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ABSTRACT

The employment of cognitive (intelligent) radios presents an opportunity to effi-
ciently use the scarce spectrum with the condition that it causes a minimal distur-
bance to the primary user. So the cognitive or secondary users use spectrum sensing
to detect the presence of primary user.

In this thesis, different aspects related to spectrum sensing and cognitive radio
performance are theoretically studied for the discussion and in most cases, closed-
form expressions are derived. Simulations results are also provided to verify the
derivations.

Firstly, robust spectrum sensing techniques are proposed considering some re-
alistic conditions, such as carrier frequency offset (CFO) and phase noise (PN).
These techniques are called the block-coherent detector (% -BLCD), the second-
order matched filter-I (SOMF-I) and the second-order matched filter-II (SOMEF-II).
The effect of CFO on %—BLCD and SOMF-1 is evaluated theoretically and by sim-
ulation for SOMF-II. However, the effect of PN is only evaluated by simulation for
all proposed techniques.

Secondly, the detection performance of an energy detector (ED) is analytically
investigated over a Nakagami-m frequency-selective (NFS) channel.

Thirdly, the energy efficiency aspect of cooperative spectrum sensing is addressed,
whereby the energy expenditure is reduced when secondary users report their test
statistics to the fusion center (FC). To alleviate the energy consumption overhead,
a censored selection combining based power censoring (CSCPC) is proposed. The
accomplishment of energy saving is conducted by not sending the test statistic that
does not contain robust information or it requires a lot of transmit power. The de-
tection performance of the CSCPC is analytically derived using stochastic geome-

try tools and verified by simulation. Simulation results show that that the CSCPC

vii



technique can reduce the energy consumption compared with the conventional tech-
niques while a detection performance distortion remains negligible.

Finally, an analytical evaluation for the cognitive radio performance is presented
while taking into consideration realistic issues, such as noise uncertainty (NU) and
NFS channel. In the evaluation, sensing-throughput tradeoff is used as an exami-
nation metric. The results illustrate the NU badly affects the performance, but the

performance may improve when the number of multipath increases.
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INTRODUCTION

1.1 BACKGROUND

Today, frequency spectrum is as precious as gold and oil. Service providers must
pay millions of dollars to buy the rights to use a certain band of frequency. With
the proliferation of wireless communication technologies over the last few decades,
new wireless applications have become widespread co-existing in the same geolo-
cation. Because of these technologies, the demand for higher data rates has become
essential as the number of wireless subscribers has increased, leading to a saturated
frequency spectrum.

The National Telecommunications and Information Administration’s (NTIA) fre-
quency allocation chart illustrated in Figure 1.1 shows that most of the frequency
spectrum is allocated or licensed to traditional communications systems and ser-
vices [4]. However, statistics and measurements from the Federal Communications
Commission (FCC) state that the licensed spectrum is not used in some time-frequen-
cy intervals over certain geographic areas [5]. For example, the utilization of some
licensed bands is about 5% or even less [6]. This means 95% of the time or the area
is not exploited although there is another operator/service that requires a new band
to work on but the spectrum has no space or capacity to accommodate it.

The operation of spectrum allocation, e.g., issuing a license for a specific radio
spectrum for exclusive or shared usage, and proclaiming spectrum as unlicensed, is
supervised by governmental agencies which are called regulators such as the Office

of Communications (Ofcom) in the UK and the FCC in the USA. The traditional
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Figure 1.1: U. S. frequency allocations [1].

spectrum allocation policy allocates a static spectrum to a particular system and this
spectrum can not be used by other services by new users (even if it is underutilized).

Both emerging wireless technologies and the static spectrum allocation policy are
reasons for the shortage of frequency spectrum. Consequently, there is a request in
the communication community that the current spectrum allocation policy should
be reformed to be more flexible in order not to waste spectrum without exploitation
[7].

A solution for this problem is the recycling of the licensed bands which can be
done by cognitive radio (CR) and dynamic spectrum access (DSA). The CR, a term
coined by Mitola in 1991 [8], is a promising idea that has been suggested as a
solution linking spectrum scarcity and spectrum under-utilization which is an in-
telligent radio that is aware of its surrounding environment [9]. The DSA implies
the utilization of portions of radio spectrum in a flexible manner with respect to
technical regulatory and constraints. The DSA aims to change the current spectrum

allocation policy to make it more adaptable.
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Figure 1.2: A cognitive network [2].

1.2 COGNITIVE RADIO

According to Haykin [6], a CR is “an intelligent wireless communication system
that listens to its surrounding environment and uses the methodology to learn from
the environment and adapts its internal states by making corresponding changes
in certain operating parameters (e.g., transmit-power, carrier frequency and modu-
lation strategy) in real time”. From the definition, the CR has two features which
are the capability and the reconfigurability which distinguishes the CR from tradi-
tional radio. The capability is defined as the ability to sense the surrounding radio
environment, analyze the acquired information and accordingly identify the best
available spectrum bands for operation. The reconfigurability is defined as the sec-
ondary user’s ability to adopt its operational parameters such as the transmit-power,
carrier frequency, bandwidth and modulation strategy, based to the data collected
from the surrounding environment and subsequently the secondary user can operate
optimally in the candidate spectrum bands.

The goal of CR technology is to elevate the utilization of the frequency spec-

trum to be more efficient [10]. In a cognitive radio network there are two opera-
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Figure 1.3: Dynamic spectrum access [3].

tors as shown in Figure 1.2. The first operator is a primary user who is defined as
the owner (or the licensee) of a particular part of the frequency spectrum and has
higher primacy rights to access this part of the spectrum. The second operator is
a secondary user/unlicensed device who (having lower rights on the usage of this
spectrum) attempts to harness the licensed band/primary band opportunistically in

a manner such that the primary receiver is protected from any harmful interference.

1.3 DYNAMIC SPECTRUM ACCESS (DSA)

The driving force behind cognitive radio is DSA in which allows secondary users to
access the spectrum if the primary receiver will not be negatively effected. DSA may
be widely classified under three models namely; dynamic exclusive model, open
sharing model and hierarchical access model [3, 11, 12] as illustrated in Figure
1.3. In the dynamic exclusive model, the basic structure of the current spectrum

regulation is maintained. However, the difference is that the primary users can give
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secondary users the right to use at a specific band for a certain period of time or a

specific location. This model has two approaches:

1. The first approach is the spectrum property rights in which primary users can

sell and trade spectrum [13].

2. The second approach is the dynamic spectrum allocation in which, the spec-

trum at a given region and at a given time is reserved to service exclusive use

[14].

This approach could improve spectrum efficiency, but it cannot exploit white space
(licensed bands that are not in use for some points in space/time), spectrum holes,
or a spectrum opportunity that may occur when the primary user does not access its
band.

In open sharing models, all users are allowed to access the spectrum. This model
is already in use in the Industrial, Scientific and Medical (ISM) band. Since this
model can be used by heterogeneous wireless technologies, the possibility of inter-
ference is very high.

In the hierarchical access model, the spectrum can be accessed by secondary users

while avoiding interference to the primary users. There are three approaches under

this model [15].

1. An underlay approach: in which imposing restrictions on the transmission
power of secondary users is adopted, such that no interference is caused to
primary users (e.g., ultra wide band (UWB) transmission). This approach,
places a restriction on the transmit power of secondary users requiring them to
transmit with very low power and in a small area. Furthermore, the secondary
user has to estimate or predict the interference limit at the primary receiver

which increases system complexity.

2. An overlay approach: in this approach the secondary user uses some informa-
tion about the primary user such as codebooks and assists” the primary user

with its transmissions. However, this approach is very complex.
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3. Interweave (or opportunistic spectrum access): this approach does not place
any severe constraints on the transmission power of secondary users, but ex-
pects them not to cause interference to the primary user. This can be done by
allowing the secondary users to identify white spaces that can be exploited.
As a result, secondary users should have cognitive radio qualifications, i.e.,
sensing the spectrum to determine the presence or the absence of the primary

user.

Due to the above disadvantages for the dynamic exclusive model, open sharing
model, underlay approach and overlay approach this thesis focuses on the cognitive

radio based interweave approach.

1.4 COGNITIVE RADIO ASPECTS

The most important tool in interweave cognitive radio is spectrum sensing and is
used to determine the activity of the primary user. If the secondary user finds the
primary user absent then the secondary user can access the frequency spectrum
such that the primary receiver is protected from interference. Also, the secondary
user needs to vacate this frequency spectrum as soon as the primary user starts its
transmission.

Many techniques have been suggested to conduct spectrum sensing and among
them MF and ED techniques are the most widely used in practice due to their sim-
plicity. Employing them some times depends on the availability of prior information
about the primary signal and one may choose one of the above approaches for spec-
trum sensing in cognitive radio networks. For example, when the secondary user
knows some information about the primary user such as a pilot, preamble, or train-
ing sequence (used by a primary network for channel estimation or synchroniza-
tion), the recommended detector is the MF. However, if the secondary user does not
have information about the primary user, the ED becomes the optimal detector [16].

In practice, several drawbacks make local sensing difficult. Such drawbacks in-

clude severe multipath fading, shadowing, or the secondary user inside buildings
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Figure 1.4: Cooperative spectrum sensing.

with penetration loss. As a result, the secondary user may not detect the presence of
the primary user, and so accessing the licensed band and causing interference to the
primary user. Cooperative spectrum sensing has been proposed in the literature to al-
leviate these challenges. In cooperative spectrum sensing, there are secondary users
distributed over a specific area. Each secondary user (SU) sends its measuremen-
t/test statistic regarding the primary user (PU) to a fusion center (FC) to calculate
the final decision as illustrated in Figure 1.4.

As mentioned above, that secondary user searches in the licensed or primary band
until it finds a vacant channel and then it starts its transmission/communication. This
means that the secondary transmitter communicates with the secondary receiver
under the condition of not causing a failure to the primary link. Obviously, the
secondary transmission depends on the result of spectrum sensing. Thus spectrum
sensing and the secondary transmission are intertwined. Therefore, the secondary
transmission should also be considered when spectrum sensing is investigated.

To protect the primary receiver from the possibility of any interference, the sec-
ondary user is allocated a time slot that is divided into two parts [17]; one for sensing
and the other for transmission. Both the sensing and the transmission are conducted
periodically over the period of time that the licensed spectrum is used. On one hand,
it can be seen that as the time allocated for sensing increases the transmission de-
creases ensuring the primary receiver is kept secure. On the other hand, as the sens-
ing decreases the transmission time increases and the primary user is exposed to a
high potential for interference. From this discussion, it appears that there exists a

tradeoff between the spectrum sensing and the secondary transmission. This struc-
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ture of the secondary user frame is widely used in cognitive radio papers and is thus

adopted in this thesis [18].

1.5 MOTIVATION

As mentioned before, the CR is a promising technology for the conflict between the
spectrum scarcity and spectrum under-utilization. To protect the primary user from
any potential interference caused by the secondary user, the sensing and transmis-
sion should be conducted periodically. To achieve the goal of CR, this thesis studies
and investigates in depth two different aspects in CR, which are spectrum sensing
and secondary transmission .

Although the first aspect (spectrum sensing) has been studied extensively in liter-
ature where a lot of practical issues have been tackled depending on the employed
detector, many issues have not been covered for local and cooperative spectrum sens-
ing. The first part of the thesis investigates different subjects in spectrum sensing.
For example, the thesis exposes some issues that might prevent perfect operation
of cognitive radio. Moreover, robust detection techniques are proposed to mitigate
some of these issues. Furthermore, spectrum sensing performance will be investi-
gated for unexplored environments. In addition, developing an energy-efficient co-
operative spectrum sensing scheme to reduce the energy overhead due to sending
the test statistics to the FC.

In the literature, the conventional spectrum sensing algorithms, such as MF, are
no longer reliable and effective since these techniques do not take into account re-
alistic scenarios such as CFO and PN [19, 20, 21]. Although, CFO and PN have
been extensively studied in a conventional wireless communication system. How-
ever, not enough research has been conducted in the area of spectrum sensing in the

presence of CFO and PN. These issues motivate us to develop new spectrum sens-

This section mentions only the subjects that will be covered throughout the thesis. Each chapter
is self contained and so a literature review related to each subject will be presented in a separate

chapter.
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ing techniques which have the capability to exploit the primary known information
and perform perfectly under the CFO and PN conditions.

In addition, previous research on the detection performance of the ED is limited to
flat-fading channels [22, 23, 24, 25]. The literature fails to investigate the detection
performance of ED over realistic environment such as a Nakagami-m frequency-
selective (NFS) channel. This gap motivates us to investigate the behavior of the
ED over the NFS. This investigation helps the network designers to improve the
overall network performance.

Sending the test statistics to the FC consumes a lot of power. In the literature
[26, 27, 28, 29, 30, 31, 32], the alleviation of power consumption was based on
censoring/not transmitting to the FC test statistics (based on a local threshold) that
are not robust. However, all the above mentioned papers have not taken into account
the transmit power for secondary users?, which is a function of the channel, and the
distance between the secondary users and the FC. Unlike previous work, this thesis
includes a transmit power in the detection problem which might reduce the overhead
power for sending test statistics to the FC while the detection performance loss is
negligible.

The second part of the thesis focuses on the secondary throughput. After protect-
ing the primary receiver from any potential interference through spectrum sensing,
the ultimate goal for the secondary user is to access the licensed band. The CR per-
formance is coupled with spectrum sensing. In the literature [33, 34, 35, 36, 37], the
CR performance has been extensively studied in terms of sensing-throughput trade-
off by relaxing some realistic scenarios. For example, previous works have assumed
that the noise variance at secondary user is known and that the sensing channel is
AWGN. The purpose of this relaxation is to provide an analytical study for cogni-
tive radio performance. This thesis provides an analytical evaluation of cognitive
radio performance in realistic scenarios such as noise uncertainty (NU) and NFS
channel. Studying the cognitive radio performance in the presence of NU and over
NFS channels provides an in-depth understanding of system design in industry and

academia. The objective and contribution of this thesis are now discussed.

2 The required power to send a test statistic to the FC.
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1.6 THESIS OBJECTIVE

1. The first aim of the thesis is to design reliable spectrum sensing techniques
for cognitive radio. The objective is to design robust spectrum sensing where

RF impairments are present, such as CFO and PN.

2. The second objective of this thesis is the investigation of the performance of

the ED over an NFS channel.

3. Furthermore, the thesis develops a reliable energy-efficient cooperative de-
tection technique, taking into account the power needed to transmit the test
statistics to the FC. The technique is designed for a realistic scenario that in-
cludes small (Nakagami-m flat-fading channel (NFF)) and large scale fading
(path loss).

4. Finally this thesis provides a theoretical framework for evaluating secondary

user throughput over uncertain environments, such as NU and NFS.

1.7 MATHEMATICAL PRELIMINARIES
1.7.1 Nakagami-m distribution

The Nakagami-m probability density function is given by

m

fx(x) = %(5) " lexp(—mx?/Q)), (1.1)

where m is the Nakagami fading parameter and Q) = IE[X?] is controlling spread.
The wide versatility, experimental validity and analytical tractability of the Nak-
agami distribution has made it a very popular in wireless communications. The
reason for adopting this particular model is that the m - distribution includes the
Rayleigh and the half-Gaussian as special cases (m =1, m = %), and it can be
made to approximate other exact or experimentally derived distributions by judi-

cious choice of parameters.
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Notice that (1.1) is the p.d.f of channel amplitude. When there is a Nakagami

fading channel, the channel power gain (X?) may follow the Gamma distribution
fre(t) = = exp() (1.2)
X = ek OPUg ) '

where k = m and 6 = % are the shape and scale parameters respectively.

1.7.2 Stochastic Geometry

In chapter 4, stochastic geometry is employed to model cooperative spectrum sens-
ing networks. So, here we introduce the basics of stochastic geometry.

Stochastic geometry [38] is a mathematical tool that allows the study of random
phenomena in the plane or in higher dimensions. Stochastic geometry is closely
related to the theory of point processes (PPs)[39]. The exploitation of stochastic
geometry was first used in biology, astronomy and material sciences. Nowadays, it
is widely applied in wireless communications (author?) [40].

Poisson Point Process (PPP) is the most used, most tractable PPg in wireless
communication because of its independence [39]. This thesis is interested in two
dimensions. So a PP ® = {(0;,7;), i = 1,2,3, ... } C R?, where (6;,7;) is the
polar location of the ith secondary user, is a PPP if the number of points inside
any compact set £ C IR? is a Poisson random variable, and positions are uniformly
distributed (author?) [40].

Now some useful properties of the PPP are presented.

* For a PPP with intensity A, the number of secondary users in a certain area A
is a Poisson random variable with parameter A.A. When the secondary users
face fading channels, the fading marks x;, are assigned to each secondary user
and that forms a Marked PPP? (MPPP) with intensity A fx (x), where fx(x)

is the probability density function for the fading channel gain.

* The thinning of a PPP is defined by selecting some secondary users with prob-
ability p and discarding other secondary users with probability 1 — p. This se-

lection or discard results in two independent PPPs of intensity parameters pA

3 For more details regarding MPPP please refer to [38].

11
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and (1-p)A. For example, using ALOHA as the MAC protocol in a wireless

network leads to a thinning of the node set.

* The PPP is called homogenous if the intensity function is a constant A, oth-
erwise it is called inhomogeneous/nonhomogeneous when its intensity is a
function of the position (6,7), (i.e., A(6,7)) .

The above properties are very useful in calculating the average of the sum or the
product of PPP. If we let 0(9, r, x) . ]R? be measurable and ® is MPPP, then we

have the following properties:
1. the probability generating function (author?) [38] (PGF) of a MPPP of den-
sity A(0,7) fx(x) is given by
G(0,r) = Eqx, [ I U(Gizrizxi)}

(0;,r;)€®
:eXp(—/X/RZ)\(G,r)(l—v(@,r,x)) (1.3)
fx (x)dxdedr) .

2. Campbell ’s theorem (author?) [38] can be used for calculating the mean of
the sum
Y6,y e@ 005, 7i, ;)
Eg,y, [ Y. o6, xi)} = / / A(6,7)0(0,7,x)
(0,17 €® X JR? (1.4)
X fx(x)dxdfdr.
In general, Campbell’s theorem is used to evaluate the average of a sum and the
PGF is used for calculating the average of a product of a function over the point

process.

1.7.3  Model of noise uncertainty

For many spectrum sensing techniques, the receiver noise power is assumed to be
known a priori (¢2). However, when there is noise uncertainty (NU) the noise

power level may change over time* and the noise power will be pazzu, where p is

4 More details for noise uncertainty are in chapter 5.
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called the NU factor [41]. Here p (in dB) is modeled as a uniform distribution in
the interval [—B, B, where B (in dB) is the NU bound and B = sup[10 logo(p)].
The effect of noise uncertainty will be used only for simulations in chapters 2,3,4

and analytically in chapter 5.

1.8 THESIS ORGANIZATION AND CONTRIBUTION

The thesis primarily covers several issues regarding cognitive radio, each of which
is presented in a separate chapter. A literature review is provided for every issue.
Furthermore, mathematical derivations are provided for the discussion and in most
cases, closed-form equations are derived. Simulation results are also provided to
verify the derivations.

The contributions of this thesis is the design, investigation and exploration of
spectrum sensing and secondary user throughput. A detailed organization is illus-
trated next.

Chapter 2

This chapter addresses the issue of the spectrum sensing in the presence of RF
impairments such as the CFO and the PN. To mitigate the RF impairment issue,
three novel detectors have been proposed; a block-coherent detector (%—BLCD)
with a suboptimal number of blocks (N/2), a second-order matched filter-I (SOMF-
I) and a second-order matched filter-II (SOMEF-II). Theoretical derivations are given
for the detection performance of %—BLCD, SOMF-I, and SOMEF-II.

The contributions of chapter 2 have been previously presented in the following

publications:

1. Y. Sharkasi, D. McLernon, and M. Ghogho, “Robust spectrum sensing in
the presence of carrier frequency offset and phase noise for cognitive radio,”

IEEE WTS, London, UK, 2012.

2. Y. Sharkasi, D. McLernon, and M. Ghogho, “Spectrum sensing in the pres-
ence of RF impairments in cognitive radio,” International Journal of Interdis-

ciplinary Telecommunications and Networking (IJITN), 2012.

13
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Chapter 3

This chapter investigates the detection performance of the ED over an NFS chan-
nel. Theoretical derivations are presented for the average detection probability of
the ED over the NFS channel. Also, the analysis of the outage detection probability
is given.

The contribution of chapter 3 is based on the following publications:

1. Y. Sharkasi, D. McLernon, and M. Ghogho, “Performance analysis of a cog-
nitive radio energy detector over frequency-selective fading channels,” IEEE

ISWCS, Paris, France, 2012.

2. Y. Sharkasi, D. McLernon, and M. Ghogho, “Cooperative spectrum sensing
over frequency-selective nakagami-m fading channels,” SSPD, London, UK,

2012.

Chapter 4

This chapter proposes a new algorithm for cooperative spectrum sensing in order
to reduce the power needed to transmit the test statistics to the FC. The proposed al-
gorithm is called a censored selection combining detector based on power censoring
(CSCPC). Unlike previous work?, the CSCPC takes into account the needed trans-
mit power to send the test statistics to the FC. Also, the detection performance of
a conventional censored cooperative spectrum sensing at the FC is analytically de-
rived and is called censored selection combining (CSC) detector . Both the CSCPC
and the CSC approaches are analysed using stochastic geometry.

This chapter’s contribution is reflected in the next publications:

1. Y. Sharkasi, M. Ghogho, D. McLernon and S. Zaidi, ”Performance analysis of
cooperative spectrum sensing for cognitive radio using stochastic geometry,”

IEEE EUSIPCO, Rabat, Morroco, 2013.

2. Y. Sharkasi, M. Ghogho, D. McLernon and S. Zaidi, “Energy-efficient coop-
erative spectrum sensing for cognitive radio using stochastic geometry,” to be

submitted to IEEE Transactions on Wireless Communications.

5 The conventional algorithms for cooperative spectrum sensing based energy effecient are based on

censoring test staitsics regrading a local threshold.
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Chapter 5

This chapter studies the effect of the NU and the NFS on the tradeoff between
the spectrum sensing and secondary transmission. The secondary performance is
analytically investigated in terms of sensing threshold under an outage constraint in
the presence of NU and over NFS, and success probabilities under the null and alter-
native hypotheses respectively®. This study is based on two different detectors: the
ED and the autocorrelation detector (AD)’. The theoretical derivation of the sensing
threshold under an outage constraint is presented. Then success probabilities under
the null and alternative hypotheses are derived.

This contributions of this chapter are published in the following papers:

1. Y. Sharkasi, D. McLernon and M. Ghogho, “Sensing-throughput tradeoff for

cognitive radio under Outage constraints over frequency selective fading chan-

nels,” IEEE ISP, London, UK, 2013.

2. Y. Sharkasi, M. Ghogho, and D. McLernon, “Sensing-throughput tradeoft for
OFDM-based cognitive radio under outage constraints,” IEEE ISWCS, Paris,
France, 2012.

3. Y. Sharkasi, D. McLernon, M. Ghogho and S. Zaidi, “On spectrum sensing,
secondary and primary throughput, under outage constraint with noise uncer-

tainty and flat fading,” IEEE PIMRC, London, UK, 2013.

4. 3. Y. Sharkasi, D. McLernon and M. Ghogho, “Sensing-throughput tradeoff
in the presence of noise uncertainty and over nakagami-m frequency-selective

channels,” to be submitted to IEEE Transaction on Vehicular Technology.

