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Abstract 

Mineral scale deposition/adhesion is one of the major challenges in the oil 

and gas industry. Besides, the new regulations in the oil and gas industry suggest 

substituting conventional inhibitors by more environmentally-friendly strategies 

which may include anti-scaling surfaces as a potential methodology. The objective 

of this work was to study a new potential application for surface modification near 

the wellbore to reduce mineral scale deposition in the rock. To achieve this purpose, 

it was required to form a thin layer of a chemical, which has a strong bond with 

quartz and does not block the oil path; and has a potential to reduce the scale 

deposition/adhesion on the rock. 3-aminopropyl-triethoxysilane (APTES) and p-

aminophenyltrimethoxysilane (APhS) with various concentrations were chosen to 

create self assembled monolayer to alter the physical and chemical properties of 

the surface. The kinetics of the APTES (2-8%) film formation on the surface was 

studied by QCM. Langmuir isotherm was used to interpret the QCM results and to 

calculate the surface coverage of APTES film on the surface. Also the performance 

of quartz surfaces which were treated by different concentrations of APTES and 

APhS in terms of reduction of scale deposition was studied in low=4.77 and 

high=54.8 saturation ratios. The best film performances (up to 95%) were obtained 

by 0.06% APhS and 6% APTES, respectively. It was assumed that the reduction of 

scale deposition could be related to the reduction of nucleation sites on the treated 

surfaces due to changing the surface charge of quartz surface from negative to 

neutral (slightly positive) surface. Surface composition, wettability and the 

roughness of APTES and APhS films were characterised by XPS, Contact angle 

Goniometry and surface profiler, respectively. Based on the film characterisation 

results, the most effective parameters in reduction of scale deposition were the 

surface composition and film conformation. 
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Chapter 1  

Introduction 

 

Mineral scale deposition is one of the major problems in the oil and gas 

industry causing production loss by blocking pipelines (Figure ‎0-1) and pores of 

formation rock (1). Scale is defined as the deposition of sparingly soluble inorganic 

minerals (mainly carbonate and sulphate scales), such as CaCO3, BaSO4, CaSO4, 

etc. (2) when production water becomes supersaturated. Scaling occurs in two 

different mechanisms, mixture of two incompatible fluids and pressure loss and 

temperature change in the system: 

1. Seawater containing sulphate ions is injected to support the pressure of 

reservoir for enhanced oil recovery. Due to incompatibility of seawater with 

formation water – which contains barium, strontium, etc. – sulphate scales 

may precipitate where these two fluids meet.  

2. Due to depletion of reservoir, the pressure of production fluids decreases 

resulting in evaporation of carbon dioxide from fluid phase to gas phase; this 

may lead to risk of carbonate scale precipitation. In addition, variation of 

production temperature may facilitate or worsen the probability of carbonate 

precipitation. 

 

Figure ‎0-1. Image of mineral scale which has been formed inside the pipe (1) 
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The consequence of scaling can be major and costly leading to lose a well 

in some cases. Hence, chemical treatments are normally used in the oil and gas 

industry to prevent and control scaling in the production system. Scale inhibitors are 

used in squeeze treatments or in chemical injection lines to slow down nucleation 

and growth of scaling in the solution and on the surface. Inhibition of production 

system from scaling is an expensive treatment; hence many works have been 

carried out to improve the current methodologies. 

Attention in the oil and gas industry had been paid to study the precipitation 

of mineral scale in bulk solution rather than surface deposition. Recently, surface 

engineering was studied (3-6) to better understand scale deposition phenomena on 

the surface. Various types of substrates such as copper, different types of coating 

on stainless steel, Diamond-Like Carbon (DLC), polytetrafluoroethylene (PTFE), 

polymers, etc. were studied to comprehend the mechanisms of crystallisation on 

surfaces. Although it well known in biofouling research that surface energy is the 

dominant factor to reduce amounts of biofouling on the substrate, the effects of 

different properties of surface on mineral scale deposition are not yet fully 

understood in the oil and gas industry. Thus, chemical and physical characteristics 

of substrates such as surface composition, wettability and roughness were 

investigated.  It was shown (3-9) that surface characteristics can influence amounts 

of mineral scale deposition and morphology of scales; present a scanning electron 

microscope (SEM) image of calcium carbonate on a surface which shows that the 

scale followed the pattern of the surface. 

 

Figure 1-2. SEM image of calcium carbonate with the surface pattern 
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  As mentioned, scaling can occur inside formation rock which causes 

blocking the oil path from reservoir through near wellbore area. This thesis focuses 

on possible treatments on formation rock in order to reduce the risk of inorganic 

scale depositions.  

1.1    Objective 

The aim of this project is to study the possible chemicals to treat internal 

surfaces of formation rock being able to reduce or prevent mineral scale deposition. 

This could be used in addition to current squeeze treatments or an independent 

methodology fro inhibition mineral scale deposition near wellbore. However, the 

main focus is to demonstrate feasibility of such techniques to be applied to the oil 

and gas industry. 

As mentioned, using surface engineering to reduce the potential of mineral 

scale deposition was recently started, which is applicable to critical surfaces like 

downhole chemical valves and choke at subsea templates. The major differentiation 

between the coating studies on metal surfaces (for topside purposes) and this 

research is that treatment has to be performed remotely and offshore, which makes 

this work more complicated. Effects of surface alteration due to the chemical 

treatments on hydrocarbon production need to be considered in this research. This 

means that the treatment needs to be thin enough not to block the hydrocarbon 

path.  This was the one of the main challenges in this work. However, the main 

challenge of the work was to identify chemicals that have potential to reduce the 

amount of mineral scale deposition and simultaneously to have covalent bonds on 

formation rock. The second consideration was to find a methodology to be 

applicable to in the oil and gas industry and could be performed remotely offshore. 

It could be very beneficial if the methodology for applying these chemicals in the 

near wellbore area introduced in this work could use one of the current methods in 

scale managements like squeeze treatment in order to treat the formation rock near 

the wellbore by some minor modifications. Therefore, the main objectives of this 

work were: 

 To identify possible chemicals to treat formation rock that have specific 

features such as: 

 Having strong affinity to the formation rock 

 

 Reducing  mineral scale deposition on rock surface 

 

 Being remotely applied to the near wellbore area 
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 Not blocking internal pores of formation rock 

 

 Having correct wettability for hydrocarbon production 

 

 Understanding film conformations formed on the surfaces by these 

chemicals 

 

 Understanding effects of different properties of the treated-surface on scale 

deposition  

 

1.2  Thesis outline 

In this thesis, eight chapters are presented consists of Introduction, 

Literature Review, Methodology and Experiments, Theory and Techniques, Film 

Formation, Scale Prevention Performance, Film Characterization, Discussion, and 

finally Conclusion and Future work. 

 

In Chapter 2, the inorganic scale formation problems, the factors affecting 

scale formation, coating materials on metal surfaces and their effects on scaling, 

self assembled monolayer (SAM) technique, aminosilanes and their film structures 

on surfaces, and influence of different parameters on aminosilane film formation will 

be reviewed. 

 

Chapter 3 presents methodology and experimental techniques of this PhD. 

It first reviews different types of organosilanes followed by describing the 

experimental methodology of this work. In addition, the characterisation methods to 

study the chemical and physical properties of the surfaces are included in this 

chapter. At the end, the aminosilanes film kinetics are discussed.  

 

In Chapter 4, formation and the kinetics of 3-aminopropyltriethoxysilane 

(APTES) films at different concentrations on quartz crystals are studied by QCM. In 

this chapter the coverage of films obtained by various APTES concentrations are 

calculated. Matlab software is also used for curve fitting. Besides, the maximum 

mass APTES approximately required for creating SAM on quartz crystal is 

calculated and compared with the results of QCM.  

In Chapter 5, performances of APTES and p-aminophenyltrimethoxy silane 

(APhS) on reduction of calcium carbonate scale on treated-surfaces are 
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investigated. Reduction of scale deposition on treated-surfaces by various 

concentrations of APTES and APhS molecules are measured. Scanning Electron 

Microscopy (SEM) and weighing scale are used to study the morphology and 

amount of mass on the quartz surfaces, respectively. 

 

In Chapter 6, chemical and physical properties of APTES and APhS films 

treated by various concentrations are studied by different characterisation 

techniques such as X-ray Photoelectron Spectroscopy (XPS), contact angle and 

roughness measurements. The results are compared with literature to better 

understand film formation mechanisms. These results are also to suggest possible 

conformations obtained on the surface by using different APTES and APhS 

concentrations, which are later related to performance of the treated surfaces on 

reduction of calcium carbonate deposition (this is presented in Chapter 8). 

 

In Chapter 7, the performance APTES and APhS films on reduction of scale 

deposition are interpreted by the film properties created on the surface. The effects 

of surface composition, wettability and roughness on reduction of scale deposition 

are individually studied. Contribution of each property on total calcium carbonate 

mass reduction is evaluated. The main contribution of this work is presented in this 

chapter. 

 

In Chapter 8, the main conclusion of this research and the possible future 

work in order to develop this methodology to be employed in the oil and gas 

industry are presented. 
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Chapter 2  

Literature Review 

 

2.1   Introduction 

This chapter reviews the scale formation process mainly calcium carbonate, 

Self-Assembly Monolayer (SAM) and coating applications to inhibit mineral scale 

deposition. In the first part of this chapter the mechanism of calcium carbonate 

scale formation and precipitation is reviewed followed by scaling phenomenon in 

bulk and surface. Scale inhibition by scale inhibitors and squeeze treatment are 

also discussed briefly in this chapter. The second part of this chapter presents the 

literature related to effects of various substrates on scale deposition.  

SAM technique is reviewed to modify substrates for changing the surface 

characteristics. SAM of organosilane followed by behaviours of different 

aminosilanes during film formation and conformations of aminosilane films on the 

substrate are also studied in this chapter. Different surface characteristics 

techniques are presented to analyses the aminosilane film formed on the surface.   

 

2.2   Scale formation literature 

One of the major issues in the oil and gas industry is formation and 

precipitation of mineral scales. The challenge is that mineral scales are sparingly 

soluble depending on conditions in the system. There are two phenomena that 

cause scale formation: i) reservoir conditions such as temperature and pressure are 

changed resulting in precipitation of carbonate and halite scale and ii) where 

seawater meets formation water in reservoir which results in sulphate scales. In fact 

scale forms to equilibrate the system by reactions between ions in the system. 

Carbonate scale normally is due to producing formation water from the reservoir 

along with hydrocarbon. On the other hand, sulphate scales are formed due to 

enhance oil recovery (EOR), as produced water and/or seawater are used to 

maintain the pressure in reservoir. Most common mineral scales in the oil and gas 

industry are presented in Table ‎2-1. 
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Table ‎2-1. Most common mineral scale and influencing factors of formation in the oil and 
gas industry (10-12) 

Scale mineral 
Chemical 

formula 
Influencing factors 

Relative 

solubility 

(mg/l) 

Calcium 

carbonate 
CaCO3 

pCO2, total pressure, 

temperature, TDS 
196 

Iron carbonate FeCO3 
pCO2, TDS, temperature, total 

pressure, corrosion, pH 
100 

Barium sulphate BaSO4 Pressure, temperature, TDS 44 

Strontium 

sulphate 
SrSO4 Pressure, temperature, TDS 520 

Calcium sulphate CaSO4 Pressure, temperature, TDS 3270 

 

Production loss and damage to equipment (mainly to safety valves) are the 

main issues with scale formation which requires a costly remedy. Scale formation is 

a chemical phenomenon being affected by several chemical and physical factors. 

Reservoir reached equilibrium conditions (pressure, temperature and ions 

saturation) with formation rock after millions of years. Any changes in these 

conditions which can be during drilling, production or injection of fluid for enhanced 

recovery can disturb the equilibrium. For example, CO2 - which plays an important 

role in calcium carbonate scale formation – is at equilibrium with hydrocarbon 

phases and formation water in the reservoir. The moment that any changes happen 

in the reservoir conditions such as pressure depletion and evaporation of CO2 from 

liquid phase to gas phase - these increase pH of liquid phase - resulting in 

precipitation of calcium carbonate. Mechanical methods are normally employed to 

remove scale in production pipes and perforations. However chemical methods are 

used to remove and also to prevent scale formation in near wellbore, pipelines, 

safety valves and separators. Removal of scale by acid treatments is not always 

efficient specifically for barium sulphate (BaSO4) due to strong affinity of barium 

sulphate nature to surface and very low solubility. Hence, preventing is more 

favourable amongst operators than other methods. Scale inhibitors (SIs) are 

squeezed into reservoir from production line into near wellbore area to adsorb or 

precipitate onto the rock surface. The well is shut for 12-24 hrs in order to give 
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formation rock sufficient time to adsorb scale inhibitor (SI). The scale inhibitor 

desorbs from rock surface during production in order to prevent scale formation in 

near the wellbore and production system. In order to monitor performance of 

squeeze job, the concentration of SI desorbed to production fluid is measured. 

Normally a low concentration of SI is required to prevent scale formation, which is 

called minimum inhibitor concentration (MIC). Wells are re-squeezed when the 

concentration of SI in production line reaches below MIC. In addition, SI is 

sometimes injected continuously into production well or wellhead to inhibit scale 

formation in production facilities if the risk of scale formation is not high. The 

squeeze treatment procedure will be discussed later in this chapter. 

 

2.2.1 Scale formation location 

Scale phenomenon occurs in different places during drilling, water pumping 

and production systems which due to cost of remedy (squeeze treatment, downhole 

chemical injection line, acid treatments, etc.) and environmental issues, some areas 

become more important. One of the places that scaling takes place is near the 

wellbore in porous of rocks resulting in a thick and stiff layer which blocks the oil 

path. Scaling can happen on topside and downhole and ions in the water can react 

in different conditions and form different types of inorganic scaling such as calcium 

carbonate and barium sulphate. Calcium carbonate formation normally occurs 

where the pressure drops in the system. Scaling phenomenon precipitates in bulk 

or deposits on the surface which the amount of precipitation can be studied by 

change of calcium concentration in solution (13) and turbidity measurements (14). 

Scale precipitation in the bulk is not a problem if the scale does not deposit on the 

surface or adhere on the surface (15, 16). 

 

2.2.2 Calcium carbonate scale formation 

The most common type of mineral scale is calcium carbonate occurring due 

to the mixture of calcium cations with carbonate ions in the solution, and reduction 

of pressure in system. Calcium carbonate (CaCO3) precipitations are found in three 

different crystal structures:  i) calcite, ii) aragonite and iii) vaterite; morphologies are 

presented in Figure ‎2-1. Calcite and aragonite are found in nature and are the most 

stable forms of calcium carbonate crystals; in contrast, vaterite is not stable (17). 

The tendency of calcite to stick to surface is higher than others specially vaterite 

which is easier to be removed from surface (18, 19). In order to characterise the 
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morphology of calcium carbonate, various techniques such as Raman 

Spectroscopy (20) and X-ray diffraction (17) are used. 

 

 

Figure ‎2-1. Calcium carbonate morphology: a) calcite, b) aragonite and c) vaterite (21) 

 

The physical and chemical factors determining calcium carbonate 

crystallisation include temperature, the concentration of the reactant, pH value of 

the solution and presence of impurities in the system. The crystallography of 

calcium carbonate is presented in Table ‎2-2. 

 

Table ‎2-2. Calcium carbonate crystallographic and favourite forming conditions 

descriptions (7, 22-26)  

 Calcite Aragonite Vaterite 

Crystal 

Sytem 
Hexagonal-rhombohedral Hexagonal Hexagonal 

Morphology Cubic to rhombohedral Needlelike Spherical or dislike 

Favourite 

condition 

 Instantaneous 

nucleation 

 Room temperature 

 Temperature 

above 50
o
C 

 High pH 

 High supersaturation 

 Strong affinity to 

spread laterally 

State  Most stable 

 Single crystal 

 Stable 

 Single crystal 

but more porous 

 Metastable 

 Microcrystalline 

 porous 

Density 

(g/m
3
) 

2.71 2.93 2.66 

 

The main effective parameter in formation of calcium carbonate is 

evaporation of CO2 where the partial pressure of carbon dioxide decreases to below 

bubble point which results in an increase in calcium carbonate precipitation.  

                
                                                              ‎2-1 
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In a related manner, concentration of carbonic acid reduces due to 

evaporation of CO2 from the system, which causes increasing pH of the solution. 

Calcium carbonate solubility is related to the pH solution and reduces by increasing 

the pH. 

                                
                                               ‎2-2 

Figure ‎2-2 presents the temperature-pressure dependency of carbon dioxide. 

 

 

Figure ‎2-2. Temperature-pressure diagram of phase dependency of carbon dioxide (4) 

 

2.2.2.1 Supersaturation, a driving force of calcium carbonate scale 

formation 

The reaction of calcium carbonate formation is shown below:  

        
         Equation ‎2-3 

Saturation of the solution system is the foremost determining factor of 

crystal formation in the solution or precipitation on the surface (27). The saturation 

ratio of calcium carbonate is presented below.  
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Equation ‎2-4 

Where α‎(mol.l-1) is the ion activity of calcium and bicarbonate in the solution 

and K is the solubility product. Depending on temperature and pressure, the value 

of K changes, which was found 4.55 x 109 at 25°C and 1.06 x 109 at 80°C by 

Larson and Buswell (28). Also,       where γ‎is‎ionic‎activity‎coefficient‎and‎C‎

(mol.l-1) is concentration of the reactant. Thermodynamically, formation of scale 

happens when SR is above 1. SR is categorized into three ranges presented below: 

 SR < 1 shows that the solution is under saturated and mineral scale cannot 

form in the solution. 

 SR= 1 determines that the solution is saturated, which means that formation 

and dissolution of scale are in equilibrium and precipitation cannot be 

formed. This means that nucleation is not created and the existed crystal 

does not grow. 

 SR > 1 indicates that the solution is in the crucial condition and is 

supersaturated. Scale can form. 

SR > 40: spontaneous calcium carbonate precipitation occurs. 

Saturation ratio (SR) is the determining element in a solution to control 

precipitation of mineral scales. In case of SR above 1, some mineral salts need to 

precipitate from the solution in order to make solution equilibrium. Several 

parameters such as temperature, pH and pressure of the solution affect the SR 

value the solution; these parameters may continuously alter during hydrocarbon 

production. Hence,‎ SR‎ may‎ be‎ known‎ as‎ the‎ thermodynamic‎ “driving‎ force”‎ for‎

precipitation. However, SR is not the absolute factor of precipitation of scale where 

adequate energy to start the nucleation of crystal is required in a solution (27, 29). 

As mentioned earlier, evaporation of carbon dioxide form production is the main 

factor of scaling. SR is easy information can be obtained as an indication of 

possibility of scaling. Although it may be convenient to predict bulk scale formation 

from SR; one solution with high value of SR can be without scale precipitation. This 

means that until providing necessary energy to initiate nucleation of scale, the 

solution can stay supersaturated. The thermodynamic driving force of scale 

precipitation is governed by‎Gibbs‎free‎energy‎(ΔG=G2-G1), which is the difference 

in free energy of crystallization in a supersaturation solution (phase 1) and in the 

crystals (phase 2).  When‎ΔG<0‎scale formation spontaneously occurs. 

 



- 13 - 

2.2.2.2  Basic principles of scale formation: induction, nucleation and 

growth 

The key factor of crystallization is saturation of the solution, which indicates 

the possibility of crystallization. This is schematically presented in Figure ‎2-3, which 

is divided into three major zones: undersaturated, saturated and supersaturated 

zone. Undersaturated zone is under the solubility line; no homogeneous nucleation 

starts and a crystal added to the solution may dissolve depends on the solution SR 

value. Saturation value – which is shown by solubility curve - is measured 

experimentally. In this stage, homogeneous spontaneous nucleation cannot 

thermodynamically happen and the size of crystals placed in the solution stay 

constant and will not dissolve. The next zone - supersaturation area - includes 

metastable, labile supersaturation and precipitation area. In the metastable area, 

homogeneous nucleation does not occur; in contrast, the size of the crystal placed 

in the solution can increase in this stage. Contrary to metastable zone, both the size 

of the crystal grows and homogeneous nucleation can occur in labile zone. Seeds 

placed in the solution at labile stage can disturb the solution condition and create 

undue nucleation. In the last zone - precipitated area - crystals grow and aggregate 

on the surface.  

 

Figure ‎2-3. Two-dimensional crystallization procedure with and without adding seed crystal 

(27) 

 

Crystallisation of calcium carbonate includes three stages: induction, 

nucleation and growth. 
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2.2.2.2.1 Induction 

Spontaneous nucleation does not occur in the metastable zone. In order to 

allow nucleation to happen, the solution needs to be in an unstable zone, which 

may take some time. This period is called induction time, tind, which is the time that 

the system remains in metastable zone. The first nuclei in the solution cannot be 

spotted, hence it is not possible to accurately measure induction time (30). Several 

theoretical approaches have been suggested to predict induction time of calcium 

carbonate. One assumption is based on that formation of huge amount of nuclei 

and their growth are related to distribution of metastable equilibrium (31) i.e. 

polynuclei mechanism in the solution transfer the metastability of the solution to 

next stage. Another presumption is that the occurrence of first nuclei is the sign of 

metastable equilibrium in the solution (32). Based on simple nucleation assumption 

to model the induction process, the induction time (tind) can be just correlated to 

saturation of the solution which is given in Equation ‎2-5: 

            
 

         
 

Equation ‎2-5 

Where C is an empirical constant and dimensionless, T is the absolute 

temperature (Kelvin) and B is: 

  
     

       

       
 

Where β is a geometric factor for the spherical nucleus, γ is the surface 

energy (J/m2), Vm is the molecular volume, NA is Avogadro’s number f(θ) is a 

correction factor depends on nucleation type and R is the gas constant (J/mol.K). 

Equation ‎2-5 gives a linear correlation between tind and 1/(log S)2, which 

assumes homogeneous nucleation in the solution (33, 34). However, 

heterogeneous nucleation in flowing system may occur (34). Prediction of induction 

time in flowing system was developed based on a semi-emprical correlation (34): 

              
  

      
  

      
  

       Equation ‎2-6 

Where‎α0-3 are constants depend on flow rate and calculated experimentally, 

SI is superstation index and T is temperature. 

In order to experimentally measure the induction time, the period between 

supersaturation and the first visible change in the physical properties such as 

turbidity, solution conductivity or composition is measured as the induction time. 

Hence, experimentally measurement of induction time is affected to a degree by 

measurement instrument and the method of detection. Induction time can be 
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determined by several methods such as visual, turbidmetrical and conductmetrical 

(35-37). The elapsed time after mixing the solutions and observation of first crystals 

or turbidity by naked eyes is measured as the induction time. If this period is 

measured by photocolorimeter, this is called turbidimetric method. Measuring the 

conductivity of the solution can give useful information; this is used in 

conductometric methods. The time - after mixing the solution - when the solution 

becomes steady in terms of conductivity is considered as the induction time. 

 

2.2.2.2.2 Nucleation 

Changes in the solution after induction period is due to crystal nucleation 

and growth of crystals, which is called nucleation time, i.e. the period when a large 

amount of crystals form quickly after induction period in the metastable zone. The 

scaling process occurs in several sequences: (i) transporting scale lattice ions up to 

the crystal surface or an external substrate with suitable nucleation sites; (ii) on the 

substrate, ions in the solution may adsorb on the surface; (iii) the paired ions 

experience diffusion to the practically active sites; and (iv) completing crystal lattice 

by attaching paired ions to the growth sites, simultaneously with dehydration (38). 

The number of small particles formed in the nucleation stage dramatically 

increases along with the growth of particles take place during this period. It is 

assumed that the number of the crystals precipitated in the solution increases very 

quickly at the beginning of the nucleation and growth mechanism happens at the 

later step of nucleation process (39, 40). On the other hand, there is another 

assumption that considers these two mechanisms (nucleation and growth) taking 

place at the same time (41, 42). It seems that detecting whether these mechanisms 

happen sequentially or simultaneously is difficult for interpreting the experimental 

results purposes, hence it is presumed that both the size and distribution of crystals 

happen at the same time (43, 44).  

Nucleation process can also be categorised in primary and secondary 

nucleation, which the earlier includes homogeneous and heterogeneous nucleation; 

this is schematically illustrated in Figure ‎2-4. Homogeneous nucleation mechanism 

takes place in the absence of external stimuli and in the bulk (45, 46), in contrast, 

heterogeneous nucleation grows on an active site. 
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a)  
b)  

c)                
d)                    

Figure ‎2-4. Schematic of scale formation a) ion pairing, b) prenucleation aggregate growth, 

c) homogeneous nucleation and d) heterogeneous nucleation (47, 48) 

 

The kinetics of scaling is the electrostatic interactions between ions 

dissolved in the solution that leading to ion pairing stage; this is shown in 

Figure ‎2-4a). At higher supersaturation the number of ion-paired increases resulting 

in aggregation of these ion pairs; this builds larger particles. These particles are in 

dynamic equilibrium in the solution (see Figure ‎2-4b). Nucleation of solid-state 

particles starts once the aggregate particles in the solution grow to a critical size 

(49). This phenomenon requires sufficient energy which is provided by 

supersaturation in the system. Since particles are not in equilibrium phase in the 

solution, the precipitation commences (49); this is illustrated in Figure ‎2-4c and 

Figure ‎2-4d as a schematic of homogeneous and heterogeneous nucleation, 

respectively. Two enthalpy terms control the initial homogeneous nucleation in a 

system which are related to the nuclei radius: (i) the favourable free energy 

referring to‎ release‎ of‎ supersaturation‎ (ΔGv)‎ and‎ (ii)‎ unfavourable‎ free‎ energy 

relating to the interfacial energy i.e. creation of a‎ surface‎ (ΔGs). The latter is 

corresponded to the variation of free energy between growing crystalline surface 

and the solution. This is presented in Figure ‎2-5. The overall free energy increases 

up to critical size of crystal. The overall free energy decreases when the crystal size 

increases larger than critical size. This phenomenon leads to create stable nuclei 

which grow to build macroscopic crystals. Critical nuclei - which refers to maximum 

free energy - is conversely corresponded to logarithm of the solution saturation 

(32). The determining factor for formation of new nuclei is the rate of overcoming 

the maximum overall free energy by aggregation of crystals. At low supersaturation, 

the nucleation rate can surmount a few amount of critical size of nuclei, but when 

the saturation ratio goes beyond critical value, nucleation rate rapidly increases and 

nucleation is extensively occurs (42). 
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Figure ‎2-5. Free energy diagram of nucleation as a function of nuclei radius (32) 

 

The number of crystals created in saturated solution is given by 

Equation ‎2-7 (31): 

                   Equation ‎2-7 

 

Where N presents the number of crystals, D is constant, the slope of log N 

versus (log Sa)
-2 and saturation ratio index are shown by aN and Sa, respectively. 

It can be assumed that both heterogeneous and homogeneous nucleation 

happen at a heterogeneous interface since disregarding the presence of dust, 

impurity, etc. in the bulk solution is difficult (29).  Generally, it is assumed in the oil 

and gas industry that the scale precipitates on surfaces existing in the production 

system could be surfaces of the pipelines, existing scale deposits or formation rock. 

Since the presence of such surfaces in the production system decreases the free 

energy barrier, the scaling in production fluid favours heterogeneous nucleation on 

the surfaces than homogeneous nucleation (50). These nucleation mechanisms 

(either homogeneous or heterogeneous) are categorized as primary nucleation 

(32), which become highlighted in very high supersaturated solutions. However, 

such mechanisms cannot contribute in low saturation ratio and other nucleation 

processes describe nucleation in low saturation solution, which is classified as 

secondary nucleation. This type of nucleation only happens in the presence of 

existing crystals in the solution (51). The secondary nucleation occurs for several 
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reasons (51, 52), for instance, if first dry crystals are introduced in the solution, 

primary breeding takes place. The small crystal bit can be washed by the solution to 

create a new nuclei in the system (29). Microscopic observations of a growing 

crystal on a solid rod illustrated that the crystal surface can assist to a rapid 

secondary nucleation process (53). Appearance of a crystal solid in the system 

consists of several stages such as primary and secondary nucleation, crystal 

growth and secondary changes (recrystallization, aggregation, etc.) (54). The 

process of scale formation and precipitation is shown in Figure ‎2-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure ‎2-6. Kinetics of scale formation and precipitation (54, 55) 

 

2.2.2.2.3 Growth 

After occurrence of nucleation (homogeneous and heterogeneous), crystal 

growth continues in order to reduce the saturation of the system. There are many 

theories (surface energy, adsorption layer and dislocation theories) which improved 

the crystal growth mechanism. The first hypothesis was suggested by Noyes and 

Whitney describing the crystal growth as diffusion process (45), later this theory 

was developed by Berthoud and Valeton and two-step process was defined for 

growth of crystals: i) diffusion and ii) integration process, which means that the 

soluble ions diffuse from the solution to the crystal surface followed by aggregation 

into crystal lattice (45).  
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The surface energy theories inspired by Gibbs energy by assuming a 

perfect crystal growth in a certain volume to have a minimum total surface free 

energy (45). This indicates that the shape of crystal remains constant and the size 

of a crystal increases proportionally to its surface energy. This theory was 

challenged  by Volmer who suggested that the presence of a self-adsorbed layer of 

crystals in growth process (56). Volmer’s‎ theory‎ assumes‎ a‎ mobile‎ adsorption‎

process on the surface allowing the growth mechanisms happen without nucleation 

(56). Following‎ Volmer’s‎ work,‎ other‎ proposals‎ for‎ growth‎ of‎ crystal‎ based on 

adsorption layer theory were developed such as Frank-Van der Merwe method 

(two-dimensional growth), Volmer-Weber (three-dimensional growth) and Stranski-

Krastanov mode. Figure ‎2-7 presents the different modes of crystal growth based 

on adsorption layer theory. In Frank-Van der Merwe mode, a new layer can adsorb 

when the underneath layer is complete; on the other hand, in Volmer-Weber mode, 

different layer can form simultaneously. Strabski-Krastanov mode, the crystal 

growth commence with a two-dimensional mode followed by a three-dimensional 

mode which is a combination of both Frank-Van der Merwe and Volmer-Weber 

modes (57). These theories are able to explain the crystal growth in a locally high 

supersaturation. 

a)  

b)  

c)  

Figure ‎2-7. Different processes of crystal growth: a) Frank-Van der Merwe method b) 
Volmer-Weber method c) Stranski-Krastanov 
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Crystal growth in low supersaturation was first explained by Frank based on 

dislocation theory present in the crystal indicating spiral crystal growth where the 

edge of crystal is dislocated and twisted (58); this is shown in Figure ‎2-8. 

 

 

a)          

 

b)          

Figure ‎2-8. Growth of crystal by screw dislocation process at low SR: a) one screw 

dislocation b) two screw dislocations  

 

Based on this theory, the available molecules expose to the surface of 

crystals in order to integrate and form into crystal lattice (45). In addition, the 

crystallisation growth was defined as a fact which is depended to other factors such 

as surface energy (45) i.e. the lower the surface free energy is, the crystal become 

more stable. 

When the nucleation either homogeneous or heterogeneous occurs, the 

saturation ratio of the solution decreases owing to increase of the crystals size. 

Crystal growth consists of an increase in the size of crystal together with 

aggregation of particles. The mechanism of scale formation is complex and 

depends on several factors (47), which is depicted in Figure ‎2-9. Although 

nucleation process is expected to start after nucleation, these phenomena are 

assumed to happen at the same time (59). 

 

a)  b)  

c)  

Figure ‎2-9. Schematic of scale deposition process after nucleation: a) particle adsorption, 

b) agglomeration and c) phase transitions (47) 
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 Scale deposition takes place on the active sites of surface which can return 

back into the solution after adsorbing on the substrate due to weak bounds with the 

surface. Finally, they are adsorbed at the active sites by several bindings (19). 

Figure ‎2-10 illustrates the deposition of crystals on the available sites of surface.  

 

 

Figure ‎2-10. Schematic of crystal deposition/adsorption on a surface (60) 

 

The kinetics of scale growth depends on the saturation ratio of the solution, 

ionic strength of the solution and the type of electrolyte present (29).  

The reduction of calcium concentration during precipitation is gained by 

Equation ‎2-8 (61). 

 

                            
  Equation ‎2-8 

 

Where [Ca] presents molar concentration of Ca2+, Kc is crystal growth 

constant and A is surface area of crystals. Since the total surface area of crystals 

increases over time, this should be involved in Equation ‎2-8 by considering the 

number of crystals (N). This was developed by Sohnel and Mullin (37) by 

considering a constant number of crystals with the similar shape, A(t) was 

estimated over time in order to develop the growth rate equation. 

 

2.2.3 Adhesion 

The last parameter for better understanding the formation of mineral scale 

on surfaces is the adhesion phenomenon, where two solids stick together by 

interfacial forces like valence and interlocking forces (62, 63) which may happen on 

the surface of rock and/or pipes. Scale adhesion on the surface is a complicated 

process and requires involving different fields of science such as surface 

engineering, chemistry, physics and material science.  
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2.2.3.1 Adhesion forces and surface energy 

DLVO (Derjaguin, Landau, Verwey, Overbeek) theory is used to describe  

the adhesion of particles and colloid on surfaces in fouling applications (64), which 

was principally used by others to explain the adhesion of particles (65) and colloids 

(66). The description of DLVO hypothesis is based on attractive Van der Waals 

forces and the repulsion forces from adsorbed layers (64). Van der Waals forces is 

a weak interactions between atoms, molecules and crystals, and repulsion forces is 

owing to creation of an electrical Double-Layer near to the surface (64). Other 

parameters such as hydrophobic interactions, short-range repulsive forces or 

bridging are described by Oliveria (64) to have effects on the adhesion of foulant on 

a surface, which are not included in DLVO theory. 

Roughness and surface energy are also shown to affect the adhesion of 

mineral scales. Effects of these parameters on scale deposition will widely be 

studied in section ‎2.6, which illustrates that the characteristics of the surface and of 

the interface needs to be considered in order to be able to explain the adhesion of 

scale on a surface.  

