, all users are allowed to access the spectrum. This model

is already in use in the Industrial, Scientific and Medical (ISM) band. Since this

model can be used by heterogeneous wireless technologies, the possibility of inter-

ference is very high.

In the hierarchical access model, the spectrum can be accessed by secondary users

while avoiding interference to the primary users. There are three approaches under

this model [15].

1. An underlay approach: in which imposing restrictions on the transmission

power of secondary users is adopted, such that no interference is caused to

primary users (e.g., ultra wide band (UWB) transmission). This approach,

places a restriction on the transmit power of secondary users requiring them to

transmit with very low power and in a small area. Furthermore, the secondary

user has to estimate or predict the interference limit at the primary receiver

which increases system complexity.

2. An overlay approach: in this approach the secondary user uses some informa-

tion about the primary user such as codebooks and ”assists” the primary user

with its transmissions. However, this approach is very complex.
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3. Interweave (or opportunistic spectrum access): this approach does not place

any severe constraints on the transmission power of secondary users, but ex-

pects them not to cause interference to the primary user. This can be done by

allowing the secondary users to identify white spaces that can be exploited.

As a result, secondary users should have cognitive radio qualifications, i.e.,

sensing the spectrum to determine the presence or the absence of the primary

user.

Due to the above disadvantages for the dynamic exclusive model, open sharing

model, underlay approach and overlay approach this thesis focuses on the cognitive

radio based interweave approach.

1.4 C O G N I T I V E R A D I O A S P E C T S

The most important tool in interweave cognitive radio is spectrum sensing and is

used to determine the activity of the primary user. If the secondary user finds the

primary user absent then the secondary user can access the frequency spectrum

such that the primary receiver is protected from interference. Also, the secondary

user needs to vacate this frequency spectrum as soon as the primary user starts its

transmission.

Many techniques have been suggested to conduct spectrum sensing and among

them MF and ED techniques are the most widely used in practice due to their sim-

plicity. Employing them some times depends on the availability of prior information

about the primary signal and one may choose one of the above approaches for spec-

trum sensing in cognitive radio networks. For example, when the secondary user

knows some information about the primary user such as a pilot, preamble, or train-

ing sequence (used by a primary network for channel estimation or synchroniza-

tion), the recommended detector is the MF. However, if the secondary user does not

have information about the primary user, the ED becomes the optimal detector [16].

In practice, several drawbacks make local sensing difficult. Such drawbacks in-

clude severe multipath fading, shadowing, or the secondary user inside buildings
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Figure 1.4: Cooperative spectrum sensing.

with penetration loss. As a result, the secondary user may not detect the presence of

the primary user, and so accessing the licensed band and causing interference to the

primary user. Cooperative spectrum sensing has been proposed in the literature to al-

leviate these challenges. In cooperative spectrum sensing, there are secondary users

distributed over a specific area. Each secondary user (SU) sends its measuremen-

t/test statistic regarding the primary user (PU) to a fusion center (FC) to calculate

the final decision as illustrated in Figure 1.4.

As mentioned above, that secondary user searches in the licensed or primary band

until it finds a vacant channel and then it starts its transmission/communication. This

means that the secondary transmitter communicates with the secondary receiver

under the condition of not causing a failure to the primary link. Obviously, the

secondary transmission depends on the result of spectrum sensing. Thus spectrum

sensing and the secondary transmission are intertwined. Therefore, the secondary

transmission should also be considered when spectrum sensing is investigated.

To protect the primary receiver from the possibility of any interference, the sec-

ondary user is allocated a time slot that is divided into two parts [17]; one for sensing

and the other for transmission. Both the sensing and the transmission are conducted

periodically over the period of time that the licensed spectrum is used. On one hand,

it can be seen that as the time allocated for sensing increases the transmission de-

creases ensuring the primary receiver is kept secure. On the other hand, as the sens-

ing decreases the transmission time increases and the primary user is exposed to a

high potential for interference. From this discussion, it appears that there exists a

tradeoff between the spectrum sensing and the secondary transmission. This struc-
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ture of the secondary user frame is widely used in cognitive radio papers and is thus

adopted in this thesis [18].

1.5 M OT I VAT I O N

As mentioned before, the CR is a promising technology for the conflict between the

spectrum scarcity and spectrum under-utilization. To protect the primary user from

any potential interference caused by the secondary user, the sensing and transmis-

sion should be conducted periodically. To achieve the goal of CR, this thesis studies

and investigates in depth two different aspects in CR, which are spectrum sensing

and secondary transmission 1.

Although the first aspect (spectrum sensing) has been studied extensively in liter-

ature where a lot of practical issues have been tackled depending on the employed

detector, many issues have not been covered for local and cooperative spectrum sens-

ing. The first part of the thesis investigates different subjects in spectrum sensing.

For example, the thesis exposes some issues that might prevent perfect operation

of cognitive radio. Moreover, robust detection techniques are proposed to mitigate

some of these issues. Furthermore, spectrum sensing performance will be investi-

gated for unexplored environments. In addition, developing an energy-efficient co-

operative spectrum sensing scheme to reduce the energy overhead due to sending

the test statistics to the FC.

In the literature, the conventional spectrum sensing algorithms, such as MF, are

no longer reliable and effective since these techniques do not take into account re-

alistic scenarios such as CFO and PN [19, 20, 21]. Although, CFO and PN have

been extensively studied in a conventional wireless communication system. How-

ever, not enough research has been conducted in the area of spectrum sensing in the

presence of CFO and PN. These issues motivate us to develop new spectrum sens-

1 This section mentions only the subjects that will be covered throughout the thesis. Each chapter

is self contained and so a literature review related to each subject will be presented in a separate

chapter.
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ing techniques which have the capability to exploit the primary known information

and perform perfectly under the CFO and PN conditions.

In addition, previous research on the detection performance of the ED is limited to

flat-fading channels [22, 23, 24, 25]. The literature fails to investigate the detection

performance of ED over realistic environment such as a Nakagami-m frequency-

selective (NFS) channel. This gap motivates us to investigate the behavior of the

ED over the NFS. This investigation helps the network designers to improve the

overall network performance.

Sending the test statistics to the FC consumes a lot of power. In the literature

[26, 27, 28, 29, 30, 31, 32], the alleviation of power consumption was based on

censoring/not transmitting to the FC test statistics (based on a local threshold) that

are not robust. However, all the above mentioned papers have not taken into account

the transmit power for secondary users2, which is a function of the channel, and the

distance between the secondary users and the FC. Unlike previous work, this thesis

includes a transmit power in the detection problem which might reduce the overhead

power for sending test statistics to the FC while the detection performance loss is

negligible.

The second part of the thesis focuses on the secondary throughput. After protect-

ing the primary receiver from any potential interference through spectrum sensing,

the ultimate goal for the secondary user is to access the licensed band. The CR per-

formance is coupled with spectrum sensing. In the literature [33, 34, 35, 36, 37], the

CR performance has been extensively studied in terms of sensing-throughput trade-

off by relaxing some realistic scenarios. For example, previous works have assumed

that the noise variance at secondary user is known and that the sensing channel is

AWGN. The purpose of this relaxation is to provide an analytical study for cogni-

tive radio performance. This thesis provides an analytical evaluation of cognitive

radio performance in realistic scenarios such as noise uncertainty (NU) and NFS

channel. Studying the cognitive radio performance in the presence of NU and over

NFS channels provides an in-depth understanding of system design in industry and

academia. The objective and contribution of this thesis are now discussed.

2 The required power to send a test statistic to the FC.
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1.6 T H E S I S O B J E C T I V E

1. The first aim of the thesis is to design reliable spectrum sensing techniques

for cognitive radio. The objective is to design robust spectrum sensing where

RF impairments are present, such as CFO and PN.

2. The second objective of this thesis is the investigation of the performance of

the ED over an NFS channel.

3. Furthermore, the thesis develops a reliable energy-efficient cooperative de-

tection technique, taking into account the power needed to transmit the test

statistics to the FC. The technique is designed for a realistic scenario that in-

cludes small (Nakagami-m flat-fading channel (NFF)) and large scale fading

(path loss).

4. Finally this thesis provides a theoretical framework for evaluating secondary

user throughput over uncertain environments, such as NU and NFS.

1.7 M AT H E M AT I C A L P R E L I M I N A R I E S

1.7.1 Nakagami-m distribution

The Nakagami-m probability density function is given by

fX(x) =
2

Γ(m)

(
m
Ω

)m

x2m−1exp(−mx2/Ω), (1.1)

where m is the Nakagami fading parameter and Ω = E[X2] is controlling spread.

The wide versatility, experimental validity and analytical tractability of the Nak-

agami distribution has made it a very popular in wireless communications. The

reason for adopting this particular model is that the m - distribution includes the

Rayleigh and the half-Gaussian as special cases (m = 1, m = 1
2 ), and it can be

made to approximate other exact or experimentally derived distributions by judi-

cious choice of parameters.
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Notice that (1.1) is the p.d.f of channel amplitude. When there is a Nakagami

fading channel, the channel power gain (X2) may follow the Gamma distribution

fX2(t) =
1

Γ(k)θk exp
(−t

θ

)
, (1.2)

where k = m and θ = Ω
m are the shape and scale parameters respectively.

1.7.2 Stochastic Geometry

In chapter 4, stochastic geometry is employed to model cooperative spectrum sens-

ing networks. So, here we introduce the basics of stochastic geometry.

Stochastic geometry [38] is a mathematical tool that allows the study of random

phenomena in the plane or in higher dimensions. Stochastic geometry is closely

related to the theory of point processes (PPs)[39]. The exploitation of stochastic

geometry was first used in biology, astronomy and material sciences. Nowadays, it

is widely applied in wireless communications (author?) [40].

Poisson Point Process (PPP) is the most used, most tractable PPs in wireless

communication because of its independence [39]. This thesis is interested in two

dimensions. So a PP Φ = {(θi, ri), i = 1, 2, 3, ... } ⊂ R2, where (θi, ri) is the

polar location of the ith secondary user, is a PPP if the number of points inside

any compact set E ⊂ R2 is a Poisson random variable, and positions are uniformly

distributed (author?) [40].

Now some useful properties of the PPP are presented.

• For a PPP with intensity λ, the number of secondary users in a certain areaA

is a Poisson random variable with parameter λA. When the secondary users

face fading channels, the fading marks xi, are assigned to each secondary user

and that forms a Marked PPP3 (MPPP) with intensity λ fX(x), where fX(x)

is the probability density function for the fading channel gain.

• The thinning of a PPP is defined by selecting some secondary users with prob-

ability p and discarding other secondary users with probability 1− p. This se-

lection or discard results in two independent PPPs of intensity parameters pλ

3 For more details regarding MPPP please refer to [38].
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and (1−p)λ. For example, using ALOHA as the MAC protocol in a wireless

network leads to a thinning of the node set.

• The PPP is called homogenous if the intensity function is a constant λ, oth-

erwise it is called inhomogeneous/nonhomogeneous when its intensity is a

function of the position (θ, r), (i.e., λ(θ, r)) .

The above properties are very useful in calculating the average of the sum or the

product of PPP. If we let v(θ, r, x) : R2 be measurable and Φ is MPPP, then we

have the following properties:

1. the probability generating function (author?) [38] (PGF) of a MPPP of den-

sity λ(θ, r) fX(x) is given by

G(θ, r) = EΦ,xi

[
∏

(θi,ri)∈Φ
v(θi, ri, xi)

]
= exp

(
−
∫

X

∫
R2

λ(θ, r)(1− v(θ, r, x))

fX(x)dxdθdr
)

.

(1.3)

2. Campbell ’s theorem (author?) [38] can be used for calculating the mean of

the sum

∑(θi,ri)∈Φ v(θi, ri, xi)

EΦ,xi

[
∑

(θi,ri)∈Φ
v(θi, ri, xi)

]
=
∫

X

∫
R2

λ(θ, r)v(θ, r, x)

× fX(x)dxdθdr.

(1.4)

In general, Campbell’s theorem is used to evaluate the average of a sum and the

PGF is used for calculating the average of a product of a function over the point

process.

1.7.3 Model of noise uncertainty

For many spectrum sensing techniques, the receiver noise power is assumed to be

known a priori (σ2
w). However, when there is noise uncertainty (NU) the noise

power level may change over time4 and the noise power will be ρσ2
w, where ρ is

4 More details for noise uncertainty are in chapter 5.
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called the NU factor [41]. Here ρ (in dB) is modeled as a uniform distribution in

the interval [−B, B], where B (in dB) is the NU bound and B = sup[10 log10(ρ)].

The effect of noise uncertainty will be used only for simulations in chapters 2,3,4

and analytically in chapter 5.

1.8 T H E S I S O R G A N I Z AT I O N A N D C O N T R I B U T I O N

The thesis primarily covers several issues regarding cognitive radio, each of which

is presented in a separate chapter. A literature review is provided for every issue.

Furthermore, mathematical derivations are provided for the discussion and in most

cases, closed-form equations are derived. Simulation results are also provided to

verify the derivations.

The contributions of this thesis is the design, investigation and exploration of

spectrum sensing and secondary user throughput. A detailed organization is illus-

trated next.

Chapter 2

This chapter addresses the issue of the spectrum sensing in the presence of RF

impairments such as the CFO and the PN. To mitigate the RF impairment issue,

three novel detectors have been proposed; a block-coherent detector ( N
2 -BLCD)

with a suboptimal number of blocks (N/2), a second-order matched filter-I (SOMF-

I) and a second-order matched filter-II (SOMF-II). Theoretical derivations are given

for the detection performance of N
2 -BLCD, SOMF-I, and SOMF-II.

The contributions of chapter 2 have been previously presented in the following

publications:

1. Y. Sharkasi, D. McLernon, and M. Ghogho, “Robust spectrum sensing in

the presence of carrier frequency offset and phase noise for cognitive radio,”

IEEE WTS, London, UK, 2012.

2. Y. Sharkasi, D. McLernon, and M. Ghogho, “Spectrum sensing in the pres-

ence of RF impairments in cognitive radio,” International Journal of Interdis-

ciplinary Telecommunications and Networking (IJITN), 2012.
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Chapter 3

This chapter investigates the detection performance of the ED over an NFS chan-

nel. Theoretical derivations are presented for the average detection probability of

the ED over the NFS channel. Also, the analysis of the outage detection probability

is given.

The contribution of chapter 3 is based on the following publications:

1. Y. Sharkasi, D. McLernon, and M. Ghogho, “Performance analysis of a cog-

nitive radio energy detector over frequency-selective fading channels,” IEEE

ISWCS, Paris, France, 2012.

2. Y. Sharkasi, D. McLernon, and M. Ghogho, “Cooperative spectrum sensing

over frequency-selective nakagami-m fading channels,” SSPD, London, UK,

2012.

Chapter 4

This chapter proposes a new algorithm for cooperative spectrum sensing in order

to reduce the power needed to transmit the test statistics to the FC. The proposed al-

gorithm is called a censored selection combining detector based on power censoring

(CSCPC). Unlike previous work5, the CSCPC takes into account the needed trans-

mit power to send the test statistics to the FC. Also, the detection performance of

a conventional censored cooperative spectrum sensing at the FC is analytically de-

rived and is called censored selection combining (CSC) detector . Both the CSCPC

and the CSC approaches are analysed using stochastic geometry.

This chapter’s contribution is reflected in the next publications:

1. Y. Sharkasi, M. Ghogho, D. McLernon and S. Zaidi, ”Performance analysis of

cooperative spectrum sensing for cognitive radio using stochastic geometry,”

IEEE EUSIPCO, Rabat, Morroco, 2013.

2. Y. Sharkasi, M. Ghogho, D. McLernon and S. Zaidi, ”Energy-efficient coop-

erative spectrum sensing for cognitive radio using stochastic geometry,” to be

submitted to IEEE Transactions on Wireless Communications.

5 The conventional algorithms for cooperative spectrum sensing based energy effecient are based on

censoring test staitsics regrading a local threshold.
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Chapter 5

This chapter studies the effect of the NU and the NFS on the tradeoff between

the spectrum sensing and secondary transmission. The secondary performance is

analytically investigated in terms of sensing threshold under an outage constraint in

the presence of NU and over NFS, and success probabilities under the null and alter-

native hypotheses respectively6. This study is based on two different detectors: the

ED and the autocorrelation detector (AD)7. The theoretical derivation of the sensing

threshold under an outage constraint is presented. Then success probabilities under

the null and alternative hypotheses are derived.

This contributions of this chapter are published in the following papers:

1. Y. Sharkasi, D. McLernon and M. Ghogho, “Sensing-throughput tradeoff for

cognitive radio under Outage constraints over frequency selective fading chan-

nels,” IEEE ISP, London, UK, 2013.

2. Y. Sharkasi, M. Ghogho, and D. McLernon, “Sensing-throughput tradeoff for

OFDM-based cognitive radio under outage constraints,” IEEE ISWCS, Paris,

France, 2012.

3. Y. Sharkasi, D. McLernon, M. Ghogho and S. Zaidi, “On spectrum sensing,

secondary and primary throughput, under outage constraint with noise uncer-

tainty and flat fading,” IEEE PIMRC, London, UK, 2013.

4. 3. Y. Sharkasi, D. McLernon and M. Ghogho, “Sensing-throughput tradeoff

in the presence of noise uncertainty and over nakagami-m frequency-selective

channels,” to be submitted to IEEE Transaction on Vehicular Technology.

Chapter 6

This chapter presents the thesis conclusion and talks about future work.

6 Here the null hypothesis means that the primary user is not present and only noise is present. The

alternative hypothesis means that there is a primary user signal plus noise.
7 For the sake of comparison, another detector is chosen such that it is insensitive to the noise uncer-

tainty problem. This detector is the autocorrelation detector based on an OFDM signal. Thus the

spectrum sensing threshold based on an autocorrelation detector is derived.





2
RO B U S T S P E C T RU M S E N S I N G T E C H N I Q U E S I N T H E

P R E S E N C E O F C F O A N D P N

2.1 I N T RO D U C T I O N

As mentioned in the previous chapter, spectrum sensing is the most important stage

in a CR. To protect the primary receiver from any potential interference, spectrum

sensing should be robust to an uncertain environment such as synchronization er-

rors, carrier frequency offset (CFO) and phase noise (PN). This chapter deals with

designing robust spectrum techniques in the presence of CFO and PN.

In this chapter, the case to be considered is when the secondary user has a-priori

knowledge of the primary signal. In this scenario, it is known that the optimal de-

tector is the MF [16]. Information regarding the primary user can be made available

for the secondary user via pilots or preambles, which are used for coherent detec-

tion. For example, in a digital TV broadcast (ATSC), there is a training-sequence

used for channel estimation. In addition, an OFDM system also uses preambles for

packet acquisition.

However, when the MF is exploited to detect the availability of the primary user

CFO and PN will deteriorate the performance.

This chapter will discuss the behavior of the MF and the energy detector (ED) in

the presence of CFO and PN. Also, this chapter investigates the range of the CFO

in which the ED surprisingly outperforms the MF for reasons that will be explained

later. Moreover, we will propose three different spectrum sensing techniques that

are robust to CFO. The first technique is called the block-coherent detector ( N
2 -

17
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BLCD) with a suboptimal number of blocks ( N
2 ). The received signal is segmented

into several blocks and we then apply the MF for each block. The second tech-

nique is called second-order matched filter-I (SOMF-I), the detection performance

of which has been studied both theoretically (in the presence of CFO) and confirmed

through simulation. The last technique is named the second-order matched filter-II

(SOMF-II) and is a modified version of SOMF-I but with a superior performance.

The second-order is used in the name for SOMF-I and SOMF-II due to the existence

of the term x(n)x∗(n− 1) in the test statistic (where x(n) is the received signal).

The presence of PN and its effect on the detection performance is then examined

via simulation.

To the best of authors’ knowledge, spectrum sensing using MF in the presence

of CFO and PN has not been dealt with in any previous research. Moreover, new

techniques have been proposed to tackle the CFO and PN problems.

2.1.1 Literature review and motivation

Most of the work of spectrum sensing in the presence of RF impairments has con-

centrated on the cyclostationary detector. The research in this area has followed two

main directions. The first direction focused on investigating the effect of RF impair-

ments on the detection performance of cyclostationary detectors. For instance, in

[42] the authors have shown that the detection performance might deteriorate by in-

creasing the number of samples in the presence of CFO, this presents a challenge to

cyclostationary detection in a low signal to noise ratio scenario and because a large

number of samples is required to overcome the noise. In [43, 44], an investigation

was conducted on the impact of IQ imbalance and PN on the detection performance

of the cyclostationary detector. In [45], the authors studied the effect of IQ imbal-

ance on the detection performance of the ED and the cyclostationary detector. The

authors have shown that both detectors are not affected by IQ imbalance. In [46, 47]

the effect of sampling clock offset has been studied on detection performance for

different test statistics-based cyclostationary detectors. The results have shown that

the sampling clock offset degrades the detection performance.
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The second direction focuses on proposing solutions for the RF impairments is-

sue. For example, in [21] a solution to the sampling clock offset is proposed in pilot

based OFDM detection using the spectral correlation function as the test statistic,

where the phase offset from one frame to the next is estimated and compensated

for in the detection process. In [20], a blind solution to the sampling clock offset

problem has been proposed, where the symbol rate of the incoming signal is esti-

mated, and the acquired samples are interpolated at the correct rate. In [48], a new

multi-frame test statistic has been proposed to reduce the degradation due to cyclic

frequency offsets. Notice that all previous references are based on cyclostationary

detectors.

Little research has been done regarding the effect of CFO and PN on the detection

performance of spectrum sensing for the MF. The study in [19] deals with spectrum

sensing using a MF in the presence of CFO and they studied the performance of

the MF in the presence of CFO when the primary user uses a single sine wave pilot.

Also, the problem of CFO has been addressed there by processing coherent seg-

ments of the received signal block by block. However, they did not determine how

many blocks should be used, where every CFO might require an optimal number of

blocks. Also, a solution was not proposed to overcome the detection performance

degradation of the matched filter because of the CFO.

2.2 C H A P T E R C O N T R I B U T I O N

The ultimate goal of this chapter is to design robust spectrum sensing techniques in

the presence of CFO and PN. This goal has been achieved through the following

contributions which are summarized below:

1. Examination of the performance of the MF in the presence of CFO in or-

der to determine over what range of CFO the MF still outperforms the ED.

This approach includes both analytical expressions for the receiver operating

characteristic (ROC) for the MF (in the presence of CFO) and also computer

simulations.



20 RO B U S T S P E C T RU M S E N S I N G T E C H N I Q U E S

2. A novel block-coherent detector ( N
2 -BLCD) has been proposed, where a block

number of N
2 shows a better detection performance compared to the ED and

the MF in the presence of CFO.

3. Second-order matched filter-I (SOMF-I) and second-order matched filter-II

(SOMF-II), are proposed to circumvent the effect of CFO and give a better

performance than the ED and the MF in the presence of CFO.

4. The effect of PN has been investigated by simulation on the detection perfor-

mance of MF, ED, SOMF-II, SOMF-I and N
2 -BLCD. The simulation results

show that the SOMF-II, SOMF-I and N
2 -BLCD approaches are robust against

PN.

2.3 C H A P T E R O R G A N I Z AT I O N

The rest of this Chapter is organized as follows: Section 2.4 introduces the system

model. Section 2.5 discusses the performance of both the ED and the MF in the

presence of CFO. Section 2.6 analyses the N
2 -BLCD technique. Section 2.7 presents

the two SOMF detectors I and II. In Section 2.8 simulation results are described and

finally the chapter is summarized in Section 2.9.

2.4 S Y S T E M M O D E L

The purpose of spectrum sensing is to inform the secondary user about the exis-

tence of the primary user- in other words, to discriminate between two hypotheses,

namely: H0 when the primary user is absent and H1 when the primary user is

present. Thus

H0 : x(n) = w(n)

H1 : x(n) = As(n)ej(2πn4 f+ϕ(n)) + w(n), (2.1)

where n = 0, 1, 2, ..., N; N is the number of samples collected by the secondary

user; x(n) is the signal received by the secondary user; A = |A| ejα is the complex
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channel gain (which may be assumed constant during the detection interval); 4 f

is the CFO due to the mismatch between the transmitter and the receiver and/or the

relative mobility of the receiver; s(n) is the primary signal’s known pilot which is

deterministic and is known to the secondary user; w(n) is independent identically

distributed (i.i.d.) circularly symmetric complex Gaussian noise CN (0, σ2
w); and

ϕ(n) is phase noise. The common model for phase noise (PN) is a Wiener random-

walk process [49]

ϕ(n) = ϕ(n− 1) + v(n), (2.2)

where v(n) is zero-mean white Gaussian noise with
(
N (0, σ2

n)
)
. Note that4 f , |A|

and α are considered unknown (deterministic) parameters. Finally, the SNR at the

secondary user is defined as 10 log10
|A|2Pp

σ2
w

, where Pp is the primary user’s transmit

power.