Chapter 6

This chapter presents the thesis conclusion and talks about future work.

6 Here the null hypothesis means that the primary user is not present and only noise is present. The

alternative hypothesis means that there is a primary user signal plus noise.
7 For the sake of comparison, another detector is chosen such that it is insensitive to the noise uncer-

tainty problem. This detector is the autocorrelation detector based on an OFDM signal. Thus the

spectrum sensing threshold based on an autocorrelation detector is derived.
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ROBUST SPECTRUM SENSING TECHNIQUES IN THE
PRESENCE OF CFO AND PN

2.1 INTRODUCTION

As mentioned in the previous chapter, spectrum sensing is the most important stage
in a CR. To protect the primary receiver from any potential interference, spectrum
sensing should be robust to an uncertain environment such as synchronization er-
rors, carrier frequency offset (CFO) and phase noise (PN). This chapter deals with
designing robust spectrum techniques in the presence of CFO and PN.

In this chapter, the case to be considered is when the secondary user has a-priori
knowledge of the primary signal. In this scenario, it is known that the optimal de-
tector is the MF [16]. Information regarding the primary user can be made available
for the secondary user via pilots or preambles, which are used for coherent detec-
tion. For example, in a digital TV broadcast (ATSC), there is a training-sequence
used for channel estimation. In addition, an OFDM system also uses preambles for
packet acquisition.

However, when the MF is exploited to detect the availability of the primary user
CFO and PN will deteriorate the performance.

This chapter will discuss the behavior of the MF and the energy detector (ED) in
the presence of CFO and PN. Also, this chapter investigates the range of the CFO
in which the ED surprisingly outperforms the MF for reasons that will be explained
later. Moreover, we will propose three different spectrum sensing techniques that

are robust to CFO. The first technique is called the block-coherent detector (%—

17
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BLCD) with a suboptimal number of blocks (%). The received signal is segmented
into several blocks and we then apply the MF for each block. The second tech-
nique is called second-order matched filter-I (SOMF-I), the detection performance
of which has been studied both theoretically (in the presence of CFO) and confirmed
through simulation. The last technique is named the second-order matched filter-1I
(SOMF-II) and is a modified version of SOMF-I but with a superior performance.
The second-order is used in the name for SOMF-I and SOMF-II due to the existence
of the term x(n)x*(n — 1) in the test statistic (where x(n) is the received signal).
The presence of PN and its effect on the detection performance is then examined
via simulation.

To the best of authors’ knowledge, spectrum sensing using MF in the presence
of CFO and PN has not been dealt with in any previous research. Moreover, new

techniques have been proposed to tackle the CFO and PN problem:s.

2.1.1 Literature review and motivation

Most of the work of spectrum sensing in the presence of RF impairments has con-
centrated on the cyclostationary detector. The research in this area has followed two
main directions. The first direction focused on investigating the effect of RF impair-
ments on the detection performance of cyclostationary detectors. For instance, in
[42] the authors have shown that the detection performance might deteriorate by in-
creasing the number of samples in the presence of CFO, this presents a challenge to
cyclostationary detection in a low signal to noise ratio scenario and because a large
number of samples is required to overcome the noise. In [43, 44], an investigation
was conducted on the impact of IQ imbalance and PN on the detection performance
of the cyclostationary detector. In [45], the authors studied the effect of 1Q imbal-
ance on the detection performance of the ED and the cyclostationary detector. The
authors have shown that both detectors are not affected by 1Q imbalance. In [46, 47]
the effect of sampling clock offset has been studied on detection performance for
different test statistics-based cyclostationary detectors. The results have shown that

the sampling clock offset degrades the detection performance.
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The second direction focuses on proposing solutions for the RF impairments is-
sue. For example, in [21] a solution to the sampling clock offset is proposed in pilot
based OFDM detection using the spectral correlation function as the test statistic,
where the phase offset from one frame to the next is estimated and compensated
for in the detection process. In [20], a blind solution to the sampling clock offset
problem has been proposed, where the symbol rate of the incoming signal is esti-
mated, and the acquired samples are interpolated at the correct rate. In [48], a new
multi-frame test statistic has been proposed to reduce the degradation due to cyclic
frequency offsets. Notice that all previous references are based on cyclostationary
detectors.

Little research has been done regarding the effect of CFO and PN on the detection
performance of spectrum sensing for the MF. The study in [19] deals with spectrum
sensing using a MF in the presence of CFO and they studied the performance of
the MF in the presence of CFO when the primary user uses a single sine wave pilot.
Also, the problem of CFO has been addressed there by processing coherent seg-
ments of the received signal block by block. However, they did not determine how
many blocks should be used, where every CFO might require an optimal number of
blocks. Also, a solution was not proposed to overcome the detection performance

degradation of the matched filter because of the CFO.

2.2 CHAPTER CONTRIBUTION

The ultimate goal of this chapter is to design robust spectrum sensing techniques in
the presence of CFO and PN. This goal has been achieved through the following

contributions which are summarized below:

1. Examination of the performance of the MF in the presence of CFO in or-
der to determine over what range of CFO the MF still outperforms the ED.
This approach includes both analytical expressions for the receiver operating
characteristic (ROC) for the MF (in the presence of CFO) and also computer

simulations.
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2. A novel block-coherent detector (%-BLCD) has been proposed, where a block
number of % shows a better detection performance compared to the ED and

the MF in the presence of CFO.

3. Second-order matched filter-I (SOMF-I) and second-order matched filter-II
(SOMEF-II), are proposed to circumvent the effect of CFO and give a better
performance than the ED and the MF in the presence of CFO.

4. The effect of PN has been investigated by simulation on the detection perfor-
mance of MF, ED, SOMF-II, SOMEF-I and %—BLCD. The simulation results
show that the SOMF-II, SOMF-I and %-BLCD approaches are robust against
PN.

2.3 CHAPTER ORGANIZATION

The rest of this Chapter is organized as follows: Section 2.4 introduces the system
model. Section 2.5 discusses the performance of both the ED and the MF in the
presence of CFO. Section 2.6 analyses the %—BLCD technique. Section 2.7 presents
the two SOMEF detectors I and II. In Section 2.8 simulation results are described and

finally the chapter is summarized in Section 2.9.

2.4 SYSTEM MODEL

The purpose of spectrum sensing is to inform the secondary user about the exis-
tence of the primary user- in other words, to discriminate between two hypotheses,
namely: Hy when the primary user is absent and 7 when the primary user is

present. Thus

Hi: x(n) = As(n)e/ @A) 4op(n), 2.1)

where n = 0,1,2,..., N; N is the number of samples collected by the secondary

user; x () is the signal received by the secondary user; A = |A|e/* is the complex
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channel gain (which may be assumed constant during the detection interval); A f
is the CFO due to the mismatch between the transmitter and the receiver and/or the
relative mobility of the receiver; s(n) is the primary signal’s known pilot which is
deterministic and is known to the secondary user; w(n) is independent identically
distributed (i.i.d.) circularly symmetric complex Gaussian noise CN(0,02); and
@(n) is phase noise. The common model for phase noise (PN) is a Wiener random-

walk process [49]
¢(n) = p(n—1)+o(n), 2.2)

where (1) is zero-mean white Gaussian noise with (A (0,07)). Note that A f, |A]

and « are considered unknown (deterministic) parameters. Finally, the SNR at the
APy
i

secondary user is defined as 10 logyg , where Py is the primary user’s transmit

power.

2.5 CONVENTIONAL DETECTORS

2.5.1 Energy Detector

The ED test statistic (Tgp) is:

N-1 7;1
Tep = Y |x(n)]* 2 tep, (2.3)
n=0 7‘[0

where Trp is a decision threshold used to determine whether the primary user is
present or not'. It is easily seen that Tgp follows a central chi-square distribution
with 2N degrees of freedom (X%N) under hypothesis Hg. Under hypothesis H1 it be-
comes a noncentral chi-square distribution (x35(B)) with 2N degrees of freedom
with a noncentrality parameter f = é YN [(Ars(n))2 + (A,-s(n))ﬂ, where
A = A, +jA;in (2.1) [16]. The probability density function of Trp after normal-

2
izaing by %w is given by

1 Decision threshold and sensing threshold are used interchangeably throughout the thesis.
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tl‘ 1exp(—t/2) if Ho
er 7
ijD(t) ( )Nfl

2 <%)Texp( EX) N (V2BE), if  Ha
where Iy _1( Z[St) is a modified Bessel function of the first kind [please see [50]
equation 8.406.1]. The probabilities of both false alarm (Pr4) and detection (Pp)
for a given threshold Trp can easily be shown to be (with or without CFO/PN)
(author?) [16]:

Prp = PI‘Ob{TED > TED‘H()} = QX%N (2;%), 2.4)
w

and

@> (2.5)

Pp = PI‘Ob{TED > TED’Hl} = QX%N(,B)< U'Z%
where QX%N (.) is the right-tail probability for a x5, random variable and Q o (B) (\)
is the right tail probability for a X%N( B) random variable [16]. Clearly, (2.4) and
(2.5) are not dependent on the CFO and PN. Notice that (2.4) and (2.5) can be writ-
ten in terms of incomplete Gamma function and Marcum Q-function respectively.

Also, the test statistic in (2.3), when N is very large, can be approximated by a

Gaussian distribution.

2.5.2 Matched Filter

When a MF i1s employed the test statistic with a decision threshold TpsF is:

N-1 2 7';1
Tmecro = | ), x(n)s*(n)| 2 Tur. (2.6)
n=0 HO

It can be easily shown that (T)sr cro) follows a central chi-square distribution with
2 degrees of freedom ()(%) under hypothesis Hy. However, under hypothesis H it
becomes a noncentral chi-square distribution ()(%( ,8/)) with 2 degrees of freedom
and a noncentrality parameter (author?) [16]

: 2|AJ?

P = 2N1|

|202 [ Z s(n)[2cos (2mnAf + a)]?
2.7)

Z |s(n)|2sin(2mnAf + oc)}z}.
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The probabilities of both false alarm and detection can easily be written as

Ppp = PrOb{TMP,CFO > TMF‘HO} =Qu(7) (2.8)
and

Pp = PrOb{TMF,CFO > TMF‘Hl} = Quip)(7) (2.9)
where ¢y = m From (2.8) and (2.9) it is also clear that CFO only affects

Pp and not Pr4.

2.5.3 MF performance in the presence of CFO

Figure 2.1 shows the relationship between |Afryeshos| and N for Ppy = 0.05.
Note that +|Afryeshod| represents the two values of CFO such that Pp (of MF)
= Pp (of ED) (found by solving the equality between (2.5) and (2.9)) - that is for
|Af] < | A rhreshora) the MF outperforms the ED. Note that the region of the graph
in Figure 2.1, where the ED exhibits superior performance is greater than the equiv-
alent region where the MF is superior. This is due to the CFO which causes a SNR
degradation as will be seen next. Section 2.6 will show how to combine the ED and
the MF to get another detector called the block-coherent detector (%-BLCD) that
deals with the problem of CFO.

The resulting curve in Figure 2.1 can be interpreted as follows. When N > 1/ A]*‘,
where A]*‘ the CFO when Pp(of MF) = Pp(of ED), the MF detection perfor-
mance will degrade even if the N has been increased (see Figure 2.4). However, the
ED detection performance will improve as N increases. For example, when N=20,
the ED outperforms the MF when A f > 0.05. Also, when N=100, the ED outper-
forms the MF when Af > 0.01. As a result, the resulting curve is a decreasing

function.

2.5.4 SNR loss of Tpr,cro

Due to the CFO, the Pp in (2.9) degrades because of the effective loss of SNR

within the test statistic expression. This SNR loss (D) of the test statistic in dB can
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Figure 2.1: | Af rjesnoq| (found by solving the equality between (2.5) and (2.9)) versus N
where Pry = 0.05, SNR = —5dB and with zero PN.

be defined by the ratio between the useful part of the test statistic in (2.6) (i.e., the

part that does not have noise) in the presence of CFO (i.e., Af # 0) and the useful
part in the absence of CFO (i.e., A f = 0). Thus

sin?(TNAf)
sin?(tAf)
s(n) = 1, Vn is used in (2.1). By plotting Pp in (2.9) against the received SNR

D= log10 dB, (2.10)

for both (a) CFO present and (b) zero CFO, then it might be supposed that there
is a need to increase the received SNR by |D| dB in (a) to achieve the same Pp
performance as in (b). So this SNR increase is defined as SNRgain which is the
required SNR increase in (@) to maintain the same Pp in (b). This SNRgain can be
estimated by plotting (a) and (b) via (2.9). Figure 2.2 shows the plot of (—SNRgain )
against A f and also D versus Af (from (2.10)). As expected, both are virtually
identical.

We observe in the previous section that the MF performance is affected by the CFO.

Therefore, the next sections aim to find solutions to combat the problem of CFO.
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Figure 2.2: Comparison of the effective SNR loss (D, in (2.10)) of the test statistic (Tpr cro,
in (2.6)) and (—SNRgain), defined in subsection (2.5.4), for N=10, Pr4 = 0.1 and
with zero PN.

2.6 BLOCK-COHERENT DETECTOR

In order to circumvent the MF’s sensitivity to the CFO, a combination of ED and
MF i1s proposed. This new detector is called a block-coherent detector (%—BLCD),
with the % term to be explained later. The %—BLCD test statistic (Tgrcp) with a

decision threshold gy cp is:

BI-1|K-1 2 7;1
TBLCD = Z Z x(m + bK)s*(m + bK) = TBLCD 2.11)
bZO m=0 HO

where Bl is the number of blocks and K is the number of samples per block with
K = N/BI. Try,,, follows a central chi-square distribution with 2Bl degrees of
freedom ()(%Bl) under hypothesis Hy. However, under hypothesis H it becomes
a noncentral chi-square distribution (X%Bl(ﬁ)) with 2Bl degrees of freedom and a

noncentrality parameter . Therefore, the P4 and the Pp are given as:

Ppy = PrOb{TBLCD > TBLCD‘HO} = Q2 (7). (2.12)

and
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Figure 2.3: Pp versus number of blocks (Bl) (see (2.13), defined in section 2.6). (a) N = 50,

Pry = 0.1 and SNR = —7dB. (b) N =50, Pr4 = 0.1 and SNR = —15dB.
(¢) N =100, P4 = 0.1 and SNR = —7dB. (d) N = 100, Pr4 = 0.1 and
SNR = —15dB.

Pp = PI‘Ob{TBLCD > TBLCD‘/Hl} QX2BI ( ) (2.13)

where ’y/ = % and a noncentrality parameter

Bl-1 — 2
5:C>< (Z (m + bK) cos(27r(m+bK)Af))
m=0 ) (2.14)
<Z (m + bK) sm(27r(m+bK)Af)> ]

with C = AP It is theoretically difficult to find the optimum number of blocks

0.5Ko2 "

that maximises Pp and so we will use simulation. Without loss of generality, given
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that N is an even integer, then it can be observed (as shown in Figure 2.3a) that the
optimal number of blocks is Bl = 1 for (N << ALf ). For other cases (N >> Aif
and N > ALf)’ however, the optimum number of blocks cannot be found. As a result,
a suboptimal number of blocks is proposed, which can be used for any values of N,
CFO and SNR. Figure 2.3a shows that a value of % is a good candidate. Also, it
is clear from Figure 2.3a that % is a robust choice for any value of CFO and so it
will be called this detector %—BLCD. Note that the detection performance of the
%-BLCD detector approaches the performance of the ED when B=N. Thus, the
%-BLCD always outperforms the ED. Moreover, From Figures 2.1 and 2.3a we
notice that CFO degrades the detection performance of both the MF and the %—
BLCD. This degradation depends on both upon the actual value of CFO (A f) and
the number of samples taken (V).
Finally, Figures 2.3b, 2.3c and 2.3d represent the detection probability versus the
number of blocks for different values of N and SNR. Clearly all figures confirm
that although % is a suboptimal choice for the number of blocks, it is a reasonable
compromise without any a-priori information.

As we have seen that %—BLCD has improved the performance of the MF when
there exists CFO, however, it gives a suboptimal performance. This means that there
still remains degrees of freedom to improve the detection performance. Thus, next

we seek to develop other detectors that gives better performance compared with

N-BLCD.

2.7 SECOND-ORDER MATCHED FILTER

In this section, two more detectors are proposed that combat the problem of CFO.
Here, it is proposed two detectors. The first one is called second-order matched
filter-I (SOMF-I). It aims to reduce the effect of N on the performance of a detector
in the presence of CFO. The second detector is called second-order matched filter-1I

(SOMEF-II). The goal of this detector to reduce the effects of both CFO and N.
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2.7.1 Second-Order Matched Filter-1

The SOMF-I test statistic (Tsonmg_1) With a decision threshold 77 is as follows:

N-1 Hq
TsoMF—1 = Real[ Y s*(n)s(n —1)x(n)x*(n — 1)} E 7. (2.15)

n=0 Ho
It is clear from (2.15), the x(n)x*(n — 1) can mitigate the effect of N. The probabil-
ities of both false alarm (Pry) and detection (Pp) are derived as follows. When the

observation interval N is large enough, the test statistic (Tsonpp_1) can be approxi-

mated as a Gaussian distribution using the central limit theorem [51] where
TSOMFfI ~ N(O, 0'5), under H()

and
Tsomr_1 ~ N(p1,0%), under H,;.

To derive the Prys and the Pp, O’g, U1, and (712 have to be calculated:

05 = E[| Tsomr—1|*|Ho] — ]E[TSOMF—I‘HOF
= E[| Tsomr—1/*| Ho)-
To derive IE[| Tsomrp—1|?| Ho), let w(n) wy(n) + jw;(n), then

TSOMF—I},HO = Real[ Z 1’1 — 1 ( )X*(i’l — 1)]
n=0

Z n)|[s(n —1)|

X [wr(n)wy(n — 1) + w;(n)w;(n —1)].
Then
0 = 1EHT501\/1F—1|2\3"10]

g m)Pls(n = 1)
< [Efw?(n) E[w3(n - 1)] + Efw} ()| Ew}(n — 1)]

= 0.50% Z] n)2|s(n —1)%
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If the primary signal is one then U'g = 0.5No2 and U1 is calculated as follows:

w1 =E {Real [NZ_: s*(n)s(n —1)x(n)x*(n — 1)H
N1
=E {Real[ s*(n)s(n —1)[As(n)exp(j2rnAf) + w(n)]]
n=0 (2.16)

X [A*s*(n — 1)exp(—j2(mn — 1) Af) + w*(n — 1)]}

N-1
= cos(2Af)|AJ? 20 Is(n)|?|s(n —1)|2.

Now (712 can be computed as follows,

o1 = E[| Tsomr_1|*|H1] — 3

N-1
= 0505 |A[> Y [s(n—1)[*s(n)?
n=0

N-1
+ R AP Y [s(m)]* x [s(n — 1)
n=0

N—1
+0.50§,]A|2 Z \s(n)\z X |s(n — 1)|4
n=0

(2.17)

N-1
+ 0.50% Y. |s(1)|?|s(n — 1)]?.
n=0

It is evidenced from (2.16) and (2.17), the only parameter that affects on the detec-
tion performance is CFO. In fact the N is disjoint from the CFO contrary to the case
of MF and %—BLCD as illustrated in (2.7) and (2.14) respectively. After computing
O'g, U1, and (712, the probability of false alarm (Pr4 ) and the probability of detection

(Pp) can be written as

Pea = Prob{TSOMF_I > TI|’H0} - Q(;—é) (2.18)
and
Pp = PrOb{TSOMF—I > T[‘Hl} = Q(TI;—lyl> (2.19)

where Q(.) is the well known Q-function (author?) [16].

Figure 2.4 plots Pp against N (for Pr4 = 0.1) for the ED (see (2.5)); the ideal MF
(see (2.9)); the %-BLCD (see (2.13)) and the SOMF-I (see (2.19)). It is clear from
Figure 2.4 that SOMF-I has the best detection performance, followed by %—BLCD.
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Figure 2.4: Pp versus N: (i) ideal MF (theory - see (2.9) with A f = 0), (ii) SOMF-I (theory
- see (2.19)) and (iii) % -BLCD (theory - see (2.13)), (iv) ED (theory - see (2.5))
and (v) MF in the presence of CFO. In all cases Pry = 0.1, Af = 0.1 and
SNR = —5dB.

For all algorithms (except the MF in the presence of CFO) the Pp approaches 1 for
large N. Finally, it can be observed that increasing the number of samples (N) does
not improve the performance of the MF in the presence of CFO.

In SOMF-I the effect of N has been removed, next we remove the effect of both
N and Af.

2.7.2 Second-Order Matched Filter-11

The SOMF-II detector with a decision threshold 77 has the following test statistic

N-1
Tsomr—n(Afo) = Real [exp(—jznA foyx ¥ s(n)
n=0
- (2.20)

xs*(n—1)x(n)x*(n — 1)] Z 1

Ho

where A fo is the estimated CFO. By using exp(—j27tA fo) the effect of CFO can
be mitigated. The advantage of SOMF-II over the SOMF-I is mitigating the effect
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of CFO and N as well. We propose to use /A fo = -0.05, 0 and 0.05 and to choose
the maximum value of Tsopmr—11(Afo) in (2.20). The idea behind this choice of
A fo is as follows. It is well known that the typical values of CFO lie in the range
[-0.1,0.1], so if the value of CFO is small then the appropriate value of A fo i1s 0. In
addition, if the value of the CFO is a large positive or negative value of CFO then

the appropriate value of A fo =15 -0.05 or 0.05 respectively.

2.8 SIMULATION RESULTS AND DISCUSSION

In this section some simulations (based on (2.3), (2.11), (2.15) and (2.20)) are com-
pared against theoretical results (based on (2.4), (2.5), (2.8), (2.9), (2.12), (2.13),
(2.18), and (2.19)) to illustrate the detection performance of ED, MF, %—BLCD,
SOMF-I and SOMF-II in the presence of CFO and PN. The CFO (Af) is ran-
domly generated from a uniform distribution over [—0.1,0.1] and is kept constant
during all 10° Monte Carlo iterations for each SNR value. For the sake of sim-
plicity, the primary user signal is assumed to be {s(n) ;11\]:_01 = {1,1,...,1}. The
phase noise parameter ((7,% in (2.2)) that has been used is for the worst scenario and
is 02 = 0.011 [49]. The absolute channel gain |A| and phase & are chosen as un-
known (deterministic) constants and kept fixed during the Monte Carlo simulations.
First we start our simulation results to confirm the theoretical derivations that have
been done throughout the chapter.

Result 1: Theoretical results verifications for detection performance (Figures
2.5 and 2.6).

Figures 2.5 and 2.6 clearly show that the theoretical and the simulation results for
%—BLCD and SOMF-I are identical respectively. Next we show the effect of the PN
on the proposed detectors.

Result 2: Pp versus Pr4 in the absence and presence of phase noise (Figures 2.7,
2.8,2.9,2.10 and 2.11).

First from Figure 2.7, it is easily seen that the PN slightly affects the MF detection
performance. However, Figures 2.8, 2.9, 2.10 and 2.11 show that the three proposed
detectors (%-BLCD, SOMF-I, SOMF-II) and ED are not affected by the PN.
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Figure 2.5: The probability of detection versus the probability of false alarm for %—BLCD
for different values of SNR (theory - see (2.12) and (2.13), simulation - see
(2.11)). In all cases, N = 100, Af = 0.02 and with zero PN.
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In all cases, N = 100, Af = 0.02 and with zero PN.
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Figure 2.11: The probability of detection versus the probability of false alarm in the absence
and the presence of PN for SOMF-II for different values of N. In all cases,
Af =0,02 =0.011and SNR = —7dB.