Contact angle of water droplet on the surface is measure to study adhesion 

of foulant on the surface. The contact angles of liquid on a surface are in relation 

with the strength of bonds between liquid and the surface indicating the lower 

contact angle is, the stronger bonds between liquid and the surface (67). More 

detail regarding contact angle measurement is provided in Chapter 3. Besides, the 

roughness and topography of a surface can influence the contact angles and finally 

the adhesion of the surface (68-75). The impact of roughness on contact angle 

value was first described by Wenzel who introduced a roughness factor in order to 

explain the value of contact angle measured on the surface (68, 69). Cassie also 

introduced another‎model‎since‎the‎Wenzel’s‎model‎was not capable of interpreting 

the effect of roughness on contact angle value for all types of surface by involving 

air existence between liquid and the solid (70). Although wettability of a surface can 

be characterised by topography of the surface (72, 73, 76), its consequence on 

adhesion and surface free energy stays as an open discussion (74, 75). 

 

2.3 Factors influencing calcium carbonate formation 

In water treatment, it has been attempted to assess the rate of scale 

formation by studying thermodynamics factors such as pH, temperature or 

concentration of solution. However, these are not the only factors that influence the 

calcium carbonate formation; the kinetics factors such as hydrodynamic condition, 
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water quality, partial pressure of CO2 play important roles in CaCO3 formation to 

predict the possibility of scaling (77). Three types of crystals are defined for calcium 

carbonate; vaterite, aragonite and calcite depend on different conditions. Different 

morphologies of calcium carbonate can be obtained by different crystals of CaCO3 

which may influence the adhesion of calcium carbonate on the substrate as well as 

the porosity of surface. 

 

2.3.1 Effect of pH 

One of the important parameters in the carbonate scale formation system is 

the equilibrium among CO3
-2, HCO3

- and H2CO3. The equilibrium of CaCO3 is 

presented in Equation ‎2-9, Equation ‎2-10 and Equation ‎2-11 (78).   

 

              Equation ‎2-9 

                  
  Equation ‎2-10 

    
     

      Equation ‎2-11 

 

Figure ‎2-11 illustrates the total percentage of carbon as function of pH, 

which shows different carbon species concentrations under various pH conditions. 

It is seen that the pH of solution has an important role on the ratio of bicarbonate 

and carbonate ions in the system.  

 

 
Figure ‎2-11. Carbon total fraction versus pH (4) 
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It is observed that precipitation of calcium carbonate decreases with pH 

since lower carbonate ions are available in lower pH.  The effects of pH changes in 

the solution on precipitation of calcium carbonate were investigated (79, 80). 

Saturation ratio of the solution increased with pH where the effects of pH on 

calcium carbonate in the presence of PAA (additive) at 80oC for 24 h were studied 

(80). It was also shown that the particle size decreases with pH (80). In addition, the 

nucleation rate was also affected by pH (80). They showed that the crystal 

morphology was influenced by pH even under controlled conditions. Effects of pH 

solution on morphology of scale were also studied by others (81). The effect of pH 

on scale particle size was also studied by Feng et al. (82) who illustrated that the 

size of crystals decreased with higher pH values due to the influence of pH on 

nucleation rate. 

 

2.3.2 Effect of saturation ratio 

Inorganic scale formation is strongly depended on the saturation ratio of the 

solution influencing different stages of scale formation like induction, growth, 

morphology and rate (83-85). 

The study on effect of water hardness on the calcium carbonate formation 

showed only heterogeneous precipitation occurred at low supersaturation whereas 

homogeneous precipitation was observed at high supersaturation (86). Also on heat 

transfer surfaces studies, the SR of the solution is monitored and it was observed 

that in high saturation ratio the aragonite crystals formed whereas calcite crystals 

were dominant in lower SR (87). On heat transfer surfaces studies, it was also 

shown that the rate of crystal nucleation is relatively proportional to the value of the 

supersaturation at the surface (85). 

The relation between saturation ratio of the solution on induction time of 

scale formation showed that the induction time increases in low saturation ratio 

whereas in high saturation ratio the induction time is very short (88, 89). 

 

2.3.3 Effect of temperature 

Temperature is well known to be one of the main parameters for calcium 

carbonate scale crystallisation. It was shown that when the solubility of the most 

salts decreases with temperature leading to tendency of crystallisation on the warm 

surfaces (90, 91). Moreover an increase in heterogeneous crystals in low 

temperature was observed whereas the homogeneous crystals deposition 

increased in high temperature (86). Low solution temperature results in slow 
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kinetics of calcium carbonate scale formation, but in high temperature the kinetics 

accelerates causing precipitation take place at earlier stage (92), which shows that 

process and kinetics of crystallisation depends on temperature (82, 93). By using 

ScaleSoftPitzer TM Version 4.0, it was shown that saturation ratio of scale in the 

solution changed at different temperature (94), which was shown in Figure ‎2-12. 

The impact of temperature on saturation degree was also studied by a simulation 

and an experimental works Dyer and Graham (93). 

 

 
Figure ‎2-12. Effects of temperature on the saturation of scaling species in the solution (94) 

 

 The effects of temperature on the size of the crystal was also demonstrated 

(91). Yu et al. (91) monitored the crystallisation in two different temperature (25 and 

80oC) and observed that the size of crystals decreased from 6-12 µm to 4-10 µm 

when the temperature increased. Feng et al. (82) also observed the change of 

crystal size at various temperature, but the size of particles reported in their work 

was different from others (91). They noticed that using various additives in the 

solution could be the factor that giving different size of crystals in their report than 

others (91) reported in the literature. 

The impact of temperature on morphology of calcium carbonate showed that 

different types of crystals form in low and high temperature (95-97). It is observed 

when temperature decreases it favours calcite and vaterite crystals in the solution 

whereas in high temperature, aragonite is the predominant crystal form. It was also 

shown that the affinity of scale to deposit on the substrate increased with the 

temperature (93). 
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2.3.4 Effect of calcium and carbonate ions concentration 

Calcium and carbonate ions are the factors that influence the saturation 

ratio of solution. The concentration of these ions can affect the morphology on 

calcium carbonate scale (29). Calcium carbonate crystal polymorph is 

predominantly affected by the precipitation rate (98); this results in different types of 

morphology at different precipitation rates. Although calcite crystal is the 

thermodynamically stable phase of calcium carbonate, metastable aragonite may 

be obtained where the rate of supply of CO3
2- ions is high in the solution (99). 

Concentration of calcium ion was also shown to influence CaCO3 crystals 

morphology (100); high Ca2+ ion concentration favoured calcite which is known as 

stable crystal whereas at low Ca2+ ion concentration unstable vaterite is the 

predominant crystal.  

 

2.3.5 Effect of impurities 

The rate of scale precipitation and the morphology of crystals are influenced 

by existing particles in a supersaturated solution. The presence of impurities such 

as Mg+2, Zn+2, Fe+3, Ni+2 promotes formation of aragonite crystals; on the other 

hand, Mn+2,Pb+2 and Ba+2 induce calcite crystals (29). Amongst these ions, 

magnesium has been paid more attention since it has a bigger effect on calcium 

carbonate morphology and the induction time of CaCO3 scaling (101). Although 

inhibiting aspect of Mg2+ in bulk precipitation was reported, a lower inhibition effect 

on scale deposition on surface was observed (102). It has been reported that in the 

presence of Mg2+, the growth of calcite reduced whereas aragonite crystals were 

still growing (37, 41, 102-106); increase in Mg2+ concentration results in increase of 

aragonite (107).  

The effects of seven divalent cations on calcium carbonate morphology and 

kinetics of scaling were investigated by Wada et al. (108), who showed that 

impurities such as Fe2+, Mg2+, Ni2+, Co2+, Zn2+ and Cu2+ favoured formation of 

aragonite and Cd2+ showed no impact. The explanations from the author (108) were 

that the presence of impurities either permitted the metastable aragonite to be more 

stable than the calcite or impurities adsorbed onto aragonite which inhibited its 

growth. 

Effects of Ag+, Al+3 and Cr3+ on crystal growth rate and morphology of 

scaling were also studied (109) It was shown that these ions also promoted the 

precipitation of aragonite and decreased the rate of crystal growth.  
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It was also demonstrated that the formation of calcium carbonate can be 

decreased by adding sufficient amounts of copper and zinc and shown that the 

copper was most effective than zinc (110). 

 

2.4 Prediction of scale formation by using software 

As shown, formation of mineral scale is a complicated phenomenon 

influenced by a wide range of parameters such as pH, temperature, degree of 

saturation ratio, etc.. Hence, calculation of saturation degree of solution in the oil 

and gas industry is important to predict and control the different factors influencing 

scale formation. The saturation ratio (SR) of solution is one of the most important 

parameters in order to understand the best effective strategy for scale management 

in terms of reducing the risk of scaling in the production system. Different software 

such as ScaleSoftPitzerTM (94) and MultiScaleTM (111) were established to calculate 

SR or other effective factors in scale formation in different conditions. Different 

studies like Langelier Saturation Index (LSI), Ryznar Stability Index (RSI), 

Puckorius Scaling Index (PSI) Stiff-Davis Index (SDI) and Odd and Tomas Index 

(OTI) were carried out to understand the effect of saturation indices on scale 

formation (112, 113). 

In order to predicting scale formation, two different softwares based on 

Pitzer theory (114-116) have been developed which are able to calculate the 

equilibrium composition for the whole system and each phase, separately. Although 

saturation ratio of the whole system can be calculated by providing pH, pressure, 

total alkalinity, concentration and temperature; these thermodynamic factors cannot 

explain the scale phenomenon, alone. None of these softwares are able to predict 

the amount of scale on a specific area, since these are not able to predict the 

kinetics scaling. 

 

2.5 Scale removal and inhibition methods 

Formation of mineral scale in different places causes production loss and 

blockage of flow of oil path. In order to remove scale different methods: chemical, 

mechanical or combination of both (117) are used without inducing any damage to 

wells and the wellbore, pipes and in total the oil path. 
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2.5.1 Mechanical removal mechanism 

If the scale layers are too thick to be removed by chemical removals, 

mechanical equipment and techniques are employed in order to drill rocks (a thick 

layer of scale). Explosives such as string shots are known as the first methodology 

that cleans and removes scale in pipelines (118). One of the methods is water 

jetting which with a help of chemical washes removes soft scale such as halite 

(119). However this technique is not effective for hard scales such as calcium 

carbonate (calcite) or barium sulphate. Mechanical tools cannot be used to all the 

locations that scales formed and also the correct technique should be applied for a 

specific type of scale and well. 

 

2.5.2 Chemical removal mechanism 

Limited ranges of mechanical techniques are applicable in the well leading 

to uses of chemical removals. These removals are cost effective compare to the 

mechanical methods and are able to dissolve mineral scales remotely (120). 

Calcium carbonate can be removed by exposing to hydrochloric acid while sulphate 

scales needs to be dissolved by a chelating agent. However, chemicals like 

Ethylene Diamene Tetra Acetic acid (EDTA) are able to remove nanocarbonate 

scale, to dissolve and chelate CaCO3 (121). EDTA and its variations are more 

costly and have slower effective reactions with calcium carbonate compared with 

hydrochloric acid. The inhibitors which are commonly applied in oilfields are 

presented below. 

 

2.5.3 Inhibition of scaling by scale inhibitors 

One of the most effective methods to control scaling in the oil and gas 

industry is the scale inhibitors. Based on composition and mechanisms, scale 

inhibitors are classified in different categories: polyphosphates, phosphonates, 

polyelectrolytes and polycarboxylic.  

Polyphosphate are used for both corrosion and scale inhibition. The use of 

these scale inhibitors in the oil and gas industry declined due to poor thermal 

stability (break down temperature at 90oC) (29). According to the new regulation, 

the sue of these materials are mainly forbidden in the North sea (122). The 

chemical structure of polyphosphate is shown in Figure ‎2-13.  
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Figure ‎2-13. Polyphosphate inhibitor structure, n=4-20 

 

Phosphonates are also applied when corrosion and scale needs to be 

inhibited. These chemicals are differentiated by their PO3H groups.  It is well known 

that phosphonate scale inhibitors are mostly efficient during crystal growth not in 

nucleation process (29). Diethylenetriaminepenta(methylenephosphonic acid) 

(DETPMP) is one of the inhibitors in phosphonate category and commonly used in 

the oil and gas industry, the schematic of DETPMP is shown in Figure ‎2-14. 

Phosphonate inhibitors are also well-known for being resistant in high temperature 

(61). 

 

Figure ‎2-14. Chemical structure of DETPMP scale inhibitor 

 

Polyelectrolytes include a larger variety of monomers like carboxyl, 

hydroxyl, sulphonate, phosphate and phosphonate. Polyelectrolyte inhibitors are 

effective during nucleation process and can delay the crystal growth for the most 

mineral scale formation (29). Polyphosphinocarboxylic (PPCA) is one of the most 

common inhibitors in this group of which the schematic is illustrated in Figure ‎2-15. 

  

 

Figure ‎2-15. PPCA structure 
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Polycarboxylic acids are distinguished by COOH groups, which are one 

widely used in squeezed treatments. Polyacrylates (PAA) is one the well-known 

inhibitors in this group of which the chemical formula is illustrated in Figure ‎2-16. A 

negative impact on calcium carbonated inhibition was seen where higher molecular 

weight of PAA was used (123). PAA influences the morphology, size and shape of 

calcium carbonate and inhibits CaCO3 growth (91, 124). 

 

 

 

Figure ‎2-16. PAA chemical formula 
 

2.5.3.1 Green chemistry and inhibitors 

Recently, more environmentally accepted inhibitors have being demanded 

by the oil and gas industry due to more strict regulations by the authorities. The 

focus is to apply green and environmental friendly chemicals to reduce pollution 

(125). Some molecules are introduced below as more environmentally-accepted 

chemical inhibitors. 

 Polyaspartate (PASP) 

Polyaspartate is known as a molecule from aspartic acid group with good 

biodegradability properties. To synthesize PASP, a thermal technique is used which 

does not require non-desirable reagents. Three different mechanisms are together 

involved in the inhibition of mineral scale by PASP: adsorption, complexation and 

dispersion processes. When the molecular weight of Polyaspartate increases the 

adsorption of this chemical decreases. This molecule inhibits CaCO3 scale during 

nucleation and crystal growth processes (126, 127). 

 Polymaleic acid (PMA) 

Polymaleic acid is a carboxylic acid enabling to inhibit the rate of calcite 

growth at low supersaturation solution of which the mechanism of inhibition is 

thought to be by adsorption of carboxyl ions on nulcei (128, 129). 
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 Carboxymethyl Inulin (CMI) 

Carboxymethyl Inulin is synthesised from inulin (a polysaccharide). CMI 

influences morphology of the calcium carbonate crystals and the rate of growth. It is 

believed that anionic carboxylate groups adsorb on the calcium carbonate crystals 

and stop the crystal growth (130). 

 

2.5.4 Squeeze Treatment 

In the oil and gas industry, squeeze treatment (131) is known as a 

methodology which prevents scale formation near the wellbore reservoir by 

pumping a massive amounts of scale inhibitors downhole to retain in near the 

wellbore areas. In general, passing a high concentration of scale inhibitor through 

the rock, which is slowly released later into the production fluid to prevent scaling, is 

called squeeze treatment. Figure ‎2-17 shows the schematic of squeeze treatment 

from a platform.  

 

 

Figure ‎2-17. Schematic of an oil well using squeeze treatment (132) 

 

Squeeze treatment can be applied in two different ways: i). precipitation/ 

dissolution (133) and ii). adsorption/desorption (131). Between these two methods, 

adsorption/desorption is the common used method in the oil and gas industry. Van 

der Waals and electrostatic forces between the reservoir rock and scale inhibitors 

are the main mechanisms in adsorption squeeze treatment (134-136) of which the 

efficiency is defined by adsorption isotherm (136-138). In precipitation method, the 

mechanism consists of the reaction between inhibitor and divalent cations forming 
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scale inhibitor-metal complexes which precipitate on formation rock near the 

wellbore and release later to inhibit the solution from scaling (133, 135). In the 

precipitation/dissolution mechanism, nucleation kinetics plays an important role to 

diffuse SI further into reservoir (139); this increases the squeeze lifetime. The 

period that a well needs to be squeezed again is called squeeze lifetime. Acidic 

solution of SI is normally injected to promote precipitation mechanism (140).  

In desorption squeeze treatments, SI is gradually released into the solution. 

The problem with this mechanism is the irreversibly of SI adsorption; i.e. the same 

amount of SI injected to the rock does not return to the production system (141). 

Since squeeze treatment implementation is a very expensive process resulting in 

production loss, the squeeze lifetime plays an important role to have a cost-

effective strategy (142).  

The process of squeeze treatment takes place in six stages (143): 1) 

employing surfactants to wet the rock, 2) pumping a low concentration of SI to help 

the surfactants move further into reservoirs, 3) injecting a high SI concentration 

(2.5-20%) as the major treatment, 4) pumping brine diffuse SI further into the 

reservoir 5) shutting the well for 8-24 h to have a maximum adsorption of SI on the 

formation rock 6) eventually, extracting production. The squeeze treatment 

procedure is depicted in Figure ‎2-18. 

 

 

Figure ‎2-18. Schematic of the squeeze treatment process (144) 
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In squeeze treatment, it is expected that SI retains in the well for a longer 

time and slowly releases to the solution in order to have an optimum squeeze 

lifetime. However, in the reality a high concentration of SI returns after a few days 

(145). A wide range of discussions about enhancing squeeze treatment to reduce 

the cost of the procedure is available in the literature (134, 137, 143, 146-156).  

There are many parameters such as temperature, mineralogy, pH, divalent 

cations that can affect the squeeze lifetime. These factors will be briefly discussed 

below. 

 

2.5.4.1 Temperature   

The change of temperature can result in precipitation squeeze treatment 

leading to an increase in the squeeze life time (134, 141, 157). It was demonstrated 

that the adsorption of both inhibitors (PPCA and phosphonate) increases when the 

temperature of the system goes up (157). 

 

2.5.4.2 pH solution 

Adsorption of different inhibitors was studied when the pH of the solution 

changed (134, 157, 158). The adsorption of SI (low concentration) in the system at 

pH>4 and pH=2 became equilibrium after 1 h and 10 h, respectively (134). PPCA 

and Phosphonate inhibitors showed different behaviour in terms of pH solution 

changes (158). It was observed that the adsorption of PPCA at high temperature 

(95oC) increases when the pH of the solution increases; however, PPCA adsorption 

decreases at low temperature (25oC) when the pH solution increases from 4 to 6. 

The adsorption of phosphonate in both low and high temperatures (25oC and 95oC) 

reduced from 2 to 4 and increased from 4 to 6. Besides, the adsorption of SI for 

pH<4 did not change and reached zero when pH>7. A clear reduction in adsorption 

was observed when the 5<pH<6 (158). Adsorption of SI on the rock were observed 

to be negligible for pH<4, for pH 5 to 6 adsorption intensely dropped and for pH 

above 7 reaches zero (158). 

 

2.5.4.3 Divalent cations 

Divalent cations such as calcium can influence adsorption of inhibitor on the 

formation rock (134, 135, 145, 146, 152, 159-162). Adsorption of DETPMP 

decreased with increasing the pH solution at 25oC where no calcium existed in the 

solution (134). It was observed that in pH=6, the presence of calcium caused 
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increasing the adsorption of DETPMP. Figure ‎2-19 presents the effect of calcium on 

SI adsorption on sandstone in various pH. However, the impact of Ca2+ is different 

for each inhibitor (146); the adsorption of PPCA on the crushed core in the 

presence of calcium was not significant as DETPMP. 

 

 

Figure ‎2-19. Impact of Ca on adsorption of SI on sandstone at 25
o
C (134) 

 

2.5.4.4 Mineralogy 

Mineralogy plays an important role in squeeze lifetime; the interaction 

between inhibitor and the formation rock can govern the achievements of a 

squeeze treatment (143). Rock consists of different minerals, mainly quartz, 

carbonate, clays etc.. Apart from quartz, other minerals affects the interaction 

between inhibitor and the formation (153).  The effects of mineralogy on squeeze 

lifetime were investigated by Jordan et al. (143). Adsorption of PPCA and DETPMP 

on sandstone were tested and it was illustrated that the presence of clay mineral 

has an important affect on adsorption process (143). 

The surface of alumina is positively charged when pH of formation water 

increases the tendency of SI to alumina surface (153). The silica-type formation 

rock contains kaolinite, quartz and feldspars which causes the formation becomes 

negatively charged at the pH of formation water (153). This results in a repulsive 

force between scale inhibitors and the surface of silica reducing the tendency of 

scale inhibitors to adsorb on the formation rock (153). Kaolinite has a larger surface 

area compared with silica and feldspars which eliminates the effects of silica and 

feldspars in adsorption process; however, kaolinite is naturally negatively charged 

in the pH of formation water. Thus, concentration of kaolinite can play an important 

role to adsorb scale inhibitor (153). 
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2.6 Controlling mineral scale and fouling by applying new 

substrates on surface 

Scale deposition on surfaces is not an issue only in the oil and gas industry 

but also in wastewater treatment, water purification, condensers, heat exchangers 

and chemical plants industries (163-167). For instance, scaling and fouling 

occurring near metal surfaces in cooling crystallisation processes due to the high 

saturation ratio happening mostly near the heat exchangers reduce heat transfer 

coefficients resulting decreasing production rates (168). 

In biomedical science, the hydrophobicity of surfaces, which are coated by 

proteins, lipids etc., increased and affected bacterial accumulation (169). The 

surface treated by Ni-P is another example of creating new substrate which is 

capable of preventing fouling deposition on the surface (170). Compared with the 

untreated stainless steel and copper, the adhesion of crystals decreased on the Ni-

P surface owing to the lower surface energy. Recently, the attention towards the 

influence of substrate as the nature of the surface on scale deposition was paid, 

which will widely be discussed in this section. Effects of different types of substrates 

with various modifications using coating, ion implementation, or ion sputtering on 

scale deposition were studied and will be discussed in this section. Biofouling 

deposition is well understood in literature as a wider range of work has been 

performed on this part. 

Biofouling studies the aggregation of living species on a surface or within 

water treatment membranes (4). The biofouling process is primarily an adhesion of 

particles on a surface, which varies from crystallisation of mineral scales on a 

substrate. A schematic of biofouling process on a substrate is presented in 

Figure ‎2-20. Generally, the main parameter affects biofouling on a surface is 

surface energy; the lower surface energy, the lower adhesion of particles (171, 

172). Hydrophobic surfaces which present low surface energy have been correlated 

to reduction of biofouling materials on the surfaces. However, recent studies (173-

175) showed contradict of the work mentioned above. It was shown that some 

organisms intended to adhere on the hydrophobic surface (174). Surface chemistry 

was shown to also have effects on diary fouling by Permathilaka et al. (176). 

As a conclusion, it can be stated that the adhesion of organisms were 

mainly focused on the anti-biofouling studies and it was shown that the lower 

surface energy generally gives better surfaces. Since it was previously assumed 

that the scaling process on the surfaces follows biofouling mechanism from bulk 

precipitation to the surface deposition, most researches have been focused on 
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investigating effects of low surface energy substrates in order to decrease scale 

adhesion.  

 

Figure ‎2-20. Schematic of biofouling procedures on a surface (177) 

 

2.6.1 Effects of different substrates on inorganic scale 

deposition 

Finding an anti-scale surface for different applications induced researchers 

to investigate the behaviour of these surfaces on crystallisation process. The 

parameters which are believed to have most impact are surface energy, surface 

composition and roughness. 

 

2.6.1.1 Surface composition 

 One of the factors that can influence scale deposition on the surface is 

surface composition including surface structure and existing charges on the 

surface. 

Available ions in surface composition could affect the crystallisation on 

calcium carbonate formation. Ledion et al (178) examined four different substrates 

under the same saturation ratio degrees (SR=1.16 and 1.32). Different types of 

copper were compared with stainless steel, polyethylene and tin plated surfaces in 

terms of reduction in scale formation, which was shown that under the same 

condition copper had the least scale deposition among all surfaces. The reason for 

lower scale deposition of the copper was claimed to be migration of copper ions into 

water which prevents scaling; dissolved copper ions in the solution act like scale 
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inhibition. On the other hand, another study (179) showed that higher scale 

deposition on copper surface compared with aluminium and stainless steel surfaces 

under different conditions, which conflicted from the previous work. 

The crystallisation of CaCO3 was also studied on bronze, stainless and gold 

by Jahouari et al. (7) by using an electrochemical technique. Deposition kinetics 

which affected morphology of the crystals was dissimilar for different surfaces 

owing to the surface structure and composition. The mineral scale crystals 

deposited quicker on gold surface and then bronze followed by stainless steel, 

since the presence of oxides on the surfaces blocked precipitation of calcium 

carbonate by using oxygen reduction methodology for the measurement. Since 

tendency of gold for oxidisation is lower than other surfaces, the polymorphs can 

form on the gold surface. 

Deposition of carbonate sulphate on stainless steel surface showed packed 

crystals on the bare surface whereas stainless steel surface coated by Ni-Cu-P-

PTFE presented loose and cubic shape of CaSO4 (8). PTFE is known as a coating 

with non-stick property; however, due to poor thermal conductivity and poor 

adhesion to metal surfaces this coating are not currently interested for commercial 

usages (180). 

The stainless steel surface treated by PPCA showed reduction of calcium 

carbonate deposition on the surface (181). It appeared that the uncharged part of 

coated-PPCA on the surface is exposed to the solution which creates a neutral 

surface, thus the available ions in the solution have lower tendency to react with the 

surface (181). The schematic of inhibition process by PPCA-treated stainless steel 

surface was presented in Figure ‎2-21. 

 

 

Figure ‎2-21. Calcium and bicarbonate ions attraction on a) stainless steel surface and b) 

PPCA-treated surface (4, 181) 
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Previously, it was demonstrated (62) that PPCA molecules adsorb on the 

surface and reduce the nucleation sites on the surface leading to inhibition of 

calcium carbonate formation. The mechanism of PPCA-treated surface was 

believed to be due to the presence of carboxyl group of PPCA on the top layer of 

surface exposing to the solution. However, Martinod et al. (5) believed that PPCA 

could not directly interact with metal surface due to repulsion forces between 

negative charge of PPCA and stainless surface. In the solution the carboxyl group 

of PPCA becomes negatively charged and the surface is also negatively charged, 

thus they cannot interact with each other directly. It was hypothesised that PPCA 

first interacts with the magnesium presence during treatment and then PPCA-Mg+ 

reacts with the negative-charged metal surface. Therefore, exposed surface to the 

scaling solution remains uncharged showing lower propensity to scaling ions; this 

results in poor formation of calcium carbonate on the surface treated by PPCA. 

Eroini, V. (4) studied the effect of surface composition of various surfaces in 

reduction of calcium carbonate scale deposition. Two different brines were used in 

Eroini’s‎work‎of‎which‎the‎compositions‎are‎presented‎ in Table ‎2-3 and Table ‎2-4. 

The saturation ratio values for brine A and brine B were 34 and 11, respectively.  

Table ‎2-3. Composition of Brine A (4) 

 Brine 1A (mg/l) Brine 2A (mg/l) 

NaCl 17119 17119 

CaCl2.6H2O 7871  

NaHCO3  2560 

 

Table ‎2-4.  Composition of Brine B (4) 

 Brine 1B (mg/l) Brine 2B (mg/l) 

NaCl 17498 17498 

CaCl2.6H2O 3826  

NaHCO3  1469 

 

The results of Eroini’s‎work‎is‎presented‎in‎Figure ‎2-22, which shows that in 

comparison with stainless steel (the reference surface) the scale deposition 

decreased on ISF (isotropic super finished stainless steel surface) and PPCA-

treated surfaces. The reduction of calcium carbonate on ISF and PPCA-treated 

surfaces was claimed to be due to surface properties creating neutral surface. Also 

DLC (Diamond Like Carbon) and PTFE (polytetrafluoroethylene) surfaces showed 

almost the same calcium carbonate coverage as stainless steel on the surface. 

Polymer and ceramic surfaces had the most mineral scale deposition on the 

surface; this behaviour was also seen by others (182, 183).  In the matter of scale 
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deposition, ceramic composition coating preformed poorly due to the surface 

charge and electrostatic forces (182, 183). However, surface charge can have 

positive or negative effects on scale deposition (183). Since the amount of calcium 

carbonate deposition on DLC and PTFE surfaces did not change before and after 

erosion, this indicates that roughness does not influence the mineral scale 

deposition on these two surfaces (4). It was stated that the surface composition and 

surface energy of DLC and PTFE substrates were the dominant factors in reduction 

of inorganic scale deposition. In pervious works (62, 184-188), it was also reported 

that the efficiency of DLC and PTFE in terms of reduction of fouling materials is 

related to their non-sticky properties and low surface energies.  

 

Figure ‎2-22. Calcium carbonate deposition on different surfaces for two different brines (4) 

 

Cheong et al. (189) investigated scale deposition on DLC, Tech 23, Tech 

100, stainless steel and six types of different polymers of which results are 

presented in Figure ‎2-23. DLC, Tech 23 and Tech 100 showed the least tendency 

for formation of inorganic scale. The calcium carbonate formation on polymers 

showed frequent results; however, the most scale deposition was observed on 

stainless steel (189). Zhao et al. (8) reported that the top layer of calcium carbonate 

formed on the substrate is affected by the first layer deposited on the surface, which 

may introduce various types of layers such as densely packed, loose or porous 

layer. The hardship of removal of these layers by hydrodynamic shear forces is 

influenced by morphology of these layers.  
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Figure ‎2-23. Tendency of various substrates to calcium carbonate scale formation (189) 

 The morphology of calcium carbonate on different substrates was also 

studied (4). It was shown that the stainless steel and PPCA-treated surfaces 

promoted cubic crystals which are in agreement with the other studies that 

demonstrated the change of crystals in the presence of additives (190, 191). 

Although ISF surface has a similar composition with stainless steel, both calcite and 

amorphous calcium carbonate were observed on ISF surface whereas only calcite 

crystals were seen on the stainless steel surface. It was shown (4) that on PPCA-

treated surface the morphology of calcium carbonate crystal did not change 

compared with stainless steel. It was shown that morphology of calcium carbonate 

on DLC surfaces was similar to morphology on stainless steel (4). In contrast, PTFE 

showed that the surface composition is the dominant factor to change morphology 

of the crystals.  

 

2.6.1.2 Surface energy  

Surface energy is another parameter that can influence the tendency of the 

surface to deposition of mineral scale. There is a conflict in the literature (3, 4, 9, 

187, 192-196) regarding the influence of surface energy on inorganic scale 

deposition. Some studies showed that a surface with lower surface energy has 

lower tendency for scale adhesion (195) whereas some investigations reported that 

surface energy of substrates is not the dominant factor in the scale reduction (192, 

194).   
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Cheong et al. (189) studied surface energy of different substrates and 

showed that the scale formation tendency did not decrease for the substrates with 

lower surface energy. It is observed in Figure ‎2-24 that the mass on the polymer 

substrates increased when the surface energy decreased (3, 189). Also the lowest 

mass gain was illustrated for TECH 100 and TECH 23 where the reported contact 

angle measurements show the lowest surface energy for the substrates. Ultimately, 

Cheong et al. (189) suggested both the surface energy and roughness of different 

substrates are in correlation with mass reduction. 

 

Figure ‎2-24. Mass gain of various substrates as function of contact angle measurements 

(3) 

 

Yang et al. (9) modified copper surfaces with two different coatings 

(Docosanoic Acid (Cu-DSA) and Poly Tetra Flouro Ethylene (PTFE) co-deposited in 

electroless nickel solution (Ni-P-PTFE)). It was noticed (9) that compared with the 

bare surface of Cu, the nucleation rate slowed down and smaller crystals formed on 

the treated surfaces owing to the lower surface energy; moreover, the mineral scale 

bonded weakly to the modified surface.  

Diamond Like Carbon (DLC) surfaces were also compared with stainless 

steel and the studies showed that the surface energy of the substrate influenced 

scale deposition (187). Calcium sulphate deposited on DLC and stainless steel 

which resulted in formation of very thick layer of scale on stainless steel whereas a 

thin layer on DLC (196). Moreover, when DLC surface was fluorinated (to have 

lower surface energy compared with DLC surface), the result after scale test 



- 42 - 

(CaSO4 deposition) presented even thinner layer of scale on the surface than DLC 

surfaces (196).  

Eroini, V. reported that higher contact angles of the surfaces generally showed 

lower reduction of calcium carbonate scale deposition on the surfaces (higher 

surface coverage of calcium carbonate). These results are in contrast with the 

biofouling research, which mostly assumes that the surface with lower surface 

energy is more efficient in terms of reduction of biofouling materials deposition on 

the surface (197). It is assumed that in biofouling process, the particles form in the 

bulk and then adhere to the surface. Eroini, V. suggested that in the crystallisation 

process of mineral scale, the surface energy cannot be the predominant factor 

reducing scale deposition on the surface and other parameters such as surface 

composition and roughness influence the scale deposition.  

 

2.6.2 Effect of roughness    

As shown earlier, scale deposition is not always associated to lower surface 

energy. Roughness could be evaluated as another factor that could sometimes be 

dominant in scale deposition. In general, it is expected more mineral scale 

deposition on surface with higher roughness values owing to higher surface contact 

between the substrate and mineral scale surfaces (198-201).   

 Although PTFE coating has lower surface energy compare to DLC and 

stainless steel but maximum calcium sulphate formed on the PTFE surface (202).  

It appears that roughness of polymer coating was the dominant factor resulted in 

stable nuclei formation on PTFE surfaces (202). 

Adhesion strength and nucleation rate of scale were compared for metal 

and organic surfaces (203). Ranking and Adamson noticed that the surface with 

higher energy became more adhesive and increased the adsorption of scale on the 

substrate. Although the surface energy of composition of topper layer of surface is 

affected by impurities, roughness may determine the surface energy of the surface 

(203). They showed that the greater is the roughness the higher is the surface 

energy leading to more adhesive surface in terms of scale deposition (203). 

Higher amounts of mineral scale was also observed on smoother surface 

than rougher surface by Keysar et al. (198). In addition to affecting the adhesion 

strength by roughness, the porosity of the scale deposited on a surface is also 

influenced by roughness (198).  
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Herz et al. (199) also examined stainless steel surfaces (rough and smooth) 

and observed more scale formed on the rough surface. Besides, it was noted that 

the induction time for rougher surfaces become shorter. 

In contrast with these works mentioned above, Cheong et al. (189) reported 

that the mass on the most of surfaces decreased when the roughness of the 

surfaces increased due to other factors such as surface energy. Figure ‎2-25 

illustrates the relation between different substrates and roughness in terms of 

weight gain.  