2.5 C O N V E N T I O N A L D E T E C T O R S

2.5.1 Energy Detector

The ED test statistic (TED) is:

TED =
N−1

∑
n=0
|x(n)|2

H1

R
H0

τED, (2.3)

where τED is a decision threshold used to determine whether the primary user is

present or not1. It is easily seen that TED follows a central chi-square distribution

with 2N degrees of freedom (χ2
2N) under hypothesisH0. Under hypothesisH1 it be-

comes a noncentral chi-square distribution (χ2
2N(β)) with 2N degrees of freedom

with a noncentrality parameter β = 2
σ2

w
∑N−1

n=0

[
(Ars(n))2 + (Ais(n))2

]
, where

A = Ar + jAi in (2.1) [16]. The probability density function of TED after normal-

izaing by σ2
w
2 is given by

1 Decision threshold and sensing threshold are used interchangeably throughout the thesis.
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fTED(t) =


1

2NΓ(N)
tN−1exp(−t/2), i f H0

1
2

(
t
β

) N−1
2 exp(− β+t

2 )IN−1(
√

2βt), i f H1

where IN−1(
√

2βt) is a modified Bessel function of the first kind [please see [50]

equation 8.406.1]. The probabilities of both false alarm (PFA) and detection (PD)

for a given threshold τED can easily be shown to be (with or without CFO/PN)

(author?) [16]:

PFA = Prob
{

TED > τED

∣∣∣H0

}
= Qχ2

2N

(2τED

σ2
w

)
, (2.4)

and

PD = Prob
{

TED > τED

∣∣∣H1

}
= Qχ2

2N(β)

(2τED

σ2
w

)
, (2.5)

where Qχ2
2N
(.) is the right-tail probability for a χ2

2N random variable and Qχ2
2N(β)(.)

is the right tail probability for a χ2
2N(β) random variable [16]. Clearly, (2.4) and

(2.5) are not dependent on the CFO and PN. Notice that (2.4) and (2.5) can be writ-

ten in terms of incomplete Gamma function and Marcum Q-function respectively.

Also, the test statistic in (2.3), when N is very large, can be approximated by a

Gaussian distribution.

2.5.2 Matched Filter

When a MF is employed the test statistic with a decision threshold τMF is:

TMF,CFO =

∣∣∣∣∣N−1

∑
n=0

x(n)s∗(n)

∣∣∣∣∣
2 H1

R
H0

τMF. (2.6)

It can be easily shown that (TMF,CFO) follows a central chi-square distribution with

2 degrees of freedom (χ2
2) under hypothesis H0. However, under hypothesis H1 it

becomes a noncentral chi-square distribution (χ2
2(β

′
)) with 2 degrees of freedom

and a noncentrality parameter (author?) [16]

β
′
=

2|A|2

∑N−1
n=0 |s(n)|2σ2

w

[[N−1

∑
n=0
|s(n)|2cos(2πn∆ f + α)

]2
+
[N−1

∑
n=0
|s(n)|2sin(2πn∆ f + α)

]2]. (2.7)
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The probabilities of both false alarm and detection can easily be written as

PFA = Prob
{

TMF,CFO > τMF

∣∣∣H0

}
= Qχ2

2
(γ) (2.8)

and

PD = Prob
{

TMF,CFO > τMF

∣∣∣H1

}
= Qχ2

2(β)(γ) (2.9)

where γ = 2τMF
∑N−1

n=0 |s(n)|2σ2
w

. From (2.8) and (2.9) it is also clear that CFO only affects

PD and not PFA.

2.5.3 MF performance in the presence of CFO

Figure 2.1 shows the relationship between |4fThreshold| and N for PFA = 0.05.

Note that ±|4fThreshold| represents the two values of CFO such that PD (of MF)

= PD (of ED) (found by solving the equality between (2.5) and (2.9)) - that is for

|4f | < |4f Threshold| the MF outperforms the ED. Note that the region of the graph

in Figure 2.1, where the ED exhibits superior performance is greater than the equiv-

alent region where the MF is superior. This is due to the CFO which causes a SNR

degradation as will be seen next. Section 2.6 will show how to combine the ED and

the MF to get another detector called the block-coherent detector ( N
2 -BLCD) that

deals with the problem of CFO.

The resulting curve in Figure 2.1 can be interpreted as follows. When N ≥ 1/4
∗
f ,

where 4
∗
f the CFO when PD(of MF) = PD(of ED), the MF detection perfor-

mance will degrade even if the N has been increased (see Figure 2.4). However, the

ED detection performance will improve as N increases. For example, when N=20,

the ED outperforms the MF when 4 f > 0.05. Also, when N=100, the ED outper-

forms the MF when 4 f > 0.01. As a result, the resulting curve is a decreasing

function.

2.5.4 SNR loss of TMF,CFO

Due to the CFO, the PD in (2.9) degrades because of the effective loss of SNR

within the test statistic expression. This SNR loss (D) of the test statistic in dB can



24 RO B U S T S P E C T RU M S E N S I N G T E C H N I Q U E S

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 Number of samples  (N)

 |∆
f T

hr
es

ho
ld

| ←P
D
 (of MF) = P

D
 (of ED)

P
D

(of MF) > P
D

 (of ED)
P

D
 (of ED) > P

D
 (of MF)

 (MF is better)

(ED is better)

Figure 2.1: |4f Threshold| (found by solving the equality between (2.5) and (2.9)) versus N

where PFA = 0.05, SNR = −5dB and with zero PN.

be defined by the ratio between the useful part of the test statistic in (2.6) (i.e., the

part that does not have noise) in the presence of CFO (i.e.,4 f 6= 0) and the useful

part in the absence of CFO (i.e.,4 f = 0). Thus

D = log10
sin2(πN4 f )
sin2(π4 f )

dB, (2.10)

s(n) = 1, ∀n is used in (2.1). By plotting PD in (2.9) against the received SNR

for both (a) CFO present and (b) zero CFO, then it might be supposed that there

is a need to increase the received SNR by |D| dB in (a) to achieve the same PD

performance as in (b). So this SNR increase is defined as SNRgain which is the

required SNR increase in (a) to maintain the same PD in (b). This SNRgain can be

estimated by plotting (a) and (b) via (2.9). Figure 2.2 shows the plot of (−SNRgain)

against 4 f and also D versus 4 f (from (2.10)). As expected, both are virtually

identical.

We observe in the previous section that the MF performance is affected by the CFO.

Therefore, the next sections aim to find solutions to combat the problem of CFO.
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Figure 2.2: Comparison of the effective SNR loss (D, in (2.10)) of the test statistic (TMF,CFO,

in (2.6)) and (-SNRgain), defined in subsection (2.5.4), for N=10, PFA = 0.1 and

with zero PN.

2.6 B L O C K - C O H E R E N T D E T E C T O R

In order to circumvent the MF’s sensitivity to the CFO, a combination of ED and

MF is proposed. This new detector is called a block-coherent detector ( N
2 -BLCD),

with the N
2 term to be explained later. The N

2 -BLCD test statistic (TBLCD) with a

decision threshold τBLCD is:

TBLCD =
Bl−1

∑
b=0

∣∣∣∣K−1

∑
m=0

x(m + bK)s∗(m + bK)
∣∣∣∣2 H1

R
H0

τBLCD (2.11)

where Bl is the number of blocks and K is the number of samples per block with

K = N/Bl. TTBLCD follows a central chi-square distribution with 2Bl degrees of

freedom (χ2
2Bl) under hypothesis H0. However, under hypothesis H1 it becomes

a noncentral chi-square distribution (χ2
2Bl(β)) with 2Bl degrees of freedom and a

noncentrality parameter β. Therefore, the PFA and the PD are given as:

PFA = Prob
{

TBLCD > τBLCD

∣∣∣H0

}
= Qχ2

2Bl
(γ
′
), (2.12)

and
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Figure 2.3: PD versus number of blocks (Bl) (see (2.13), defined in section 2.6). (a) N = 50,

PFA = 0.1 and SNR = −7dB. (b) N = 50, PFA = 0.1 and SNR = −15dB.

(c) N = 100, PFA = 0.1 and SNR = −7dB. (d) N = 100, PFA = 0.1 and

SNR = −15dB.

PD = Prob
{

TBLCD > τBLCD

∣∣∣H1

}
= Qχ2

2Bl(β)(γ
′
), (2.13)

where γ
′
= 2τBLCD

∑K−1
n=0 |s(n)|2σ2

w
and a noncentrality parameter

β =C×
Bl−1

∑
b=0

[(K−1

∑
m=0

s∗(m + bK)cos(2π(m + bK)∆ f )
)2

+
(K−1

∑
m=0

s∗(m + bK)sin(2π(m + bK)∆ f )
)2
] (2.14)

with C = |A|2
0.5Kσ2

w
. It is theoretically difficult to find the optimum number of blocks

that maximises PD and so we will use simulation. Without loss of generality, given
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that N is an even integer, then it can be observed (as shown in Figure 2.3a) that the

optimal number of blocks is Bl = 1 for (N << 1
4 f ). For other cases (N >> 1

4 f

and N > 1
4 f ), however, the optimum number of blocks cannot be found. As a result,

a suboptimal number of blocks is proposed, which can be used for any values of N,

CFO and SNR. Figure 2.3a shows that a value of N
2 is a good candidate. Also, it

is clear from Figure 2.3a that N
2 is a robust choice for any value of CFO and so it

will be called this detector N
2 -BLCD. Note that the detection performance of the

N
2 -BLCD detector approaches the performance of the ED when B=N. Thus, the
N
2 -BLCD always outperforms the ED. Moreover, From Figures 2.1 and 2.3a we

notice that CFO degrades the detection performance of both the MF and the N
2 -

BLCD. This degradation depends on both upon the actual value of CFO (4 f ) and

the number of samples taken (N).

Finally, Figures 2.3b, 2.3c and 2.3d represent the detection probability versus the

number of blocks for different values of N and SNR. Clearly all figures confirm

that although N
2 is a suboptimal choice for the number of blocks, it is a reasonable

compromise without any a-priori information.

As we have seen that N
2 -BLCD has improved the performance of the MF when

there exists CFO, however, it gives a suboptimal performance. This means that there

still remains degrees of freedom to improve the detection performance. Thus, next

we seek to develop other detectors that gives better performance compared with
N
2 -BLCD .

2.7 S E C O N D - O R D E R M AT C H E D F I LT E R

In this section, two more detectors are proposed that combat the problem of CFO.

Here, it is proposed two detectors. The first one is called second-order matched

filter-I (SOMF-I). It aims to reduce the effect of N on the performance of a detector

in the presence of CFO. The second detector is called second-order matched filter-II

(SOMF-II). The goal of this detector to reduce the effects of both CFO and N.
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2.7.1 Second-Order Matched Filter-I

The SOMF-I test statistic (TSOMF−I) with a decision threshold τI is as follows:

TSOMF−I = Real
[N−1

∑
n=0

s∗(n)s(n− 1)x(n)x∗(n− 1)
] H1

R
H0

τI . (2.15)

It is clear from (2.15), the x(n)x∗(n− 1) can mitigate the effect of N. The probabil-

ities of both false alarm (PFA) and detection (PD) are derived as follows. When the

observation interval N is large enough, the test statistic (TSOMF−I) can be approxi-

mated as a Gaussian distribution using the central limit theorem [51] where

TSOMF−I ∼ N(0, σ2
0 ), underH0

and

TSOMF−I ∼ N(µ1, σ2
1 ), underH1.

To derive the PFA and the PD, σ2
0 , µ1, and σ2

1 have to be calculated:

σ2
0 = E[|TSOMF−I|2

∣∣H0]−E[TSOMF−I

∣∣∣H0]
2

= E[|TSOMF−I|2
∣∣H0].

To derive E[|TSOMF−I|2
∣∣H0], let w(n) = wr(n) + jwi(n), then

TSOMF−I
∣∣H0 = Real

[N−1

∑
n=0

s∗(n)s(n− 1)x(n)x∗(n− 1)
]

=
N−1

∑
n=0
|s(n)||s(n− 1)|

× [wr(n)wr(n− 1) + wi(n)wi(n− 1)].

Then
σ2

0 = E[|TSOMF−I|2
∣∣H0]

=
N−1

∑
n=0
|s(n)|2|s(n− 1)|2

× [E[w2
r (n)]E[w2

r (n− 1)] + E[w2
i (n)]E[w2

i (n− 1)]]

= 0.5σ4
w

N−1

∑
n=0
|s(n)|2|s(n− 1)|2.
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If the primary signal is one then σ2
0 = 0.5Nσ4

w and µ1 is calculated as follows:

µ1 = E

[
Real

[N−1

∑
n=0

s∗(n)s(n− 1)x(n)x∗(n− 1)
]]

= E

[
Real

[N−1

∑
n=0

s∗(n)s(n− 1)[As(n)exp(j2πn4 f ) + w(n)]
]

× [A∗s∗(n− 1)exp(−j2(πn− 1)4 f ) + w∗(n− 1)]
]

= cos(2π4 f )|A|2
N−1

∑
n=0
|s(n)|2|s(n− 1)|2.

(2.16)

Now σ2
1 can be computed as follows,

σ2
1 = E[|TSOMF−I|2

∣∣H1]− µ2
1

= 0.5σ2
w|A|2

N−1

∑
n=0
|s(n− 1)|4|s(n)|2

+ σ2
w|A|2

N−1

∑
n=0
|s(n)|4 × |s(n− 1)|2

+ 0.5σ2
w|A|2

N−1

∑
n=0
|s(n)|2 × |s(n− 1)|4

+ 0.5σ4
w

N−1

∑
n=0
|s(n)|2|s(n− 1)|2.

(2.17)

It is evidenced from (2.16) and (2.17), the only parameter that affects on the detec-

tion performance is CFO. In fact the N is disjoint from the CFO contrary to the case

of MF and N
2 -BLCD as illustrated in (2.7) and (2.14) respectively. After computing

σ2
0 , µ1, and σ2

1 , the probability of false alarm (PFA) and the probability of detection

(PD) can be written as

PFA = Prob
{

TSOMF−I > τI
∣∣H0

}
= Q

( τI

σ0

)
(2.18)

and

PD = Prob
{

TSOMF−I > τI
∣∣H1

}
= Q

(τI − µ1

σ1

)
(2.19)

where Q(.) is the well known Q-function (author?) [16].

Figure 2.4 plots PD against N (for PFA = 0.1) for the ED (see (2.5)); the ideal MF

(see (2.9)); the N
2 -BLCD (see (2.13)) and the SOMF-I (see (2.19)). It is clear from

Figure 2.4 that SOMF-I has the best detection performance, followed by N
2 -BLCD.
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Figure 2.4: PD versus N: (i) ideal MF (theory - see (2.9) with4 f = 0), (ii) SOMF-I (theory

- see (2.19)) and (iii) N
2 -BLCD (theory - see (2.13)), (iv) ED (theory - see (2.5))

and (v) MF in the presence of CFO. In all cases PFA = 0.1, 4 f = 0.1 and

SNR = −5dB.

For all algorithms (except the MF in the presence of CFO) the PD approaches 1 for

large N. Finally, it can be observed that increasing the number of samples (N) does

not improve the performance of the MF in the presence of CFO.

In SOMF-I the effect of N has been removed, next we remove the effect of both

N and4 f .

2.7.2 Second-Order Matched Filter-II

The SOMF-II detector with a decision threshold τI I has the following test statistic

TSOMF−II(4 f̂0) = Real
[
exp(−j2π4 f̂0)×

N−1

∑
n=0

s(n)

×s∗(n− 1)x(n)x∗(n− 1)
] H1

R
H0

τI I

(2.20)

where4 f̂0 is the estimated CFO. By using exp(−j2π4 f̂0) the effect of CFO can

be mitigated. The advantage of SOMF-II over the SOMF-I is mitigating the effect
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of CFO and N as well. We propose to use 4 f̂0 = -0.05, 0 and 0.05 and to choose

the maximum value of TSOMF−I I(4 f̂0) in (2.20). The idea behind this choice of

4 f̂0 is as follows. It is well known that the typical values of CFO lie in the range

[-0.1,0.1] , so if the value of CFO is small then the appropriate value of4 f̂0 is 0. In

addition, if the value of the CFO is a large positive or negative value of CFO then

the appropriate value of4 f̂0 = is -0.05 or 0.05 respectively.

2.8 S I M U L AT I O N R E S U LT S A N D D I S C U S S I O N

In this section some simulations (based on (2.3), (2.11), (2.15) and (2.20)) are com-

pared against theoretical results (based on (2.4), (2.5), (2.8), (2.9), (2.12), (2.13),

(2.18), and (2.19)) to illustrate the detection performance of ED, MF, N
2 -BLCD,

SOMF-I and SOMF-II in the presence of CFO and PN. The CFO (4 f ) is ran-

domly generated from a uniform distribution over [−0.1, 0.1] and is kept constant

during all 105 Monte Carlo iterations for each SNR value. For the sake of sim-

plicity, the primary user signal is assumed to be {s(n)}N−1
n=0 = {1, 1, ..., 1}. The

phase noise parameter (σ2
n in (2.2)) that has been used is for the worst scenario and

is σ2
n = 0.011 [49]. The absolute channel gain |A| and phase α are chosen as un-

known (deterministic) constants and kept fixed during the Monte Carlo simulations.

First we start our simulation results to confirm the theoretical derivations that have

been done throughout the chapter.

Result 1: Theoretical results verifications for detection performance (Figures

2.5 and 2.6).

Figures 2.5 and 2.6 clearly show that the theoretical and the simulation results for
N
2 -BLCD and SOMF-I are identical respectively. Next we show the effect of the PN

on the proposed detectors.

Result 2: PD versus PFA in the absence and presence of phase noise (Figures 2.7,

2.8, 2.9, 2.10 and 2.11).

First from Figure 2.7, it is easily seen that the PN slightly affects the MF detection

performance. However, Figures 2.8, 2.9, 2.10 and 2.11 show that the three proposed

detectors (N
2 -BLCD, SOMF-I, SOMF-II) and ED are not affected by the PN.
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Figure 2.5: The probability of detection versus the probability of false alarm for N
2 -BLCD

for different values of SNR (theory - see (2.12) and (2.13), simulation - see

(2.11)). In all cases, N = 100, ∆ f = 0.02 and with zero PN.
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Figure 2.6: The probability of detection versus the probability of false alarm for SOMF-I for

different values of SNR (theory - see (2.18) and (2.19), simulation - see (2.15)).

In all cases, N = 100, ∆ f = 0.02 and with zero PN.



2.8 S I M U L AT I O N R E S U LT S A N D D I S C U S S I O N 33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Probability of false alarm (P
FA

)

 P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n 

( 
P

D
)

 

 

(i) MF (in the absence of PN) N=30
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Figure 2.7: The probability of detection versus the probability of false alarm in the absence

and the presence of PN for MF for different values of N. In all cases, ∆ f = 0

and SNR = −7dB.
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(i) ED (in the absence of PN) N=30
(ii) ED(in the presence of PN) N=30
(iii) ED (in the absence of PN) N=50
(iv) ED (in the presence of PN) N=50
(v) ED (in the absence of PN) N=100
(vi) ED (in the presence of PN) N=100

Figure 2.8: The probability of detection versus the probability of false alarm in the absence

and the presence of PN for ED for different values of N. In all cases, ∆ f = 0,

σ2
n = 0.011 and SNR = −7dB.
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(i)N2 -BLCD(in the absence of PN)N =30
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Figure 2.9: The probability of detection versus the probability of false alarm in the absence

and the presence of PN for N
2 -BLCD for different values of N. In all cases,

∆ f = 0, σ2
n = 0.011 and SNR = −7dB.
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(i) SOMF−I (in the absence of PN) N=30
(ii) SOMF−I (in the presence of PN) N=30
(iii) SOMF−I (in the absence  of PN) N=50
(iv) SOMF−I (in the presence of PN) N=50
(v) SOMF−I (in the absence of PN) N=100
(vi) SOMF−I (in the presence of PN) N=100

Figure 2.10: The probability of detection versus the probability of false alarm in the absence

and the presence of PN for SOMF-I for different values of N. In all cases,

∆ f = 0, σ2
n = 0.011 and SNR = −7dB.
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(i) SOMF−II (in the absence of PN) N=30
(ii) SOMF−II (in the presence of PN) N=30
(iii) SOMF−II (in the absence of PN) N=50
(iv) SOMF−II (in the presence of PN) N=50
(v) SOMF−II (in the absence of PN) N=100
(vi) SOMF−II (in the presence of PN) N=100

Figure 2.11: The probability of detection versus the probability of false alarm in the absence

and the presence of PN for SOMF-II for different values of N. In all cases,

∆ f = 0, σ2
n = 0.011 and SNR = −7dB.

Result 3: PD versus PFA comparison between SOMF-II, SOMF-I, N
2 -BLCD, and

ED (Figure 2.12).

Figure 2.12 shows the detection performance for the proposed techniques N
2 -

BLCD, SOMF-I and SOMF-II. Also, this figure plots PD against PFA for the ED,

the MF in both the ideal case and in the presence of CFO. It is obvious that SOMF-II

has the best detection performance compared with the other techniques, except for

the ideal MF. We also notice that the gap between SOMF-II and SOMF-I is smaller

than that between SOMF-II and N
2 -BLCD. The next figure Figure (2.13) shows the

difference between the proposed techniques for different values of CFO and at low

false alarm probability.
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(i)Ideal MF
(ii) SOMF-II
(iii)SOMF-I
(iv)N2 -BLCD
(v) ED
(vi)MF(∆f =0.01)

Figure 2.12: The probability of detection versus the probability of false alarm for N
2 -BLCD,

SOMF-I and SOMF-II. In all cases N = 250, SNR = −10dB and ∆ f =

0.1 and with zero PN. Notice that all detectors are analytically plotted except

SOMF-II.

Result 4: PD versus4 f (Figure 2.13).

Figure 2.13 illustrates the relationship between PD and CFO for the ED, MF,
N
2 -BLCD, SOMF-I and the SOMF-II. First, it can be seen that the CFO is more

harmful on the MF compared with PN (see - Figure 2.7) and there are small ranges

of the CFO where the MF is superior. Moreover, N
2 -BLCD, SOMF-I and SOMF-II

are less sensitive to CFO. Furthermore, it can be seen that at high CFO the detection

performance difference between SOMF-I and N
2 -BLCD is very small. Finally, it can

be seen the detection difference between N
2 -BLCD, SOMF-I and SOMF-II increases

as the CFO increases.
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(i) MF
(ii) SOMF-II
(iii) SOMF-I
(iii)N2 -BLCD
(iv) ED

Figure 2.13: PD versus 4 f : (i) MF (theory - see (2.9)), (ii) SOMF-I (theory - see (2.19)),

(iii) ED (theory - see (2.5)), (iv) SOMF-II (simulation - see (2.20)) and (v)
N
2 -BLCD. In all cases PFA = 0.01, SNR = −5dB, N=50 and with zero PN.
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(i)ED without NU
(ii)N2 -BLCD without NU
(iii)SMOF-I without NU
(iv)SMOF-II without NU
(v)ED with NU
(vi)N2 -BLCD with NU
(vii) SMOF-I with NU
(viii) SMOF-II with NU

Figure 2.14: The detection probability versus the false alarm probability for the ED, N
2 -

BLCD, SOMF-I and SOMF-II in the presence of NU. In all cases, N=100,

SNR=-10dB and B=0.65dB.
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Result 5: PD versus PFA in the presence of NU (Figure 2.14).

This figure evaluates (by simulation) the detection performance of the ED, N
2 -

BLCD, SOMF-I and SOMF-II in the presence of NU. The NU has been generated

according to the p.d.f. defined in (5.6). Finally, it is shown that the SOMF-I and

SOMF-II are insensitive to the NU and the N
2 -BLCD degrades due to the NU but its

performance is still better than that of the ED without NU.

2.9 C H A P T E R S U M M A RY

Both CFO and PN deteriorate the detection performance of the MF in spectrum

sensing. To start with, the performance of the MF was tested in the presence of

CFO in order to determine over what range of CFO the MF still outperforms the

ED. Three new techniques have been proposed to mitigate the effect of CFO and

PN (the simulation results show that the three proposed detectors are insensitive to

phase noise). Firstly, the N
2 -BLCD algorithm was considered. It can be employed for

any value of CFO and any number of samples of the received signal, and the detec-

tion performance has been theoretically derived. Secondly, the SOMF-I approach is

examined. It is robust to the presence of CFO and PN when compared with the MF,

and its detection performance has been analytically derived. Thirdly, SOMF-II is a

modified version of SOMF-I and it has the best performance when compared with
N
2 -BLCD and SOMF-I. The investigation of SOMF-II has been only conducted by

the simulation. Finally, we conclude that the SOMF-II is the best detector in terms

of the detection performance and that it comes at great cost, the cost of complexity.
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A NA K AG M I F R E Q U E N C Y- S E L E C T I V E ( N F S ) C H A N N E L

3.1 I N T RO D U C T I O N

The study in the previous chapter was based on the assumption that the primary

user’s signal is deterministic and is known to the secondary user. In reality, in most

of the cases the primary signal contains information that is random in nature. Thus,

it is more realistic to assume that the primary signal appears random for the sec-

ondary user instead of deterministic, and that is what is considered in this chapter.

In spectrum sensing of cognitive radio networks, the secondary user either does not

have a-priori knowledge or has some information (e.g., modulation scheme used)

about the primary signal. Indeed, the transmitted primary signal may have different

possible waveforms with random data sequences. When the signal has an unknown

form, the plausible assumption is to consider the signal as a random process. So, the

samples of the transmitted signal constitute an independent and identically random

process (i.i.d.) with zero mean and variance E[|s(n)|2] = Pp. For this scenario, the

ED is optimal for detecting the primary user’s signal [16].

This chapter aims to study two important parameters in spectrum sensing of cog-

nitive radio networks. Firstly, we analytically investigate the performance of the ED

over a Nakagami-m frequency-selective channel (NFS). Secondly, we find a closed

form expression for the minimum number of samples required to satisfy a target

false alarm probability (ε) and a target detection probability (δ) over an NFS chan-

nel.

39
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To the best of authors’ knowledge, the analytical detection performance of the ED

over an NFS channel has not previously been examined. In addition, the minimum

number of samples that satisfy ε and δ over an NFS channel has also not been

investigated.

