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ABSTRACT 

 
White matter lesions (WML), identified as hyperintensities on T2-weighted magnetic 

resonance images (MRI) in the ageing brain, are associated with dementia and depression in 

the elderly. Ischaemia may contribute to their pathogenesis but the exact role of glial cell 

pathology remains unclear.  

Recent studies have concluded that oxidative stress is present in high levels in the 

deep subcortical white matter lesions when compared to periventricular white matter lesions.  

The current study investigates the hypothesis that oxidative DNA damage 

contributes to the pathogenesis of WML, specifically the deep subcortical WM (DSCL). 

Oxidative DNA damage was investigated in WML and control WM, both from cases with 

WML (referred to as lesional controls) and without WML derived from the MRC-Cognitive 

Function and Ageing Study. Lesions were previously identified using post mortem MRI. 8-

hydroxy-2’-deoxyguanosine (8-OHdG) was detected by immunohistochemisty and nuclear 

expression quantified. Double staining was performed to colocalise 8-OHdG with markers 

for specific cell type (e.g. CD68 for microglia). Expression of Malonaldehyde (MDA) 

(marker of lipid peroxidation), gamma histone H2AX (ɣH2AX) and DNA dependent protein 

kinase (DNA-PK) (markers of DNA damage response) were quantified by Western Blotting. 

-galactosidase and p16 were used to detect induction of cellar senescence as a downstream 

effect of persistent DNA damage response. QPCR array was carried out using whole tissue 

RNA extracts to measure differences in expression of key senescence and DNA damage 

response genes. 

Both WML and lesional control WM showed significantly elevated level of DNA 

oxidation than control WM, whilst WML and lesional controls did not differ.  Persistent 

DNA damage response was detected using MDA, ɣH2AX and DNA-PK antibodies which 

activated senescence pathways demonstrated in galactosidase activity as well as p16, p21 
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and p53 as other indicators of cellular senescence. Key genes involved in DNA damage and 

senescence pathways were highly expressed in CL tissue. 

Oxidised DNA is up regulated in ageing WM in different levels and may contribute 

to pathogenesis of WML. The similarity in the level of oxidative DNA damage in lesional 

control WM and WML suggests that oxidative damage is widespread in WM in cases with 

lesions indicating that WML are associated with general WM damage. DNA damage 

potentially activates cellular senescence as well as cell cycle check proteins, particularly in 

astrocytes, in aged WM and WML.     
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1.1 White matter lesions 

White matter lesions (WML), a common feature of the ageing brain, are detected by 

Magnetic Resonance Imaging (MRI) as hyperintensities on T2-weighted images and are 

classified as periventricular lesions (PVL) or deep subcortical lesions (DSCL) depending on 

their anatomical location (Fernando et al., 2004). Their frequency increases with normal 

ageing and they are associated with lower cognitive performance (Fernando et al., 2006). 

Although WMLs are associated with several neurocognitive disorders such as Alzheimer’s 

Disease (AD) and other dementias, their pathological role and clinical significance are not 

fully understood (Fernando et al., 2006, Simpson et al., 2007b, Filley, 2010). Population 

based studies of the elderly have added crucial knowledge to the understanding of the 

common WML pathology and an important tool is to correlate post-mortem histological 

findings with the MRI scans taken during life (Fernando et al., 2004).  

The Medical Research Council (MRC) Cognitive Function and Ageing Study 

(CFAS) (1998) is the only multi-centre longitudinal population based study in the UK of 

individuals aged 65 and over where its main objective is to assess the burden of frailty and 

dementia in the population in individuals identified from family practitioner registers. 

People were selected only on the basis of age and they were assessed using questionnaires 

and psychometric tests (www.cfas.ac.uk). 

CFAS has been in existence since 1989 (2001) as CFAS and in 1993 CFAS 

Neuropathology Study (CFANS) was added to the study design mainly to investigate the 

relationship of pathologies to cognitive impairment and decline, (Fernando and Ince, 2004). 

Outcomes from such population studies have widely contributed in the formation of several 

theories explaining the origin of WML. The main theories are chronic cerebral 

hypoperfusion due to vascular degenerative changes of the small vessels, cerebrospinal fluid 

(CSF) accumulation and blood-brain barrier (BBB) dysfunction which is associated with 

altered vascular permeability (Fernando et al., 2006). Recent studies by the MRC CFANS 
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group have directly linked the existence of WML to hypoxia and cerebral small-vessel 

disease which highly contribute in decline in information processing speed, cognition and 

memory which are all typical scenarios seen in AD, Binswanger disease, dementia and 

dementia with Lewy bodies (DLB) (Fernando et al., 2004, Fernando et al., 2006, Simpson et 

al., 2007b). 

1.2 Cognitive impairment in population based studies of the elderly  

Despite the large number of clinic-based studies of dementia and AD in which data 

collection depends on incidence and prevalence of well-defined disease versus control 

groups, there has been no significant blind population-based study where the correlation 

between dementia and ageing was analysed until associations such as CFANS, Hisayama, 

Cambridge City over 75 Cohort Study (CC75C), Vantaa 85+, Honolulu-Asia Ageing Study's 

(HAAS), Cache County Study of Aging and Memory's (Cache County study) have been 

established over the last two decades. However, CFANS is the only one among those six 

population based neuropathology studies that looks at the general old age population (Zaccai 

et al., 2006, Inaba et al., 2011). 

Psychological examination was the tool to assess the level of dementia during life in 

all six population studies which ranged from simple questionnaires about activities of daily 

living and interviews to sophisticated investigations such as Geriatric mental state AGECAT 

algorithm and Cambridge Cognition Examination that were all part of the assessment 

performed on the study population (Copeland et al., 1987, Blessed et al., 1991). 

Neuropathological approaches were applied to define the pathology. The general burden of 

pathology in the cohort was assessed using a modified CERAD (Consortium to Establish a 

Registry for Alzheimer’s Disease) (Fillenbaum et al., 2008) assessment and Braak staging 

which is a classification system of AD stage of pathology according to accumulation of 

neurofibrillary tangles (Braak and Braak, 1991) for Alzheimer-type pathology, assessment 
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of other degenerative pathologies such as Lewy bodies and assessment of vascular pathology 

(Zaccai et al., 2006). 

Although there are numerous differences in the study design between the six study-

populations mentioned earlier, such as number of subjects, years of re-examination and 

number of brains collected, these studies have helped in the creation of new hypotheses 

about age-associated cognition impairment and related substrates that contribute to dementia 

(Zaccai et al., 2006). 

Population based studies (CFANS, HAAS) have provided meaningful attributable 

risk (ARs) at death that correlates patho-biological factors with dementia in a well-separated 

fashion according to their percentage of prevalence (ARs is the difference in rate of 

condition between an exposed versus an unexposed population, whereas population 

prevalence is the total number of cases of the risk factor in the population at a given time) 

(Fernando et al., 2004, White et al., 2005, Matthews et al., 2009). Age (18%), brain atrophy 

(12%), hippocampal atrophy (10%), neocortical neuritic plaques (8%) and neurofibrillary 

tangles (11%), small vessel disease (12%), multiple vascular pathologies (9%) as well as 

lewy bodies (3%) and cerebral amyloid angiopathy (CAA) (7%) are all factors that 

contribute in AR for dementia at death in the CFANS recent study cohort (n=456) 

(Matthews et al., 2009).  

  1.2.1 Cognitive function and ageing neuropathology study (CFANS) 

CFANS is a multi-centre population based study where respondents were identified 

from local Health Care Registers at six different UK sites (Gwynedd, Ely, Newcastle upon 

Tyne, Oxford, Nottingham and Liverpool) (Fernando and Ince, 2004). Using ethically 

approved methods, permission and ‘declaration of intent’ of participation in CFAS as well 

for brain donation was obtained from the respondents. Post mortem brain collection was 

performed after a member of the family or care-giver of the respondent informs the 

concerned member of CFAS of the occurrence of death.   



Chapter 1: Introduction 

5 
 
 

The data from the first 209 subjects who were part of CFANS brain donation 

program revealed several key points in regards to the pathology of cognitive impairment in a 

population setting. Firstly, a high prevalence of neuropathological markers in the brain (e.g. 

WML, mild to severe infarctions, vascular pathology) are usually associated with demented 

individuals but were also seen in non-demented post-mortem brains of non-demented 

respondents (2001, Matthews et al., 2009). Moreover, vascular pathology and angiopathy 

were highly correlated to dementia and would definitely increase the frequency of its 

expression during life (Fernando et al., 2006).  

Secondly, CFAS has revealed the limitations of well-selected diseased-control 

approaches to studying cognitive impairment in the elderly as it demonstrated the common 

co-existence of pathologies, particularly AD and vascular, that in a population setting can 

contribute to dementia. WML may be considered as one aspect of vascular pathology and 

may also contribute to dementia, either in isolation or more commonly in conjunction with 

other pathologies (Fernando and Ince, 2004, Simpson et al., 2007b).  

Finally, an important finding of CFANS study group (2001) was the degree of 

overlap of Alzheimer Type Pathology (ATP) (based on CERAD and Braak assessments of 

plaques and tangles) between non-demented and demented individuals (based on geriatric 

mental state AGECAT algorithm) in this old age group regardless of their degree of vascular 

pathology. Moreover, the study done by Savva G. et al (2009) shows that the overlap in 

burdens of pathology between demented and non-demented individuals increases with age. 

This result emphasizes the difficulty of establishing a threshold for a diagnosis of AD in this 

age group where some respondents remain intellectually intact although having plaques and 

ATP, while others experienced declined cognition despite their minimal pathological 

involvement.  
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1.3 White Matter 

              WM, which comprises a large proportion of the human brain (Filley, 2010), is 

composed mainly of the axons of neurons whose cell bodies lie in the gray matter, and their 

myelin sheaths. Myelin (which is 70% lipid and 30% protein) is produced by 

oligodendrocytes and covers the entire axon except for intervals which are called nodes of 

Ranvier (Filley, 2010). Myelin is an essential component for the conduction and acceleration 

of signal transfer along axons (Turken et al., 2008). Despite the effort of researchers in 

previous years, the role of WM in human brain function is not as well established as that for 

gray matter. It is worth mentioning that the lion’s share of credit goes to the inspiration that 

was brought to neurologists in 1965 where a landmark paper by (Geschwind, 1965) 

(Disconnexion Syndromes in Animals and Man) was published to look into the higher role 

that WM has on human behaviour. Since then, dramatic progress has occurred in WM 

investigation revealing its importance in cognition and emotional behaviour (Filley, 2010).  

The study of WM entered a new era in the 1980s with the advent of magnetic 

resonance imaging (MRI). Instead of relying mainly on autopsies, in vivo imaging was 

routinely done by physicians in the clinic which allowed them to demonstrate WM and its 

abnormalities in parallel with other tests as a diagnostic tool for the assessment of cognitive 

impairment and senescence (Filley, 2010). Functional MRI (fMRI) and positron emission 

tomography (PET) scanning were added recently and they are also valuable tools for 

investigating WM and localising cognition and emotion (Bandettini, 2009). However, it is 

worth mentioning that fMRI and PET are capable of demonstrating mainly cortical regions, 

whereas deep WM accessibility to imaging remains very limited (Filley, 2010). Using the 

principle of isotropy (i.e. random diffusion of water along an abnormal area) and anisotropy 

(i.e. the non-random diffusion of water along a normal pathway), diffusion tensor imaging 

(DTI) has recently been added as the most important imaging tool to show connectivity 
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between brain regions, demonstrating normal WM and abnormal conduction of cross signal 

interactions of areas with WML (Mori et al., 2009). 

1.3.1 WML and MRI 

Although MRI is excellent in detecting severe areas with myelin attenuation 

associated with large lesions (>10 mm), it is not sensitive to  the smaller ones (Bronge et al., 

2002). This potential limitation could have a serious effect on cognitive impairment studies 

where the number and the size of an individual’s lesions are both important in the analysis 

and interpretation of the results. Also, unless the WML were severe, they cannot be detected 

by naked eye examination. CFAS has addressed this issue by doing MRI on post mortem 

coronal brain slices where this pathological approach was unique to CFANS where MRI was 

used to guide sampling for pathological (Fernando et al., 2004, Fernando et al., 2006) 

(Figure.1.2). Three anatomical levels of the brains’ hemispheres were looked at the levels of 

anterior, medial and posterior (Newcastle coronal brain map reference levels 10/12, 19/20, 

24/25 which represents WM taken from the coronal levels 4 – 6 parietal, 0-1 and 6 temporal 

WM respectively) (Perry and Oakley, 1993, Scheltens et al., 1993). WML were divided into 

deep subcortical lesions (DSCL) and periventricular lesions (PVL) depending on their 

anatomical site (Figure 1.1), and were evaluated using a modified principle of Scheltens’s 

semi-quantitative scale (Table 1.1) (Scheltens et al., 1993, Fernando et al., 2004).  