 

Figure ‎2-25. Roughness of the various types of surfaces as function of  mass gain (189) 

 

It was also illustrated that the roughness of stainless steel affected 

morphology of calcium carbonate (198). Undefined shape crystals were observed 

on the ISF surface owing to surface effect on induction time (4). Few nucleation 

sites were assumed on ISF surfaces as a consequence of surface topography; this 

may act on the kinetics of calcium carbonate crystallisation. Hence, it was 

concluded (4) that different morphology observed on ISF could be owing to slow 

kinetics which may indicate the calcium carbonate crystals were at the beginning of 

the crystallisation stage (4). Delaying induction time by surface properties was also 

showed by others (204).  

In general, it was shown there is no relation between roughness and scale 

deposition (4). It was noticed that on the stainless steel surface the scale deposition 

increased when the roughness of surface increased (193, 199). However, small 

effects of the roughness on PPCA treated surface, DLC and PTFE was observed 

before and after erosion. Regarding PTFE and DLC coating, the surface 

composition plays a major role. The roughness of polymer and ceramic surfaces 

was shown to be an important factor as well as surface composition in calcium 
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carbonate deposition. Despite having similar elemental composition (fluorine) and 

roughness values in PTFE and polymer surfaces, both showed very different 

behaviour in terms of scale reduction. Roughness is a dominant factor for polymer 

surfaces whereas roughness has a small effect on PTFE. The difference between 

polymer and PTFE is believed to be related to the chemical bonds and molecular 

structure (199, 205). 

  

2.7 Surface modification applying a self assembled mono-

layer technique 

As mentioned, the objective of this work is to study the potential treatments 

of formation rock in order to reduce the risk of inorganic scale deposition near the 

wellbore area. Hence, it is crucial to apply a very thin film (nanometre thickness) 

being capable of altering the surface characteristics in order to reduce the tendency 

of formation rock to mineral scaling as well as not blocking the oil path through 

pores. A self assembled monolayer (SAM) is defined as a single layer of organic 

molecules on a solid surface which is capable of changing surface properties (206-

208). Organic molecules create a densely packed layer on a solid surface by 

hydrogen, covalent bonds or electrostatic interactions. SAM technique was first 

applied in 1946 by Bigelow et al. (209) who studied adsorption of n-alkyl amine-

based surfactant to a metallic surface. 

Since nanotechnology accelerated in the past decades, SAM technique was 

known as one the of interesting areas due to creating nanostructure film on a 

surface (208). SAM was employed for different applications such as electrode 

modification (210), corrosion (211), biomedical (212, 213). SAM formation on a 

substrate is a complex process which requires extremely controlled conditions.  

 

2.7.1 Silanes  

Prior to employing SAM technique in this research, it was essential to find 

potential materials which could be able to reduce mineral scale deposition and 

simultaneously being cable of binding covalently with formation rock. Most 

formation rocks in hydrocarbon reservoirs consist of different mineral components 

such as clay, friable, quartz, etc. (214) of which quartz is the highest percentage. In 

order to have a covalent bond on formation rock the chosen chemicals must have a 

strong affinity to quartz materials (SiO2). Therefore, organosilane group can be the 

best option since these materials have been shown to easily react with many 
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different types of surfaces (215-227) such as aluminium, nickel, copper, silica and 

quartz. This group is also capable of creating a strong bond between organic 

molecules and inorganic materials. In addition, various tails can be used with one 

similar head, which is beneficial as potential of different tails can be tested. These 

coupling agents are applied in different fields of sciences such as adhesion (228) 

and immobilise polymers such as proteins, DNA, etc. (229-233). 

Silanes are known with the general structure of R-(CH2)n-Si-X3 where R is 

an organofunctional group, (CH2)n is the linker, and X3 is hydrolysable groups (234). 

Different chemical and physical surface properties can be achieved by using a 

variety of organosilane group (211, 235-241). The silanization process of surface 

occurs in four steps, which is shown in Figure ‎2-26. Hydrolyzation of alkoxy groups 

of organosilanes first happens to create silanol-containing species. After that, these 

labile groups are hydrolysed followed by condensation to oligomers. Then, these 

oligomers undergo hydrogen bindings with OH groups on the substrates. Finally, 

covalent bonds between the surface and organosilanes form during drying or curing 

stage (242, 243). It is worth to mention that the presence of water during 

silanization is a critical parameter to create a uniform SAM layer on the substrate 

(244-247). 

 

Figure ‎2-26. Mechanism of silanization on a surface  
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2.7.1.1 Amine-terminated films 

Aminated surfaces are formed from organic molecules with amino group on 

the tail that anchor on solid surface while the amine group is upward. The amine-

terminated films are utilised in numerous applications such as immobilising 

biomolecules and cell growth, covalent bonding of bioactive, metal corrosion 

protection and SAM foundation for ionic polymers (211, 235-241). Also amine 

moieties available on the film can improve adhesion between fibres and polymer 

matrix which is employed in light composition(240). Two aminosilanes (3-

aminopropyltriethoxysilane (APTES) and p-aminophenyltrimethoxysilane (APhS)) 

were selected to treat the quartz surfaces in order to investigate the behaviour of 

new substrate coatings on scale deposition; Figure ‎2-27 shows the structure of 

APTES and APhS. APTES and APhS are known as alkoxy-based silane molecules 

which are able to adsorb on silicon based surfaces and form a densely packed 

layer via covalent bonds (248-253).   

 

a)

 

b)

 

Figure ‎2-27. Molecular structure of a) APTES and b) APhS 

 
There is a wide range of discussion available in literature for SAM formation 

of aminosilanes on the silicon based surfaces, which individually introduce a 

specific methodology that creates a homogenous surface. There are two different 

methods (liquid and vapour phases) to create aminosilane SAM on a substrate. In 

vapour phase, the studies showed that aminosilane SAM is reproducible; however, 

achieving a repeatable aminosilane SAM on surface is much difficult in liquid phase 

experiments (254-256). Wieringa and Schouten (257) used 5 wt% solution of 

APTES in toluene at 120oC for 16 h by a vapour phase method to create a SAM film 

on a silica surface; however, Siqueira Perti et al. (258) found this methodology 

cumbersome. Song et al. (259) also introduced another methodology to create SAM 

film on the substrate which was shown to be reproducible; they used vapour phase 

in 100oC with 0.1 APTMS with 0.7 ml toluene solution of silane in toluene for 1 h 
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(259). As mentioned earlier, it can be seen that creating a reproducible SAM film of 

an aminosilane on surface is a complex process. 

Fiorilli et al. (255) formed SAM under liquid and vapour phases. In vapour 

phase, silicon dioxide substrate was exposed to APTES in plasma chamber at 80oC 

for 10 min. Also water steam delivered to the chamber for 10 min to hydrolyse 

ethoxy group of APTES. In solution phase, the silicon dioxide surface was treated 

by 1% (v/v) APTES in toluene at 60oC. Then the coated surface was rinsed with 

toluene several times followed by drying under nitrogen stream. The treated 

surfaces in both phases were characterised by XPS and AFM. XPS results for the 

surface coated under vapour phase showed a peak at 400 eV presenting free 

amine whereas in solution phase, a small shoulder was observed next to the peak 

of primary amine at 401.6eV indicating protonated amines. Figure ‎2-28 presents 

nitrogen (N) spectra for APTES treated surfaces under liquid and gas phases by 

Fiorilli et al. (255). 

 

 
Figure ‎2-28. High resolution nitrogen spectra for the silicon surface treated by APTES a) 

in liquid phase b) in vapour phase  

 

Based on the results of topography (Figure ‎2-29) for the treated surfaces in 

liquid and gas phase, Fiorilli et al. (255) observed smoother surface with smaller 

clumps for the substrate coated in vapour phase. Also the water contact angle 

measurements showed higher contact angles for the wet-based surface than 

vapour-based surface, which could be due to the presence of polymerised APTES 
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clusters on the wet-based surface where the methyl group of alkoxy chains were 

oriented upward leading to create a more hydrophobic surface (255). The same 

behaviour was also observed by Song et al. (259).  

 

a)

 

b)

 

Figure ‎2-29. AFM images (topography) of a) treated silicon dioxide surface by APTES in 

gas phase and b) treated silicon dioxide surface by APTES in liquid phase 

 

The formation of aminosilane monolayers in liquid phase is a very complex 

process and even under extremely controlled experimental conditions the 

polymerisation still happens in the solution; however, it is possible to form 

aminosilane SAM on silicon based surfaces (222, 260, 261). Thus, liquid-phase 

silanization of aminosilanes along with the mechanisms related conformations are 

extensively reviewed since liquid-phase method is used in this research.  

 

2.8 Liquid-phase silanization of aminosilanes to create a 

SAM film on surface 

Silanization of a surface occurs in two steps on the surface with OH bond on 

top layer; first the alkoxy group of aminosilane is substituted by hydroxyl group of 

the surface. Then the water molecule condenses and forms silaxane bonds which 

covalently attached on the surface. Silanization process was presented earlier in 

Figure ‎2-26. In order to comprehend the important parameters affecting silanization 

process, understanding the possible conformation of aminosilanes on surface is 

required.  
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2.8.1 Confirmations of aminosilane 

Interaction between aminosilane and silicon dioxide surface can form 

siloxane bonds which are covalently attached to the surface. Ideally, aminosilane 

molecules attach to the surface via siloxane bonds with the amine moiety upward. 

However, the amine group can tilt towards surface due to the attraction between 

positive charge of amine and hyrdroxyl group of surface. Conformations of 

aminosilanes are determined by the type of reaction and density of molecules (262-

267). Aminosilanes have the ability to cross-link horizontally or vertically to each 

other leading to polymerisation (268). Hence, different conformation can be 

obtained during silanization process depends on many factors. Figure ‎2-30 

illustrates the possible APTES conformations that could form on a silicon-based 

surface. 

 

 

Figure ‎2-30. Possible APTES conformations on silicon surface (269) 
 

As mentioned, formation of aminosilane SAM in aqueous solution is a very 

complex process and depends on several parameters such as pre-treatment 

process, experimental conditions (temperature, water content, aminosilane 

concentration, time of experiments, impurity of aminosilanes, solvent, etc.) and 

post-curing of aminosilane film. In addition, different cleaning methodologies of the 

surface before silanization experiment could result in different results. Effects of 

some of these parameters in liquid-phase are discussed below. 

 

2.8.2 Parameters affecting SAM process 

In this section, water content, concentration of aminosilanes, reaction time, 

solvent and curing on SAM film are discussed. 
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2.8.2.1 Water content 

Silane adsorption strongly depends on the amount of water presented in the 

experiment. Silanization does not happen without water; however, the excess of 

water results in polymerisation (244, 245). Comparison between different 

percentages of water, either in liquid or gas phase showed that the lack of water 

prevents hydrolysation of ethoxyl or methoxyl moieties and condensation of 

hydroxyl groups on the surface, which leads to catalysing amino group. This 

resulted in more disordered and oriented aminosilane molecules in film structure 

(244, 245). On the other hand, an increase in water concentration resulted in 

polymerisation and agglomeration of molecules (237, 244, 270). Therefore, in order 

to create a uniform film of APTES or APhS, the optimum quantity of water is 

needed.  Figure ‎2-31 presents AFM images of APTES film for different water 

concentrations, which shows the most uniform film in image B. the surface in image 

B was treated by 0.1% (v/v) APTES in solution of toluene. 

 

 
Figure ‎2-31. Film topography of APTES for different water contents, A) 0%, B)0.1% and 

C)1% (v/v) (244) 

 

2.8.2.2 Reaction time 

Time of deposition can also affect the film structure on the surface. It was 

shown (271, 272) that in a certain temperature and an aminosilane concentration 

but different reaction time, the types of bonding alter. Vandenberg et al. (271) and 

Simon A. et al. (272) found that the APTES coverage increased with the reaction 

time. However, Moiseev et al. (273) stated that a sufficient time is required for 

silanization on the surface and longer time results in APTES polymerisation and 

non-uniform coverage. Zhang et al. (244) demonstrated that in the early stages of 

silanization most aminosilanes attach to the surface via hydrogen bonding. They 

also showed that as the experimental time increased the H-bonded molecules 

broke and condensed, which resulted in attaching covalent siloxane bonds. 

Moreover, it was noticed (244) that overtime experiment led to aggregation of 
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aminosilanes and formation of multilayers. Song et al. (259) carried out silanization 

of APTMS on silicon surfaces for two reaction times (1 and 3 h) in order to 

optimising the film formation condition (259). After 1 h a smooth surface without 

clumps was observed while after 3 h aggregations of aminosilane were seen; AFM 

was used to display the topography of the treated surfaces. The roughness of 

surfaces was reported 0.45 nm and 0.78 nm for 1 and 3 h experiments, 

respectively. Moreover, the wettability of the silanized surfaces decreased due to 

aggregation and polymerisation of aminosilane. 

Heiney et al. (247) dipped silicon wafers in the solution of 1% APTES, 5% 

deionised water, 94% methanol and 1 mM solution of acetic acid for different period 

of time. The water contact angle measurements showed that the hydrophobicity of 

the treated surface increased by time up to 60 min; however, the contact angles 

slightly decreased after 60 min with bigger standard deviations. It was proposed 

that at the early stage of the experiments, amine moieties of APTES molecules 

tilted towards surface and later they became vertical; however, polymerisation of 

APTES molecules was seen after a certain reaction time. The results of their work 

are presented in Figure ‎2-32. 

 

 

Figure ‎2-32. Water contact angle measurements for APTES treated surfaces in 

different time period (247) 

Figure ‎2-33 presents the thickness of the APTES film on the surface in 

different reaction times. It was reported that the film thickness increased with time 

from 5 Å to 9 Å. They hypothesised that more APTES molecules attached to the 

surface when the deposition time increased leading to less tilted molecules on the 

surface; this results in formation of a ticker film on the surface. 

Contact angle/degree 
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Figure ‎2-33. Thickness of APTES film in different time period (247) 

 

Heiney et al. (247) eventually postulated that the deposition time played an 

important role to optimise SAM structure on the surface.  

 

2.8.2.3 Concentration of aminosilanes 

Concentration of aminosilanes in the solution affects film formation 

conformation. It was shown (244, 274, 275) that high concentrations of APTES and 

APhS in the solution resulted in agglomerations and polymerisations of the 

molecules before they reached the surface. It was also illustrated (244, 274, 275) 

that low concentrations led to partially coverage of the surface by APTES and 

APhS. Figure ‎2-34 presents topography of the surface treated by 3, 5 and 10 mM 

concentrations of APTES performed by Zhang et al. (244), which shows the most 

uniform film formed by the lowest APTES concentration (3 mM).  

 

 
Figure ‎2-34. Film topography of APTES for different APTES concentrations, A) 

3mM, B) 5 mM and C) 10 mM (244) 

 



- 53 - 

Wang et al. (276) studied the effects of APTES concentrations on a mica 

surface to obtain an optimum APTES concentration for SAM formation on the 

surface. The range of APTES concentrations was between 1% and 10% in toluene 

solvent. SAM film was obtained by 2% APTES on the mica surface.  

 

2.8.2.4 Solvent 

The type of solvent also influences the conformation of APTES on surface 

(277). Vandenberg et al. (271) deposited 0.4% APTES in different types of solvents 

at ambient temperature for 15 min. Then theses samples were cured for 24 h in 

three different ways. The thickness of the films was measured by ellipsometry to 

study the effects of the various solvents. Table ‎2-5 presents the results of their work 

for APTES film created in different solvents. The effects of curing are also shown. 

Different thickness measurements were observed by different solvents. It was also 

shown that the curing influenced thickness of APTES films on the surface. 

 

Table ‎2-5. Effect of deposition solvent on APTES film adhesion (271) 

APTES thickness (nm) 

Solvent Initial 24 h water 24 h oven Oven + water 

Toluene 0.9 ± 0.1 0.2 ± 0.1   

Trichloroethylene 0.7 ± 0.1 0.3 ± 0.1 0.6 ± 0.2 1.0 ± 0.3 

Xylene 1.8 ± 0.1 0.2 ± 0.1 1.4 ± 0.2 1.7 ± 0.3 

Acetone 0.8 ± 0.2 0.2 ± 0.1 0.7 ± 0.2 1.0 ± 0.4 

Chloroform 1.0 ± 0.1 0.2 ± 0.1 0.8 ± 0.2 0.9 ± 0.2 

Water 0.3 ± 0.1 0.4 ± 0.3 0.5 ± 0.1 0.7 ± 0.2 

Ethanol 0.8 ± 0.1 0.1 ± 0.1   

 

2.8.2.5 Curing 

Curing SAM film of aminosilane influences the film structure on surface.  

The investigation on  coverage of the surface by aminosilane molecules showed 

that in order to create a uniform film on the surface, silanization is not only depends 

on the condition of experiment such as temperature, concentration, solvent and 

time) but also the procedure before and after experiment plays an important role 

(258, 278-280). 

Siqueira Petri et al. (258) created 3-aminopropyltrimethoxysilane (APS) 

SAM in solution phase. 1% APS was immersed in toluene for 4 min at 60 ± 1 oC 
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and the surface was characterised by Ellipsometry and AFM. Thickness of the APS 

film was reported 9 ± 1 Å, but after post curing process on the treated surface the 

thickness of the film reduced to 1 Å. The thickness of APS film obtained by Siqueria 

et al. (258) was different from the thicknesses reported by Tsukruk et al. (281) and 

Haller et al. (256) with the values of 5 Å and 21 Å, respectively.  

Vandenberg et al. (271) also studied the effects of various types of curing on 

thickness of APTES film formed on the surface. The main results from their work 

were that different curing methodology resulted in different thickness of film on the 

surface and curing did not always reduced the thickness. 

Table ‎2-6. Effect of different curing methodologies on thickness of APTES films (271) 

APTES thickness (nm) 

Curing 

condition 

APTES film type No curing curing Curing 24 h in 

H2O 

Air Thin 1.8 ± 0.6 2.4 ± 0.4 1.5 ± 0.3 

Thick 33 ± 2 38 ± 2 20.5 ± 0.8 

Dessicator Thin 1.8 ± 0.6 1.4 ± 0.2 0.8 ± 0.3 

Thick 33 ± 2 32 ± 3 1.3 ± 0.2 

Ethanol Thin 1.8 ± 0.6 2.4 ± 0.3 0.6 ± 0.3 

Thick    

Oven 200oC Thin 1.8 ± 0.6 0.7 ± 0.3 0.9 ± 0.2 

Thick 33 ± 2 18 ± 2 17.9 ± 0.9 

 

Chiang et al. (277) employed two different methods (air-dried and heat-

cured) to cure the silanized samples. They reported that the air-dried APTES forms 

one or two siloxane bonds with the surface whereas the heat-cured APTES 

molecule forms three siloxane bonds with the surface. 

Post-treatment of aminosilane SAM films is critical for creation of a uniform 

film on surface. For instance, when samples were baked after silanization at 100 oC 

and 150 oC, the percentages of primary amine increased; this presents a film 

structure with amine groups upward. However, the excessive temperature may 

result in reduction of primary amine contents due to the reaction between CO2 - 

which is adsorbed in ambient before post curing - and amine group of aminosilane; 

this leads to formation of carbomate (244, 282). 

Rinsing with a solvent is used as a post-treatment method to remove the 

weakly-attached-aminosilane molecules to the other aminosilanes in order to form a 

uniform thin film. APTES film on the surface was rinsed by AcOH solvent to remove 

the weak bonded-APTES molecules; this led to a reduction of film thickness from 



- 55 - 

140 nm to 4 nm (283). It was also shown (284) that aqueous phosphate buffer 

decreased thickness of APTES film more than 70 Å. Figure ‎2-35 presents the 

topography of the surface before and after post curing for the work was performed 

by Argekar et al. (284). 

 

 

Figure ‎2-35. AFM images for a) before post treatment b) after post treatment by aqueous 

phosphate buffer (284) 

 

Siqueira Petri et al. (258) also showed the roughness of the surface 

increased after silanization process from 1.25 ± 0.07 Å to 2.2 ± 0.2 Å which was in 

agreement with the results obtained by Tsukruk (281). The both authors suggested 

increasing the roughness after silanization might originate from the impurities and 

contamination on the surface. 

2.8.3 Comparison between APTES and APhS 

In general the factors mentioned above affect surface conformation, 

however, the molecular structure of APTES and APhS can affect film formation on 

the surface. Zhang and Srinivasan (244) studied APTES and APhS film formation 

under the same experimental condition and compared them with each other. 3 mM 

APTES or APhS layers deposited on silicon based surfaces in the solution of 

toluene and water (99.9/0.1) for 5 h at the ambient temperature. They reported 

88.6% primary amine of APTES deposited on quartz surface whereas higher 

content (nearly 100%) of primary amine of APhS was observed for the film formed 

on quartz. they suggested that the rigid structure of APhS may limit the 

opportunities for hydrogen bonding between APhS and quartz surface. The high 

resolution of N1S spectra is illustrated in Figure ‎2-36.  
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Figure ‎2-36. High resolution of N1S spectra of quartz treated by A) APhS and B) APTES 

(244) 

Moreover, it was shown that in comparison with APTES the roughness of 

APhS is smaller and APhS creates smoother film (244, 285-287). The difference 

between APTES and APhS films can be related to the rigid aromatic structure of 

APhS resulting in highly dense APhS molecules (244, 285). The phenyl ring of 

APhS prevents rotating and tilting molecules which result in smoother film with 

lower thickness. The topography of APTES and APhS films are illustrated in 

Figure ‎2-37 which shows a thinner film of APhS. The thickness of APTES and 

APhS films deposited on silicon dioxide was reported 5 nm and 1 nm, respectively. 

They suggested the larger aggregation of APTES compared to APhS deposited on 

the surface owing to more hydrogen bindings for the former.   

 

 

Figure ‎2-37. Topography of A) APTES and B) APhS film presenting smoother film for 

APhS (244)
 

 



 

 

 

 

Chapter 3  

Methodology and Experimental Techniques 

 

3.1    Introduction 

An extensive literature review on silanization of silicon based surfaces has 

been performed in Chapter 2. One of the main challenges in this project was to find 

chemicals applicable to reservoir conditions which are able to reduce scale 

deposition near the wellbore area. Hence, the possible chemicals which could meet 

the purpose of this research are reviewed firstly in this chapter.  

Secondly, the experimental methodology in this project is explained. Two 

different approaches were employed during this project to study potential of anti 

scaling surfaces: 

 Employing Quartz Crystal Microbalance (QCM) to measure adsorption of 3-

aminopropyltriethoxysilane (APTES) as a function of time in order to create 

SAM on a quartz surface 

 Coating quartz surfaces with two different aminosilanes followed by running 

scale tests to evaluate the ability of the treated surfaces in order to reduce 

adhesion/deposition of calcium carbonate scale 

Quartz component is the main composition of the most formation rocks 

(sandstone formation) in petroleum reservoirs, thus quartz surfaces were chosen as 

substrates to study aminosilane film formation and deposition of CaCO3. Film 

formation of two types of aminosilanes APTES and p-aminophenyltrimethoxysilane 

(APhS) on quartz surfaces were studied at different concentrations. Simple brine 

compositions with two saturation ratios (low and high) were used in scale tests in 

order to reduce the complexity of the study. Scale deposition tests were carried out 

in a pseudo-dynamic condition at 80oC.  

In order to better understand the behaviour of the treated surfaces by 

APTES and APhS, the surface composition, roughness and wettability were studied 

by different techniques such as X-ray Photoelectron Spectroscopy (XPS), surface 

profiler (NP FLEX) and contact angle measurements, respectively. The results of 
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calcium carbonate scale deposition on the treated surfaces were analysed by 

Scanning Electron Microscopy (SEM) and weighing balance to study morphology of 

CaCO3 crystals and to measure the amount of scale deposition. 

An overview of surface kinetics is provided at the end of this chapter in order 

to calculate the surface coverage obtained by different concentrations of APTES. 

 

3.2    Organosilanes 

As mentioned, the first stage of this work was to identify chemicals can be 

applied to the near wellbore area with functions of: i) first, having covalent reaction 

with formation rock and ii) second, decreasing the tendency of mineral scale 

deposition on the near wellbore formation rock. The earlier was not fully known at 

the beginning of the research; however, one of the functionalities of organosilanes 

is that these chemicals can have a wide range of different types of tails which could 

be beneficial to this work as effects of different tails on scale deposition could be 

investigated. In other words, this coating should be semi-permanent (attached on 

formation rock for a long period) and simultaneously have fewer propensities to 

inorganic scaling. 

Organosilanes were used as coupling agents in order to immobilise other 

molecules such as protein, enzyme, DNA on different substrates like quartz, glass 

(212, 213, 288, 289). One of the interesting properties of organosilanes is that 

these chemicals are able to chemically bond on different types of surface like 

metals, glass and quartz (206). In addition, organosilanes can have various types of 

tails which enable them to introduce distinguished physical and chemical properties 

on surface. Besides, organosilanes were used in the oil and gas industry for 

different purposes. One of the objectives of using organosilane in the oil field was to 

immobilize kaolinite in order to increase the adsorption of scale inhibitor on the 

formation rock (290, 291). This was inspired by the fact that the clay material in the 

formation rock is the most determining factor in adsorption of scale inhibitor on the 

rock (143). 

Hence, several organosilanes were preliminary studied in this work, which 

are listed in Table ‎3-1. The reactivity of these organosilanes with quartz surface 

was demonstrated in the literature (206, 215, 218, 222, 224, 260, 292). It is seen 

from Table ‎3-1 that the major difference among these organosilanes is the tail 

structure. In addition, they need different solvents in the solution to react with the 

surface. Amongst the organosilane listed in the table only couple of them are 

hydrophilic (APTES and APhS). Also, APTES was previously qualified to be applied 

in oil fields (143, 290, 291). It was very important not to completely alter the 
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wettability of the formation rock (from hydrophilic to hydrophobic) near the wellbore 

area due to the fact that it is desirable to have water wet formation rock rather than 

oil wet in water production zones, APTES and APhS were initially selected to be 

investigated in this research.  

 

Table ‎3-1. Different types of organosilanes with the structures, formulas and physical 

properties 

Materials Solvent Shape Wettability 

P-aminophenyl 

trimethoxy silane 
Toluene 

 

Hydrophilic 

3-aminopropyl 

triethoxyl silane 

Ethanol+ 

water 
 

Hydrophilic 

3-mercaptopropyl 

triethoxy silane 

Ethanol-

Water 

+acetic 

acid 
 

Hydrophobic 

2-[methoxy 

(polyethyl eneoxy) 

propyl] trimethoxy 

silane 

Toluene 

+ diluted 

HCL 

 

Hydrophobic 

1H,1H,2H,2H-

Perfluoro 

Octyltriethoxy 

silane 

Toluene 

 

Hydrophobic 

Trimethoxy(octadec

yl)Silane 
Toluene 

 

Hydrophobic 

Trichloro(1H,1H,2H,

2H-perfluorooctyl) 

silane 

Toluene 

 
 

Hydrophobic 
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3.3    Experimental methodology and materials 

The first step was to study the kinetics of APTES film formation to calculate 

the surface coverage. These results were used to better interpret the film structure 

formed by aminosilanes on the quartz surface. QCM was employed to measure the 

rate and amount of adsorption of APTES on the surface as a function of time. By 

controlling the experimental conditions, this technique helps to create a uniform film 

on the substrate (212, 213, 215, 285, 288, 289, 293, 294). Prior to apply QCM 

technique for APTES film formation, distilled water (DW) was tested in QCM to 

calibrate the instrument; this is shown in Figure ‎3-1. It is seen that the mass 

adsorption of DW was constant with respect to time resulting in zero adsorption 

rate. This experiment was randomly repeated several times to make sure of 

consistently of the QCM results.  

 

 

Figure ‎3-1. DW adsorption on quartz crystal surface as function of time by QCM at 

ambient temperature  

 

Apart from QCM, quartz single crystal coupons were used as substrates for 

the film formation in a static condition. Various concentrations of APTES and APhS 

were utilised to study performance of the treated quartz surfaces on deposition of 

calcium carbonate. The treated surfaces by APTES and APhS were characterized 

by different surface characterisation methods in order to asses the relation between 

scale deposition and the surface properties and to suggest possible film structures 

on the quartz surfaces. Scale deposition tests were carried out on APTES- and 

APhS-treated surfaces and also compared with blank quartz surfaces in order to 
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evaluate the performance of the treated surface. Weighing balance and SEM were 

employed to measure the amount of scale deposition on the surfaces and to study 

the morphology of calcium carbonate crystals on the surfaces, respectively. 

Ethanol/water and toluene were used as solvents for APTES and APhS in 

this work, respectively. As mentioned in Chapter 2, different solvents can affect the 

formation of film on the substrates. In addition, water content influences the 

structure of film on surfaces. Based on literature review and comparing the previous 

works, more uniform film formation was shown by using toluene as a solvent 

compared with ethanol/water. However, more experimental times were generally 

required for using toluene in the solution to have a uniform film on surfaces. On the 

other hand, higher concentrations were required in the solution where ethanol/water 

was used as solvents. In addition, it is more desirable to use a water soluble solvent 

near the wellbore area in water production zones. Hence, ethanol/water was 

chosen as a solvent for APTES film formation. 

The main purpose of using APhS in this research was that it has the same 

tail group (-NH2) as APTES, but different tail structure (benzene ring in APhS and 

alkoxy in APTES). This could result in useful information in order to understand the 

behaviour of film conformation on calcium carbonate scale deposition, since the 

surface composition remained similar for both APTES- and APhS-treated surfaces 

(only structure is different). The only solvent could be used for APhS experiments 

was toluene, otherwise the ethanol/water would have been used. 

 

3.3.1 Materials 

Crystals of QCM as the substrate for APTES film formation were supplied 

from Stanford Research System in USA. These crystals were AT-cut quartz 

crystals, 5 MHz, 1 inch diameter size with circular gold electrode on the centre of 

both sides. Quartz surfaces also as the rock analogue for studying APTES and 

APhS film formation and calcium carbonate deposition were provided by PI-KEM in 

the UK.  The quartz surfaces are featured with both sides polished with dimensions 

of 10x10x0.5 mm. 

3-aminopropyltriethoxysilane (APTES) - 99.7% purity - with molecular 

formula of H2N(CH2)Si(OC2H5)3 was supplied from Sigma-Adrich, UK. P-

aminophenyltrimethoxysilane (APhS) with molecular formula of C9H15NO3Si was 

provided by Glest, UK. 

Ethanol (>99%) with molecular formula of C2H6O and toluene (99%) with 

formula of C7H8 was supplied by Fisher, UK. 
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3.3.2 Experiment methods 

Before treating the substrates by aminosilanes, cleaning treatments needed 

to be carried out in order to first remove contamination from surface and second to 

improve the functionality of the quartz surface for film formation experiments by 

creating OH bonds on the surface. Hence, plasma chamber was first used to 

remove possible contamination from the surface. After that, the substrates were 

rinsed by DW followed by drying with pressurized air gun. These procedures were 

followed for both QCM and quartz coupon experiments. 

 

3.3.2.1 APTES film formation study by QCM 

Only APTES was employed in QCM for studying the film formation and the 

kinetics. Different APTES concentrations (2%, 4%, 6% and 8%) in a solution of 

ethanol‎and‎water‎(95/5‎v/v)‎was‎used;‎this‎was‎inspired‎from‎Janssen‎et‎al.’s‎work‎

(260). 200 ml solution of ethanol and distilled water (95/5 v/v) were prepared. Prior 

to adding APTES in the solvent the cleaned crystal inside the holder was immersed 

in the solution. QCM was then run in DW until the mass rate measured by QCM 

stabilized. After that, a desired amount of APTES was added into the solution. Prior 

to adding APTES into solution, the same amount of the solvent was extracted. The 

tests were run for two hours. The experiment time was modified according to the 

literature (260). 

 

3.3.2.2 Silanization of quartz coupons by APTES and APhS 

Two ranges of APTES concentrations were used in silanization experiments 

on the quartz coupons. The first range was the same as the QCM experiments (2-

8%). A wide range of APTES concentrations (also below 1%) used in literature 

mainly with toluene as a solvent. In addition, it was shown that by applying 2% 

APTES concentration to the solution a multilayer film was created on the surface 

rather than SAM (295). Hence, it was attempted to study the possibility of using 

lower APTES concentrations to create a uniform film in ethanol/water solution in 

order to reduce the cost of methodology and amount of chemicals used in the oil 

field for Health Safety Environment (HSE) purposes. Therefore, the second range 

of concentration was selected between 0.05% and 0.1% (0.05%, 0.1%, 0.15% and 

0.2%). 

Different APTES concentrations were added and left into a solution of 

ethanol and water (95/5 v/v) for 5 min followed by immersing a quartz coupon in the 
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solution for 30 minutes. The total volume of the solution was 5 ml. The experiment 

was run at the ambient temperature. After that, the treated surfaces were rinsed by 

ethanol and dried with pressurised air gun. 

It was demonstrated (285) that 0.06% APhS in toluene solution for 2 h 

formed APhS SAM on quartz surface. Hence, a range of concentrations were 

chosen for APhS film formation from 0.03% to 0.24% (0.03%, 0.06%, 0.12%, 0.18% 

and 0.24%). This could help to better understand the behaviour of the treated 

surfaces on calcium carbonate scale deposition. The desired APhS was added to 5 

ml solution of toluene and left few min to dissolve in the solution. After that pre-

cleaned quartz coupon was immersed in the solution for 2 h. Then, the treated 

surface was rinsed by toluene and dried by the pressurised air gun. The 

experimental methodology for APhS film formation was obtained from Puniredd et 

al. (285). 

 

3.3.2.3 Calcium carbonate scale deposition test 

Basic calcium carbonate brines were chosen in the scale experiments.  As 

mentioned before, two different saturation ratios (4.8 and 54.8) were selected. The 

compositions of the solution are illustrated in Figure ‎3-2. These tests were carried 

out at 80oC in the pseudo-dynamic condition. Both silanized and blank surfaces 

were used in the scale test for comparison the studies to evaluate the ability of the 

aminosilane-treated surfaces in order to reduce calcium carbonate scale depositi-

on. 