3.1.1 Literature Review and Motivation

3.1.1.1 Detection Performance for an Energy Detector

The first part of this literature review deals with the detection performance of the ED

over different environments. In [52], the authors reviewed the ED for an unknown

deterministic signal over a Gaussian channel. The distribution of a test
/

decision

statistic when the primary user is absent is formulated as a central chi-squar dis-

tribution and when the primary user is present it is formulated as a non-central

chi-square distribution. Subsequently the detection probability and the false alarm

probability are also derived.

Motivated by the above research, more papers have appeared on investigating the

behavior of the ED over different fading channels scenarios. For example, in [22]

the authors derived closed-form expressions for the average detection probability

over Rayleigh, Rician, and Nakagami fading channels. The derivation was based

on the probability density function approach, in which the Marcum Q-function1

(representing the detection probability over AWGN channels) is integrated over the

probability density function of the signal to noise ratio. The analytical expression

of the false alarm probability is the same as [52] because it does not depend on

the channel (the test/decision statistic has only the noise component). In [54] the

behavior of an ED was investigated under the η− µ fading channel model 2. In [55],

the average detection probability was derived using the moment-generating function

method. This direction was pursued to overcome the analytical difficulties that arise

1 Derivations executed based on Marcum Q-function properties in [53].
2 The η−µ distribution is a more general physical fading model, which represents one-sided Gaussian,

Rayleigh, Nakagami-m and Hoyt (Nakagami-q) distributions by changing the parameters η and µ.
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from the presence of the Marcum Q-function. In [23], the performance of the ED

over generalized κ − µ and κ − µ extreme fading channels has been investigated3.

In [56], an analytical performance for the ED was obtained over wireless channels

with composite multipath fading and shadowing effects.

Other work in the literature approximates the distribution of test/decision statistic,

under the presence and the absence of the primary user, by a Gaussian distribution

[19, 51, 57] for different kind of primary user waveforms such as unknown determin-

istic and random signals. Accordingly, the false alarm and detection probabilities

are found theoretically in terms of the Q-function and this assumption comes from

the central limit theorem. The assumption of a Gaussian model is well known in the

parameter optimization problems, e.g., optimizing the operating sensing threshold

that satisfies δ (i.e., when the throughput is evaluated) and the minimum number of

the samples required to achieve a desired receiver operating characteristic (ROC).

This model often gives a simple solution for a corresponding sensing threshold of δ

compared to the Marcum Q-function, which needs an iterative algorithm to find the

sensing threshold.

From the above literature review, it appears that most research concentrates on

the flat fading channel case. However, this is not always so in practice. Indeed in

many instances, the secondary user’s received signal may experience a frequency-

selective channel because the primary system technology, in most cases, employs a

high data rate transmission. As such, a more appropriate and practical assumption

is to consider a frequency-selective channel.

A small numbers of papers deal with spectrum sensing over frequency-selective

channels. In [58] the authors proposed an optimal detector for use in multipath

fading that requires knowledge of the finite impulse response (FIR) of the channel.

This proposed detector was compared with an ED and it was shown that for the same

detection performance the ED requires no more than twice the number of samples

that was needed for the proposed detector when there exists a large channel length.

3 The κ − µ distribution is a generalized fading model that models multipath fading, in particular

for line-of-sight communication systems. Also, it includes as special cases Rician, Nakagami-m,

Rayleigh, and one-sided Gaussian distributions.
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In [59, 60], the authors studied the multi-antenna spectrum sensing for a modified

ED and an equal gain detector when there is a correlation between the channel taps

and a spatial correlation between the antennas. The simulation results showed that

if the primary signal is correlated, then the channel tap correlation will improve the

sensing detection performance. In [61], the authors studied the effect of frequency-

selective reporting channels on the cooperative spectrum sensing using a widely

linear scheme and a linear one. The average detection probability at the fusion center

is obtained only by simulations.

3.1.1.2 Minimum Number of Samples for an Energy Detector

The second part of this literature review deals with the number of samples that

permits the ED to achieve a desired receiver operating characteristic (ROC). In cog-

nitive radio, the secondary user should determine the minimum number of samples

that satisfies a desired ROC (ε and δ). In the literature, this parameter (the mini-

mum number of samples that satisfies a desired ROC) has only been derived for

AWGN channels [19, 57]. Over fading channels however, there is no a closed-form

expression or any simulation result for finding this minimum number of samples.

3.2 C H A P T E R C O N T R I B U T I O N

The two main aims of this chapter are investigating the detection performance of the

ED over NFS channel and determining the minimum number of samples that sat-

isfies a desired ED performance (ε and δ) over an NFS channel. This investigation

has been achieved through the following contributions.

1. Analytically evaluating the average detection probability for the ED over an

NFS channel. Also, the theoretical results are validated by simulation.
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2. Examining theoretically the outage detection probability for the ED over an

NFS channel, which is also confirmed by simulation4.

3. Finding the minimum required number of samples that satisfies ε, δ and the

outage detection probability is derived mathematically over an NFS channel.

3.3 C H A P T E R O R G A N I Z AT I O N

The rest of this chapter is organized as follows. The system model is introduced

in Section 3.4. Spectrum sensing using the ED is presented in Section 3.5. The

average probability of detection over NFS is examined in Section 3.6. The outage

probability analysis is presented in Section 3.7. Simulation results and discussion

are described in Section 3.8. Finally, Section 3.9 summarizes the chapter.

3.4 S Y S T E M M O D E L

3.4.1 Primary signal

Based on the recent paper [62], the performance of the ED can be described mathe-

matically by a Marcum-Q function or a Gaussian distribution using the central limit

theorem for large N only when the primary user’s signal is unknown deterministic

signal, a Gaussian random process (this assumption is valid when the secondary

user does not have any information about the primary user’s signal) or M-ary Phase

Shift Keying (PSK) signal. In this chapter, it is assumed that the secondary user

knows the modulation scheme (PSK) that primary user employs.

4 Outage detection probability has an advantage over the average detection probability in finding some

spectrum sensing parameters such as the sensing threshold value and the minimum number of sam-

ples. Also, an exact closed-form expression can be found compared with the average detection prob-

ability. Finally, it is another metric that can confirm the results obtained by the average detection

probability.
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3.4.2 Channel Model

A NFS channel is assumed between the primary user transmitter and the secondary

user transmitter and is modeled as an FIR filter with impulse response h = [h0

h1 h2 ... hL−1]
T, whose taps are i.i.d. In this work, it is assumed two different models

for the power delay profile of h. In the first model, we assume that the channel has

an exponential power delay profile. In the second model, it is assumed to have a

uniform power delay profile in which all taps have the same power. The latter model

is used to more clearly highlight the ED advantages that might be obtained due to

the NFS channel (see section 3.7). Also, in both models the power of the channel

taps is normalised such that ∑L−1
l=0 E|hl|2 = 1.

Under the exponential model, the probability density function (p.d.f.) of ampli-

tude for each channel tap coefficient, |hl|, is given by

f|hl |(z) =
2

Γ(m)

(
m

Ωhl

)m

z2m−1exp(
−mz2

Ωhl

), (3.1)

where Ωhl
= E[|hl|2] is a controlling spread parameter for the l-th tap, m is the

Nakagami-m fading parameter for the l-th tap and Γ(m) =
∫ ∞

0 tm−1e−tdt is the

Gamma function. The Nakagami distribution is selected to model a fading channel

since it is reported to accurately fit to most empirical and experimental results [63].

As special cases, for m = 1, the distribution reduces to Rayleigh fading; for m =

(v+1)2

(2v+1) the distribution is approximately Rician with parameter v; and for m = ∞

there is no fading [64].

3.4.3 Received signal

We have again two hypotheses:

H0 : x(n) = w(n),

H1 : x(n) =
L−1

∑
l=0

hls(n− l) + w(n), (3.2)
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where n = 0, 1, 2, ..., N − 1, and N is the number of samples collected by the

secondary user; x(n) is the signal received by the secondary user; s(n) is the pri-

mary signal which is randomly and independently drawn from a complex constel-

lation with power Pp and w(n) represents independent and identically distributed

circularly symmetric complex Gaussian noise with distribution CN (0, σ2
w), where

σ2
w is the noise power. Finally the instantaneous signal to noise ratio at the sec-

ondary user is γ =
Pp

σ2
w

∑L−1
l=0 |hl|2 and the average signal to noise ratio as γave =

Pp

σ2
w

∑L−1
l=0 E|hl|2.

3.5 E N E R G Y D E T E C T O R F O R S P E C T RU M S E N S I N G

The test statistic when the secondary user implements an ED is given by:

TED =
1
N

N−1

∑
n=0
|x(n)|2

H1

R
H0

τED. (3.3)

Notice that (unlike (2.3)) the test statistic in (3.3) is divided by N but this does

not change the ED performance. The sensing threshold (τED) is used to determine

whether the primary user is present (TED ≥ τED) or not (TED < τED). Although

TED has a chi-square distribution, according to the central limit theorem TED is

asymptotically normally distributed if N is large enough [51]. Specifically, for large

N, the test statistics of TED can be modeled as follows:

TED ∼

 N (µ0, σ2
0 ), underH0

N (µ1, σ2
1 ), underH1.

Now to derive PFA and PD, then µ0, σ2
0 , µ1 and σ2

1 are calculated as follows:

µ0 = E[TED
∣∣H0] =

1
N

E
[N−1

∑
n=0
|w(n)|2

]
= σ2

w (3.4)

and

σ2
0 = E[T2

ED
∣∣H0]− µ2

0 =
σ4

w
N

. (3.5)
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The mean (µ1) and the variance (σ2
1 ) under H1 are calculated, conditioned on the

channel, as follows. For simplicity, let us define the following variables,

an =
L−1

∑
l=0

hls(n− l)

am =
L−1

∑
l=0

hls(m− l)

an1 = anw∗(n) + w(n)a∗n

am1 = amw∗(m) + w(m)a∗m.

Thus

µ1 = E[TED
∣∣H1] =

1
N

E
[N−1

∑
n=0
|an + w(n)|2

]
=

1
N

N−1

∑
n=0

[
E|an|2 + E|w(n)|2 + E[an1]

]
= σ2

w + Pp

L−1

∑
l=0
|hl|2,

(3.6)

and

σ2
1 = E[T2

ED
∣∣H1]− µ2

1, (3.7)

where

µ2
1 = σ4

w + P2
p

L−1

∑
l=0
|hl|4 + P2

p

L−1

∑
l1&l2=0

l1 6=l2

|hl1 |
2|hl2 |

2 + 2Ppσ2
w

L−1

∑
l=0
|hl|2 (3.8)

and

E[T2
ED
∣∣H1] =

1
N2

N−1

∑
m=0

N−1

∑
n=0

E
[
|an + w(n)|2|am + w(m)|2

]
=

1
N2

N−1

∑
m=0

N−1

∑
n=0

E
[
[|an|2 + |w(n)|2 + an1]

× [|am|2 + |w(m)|2 + am1]
]

(3.9)
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E[T2
ED
∣∣H1] =

1
N2

N−1

∑
m=0

N−1

∑
n=0

E
[
|an|2|am|2 + |w(n)|2|w(m)|2

+ an1am1 + |an|2|w(m)|2 + |an|2am1 + |w(n)|2|am|2

+ |w(n)|2am1 + an1|am|2 + an1|w(m)|2
]

= P2
p

L−1

∑
l=0
|hl|4 + (1 +

1
N
)P2

p

L−1

∑
l1,l2=0

l1 6=l2

|hl1 |
2|hl2 |

2 + σ4
w

+
σ4

w
N

+
2Ppσ2

w

N

L−1

∑
l=0
|hl|2 + 2Ppσ2

w

L−1

∑
l=0
|hl|2.

By substituting (3.8) and (3.9) into (3.7), then

σ2
1 =

σ4
w

N
+

P2
p

N

L−1

∑
l1,l2=0

l1 6=l2

|hl1 |
2|hl2 |

2 +
2Ppσ2

w

N

L−1

∑
l=0
|hl|2. (3.10)

Therefore, the false alarm probability and the detection probability, conditioned on

the channel, are given as:

PFA = Prob
{

TED > τED

∣∣∣H0

}
=Q

( 1√
N
(

τED

σ2
w
− N)

)
, (3.11)

PD = Prob
{

TED > τED

∣∣∣H0

}
=Q

(
τED − µ1

σ1

)
, (3.12)

where Q(.) is the Q-function (author?) [16]. Here the Gaussian distribution ap-

proximation is used instead of the chi-square distribution for the following reasons:

• The simplicity of evaluating the detection performance of the ED over the

NFS channel.

• It simplifies the calculation of the minimum number of samples that satisfies

ε and δ through the outage detection probability as will be seen in section

(3.7.2).

• It simplifies the secondary user’s throughput analysis, as will be seen in chap-

ter 5.
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3.6 AV E R AG E D E T E C T I O N P RO B A B I L I T Y D E R I VAT I O N

The average PFA (i.e., PFA) does not depend on the channel (as the received signal

has only noise component) and so it is identical to (3.11). A closed-form expression

for the average detection probability (PD) over an NFS channel can be calculated

as follows. To guarantee a cognitive radio works in practice, the analysis might be

interested in the worst case of a low signal to noise ratio (SNR) regime. For low

SNR (see (3.10)) the variance (σ2
1 ) of TED underH1, can be approximated as:

σ2
1 ≈

σ4
w

N
+

2Ppσ2
w

N

L−1

∑
l=0
|hl|2. (3.13)

Then from (3.6), (3.12) and (3.13) we have

PD = Q

(
τED − σ2

w − Pp ∑L−1
l=0 |hl|2√

σ4
w

N + (
2Ppσ2

w
N )∑L−1

l=0 |hl|2

)
. (3.14)

Now, the average probability of detection of the spectrum sensing will be examined

when the channel is NFS. The average probability of detection (PD) is evaluated

by averaging (3.14) over the p.d.f.
(

fTh(t)
)

of Th = ∑L−1
l=0 |hl|2. Here Th is a sum

of weighted central chi-square variables. In [65] the p.d.f. of Th has been derived,

but not found in closed-form and this makes the evaluation complicated. To deal

with this the author resorts to approximate the p.d.f of Th by Gaussian and Gamma

distribution functions. Next we will examine which function (Gaussian/Gamma) is

more suitable to approximate the distribution of Th.

3.6.1 Distribution of Th

In this subsection, the distribution of Th = ∑L−1
l=0 |hl|2 is examined based on the

Gaussian and Gamma p.d.f approximations using the moment matching method for

the following reasons:

1. The Gaussian and Gamma distribution functions are Type-V and Type-III

Pearson distributions respectively which are widely employed in fitting dis-

tributions for positive random variables by matching the first and the second

moments [66].
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2. The bivariate Gaussian and Gamma distribution functions are simple and

tractable and this does not involve any higher order complicated mathemat-

ical functions [67].

3.6.1.1 Gaussian approximation approach

The random variable Th may be approximated by a Gaussian distribution function,

f̂Th(t), with a mean µTh and a variance σ2
Th

. The p.d.f of the Gaussian function is

given by

f̂Th(t) =
1

σTh

√
2π

exp((t− µTh)
2/σ2

Th
), t > 0 (3.15)

where µTh = E[Th] = ∑L−1
l=0 Ωhl

and σ2
Th

= E[T2
h]− E2[Th] = ∑L−1

l=0 Ω2
hl

/m,

and E[|hl|4] = Ω2
l [1 + 1/m]. Figure 3.1 sketches the simulated p.d.f of Th (his-

togram) and the approximated p.d.f defined in (3.15). It is clear from Figure 3.1 that

the Gaussian p.d.f does not capture all the features of the Th for all values of L and

m.

3.6.1.2 Gamma approximation approach

Now Th will be approximated by a Gamma distribution function, f̂Th(t), with a

shape parameter KTh and a scale parameter φTh . The p.d.f of the Gamma function

is given by

f̂Th(t) =
1

Γ(KTh)φ
KTh
Th

exp(− t
φTh

)tKTh
−1, t > 0 (3.16)

where KTh = µ2
Th

/σ2
Th

, φTh = σ2
Th

/µTh , µTh and σ2
Th

are defined in the previous

subsection. The analytical p.d.f. of Th (see - (3.16)) and the Monte-Carlo simula-

tion of the p.d.f. of Th are plotted in Figure 3.2. It is clear that (3.16) is an excellent

approximation to the p.d.f. of Th for all values of L and m. As a result, the Gamma

approximation will be adopted in this chapter. Thus the average probability of de-

tection can be written as:

PD =
∫ ∞

0
Q

(
τ − Nσ2

w − NPpt√
Nσ4

w + 2NPpσ2
wt

)
f̂Th(t)dt, (3.17)
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Figure 3.1: Plots of the approximate p.d.f. (3.15) and the simulated p.d.f. of Th (106 Monte-

Carlo runs).

where τ = NτED. The evaluation of (3.17) will be executed in the following sub-

section.

3.6.2 PD derivation

Now using the standard identity [50] Q(v) = erfc( v√
2
) = 1

2(1 − erf( v√
2
)), so

(3.17) becomes

PD =
1

2Γ(KTh)φ
KTh
Th

∫ ∞

0
tKTh

−1exp(−t/φTh)(1− erf(
t√
2
))dt. (3.18)

Then by expressing the erf(.) function as an infinite series with the aid of [[50], eq.

(8.253.1)]

PD =
1

2∆

∫ ∞

0
tKTh

−1exp(−t/φTh)
[
1− 2√

π

∞

∑
i=1

(−1)i+1

(2i− 1)(i− 1)!

×
( τ − Nσ2

w − NPpt
√

2
√

Nσ4
w + 2NPpσ2

wt

)2i−1]
dt,
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Figure 3.2: Plots of the approximate p.d.f. (3.16) and the simulated p.d.f. of Th (106 Monte-

Carlo runs).

then after some simplifications PD becomes

PD =
1

2∆

∫ ∞

0
tKTh

−1exp(−t/φTh)dt

− 1
∆
√

π

∫ ∞

0
tKTh

−1exp(−t/φTh)

×
∞

∑
i=1

(−1)i+1

(2i− 1)(i− 1)!

( τ − Nσ2
w − NPpt

√
2
√

Nσ4
w + 2NPpσ2

wt

)2i−1
dt

(3.19)

where ∆ = Γ(KTh)φ
KTh
Th

. The first integral integral in (3.19) is expressed in terms

of the Gamma function according to [[50], eq. (8.310.1)] and thus (3.19) becomes

PD =
1
2
− 1

∆
√

π

∫ ∞

0
tKTh

−1exp(−t/φTh)
∞

∑
i=1

(−1)i+1

(2i− 1)(i− 1)!

×
( τ − Nσ2

w − NPpt
√

2
√

Nσ4
w + 2NPpσ2

wt

)2i−1
dt.

(3.20)
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By letting y = Nσ4
w + 2NPpσ2

wt, then (3.20) (after some simplifications) becomes

PD =
1
2
−Λ

∞

∑
i=1

(−1)i+1

(2i− 1)2i−0.5(i− 1)!
×
∫ ∞

Nσ4
w

(y− Nσ4
w)

KTh
−1

(
√

y)2i−1

exp
(
− y

2NPpσ2
wφTh

)(
− y

2Ppσ2
w
+ τ − 0.5Nσ2

w

)2i−1
dy,

(3.21)

where Λ =
exp( σ2

w
2PpφTh

)

∆
√

π(2NPpσ2
w)

KTh
. By expanding (y − Nσ4

w)
KTh
−1 using a binomial

series see - [[50], eq. (1.111)] and after some basic mathematical manipulations,

then PD is written as

PD =
1
2
−Λ

∞

∑
i=1

dKThe−1

∑
j=0

(−1)i+1 × (−Nσ4
w)

KTh
−1−j × (

KTh
−1

j )

(2i− 1)2i−0.5(i− 1)!∫ ∞

Nσ4
w

yj−i+0.5exp
(
− y

2NPpσ2
wφTh

)
×
(
− y

2Ppσ2
w
+ τ − 0.5Nσ2

w

)2i−1
dy,

(3.22)

where d.e denotes the ceiling function. Again by expanding (− y
2Ppσ2

w
+ τ− 0.5Nσ2

w)
2i−1

with a binomial series we get

PD =
1
2
−Λ

∞

∑
i=1

dKThe−1

∑
j=0

2i−1

∑
z=0

(−1)i+1 × (
KTh
−1

j
)× (2i−1

z )

(2i− 1)2i−0.5

×
(−Nσ4

w)
KTh
−1−j ×

(
τ − 0.5Nσ2

w

)z

(i− 1)!(−2Ppσ2
w)

2i−z+1

×
∫ ∞

Nσ4
w

yi+j−z−0.5exp
(
− y

2NPpσ2
wφTh

)
dy.

(3.23)

Finally after some simplifications we get

PD =
1
2
−Λ

∞

∑
i=1

dKThe−1

∑
j=0

2i−1

∑
z=0

(−1)i+1 × (
KTh

−1

j
)× (2i−1

z )
√

N×
(2i− 1)2i−0.5(i− 1)!

(2NPpσ2
wφTh)

i+j−z+0.5(−Nσ4
w)

KTh
−1−j

(−2Ppσ2
w)

2i−z+1

×
(

τ − 0.5Nσ2
w

)z
× Γ(j + i− z + 0.5,

σ2
w

2PpφTh

),

(3.24)

where Γ
(
s, x
)

=
∫ ∞

x ts−1e−tdt is the upper incomplete Gamma function [50].

When the channel of the secondary user is Nakagami-m flat-fading (NFF) then the
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channel vector h = [h0] has only one tap and the false alarm probability is simi-

lar to (3.11). The average probability of detection PD is derived in [[22], equation

(20)].

When the primary user’s signal follows the Gaussian distribution. In this scenario,

the mean and the variance of the test statistic defined in (3.3) underH0 are the same

as in (3.4) and (3.5) respectively (because the test statistic underH0 does not depend

on the primary signal). Also, the mean under H1 is similar to (3.6). However, the

variance of the test statistic underH1 is given as5

σ2
1 =

1
N

(
Pp

L−1

∑
l=0
|hl|2 + σ2

w

)2
,

thus the detection performance is

PD = Q

(
τ − σ2

w − Ppt
1√
N
(σ2

w + Ppt)

)
.

By taking similar steps for PSK signal and using [[68], equation 2.3.6.6 and [50],

equation 9.2.11.4], the average detection probability can be written as

PD =
1
2
− a1

∞

∑
i=1

2i−1

∑
z=0

a2Γ(KTh)σ
2

σ2
w+KTh

−1

w

× e
− σ2

w
PpφTh Ψ(KTh , σ2

w + KTh ;
σ2

w
PpφTh

),

(3.25)

where a1 =
P

KTh
p exp(σ2

w/PpφTh
)

∆Pp
√

π
, a2 = C1(

2i−1
z )τ2i−1−z(−1)z, C1 = (

√
N)2i−1(−1)i+1

(
√

2)2i−1(2i−1)(i−1)!

and Ψ(., .; .) is the confluent hypergeometric function defined in [[68], page 793].

3.7 O U TAG E D E T E C T I O N P RO B A B I L I T Y A N A LY S I S

This section seeks to ensure the advantage of the ED over an NFS channel. To do

so, another metric is proposed which is called the outage detection probability, and

for the following reasons.

5 The proof is derived in chapter 5. In chapter 5, the OFDM signal model is used and modeled by a

Gaussian distribution.
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1. An exact closed-form expression for the behavior of the ED over an NFS chan-

nel can be obtained compared with the average probability detection (3.24).

2. The advantage of the ED over an NFS channel (as it will be seen in the simu-

lation results) can be noticed mathematically.

3. The minimum required number of samples that satisfy ε and δ can be found

analytically over fading channels, which cannot be done when the average

probability detection is used.

4. Investigating the sensing-throughput tradeoff needs the determination of the

sensing threshold so that the primary receiver is kept safe from any potential

interference. By employing the outage detection probability the local sensing

threshold can be calculated analytically over a fading channel as will be seen

in Chapter 5.

Because of the random channel, PD is a random variable. Also, in practice there are

some realisations of the channel that do not allow the detection probability to be

larger than δ (i.e., PD≤ δ). So to tackle this behavior, the outage detection probabil-

ity (Pout) should be examined. The outage detection probability, Pout, is defined

as

Pout = Prob(PD ≤ δ). (3.26)

Equation (3.26) can equivalently be written in terms of the instantaneous SNR (γ)

for a NFS channel as

Pout = Prob(γ ≤ γδ), (3.27)
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where γδ is the threshold SNR in which the outage appears, for a target detection

probability equal to δ. The γδ can be calculated as follows. Equation (3.14) is writ-

ten in terms of γ for PD = δ yielding

PD = Q

(
τED − σ2

w − Pp ∑L−1
l=0 |hl|2√

σ4
w

N + (
2Ppσ2

w
N )∑L−1

l=0 |hl|2

)

= Q

(( τED
σ2

w

)
− 1− (Pp/σ2

w)∑L−1
l=0 |hl|2√

1
N + (

2Pp

Nσ2
w
)∑L−1

l=0 |hl|2

)

= Q

(( τED
σ2

w

)
− 1− γ√

1
N + (2γ

N )

)
= δ

⇒ Nγ2 + 2N(1− (τED/σ2
w))− 2Q−1(δ)2γ

+N((τED/σ2
w)− N)2 −Q−1(δ)2 = 0.

(3.28)

By solving (3.28), two solutions are obtained. The largest solution (γδ) is chosen,

i.e.,

γδ =(τED/σ2
w − 1) + Q−1(δ)2/N

+ 1/N
√

Q−1(δ)2[N((2τ/σ2
w)− 1) + Q−1(δ)2]

}
. (3.29)

Equation (3.27) can now be re-written in terms of the channel coefficients as

Pout = Prob
(L−1

∑
l=0
|hl|2 ≤

σ2
wγδ

Pp

)
. (3.30)

Next an evaluation of (3.30) is conducted for different power delay profiles.