Table 1.1: Modified Schelten’s rating scale for periventricular and deep subcortical 

white matter lesions (Scheltens et al., 1993) 

Periventricular lesions 

(PVL) 

Deep subcortical lesions 

(DSCL) 

0 Absent 0 No abnormality 
1 ≤5 mm 1 <4 mm; n<6 
2 >5 mm– <10 mm 2 <4 mm; n≥6 
3 ≥10 mm 3 4-10 mm; n<6 
  4 4-10 mm; n≥6 
  5 >10 mm 
  6 Confluent lesion 
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In Fernando et al’s (2004) study, the WML identified using MRI scans were 

histopathologically examined for myelin attenuation and for vascular endothelial and 

microglial (Fig.1.3). This study has offered a sensitive correlation of WM change detected 

by post-mortem MRI to its histology. Since then, several studies on behalf of the MRC 

CFANS group have relied on this technique in tissue sampling resulting in significantly 

broader understanding of the pathological basis of WML (Simpson et al., 2009, Simpson et 

al., 2010b, Simpson et al., 2010d). 

 

Figure 1.1: WML identification and anatomical classification using MRI scans. Left: 

MRI scan of a control coronal brain slice free of lesion. Middle: Coronal brain slice showing 

a periventricular WML shown as hyperintensity in MRI signal. The orange frame shows an 

area that is free of lesion in a lesional brain. Right: A coronal brain slice showing 

hyperintensity MRI scan demonstrating a deep subcortical white matter lesion 

 

 

 

 

 



Chapter 1: Introduction 

9 
 
 

 

Figure 1.2: Post-mortem MRI. Fixed post-mortem coronal brain slices were sealed in 

polythene bags and placed in ‘self-locking’ stack to fit into the MRI scanner (Fernando et 

al., 2004)   

 

 

Figure 1.3: WML sampling. (a) Allocation of WML in the assistance of post-mortem MRI 

scan. (b,c) Retrieving WML to create a tissue block for further studies 
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1.3.2 Histology of WML 

The main histopathological feature of WML is myelin attenuation. However, WML 

might differ in PVL versus DSCL in terms of demyelination, axonal loss and increased 

interstitial fluid which could be related to altered vascular supply to periventicular white 

matter (PVWM) (located adjacent to the ventricles) compared to deep white matter (DWM) 

(located in the centrum semi-ovale) (Fernando et al., 2006, Wharton et al., 2011).  

Histological sections of DSCL show reduced Luxol Fast Blue (LFB) staining 

(myelin stain) compared to normal WM, reflecting a loss of myelin (Fernando et al., 2004). 

PVL are closely located to the ventricles and demonstrate in addition loss of ependymal 

lining and subependymal gliosis (Leaper et al., 2001). Degenerated myelin extends beyond 

this area and deep into the WM and it has been concluded that PVL have a higher frequency 

than DSCL in brain ageing (Fernando et al., 2004).  

1.4 WML: Aetiological factors and mechanism of pathology  

1.4.1 Aetiological factors 

The causes of WML and their relationship to broader context of WM ageing, remain 

incompletely understood. Studies strongly support the association of WML with vascular 

risk factors such as stroke, hypertension and cardiac disease, suggesting a role for 

hypoperfusion (2001, Matthews et al., 2009). However, other factors such as autoimmune 

inflammatory responses and blood brain barrier disruption with interstitial fluid 

accumulation in the brain may also play a role (Roman et al., 2002, White et al., 2005).  

1.4.2 Mechanism of pathology 

Several mechanisms have been proposed to contribute to the underlying 

pathophysiological changes that lead to WML. These include hypoxia (hypoperfusion), BBB 

disruption that might contribute to failed drainage of interstitial fluid, resulting in fluid 
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accumulation in the white matter (Carare et al., 2014); microglial activation and ischaemia 

(2001, Fernando et al., 2006, Simpson et al., 2007b). These mechanisms are not mutually 

exclusive, and may operate together. 

I. Hypoxia 

Cortical arteries nourish deep white matter (DWM) of the centrum semi-ovale 

through their long branched capillaries. This anatomical system would potentially jeopardize 

the oxygenated blood supply and drainage in the presence of small vessel disease (including 

arteriolosclerosis and/or CAA) and lead to hypoperfusion (Fernando et al., 2006). 

Periventicular white matter (PVWM) is more subject to interstitial fluid accumulation 

compared to DWM which could be related to the loss of ventricular ependyma associated 

with the proximity of ventricles in this anatomical site (Fernando et al., 2006). However, the 

alteration in the thickness of arterioles and in blood supply and drainage in SVD associated 

with enlarged periventricular spaces and their relation to the formation of WML is not fully 

understood (Fernando et al., 2006).  

The expression of the molecular marker hypoxia-inducible factor HIF1α in brains 

which had the shortest intervals between death, collection, fixation and process along with 

MMP7 and Ngb (molecules up regulated in hypoperfusion) that were all shown to be 

upregulated in the WML in studies reported by CFANS group, strongly suggest the 

pathological role played by hypoxia in WML formation (Fernando et al., 2006, Matthews et 

al., 2009).  

Simpson et al. (2009) have also concluded in a CFAS study that DSCL show a 

significant increase in hypoxia related proteins as well as hypoxia-regulated transcription 

factors which strengthens the idea of cerebral hypoperfusion being one of the causes of 

WML.  



Chapter 1: Introduction 

12 
 
 

II. BBB disruption 

BBB is strictly required to control the brain microenvironment and its dysfunction, 

resulting from leaky blood vessels, is associated with a number of neurodegenerative 

pathologies including multiple sclerosis (MS) and AD (Starr et al., 2009, Simpson et al., 

2010d). Malfunctioning of the BBB is closely related to loss of tight junction (TJ) 

complexes composed of claudin-5 (Cln-5), zona occludin-1 (ZO-1) and occludin 

(transmembrane proteins and accessory proteins) that are considered the structural 

components of BBB which bind brain capillary endothelial cells (Simpson et al., 2010d). 

The contribution of increased permeability in BBB dysfunction to WML formation was 

described previously in several studies (Farrall and Wardlaw, 2009, Popescu et al., 2009) 

and is associated with the presence of fibrinogen-immunoreactive clasmatodendritic 

astrocytes, which are astrocytes with swollen cell body and shorter cellular processes that 

showed reactivity to plasma proteins suggesting a leaky BBB (Fernando et al., 2006). 

Although the cause of WML is not fully explained, serum plasma extravasation due to BBB 

dysfunction could contribute to the pathogenesis of WML (Qiao et al., 2001). Qiao study has 

concluded that the different hypoxic-ischemic changes in MRI hyperintensity in older mice 

brain are associated with differences in alterations in water content plus extravasation of 

protein, consistent with age-dependent differences in hypoxic-ischemic alterations in 

vascular permeability (Qiao et al., 2001). A recent study by the CFANS group has used the 

extravasation of albumin as a marker for the existing BBB dysfunction in WML in the brain 

ageing, and concluded that albumin extravasation was widespread in the ageing brain and 

enhanced in WML, suggesting dysfunction of the BBB may contribute to the pathogenesis 

of WML. This was not accompanied by significant changes in the endothelial expression of 

TJ proteins suggesting a variation in other expressed junction adhesion molecules and 

proteins that were not looked at in that paper (Simpson et al., 2010d).  
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III. Glial cell pathology 

Although much of dementia research has been done on neurons and on the nature of 

protein deposits in the grey matter of the demented elderly, cellular activity has been 

recently considered as a characteristic change indicating an on-going pathology in WML in 

brain ageing (Simpson et al., 2007a, Wharton et al., 2011). These cells include macro- and 

micro-glia, oligodendrocytes and their precursor cells (Simpson et al., 2009).     

Microglia as such, are highly ramified cells and counted as the immune resident 

cells of the CNS. However, their activated role is sophisticated where it can be toxic and be 

involved in several pathological mechanisms of neurodegenerative diseases and immune 

responses in the CNS (Wojtera et al., 2005). For instance, it has been shown that chronic 

hypoxia will contribute to the formation of WML and activate microglia in the rat’s brain 

following ischaemia (Farkas et al., 2004, Curtis et al., 2006).  

Although the role of microglia in WML is not fully established, recent literature 

supports the idea that activated microglia play an important role in the pathology of WML 

where microglia have been widely looked at histologically using immunohistochemistry in 

both PVL and DSCL versus controls (Fernando et al., 2006, Simpson et al., 2007b). PVL 

significantly show a higher level of major histo-compatibility complex (MHC II) activated 

microglia expressing B7-2 and CD40 than control WM with a higher proliferation activity in 

PVL versus DSCL (Simpson et al., 2007b). DSCL showed a significant increase in the 

population of amoeboid microglia demonstrated by CD68 (a microglia marker) reactivity 

compared to PVL (Simpson et al., 2007b). However, a significant increase in the expression 

of MHC II associated with activated microglia was observed in PVL but not in DSCL 

suggesting a different pathological process of ramified microglia in those two distinguished 

anatomical sites (Simpson et al., 2007b).  

Astrocytes are essential in the survival of neurons in the central nervous system 

(CNS). They offer support by maintaining local homeostasis and by participating in the 
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tripartite synapse (Volterra et al, 2005). Damage to astrocytes would alter their normal 

functioning where they could show evidence of hypertrophic and degenerative change that 

might contribute to the pathology seen in brain ageing (Rodriguez et al, 2009).  

In a recent study done by Simpson et al (2010a), reactive astrocytes reveals 

population variation in markers of DNA damage and oxidative stress in Alzheimer-type 

pathology in selected CFANS samples. These markers were seen even in those with low 

Braak stage suggesting an early astrocyte reactivity that is not exclusively associated with 

well-established AD pathology (Simpson et al, 2010a; Wharton et al, 2011). The role of 

reactive astroglia which is thought to respond to different forms of insult by gliosis in the 

ageing brain that could in turn contribute to the pathology of WML creates an important 

hypothesis that is still to be tested.  

NG2-expressing cells are mitotically active population that act as oligodendrocyte 

progenitor (precursor) cells (OPC) in the adult spinal cord and cerebral cortex (Horner et al., 

2000, Tang et al., 2000). Moreover, NG2+ cells are thought to maintain local homeostasis 

and take a part in glutamate signalling (Bergles et al., 2000).  

Several markers for OPC and oligodendrocytes have been used to study the 

pathology in an unselected cohort of the elderly from CFAS. These included microtubule-

associated  protein-2 expressing exon 13 (MAP-2 +13) which is an intracellular protein that 

reflects the processes of myelinating oligodendrocytes, and Platelet-derived growth factor α 

receptor (PDGFαR) which is expressed by OPC as and could be expressed by reactive 

astrocytes (Shafit-Zagardo et al., 1999, Simpson et al., 2007a). High levels of PDGFαR 

reactivity has been seen in PVL suggesting a potential remyelination process. However, 

extension of such a research would determine the effectiveness of the suggested 

remyelination activity in WML, specifically in PVL (Simpson et al., 2007a).  

It is clear now that several mechanisms of pathology might contribute in the 

formation of DSCL and PVL. Although there are several characteristic histological features 
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of lesions in both anatomical sites such as myelin attenuation and microglial cell activation 

when compared to corresponding non-lesional control WM, the detailed pathological 

investigation shows differences between the two areas. This suggests a complex of on-going 

pathogenesis that extends far behind the hypothesis of gliosis as such. The novel conclusion 

represented in Simpson et al’s (2007a) paper that a possible remyelination process which 

might be on-going solely in PVL clearly suggests that cerebral WML in different anatomical 

sites of the brain show different biological reactivity and pathological profiles (Figure 1.4). 