 

Figure ‎3-2. Compositions of calcium carbonate brines in scale deposition tests 
 

calcium 
carbonate brine 

Low 
supersaturation 

(4.77SR) 

Brine 1A 

CaCl2.6H2O 

9mM= 1.97 gr/l 

NaCl 

1304.9mM=76.26 gr/l 

Brine 1B 

NaHCO3 

9mM=0.76 gr/l 

NaCl 

1304.9mM=76.26 gr/l 

High 
supersaturation 

(54.8SR) 

Brine 2A 

CaCl2.6H2O = 8.87 gr/l 

NaCl = 36 gr/l 

Brine 2B 

NaHCO3 = 2.55 gr/l 

NaCl = 36 gr/l 



- 64 - 

Brines A and B were heated separately at 80oC. After that, these two brines 

were mixed by keeping the temperature constant. Immediately, the blank and 

silanized coupons were immersed in the calcium carbonate brine by means of a 

holder to stay in the solution vertically in order to eliminate precipitation of crystals 

on the surface.  

A picture of the experimental set up was shown in Figure ‎3-3. A specific lid 

was designed for these experiments to stop the evaporation of the water from the 

solution. Plus, the holder was designed to keep the crystal vertically in the solution 

without covering the quartz surface exposed to the solution. A magnetic stirring bar 

was employed in the solution to create a pseudo-dynamic condition. At the same 

time, the whole beaker and the solution were heated by a hotplate to keep the 

temperature at 80oC constantly. These experiments were carried out for 24 h. 

 

 

Figure ‎3-3. The picture of the scale experiment set up 

 

3.4    Characterisation techniques 

Different characterisation techniques were employed to study the film 

kinetics, surface properties, morphology of calcium carbonate scales on the 

surfaces and the effects of formation film on scale deposition. 

 

3.4.1 Quartz Crystal Microbalance (QCM) 

QCM is known as an ultra-sensitive mass sensor. The way QCM works is 

that frequency of piezoelectric quartz crystal is disturbed by being introduced to a 

small mass (296).‎The‎piezoelectricity‎of‎quartz‎was‎first‎observed‎in‎1880’s‎when‎
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the quartz surface was under strain (297, 298). The applications of QCM were for 

gas‎ adsorption‎measurements‎ until‎ 1980’s.‎ QCM‎measurement‎ in‎ liquid‎ solution‎

was‎achieved‎in‎mid‎1980’s‎for‎the‎first‎time.‎Since‎that‎time,‎QCM‎has‎undergone‎

many modifications to reduce the potential errors in order to improve the 

measurement reading (299). The piezoelectric quartz crystal generates a voltage 

when the symmetry of the crystal is disturbed by mechanical stress. Then, the 

frequency alteration is recorded, which can be converted to mass adsorption on the 

quartz surface. 

In this work, QCM200 model with 5 MHz crystal frequency was used. This 

QCM was provided by Stanford Research System and is shown in Figure ‎3-4. The 

diameter of crystals used in this QCM was 1 inch.  

 

Figure ‎3-4. QCM200 set up (QCM200 Digital Controller, QCM25 Crystal Oscillator, crystal 

Holder and Quartz sensors) 

  

QCM is able to measure the kinetics of film during adsorption in liquid or gas 

phase (300). The quartz crystal is made of AT-cut quartz due to zero frequency drift 

at the ambient temperature and partially coated by gold as electrodes in the centre. 

The electrodes are connected to an oscillator and a specified voltage is applied 

over the electrodes which lead to start vibration of QCM crystal owing to the 

piezoelectric properties of quartz crystal (301-303). When the deposition starts on 

the crystal, the increase in mass is detected by the decrease in the frequency of the 

quartz crystal (304-306). Front and back sides of QCM crystal are shown in 

Figure ‎3-5. 

 

Figure ‎3-5. Front and back sides of QCM crystal 

 

 

3.4.1.1 Sauerbrey model 
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The QCM principals based on Sauerbrey equation (Equation ‎3-1) (307, 

308), which shows a linear relation between mass and frequency. This means that 

a small mass adsorption on the quartz surface results in the change in the 

frequency of the quartz. It is assumed that mass equally deposits on the detective 

area of the sensor which leads to shift resonance frequency of the device  (309, 

310).  

   
    

   

       
   

 Equation ‎3-1 

 

Δf:‎measured frequency shift (Hz) 

fo: resonance frequency (Hz) 

Δm:‎the‎mass‎change (g) 

A: effective area of the electrode (m2) 

μq: shear modulus of the quartz (2.947x1011 g·cm-1·s-2) 

dq: quartz density (2.648 g/cm3) 

 

QCM has been known as one of the best devices to show the growth of 

mass as a function of time (288, 289, 311-317). Figure ‎3-6 presents different mass 

deposition trends as a function of time.  

 
Figure ‎3-6. A‎model‎of‎QCM’s‎graph‎showing‎the‎rate‎of‎deposition‎as‎a‎function‎

of time 

 

Some assumptions are required to be made in order to have an appropriate 

application of Sauerbrey model, which are presented below: 

 The quartz crystal consists of two parallel faces. 



- 67 - 

 The amplitude loss of quartz vibration is negligible. 

 The model is in one dimension. 

 The mass adsorption is uniform on the surface 

 The weight of electrodes on quartz crystal surface is negligible and the 

electrodes are completely conductive. 

 The electrodes are fully connected to the quartz crystal 

 The adsorption mass is much smaller than crystal weight. 

In order to correctly apply Sauerbrey model, the density of the solution and 

viscosity of the loaded layer need to be kept constant. The change in viscosity 

results in a shift in frequency which needs an appropriate algorithm to remove this 

effect from measurements (318). Nonetheless, these two parameters change 

during QCM measurements in a liquid phase (319). These problems were firstly 

solved by Glassford (320) and later by Kanazawa and Gordon (319), who involved 

the solution properties allowing prediction of resonance frequency changes. The 

equation below includes viscosity and density of the solution in Sauerbrey in liquid 

solution.  

     
    

    

     
 

   

 Equation ‎3-2 

 

Where: 

  = frequency of oscillation of unloaded crystal (Hz) 

  = density of quartz (2.648 g/cm3) 

  = shear modulus of quartz (2.947x1011 g·cm-1·s-2) 

  = density of liquid in contact with the electrode 

  = viscosity of the liquid in contact with the electrode 

 

3.4.2 X-ray Photoelectron Spectroscopy (XPS) 

Siegbahn et al. developed XPS for the first time in 1960s in Sweden 

(321).The information about the top layer of a substrate is very important to surface 

engineers. XPS is known as a strong surface analytical technique, which is able to 

analyse existing elements on the surface, to provide quantitative composition and to 

determine the chemical state of film formation on the surface. These features of 

XPS allow getting a deeper understanding on physical and chemical characteristics 

of a surface. XPS provides information about few nanometers of the first top layer 
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of the surface and is generally considered as a non-destructive. In this work, XPS 

analysis was performed using a VG theta probe ESCA 250 spectrophotometer 

(Thermo Electron Corporation, West Sussex, UK). 

Basically, photoelectric effect is the main mechanism of XPS. When an X-

ray photon interacts with a surface an electron is emitted from an atomic energy 

level or a valence band of which the energy is analysed by the spectrometer; the 

schematic is shown in Figure ‎3-7.  

 

 

Figure ‎3-7. Schematic of photoionisation process and the relaxation mechanisms 

 

The binding energy of the emitted electron (BE) is associated with the 

kinetic energy of the photoelectron (EK) and the photon energy (hν); this is given in 

Equation ‎3-3 where  s is the spectrometer work function. 

 

BE=hν- EK-  s Equation ‎3-3 

 

The X-ray beam is able to penetrate a few micrometers depth of the surface; 

however, the photoelectron of the 10 atomic layers of the surface can be detected.  

Thus the detection of surface composition is originated from the top few nanometer 

of atomic layer. In organic materials, this results in detection of C1s, O1s and N1s 

(core compositions of organics) from the first 2 to 3 nm of the surface when EK 

varies between 10 to 1000 electron volt (eV). 

 

3.4.2.1 Qualitative analysis 

Available elements on the surface are detected by qualitative analysis of 

XPS, which is performed by a survey scan spectrum. Each spectrum and chemical 

shift is related to a unique element; the spectrum can be in range of a fraction of 
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electron volt to several electron volts. The spectra detection is automatically 

performed in XPS instrument by using peak identification features, which are later 

fitted by computer curve fitting software. This routine is normally straightforward and 

simple, but it becomes complicated in some cases where peaks are overlapping. 

Initial-state (the charge of the atom) and final-state (the electronegativity of 

the atom) effects in XPS are responsible for chemical shifts of detected elements. 

The occurrence of the shift influenced by the initial-state effects and value of the 

shift is affected by final-state effects. For example, the binding energy shift of C1s in 

C-F is 2.9 eV, but this value increases in CF2 and CF3 by 5.9 eV and 7.7 eV, 

respectively (322).  

 

3.4.2.2 Quantitative analysis 

Equation ‎3-4 presents the relationship of the intensity of a photoelectron (I) 

to the number of atoms of the element per volume (n), the photoelectric ionization 

(cm2) σ(Ekin), the X-ray flux in photons/cm2.s (J), the detection efficiency of each 

electron transmitted D(Ekin), analyser transmission (T), angular asymmetry of the 

intensity of the photoemission from each atom (L), the detected surface area (A), 

the‎inelastic‎mean‎free‎path‎of‎photoelectrons‎(λ (Ekin)) and the measured angle of 

emission‎of‎electron‎from‎surface‎(Ɵ)‎(323, 324). 

. 

                                           Equation ‎3-4 

 

Thus the number of atoms per cm3 for a specific element can be calculated 

by Equation ‎3-5. 

 

                                           Equation ‎3-5 

 

3.4.3 Contact angle 

Understanding of surface free energies between two entities is important. 

The strength of the interaction on the surface is dictated by surface energy. Contact 

angle measurements can be employed with different solvents in order to calculate 

the surface energy of the substrates (260) by measuring the interface angle 

between the liquid and solid phases. Wettability is also known to be associated with 

surface composition and roughness of the surface. Hence, for better understanding 

of the surface characterization on scale deposition, the mechanism of the interfacial 
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energies of two surfaces (solid-liquid phase) and effect of surface free energy and 

the components on its environment are investigated. 

The contact angle method is being widely used to describe the surface 

energy of solids. The higher the contact angle value of water indicates, the more 

hydrophobic the solid surface becomes; which represents the lower surface energy 

of the surface. Figure ‎3-8 presents a water contact angle instrument. In this study, 

Contact Angle Goniometry 4000 is used to measure the water contact angles. 

 

 

Figure ‎3-8. Contact angle measurement instrument 

 
The surface energy of solid phase can be evaluated by the contact angles 

between the solid and liquid phases on a flat surface. The relation between contact 

angle and surface energies can‎be‎found‎via‎Young’s‎equation. 

 

               Equation ‎3-6 

 

Where    is the surface energy of solid,     the surface energy of solid/liquid 

interphases,    the liquid surface tension and   the contact angle. 

In this work,   is the parameter which is measured in Equation ‎3-6. 

Figure ‎3-9 shows a schematic of a liquid droplet and the parameters involved in 

Young equation. 
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Figure ‎3-9. Schematic of liquid droplet on a solid surface presenting the Young's equation 

3.4.3.1 Surface Profiler-NPFLEX- (roughness measurement) 

In order to measure the roughness of the surfaces and study the effects of 

topography on calcium carbonate scale deposition, a Taylor Hobson surface profiler 

was employed. The irregularity of substrate originated from peaks and valleys of 

surface texture is referred to the roughness, which is mainly affected by 

manufacturing process and the top layer structure of the surface. The deviations 

from a mean line are measured to evaluate the roughness of the surface; the mean 

line represents an ideal smooth surface without peaks and valleys. Different 

parameters are involved in measuring the roughness of a surface, since the surface 

geometry is so complicated to take into account just one parameter (325). The 

parameters involved in studying the surface topography are presented in Table ‎3-2. 

 

Table ‎3-2. Some of the influencing factors in roughness studies (quoted from (325-327)) 

Designation parameter Definition Formula 

Sa  Arithmetical mean height Mean surface roughness    
 

 
               
 

 

Sq root mean square height 
Computes the standard 
deviation for the amplitudes 
of the surface (RMS) 

     
 

 
   

 

           

Ssk Skewness 
Qualifying the symmetry of 
the height distribution 

    
 

   
 
 

 
            

 

  

Sku kurtosis 
Qualifying the flatness of 
the height distribution     

 

   
 
 

 
            

 

  

 

Root mean square height (Sq) measurements were mainly used in this work; 

however, Skewness (Ssk) helped in some interpretation. Sq computes the standard 

deviation for the amplitudes of the surface (RMS). 

 

3.4.3.2 Scanning Electron Microscopy (SEM) 



- 72 - 

SEM is a big microscope with high magnification which employs electrons 

instead of light to get images with high resolution. This device is capable of 

capturing pictures with high magnification (100000 times bigger) from a sample 

which allows us to get more information from the desired surface or particles. SEM 

produces a beam of electrons on the sample in the chamber which are emitted from 

a thermal resource with a range of energy between 30 eV and 100 eV. In order to 

create an image from a sample, incident electrons from the electron column above 

the chamber cause emission of electrons from the sample leading to detecting the 

desirable area.  

Figure ‎3-10 shows different parts of a SEM device participating in imaging a 

sample on a surface. Electron gun exposes the incident electrons in column from 

above the chamber. Anode plate accelerates electrons attraction and scanning coils 

diverts the beam to scan over the sample in a rectangular area. Also, there is 

another part so-called back scattered electron detector which provides the image 

contrast and topography. Secondary electron detector creates images with high 

resolution. 

 

 
Figure ‎3-10. Different parts of a SEM device involved in creating a picture 

 

SEM can be applied for different applications such as microstructure studies 

and film characterisation. The SEM machine used in this study is LEO 

1530: Gemini FEGSEM with Oxford Instruments AZtecEnergy EDX system with 

80mm X-Max SDD detector - high resolution, low kV, secondary electron imaging 
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plus EDX capabilities and KE STEM detector. Figure ‎3-11 shows an image of 

calcium carbonate crystals taken by SEM. 

 
Figure ‎3-11. SEM image of calcium carbonate crystals 

3.5    Film kinetics 

Studying kinetics of film formation helps to better understand the parameters 

involved during adsorption. In order to have an optimum experimental conditions 

and parameters during formation of Self-Assembled Monolayer (SAM) film on a 

quartz surface, kinetics of APTES adsorption on crystal quartz surface was studied 

by QCM. This information helps to understand the best required concentrations of 

APTES and reaction time to form SAM of APTES on the quartz surface. In addition, 

the surface coverage formed on the quartz surface by each concentration of 

APTES. The mechanisms of APTES adsorption on the quartz surface can be also 

investigated. 

SAM technique which self-terminates chemisorption reactions with one layer 

on the surface under correct experimental conditions is one of the focuses in the 

literature (212, 213, 288, 289). Different isotherms to describe the adsorption 

mechanisms of organosilanes on surfaces were studied previously by other 

researchers (222, 328, 329) who showed that Langmuir isotherm better interpreted 

the adsorption phenomenon of organosilane molecules on quartz surface. Langmuir 

adsorption isotherm assumes: i) that the adsorbent surface is completely flat and 

perfect (homogeneous surface), ii) that all available sites of the surface are 

equivalent, the adsorbing materials adsorb onto a stationary surface, iv) that each 

site can accept just one molecule (mono-layer adsorption) and v) that there is no 

interference between two adjacent adsorbates (294, 328, 330, 331). 

The surface coverage is described as the fraction of surface occupied by 

adsorbate,‎which‎ is‎a‎unitless‎quantity,‎Ɵ;‎ this‎gives‎ the‎Langmuir‎ isotherm‎ (330-

332). Thus, the rate of surface coverage is given by 

  

  
              Equation ‎3-7 
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Where‎Ɵ‎is‎the‎fraction‎of‎available‎sites‎that‎occupied‎by‎adsorbate;‎(1‎- Ɵ) 

is the remaining free available sites; C is the APTES concentration; and ka and kd 

are the adsorption and desorption constants, respectively. Integration of 

Equation ‎3-7 results in the surface coverage as function of time. 

     
 

  
  
  

                
Equation ‎3-8 

 

This result is simplified by replacing kobs for kaC + kd and‎K’‎for‎ 

   
 

  
  

  

 

This results in Equation ‎3-9 giving surface coverage by APTES on the 

quartz surface as a function of time. 

 

As shown earlier, APTES adsorption on the quartz surface as a function of 

time can be plotted by QCM. In order to calculate the surface coverage, kobs needs 

to be calculated form the QCM plots. A Matlab code was written to fit the 

experimental data and to calculate kobs; the Matlab code is presented in Appendix 

A. As            , a plot of kobs for different APTES concentrations versus C 

gives a linear trend with a slope indicating adsorption constant (ka) and an intercept 

indicating desorption constant (kd). Thus, equilibrium constant (Keq) is obtained by. 

    
  

  
 Equation ‎3-10 

 

The percentage of the surface covered by APTES is then calculated by  

  
 

  
 

   

 
Equation ‎3-11 

 

Where‎Ɵ‎ is‎ the‎surface‎coverage‎ (%),‎C‎concentration‎of‎APTES,‎and‎Keq 

equilibrium constant of the solution. 

 

 

 

 

 

                   Equation ‎3-9 
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Chapter 4  

Film Formation of APTES on Quartz Crystal 

 

4.1    Introduction 

A self-assembled monolayer (SAM) consists of organic molecules that 

attach on the surface of a substrate in systematic groups (1-3). However, to create 

a SAM surface the growth process needs to be controlled by controlling 

experimental condition during film formation to adapt the orientation of the 

molecules for each specific goal. The Quartz Crystal Microbalance (QCM) was 

used to study the kinetics of film deposition on the surface (used as analogue for 

sandstone) for different concentrations of 3-aminopropyltriethoxysilane (APTES). 

This allowed the adsorption and growth process of APTES on the quartz surface to 

be examined in detail. This technique can also be used to assess the ability of the 

treated quartz surfaces to minimise scale; this will be demonstrated in the next 

chapters. 

Various concentrations of APTES (2, 4, 6 and 8% v/v) were added in 

solutions of ethanol and water to study effect of concentration on film coverage 

(260). There are different types of isotherm which could be considered to calculate 

the surface coverage, however, other isotherms such as Tempkin isotherm showed 

a poor correlation for different concentrations of APTES (222). Since the focus of 

this research was not specifically on the type of isotherm and based on the 
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obtained results in the previous works (222, 328, 329), Langmuir isotherm was 

selected to study the kinetics of film formation. Since one of the assumptions of 

Langmuir isotherm is that the adsorption is limited to monolayer and the purpose of 

the project was to create a SAM on quartz crystals, Langmuir isotherm was 

employed to describe the adsorption of APTES on the surface. Matlab was applied 

to the experimental results to fit the data to the Langmuir isotherm. From the 

equations obtained from Matlab, which fit the Langmuir isotherm the equilibrium 

constant and surface coverage of the quartz crystals at equilibrium were calculated. 

These data are presented later in the chapter. A simulation of the arrangement of 

the molecules was also carried out through minimising the energy of the molecules. 

This was used to estimate the surface area that was occupied by one molecule of 

APTES in order to estimate the mass of APTES covering the whole surface to 

provide further evidence of the molecular arrangement. The progress of the chapter 

is presented in Figure ‎4-1. 

 

Film Formation

QCM: 2%-8% APTES

Matlab code

Surface coverage

Monolayer or multilayer?

Summary 

 

Figure ‎4-1. Summary of Film Formation, Chapter 4 
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4.2   Using QCM crystals as surrogate rock surface 

As mentioned in Chapter 3, the QCM crystal is partially covered by gold 

electrode (see Figure 4-12). After treating the crystal by APTES, an investigation 

was required to understand the possibility of adsorption of APTES on the gold 

electrode. Hence, X-ray Photoelectron Spectroscopy (XPS) was employed to trace 

probable APTES reaction on the gold section of crystal by acquiring silicon 

spectrum at 99.5 eV and gold at 84 and 87 eV (111). Firstly survey of the gold part 

of crystal was demonstrated that there is no silicon peak at 99.5 eV (Figure ‎4-2). In 

addition, there is few percentage of nitrogen which is negligible for XPS analysis.  

 

Figure ‎4-2. Survey spectrums scan of gold section of QCM crystal after 2 h experiment in 

APTES solution  

 

In addition, the silicon element was scanned in detail to observe any peak 

related to silicon binding energy around 99.5 eV. As it can be seen in Figure ‎4-3, no 

trace of silicon is found. 
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Figure ‎4-3. Non peak area around binding energy of silicon at 99.5 eV on gold part of 

crystal 

 

Moreover, the gold spectrum of the survey scan was studied more in detail 

to observe any possible shifts in binding energy of pure gold; this is presented in 

Figure ‎4-4. It is observed that the gold binding energies, 84 and 87 (111), did not 

shift to either direction which indicates that the gold part of the crystal remains 

unreacted with APTES. 

 

Figure ‎4-4. A gold spectrum of the survey scans of the QCM electrode 

 

4.3    Film formation kinetics 
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After assuring no trace of APTES on the gold part of the crystal, APTES film 

formation on quartz section of crystals was studied. Each experiment was carried 

out for two hours – each with a different concentration (2-8%) of APTES. The 

reaction of the molecules on the surface had reached equilibrium when the mass 

(or frequency of oscillator) versus time stabilizes and reaches a plateau (333). 

Figure ‎4-5 illustrates the adsorption trend of various concentrations of APTES on 

the quartz crystals as a function of time. A sharp growth of APTES on the surface is 

observed at the initial stage of adsorption for all concentrations. In general, the 

adsorption of APTES onto the surface increases with concentration of the solution. 

However, a few experiments did not follow the same trend as expected. This will be 

discussed later in the chapter. 

 

Figure ‎4-5. Mass growth of APTES on quartz crystals as a function of time by QCM 

 

Maximum mass of APTES adsorbed on QCM crystals after two hours 

experiment is illustrated in Figure ‎4-6.  
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Figure ‎4-6. Maximum adsorption of APTES on QCM crystal for various concentrations 

after 2 h experiment on ambient temperature 
 

By increasing APTES concentration in the solution, maximum mass of 

APTES adsorbed on the surface increases as expected. At this stage, these results 

may not give any further information; however these with assistance of the surface 

coverage of APTES calculated by Matlab are valuable to compare with the result 

obtained by ChemDraw software (the maximum surface area that APTES can 

occupy in the space which is called relaxation mode) in order to understand the 

maximum required mass to create a SAM. These comparisons provide 

comprehensive information about APTES film formation on QCM crystal, which will 

be discussed later in this chapter. 

As mentioned in Chapter 3, the Langmuir isotherm was chosen to interpret 

the experimental data of QCM with the assumption of having at most one layer of 

chemical adsorbed on the surface. As described earlier, a code in Matlab was 

written to fit Langmuir isotherm to the raw data from QCM; samples are illustrated in 

Figure ‎4-7 for 2 and 4% (v/v) concentration.  
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b)

 

Figure ‎4-7. Experimental data fitted by Matlab code for a) 2% and b) 4% APTES 

concentration 

And for 6 and 8% APTES, the samples are shown in Figure ‎4-8. 

a)
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b)

 

Figure ‎4-8. Experimental data fitted by Matlab code for a) 6% and b) 8% APTES 

concentration 

 

Based on equation 4-6 in Chapter 3, Kobs was calculated which is illustrated 

in Table ‎4-1. By plotting Kobs versus APTES concentration, Keq can be found (this 

was explained in Chapter 3). 

Table ‎4-1. Kobs at various concentrations of APTES 

Concentration (v/v) 2% 4% 6% 8% 

Kobs 
0.00177 ± 

0.00020 

0.00292 ± 

0.00109 

0.00351 ± 

0.00118 

0.00557 ± 

0.00135 
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Keq (equilibrium constant) (see Chapter 3 for more details regarding the 

equations) can be used to calculate the surface coverage of APTES at each 

concentration. The graph of Kobs as a function of APTES concentration is presented 

in Figure ‎4-9, which gives Kobs = 0.599 C + 0.0004 with R2 = 0.95. Since Ka and Kd 

are the slope and y-intercept of the graph, Keq = 0.0599/0.0004 = 149.8.  

 

 

Figure ‎4-9. Plot of Kobs versus APTES concentration at ambient temperature 

 

By substituting in  
 

  
 

   

 , surface coverage of APTES is obtained and 

shown in Table ‎4-2 as expected. 

Table ‎4-2. Mean surface coverage of APTES at each concentration 

Concentration (v/v) 2% 4% 6% 8% 

Ɵ 75% 86% 90% 92% 

 

Also, the surface coverage of APTES is illustrated in Figure ‎4-10 for better 

demonstration. It is observed that by increasing the concentration more percentage 

of the crystal surface was covered by APTES.  
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Figure ‎4-10. Surface coverage of APTES at different concentrations after 2 h experiment 

at ambient temperature 

 

4.4    Monolayer or multilayers? 

To analyse whether or not the film formed on the QCM is a monolayer or 

multilayered film the molecular area corresponding to the deposited mass can be 

calculated assuming that the film is a monolayer. Therefore, ChemDraw software 

was used to model the structure of APTES at the relaxation mode.  

APTES molecule structure which is drawn by ChemDraw software is 

actually based on an energy minimization simulation, where the atoms of the 

molecules are relaxed until the optimum spatial geometry (exhibiting the minimal 

intra-molecular energy without considering any other influence factor) is found. The 

2D and 3D structure of APTES at relaxation mode of molecule are shown in 

Figure ‎4-11. 

 

a)  
b)  

Figure ‎4-11. Image of relaxation mode of APTES a) 3D and b) 2D – drawn by ChemDraw 

software 
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The Chem Draw software is able to calculate the coordinate of each atom of 

the molecule after energy minimization simulation. An ideal adsorption of APTES on 

a quartz surface (289, 334, 335) is shown in Figure ‎4-12. 

 

 

Figure ‎4-12. An ideal schematic of APTES reaction with a quartz surface 

 

With a reliable presumption, the surface area occupied by one APTES can 

be estimated by calculation of surface area of the circumscribed of the oxygen 

triangle. The top view of APTES on a quartz surface is illustrated in Figure ‎4-13. 

 
Figure ‎4-13. Top view of APTES on a quartz surface showing the possible surface area 

covered by one APTES 

 

Although there is of course a lot of assumptions and uncertainties here, this 

calculation can indicate what order of magnitude mass is required to have fully 

coverage of APTES on a crystal surface. The coordinate of the three oxygen atoms 

in the relaxation mode is given below: 

                             

                              

                              

a 

b 

c 

Lab 
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Substituting the coordinates of individual oxygen atoms in Equation ‎4-1 

gives the lengths of the three bonds of oxygen from each other. 

                                       Equation ‎4-1 

 

Thus the lengths of oxygen triangle are: 

Lab = 2.712886 Å 

Lbc = 2.712591 Å 

Lca= 2.720657 Å 

When the length of three sides of triangle is known, the radius of the 

circumscribed of triangle is calculated by substituting the length in Equation ‎4-2. 

  
         

                                                     
 Equation ‎4-2 

 

Therefore,  

          

And the surface area occupied by one molecule of APTES given by 

                                      

With considering the surface area of QCM crystal 5.067 x 1014 nm2, the 

number of molecules is: 

                      
                      

              
 

           

       
              

The molecular weight of APTES (C9H23NO3Si) is 221.369 g/mol, which means that 

the weight of one APTES molecule is 3.676 x 10-22, giving: 

                                                       

Therefore the mass of APTES required to have a complete uniform 

coverage by a monolayer film is 0.48 µg/cm2. This value is less than of the values in 

Figure ‎4-5 which were experimentally measured by QCM. The first crude 

conclusion from the ChemDraw simulation may explain that the adsorption of 
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APTES on crystal quartz is not a monolayer film; however, ChemDraw calculations 

involved a lot of assumptions and uncertainties, as the surface area occupied by an 

individual APTES is a complicated process and it is not the focus of this research. 

On the other hand the experimental data measured by QCM were reasonably fitted 

by Langmuir isotherm which assumes a monolayer adsorption on a surface. In 

addition, it was shown that the crystal surface coverage calculated by Matlab 

(Table ‎4-2) was not completed even in high APTES concentration after 2 h. Hence 

two hypotheses can explain these results.  

 Since the amount of APTES required to have fully covered surface by 

ChemDraw simulation was based on a lot of simplifications, a range of mass weight 

can be considered instead of just one value. Therefore, a range of 0.5-1.5 µg/cm2 

APTES is required to have a complete uniform coverage of the quartz crystal. Then 

this can indicate that SAM of APTES was obtained in film formation experiments, 

which is in a good agreement with the results from Matlab. However, the surface 

coverage calculated by Matlab states an incomplete coverage on the QCM crystal. 

On the other hand, another hypothesis, without refusing the explanation 

mentioned above, could be the sensitivity of APTES polymerisation in aqueous 

solution. In the absence of water in the solution, silanization corresponds to the 

amine moieties as the alkoxy groups on APTES can not be hydrolysed (244); 

whereas uncontrolled polymerisation of APTES can be obtained by excess water in 

the solution (270, 336). This polymerisation can be in both vertical and horizontal 

directions (270, 336). Hence, instead of one APTES, polymerised molecules can 

attach to crystal quartz surface. This does not reject the assumption of monolayer 

attachment as a layer of polymerised APTES could adsorb on the surface. This is 

schematically demonstrated in Figure ‎4-14. Besides, surface morphology and 

hydrolytic stability of adsorbed APTES are influenced by the purity and the 

concentration of silane in the solution (337).  Aggregation and polymerisation in the 

solution is directly related to the concentration of APTES, e.g. the higher 

concentration the more polymerised APTES in the solution (337). On the other 

hand, the purity of the APTES in the solution along with polymerisation sensitivity 

increases the complexity of the reaction (111, 337). This was discussed in detail in 

Chapter 2. 
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Figure ‎4-14. Schematic reaction of polymerised APTES 

 

Moreover, the post processing stage of the experiments - rinsing the 

crystals by water – can remove unstable and weak bonds of polymerised APTES. 

The effect of water in post processing step is that it can penetrate irregular 

structured polymers of APTES to break down some siloxane bonds in order to 

disaggregate the APTES polymers from surface (271, 337). This phenomenon 

makes the film formation of APTES on the surface even more complicated (337). 

 

4.5    Summary 

This chapter presented film formation of APTES on quartz surface. QCM 

was applied to study the kinetics of film formation. Based on literature (294, 328, 

330, 331), Langmuir isotherm was employed to interpret the kinetics of APTES film 

formation. Matlab code was used to fit the experimental results to Langmuir 

isotherm. Langmuir equilibrium constant (Keq) was calculated to estimate the 

surface coverage of the APTES. The summary of this chapter is listed below: 

1. The surface coverage of APTES was not completed even at high 

concentration. 

2. By increasing the concentration of APTES in the solution, surface coverage 

(Ɵ)‎increased.‎75%,‎86%,‎90%‎and‎92%‎surface‎coverage‎were‎calculated‎

from QCM results for 2%, 4%, 6% and 8%, respectively. 
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3. ChemDraw was applied with a lot of assumption to estimate the required 

APTES to create SAM on crystal surface. The calculated value was 0.4763 

µg/cm2.  

4. The value of required mass calculated by ChemDraw simulation to have 

SAM was less than maximum weight measured by QCM after 2 hrs. 

Although even this value is higher than estimated value by ChemDraw, the 

data obtained form Matlab showed the APTES did not fully covered the 

surface. This phenomenon was explained by two hypotheses. 
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Chapter 5  

Scale Prevention Performance 

 

5.1    Introduction 

In this chapter, the effect of coating materials on deposition and adhesion of 

calcium carbonate on the treated and un-treated quartz is explored under pseudo-

dynamic condition. The objective was to understand the impact of various types of 

coating chemicals at different concentrations on the deposition of mineral scale. 

SEM and gravimetric measurements were used to observe and measure scale 

formation on the treated quartz surfaces and compared with the blank surface. 

Other characterisation methods were also employed such as XPS, contact angle 

and roughness which will be discussed in detail in the next chapter. As mentioned 

in Chapter 3, two simplified brines of calcium carbonate with different saturation 

ratios (low=4.77 and high=54.80 SR) were used, since the effect of saturation ratio 

(SR) of a solution on mineral scale formation is well defined in the literature (83, 86, 

337). The morphology of calcium carbonate scale deposition on the treated and the 

blank quartz surfaces was observed under SEM and compared to assess the effect 

of coating chemical on calcium carbonate formation. In addition, the gravimetric 

results of scale deposition were measured by microbalance scale. 

To treat the quartz surface for scale deposition studies, two types of 

organosilane (APTES and APhS) were employed. The range of APTES 

concentrations are from 0.05% to 8%, whereas the selected range of concentration 

for APhS was from 0.03% to 0.24%. The amount of mineral scale deposition on the 

quartz surfaces treated by various concentrations of organosilanes was compared 

with the results from blank surfaces. In addition, the results of the low and high 

saturation ratios were compared with each other. The work flow of this chapter for 

investigation of scale deposition\adhesion on the coated and uncoated quartz 

surfaces is presented in Figure ‎5-1.  
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Scale Prevention Performance

Treated quartz surfaces Blank quartz surfaces

Microbalance 

High saturation ratio brineLow saturation ratio brine

SEM to visualise 
surfaces

Comparison of results

Summary

APTES (0.05-0.2% and 2-8%) APhS (0.03-0.24%)

 

Figure ‎5-1. Workflow of scale prevention study in this chapter 

 

5.2    The effects of APTES coating on scale deposition 

Since two saturation ratios were used for scale deposition tests, the study of 

the mineral scale prevention performance was divided in two sections: i) in low and 

ii) high SR solutions. As mentioned above, two ranges of APTES concentration 

were studied for scale prevention performance tests. The reason for choosing a low 

range of concentrations is that there is a discussion regarding organosilane 

concentration to form Self Assembled Monolayer (SAM) on a quartz surface in the 

literature (244, 260, 271, 285, 338). In order to create SAM, approximate amount of 

APTES was obtained via the basic calculation by ChemDraw simulation (Chapter 

4). This calculation indicated a range of 0.5-1.5 µg/cm2 is required to create SAM 

on the quartz surface, which is much lower than the concentration of APTES (2-8% 

in 5 ml solution). Also, the required time to create SAM of APTES on the surface is 

critical and was demonstrated (222, 244, 258, 260, 271, 283, 339-342) that APTES 

formation can be obtained on surface in various experiment times (from 4 min to 24 
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h). Therefore, it was decided to test the effect of a lower range of APTES 

concentrations to evaluate whether it is possible to form SAM in 30 minutes. 