3.7.1 Power delay profile

This subsection evaluates the outage detection probability in (3.30) for different

power delay profiles of the channel between the primary user and the secondary

user.
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3.7.1.1 Exponential power delay profile

This scenario assumes that the channel between the primary user and the secondary

user has an exponential power delay profile. For this scenario, the p.d.f. of Th is

given by (3.16) and so the outage probability becomes

Pout =
∫ σ2γδ

Pp

0
f̂Th(t)dt

Pout =1−
Γ
(

KTh , σ2
wγδ

PpφTh

)
Γ(KTh)

(3.31)

KTh and φTh defined in section (3.6).

3.7.1.2 Uniform power delay profile

Now the outage detection probability is evaluated when the power delay profile

is uniform. In this scenario, ∑L−1
l=0 |hl|2 follows a Gamma distribution with shape

parameter KTh = mL and scale parameter φTh = Ω/m, where Ω = Ωhl
for

l = 0 : L− 1. Thus the outage detection probability is given by

Pout = 1−
Γ
(

mL, σ2
wγδm
PpΩ

)
Γ(mL)

. (3.32)

Note that from (3.32) the diversity order is mL (because as mL increases (3.32)

decreases). Also, notice that the Pout in (3.32) is an exact closed-form expression

unlike the case of the exponential power delay profile. This is because the power

of taps/channels is the same so by default the distribution of ∑L−1
l=0 |hl|2 is another

Gamma distribution with shape parameter mL and scale parameter Ω/m.

The performance improvement of the ED that might be obtained over an NFS

channel can be seen mathematically as follows. To see this improvement the Pout

for the flat fading channel has to be found. In this environment h = h0 and the

instantaneous SNR is γ =
Pp|h0|2

σ2
w

. So Pout can be written as Pout = Prob
(
|h0|2 <

σ2
wγδ
Pp

)
, where |h0|2 is a central chi-square random variable with 2 degrees of free-

dom. As a result,

Pout = 1−
Γ
(

m, σ2
wγδm
PpΩ

)
Γ(m)

. (3.33)
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Note that the difference between (3.32) and (3.33) is the number of channel taps (L)

and the term (L) in (3.32) clearly gives the ED an improved performance over the

NFS channel, where as the term L increases the Pout decreases.

3.7.2 Minimum sensing Time

Here the minimum number of samples required (Nmin) in (3.3) to achieve ε, δ

and a target Pout is analytically derived. In the simulation section we will show,

the ED improves over the NFS in terms of Nmin. In cognitive radio applications,

this parameter should be chosen by the secondary user to satisfy a required ED

performance. The minimum number of samples can be derived by using (3.11),

(3.29) and (3.31) yielding

Nmin =

(
Q−1(ε)−Q−1(δ)

√
2Pp

σ2
w

Γ−1(Pout, δ) + 1

)2

(
Pp

σ2
w

Γ−1(Pout, δ)

)2 (3.34)

where Γ−1(., .) denotes the inverse function of the upper incomplete Gamma func-

tion and it is a built function in Matlab. Notice that the Nmin in (3.34) cannot be

derived directly using the average detection probability and it needs an iterative

algorithm to find the Nmin. This shows one advantage of using outage detection

probability over the average detection probability.

3.8 R E S U LT S A N D D I S C U S S I O N

In this section simulation results (based on (3.3) and (3.26)) are compared against

theoretical results (based on (3.11) (3.24), (3.31) and (3.34)) to illustrate the ED per-

formance in an NFS channel. The primary user signal, s(n), is drawn from a 4-PSK

constellation (with Pp = 1) during all 105 Monte Carlo runs. The amplitudes of the

channels taps
(
h = [h0 h1 ... hL−1]

T), have been generated according to a Nakgami

distribution with an exponential power delay profile E|hl|2 = C exp (−0.2l) where
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Figure 3.3: PD versus PFA for different channel taps (L). In all cases, m=2 , N=100, and

SNR=-5dB.

C is a parameter to guarantee ∑L−1
l=0 E|hl|2 = 1 and the phases of the channel taps

have been generated according to a uniform distribution U[0, 2π]. Finally, 30 terms

have been used in (3.24) (i = 30) to calculate the average probability of detection,

PD.
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Figure 3.4: PD versus PFA for different values of Nakagami fading parameter (m ). In all

cases, L=2 , N=200 and SNR=-5dB.

Result 1: Theoretical results verification for detection performance of ED (Fig-

ures 3.3 and 3.4).

Figures 3.3 and 3.4 show PD versus the PFA for different values of L and m

respectively. It is easily noticed that the theoretical results (see - (3.11) and (3.24))

match the simulation results (see - (3.3)). Also, it can be seen that as L and m

increase, the average probability of detection gradually improves. To get the theory

for a flat fading channel (see - [22], Equation (16) and Equation (20)).

The improvement of the PD over the NFS is due to the diversity of the multipath

and this appears from the instantaneous signal to noise ratio, for NFS it is ∑L−1
l=0 |hl |2

σ2
w

.
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Figure 3.5: Pout versus PFA for both an NFS channel (L=3 ) and an NFF channel. In all

cases, δ=0.9 , N=550 and SNR=-10dB.

For NFF it is |h0|2
σ2

w
. And PD improves with increasing m because as m increases as

the channel gets better.

Result 2: Theoretical results verification for outage detection probability ver-

sus PFA (Figure 3.5).

This figure shows Pout versus PFA. Clearly the analytical derivations comply with

the simulation results ((3.26)) and theory ((3.31)). It is obvious that Pout for an NFS

channel is less than Pout for an NFF channel ((simulation - see (3.26)) and (theory

- see (3.31) for L =1)), because of the multipaths.

Result 3: PD versus L (Figure 3.6).

This Figure shows that when the channel between the primary user and the sec-

ondary user is NFS, the protection for the primary receiver is more guaranteed (be-

cause the PD improves with L and m). It is clearly seen that PD initially improves
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Figure 3.6: PD versus Nakagami fading parameter (m) or (L). In all cases, ε=0.1, N=100

and SNR = −7dB.

significantly for L = 1 to 5 and m = 1 to 5 (see - (3.24)). After that it increases

gradually and then levels out for high values of L and m. Also, it can be seen that the

type of channel is more affected to the improvement of the detection performance

compared with number of multitaps. Note that when L is increased, m is fixed to 2.

Also, when m is increased, L is fixed to 2.
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Figure 3.7: Pout versus δ for both NFS channel (L = 3) and NFF channel for different

values of m. In all cases, N = 550, ε = 0.05, and SNR = -10dB.

Result 4: Pout versus δ (Figure 3.7).

First, it can be seen the theory matches with the simulation ((simulation - see (3.26))

and (theory - see (3.31))). Also, it can be noticed the NFS channel gives a smaller

outage detection probability compared to the NFF channel for different values of m,

and this is because of the multipaths.

Result 5: Pout versus L (Figure 3.8).

Again the analytical derivation complies with the simulation results. For NFS

channel (simulation - see (3.26)) and (theory - see (3.31)) and for NFF (simulation

- see(3.26)) and (theory - see (3.31) for L=1). It is obvious that as the number of

multipaths increases the Pout decreases then it levels out for high values of L. It

is similar to the behavior of Figure 3.6. At the start Pout decreases rapidly then it

decreases slowly. Also, the Pout has an added advantage due to the existence of the

Nakagami parameter m (the Pout decreases when m increases).
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Figure 3.8: Pout versus Number of taps (L) for different number of m. In all cases, δ=0.9 ,

N=550 , ε=0.1 and SNR=-10dB.
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Figure 3.9: PD versus the SNR for different number of L. In all cases, m = 2, N = 200

and PFA = 0.1.



64 P E R F O R M A N C E A N A LY S I S O F E D OV E R N F S

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
0.4

0.5

0.6

0.7

0.8

0.9

1

 SNR in dB

A
v
er
a
g
e
p
ro
b
a
b
il
it
y
o
f
d
et
ec
ti
o
n
,

P
D

 

 

m =1
m =2
m =5

Figure 3.10: PD versus the SNR for different values of m. In all cases, L=2, N=200 and

PFA=0.1 .

Result 6: PD versus SNR (different L) (Figure 3.9).

It can be seen that as the SNR increases the performance improves for different

values of L. And as L increases PD also increases.

Result 7: PD versus SNR (different m) (Figure 3.10).

Here it is obvious as the SNR increases the average detection probability im-

proves for different values of m. Also, as m increases PD improves.
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Figure 3.11: Nmin versus SNR for NFS channel (L = 2) and NFF channel. In all cases,

δ = 0.9 and ε = 0.1.

Result 8: Nmin versus SNR (Figure 3.11).

Finally, this figure examines the minimum number of samples required to achieve ε,

δ for different values of Pout. Again the NFS channel needs less samples compared

with the NFF channel because of the multipaths (theory - see (3.34)). Clearly, to

make the performance of the ED more demanding (i.e., reduce Pout) then Nmin

must be increased. Moreover, it can be seen that as the Pout increases the Nmin

decreases due to the restriction on the outage becomes less.
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Figure 3.12: The PD versus the PFA in the presence of NU. In all cases, δ = 0.9 and ε = 0.1.

Result 9: PD versus PFA in the presence of NU (Figure 3.12).

This figure evaluates by simulation the detection performance of the ED in the

presence of NU and over NFS. The NU has been generated according to the p.d.f.

defined in (5.6). We can see from the figure that NU reduces the improvement of

the performance. For L=5, the degradation due to the NU is approximately similar

to the ED performance when L=1 without NU.
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3.9 C H A P T E R S U M M A RY

This chapter studied the performance of the ED over an NFS channel by examining

three different parameters. First, the average detection probability (PD) was found

theoretically and verified by simulation. Second, the outage detection probability

(Pout) was derived theoretically and confirmed via simulation. Third, the minimum

number of samples (Nmin) that satisfies a desired ROC was analytically derived

through the outage detection probability. This outage detection probability gives the

possibility for finding a closed-form expression for the minimum number of sam-

ples. All those parameters confirm that the ED over an NFS channel outperforms

the ED over the NFF channels.





4
P E R F O R M A N C E A NA LY S I S O F C O O P E R AT I V E S P E C T RU M

S E N S I N G F O R C O G N I T I V E R A D I O U S I N G S T O C H A S T I C

G E O M E T RY

4.1 I N T RO D U C T I O N

In practice, several problems militate against effective and efficient spectrum sens-

ing. These include the hidden primary user problem, fading, multipath and shadow-

ing. As a result the secondary user cannot detect the primary user and when it ac-

cesses the primary’s frequency band, hence it will cause interference to the primary

receiver. Because of this, cooperative spectrum sensing has emerged to respond to

these challenges [22, 51, 69, 70, 71, 72, 73, 74]. The energy detector (ED) is the

simplest detector which can be implemented in practice, and so most research on

cooperative spectrum sensing examines the ED.

In cooperative spectrum sensing, each secondary user reports its test statistic or

measurement to the fusion center (FC). The reported or transmitted test statistics

consume power and this power consumption might be significant if the number

of secondary users is large. Thus power consumption needs to be considered in

cooperative spectrum sensing design.

This chapter investigates the problem of cooperative spectrum sensing based en-

ergy efficiency. In addition, this chapter proposes a novel detection algorithm to

reduce the energy overhead that results from sending test statistics to the FC.

69
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4.1.1 Literature review and motivation

In the context of cooperative spectrum sensing many papers have dealt with the issue

of power consumption. In the literature there are three main approaches regarding

this matter.

A first approach (for example in [28, 75]) is the concept of a censoring or send
/

no

send idea (i.e., only sending test statistics that are larger than a local threshold (ξ)).

This was introduced to reduce the number of transmitted test statistics to the FC

and thus save energy. This approach showed a slight performance degradation com-

pared with uncensored cooperative spectrum sensing. Moreover, the authors used

a cyclostationary detector to estimate the test statistic and also the threshold ξ was

calculated depending on the local PFA. Furthermore, when there is no test statistic

sent to the FC, the FC assumes the primary user is absent. In addition, the detection

performance at the FC was not derived theoretically. In [76], the authors suggested

reducing the energy overhead by allowing the secondary users to randomly transmit

their test statistics to the FC after comparing them with local thresholds. In [26], the

transmitted test statistics were censored under the bandwidth constraints and they

used an ED. They used two local thresholds ξ1 and ξ2, (ξ2 > ξ1). When the test

statistic is above ξ2 the secondary user would send “1” to the FC, if it is below

ξ1 the secondary user sends “0” to the FC, and if it is in between ξ1 and ξ2 then

it sends no message to the FC. However, the computation of the local threshold

values were not taken into account and the final decision at the FC is dependent

on what decision most of the secondary users have chosen. In addition, their results

show that censoring cooperative spectrum sensing might be better than conventional

cooperative sensing. In [32], censored cooperative spectrum sensing based on the

ED was studied analytically and verified through simulation. The simulation results

showed that censored cooperative sensing gave better performance compared with

the conventional spectrum sensing when optimal values of ξ1 and ξ2 are used. In

[29], the authors employed an autocorrelation detector for deciding the activity of

the primary user and censored the test statistics sent to the FC by using only one

local threshold, and this local threshold is calculated depending on the local PFA.
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In addition, the global test statistic at the FC consisted of two parts. The first part

contained the test statistics that were above the local threshold, i.e, the test statistics

were sent by the secondary users. The second part contained the average value of

the test statistics in the no-send region under the null hypothesis.

A second approach for minimizing the energy overhead is a sequential detection

[77]. This approach aims to reduce the average number of secondary users which

send the test statistics to the FC and consequently the energy overhead is minimized.

In this approach each secondary user computes its test statistic, and the FC sequen-

tially accumulates the test statistic. If the accumulated test statistics falls between a

certain region it continues to receive test statistics from the secondary users; if not,

it stops receiving new test statistics. In [78] the concept of censoring and sequential

detection are combined.

The last approach is presented in [27, 79], for which the idea of truncated cen-

sored sequential detection is used. This is where each secondary user might send

its test statistic to the FC while not passing the limit of the number of the received

samples.

In all aforementioned papers, the geometry of the secondary users (i.e., the spa-

tial distribution of secondary users with respect to the primary user or the FC) was

not considered. Also, the number of secondary users is assumed to be known. In

addition, they do not consider the presence of the fading channels between the sec-

ondary users and the primary user and the fading channels between the secondary

users and the FC. All of the above assumptions are of great importance and should

really be considered in practice.

Motivated by the above explanations this chapter considers a more general sec-

ondary network model. This chapter introduces a random secondary network de-

tection problem where the secondary network is modelled as a random geometric

network. This random geometric network model is a generalization of the simple

secondary model used in the existing literature. This model has not been employed

for the above references (i.e., papers related to cooperative spectrum sensing based

on energy saving).
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For a random geometric secondary network, the implication of distance, pathloss

exponent and the channel may make the transmit power of the ith secondary user

(the transmit power needed to transmit the ith secondary user test statistic to the FC)

too large in order to satisfy a certain signal to noise ratio at the FC. This transmit

power might exceed the power budget of the secondary user equipment, in particu-

lar if the ith secondary user is far away from the FC and the pathloss exponent is

high. That is, the secondary user must be inside a building or there is severe fading.

Thus it is a good idea to “discard” those secondary users which require a transmit

power exceeding a certain transmit power threshold for the following two reasons:

(a) minimizing energy overhead, and (b) the signal to noise ratio at the FC might

not be satisfied due to the limited power budget of the secondary user equipment.

So in this work, to further reduce energy consumption, we will introduce a novel

additional parameter (pt), the transmit power threshold. This will be in addition to

the conventional local threshold (ξ). The ith secondary user will only transmit the

test statistic to the FC, if TEDi ≥ ξ and pi ≤ pt. Here TEDi is the test statistic at the

ith secondary user and pi is the required transmit power for the ith secondary user

to achieve a required signal to noise ratio (SNR) at the FC. Note that to minimize

the power needed to send the test statistics to FC, the local threshold (ξ) and the

transmit power threshold (pt) must be chosen in an appropriate manner. To the best

of author’s knowledge, this idea has not been proposed in any previous research.

At FC problems can arise if the FC does not receive any test statistic from the sec-

ondary users because ξ is set too high or pt is set too small. As a result, the detection

performance at the FC might degrade. This issue will be taken into account in this

study as well. To address this issue, we propose to examine the activity probability

(Pa1) under H1. This is the probability that at least one test statistic is received by

the FC. The objective is to find the optimum local threshold (ξ = ξopt) and the

optimum transmit power threshold (pt = ptopt) so that Pa1 → 1.

To enhance the detection performance at the FC, several combining techniques

have been proposed in the literature such as an equal gain combining (EQ), a max-

imum ratio combining (MRC) and a selection combining (SC). Only, the SC is

adopted in this work because it gives better detection performance compared to the
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EQ1. However, MRC requires more information compared with SC, such as the

channels between the secondary users and the primary user. Hence, it will compli-

cate

For the conventional censoring, in this chapter the resulting detector is called a

censored selection combining (CSC) scheme. But for the proposed censoring, the

resulting detector is called a censored selection combining based power censoring

(CSCPC) scheme.

4.2 C H A P T E R C O N T R I B U T I O N

The contributions of this chapter can be summarised as follows:

1. Most of the work in the literature assumes that the secondary users are dis-

tributed around the primary user, but this might not always be correct in prac-

tice. In some scenarios, the secondary users might be situated in a certain

building such as a domestic area, company, hospital, etc., and the primary

user may be located out side this area, i.e., a cellular network.

2. Theoretical derivation of the activity probability Pa1 is carried out in order to

find ξopt and ptopt such that Pa1 → 1.

3. The detection performance of the conventional CSC over small-scale fading

and pathloss is derived analytically using the stochastic geometry tool and

justified by simulation.

4. A novel CSCPC detector is proposed to alleviate the energy overhead. The

detection performance of the CSCPC detector over small-scale fading and

pathloss is derived theoretically using stochastic geometry and verified via

simulation.

5. Finally, the average power that is needed to transmit the test statistics to the

FC is obtained analytically using stochastic geometry and confirmed through

simulation results.

1 Extensive simulation results have been done showing that the SC has a better performance.
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(θpr, Rpr)
(θi, ri)

R

Secondary user

Primary user

Fusion center

Figure 4.1: System model showing the secondary user, fusion center and the primary user.

Notice that the ED is used as the underlying strategy for all these contributions.

4.3 C H A P T E R O R G A N I Z AT I O N

The rest of this chapter is organized as follows. The system model is introduced

in Section 4.4. Cooperative spectrum sensing is presented in 4.5. In Section 4.6,

both PFA and PD are derived for the CSC scheme. The detection performance of

the CSCPC detector is investigated in Section 4.7. Power consumption is analyzed

in Section 4.8. Results and discussion are given in Section 4.9. Finally, a chapter

summary is given in Section 4.10.

4.4 S Y S T E M M O D E L

A system model is illustrated in Figure 4.1. A detailed explanation of this model is

given in the following subsections. Some notations from the previous chapter are

re-defined for clarity.
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4.4.1 Secondary network model

In this chapter, the secondary users are distributed uniformly in a circular area sur-

rounding a FC located at the origin. The radius of the circle is denoted by R. The

secondary users are supervised by the FC. The spatial distribution of the secondary

users are modeled by a homogeneous Poisson point process (PPP) [38], i.e., Φ with

intensity λ. The probability of m secondary users being inside an area A is charac-

terized by

Prob{m secondary users in A} = (λA)m

m!
e−λA, m ≥ 0 (4.1)

where A = πR2 is the total area in which the secondary users are located. The lo-

cation of the ith secondary user is denoted by (θi, ri), where θi is the angle between

the ith secondary user and the positive x-axis and θi follows a uniform distribution

between 0 and 2π. Finally, ri is the distance between the ith secondary user and the

FC and it is uniformly distributed between 0 and R.

4.4.2 Primary network model

For the primary network, we consider a fixed single primary user located at (θpr, Rpr).

Here, θpr is a fixed angle between the primary user and the positive x-axis and Rpr

is a fixed distance between the primary user and the FC. So the distance between

the primary user and ith secondary user is given by

rpri =
√

r2
i + R2

pr − 2Rprricos(θi − θpr), (4.2)

where the distance unit is in meter.

4.4.3 Channel model between secondary users and primary user

A Nakagami flat-fading channel is considered between the primary user and the

ith secondary user. The overall channel power gain between the ith secondary user

and the primary user is modeled by h2
i q(θi, ri). h2

i represents the power gain of
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the Nakagmai flat-fading channel and here follows a Gamma distribution ( fh2(t))

(independent of i) with a shape parameter Kh2 and a scale parameter φh2 and is given

by [67]

fh2(t) =
tKh2−1exp(− t

φh2
)

φ
Kh2

h2 Γ(Kh2)
. (4.3)

And q(θi, ri) is the path loss between the ith secondary user’s location (θi, ri) and

the primary user’s location (θpr, Rpr). This can also be written in terms of the path

loss exponent (α) and a frequency dependent constant (κ), i.e.,

q(θi, ri) =
κ

rα
pri

. (4.4)

For simplicity, κ is assumed to be 1.

4.4.4 Channel model between the secondary users and the FC

Similarly, the channel between the ith secondary user and the FC is assumed to be

Nakagami flat-fading channel (gi), thus the power of this channel (g2
i ) follows a

Gamma distribution ( fg2(y)) (independent of i) with a shape parameter Kg2 and a

scale parameter φg2 and it is written as [67]

fg2(y) =
yKg2−1exp(− y

φg2
)

φ
Kg2

g2 Γ(Kg2)
. (4.5)

The overall channel gain is given by g2
i z(θi, ri), where z(θi, ri) is the path loss

between the ith secondary user and the FC with [64]

z(θi, ri) =
1
rα

i
. (4.6)

4.4.5 Received signal model

The ith secondary user inside the area A receives either noise (H0) or a primary

signal plus noise (H1), dependent upon the activity of the primary network:
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H0 : xi(n) =wi(n)

H1 : xi(n) =
√

h2
i q(θi, ri)s(n) + wi(n) (4.7)

where n = 0, 1, 2, ..., N − 1; N is the number of samples collected by the ith sec-

ondary user; xi(n) is the signal received by the ith secondary user; wi(n) is the

ith secondary user’s noise with distribution CN (0, σ2
w); s(n) is the primary signal

which is randomly and independently drawn from a complex constellation. Finally,

the average signal to noise ratio is defined at the FC by SNR = 10log10
Pp

σ2
wRα

pr
,

where Pp is the primary transmit power.

4.5 C O O P E R AT I V E S P E C T RU M S E N S I N G

In this section, the selection combining (SC) based cooperative spectrum sensing

at the FC is investigated, in order to understand the activity probability, for two dif-

ferent censoring techniques: a received energy-based censoring (conventional cen-

soring), and a required transmit power based censoring along with the conventional

censoring2.

4.5.1 Received energy-based censoring

The ith secondary user employs an ED and it compares the test statistic (TEDi)

with the local threshold ξ, where TEDi =
1
N ∑N−1

n=0 |xi(n)|2. Only if (TEDi > ξ) is

satisfied, the test statistic will be sent to the FC. Thus a global test statistic (Tmax)

at FC will be chosen as follows:

Tmax = max
(θi ,ri)∈Φ
TEDi>ξ

(
TEDi

) H0
≶
H1

τED (4.8)

2 The first technique represents the conventional censoring scheme (CSC). The second technique rep-

resents the proposed scheme (CSCPC).
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Figure 4.2: The probability of detection (PD) versus the probability of false alarm (PFA)

for different values of ξ (simulation - see (4.8)). In all cases, α = 2, SNR =

−11dB, R = 20, N = 50, Rpr = 25, θpr =
π
2 and λ = 0.1.

where τED is a global threshold at the FC. The idea behind the local threshold at

each secondary user is to save power by transmitting only the most ‘robust’ test

statistics to the FC.

4.5.2 Required transmit power-based censoring

In practice each secondary user faces a different signal to noise ratio at the FC. This

means that the capability of sending the test statistics to the FC varies from one

secondary user to another. The secondary users which are far away from the FC and

those which are close to the FC (but in deep fading) will need significant transmit

power to send their test statistics to the FC 3.

Motivated by the above discussion, a new parameter (transmit power threshold

(pt)) is introduced to save additional power. To send the test statistic TEDi to the

FC, the required transmit power pi for the ith secondary user should satisfy pi ≤ pt

where4

3 This power may be more than the budget power.
4 Here the pre f and pt
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Figure 4.3: The PD versus the PFA for different values of pt. (a) when ξ = 0. (b) when

ξ = 0.15. (c) ξ = 0.25. (d) ξ = 0.35. In all cases, SNR = −11dB, R = 20,

N = 50, Rpr = 25, θpr =
π
2 and λ = 0.1.

pi =
pre f

g2
i z(θi, ri)

≤ pt. (4.9)

Note that (4.9) is to guarantee that the received power at the FC equals pre f . Now

the test statistic in (4.8) with the condition in (4.9) becomes

Tmax = max
(θi ,ri)∈Φ
TEDi>ξ

pi≤pt

(
TEDi

) H0
≶
H1

τED. (4.10)
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4.5.3 Idle network issue

In cooperative spectrum sensing based on the global test statistics defined in (4.8)

and (4.10), when the local threshold ξ is set too high or the transmit power threshold

pt is set too low, then the FC will not receive any test statistic (it will assume that

the primary user is absent) and the detection performance at FC will deteriorate as

will be seen next.