1.4.3 Field-effect of activated microglia in normal appearing WM 

The fact that DSCL and PVL show clear histological and pathological changes 

compared to normal WM from non-lesional (WM[C]) brains gives arise to an important 

question to be addressed in the field of WML research of the elderly: Is normal appearing 

WM (WM[L]) located around lesional areas actually normal?? The study by Simpson et al 

(2007b) has concluded that in (WM[L]), an immunorectivity identified by MHCII increase is 

observed. A further study by the same group which used whole-genome RNA microarray 

technology in comparing gene expression in DSCL with (WM[L]) and (WM[C]) revealed an 

altered regulation of 419 genes in (WM[L]) whereas DSCL show 502 differently regulated 

genes in comparison to WM[C]. The known coding for those genes is mainly associated 

with immune function, ion transport, proteolysis and the cell cycle in which they were all 

upregulated in the normal appearing WM when compared to actual lesions. However, other 

genes are associated with cell structure and metabolism. Although non-lesional deep white 

matter sampled from lesional brain appeared free of lesions on MRI, it contains significantly 

increased level of activated microglia (expressed using MHCII) when compared to control 

WM (Simpson et al., 2007b). The significance of this field-effect changes in WM[L] is 

unknown and until further investigated, the role of this reactive change in central WM  

remains unclear whether it is a protective response or a foundation ground for a progression 

towards WML formation (Simpson et al., 2007b). 
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Figure 1.4: Variation in expression of different molecular markers between PVL and 

DSCL. Recent CFAS studies have shown that although PVL and DSCL are types of WML 

which are revealed as hyperintensities on T2 wheighted scale MRI scan, they reveal changes 

in the expression of molecular markers that reflect hypoxia and inflammation. Microglial 

activation was revealed by MHC II reactivity and was significantly higher in PVLs 

compared to DSCL in elderly brains. However, CD68 was significantly higher in DSCL. 

Although the hypoxia marker HIF1α (gets activated in the presence of ischamia) was 

expressed both in PVL and DSCL, its expression was significantly higher in DSCL. These 

important findings suggest a different pathological process in those two distinguished 

anatomical sites 
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1.5 Oxidative stress and DNA damage in ageing  

Cellular damage is a feature of brain ageing and a contributor to cognitive 

impairment (Davydov et al., 2003, Lovell and Markesbery, 2007). DNA damage due to 

oxidative stress is hypothesised to have a main role in several neurodegenerative diseases 

and is a major cause of premature cell death and senescence (Keller et al, 2005; (Simpson et 

al., 2010b). To date, most studies have investigated DNA damage in cortical neurons in a 

well-defined AD population against healthy controls, and do not take into account the effect 

of oxidative stress on glial cells (Wang et al, 2006; Shackelford, 2006). A recent CFAS 

study demonstrated a large variation in the DNA damage response and oxidative stress in 

astrocytes and neurones in the temporal cortex of the ageing brain which suggests altered 

astroglial function may impact neuronal support and contribute to neuronal dysfunction and 

cognitive impairment (Simpson et al., 2010a). 

Current markers of oxidative damage include oxidized LDL and malondialdehye 

(MDA) (Halliwell et al, 1997). Recent research has expanded the understanding of oxidative 

insult of DNA by reactive oxygen species (ROS) which could lead to DNA double strand 

breaks and the initiation of about 20 oxidised base products in which 8-hydroxyguanine (8-

OHdG) is the most prominent (Cooke et al, 2001). Guanine among other three DNA bases 

has the lowest oxidation potential and therefore is the most vulnerable oxidative stress 

(Figure 1.5).   

Oxidative stress is an indicator of on-going pathology that involves activation of 

microglia andastrocytes i(Simpson et al, 2010). The inability of a cell to repair the damage to 

its DNA could lead to cell death through the activation of different apoptotic pathways 

(involving p53 molecules, caspase-3), or could lead to its permanent damage and eventually 

to senescence (expression of β-galactosidase molecules) (Andreassi et al, 2008; Psychol 

Med, 2008; Simpson et al, 2010). 
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While there is growing evidence of the role of direct DNA oxidative damage in the 

ageing brain and its contribution to cognitive decline, there are limited studies on DNA 

repair mechanism(s) in glial cells and only few studies have investigated ɣH2AX for 

instance, which is an important marker of DNA damage response, in response to DNA 

double strand breaks (DDSB) due to ROS accumulation (Mah et al, 2010). H2AX is a 

protein that is part of the histone family where by it gets phosphorylated in the presence of 

DNA double strand break to become ɣH2AX. ƔH2AX acts as an anchor connecting the two 

sites of DNA break and attracts other DNA damage response molecules to the site of 

damage, including DNA-protein Kinase (DNA-PK). The study done by Simpson et al (2010) 

has extended the analysis of DNA damage response to oxidative insult in brain ageing and 

correlated gliosis and the astrocytic response to Alzheimer type pathology in the temporal 

cortex. The study showed there was no increase in the astrocyte DNA damage response 

associated with increasing Braak stage suggesting that the DNA damage response may be 

independent of AD pathology and may be an early event. Other studies such as Nunomura’s 

(2001) also suggest that oxidative nucleic acid damage is an early feature of AD progression 

(Nunomura et al., 2001)  

To date, only a single paper known to be in the current literature investigating the 

role of DDR in WML in the presence of oxidative stress and how it might contribute in cell 

senescence and apoptosis (Al‐Mashhadi et al., 2014).  
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Figure 1.5: Oxidation of Guanine to form 8-OHdG. Hydroxyl radical attack of guanine to 

form 8-hydroxyguanine 

 

1.5.1 Oxidative stress  

Under normal physiological states, reactive oxygen species (ROS) create an 

essential part of redox signalling cascade that is important to maintain cellular haemostasis 

and gene expression. However, an imbalance between production and detoxification of ROS 

will result in oxidative stress (Figure 1.6). Redox homeostasis is maintained through 

antioxidant defence mechanisms, which target and remove ROS, thereby preventing free 

radical facilitated damage (Inoue et al., 2003, Praticò, 2008). ROS is the product of vital 

aerobic metabolic cellular processes that involves leakage of electrons from the 

mitochondrial respiratory chain (Lenaz et al., 1998) . A large number of ROS and reactive 

nitrogen species (RNA) are  known to exist in biological systems, in which the species most 

studied and known to be related to disease include superoxide, hydrogen peroxide, and the 

hydroxyl radical (Miwa et al., 2008).  
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Figure 1.6: The formation of oxidative stress by ROS. An increased level of endogenous 

ROS production that associated with insufficient anti-oxidant defence mechanism will create 

oxidative stress and would potentially expose the cell, its component and the surrounding 

environment to oxidative damage  

 

It has long been recognised that excessive ROS cause damage to macromolecules 

including lipids, protein and DNA (Blumberg, 2004),  where lipids are one of the most 

sensitive targets for oxidative stress due to the high content of unsaturated fatty acids that are 

easily peroxidised . Once lipid peroxidation is initiated, a series of reactions will occur and 

end products accumulate such as malondialdehyde (MDA) (Kregel and Zhang, 2007). DNA 

bases are also very vulnerable to ROS oxidation where the predominant detectable marker of 

oxidative stress in vivo is 8-hydroxy-2-deoxyguanosine (8-OHdG). Almost all amino acids 

in a protein can be oxidised by ROS. A variety of amino acids oxidised products that have 

been studied in relation to different pathologies include carbonyl derivatives (Andersen, 

2004). Since it is very difficult to estimate the amount of ROS in a biological system, 

quantification of lipid, protein and nucleic acid oxidised products is the current preferred 

method of studying oxidative damage (Radak et al., 2011). 
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Mounting evidence suggests that oxidative stress is a major contributor to age-

related decline of physiological functions, and the contribution of increased ROS production 

to ageing and age related disease has long been studied in variety of models ranging from C. 

elegans to humans (Sohal and Weindruch, 1996, Beckman and Ames, 1998, Navarro et al., 

2002, Bokov et al., 2004, Navarro and Boveris, 2004). During ageing the susceptibility of 

neurons to ROS oxidative damage increases such that changes to cellular macromolecules 

accumulate (Radak et al., 2011). Moreover, increased ROS production may cause changes in 

signal transduction associated with altered gene expression, which are all a typical characters 

of disease states.  

Oxidative alteration to biomolecules depends upon several factors such as the 

location of produced ROS, the availability of metal ions and the susceptibility of the 

molecule to be oxidised. These changes contribute to protein expression/function 

modification and disrupted cellular metabolic pathways, which all together jeopardise the 

defence mechanism of a cell and its ability to repair the oxidative damage (Uttara et al., 

2009). A reduction in cellular defence/repair mechanism in the presence of oxidative stress 

is associated with ageing and neurodegeneration (Nakabeppu et al., 2004), and subsequent 

exposure  of these cells to environmental insult prevents their ability to cope up with 

additional stress.  

1.5.2 Free Radical Theory 

Free radicals are molecules containing unpaired, highly reactive electrons, and are 

proposed as fundamental agents in the process of aging. In the 1950s, Harman proposed “the 

free radical theory” in which he hypothesised that accumulation of free radicals that are 

produced by cellular metabolism in an aerobic condition could damage cellular 

macromolecules and could be a major life span determinant (Harman, 1955). This 

postulation has received much attention in the last 50 years especially as it has 

beendiscovered that ROS contribute to the accumulation of oxidative damage to cellular 
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components (Kregel and Zhang, 2007). The free radical/oxidative stress theory is now 

considered as a prime candidate for causing ageing. It proposes that the cumulative stress to 

cellular components by ROS causes a decline in neuronal function and the surrounding glia 

(Andersen, 2004).  

Oxidative damage is detected by the accumulation of injury markers in biological 

tissues such as lipid peroxidation, protein oxidation and nucleic acid damage where ROS can 

alter cellular function by disrupting signalling cascades through activation/inhibition of key 

enzymes such as protein kinases and phosphatases (Trachootham et al., 2008). The CNS is 

principally susceptible to oxidative stress by ROS due to (i) the high content of unsaturated 

fatty acids which are easily oxidised, (ii) the high oxygen consumption and (iii) the low 

capacity of anti-oxidant mechanisms. In order to understand the effect of oxidative damage 

on tissue ageing, markers of oxidative stress have been widely studied in different models of 

ageing, coupled with the study of tissue response to such an insult including gene-expression 

changes. Several threads of evidence indicate that oxidative stress is can be considered life 

span determinant including: (1) expression of anti-oxidant enzymes in a mouse model 

significantly increased its longevity, (2) oxidative stress markers significantly increase with 

ageing and (3) introduction to change in life style paired with high consumption of anti-

oxidants can significantly decrease ROS production and increase life span (Parkes et al., 

1998, Wickens, 2001, Johnson et al., 2013). However, other studies concluded conflicting 

results making it difficult to understand the direct effect of oxidative stress on life span 

(Griswold et al., 1993). Having said that, the majority of evidence suggests that the ability of 

cells to cope with oxidative damage decreases with age (Kregel and Zhang, 2007).  

1.5.3 Oxidative stress and gene expression changes 

In order for a cell to maximise its survival in the presence of an insult, a 

manipulation in gene expression might occur where gene expression changes are considered 

an important indicator of oxidative stress. An immediate response to oxidation occurs in the 
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nucleus as well as post-transcriptional modification of certain genes to ensure an efficient 

change in signalling pathways that are essential for repair or for cell survival. Gene 

expression is tightly regulated and in the presence of stress, kinetics are rapidly changed to 

ensure a slow consistent adaptation (de Nadal et al., 2011). ROS when present in high 

concentrations are known to function as damaging products to cells, however, more recently 

it has been concluded that low levels of these pro-oxidants have the ability to control 

transcription factor activators (Finkel, 2001, Martindale and Holbrook, 2002). The intra-

cellular redox status is thought to have the capability to modulate a large number of 

molecules such as kinases (Lo et al., 1996, Pombo et al., 1996), phosphatases (Keyse and 

Emslie, 1992), and transcriptional factors (Sun and Oberley, 1996, Finkel and Holbrook, 

2000, Esposito et al., 2001, Zhang et al., 2002) through a wide range of signal transduction 

pathways. Rac, which is the small GTP-binding protein, is a transcription factor that is 

known to activate ROS-generating enzymes such as NADPH oxidase to produce ROS as a 

modulator of downstream molecules (Wang et al., 2004).  NADPH has a wide-range of 

functions involving antioxidant response. The antioxidant response element (ARE) acts to 

mediate the transcriptional induction of genes during oxidative stress and is found in the 

promoter of genes encoding detoxifying enzymes and antioxidants (Reddy, 2008). 