Result 3: Pp versus Pry4 comparison between SOMF-II, SOMF-I, %—BLCD, and
ED (Figure 2.12).

Figure 2.12 shows the detection performance for the proposed techniques %-
BLCD, SOMF-I and SOMF-II. Also, this figure plots Pp against Pr4 for the ED,
the MF in both the ideal case and in the presence of CFO. It is obvious that SOMF-II
has the best detection performance compared with the other techniques, except for
the ideal MF. We also notice that the gap between SOMF-II and SOMF-I is smaller
than that between SOMF-II and %—BLCD. The next figure Figure (2.13) shows the
difference between the proposed techniques for different values of CFO and at low

false alarm probability.
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Figure 2.12: The probability of detection versus the probability of false alarm for %-BLCD,
SOMF-I and SOMF-II. In all cases N = 250, SNR = —10dB and Af =
0.1 and with zero PN. Notice that all detectors are analytically plotted except

SOMF-II.

Result 4: Pp versus A f (Figure 2.13).

Figure 2.13 illustrates the relationship between Pp and CFO for the ED, MF,
%—BLCD, SOMF-I and the SOMF-II. First, it can be seen that the CFO is more
harmful on the MF compared with PN (see - Figure 2.7) and there are small ranges
of the CFO where the MF is superior. Moreover, %—BLCD, SOMPF-I and SOMF-II
are less sensitive to CFO. Furthermore, it can be seen that at high CFO the detection
performance difference between SOMF-I and %-BLCD is very small. Finally, it can
be seen the detection difference between %-BLCD, SOMF-I and SOMF-II increases

as the CFO increases.
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Result 5: Pp versus Pr4 in the presence of NU (Figure 2.14).

This figure evaluates (by simulation) the detection performance of the ED, %-
BLCD, SOMF-I and SOMF-II in the presence of NU. The NU has been generated
according to the p.d.f. defined in (5.6). Finally, it is shown that the SOMF-I and
SOMF-II are insensitive to the NU and the %-BLCD degrades due to the NU but its

performance is still better than that of the ED without NU.

2.9 CHAPTER SUMMARY

Both CFO and PN deteriorate the detection performance of the MF in spectrum
sensing. To start with, the performance of the MF was tested in the presence of
CFO in order to determine over what range of CFO the MF still outperforms the
ED. Three new techniques have been proposed to mitigate the effect of CFO and
PN (the simulation results show that the three proposed detectors are insensitive to
phase noise). Firstly, the %—BLCD algorithm was considered. It can be employed for
any value of CFO and any number of samples of the received signal, and the detec-
tion performance has been theoretically derived. Secondly, the SOMF-I approach is
examined. It is robust to the presence of CFO and PN when compared with the MF,
and its detection performance has been analytically derived. Thirdly, SOMF-II is a
modified version of SOMF-I and it has the best performance when compared with
%—BLCD and SOMF-I. The investigation of SOMF-II has been only conducted by
the simulation. Finally, we conclude that the SOMF-II is the best detector in terms

of the detection performance and that it comes at great cost, the cost of complexity.



PERFORMANCE ANALYSIS OF ENERGY DETECTOR OVER
A NAKAGMI FREQUENCY-SELECTIVE (NFS) CHANNEL

3.1 INTRODUCTION

The study in the previous chapter was based on the assumption that the primary
user’s signal is deterministic and is known to the secondary user. In reality, in most
of the cases the primary signal contains information that is random in nature. Thus,
it is more realistic to assume that the primary signal appears random for the sec-
ondary user instead of deterministic, and that is what is considered in this chapter.
In spectrum sensing of cognitive radio networks, the secondary user either does not
have a-priori knowledge or has some information (e.g., modulation scheme used)
about the primary signal. Indeed, the transmitted primary signal may have different
possible waveforms with random data sequences. When the signal has an unknown
form, the plausible assumption is to consider the signal as a random process. So, the
samples of the transmitted signal constitute an independent and identically random
process (i.i.d.) with zero mean and variance [E||s(11)|?] = Pp. For this scenario, the
ED is optimal for detecting the primary user’s signal [16].

This chapter aims to study two important parameters in spectrum sensing of cog-
nitive radio networks. Firstly, we analytically investigate the performance of the ED
over a Nakagami-m frequency-selective channel (NFS). Secondly, we find a closed
form expression for the minimum number of samples required to satisfy a target
false alarm probability (€) and a target detection probability (&) over an NFS chan-

nel.
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To the best of authors’ knowledge, the analytical detection performance of the ED
over an NFS channel has not previously been examined. In addition, the minimum
number of samples that satisfy € and J over an NFS channel has also not been

investigated.

3.1.1 Literature Review and Motivation

3.1.1.1 Detection Performance for an Energy Detector

The first part of this literature review deals with the detection performance of the ED
over different environments. In [52], the authors reviewed the ED for an unknown
deterministic signal over a Gaussian channel. The distribution of a test / decision
statistic when the primary user is absent is formulated as a central chi-squar dis-
tribution and when the primary user is present it is formulated as a non-central
chi-square distribution. Subsequently the detection probability and the false alarm
probability are also derived.

Motivated by the above research, more papers have appeared on investigating the
behavior of the ED over different fading channels scenarios. For example, in [22]
the authors derived closed-form expressions for the average detection probability
over Rayleigh, Rician, and Nakagami fading channels. The derivation was based
on the probability density function approach, in which the Marcum Q-function!
(representing the detection probability over AWGN channels) is integrated over the
probability density function of the signal to noise ratio. The analytical expression
of the false alarm probability is the same as [52] because it does not depend on
the channel (the test/decision statistic has only the noise component). In [54] the
behavior of an ED was investigated under the 77 — y fading channel model 2. In [55],
the average detection probability was derived using the moment-generating function

method. This direction was pursued to overcome the analytical difficulties that arise

Derivations executed based on Marcum Q-function properties in [53].
The 17 — p distribution is a more general physical fading model, which represents one-sided Gaussian,

Rayleigh, Nakagami-m and Hoyt (Nakagami-q) distributions by changing the parameters # and p.
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from the presence of the Marcum Q-function. In [23], the performance of the ED
over generalized k — y and k¥ — y extreme fading channels has been investigated?.
In [56], an analytical performance for the ED was obtained over wireless channels
with composite multipath fading and shadowing effects.

Other work in the literature approximates the distribution of test/decision statistic,
under the presence and the absence of the primary user, by a Gaussian distribution
[19, 51, 57] for different kind of primary user waveforms such as unknown determin-
istic and random signals. Accordingly, the false alarm and detection probabilities
are found theoretically in terms of the Q-function and this assumption comes from
the central limit theorem. The assumption of a Gaussian model is well known in the
parameter optimization problems, e.g., optimizing the operating sensing threshold
that satisfies ¢ (i.e., when the throughput is evaluated) and the minimum number of
the samples required to achieve a desired receiver operating characteristic (ROC).
This model often gives a simple solution for a corresponding sensing threshold of &
compared to the Marcum Q-function, which needs an iterative algorithm to find the
sensing threshold.

From the above literature review, it appears that most research concentrates on
the flat fading channel case. However, this is not always so in practice. Indeed in
many instances, the secondary user’s received signal may experience a frequency-
selective channel because the primary system technology, in most cases, employs a
high data rate transmission. As such, a more appropriate and practical assumption
is to consider a frequency-selective channel.

A small numbers of papers deal with spectrum sensing over frequency-selective
channels. In [58] the authors proposed an optimal detector for use in multipath
fading that requires knowledge of the finite impulse response (FIR) of the channel.
This proposed detector was compared with an ED and it was shown that for the same
detection performance the ED requires no more than twice the number of samples

that was needed for the proposed detector when there exists a large channel length.

The x — u distribution is a generalized fading model that models multipath fading, in particular
for line-of-sight communication systems. Also, it includes as special cases Rician, Nakagami-m,

Rayleigh, and one-sided Gaussian distributions.
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In [59, 60], the authors studied the multi-antenna spectrum sensing for a modified
ED and an equal gain detector when there is a correlation between the channel taps
and a spatial correlation between the antennas. The simulation results showed that
if the primary signal is correlated, then the channel tap correlation will improve the
sensing detection performance. In [61], the authors studied the effect of frequency-
selective reporting channels on the cooperative spectrum sensing using a widely
linear scheme and a linear one. The average detection probability at the fusion center

is obtained only by simulations.

3.1.1.2  Minimum Number of Samples for an Energy Detector

The second part of this literature review deals with the number of samples that
permits the ED to achieve a desired receiver operating characteristic (ROC). In cog-
nitive radio, the secondary user should determine the minimum number of samples
that satisfies a desired ROC (€ and ¢). In the literature, this parameter (the mini-
mum number of samples that satisfies a desired ROC) has only been derived for
AWGN channels [19, 57]. Over fading channels however, there is no a closed-form

expression or any simulation result for finding this minimum number of samples.

3.2 CHAPTER CONTRIBUTION

The two main aims of this chapter are investigating the detection performance of the
ED over NFS channel and determining the minimum number of samples that sat-
isfies a desired ED performance (€ and &) over an NFS channel. This investigation

has been achieved through the following contributions.

1. Analytically evaluating the average detection probability for the ED over an

NFS channel. Also, the theoretical results are validated by simulation.
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2. Examining theoretically the outage detection probability for the ED over an

NFS channel, which is also confirmed by simulation®.

3. Finding the minimum required number of samples that satisfies €, 6 and the

outage detection probability is derived mathematically over an NFS channel.

3.3 CHAPTER ORGANIZATION

The rest of this chapter is organized as follows. The system model is introduced
in Section 3.4. Spectrum sensing using the ED is presented in Section 3.5. The
average probability of detection over NFS is examined in Section 3.6. The outage
probability analysis is presented in Section 3.7. Simulation results and discussion

are described in Section 3.8. Finally, Section 3.9 summarizes the chapter.

3.4 SYSTEM MODEL

3.4.1 Primary signal

Based on the recent paper [62], the performance of the ED can be described mathe-
matically by a Marcum-Q function or a Gaussian distribution using the central limit
theorem for large N only when the primary user’s signal is unknown deterministic
signal, a Gaussian random process (this assumption is valid when the secondary
user does not have any information about the primary user’s signal) or M-ary Phase
Shift Keying (PSK) signal. In this chapter, it is assumed that the secondary user

knows the modulation scheme (PSK) that primary user employs.

Outage detection probability has an advantage over the average detection probability in finding some
spectrum sensing parameters such as the sensing threshold value and the minimum number of sam-
ples. Also, an exact closed-form expression can be found compared with the average detection prob-
ability. Finally, it is another metric that can confirm the results obtained by the average detection

probability.
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3.4.2 Channel Model

A NFS channel is assumed between the primary user transmitter and the secondary
user transmitter and is modeled as an FIR filter with impulse response h = [hg
hi hy ... hp 1], whose taps are i.i.d. In this work, it is assumed two different models
for the power delay profile of h. In the first model, we assume that the channel has
an exponential power delay profile. In the second model, it is assumed to have a
uniform power delay profile in which all taps have the same power. The latter model
is used to more clearly highlight the ED advantages that might be obtained due to
the NFS channel (see section 3.7). Also, in both models the power of the channel
taps is normalised such that Y-~ E|ly|? = 1.

Under the exponential model, the probability density function (p.d.f.) of ampli-
hy

tude for each channel tap coefficient, |/7;|, is given by

_ 2 m\" o —mz*
f|h,(Z>—W(Q—hl) 2" exp( o ), 3.1)

where (), = E[|ly|?] is a controlling spread parameter for the I-th tap, m is the
Nakagami-m fading parameter for the /-th tap and T'(m) = fooo t"=le=tdt is the
Gamma function. The Nakagami distribution is selected to model a fading channel
since it is reported to accurately fit to most empirical and experimental results [63].
As special cases, for m = 1, the distribution reduces to Rayleigh fading; for m =
(v+1)

@or1) the distribution is approximately Rician with parameter v; and for m = oo

there is no fading [64].

3.4.3 Received signal

We have again two hypotheses:

(n)
)
=0

Ho: x(n)= w(n),
L
his(n —1) +w(n), (3.2)
)
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where n = 0,1,2,..., N — 1, and N is the number of samples collected by the
secondary user; x(n) is the signal received by the secondary user; s(1) is the pri-
mary signal which is randomly and independently drawn from a complex constel-
lation with power P, and w(n) represents independent and identically distributed
circularly symmetric complex Gaussian noise with distribution CN'(0, ¢2), where
0’7%, is the noise power. Finally the instantaneous signal to noise ratio at the sec-

. P _ . . .
— pyL-1 2 —
ondary user is y = 2 > 10 |I;|* and the average signal to noise ratio as Yy, =

Py L1 2

o

o2 leo ]Elhl| :

3.5 ENERGY DETECTOR FOR SPECTRUM SENSING

The test statistic when the secondary user implements an ED is given by:

1 N-1 7;1
Tep = +; Y |x(n)]* = tEp. (3.3)
n=0 HO

Notice that (unlike (2.3)) the test statistic in (3.3) is divided by N but this does
not change the ED performance. The sensing threshold (7gp) is used to determine
whether the primary user is present (Tgp > Tgp) or not (Tgp < Tgp). Although
Trp has a chi-square distribution, according to the central limit theorem Trp is
asymptotically normally distributed if N is large enough [51]. Specifically, for large
N, the test statistics of Trp can be modeled as follows:

N (po, 0¢), under Hy
Tep ~

N (p1,0%), under Hy.
Now to derive Pr4 and Pp, then py, Ug, M1 and (712 are calculated as follows:

1 N-1
po = E[Tgp|Ho) = NIE[ Y. |w(n)?] = og (3.4)
n=0

and

(3.5)
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The mean (j1) and the variance (¢7) under H; are calculated, conditioned on the

channel, as follows. For simplicity, let us define the following variables,
L-1

an =Y hs(n—1)
I=0

L-1
am =Y hys(m—1)
=0

ay = apw*(n) + w(n)aj;,

A1 = Amw™ (m) +w(m)ay,.

Thus
1 N-1 )
m = E[Tgp|Ha] = ﬁlE[ Y. lan +w(n)|?]
n=0
1 N-1 5 )
=% Z%)[]E|an| + E|w(n)|* + E[au]]
n—=
L—1
= Uzzu+Pp Z Iy,
=0
and
ot = B[Tgp|Ha] — 141,
where
2 4 e o & 215 12 5 2
H1 :‘Tw+Pp Z ‘hl| +Pp Z ’hh’ |hlz| +2PPUw 2 |hl|
1=0 h&l=0 1=0
l#l
and
X 1 N-IN-1 ) )
E[Tp|H1] = N2 Y. Y Eflay +w(n)|*|ay + w(m)|*]
m=0 n=0
1 N-1N-1 ) )
= Y., Y E[flaq]* + [w(n)|* + au]
N m=0 n=0

x [lam|® + [ew(m)[? + aym]]

(3.6)

(3.7)

(3.8)

(3.9)
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E[Tip|Hil = 17 Lo L Ellanl*lan|* + fw(m) Ple(m)|?

+ a1 apn + |an*w(m)|? + |an[*am + [w(n) |*|am|?

+ |w(n)\2am1 + un1|am|2 + an1|w(m)|2]
L—-1 L-1

1
=Py ) '+ 1+ )P 3 Iy Pl + oy
1=0 I1,l,=0
1 #ly

0_4 2P, 0 2 L-1
+ N+ Pl 2|h1|2+2pp : Z|hl\2

By substituting (3.8) and (3.9) into (3.7), then

) 04 p2L1 2Pp2L1

TN + 57 Nl . |h11’ |hlz|2 il Z |y (3.10)
11172612

Therefore, the false alarm probability and the detection probability, conditioned on

the channel, are given as:

Pey = Prob{TED > TED)HO} (TED )) G.11)

o755

T J—
Pp = Prob{TED > TED)HO} 0 (wg—lm) (3.12)

where Q(.) is the Q-function (author?) [16]. Here the Gaussian distribution ap-

proximation is used instead of the chi-square distribution for the following reasons:

* The simplicity of evaluating the detection performance of the ED over the

NFS channel.

* It simplifies the calculation of the minimum number of samples that satisfies
€ and ¢ through the outage detection probability as will be seen in section

(3.7.2).

* It simplifies the secondary user’s throughput analysis, as will be seen in chap-

ter 5.
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3.6 AVERAGE DETECTION PROBABILITY DERIVATION

The average Prp (i.e., Pry) does not depend on the channel (as the received signal
has only noise component) and so it is identical to (3.11). A closed-form expression
for the average detection probability (Pp) over an NFS channel can be calculated
as follows. To guarantee a cognitive radio works in practice, the analysis might be
interested in the worst case of a low signal to noise ratio (SNR) regime. For low

SNR (see (3.10)) the variance (0’ ) of Tgp under H1, can be approximated as:

P‘TzzuL ! 2
o7 7 Z |y |2 (3.13)

Then from (3.6), (3.12) and (3.13) we have

—P Jy |2
Pp = < ED _ p Lio 1l ) (3.14)
\/04 ”Uw )L 2

Now, the average probability of detection of the spectrum sensing will be examined

when the channel is NFS. The average probability of detection (Pp) is evaluated
by averaging (3.14) over the p.d.f. (fr,(t)) of Ty, = Y~} [y|?. Here T}, is a sum
of weighted central chi-square variables. In [65] the p.d.f. of T}, has been derived,
but not found in closed-form and this makes the evaluation complicated. To deal
with this the author resorts to approximate the p.d.f of T}, by Gaussian and Gamma
distribution functions. Next we will examine which function (Gaussian/Gamma) is

more suitable to approximate the distribution of T7,.

3.6.1 Distribution of T},

In this subsection, the distribution of T = ZZL ! |h;]? is examined based on the
Gaussian and Gamma p.d.f approximations using the moment matching method for

the following reasons:

1. The Gaussian and Gamma distribution functions are Type-V and Type-III
Pearson distributions respectively which are widely employed in fitting dis-
tributions for positive random variables by matching the first and the second

moments [66].
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2. The bivariate Gaussian and Gamma distribution functions are simple and
tractable and this does not involve any higher order complicated mathemat-

ical functions [67].

3.6.1.1 Gaussian approximation approach

The random variable T} may be approximated by a Gaussian distribution function,
]?Th (t), with a mean p, and a variance 0%} . The p.d.f of the Gaussian function is
1

given by

~ 1
fr,(t) = %—mexp((t —pt,)?/0%,), t=0 (3.15)

where pr, = E[T)] = L7 Oy, and 07 = E[T;] — E*[T}] = Y= Of /m,
and E[|ly]*] = Q?[1 + 1/m]. Figure 3.1 sketches the simulated p.d.f of T}, (his-
togram) and the approximated p.d.f defined in (3.15). It is clear from Figure 3.1 that
the Gaussian p.d.f does not capture all the features of the T}, for all values of L and

m.

3.6.1.2 Gamma approximation approach

Now T}, will be approximated by a Gamma distribution function, ]?qrh (t), with a
shape parameter Ky, and a scale parameter ¢r,. The p.d.f of the Gamma function
is given by

1 t _
T P 20 (3.16)
I(Kr, )y h

where Kt, = V%rh / (Tr%rh, ér, = (T%rh /wt,, Ht, and U%h are defined in the previous

fTh(t) =

subsection. The analytical p.d.f. of T, (see - (3.16)) and the Monte-Carlo simula-
tion of the p.d.f. of T, are plotted in Figure 3.2. It is clear that (3.16) is an excellent
approximation to the p.d.f. of T}, for all values of L and m. As a result, the Gamma
approximation will be adopted in this chapter. Thus the average probability of de-

tection can be written as:

_ o0 T—No2 — NPt \ ~
Pp = / Q( w P )fTh(t)dt, (3.17)
0 \/Nag, +2NP,o2t
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Figure 3.1: Plots of the approximate p.d.f. (3.15) and the simulated p.d.f. of T}, (10°® Monte-

Carlo runs).

where T = Ntgp. The evaluation of (3.17) will be executed in the following sub-

section.

3.6.2 Pp derivation

Now using the standard identity [50] Q(v) = erfc(\%) = 3(1-— erf(\/ii)), SO

(3.17) becomes

_ 1 ° Ky, —1 _ _ t

Then by expressing the erf(.) function as an infinite series with the aid of [[50], eq.
(8.253.1)]
00 1)1+1

— K']T
PD ZA/ h eXp( t/(PTh T(lz—:l 21_1) 1_1)]

( T—N(Tw—NPpt )21—1 it
X ’
ﬁ\/Na;}, +2NP,02t
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Figure 3.2: Plots of the approximate p.d.f. (3.16) and the simulated p.d.f. of T}, (10°® Monte-

Carlo runs).

then after some simplifications Pp becomes

11 ke 1
Pp = ﬂ/o £ exp(—t/ ¢, )dt

® Ky, —1 _
_/ T exp (—t/¢r,) (3.19)
Z ( 1)1+1 < T— NO’Z — NPp >2i1di’
(2i —1)(i—1)! \/N(74 +2NP,0o2t

1

K
where A = F(KTh)ngjh. The first integral integral in (3.19) is expressed in terms
of the Gamma function according to [[50], eq. (8.310.1)] and thus (3.19) becomes
1 1 /oo Ky —1 > (=1t
- T exp(—t/¢T,)
2 AV " l; 1) =1t
< T — NoZ — NPyt >21—1dt
V2,/Noh +2NP3t

Pp =

(3.20)
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By lettingy = N (Tff, + 2N Pp(Tzzvt, then (3.20) (after some simplifications) becomes

1 v (-t © (y—Nog)

=5 Z 21 —1)21-05(; — 1)1 X/ 21
_# oy L\ 21

eXp( 2NPpag,¢Th>< P2 " 05NeG) dy,

2
exp(yplt—)
2o By expanding (y — No3 )%™ using a binomial

where A = -
AT (2NPyo%) Th
series see - [[50], eq. (1.111)] and after some basic mathematical manipulations,

then Pp is written as

[y | =1 (=1)71 x (= No) m ™17 o (1)

_ 1 R i
Pp=5—-A . — 057
2 1_21 = (2i —1)2005( — 1)1
¥ 05 (Y (3.22)
/Nag,y exp 2Nppa%¢Th>
B y . 5 2i—1
< ( T 05Nc2)" dy,

where [.] denotes the ceiling function. Again by expanding (— # +7T—0.5N O.ZZU)Zi—l
pYw

with a binomial series we get

eo (K1 | =Tai1 (—1)71 5 (57 x (1)
— A . _
1.221 ];0 (2i —1)21-05

~

N —

Pp =

z=0
K, ~1-j o (7 2
(—No yKkm, =17 (T—O.SNUw> (3.23)
(i — 1)!(—2Py02 )% —2+1
i+j—2—05y (_ y )d .
Noh Y P\ aNP, 0201, /™
Finally after some simplifications we get
o |_K1rh-| 1oi_1 ( 1)i+1 % (Krh—l) % (21‘;1)\/NX

Po=j-AL L L@ ooy

(ZNPp%clm)l*f Z+°-5(—N0?U)KT}1‘1‘]' (3.24)
(—ZP (72)2i72+1

0.2

X (?—O.SNU ) X T(j+i—z+05 T ),
h

where I'(s,x) = [t~ le~!dt is the upper incomplete Gamma function [50].