  

5.2.1 APTES coating behaviour in low SR= 4.77 

Brine composition for saturation ratio of 4.77 was previously presented in 

Figure 3-4. The mass of calcium carbonate deposition on treated (0.05, 0.1, 0.15, 

0.2, 2, 4, 6 and 8%) and non-treated surfaces are illustrated in Figure ‎5-2. Since the 

x axis of the graph is shown on a logarithmic scale and the value of scale 

deposition on the blank surface was considered 0% coating, the graph is not able to 

show the mass deposition at 0. The amount of mass deposition on the blank 

surface (0% coating) was 1116.8 µg and is shown by the red line. 

 
Figure ‎5-2. Calcium carbonate mass deposition versus concentration at 4.77 SR and 80

o
C 

after 24 h experiment 

 

Figure ‎5-2 shows that the amount of precipitation decreased (except at 8%) 

by increasing the concentration of APTES in the coating process. As demonstrated 

in Chapter 4, coverage of the quartz surface increases by adding more APTES in 

the solution. This may indicate that mass deposition is related to surface coverage 

i.e. deposition on the treated surfaces decreases when the surface coverage 

increases. Other factors such as roughness, the orientation of coating chemical 

during film formation and chemical states of film can affect the propensity of the 

surface to scale precipitation, which may explain the different behaviour of the 

surface at 8%. The effect of roughness, surface energy and coating materials on 

scale deposition has been demonstrated previously (163, 189, 199, 202, 203, 337, 

343-345). As discussed in Chapters 2 and 4, creating the SAM on the quartz 
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surface is a complex process and various factors can influence the film structure 

and APTES orientation on the surface. This will be discussed in detail in Chapters 6 

and 7. 

In order to better demonstrate the impact of APTES coatings on the 

deposition of CaCO3 scale reduction, Figure ‎5-2 was re-plotted and is presented in 

Figure ‎5-3. This graph shows the surface performance in terms of scale reduction 

percentage versus APTES concentrations. A clear scale reduction is observed by 

coating the quartz surface by means of APTES. The maximum performance of the 

APTES film was 85% at 6% APTES concentration. In general, except from 8%, 

coating performance improved by increasing the APTES concentration. Although 

the correlation coefficient (R2 = 0.68) of logarithmic equation of the graph is poor, 

the performance of scale deposition prevention qualitatively improved by increasing 

the APTES concentration. Using a linear extrapolation gives correlation coefficient 

R2 = 0.36. 

 

 
Figure ‎5-3. The reduction of scale deposition as function of APTES concentration at 

4.77SR and 80
o
C after 24 h experiment 

 

Since the coating material at 8% showed different behaviour from the rest of 

concentrations, Figure ‎5-3 was re-plotted without considering the result of 8%. This 

is presented in Figure ‎5-4. This graph shows a good correlation between the 

performance of treated surfaces (0.05-6%) in scale prevention as function of 

concentration of coating material; the correlation is shown below with coefficient of 

R2 = 0.99. 
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Where CP and C (v/v) are the coating performance in reduction of scale 

deposition and APTES concentration, respectively. However, R2 = 0.88 is obtained 

if a linear fit is used to extrapolate the experimental data. 

 

Figure ‎5-4. The scale deposition reduction as function of APTES concentration at 4.77SR 

and 80
o
C with eliminating the value at 8% 

 

Figure ‎5-4 shows that with eliminating the result of 8% the treated surface 

performance in scale deposition reduction can be potentially fitted by a logarithmic 

correlation as function of APTES concentration of which is associated with surface 

coverage. Higher adsorption of APTES for 8% was observed on the quartz surface 

in Chapter 4 by QCM, but lower performance is seen by 8% APTES. This may 

indicate that another factor like the chemical states of adsorbate can be more 

crucial in explaining the different behaviour of the same film on scale reduction, 

which will be explained more in detail in Chapter 7. 

 

5.2.1.1 Visualization of calcium carbonate deposited on untreated and 

APTES-treated quartz surfaces in low SR=4.77 

SEM was used to study the aggregation and morphology of calcium 

carbonate crystals on the uncoated and coated surfaces. Firstly, a lower 

magnification of SEM image was taken to qualitatively evaluate the amount of 

deposit formed on the surface; these images are illustrated in Figure ‎5-5 and 

Figure ‎5-6. From visual observation, in comparison with non-treated surfaces, the 

amount of calcium carbonate deposited on the treated surfaces clearly reduced. 

The tendency of the coated surface to scaling reduced by increasing the 

concentration of coating chemicals in the film formation process; this is in good 
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agreement with the gravimetric results. Although the low magnification images of 

SEM are not able to quantify the amount of mass deposited on the surface, it can 

be seen to generally support the gravimetric result. It shows that the amount of 

scale deposited on treated surface is lower than the blank quartz surface. Besides, 

the change in morphology of calcium carbonate deposition on the treated surfaces 

was observed by SEM and compared with the non-treated surface.  

 

a)   

b)

 

c)

 

d)

 

e)

 

Figure ‎5-5. Low magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 0.05%, c) 0.1%, d) 0.15% and e) 0.2% APTES coated quartz 
surfaces in low SR= 4.77 at 80

o
C 
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a)  

b)

 

c)

 

d)

 

e)

 

Figure ‎5-6. Low magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 2%, c) 4%, d) 6% and e) 8% APTES coated quartz surfaces in 
low SR= 4.77 at 80

o
C 

 

The non-treated and treated quartz surfaces behaviour in association with 

scale deposition in low saturation ratio (4.77) CaCO3 solution at pseudo-dynamic 

condition at 80oC can be systematically presented in Figure ‎5-7. The blue arrow 

indicates that the efficiency of the surface in terms of scale deposition reduction 

increases towards the right hand side; this is categorised by orange (lower 

efficiency) and green (higher efficiency). 

 

 



- 97 - 

 

 

 

 

 

Figure ‎5-7. Systematic ranking of APTES coating performance in terms of amount 

of scale deposited on the quartz surface in low SR=4.77 

 

5.2.1.2 Morphology of calcium carbonate deposited on untreated and 

APTES-treated quartz surfaces in low SR=4.77 

As discussed in Chapter 2, the morphology of calcium carbonate can vary at 

different conditions (95, 198). In order to understand the influence of APTES 

coating material and the morphology of calcium carbonate, higher magnification 

images of substrates by SEM were also taken. Figure ‎5-8 shows the differences 

between calcium carbonate shapes for the coated (0.05-0.2%) and uncoated quartz 

surfaces. The observation under SEM for the blank quartz surface shows clusters 

of calcite whereas the shape of CaCO3 crystals on the treated surfaces is mainly 

distorted calcite.  

Figure ‎5-9 also illustrates calcium carbonate morphology on the quartz 

surfaces coated at the higher range of APTES concentration (2-8%). In comparison 

with the crystals on the blank surface, the calcium carbonate deposited on the 

treated surfaces is distorted cubic shapes. It was found that the solution 

temperature (346, 347), impurity of the solution (346) and the flow rates (346, 347) 

affect the morphology of the calcium carbonate. In contrast, not much attention was 

paid on the influence of surface on the morphology of calcium carbonate. Some 

information (8, 163, 181, 189, 193, 198) is available on the effect of the different 

surface chemistry, roughness and wettability on the morphology. However, the 

effect of surface on morphology was not understood clearly. It was shown that the 

treated surface destroys nucleation sites but does not affect on the crystallisation of 

calcium carbonate (4). It can be seen from Figure ‎5-8 and Figure ‎5-9 that the 

morphology of CaCO3 deposited on the treated surface have slightly different shape 

(distorted at the edges) than on non-treated surfaces. 
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a)  

b) 

 

c) 

 

d) 

 

e) 

 

Figure ‎5-8. High magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 0.05%, c) 0.1%, d) 0.15% and e) 0.2% APTES coated quartz 
surfaces in high SR= 4.77 at 80

o
C 
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a)  

b) 

 

c) 

 

d) 

 

e) 

 

Figure ‎5-9. High magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 2%, c) 4%, d) 6% and e) 8% APTES coated quartz surfaces in 
high SR=4.77 at 80

o
C 

 

5.2.2 APTES coating behaviour in high SR= 54.8 

The performance of the treated quartz surfaces were also studied in high 

SR=54.8 calcium carbonate solution. This was carried out to understand the 

performance of the APTES coating at higher SR, since the deposition of CaCO3 on 

the surface varies at different saturation ratio solutions (83, 86, 337). The brine 

composition of SR=54.8 was previously presented in Figure 3-4. The mass of 
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calcium carbonate deposited on treated and non treated surfaces is illustrated in 

Figure ‎5-10. There is a great similarity in the overall trend at low SR as presented 

before. The amount of calcium carbonate scale deposition on the blank surface (0% 

coating) was 1500.7 µg. However, the slope of the reduction varies from low SR as 

expected. This can be owing to the effect of pH values on the surface charge in the 

solution. When the pH is not controlled during the experiment, this parameter can 

alter in various manners in different SR solutions. Since the degree of ionisation of 

the substrate depends on the pH value, and mineral scale deposition is thought to 

be related to the ionization of the surface (348), the different behaviour of the 

deposition of CaCO3 on the treated quartz surface may be resulted from this 

phenomenon.  

 
Figure ‎5-10. The mass of calcium carbonate deposited on the APTES treated surface as a 

function of concentration at high SR=54.8 

 

In order to better show the performance of coating materials on the amount 

of CaCO3 scale reduction on the surface in high SR (54.8), Figure ‎5-10 was re-

plotted and shown in Figure ‎5-11. This graph shows the mass of calcium carbonate 

reduction as a function of APTES (%) in coating process. Up to 70% reduction of 

CaCO3 scale deposition was obtained at the quartz surface treated by 6% APTES. 

Moreover, the minimum mass reduction was related to the low range of APTES 

concentration (0.05%). However, the performance of the treated surface at 8% 

APTES was not as affected as 2-6% and was as small as the low range of APTES. 

Although higher adsorption of APTES on the quartz surface was shown for 8% in 

Chapter 4, the chemical states of adsorbate can be more crucial in explaining the 

different behaviour of the same film on scale reduction. This will be explained more 

in detail in Chapter 6. Apart from the importance of surface composition of the 
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substrate, other surface characteristics such as wettability and roughness can be 

critical. However, the influence of coating concentration in film formation process on 

reduction of deposition of scale will be discussed at the end of this chapter. 

 

 

Figure ‎5-11. The amount of scale deposition reduction as function of APTES 

concentration at 54.8SR and 80
o
C 

 

Linear and logarithmic extrapolations were fitted to the experimental data of 

Figure ‎5-11 and R2=0.36 and R2=0.69 were obtained; respectively, which show 

poor fits for both extrapolations; however, better result for logarithmic correlation. 

 

The same as results which obtained for low SR (Figure ‎5-3), scale results at 

high SR presented different behaviour at 8% APTES concentration. Thus, 

Figure ‎5-11 plotted again and 8% was eliminated to gain the correlation between 

the performance of treated surfaces (0.05-6%) in terms of scale reduction at high 

SR; Figure ‎5-12 illustrates the scale reduction as a function of  APTES 

concentration. the correlation is shown below with coefficient of R2 = 0.99. 

 

                   Equation ‎5-2 

 

Where CP and C (v/v) are the coating performance in reduction of scale 

deposition and APTES concentration, respectively. However, R2 = 0.88 is obtained 

if a linear fit is used to extrapolate the experimental data. 

Figure ‎5-12 presents the same trend as the graph in low SR (Figure ‎6-4). 

However, the observed correlation in high SR (R2= 0.75) is quite poor in 

comparison with correlation in low SR (R2= 0.99). 
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Figure ‎5-12. The scale deposition reduction as function of APTES concentration at 54.8 

SR and 80
o
C with eliminating the value at 8% 

 

Figure ‎5-13 shows the performance of the quartz surface in relation to the 

amount of scale deposition in high SR (54.8) solution. The blue arrow indicates that 

the efficiency of the surface in terms of scale deposition reduction increases 

towards the right hand side; this is categorised by orange (lower efficiency) and 

green (higher efficiency). 

 

 

 

 

 

Figure ‎5-13. Systematic ranking of surface performance coated by APTES in terms of 

amount of scale reduction on surface in high SR=54.8 at pseudo-dynamic condition at 80
o
C 

 

5.2.2.1 Visualization of calcium carbonate deposited on untreated and 

APTES-treated quartz surfaces in high SR=54.8 

SEM was again applied to visually observe the amount of mass deposited 

on the treated and untreated quartz surfaces. Figure ‎5-14 and Figure ‎5-15 illustrate 

lower magnification of SEM images of the quartz surfaces coated by low and high 

concentrations of APTES, respectively. Compared to the blank surface, the amount 

of scale on the coated surfaces decreased. Gravimetric results together with SEM 

images can be schematically presented in terms of the amount of calcium 

carbonate scale deposition on the surface. 
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a)  

b)

 

c) 

 

d) 

 

e) 

 

Figure ‎5-14. Low magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 0.05%, c) 0.1%, d) 0.15% and e) 0.2% APTES coated quartz 
surfaces in low SR= 54.8 at 80

o
C 
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a)  

b) 

 

c) 

 
d) 

 

e)

 
Figure ‎5-15. Low magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 2%, c) 4%, d) 6% and e) 8% APTES coated quartz surfaces in 
low SR= 54.8 at 80

o
C 

 

5.2.2.2 Morphology of calcium carbonate deposited on untreated and 

APTES-treated quartz surfaces in high SR=54.8 

Also, the influence of the treated quartz surfaces in high SR solution on 

calcium carbonate in terms of crystal morphology was investigated by SEM.  

Figure ‎5-16 and Figure ‎5-17 show the morphology of the CaCO3 crystal on the 

uncoated and coated quartz surfaces at 80oC after 24 h experiment. Figure ‎5-16 

illustrates the changes in crystal shapes for the blank and treated surfaces coated 

with low concentration of APTES (0.05-0.2%). It can be observed the morphology of 
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the crystals slightly changed for the blank and treated quartz surfaces in high SR 

solution compared to low SR. All the images seem to present calcite and aragonite 

crystals on the surfaces; however, XRD analyses required for studying crystal 

morphology which can be the subject of future work. The shape of calcium 

carbonate for untreated and treated surfaces (0.05-0.2%) appears a mixture of long 

chain and distorted cubic of calcium carbonate crystals. The crystallisation process 

of the scale deposited on the surfaces was not affected by APTES coating as was 

seen in section ‎5.2.1.2. However, the size of the cubic crystals on the blank surface 

is bigger which may indicate a shorter induction time (163). 

 

a)  

b)  c)  

d)  e)  

Figure ‎5-16. High magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 0.05%, c) 0.1%, d) 0.15% and e) 0.2% APTES coated quartz 
surfaces in high SR= 54.8 at 80

o
C 
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However in Figure ‎5-17, the shape of calcium carbonate formed on the 

surfaces treated by 2-8% APTES is different from 0.05-0.2% and shows mainly 

distorted calcite crystals, except from Figure ‎5-17e which presents the mixture of 

long chain and distorted calcite crystals. This is in agreement with gravimetric 

results as the efficiency of the quartz surface treated by 8% APTES is similar to 0.5-

0.2%. This suggests reduction of nucleation sites on the surface by APTES at 2-6% 

concentration since more matured calcite precipitated on the surface, which 

indicates more efficient surface coverage by these 2-6% concentrations. 

a)  

b)

 

c)

 

d)

 

e)

 

Figure ‎5-17. High magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 2%, c) 4%, d) 6% and e) 8% APTES coated quartz surfaces in 
high SR=54.8 at 80

o
C 
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5.3    The effects of APhS coating on scale deposition 

Another organosilane used in this research was APhS. As mentioned in 

Chapter 3, APhS was chosen due to the similarity with APTES in terms of having 

an amine group at the end of the tail structure and dissimilarity in terms of aromatic 

group in the middle of molecule structure. The structures of both organosilanes 

were shown in Chapter 3. According to the literature (244, 285), 3 mM (0.06%) 

APhS was applied to the quartz surface to create a SAM film on the surface. It is 

known that the different surfaces with different properties such as roughness, 

surface energy etc. can influence the calcium carbonate deposition on the surface 

(4, 163). Thus, the range of APhS concentration from 0.03% to 0.24% was selected 

to study the performance of the APhS-treated surface on scale deposition 

reduction. The same saturation ratios (low=4.77 and high=54.8) were employed.  

 

5.3.1 APhS coating behaviour in low SR= 4.77 

The same condition applied for the surfaces coated with APTES (the same 

brine composition as the one used for APTES with SR=4.77) was employed in this 

section. Gravimetric results after scale deposition test are presented in Figure ‎5-18.  

This figure illustrates the weight of mass deposited on the non-treated and treated 

surfaces as a function of APhS concentration. As is seen in Figure ‎5-18, compared 

with the result of blank quartz surface the mass deposition on the treated surfaces 

by APhS significantly reduced. Figure ‎5-18 shows that the amount of precipitation 

decreased by increasing the APhS concentration in the solution up to 0.06% 

followed by a small increase after 0.06%. 

 

 

Figure ‎5-18. The mass of calcium carbonate deposited on the APhS treated surface as a 

function of concentration at low SR=4.77 (error bars are too small and hidden in the 
markers) 
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In Figure ‎5-18, in comparison with APTES (Figure ‎5-3) a different trend is 

observed by APhS. According to the results in Chapter 4, if more surface coverage 

is obtained by increasing the APhS concentration, the results of Figure ‎5-18 shows 

no direct relation between the treated surface performances in reducing scale 

deposition and APhS concentration in film formation. 

With the aim of demonstrating the performance of the surfaces coated with 

APhS, Figure ‎5-19 is plotted to present the scale reduction results in terms of 

percentage. A significant calcium carbonate mass reduction is seen for all APhS-

coated surfaces. The minimum and maximum mass reduction is related to 0.06% 

and 0.18%, respectively. A poor linear regression is fitted to the results from APhS 

with correlation coefficient of R2= 0.56. 

 

 
Figure ‎5-19. The scale deposition reduction as function of APhS concentration at 

4.77SR and 80
o
C 

 

A systematic ranking of the surfaces in terms of the efficiency of scale 

deposition reduction is presented in Figure ‎5-20. This schematically illustrates the 

effect of APhS coating on placing the surfaces in high efficiency zone. 

 

 

 

 

 

 

Figure ‎5-20. Systematic ranking of surface performance in terms of amount of scale 

reduction on APhS-coated surface in high SR=4.77 at pseudo-dynamic condition at 80
o
C 
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5.3.1.1 Visualization of calcium carbonate deposited on untreated and 

APhS-treated quartz surfaces in low SR=4.77 

To support the gravimetric results, SEM was used to visualise the quantity 

of calcium carbonate formed on the quartz surfaces; this is shown in Figure ‎5-21. In 

comparison with the blank surface, the scale deposition on the treated surfaces 

clearly reduced. From visual observation less scale formation is seen for the treated 

surfaces with 0.03% and 0.06% APhS concentration where a small number of 

crystals are counted.  

a)

 

b)

 

c) 

 

d)

 

e)

 

f) 

 

Figure ‎5-21. Low magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 0.03%, c) 0.06%, d) 0.12%, e) 0.18% and f) 0.24% APhS coated 
quartz surfaces in low SR= 4.77 at 80

o
C 
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5.3.1.2 Morphology of calcium carbonate deposited on untreated and 

APhS-treated quartz surfaces in low SR=4.77 

Higher magnification images taken by SEM are shown in Figure ‎5-22 to 

study the morphology of the crystals on the untreated and treated surfaces. The 

shape of crystals for all the coated surfaces seems to be distorted calcite whereas 

the calcium carbonate crystals deposited on the blank quartz surface are clusters of 

calcite. This suggests the influence of the coating material on crystallisation 

morphology. The same behaviour as APTES effect in low SR is seen in 

Figure ‎5-22, i.e. the APhS coating block the nucleation sites of the quartz surface or 

reduces the surface energy of the quartz in order to lower tendency of scaling on 

the surface.  

a)  b)  

c)  d)  

e)  f)  

Figure ‎5-22. High magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 0.03%, c) 0.06%, d) 0.12%, e) 0.18% and f) 0.24% APhS coated 
quartz surfaces in low SR= 4.77 at 80

o
C 
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5.3.2 APhS coating behaviour in high SR = 54.8 

The performance of the treated quartz surfaces were also compared with 

the untreated surface in high SR=54.8 calcium carbonate solution. The same brine 

as in the APTES study for high SR was used for APhS. The gravimetric results of 

the amount of mass deposited on the treated and untreated surfaces are presented 

in Figure ‎5-23. It is observed that the amount of mass reduction considerably 

reduced on the treated surfaces compared with blank surface. The blank surface is 

shown as 0% concentration in x-axis. The minimum and maximum mass deposited 

on the APhS-coated surfaces were at 0.06% and 0.03% with 131.3 and 336.7 µg; 

respectively, whereas the amount of mass deposited on the blank surface was 

1500.7 µg. This indicates the high proficiency of the APhS coating on prevention of 

calcium carbonate scale deposition even in high SR solution. 

 

 
Figure ‎5-23. The mass of calcium carbonate deposited on the APhS treated surface as a 

function of concentration at high SR=54.8 (error bars are too small and hidden in the 
markers) 

 

In order to better illustrate the performance of the surfaces treated by APhS 

in terms of prevention of scaling on the surface, Figure ‎5-23 was re-plotted and is 

shown in Figure ‎5-24. This graph shows the efficiency of the surface in scale 

reduction as a function of the coating material concentration. More than 90% scale 

deposition reduction was obtained by APhS at 0.06% concentration after 24 h 

experiment at 80oC. 
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Figure ‎5-24. Scale deposition reduction as function of APhS concentration at 54.8 SR and 

80
o
C 

 

The impact of different SAM-surfaces on scale reduction was schematically 

presented in Figure ‎5-25.  

 

 

 

 

Figure ‎5-25. Systematic ranking of surface performance in terms of amount of scale 

reduction on APhS-SAM surface in high SR=54.8 at pseudo-dynamic condition at 80
o
C 

 

5.3.2.1 Visualization of calcium carbonate deposited on untreated and 

APhS-treated quartz surfaces in high SR=54.8 

SEM was employed to see whether visual observation supports the 

gravimetric results. On the other hand, as explained before in this chapter, different 

saturation ratios influence the amount of scale formed on the surface. Thus, the 

image analysis of calcium carbonate in high SR was carried out in terms of the 

aggregation and morphology of the crystals. From the results obtained at lower 

magnification in Figure ‎5-26, it is quite clear that the amount of CaCO3 decreased 

on the treated surfaces. The observation shows compact calcium carbonate 

clusters and the coverage of the blank surface by mineral scale whereas the treated 

surfaces present smaller clusters and more isolated crystals.  
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a)  b)  

c)  d)  

e)  f)  

Figure ‎5-26. Low magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 0.03%, c) 0.06%, d) 0.12%, e) 0.18% and f) 0.24% APhS coated 
quartz surfaces in low SR= 54.8 at 80

o
C 

 

5.3.2.2 Morphology of calcium carbonate deposited on untreated and 

APhS-treated quartz surfaces in high SR=54.8 

In addition, the noticeable observation from a visual point of view is the 

change of crystals shape for the treated surfaces compared to blank quartz. The 

shape of calcium carbonate deposited on the blank surface is a mixture of cubic 

and chain calcite whereas distorted cubic calcite formed on the treated surfaces.  
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a)

 

b)

 

c)

 

d)

 

e)

 

f)

 

Figure ‎5-27. High magnification SEM images of calcium carbonate deposited on a) non-

treated quartz surface, b) 0.03%, c) 0.06%, d) 0.12%, e) 0.18% and f) 0.24% APhS coated 
quartz surfaces in low SR= 54.8 at 80

o
C 

 

5.4   Comparison of APTES and APhS coated surface 

performances in CaCO3 deposition reduction 

In this section, all the scale test results for APTES and APhS coated 

surfaces in both low and high saturation ratios are shown in Figure ‎5-28. The main 

conclusion can be obtained from the bar chart is that both APTES and APhS 



- 115 - 

coating materials are able to reduce the tendency of the calcium carbonate crystal 

to the surface. In general, the efficiency of the APhS coating surfaces was higher 

than APTES.  

 

 
Figure ‎5-28. Comparison results of the amount of mass deposited on the surface versus 

coating material concentration in low and high saturation ratio solutions at 80
o
C after 24 h 

experiment 

 

Figure ‎5-29 illustrates the performance of the treated- and untreated-

surfaces in terms of calcium carbonate deposition at low and high SR at 80oC. 

Similar behaviours are observed from the treated surfaces in both low and high SR 

solutions. Better performances in low and high SR solutions are seen at 0.06% and 

6% for APhS and APTES, respectively. The standard deviations for APTES at 0.05-

8% are much bigger and cover a bigger range of data; this can be due to the 

challenges involved in reproducibility of APTES film formation in the presence of 

water in the solution. The excess of water in the solution of APTES yields more 

APTES polymerisation leading to less repeatability in the formation of APTES on 

the surface (244-246, 271, 342). Different film orientation may have led to different 

surface performance observed in these concentrations. For APhS at 0.12% and 

0.24%, same performance can be concluded by considering the standard 

deviations for these concentrations. Thus, it can be stated that similar behaviour 

was observed for all concentrations in low and high saturation ratio; however, with 

slightly better efficiency at low SR solutions. 
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Figure ‎5-29. Comparison results of the surface performance versus coating material 

concentration in low and high saturation ratio solutions at 80
o
C after 24 h experiment 

 

The best performance among all the treated quartz surfaces was obtained 

at 0.06% APhS coating concentration in both low and high saturation ratio 

solutions. This could be due to a uniform film formation on the quartz surface by 

0.06% APhS as was demonstrated in the literature (244, 285). Since the head 

group of both materials is amino group (NH2), it was expected to see the same 

performance for both APhS and APTES. The superiority of APhS could be owing to 

the rigid structure of the APhS which prevents tilting the molecule towards surface 

(244, 285). Also the gravimetric results obtained from APhS-coated quartz surface 

showed a stable behaviour in terms of mass reduction deposited on the surface in 

both low and high SR solutions under the same experimental condition (pseudo-

dynamic solution at 80oC for 24 h). On the other hand, APTES-coated surfaces 

demonstrated a bigger range of results; this could be due to either a wider range of 

concentration applied or the complexity of APTES film formation; the latter was 

discussed in the literature (244-246, 349). 

The reduction of amount of scale deposited on the treated surface is 

explained by the change of surface chemistry properties after coating. The point of 

zero charge (PZC) of quartz was shown to be between 2 and 3 (350-352) 

depending on composition materials, i.e. the quartz surface becomes negative in 

pH above 2-3, and positive in pH below 2-3. This is schematically shown in 

Figure ‎5-30a. Since the pH of the experiments for both low and high SR solutions 

was 7-8‎ (calculated‎by‎MultiScale‎™‎ (111)), the blank quartz surface in aqueous 

solution became negatively ionised. It was previously demonstrated that a 

negatively charged surface promotes crystal nucleation leading to growth of 
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polycrystalline calcium carbonate (163, 348), which favours CaCO3 growth. On the 

other hand, aminosilane treated surfaces become positively charged in aqueous 

solution (275)(see Figure ‎5-30b) due to presence of an electron pair on the amine 

group (353). This is based on the fact that amine group can potentially accept 

protons from Lowry-Bröwnsted acids and perform as a base (353). Moreover, it was 

demonstrated (348) that the positively charged surface created an unfavourable 

substrate for the nucleation of calcium carbonate. Therefore, this explains the 

performance of the aminosilane-coated surfaces in terms of reducing the amount 

calcium carbonate deposited. However, it was reported that a neutral surface limits 

the number of available nucleation sites on the surface and promotes formation of 

single calcium carbonate crystals (5, 181, 348). Since the APhS-treated surfaces 

are less positively (towards neutral) charged, better performance of these surfaces 

in terms of scale deposition reduction may be explained by the fact that APhS might 

reduce the available sites for crystal nucleation. 

 

a)

 
 
b)

 
Figure ‎5-30. Surface charge distribution of a) untreated and b) aminosilane-treated 

behaviours in aqueous solution  

 

Since the head group of both aminosilane tails is an amine group, it was 

expected that similar behaviour from both coating materials would be observed. 

The amine group on the APTES is a much stronger base than on the APhS owing 

to aromatic structure of APhS (353) leading to more positively charged surface by 

APTES than APhS. There are two factors that can determine the strength of amine 

of a base: i) how easy a lone pair attracts a hydrogen ion and ii) how stable the 

formed pair is. The alkyl group in APTES tends to repel the pair electrons on 

nitrogen, which introduce more negative charge on the APTES. This makes APTES 

stronger base with pKb=3.16. Figure ‎5-31 illustrates the process of reaction 

between APTES and water. 
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Figure ‎5-31. The ability of water to stabilize the corresponding ammonium ion is 

diminished in presence of alkyl group which results in formation of stronger basis and 
reduction of APTES acidity  

 

On the other hand, in APhS the electron pair in nitrogen interferes with 

delocalised ring of the phenyl; this creates new delocalised electrons. Thus, the 

lone pair of nitrogen in APhS would not be fully available to attract a hydrogen ion 

after interacting with the phenyl ring; i.e. the delocalised electrons are more 

attractive to the lone pair of nitrogen. Figure ‎5-32 shows the interaction of electron 

pair of nitrogen and phenyl ring. 

 

 

Figure ‎5-32. The theoretical basis for the diminished basicity of APhS 

 

On the other hand, interaction with hydrogen ion will disrupt the delocalized 

electrons – which are more stable. This requires more energy and will not occur 

easily, which makes phenylamine a weaker base with pKb=9.38. The smaller pKb, 

the stronger base (353). The interaction between phenyl group and water is shown 

in Figure ‎5-33. Since after interaction with water increases the pKb of APhS, the 

tendency of APhS in formation of acid increases which may affect the scale 

reduction on the treated quartz surfaces.  
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Figure ‎5-33. Phenyl group of APhS causes creating a molecule with higher pKb 

introducing weaker basis and stronger in acidity 

 

As mentioned in Chapter 2, horizontal and vertical polymerization of APTES 

molecules in the presence of water complicates the film formation of APTES on 

quartz surface (245, 246). It was also believed that APTES will be more cross-

linked to one another in the presence of water (246, 270). Moreover, the APTES 

molecules are flexible and can easily tilt towards the surface, which makes an 

unfavourable film formation (244). This is schematically illustrated in Figure ‎5-34a, 

which can explain the wider range of efficiency in terms of scale deposition 

reduction on APTES-treated surfaces. On the other hand, it was demonstrated (244, 

285, 354) that APhS creates a uniform film on a quartz surface due to the rigid 

structure of benzene. This phenomenon explains the better efficiency of APhS in 

reducing the amount of calcium carbonate deposited on the coated surfaces 

compared with APTES which indicates the importance of film orientation on 

reduction of calcium carbonate scale deposition. The both positive and neutral 

surfaces do not favour deposition of calcium carbonate scale (348), however, 

neutral surface influences more on scale reduction which could be one of the 

factors explain the different performance of APTES. Moreover, the other aspect, 

which can explain the different behaviour of these aminosilanes, is the structure of 

the film deposited on the quartz surface. This suggests that the amount of scale 

deposited on the treated quartz surface is strongly dominated by the structure and 

the orientation of coating molecule. This can also suggest that in case of a uniform 

formation of APTES with amine group upward at the surface, the same 

performance may be resulted. This can be a subject of future work.  
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a)  

 

b)      

Figure ‎5-34. Possible schematic of film formation structures of a) APTES and b) APhS on 

quartz surface 

 

As was mentioned in Chapter 2 and demonstrated in Chapter 4, formation of 

APTES on a quartz surface is a complicated process and involves a highly-

controlled condition. This could be the explanation the larger scatter in the results 

from scale tests. In Chapter 4, it was shown that the highest surface coverage was 

obtained at 8% APTES concentration; however the results of 6% were acceptably 

close to the 8%. As can be seen from Figure ‎5-28, the best results for both low and 

high SR in APTES was obtained at 6%. This suggests that the film formation at 6% 

is more uniform with amine group upwards at the surface than other concentrations. 

In contrast, at 8% owing to lack of water presented in the solution more amine 

groups were protonated and reacted with the quartz surface or oriented and bended 

towards the surface; which can explain the results at 8%. The effect of water was 

discussed in the literature (244-246, 267, 355). This will be analysed more in detail 

in Chapter 6, which studies the surface characterisation of treated surfaces and this 

will be also discussed in Chapter 7.  
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5.5    Summary 

In this chapter, the behaviour of the treated surface in terms of the mass 

reduction of calcium carbonate on the surface was compared with the un-treated 

quartz surface. The results of this chapter are important as it presents the main 

objective of the research, i.e. the potential for coating internal surface of rock to 

reduce/prevent scale deposition/adhesion. This plays a critical role for further 

investigations of the idea in terms of creating less favourable surface in near 

wellbore area to reduce the severity of the scale deposition in production loss of the 

well. Various concentrations of APTES and APhS were applied to the quartz 

surface in coating process. Microbalance and SEM were employed to measure and 

observe the amount and morphology of the scale deposited on the surface. Some 

major and minor conclusions of the chapter are presented below: 

1. The amount of calcium carbonate scale deposited on the surface coated by 

APTES and APhS significantly reduced in comparison with uncoated quartz 

surface. 

2. Up to 95% of scale deposition reduced on the 0.06% APhS-coated surface 

for both low and high SR, where the minimum efficiency was observed on 

0.05% APTES-coated surface.  

3. Compared to APTES, the amount of scale deposited on the surfaces treated 

by APhS were more stable and much lower. 

4. The amount of calcium carbonate scale deposited on the all surfaces were 

higher in high (54.8) SR than low (4.77) SR. 

5. Morphology of the calcium carbonate crystals were slightly changed on the 

treated surfaces in comparison with the untreated quartz surface. Distorted 

crystals were observed on treated surfaces in low SR solutions, whereas 

distorted and chain crystals were dominant in high SR solution. 

6. The reduction of calcium carbonate scale deposition on the treated-surfaces 

can be related to lower number of available sites on the surfaces by forming 

aminosilane films. 