Activation of gene transcription through ARE is mainly controlled by nuclear factor 

erythroid 2-related factor 2 (Nrf2) (Nguyen et al., 2009) which is a key transcription factor 

modulated by oxidative stress. It acts as a regulator for several important detoxifying 

enzymes such as superoxide dismutase, glutathione peroxidases and peroxiredoxins (Itoh et 

al., 2003, de Vries et al., 2008). Studies on post-translational modification of Nrf2 showed 

an ARE-induction by cysteine modification or serine phosphorylation. These types of 

studies provide evidence for the role of Nrf2-mediated regulation on gene expression which 

could act as a protector against oxidative stress (Venugopal and Jaiswal 1996). Studies have 

also concluded that regulation of Nrf2 can protect cells from free radical damage, inhibit 

premature apoptosis and support long cellular life span (Jaiswal, 2004, Copple et al., 2008).  
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ROS regulation to transcriptional factors can be by direct modification of critical 

amino acids residues mainly through formation of disulphide bonds at DNA-binding sites or 

indirectly through phosphorylation/dephosphorylation that occur in response to change in 

redox-modulated signalling pathways. These pathways were found to be implicated in 

ageing and age related pathology, and include the p53 pathway which controls cell 

apoptosis, cell cycle arrest and cellular senescence (Harris and Levine, 2005). The p53 

tumour suppressor activates downstream gene expression responses depending on the level 

and type of stress faced by a cell through two major signalling pathways: the intrinsic and 

extrinsic pathway, in either caspase-dependent or caspase-independent manners (Cho and 

Choi, 2002). The intrinsic pathway mainly acts on post-translational modifications to 

activate apoptogenic factors, such as cytochrome c and apoptosis-inducing factor that are 

released from the mitochondria to the cytoplasm of the cell. This in turn activates a cascade 

of downstream signals, including caspases that control cellular apoptotic response. On the 

other hand, the induction of apoptosis by extrinsic pathways involves the attachment of 

ligands to cell membrane receptors and attraction of cytosolic adaptor proteins, which will 

consequently activate a chain of initiator and effector caspases (Kregel and Zhang, 2007). 

ROS and ROS-modulated molecules are implicated in both the intrinsic and extrinsic 

pathways and thus, act as an activator for cell cycle arrest or premature cellular death 

(Matsuzawa and Ichijo, 2005).  

1.5.4 Oxidative stress to nucleic acids 

The remarkable process of ageing is a very interesting area of research, however 

understanding the mechanism underneath it still remains a mystery. Ageing and age related 

pathologies such as AD and PD were found to be associated with an increased level of DNA 

oxidative damage in the brain (Shan et al., 2007). The CNS is the most vulnerable system in 

the human body to oxidative damage due to its high content of unsaturated fatty acids, high 

Oxygen consumption and low anti-oxidant potential as a defence mechanism (Nunomura et 

al., 2006). The accumulation of oxidised end product of cellular macromolecules including 
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DNA bases in ageing pathologies identifies the significance of understanding the effect of 

oxidative stress on neurons and on glial cells (Ding et al., 2004). 

 Among the four DNA bases, guanine is the base that is most susceptible to 

oxidative damage due its low reduction potential and high affinity to oxidation. Guanine is 

altered mainly by the hydroxyl radical where it is exposed to base attack by singlet oxygen 

or electron transfer response which modifies the base at C8 (Burrows and Muller, 1998, 

Candeias and Steenken, 2000). Although studies have identified more than twenty base 

modification products, the product 8-hydroxyguanine (8-oxoG) is the most abundant and 

well recognised in ageing studies as a marker of oxidative stress (Boiteux et al., 2002, 

Nishimura, 2002, Cooke et al., 2003). The current study utilises 8-OHdG in its pathological 

investigation hence the focus of this review will be on 8-OHdG as a product of oxidation. 

Studies have shown that 8-OHdG levels in DNA is increased in association with 

ischemia/reperfusion, ageing and neurodegenerative diseases (Radak and Boldogh, 2010). 

When 8-oxoG is not repaired, it will bind to adenine (A) instead of cytosine (C) changing 

G:C toT:A (Nishimura, 2002) resulting in base mispairing which in turn will lead to faulty 

protein production (Shibutani et al., 1991).   

Oxidative damage to DNA may alter gene expression and could lead to a variety of 

disrupted cascades of important cellular pathways such as metabolic processes, result in 

translational errors and gene expression changes that will in turn produce misfolded protein. 

The collection of such alteration in regular cellular process will contribute to cellular loss of 

function and lead to cellular degeneration. Current research has focused more on 

establishing mechanisms to avoid the damage, or repair it when it occurs which will 

facilitate new potential approaches for therapies and defines new therapeutic targets in age-

associated diseases. 
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1.5.5 Oxidative DNA damage prevention and repair 

The phenomenon that maintains genomic integrity must protect DNA from 

environmental damage, which include the exposure to ionizing radiation (IR) and ultraviolet 

(UV) light; and damage that might be induced spontaneously during DNA metabolism. 

Damage to DNA can occur as a result of a variety of causes including DNA base 

modification by alkylation, DNA base oxidation and DNA breaks that can be generated by 

ROS (Lindahl and Barnes, 2000, Hoeijmakers, 2009). Exposure to some certain chemicals, 

such as chemotherapeutic agents, can cause DNA single strand breaks (SSB) and DNA 

double strand breaks (DSB) (Ciccia and Elledge, 2010). SSBs are repaired by single-strand 

break repair (SSBR), whereas DSBs are repaired by homologous recombination (HR) 

(which utelises sister chromatids as a template for repair by joining the two broken ends of 

the DNA and precisely restoring the genomic sequence); or nonhomologous end joining 

(NHEJ) (which promotes less accurate DNA relegation) (West, 2003, Caldecott, 2008).  

The repair of damaged DNA requires the recruitment and activation of a plethora of 

enzymes including nucleases, recombinases, phosphatases and kinases. These healing tools 

must be tightly controlled in order to avoid further damage that could happen from accessing 

damaged DNA at the wrong site or at the wrong time. Thus, to facilitate sufficient DNA 

repair, DNA repair enzymes must be utilised at the right place at the right time (Ciccia and 

Elledge, 2010).  

DNA damage response (DDR) is a signalling pathway that is conducted in the 

presence of DNA damage or replication stress, and sets a response to save the cell from 

threat (Harper and Elledge, 2007, Jackson and Bartek, 2009). The DDR is mainly facilitated 

by proteins of the ataxia telangiectasia mutated (ATM) family and the DNA-protein Kinase 

family (DNA-PK) in which they both get activated by DSBs (Meek et al., 2008). 

Recruitment of catalytic DNA-PK can trigger the onset of DNA repair or apoptosis by 

activation of p53 pathway via phosphorylation of the amino terminal site (Soubeyrand et al., 
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2004). Activated DNA-PK will in turn attracts the H2A molecule which is part of histone 

family X (H2AX), where it gets phosphorylated  on serine 139 and acts as an anchor 

between the two sites of a broken DNA in response to DSB. Phosphorylation of H2AX will 

form γ-H2AX which a well-recognised marker used in variety of studies as an indicator of 

DNA damage response (Rogakou et al., 1998, Stiff et al., 2004).   

1.5.6 Oxidative stress and cellular response 

In the presence of oxidative stress, ROS and ROS-affected macromolecules can alter 

a variety of cellular functions that is accompanied with damage to cellular components. This 

will trigger cellular repair mechanisms to become activated. As described above, damage to 

DNA would activate DDR to reverse the effect of oxidative damage. However, prolonged 

exposure to cellular insult is obviously associated persistent DDR that can lead to two 

possible scenarios, one is that the DNA gets repaired, or two, the DDR fail to repair the 

damaged DNA, which will potentially activates senescence or apoptotic pathways (Figure 

1.7) (Kregel and Zhang, 2007, Haigis and Yankner, 2010).  
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Figure 1.7: Age related stress response. Ageing is associated with an increased level of 

ROS which create a threat of oxidative stress that will affect major cellular components 

including DNA of a glial cell. Oxidative damage to DNA will activate DDR through 

multiple pathways but mainly ATM-ATR pathway to fix DSB. Unrepaired DNA will 

potentially expose the cell to a prolonged DDR which is associated with persistent DNA 

damage. As a consequence, cell cycle check proteins will be activated (including p53) which 

will drive the cell to senescence or apoptosis which are known to be implicated in 

neurodegenerative disease 
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1.6 Cellular Senescence 

 Cellular senescence is a process in which cells stop dividing and undergo an 

alternative phenomenon where cell’s functions are changed (Campisi, 2013, Tchkonia et al., 

2013). Hayflick and Moorhead first introduced cellular senescence as the inability of cells to 

further divide after a certain number of passages (cell division) in a cell culture model where 

they described this phenomenon to be irreversible and it was later named as ‘replicative 

senescence’ (Hayflick and Moorhead, 1961, van Deursen, 2014). Since this time, studies 

have suggested multiple explanations for potential triggers of cell senescence including the 

presence of damage in one or more of the cellular components such as telomere dysfunction 

which leads to chromosomal instability. This important observation supports the original 

hypothesis that senescence protects organs and tissue from unrestricted growth of damaged 

cells (Hayflick and Moorhead, 1961, Bodnar et al., 1998). Subsequent studies have 

emphasised the important role of replicative senescence in cancer cells where senescence act 

as a safeguard against tumour growth (Serrano et al., 1997).  However, mounting evidence 

indicates cellular senescence extends beyond tumour suppression and suggests it is 

implicated in wound healing, tissue repair and ageing (Baker et al., 2008, Baker et al., 2011, 

van Deursen, 2014). The multifunction nature of senescent cells raises the question whether 

different senescence mechanisms are responsible for these different biological roles. In the 

following sections the causes and types of senescence will be discussed, however, the main 

focus will be on the role of senescence in ageing and how it contributes to age related 

pathologies. 

1.6.1 Causes of senescence 

To date, very little is known about the causes and effector pathways that might 

initiate senescence where these studies mostly rely on cell cultures of in vitro models. In 

addition to telomere dysfunction, a variety of other stresses have been found to induce in 

vitro growth arrest including DSBs and ROS (Von Zglinicki, 2002) (Figure 1.8). Similar to 
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telomere damage, DSBs and ROS activate DDR in which ATM prevents cell-cycle 

progression by maintaining the cell cycle check protein p53 which will in turn activate the 

cyclin-dependant kinase inhibitor p21 (van Deursen, 2014). However, senescence can be 

initiated in response to other causes that are DDR-independent such as E2F3 activation 

which is another cell cycle check protein that involves stimulation of p16 (Denchi et al., 

2005).  

Although the relative association of p53/p21 and p16 in initiating growth arrest can 

vary depending on the source, both pathways might engage during cellular senescence. For 

instance, DDR will activate senescence through the p53/p21 pathway, however if the DNA 

lesion persists, p16 is activated via ROS production (Passos et al., 2010, Freund et al., 2011). 

While the current research focusses on in vitro models to understand the senescence 

phenomenon, a limited number of studies have been conducted using animal models. A 

study performed by Baker et.al (2013) group using a progeroid mouse model showed 

elevated levels of p53, p21 and p16 that were  

associated with overall mouse developmental decline (Baker et al., 2008, Baker et 

al., 2013). In vitro studies using genetic knock-out mice of the p16 cell cycle check protein 

showed that p16 is associated with senescence and ageing (Baker et al., 2008).   

One of the main limitations of using a cellular model to study senescence is the 

number of stresses that the cells are exposed to. Traditionally, a single stimulus is introduced 

to in vitro models which does not completely mimic biological systems where senescence is 

triggered through multiple stimuli such as genotoxic and mitotic stresses; where it is widely 

agreed that senescence in higher vertebrates is a multi-factorial process (Siegel and Amon, 

2012, López-Otín et al., 2013). 
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Figure 1.8: The implication of ROS on senescence induction. (a) Oxidative stress that is 

associated with increased ROS production can arise from dysfunctional mitochondria as well 

as other non-mitochondrial sources. This leads to genomic DNA damage as well as telomere 

shortening, both of which activate DDR pathways. Persistent DDR stimulates cell cycle 

check proteins that are known to be associated with senescence induction. (b) Cell cycle 

arrest is tightly regulated by activation of p53 pathway in which prolonged p53 elevation 

activates p21. Another major pathway involved in senescence induction and which is DDR-

independent, is the p16 pathway. However, overlap between the two pathways will likely 

occur downstream to maintain senescence growth arrest. ROS mediated senescence 

induction increases ROS production from mitochondrial and non-mitochondrial sources. (c) 

Generation of excessive ROS and DDR activation will create a feed-back loop into those 

two elements where increased ROS production will potentially activate DDR by which 

unrepaired genome will compromise cell ability to proliferate and drive the cell into 

senescence 
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1.6.2 Senescence associated secretory phenotype (SASP) 

 Until recently, it was thought that senescence is the fixed endpoint of cell 

proliferation where the senescent cell loses its function. However, a growing number of 

papers suggest that senescent cells are active, dynamic and functionally altered cells (Purvis 

et al., 2012).  Induction of senescence has been shown to be tightly associated with oxidative 

stress, genomic and proteomic change in biological systems. Among the set of genes that are 

transcriptionally altered in senescence are genes encoding for proteases, cytokines, 

chemokines and growth factors, which all have proinflammatory properties and ultimately 

can cause changes to tissue structure and function. The increased secretion of some or all of 

the above mentioned proteins by a senescent cell is referred to as the senescence-associated 

secretory phenotype (SASP) (Campisi, 2005, Coppé et al., 2008, Rodier et al., 2009). The 

SASP has been demonstrated in many cell types including fibroblasts, endothelial cells and 

astrocytes (Salminen et al., 2011).  