When the channel of the secondary user is Nakagami-m flat-fading (NFF) then the
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channel vector h = [hg] has only one tap and the false alarm probability is simi-
lar to (3.11). The average probability of detection Pp is derived in [[22], equation
(20)].

When the primary user’s signal follows the Gaussian distribution. In this scenario,
the mean and the variance of the test statistic defined in (3.3) under 7 are the same
asin (3.4) and (3.5) respectively (because the test statistic under Hy does not depend

on the primary signal). Also, the mean under H; is similar to (3.6). However, the

variance of the test statistic under 71 is given as’
1 L-1 2
2 _ 2 2
o] = N(Pp Y ] +‘Tw) ,
1=0

thus the detection performance is

2
T — 04 — Pyt
Pp = Q( — P )
By taking similar steps for PSK signal and using [[68], equation 2.3.6.6 and [50],

equation 9.2.11.4], the average detection probability can be written as

_ 1 o 2i—1 o+Ky, —1
PD = E —aq Z Z azr(K"ﬂ“h)O'i "
i=1z=0
(3.25)
xe P’Z”%Th ¥ (K 02+ K O )
T,/ Ty 5 . Jr
W -w h PP(PTh
where ay = TSP IN) 4, _ ) (3T gts (1) ¢ = A

AP/ (V2)2=1(2i-1)(i-1)!
and ¥ (., .;.) is the confluent hypergeometric function defined in [[68], page 793].

3.7 OUTAGE DETECTION PROBABILITY ANALYSIS

This section seeks to ensure the advantage of the ED over an NFS channel. To do
so, another metric is proposed which is called the outage detection probability, and

for the following reasons.

The proof is derived in chapter 5. In chapter 5, the OFDM signal model is used and modeled by a

Gaussian distribution.
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1. An exact closed-form expression for the behavior of the ED over an NFS chan-

nel can be obtained compared with the average probability detection (3.24).

2. The advantage of the ED over an NFS channel (as it will be seen in the simu-

lation results) can be noticed mathematically.

3. The minimum required number of samples that satisfy € and ¢ can be found
analytically over fading channels, which cannot be done when the average

probability detection is used.

4. Investigating the sensing-throughput tradeoff needs the determination of the
sensing threshold so that the primary receiver is kept safe from any potential
interference. By employing the outage detection probability the local sensing
threshold can be calculated analytically over a fading channel as will be seen

in Chapter 5.

Because of the random channel, Pp is a random variable. Also, in practice there are
some realisations of the channel that do not allow the detection probability to be
larger than ¢ (i.e., Pp< 9). So to tackle this behavior, the outage detection probabil-
ity (IPoyt) should be examined. The outage detection probability, Poyt, is defined

as

Pout = Prob(Pp < 9). (3.26)

Equation (3.26) can equivalently be written in terms of the instantaneous SNR (vy)

for a NFS channel as

Pout = Prob(y < vs), (3.27)
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where 7y, is the threshold SNR in which the outage appears, for a target detection
probability equal to 4. The 75 can be calculated as follows. Equation (3.14) is writ-

ten in terms of <y for Pp = ¢ yielding

Pp =0 (TED o2 PpZIL1|hl|2>
i+ it
Q((TED)—l—(Pp/ o) Ty |l |2>

2P
ﬁ () r

= N9Y*+2N(1— (tep/02)) —2Q 7' (0)%y
+N((tep/0o3) — N)* = Q7 1(6)* = 0.

By solving (3.28), two solutions are obtained. The largest solution (<) is chosen,

(3.28)
1.e.,

75 =(ten/0% — 1) + Q71(6)*/N

+1/Ny/Q 1(BRIN((2T/03) —1) + Q1(5 )2]}. (3.29)

Equation (3.27) can now be re-written in terms of the channel coefficients as

2
Poyt = Prob( Z |2 < ZI‘;’” ). (3.30)
1=0 P

Next an evaluation of (3.30) is conducted for different power delay profiles.

3.7.1 Power delay profile

This subsection evaluates the outage detection probability in (3.30) for different
power delay profiles of the channel between the primary user and the secondary

UsScCr.
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3.7.1.1 Exponential power delay profile

This scenario assumes that the channel between the primary user and the secondary
user has an exponential power delay profile. For this scenario, the p.d.f. of T}, is

given by (3.16) and so the outage probability becomes

0’275

P; ~
lPout:/O " fr, (t)dt
o2s (3.31)
Pout =1 — r(Ks, Pvfl’ﬁ,)
out — F(K"ﬂ“h)

Kr, and ¢, defined in section (3.6).

h

3.7.1.2  Uniform power delay profile

Now the outage detection probability is evaluated when the power delay profile
is uniform. In this scenario, ZZL;Ol |h;|? follows a Gamma distribution with shape
parameter K, = mL and scale parameter ¢, = (1/m, where () = (), for
I =0: L — 1. Thus the outage detection probability is given by
r(mL %)

I'(mL)

Note that from (3.32) the diversity order is mL (because as mL increases (3.32)

Pout = 1 — (3.32)

decreases). Also, notice that the [P,y in (3.32) is an exact closed-form expression
unlike the case of the exponential power delay profile. This is because the power
of taps/channels is the same so by default the distribution of Zle_Ol |;|? is another
Gamma distribution with shape parameter mL and scale parameter () /m.

The performance improvement of the ED that might be obtained over an NFS
channel can be seen mathematically as follows. To see this improvement the Pyt
for the flat fading channel has to be found. In this environment h = hg and the

Pp|h0‘2
2

instantaneous SNR is y = . So Pyt can be written as IPy,; = Prob <|h0 ? <

w

2
‘%‘3%) , where |hg|? is a central chi-square random variable with 2 degrees of free-

dom. As a result,

(3.33)
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Note that the difference between (3.32) and (3.33) is the number of channel taps (L)
and the term (L) in (3.32) clearly gives the ED an improved performance over the

NFS channel, where as the term L increases the Py, decreases.

3.7.2 Minimum sensing Time

Here the minimum number of samples required (N,,;,) in (3.3) to achieve €, ¢
and a target P, is analytically derived. In the simulation section we will show,
the ED improves over the NFS in terms of N,,;,. In cognitive radio applications,
this parameter should be chosen by the secondary user to satisfy a required ED
performance. The minimum number of samples can be derived by using (3.11),

(3.29) and (3.31) yielding

2
(Q—l(s) _ Q‘l(é)\/ %F—l(ﬂjout,é) +1 )

2
P,
<U_§]F_1 (]Pout/ 5))

where I'"! (.,.) denotes the inverse function of the upper incomplete Gamma func-

Nmin -

(3.34)

tion and it is a built function in Matlab. Notice that the N,,;;, in (3.34) cannot be
derived directly using the average detection probability and it needs an iterative
algorithm to find the N,,;,. This shows one advantage of using outage detection

probability over the average detection probability.

3.8 RESULTS AND DISCUSSION

In this section simulation results (based on (3.3) and (3.26)) are compared against
theoretical results (based on (3.11) (3.24), (3.31) and (3.34)) to illustrate the ED per-
formance in an NFS channel. The primary user signal, s (n), is drawn from a 4-PSK
constellation (with P, = 1) during all 10° Monte Carlo runs. The amplitudes of the
channels taps (h = [ho Iy ... hL_l]T) , have been generated according to a Nakgami

distribution with an exponential power delay profile IE|};|> = C exp (—0.2]) where
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Figure 3.3: Pp versus Pra for different channel taps (L). In all cases, m=2 , N=100, and
SNR=-5dB.

C is a parameter to guarantee ZZL;Ol [E|h;|? = 1 and the phases of the channel taps
have been generated according to a uniform distribution U[0, 277]. Finally, 30 terms
have been used in (3.24) (i = 30) to calculate the average probability of detection,

Pp.



3.8 RESULTS AND DISCUSSION

,,,,,,,,
,,,,,,
0

Average probability of detection, Pp

o
©

o
[
4
1

o
~
1

—— Simulation, m =1
o Theory, m =1
Simulation, m =2 ]
v Theory, m =2
- = =Simulation, m =3
o Theory, m =3

0 0.1 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of false alam (P_)

Figure 3.4: Pp versus Pra for different values of Nakagami fading parameter (mm ). In all

cases, L=2 , N=200 and SNR=-5dB.

Result 1: Theoretical results verification for detection performance of ED (Fig-
ures 3.3 and 3.4).

Figures 3.3 and 3.4 show Pp versus the Ppy for different values of L and m
respectively. It is easily noticed that the theoretical results (see - (3.11) and (3.24))
match the simulation results (see - (3.3)). Also, it can be seen that as L and m
increase, the average probability of detection gradually improves. To get the theory
for a flat fading channel (see - [22], Equation (16) and Equation (20)).

The improvement of the Pp over the NFS is due to the diversity of the multipath
ZIL;ol ‘hl |2
==,

UZU

and this appears from the instantaneous signal to noise ratio, for NFS it is
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Figure 3.5: Pyt versus Ppy for both an NFS channel (L=3 ) and an NFF channel. In all
cases, 0=0.9 , N=550 and SNR=-10dB.

For NFF it is %. And Pp improves with increasing m because as m increases as
the channel gets better.

Result 2: Theoretical results verification for outage detection probability ver-
sus Pry (Figure 3.5).

This figure shows Pyt versus Pry. Clearly the analytical derivations comply with
the simulation results ((3.26)) and theory ((3.31)). It is obvious that IP ¢ for an NFS
channel is less than [P for an NFF channel ((simulation - see (3.26)) and (theory
- see (3.31) for L =1)), because of the multipaths.

Result 3: Pp versus L (Figure 3.6).
This Figure shows that when the channel between the primary user and the sec-

ondary user is NFS, the protection for the primary receiver is more guaranteed (be-

cause the Pp improves with L and m). It is clearly seen that Pp initially improves
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Figure 3.6: Pp versus Nakagami fading parameter () or (L). In all cases, €=0.1, N=100
and SNR = —7dB.

significantly for L = 1to 5 and m = 1 to 5 (see - (3.24)). After that it increases
gradually and then levels out for high values of L and m. Also, it can be seen that the

type of channel is more affected to the improvement of the detection performance

compared with number of multitaps. Note that when L is increased, m is fixed to 2.

Also, when m is increased, L is fixed to 2.
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Figure 3.7: IPoyt versus & for both NFS channel (L = 3) and NFF channel for different
values of m. In all cases, N = 550, ¢ = 0.05, and SNR =-10dB.

Result 4: IP,,; versus 6 (Figure 3.7).

First, it can be seen the theory matches with the simulation ((simulation - see (3.26))
and (theory - see (3.31))). Also, it can be noticed the NFS channel gives a smaller
outage detection probability compared to the NFF channel for different values of m,

and this is because of the multipaths.

Result 5: P,,; versus L (Figure 3.8).

Again the analytical derivation complies with the simulation results. For NFS
channel (simulation - see (3.26)) and (theory - see (3.31)) and for NFF (simulation
- see(3.26)) and (theory - see (3.31) for L=1). It is obvious that as the number of
multipaths increases the [Py, decreases then it levels out for high values of L. It
is similar to the behavior of Figure 3.6. At the start [P+ decreases rapidly then it
decreases slowly. Also, the [Py has an added advantage due to the existence of the

Nakagami parameter m (the [P+ decreases when m increases).
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Figure 3.9: Pp versus the SNR for different number of L. In all cases, m = 2, N = 200
and Pry = 0.1.
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Figure 3.10: Pp versus the SNR for different values of m. In all cases, L=2, N=200 and
Pry=0.1.

Result 6: Pp versus SNR (different L) (Figure 3.9).

It can be seen that as the SNR increases the performance improves for different
values of L. And as L increases Pp also increases.
Result 7: Pp versus SNR (different 1) (Figure 3.10).

Here it is obvious as the SNR increases the average detection probability im-

proves for different values of m. Also, as m increases Pp improves.
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Figure 3.11: N,;,, versus SNR for NFS channel (L = 2) and NFF channel. In all cases,
6=09ande =0.1.

Result 8: N,,;,, versus SN R (Figure 3.11).

Finally, this figure examines the minimum number of samples required to achieve €,
¢ for different values of IP,,;. Again the NFS channel needs less samples compared
with the NFF channel because of the multipaths (theory - see (3.34)). Clearly, to
make the performance of the ED more demanding (i.e., reduce [Pyyt) then Ny,
must be increased. Moreover, it can be seen that as the IP,,; increases the N,,;,

decreases due to the restriction on the outage becomes less.
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Figure 3.12: The Pp versus the Pry4 in the presence of NU. In all cases, § = 0.9 and € = 0.1.

Result 9: Pp versus Pr, in the presence of NU (Figure 3.12).

This figure evaluates by simulation the detection performance of the ED in the
presence of NU and over NFS. The NU has been generated according to the p.d.f.
defined in (5.6). We can see from the figure that NU reduces the improvement of
the performance. For L=5, the degradation due to the NU is approximately similar

to the ED performance when L=1 without NU.
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3.9 CHAPTER SUMMARY

This chapter studied the performance of the ED over an NFS channel by examining
three different parameters. First, the average detection probability (Pp) was found
theoretically and verified by simulation. Second, the outage detection probability
(IPout) was derived theoretically and confirmed via simulation. Third, the minimum
number of samples (N,,;,) that satisfies a desired ROC was analytically derived
through the outage detection probability. This outage detection probability gives the
possibility for finding a closed-form expression for the minimum number of sam-
ples. All those parameters confirm that the ED over an NFS channel outperforms

the ED over the NFF channels.
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PERFORMANCE ANALYSIS OF COOPERATIVE SPECTRUM
SENSING FOR COGNITIVE RADIO USING STOCHASTIC
GEOMETRY

4.1 INTRODUCTION

In practice, several problems militate against effective and efficient spectrum sens-
ing. These include the hidden primary user problem, fading, multipath and shadow-
ing. As a result the secondary user cannot detect the primary user and when it ac-
cesses the primary’s frequency band, hence it will cause interference to the primary
receiver. Because of this, cooperative spectrum sensing has emerged to respond to
these challenges [22, 51, 69, 70, 71, 72, 73, 74]. The energy detector (ED) is the
simplest detector which can be implemented in practice, and so most research on
cooperative spectrum sensing examines the ED.

In cooperative spectrum sensing, each secondary user reports its test statistic or
measurement to the fusion center (FC). The reported or transmitted test statistics
consume power and this power consumption might be significant if the number
of secondary users is large. Thus power consumption needs to be considered in
cooperative spectrum sensing design.

This chapter investigates the problem of cooperative spectrum sensing based en-
ergy efficiency. In addition, this chapter proposes a novel detection algorithm to

reduce the energy overhead that results from sending test statistics to the FC.
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4.1.1 Literature review and motivation

In the context of cooperative spectrum sensing many papers have dealt with the issue
of power consumption. In the literature there are three main approaches regarding
this matter.

A first approach (for example in [28, 75]) is the concept of a censoring or send / no
send idea (i.e., only sending test statistics that are larger than a local threshold (&)).
This was introduced to reduce the number of transmitted test statistics to the FC
and thus save energy. This approach showed a slight performance degradation com-
pared with uncensored cooperative spectrum sensing. Moreover, the authors used
a cyclostationary detector to estimate the test statistic and also the threshold ¢ was
calculated depending on the local Pr4. Furthermore, when there is no test statistic
sent to the FC, the FC assumes the primary user is absent. In addition, the detection
performance at the FC was not derived theoretically. In [76], the authors suggested
reducing the energy overhead by allowing the secondary users to randomly transmit
their test statistics to the FC after comparing them with local thresholds. In [26], the
transmitted test statistics were censored under the bandwidth constraints and they
used an ED. They used two local thresholds ¢; and ¢, (& > ¢1). When the test
statistic is above ¢, the secondary user would send “1” to the FC, if it is below
¢1 the secondary user sends “0” to the FC, and if it is in between ¢ and ¢ then
it sends no message to the FC. However, the computation of the local threshold
values were not taken into account and the final decision at the FC is dependent
on what decision most of the secondary users have chosen. In addition, their results
show that censoring cooperative spectrum sensing might be better than conventional
cooperative sensing. In [32], censored cooperative spectrum sensing based on the
ED was studied analytically and verified through simulation. The simulation results
showed that censored cooperative sensing gave better performance compared with
the conventional spectrum sensing when optimal values of ¢ and ¢ are used. In
[29], the authors employed an autocorrelation detector for deciding the activity of
the primary user and censored the test statistics sent to the FC by using only one

local threshold, and this local threshold is calculated depending on the local Prg.
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In addition, the global test statistic at the FC consisted of two parts. The first part
contained the test statistics that were above the local threshold, i.e, the test statistics
were sent by the secondary users. The second part contained the average value of
the test statistics in the no-send region under the null hypothesis.

A second approach for minimizing the energy overhead is a sequential detection
[77]. This approach aims to reduce the average number of secondary users which
send the test statistics to the FC and consequently the energy overhead is minimized.
In this approach each secondary user computes its test statistic, and the FC sequen-
tially accumulates the test statistic. If the accumulated test statistics falls between a
certain region it continues to receive test statistics from the secondary users; if not,
it stops receiving new test statistics. In [78] the concept of censoring and sequential
detection are combined.

The last approach is presented in [27, 79], for which the idea of truncated cen-
sored sequential detection is used. This is where each secondary user might send
its test statistic to the FC while not passing the limit of the number of the received
samples.

In all aforementioned papers, the geometry of the secondary users (i.e., the spa-
tial distribution of secondary users with respect to the primary user or the FC) was
not considered. Also, the number of secondary users is assumed to be known. In
addition, they do not consider the presence of the fading channels between the sec-
ondary users and the primary user and the fading channels between the secondary
users and the FC. All of the above assumptions are of great importance and should
really be considered in practice.

Motivated by the above explanations this chapter considers a more general sec-
ondary network model. This chapter introduces a random secondary network de-
tection problem where the secondary network is modelled as a random geometric
network. This random geometric network model is a generalization of the simple
secondary model used in the existing literature. This model has not been employed
for the above references (i.e., papers related to cooperative spectrum sensing based

on energy saving).
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For a random geometric secondary network, the implication of distance, pathloss
exponent and the channel may make the transmit power of the ith secondary user
(the transmit power needed to transmit the ith secondary user test statistic to the FC)
too large in order to satisfy a certain signal to noise ratio at the FC. This transmit
power might exceed the power budget of the secondary user equipment, in particu-
lar if the ith secondary user is far away from the FC and the pathloss exponent is
high. That is, the secondary user must be inside a building or there is severe fading.
Thus it is a good idea to “discard” those secondary users which require a transmit
power exceeding a certain transmit power threshold for the following two reasons:
(a) minimizing energy overhead, and (b) the signal to noise ratio at the FC might
not be satisfied due to the limited power budget of the secondary user equipment.
So in this work, to further reduce energy consumption, we will introduce a novel
additional parameter (p;), the transmit power threshold. This will be in addition to
the conventional local threshold (¢). The ith secondary user will only transmit the
test statistic to the FC, if Tgp; > ¢ and p; < p;. Here Tgp; is the test statistic at the
ith secondary user and p; is the required transmit power for the ith secondary user
to achieve a required signal to noise ratio (SNR) at the FC. Note that to minimize
the power needed to send the test statistics to FC, the local threshold (&) and the
transmit power threshold (p;) must be chosen in an appropriate manner. To the best
of author’s knowledge, this idea has not been proposed in any previous research.

At FC problems can arise if the FC does not receive any test statistic from the sec-
ondary users because ¢ is set too high or p; is set too small. As a result, the detection
performance at the FC might degrade. This issue will be taken into account in this
study as well. To address this issue, we propose to examine the activity probability
(P;1) under H4. This is the probability that at least one test statistic is received by
the FC. The objective is to find the optimum local threshold (¢ = Copt) and the
optimum transmit power threshold (p; = propt) so that Py — 1.

To enhance the detection performance at the FC, several combining techniques
have been proposed in the literature such as an equal gain combining (EQ), a max-
imum ratio combining (MRC) and a selection combining (SC). Only, the SC is

adopted in this work because it gives better detection performance compared to the
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EQl. However, MRC requires more information compared with SC, such as the

channels between the secondary users and the primary user. Hence, it will compli-

cate

For the conventional censoring, in this chapter the resulting detector is called a
censored selection combining (CSC) scheme. But for the proposed censoring, the

resulting detector is called a censored selection combining based power censoring

(CSCPC) scheme.

4.2 CHAPTER CONTRIBUTION

The contributions of this chapter can be summarised as follows:

. Most of the work in the literature assumes that the secondary users are dis-
tributed around the primary user, but this might not always be correct in prac-
tice. In some scenarios, the secondary users might be situated in a certain
building such as a domestic area, company, hospital, etc., and the primary

user may be located out side this area, i.e., a cellular network.

. Theoretical derivation of the activity probability P,; is carried out in order to

find opt and propt such that Py — 1.

. The detection performance of the conventional CSC over small-scale fading
and pathloss is derived analytically using the stochastic geometry tool and

justified by simulation.

. A novel CSCPC detector is proposed to alleviate the energy overhead. The
detection performance of the CSCPC detector over small-scale fading and
pathloss is derived theoretically using stochastic geometry and verified via

simulation.

. Finally, the average power that is needed to transmit the test statistics to the
FC is obtained analytically using stochastic geometry and confirmed through

simulation results.

1 Extensive simulation results have been done showing that the SC has a better performance.
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% Secondary user

@ Primary user

__________________ [l Fusion center

Figure 4.1: System model showing the secondary user, fusion center and the primary user.

Notice that the ED is used as the underlying strategy for all these contributions.

4.3 CHAPTER ORGANIZATION

The rest of this chapter is organized as follows. The system model is introduced
in Section 4.4. Cooperative spectrum sensing is presented in 4.5. In Section 4.6,
both Pry and Pp are derived for the CSC scheme. The detection performance of
the CSCPC detector is investigated in Section 4.7. Power consumption is analyzed
in Section 4.8. Results and discussion are given in Section 4.9. Finally, a chapter

summary is given in Section 4.10.

4.4 SYSTEM MODEL

A system model is illustrated in Figure 4.1. A detailed explanation of this model is
given in the following subsections. Some notations from the previous chapter are

re-defined for clarity.
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4.4.1 Secondary network model

In this chapter, the secondary users are distributed uniformly in a circular area sur-
rounding a FC located at the origin. The radius of the circle is denoted by R. The
secondary users are supervised by the FC. The spatial distribution of the secondary
users are modeled by a homogeneous Poisson point process (PPP) [38], i.e., ® with
intensity A. The probability of m secondary users being inside an area A is charac-

terized by

(A" e ™M m>0 4.1)
m!

Prob{m secondary users in A} =

where A = 71R? is the total area in which the secondary users are located. The lo-
cation of the ith secondary user is denoted by (6;,7;), where 6; is the angle between
the ith secondary user and the positive x-axis and 6; follows a uniform distribution
between 0 and 27t. Finally, 7; is the distance between the ith secondary user and the

FC and it is uniformly distributed between 0 and R.

4.4.2  Primary network model

For the primary network, we consider a fixed single primary user located at (QW, Rpr).
Here, 0, is a fixed angle between the primary user and the positive x-axis and Ry,
is a fixed distance between the primary user and the FC. So the distance between

the primary user and ith secondary user is given by

Fori = \/”12 + R%r — 2Ry ricos(0; — Opr), 4.2)

where the distance unit is in meter.