7. The feasibility of a proactive scale management by creating unfavourable 

rock surface for scale deposition in near wellbore area was demonstrated in 

this chapter. 
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Chapter 6  

Film Characterisation and Surface Properties of 

APTES and APhS Coating 

 

6.1    Introduction 

In this chapter, physicochemical properties of two different organosilane 

films on quartz surface are studied in order to better understand the results of scale 

tests (Chapter 5). As shown in Chapter 4, various concentrations of the APTES and 

APhS were applied to create a film on the quartz surface subsequently the effect of 

this coating on reduction of scale deposition on the treated quartz substrates was 

assessed. The objective of this chapter is to employ a wide range of surface 

characterisation techniques to comprehensively analyse the surfaces of Chapter 5 

after formation of the film. Film composition, roughness and surface energy of 

APTES and APhS were analysed by XPS, contact angle measurements and 3D 

optical profilometery, respectively. Each coating chemical was studied using each 

of the surface characterisation methods, before the results are compared together.  

Firstly, XPS was employed to characterise the chemical properties of the 

treated surface. This was performed by monitoring the concentration and binding 

energy of nitrogen. Figure ‎6-1 illustrates APTES and APhS molecular structures 

with primary amine on the tail of the molecules. As mentioned in Chapter 2, since 

most of rock analogue is quartz (SiO2), the organosilane group was chosen to 

interact with quartz surface. After film formation procedure, it was expected Si head 

group bonds to the quartz surface and primary amine of the molecules cover the 

top layer of the surface.  

 

Figure ‎6-1. APTES and APhS molecular structures 
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Secondly, the physical properties of the treated surface were analysed by 

studying the wettability and the roughness of the surface. Static contact angles of 

the surfaces were measured using a water droplet. In addition, the topography of 

the treated and untreated surfaces was measured by optical profilometery. The 

map of analysis to approach the objective of this chapter is presented in Figure ‎6-2. 

 

Film Characterisation

APTES 0.05%- 8%

Results

 

Summary

 

APhS 0.03%-0.24%

 

 XPS

 

Wettability
 

Roughness

 

 

Figure ‎6-2. Summary of Film Characterisation analyses in Chapter 6 

 

6.2    X-ray Photoelectron Spectroscopy results of APTES- 

and APhS-treated surfaces 

XPS is capable of detecting and quantifying the elements on the surface as 

well as identifying chemical states of the constituent elements by showing a clear 

binding energy fingerprint. This section investigates the chemical state and shifts of 

treated surfaces by XPS. (C1s) hydrocarbon peak at 284.8 eV is used as a 

reference for all binding energies. The presence of APTES and APhS on the quartz 

surface were confirmed by N1s peak (398.7-402 eV (222, 244, 285, 356-359)) and 

the more intense C1s peak (284.8 eV) in the survey scan of XPS. If the ethoxy 

groups (-OCH2CH3) of APTES and APhS groups react to the quartz surface, the 

free amine group on the head of aminosilanes can be detected at 398.7-399.6 eV 

by XPS(222, 244, 285, 356-359). However, some amine moieties can have 

hydrogen bonding with each other and the surface and become protonated; this can 
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be observed by XPS at 400-402 eV (222, 244, 285, 356, 359). The degree of 

protonation as well as nitrogen presentation detected by XPS can be used to 

explain the different behaviour of the APTES- and APhS- treated surfaces with 

respect to scale deposition observed in Chapter 5. Before analysing N1s binding 

energy for the treated surfaces, a survey scan was acquired on a bare quartz 

surface to detect the main composition of quartz surface. The survey scan of the 

blank quartz surface is presented in Figure ‎6-3. 

 

Figure ‎6-3. A survey scan of the blank quartz surface showing main composition of the 

surface 

 

Silicon, oxygen, carbon are observed in the survey scan of the untreated 

quartz surface in Figure ‎6-3 as main compositions; these are the common elements 

between the quartz, APTES and APhS. Based on APTES and APhS molecular 

structure, the only element that can differentiate the survey scan of coating 

materials is nitrogen. Therefore, surveys scan of the treated surfaces were acquired 

to detect the nitrogen peak. Figure ‎6-4 illustrates a survey of APhS coating surface 

presenting the N1s spectrum around 399 eV (244, 356-359) for the surface coated 

by 0.06% APhS; this N1s peak is related to amine group of APhS. 

After detecting the amine on the treated surfaces, the C1s high resolution 

spectra were analysed before studying the N1s spectra. The binding energy at 
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284.8 eV was referred to C1s (360). Figure ‎6-5 illustrates the high resolution of C1s 

of the blank and 0.06% APhS-treated surfaces. 

 
Figure ‎6-4. A survey scan of the treated quartz surface by 0.06% with the main 

compositions  

 

Two components at 284.8 and 285.7 eV are observed in Figure ‎6-5a, which 

are referred to C-H and C-O, respectively (244). During silanization of aminosilane 

on the treated surface, the -O-CH3 peak component disappeared by condensation 

of the silane with the hydroxyls of the substrate to create Si-O-Si (244). Then the C-

O peak is replaced by a C-N peak component at 285.7-286 eV which indicates the 

presence of the aminosilane on the quartz surface (244). Figure ‎6-5b shows the 

C1s binding energy of C-H and C-N of the surface coated by 0.6% APhS. 

a)

 

b)

 
Figure ‎6-5. C1s high resolution spectra of the a) bare quartz and b) treated quartz by 0.6% 

APhS 

x 10
4

2

4

6

8

10

12

14

16
CP

S

1200 900 600 300 0

Binding Energy (eV)

x 10
2

30

35

40

45

50

C
P

S

291 288 285 282 279

Binding Energy (eV)

x 10
2

4

6

8

10

12

14

16

18

20

22

24

C
P

S

310 305 300 295 290 285 280

Binding Energy (eV)

N 

Si 

O 

C-O 

C-H 

C-N 

C-H 



- 126 - 

The N1s spectra were analysed in detail to study the possible composition 

which occurs while APTES or APhS reacting with the quartz surface in the solution. 

The information obtained from the N1s peak presents the chemical state of the 

amino group of APTES or APhS affecting mineral scale deposition during the scale 

test. As mentioned in Chapter 5, in comparison with the blank quartz surface, the 

coated surfaces with APTES and APhS made a clear reduction of calcium 

carbonate deposition and adhesion; however, each concentration of APTES and 

APhS behaved differently in relation to the amount of scale deposited on the 

surface. Thus investigating the chemical states and binding energy shifts of N1s 

spectra of the different concentrations can be a useful method to interpret the 

different behaviour of the coated surfaces. Although the binding resolution of some 

chemicals are greater than the relative chemical shifts owing to intrinsic width of 

molecule peak (361), high resolution spectra of some molecules are able to 

distinguish between the chemical shifts. Hydrogen-bonded/protonated amine can 

be postulated to exist from free amine groups on the surface; this was 

demonstrated in the literature (222, 244, 285, 356-359, 362). However, hydrogen-

bonded and protonated amine cannot be separated (356) by high resolution N1s 

spectrum on amine.  

 

6.2.1 Chemicals states and binding energy shifts of APTES-

treated surface  

High resolution N1s spectra of the quartz surfaces treated by 0.05%, 0.1%, 

0.15% and 0.2% APTES are presented in Figure ‎6-6. As mentioned, in N1s 

spectrum the free NH2 can be observed between 398.7 and 399.6 eV. The 

hydrogen-bonded or protonated amines can be also observed ~400 eV. Figure ‎6-6a 

shows that the high resolution N1s spectrum consists of two peaks centred at 399.3 

and 401.7 eV with the ratio of 1:1.4 for 0.05% concentration. The former presents 

the primary amine group and the latter indicates the hydrogen-bonded or 

protonated amine of APTES on the surface. Figure ‎6-6b illustrates three peaks for 

0.1% APTES at 399.2 eV, 401.3 eV, and 403.4 eV. The lowest-binding energy in 

N1s high resolution spectra refers to the primary amines, the middle peak to the 

hydrogen binding and the highest-binding energy to the protonated amines (356, 

363-365). 

Hydrogen-bonded and protonated amines are considered H-

bonded/protonated amine (---NH2/NH3
+) in this study, since it is difficult to 

distinguish between H-bonded and protonated amines by XPS due to the fact that 
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in most cases the relative chemicals shifts of protonated and H-bonded amines are 

below the energy resolution (366). Thus, the ratio between NH2 and ---NH2/NH3
+ 

was 1:1.9 for the surface treated by 0.1%. The detected peaks for 0.15% and 0.2% 

in Figure ‎6-6c and Figure ‎6-6d are 399.4/401.8 eV and 399.2/401.5 eV for primary 

and H-bonded/protonated amines with the ratios of 1:1.5 and 1:1.2, respectively. 

The higher percentage of peaks at >400 eV indicates that higher number of APTES 

were protonated or hydrogen bonded during the coating process.  

 

a)

 

b)

 
c)

 

d)

 
Figure ‎6-6. High resolutions N1s spectra of the quartz surfaces coated with a) 0.05%, b) 

0.1%, c) 0.15% and d) 0.2% APTES 

 

The ratio of NH2/NH3
+ for the coated surfaces by APTES (0.5%-0.2%) is 

presented in Table ‎6-1. 
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Table ‎6-1. Ratio of primary amines to hydrogen/protonated amines on the treated surfaces 

by APTES (0.05%-0.2%) 

APTES concentration (%) 0.05 0.1 0.15 0.2 

NH2/NH3
+ 1:1.4 1:1.9 1:1.5 1:1.2 

 

The percentages of NH2, ---NH2/NH3
+ and nitrogen of each concentration 

(0.05-0.2%) are presented in Figure ‎6-7. In general, all the concentrations show a 

higher percentage of H-bonded/protonated amine on the surface around 60% with a 

lower percentage of primary amine (~40%). Although silanization on the quartz 

surface does not happen without introducing water to the solution, excess of water 

results in hydrogen-bonds and protonation of amino moieties on the surface (245, 

246, 270, 355, 367). This indicates that lowering the concentration of APTES in the 

solution led to more H-bonded/protonated amines, while polymerised aminosilane 

competes with alkoxy groups. The more H-bonded/protonated amines on the 

surface the more weak bonds on the surface, which may result in dissociation of 

aminosilane in water from surface. The concentration of nitrogen detected by XPS 

increased by APTES concentration indicating higher amount of APTES on quartz 

surface. 

 
Figure ‎6-7. Percentage of free amine and H-bonded/protonated amines of the quartz 

surfaces treated by different concentrations of APTES 

 

Another range of APTES concentrations to create a SAM film on the quartz 

surface was 2-8%. Figure ‎6-8 displays high resolution N1s spectra collected at 2%, 

4%, 6% and 8% APTES. The binding energies of hydrogen bonded/protonated and 

primary NH2 for 2% APTES were observed at 400.9 eV and 399.5 eV; respectively, 

with NH2/NH3
+ ratio of 2.7:1. In the image b of Figure ‎6-8, the N1s peak presents a 

higher percentage of free amine for the quartz surface coated by 4% APTES than 
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by 2% at 398.7 eV, whereas a small shift is seen at 399.7 eV detecting hydrogen 

bonding/protonation between APTES and the quartz surface. This spectrum shows 

a lower percentage of protonated APTES than the free amines where the ratio of 

free amine to the H-bonded/protonated amine is 3.4:1. In comparison with 2% and 

4% APTES, a higher percentage of N1s high resolution spectrum was acquired for 

the primary NH2 component (398.8 eV) at 6% APTES. The amine shift at 400.2 eV 

is related to H-bonded/protonated amine on the surface with the proportion of 1:9 to 

the primary amine. The surface treated by 8% APTES showed highest H-bonded 

and protonated amines which is attributed to the higher binding energy signal at 

400.3 eV for N1s high resolution (see Figure ‎6-8d), and the lower binding energy 

signal at 399.5 is related to primary amine, with the ratio of 1.9:1, respectively. The 

decrease in percentage of free amines at 8% could be resulted from the lack of 

required water in order to hydrolysing APTES solution (244-246). The sensitivity of 

water concentration on APTES adsorption on the surface was discussed in the 

literature (244-246, 270, 355, 367).  

  

  
Figure ‎6-8. High resolutions N1s spectra of the quartz surfaces coated with a) 2%, b) 4%, 

c) 6% and d) 8% APTES 
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The ratio of NH2/NH3
+ for the treated quartz surfaces by APTES (2%-8%) is 

presented in Table ‎6-2. 

 

Table ‎6-2. Ratio of primary amines to hydrogen/protonated amines on the treated surfaces 

by APTES (2%-8%) 

APTES concentration (%) 2 4 6 8 

NH2/NH3
+ 2.7:1 3.4:1 9:1 1.9:1 

 

The percentages of the primary, H-bonded/protonated amines and nitrogen 

for the surfaces of which treated by 2-8% APTES are shown in Figure ‎6-9. The 

same trend as low-range APTES for nitrogen percentage is observed for high-

range; the nitrogen content increased by concentration indicating more amount of 

APTES on quartz surface. Among all concentrations, higher percentage of free NH2 

is seen for the quartz surface treated by 6% APTES, which indicates more uniform 

and less oriented film formation on the quartz surface. As shown in Chapter 4, the 

highest surface coverage was obtained by 8% APTES in the solution, however the 

lowest primary amine was observed at 8%. This can be explained by orientation 

and polymerisation of APTES at 8% on the quartz surface. The quartz surface 

treated by 4% APTES has the second highest primary amine followed by 2% with 

72.7%. Primary amine content increased by concentration except from 8%, which 

indicates the number of siloxane bonds increased up to a APTES concentration of 

6% suggesting an upright conformation. 

 

 
Figure ‎6-9. Percentage of free amine and hydrogen bonded/protonated amine of the 

quartz surfaces coated with different concentrations of APTES 
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6.2.2 Chemicals states and binding energy shifts of APhS-treated 

surface 

APhS films were also characterised by XPS to study the chemical states of 

the film treated on the quartz surfaces. The wide scan and the high resolution C1s 

spectrum for the surfaces treated by APhS were similar to the surfaces coated by 

APTES (244) which were illustrated in Figure ‎6-4 and Figure ‎6-5. The N1s spectra 

for the surfaces treated by different percentage of APhS were presented in 

Figure ‎6-10. There were two or three binding energies for all the surfaces treated by 

APhS with the primary amine group in majority at low-energy signal and H-

bonded/protonated amines at high-energy signals appearing like a shoulder next to 

the free amine peak (356, 359, 368-370). As observed in N1s high resolution 

spectra, there are two peaks for 0.03% and 0.06% APhS which the low-binding 

signal is attributed to the primary amines and the high-binding signal attributed to 

the H-bonding/protonated amines. Whereas, there are three peaks for 0.12%, 

0.18% and 0.24% APhS that the lowest-binding energy in N1s high resolution 

spectra refers to the primary amines, the middle peak to the hydrogen binding and 

the highest-binding energy to the protonated amines (356, 363-365). The lowest 

concentration of APhS (0.03%) showed a high percentage of free amine and the 

ratio between the primary amines at 399 eV and the H-bonded/protonated amine at 

400.5 eV is 6.7:1.  

At 0.06% APhS, the N1s high resolution showed the highest percentage of 

primary amine among the quartz surfaces treated by different concentrations of 

APhS and proportion of the peak detected at 399.2 eV and H-bonding/protonated 

amine peak at 401.9 eV was 46.6:1, which indicates that the majority of APhS in the 

solution underwent covalent bonds via methoxy groups. According to the literature 

(244, 285, 354), 0.06% APhS is able to create a uniform film on the quartz surface 

which was demonstrated by high content of primary amine in XPS. This is in 

agreement with the XPS result of 0.06% in this work which may similarly indicate a 

SAM film formed on quartz surface. The quartz treated by 0.12% APhS (image c) 

presents a low-energy signal at 398.7 eV for the primary NH2, the middle signal at 

400.1 eV referring to the hydrogen bonding of amine and the higher-energy signal 

relating the protonated amine. The ratio between NH2 and ---NH2/NH3
+ was 3.6:1 

for the surface treated by 0.12% APhS which shows a reduction of the primary 

amine compare to 0.03% APhS. The N1s spectrum at 0.18% showed peaks at 

399.7 eV for the free NH2, at 401.5 eV for H-bonded and at 402.8 eV for NH3
+. The 

ratio of primary to H-bonded/protonated amines is 4.3:1. There were also three 

binding energy signals for N1s high resolution spectrum of 0.24% APhS at 399.4 
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eV, 401 eV, and 402.6 eV referred to primary, hydrogen bonded and protonated 

amines; respectively, with the proportion of 5.2:1 (NH2 to ---NH2/NH3
+). 

a) 

 

b) 

 
c)

 

d)

 

e)   
Figure ‎6-10. High resolutions N1s spectra of the quartz surfaces coated with a) 0.03%, b) 

0.06%, c) 0.12%, d) 0.18% and e) 0.24% APTES 
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The ratio of NH2/NH3
+ for the treated surfaces by APTES (0.06%-0.24%) is 

presented in Table ‎6-3. 

Table ‎6-3. Ratio of primary amines to hydrogen/protonated amines on the treated surfaces 

by APhS (0.06%-0.24%)  

APhS concentration (%) 0.03 0.06 0.12 0.18 0.24 

NH2/NH3
+ 6.7:1 46.6:1 3.6:1 4.3:1 5.2:1 

 

Figure ‎6-11 presents the percentage of the primary, H-bonded/protonated 

amines and nitrogen for the surfaces of which treated by various concentrations of 

APhS. It is observed that percentage of nitrogen increased by concentration 

indicating more APhS molecules on quartz surface. In general, the percentage of 

primary amine is higher than H-bonded/protonated amines in all the APhS 

concentrations. Among APhS concentrations the highest ratio of primary amine was 

recorded for the surface treated by 0.06% APhS with 97.9% which is in agreement 

with‎ Puniredd’s‎ results‎ (285). Moreover, Zhang and Srinivasan (244, 354) 

demonstrated 0.06% (3 mM) APhS concentration gives a uniform SAM film with 

nearly 100% primary amine. Therefore, the XPS results of APhS may suggest: i) 

formation of a uniform SAM film at 0.06% and ii) the film formed at 0.03% and 0.12-

0.24% underwent H-bonding or protonation. 

 
Figure ‎6-11. Percentage of free amine and hydrogen bonded/protonated amines of the 

quartz surfaces coated with different concentrations of APhS 
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energy shift of N1s of APTES and APhS together and to interpret the different 

behaviour of these aminosilanes on the quartz surface at different concentrations. 

Figure ‎6-12 shows the percentages of nitrogen on the quartz surfaces for APTES 

and APhS as well as primary and H-bonded/protonated amine percentages. The 

graph shows that by increasing the concentration of coating materials in the 

solution, the adsorption of APTES and APhS on the quartz surface increased. The 

higher range of APTES concentrations showed higher percentage of primary amine 

on the surface compared to the lower APTES concentrations with highest primary 

amine at 6%, which may indicate a SAM on the surface at 6% APTES. In general, a 

high content of primary amine was observed for all APhS concentrations compare 

with APTES; this behaviour was previously demonstrated (244). This is due to the 

effect of rigid benzene ring in APhS which prevents orientation of the amine group 

towards the surface in order to create H-bonds (244, 285). It was previously 

reported (244, 285, 371, 372) that the required concentration of APhS to create a 

SAM on quartz surface is 0.06%, which is in agreement with our results as the 

highest percentage of primary amine was obtained at 0.06% APhS. It was also 

demonstrated (244, 285, 354) that almost 100% primary amine was obtained by 

APhS at different conditions. However, there is a little information regarding 

potential effects of APhS concentration on the chemical states of amine on the 

surface. Besides, the APhS film formation was performed in toluene and it was 

shown (225, 270) that toluene prevents the flip-flop phenomena of organosilane 

during film formation. This can explain the higher content of primary amine by 

APhS. In this study, 98% primary amine was obtained at 0.06% APhS which 

indicates a uniform surface morphology; this was shown by Zhang and Srinivasan 

(354). Lower nitrogen percentage obtained at 0.03% may suggest an incomplete 

coverage compare with 0.06-0.24%. Lower content of primary amine at 0.12-0.24% 

with higher concentration of nitrogen may suggest polymerisation of APhS and 

formation of H-bonded on the surface.  

Higher percentages of H-bonded/protonated amine were obtained in low 

range (0.05-0.2%) of APTES concentrations. Low primary amine content at low 

APTES concentrations (0.05-0.2%) can be due to higher concentration of water in 

the solution. The amount of water, film deposition time, aminosilane purity and post-

curing process are the important elements to form a uniform layer of aminosilane on 

quartz surface (206, 245, 246). For example, it was demonstrated that curing the 

treated surface at a temperature higher than 100oC will increase the percentage of 

primary amine on the surface by breaking the hydrogen bond from the surface and 

re-silanization on the quartz surface (244, 245, 267, 287, 373). Post curing by 
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temperature was skipped in this research since the application of this work is in oil 

fields and applying post-curing process to formation rock will be impossible. It was 

also demonstrated (218, 374) that loose aminosilane can be liberated by alcohol or 

water rinsing immediately after silanization process, which was used in this study. 

In this work, the experiment conditions were constant for all experiments for APTES 

except from the concentration. Since the presence and amount of water in the 

solution were demonstrated to be a determining factor in formation of a uniform film 

of APTES on the quartz surface (206, 244-246, 270, 375), it can be stated that the 

difference in water concentrations resulted in various components percentages of 

nitrogen for different APTES concentrations. Although silanization does not happen 

on surface without presence of water, the excess of water also results in formation 

of polymerised aminosilanes (244-246). As can be seen from Figure ‎6-12, high 

concentration of H-bonded/protonated amines were obtained in low APTES 

concentrations which may indicate that APTES were mainly polymerised in the 

solution and later deposited on the quartz surface. The impact of water is promoted 

in case of APTES deposition owing to self-catalysing the formation of both 

chemisorbed and polymerised APTES by the aminopropyl group (376).  Amine 

moieties can compete with alkoxy groups to react with the surface (355) leading to 

formation of H-bonded/protonated amines on the surface. The amount of H-

bonded/protonated amines is influenced by the amount of water in the solution 

(245). It can be concluded that in low percentage of APTES due to higher 

concentration of water in the solution, mainly polymerised APTES adsorbed on the 

substrate with or without amine moieties tilting towards the quartz surface. 

 
Figure ‎6-12. Percentage of primary amines, hydrogen bonded/protonated amines and 

total percentage of nitrogen for the quartz crystals treated by APTES and APhS 
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On the contrary to low concentration (0.05-0.2%) of APTES, diverse binding 

energy signals were observed in high APTES concentrations (2-8%); i.e. the bigger 

value of the components is attributed to primary amine. The highest primary amine 

was obtained at 6% APTES concentration with 87.4%. The second and the third 

highest primary amine were gained at 4% and 2% with 77.3 % and 72.7%, 

respectively. It is observed that when the APTES concentration increases from 6% 

to 8%, primary amine content decreases. However, from 2% to 6% the percentage 

of primary amine increased indicating a film with most of the primary amines 

upward. This indicates that APTES molecules mostly created siloxane bonds with 

quartz surface presenting free amines upward. Although the percentage of primary 

amines for 2-8% is higher than H-bonded/protonated amines and the experiments 

carried out under the same conditions, the amount of water plays a critical role in 

the relative percentage of H-bonded/protonated amines. As it is shown in 

Figure ‎6-9, the minimum concentration of ---NH2/NH3
+ was obtained at 6% APTES 

suggesting the optimum quantity of water was presented at this concentration. The 

primary amine content increased by the APTES concentration; however the 

opposite behaviour was seen at 8% APTES with 65.7% primary amine (the lowest 

among 2-8%).  This may indicate that at 2-6% APTES, the adsorption occurred in 

the shape of monomers, dimers or small aggregates; whereas at 8% APTES 

monomers polymerised before adsorbing on the quartz surface forming large 

aggregated polymers of APTES. This phenomenon might cause non-uniform and 

less-ordered structure of APTES molecules deposited at 8%. This can be discussed 

more in detail by roughness measurements, which will be studied in this chapter. 

Zhang and Srinivasan (244) showed lower percentage of primary amines by 

increasing the concentration of APTMS (instead of ethoxy groups in APTES, 

APTMS consists of three methoxy groups) from 3 mM to 10 mM in solution of 

toluene for 5 h (they believe that 3 mM (~0.07%) is the optimum concentration of 

APTMS to form a SAM film in toluene solution for 5 h). This is in agreement with our 

results with assumption of 6% APTES in ethanol/water solution for 30 min creates a 

SAM film of APTES on quartz surface, increasing the concentration from 6% to 8% 

gives lower primary amine on the surface. Zhang and Srinivasan (244) also 

demonstrated that various primary amine contents can be achieved at different 

experiment times under the same condition. It was shown (244) that the maximum 

(~85%) primary NH2 was obtained after 5 h experiment in 5 mM (~0.12%) in 

toluene solvent at room temperature. The results of this work show that by 

changing the type of solvent from toluene to ethanol/water and increasing the 

APTES concentration to 6% at ambient temperature, even higher primary amine 
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content (87.4%) in 30 min experiment can be achieved. This also suggests that 

higher percentage of primary amine can be gained even at low range of APTES 

concentration (0.05-0.2%) by increasing the experiment time; this can be the 

subject of future work. 

It was previously demonstrated that the percentage of primary amine 

decreases by increasing the concentration of APTES in anhydrous toluene solution 

(244). As mentioned above, anhydrous toluene can decay the flip-flop phenomenon 

in formation of APTES on quartz surface and it was also demonstrated (244) that a 

trace amount of water in toluene solution can give a high amount of free amine on 

the surface. However, in this study ethanol/water solution was employed as it was 

attempted to use a solution of which can be applied to oil fields. SAM on different 

substrates was also obtained by higher concentrations of aminosilanes in various 

solutions with different silanization time (258, 260, 267, 271, 341, 377-380). As 

mentioned above and in Chapter 2, there is a wide range of work presenting 

formation of aminosilane on different substrates in various conditions 

(concentration, temperature, post-processing, type of solution, concentration of 

solution, time, etc.); this was not the focus of this work. The attempt was to use a 

simple process to create SAM on quartz surface in order to modify the surface 

properties of formation rock to prevent/reduce mineral scale deposition. 

 

6.3    Wettabillity and surface energy results of APTES- and 

APhS-treated surfaces 

As explained in Chapter 3, the wettability of quartz surface is altered after 

treating by APTES and APhS. Thus, the static contact angles were measured to 

compare the behaviour of the treated quartz surfaces. Figure ‎6-13 shows some of 

the images taken before and after film formation of aminosilanes showing that the 

APTES and APhS decreased the hydrophilicity of quartz surface. The relevant 

contact angle for the blank quartz surface is observed in image (a) showing that the 

water droplet almost spread on the surface and create a flat droplet on quartz 

whereas the treated surfaces by APTES and APhS create a droplet with higher 

contact angles.  

 



- 138 - 

 

  

  
Figure ‎6-13. Contact angle measurements for a) blank quartz surface and b-e) treated 

surfaces by APTES  

 

6.3.1 Surface energy of treated surfaces by APTES  

Figure ‎6-14 illustrates the water contact angles of the untreated and treated 

surfaces by APTES at different concentrations. The low value of contact angle of 

blank surface is due to using plasma chamber to remove the contamination from 

the surface; this was also observed by previous work (255). The decrease of 

hydrophilicity of treated surface is associated to presence of alkyl chain of APTES 

introducing more hydrophobic properties to the bare quartz surface (255). The 

graph shows that the water contact angle of the surface decreased for the higher 

range of APTES (2-8%) whereas the quartz surfaces coated by low ranges of 

APTES (0.05-0.2%) show a higher contact angle. Water contact angles of APTES 

films on substrate are related to several aspects such as amino, ethoxy and silanal 
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groups in the film, solvent, degree of cross-linking and water content. The higher 

contact angle of the low range of APTES is the result of high amine protonation, 

which means more hydrophobic character of APTES at low concentrations. 

It was previously shown that the presence of H-bonded/protonated amine 

decreased wettability of aminosilane SAM of surface (222, 255, 259, 339, 381). As 

shown in XPS results high percentages of H-bonded/protonated amines were 

observed at low APTES concentrations (0.05-0.2%). This may indicate that most of 

the APTES molecules - which bended to surface - formed H-bonded/protonated 

amines instead of undergoing siloxane bonds. An increase in contact angles due to 

tilted amines to the surface was shown previously (255, 259). It was also reported 

that the hydrophobicity of methyl-terminated silane surfaces are higher than 

surfaces covered by amino group (342). The reasons made above to explain the 

behaviour of treated quartz surfaces by low range of APTES could also clarify the 

water contact angle measurements gained for the surfaces coated by high APTES 

concentration. 

As seen in Figure ‎6-14, the contact angles obtained at high concentrations 

decreased which can be related to the primary amine content at these 

concentrations. Since the increase of H-bonding/protonation of amine groups 

decreases the wettability of the surface (222, 255, 259, 339, 381); thus, increase of 

primary amine groups promote the decrease of contact angles compare to the low 

range of APTES. According to the XPS results in high APTES concentrations, the 

percentage of primary amine increased by APTES concentration from 2% to 6% 

which is in agreement with the results obtained from the contact angles. The 

contact angles at 8% slightly increased owing to the higher concentration of H-

bonded/protonated amines acquired from XPS results. Although 8% shows the 

lowest percentage of free amine among 2-8% APTES and it is expected to see the 

highest contact angle for 8% compared to 2-6%, the contact angle measured for 

8% presented a lower contact angle compare to 2 and 4%. This result suggests that 

the structure of film formed by 8% should be different from the low ranges (0.05-

0.2%) of APTES. Since contact angle measurements show the surface tension of 

the top layer of film, this suggests the aggregates and polymerised APTES 

molecules containing the primary amines on the top layer.   
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Figure ‎6-14. Static water contact angles for the quartz surfaces treated by different 

concentrations of APTES 

 

6.3.2 Surface energy of treated surfaces by APhS 

The wettability of the quartz surface treated by APhS was also studied by 

water contact angle measurements; this is presented in Figure ‎6-15. It is observed 

that the hydrophilicity of the treated surfaces by APhS also decreased with respect 

to the bare quartz surface; however this reduction is higher than APTES-treated 

surfaces. The higher contact angles related to APhS-coated surfaces could be 

referred to the different type of solvent of which was used in the experiments. As 

mentioned in Chapter 3, the solvent used in APhS solution is toluene which is 

hydrophobic while the solvent of APTES solution was ethanol/water. It was 

previously illustrated that various types of solvent result in different contact angles 

(382). Moreover, the structure of APhS contains a benzene ring which increases 

the hydrophobicity of the molecule; thus these two factors can cause the APhS-

treated surface to be more hydrophobic than the APTES-treated surface. 

Figure ‎6-15 shows a similar contact angles for 0.03, 0.12, 0.18 and 0.24% APhS-

coated surfaces around 75 degree whereas a lower contact angles were measured 

for 0.06% APhS (~69 degree). As mentioned, the higher primary amine presents 

the more uniform film formed on the surface which leads to lower contact angles 

among other concentrations. This supports the results from XPS that showed the 

highest primary amine among APhS concentrations was obtained at 0.06%. The 

contact angle results for other concentrations are in the same range, which shows 

the same surface energy for these concentrations. 
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Figure ‎6-15. Static water contact angles for the quartz surfaces treated by different 

concentrations of APhS 

 

6.4   Topography of surfaces treated by APTES and APhS 

As expected, the aminosilane film deposition influences the chemical states, 

wettability and roughness of the quartz surfaces. The surface energy and the 

chemical components of the coating materials were studied earlier in this chapter. 

Thus, the roughness of the surfaces was measured to study the effect of 

aminosilanes on topography of the surface after coating. This was performed by 

several measurements for each sample using Talysurf profiling (non-contact 

method) system to analyse the data obtained by NP FLEX. More information 

regarding Talysurf profiling system was presented in Chapter 3. Figure ‎6-16 shows 

the topography of untreated and treated (0.2% and 6% APTES, and 0.06% APhS) 

quartz surfaces. First, roughness of each aminosilane surface is separately 

analysed followed by a comparison study between APTES and APhS. 
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Figure ‎6-16. Topography images of a) untreated quartz and b) surface treated by 0.2% 

APTES c) surface treated by 6% APTES and d) surface treated by 0.06% APhS 

 

6.4.1 Roughness of APTES-treated surfaces 

Root-Mean-Square (rms) roughness (Rrms) of each sample for all the 

APTES-treated and untreated surfaces was measured, which is shown in 

Figure ‎6-17. The red line and two green dashed lines show mean Rrms and standard 

deviation of blank quartz surface, respectively. In comparison with the blank quartz 

surface, the roughness of all the treated surfaces increased. Among the treated 

surfaces, the Rrms increased from 0.05% to 0.15% and levelled off up to 4% 

followed by an increase for 6% to 8%.   

 

 
Figure ‎6-17. Roughness (rms) of blank and the treated surfaces treated by APTES in 30 

min at ambient temperature 
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Figure ‎6-18 shows the skewness values of APTES-treated and un-treated 

quartz surfaces, which vary for different concentrations. The red line and two green 

dashed lines show mean skewness and standard deviation of un-treated quartz 

surface, respectively. More information regarding skewness was provided in 

Chapter 3. Generally, the positive skewness indicates that the peaks are higher 

than the valleys are deep (327) and vice versa. The value of skewness decreased 

from 0.05% to 0.2% and increased for higher range of APTES (2, 6 and 8%) except 

from 4% with the maximum at 8%. The first observation from the skewness results 

is that the surfaces (0.15, 0.2 and 2%) with the same Rrms values can have totally 

different roughness profile.  

 

 
Figure ‎6-18. Skewness of APTES-treated surfaces after 30 min silanization in ambient 

temperature 

 
It was previously demonstrated that the Rrms of APTES- and APTMS- 

treated surface increased after formation of SAM on substrates (255, 259, 275, 

383), which is in agreement with the results in Figure ‎6-17. The Rrms gradually 

increased from 0.05% to 0.2%; however, the skewness decreased leading to more 

homogenous surfaces. This may suggest that the low ranges of APTES 

concentrations filled more valleys of the quartz surfaces. However, slightly increase 

of roughness (Rrms) for the quartz surfaces coated by 0.05-0.2% APTES could be 

due to adsorption of some polymerised APTES molecules on the surface. 