Figure 4.2 illustrates the detection performance of the global test statistic defined

in (4.8). This figure is plotted by simulation for different values of ξ. We can see that

as ξ increases the maximum achievable PD reduces. The reason for that behaviour

is because the FC has not received any test statistic. For example, when ξ = 0.7,

(PFA, PD) ≤ (0.17, 0.6).

Now Figure 4.3 shows the detection performance of the global test statistic de-

fined in (4.10) for different values of ξ and pt. First, Figure 4.3 shows that as the

pt decreases so also does PD. Also from figures 4.3a and 4.3b, it can be noticed

that the detection performance is not affected by ξ. In addition, the worst scenario

is when pt = 5, for which (PFA, PD) ≤ (0.8, 0.8).

Figures 4.3c and 4.3d show that as the ξ increases as the maximum achievable

PD reduces rapidly. For example, when ξ = 0.25, (PFA, PD) stops at approximately

(0.68, 0.7) and when ξ = 0.35, (PFA,PD) ≤ (0.41, 0.46). The interpretation of the

behavior of Figures 4.2 and 4.3 are discussed next.

Behavior explanation

The false alarm and detection probabilities at the FC are basically determined by

the global threshold τED. When the FC receives at least one test statistic, for τED =

0, then PD = PFA = 1. However, when the FC does not receive any test statistic the

maximum values of PD and PFA depend on the availability of the test statistics at the

FC 5. As a result, PD and PFA at τED = 0 will be the probabilities that at least one

test statistic is received by the FC under H1 and H0 respectively. Mathematically

5 In this scenario, the FC more likely decides that there is no primary user.
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PFA ≈ Pa0 ≈ PD ≈ Pa1 ≈

ξ = 0.25, pt = 5 0.69 0.69 0.71 0.71

ξ = 0.35, pt = 5 0.41 0.41 0.46 0.46

ξ = 0.25, pt = 25 1 1 1 1

ξ = 0.35, pt = 25 0.94 0.94 0.94 0.94

Table 4.1: PFA, PD, Pa0 and Pa1 for different values of ξ and pt for τED = 0.

speaking, PD and PFA will be Pa1 and Pa0 instead of 1 and 1 respectively and are

written as
PD(ξ, pt, τED = 0) = Pa1

PFA(ξ, pt, τED = 0) = Pa0.
(4.11)

Here Pa1 and Pa0 are the probabilities that at least one test statistic is received by the

FC under H1 and H0 respectively at τED = 0. Now PD and the PFA for any value

of τED are bounded by the following inequalities

PD(ξ, pt) ≤ Pa1

PFA(ξ, pt) ≤ Pa0.
(4.12)

The previous results can be verified as follows. Figures 4.4 and 4.5 show Pa1 and

Pa0 for different values of ξ and pt respectively. Using Figures 4.3, 4.4 and 4.5,

PFA, PD, Pa0 and Pa1 for different values of ξ and pt are recorded in Table 4.1. The

results in Table 4.1 confirm (4.11).

One commitment of cognitive radio is to protect the primary receiver from any

potential interference form the cognitive network. This protection is related to the

detection probability, so it is mandatory to guarantee Pa1 = 1. Consequently, Pa1

is considered instead of Pa0, the derivation of Pa1 will be discussed in the next

subsection.
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Simulation, pt =5
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Simulation, ξ =0.25
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Figure 4.4: (a) Pa1 versus ξ for pt = 25. (b) Pa1 versus ξ at pt = 5. (c) Pa1 versus pt for

ξ = 0.25. (d) Pa1 versus pt for ξ = 0.35. In all cases, SNR = −11dB, R = 20,

N = 50, Rpr = 25, θpr =
π
2 and λ = 0.1.
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Simulation, pt =5
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Simulation, ξ =0.25

(c)
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Figure 4.5: (a) The Pa0 versus the ξ at pt = 25. (b) The Pa0 versus the ξ at pt = 5. (c) The

Pa0 versus the pt at ξ = 0.25. (d) The Pa0 versus the pt at ξ = 0.35. In all cases,

SNR = −11dB, R = 20, N = 50, Rpr = 25, θpr =
π
2 and λ = 0.1.

4.5.4 Activity probability

As it is mentioned earlier, there exists a probability (because of the choice of ξ

and pt) that no test statistic may be sent to the FC and subsequently the detection

performance may be degraded. Thus the activity probability (Pa1) is introduced,

which is defined as the probability that at least one test statistic is received by the
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FC under H1. Here we require Pa1 ≈ 1 to avoid any degradation in the detection

performance and so we will examine how the choice of ξ and pt affects Pa1.

Figures 4.4a and 4.4b show a plot of Pa1 versus the ξ for different values of pt.

First it can be easily seen as pt decreases from 25 to 5 the Pa1 decreases. Also from

Figures 4.4a and 4.4b, if ξ is very large (no test statistics will be sent to the FC).

This means Pa1≈0 and this is desirable from a power saving point of view but it is

undesirable from a detection performance point of view. Thus ξ should be chosen

as large as possible to ensure that Pa1 ≈ 1. This maximum threshold will be called

an optimum local threshold (ξ = ξopt).

The choice of parameter pt also affects Pa1. This can also be seen in Figures 4.4c

and 4.4d which show a plot of Pa1 versus the pt for different values of ξ. It can

be seen that when pt is small Pa1 is also small. In terms of saving power this is

desirable but in terms of detection performance it is not. However, if pt is large,

then Pa1≈1 and this will increase the power consumption which is desirable for the

detection performance and not for saving power. Therefore, pt should be chosen as

small as possible such that Pa1 ≈ 1. This minimum transmit power threshold will

be called the optimum transmit power threshold (pt = ptopt).

Motivated by the above explanation we seek to find both ξopt and ptopt that satisfy

the following condition:

(ξopt, ptopt) =
{

max ξ and min pt such that

Pa1(ξopt, ptopt) = 1
}

.
(4.13)

To compute (4.13) it is needed to derive the activity probability (Pa1) through the

following proposition.

Proposition 1. The probability that at least one test statistic is received by the FC

underH1 is given by:

Pa1(ξ, pt) = 1− exp
(
− λ

Γ(Kg2)

∫ 2π

0

∫ R

0
QNak(θ, r)Γ(Kg2 ,

pre f rα

ptφg2
)rdrdθ

)
(4.14)
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Proof. The probability that the test statistic TEDi is not received by the FC (Pni)

occurs when the ξ and pt are sufficiently high or low respectively. Mathematically

speaking it is given by

Pni = Prob
{

TEDi < ξ or pi > pt
}

. (4.15)

Because TEDi and pi are independent, thus (4.15) can be written as

Pni = 1− Prob
{

TEDi > ξ
∣∣H1

}
Prob

{
pi < pt

}
. (4.16)

Because the secondary users are independent, thus the probability that no test statis-

tic is received by the FC (Pn) underH1 is given by

Pn = EΦ,h2
i

[
∏

(θi,ri)∈Φ

[
1− Prob(TEDi > ξ

∣∣H1)Prob(pi < pt)
]]

. (4.17)

Then the probability that at least one test statistic is received by the FC is given by

Pa1 = 1− Pn. (4.18)

Now when Prob(TEDi > ξ
∣∣H1) is evaluated, the test statistic TEDi under H1 will

have a noncentral chi-square distribution with 2N degrees of freedom and a non

centrality parameter vi =
2Nh2

i
σ2

wrα
pri

. Thus Prob
{

TEDi > ξ
∣∣H1), conditioned on the

channel and path loss is given by

Prob
{

TEDi > ξ
∣∣H1

}
= QN(

√
vi,

√
2Nξ

σ2
w

) (4.19)

where QN(., .) is the generalized Marcum Q-function (conditioned on the channels

and the pathloss) defined as follows,

QN(a, b) =
∫ ∞

b

xN

aN−1 exp
(

x2 + a2

2

)
IN−1(ax)dx.

Also, Prob(pi < pt) after substituting pi =
pre f

g2
i z(θi,ri)

, can be written as

Prob
{

pi < pt
}
= Prob

{
g2 >

pre f rα

pt

}
(4.20)

the subscript ‘i’ is dropped from g2
i and rα

i , because the random variable g2
i follows

a Gamma distribution. Thus (4.20) conditioned on the pathloss is

Prob
{

pi < pt
}
=

Γ(Kg2 ,
pre f rα

ptφg2
)

Γ(Kg2)
. (4.21)



86 C O O P E R AT I V E S P E C T RU M S E N S I N G

By substituting (4.19) and (4.21) into (4.18), then by applying the generating func-

tional of the Poisson process [see [38], eq (4.3.8)]

Pa1(ξ, pt) =

1− exp
(
− λ

Γ(Kg2)

∫ 2π

0

∫ R

0

[∫ ∞

0
QN(

√
2Nh2

σ2
wrα

pr
,

√
2Nξ

σ2
w

)

× fh2(t)dt
]
× Γ(Kg2 ,

pre f rα

ptφg2
)rdrdθ

)
.

(4.22)

The inner integral in (4.22) represents the detection probability for a local secondary

user over a Nakagmai fading channel and it is derived in [[22], equation (20)]. This

inner integral is denoted by QNak(θ, r). After substituting QNak(θ, r) into (4.22)

then (4.14) is obtained. Then after finding the activity probability (Pa1), the ξopt

and the popt can be found numerically such that (4.13) is satisfied.

4.6 D E T E C T I O N P E R F O R M A N C E A N A LY S I S F O R T H E C S C S C H E M E

In this section closed-form expressions for PFA and PD are derived for the conven-

tional censored selection combining (CSC) detector (see - (4.8)). For this detector,

it is assumed that (4.13) is satisfied. Notice that, this detector does not depend on

the pi.

4.6.1 False alarm probability derivation

When each secondary user sends its test statistic (TEDi > ξopt) to the FC then the

FC selects the maximum test statistic. Thus

PFA = Prob
{

Tmax > τED
∣∣H0

}
. (4.23)

Because all the secondary users are independent (4.23) can be written as

PFA = 1− Prob
{

Tmax < τED
∣∣H0

}
PFA = 1−EΦ,h2

i

[
∏

(θi,ri)∈Φ
TEDi>ξopt

Prob(TEDi < τED
∣∣H0, Φ, h2

i )
]
. (4.24)
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As mentioned above, when (4.13) is satisfied, this means that at least one test statis-

tic is received by the FC. Therefore, the selection combining at the FC will not be

affected by the local threshold ξopt (as will be seen in the simulation section). Thus

the local threshold ξopt could be omitted from (4.24). Now (4.24) can be written as

PFA = 1−EΦ,h2
i

[
∏

(θi,ri)∈Φ
Prob(TEDi < τED

∣∣H0, Φ, h2
i )
]
. (4.25)

TEDi under H0 is a sum of the squares of 2N Gaussian random variables with zero

mean. Therefore, TEDi follows a central chi-square distribution with 2N degrees of

freedom. So Prob
{

TEDi < τED
∣∣H0

}
= 1−

Γ(N, NτED
σ2

w
)

Γ(N)
and (4.25) reduces to

PFA = 1−EΦ,h2
i

[
∏

(θi,ri)∈Φ

(
1−

Γ(N, NτED
σ2

w
)

Γ(N)

)]
. (4.26)

By applying the generating functional of the Poisson process in (4.26) [see [38], eq.

(4.3.8)], the false alarm probability can be written as

PFA = 1− exp
(
−

λΓ(N, NτED
σ2

w
)

Γ(N)

∫ 2π

0

∫ R

0
rdθdr

)

PFA = 1− exp
(
−

λπR2Γ(N, NτED
σ2

w
)

Γ(N)

)
.

(4.27)

Note that (4.27) is independent from ξopt and so it will not affect the detection

performance as will be seen in the simulation results.

4.6.2 Detection probability derivation

Now PD, it can be derived in a similar manner to the PFA. When each secondary user

sends its test statistic (TEDi > ξopt) to the FC, then the FC selects the maximum

test statistic. Thus PD is formulated as

PD = Prob
{

Tmax > τED
∣∣H1

}
. (4.28)

Because the secondary users are independent and the selection combining at the FC

is independent of the local threshold (ξopt) when (4.13) is satisfied, similar to PFA,

then (4.28) is given by

PD = 1−EΦ,h2
i

[
∏

(θi,ri)∈Φ
Prob

{
TEDi < τED

∣∣H1, Φ, h2
i
}]

. (4.29)
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Prob(TEDi < τED
∣∣H1) can be evaluated by 1-QN(

√
2Nh2

i
σ2

wrα
pri

,
√

2NτED
σ2

wi
). Thus by

substituting Prob(TEDi < τED
∣∣H1) into (4.29)

PD = 1−EΦ,h2
i

[
∏

(θi,ri)∈Φ

(
1−QN

(√√√√ 2Nh2
i

σ2
wrα

pri
,

√
2NτED

σ2
w

))]
. (4.30)

The transmitting secondary users constitutes a marked PPP with an intensity

λ1(h2) = λ fh2(t). (4.31)

Then by applying the generating functional of the Poisson process in (4.30) [see

[38], eq. (4.3.8)] and with an intensity defined in (4.31), the detection probability

can be written as

PD = 1− exp
(
−λ

∫ 2π

0

∫ R

0

[∫ ∞

0
fh2(t)QN

(√2Nh2

σ2
wrα

pr
,

√
2NτED

σ2
w

)
dt
]

× rdθdr
)

.

(4.32)

By using [[22], equation (20)] in (4.32), then (4.32) becomes

PD = 1− exp
(
−λ

∫ 2π

0

∫ R

0
QNak(θ, r)rdrdθ

)
, (4.33)

where QNak(θ, r) is defined in subsection 4.5.4.

4.7 D E T E C T I O N P E R F O R M A N C E A N A LY S I S F O R T H E C S C P C S C H E M E

In this section closed-form expressions for PFA and PD are derived for the censored

selection combining detector based on power censoring (CSCPC) (see - (4.10)).

This detector is evaluated analytically when (4.13) is satisfied and pi is considered.

4.7.1 False alarm probability derivation

When each secondary user sends its test statistic (TEDi > ξopt and pi ≤ ptopt) to

the FC, then the FC selects the maximum test statistic, and

PFA = Prob
{

Tmax > τED
∣∣H0

}
. (4.34)
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Because all the secondary users are independent, then (4.34) can be written as

PFA = 1−EΦp,h2
i

[
∏

(θi,ri)∈Φp

Prob
{

TEDi < τED
∣∣H0, Φp, h2

i
}]

. (4.35)

Again, (4.35) does not rely on the local threshold ξopt and Prob
{

TEDi < τED
∣∣H0

}
=

1−
Γ(N, NτED

σ2
w

)

Γ(N)
. Thus (4.35) can be written as

PFA = 1−EΦp,h2
i

[
∏

(θi,ri)∈Φp

(
1−

Γ(N, NτED
σ2

w
)

Γ(N)

)]
, (4.36)

where Φp is the set of transmitting secondary users that satisfy pi ≤ ptopt. The

transmitting secondary users Φp constitute a non-homogeneous/inhomogeneous in

PPP with an intensity

λ0(y, r) = λ1
( pre f rα

y
< ptopt

)
fg2(y), (4.37)

where the subscript ‘i’ is dropped from g2
i and rα

i and 1
(

pre f rα

y < ptopt

)
is an

indicator which is defined as

1
( pre f rα

y
< ptopt

)
=


1

pre f rα

y < ptopt

0
pre f rα

y > ptopt.

(4.38)

By applying the generating functional of the Poisson process in (4.36) [see [38], eq.

(4.3.8)] and with (4.37), then

PFA = 1− exp
(
−Λ

∫ ∞

0

∫ 2π

0

∫ R

0
1(

pre f rα

y
< ptopt) fg2(y)rdydθdr

)
= 1− exp

(
− Λ

φ
Kg2

g2 Γ(Kg2)

∫ ∞

0

∫ 2π

0

∫ R

0
1(y >

pre f rα

ptopt
)

× yKg2−1exp(− y
φg2

)rdydθdr
)

= 1− exp
(
− 2πΛ

φ
Kg2

g2 Γ(Kg2)

∫ R

0
r
∫ ∞

pre f rα

ptopt

yKg2−1exp(− y
φg2

)dydr
)

PFA = 1− exp
(
− 2πΛ

Γ(Kg2)

∫ R

0
Γ(Kg2 ,

pre f rα

φg2 ptopt
)rdr

)
,

(4.39)

where Λ =
λΓ(N, NτED

σ2
w

)

Γ(N)
.
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4.7.2 Detection probability derivation

Now PD can be obtained in a similar manner as PFA. When each secondary user

sends its test statistic (TEDi > ξopt and pi ≤ ptopt) to the FC, then the FC selects

the maximum test statistic. Thus PD can be written as

PD = Prob
{

Tmax > τED
∣∣H1

}
, (4.40)

and because all the secondary users are independent, so

PD = 1−EΦp,h2
i

[
∏

(θi,ri)∈Φp

Prob
{

TEDi < τED
∣∣H1, Φp, h2

i
}]

, (4.41)

where Prob
{

TEDi < τED
∣∣H1

}
= 1−QN(

√
2Nh2

σ2
wrα

pr
,
√

2NτED
σ2

w
) and Φp is the set of

transmitting secondary users that satisfy pi ≤ ptopt. Thus

PD = 1−EΦp,h2
i

[
∏

(θi,ri)∈Φp

(
1−QN(

√
2Nh2

σ2
wrα

pr
,

√
2NτED

σ2
w

)
)]

. (4.42)

The transmitting secondary users Φp constitutes a non-homogeneous/inhomogeneous

PPP with an intensity

λ1(y, t, r) = λ1(
pre f rα

y
< ptopt) fh2(t), (4.43)

where 1(
pre f rα

y < ptopt) is defined in (4.38). Then by applying the generating func-

tional of the Poisson process in (4.42) [see [38], eq. (4.3.8)] and with (4.43), then

PD is modified as follows

PD = 1− exp
(
−4

∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ R

0
QN(

√
2Nt

σ2
wrα

pr
,

√
2NτED

σ2
w

)

1(y >
pre f rα

ptopt
)× tKh2−1exp(−t/φh2)× yKg2−1

× exp(−y/φg2)rdrdθdtdy
)
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PD = 1− exp
(
−4

∫ 2π

0

∫ R

0

[
r
[∫ ∞

0
QN(

√
2Nt

σ2
wrα

pr
,

√
2NτED

σ2
w

)tKh2−1

× exp(−t/φh2)dt
] ∫ ∞

pre f rα

ptopt

yKg2−1exp(−y/φg2)dy
]

drdθ

)
= 1− exp

(
−4φ

Kg2

g2

∫ 2π

0

∫ R

0

[
rΓ(Kg2 ,

pre f rα

ptoptφg2
)

×
[∫ ∞

0
QN(

√
2Nh2

σ2
wrα

pri
,

√
2NτED

σ2
w

)tKh2−1exp(−t/φh2)dt
]]

drdθ

)
,

where ∆ = λ

Γ(Kh2 )φ
K

h2
h2 φ

K
g2

g2 Γ(Kg2 )

. Finally the detection probability is given by

PD = 1− exp
(
−∆φ

Kg2

g2

∫ 2π

0

∫ R

0

[
rQNak(θ, r)Γ(Kg2 ,

pre f rα

ptoptφg2
)
]
drdθ

)
.

(4.44)

where QNak(θ, r) is defined in subsection 4.5.4.

4.8 AV E R AG E T OTA L P O W E R C O N S U M P T I O N

In this section, the average total power E[4(ξ, pt)] consumption is derived. Here

4(ξ, pt) is the secondary network’s total power needed to transmit the test statis-

tics to the FC. The average total power consumption is derived for two different

scenarios.

Scenario I: The first scenario is when the primary user is absent (H0). In this

case, the total power needed to transmit the test statistics to the FC is given by

∆0(ξ, pt) = ∑
(θi ,ri)∈Φp

TEDi

∣∣H0>ξ

pi

= ∑
(θi ,ri)∈Φp

TEDi

∣∣H0>ξ

pre f rα
i

g2
i

,
(4.45)
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notice that the transmitted test statistic should satisfy (TEDi > ξ and pi ≤ pt).

The transmitting secondary users Φp constitute a non-homogeneous PPP with an

intensity

λ0(y, r) = λProb
{

TEDi > ξ
∣∣H0

}
1(

pre f rα

y
< pt) fg2(y)

λ0(y, r) =
λΓ(N, Nξ

σ2
w
)

Γ(N)
1(

pre f rα

y
< pt) fg2(y),

(4.46)

where 1(
pre f rα

y < pt) is defined in (4.38). Thus the average total power when the

primary user is absent is given by

E
[
40(ξ, pt)

]
= ∑

(θi ,ri)∈Φp

TEDi

∣∣H0>ξ

E[
pre f rα

i

g2
i

].
(4.47)

Now by applying Campbell’s theorem [38] with (4.46)

E
[
40(ξ, pt)

]
=

λpre f Γ(N, Nξ

σ2
w
)

Γ(N)

∫ ∞

0

∫ 2π

0

∫ R

0

rα

y
yKg2−1

Γ(Kg2)φ
Kg2

g2

× 1(
pre f rα

y
< pt)exp(−y/φg2)rdrdθdy

=
2πλpre f Γ(N, Nξ

σ2
w
)

φ
Kg2

g2 Γ(Kg2)Γ(N)

∫ ∞

0

∫ R

0
rα+1 yKg2−2exp(−y/φg2)

× 1
(

r <
( pty

pre f

)
1/α
)

drdy.

(4.48)

And by substituting u = y/φg2 into (4.48)

E
[
40(ξ, pt)

]
= ϑ

[∫ ∞

0

∫ (uptφg2 /pre f )
1/α

0
rα+1 uKg2−2exp(−u)dudr

]
= ϑ

[∫ ∞

0
uKg2−2exp(−u)

[∫ (uptφg2 /pre f )
1/α

0
rα+1 dr

]
du
]

=
ϑ(

ptφg2

pre f
)

α+2
α

(α + 2)

[∫ ∞

0
uKg2+

2
α−1exp(−u)du

]

=
ϑ(

ptφg2

pre f
)

α+2
α

(α + 2)
Γ(Kg2 +

2
α
),

(4.49)
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where ϑ =
2πλpre f Γ(N, ξ

σ2
w
)

φg2 Γ(Kg2 )Γ(N)
.

Scenario II: The second scenario is when the primary user is present (H1). In

this case, the total power needed to transmit the test statistics to the FC is given by

∆1(ξ, pt) = ∑
(θi ,ri)∈Φp

TEDi

∣∣H1>ξ

pi

= ∑
(θi ,ri)∈Φp

TEDi

∣∣H1>ξ

pre f rα
i

g2
i

,
(4.50)

and again Φp is the set of transmitting secondary users that satisfy pi ≤ pt. Also,

Φp constitutes a non-homogeneous PPP with an intensity

λ1(y, t, r) = λProb
{

TEDi > ξ
∣∣H1

}
1(

pre f rα

y
< pt) fg2(y)

= λQN(

√
2Nt

σ2
wrα

pr
,

√
2Nξ

σ2
w

)1(
pre f rα

y
< pt) fg2(y).

(4.51)

Thus the average total power when the primary user is present is given by

E
[
41(ξ, pt)

]
= ∑

(θi ,ri)∈Φp

TEDi

∣∣H1>ξ

E[
pre f rα

i

g2
i

].
(4.52)

By using (4.51) and Campbell’s theorem

E
[
41(ξ, pt)

]
= ϑ1

∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ R

0

rα

y
yKg2−1tKh2−1

×QN(

√
2Nt

σ2
wrα

pr
,

√
2Nξ

σ2
w

)1(
pre f rα

y
< pt)

× exp(−y/φg2)exp(−t/φh2)rdydtdθdr

= ϑ1

∫ 2π

0

∫ R

0
rα+1

[[∫ ∞

0
tKh2−1exp(−t/φh2)

QN(

√
2Nt

σ2
wra

pr
,

√
2Nξ

σ2
w

)dt
]

× [
∫ ∞

0
yKg2−21(y >

pre f rα

pt
)exp(−y/φg2)dy]

]
dr
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= ϑ1

∫ 2π

0

∫ R

0
rα+1QNak(θ, r)

×
∫ ∞

pre f rα

pt

yKg2−2exp(−y/φg2)dydr

= ϑ1φ
Kg2−1

g2

∫ 2π

0

∫ R

0
rα+1QNak(θ, r)Γ(Kg2 − 1,

pre f rα

ptφg2
),

(4.53)

where ϑ1 =
λpre f

Γ(Kh2 )φ
K

h2
h2 Γ(Kg2 )φ

K
g2

g2

. By evaluating (4.53) numerically, the average

total power of the secondary network for sending the test statistics to the FC is

given by

E[4(ξ, pt)] = P(H0)E
[
40(ξ, pt)

]
+ P(H1)E

[
41(ξ, pt)

]
, (4.54)

where P(H0) is the activity of the secondary network and P(H0) = 1− P(H1).

4.9 R E S U LT S A N D D I S C U S S I O N

This section presents some simulation results to validate the theoretical analysis

that has been coppied out in the last sections for the following system parameters:

m = 2, Pp = 1, and pre f = 1. In addition, it provides some results regarding the

CSC and CSCPC schemes, showing the advantage of CSCPC over CSC in terms

of reducing the energy overhead while the detection performance loss is negligible.

The number of Monte Carlo iterations is set to 105. The ξopt and ptopt are found

using (4.14) by grid search.

Result 1: Theoretical results verification for activity probability (Figures 4.6

and 4.7).

Here the activity probability under H1 (Pa1) is plotted analytically using (4.22).

The simulation result is plotted by counting how many times the FC receives any

test statistic out of the total number of iterations. First, Figure 4.6 shows Pa1 versus

the local threshold, ξ, for pt = 100. It is obvious the simulation matches closely the

analytical result. Second, Figure 4.7 plots Pa1 versus the transmit power threshold,

pt, for ξ = 0.05. Again the simulation complies with the analysis. It is observed in
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both figures that for a high value of ξ and a low value of pt there is no test statistic

at the FC and this makes the final decision at the FC uncertain.