4.4.3 Channel model between secondary users and primary user

A Nakagami flat-fading channel is considered between the primary user and the
ith secondary user. The overall channel power gain between the ith secondary user

and the primary user is modeled by h?q(@i, ri). h? represents the power gain of
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the Nakagmai flat-fading channel and here follows a Gamma distribution (f;2(t))
(independent of i) with a shape parameter K, and a scale parameter ¢ and is given

by [67] Ko—1 t
£ exp(— o)
fiat) = —— 12" 4.3)
¢h2h F(Khz)

And g(6;,r;) is the path loss between the ith secondary user’s location (6;,7;) and

the primary user’s location (6, Rr). This can also be written in terms of the path

loss exponent («) and a frequency dependent constant (x), i.e.,

K
q(6;,1;) = P 4.4)
pri

For simplicity, x is assumed to be 1.

4.4.4  Channel model between the secondary users and the FC

Similarly, the channel between the ith secondary user and the FC is assumed to be
Nakagami flat-fading channel (g;), thus the power of this channel (g?) follows a
Gamma distribution (fg2(y)) (independent of i) with a shape parameter K, and a

scale parameter gbgz and it is written as [67]

v exp(— L)
fely) = —+; —. (4.5)
.2 T(Kg)

The overall channel gain is given by ¢?z(0;,7;), where z(6;,7;) is the path loss
between the ith secondary user and the FC with [64]

1

—.
T

z(0;,1;) = (4.6)

4.4.5 Received signal model

The ith secondary user inside the area A receives either noise () or a primary

signal plus noise (#1), dependent upon the activity of the primary network:
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Hy: xi(n) =7\/h?q(0;,1;)s(n) + w;i(n) 4.7)

where n = 0,1,2,..., N — 1; N is the number of samples collected by the ith sec-
ondary user; x;(n) is the signal received by the ith secondary user; w;(n) is the
ith secondary user’s noise with distribution CA/ (0,¢2); s(n) is the primary signal
which is randomly and independently drawn from a complex constellation. Finally,
the average signal to noise ratio is defined at the FC by SNR = 1Olog10%{£%r,

where Py is the primary transmit power.

4.5 COOPERATIVE SPECTRUM SENSING

In this section, the selection combining (SC) based cooperative spectrum sensing
at the FC is investigated, in order to understand the activity probability, for two dif-
ferent censoring techniques: a received energy-based censoring (conventional cen-
soring), and a required transmit power based censoring along with the conventional

censoring?.

4.5.1 Received energy-based censoring

The ith secondary user employs an ED and it compares the test statistic (Tgp;)
with the local threshold &, where Tep; = + Yoy |x;(n)|2. Only if (Tgp; > &) is
satisfied, the test statistic will be sent to the FC. Thus a global test statistic ( Tyqx)

at FC will be chosen as follows:

Ho
Tinax = max (TEDi> S Tep (4.8)
(91',1‘1')6‘1) Hl
Tepi>¢

The first technique represents the conventional censoring scheme (CSC). The second technique rep-

resents the proposed scheme (CSCPC).
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Probability of detection (PD)

oI 11

0‘2 0‘3 0‘4 0‘5 076 077 OIE
Probability of false alarm (PFA)

Figure 4.2: The probability of detection (Pp) versus the probability of false alarm (Pra)
for different values of ¢ (simulation - see (4.8)). In all cases, « = 2, SNR =

~11dB, R = 20, N = 50, R, = 25,6, = Z and A = 0.1.

where Trp is a global threshold at the FC. The idea behind the local threshold at
each secondary user is to save power by transmitting only the most ‘robust’ test

statistics to the FC.

4.5.2 Required transmit power-based censoring

In practice each secondary user faces a different signal to noise ratio at the FC. This
means that the capability of sending the test statistics to the FC varies from one
secondary user to another. The secondary users which are far away from the FC and
those which are close to the FC (but in deep fading) will need significant transmit
power to send their test statistics to the FC 3.

Motivated by the above discussion, a new parameter (transmit power threshold
(p¢)) is introduced to save additional power. To send the test statistic Tgp; to the
FC, the required transmit power p; for the ith secondary user should satisfy p; < p;

where?

3 This power may be more than the budget power.
4 Here the py.¢ and p;
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Figure 4.3: The Pp versus the Ppy for different values of p;. (a) when ¢ = 0. (b) when
¢ =0.15.(¢c) ¢ = 0.25. (d) ¢ = 0.35. In all cases, SNR = —11dB, R = 20,
N =50, Ry, = 25,0, = 7 and A = 0.1.

pi = pref
Z gzzz (eil 7’1')
Note that (4.9) is to guarantee that the received power at the FC equals p,.¢. Now

< pt. 4.9)

the test statistic in (4.8) with the condition in (4.9) becomes

Ho
Tpax = mMax <TED,-> < Tp. (4.10)
(9i,ri)e¢’ ’]_[1
Tgpi>¢

pi<pt
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4.5.3 Idle network issue

In cooperative spectrum sensing based on the global test statistics defined in (4.8)
and (4.10), when the local threshold ¢ is set too high or the transmit power threshold
pr 1s set too low, then the FC will not receive any test statistic (it will assume that
the primary user is absent) and the detection performance at FC will deteriorate as
will be seen next.

Figure 4.2 illustrates the detection performance of the global test statistic defined
in (4.8). This figure is plotted by simulation for different values of ¢. We can see that
as ¢ increases the maximum achievable Pp reduces. The reason for that behaviour
is because the FC has not received any test statistic. For example, when ¢ = 0.7,
(Pra, Pp) < (0.17,0.6).

Now Figure 4.3 shows the detection performance of the global test statistic de-
fined in (4.10) for different values of ¢ and p;. First, Figure 4.3 shows that as the
pt decreases so also does Pp. Also from figures 4.3a and 4.3b, it can be noticed
that the detection performance is not affected by ¢. In addition, the worst scenario
is when p; = 5, for which (P4, Pp) < (0.8,0.8).

Figures 4.3c and 4.3d show that as the ¢ increases as the maximum achievable
Pp reduces rapidly. For example, when ¢ = 0.25, (Pra, Pp) stops at approximately
(0.68,0.7) and when ¢ = 0.35, (Pra,Pp) < (0.41,0.46). The interpretation of the
behavior of Figures 4.2 and 4.3 are discussed next.

Behavior explanation

The false alarm and detection probabilities at the FC are basically determined by
the global threshold Tzp. When the FC receives at least one test statistic, for Tgp =
0, then Pp = Pr4 = 1. However, when the FC does not receive any test statistic the
maximum values of Pp and Pry depend on the availability of the test statistics at the
FC >. As aresult, Pp and Py at Tep = 0 will be the probabilities that at least one

test statistic is received by the FC under H; and H respectively. Mathematically

5 In this scenario, the FC more likely decides that there is no primary user.
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Pepam | P~ |Pp~|Pun~

¢ =025 p:=5| 0.69 0.69 | 0.71 | 0.71

¢=035 pr=5| 041 041 | 046 | 0.46

E=025p =25 1 1 1 1

¢ =035 pr=25| 094 094 | 094 | 094

Table 4.1: Pra, Pp, Py and P, for different values of ¢ and p; for Tep = 0.

speaking, Pp and Pr4 will be P,; and P, instead of 1 and 1 respectively and are

written as
Pp(&, pt,7ep = 0) = Py

Pra(E, pt, TEp = 0) = Ppo.

.11)

Here P,; and P, are the probabilities that at least one test statistic is received by the
FC under H4 and Hg respectively at Trp = 0. Now Pp and the Py for any value

of Trp are bounded by the following inequalities

Pp(¢, pt) < Pn
Pra(C, pt) < Pao.

The previous results can be verified as follows. Figures 4.4 and 4.5 show P,; and

(4.12)

P,o for different values of ¢ and p; respectively. Using Figures 4.3, 4.4 and 4.5,
Pry, Pp, P,o and P, for different values of ¢ and p; are recorded in Table 4.1. The
results in Table 4.1 confirm (4.11).

One commitment of cognitive radio is to protect the primary receiver from any
potential interference form the cognitive network. This protection is related to the
detection probability, so it is mandatory to guarantee P;; = 1. Consequently, P,
is considered instead of Py, the derivation of P,; will be discussed in the next

subsection.
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Figure 4.4: (a) P,y versus ¢ for p; = 25. (b) Py versus ¢ at p; = 5. (c) Py versus p; for
¢ = 0.25. (d) P, versus p; for ¢ = 0.35. In all cases, SNR = —11dB, R = 20,
N =50, Ry = 25,0, = 5 and A = 0.1.
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Figure 4.5: (a) The P, versus the ¢ at p; = 25. (b) The P, versus the ¢ at p; = 5. (c) The
P, versus the p; at ¢ = 0.25. (d) The Py versus the p; at ¢ = 0.35. In all cases,
SNR = —11dB, R = 20, N = 50, Ry, = 25,6, = 5 and A = 0.1.

4.5.4  Activity probability

As it is mentioned earlier, there exists a probability (because of the choice of ¢
and p;) that no test statistic may be sent to the FC and subsequently the detection
performance may be degraded. Thus the activity probability (P,;) is introduced,

which is defined as the probability that at least one test statistic is received by the
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FC under H;. Here we require P,; ~ 1 to avoid any degradation in the detection
performance and so we will examine how the choice of ¢ and p; affects P;.

Figures 4.4a and 4.4b show a plot of P, versus the ¢ for different values of p;.
First it can be easily seen as p; decreases from 25 to 5 the P,; decreases. Also from
Figures 4.4a and 4.4b, if ¢ is very large (no test statistics will be sent to the FC).
This means P,; ~0 and this is desirable from a power saving point of view but it is
undesirable from a detection performance point of view. Thus ¢ should be chosen
as large as possible to ensure that P,; ~ 1. This maximum threshold will be called
an optimum local threshold (& = Copt).

The choice of parameter p; also affects P,;. This can also be seen in Figures 4.4c
and 4.4d which show a plot of P,; versus the p; for different values of ¢. It can
be seen that when p; is small P,; is also small. In terms of saving power this is
desirable but in terms of detection performance it is not. However, if p; is large,
then P,1 ~ 1 and this will increase the power consumption which is desirable for the
detection performance and not for saving power. Therefore, p; should be chosen as
small as possible such that P;; ~ 1. This minimum transmit power threshold will
be called the optimum transmit power threshold (p; = piopt)-

Motivated by the above explanation we seek to find both Copt and pyopt that satisfy

the following condition:

(Gopts Propt) = {max ¢ and min p; such that

P (éoptr Ptopt) =1 } .
To compute (4.13) it is needed to derive the activity probability (P,;) through the

(4.13)

following proposition.
Proposition 1. The probability that at least one test statistic is received by the FC

under 7 is given by:

P =1- — A i, 0,r\I'(K refr"‘ drd6
al(é,pt) = exp( F(ng)/o /OQNuk( ,r) ( q27 Di !gZ )7’ r >
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Proof. The probability that the test statistic Tgp; is not received by the FC (P,;)
occurs when the ¢ and p; are sufficiently high or low respectively. Mathematically

speaking it is given by
P,; = Prob{Tgp; < & orp; > pt}. (4.15)
Because Tgp; and p; are independent, thus (4.15) can be written as
Py =1 —Prob{Tgp; > &|H1}Prob{p; < p:}. (4.16)

Because the secondary users are independent, thus the probability that no test statis-
tic is received by the FC (P, ) under H; is given by
Py =Eg 2 [ I [1 — Prob(Tgp; > &|H1)Prob(p; < pt)]]. 4.17)
Loiree
Then the probability that at least one test statistic is received by the FC is given by

Py =1—P,. (4.18)

Now when Prob(Tgp; > (;‘}Hl) is evaluated, the test statistic Tgp; under Hq will

have a noncentral chi-square distribution with 2N degrees of freedom and a non
2

centrality parameter v; = % Thus Prob{TEDi > C !7—[1) conditioned on the

wpri
channel and path loss is given by

2N
Prob{Tep; > &|H1} = Qn (V75 U—ZC) (4.19)

where Qn (., .) is the generalized Marcum Q-function (conditioned on the channels

and the pathloss) defined as follows,

00 XN x2+a2
Qn(a,b) :/b aN—leXp< > )IN_l(ax)dx.

Also, Prob(p; < p;) after substituting p; = g?;rgi ;) can be written as
2 _ Pref”
Prob{p; < pt} = Prob{g* > P—} (4.20)
t

the subscript ‘7’ is dropped from glz and r{, because the random variable giz follows

a Gamma distribution. Thus (4.20) conditioned on the pathloss is

prefr“
T(ng, P2 )

F(ng) .

Prob{p; <p:} = (4.21)
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By substituting (4.19) and (4.21) into (4.18), then by applying the generating func-

tional of the Poisson process [see [38], eq (4.3.8)]

Pu(& pt) =

2 2NK2 [2Ng
1—exp( / / \/Uz%r%/\/g) (4.22)

X fhz(t)dt] X r(ng, ’; t:; 2 )rdrdf)).
8

The inner integral in (4.22) represents the detection probability for a local secondary
user over a Nakagmai fading channel and it is derived in [[22], equation (20)]. This
inner integral is denoted by Qg (6, 7). After substituting Qpnak(6,7) into (4.22)
then (4.14) is obtained. Then after finding the activity probability (P,1), the Gop

and the p,p can be found numerically such that (4.13) is satisfied.

4.6 DETECTION PERFORMANCE ANALYSIS FOR THE CSC SCHEME

In this section closed-form expressions for Pr4 and Pp are derived for the conven-
tional censored selection combining (CSC) detector (see - (4.8)). For this detector,
it is assumed that (4.13) is satisfied. Notice that, this detector does not depend on

the Pi-

4.6.1 False alarm probability derivation

When each secondary user sends its test statistic (Tgp; > éopt) to the FC then the

FC selects the maximum test statistic. Thus
Pra = Prob{ Tyax > Tep|Ho }- (4.23)
Because all the secondary users are independent (4.23) can be written as

Pps =1 — Prob{ Tyuax < Tep|Ho}

Pps =1~— ]Ecb,hZ[ [ Prob(Tep:i < tep|Ho, @, hzz)} (4.24)
C(0r)e@
TEDi>Copt
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As mentioned above, when (4.13) is satisfied, this means that at least one test statis-
tic is received by the FC. Therefore, the selection combining at the FC will not be
affected by the local threshold c:,‘opt (as will be seen in the simulation section). Thus
the local threshold ¢,pt could be omitted from (4.24). Now (4.24) can be written as
Prq=1— 1}3@,112[ [T Prob(Tepi < TED}HO,cp,hf)] (4.25)

CEDIS
Tep; under H is a sum of the squares of 2N Gaussian random variables with zero

mean. Therefore, Trp; follows a central chi-square distribution with 2N degrees of
N,
I'(N,—%52

freedom. So Prob{TEDi < TED‘"HO} =1- TT\?)% and (4.25) reduces to
(N, 2%2)
Pra=1-Egp| [ (1-—+2—)]. (4.26)
o110

By applying the generating functional of the Poisson process in (4.26) [see [38], eq.
(4.3.8)], the false alarm probability can be written as
AT(N, 2H2)  or (R
Ppg=1-— exp<—r(—N)w/0 /0 rdf)dr)
ATRT (N, ~%2)
I'(N) )
Note that (4.27) is independent from é‘opt and so it will not affect the detection

(4.27)

Prg =1—exp <—
performance as will be seen in the simulation results.

4.6.2 Detection probability derivation

Now Pp, it can be derived in a similar manner to the Pr4. When each secondary user
sends its test statistic (Tgp; > Copt) to the FC, then the FC selects the maximum

test statistic. Thus Pp is formulated as

Pp = Prob{ Tyax > Tep|Hi }- (4.28)
Because the secondary users are independent and the selection combining at the FC
is independent of the local threshold (Copt) when (4.13) is satisfied, similar to Pra,
then (4.28) is given by

Pp=1— Eélhg[ [T Prob{Tepi < Ten|H1, ®, h?}] (4.29)
! (91',7’1')6@
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2
Prob(Tgp; < TED‘Hl) can be evaluated by 1-Qn/(, /%, /ZIZ#). Thus by
wlpri w;

substituting Prob(Tgp; < Tep ‘ H1) into (4.29)

(4.30)

The transmitting secondary users constitutes a marked PPP with an intensity
A (h?) = Afpa(t). (4.31)

Then by applying the generating functional of the Poisson process in (4.30) [see
[38], eq. (4.3.8)] and with an intensity defined in (4.31), the detection probability

can be written as

Po=1-exp(-a [ '] /0°°fhz<t>QN<\/ (2,?”;2 \/ =)

X rd@dr) .

(4.32)

By using [[22], equation (20)] in (4.32), then (4.32) becomes
2t rR
Pp=1— exp<—A / / Onat (6, r)rdrd@), (4.33)
0 0

where Qg (6, 7) is defined in subsection 4.5.4.

4.7 DETECTION PERFORMANCE ANALYSIS FOR THE CSCPC SCHEME

In this section closed-form expressions for Pr4 and Pp are derived for the censored
selection combining detector based on power censoring (CSCPC) (see - (4.10)).

This detector is evaluated analytically when (4.13) is satisfied and p; is considered.

4.7.1 False alarm probability derivation

When each secondary user sends its test statistic (Tgp; > §0pt and p; < pfopf) to

the FC, then the FC selects the maximum test statistic, and

Ppg = Prob{ Ty > Tep|Ho ) (4.34)
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Because all the secondary users are independent, then (4.34) can be written as

Pra=1-Eg 2| [ Prob{Teoi < wen|Ho @ h2}|. @439
(eirri)eq>p

Again, (4.35) does not rely on the local threshold &, ¢ and Prob{ Tepi < TED ‘ 7-[0} =

T(N,~5P) .
1-— TN Thus (4.35) can be written as
T(N, %)
Pea=1-Fg2| T (1 T(N) )| (4.36)

(91',1’1')6(1),,
where @, is the set of transmitting secondary users that satisty p; < piopt. The
transmitting secondary users @), constitute a non-homogeneous/inhomogeneous in

PPP with an intensity

prefra

AO(]// 1’) = Al( < Ptopt)ng (y); 4.37)

prefra
Y

where the subscript ‘i’ is dropped from gl-z and r{ and 1( < ptopt) 1s an

indicator which is defined as

re 1 b < Ptopt
NG 0 L S -
Yy 0 Prefra
y > Ptopt-

By applying the generating functional of the Poisson process in (4.36) [see [38], eq.
(4.3.8)] and with (4.37), then

o 2 (R prefr‘"
Prp=1-— exp(—A/O /O /0 1( y < ptopt)fgz(y)rdyd(?dr>

A oo 27w rR Pre r&
S . N N A T
95 T(Kp) Piop!

X ngZlexp(—%)rdydOdO (4.39)
8
2TA R 0 K o—1
=1-— eXp(_KZ—/O rﬁ,mfrzx y 2 eXp(—%)dyd?‘)
TR T i :
2T R prefra >
Pea =1-exp(—prp | T(Kg, L yrar),
i eXp( F(ng) 0 ( g 47g2ptopt)r '
AT(N, 5D
where A = —— & —

T(N)
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4.7.2 Detection probability derivation

Now Pp can be obtained in a similar manner as Prs. When each secondary user
sends its test statistic (Tgp; > Gopt and  p; < piopt) to the FC, then the FC selects

the maximum test statistic. Thus Pp can be written as
Pp = Prob{Tyax > Tep|Ha }, (4.40)
and because all the secondary users are independent, so

Pp=1- ]Eq)p’hiz[ H PI‘Ob{TEDZ' < TED|H1/ q)p,h%}}, (4.41)
(ei/”i)e(bp

where PI'Ob{TEDZ' < TED‘,Hl} =1- QN( [ 2Nh2 /21\¢]TTED) and (I)p is the set of

20/
Owl'pr

transmitting secondary users that satisfy p; < popt. Thus

N2 [2N
PD:1—1E%,1?[ I1 <1—QN(\/ \/ TED . (4.42)

2 4k
(Gi,r,-)eép O-wrpr

The transmitting secondary users ®), constitutes a non-homogeneous/inhomogeneous

PPP with an intensity

Pre f rt

My, t,r) = A1( < Propt) fie (1), (4.43)

where 1( Pref”” Ptopt) is defined in (4.38). Then by applying the generating func-
tional of the Poisson process in (4.42) [see [38], eq. (4.3.8)] and with (4.43), then

Pp is modified as follows

© oo 27 (R 2Nt 2NTeD
Pp=1- AN
p=t-ew(o [T 77 [ vty [T
1

prefra
Ptopt

X exp(—y/cpgz)rdrdetdy)

1(y > ) X tK%leexp(—t/(Ith) X ng2_
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27
PD—l—exp( A/ / [ / /22N , /ZNZED)tKhrl
T pr 0%
-1

X exp(— t/cphz)dt]ﬁ,ﬂayg exp(— y/¢gz)dy}drd9>

Ptopt

Kz 27T R pTEfra
_ _ _ &
_1 exp( £, / / [rr(ng, )

|2Nh2  [2N
X QN . UZED tKhz 1exp( t/thz)dt]}drdG)
p?‘l

where A = Ky Ko . Finally the detection probability is given by
I(Kj2)$,5 4’g§ I(Kp2)

K 2 R re &
Pp=1- exp<—A4> zgz / / [rQNak(G,r)F(K 2, l)}dral@).
8 Jo Jo g ProptPq2
(4.44)

where Qngk (6, 7) is defined in subsection 4.5.4.

4.8 AVERAGE TOTAL POWER CONSUMPTION

In this section, the average total power IE[A(&, pt)] consumption is derived. Here
A(E, pr) is the secondary network’s total power needed to transmit the test statis-
tics to the FC. The average total power consumption is derived for two different
scenarios.