 To date, not much is known about the mechanism underlying SASP activation, 

however, it is thought that the SASP is triggered by ROS mediated DDR which feeds into a 

positive loop (Figure 1.6,c). Interestingly, not all types of cellular senescence are associated 

with SASP, for example independent DDR mediated growth arrest which involves the 

activation of p16 does not produce SASP, suggesting the presence of DDR-independent 

kinetics (Kaplon et al., 2013). Also, SASP secreted factors vary from one cell type to 

another depending on the stimulus. This flexibility within the SASP likely reflects both the 

diversity between biological cells, the specific cell types, and the specific stressor (van 

Deursen, 2014). Having said that, cytokines and chemokines are SASP factors that are 

highly conserved between cells of different types and stimulus, indicating the involvement 

of immune system and establishment of a proinflammatory response as an important 

characteristic of SASP-associated cellular senescence (Coppé et al., 2008). However, 

accumulation of senescent cells is not always associated with the involvement with the 



Chapter 1: Introduction 

33 
 
 

immune system (Benz et al., 1991). Most experimental observations regarding the SASP and 

its characteristics were obtained from tissue culture models and to date, very little is known 

about the role of the SASP in higher biological systems. Thus, to understand the SASP 

phenomenon in these systems, in vivo studies should be conducted to determine the role of 

SASP in different pathologies.  

1.6.4 Senescence in ageing and age-associated diseases 

The lack of specific markers for cellular senescence has greatly hindered the efforts 

characterising the senescent cells that develop in vivo in different biological tissues and 

organs. The most reliable growth-arrest detection methods that are currently used to define 

the characteristic changes associated with senescence are elevated expression and activation 

of p53, p16, p21; detection of senescence-associated β-galactosidase activity and DSBs foci 

that are associated with phosphorylated γ-H2AX (van Deursen, 2014). The use of such 

markers reveals the accumulation of senescent cells in rodents and humans with age (Herbig 

et al., 2006, Jeyapalan et al., 2007). Additionally, studies have shown the presence of 

senescent cells at sites of injuries that are related to certain pathologies, such as AD (Naylor 

et al., 2012, Campisi, 2013), which provide evidence that senescence is associated with 

ageing and age related pathologies.  

Several mechanisms have been proposed regarding the accumulation of senescent 

cells and cellular dysfunction in chronic age-associated diseases. One of these mechanisms 

is the involvement of the SASP in which chemokine and protease secretion is increased 

which disrupts tissue homeostasis and subsequently causes the destruction of the 

extracellular matrix. It is thought that the SASP will also affect adjacent cells by inducing 

paracrine senescence  in healthy neighbouring cells through the secretion of growth factors 

and chemokines  (Nelson et al., 2012, Acosta et al., 2013).  

In recent studies of ageing, astrocyte pathology has been shown to associate with 

tissue pathology and have been shown to be highly susceptible to injury in the presence of 
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chronic stress during the ageing process (Salminen et al., 2011). However, the effect of 

stressed astrocytes in promoting the SASP is yet to be defined. Studies have shown the 

increased expression of TNF-α, IL-1β and IL-6by astrocytes, but not neurons or microglia, 

in the cortex of a rat model with ageing (Campuzano et al., 2009). In vitro studies have 

shown astrocytes can initiate different senescence pathways in response to different types of 

stressors, where induction of oxidative stress and exhausted passaging increase the 

expression of p16 and β-galactosidase activity (Bitto et al., 2010). These studies indicate that 

astrocytes can adopt a SASP phenotype and highlight the need for further research to 

understand the astroglial effect on ageing and age related pathologies.  

1.7 Hypothesis to this study 

This study will test the hypothesis that DNA damage dysregulation contributes to 

the pathogenesis of WML by altering the transcriptome, leading loss of glial cell function, 

and through activation of cell-injury/apoptotic mechanisms leading to senescence and cell 

death (Figure 1.9).  

1.8 Aims of the study 

The study will determine: 

1. The population-variation and nature of DNA damage in glial cells in white matter and in 

WML  

2. Whether increased DNA damage/ damage responses occur in WML 

3. Whether this is associated with the induction of senescence and cell death pathways 

4. Whether there is a field effect of wide-spread DNA damage in WM in lesional brains 

The project is based on human autopsy brain tissue, derived from the MRC CFAS 

where a population based study is used to examine neuropathological basis of dementia.  
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Expression of DNA damage/response apoptosis and senescence related molecules 

will be determined by immunohistochemistry of control, lesional (DSCL) and non-lesional 

WM cases. One of the main points of investigation in this project is to study the early forms 

of pathology associated with oxidative stress in the areas that are free of lesions in a lesional 

brain; and for this, DSCL were selected over PVL since the area of deep WM is 

anatomically. PVL are associated with a small area with a restricted anatomical location 

adjacent to the ventricles, making it very difficult to find NAWM that is also surrounding 

the ventricle.  

Evidence of DNA damage will be assessed and correlated to histological findings 

using molecular methods including qPCR arrays and Western blotting. 

 

Figure 1.9: Hypothesis of the current project. Oxidative stress is a major cellular insult 

that can cause genomic damage (DSBs). As a consequence, DDR is activated to repair the 

damaged DNA. However, if the damage to DNA persists, loss of vital cell functions might 

occur and the glial cell will be potentially driven to apoptosis and/or senescence  
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2.1 Materials 

2.1.1 Commonly used chemicals 

All commonly used chemicals were purchased from Sigma-Aldrich (Poole, UK) or 

Thermo Fisher Scientific Inc. (Loughborough, UK), Analytical grade solvents including 

ethanol, methanol, formaldehyde and xylene were purchased from Fisher Scientific (UK). 

Pipette tips were purchased from Fisher Scientific (UK). Nuclease free water was purchased 

from Ambion, USA. 

For histochemistry Haematoxylin and Eosin stains were purchased from Leica (UK) 

and luxol fast blue (LFB) from Sigma (UK). For immunohistochemiatry Vectastain Elite 

ABC kits for mouse IgG and rabbit IgG, peroxidase substrate kit and alkaline phosphatase 

substrate kit were purchased from Vector Laboratories (UK).  

Slides, coverslips and mounting media (DPX) were supplied by Leica (UK). 

Image capture of stained sections was performed using both BX61 upright microscope 

supplied by Olympus (UK) and Nikon Eclipse (80i) microscope (UK). 

The Olympus Cell̂ R image analysis system was used to quantitatively assess 

immunoreactivity when applicable. 

β-galactosidase histochemical staining kit was purchased from Sigma (UK).  

 2.1.2 Western blotting 

For Western blotting (WB), Tissue was homogenised manually using tissue 

homogeniser (Anachem, UK). Cell lysis was performed using a sonicator. Bradford assay 

was performed to determine protein concentration, with reagents and protein standards 

purchased from Thermo Scientific (UK). Sodium dodecyl sulfate polyacrylamide gel (SDS-

PAGE) was prepared using SDS from Melford Laboratories (UK), ammonium persulphate 

(APS) from Sigma (UK), 30% acrylamide from National Diagnostics (UK) and 
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Tetramethylethylenediamine (TEMED) from Melford Laboratories (UK). Filter papers 

purchased from Whatman Laboratories (UK). Polyvinyl difluoride (PVDF) Immobilin 

transfer membrane was purchased from Millipore (US). Anti-mouse and anti-rabbit 

secondary antibodies were from DakoCytomation (Denmark). Protein molecular weight 

marker was Precision plus protein dual colour standards (Bio-Rad, UK). An enhanced 

chemiluminescence (ECL) kit for chemiluminescence based-immunodetection of 

horseradish peroxidase (HRP) was purchased from Biological Industries (UK). G:box was 

used for membrane development, (Syngene,UK). 

 2.1.3 RNA extraction 

For RNA extraction the Direct-zol RNA MiniPrep kit supplied by Zymo research 

(UK) or Tri-zol reagent supplied by Ambion (UK) was used. Isolated RNA quality was 

checked using Nano chips from Agilent RNA 6000 Nano kit (UK). RNA concentration was 

measured on the Nanodrop Spectrophotometer (ND1000) supplied by Labtech International 

(UK).  

2.1.4 qPCR array 

An initial screen was performed using randomly selected samples from CNL, CL 

and DSCL RNA extract on a commercially available 96 well RT-qPCR array plate. The 

plate was probed with 81 genes that are known to be implicated in DNA damage response 

and in senescence/cell cycle check. The result showed an alteration in a number of genes in 

between the three groups of WM, and for this, a selection of genes was made to customise 

96 well qPCR array plate which contained only the genes of our interest, along with the 

housekeeping and quality control genes (Qiagen-UK) (Table 2.1). 

cDNA was synthesised using RT first strand kit supplied by Qiagen (UK). Thermo-

cycler was supplied by Quanta Biotech (UK). SYBR Green master mix, PCR plates and 

sealing caps were purchased from Qiagen (UK). 



Chapter 2: Materials and Methods 

39 
 
 

Table 2.1: Selected genes for qPCR study 

Symbol Description 

ALDH1A3 Aldehyde dehydrogenase 1 family, member A3 

AKT1 V-akt murine thymoma viral oncogene homolog 1 

ATM Ataxia telangiectasia mutated 

CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, Cip1) 

CDKN1B Cyclin-dependent kinase inhibitor 1B (p27, Kip1) 

CDKN2A Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) 

CHEK2 CHK2 checkpoint homolog (S. pombe) 

GSK3B Glycogen synthase kinase 3 beta 

IGF1 Insulin-like growth factor 1 (somatomedin C) 

IGFBP3 Insulin-like growth factor binding protein 3 

MAP2K6 Mitogen-activated protein kinase kinase 6 

PIK3CA Phosphoinositide-3-kinase, catalytic, alpha polypeptide 

SERPINE1 Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor 
type1), member 1 

TGFB1 Transforming growth factor, beta 1 

TP53 Tumor protein p53 

H2AFX H2A histone family, member X 

OGG1 8-oxoguanine DNA glycosylase 

PCNA Proliferating cell nuclear antigen 
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 2.1.5 DNA extraction 

DNA extraction from whole tissue human brain samples was performed as part of 

sample preparation for Mass spectrometry experiments using QIAmp DNA mini kit 

(Qiagen, UK). 

 2.1.6 DNA hydrolysis 

For DNA hydrolysis, DNA degradase plus kit, purchased from Zymo research (UK) 

was used. DNA degradase plus contains endogenous Alkaline phosphatase which hydrolyse 

genomic DNA into individuals nucleoside component (lacking the negatively charged 

phosphate). This makes the degraded DNA ideal for whole genome DNA analysis by 

LC/MS. 

 2.1.7 Mass spectrometry  

For Mass spectrometry, ESI-Mass spectrometry was performed using an ultrahigh 

resolution time-of-flight (UHR-TOF) mass spectrometer (maXis, Bruker Daltonics) and an 

ion trap mass spectrometer (HCT Ultra PTM Discovery System, Bruker Daltonics) coupled 

with an online capillary liquid chro-matography system (U3000 Dionex, UK) which was set 

to perform data acquisition in the negative mode with a selected mass range of 110−500 m/z. 