Result 2: Theoretical results verification for detection performance analysis

for the CSC and CSCPC schemes (Figures 4.8, 4.9, 4.10 and 4.11)

Figure 4.8 shows the detection performance of the censored selection combining

(CSC) scheme at the FC without power constraint (theory - see (4.27) and (4.33),

simulation - see (4.8)) for different values of signal to noise ratio. It is clear that the

theoretical derivations match the simulation results. Now Figure 4.9 illustrates the

detection performance of the CSC scheme for different values of λ. Again the simu-

lation results verify the theoretical derivations. In Figure (4.10), the detection perfor-

mance for different values of ξ is shown (the simulation and the theoretical results

are virtually the same and therefore only the theoretical results are presented). Here,

it is obvious from the simulation that the detection performance is not sensitive to

the local threshold conditioned for ξ ≤ ξopt, where in this scenario ξopt = 0.55.

Now we examine a validation for the theoretical analysis of the detection per-

formance of the censored selection combining based power censoring (CSCPC)

scheme (theory - see (4.39) and (4.44), simulation - see (4.10)) as plotted in Fig-

ure 4.11. As can be seen from Figure 4.11, both the simulation and the analytical

results are identical for different values of pt. In this figure it can easily be seen that

as pt decreases the detection performance degrades since not a lot of test statistics

are being transmitted to the FC.

Result 3: Theoretical results verification for the average transmitted power

(Figures (4.12) and (4.13))

Figure 4.12 presents both the simulation and the theoretical results of the power

needed to transmit the test statistics to the FC versus the power transmit threshold

(pt), for different values of ξ. We can see that the theory and the simulation are

identical. In addition, it can be observed that the total power can be reduced by

decreasing pt and increasing ξ. Now Figure 4.13 manifests the power needed to

transmit the test statistics to the FC versus the local threshold (ξ), for different

values of pt. Again the simulation matches the theory and the total power increases

with increasing pt. For theory - see (4.54) and for simulation - see (4.45) and (4.50).
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The next results (Figures 4.14, 4.15 and 4.16) show the advantage of the CSCPC

scheme over the CSC scheme in terms of detection performance and power saving.

Result 4: The detection performance versus pt (CSCPC scheme), E[4(ξ, pt)]

versus ξ, and PD versus PFA (Figures 4.14, 4.15 and 4.16)

In Figure 4.14, the detection performance against the power transmit threshold

for the CSCPC scheme is shown. This figure shows that the improvement of the

detection performance increases dramatically with increasing pt and then it levels

out for different values of PFA. The power transmit threshold can be chosen such that

the target detection is met. For example, for a target detection probability δ = 0.9

at PFA = 0.01, pt = 750 is a good choice.

Now Figure 4.15 shows the total power needed to send the test statistics to the

FC versus the local threshold for the CSC and the CSCPC schemes. Here it can be

seen that the proposed technique CSCPC can save a lot of power compared with

the CSC. It can be observed that the power needed for the CSC can be reduced

approximately by half for CSCPC at ξ < (ξopt = 0.1) and pt = 750. Theory - for

the CSC scheme see (4.27), (4.33) and (4.54), for the CSCPC scheme see (4.39),

(4.44) and (4.54).

To be more rigorous, we have to examine the detection performance for the CSC

and the CSCPC schemes for a certain value of pt such that a target PFA and a target

PD are met and Pa1(ξopt, ptopt) = 1. For example for (PFA, PD) = (0.01, 0.9),

pt = 750 is a suitable choice to satisfy the target PFA and PD as shown in Figure

4.14. In addition, the choice of pt = 750 can satisfy Pa1(ξopt, ptopt) = 1 (where

ξopt = 0.1, ptopt = 30 are found using (4.14) by grid search).

For these requirements, Figure 4.16 plots the detection performance for the CSC

and the CSCPC schemes. It can be observed that both are approximately the same.

Thus it can be confirmed that the CSCPC scheme has achieved its purpose which is

to save power with a negligible loss to the detection performance.

Finally, from Figures 4.14, 4.15 4.16 we can see that the total power needed to

transmit the test statistics to the FC is decreased while the detection performance

remains unchanged.
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Result 5: PD versus PFA in the presence of NU (Figure 4.17)

This figure evaluates by simulation the detection performance of the CSC and

the CSCPC schemes in the presence of NU. The NU has been generated according

to the p.d.f. defined in (5.6). It can be seen that the effect of NU on the detection

performance is negligible compared to the local sensing as shown in Figure 5.2.

Result 6: PD versus R for different values of λ Figure (4.18).

Figure 4.18 depicts the PD versus R for different values of λ. It shows that as

λ increases as the performance improves. However for CSCPC the performance

improvement stops at a certain value of R due to the power constraint.

Result 7: PD versus SNR and E[4(ξ, pt)] versus SNR for different values of pt

(Figures 4.19 and 4.20).

From Figure 4.19 it is easily be seen that the detection performance of the CSCPC

scheme for pt = 1500 approaches to the detection performance of the CSC scheme.

Also, it is observed that the detection performance of CSCPC deteriorates for pt =

750 and pt = 1000. The reason is that the secondary users which are far away

from the FC do not participate in the detection problem because of the constraint

on pt . In Figure 4.20, it can be seen how much power can be kept for the case of

pt = 750, 1000. Also, the figure shows that the CSCPC scheme for pt = 1500

approximately dissipates half the power needed for the CSC scheme. Moreover,

from Figures 4.19 and 4.20, it is noticeable that as the SNR increases, the PD and

the average power tend to 1 and 0 respectively. Thus from Figures 4.19 and 4.20, we

can say that the CSCPC scheme for pt = 1500 maintains the detection performance

unaffected while reducing the power consumption to the half.

Result 8: PD versus R and E[4(ξ, pt)] versus R and for different values of pt

(Figures 4.21 and 4.22)

Figure 4.21 shows that the performance of the CSCPC detector for pt = 1500 ap-

proaches the performance of the CSC detector. Also, it is observed that the CSCPC

detector for pt = 750 and pt = 1000 (after a certain value of R) maintains unaf-

fected. The reason for that is that the secondary users which are far away from the

FC cannot send their test statistics to the fusion center due to the small values of pt.

Figure 4.22 shows how much of power can be reduced by employing the CSCSP
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scheme compared to the CSC scheme. So the the proposed detector (CSCSP) can

save a huge power with a small distortion to the detection performance.
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Figure 4.6: The activity probability (Pa1) versus the local threshold (ξ) for pt = 100. In all

cases, N = 10, R = 20, θpr =
π
2 , Rpr = 25, α = 2 and SNR = −8dB.
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Figure 4.7: The activity probability (Pa1) versus the transmit power threshold (pt) for ξ =

0.05. In all cases, N = 10, R = 20, θpr = π
2 , Rpr = 25, α = 2 and SNR =

−8dB.
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Figure 4.8: The PD versus the PFA for the CSC for different values of SNR (no power

constraint). In all cases, N = 10, R = 20, Rpr = 25, θpr = π
2 , α = 2 and

λ = 0.1.
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Figure 4.9: The PD versus the PFA for the CSC for different values of λ (no power con-

straint). In all cases, N = 10, R = 20, Rpr = 25, θpr =
π
2 and SNR = −6dB.
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N = 10, R = 20, Rpr = 25, θpr =
π
2 , α = 2, λ = 0.1 and SNR = −13dB.
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Figure 4.11: The PD versus the PFA for different values of Pt. In all cases, N = 10, R = 20,

Rpr = 25, θpr =
π
2 , α = 2, λ = 0.1 and SNR = −6dB.
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Figure 4.12: The E[4] to the FC versus the ξ, for different values of pt. In all cases, N =

10, R = 20, Rpr = 25, θpr =
π
2 , α = 2, λ = 0.1 and SNR = −8dB.
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Figure 4.13: The E[4] to the FC versus the pt, for different values of ξ. In all cases, N =

10, R = 20, Rpr = 25, θpr =
π
2 , λ = 0.1, α = 2 and SNR = −8dB.
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Figure 4.14: The PD versus the power transmit threshold for the CSCPC. In all cases, N =

10, R = 20, Rpr = 25, θpr =
π
2 , α = 2, λ = 0.1 and SNR = −8dB.
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Figure 4.15: The average total power E[4(ξ, pt)] versus the local threshold (ξ). In all cases,

m = 2, R = 20, Rpr = 25, θpr =
π
2 , α = 2, λ = 0.1 and SNR = −8dB.
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Figure 4.16: The PD versus the PFA for the CSC and the CSCPC. In all cases, ξopt = 0.1,

ptopt = 30, R = 20, Rpr = 25, θpr =
π
2 , α = 2, λ = 0.1 and SNR = −8dB.
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Figure 4.17: The PD versus the PFA for the CSC and the CSCPC in the presence of NU. In

all cases, ξopt = 0.1, R = 20, Rpr = 25, θpr = π
2 , α = 2, λ = 0.1 and

SNR = −8dB.
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Figure 4.18: The PD versus the secondary network radius (R) for different values of λ. In

all cases, PFA = 0.1, Rpr = 75, θpr =
π
2 , α = 2, and SNR = −8dB. For the

CSCPC scheme pt = 1000.
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Figure 4.19: The PD versus the SNR for different values of pt. In all cases, PFA = 0.1,

Rpr = 75, θpr =
π
2 , and α = 2.
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Figure 4.20: The average total power E[4(ξ, pt)] versus the SNR for different values of pt.

In all cases, Rpr = 75, θpr =
π
2 , α = 2, and SNR = −8dB.
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Figure 4.21: The average total power E[4(ξ, pt)] versus R for different values of pt. In all

cases, Rpr = 75, θpr =
π
2 , α = 2, and SNR = −8dB.
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Figure 4.22: The PD versus the secondary user radius (R) for the CSC and the CSCPC. In

all cases, PFA = 0.1, Rpr = 75, θpr =
π
2 , α = 2, λ = 0.01 and SNR = −8dB.

4.10 C H A P T E R S U M M A RY

The main goal of this chapter is to save energy when sending the test statistics to the

FC, but not at the expense of significant performance degradation6. Firstly, an an-

alytical expression for the activity probability is proposed so that the idle network

issue is tackled. Secondly, the conventional censored selection combining (CSC)

scheme is investigated analytically, where CSC is based on the local sensing thresh-

old (ξ). Thirdly, a novel detector is proposed to reduce the energy overhead. The

proposed scheme is named censored selection combining based power constraint

(CSCPC). It relies on the local threshold (ξ) and the transmit power threshold (pt).

The main idea behind introducing the pt is to have more degrees of freedom to de-

crease the overhead energy that is needed to send the test statistics to the FC. More-

6 Notice that saving the energy will decrease the potential interference at primary user receiver.
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over, the total power required is derived analytically. The CSC, CSCPC schemes

and total power are derived using the stochastic geometry tool and verified by sim-

ulation. Finally it is shown by simulation how the proposed CSCPC detector can

alleviate the power consumption while the detection performance distortion is neg-

ligible compared with the conventional censoring case (CSC).
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O F N O I S E U N C E RTA I N T Y A N D OV E R NA K AG A M I - M

F R E Q U E N C Y- S E L E C T I V E C H A N N E L S

5.1 I N T RO D U C T I O N

To complete the picture of cognitive radio, this chapter examines the secondary

user’s throughput. Performance analysis of secondary user is very useful when de-

signing practical systems. For example, one of aims of cognitive radio is to increase

the data rate, but in some uncertain environments, such as channel fading, a sec-

ondary user cannot achieve the required data rate.

The objective of this chapter is to evaluate the performance of the secondary

user when the sensing (the primary-transmitter secondary-transmitter link), inter-

ference (the primary-transmitter secondary-receiver link) and communicating1 (the

secondary-transmitter secondary-receiver link) channels are Nakagami-m frequency-

selective (NFS) as shown in Figure 5.1. Moreover, the chapter includes the issue of

noise uncertainty (NU) at the sensing stage. Sensing-throughput tradeoff is consid-

ered as a performance metric in the evaluation. In order to formulate the secondary

throughput this chapter evaluates two parameters. Firstly2, we have a closed-form

expression for the sensing threshold that takes into consideration NU and an NFS

channel. Secondly, we derive closed-form expressions for success probabilities in

1 Throughout this chapter we use communicating channel and secondary link interchangeably.
2 The secondary throughput relies on the results of spectrum sensing which is strongly related to the

sensing threshold.
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PUTX

SUTX SURX

Sensing channel (h)

Communicating channel (g)

Interfernce channel (f)

Figure 5.1: System model showing the sensing, communicating and interference channels.

the presence and absence of the primary user. Finally, we look at the effect of spec-

trum sensing on the secondary throughput.

The investigation also includes the autocorrelation detector (AD) which is not

sensitive to NU. The AD is included in the investigation for a comparison purpose.

Because the AD depends on an OFDM signal, the OFDM is chosen as a candidate

for the primary user’s signal.

To the best of author’s knowledge, the analytical study of sensing-throughput

tradeoff in the presence of NU and over an NFS channel has not been examined in

any previous research.

5.1.1 Background

5.1.1.1 Sensing-throughput tradeoff

The fundamental functions of cognitive radio technology are spectrum sensing and

data transmission. The secondary user frame in cognitive radio technology has a

time slot divided into two parts [17]. The first part is allocated for spectrum sensing

over the entire primary user band and the second part is reserved for data trans-

mission. Both sensing and transmission are executed sequentially. This differs from

traditional wireless communication systems which have only one part for transmis-

sion. Figure 5.2 illustrates the periodic spectrum sensing (N) and date transmission

(W-N) in cognitive radio, where W represents the secondary frame duration. Once
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Frame n Frame n+1 

Sensing Transmission Sensing Transmission 

N W-N W-N N 

Figure 5.2: A periodic sensing/transmission structure for cognitive radio technology.

the secondary user declares the absence of the primary user, the secondary user ac-

cesses the primary user band in the rest part of the frame; otherwise, the secondary

user switches off its transmission until it detects an unoccupied primary user band

in the subsequent frames3.

From Figure 5.2, a long sensing time reduces the time allocated for the secondary

user to access the primary user band. This causes the secondary throughput to be

very low but the primary user receiver is kept safe form any potential interference.

On the other hand, a short sensing time maximises the secondary throughput but the

primary user is more vulnerable to be interference from the secondary user. This can

be interpreted in terms of the false alarm probability and the detection probability.

As the sensing time increases the false alarm probability increases (this means a low

secondary transmission) and the detection probability increases (makes the primary

user less exposed to secondary interference). From the secondary user’s perspective,

the false alarm probability is required to be low, so the utilization of the spectrum by

the secondary user is more likely. However, from the primary user’s perspective, the

detection probability is required to be high, so that the interference to the primary

user may be minimized. Capitalizing from this discussion, the sensing and commu-

nicating channels are strictly intertwined with each other and clearly there exists a

tradeoff between the spectrum sensing and the secondary user’s throughput [17].

3 Notice this model works only when the primary user is active or absent during the whole secondary

user frame.
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The possible interference at the primary receiver, because of missed detection, is

related to the detection probability. By choosing appropriate sensing threshold value

such that the detection probability is larger than a target detection probability within

the sensing interval, a sufficient protection to the primary user might be obtained.

5.1.1.2 Noise uncertainty

The main disadvantage of ED is the susceptibility to the noise uncertainty (NU)

phenomena. It is well known that the ED severely degrades due to NU, i.e., the

noise power does actually change with time and location, which is called noise

uncertainty4, because of the following reasons [41, 80]:

• thermal noise;

• receiver nonlinearity;

• initial calibration error;

• due to interference.

In the presence of NU the ED does not work below certain values of signal to noise

ratio.

5.1.2 Literature review and motivation

5.1.2.1 Sensing-throughput tradeoff over a fading channel

There exists plenty of works related to the sensing-throughput tradeoff. In [17],

Liang et al. have formulated the sensing-throughput tradeoff problem for a cogni-

tive network. In [17] the authors studied the sensing-throughput tradeoff when sens-

ing, interference and communicating channels are subjected to an additive white

Gaussian noise (AWGN). The optimal sensing time that maximises the secondary

4 In this thesis we assume that the actual noise power is invariant in the duration of the detection but

changes randomly from one detection period to another.
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throughput subject to a certain detection probability has been found via simula-

tion. In [36] the authors studied the sensing-throughput tradeoff problem using dou-

ble thresholds over AWGN channels. In [81], the sensing-throughput tradeoff was

investigated by optimizing the optimal sensing time that maximizes the average

throughput of a secondary link when there exists a Rayleigh flat-fading channel.

The authors assumed a AWGN for the sensing channel.

In [33], the sensing-throughput tradeoff was investigated for sensing-based spec-

trum sharing over AWGN channels. In [37], the same scenario in [33] has been have

studied based for an outage capacity over Rayleigh and Nakagami-m flat-fading

channels. For evaluating the outage capacity, the authors assume there exists a fad-

ing channel for the secondary link and for the interference link. However, the sens-

ing channel is just considered for AWGN.

For wideband secondary access, in [35, 82], the sensing-throughput tradeoff was

evaluated by optimizing the sensing time. In [35], the study assumed that all chan-

nels are AWGN. In [82], the secondary and the interference links are considered

flat-fading and the sensing channel is assumed to be AWGN.

It appears from the above literature review that there exists an important gap that

is missing and needs to be explored further. The multipath impairment process is not

considered for the sensing channel in all the above papers and this can significantly

change performance. Indeed, considering fading channels for both secondary and

interference links but not taking into account the fading in the sensing channel is not

a realistic assumption. The authors in the above papers resort to finding the sensing

threshold only for AWGN to overcome the analytical difficulties that arise from the

presence of the averaging of Q-function or Marcum Q-function over the distribution

of the signal to noise ratio5 at the secondary user transmitter. And this (calculating

the sensing threshold value for a AWGN) does not reflect the actual scenario in a

cognitive network. Indeed, ignorance of the sensing fading channel is due to the

existence of averaging the conditional detection probability over the signal to noise

ratio distribution. This averaging means that the corresponding sensing threshold

5 The signal to noise ratio is a function in the sensing instantaneous channel.
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for a target detection probability needs to be determined by an iterative trial-based

approach, which is computationally costly for the secondary user.

In the presence of a fading channel, the probability of detection itself becomes a

random variable. Hence, the sensing process should be designed in such a way that

the detection can still be provided for the primary system. In [83], the authors pro-

posed the detection outage probability as a suitable criteria for achieving such a de-

sign. The authors obtained an optimal sensing threshold by bounding the detection

outage probability with a reliability constraint when a target detection probability is

required.

Notice that not only the detection process of the primary user is influenced by

the fading but also the achievable capacity of the missed detecting secondary user

is also affected by the fading. The missed detecting secondary user encounters an

additional interference from the active primary user which also suffers from fading

uncertainty. This necessitates the consideration of communicating and interference

channels while studying the optimization of the secondary throughput under a detec-

tion outage constraint. However in [83], the authors have considered the impact of

fading in the sensing channel and they have ignored the fading channel in the com-

municating and interference channels. In other words while the channel between

primary transmitter and secondary transmitter is accommodated, the secondary and

interference links are assumed to be perfect with only AWGN. In a practical situa-

tion, this assumption is not realistic as both the primary and secondary networks are

collocated and all links suffer from the fading process. So, here the fading channels

for the interference and the secondary links must be taken into account.

5.1.2.2 Noise uncertainty

This part covers a review on cognitive radio where NU exists. Several research

directions have been found in the literature.

The first direction concentrates on proposing new detectors which mitigate the

NU issue. For example, in [84] the authors proposed a detector which depends on

the kth moment of the received signal. The effects of both NU and the Rayleigh

fading channel on the detection performance of the proposed detector was evaluated
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by simulation. In [85], a generalized energy detector was analysed 6 under the worst

case scenario of NU. Only upper and lower NU bounds are known, and under the

assumption that the NU follows a uniform distribution. In [86], the authors have

proposed a covariance detector to tackle the NU problem and applied a generalized

likelihood ratio test to formulate the test statistic. The detection performance was

only evaluated by simulation. In [87, 88, 89], some algorithms have been proposed

for the primary user based OFDM signal which depends on the cyclic prefix. In

[86, 90], the authors have proposed algorithms based on multi antennas at secondary

user.

The second direction is based on noise power estimation. The main idea is

based on estimating the noise power and subsequently the NU can be accounted

for. In [91], the authors discussed employing an autoregressive model to estimate

the noise power. The proposed algorithm was evaluated by simulation. In [92], the

noise power was estimated by a maximum likelihood estimator. In [93], the authors

proposed a detector for wireless microphone signals that exploits the advantages of

both the power spectrum density detector based sensing and the eigenvalue detector

based sensing. The study was only conducted by simulation.

The third direction is based on studying the performance of the ED in the pres-

ence of NU for different scenarios. In [94], the authors have assumed that NU fol-

lows a log normal distribution with a certain variance. In [95], the ED performance

under both discrete and continuous models of NU was investigated. Also in [95], the

authors demonstrated that by selecting different threshold values different detection

performances can be achieved. Moreover, they illustrated that when the distribution

of NU is known the threshold value can be chosen such that the detection perfor-

mance is improved. In [96], a cooperative spectrum sensing using ED was studied

in the presence of NU. In [97], a cooperative spectrum sensing using OR, AND

and majority rule was investigated by considering both NU and Rayleigh fading

channels. The work was based on simulation, the results showed that the AND rule

yields better performance over AWGN channels while in Rayleigh channels the OR

rule is a preferable choice. In [98], a cooperative spectrum sensing in the presence of

6 A generalized energy detector uses E[|x(n)|p] instead of E[|x(n)|2].
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the worst-case impact of NU and over log-normal shadowing channels was studied

through simulation. The results illustrated that the cooperation mitigates the prob-

lem of NU. In [99], the effect of noise power uncertainty on the detection perfor-

mance at the fusion center was examined for equal combining, weighted combining

and the likelihood ratio test. In [100] the authors proposed a cooperative spectrum

sensing with adaptive thresholds to enhance the detection performance in the pres-

ence of NU. Furthermore, in [100] the authors proposed an Ad-hoc method that

depends on the NU factor and the results demonstrated that the proposed detector

is more robust to the NU compared with the equal combining, weighted combining

and likelihood ratio test.

The fourth direction looks at the effect of noise uncertainty on other aspects

such as secondary throughput. In [101], the authors examined by simulation the

throughput of the secondary user using ED, the maximum minimum eigenvalue

detector and the maximum eigenvalue detector in the presence of NU. However in

[101] there are two research gaps that need to be filled in: The first gap is that the

channel fading was not considered. The second gap is that the threshold value, that

satisfies the target detection probability, was determined7 numerically by integrating

the detection probability over the p.d.f of the NU distribution for each value of the

number of received samples. This threshold is very complex to evaluate.

Now it is obvious that the effect of spectrum sensing (using the ED) on the sec-

ondary user throughput in the presence of NU and over an NFS channel has not

been investigated yet. Therefore, motivated by the above discussion, this chapter

evaluates analytically the secondary throughput8 while assuming that the sensing,

communicating and interference links suffer from fading channels. Furthermore, a

more generic model is adopted for the sensing, communicating and interference

links which is the NFS channel (for more details about NFS channel please refer to

chapter 3). Moreover, this chapter takes into consideration NU at the sensing stage.

7 In the literature when the secondary throughput is studied the spectrum sensing threshold should be

found such that it satisfies a target probability of detection.
8 Secondary performance, secondary throughput and sensing-throughput tradeoff are interchangeably

used throughout this chapter.
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Motivation behind choice of the AD:

It is well known that the ED is the optimum detector (when the noise variance is

known and for an i.i.d signal) and when there is no information about the primary

user. However, when there exists NU, the detection performance of the ED degrades.

Consequently, other techniques have been proposed to tackle the NU issue. Some of

those algorithms depend on multi antennas at secondary user such as [86, 90]. Other

detectors are based on OFDM signals. For example, in [87, 88, 89] the authors

have proposed detectors that can exploit the autocorrelation property (due to the

existence of a cyclic prefix) in order to detect the presence of the primary user. In

all the mentioned papers their detectors outperform the ED in the presence of NU

[86, 90, 87].

In our scenario, the proposed algorithms in [86, 90] cannot be compared with an

ED because they depend on MIMO technology. For other algorithms in [87, 88, 89],

the proposed detector in [87] (AD) is chosen for a comparison because it has closed-

form expressions for the probabilities of both false alarm and detection and it is less

complex compared with other techniques [102].

Figure 5.3 shows a comparison between the ED and the AD for different values

of NU bound (B) (it will be defined in the next section). As can be seen from this

figure, the AD outperforms the ED when there exists NU.

In this context, two questions arise:

1. Does the NU degrade the secondary throughput when the ED is used for spec-

trum sensing?

2. Is the secondary throughput when the AD is used for spectrum sensing better

than the secondary throughput when the ED is used for spectrum sensing?

5.2 C H A P T E R C O N T R I B U T I O N S

The contributions of this chapter can be summarized as follows.

1. First, a closed-form upper bound of the sensing threshold is derived analyti-

cally for the ED. The sensing threshold takes into account both the effects of
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Figure 5.3: Probability of detection versus probability of false alarm for different values of

NU factor (B). In all cases, L = 1, N = 200, and SNR = −10dB.

NU as well as the NFS channel. Second, a tight closed-form expression for the

sensing threshold for the ED, under NU and over a Nakagami-m flat-fading

(NFF) channel, is theoretically obtained.

2. Second, a closed-form expression for the sensing threshold, for the AD over

an NFS channel is derived theoretically.