Scenario I: The first scenario is when the primary user is absent (Hg). In this
case, the total power needed to transmit the test statistics to the FC is given by

No(Cpr)= ), pi

(91‘/71‘)6‘1)71
Tepi | Ho>C

_ oy P

(91',7’1')€¢p gl
Tepi | Ho>¢

(4.45)
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notice that the transmitted test statistic should satisfy (Tgp; > ¢ and p; < py).
The transmitting secondary users @, constitute a non-homogeneous PPP with an

intensity

refr"
Ay, 1) = )\P]TOb{TEDi > (:‘,H()}l(p ];

< pt)ng(y)

AT(N, 25) (4.46)

Yoty r) =~ < pfe(y)

where 1(% < py) is defined in (4.38). Thus the average total power when the

primary user is absent is given by

prefr
E|{Ay(C, = E .
[ o(¢ Pt)] . éq)p [ 81 ] (4.47)

Tepi|Ho>¢

Now by applying Campbell’s theorem [38] with (4.46)

E[Ao(E,pe)] = /\p’efr . / /2"/ v r(K e

prefr

1

_27T/\Prefr ’ 2 / / exp(—]//47g2)
4’

X l(r < (;jti)l/”‘)d;’dy

< pt)exp(—y/4>gz)rdrd9dy
(4.48)

And by substituting i = y /P2 into (4.48)

(upiga/Pref)! _
E[No(E,pr)] = {/ / B 2exp(—u)dudr]

_ (upedp 2/ Preg)/®
19[/ uts? 2exp( )[/ PRI dr} du}
0 0
19 pt(sz )M (4.49)

( p @ 00 2
o ref K 2+&—1 B
= i) [/0 u's exp( u)du}

P 2

(5
= WT(ng +-),
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ZHAprefF(N,U%)
w
AT (KaIT(N)
Scenario II: The second scenario is when the primary user is present (#1). In

where ¢ =

this case, the total power needed to transmit the test statistics to the FC is given by

Al(C;Pt) = Z Pi

(9 T)Eq)p
TED1|7'[1>§
4.50
_ Pref? (450
= X
(gi,ri)GCI)p gl
TEDi|7'11>§

and again @, is the set of transmitting secondary users that satisfy p; < p;. Also,

®, constitutes a non-homogeneous PPP with an intensity

My, tr) = /\Prob{TEDI > 6‘7—[1}1 Pref < pt)fg 2(y)

2Nt |2N¢ p r (>
Y ) ref .
QN Uz%r%r 0,2 pt)fgz (y)
Thus the average total power when the primary user is present is given by
prefr?
E[A@Ep)] = Y BELE)
(6;,1,)€Dp giz (4.52)

Tepi ‘7‘[1 >¢

By using (4.51) and Campbell’s theorem

E[A(Epr)] =t /°° /°° /Zn/RﬁngzltKhzl

2Nt [2N¢ Prefr

20 7 2
T pr 0%

x On( pt)

X exp(—y/(sz)eXp(—t/(th)Tdydtd@dr

:191/0271/01?7““{[/OwtKhzlep(_t/(th)

2Nt 2N
s eI
ogrs,”\ o3

® K,-2 Pre rt
< VT > T ey ey ar
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_ 27 DC—|—1 9
=t OnNak(0,7)

X ﬁf Y e Zexp(—y/ pg2)dydr (4.53)
Pr
K,—1 r2m (R p
= %oy /0 /0 P Qnak(6,71)T (K2 — 1, pr:;
§?
where ¢ = APref x5 - By evaluating (4.53) numerically, the average

K2 g
[(Ky2)9,, F(ng)(Pgi
total power of the secondary network for sending the test statistics to the FC is

given by

E[A(E,pr)] = P(Ho)E[Ao(E, pr)] + P(H1)E[A1(E,p1)], (4.54)

where P(H)) is the activity of the secondary network and P(Hg) = 1 — P(H1).

4.9 RESULTS AND DISCUSSION

This section presents some simulation results to validate the theoretical analysis
that has been coppied out in the last sections for the following system parameters:
m = 2, P, =1, and p,,y = 1. In addition, it provides some results regarding the
CSC and CSCPC schemes, showing the advantage of CSCPC over CSC in terms
of reducing the energy overhead while the detection performance loss is negligible.
The number of Monte Carlo iterations is set to 10°. The @‘Opt and pyopt are found
using (4.14) by grid search.

Result 1: Theoretical results verification for activity probability (Figures 4.6
and 4.7).

Here the activity probability under Hq (P,1) is plotted analytically using (4.22).
The simulation result is plotted by counting how many times the FC receives any
test statistic out of the total number of iterations. First, Figure 4.6 shows P;; versus
the local threshold, ¢, for p; = 100. It is obvious the simulation matches closely the
analytical result. Second, Figure 4.7 plots P,; versus the transmit power threshold,

pt, for ¢ = 0.05. Again the simulation complies with the analysis. It is observed in
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both figures that for a high value of ¢ and a low value of p; there is no test statistic
at the FC and this makes the final decision at the FC uncertain.

Result 2: Theoretical results verification for detection performance analysis
for the CSC and CSCPC schemes (Figures 4.8,4.9,4.10 and 4.11)

Figure 4.8 shows the detection performance of the censored selection combining
(CSC) scheme at the FC without power constraint (theory - see (4.27) and (4.33),
simulation - see (4.8)) for different values of signal to noise ratio. It is clear that the
theoretical derivations match the simulation results. Now Figure 4.9 illustrates the
detection performance of the CSC scheme for different values of A. Again the simu-
lation results verify the theoretical derivations. In Figure (4.10), the detection perfor-
mance for different values of ¢ is shown (the simulation and the theoretical results
are virtually the same and therefore only the theoretical results are presented). Here,
it is obvious from the simulation that the detection performance is not sensitive to
the local threshold conditioned for ¢ < &,,¢, where in this scenario opr = 0.55.

Now we examine a validation for the theoretical analysis of the detection per-
formance of the censored selection combining based power censoring (CSCPC)
scheme (theory - see (4.39) and (4.44), simulation - see (4.10)) as plotted in Fig-
ure 4.11. As can be seen from Figure 4.11, both the simulation and the analytical
results are identical for different values of p;. In this figure it can easily be seen that
as p; decreases the detection performance degrades since not a lot of test statistics
are being transmitted to the FC.

Result 3: Theoretical results verification for the average transmitted power
(Figures (4.12) and (4.13))

Figure 4.12 presents both the simulation and the theoretical results of the power
needed to transmit the test statistics to the FC versus the power transmit threshold
(pt), for different values of ¢. We can see that the theory and the simulation are
identical. In addition, it can be observed that the total power can be reduced by
decreasing p; and increasing ¢. Now Figure 4.13 manifests the power needed to
transmit the test statistics to the FC versus the local threshold (&), for different
values of p;. Again the simulation matches the theory and the total power increases

with increasing p;. For theory - see (4.54) and for simulation - see (4.45) and (4.50).
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The next results (Figures 4.14, 4.15 and 4.16) show the advantage of the CSCPC
scheme over the CSC scheme in terms of detection performance and power saving.

Result 4: The detection performance versus p; (CSCPC scheme), E[A (¢, p;)]
versus ¢, and Pp versus Pry (Figures 4.14, 4.15 and 4.16)

In Figure 4.14, the detection performance against the power transmit threshold
for the CSCPC scheme is shown. This figure shows that the improvement of the
detection performance increases dramatically with increasing p; and then it levels
out for different values of Pr4. The power transmit threshold can be chosen such that
the target detection is met. For example, for a target detection probability 6 = 0.9
at Pry = 0.01, p; = 750 is a good choice.

Now Figure 4.15 shows the total power needed to send the test statistics to the
FC versus the local threshold for the CSC and the CSCPC schemes. Here it can be
seen that the proposed technique CSCPC can save a lot of power compared with
the CSC. It can be observed that the power needed for the CSC can be reduced
approximately by half for CSCPC at § < (opt = 0.1) and p; = 750. Theory - for
the CSC scheme see (4.27), (4.33) and (4.54), for the CSCPC scheme see (4.39),
(4.44) and (4.54).

To be more rigorous, we have to examine the detection performance for the CSC
and the CSCPC schemes for a certain value of p; such that a target Pr4 and a target
Pp are met and Py1(8opt, Pt,,,) = 1. For example for (Pps, Pp) = (0.01,0.9),
pt = 750 is a suitable choice to satisfy the target Pry and Pp as shown in Figure
4.14. In addition, the choice of p; = 750 can satisfy Py (Copt, ptopt) = 1 (where
Copt = 0.1, ptopt = 30 are found using (4.14) by grid search).

For these requirements, Figure 4.16 plots the detection performance for the CSC
and the CSCPC schemes. It can be observed that both are approximately the same.
Thus it can be confirmed that the CSCPC scheme has achieved its purpose which is
to save power with a negligible loss to the detection performance.

Finally, from Figures 4.14, 4.15 4.16 we can see that the total power needed to
transmit the test statistics to the FC is decreased while the detection performance

remains unchanged.
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Result 5: Pp versus Pr4 in the presence of NU (Figure 4.17)

This figure evaluates by simulation the detection performance of the CSC and
the CSCPC schemes in the presence of NU. The NU has been generated according
to the p.d.f. defined in (5.6). It can be seen that the effect of NU on the detection
performance is negligible compared to the local sensing as shown in Figure 5.2.
Result 6: Pp versus R for different values of A Figure (4.18).

Figure 4.18 depicts the Pp versus R for different values of A. It shows that as
A increases as the performance improves. However for CSCPC the performance
improvement stops at a certain value of R due to the power constraint.

Result 7: Pp versus SNR and [E[A (¢, p¢)] versus SNR for different values of p;
(Figures 4.19 and 4.20).

From Figure 4.19 it is easily be seen that the detection performance of the CSCPC
scheme for p; = 1500 approaches to the detection performance of the CSC scheme.
Also, it is observed that the detection performance of CSCPC deteriorates for p; =
750 and p; = 1000. The reason is that the secondary users which are far away
from the FC do not participate in the detection problem because of the constraint
on p; . In Figure 4.20, it can be seen how much power can be kept for the case of
pt = 750, 1000. Also, the figure shows that the CSCPC scheme for p; = 1500
approximately dissipates half the power needed for the CSC scheme. Moreover,
from Figures 4.19 and 4.20), it is noticeable that as the SNR increases, the Pp and
the average power tend to 1 and O respectively. Thus from Figures 4.19 and 4.20, we
can say that the CSCPC scheme for p; = 1500 maintains the detection performance
unaffected while reducing the power consumption to the half.

Result 8: P versus R and E[A({, py)] versus R and for different values of p;
(Figures 4.21 and 4.22)

Figure 4.21 shows that the performance of the CSCPC detector for p; = 1500 ap-
proaches the performance of the CSC detector. Also, it is observed that the CSCPC
detector for p; = 750 and p; = 1000 (after a certain value of R) maintains unaf-
fected. The reason for that is that the secondary users which are far away from the
FC cannot send their test statistics to the fusion center due to the small values of p;.

Figure 4.22 shows how much of power can be reduced by employing the CSCSP
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scheme compared to the CSC scheme. So the the proposed detector (CSCSP) can

save a huge power with a small distortion to the detection performance.
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Figure 4.8: The Pp versus the Pry for the CSC for different values of SNR (no power
constraint). In all cases, N = 10, R = 20, Rpr = 25, 9!’? = %, a = 2 and

A =0.1.
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Figure 4.9: The Pp versus the Ppy for the CSC for different values of A (no power con-

straint). In all cases, N = 10, R = 20, Rpr = 25, Qlﬂr = % and SNR = —6dB.
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4.10 CHAPTER SUMMARY

The main goal of this chapter is to save energy when sending the test statistics to the
FC, but not at the expense of significant performance degradation®. Firstly, an an-
alytical expression for the activity probability is proposed so that the idle network
issue is tackled. Secondly, the conventional censored selection combining (CSC)
scheme is investigated analytically, where CSC is based on the local sensing thresh-
old (¢). Thirdly, a novel detector is proposed to reduce the energy overhead. The
proposed scheme is named censored selection combining based power constraint
(CSCPCQ). It relies on the local threshold (&) and the transmit power threshold (p;).
The main idea behind introducing the p; is to have more degrees of freedom to de-

crease the overhead energy that is needed to send the test statistics to the FC. More-

6 Notice that saving the energy will decrease the potential interference at primary user receiver.
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over, the total power required is derived analytically. The CSC, CSCPC schemes
and total power are derived using the stochastic geometry tool and verified by sim-
ulation. Finally it is shown by simulation how the proposed CSCPC detector can
alleviate the power consumption while the detection performance distortion is neg-

ligible compared with the conventional censoring case (CSC).
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SENSING-THROUGHPUT TRADEOFF IN THE PRESENCE
OF NOISE UNCERTAINTY AND OVER NAKAGAMI-M
FREQUENCY-SELECTIVE CHANNELS

5.1 INTRODUCTION

To complete the picture of cognitive radio, this chapter examines the secondary
user’s throughput. Performance analysis of secondary user is very useful when de-
signing practical systems. For example, one of aims of cognitive radio is to increase
the data rate, but in some uncertain environments, such as channel fading, a sec-
ondary user cannot achieve the required data rate.

The objective of this chapter is to evaluate the performance of the secondary
user when the sensing (the primary-transmitter secondary-transmitter link), inter-
ference (the primary-transmitter secondary-receiver link) and communicating! (the
secondary-transmitter secondary-receiver link) channels are Nakagami-m frequency-
selective (NFS) as shown in Figure 5.1. Moreover, the chapter includes the issue of
noise uncertainty (NU) at the sensing stage. Sensing-throughput tradeoff is consid-
ered as a performance metric in the evaluation. In order to formulate the secondary
throughput this chapter evaluates two parameters. Firstly?, we have a closed-form
expression for the sensing threshold that takes into consideration NU and an NFS

channel. Secondly, we derive closed-form expressions for success probabilities in

Throughout this chapter we use communicating channel and secondary link interchangeably.
The secondary throughput relies on the results of spectrum sensing which is strongly related to the

sensing threshold.
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Interfernce channel (f)
Sensing channel (h)

Communicating channel (g)

Figure 5.1: System model showing the sensing, communicating and interference channels.

the presence and absence of the primary user. Finally, we look at the effect of spec-
trum sensing on the secondary throughput.

The investigation also includes the autocorrelation detector (AD) which is not
sensitive to NU. The AD is included in the investigation for a comparison purpose.
Because the AD depends on an OFDM signal, the OFDM is chosen as a candidate
for the primary user’s signal.

To the best of author’s knowledge, the analytical study of sensing-throughput
tradeoft in the presence of NU and over an NFS channel has not been examined in

any previous research.

5.1.1 Background

5.1.1.1 Sensing-throughput tradeoff

The fundamental functions of cognitive radio technology are spectrum sensing and
data transmission. The secondary user frame in cognitive radio technology has a
time slot divided into two parts [17]. The first part is allocated for spectrum sensing
over the entire primary user band and the second part is reserved for data trans-
mission. Both sensing and transmission are executed sequentially. This differs from
traditional wireless communication systems which have only one part for transmis-
sion. Figure 5.2 illustrates the periodic spectrum sensing (N) and date transmission

(W-N) in cognitive radio, where W represents the secondary frame duration. Once
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Frame N Frame N+1

Sensing Transmission Sensing Transmission

Figure 5.2: A periodic sensing/transmission structure for cognitive radio technology.

the secondary user declares the absence of the primary user, the secondary user ac-
cesses the primary user band in the rest part of the frame; otherwise, the secondary
user switches off its transmission until it detects an unoccupied primary user band
in the subsequent frames®.

From Figure 5.2, a long sensing time reduces the time allocated for the secondary
user to access the primary user band. This causes the secondary throughput to be
very low but the primary user receiver is kept safe form any potential interference.
On the other hand, a short sensing time maximises the secondary throughput but the
primary user is more vulnerable to be interference from the secondary user. This can
be interpreted in terms of the false alarm probability and the detection probability.
As the sensing time increases the false alarm probability increases (this means a low
secondary transmission) and the detection probability increases (makes the primary
user less exposed to secondary interference). From the secondary user’s perspective,
the false alarm probability is required to be low, so the utilization of the spectrum by
the secondary user is more likely. However, from the primary user’s perspective, the
detection probability is required to be high, so that the interference to the primary
user may be minimized. Capitalizing from this discussion, the sensing and commu-
nicating channels are strictly intertwined with each other and clearly there exists a

tradeoff between the spectrum sensing and the secondary user’s throughput [17].

Notice this model works only when the primary user is active or absent during the whole secondary

user frame.
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The possible interference at the primary receiver, because of missed detection, is
related to the detection probability. By choosing appropriate sensing threshold value
such that the detection probability is larger than a target detection probability within

the sensing interval, a sufficient protection to the primary user might be obtained.

5.1.1.2 Noise uncertainty

The main disadvantage of ED is the susceptibility to the noise uncertainty (NU)
phenomena. It is well known that the ED severely degrades due to NU, i.e., the
noise power does actually change with time and location, which is called noise

uncertainty4, because of the following reasons [41, 80]:

thermal noise;

* receiver nonlinearity;

initial calibration error;

due to interference.

In the presence of NU the ED does not work below certain values of signal to noise

ratio.

5.1.2 Literature review and motivation

5.1.2.1 Sensing-throughput tradeoff over a fading channel

There exists plenty of works related to the sensing-throughput tradeoff. In [17],
Liang et al. have formulated the sensing-throughput tradeoff problem for a cogni-
tive network. In [17] the authors studied the sensing-throughput tradeoff when sens-
ing, interference and communicating channels are subjected to an additive white

Gaussian noise (AWGN). The optimal sensing time that maximises the secondary

In this thesis we assume that the actual noise power is invariant in the duration of the detection but

changes randomly from one detection period to another.
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throughput subject to a certain detection probability has been found via simula-
tion. In [36] the authors studied the sensing-throughput tradeoff problem using dou-
ble thresholds over AWGN channels. In [81], the sensing-throughput tradeoff was
investigated by optimizing the optimal sensing time that maximizes the average
throughput of a secondary link when there exists a Rayleigh flat-fading channel.
The authors assumed a AWGN for the sensing channel.

In [33], the sensing-throughput tradeoff was investigated for sensing-based spec-
trum sharing over AWGN channels. In [37], the same scenario in [33] has been have
studied based for an outage capacity over Rayleigh and Nakagami-m flat-fading
channels. For evaluating the outage capacity, the authors assume there exists a fad-
ing channel for the secondary link and for the interference link. However, the sens-
ing channel is just considered for AWGN.

For wideband secondary access, in [35, 82], the sensing-throughput tradeoff was
evaluated by optimizing the sensing time. In [35], the study assumed that all chan-
nels are AWGN. In [82], the secondary and the interference links are considered
flat-fading and the sensing channel is assumed to be AWGN.

It appears from the above literature review that there exists an important gap that
is missing and needs to be explored further. The multipath impairment process is not
considered for the sensing channel in all the above papers and this can significantly
change performance. Indeed, considering fading channels for both secondary and
interference links but not taking into account the fading in the sensing channel is not
a realistic assumption. The authors in the above papers resort to finding the sensing
threshold only for AWGN to overcome the analytical difficulties that arise from the
presence of the averaging of Q-function or Marcum Q-function over the distribution
of the signal to noise ratio” at the secondary user transmitter. And this (calculating
the sensing threshold value for a AWGN) does not reflect the actual scenario in a
cognitive network. Indeed, ignorance of the sensing fading channel is due to the
existence of averaging the conditional detection probability over the signal to noise

ratio distribution. This averaging means that the corresponding sensing threshold

5 The signal to noise ratio is a function in the sensing instantaneous channel.
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for a target detection probability needs to be determined by an iterative trial-based
approach, which is computationally costly for the secondary user.

In the presence of a fading channel, the probability of detection itself becomes a
random variable. Hence, the sensing process should be designed in such a way that
the detection can still be provided for the primary system. In [83], the authors pro-
posed the detection outage probability as a suitable criteria for achieving such a de-
sign. The authors obtained an optimal sensing threshold by bounding the detection
outage probability with a reliability constraint when a target detection probability is
required.

Notice that not only the detection process of the primary user is influenced by
the fading but also the achievable capacity of the missed detecting secondary user
is also affected by the fading. The missed detecting secondary user encounters an
additional interference from the active primary user which also suffers from fading
uncertainty. This necessitates the consideration of communicating and interference
channels while studying the optimization of the secondary throughput under a detec-
tion outage constraint. However in [83], the authors have considered the impact of
fading in the sensing channel and they have ignored the fading channel in the com-
municating and interference channels. In other words while the channel between
primary transmitter and secondary transmitter is accommodated, the secondary and
interference links are assumed to be perfect with only AWGN. In a practical situa-
tion, this assumption is not realistic as both the primary and secondary networks are
collocated and all links suffer from the fading process. So, here the fading channels

for the interference and the secondary links must be taken into account.

5.1.2.2 Noise uncertainty

This part covers a review on cognitive radio where NU exists. Several research
directions have been found in the literature.

The first direction concentrates on proposing new detectors which mitigate the
NU issue. For example, in [84] the authors proposed a detector which depends on
the kth moment of the received signal. The effects of both NU and the Rayleigh

fading channel on the detection performance of the proposed detector was evaluated
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by simulation. In [85], a generalized energy detector was analysed ® under the worst
case scenario of NU. Only upper and lower NU bounds are known, and under the
assumption that the NU follows a uniform distribution. In [86], the authors have
proposed a covariance detector to tackle the NU problem and applied a generalized
likelihood ratio test to formulate the test statistic. The detection performance was
only evaluated by simulation. In [87, 88, 89], some algorithms have been proposed
for the primary user based OFDM signal which depends on the cyclic prefix. In
[86, 90], the authors have proposed algorithms based on multi antennas at secondary
user.

The second direction is based on noise power estimation. The main idea is
based on estimating the noise power and subsequently the NU can be accounted
for. In [91], the authors discussed employing an autoregressive model to estimate
the noise power. The proposed algorithm was evaluated by simulation. In [92], the
noise power was estimated by a maximum likelihood estimator. In [93], the authors
proposed a detector for wireless microphone signals that exploits the advantages of
both the power spectrum density detector based sensing and the eigenvalue detector
based sensing. The study was only conducted by simulation.

The third direction is based on studying the performance of the ED in the pres-
ence of NU for different scenarios. In [94], the authors have assumed that NU fol-
lows a log normal distribution with a certain variance. In [95], the ED performance
under both discrete and continuous models of NU was investigated. Also in [95], the
authors demonstrated that by selecting different threshold values different detection
performances can be achieved. Moreover, they illustrated that when the distribution
of NU is known the threshold value can be chosen such that the detection perfor-
mance is improved. In [96], a cooperative spectrum sensing using ED was studied
in the presence of NU. In [97], a cooperative spectrum sensing using OR, AND
and majority rule was investigated by considering both NU and Rayleigh fading
channels. The work was based on simulation, the results showed that the AND rule
yields better performance over AWGN channels while in Rayleigh channels the OR

rule is a preferable choice. In [98], a cooperative spectrum sensing in the presence of

6 A generalized energy detector uses IE[|x(n)|P] instead of IE[|x(n)|?].
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the worst-case impact of NU and over log-normal shadowing channels was studied
through simulation. The results illustrated that the cooperation mitigates the prob-
lem of NU. In [99], the effect of noise power uncertainty on the detection perfor-
mance at the fusion center was examined for equal combining, weighted combining
and the likelihood ratio test. In [100] the authors proposed a cooperative spectrum
sensing with adaptive thresholds to enhance the detection performance in the pres-
ence of NU. Furthermore, in [100] the authors proposed an Ad-hoc method that
depends on the NU factor and the results demonstrated that the proposed detector
is more robust to the NU compared with the equal combining, weighted combining
and likelihood ratio test.

The fourth direction looks at the effect of noise uncertainty on other aspects
such as secondary throughput. In [101], the authors examined by simulation the
throughput of the secondary user using ED, the maximum minimum eigenvalue
detector and the maximum eigenvalue detector in the presence of NU. However in
[101] there are two research gaps that need to be filled in: The first gap is that the
channel fading was not considered. The second gap is that the threshold value, that
satisfies the target detection probability, was determined’ numerically by integrating
the detection probability over the p.d.f of the NU distribution for each value of the
number of received samples. This threshold is very complex to evaluate.

Now it is obvious that the effect of spectrum sensing (using the ED) on the sec-
ondary user throughput in the presence of NU and over an NFS channel has not
been investigated yet. Therefore, motivated by the above discussion, this chapter
evaluates analytically the secondary throughput® while assuming that the sensing,
communicating and interference links suffer from fading channels. Furthermore, a
more generic model is adopted for the sensing, communicating and interference
links which is the NFS channel (for more details about NFS channel please refer to

chapter 3). Moreover, this chapter takes into consideration NU at the sensing stage.