The ionisation voltage of -3500 V was set to maintain capillary current between 30−50 

nA.  The temperature of nitrogen was set to 120°C at a flow rate of 4.0 L/h and N2 nebuliser 

gas pressure at 0.4 bar.  
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2.1.8 Solutions 

Washing reagents: 

50mM Phosphate buffered saline (PBS) 

3.2mM Na2HPO4 

0.5mM KH2PO4 

1.3mM KCl 

135mM Nacl, pH 7.4 

 

PBS-Tween (PBST) 

0.05% (v/v) Tween-20 (Sigma, UK) in 50mM PBS 

 

50mM Tris-buffered saline (TBS) 

50mM Tris   

150mM NaCl, pH 7.6  

 

TSB-Tween (TBST) 

0.1% (v/v) Triton X-100 in 50mM TBS 

 

Western Blotting (SDS-PAGE) solutions: 

10% Sodium Dodecyl Sulphate (SDS) 

10% (w/v) SDS in deionized water 

Running buffer (10x) 

144g Glycine 

30.2g Tris 

10g SDS in 1L of water 
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Transfer buffer (10x) 

144g Glycine 

30.2g Tris in 1L of water 

Resolving buffer (4x) 

1.5M Tris-HCL 

0.4% (w/v) SDS 

 

8% Resolving gel, pH 8.8 

8% (w/v) acrylamide 

25% (v/v) resolving buffer 

0.01% (w/v) ammonium persulphate (APS) 

0.1% (v/v) N,N,N’,N’ tetramethylethylenediamine (TEMED) 

 

12% Resolving gel, pH 8.8 

12% (w/v) acrylamide 

25% (v/v) resolving buffer 

0.01% (w/v) ammonium persulphate (APS) 

0.1% (v/v) TEMED 

 

Stacking buffer (4x) 

0.5M Tris-HCL, 0.4% (w/v) SDS 

 

4% stacking gel, pH6.8 

4% (w/v) acrylamide 

25% (v/v) stacking buffer 

0.075% (w/v) APS 

0.1% (v/v) TEMED 
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10% Ammonium Persulphate (APS) 

0.9g APS in 9ml deionized water 

 

Laemlli sample buffer (2x) 

1.5M Tris-HCL 

 4% (w/v) SDS 

100mM dithiothreitol (DTT) 

20% (w/v) Glycerol,  

0.02% (w/v) Bromophenol blue (Fisher Scientific) 

 

Blocking buffer 

5% (w/v) powdered milk in PBS-Tween (0.05%) 

 

Immunohistochemistry solutions: 

Trisodium Citrate buffer (TSC) 

3g of Na3C6H5O7, made up to 1L with deionized water, pH6.5 

 

Ethylenediaminetetraacetic acid (EDTA) (x1)  

10mM Tris-base 

1.26 mM EDTA 

0.1% Tween-20 (pH 8) 

 

Blocking solution 

1.5% (v/v) normal goat serum or 15% (v/v) normal horse serum (Vector Laboratories UK, 

antibody dependent) in 50mM TBST 



Chapter 2: Materials and Methods 

44 
 
 

Peroxidase blocking solution 

1% (v/v) Hydrogen peroxide (H2O2) in 50mM Methanol 

 

IHC antibody incubation solution 

The required calculated concentration of the Ab diluted in 1.5% blocking solution 

 

Avidin-biotin peroxidase complex 

1.5% blocking solution 

0.5% secondary  

 

DAB solution  

2 drops of solution A 

2 drops of solution B, in 5mL of water 

 

Histochemical staining for β-galactosidase 

β-galactosidase staining mixture: 

1mL of 10x staining buffer (pH6) 

125µL of reagent B (400 mM Potassium Ferricyanide) 

125µL of reagent C (400 mM Potassium Ferrocyanide) 

250µL of preheated X-gal solution (40 mg/ml) 

8.5mL of deionized water 

Nuclear fast red counter stain: 

0.1% nuclear fast red, 5% aluminium sulphate in deionized water 
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Whole tissue protein extraction: 

Homogenisation buffer 

10mM Tris HCL pH7.4 

0.8M NaCl 

1mM EDTA 

10% sucrose C12H22O11 

0.1 mM phenylmethanesulfonylfluoride (PMSF) C7H7FO2S 

0.44ml of 10ml mini protease inhibitor cocktail tablet (Roche Diagnostics) to inhibit the 

action of serine, cysteine and metallo-proteases 

 

DNA hydrolysis 

DNA hydrolysis (Standard Reaction Setup, total volume of 25µl) 

2 µl DNA at 500 ng/µl  

 2.5 µl 10X DNA Degradase™ Reaction Buffer  

 1 µl DNA Degradase Plus™ (5 units/µl)  

 19.5 µl ddH2O  

 

Gel Electrophoresis 

Tris Acetate-EDTA buffer (TAE) 

40 mM Tris-acetate 

0.01% glacial acetic acid  

1mM EDTA (pH 8.0) 
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Mass spectrometry (MS) solutions 

Buffer A:  

0.4 M of 1,1,1,3,3,3,-hexafluoro-2-propanol (Aldrich, UK) 

 Triethylamine (Fisher Scientific, UK) to pH7.6  

0.1mMtriethylammonium acetate. 

Buffer B:  

0.4 M of 1,1,1,3,3,3-hexafluoro-2-propanol 

triethylamine to pH 7.6 containing 50% methanol  

0.1 mM triethylammoniumacetate (Fluka, UK) 
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2.1.9 Antibodies 

Table 2.2: Antibodies used in IHC study and their conditions  

Antibody Species Dilution and 
conditions 

Antigen retrieval Supplier 

8-OHdG Mouse 
monoclonal 

1/400  
1 hour RT  

Pressure cooker 
Access Revelation 
(x10, PH 6.5)          

Abcam, 
UK 

ɣH2AX Rabbit 
monoclonal  

1/1000 
1 hour RT 

Pressure cooker 
EDTA pH8                                                    

R&D 
systems, 
UK 

DNA-PK  Mouse 
monoclonal             

1/400 
1 hour RT 

Pressure cooker 
EDTA pH8                                                    

Calbiochem

, UK                    

GFAP Rabbit 
polyclonal           

1/1000 
1 hour RT 

Pressure cooker  
TSC pH6 

Dako, UK 

OSP Rabbit 
polyclonal           

1/250 
1 hour RT 

Pressure cooker  
TSC pH6 

Abcam, 
UK 

CD68 Mouse 
monoclonal 

1/100 
1 hour RT 

10 min in 
microwave TSC 
pH6.3 

Dako, UK 

Collagen IV Mouse 
monoclonal 

1/500 

O/N at 4ºC 

10 min in 
microwave TSC 
pH6.3 

Sigma, 
UK 

p16 Mouse 
monoclonal 

1/100 
1 hour RT 

Pressure cooker 
EDTA pH8                                                    

Bio-
genex, 
USA 

p53 Mouse 
monoclonal 

1/50 

O/N at 4ºC 

Pressure cooker 
EDTA pH8                                                    

Santa-
cruz, 
USA 

p21 Mouse 
monoclonal 

1/50 

O/N at 4ºC 

Pressure cooker  
TSC pH6 

Abcam, 
UK 

8-OHdG: 8-hydroxy-deoxy-guanosisne; ɣ H2AX: Gamma Histone2AX; DNA-PK: DNA-

protein Kinase; GFAP: Glial fibrillary acidic protein; OSP: Oligodendrocyte specific 

protein 
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Table 2.3: Primary Ab used in Western Blotting study 

Antibody Species Dilution Source 

ɣH2AX Rabbit monoclonal 1/1000  
 

R&D systems, 
UK 

DNA-PK 
 

Mouse monoclonal 1/1000  
 

Abcam, UK 

MDA Rabbit polyclonal 1/1000 Cell biolabs, 
Cambridge, UK 

β -actin Mouse monoclonal  1/1000   Abcam, UK 

 

Table 2.4: Secondary Ab used in Western Blotting study 

Antibody Species Dilution Source 

Goat anti-mouse HRP Mouse 
polyclonal 

1/5000 Dako 

Goat anti-rabbit HRP Rabbit 
polyclonal 

1/5000 Dako 
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2.1.10 Human central nervous system tissue 

Post mortem human brain tissue was obtained from participants who were part of 

the MRC CFAS brain donation programme. Participants based around six centres were 

selected based on their age (65 and over) and not their medical history where they have 

undergone a baseline assessment and screening upon enrolment in CFAS. CFAS interview 

included a variety of questions such as level of education and occupation, questions on 

residence, social status and cognitive measurements (Mini mental state examination with 

augmentation). At death, a revision of dementia status was determined using information 

gathered from the respondents and their care-givers during the last years of life (Wharton et 

al., 2011; Fernando et al., 2006). Donated brains were retrieved after obtaining the 

permission from the care givers/ family of the respondents. Ethical approval has been given 

to the collection and use of post mortem CNS tissue at all six CFAS UK sites (a copy of the 

form is available in the appendix).  

In the current study, brain tissue retrieved from Nottingham and Oxford (formalin 

fixed cohort) (Table 2.5) and from Cambridge centre (frozen cohort) (Table 2.6) were used 

to carry out the designed experiments (Table 2.7 and Table 2.8). 
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Table 2.5: Formalin fixed tissue demographic data 

Case Centre Sex Age 

         DSCL 

NP 75/98 Nottingham M 86 

RI 1050/96 Oxford M 73 
NP 115/96 Nottingham M 89 

NP 362/00 Nottingham F 97 
RI 1053/00 Oxford M 82 

RI 1079/00 Oxford M 78 
RI 1107/94 Oxford M 83 

RI 1150/95 Oxford F 89 
NP118/99 Nottingham F 94 

RI 1183/99 Oxford F 88 
NP137/01 Nottingham F 82 

NP138/01 Nottingham F 92 
NP162/01 Nottingham F 90 

NP242/96 Nottingham F 85 
NP46/99 Nottingham F 75 

            Control(non lesional) 

RI 1106/98 Oxford M 93 

RI 1175/94 Oxford M 68 
NP 224/95 Nottingham F 72 

NP 253/97 Nottingham M 86 
NP 296/98 Nottingham F 91 

NP62/03 Nottingham M 88 
NP45/98 Nottingham F 89 

NP60/96 Nottingham F 100 
RI 1303/95 Oxford M 74 

NP104/96 Nottingham M 84 
NP274/95 Nottingham F 72 

NP279/95 Nottingham F 73 
NP561/00 Nottingham F 87 

NP728/99 Nottingham F 80 
         Control( lesional) 

RI 03/03 Oxford F 90 

RI 1161/93 Oxford M 71 
RI 1194/99 Oxford M 87 

RI 1257/96 Oxford M 85 
RI 1268/97 Oxford F 87 

RI 1315/96 Oxford M 85 
RI 50/01 Oxford F 90 

RI 55/02 Oxford F 86 
RI 1192/93 Oxford M 74 

NP119/01 Nottingham F 84 
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Table 2.6: Frozen tissue demographic data 

Case Centre Sex Age 

       DSCL 

RH36 Cambridge F 92 

RH43 Cambridge F 87 
RH54 Cambridge M 89 

RH55 Cambridge F 101 
RH57 Cambridge F 86 

RH67 Cambridge F 78 
RH69 Cambridge F 95 

RH75 Cambridge F 74 
RH91 Cambridge M 89 

RH96 Cambridge F 87 
        Control (non lesional) 

RH22 Cambridge F 89 
RH33 Cambridge M 87 

RH44 Cambridge M 95 
RH52 Cambridge F 89 

RH59 Cambridge M 87 

RH06 Cambridge M 88 
RH63 Cambridge M 75 

RH66 Cambridge M 81 
       Control (lesional) 

RH64 Cambridge F 84 
RH81 Cambridge F 93 
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Table 2.7: Formalin fixed paraffin embedded tissue cohort and type of experiment 

 DSCL cohort: 

 

                  Experiment 

DSCL Sample no. IHC (8-OHdG) IHC (GFAP) IHC (P16) 

75/98 ✔ ✔ ✔ 
1050/96 M1 ✔ ✔ ✔ 
115/96 A1 ✔ ✔ ✔ 
362/00 A2 ✔ ✔ ✔ 

1053/00 A2 ✔ ✔ ✔ 
1079/00 A1 ✔ ✔ ✔ 
1107/94 M2 ✔ ✔ ✔ 
1150/95 M1 ✔ ✔ ✔ 

118/99 A ✔ ✔ ✔ 
1183/99 M1 ✔ ✔ ✔ 
137/01 M1 ✔ ✔ ✔ 
138/01 M1 ✔ ✔ ✔ 
162/01 A2 ✔ ✔ ✔ 
242/96 A1 ✔ ✔ ✔ 
46/99 P1 ✔ ✔ ✔ 

 

 CL cohort: 

Experiment  

CL Sample no. IHC (8-OHdG) IHC (GFAP) IHC (P16) 

03/03 M1 ✔ ✔ ✔ 
1050/96 A2 ✔ ✔ ✔ 
1161/93 M1 ✔ ✔ ✔ 
1194/99 M1 ✔ ✔ ✔ 
1257/96 M1 ✔ ✔ ✔ 
1268/97 M1 ✔ ✔ ✔ 
1315/96 M2 ✔ ✔ ✔ 
50/01 M1 ✔ ✔ ✔ 
55/02 A2 ✔ ✔ ✔ 
46/99 M1 ✔ ✔ ✔ 

1192/93 A1 ✔ ✔ ✔ 
1183/99 A1 ✔  ✔  ✔  

119/01 M1 ✔ ✔ ✔ 
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 CNL cohort:  

Experiment 

CNL Sample no. IHC (8-OHdG) IHC (GFAP) IHC (P16) 

1106/98 A1 ✔ ✔ ✔ 
1175/94 A1 ✔ ✔ ✔ 
224/95 M ✔ ✔ ✔ 
253/97 A ✔ ✔ ✔ 
296/89 P1 ✔ ✔ ✔ 
62/03 A ✔ ✔ ✔ 

45/98 M1 ✔ ✔ ✔ 
60/96 M1 ✔ ✔ ✔ 

1303/95 A1 ✔ ✔ ✔ 
1106/98 M1 ✔ ✔ ✔ 

104/96 A ✔ ✔ ✔ 
274/95 A1 ✔ ✔ ✔ 
279/95 M1 ✔ ✔ ✔ 
561/00 M1 ✔ ✔ ✔ 
728/99 P1 ✔ ✔ ✔ 

 

Table 2.8: Cambridge frozen tissue cohort and type of experiment 

 DSCL cohort: 

Experiment 

DSCL 

Sample 

no. 