3. Closed form expressions for success probabilities in the absence/presence of

the primary user are then derived.

4. Analytical expressions are derived for the secondary throughput while both

the ED and the AD are used for spectrum sensing. The analytical expressions

are in terms of the sensing threshold derived in 1 (for the ED) and 2 (for the

AD). Moreover, it is a function in the success probabilities derived in 3.
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5.3 C H A P T E R O R G A N I Z AT I O N

The rest of this chapter is organized as follows. In Section 5.4, the system model

is introduced. Section 5.5 presents spectrum sensing using both an ED and an AD.

Section 5.6 shows the problem formulation. Section 5.7 presents the outage detec-

tion probability in the presence of NU and over an NFS channel for the ED and the

AD. In Section 5.8 the sensing-throughput problem is examined. In Section 5.9, the

simulation results are discussed. Finally, the chapter summary is given in Section

5.10.

5.4 S Y S T E M M O D E L

5.4.1 Chanel model

Here we consider a cognitive network which consists of a primary transmitter (PUTX)

and a primary receiver (PURX) which operate in the presence of a collocated sec-

ondary link. The secondary link consists of a secondary transmitter (SUTX) and its

receiver (SURX), Figure 5.1 shows this scenario. It is assumed that all the chan-

nels suffer are NFS channels which are modeled as a finite impulse response (FIR)

filter. These channels are described as follows. First, the impulse response for the

PUTX → SUTX (sensing) link is denoted by

h = [h0 h1 h2 ... hL−1]
T. (5.1)

Then the impulse response for the SUTX → SURX (communicating) link is denoted

by

g = [g0 g1 g2 ... gL−1]
T. (5.2)

Finally the impulse response for the PUTX → SURX (interference) link is denoted

by

f = [ f0 f1 f2 ... fL−1]
T. (5.3)
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All elements of the above mentioned channels are i.i.d. Also, it is assumed that all

the channels have an exponential power delay profile.

5.4.2 Primary user signal

As the investigation in this chapter is based on the AD as well, thus it is assumed that

the primary network employs OFDM technology. Let Sm = [Sm(0) Sm(1) Sm(2)

... Sm(Nd− 1)] represents the Nd complex PSK symbols of the mth OFDM symbol.

After the IFFT, the OFDM symbol is described by the following Nd complex values:

sm(n) =
1√
Nd

Nd−1

∑
k=0

Sm(k)e
j2πnk

Nd , n = 0, ..., Nd − 1 (5.4)

where n and k are discrete-time and frequency indexes respectively. Adding the last

Nc elements of sm(n) as a cyclic prefix the mth cyclic-prefixed OFDM symbol will

be [sm(Nd − Nc) ... sm(Nd − 1) sm(0) ... sm(Nd − 1)]. An OFDM frame consists

of several OFDM symbols which are transmitted sequentially. For notational sim-

plicity, each element of the transmitted OFDM frame will be denoted by s(n). For

a large IFFT size, then by the central limit theorem, s(n) ∼ CN (0, Pp) [88], where

Pp is the primary user’s transmit power.

5.4.3 Model of noise uncertainty

As before:

H0 : x(n) = w(n)

H1 : x(n) =
L−1

∑
l=0

hls(n− l) + w(n). (5.5)

Now (w (n)) is i.i.d. circularly symmetric complex Gaussian noise with zero-mean

and E
[
|w (n) |2

]
= σ2

w; but the estimate of σ2
w will be σ̂2

w = ρσ2
w where ρ is called

the NU factor [41]9. Note that ρ (in dB) can be modeled as a uniform distribution in

the interval [−B, B], where B (in dB) is the NU bound and B = sup[10 log10(ρ)]
10.

9 Noise uncertainty means that the secondary user does not know the true noise variance.
10 There is an ongoing debate about which distribution should be considered for the NU [41].
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This is the most commonly used model for NU in the literature [99, 86, 90, 101]

and the probability density function (p.d.f.) for the NU factor (ρ) is [80]:

fρ(t) =


0, t < 10−B/10,

5
ln(10)Bt , 10−B/10 ≤ t ≤ 10B/10,

0, t > 10B/10.

(5.6)

Finally, the instantaneous signal to noise ratio (at the SUTX) is defined as γ =

Pp ∑L−1
l=0 |hl|2

/
ρσ2

w.

5.5 S P E C T RU M S E N S I N G T E C H N I Q U E S

This section looks at the detection performance of both the ED and the AD.

5.5.1 Energy detector (ED) performance

This subsection shows the analysis of spectrum sensing using the ED. From Sec-

tion 5.4.2, the primary signal follows a complex Gaussian distribution, so the test

statistic (TED) can be modeled under two hypothesis as follows

TED ∼

 N (µ0, σ2
0 ), underH0,

N (µ1, σ2
1 ), underH1,

(5.7)

where µ0 = ρσ2
w, σ2

0 = ρ2σ4
w

N ,

µ1 =ρσ2
w + Pp

L−1

∑
l=0
|hl|2, (5.8)

and
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σ2
1 = E[T2

ED]− µ2
1

2P2
p

L−1

∑
l=0
|hl|4 + (1 +

1
N
)P2

p

L−1

∑
l1,l2=0

l1 6=l2

|hl1 |
2|hl2 |

2 + ρ2σ4
w

+ ρ2σ4
w/N +

2
N

Ppρσ2
w

L−1

∑
l=0
|hl|2 + 2Ppρσ2

w

L−1

∑
l=0
|hl|2

−
[
2Ppρσ2

w

L−1

∑
l=0
|hl|2 + P2

p

L−1

∑
l=0
|hl|4 + P2

p

L−1

∑
l1&l2=0

l1 6=l2

|hl1 |
2|hl2 |

2

+ ρ2σ4
w

]
=

1
N

(
Pp

L−1

∑
l=0
|hl|2 + ρσ2

w

)2
.

(5.9)

So the detection probability conditioned on channel and ρ can be written as

PD = Q

(
τED − ρσ2

w − Pp ∑L−1
l=0 |hl|2

1√
N

(
Pp ∑L−1

l=0 |hl|2 + ρσ2
w

)). (5.10)

5.5.2 Autocorrelation detector (AD) performance

As mentioned earlier in Section 5.1 (see - Figure 5.3), the detection performance

of the AD is not affected by the NU. Thus the estimate of σ2
w will be σ̂2

w = σ2
w

and γ =
Pp

σ2
w

∑L−1
l=0 |hl|2. The proposed detector follows the approach of [88] which

exploits the property of OFDM signals (provided by the cyclic prefix (CP)) such

that the autocorrelation coefficients are non-zero at lags ±Nd and they are also the

log-likelihood ratio test (LLRT) statistic for a low signal to noise ratio (SNR). So

the test statistic is [88]

TAD =
1
N ∑N−1

n=0 R{x(n)x∗(n + Nd)}
1

2(N+Nd)
∑N+Nd−1

n=0 |x(n)|2

H1

R
H0

τAD, (5.11)

where N (N >> Nd) is the number of samples used in the autocorrelation esti-

mation, R{.} denotes the real part of a complex number and τAD is a threshold

value used to determine whether the primary user is present (TAD ≥ τAD) or not
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(TAD < τAD). The distribution of the test statistic in (5.11) can be approximated

(for sufficiently large N) as [88]

H0 : TAD ∼ N
(

0,
1

2N

)
,

H1 : TAD ∼ N
(

α,
(1− α2)2

2N

)
, (5.12)

where α = (NcPp
/
(Nd + Nc)) × ∑L−1

l=0 |hl|2/(Pp ∑L−1
l=0 |hl|2 + σ2

w). Therefore,

the probabilities of false alarm PFA and detection PD, conditioned on the channel,

are given by:

PFA = P
{

TAD > τAD
∣∣H0

}
=

1
2

erfc
(√

NτAD

)
, (5.13)

PD = P
{

TAD > τAD
∣∣H1

}
=

1
2

erfc
(√

N
τAD − α

1− α2

)
, (5.14)

where erfc(z) = 2√
π

∫ ∞
z exp(−t2)dt is the complementary error function.

5.6 P RO B L E M F O R M U L AT I O N

One of the most important parameter designs in spectrum sensing is τND where

ND = {ED, AD}. In the context of cognitive radio, the calculation of the τND is

generally determined by targeting a fixed false alarm probability while maximising

the detection probability. When the secondary user throughput is evaluated, τND is

determined by targeting a fixed detection probability (δ). Indeed, in this context, the

secondary users should not disturb the primary user up to a pre-defined detection

probability (δ) and this means that the secondary user would not cause any interfer-

ence to the primary receiver. For example, the τED must be calculable in an efficient

way and this can be done only by approximating the test statistic distribution of the

ED by a Gaussian distribution. For an AWGN (neglecting the channel term and NU

in (5.10)) then

τED = σ2
w + Pp +

Q−1(δ)√
N

(Pp + σ2
w). (5.15)

But when the channel is incorporated, then τED is calculated such that the average

detection probability (PD) is satisfied.

PD =
∫ ∞

0
Q
(
Th, σ2

w, N, δ, τED
)

f (Th)dTh ≥ δ, (5.16)
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where Th = ∑L−1
l=0 |hl|2 and f (.) is the p.d.f of Th. The τED that satisfies (5.16)

(for each σ2
w, N and δ) can only be calculated by an iterative method which is

a computationally inefficient solution. When there are two random variables, for

example channel and NU, the τED should satisfy the following inequality

PD =
∫ ∞

0

∫ 100.1B

10−0.1B
Q
(
Th, ρσ2

w, B, N, τED
)

f (ρ) f (Th)dρdTh ≥ δ. (5.17)

The determination of a τED that satisfies (5.17) (for each σ2
w, B, N and δ) is not

an easy task, especially in context of the cognitive radio which has to find the τED

value as quickly as possible.

One goal of this chapter is to determine the τED in a closed-form expression

in the presence of NU and over NFS channel for any value of σ2
w, B, N and δ.

Mathematically speaking, the τED has to be found analytically in a closed-form

expression such as

τED = Ξ(σ2
w, B, N, δ), (5.18)

where Ξ(σ2
w, B, N, δ) is a function resulting from an integration for the detection

probability over channel and NU p.d.f.’s. This calculation of τED can be only found

through the outage detection probability (Pout) which is written as follows

Pout = Prob{PD < δ}. (5.19)

The next section shows how by using (5.19) the sensing threshold or decision thresh-

old can be built into a theoretical expression for both the ED and the AD detectors.

5.7 T H R E S H O L D D E T E R M I N AT I O N

The channel in the PUTX → SUTX link is NFS and there also exists NU at SUTX.

Therefore, the estimated SNR ratio is defined at SUTx as γ =
Pp

ρσ2
w

∑L−1
l=0 |hl|2, where

γ is a random variable. Due to both the NU and the NFS channel there is a probabil-

ity that the random variable PD at SUTX may fall below δ, and so an outage could

occur. The objective is to upper bound the outage as follows:

Pout = Prob{PD < δ} ≤ θ, (5.20)



5.7 T H R E S H O L D D E T E R M I N AT I O N 125

where θ is the upper outage detection probability bound determined by the primary

user. Next we discuss the derivation of the sensing threshold for both the ED and

the AD such that (5.20) is satisfied.

5.7.1 Energy detector

The derivation of the sensing threshold for the ED will be done for two different

channel scenarios: i.e., the NFS channel and then the NFF channel.

5.7.1.1 Nakagami-m frequency-selective channel

In order to satisfy (5.20) for a given δ, it is necessary to compute the upper sensing

threshold (τED = τEDθ) that sets Pout = θ. What is now needed is to calculate the

sensing threshold (τEDθ) so that (τED ≤ τEDθ) values will satisfy (5.20). To do

this, we re-write (Pout = Prob{PD < δ}) in terms of the SNR γ at SUTX in the

PUTX → SUTX link, i.e.,

Pout =
(L−1

∑
l=0
|hl|2 ≤

τED − ρσ2
w A1

Pp A1

)
, (5.21)

where A1 = 1+ Q−1(δ)√
N

. From chapter 3, the random variable Th = ∑L−1
l=0 |hl|2 can

be approximated by a Gamma distribution function. Thus (5.21) becomes

Pout = Eρ

[
1− 1

Γ(KTh)
Γ(KTh ,

τED − ρσ2
w A1

φTh Pp A1
)

]
, (5.22)

where KTh and φTh are defined in subsection 3.6.1.2. To find a closed-form expres-

sion for the threshold value (τED = τEDθ) that satisfies Pout = θ using (5.22) is

intractable. Thus it is desirable to seek to use some upper bounds or lower bounds

for the upper incomplete Gamma function. We will use the following inequality

[103]

(1− exp(−ay))KTh ≤ 1−
Γ(KTh , y)
Γ(KTh)

, (5.23)

where

a =

 1, if 0 < KTh < 1

Γ(1 + KTh),
− 1

KTh if KTh > 1.
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By substituting (5.23) into (5.22), then (5.22) becomes

Pout ≥ Eρ

[(
1− exp(−a

[ τED

φTh Pp(1 + A1)
− ρσ2

w
φTh Pp

]))KTh
]

. (5.24)

To find the sensing threshold (τED = τEDθ) that satisfies Pout = θ using (5.24)

is still intractable. Thus some other approximation methods can be exploited. By

examining the expression inside the expectation in (5.24) it is seen that it is a mono-

tonically decreasing function in ρ and so Jensen’s Inequality can be applied:

Eρ

[(
1− exp(−a

[ τED

φTh Pp A1
− ρσ2

w
φTh Pp

]))KTh
]

≥
(

1−Eρexp(−a
[ τED

φTh Pp A1
− ρσ2

w
φTh Pp

]))KTh

=

(
1− exp(

−aτED

φTh Pp A1
)Eρ

[
exp(

ρσ2
w

φTh Pp
)
])KTh

.

(5.25)

By substituting (5.25) into (5.24) then after some manipulation, the threshold value

τEDθ that satisfies Pout = θ is given by

τEDθ = −
(φTh Pp(1 + A1)

a

)
× log2

[ 1− θ
1

KTh

Eρ

[
exp( aρσ2

w
φTh

)
]]. (5.26)

Notice that, when there exists only NFF (5.22) reduces to

Pout = 1− 1
Γ(KTh)

Γ(KTh ,
τED − σ2

w(1 + A1)

φTh Pp(1 + A1)
). (5.27)

Consequently, τEDθ is given by

τEDθ = σ2
w(1 + A1) + φTh Pp(1 + A1)Γ−1(KTh , Γ(KTh)(1− θ)). (5.28)

Also, when there is only NU then (5.20) becomes

Pout = Prob{PD < δ}

= Prob{10
−B
10 < ρ <

τED

σ2
w A1

− 1}

=
5

Bln(10)
ln(

τED

σ2
w A1

− 1) +
Bln(10)

10
,

(5.29)

and so

τEDθ = A1
[
σ2

wexp(0.5θBln(10)− 0.1Bln(10)) + 1
]
, (5.30)

where A1 = 1 + Q−1(δ)
N .
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5.7.1.2 Rayleigh flat-fading channel

For a Rayleigh fading channel (set m=1 for a Nakgami fading channel ), then (5.22)

is written as

Pout = Eρ

[
1− exp(− τEDθ

Pp(1 + A1)
+

ρσ2
w

Pp
)

]
, (5.31)

by examining the expression inside the expectation in (5.31) we can see that it is a

monotonically decreasing function in ρ and so Jensen’s Inequality can be applied.

Thus the threshold value τEDθ that satisfies Pout = θ is given by

τEDθ = −
(

φTh Pp(1 + A1)
)
× log2

[ 1− θ

Eρ

[
exp(aρσ2

w)
]]. (5.32)

5.7.2 Autocorrelation detector

This subsection derives the Pout for the AD over NFS. By substituting (5.14) into

(5.20) then the outage detection probability is given as

Pout = Prob

{
1
2

erfc
(√

N
τAD − α

1− α2

)
≤ δ

}
. (5.33)

Notice that (5.33) does not depend on the NU as shown in Figure 5.3. If we let

α = κγ
γ+1 where κ =

(
Nc
/
(Nd + Nc

)
, then the outage detection probability is

given by

Pout = Prob

{
1
2

erfc
(√

N
τAD − κγ

γ+1

1−
(

κγ
γ+1

)2

)
≤ δ

}
. (5.34)

Now (5.34) can be simplified to

Pout = Prob
{
4 ≤ 0

}
, (5.35)

where

4 = ε1γ2 + ε2γ + ε3,
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and

ε1 =
−κ2
√

N
erfcinv(2δ)− τAD +

(
κ +

1√
N

)
+ erfcinv(2δ)

ε2 =− 2τAD +
(

κ +
2√
N

erfcinv(2δ)
)

ε3 =− τAD +
1√
N

erfcinv(2δ),

where erfcinv(.) is the inverse complementary error function. Now 4 = ε1(γ−

γ1)(γ− γ2), and choosing the largest solution (γ2) then (5.35) can be written in

terms of γ as

Pout = Prob(γ ≤ γ2), (5.36)

where

γ2 =
(

1 +
2β

κ
+
√

4νβ + 1
)/(

2(κν− β

κ
− 1)

)
, (5.37)

with ν = 1√
N

erfcinv(2δ) and β = ν − τAD. Re-writing (5.36) in terms of the

channel coefficients then

Pout = Prob
{L−1

∑
l=0
|hl|2 ≤

σ2
wγ2

Pp

}
. (5.38)

The p.d.f. of of the random variable Th = ∑L−1
l=0 |hl|2, as before, is approximated

by a Gamma distribution with a shape parameter KTh and a scale parameter φTh

(defined in subsection 3.6.1.2). Thus (5.38) is given by

Pout = 1−
Γ(KTh , σ2

wγ2
PpφTh

)

Γ(KTh)
. (5.39)

Then the γ2 that satisfies Pout = θ can be found as

γ2 =
PpφTh

σ2
w

Γ−1(KTh , (1− θ)Γ(KTh)). (5.40)

By substituting (5.37) into (5.40), and after some mathematics, then the τADθ that

satisfies Pout = θ is:

τADθ =ν

(
1− 1

2β2
1

)
+

β2

β1

[
1−

√
ν2

4β2
1β2

2
+

1
4β2

2
− ν

β1β2

]
(5.41)

where β1 = −(γ2 + 1)
/

κ and β2 = κνγ2 − (γ2 + 0.5). Next the secondary

throughput will be discussed for both the ED and the AD.
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5.8 S E C O N DA RY U S E R ’ S T H RO U G H P U T

5.8.1 Nakagami-m frequency-selective channel

In this section, the average throughput of the secondary link (SUTX → SUTX) is

derived. Here it is assumed that a secondary network employs orthogonal frequency

division multiplexing (OFDM) technology. There are two reasons for adopting this

technology. First, it is a practical assumption, which is employed in many appli-

cations such as WIMAX, digital television and audio broadcasting. Second, this

assumption makes the analysis of the secondary throughput easier. The NFS chan-

nel of the secondary link (SUTX → SURX), g (channel gains), are written in the

frequency domain as

G = [|G(0)|2|G(1)|2. . . |G(J − 1)|2], (5.42)

where the complex channel coefficient at the kth subcarrier is expressed as

G(k) =
1√

J

L−1

∑
l=0

gl exp(i2πlk/J) k = 0, 1, ... , J − 1. (5.43)

Here J is the size of the discrete Fourier transform (DFT) (or the number of sub-

carriers) and gl is defined in (5.2). The amplitude of gl follows a Nakagami distri-

bution with a Nakagami parameter m and a spreading parameter Ωgl = E[|gl|2].

The phase of gl follows a uniform distribution over [0, 2π). The amplitude of G(k)

can be approximated by a Nakagami distribution with a new Nakagami parameter
_
m|G(k)| and a spreading parameter

_
Ω|G(k)| which are given as [63, 104]

_
m|G| =

_
Ω

2
|G|

1
m ∑L−1

l=0 Ω2
gl
+ ∑L−1

l1,l2=0
l1 6=l2

Ωgl1
Ωgl2

_
Ω|G| =

1
J

L−1

∑
l=0

Ωgl .

(5.44)
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Because these parameters are independent with respect to the index k, so k is omitted

from (5.44). The NFS channel of the interference link (PUTX → SURX), f (channel

gains), can be described in frequency domain as

F = [|F(0)|2|F(1)|2 . . . |F(J − 1)|2]. (5.45)

The complex channel coefficient at the kth subcarrier is written as

F(k) =
1√

J

L−1

∑
l=0

fl exp(i2πlk/J) k = 0, 1, ... , J − 1. (5.46)

Again the amplitude of fl follows a Nakagami distribution with a Nakagami pa-

rameter m and a spreading parameter Ω fl
= E[| fl|2]. Also, the amplitude of F(k)

can be approximated by a Nakagami distribution with a new Nakagami parameter
_
m|F(k)| and a spreading parameter

_
Ω|F(k)| [63, 104] which are written as

_
m|F| =

_
Ω

2
|F|

1
m ∑L−1

l=0 Ω2
fl
+ ∑L−1

l1,l2=0
l1 6=l2

Ω fl1
Ω fl2

_
Ω|F| =

1
J

L−1

∑
l=0

Ω fl
.

(5.47)

Again, because these parameters are independent of the index k, so k in (5.47) is

omitted. Here the throughput of the secondary link is defined in terms of the suc-

cess probability Psucc (i.e., probability of successful transmission times the bits/s/Hz

capacity). So the throughput is given as:

C = Psucc × log2(1 + γs) bits/s/Hz (5.48)

where γs is the secondary user’s desired SNR threshold (or SINR when the pri-

mary is present). The success probability can be expressed in terms of the outage

probability as

Psucc = 1− Pout, (5.49)

where Pout is the outage probability for the secondary link (SUTX → SURX). Thus,

it is necessary to derive Pout to solve (5.49). In the literature the definition of the

outage probability for an OFDM system is defined as follows. The OFDM system

is considered in outage when at least one OFDM subcarrier is in outage [105, 106,
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107]. This consideration comes because of the assumption of equal bit allocation

for all OFDM subcarriers. In addition, after a careful literature review on the outage

probability for an OFDM technology, the mathematical derivation of the outage

probability assumes that the subcarriers of channels are independent and identically

distributed random variables [105, 106, 107]. However, in practice the subcarriers

are correlated and this is due to the common of impulse response between different

subcarriers as shown in (5.43) and (5.46). This work takes into consideration the

effects of that correlation in finding the success probability. This consideration is

more realistic than in other works in [105, 106, 107].

Now, the average throughput of the secondary link (SUTX → SURX) may be

analysed in two different scenarios (without consideration of spectrum sensing).

1. The first scenario is when there is no primary user transmitting (H0). As an in-

dication of a successful reception at the receiver side, we introduce a global signal to

noise ratio SNRglobal0 (where the subscript “0” means under H0) at the secondary

receiver side (SURX). This is conducted by the summation of the signal to noise

ratio of all subcarriers at the secondary receiver side. When the SNRglobal0 > γs

then the reception at the secondary receiver side is successful. This SNRglobal0 can

be expressed (underH0) as

SNRglobal0 =
Ps

σ2
v

J−1

∑
k=0
|G(k)|2, (5.50)

where Ps, σ2
v are the secondary transmit power and the noise variance respectively.

Thus the success probability can be written as

Psucc0 = Prob
( Ps

σ2
v

J−1

∑
k=0
|G(k)|2 > γs

)
. (5.51)

But from Parseval’s theorem,

J−1

∑
k=0
|G(k)|2 =

L−1

∑
l=0
|gl|2, (5.52)

and so, (5.51) can be written as follows

Psucc0 = Prob
(L−1

∑
l=0
|gl|2 >

σ2
v γs

Ps

)
. (5.53)
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The random variable Tg = ∑L−1
l=0 |gl|2 in (5.53) follows a Gamma distribution with

a shape parameter KTg =
m(∑L−1

l=0 Ωgl )
2

∑L−1
l=0 Ω2

gl
and a scale parameter φTg =

∑L−1
l=0 Ω2

gl
m ∑L−1

l=0 Ωgl
.

Thus the success probability underH0 is given by

Psucc0 =
Γ(KTg , σ2

v γs
φTg Ps

)

Γ(KTg)
. (5.54)

Now the throughput of the secondary link (SUTX → SURX) when there is no pri-

mary user is given by

C0 = Psucc0×log2(1 + γs) bits/s/Hz. (5.55)

2. The second scenario is when there is a primary user (H1). In this scenario

the global signal to noise ratio SNRglobal1 (the subscript “1” means under H1) is

written as

SNRglobal1 =
J−1

∑
k=0

Ps|G(k)|2
σ2

v + Pp|F(k)|2
. (5.56)

Now the success probability is given by

Psucc1 = Prob
(J−1

∑
k=0

Ps|G(k)|2
σ2

v + Pp|F(k)|2
> γs

)
. (5.57)

Note that |G(k)|2 and |F(k)|2 follow Gamma distributions with the following pa-

rameters [104]

K|G| =
_
m|G|, φ|G| =

_
Ω

2
|G|

_
m|G|

, K|F| =
_
m|F| and φ|F| =

_
Ω

2
|F|

_
m|F|

, (5.58)

where (
_
m|G|,

_
Ω

2
|G|), (

_
m|F|,

_
Ω

2
|F|) are defined in (5.44) and (5.47) respectively. The

distribution of TGF = ∑J−1
k=0

Ps|G(k)|2
σ2

v+Pp|F(k)|2
is difficult to derive due to the existence

of the summation. During extensive simulations it is found that TGF can be ap-

proximated using a Gamma distribution with a shape parameter KTGF and a scale

parameter φTGF .