In the literature when the secondary throughput is studied the spectrum sensing threshold should be

found such that it satisfies a target probability of detection.
Secondary performance, secondary throughput and sensing-throughput tradeoff are interchangeably

used throughout this chapter.
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Motivation behind choice of the AD:

It is well known that the ED is the optimum detector (when the noise variance is
known and for an i.i.d signal) and when there is no information about the primary
user. However, when there exists NU, the detection performance of the ED degrades.
Consequently, other techniques have been proposed to tackle the NU issue. Some of
those algorithms depend on multi antennas at secondary user such as [86, 90]. Other
detectors are based on OFDM signals. For example, in [87, 88, 89] the authors
have proposed detectors that can exploit the autocorrelation property (due to the
existence of a cyclic prefix) in order to detect the presence of the primary user. In
all the mentioned papers their detectors outperform the ED in the presence of NU
[86, 90, 87].

In our scenario, the proposed algorithms in [86, 90] cannot be compared with an
ED because they depend on MIMO technology. For other algorithms in [87, 88, 89],
the proposed detector in [87] (AD) is chosen for a comparison because it has closed-
form expressions for the probabilities of both false alarm and detection and it is less
complex compared with other techniques [102].

Figure 5.3 shows a comparison between the ED and the AD for different values
of NU bound (B) (it will be defined in the next section). As can be seen from this
figure, the AD outperforms the ED when there exists NU.

In this context, two questions arise:

1. Does the NU degrade the secondary throughput when the ED is used for spec-

trum sensing?

2. Is the secondary throughput when the AD is used for spectrum sensing better

than the secondary throughput when the ED is used for spectrum sensing?

5.2 CHAPTER CONTRIBUTIONS

The contributions of this chapter can be summarized as follows.

1. First, a closed-form upper bound of the sensing threshold is derived analyti-

cally for the ED. The sensing threshold takes into account both the effects of

117



118 SENSING-THROUGHPUT IN THE PRESENCE OF NU AND OVER NFS

Probability of detetion (Pp)

Figure 5.3: Probability of detection versus probability of false alarm for different values of

NU factor (B). In all cases, L = 1, N = 200, and SNR = —10dB.

NU as well as the NFS channel. Second, a tight closed-form expression for the
sensing threshold for the ED, under NU and over a Nakagami-m flat-fading

(NFF) channel, is theoretically obtained.

2. Second, a closed-form expression for the sensing threshold, for the AD over

an NFS channel is derived theoretically.

3. Closed form expressions for success probabilities in the absence/presence of

the primary user are then derived.

4. Analytical expressions are derived for the secondary throughput while both
the ED and the AD are used for spectrum sensing. The analytical expressions
are in terms of the sensing threshold derived in 1 (for the ED) and 2 (for the

AD). Moreover, it is a function in the success probabilities derived in 3.
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5.3 CHAPTER ORGANIZATION

The rest of this chapter is organized as follows. In Section 5.4, the system model
is introduced. Section 5.5 presents spectrum sensing using both an ED and an AD.
Section 5.6 shows the problem formulation. Section 5.7 presents the outage detec-
tion probability in the presence of NU and over an NFS channel for the ED and the
AD. In Section 5.8 the sensing-throughput problem is examined. In Section 5.9, the
simulation results are discussed. Finally, the chapter summary is given in Section

5.10.

54 SYSTEM MODEL
5.4.1 Chanel model

Here we consider a cognitive network which consists of a primary transmitter (PUTx)
and a primary receiver (PUrx) which operate in the presence of a collocated sec-
ondary link. The secondary link consists of a secondary transmitter (SUTx) and its
receiver (SUrx), Figure 5.1 shows this scenario. It is assumed that all the chan-
nels suffer are NFS channels which are modeled as a finite impulse response (FIR)
filter. These channels are described as follows. First, the impulse response for the

PUrx — SUTx (sensing) link is denoted by
h=[hohy hy ... hp_1]". (5.1)

Then the impulse response for the SUrx — SUrx (communicating) link is denoted

by

g8=1[80818 - 811]". (5.2)
Finally the impulse response for the PUrx — SURx (interference) link is denoted

by

f=1[fof1 fo fr]’. (5.3)
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All elements of the above mentioned channels are i.i.d. Also, it is assumed that all

the channels have an exponential power delay profile.

5.4.2 Primary user signal

As the investigation in this chapter is based on the AD as well, thus it is assumed that
the primary network employs OFDM technology. Let Sy, = [S1,(0) Sin(1) Sin(2)
... Sm(Ngz — 1)] represents the N; complex PSK symbols of the nth OFDM symbol.

After the IFFT, the OFDM symbol is described by the following N; complex values:
Nyg—1 2k

1
su(n) = —== ), Su(k)e N, n=0,..,Ny—1 (5.4)
k=0

where n and k are discrete-time and frequency indexes respectively. Adding the last
N¢ elements of s, (1) as a cyclic prefix the mth cyclic-prefixed OFDM symbol will
be [sm(Ng— N¢) . Sm(Ng— 1) 5,(0) ... s, (Ng—1)]. An OFDM frame consists
of several OFDM symbols which are transmitted sequentially. For notational sim-
plicity, each element of the transmitted OFDM frame will be denoted by s(7). For
a large IFFT size, then by the central limit theorem, s(1n) ~ CN (0, P,) [88], where

Py is the primary user’s transmit power.

5.4.3 Model of noise uncertainty

As before:

(n)
ihls(n — 1) +w(n). (5.5)
=0

Ho: x(n)= w
L
1

Now (w (n)) is i.i.d. circularly symmetric complex Gaussian noise with zero-mean
and E [|w (n) |?] = 0; but the estimate of 02 will be 02 = po2 where p is called
the NU factor [41]°. Note that p (in dB) can be modeled as a uniform distribution in
the interval [— B, B], where B (in dB) is the NU bound and B = sup[10 log1(p)]'°.

9 Noise uncertainty means that the secondary user does not know the true noise variance.
10 There is an ongoing debate about which distribution should be considered for the NU [41].
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This is the most commonly used model for NU in the literature [99, 86, 90, 101]

and the probability density function (p.d.f.) for the NU factor (p) is [80]:

(

fp(t) =

\

0, t < 10~B/10,

5 —B/10 B/10 5.6
In(10)Bt’ 10 st<10 ¢ (5.6)
0, t > 108710,

Finally, the instantaneous signal to noise ratio (at the SUty) is defined as ¢ =

By Xty 2 /oo,

5.5

SPECTRUM SENSING TECHNIQUES

This section looks at the detection performance of both the ED and the AD.

5.5.1

This subsection shows the analysis of spectrum sensing using the ED. From Sec-

Energy detector (ED) performance

tion 5.4.2, the primary signal follows a complex Gaussian distribution, so the test

statistic (Tgp) can be modeled under two hypothesis as follows

N (po, 0¢), under H,,

Tep ~ 5.7
N (p1,0%), under H;,
2 2 _ o
where o = poy,, 05 = Y
L—1
w1 =pog + Py Y %, (5.8)

and

1=0
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e
I
~ H
b
g
-
—N

1 L-1
1
2P3 Y [t + (1+ ﬁ)P;% Yo Pl P+ oo,
1=0 l.l=0
h#l
5 L1 L1
+0%05 /N + NPPP%ZU Y [ml?+ 2P0y Y Iy
1=0 1=0
R 2 2 L 2 e 2(3, 2
— [2Pppct Y- I+ P2 Y Il + P2 Y [yl
1=0 1=0 &L =0
hi#l

(5.9

+ %0}

1 L-1

= ﬁ(Pp 1;) [y > +P‘7§)>2-

So the detection probability conditioned on channel and p can be written as

(TED —poZ =Py Y, |hl’2>
(P Il + po3)

Pp =Q (5.10)

5.5.2 Autocorrelation detector (AD) performance

As mentioned earlier in Section 5.1 (see - Figure 5.3), the detection performance
of the AD is not affected by the NU. Thus the estimate of o2 will be 62 = 02,
and ¥ = 5—5) Zle_Ol |y |2. The proposed detector follows the approach of [88] which
exploits the property of OFDM signals (provided by the cyclic prefix (CP)) such
that the autocorrelation coefficients are non-zero at lags ==N; and they are also the
log-likelihood ratio test (LLRT) statistic for a low signal to noise ratio (SNR). So

the test statistic is [88]

1 N-1 * H
~ Rix(n)x™(n+ N 1
T Nzn_o { ( ) ( d)} > ) (5'11)

1 N+N;—1 <
2(N+N) Yoo © x(m)® 5

where N (N >> N,) is the number of samples used in the autocorrelation esti-
mation, 2R{.} denotes the real part of a complex number and T4p is a threshold

value used to determine whether the primary user is present (Top > Tap) or not



5.6 PROBLEM FORMULATION

(Tap < Tap)- The distribution of the test statistic in (5.11) can be approximated

(for sufficiently large N) as [88]

7‘[0: TAD ~ N(O,%),

2\
Hi: Tap~ N(zx,%), (5.12)

where & = (N.Pp/(N;+ N¢)) x ZZL;(} |2/ (Py ZZL;(} |h;|? + 02). Therefore,
the probabilities of false alarm Pr4 and detection Pp, conditioned on the channel,

are given by:

1
Pra = P{Tap > Tap|Ho} = Eerfc(x/NTAD>, (5.13)
1 TAD — &
Pp = P{TAD > TAD|H1} = Eerfc(\/NW) (5.14)
where erfc(z) = Lﬂ fzoo exp(—t2)dt is the complementary error function.

5.6 PROBLEM FORMULATION

One of the most important parameter designs in spectrum sensing is Typ where
ND = {ED, AD}. In the context of cognitive radio, the calculation of the Typ is
generally determined by targeting a fixed false alarm probability while maximising
the detection probability. When the secondary user throughput is evaluated, Tnp is
determined by targeting a fixed detection probability (J). Indeed, in this context, the
secondary users should not disturb the primary user up to a pre-defined detection
probability (6) and this means that the secondary user would not cause any interfer-
ence to the primary receiver. For example, the Tzp must be calculable in an efficient
way and this can be done only by approximating the test statistic distribution of the
ED by a Gaussian distribution. For an AWGN (neglecting the channel term and NU

in (5.10)) then
Q'(9)
VN

But when the channel is incorporated, then Trp is calculated such that the average

Tep = 05 + Py + (Py + 02). (5.15)

detection probability (Pp) is satisfied.

Py — /0 Q(Ty,02,N,5,1ep) f(T;)dT, > 6, (5.16)
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where T), = Y./ |y|?> and £(.) is the p.d.f of T). The T¢p that satisfies (5.16)
(for each 02, N and ) can only be calculated by an iterative method which is
a computationally inefficient solution. When there are two random variables, for

example channel and NU, the Trp should satisfy the following inequality

~ 0.1B
Po= [ [ QT p02 BN, o) f(o)[(T)dpdT, = 5. (517)
The determination of a Tgp that satisfies (5.17) (for each UZZU, B, N and 0) is not
an easy task, especially in context of the cognitive radio which has to find the trp
value as quickly as possible.
One goal of this chapter is to determine the Trp in a closed-form expression
in the presence of NU and over NFS channel for any value of ¢2, B, N and 4.
Mathematically speaking, the Trp has to be found analytically in a closed-form

expression such as
ep = &(¢2, B, N, d), (5.18)
where E(03, B, N,d) is a function resulting from an integration for the detection

probability over channel and NU p.d.f.’s. This calculation of Tgp can be only found

through the outage detection probability (IPoy;) which is written as follows

PPout = Prob{Pp < 6}. (5.19)

The next section shows how by using (5.19) the sensing threshold or decision thresh-

old can be built into a theoretical expression for both the ED and the AD detectors.

5.7 THRESHOLD DETERMINATION

The channel in the PUtx — SUry link is NFS and there also exists NU at SUty.

Therefore, the estimated SNR ratio is defined at SUTy as y = ijTpZ Zle_l |h;|2, where

0
< is a random variable. Due to both the NU and the NFS channel there is a probabil-

ity that the random variable Pp at SUtx may fall below ¢, and so an outage could

occur. The objective is to upper bound the outage as follows:

Pout = Prob{Pp < 4} <96, (5.20)
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where 0 is the upper outage detection probability bound determined by the primary
user. Next we discuss the derivation of the sensing threshold for both the ED and

the AD such that (5.20) is satisfied.

5.7.1 Energy detector

The derivation of the sensing threshold for the ED will be done for two different

channel scenarios: i.e., the NFS channel and then the NFF channel.

5.7.1.1 Nakagami-m frequency-selective channel

In order to satisfy (5.20) for a given 9, it is necessary to compute the upper sensing
threshold (Tgp = Tgpg) that sets P,y = 6. What is now needed is to calculate the
sensing threshold (Tgpg) so that (tgp < Tgpg) values will satisfy (5.20). To do
this, we re-write (IPoyt = Prob{Pp < 4}) in terms of the SNR 7y at SUtx in the

PUtx — SUrx link, i.e.,
I—

1 2
Tep — PO, A
Pout = <Z |hl|2 < %), (5.21)
1=0

-1
where A =1+ QTZ\(I(S)' From chapter 3, the random variable T}, = Zle_Ol |hy)? can

be approximated by a Gamma distribution function. Thus (5.21) becomes

. 2
! TED ~ P01 )} , (5.22)

Pout = Ey {1 - HK—MF(KT’“ o1, Py AL

where K, and ¢, are defined in subsection 3.6.1.2. To find a closed-form expres-
sion for the threshold value (Tgp = Tgpg) that satisfies Pyt = 6 using (5.22) is
intractable. Thus it is desirable to seek to use some upper bounds or lower bounds

for the upper incomplete Gamma function. We will use the following inequality

[103]

F(KT ,y)
1 —exp(—a K, < 1— =22 5.23
where
1, if 0 < Kg, <1

T(1+Kg,), ™  ifKy, > 1.
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By substituting (5.23) into (5.22), then (5.22) becomes

Ky
_ - TED B pO’ZZU h
Four = ]Ep{(l eXP( a[¢ThPP(1+A1) (PThPPD> ] 629

To find the sensing threshold (Tgp = Tgpg) that satisfies Poyt = 6 using (5.24)

is still intractable. Thus some other approximation methods can be exploited. By
examining the expression inside the expectation in (5.24) it is seen that it is a mono-

tonically decreasing function in p and so Jensen’s Inequality can be applied:

TED po2 K,
]EP|:<1_eXp(_a[¢ThppA1 _¢Thpp])> :|

2 Kt

TED 007, h

> _ _ _ 5.25

> (1 Eoexp( a[ﬁl’TthAl CPTthD> (5.25)
2

Kt
_(q1_ —AaTED P .

By substituting (5.25) into (5.24) then after some manipulation, the threshold value

Tepg that satisfies IPoy¢ = 0 is given by

1

P,(1+ A 1—0
Tepg = — (¢Th P(a + 1)) X 10g2[ apl;z } (5.26)
Ep [eXP(Wh)}
Notice that, when there exists only NFF (5.22) reduces to
1 TED—O'Z(1+A1)
Pout=1— ——TI(K,, w . 5.27
ot =1 pgg) T e B (T Ay G2

Consequently, Tgpy is given by
Tepe = 05 (14 A1) + ¢1,Pp(1 + AT (K, T(Kp, ) (1 —0)).  (5.28)
Also, when there is only NU then (5.20) becomes

Pout = Prob{Pp < 5}

=B TED
— Prob{1 —1
rob{1070 < p < o — 1 (5.29)
5 TED Bln(lO)
= 1 _
Bni0) 24, VUt 10
and so
Tepe = A1 [02exp(0.50BIn(10) — 0.1BIn(10)) + 1], (5.30)

where A1 =1+ %.
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5.7.1.2 Rayleigh flat-fading channel

For a Rayleigh fading channel (set m=1 for a Nakgami fading channel ), then (5.22)

1s written as

Pou = |1 — exp(— —TED0__ . P%) (5.31)
P Py(14+Ay) P,

by examining the expression inside the expectation in (5.31) we can see that it is a

monotonically decreasing function in p and so Jensen’s Inequality can be applied.

Thus the threshold value Tgpg that satisfies Pyt = 0 is given by

(5.32)

1-0 ]

TEDO = — <4’T;1PP(1 + Al)) x log, [IEP [exp(apo?)]

5.7.2 Autocorrelation detector

This subsection derives the Py, for the AD over NES. By substituting (5.14) into

(5.20) then the outage detection probability is given as

1—a?

Pout = Prob{%erfc(\/ﬁw) < 5}. (5.33)

Notice that (5.33) does not depend on the NU as shown in Figure 5.3. If we let

a = L where k = (N;/(N; + N¢), then the outage detection probability is

Y+
given by
1 TAD — %
IPout = Prob Eerfc<\/ N—Vz) <dy,p. (5.34)
Ky
1=-{77

Now (5.34) can be simplified to
Pout = Prob{A < O}, (5.35)

where

A =e1y* + ey +es,
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and
€ —_—Kzerfcinv(%) — Tap + (K + L) + erfcinv(20)
N » VN
2 .
€ =—2Tap + (K + \/—Werfcmv(25)>
1
€3 = —Tap + —erfcinv(25),

VN
where erfcinv(.) is the inverse complementary error function. Now A = e;(y —
71) (Y — 72), and choosing the largest solution (y) then (5.35) can be written in
terms of 7y as

Pout = Prob(y < 72), (5.36)

where
Yo = <1—|—27‘3—|—\/4v[3+1>/(2(m/—§— ), (5.37)

with v = \/Lﬁerfcinv(Z(S) and B = v — Tap. Re-writing (5.36) in terms of the

channel coefficients then

L-1 0.2,),2
Pout = Prob{ Yo < W—} (5.38)
1=0 PP

The p.d.f. of of the random variable T}, = Zle_Ol 2 as before, is approximated
by a Gamma distribution with a shape parameter K, and a scale parameter ¢,

(defined in subsection 3.6.1.2). Thus (5.38) is given by

TRy
F(KT”' PP¢1r2h )

Pout =1~ 5.3
out F<KTh) ( 9)
Then the ; that satisfies [P, = 0 can be found as
Pyt
T2 = ':j; “T~1(Kr,, (1 —60)T(Kr,)). (5.40)

By substituting (5.37) into (5.40), and after some mathematics, then the T4py that

satisfies Pyt = 0 is:

,32 V2 1 v
TaADy =V 1-— + == + — (5.41)
( 252> 6l Vs | b
where 1 = —(72+1)/x and B = xvy, — (72 + 0.5). Next the secondary
throughput will be discussed for both the ED and the AD.
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5.8 SECONDARY USER’S THROUGHPUT
5.8.1 Nakagami-m frequency-selective channel

In this section, the average throughput of the secondary link (SUtx — SUrtx) is
derived. Here it is assumed that a secondary network employs orthogonal frequency
division multiplexing (OFDM) technology. There are two reasons for adopting this
technology. First, it is a practical assumption, which is employed in many appli-
cations such as WIMAX, digital television and audio broadcasting. Second, this
assumption makes the analysis of the secondary throughput easier. The NFS chan-
nel of the secondary link (SUtx — SURx), g (channel gains), are written in the

frequency domain as

= [IGO)PIG)1%.. 16T - 1), (5.42)
where the complex channel coefficient at the kth subcarrier is expressed as
1 L—-1
G(k) = 2 grexp(i2nlk/])  k=0,1,..,] — 1. (5.43)
l 0
Here | is the size of the discrete Fourier transform (DFT) (or the number of sub-
carriers) and g; is defined in (5.2). The amplitude of g; follows a Nakagami distri-
bution with a Nakagami parameter m and a spreading parameter (g, = E[|g/|?].
The phase of g; follows a uniform distribution over [0, 277). The amplitude of G(k)
can be approximated by a Nakagami distribution with a new Nakagami parameter

MG (k)| and a spreading parameter O|G(k)| which are given as [63, 104]

_ 2
. Q\G|
G
117“2 .
~ 1L-1
Qg =7 L.
1=0
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Because these parameters are independent with respect to the index k, so k is omitted
from (5.44). The NFS channel of the interference link (PUtx — SURx), f (channel

gains), can be described in frequency domain as
F=[[FO)PIFM)... [F(J-1DI]. (5.45)
The complex channel coefficient at the kth subcarrier is written as
1 L—-1
F(k) = Nii Y. fiexp(i2nlk/])  k=0,1, ..,] —1. (5.46)
1=0

Again the amplitude of f; follows a Nakagami distribution with a Nakagami pa-
rameter m and a spreading parameter Oy, = E[|f;]?]. Also, the amplitude of F(k)
can be approximated by a Nakagami distribution with a new Nakagami parameter

M| (k)| and a spreading parameter Q| F(k)| [63, 104] which are written as

_2
I Qi
IFl — 1 vL-1 2 L-1
wLizo 5 By O, O, (5.47)
172 *
B 1L-1
Q\F| = 7 Z sz'
1=0

Again, because these parameters are independent of the index k, so k in (5.47) is
omitted. Here the throughput of the secondary link is defined in terms of the suc-
cess probability Pg,. (i.e., probability of successful transmission times the bits/s/Hz

capacity). So the throughput is given as:
C = Psyce X logo(1+s) bits/s/Hz (5.48)

where 75 is the secondary user’s desired SNR threshold (or SINR when the pri-
mary is present). The success probability can be expressed in terms of the outage
probability as

Psyece =1 — Py, (5.49)

where P, is the outage probability for the secondary link (SUx — SURrx). Thus,
it is necessary to derive Py,; to solve (5.49). In the literature the definition of the
outage probability for an OFDM system is defined as follows. The OFDM system

is considered in outage when at least one OFDM subcarrier is in outage [105, 106,
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107]. This consideration comes because of the assumption of equal bit allocation
for all OFDM subcarriers. In addition, after a careful literature review on the outage
probability for an OFDM technology, the mathematical derivation of the outage
probability assumes that the subcarriers of channels are independent and identically
distributed random variables [105, 106, 107]. However, in practice the subcarriers
are correlated and this is due to the common of impulse response between different
subcarriers as shown in (5.43) and (5.46). This work takes into consideration the
effects of that correlation in finding the success probability. This consideration is
more realistic than in other works in [105, 106, 107].

Now, the average throughput of the secondary link (SUtx — SURrx) may be
analysed in two different scenarios (without consideration of spectrum sensing).

1. The first scenario is when there is no primary user transmitting (Hp). As an in-
dication of a successful reception at the receiver side, we introduce a global signal to
noise ratio SNRgjopa10 (Where the subscript “0” means under H) at the secondary
receiver side (SUrx). This is conducted by the summation of the signal to noise
ratio of all subcarriers at the secondary receiver side. When the SNRgjopai0 > s
then the reception at the secondary receiver side is successful. This SN Rgjop410 can

be expressed (under Hp) as

p,
SNRgiopat0 = — 3, IG(K) [, (5.50)
99 k=0

where P, 07 are the secondary transmit power and the noise variance respectively.