RT-qPCR  

(whole 

tissue RNA 

extract) 

WB      

(MDA) 

WB   

(ɣH2AX) 

WB       

(DNA-

PK) 

DNA 

isolation 

for MS 

RH36 H4 ✔  ✔ ✔ ✔ 
RH43 H5 ✔ ✔ ✔ ✔ ✔ 
RH54 H5 ✔  ✔ ✔ ✔ 

RH55  ✔   ✔ 
RH57 H3     ✔ 

RH67  ✔   ✔ 
RH69 H3  ✔ ✔ ✔ ✔ 
RH75 H9 ✔ ✔ ✔ ✔ ✔ 
RH91 H5     ✔ 
RH96 H3  ✔ ✔ ✔ ✔ 
RH81 B   ✔ ✔ ✔ 

 

 

 



Chapter 2: Materials and Methods 

54 
 
 

 CL cohort: 

Experiment 

CL 

Sample 

no. 

RT-qPCR  

(whole 

tissue RNA 

extract) 

WB      

(MDA) 

WB   

(ɣH2AX) 

WB       

(DNA-

PK) 

DNA 

isolation 

for MS 

RH43 H3 ✔  ✔ ✔ ✔ 
RH54 H3  ✔   ✔ 
RH64 H3  ✔   ✔ 
RH69 H5  ✔ ✔ ✔ ✔ 
RH75 H4 ✔ ✔ ✔ ✔ ✔ 
RH81 H3  ✔ ✔ ✔ ✔ 
RH96 H4   ✔ ✔ ✔ 

RH36 
H4B 

✔  ✔ ✔ ✔ 

 

 CNL cohort: 

Experiment 

CNL 
Sample 

no. 

RT-qPCR  
(whole 

tissue RNA 

extract) 

WB      
(MDA) 

WB   

(ɣH2AX) 

WB       
(DNA-

PK) 

DNA 
isolation 

for MS 

RH22 H3 ✔ ✔ ✔ ✔ ✔ 
RH33 ✔ ✔ ✔ ✔ ✔ 

RH44 H5  ✔   ✔ 
RH52   ✔ ✔ ✔ 
RH59 
H4B 

 ✔ ✔ ✔ ✔ 

RH6 ✔ ✔ ✔ ✔ ✔ 
RH63 H5  ✔ ✔ ✔ ✔ 

RH66  ✔ ✔ ✔ ✔ 
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2.2 Methods 

2.2.1 Brain retrieval and storage 

Core information regarding the age, gender, pH, PMD of the WM blocks obtained 

from the Newcastle and Cambridge CFAS cohort, is shown in tables 2.5 and 2.6. Upon 

donation, one cerebral hemisphere was cut following a standard protocol (Fernando et al., 

2004), snap frozen and coronal brain slices stored at -80ºC. The contralateral hemisphere 

was fixed in 10% buffered formalin for a minimum of four weeks, and 1cm coronal slices 

were taken for MRI analysis (Newcastle coronal brain map reference levels 10/12 (anterior), 

19/20 (middle), and 24/25 (poseterior) (Fernando et al., 2006).  

2.2.2 WML identification 

2.2.2.1 MRI procedures 

MRI analysis of WM pathology was previously completed to identify and categorise 

deep WML (Fernando et al., 2004). Full details of the study approach and tissue/data 

collection are described in chapter 1. The technique involved multiple formalin-fixed brain 

slices that were placed sealed in polythene bags and put in a custom built Perspex slice stack 

for magnetic resonance imaging. For additional stability and cleanliness, the slice stack was 

wrapped in cling-film (Figure 1.1from chapter 1). Using pulse sequences previously 

optimized for studying post-mortem WML, MRI scans were performed on a 1.0-T machine 

(Siemens, Munich, Germany) with the following settings: T2-weighted spin echo (2500/98 

ms; repetition time/echo time (TR/TE) excitations, proton density (2500/25 ms) and T1-

weighted inversion recovery image (TR 6838 ms, inversion time (TI) of 600 ms with a TE of 

60 ms) (Fernando et al., 2006). Lesions were rated by 2 independent radiologists blind to 

any clinical or neuropathological information. WML were agreed to be present if 

hyperintensities were detected on T2 weighted images as well as on the proton density 

images. A modified Schelten’s semi-quantitative scale was used to rate the hyperintensities 
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present in the deep subcortical WM (DSCL) and periventricular WM (PVL) which provides 

more detailed insight with good inter- and intra-observer reliability (Scheltens et al., 1992). 

Research in the current study focussed on DSCL and non-lesional WM from both lesional 

and non-lesional brains, as approximately 95% of ageing brains contained PVL and  hence 

few cases (<5%) had no periventricular pathology.  WM MRI scans were rated blind to any 

clinical condition and were based solely on the presence/absence of radiologically detected 

WML. Three groups of WM were identified (Figure 2.1):  

1. Control WM sampled from control, non-lesional brains 

(hereafter referred to as ‘Control Non-Lesional’ (CNL)) 

2. normal appearing white matter from cases with MRI-

detectable lesions (hereafter referred to as ‘Control 

Lesional’ (CL)) 

3. DSCL, which are the actual deep WML  
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Figure 2.1: Categorising WM in the assistance of post-mortem MRI scans. WM was 

categorised into three groups: 1. control non-lesional (control brains free of lesions). 2. 

Control brains (areas free of lesions from a lesional brain). 3. Deep sub-cortical lesions 

(actual WML retrieved from the deep WM) 
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2.2.2.2 Histology and immunohistochemistry 

Tissue sampling of the WM from formalin fixed coronal brain slices was guided by 

the MRI scans to create paraffin blocks (Figure 1.2 from chapter 1). For frozen tissue 

sectioning, MRI scans of the formalin fixed contralateral brain hemispheres were used as a 

guide to map NAWM and DSCL since WML are thought to be distributed symmetrically 

between the two brain hemispheres (Fernando et al., 2004). Histological interrogation of 

WM was essential to confirm the lesion/non-lesional white matter had been sampled and to 

ensure accurate categorisation of WM. Previous studies in CFAS (Simpson et al, 2007; 

Fernando et al, 2004) have demonstrated DSCL show severe myelin attenuation and the 

presence of large numbers of amoeboid microglia when compared to both CL and CNL, 

which have better preserved myelin and microglia with a resting, ramified morphology.  

All formalin fixed paraffin-embedded (FFPE) and frozen tissue were initially stained 

with Haematoxylin and Eosin, CD68 (which was the microglial marker of choice and was 

previously used by the study group) and LFB to confirm the MRI categorisation of WM. 

H&E stain revealed the morphology of glial cells and the histological anatomy of the 

section. CD68 (microglial marker) was used to identify areas of increased microglial 

phagocytic reactivity (amoeboid microglia) (DSCL) and to distinguish them from WM 

containing ramified microglia (CL and CNL). 

MRI hyperintensities representing a lesion was visualised histologically as severe 

loss of myelin by LFB staining when compared to the intact myelin seen in CNL sections. 

Together, those three parameters (H&E and LFB staining, IHC with CD68) enabled us to 

map DSCL, CL areas and match them to corresponding MRI scans while proofing the 

absence of any lesions in healthy control brains. 
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2.2.3 Immunohistochemistry 

  2.2.3.1 Tissue preparation 

6µm sections from FFPE were collected onto positively charged slides and dried 

overnight in an oven at 37ºC. Prior to staining, FFPE sections were dewaxed by placing 

them in two changes of xylene for 5min each, followed by tissue rehydration to water 

through immersion in a graded series of alcohol (100% EtOH for 5min, 100% EtOH for 

5min, 95% EtOH for 5min, 70% EtOH for 5min) followed by a 5min incubation in d.H2O. 

Endogenous peroxidase activity was supressed by placing the sections in 3% H2O2/methanol 

for 20min at room temperature (RT).  Sections were rinsed in d.H2O prior to 

immunostaining. Antigen retrieval was an essential step for the preparation of FFPE tissue 

for staining. It is performed after placing the tissue in 3% H2O2. This treatment of tissue will 

detach clusters of polymers that have formed from formalin particles on the tissue’s antigen 

binding sites. The longer the tissue is embedded in formalin, the more complex the clusters 

become. Inadequate Ag retrieval will remain some clusters that will shield the Ag binding 

site and prevent the Ab of the stain of our interest from attaching to it. Several approaches of 

Ag retrieval were available in the lab and part of Ab optimisation, the best one is chosen to 

be used for FFPE tissue treatment. One of the methods of Ag retrieval is to put the tissue in 

0.01M Tri-sodium citrate (pH 6.5) in the microwave for 10min. Another approach is to place 

the tissue in pressure cooker in 0.01M Tri-sodium citrate (pH6) for 1min incubation where 

the tissue is let to cool down for approximately an hour after that before the rest of staining 

steps are completed.  

Since frozen sections were not placed in formalin, no Ag retrieval was required. 

Sections (5µm) were collected onto charged slides, warmed to room temperature (RT) for 

5min, fixed in ice-cold acetone at 4
O
C for 10 minutes and air dried for 5min prior to 

immunostaining.  
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2.2.3.2 Antibody optimization 

   All antibodies used in this study were optimised prior to staining of the cohort. 

Recommended conditions from the manufacturer and previous CFAS studies were used as a 

guide in the addition to a range of antibody concentrations with a comprehensive variety of 

antigen retrieval conditions. Two independent observers (S.M and S.W) assessed the 

staining and identified optimal antibody conditions (Table 2.2) which resulted in specific 

antibody staining with minimal non-specific background staining.  

2.2.3.3 IHC for formalin fixed, paraffin-embedded tissue (FFPE) 

IHC was performed using a standard avidin-biotinylated enzyme complex (ABC) 

method (Vector Laboratories, Peterborough, UK) (Table 2.2). Following antigen retrieval 

(Table 2.2), non-specific binding was minimised by incubating sections in 1.5% species 

specific relevant normal serum for 30min at RT. Then, sections were incubated with the 

desired primary antibody at its optimum dilution (Table 2.2). Parallel incubations of an 

isotype control with a concentration equal to the highest antibody IgG concentration were 

carried out to confirm the specificity of the staining pattern. Tissue incubation in the absence 

of the primary antibody was also used as negative control. Post-mortem cortical tissue of a 

previously confirmed Alzheimer disease case was used as a positive control. All three 

controls were included in each and every immuno run.  

Following the blocking step, excess blocking solution was removed by tapping the 

slide and the section was then incubated with the optimal concentration of primary antibody 

for 1h at RT. Sections were then washed in TBS buffer and incubated at RT for 30min in 

0.5% of the relevant biotinylated secondary antibody. After another thorough wash with 

TBS for 5min at RT, sections were incubated in avidin–biotin complex solution (Vector 

Laboratories, made at least 30min before use) for 30min at RT, followed by a TBS wash and 

addition of the peroxidase enzyme substrate 3–3 diaminobenzidine solution (DAB). The 
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reaction was stopped by washing the sections with deionized water; typically after 5min. 

Sections were counterstained in haematoxylin, dehydrated through a graded series of EtOH 

(70%, 95%, 100%) and cleared in xylene, before being mounted with DPX.  

2.2.3.4 IHC for frozen tissue 

Despite for a comprehensive range of antigen retrieval methods (including 

microwave, pressure cooker and enzyme digest retrieval techniques), the commercially 

available antibodies used to detect DNA damage response did not work consistently on the 

CFAS FFPE cohort; therefore, frozen sections from the contralateral hemisphere were used. 