To find KTGF and φTGF , the mean and the variance of TGF have to be found. Since

the subcarriers are correlated, it is necessary to know the joint p.d.f. for two random
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variables of a Nakagami distribution. By using this p.d.f then the shape parameter

KTGF and the scale parameter φTGF are given by (see - Appendix A)

KTGF = µ2
TGF

/σ2
TGF

,

φTGF = σ2
TGF

/µTGF ,
(5.59)

where µTGF and σ2
TGF

are defined in (A.4) and (A.8) respectively. Thus the success

probability underH1 is given by

Psucc1 =
Γ(KTGF , γs

φTGF
)

Γ(KTGF)
. (5.60)

Finally, the secondary throughput when there exists a primary user, is

C1 = Psucc1 × log2(1 + γs) bits/s/Hz. (5.61)

5.8.2 Nakagami-m flat-fading channel

This subsection analytically characterizes the average throughput of the secondary

link, SUTX → SURX when the secondary network employs a non OFDM system

and over flat-fading channels. The difference between this subsection and the previ-

ous subsection is that, this subsection derives the exact expression for the success

probabilities under H0 and H1. As in the previous subsection two different scenar-

ios have been considered

1. The first scenario is when there is no primary user transmitting (H0). The

channel in the SUTX → SURX link now becomes

g = |g|2, (5.62)

where the subscript 0 in g is omitted. Thus the success probability can be written as

Psucc0 = 1− Prob
{Ps|g|2

σ2
v

< γs
}

, (5.63)

and the |g|2 follows Gamma distribution with scaling parameter Kg = m and shape

parameter φg = Ωg/m. As a result, (5.63) becomes

Psucc0 =
Γ(m, mγsσ2

v
ΩgPs

)

Γ(m)
. (5.64)
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Now the throughput of the secondary link (SUTX → SURX) when there is no pri-

mary user is given by

C0 =
Γ(m, mγsσ2

v
ΩgPs

)

Γ(m)
×log2(1 + γs) bits/s/Hz. (5.65)

2. The second scenario is when there is a primary user (H1). First, the channel

between the primary transmitter and secondary receiver is written as

f = | f |2,

and again the subscript 0 in f is omitted. Therefore, the success probability in this

scenario is given by

Psucc1 = 1− Prob
( Ps|g|2

σ2
v + Pp| f |2

< γs
)
, (5.66)

⇒ Psucc1 =
1

Γ(m)
E| f |2

[
Γ
(

m,
mγsσ

2
v + mγsPp| f |2

ΩgPs

)]
. (5.67)

The distribution of f follows a Gamma distribution with scaling parameter K f = m

and shape parameter φ f = Ω f /m. Using [[50], eq (1.111) and eq (8.352)] and

averaging over the distribution of | f |2 so (5.67) becomes

Psucc1 = Λ
[m−1

∑
r=0

r

∑
r1=0

(mγsσ2
v

Ω f Ps
)r−r1(

mγsPp
Ω f Ps

)r1

( m
Ω f

+
mγsPp
Ω f Ps

)m+r
× Γ(m + r1)

r1!(r− r1)!Γ(m)

]
, (5.68)

where Λ =
(m−1)!exp(mγsσ2

v
ΩgPs )

Γ(m)(
Ωg
m )m

. Thus the secondary throughput when there exists a

primary user is given as

C1 = Psucc1 × log2(1 + γs) bits/s/Hz. (5.69)

5.8.3 Energy detector

This subsection evaluates the average throughput when the ED is used for spectrum

sensing. When applying spectrum sensing and using (5.55) and (5.61), the average

throughput of the secondary link SUTX → SURX can be written as

CED = (1− N
W

)[P(H0)Prob(TED < τEDθ|H0)C0

+ P(H1)Prob(TED < τEDθ|H1)C1]

(5.70)
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where τEDθ is defined in (5.26). Also, Prob(TED < τEDθ|H0) = 1 − P̄FA and

Prob(TED < τEDθ|H1) = 1− PD. Note that P̄FA is the average of PFA over the

p.d.f of the NU and it is given by

P̄FA =
∫ 100.1B

10−0.1B
Q
(√

N(
τEDθ

ρσ2
v
− 1
)

fρ(t)dt. (5.71)

Now P̄D = E[PD] is the average of PD over the p.d.f.’s of Th and the NU and it is

given by

P̄D =
∫ 100.1B

10−0.1B
fρ(z)

×
[∫ ∞

0
Q
[

τEDθ − σ2
w − Ppt

1√
N

(
Ppt + ρσ2

w

)]× fTh(t)dt
]

dz
(5.72)

where Th = ∑L−1
l=0 |hl|2. The inner integral in (5.72) is derived in chapter 3 for a

Gaussian signal (see (3.25)). Thus (5.72) can be evaluated in one integral instead of

two integrals. By substituting, (5.71) and (5.72) into (5.70), then (5.70) becomes

CED = (1− N
W

)
[

P(H0)C0(1− PFA(τEDθ))

+ P(H1)C1(1− PD(τEDθ))
]
.

(5.73)

5.8.4 Autocorrelation detector

By employing the AD for spectrum sensing and using (5.55) and (5.61), the average

throughput of the secondary link is given by

CAD = (1− N
W

)
[

P(H0)C0Prob(TAD < τADθ

∣∣H0)

+ P(H1)C1Prob(TAD < τADθ

∣∣H1)
] (5.74)

where τADθ is defined in (5.41) and Prob(TED < τADθ

∣∣H0) = 1− P̄FA and P̄FA

is given by

P̄FA = PFA = P(TAD < τADθ

∣∣H0) =
1
2

erfc
(√

NτADθ

)
. (5.75)
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Notice that P̄FA = PFA because the false alarm probability is independent from the

noise variance. Also, (TAD < τADθ

∣∣H1) = 1− PD, where P̄D = E[PD] is the

average over the p.d.f. of Th and it is given by

P̄D = P(TAD > τADθ

∣∣H1)

=
1
2

[∫ ∞

0
erfc

(√
N

τADθ − κ1t/(Ppt + σ2
w)

1−
[

κ1t/(Ppt + σ2
w)

]2

)
× fTh(t)dt

]
(5.76)

where κ1 = (Nc

/
(Nd + Nc))Pp and Th = ∑L−1

l=0 |hl|2. The integral can be evalu-

ated numerically, and by substituting (5.75) and (5.76) into (5.74), then

CAD = (1− N
W

)
[

P(H0)C0(1− PFA(τADθ)

+ P(H1)C1(1− P̄D(τADθ)
]
.

(5.77)

Next the simulation results are discussed.

5.9 S I M U L AT I O N A N D D I S C U S S I O N

In this section, some simulation results are presented to justify the analytical re-

sults and to show the effect of both NU and the NFS channel on the secondary

throughput under outage constraint using the ED and AD. The system parameters

that have been used are as follows. For the NFS channel of PUTX → SUTX link (h),

SUTX → SURX link (g) and PUTX → SURX (f) link, the channels taps are gener-

ated according to an exponential power delay profile. The signal to noise ratios at the

SUTX → SURX link and PUTX → SURX link are set to
Ps ∑L−1

l=0 E|gl |2

σ2
v

= 20dB and
Pp ∑L−1

l=0 E| fl |2

σ2
v

= −10dB, respectively. γs =10dB, P(H0)=0.7, P(H1)=0.3, δ = 0.9,

Nc= 8, Nd = 32, and W =100(Nc + Nd) samples. The number of iterations that is

used for the simulation is 105.

Result 1: Theoretical results verification for threshold values (ED) in the pres-

ence of NU and over NFS and NFF channels (Figures 5.4, 5.5, 5.6 and 5.7).

Figures 5.4 (for different SNR values) and 5.5 (for different N values) show the

outage detection probability bound (θ) versus the sensing threshold (τEDθ) for the
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exact threshold (found via (5.22)) and the approximate threshold using Jensen’s

Inequality (see (5.26)) for L=2 and m=2. It is easily seen that this approximation is

almost tight for small values of θ and it is a lower bound for high values of θ.

Figures 5.6 and 5.7 show θ versus the τEDθ for both the exact threshold (found via

(5.31)) and and the approximate threshold using Jensen’s Inequality (see - (5.32))

for L=1 and m=1. It is evidenced from the simulation that both curves are almost

identical.

Result 2: Theoretical results verification for secondary throughput (ED) in the

presence of NU and over NFS channel (Figures 5.8 and 5.9).

Figure 5.8 depicts the theoretical result for the secondary throughput while the

ED used for sensing (for NFS, please see (5.26) and (5.73). For NFF, see (5.32) and

for (5.73)) and the simulation result (for both NFF and NFS see (5.21) and (5.73)).

The figure shows that the theoretical result is an upper bound for the simulation

result. Since τEDθ is a lower bound this implies that it is larger than the exact thresh-

old for a specific θ, as shown from Figures 5.4 and 5.5. This gives a small PFA and

PD. Subsequently, the resulting throughput becomes an upper bound for the exact

throughput.

Moreover, the figure illustrates that as L increases the secondary throughput im-

proves. This behavior can be interpreted as follows. As the τEDθ increases with

L for the same value of θ, as shown in Figure 5.9, reducing the PFA and PD and

accordingly the throughput improves.

Result 3: Secondary throughput (ED) in the presence of NU and over NFS

channel with different values of θ, L and m (Figures 5.10, 5.11, and 5.12).

Firstly, from Figure 5.10 it is easily seen that as θ increases the secondary through-

put increases (theory - see (5.26) and (5.73)). Moreover, it can be seen that as the θ

increases the optimum sensing time (i.e., the N = Nopt that maximizes the through-

put) decreases due to more outage being allowable

Secondly, Figure 5.11 shows that as the L increases, we initially get a consid-

erable improvement in the secondary throughput (L = 1, 2, 3) and then this gain

levels off for large values of L (L = 14, 15) (for the interpretation, see Result 2).



138 S E N S I N G - T H RO U G H P U T I N T H E P R E S E N C E O F N U A N D OV E R N F S

Thirdly, Figure 5.12 shows that the secondary throughput initially improves sig-

nificantly for m= 1 (Rayleigh fading channel) and m=2. After that it increases grad-

ually and then the throughput flattens out for m = 14 and 15. This can be explained

since as m increases the channel becomes less severe and then the effect of the chan-

nel eventually disappears for a very large value of m which is the case of an AWGN

channel.

Result 4: Secondary throughput (ED) in the presence of NU and over an NFS

channel with different values of B (Figure 5.13).

This figure plots secondary throughput (CED) against the sensing time (N) for

different values of B (theory - see (5.26) and (5.73)). It can be seen that as B in-

creases the secondary throughput decreases11. Moreover, it is observed that as B

increases the optimum sensing time (i.e., the N = Nopt that maximizes the through-

put) increases and then it decreases for B = 0.75. This can be explained as follows.

When B increases and reaches a certain value, the sensing is not beneficial and the

secondary user is less confident about any sensing decision. Therefore, it is advan-

tageous to reduce sensing time (as regards maximising the secondary throughput).

Result 5: Maximum throughput versus γs (Figure 5.14).

Now Figure 5.14 illustrates the relationship between the maximum secondary

throughput and γs. We can see from the figure that there exists an optimum γ∗s that

maximizes the secondary throughput. This is because log2(1+ γs) is an increasing

function and Psucc0 or Psucc1 is a decreasing function. Notice that the θ does not

have any effect on the optimum γ∗s .

Result 6: Secondary throughput (AD) in both the presence and the absence of

NU (Figure 5.15).

Figure 5.15 presents the secondary throughput for the AD in both the presence

and the absence of NU and over the NFS channel (theory - see (5.41) and (5.77),

simulation - see (5.33) and (5.77)). It is noticeable that NU has no affect on the

11 Notice that for small number of N, the secondary throughput is better for high values of B. This is

because the approximation of calculating the threshold value does not work well for high values of

B.
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secondary throughput and this is why the NU was not taken into account in the

analysis.

Result 7: Secondary throughput (AD) over NFS channel with different values

of θ, L, and m (Figures 5.16, 5.17 and 5.18).

Figure 5.16 shows the sensing-throughput tradeoff while the AD is used for sens-

ing for different values of θ. Here, it can be clearly seen that as the θ increases the

secondary throughput increases and this is because the restriction is less for high

values of θ.

Now Figure 5.17 depicts that by increasing the number of multipaths (L) the

secondary throughput is initially getting a considerable improvement ( L=1,3,5) and

then this gain levels off for large values of L (L=14,15).

Here Figure 5.18 illustrates the secondary-throughput tradeoff for different values

of m. It is clear from the figure that the secondary throughput initially improves

rapidly as m increases and then the improvement increases gradually until it flattens

out for high values of m (m=14,15). Notice that all the aforementioned figures in

Result 7 are plotted using (5.41) and (5.77).

Result 8: Sensing-throughput tradeoff comparison between the ED and the AD

in the presence of NU and over NFS channel (Figure 5.19).

Lastly, this figure shows a comparison between the ED and the AD in terms of

sensing-throughput tradeoff. It is shown in Figure 5.3 that the NU affects badly on

the detection performance of the ED and does not affect on the performance of AD.

However, this massive deterioration in the detection performance does not appear on

the secondary throughput. In other wards, the secondary throughput (when the ED

is used for sensing) is better compared with the AD. But the detection performance

of the ED is very sensitive to the NU (unlike an AD).
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Figure 5.4: θ versus the τEDθ over NU and NFS channels for the exact threshold and the

approximate threshold using Jensen’s Inequality, for different values of SNR. In

all cases, L=2, m=2, N = 500 and B = 0.25.
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Figure 5.5: θ versus the τEDθ over NU and NFS channels for the exact threshold and the

approximate threshold using Jensen’s Inequality, for different values of N. In all

cases, SNR = 10log Pp

σ2
w
= −7dB, L=2, m=2 and B = 0.25.
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Figure 5.6: θ versus the τEDθ over NU and NFF channels for the exact threshold and the

approximate threshold using Jensen’s Inequality, for different values of SNR. In

all cases, L=1 , m=1, N=500 and B = 0.25dB.
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Figure 5.7: θ versus the τEDθ over NU and NFF channels for the exact threshold and the

approximate threshold using Jensen’s Inequality, for different values of N. In all

cases, SNR = 10log Pp

σ2
w
= −7dB, L=1 , m=1 and B = 0.25dB.
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Figure 5.8: The achievable throughput, CED, versus the sensing time, N, in the presence of

NU and over NFS. In all cases, B = 0.75dB, θ = 0.15 and γave = 0dB.
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Figure 5.9: The threshold value, τEDθ , versus the number of multipaths L, where m=2,

N=300, B=0.75dB, θ = 0.15 and γave = 0dB.
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Figure 5.10: The secondary throughput,CED, versus sensing time, N. In all cases, L = 2,

m = 2, B=0.25dB and γave(in dB) = −5.
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Figure 5.11: The secondary throughput, CED, versus sensing time, N. In all cases, m = 2,

B = 0.5dB, θ = 0.15 and γave = −5dB.
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Figure 5.12: The secondary throughput, CED, versus sensing time, N. In all cases, L = 2,

B = 0.5dB, θ = 0.15 and γave = −5dB.
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Figure 5.13: The secondary throughput, CED, versus sensing time, N, for different values of

B. In all cases, L = 1, m = 1, θ = 0.15 and γave = −5dB.
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Figure 5.14: The maximum secondary throughput, max[CED], versus the secondary user’s

desired SNR/SINR,(γs), for different values of θ. In all cases, L =3 m=2,

B=0.5dB and γave (in dB) = 0dB.
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Figure 5.15: The secondary throughput, CAD, versus sensing time, N. In all cases, L = 2,

m = 2, θ = 0.15 and γave = −5dB.



146 S E N S I N G - T H RO U G H P U T I N T H E P R E S E N C E O F N U A N D OV E R N F S

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Sensing time (N)

 S
ec

on
da

ry
 th

ro
ug

hp
ut

 (
C

A
D

) 
(b

its
/s

ec
/H

z)
 

 

 

θ =0.05
θ =0.1
θ =0.15
θ =0.2

Figure 5.16: The secondary throughput, CAD, versus sensing time, N. In all cases, L = 2,

m = 2, and γave(in dB) = −5.
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Figure 5.17: The secondary throughput, CAD, versus sensing time, N. In all cases, m = 2,

θ = 0.15, and γave(in dB) = −5.
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Figure 5.18: The secondary throughput, CED, versus sensing time, N. In all cases, L=2,

θ = 0.15 and γave = −5dB.
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Figure 5.19: The secondary throughput for ED (CED) and for the AD (CAD) versus sensing

time, N. In all cases, m = 1, L = 2, B = 0.5dB, γave(in dB) = −5, and

θ = 0.15.
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5.10 C H A P T E R S U M M A RY

The sensing-throughput tradeoff under outage constraints has been studied in the

presence of NU and over NFS channel. This work consideres an NFS channel for

the sensing channel, the communicating channel (secondary link) and the interfer-

ence channel (caused by the primary user). Moreover, this study was based on two

different detectors, the ED and the AD.

Rigurous performance analyses have been done throughout the chapter. First, a

closed form expression for the sensing threshold under an outage constraint on the

detection probability is found. Second a closed form expression for the secondary

throughput is derived analytically. To derive the secondary throughput, success prob-

abilities for the secondary link under both the presence and the absence of a primary

user are derived theoretically.

Firstly, using the concept of outage detection probability, a closed form expres-

sion for the sensing threshold has been derived for the ED under NU and over the

NFS. Moreover, another closed form expression for the sensing threshold has been

found for the AD over NFS. Secondly, success probabilities for the secondary link

under both the presence and the absence of a primary user are derived theoretically.

Thirdly, closed form expressions for the secondary throughput for both the ED and

the AD are derived analytically in terms of the sensing threshold and the success

probabilities. In addition, all the theoretical results are verified by simulation.

The results have shown that the secondary throughput, when the ED and the AD

are used for sensing, improves with an initial increase for the number of multipaths

and then this improvement levels out. Also, for both the ED and the AD, when the

Nakagami fading parameter (m) increases the secondary throughput initially dra-

matically improves and then for high values of m the improvement it levels off.

Moreover, the simulation results have shown that the secondary throughput for the

ED case is sensitive to the NU. Furthermore, the simulation results show that there

exists a quality of service (the secondary user’s desired SNR threshold) that max-

imizes the secondary throughput. For the AD, the results have shown that the AD

detector is not affected by the NU and so the detection performance of the ED be-
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comes worst than the AD detection performance in the presence of NU. But even if

the ED is used for sensing, the secondary throughput is still superior compared to

using the AD for sensing.





6
C O N C L U S I O N S A N D F U T U R E W O R K

6.1 C O N C L U S I O N S

An important constraint in cognitive radio network is the lack of coordination and

cooperation with the primary network and this renders synchronization with the pri-

mary network unrealistic. In practical cognitive systems, durable sensing techniques

are a mandatory requirement to protect the primary receiver. Accordingly, Chapter 2

presents novel robust spectrum sensing algorithms such as N
2 -BLCD, SOMF-I and

SOMF-II which (in contrast with the MF) are insensitive to PN and CFO.

In reality, having a closed-form expression for detection probability may provide

a rigorous understanding of the principles of system design. This understanding

guides the designer to predict behavioural changes in cognitive or primary net-

works without the need for carrying through many Monte Carlo simulations for

each choice of parameters. So, unlike some previous work in the literature, chapter

3 investigates the performance of the ED over NFS channels in terms of three dif-

ferent considerations, namely; the average detection probability, outage detection

probability and the minimum number of samples which satisfy a desired ROC con-

dition.

An important stage in cooperative spectrum sensing is sending measurements to

the FC which can deplete valuable energy resources. Most existing solutions in co-

operative spectrum sensing use censoring techniques. However, not all the degrees

of freedom have been exploited here to reduce the energy overhead. Consequently,

chapter 4 proposes the CSCPC approach as an energy-efficient cooperative spec-

151
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trum sensing algorithm while taking into consideration the transmit power (the re-

quired power to send the measurements to the FC) along with the censored threshold.

Our results have shown that we can economise on transmit power and the primary

user’s protection is still guaranteed when compared to the conventional censoring

cooperative spectrum sensing (CSC).

To fully understand cognitive radio techniques, it is necessary to evaluate the cog-

nitive performance under practical scenarios. This provides a useful guideline for

the future design of a cognitive radio network. So, a comprehensive evaluation has

been conducted in terms of sensing-throughput tradeoff. In chapter 5, the sensing-

throughput tradeoff has been derived in the presence of NU and over NFS under

outage constraints for the ED and AD based on OFDM primary user signal. The

evaluation has been derived in terms of two parameters. The first considers a closed-

form equation for the sensing threshold while taking into consideration the NU and

the NFS while the second evaluates success probabilities under H0 and H1. The

simulation results have shown that the secondary throughput for the ED is very sen-

sitive to the NU and it degrades rapidly with a small change in NU bound. The

amount of the performance degradation depends on the NU bound. The secondary

user’s throughput is however not affected when the AD is used for spectrum sens-

ing. Furthermore, simulation results have shown that while the NFS degrades the

secondary user’s performance, the degradation may be mitigated with an initial in-

crease in L and m and then the improvement levels out.

Moreover, the results have shown that the ED (in the presence of NU) provides

a better secondary user throughput compared to the AD. The ED detection perfor-

mance however, deteriorates compared to the AD in the presence of NU. Finally,

the results show that there exists a secondary user’s desired SNR threshold that

maximises the secondary throughput.

6.2 F U T U R E W O R K A N D O P E N D I R E C T I O N S

All the previous work has stimulated thought about existing practices and provoked

discussion about future research directions. A few of these are listed below.
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First approach

Regarding the CFO in chapter 2, the study may be extended for cooperative spec-

trum sensing with different CFO’s. The analysis may start by examining in depth

the behavior of the cooperative spectrum sensing at the FC. Then the study might

include some different CFO estimators (e.g., ML).

Furthermore, it might be interesting to look at spectrum sensing using MIMO

technology in the presence of CFO. In addition, the effects of other RF impairments

such as IQ imbalance, sampling errors and jitter could be investigated on the perfor-

mance of both the MF and the ED.

Second approach

This new approach is based on the investigation in chapter 3. Energy consumption

can also be incorporated with the detection performance over NFS. The number

of multitaps (L) may be estimated which can be exploited such that the number of

received samples (N) is reduced and the target detection is satisfied subsequently

reducing the energy consumption. In addition, the study may include cooperative

spectrum sensing when both the sensing and the reporting channels are NFS.

Third approach

In chapter 4 both channel and the distance between the secondary users and the

FC are assumed to be known. For a more realistic scenario, such parameters could

be estimated leading to an investigation of estimation errors on the architecture of

detection and the energy overhead problems. Furthermore, the problem would be

more interesting if the primary user assumed mobility modeled by a Possion process.

Moreover, the number of received samples can be incorporated into the evaluation

of the energy overhead. In addition, both ξ and pt have not yet been found in closed

form expressions and that is something that could be investigated.
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The work in chapter 4 was dependent on a centralized detection problem. How-

ever, an attack on, or a failure to the FC, may harm the detection solution. Thus

another possibility is to use decentralized algorithms to tackle the problem of the

FC failure, e.g., consensus algorithms.

Fourth approach

In chapter 5 the cognitive performance has been studied based on the outage de-

tection probability. In this thesis the outage detection bound (θ) has been assumed

to be known or determined by the primary user. In practice, the typical value of

the θ could be analytically determined by relating it with the primary user’s outage

probability. In addition, the sensing time that maximises the throughput could be

optimized in the presence of the NU and NFS.

In chapter 5 the sensing-throughput tradeoff problem has been studied only for

the secondary link. This work can be extended for the case of the primary link by

including the effect of the NU and the NFS on the primary user’s receiver.

In the investigation of the sensing-throughput tradeoff problem, other detectors,

for example cyclostationary and eigen detectors, might be included in the study in

terms of secondary throughput, primary throughput and system complexity.

In this thesis, the performance evaluation of the cognitive radio has been con-

ducted for a local secondary user. This could be extended to cooperative secondary

users.

In the evaluation of sensing-throughput tradeoff the success probability has been

used as a metric. Other metrics can also be used such as ergodic capacity, etc.
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The joint p.d.f. for a bivariate Nakagami distribution is given by [104]
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where x ≥ 0, y ≥ 0. For our scenario, x = |X(k1)|, y = |X(k2)|, where k1 6= k2,

X = {G, F}, and k1,2 = 1 : J − 1. Also,
_
m =

_
m|X|, Ωx = E(x2), Ωy = E(y2),

and ρ1 = cov(x, y)/
√

var(x)var(y) where 1 > ρ1 > 0.

Derivation of the mean and the variance of global SNR under H1 (see (5.56)) is

derived in this Appendix. The global SNR underH1 is

TGF =
J−1

∑
k=0

Ps|G(k)|2
σ2

v + Pp|F(k)|2
. (A.2)

By letting xk = |G(k)|2 and yk = |F(k)|2 then

TGF =
J−1

∑
k=0

xk
a + byk

(A.3)

where a = σ2
v

Ps
and b =

Pp
Ps

.

A.1 E X P E C T E D VA L U E C A L C U L AT I O N

Because xk and yk are independent thus

µTGF = E[TGF] =
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∑
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1
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. (A.4)
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Because xk and yk are independent in k so we omit k in (A.4). Since both x and y

follow Gamma distributions so
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By using [ [50], eq. (3.353.5)], then (A.6) can be re-written as
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where Ei = −
∫ ∞
−a1

e−t

t dt. By substituting (A.7) and (A.6) into (A.6) we get the

final result.

A.2 VA R I A N C E C A L C U L AT I O N

The variance of A.2 can be written as
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. Because xl and yl are independent in l so we omit l
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Finally by substituting (A.4), (A.9) and (A.10) into (A.8), then the variance in (A.8)

is obtained.
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