Thus the success probability can be written as

P =
Pgyeco = P].‘Ob(a—; Z |G(k)|2 > ')’s)- (5.51)
v k=0

But from Parseval’s theorem,

J-1 L-1
Y IGHP =Y lal (5.52)
k=0 1=0

and so, (5.51) can be written as follows

L-1 ) (72,),5
Psyeco = Prob( ) [gi]* > UT)' (5.53)
1=0 5
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The random variable T, = Y/ |g;|? in (5.53) follows a Gamma distribution with

a shape parameter K, = mEy Og)* and a scale parameter = —Z’L O
pe p Ty = YL 102 p (PTFg = el 0y
Thus the success probability under 7—[0 is given by
F(KT v'Ys )
g’ ‘PT Ps
Psyeco = —F—— 5.54
succO T ( K"Jl"g) ( )

Now the throughput of the secondary link (SUrx — SURgx) when there is no pri-

mary user is given by

Co = Psyccoxloga(1+ ys) bits/s/Hz. (5.55)

2. The second scenario is when there is a primary user (7). In this scenario
the global signal to noise ratio SNRgjopa1 (the subscript “1” means under H1) is

written as

v BIGK)P
SNRjopas1 = ° . (5.56)
sttt = L G2 By [FRT
Now the success probability is given by
Ps|G
Psycc1 = Prob( Z 72 CWF_ s)- (5.57)

+ Pyl F(K)[?
Note that |G (k)|? and |F(k)|? follow Gamma distributions with the following pa-

rameters [104]

_ ole | Q
Kiol = Mol P11 = 7, o+ XIF1= A and ¢y = o (5.58)

2 ~2
G

=2 =2
where (711G, g)), (11|, (Yp|) are defined in (5.44) and (5.47) respectively. The
T _ /-1 P|GKk)]?
distribution of Tgr = }4_, TP, EOF is difficult to derive due to the existence
of the summation. During extensive simulations it is found that Tgr can be ap-
proximated using a Gamma distribution with a shape parameter K, and a scale
parameter ¢ ..

To find Ky and ¢, the mean and the variance of Tr have to be found. Since

the subcarriers are correlated, it is necessary to know the joint p.d.f. for two random
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variables of a Nakagami distribution. By using this p.d.f then the shape parameter

KT, and the scale parameter ¢, are given by (see - Appendix A)

.2 2
e = VZFGF/UTGF' (5.59)
Prer = ‘TTGF/VTGF'
where pr.. and U%TGF are defined in (A.4) and (A.8) respectively. Thus the success

probability under H is given by

P [rer g, 5.60
succl = F(K—TGF) (5.60)

Finally, the secondary throughput when there exists a primary user, is
C1 = Psyec1 X loga(1+ 7s) bits/s/Hz. (5.61)

5.8.2 Nakagami-m flat-fading channel

This subsection analytically characterizes the average throughput of the secondary
link, SUtx — SURgx when the secondary network employs a non OFDM system
and over flat-fading channels. The difference between this subsection and the previ-
ous subsection is that, this subsection derives the exact expression for the success
probabilities under Ho and H1. As in the previous subsection two different scenar-
ios have been considered

1. The first scenario is when there is no primary user transmitting (7). The

channel in the SUTyx — SURgx link now becomes

g=lgl* (5.62)

where the subscript 0 in ¢ is omitted. Thus the success probability can be written as

Ps|g)?
|§| <7}, (5.63)

Uy

Pyyeco = 1 — Prob{

and the | g|2 follows Gamma distribution with scaling parameter Ko = m and shape

parameter ¢o = Qg /m. As aresult, (5.63) becomes

2
[ (m, 750w
Oght (5.64)
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Now the throughput of the secondary link (SUrx — SUgx) when there is no pri-

mary user is given by

Co = xlog2(1 +vs) bits/s/Hz. (5.65)

2. The second scenario is when there is a primary user (7). First, the channel

between the primary transmitter and secondary receiver is written as

2
f=I[fI%
and again the subscript 0 in f is omitted. Therefore, the success probability in this

scenario is given by

Pyec1 =1 — PrOb(Lg|2 < ’)’s)r (5.66)
05+ Pyl f|?
1 meyso2 + moysPp| f|?
= Pgyec1 = WEV\Z I'(m, Qgps . (5.67)

The distribution of f follows a Gamma distribution with scaling parameter K f=m
and shape parameter ¢r = Qf/m. Using [[50], eq (1.111) and eq (8.352)] and

averaging over the distribution of | f|? so (5.67) becomes

m’ysa )r—rl ( m'yst )r1

P 0P, [(m+r)
Poucer = Z Z TPy e ! (r — )T (m) ]’ (09
r=0 r= 0 (Qf + Qf )
m'ysaz
(m—1)lexp( Qgpsv) )
where A = o (5 . Thus the secondary throughput when there exists a
m e m

primary user is given as

Cy = Pyyee1 X loga(1 + ) bits/s/Hz. (5.69)

5.8.3 Energy detector

This subsection evaluates the average throughput when the ED is used for spectrum
sensing. When applying spectrum sensing and using (5.55) and (5.61), the average

throughput of the secondary link SUtx — SURx can be written as

N
Cep = (1-— W)[P(Ho)PI‘Ob(TED < Tepg|Ho)Co
(5.70)

+ P(?—[l)Prob(TED < TED9|'H1)C1]
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where Tgpg is defined in (5.26). Also, Prob(Tep < Tepg|Ho) = 1 — Py and
Prob(Tgp < Tepg|H1) = 1 — Pp. Note that Pr4 is the average of Pry over the
p.d.f of the NU and it is given by

100.13

Pry = TEDO
PFA N /10—0.13 Q(\/N( po—% 1>fP(t)dt (571)
Now Pp = E[Pp] is the average of Pp over the p.d.f.’s of T), and the NU and it is
given by
_ 1001B
Po = J o o)
* — g — 5.72)
T, 0y — Pyt (
x U Q{ iiDe w— DPp 1 % fjrh(t)dt}dz
°lm (P pt + P%%)

where T), = Zle_Ol |h;|2. The inner integral in (5.72) is derived in chapter 3 for a
Gaussian signal (see (3.25)). Thus (5.72) can be evaluated in one integral instead of

two integrals. By substituting, (5.71) and (5.72) into (5.70), then (5.70) becomes

N

Cep = (1— W) [P(Ho)co(l — Pra(TeDe))

(5.73)
+ P(H1)Ci (1 — ﬁD(TEDe))} :

5.8.4 Autocorrelation detector

By employing the AD for spectrum sensing and using (5.55) and (5.61), the average

throughput of the secondary link is given by
N
CAD = (1 — W) [P(Ho)COPrOb(TAD < TADQ‘HO)
(5.74)
+ P(H1)CiProb(Tsp < TAD9|H1)]
where T4 pg is defined in (5.41) and Prob(Tep < Tape|Ho) = 1 — Ppa and Pry

is given by

) 1
Pra = Pra = P(Tap < Tapp|Ho) = Eerfc(\/NTAD(;). (5.75)
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Notice that Pry = Pra because the false alarm probability is independent from the
noise variance. Also, (Tap < TAD9|H1) = 1— Pp, where Pp = E[Pp] is the

average over the p.d.f. of T}, and it is given by
Pp = P(Tap > Tape|H1)

- B 2
:%{/O erk(\/ﬁmpe K1t/(Ppt+Uw3) qurh(t)dt} (5.76)
1- [mt/ (Ppt+az%>]

where k1 = (NC/(Nd + N.))Py and T), = ¥~ |Iy|>. The integral can be evalu-
ated numerically, and by substituting (5.75) and (5.76) into (5.74), then

Cap =(1— %) [P(Ho)co(l — Pra(Tape)

. (5.77)
+P(H1)Ci (1~ pD(TADB)}-

Next the simulation results are discussed.

5.9 SIMULATION AND DISCUSSION

In this section, some simulation results are presented to justify the analytical re-
sults and to show the effect of both NU and the NFS channel on the secondary
throughput under outage constraint using the ED and AD. The system parameters
that have been used are as follows. For the NFS channel of PUtyx — SU7x link (h),
SUtx — SUgx link (g) and PUryx — SURx (f) link, the channels taps are gener-
ated according to an exponential power delay profile. The signal to noise ratios at the
w = 20dB and

v

Py X Elfil? :
—+£==0—— = —10dB, respectively. s =10dB, P(Hy)=0.7, P(H1)=0.3, 6 = 0.9,

Oy

N.=8, N; = 32, and W =100(N, + N;) samples. The number of iterations that is

SUtx — SUgx link and PUpx — SURgx link are set to

used for the simulation is 10°.

Result 1: Theoretical results verification for threshold values (ED) in the pres-
ence of NU and over NFS and NFF channels (Figures 5.4, 5.5, 5.6 and 5.7).
Figures 5.4 (for different SNR values) and 5.5 (for different N values) show the

outage detection probability bound () versus the sensing threshold (Tgpg) for the
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exact threshold (found via (5.22)) and the approximate threshold using Jensen’s
Inequality (see (5.26)) for L=2 and m=2. It is easily seen that this approximation is
almost tight for small values of 6 and it is a lower bound for high values of 6.
Figures 5.6 and 5.7 show 0 versus the Tgpy for both the exact threshold (found via
(5.31)) and and the approximate threshold using Jensen’s Inequality (see - (5.32))
for L=1 and m=1. It is evidenced from the simulation that both curves are almost
identical.

Result 2: Theoretical results verification for secondary throughput (ED) in the
presence of NU and over NFS channel (Figures 5.8 and 5.9).

Figure 5.8 depicts the theoretical result for the secondary throughput while the
ED used for sensing (for NFS, please see (5.26) and (5.73). For NFF, see (5.32) and
for (5.73)) and the simulation result (for both NFF and NFS see (5.21) and (5.73)).
The figure shows that the theoretical result is an upper bound for the simulation
result. Since Tgpg is a lower bound this implies that it is larger than the exact thresh-
old for a specific 6, as shown from Figures 5.4 and 5.5. This gives a small P4 and
Pp. Subsequently, the resulting throughput becomes an upper bound for the exact
throughput.

Moreover, the figure illustrates that as L increases the secondary throughput im-
proves. This behavior can be interpreted as follows. As the Trpg increases with
L for the same value of 6, as shown in Figure 5.9, reducing the ﬁpA and ?D and
accordingly the throughput improves.

Result 3: Secondary throughput (ED) in the presence of NU and over NFS
channel with different values of 0, L and m (Figures 5.10, 5.11, and 5.12).

Firstly, from Figure 5.10 it is easily seen that as 6 increases the secondary through-
put increases (theory - see (5.26) and (5.73)). Moreover, it can be seen that as the 0
increases the optimum sensing time (i.e., the N = Ny that maximizes the through-
put) decreases due to more outage being allowable

Secondly, Figure 5.11 shows that as the L increases, we initially get a consid-
erable improvement in the secondary throughput (L = 1,2,3) and then this gain

levels off for large values of L (L = 14,15) (for the interpretation, see Result 2).

137



138

11

SENSING-THROUGHPUT IN THE PRESENCE OF NU AND OVER NFS

Thirdly, Figure 5.12 shows that the secondary throughput initially improves sig-
nificantly for m= 1 (Rayleigh fading channel) and m=2. After that it increases grad-
ually and then the throughput flattens out for m = 14 and 15. This can be explained
since as m increases the channel becomes less severe and then the effect of the chan-
nel eventually disappears for a very large value of m which is the case of an AWGN
channel.

Result 4: Secondary throughput (ED) in the presence of NU and over an NFS
channel with different values of B (Figure 5.13).

This figure plots secondary throughput (Cgp) against the sensing time (N) for
different values of B (theory - see (5.26) and (5.73)). It can be seen that as B in-
creases the secondary throughput decreases'!. Moreover, it is observed that as B
increases the optimum sensing time (i.e., the N = Ny that maximizes the through-
put) increases and then it decreases for B = 0.75. This can be explained as follows.
When B increases and reaches a certain value, the sensing is not beneficial and the
secondary user is less confident about any sensing decision. Therefore, it is advan-
tageous to reduce sensing time (as regards maximising the secondary throughput).
Result 5: Maximum throughput versus ; (Figure 5.14).

Now Figure 5.14 illustrates the relationship between the maximum secondary
throughput and 5. We can see from the figure that there exists an optimum -y that
maximizes the secondary throughput. This is because logy (1 + ;) is an increasing
function and P9 or Psy,cc1 is a decreasing function. Notice that the 8 does not
have any effect on the optimum ;.

Result 6: Secondary throughput (AD) in both the presence and the absence of
NU (Figure 5.15).

Figure 5.15 presents the secondary throughput for the AD in both the presence

and the absence of NU and over the NFS channel (theory - see (5.41) and (5.77),

simulation - see (5.33) and (5.77)). It is noticeable that NU has no affect on the

Notice that for small number of N, the secondary throughput is better for high values of B. This is
because the approximation of calculating the threshold value does not work well for high values of

B.
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secondary throughput and this is why the NU was not taken into account in the
analysis.

Result 7: Secondary throughput (AD) over NFS channel with different values
of 0, L, and m (Figures 5.16, 5.17 and 5.18).

Figure 5.16 shows the sensing-throughput tradeoff while the AD is used for sens-
ing for different values of 6. Here, it can be clearly seen that as the 6 increases the
secondary throughput increases and this is because the restriction is less for high
values of 0.

Now Figure 5.17 depicts that by increasing the number of multipaths (L) the
secondary throughput is initially getting a considerable improvement ( L=1,3,5) and
then this gain levels off for large values of L (L=14,15).

Here Figure 5.18 illustrates the secondary-throughput tradeoff for different values
of m. It is clear from the figure that the secondary throughput initially improves
rapidly as m increases and then the improvement increases gradually until it flattens
out for high values of m (m=14,15). Notice that all the aforementioned figures in
Result 7 are plotted using (5.41) and (5.77).

Result 8: Sensing-throughput tradeoff comparison between the ED and the AD
in the presence of NU and over NFS channel (Figure 5.19).

Lastly, this figure shows a comparison between the ED and the AD in terms of
sensing-throughput tradeoff. It is shown in Figure 5.3 that the NU affects badly on
the detection performance of the ED and does not affect on the performance of AD.
However, this massive deterioration in the detection performance does not appear on
the secondary throughput. In other wards, the secondary throughput (when the ED
is used for sensing) is better compared with the AD. But the detection performance

of the ED is very sensitive to the NU (unlike an AD).
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5.10 CHAPTER SUMMARY

The sensing-throughput tradeoff under outage constraints has been studied in the
presence of NU and over NFS channel. This work consideres an NFS channel for
the sensing channel, the communicating channel (secondary link) and the interfer-
ence channel (caused by the primary user). Moreover, this study was based on two
different detectors, the ED and the AD.

Rigurous performance analyses have been done throughout the chapter. First, a
closed form expression for the sensing threshold under an outage constraint on the
detection probability is found. Second a closed form expression for the secondary
throughput is derived analytically. To derive the secondary throughput, success prob-
abilities for the secondary link under both the presence and the absence of a primary
user are derived theoretically.

Firstly, using the concept of outage detection probability, a closed form expres-
sion for the sensing threshold has been derived for the ED under NU and over the
NFS. Moreover, another closed form expression for the sensing threshold has been
found for the AD over NFS. Secondly, success probabilities for the secondary link
under both the presence and the absence of a primary user are derived theoretically.
Thirdly, closed form expressions for the secondary throughput for both the ED and
the AD are derived analytically in terms of the sensing threshold and the success
probabilities. In addition, all the theoretical results are verified by simulation.

The results have shown that the secondary throughput, when the ED and the AD
are used for sensing, improves with an initial increase for the number of multipaths
and then this improvement levels out. Also, for both the ED and the AD, when the
Nakagami fading parameter (1) increases the secondary throughput initially dra-
matically improves and then for high values of m the improvement it levels off.
Moreover, the simulation results have shown that the secondary throughput for the
ED case is sensitive to the NU. Furthermore, the simulation results show that there
exists a quality of service (the secondary user’s desired SNR threshold) that max-
imizes the secondary throughput. For the AD, the results have shown that the AD

detector is not affected by the NU and so the detection performance of the ED be-
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comes worst than the AD detection performance in the presence of NU. But even if
the ED is used for sensing, the secondary throughput is still superior compared to

using the AD for sensing.






CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

An important constraint in cognitive radio network is the lack of coordination and
cooperation with the primary network and this renders synchronization with the pri-
mary network unrealistic. In practical cognitive systems, durable sensing techniques
are a mandatory requirement to protect the primary receiver. Accordingly, Chapter 2
presents novel robust spectrum sensing algorithms such as %-BLCD, SOMF-I and
SOMF-II which (in contrast with the MF) are insensitive to PN and CFO.

In reality, having a closed-form expression for detection probability may provide
a rigorous understanding of the principles of system design. This understanding
guides the designer to predict behavioural changes in cognitive or primary net-
works without the need for carrying through many Monte Carlo simulations for
each choice of parameters. So, unlike some previous work in the literature, chapter
3 investigates the performance of the ED over NFS channels in terms of three dif-
ferent considerations, namely; the average detection probability, outage detection
probability and the minimum number of samples which satisfy a desired ROC con-
dition.

An important stage in cooperative spectrum sensing is sending measurements to
the FC which can deplete valuable energy resources. Most existing solutions in co-
operative spectrum sensing use censoring techniques. However, not all the degrees
of freedom have been exploited here to reduce the energy overhead. Consequently,

chapter 4 proposes the CSCPC approach as an energy-efficient cooperative spec-
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trum sensing algorithm while taking into consideration the transmit power (the re-
quired power to send the measurements to the FC) along with the censored threshold.
Our results have shown that we can economise on transmit power and the primary
user’s protection is still guaranteed when compared to the conventional censoring
cooperative spectrum sensing (CSC).

To fully understand cognitive radio techniques, it is necessary to evaluate the cog-
nitive performance under practical scenarios. This provides a useful guideline for
the future design of a cognitive radio network. So, a comprehensive evaluation has
been conducted in terms of sensing-throughput tradeoff. In chapter 5, the sensing-
throughput tradeoff has been derived in the presence of NU and over NFS under
outage constraints for the ED and AD based on OFDM primary user signal. The
evaluation has been derived in terms of two parameters. The first considers a closed-
form equation for the sensing threshold while taking into consideration the NU and
the NFS while the second evaluates success probabilities under Hy and . The
simulation results have shown that the secondary throughput for the ED is very sen-
sitive to the NU and it degrades rapidly with a small change in NU bound. The
amount of the performance degradation depends on the NU bound. The secondary
user’s throughput is however not affected when the AD is used for spectrum sens-
ing. Furthermore, simulation results have shown that while the NFS degrades the
secondary user’s performance, the degradation may be mitigated with an initial in-
crease in L and m and then the improvement levels out.

Moreover, the results have shown that the ED (in the presence of NU) provides
a better secondary user throughput compared to the AD. The ED detection perfor-
mance however, deteriorates compared to the AD in the presence of NU. Finally,
the results show that there exists a secondary user’s desired SNR threshold that

maximises the secondary throughput.

6.2 FUTURE WORK AND OPEN DIRECTIONS

All the previous work has stimulated thought about existing practices and provoked

discussion about future research directions. A few of these are listed below.



6.2 FUTURE WORK AND OPEN DIRECTIONS

First approach

Regarding the CFO in chapter 2, the study may be extended for cooperative spec-
trum sensing with different CFO’s. The analysis may start by examining in depth
the behavior of the cooperative spectrum sensing at the FC. Then the study might
include some different CFO estimators (e.g., ML).

Furthermore, it might be interesting to look at spectrum sensing using MIMO
technology in the presence of CFO. In addition, the effects of other RF impairments
such as IQ imbalance, sampling errors and jitter could be investigated on the perfor-

mance of both the MF and the ED.

Second approach

This new approach is based on the investigation in chapter 3. Energy consumption
can also be incorporated with the detection performance over NFS. The number
of multitaps (L) may be estimated which can be exploited such that the number of
received samples (N) is reduced and the target detection is satisfied subsequently
reducing the energy consumption. In addition, the study may include cooperative

spectrum sensing when both the sensing and the reporting channels are NFS.

Third approach

In chapter 4 both channel and the distance between the secondary users and the
FC are assumed to be known. For a more realistic scenario, such parameters could
be estimated leading to an investigation of estimation errors on the architecture of
detection and the energy overhead problems. Furthermore, the problem would be
more interesting if the primary user assumed mobility modeled by a Possion process.
Moreover, the number of received samples can be incorporated into the evaluation
of the energy overhead. In addition, both ¢ and p; have not yet been found in closed

form expressions and that is something that could be investigated.
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The work in chapter 4 was dependent on a centralized detection problem. How-
ever, an attack on, or a failure to the FC, may harm the detection solution. Thus
another possibility is to use decentralized algorithms to tackle the problem of the

FC failure, e.g., consensus algorithms.

Fourth approach

In chapter 5 the cognitive performance has been studied based on the outage de-
tection probability. In this thesis the outage detection bound (6) has been assumed
to be known or determined by the primary user. In practice, the typical value of
the 6 could be analytically determined by relating it with the primary user’s outage
probability. In addition, the sensing time that maximises the throughput could be
optimized in the presence of the NU and NFS.

In chapter 5 the sensing-throughput tradeoff problem has been studied only for
the secondary link. This work can be extended for the case of the primary link by
including the effect of the NU and the NFS on the primary user’s receiver.

In the investigation of the sensing-throughput tradeoff problem, other detectors,
for example cyclostationary and eigen detectors, might be included in the study in
terms of secondary throughput, primary throughput and system complexity.

In this thesis, the performance evaluation of the cognitive radio has been con-
ducted for a local secondary user. This could be extended to cooperative secondary
users.

In the evaluation of sensing-throughput tradeoff the success probability has been

used as a metric. Other metrics can also be used such as ergodic capacity, etc.
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The joint p.d.f. for a bivariate Nakagami distribution is given by [104]
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where x > 0, y > 0. For our scenario, x = |X(k1)|, v = |X(kp)|, where k1 # ko,
X ={G,F},andkip = 1:] —1. Also, in = x|, Qx = E(x?), Q, = E(y?),
and p1 = cov(x,y)/+/var(x)var(y) where 1 > p; > 0.

Derivation of the mean and the variance of global SNR under Hq (see (5.560)) is
derived in this Appendix. The global SNR under H is

Ps|G (k)|
(A.2)
Z 05 + Pyl F(K)[>
By letting x; = |G(k)|? and y; = |F(k)|? then
J—-1
Xk
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where a = % and b = 1;—Z
A.1 EXPECTED VALUE CALCULATION
Because xj and y; are independent thus
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Because xj and vy are independent in k so we omit k in (A.4). Since both x and y

follow Gamma distributions so

E[x] = %2 /00 X X xmlG\_le_m\G|x/Q\zc\ dx
(k) (52" (A.5)
_ T +1)
I'(mg))
and
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By using [ [50], eq. (3.353.5)], then (A.6) can be re-written as
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(A7)
where Fi = — f:l "%t dt. By substituting (A.7) and (A.6) into (A.6) we get the
final result.
A.2 VARIANCE CALCULATION
The variance of A.2 can be written as
2 2 2
o}, = B |Té| - [E[Tcr| (A8)
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=0 (a+yl)2 k=0 a-+y; a-+yg

1k

2
First we evaluate [E {(afy 1)2} . Because x; and y; are independent in / so we omit [



A.2 VARIANCE CALCULATION
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E |:( X 21 — 1 / xm‘c‘-l-le—mmx/ﬂ‘c‘ dx
0

ymm —1 —mmy/Q\F\
/ dy
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By using (A.1) E [ o ﬂi@k] can be calculated as

IE[ X } / /meXP ’3)><(1"‘—Ga‘e))

a+ by a+ byk /—Qle 0)"icI=2
4m‘G|(xlxk)m\G\+2

(1) Oy Qg

2mg \/ﬁxlxk
X Im‘"c‘—l a |(|2 1 = dxldxk
Vs P)

o exp(— ) x (122))
/ / lekaP)mlpliz
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(A.10)
Finally by substituting (A.4), (A.9) and (A.10) into (A.8), then the variance in (A.8)

is obtained.
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