Figure ‎6-17 illustrates that Rrms at 2% and 4% is in the same range as low 

APTES concentrations (0.05-0.2%), on the other hand Figure ‎6-18 shows higher 

skewness for 2% and 4% APTES. This may indicate better surface coverage 

obtained by 2% and 4% APTES comparing to low concentrations (0.05-0.2%). 

Figure ‎6-17 shows higher roughness values for 6% and 8% APTES coated 
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surfaces which could be due to increase in the number of APTES clusters on the 

quartz surface. However, the number of polymerised APTES molecule should be 

significantly higher for the surface treated by 8% since the increase in the 

roughness value from 6% to 8% APTES is more significant than from 4% to 6%.  

Therefore, it can be stated that aggregation of APTES molecules on the 

quartz surface increased by APTES concentration in the solution of ethanol/water 

where 30 min silanization at ambient temperature was used. In addition, with 

considering the Rrms and skewness, it can also be stated that APTES molecules 

initially formed on valleys with some clusters on peaks for up to 0.2% APTES which 

may suggest incomplete formation of APTES on the quartz surface. On the other 

hand, more surface coverage and clusters can be concluded for 2-8%. It was 

previously demonstrated that Rrms of APTMS increased by concentration (244). This 

may be due to the fact that in higher concentrations of APTES in presence of water 

the probability of forming polymerised APTES before reaching the surface is higher. 

Also, the chance of originating a uniform APTES film on surface is higher in low 

concentrations at desired time (244). 

 

6.4.2 Roughness of APhS-treated surfaces 

The same procedures were followed for APhS-treated surfaces. Rrms of 

APhS-treated and untreated surfaces are illustrated in Figure ‎6-19. The red line and 

two green dashed lines show mean Rrms and standard deviation of blank quartz 

surface, respectively. The roughness of 0.03-0.24% APhS-treated surfaces 

increased in comparison with the blank quartz surface, except from Rrms of 0.12% 

which remained constant. By considering the standard deviation for 0.03-0.12%, 

similar roughness may be concluded. 

 
Figure ‎6-19. Roughness (rms) of blank and APhS-treated surfaces after 2 h silanization in 

ambient temperature 
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Figure ‎6-20 presents skewness values of APhS-treated surfaces after 2 h 

silanization at ambient temperature. The red line and two green dashed lines show 

mean skewness and standard deviation of un-treated quartz surface, respectively. 

The graph shows approximately the same skewness for 0.06-0.18% indicating 

homogenous surfaces in terms of height of peaks and depth of valleys. However, 

slightly larger skewness values were obtained at 0.03% and 0.24% compare with 

the rest of APhS-treated surfaces. By considering the standard deviation of 

skewness values, the same roughness profile for APhS treated surfaces can be 

assumed. 

 

 
Figure ‎6-20. Skewness of APhS-treated surfaces after 2 h silanization in ambient 

temperature 

 

From the Rrms results of APhS-treated quartz surfaces, a uniform formation 

of APhS film on the quartz surface for 0.03-0.12% APhS surfaces can be 

suggested, which can be an indication of a SAM formation of APhS on quartz 

surface by 0.06-0.12%. On the other hand, some clusters of APhS molecules might 

adsorb on the surfaces treated by 0.18% and 0.24% due to the higher values of 

roughness. 

  

6.4.3 Comparison results of roughness of APTES- and APhS-

treated surfaces 

Figure ‎6-21 shows Rrms values of untreated and treated quartz surfaces. 

APhS-treated surfaces showed smoother surface compare with APTES-treated 

surfaces; this could be due to formation of SAM of APhS with lower aggregation of 

molecules on the quartz surface. It was previously demonstrated (244, 384) that a 

SAM of APhS on surface created a smoother surface compare with APTES. 
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Figure ‎6-21. Roughness (rms) of blank, APTES- and APhS-treated surfaces  

 

Figure ‎6-22 illustrates skewness values of blank and treated surfaces for 

APTES and APhS. It shows more homogeneous surfaces for all APhS 

concentrations and low concentrations of APTES compare with higher 

concentrations of APTES. This may be due to lower clusters in the surfaces treated 

by APhS and low-concentration APTES. 

 
Figure ‎6-22. Skewness of blank, APTES-treated APhS-treated surfaces 

 

6.5   Structure of APTES and APhS film formation on quartz 

surface 

Aminosilanes are usually employed to create a SAM film via Si-O-Si bonds 

with free amines upward for further derivatizations- this is the ideal structure. 
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Various concentrations of APTES (0.05-0.2% and 2-8%) and APhS (0.03-0.12%) 

were applied to create a SAM film on quartz surface with silanization times of 30 

min and 2 h; respectively, at ambient temperature. Different performance was 

observed for different aminosilanes at each concentration. XPS, contact angle and 

roughness measurements were employed to study APTES and APhS film 

formations on quartz surface in order to investigate the behaviour of new films on 

reduction‎of‎calcium‎carbonate‎deposition.‎Thus,‎the‎film‎characterisation’s‎results‎

were analysed to suggest the possible film structures for the treated surfaces which 

are separately discussed in detail for each concentration.  

 

6.5.1 Possible APTES film structures on quartz surface 

The conformation of APTES on quartz surface is related to the density of 

APTES attached on the surface and the type of bonding (267). Upright 

conformation (ideal reaction) can be achieved when APTES molecules attach on 

quartz surface via siloxane bonds. However, attraction between primary amine to 

silanol oxygen on the quartz surface can introduce a tilted conformation. Both 

conformations are shown in Figure ‎6-23a and b. APTES molecules are also able to 

crosslink with each other, which is highly sensitive to concentration of water in the 

solution. This decreases the repeatability of formation of SAM on the surface.  

Besides, APTES molecules can physisorb to quartz surface through hydrogen 

bonding; this interaction is not stable and can easily be removed by post processing 

like washing by ethanol and water. The schematic of hydrogen bonding of APTES 

to quartz surface is shown in Figure ‎6-23c.  

 

 
Figure ‎6-23. Various APTES conformations on quartz surface: a) upright and b) tilted 

conformations, and c) hydrogen bonding 
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6.5.1.1 APTES film structure on quartz surface at low concentrations 

(0.05-0.2%) 

The XPS results of 0.05-0.2% APTES showed higher content of H-

bonded/protonated amines than primary amine. This indicates that a large number 

of APTES molecules experienced H-bonding/protonation with the quartz surface at 

amino end leading to a low percentage of free amines; the schematic structure is 

depicted in Figure ‎6-23b and c. Although higher concentration of water in low range 

of APTES concentration results in polymerisation of molecules, the size of polymers 

is small due to low concentration of APTES. In addition, the results of surface 

energy on low APTES concentrations illustrated higher contact angles (~50o) 

compare with high APTES concentrations, which shows the tendency of the treated 

surfaces in low concentration towards more hydrophobic surface. As demonstrated 

in the literature (222, 255, 259, 339, 381), higher content of H-bonded/protonated 

amine on surface results in an increase in water contact angles. This is due to 

exposure of alkyl chain of APTES to the exterior. Thus, this may be an indication of 

that a significant amount of hydrogen bonded/protonated amine tilted towards 

surface (Figure ‎6-23b). Moreover, the roughness results of surfaces treated by low 

concentration of APTES compare with high concentration of APTES, showed 

smaller size of aggregation due to low concentration of aminosilane. This indicates 

more protonated amine horizontally bended towards surface. Therefore, based on 

film characterisation results, the possible film structure on quartz surface of which 

treated by low concentration of APTES is presented in Figure ‎6-24.  

 

 
Figure ‎6-24. Schematic structures of deposited aminosilanes on quartz surface at low 

range of APTES (0.05-0.2%) 
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6.5.1.2 APTES film structure on quartz surface at high concentrations 

(2-8%) 

Since the film characterisation results of high APTES concentrations 

showed different behaviour, possible film structures are separately discussed for 2-

6% and 8%. The XPS results of 2-6% APTES showed higher content of primary 

amine with the maximum value at 6% indicating a large number of APTES 

underwent siloxane bonds (Figure ‎6-23a). The nitrogen percentage also increased 

by APTES concentration suggesting more surface coverage (compact layers) or 

some polymerisations of APTES on the quartz surface. Also, the wettability of the 

surfaces treated by 2-6% APTES decreased by increasing the concentrations – 

which is in agreement with XPS results – referring to a SAM film of APTES on the 

quartz surface.  On the other hand, the roughness results showed slightly rougher 

surface at 6% compare with 2% and 4% indicating some aggregation on substrate. 

Therefore, the schematic structure at 2-6% APTES is depicted in Figure ‎6-25. 

 

 
Figure ‎6-25. Schematic structures of 2-6% APTES film formed on quartz surface  

 

In contrast to 2-6% APTES, the XPS result of 8% showed a decrease in 

content of primary and increase in percentage of H-bonded/protonated amines, 
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which indicates that compare to 2-6% a larger number of APTES experienced H-

bonding and protonation. In addition, the percentage of nitrogen detected by XPS 

dramatically increased from 6 % to 8% which may suggest the presence of 

polymerised APTES or aggregation on quartz surface. The wettability of the surface 

treated by 8% decreased compare with 6% which is due to higher content of H-

bonded/protonated amine moieties on the surface. However, the contact angle 

values of 8% did not show the same wettability of the low-range APTES (0.05-

0.2%). Thus, this suggests that a significant amount of H-bonded/protonated amine 

occurred in the shape of Figure ‎6-23c rather than bended amine toward the surface 

(Figure ‎6-23b). Moreover, the roughness results illustrated rougher surface 

compare with 2-6% which indicates more aggregation on the quartz surface. This 

suggests a rougher surface at 8% compare with 2-6% with more polymerized 

APTES of which might or might not undergo H-bonding with another APTES 

molecule. The schematic possible structure of APTES film at 8% is presented in 

Figure ‎6-26. 

 
Figure ‎6-26. Schematic structures of 8% APTES film possibly formed on quartz surface 

 

6.5.2 Possible APhS film structures on quartz surface 

In contrast to APTES film formation, APhS molecules showed more 

consistent results with the concentrations. The XPS results of APhS illustrated that 

a large number of APhS experienced siloxane bonds with the quartz surface. The 

maximum primary amine was obtained at 0.06% indicating a uniform SAM film of 
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APhS at this concentration. For other concentrations of APhS some H-

bonding/protonation occurred during SAM. Moreover, the wettability measurements 

of APhS-treated surfaces showed slightly more hydrophilic surface at 0.06% 

compare with other concentrations. The slightly higher contact angles at 0.03% and 

0.12-0.24% are owing to the presence of H-bonded/protonated amine moieties on 

quartz surface. The roughness measurements of APhS illustrated smoother 

surfaces compare with the surfaces treated by APTES. However, the roughness of 

0.18% and 0.24% APhS is slightly higher than 0.03-0.12%. This suggests some 

polymerisation on 0.18% and 0.24% APhS surfaces. Therefore, the possible 

schematics of APhS formation on quartz surface for different concentrations are 

presented in Figure ‎6-27. 

 

a)  

b)  

c)  
Figure ‎6-27. Schematics of possible APhS conformation on quartz surface at a) 0.06%, b) 

0.03% and c) 0.12-0.24% concentrations 
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6.6    Summary 

Two different aminosilanes – APTES and APhS – were applied to quartz 

surface in order to create a SAM film of which would be able to reduce amount of 

mineral scale deposition. To fully understand the tendency of the treated surfaces 

to calcium carbonate, APTES and APhS films on the substrates were characterised 

by XPS, contact angle and roughness measurements. The results obtained by 

characterization methods were used to introduce the possible film structure and 

orientation on quartz surface at different concentrations of APTES and APhS. Some 

major and minor conclusions of the chapter are presented below. 

1. Higher primary amine content was obtained at the higher ranges of APTES 

concentration compare with the lower ranges. The maximum primary amine 

(~87.4%) for APTES molecule was obtained at 6%. 

2. Primary amine percentage increased from 2% to 6% APTES and decreased 

at 8%. 

3. More than 80% free amines were observed by APhS at all the 

concentrations with the maximum of ~98% at 0.06%.  

4. Two ranges of wettability were measured for APTES film formation. Higher 

contact angles were obtained by the low-range concentrations compare with 

the higher ranges.  

5. Wettability of the surface treated by APTES increased from 2% to 8% 

concentrations. 

6. The water contact angle measurements of APhS molecule showed higher 

values compared with APTES. 

7. Among APhS film formations, wettability of 0.06% APhS was slightly higher. 

8. Roughness (rms) of APTES-treated surfaces increased by concentration 

with the maximum at 8%. 

9. The surfaces treated by APhS showed smoother surfaces compare with the 

treated by APTES. 

10. Roughness values of APhS-treated surfaces also increased by 

concentration. 

11. Different film structures were suggested according to the characterization 

results. 
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Chapter 7  

Discussion 

 

7.1   Introduction 

Recently attention on the effects of surfaces in scale deposition has 

increased. Mechanisms of mineral scale formation on the surfaces have become 

the focus of most research. The question related to scale formed on surface is 

whether mineral scale is precipitated from the bulk or, at the same time, nucleated 

and grown on from the surface. So far, studies have been focused on the different 

coatings on stainless steel and polymer surfaces to reduce mineral scale deposition 

(3-6, 8, 181, 187, 189, 193, 196, 199, 202, 203, 337, 343, 344); these surfaces are 

mainly used in used in safety valves and pipelines. However, scaling does not 

occur only in production system (well, pipelines, safety valves, etc.). Other areas 

may encounter scale problems; the reservoir near the wellbore area can have scale 

and this causes reduction in hydrocarbon production. Generally, squeeze 

treatments are performed to protect the near wellbore area from mineral scale 

deposition. However, this methodology involves many challenges such as safety 

and environmental issues, formation damage, etc. and is a costly treatment due to 

the cost of chemicals, pumping jobs, delivering the chemical to offshore platforms 

and main importantly deferred/loss production owing to 24 h shut in period. 

The objective of this work was to introduce and develop a new methodology 

in order to reduce the risk of scale deposition in near wellbore area. In order to 

achieve an anti scale rock surface, the properties of the formation rock are needed 

to be altered. Surface compositions, roughness and surface energies of different 

substrates were reviewed (see Chapter 2) in order to understand physical and 

chemical properties of the surface in relation to mineral scale deposition. Since 

there is no access to the near wellbore to alter the physical properties of the 

formation rock, the only solution is to remotely change the surface chemistry of the 

near wellbore area. Hence, the focus was to form a film on the rock surface which is 

capable of i) reacting strongly with rock surface and ii) reducing mineral scale 

adhesion on surface. In addition to these two features, it must be thin enough not to 
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block oil flow paths and it should bond to the rock surface in-situ from the applied 

solution.  

Two types of aminosilanes with different concentrations were employed to 

create a SAM film on the quartz surface (analogous to formation rock since the 

main composition of rock is quartz) in order to reduce scale deposition. The kinetics 

of film formation on quartz crystal was studied by QCM and the surface coverage 

by applying different APTES concentrations (2-8%) was calculated by considering 

the Langmuir isotherm; this was performed in Chapter 4. The maximum surface 

coverage (92%) was obtained by 8% APTES in the solution. In Chapter 5, the effect 

of treated quartz surfaces by APTES and APhS on reduction of scale deposition 

was compared with each other and the blank quartz. A clear scale reduction on the 

surfaces was observed via gravimetric and SEM results. No direct correlation was 

observed between the performance of the surface in terms of reduction of scale 

deposition and the concentration of APTES and APhS in solution. The best 

performances were obtained at 0.06% and 6% among all concentrations of APhS 

and APTES; respectively, in both low SR=4.77 and high SR=54.8. In order to 

comprehensively understand the behaviour of the treated surfaces in scale 

deposition, the film created on quartz surfaces was characterised by XPS, water 

contact angle and roughness measurements; this was widely discussed in Chapter 

6. Possible film structures on the surface according to characterisation results were 

proposed at the end of Chapter 6. Therefore, the aim of this chapter is to interpret 

the results of Chapter 6 in terms of film structure proposed in the previous chapter. 

In addition, related literature is discussed in detail to support the results observed in 

Chapter 5. The performances of APTES and APhS films are separately discussed 

in this chapter and a short comparison between APTES and APhS will also be 

provided at the end (a detail comparison in terms of film structure and scale 

performance were provided in Chapter 6 and 5, respectively). It is worth mentioning 

that this is the first study that investigates possible film formation on rock surfaces 

near the wellbore area in order to reduce mineral scale deposition. 

 

7.2   The performance of the quartz surface treated by APTES 

in reduction of calcium carbonate scale deposition 

In Chapter 5, performance of various surfaces treated by different 

concentrations of APTES in terms of reduction of calcium carbonate scale 

deposition was illustrated in Figure ‎5-3 and Figure ‎5-4. A good correlation between 

APTES concentration and surface efficiency in reduction of scale deposition was 
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presented without considering the performance of the surface at 8% APTES (see 

Figure ‎5-4 and Equation ‎5-1). However, by taking the result of 8% APTES into 

account the correlation coefficient reduced from R2=0.99 to R2=0.68. This indicates 

that other factors such as roughness and wettability may influence the performance 

of the surfaces treated by APTES. Before jumping into studying effects of 

roughness and wettability on the performances of surfaces treated by APTES, more 

investigation on effects of surface composition on reduction of scale deposition is 

required. As demonstrated in Chapter 6, apart from nitrogen concentration, the 

chemical states of nitrogen formed on the surface are important and play a critical 

role in film deposition in order to have the desired film conformation (Figure ‎6-27a). 

Thus, the efficiency of the surfaces treated by APTES in terms of reduction of 

calcium carbonate scale deposition in low SR=4.77 solution was plotted as a 

function of concentration of primary amine; this is illustrated in Figure ‎7-1. This 

obviously shows a better correlation in comparison with Figure ‎5-3. 

 
Figure ‎7-1. Behaviour of surfaces treated by different APTES concentrations in reduction 

of calcium carbonate scale deposition at 80
o
C and after 24 h experiment at SR=4.77 as a 

function of primary amine contents 

 

Figure ‎7-1 shows a fairly good linear fit between surface efficiency in terms 

of reduction in calcium carbonate scale deposition and concentration of primary 

amines of the surfaces treated by different APTES concentrations (0.05-8%) with a 

correlation coefficient of R2=0.88.  

Although a lower correlation coefficient was obtained in Figure ‎7-1 in 

comparison with Figure ‎5-4, a wider range of experiments is included by using 

primary amine concentrations instead of APTES concentrations. Practically the 
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amount of scale deposition on the surfaces treated by APTES is directly related to 

the percentage of film structure of which has upright conformation (Figure ‎6-25a).  

Figure ‎7-2 illustrates the behaviour of surfaces treated by APTES in terms of 

reduction of mineral scale deposition in high SR=54.8 solution at 80oC for 24 h 

experiments. A linear correlation was also fitted to the experimental data with 

R2=0.72 which is lower than in the low SR=4.77 solution. 

There is not much information regarding effects of an APTES film on scale 

adhesion and precipitation in literature, but effects of surface composition on scale 

precipitation will be discussed at the end of this chapter.  

 
Figure ‎7-2. Behaviour of surfaces treated by different APTES concentrations in reduction 

of calcium carbonate scale deposition at 80
o
C and after 24 h experiment at SR=54.8 as a 

function of primary amine contents 

 

However, other features like coverage, roughness and wettability of film 

formation may also influence the performances of treated surfaces in reduction of 

calcium carbonate scale deposition. Figure ‎7-3 presents the performance of quartz 

surfaces treated by various concentrations of APTES (0.05-8%) as a function of 

contact angle measurements. The graph shows no correlation between contact 

angles and the performance of APTES film formation on quartz surface in reduction 

of calcium carbonate scale. However, two distinguished areas can be extracted 

from Figure ‎7-3, which are separated by two coloured circles (blue and amber). 

Better performance of surfaces with lower water contact angles are observed 

compared with the surfaces with more hydrophobicity tendency. However, this is in 

contrast with biofouling study (197) that has shown better performance in 

hydrophobic surface due to their non-sticky properties.  
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Figure ‎7-3. Behaviour of surfaces treated by different APTES concentrations in reduction 

of calcium carbonate scale deposition at 80
o
C and after 24 h experiment as a function of 

contact angles 

 

Related literature regarding effects of wettability of surface in scale adhesion 

will be discussed later in this chapter. In order to understand the effects of 

roughness on calcium carbonate scale deposition, the efficiency of the surfaces 

treated by APTES versus roughness is plotted in Figure ‎7-4. This graph illustrates 

that the performance of the APTES-treated surfaces increased by roughness 

except from the performance of the surface with ~1 µm related to 8% APTES. 

 

 
Figure ‎7-4. Behaviour of surfaces treated by different APTES concentrations in reduction 

of calcium carbonate scale deposition at 80
o
C and after 24 h experiment as a function of 

surface roughness 
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It was previously demonstrated (193, 199) that scale deposition on stainless 

steel surface increased by roughness, which is in contrast with results of this work. 

It is observed in Figure ‎7-4 that the amount of scale deposited on the treated 

surfaces decreased where the roughness increased. However, the performance of 

the surface treated by 8% APTES in reduction of scale deposition decreased, which 

can be due to increasing roughness.  

It is clear that the performance of the surfaces treated by various APTES 

concentrations could not be correlated with wettability and roughness (physical 

properties), on the other hand, it can be related to primary amine content (chemical 

properties). Although Figure ‎7-1 and Figure ‎7-2 contained the whole range of 

APTES concentrations, poor correlation coefficients were obtained by relating the 

surface performance just to primary amine content. Thus, an attempt was made to 

correlate the performance of the APTES film formations in reduction of calcium 

carbonate scale deposition with both physical and chemical properties. 

From the figures in the previous pages, it can be stated that the main 

contribution on the performance of the surfaces treated by APTES in reduction of 

calcium carbonate scale deposition is primary amine content as expected. It was 

also shown in Chapter 6 that different APTES conformation resulted in different 

roughness and wettability measurements. It was also demonstrated (260) that 

solvent used in the film formation process influences the wettability of the film 

formed on the surface. Since different solvents may be employed in film formation 

process, it was attempted to eliminate the effects of wettability as a main factor 

which influences the performance of the treated surfaces. Besides, it can be found 

in the literature (69, 70, 76) that the wettability of a surface can be associated with 

roughness and topography of the surface. As shown, the major influence of the 

efficiency of the surface is due to surface chemistry (composition and more 

specifically conformation of film created); therefore, primary amine content was 

emphasised more with positive impact followed by the concentration of APTES in 

film formation process since the surface coverage influenced the performance of 

the surface (Chapter 5).  

It was also demonstrated that a wide range of APTES concentrations was 

employed to create a uniform SAM on the surface (244). Although the higher 

surface coverage in this study was obtained at 8%, it was also illustrated that with a 

simple calculation an acceptable surface coverage can be obtained even with 

applying lower concentrations (see Chapter 4). Therefore, the average of higher 

range of APTES concentrations (4% APTES) was used as a reference 

concentration that gives an acceptable surface coverage. Roughness of the treated 
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surface was another parameter, which was taken into account for predicting 

correlation. Since it was generally shown (178, 198, 199, 203) that the higher 

roughness, the higher scale deposition on surface; the impact of roughness on the 

performance of the APTES-treated surfaces was considered negative in the 

correlation. The correlation is formulated in form of the equation below. 

 

CP ~ [primary amine content] [APTES concentrations] [roughness]     Equation ‎7-1 

 

Where CP is the coating performance in terms of reduction of scale 

deposition. In order to use the values of primary amine contents, APTES 

concentrations and roughness in the equation above; some normalisations were 

required in order to have the same unit in both sides of the equation. Coating 

performance, CP, and primary amine content, PA, are unitless, and the unit of 

roughness (Rrms) is metres. APTES concentration (CN) can have different units 

depending on usage. Therefore, Rrms and CN are normalised as below: 

 Rrms: (Roughness of treated surfaces)/(roughness of the blank surface) 

 CN: (Concentration of aminosilanes in the solution)/(the concentration that 

gives SAM) 

It was assumed that the film performance can be correlated to PA, CN and 

Rrms by the equation below: 

 

                          Equation ‎7-2 

 

The constants: a, b, c and d, were determined using least-square fitting and 

Microsoft Excel and listed in Table ‎7-1. 

 

Table ‎7-1. Calculated constants in Equation ‎7-2 

a b c d 

0.62 1.1 0.55 -20 

 

This gives an equation which can be fitted to the experimental data and 

includes both physical and chemical properties of the film created on the quartz 

surface.  

 

                                Equation ‎7-3 
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The CP obtained by Equation ‎7-3 is plotted in Figure ‎7-5 versus the 

experimental results for APTES film on quartz surface at SR=4.77. The graph 

shows‎how‎ far‎ the‎purple‎ rhombic‎(‘Estimation’‎values)‎are‎ from‎the‎experimental‎

data (the red squares and line). The correlation coefficient was also calculated 

R2=0.89, which shows slightly higher value compared with the correlation obtained 

by Figure ‎7-1 (R2=0.88). Although Equation ‎7-3 could slightly improve the linear fit 

for the experimental data, it considers more parameters in the equation which may 

be useful for a wider range of data later when all the experimental results of both 

APTES and APhS are studied together. 

 
Figure ‎7-5. Experimental and estimated data versus experimental data for the surfaces 

treated by different APTES concentrations at 80
o
C and after 24 h experiment in SR=4.77 

solution 

 

The same procedure was followed for SR=54.8 in order to assess 

Equation ‎7-3 in predicting the performance of the treated surface by primary amine 

contents, normalised APTES concentration and roughness; this is presented in 

Figure ‎7-6. The correlation coefficient R2=0.46 was obtained from the estimated 

data according to Equation ‎7-3, which is much lower than formulating the 

performance as a function of just primary amine content (Figure ‎7-2). However, 

both low and high SR solutions were correlated by one correlation (Equation ‎7-3). 

Figure ‎7-6 together with Figure ‎7-5 indicate that the APTES film tendency 

can be related to the primary amine content which is associated to conformation of 

the film created on the quartz surface (Figure ‎6-24, Figure ‎6-25 and Figure ‎6-26). 

This was expected since the wettability and topography of the surfaces treated by 

APTES were correlated to the film formation structures, which was extensively 

discussed in Chapter 6.  
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Figure ‎7-6. Experimental and estimated data versus experimental data for the surfaces 

treated by different APTES concentrations at 80
o
C and after 24 h experiment in SR=54.8 

solution 
 

Although it was demonstrated that the primary amine content is the 

dominant factor interpreting the APTES film performance, there are two 

concentrations (0.05% and 8%) that need more discussion since they do not follow 

the trend (the higher primary content, the better surface in scale reduction). 

At 0.05% APTES concentration, 41.7% primary amine was measured by 

XPS; however, 18.5% and 20.4% efficiency were achieved by 0.05% APTES, 

respectively. Although the contact angle and roughness measurements of 0.05% 

are in the same range of 0.1-0.2% and the primary amine content of 0.05% APTES 

is higher than 0.1-0.2%, the performance of the quartz surface treated by 0.05% 

APTES is much lower at this concentration compared with 0.1-0.2%. This can be 

explained by the concentration of APTES in the solution meaning that the created 

film on the quartz surface covered much less percentage of the surface remaining 

more part of the surface without APTES film. On the other hand, the concentration 

of nitrogen measured by XPS at 0.05 is in the same range of nitrogen percentage 

measured by XPS for 0.1-0.2% APTES (see Figure 7-6). This may indicate more 

polymerisation on the quartz surface with many sites left uncovered on the surface, 

which is due to excess of water presenting in the solution (see Chapter 6). 

The performance of the quartz surface treated by 8% APTES showed lower 

performance in reduction of scale deposition compared with 2-6%, which can be 

explained by low primary amine content. On the other hand, at 8% APTES higher 

primary amine content was measured compared with low range of APTES 

concentrations (0.05-0.2%), but gave almost as low efficiency as 0.15-0.2%. This 

can be explained by conformation of the film created by 8%, which was illustrated in 
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Figure ‎6-26. Higher roughness measurement was observed at the surface treated 

by 8% APTES (see Figure ‎6-17), which can be another reason of the lower 

efficiency of this surface. It was previously demonstrated that higher surface 

roughness value resulted in more scale deposition on the surface (178, 198, 199, 

203). 

Therefore, it can be stated that the tendency of the APTES film to calcium 

carbonate scale deposition is mainly related to the film conformation which is 

originated from the chemical states of the components on the surface. 

 

7.3   The performance of the quartz surface treated by APhS 

in reduction of calcium carbonate scale deposition 

The same approach as the APTES is followed to investigate the effects of 

surface chemistry and composition as well as roughness and wettability on 

reduction of calcium carbonate scale deposition on the surfaces treated by various 

concentrations of APhS (0.06-0.24%). Figure ‎7-7 illustrates the performance of the 

surfaces treated by various concentrations of APhS in reduction of calcium 

carbonate scale deposition as a function of primary amine contents. The graph 

shows that the efficiency of the treated surfaces increased by free amine 

percentage. The experimental data was fitted by a linear equation with correlation 

coefficient R2=0.83. 

 
Figure ‎7-7. Behaviour of surfaces treated by different APhS concentrations in reduction of 

calcium carbonate scale deposition at 80
o
C and after 24 h experiment at SR=4.77 as a 

function of primary amine contents 
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experiments for APhS. However, compared with Figure ‎5-19 a better correlation 

was obtained when performance of the surfaces treated by APhS was plotted as a 

function of primary amine contents. Thus this again indicates that the tendency of 

the surfaces treated by aminosilanes can be interpreted by the primary amine 

content which represents the conformation of the film formed on the quartz 

surfaces. 

Figure ‎7-8 shows the tendency of the quartz surface treated by APhS to 

calcium carbonate scale deposition in high SR=54.8 solution. Compared with low 

SR=4.77, the correlation fitted the experimental data is poorer with correlation 

coefficient R2=0.49. However, in comparison to Figure ‎5-18, scale deposition on the 

APhS-treated surface in high SR=54.8 was fitted much better by using primary 

amine percentage, which again represents the film conformation (Figure ‎6-27). The 

experimental data in Figure ‎7-8 is linearly correlated to the equation below. 

 

 
Figure ‎7-8. Behaviour of surfaces treated by different APhS concentrations in reduction of 

calcium carbonate scale deposition at 80
o
C and after 24 h experiment at SR=54.8 as a 

function of primary amine contents 

 

Figure ‎7-9 presents performance of the surfaces treated by different APhS 

concentrations as a function of wettability of the treated surfaces. The graph clearly 

shows no relation between water contact angle measurement and the behaviour of 

the surfaces treated by APhS. However, the surface with more hydrophilic tendency 

demonstrated better performance in terms of reduction of calcium carbonate scale 

deposited on the quartz surface. 
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Figure ‎7-9. Behaviour of surfaces treated by different APhS concentrations in reduction of 

calcium carbonate scale deposition at 80
o
C and after 24 h experiment as a function of 

contact angles 

 

Figure ‎7-10 illustrates the tendency of the surface to calcium carbonate 

scale deposition with respect to roughness (Rrms) of the created films. It is observed 

that roughness of APhS film on quartz surface is not the determining factor. The 

graph shows random behaviour of surface topography to tendency of calcium 

carbonate scale deposition. 

 
Figure ‎7-10. Behaviour of surfaces treated by different APhS concentrations in reduction 

of calcium carbonate scale deposition at 80
o
C and after 24 h experiment as a function of 

surface roughness 

 

The same assumptions as APTES were made for APhS in order to include 
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concentrations in one correlation which could fit the experimental data for high and 

low SR solutions. Figure ‎7-11 shows the estimated and experimental values versus 

experimental data for the surfaces treated by APhS in SR=4.77 solution. 

Equation ‎7-3 was used to estimate the performance of the surfaces treated by 

APhS in reduction of scale deposition as function of primary amine content, 

normalised APhS concentration and normalized Rrms. Correlation coefficient R2 = 

0.75 was obtained from Equation ‎7-3 which is slightly lower compared with the 

graph fitted just by primary amine percentages (R2=0.83). Although the correlation 

coefficient obtained by Equation ‎7-3 is lower, the same correlation was employed to 

interpret all data both for APTES and APhS. 

 

 
Figure ‎7-11. Experimental and estimated data versus experimental data for the surfaces 

treated by different APhS concentrations at 80
o
C and after 24 h experiment in SR=4.77 

solution 

 

The same procedures were followed for high SR=54.8 solution to correlate 

the experimental data to all properties, which is illustrated in Figure ‎7-12. The 

correlation coefficient R2=0.32 was obtained from Equation ‎7-3 for APhS film in high 

SR=54.8 solution which is much lower than Figure ‎7-8 with R2=0.49. However, both 

correlations are poor enough to be eliminated as predicting formulas for APhS film 

in high SR=54.8 solution. It is possible to use another correlation which can give 

predicted values much closer to real values for APhS in high SR=54.8 solution. The 

equation is given below with R2=0.67; however, the attempt was to interpret all 

experimental results with one correlation. 

 

                                Equation ‎7-4 
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Figure ‎7-12. Experimental and estimated data versus experimental data for the surfaces 

treated by different APhS concentrations at 80
o
C and after 24 h experiment in SR=54.8 

solution 

 

7.4   Comparison of APTES and APhS film performances in 

reduction of calcium carbonate scale deposition 

Effects of wettability, roughness and film conformation of each aminosilane 

(APTES and APhS) on reduction of calcium carbonate scale deposition were 

separately shown earlier in this chapter. In this section, the influences of these 

properties on amount of CaCO3 deposition on the surfaces treated by APTES and 

APhS are compared together. Figure ‎7-13 presents the performance of the all 

surfaces treated by APTES and APhS versus the wettability of the each treated 

surfaces in both high and low SR solutions. No correlation can be concluded from 

Figure ‎7-13; however, three areas can be distinguished from the graph. The first 

area is separated by a red ellipse which covers a wider range of performance (~42-

85%) and contact angles (25-36o); this area is related to APTES with high 

concentrations (2-8%). The second area is the amber ellipse related to APTES with 

low concentrations (0.05-0.2%) and shows the lowest performance. However, a 

narrower range of contact angles was covered by this range of APTES 

concentrations. And, the third category is the purple ellipse associated to the APhS 

film which shows the best performance among all the results in terms of reduction 

of scale deposition on surface. One conclusion from Figure ‎7-13 is that wettability of 

treated surfaces by APTES and APhS is clearly not the dominant factor in reduction 

of CaCO3 on the surfaces. 
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Figure ‎7-13. Behaviour of surfaces treated by different APTES and APhS concentrations 

in reduction of calcium carbonate scale deposition at 80
o
C and after 24 h experiment as a 

function of contact angles 

 

In Chapter 2, it was shown that scaling on surface can be related to 

wettability of the surface. It was previously illustrated that hydrophobic surfaces 

have shown better performance in biofouling research due to their non-stick 

characteristics (197). In biofouling study, it is believed that the fouling components 

are formed in the bulk solution and then stick to the surface, thus the study was 

focused on only deposition (197); hence the lower surface energy, the lower 

adhesion and fouling deposition. On the other hand, in other study, hydrophilic 

surfaces generally showed better performance  in scaling (4) as the scaling process 

is a combination of crystallisation from the surface and adhesion together (29), 

which may suggest that the surface energy may not be a key factor to control the 

scaling. However, it can clearly be stated that, in this study, scaling cannot be 

related to wettability of the surfaces treated by APhS and APTES films.  

Figure ‎7-14 shows the performance of the treated surfaces by APTES and 

APhS in reduction of scale deposition as a function of roughness (Rrms), which 

illustrates no correlation between roughness and the performance of the surfaces in 

reduction of scale deposition. It can be seen that the highest roughness gave a 

performance that stayed in the middle and the small range of roughness gave a 

wide range of performance. 
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Figure ‎7-14. Behaviour of surfaces treated by different APTES and APhS concentrations 

in reduction of calcium carbonate scale deposition at 80
o
C and after 24 h experiment as a 

function of film roughness (Rrms) 

 

The relationship between roughness of a surface and its tendency to scale 

deposition has been previously studied (199, 337, 343) and it was also 

demonstrated that the scale formed on the smooth surface has been removed 

easier compared with the rough surface. However, random behaviour in terms of 

scaling deposition was also observed previously (4, 193). This study also showed 

that no correlation can be associated with roughness of the surface treated by 

different concentrations of APTES and APhS.  

It was demonstrated earlier in this chapter that the dominant property in 

reduction of calcium carbonate scale deposition is the primary amine content, which 

is directly related to film structure created on the surface. Figure ‎7-15 illustrates the 

performance of the treated-surfaces as function of primary amine contents for all 

experiments (APTES and APhS) in low SR=4.77 solution. It is observed that the 

performance of the surfaces treated by APTES and APhS in reduction of scale 

deposition increased by primary amine contents no matter which aminosilane was 

used to treat the quartz surface. A linear extrapolation between primary amine 

percentages and the performance of the surfaces with correlation coefficient 

R2=0.93 is shown in Figure ‎7-15. 
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Figure ‎7-15. Behaviour of surfaces treated by all APTES and APhS concentrations in 

reduction of calcium carbonate scale deposition at 80
o
C and after 24 h experiment at 

SR=4.77 as a function of primary amine contents 

 

Figure ‎7-16 illustrates the efficiency of the surfaces treated by APTES and 

APhS in reduction of calcium carbonate scale deposition as function of free amine 

percentage (%) in high SR=54.8 solution. A linear correlation was fitted to the 

experimental data with correlation coefficient R2=0.81. 

 

 
Figure ‎7-16. Behaviour of surfaces treated by all APTES and APhS concentrations in 

reduction of calcium carbonate scale deposition at 80
o
C and after 24 h experiment at 

SR=54.8 as a function of primary amine contents 

 

Both Figure ‎7-15 and Figure ‎7-16 showed an improved correlation 
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low and high SR solutions owing to an increased number of data in graph; however, 

each of them provides different contents in their equations. 

Equation ‎7-3 was again employed to involve roughness, aminosilane 

concentrations and primary amine contents to predict the efficiency of the surfaces 

treated by APTES and APhS in terms of scale reduction. Figure ‎7-17 shows the 

efficiency of the treated surfaces (experimental data) and the estimated data from 

Equation ‎7-3 versus experimental data with correlation coefficient R2=0.94, which 

indicates an improvement in correlation coefficient compared with Figure ‎7-15. 

 

 

Figure ‎7-17. Experimental and estimated data versus experimental data for the surfaces 

treated by different APTES and APhS concentrations at 80
o
C and after 24 h experiment in 

SR=4.77 solution 

 

The same procedure was followed for high SR=54.8 solution, which is 

presented in Figure ‎7-18 with R2=0.82. The graph shows no improvement in 

correlation coefficient compared with Figure ‎7-16, but all parameters are involved in 

predicating the equation. Although no modification in the equation was shown in 

Figure ‎7-18 even by adding more complication, it applies the same equation 

(Equation ‎7-3) as used in low SR=4.77 solution. 
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Figure ‎7-18. Experimental and estimated data versus experimental data for the surfaces 

treated by different APTES and APhS concentrations at 80
o
C and after 24 h experiment in 

SR=54.8 solution 

 

The purpose of using one equation (Equation ‎7-3) for all Figure ‎7-5, 

Figure ‎7-11, Figure ‎7-17 and Figure ‎7-18 was to extrapolate all experimental data 

with a universal equation. However, these graphs can be correlated with separate 

equations to predict the efficiency of the treated surfaces with higher accuracy. With 

comparing all results together, it is obvious that the primary amine is the 

determining factor that can explain the behaviour of the treated surfaces. It was 

shown in Chapter 6 that the film structures on the quartz surfaces mainly related to 

primary amine contents. It can be stated that film structure created on the quartz 

surfaces is the dominant factor to reduce the amount of calcium carbonate scale 

deposited on the surfaces. 

The saturation ratio of a solution influences the induction time and amount 

of deposition on surface (163). It was observed from Figure ‎5-29 that the surfaces 

treated by APTES and APhS behave differently in reduction of calcium carbonate 

scale deposition in low SR=4.77 and high SR=54.8 solutions. Some surfaces 

performed slightly better in low SR=4.77 and some the opposite. The reason may 

be due to the different degrees of surface charge induced in different SR solutions. 

It was also shown that different surface charges can result in different amount of 

scale deposition (5, 344, 348). Then, it can be stated that the treated surfaces 

behaved differently in different SR solutions since solutions can go through various 

pH profiles during the experiment when the pH is not controlled. This might lead to 

different performance of surface in reduction of scale deposition. It was 

demonstrated that pH of a solution affects the degree of ionisation of the substrates 

(348). 
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It was previously shown that different properties such as roughness, surface 

energy and surface chemistry can affect the efficiency of the surfaces in reduction 

of  scale deposition and interfere the influence of each other (3, 4, 178, 198, 199, 

203). Mineral scale deposition on stainless surface was demonstrated to be 

controlled by roughness of the surface instead of the surface material (4, 193). 

However, film formation on stainless surfaces treated by PPCA showed an 

improvement on performance of the surface in reduction of scale deposition (4-6, 

181). Although low surface energy is generally related to low scale deposition on 

surface (203), it was demonstrated that it cannot correlate the tendency of all 

surfaces towards scaling (3-5, 202). Some studies showed that the scale deposition 

on the surface is owing to reduction of active sites by chemical treatment (4-6). It 

was illustrated (4, 5, 181) that negatively charged stainless steel surface was 

replaced by non-charged surface by PPCA treatment resulting in reduction of scale 

deposition on the surface. 

The similar hypothesis is thought to be occurred in formation of APTES and 

APhS films on the quartz surfaces. The number of active sites was reduced due to 

formation of APTES and APhS on the surfaces since the negative surface charged 

quartz became slightly positive towards un-charged surfaces by forming APTES 

and APhS. It was shown that positive charged surface un-favour the nucleation of 

calcium carbonate scale on surface and neutral surfaces limits the number of 

available sites for scale crystallisation (348). Thus, it is thought that the APTES and 

APhS films make the quartz surfaces un-charged with slightly positively charged 

resulting in good surfaces to have fewer tendencies to scale crystallisation and 

adhesion.  

Eroini, V. (4) has also shown no change in amount of calcium carbonate 

scale deposition on non-eroded and eroded DLC and PTFE surfaces due to 

importance of the surface chemistry of these surfaces; however, it was also shown 

that the surfaces coated by ceramic and polymer showed lower influences by 

coating materials. The performance of DLC surfaces in reduction of scale 

deposition was related to the low surface energy in fouling studies (6, 184-187); on 

the other hand, not always lower surface energy led to lower scale deposition on 

surface (196, 202). It was also shown that surface energy has a significant effect on 

adhesion of surface on the surface (8, 187, 203); in contrast, insignificant effect 

(Figure ‎7-13) was seen on the performance of the surfaces by surface energy in 

this study as different results obtained by hydrophobic and hydrophilic surfaces. 

As shown in Chapter 5, the morphology of calcium carbonate scale 

deposited on the APTES- and APhS-treated surfaces slightly changed compared 
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with the blank quartz surface. This indicates that APTES and APhS films have 

minor effects on the morphology of the CaCO3 crystal shapes. However, the impact 

of the films on scale deposition can be related to reduction of nucleation sites on 

the quartz surface. This behaviour was also observed previously (4) when PPCA 

was used to treat stainless steel. On the other hand, surface chemistry influenced 

the morphology of the scale formed on the surface due to different surface charged 

(348). It was shown that negative charged and neutral surfaces favoured 

polycrystalline and single-crystal scale on the surface; in contrast, positively 

charged substrates limited the nucleation of calcite from the surface. Although it 

was shown in the literature (3, 4, 189, 205, 345, 348, 385-387) that surface 

composition, roughness and wettability of the surface can alter morphology of scale 

deposited on the surface, this difference was observed to be negligible in this study. 

 

7.5    Immunizing near wellbore area from CaCO3 

deposition/adhesion by SAM formation 

The main contribution of this work is to demonstrate the potential of applying 

new methodology (separately or in assistance of) in addition to squeeze treatment 

of scale inhibitor to protect the near wellbore production from precipitation of 

calcium carbonate. The idea was to illustrate whether it is possible to create a thin 

layer on wellbore grain surface that does not have any tendencies to deposition of 

calcium carbonate scale since the CaCO3 is one of the major issues in near 

wellbore area. The first step is to prove the concept by demonstrating the potential 

of some chemicals to reduce the scale deposition. This can be employed with 

assistance of another methodology used in the oil and gas industry such as 

squeeze treatment. However, in future, other chemicals may be introduced in order 

to completely create an anti-scale formation rock. 

Squeeze treatments are generally used to protect mainly the near wellbore 

area and production packers in the well from mineral scale deposition by injecting a 

massive amount of SI into the near wellbore area: the schematic is shown in 

Figure ‎7-19. The SI is released from the near wellbore into the solution during the 

production to inhibit the production system from scale deposition. This is an 

effective method to mitigate the scale issue in downhole; however, some 

disadvantages are involved in the squeeze treatment such as high cost of each 

treatment due to cost of chemical itself, production loss due to shut-in period and 

pumping jobs; and damage introduced to the formation by pumping SI. An 
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alternative methodology to secure the near wellbore area from scaling can benefit 

the oil and gas industry.  

 

Figure ‎7-19. SI injection Schematic in an oil well using squeeze treatment 

 

Different surface coatings on metal surfaces have been previously studied in 

terms of reduction of mineral scale deposition (3, 4, 61, 178, 179, 181, 182, 388, 

389). It was illustrated that scaling process on various substrates was influenced by 

different properties of surfaces such as roughness, wettability and surface 

chemistry of which impacts are different for each coating (3, 4, 61, 178, 179, 181, 

182, 388, 389). Mitigating the mineral scale issues by coating the surface of 

pipeline and more importantly the critical places like downhole safety valves can be 

an alternative or an assistance methodology to prevent scaling by SI. On the other 

hand, no alternative for protecting the near wellbore area has been introduced so 

far. Therefore, this research focused on introducing and developing a novel 

methodology to reduce the potential of scale deposition in the near wellbore by 

creating an anti-scale surface on formation rock. In contrast to coating of pipelines, 

the idea generated in this research must be performed remotely since there is no 

access to formation rock, and also the thickness of the new surface introduced to 

the formation rock is crucial in order not to block the oil path. In addition, the 

durability of the treatment plays an important role in order to make the methodology 

cost effective for industrial use. Hence, a covalent bond between the rock surface 

and the treatment is essential for the purpose of creating an anti-scale surface. 

As discussed in the literature chapter, organosilanes are the first choice 

since the silicon can covalently react with the formation rock - the quartz part of the 

rock since the majority of the most formation rock consists of quartz - and different 
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tails can be looked at for interaction between mineral scale deposition and the tail of 

the treatment. Different tails of organisilane introduce different physical and 

chemical properties on the formation rock which benefits for this study. Since a 

hydrophobic surface is not an advantage for oil production, two hydrophilic 

organosilanes were chosen to study further. In addition, one of these organosilane 

(APTES) is used in the oil and gas industry for enhanced SI adsorption (290, 291, 

390) and immobilising fine migration. The other organosilane (APhS) used in this 

study has the same tail-end but with different internal tail structure; this was 

employed to investigate the effects of the structure of organosilane on reduction of 

scale deposition due to mainly the rigidity of APhS. In order to achieve the purpose 

of this research, the study was divided into three main chapters: the kinetics of 

aminosilanes film formation, the behaviour of the treated surfaces with regards to 

amount of calcium carbonate scale deposition and characteristics of the film 

formations in order to understand the performance of the film in reduction of amount 

of CaCO3 deposition. Here, the results of each chapter individually discussed. 

 

7.5.1 Kinetics of APTES film formation on quartz surface 

A SAM technique by using QCM was employed to study the kinetics of 

APTES film formation on the quartz surface. Four different concentrations (2-8%) 

were used to study the adsorption and growth of APTES on the substrate. In order 

to explain the growth and adsorption process, Langmuir isotherm was employed by 

using a Matlab code to extrapolate the experimental data. In addition, to estimate 

the required mass of APTES to create a SAM film, ChemDraw software was 

applied to calculate the maximum occupied space by one molecule of APTES. It 

was shown that the APTES surface coverage increased by initial concentration of 

APTES in the solution; however, this trend did not illustrate a linear increment 

(Figure ‎4-10). By considering the standard deviation of the results at 6 and 8%, the 

same surface coverage (more than 90%) can be concluded from the QCM results 

for APTES. Even though the experiments were carried out in 2 h, the most majority 

of the coverage was gained in first 2000 sec, which indicates the importance of 

performing the treatment in high concentrations of APTES in a solution of 

containing high water content. Generally, aminosilanes SAM was performed in a 

solution with toluene and very low water content in the solution (246, 277) and the 

process was implemented in a longer period (from 2 to 24 h). In this study, instead 

of toluene, ethanol was used in solution along with higher concentrations of water in 

order to make the treatment more acceptable in the oil and gas industry and more 
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importantly shorten the film formation procedure in order to reduce the cost by 

losing lower hydrocarbon production due to shut-in period of wells. 

ChemDraw software was used to estimate the amount of APTES molecules 

required to create a SAM on the quartz surface. This estimation was utilized to 

understand whether the APTES mass on quartz substrate measured by QCM is in 

a range of creation of SAM. According to ChemDraw, the amount of APTES 

molecules are required to form a SAM on quartz surface was calculated ~0.5 

μg/cm2. This amount is slightly lower than the mass measured by QCM for 2-6% 

and at 8% the maximum adsorption is higher compared with other concentrations. 

These adsorption values are after 2 h experiment; however, in scale deposition 

tests 30 min experimental time was used for APTES. This should be sufficient 

enough to create a SAM of APTES on quartz surfaces, which can be observed from 

Figure ‎4-5. As a result, Chapter 4 showed that formation of an APTES film on 

quartz surface in a solution of water and ethanol by different concentrations of 

APTES (2-6%) is achievable. In addition, formation of polymerized APTES film on 

quartz surface might be possible owing to high APTES concentration. A schematic 

of APTES film on a substrate is presented Figure ‎7-20. 

 

Figure ‎7-20. Schematic structure of APTES film 

 

7.5.2 Treatments performance in reduction of scale deposition 

Two different aminosilanes (APTES and APhS) with different concentrations 

(0.5-8% and 0.05-0.24%, respectively) were used to treat the quartz surfaces to 

demonstrate the tendency of the treatments to scale deposition. Two SRs 

(low=4.77 and high=54.80) of calcium carbonate solutions were also used to 

monitor the effect of SR on scaling on the treated surfaces. The results of Chapter 5 

were significantly important, since the performance of the treated surface in 

reduction of CaCO3 deposition was highly important to prove the idea of creation of 

anti-scale rock surface. Therefore, the main contribution of this chapter is to 
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demonstrate the potential of remotely treating internal formation rock surface in 

order to reduce the risk scale deposition in near the wellbore.  However, the results 

obtained in this work can be applied to idealised lab conditions and the remote 

creation of the film within the rock pores has not yet been proven.  

In general, APhS treatment showed better performance compared with 

APTES owing to rigid structure of APhS (244, 285) and possibly due to creating a 

neutral layer on the quartz substrate. The performance of APTES treated surfaces 

enhanced by increasing the solution concentration except from 8% which had a 

significant reduction in performance. The maximum performance for APTES 

treatments was at 6% with 85% and 70% reduction of calcium carbonate scale in 

low SR=4.77 and high SR=54.8; respectively, compared with the blank quartz 

surface. For APhS treatments, maximum reduction occurred at 0.6% APhS 

treatment with 97% and 92% in low SR=4.77 and high SR=54.8, respectively. In 

contrast to the previous work on reduction of mineral scale on different coatings that 

showed changes in morphology of scale on coating surfaces (3, 4, 163, 391), 

morphology of the CaCO3 deposition on APTES- and APhS-treated was slightly 

influenced by the treatment compared with the blank surfaces.  

The full explanation of APTES- and APhS-treated surfaces tendency to 

scale deposition was given at the end of Chapter 5. It was discussed that the main 

effect of APTES and APhS treatments in reduction of CaCO3 deposition is altering 

the surface chemistry of the blank quartz by changing the negatively charged quartz 

surface to the positively (towards neutral) charged surface after treatment. Amines 

are weak bases and they can react with water. 

  

              
                       

     
       

      
 

 

The reaction is more towards the left hand-side of arrow. Anilines undergo 

the same types of reaction with much smaller Kb (acid dissociation constant) than 

alkyl amines, this leads to lower ionization in water for anilines. Aromatic amines 

are more stabilized in comparison to their ammonium ions than analiphatic amines 

compared to theirs. This phenomenon states that APhS treatment on quartz surface 

could be neutral and APTES treatment slightly positive. This can also be one of the 

reasons that APhS-treated surface performed better than APTES-treated quartz 

surfaces; this was extensively discussed in section 5.4.  

 

The effect of surface charge on reduction of scale deposition was previously 

demonstrated (344, 348). Wang (62) studied the effect of polyphosphinocarboxylic 
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acid (PPCA) treatment on reduction of mineral scale deposition. They believed that 

the reduction of mineral scale deposition on the substrate was owing to a decrease 

on active nucleation sites by adsorption of PPCA on the surface. They also 

hypothesized that the carboxylic group of PPCA interacted with the metal surface 

leading to creation of non-charged surface on the metal, which resulted in reduction 

of calcium carbonate scale deposition on the metal surface. On the other hand, 

Martinod et al. (5, 344) illustrated that interaction of PPCA directly to the metal 

surface is doubtful since both species were negative in the solution. They believed 

that PPCA first interacted with a positive charge ion and then reacted with the metal 

surface. Although Wang et al. (62) and Martinod et al. (5) postulated different 

hypotheses to explain the interaction of PPCA to the metal surface, their attempts 

to interpreted the reason of reduction in calcium carbonate scale deposition owing 

to creation of neutral surface by formation of a PPCA film on the metal surface. This 

behaviour was also observed by formation of aminosilanes film on the quartz 

surface. Aminosilane-treated quartz surfaces became slightly positive charged but 

more towards a neutral surface. It was also illustrated that a positive charged 

surface discourages nucleation of calcium carbonate scale on the surface and a 

neutral surface reduces the number of available nucleation sites on the substrate 

(348). It was demonstrated in this study that the APhS treatment performed better 

in most cases and the reason is due to rigid conformation of APhS compared to 

APTES and weaker positively charged (neutral) of the surfaces by APhS. 

Schematics of APTES and APhS film conformation are presented in Figure ‎7-22 

and Figure ‎7-23. 

 

7.5.3 Characterisations APTES and APhS films on the quartz 

surfaces 

The objective of Chapter 6 was to study physicochemical properties of 

APTES- and APhS-treated quartz surfaces in order to fully comprehend the 

tendency of the treatments to calcium carbonate scale deposition. In addition, these 

characterisations used to understand the structures and conformations of the films 

formed on the quartz surfaces. Surface chemistry, roughness and surface energy 

analyses were performed by XPS, 3D surface profiler and contact angle goniometry, 

respectively. The main contribution of this chapter is to explicate APTES and APhS 

film structures based on roughness, surface chemistry and energy analyses. The 

results of Chapter 6 was very important in this research since the film 

conformations suggested in this chapter could explain the behaviour of the 
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treatments in reduction of CaCO3 deposition. Ideal conformations of APTES and 

APhS on quartz surface are illustrated in Figure ‎7-21. 

 

 

 

 

a)

 

b)

 

Figure ‎7-21. Schematic structures of ideal silanization of a) APTES and b) APhS 

 

Different surface characterisation are used for aminosilane studies in 

literature to show that the conformation created on the surface is as much close to 

ideal structures (Figure ‎7-21). In general, formation of a SAM layer on quartz 

surface in a solution of toluene and aminosilanes (244) was shown more desirable 

since is closer to the idea conformation (amino group upward). However, it was 

shown in this study that a desirable conformation is also possible to achieve in 

certain solution of water and ethanol (APTES treatment). In comparison to Zhang 

and Srinivasan (244) who carried out the formation of APTES on quartz surface in 

toluene and obtained 88.6% primary amine content after 5 h, in this work higher 

primary amine content (87.4%) in shorter time (30 min) was achieved. The purpose, 

here, was to demonstrate the possibility of applying aminosilanes to formation rock 

the near wellbore area by means of a solution of which more feasible for the oil and 

gas industry. 

The closest film formation to ideal conformation by APTES was obtained by 

6% APTES in ethanol/water solution; this was demonstrated by the primary amine 

content (86%). The best performance was also seen in 6% APTES among all 

APTES concentrations which is in agreement with results of the surface 

characterisations. The lowest contact angle (24o) among other APTES 

concentrations was also measured on the quartz surface treated by 6% APTES 

which confirmed the results of XPS. Lower contact angle is obtained by a creation 
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of uniform layer of aminosilane in comparison with a non-uniform layer with H-

bonded/protonated amine on the surface; this was previously illustrated (255, 259, 

342). The roughness measurements of APTES-treated surface was also shown to 

be an agreement with the XPS results of which primary amine detection is the main 

objective of using XPS. The maximum value of roughness was measured at 8% 

followed by 6% APTES among other APTES concentrations. This indicated some 

aminosilanes polymerised before attaching to the surface. However, the most 

uniform APTES layer was obtained by 6% among other concentrations and this was 

shown by the results of scale test that illustrated that the highest reduction of 

CaCO3 scale deposition at 6% among other APTES concentrations (0.05-8%) in 

both low SR=4.77 and high SR=54.8 solutions. The APTES film formation was 

obtained in this work by 6% APTES in water/ethanol after 30 min experiment at 

ambient temperature is presented in Figure ‎7-22. 

 

Figure ‎7-22. Schematic structure of 6% APTES film formed on quartz surface 

 

All APhS treatments showed generally better performance in comparison 

with APTES treatments; however, the highest reduction was obtained at 0.06% 

APhS. More than 97.9% primary amine was measured by XPS for 0.06% APhS. 

Higher contact angle measurements were shown by APhS treatments compared 

with APTES, which could be due to different solvent (382) or the benzene rings of 

APhS molecules. However, the lowest contact angle was measured at 0.06% 

among all concentrations of APhS in both low SR=4.77 and high SR=54.8 solutions. 

Fairly consistent roughness (Rrms) was measured for all APhS treatments, but lower 

than APTES treatments. The lower roughness measurements are owing to a more 

uniform treatment of APhS in comparison with APTES; this was previously shown 

that the treatment of APhS on quartz surface resulted in more uniform surfaces 

(244, 392). The APhS film was formed in this research in solution of 0.06 APhS and 

toluene after 2 h experiment at ambient temperature is illustrated in Figure ‎7-23. 
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Figure ‎7-23. Schematic of possible APhS conformation on quartz surface at 0.06% 

 

It can be stated that properties of surface treated by aminosilane (APTES 

and APhS in this work) such as wettability and roughness are completely 

dependent on the structure and orientation of the treatments which can be studied 

by measuring the primary amine content by XPS. In addition, the reduction of 

calcium carbonate scale deposition on the quartz surfaces is mainly correlated to 

primary amine content which represents conformation of the film on the substrate; 

this was shown earlier in this chapter. Since the physical properties of APTES and 

APhS surfaces such as roughness and wettability are embedded in the chemical 

property (surface composition) of the film, it can be emphasised that in this work the 

chemical property of the film is dominant. 
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Chapter 8  

Conclusion and Future Work 

 

8.1    Summary of the results 

The main objective of this study was to investigate other possible mitigation 

actions in order to reduce the risk of scaling near the wellbore area, which 

simultaneously does not introduce any additional damage to the formation like 

squeeze treatment. A new methodology was tested by coating internal grain of near 

wellbore in order to reduce the tendency of scaling to the rock formation. The 

feasibility of this idea was demonstrated by film formation and scale experiments. 

The purpose, here, was not to develop the methodology to be ready for 

implementation in an oilfield; however, it was attempted to firstly demonstrate the 

potential of the idea and to secondly comprehend the surface characterisation of 

the films to help further development in future. The method changes the surface 

chemistry of the internal rock surface to reduce the tendency of scaling on the 

surface. The main results of each chapter are presented below. 

 

8.1.1 Chapter 4: kinetics of film formation on quartz surface 

The kinetics of APTES-films on quartz crystal surfaces at different 

concentrations (2-8%) in a solution of ethanol and water (95/5 v/v) was studied. 

Self-Assembled Monolayers (SAMs) of APTES on quartz substrates were 

investigated by Quartz Crystal Microbalance (QCM). Langmuir isotherm was used 

to interpret the adsorption of 3-aminopropyltriethoxysilane (APTES) molecules on 

crystal quartz surfaces. 

 Although a complete surface coverage of APTES on crystal quartz surfaces 

was not achieved, a reasonable coverage of APTES molecules up to 91% 

was obtained. 

 

 ChemDraw simulation was applied to estimate the amount of APTES 

required forming a SAM layer on crystal quartz surfaces. It was shown that 
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approximately‎0.5‎μg/cm2 is required to create an APTES film on the quartz 

surface. 

 

 It was demonstrated that it is possible to create a SAM of APTES on quartz 

surface in 30 minutes in solution of ethanol and water (95/5 v/v) at ambient 

temperature. 

 

8.1.2 Chapter 5: performance of APTES- and APhS-treated 

surfaces 

In this chapter, the tendency of APTES and p-aminophenyltrimethoxysilane 

(APhS) treatments to CaCO3 scale deposition was studied in both low SR=4.77 and 

high SR=54.8 solutions at 80oC. Different concentrations of APTES (0.5-8%) and 

APhS (0.03-0.24%) was used to treat the quartz surface for scale experiments. The 

amount of calcium carbonate scale deposition on treated surfaces was measured 

by microbalance to compare with the blank quartz surface. 

 The amount of CaCO3 deposition on treated quartz surface significantly 

reduced compared with the blank surface. 

 

 95% and 91% of calcium carbonate deposition reduced using the 0.06% 

APhS in low=4.77 and high=54.8 SR solutions, respectively. 

 

 Generally better performance was seen by APhS treatment in both low=4.77 

and high=54.8 SR solutions. 

 

 The treated quartz surface by 6% APTES reduced the amount of CaCO3 

deposition by 86% and 70% in low=4.77 and high=54.8 SR solutions, 

respectively. 

 

 

8.1.3 Chapter 6: Characterisation of APTES and APhS treatments 

Various characterization methods were employed in Chapter 6 to better 

understand the results of scale tests in Chapter 5. Surface compositions, wettability 

and roughness of the treatments were analyzed by X-ray Photoelectron 

Spectroscopy (XPS), contact angle measurement and 3D optical profilometer; 
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respectively. Based on the results of this chapter, the film structure of each 

concentration for both APTES and APhS treatments were proposed.  

 Generally, higher primary amine content was observed by APhS treatments 

than APTES with the maximum of 98% and 87.4%, respectively. 

 

 Higher primary amine content was seen with higher ranges (2-8%) of 

APTES concentrations. In addition, two ranges of wettability were measured 

for APTES-treated quartz with hydrophilic surface for lower ranges (2-8%). 

 

 Due to APhS structure and use of hydrophobic solvent, higher contact angle 

was observed for APhS-treated quartz. 

 

 Smoother substrates were observed by APhS treatments than APTES. 

 

 Based on primary amine, roughness and wettability of the treated surfaces, 

the possible film structures on the quartz surface for both APTES and APhS 

for all concentrations were described in Chapter 7. 

 

8.1.4 Chapter 7: Discussion 

The main objective of Chapter 7 was to discuss the interpretation of Chapter 

6 in order to explain the results of Chapter 5. 

 It was shown that the main characteristic of the surface enabling the 

interpretation of the tendency of CaCO3 scale deposition is primary amine 

content. Although other properties such as wettability and roughness 

affected the scale deposition, the effects of these characteristics can be 

neglected. 

 

 Film conformation on the quartz surface is capable of explaining the 

behavior of the treated surfaces in reduction of CaCO3 scale deposition. 

 

 The main contributions of each Chapter were discussed in this chapter. 

8.2     Suggestions for future work 

The feasibility of protecting the near wellbore by creating an-anti scale rock 

surface has been demonstrated in this research. The preliminary results are 

promising and show the potential of applying this technique near the wellbore. 
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However, more investigations are required before using this technique in an oil 

field. Hence, the main future work in order to develop the technology for field 

applications is listed below into two main groups.  

 

8.2.1 The formation of anti-scale films on the surface 

1. Formation of APTES and APhS films on a representative rock surface and 

evaluating the characteristics of the film . 

2. Applying APTES and APhS films at higher range of temperatures (80-

100oC) followed by analyzing the properties of the formed films. 

3. Applying the APTES and APhS in more acceptable and close to the 

injection fluid in the oil and gas industry. 

4. Investigating the effects of the experiments time. For example, increasing 

the time of APTES formation with lower concentrations and comparing the 

results with the results of this work. 

5. Employing Atomic Force Microscopy (AFM) technique to better understand 

the film formed on the surface. 

6. Considering other chemicals as anti-scale treatments on the surface. 

7. Applying anti-scale chemicals in a QCM with ability of flowing the chemicals. 

 

8.2.2 The tendency of mineral scale to the treated surface 

1. Running core flood tests to assess the treated films on the rock surface in 

terms of scale reduction.  

2. Testing the behavior of the treated surface to scale deposition in a longer 

time. 

3. Investigating the treated surfaces to the other scale deposition such as 

BaSO4. 

4. Employing XRD technique to better study the morphology of the scale 

deposited on the surfaces. 

5. Studying the scale tendency in dynamic experiments like coreflood 

experiment. 

6. Investigating the durability of the films by removing the scale from the 

surface and repeat the scale tests. 

7. Employing CT- or micro CT-scan to monitor the scale deposition in-situ in a 

dynamic condition. 
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Appendix A 

clc 

clear all 

format long 

raw_data=load('12 05 11 2.txt');   %load file 

 

%plot(raw_data(:,5));%plot the 5th colume raw data 

  

%figure 

%plot(raw_data(486:end,5));%plot the 5th colume raw data start from 486 points 

raw_data_1=raw_data(268:end,5); 

  

%filter remove the high frequency noise 

[x_HP_pressure, y_HP_pressure] = butter(7, 0.01, 'low'); 

flitered_data = filtfilt(x_HP_pressure, y_HP_pressure,raw_data_1); 

     

%figure 

%plot(flitered_data);% plot filered data 

    

%do gradient 

d_raw_data=gradient(flitered_data); 

%figure 

%plot(d_raw_data); 

  

KK=[]; 

nn = size (flitered_data); 

n = max (nn); 

A = max (flitered_data); 

B = flitered_data; 

for x = 1 : n; 

    KKK = log(1-(B(x,1)/A))/x; 

    if KKK ~= -inf 

        KK = [KK, KKK]; 

    end 

end 
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Method = 'Average Method' 

K = mean (KK) 

x = 1 : n; 

f = A * (1-exp(K * x)); 

A 

  

figure 

plot(f) 

title('2% organosilane on 12.05.11 ') 

ylabel('ug/cm2') 

xlabel('Time(s)') 

hold on 

plot(flitered_data,'red');% plot filered data 

h = legend('Fitted data','Smooth data',4); 

  

d1_raw_data=gradient(f); 

figure 

plot(d1_raw_data); 

title('2% organosilane on 12.05.11') 

ylabel('dm/dt') 

xlabel('Time(s)') 

  

  

  t = raw_data(:,6) ;  

  m = raw_data(:,5); 

  

% Define your exponential function 

  fh = @(x,p) p(1) * (1 - exp(-x.*p(2))); 

  

% define the error function. this is the function to 

% minimize: you can also use norm or whatever: 

  errfh = @(p,x,y) sum((y(:)-fh(x(:),p)).^2); 

  

% an initial guess of the exponential parameters 

  p0 = [A K]; 

  

% search for solution 
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 Method = 'All data include water with fminsearch function' 

  P = fminsearch(errfh,p0,[],t,m); 

  A1 = P(1) 

  Kobs1 = P(2) 

  

  figure 

% plot the result 

  plot(t,m,'b',t,fh(t,P),'-r') 

  title('2% organosilane on 12.05.11 ') 

  ylabel('ug/cm2') 

  xlabel('Time(s)') 

  h = legend('Exp. data','Fitted data',4); 

   

  t = 0 : n-1; 

  m = flitered_data; 

  

% search for solution 

  Method = 'Organosilane data exclude water with fminsearch function' 

  P2 = fminsearch(errfh,p0,[],t,m); 

  A2 = P2(1) 

  Kobs2 = P2(2) 

  

% plot the result 

  figure 

  plot(t,m,'b',t,fh(t,P2),'-r') 

  title('2% organosilane on 12.05.11 ') 

  ylabel('ug/cm2') 

  xlabel('Time(s)') 

  h = legend('Exp. data','Fitted data') 

 

 

 

 

 

 

 

 