Following fixation in ice-cold acetone (4ºC) for 10min, frozen sections were blocked in 

1.5% relevant normal serum at RT for 30min, incubated with the primary antibody for 

60min at RT (ɣH2AX 1:1000 for 60min at RT) followed by a thorough wash with TBS. As 

for the FFPE protocol outlined above, the horseradish peroxidase conjugated avidin–biotin 

complex method was used (Vectastain Elite kit, Vector Laboratories, UK). Where the 

antibody had bound to the section was visualised by incubating the sections with 3–3 

diaminobenzidine solution (DAB) as the chromagen (Vector Laboratories) for 5min. The 

reaction was stopped by a thorough wash of sections with distilled water. Sections were then 

counterstained with haematoxylin, dehydrated, cleared in xylene and mounted in DPX, as 

outlined above. Relevant positive, negative and isotype controls were included with every 

run. 

2.2.3.5 Haematoxylin and Eosin stain 

Although MRI is a reliable tool to detect severe myelin loss, it has potential 

limitations in detecting mild myelin attenuation and cannot detect cellular changes with 

respect to WM pathology (Fernando et al., 2004). Therefore, basic histological techniques 

were employed to assess WM and WML pathology and confirm the relevant WM had been 
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sampled correctly. Heamatoxolyn and Eosin (H&E) stain was performed to investigate the 

basic pathology of the WM.  

Sections were de-waxed in two changes of xylene for five minutes at RT, followed 

by rehydration through a graded series of alcohol (100% EtOH for 5min, 100% EtOH for 

5min, 95% EtOH for 5min, 70% EtOH for 5min) followed by a 5min incubation in d.H2O. 

Sections were placed in Haematoxylin for 2 min, rinsed in water, blued in Scott’s tap water 

for 2 min, rinsed in water, stained with Eosin for 5min, rinsed in water, dehydrated through a 

graded series of alcohol before cleared xylene and mounted in DPX. 

2.2.3.6 Luxol fast blue  

Luxol Fast Blue (LFB) stain was performed to confirm myelin loss in 

radiologically-identified lesions where severe myelin attenuation was predicted.  

Sections were dewaxed in two changes of xylene for five minutes and rehydrated through a 

graded series of alcohols (100% EtOH for 5min, 100% EtOH for 5min, 95% EtOH for 5min, 

70% EtOH for 5min) followed by a 5min incubation in d.H2O. Sections were then placed in 

pre-warmed LFB at 60ºC for two hours. This was followed by dipping sections in % 95 

alcohols for 15 seconds before rinsing in deionized water.  For differentiation, sections were 

then placed in freshly prepared lithium carbonate for 30 seconds followed by dehydration 

through a graded series of alcohol before being cleared in xylene and mounted in DPX. 

2.2.3.7 Double-label immunohistochemistry 

Double-staining experiments to co-localise DNA damage (8-OHdG) with cellular 

phenotype: GFAP [glial fibrillary acidic protein, astrocytes], CD68 (microglia), OSP 

[oligodendrocyte specific protein, oligodendrocytes], CollIV (collagen IV, vessels) were 

carried out on selected representative FFPE cases from the three groups.  
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Staining with the first primary antibody (8-OHdG) was performed using the IHC 

FFPE protocol as outlined above. Following visualisation of oxidative damage using DAB 

chromogen, sections were placed in TBS buffer and then incubated with 1.5% relevant 

normal sera for 1 hour at RT before they were incubated with avidin-biotin blocking kit 

(Vector Laboratories) sequentially at RT for 15min in avidin solution and then biotin 

solution, according to the manufacturer’s instructions. Sections were then incubated with the 

second primary antibody of interest (GFAP, CD68, OSP, collagen IV) at 4ºC over night 

(Table 2.2). Sections were washed thoroughly with TBS buffer and incubated with the 

relevant biotinylated secondary antibody, followed by streptavidin-TRITC (1:100 in TBS) 

for an hour at RT in the dark. Sections were rinsed in TBS, air dried in the dark and mounted 

with Vectamount containing DAPI (Vector Laboratories). Sections were stored in the dark at 

4ºC and visualised in bright field to view oxidative damage (8-OHdG) and a fluorescent 

field to co-localise the damage with specific cellular phenotypes. Image capture was 

performed using Cell̂ R (Olympus Biosystems, Watford, UK) and Leica DMI4000B, UK. 

Co-localisation of staining was analysed using Corel Paint Shop Pro X (Corel, Maidenhead, 

UK). 

  2.2.3.8 Histochemical staining for β-galactosidase 

β-galactosidase (β-gal) is hydrolase enzyme that catalyzes the hydrolysis of β-

galactosides into monosaccharides (Cristofalo, 2005). The presence or absence of an active 

β-galactosidase can be detected by X-gal (an organic compound consisting of galactose 

linked to a substituted indole) which produces a characteristic blue dye when cleaved by β-

galactosidase.  

Prior to use,  all components of the β-galactosidase histochemical staining kit were thawed 

on ice  and the X-gal solution heated to 37ºC for one hour (for activation). The frozen 

sections were warmed to RT for 5 minutes , fixed in ready-made fixation solution for 6 

minutes at RT followed by three rinses in 1x PBS. Freshly prepared staining mixture was 
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then added, the sections were covered with parafilm and the sections were incubated 

overnight at 37ºC. Sections were rinsed in TBS, counter stained with nuclear fast red for 30 

seconds followed by a rinse in deionized water before they were dehydrated, cleared and 

mounted in DPX. 

Senescence associated β-gal (SA- β-gal) activity was microscopically detected by the 

presence of a blue, insoluble precipitate within the cell.  

To determine if SA-β-gal activity was associated with astrocytes, GFAP stained 

sections (using a standard ABC method) were double labelled with β-gal. Similarly, to 

determine the associations of SA-β-gal activity with cell cycle check point, p16 

immunolabelled frozen sections (using ABC kit) were double labelled with β-gal.  

To determine if SA-β-gal activity was associated with other types of glia, the SA-β-gal 

stained sections were stained with oligodendrocyte marker (OSP) and with microglial 

marker (CD68) using the Alkaline Phosphatase kit and the signal was visualized with Vector 

Red (Vector Laboratories) as substrate. 

2.2.3.9 Quantification of 8OHdG immunostaining 

Regions ofWM (DSCL, CL and CNL) were identified using LFB and CD68 

reactivity as a guide, and mapped onto consecutive 8-OHdG immunostained slides. Within 

these regions of interest, images of 5 random fields were captured at x20 magnification 

using Nikon Eclipse (80i) microscope. Images were then transferred to power point 

programme where a grid had been overlaid on each image (Figure 2.2) and they were then 

assessed by two independent observers (Sufana Al-Mashhadi and Julie Simpson). The total 

number of 8-OHdG positive nuclei (reflecting DNA oxidation) was counted proportionally 

to the number of total number of nuclei present in the field. Cytoplasmic staining was not 

taken into account. 

   



Chapter 2: Materials and Methods 

65 
 
 

 

Figure 2.2: 8-OHdG scoring. A method has been developed to score the 8-OHdG staining 

which involved laying a grid using the power-point programme which facilitated the precise 

cell count. Scale bar=100µm 
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2.2.3.10 Image analysis of GFAP and p16 

The Olympus Cell̂ R analysis system was used to calculate the percentage area 

immunoreactivity of GFAP and p16 in all three groups of WM.  Again, CD68 and LFB were 

used to the white matter regions of interest on GFAP andp16 immunostained slides. Images 

of 5 random fields in the shape of a cross were captured at x40 magnification using BX61 

upright light microscope. Images were then transferred to CellR image analyser soft-ware 

where the percentage area of immunoreactivity was calculated for each image.  

  2.2.3.11 Statistical analysis of immunohistochemical staining 

Statistical analyses were performed using PASW Statistics 10 software. 8-OHdG, 

GFAP and p16 data did not show equality of variances between three groups and were not 

normally distributed; therefore, non-parametric statistical methods were applied. The level 

of oxidative DNA damage, gliosis and cell cycle check point activation between groups 

were compared using Kruskal–Wallis Test. In the case of a significant result, post hoc 

pairwise comparisons were performed using the Mann Whitney U-test with correction for 

multiple testing using the Bonferroni method. 

The percentage area of both GFAP andp16 immunoreactivity were scored 

individually but the statistical analysis was done using the average % reactivity from each 

frame (5 fields). GFAP and p16 data correlation were calculated as a nonparametric measure 

of statistical dependence between two continuous variables using Spearman's rank 

correlation coefficient (rho).  

  2.2.3.12 Semi-quantitative scoring of β-gal staining 

Semi-quantitative scoring was performed by capturing a low magnification image 

(20x) of areas of interest (images of four fields/case were scored) that were determined by 

mapping CD68 and LFB throughout the cohort and creating the below criteria for scoring: 
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Less than 2 isolated positive cells visible in a randomly selected field were scored (+), 2–5 

positive cells (++) and more than 6 isolated positive cells (+++).  

 2.2.4 Molecular studies of oxidative stress 

  2.2.4.1 Brain homogenate preparation 

Brain tissue from the frozen hemispheres was sampled from DSCL, CL and CNL 

WM. Approximately 50µg brain tissue was collected in a 1.5mL sterile eppendorf followed 

by addition of 300µL of homogenisation buffer. The tissue was homogenised and sonicated 

for 30 seconds. Samples were kept on ice during sonication. Samples were then microfuged 

at 14,000 rpm for 30 mins at 4ºC. The supernatant was collected and stored at -80ºC until 

required, while the pellet, which contained insoluble protein, was discarded.   

  2.2.4.2 Protein determination (Bradford assay) 

A standard curve was created using known concentrations (250, 500, 750 and 1500 

µg/mL) of Bovine serum albumin (BSA). For each case (standard and unknowns) two 

measurements were taken to increase reliability. 2µL of each sample homogenate or 

standard was transferred to a 96 well-plate, in duplicate. 50µL of ‘Coomassie Plus- The 

better Bradford reagent’ was added to each well. This reagent undergoes a colour change 

(from brown to blue) on binding to protein where this shift in wavelength can be read using 

spectrophotometer indicating the concentration of protein present in the sample. A darker 

blue colour indicates a higher amount of protein present in the sample.  

After the removal of any bubbles that were present in the wells, absorbance readings 

were recorded at 595nm using a plate reader. The read-out was transferred into a spreadsheet 

where the mean of the two readings for each sample was calculated. Absorbance readings of 

standards were used to create the standard curve. Mean values of the samples (wavelength in 

nm) were compared to the standard curve to determine protein concentration in µg/µL. Prior 
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to blotting, protein samples were diluted in an appropriate volume of homogenate buffer to 

ensure equal protein concentrations for loading.  

  2.2.4.2 SDS PAGE preparation 

The percentage resolving gel required depends on the protein size of interest. The 

larger the molecular weight of the protein, the lower percentage of resolving gel required 

and vice versa. Protein molecules travel through the gel when connected to the current, so if 

the percentage resolving gel is high (i.e. 12%-15%), the movement of large proteins is more 

restricted than. lower percentage gels (i.e. 8%-4%) which allow proteins with a higher 

molecular weight to travel. Polyacrylamide gels were prepared as detailed in table 2.9 with 

numbers adjusted according to number of gels prepared. A 4% stacking gel was prepared 

and used with all resolving gels (Table 2.10).  

Table 2.9: 5mls resolving gel preparation 

Solutions 8% (mls) 10% (mls) 12% (mls) 15% (mls) 

Purified water 2.3 2.0 1.7 1.2 

30% acrylamide 1.3 1.7 2.0 2.5 
1.5M Tris(pH8.8) 1.3 1.3 1.3 1.3 

10% SDS 0.05 0.05 0.05 0.05 
10% APS 0.05 0.05 0.05 0.05 

TEMED 0.003 0.002 0.002 0.002 

 

Table 2.10: 2mls stacking gel preparation 

Solutions 4% (mls) 

Purified water 1.35 
30% acrylamide 0.67 

1.5M Tris(pH6.8) 0.5 
10% SDS 0.04 

10% APS 0.04 
TEMED 0.004 
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Samples of protein extracts were mixed with x2 Laemmli sample buffer. After 

vortexing , samples were heated at 95ºC for five mins on a heat block to allow complete 

denaturation of proteins, briefly microfuged and left for few mins to cool down to RT.  

During this time, the gel recipe was prepared (Table 2.8) and mixture was loaded 

into a glass cassette to a level of approximately 3cm below the top of the glass plate to allow 

the loading gel to be added. The cassette was assembled according to the manufacturer’s 

instructions (Bio-Rad, Hemel Hempstead, UK). 1mL of 100% isopropanol was carefully 

added on top of the resolving gel to ensure removal of air bubbles and to even the edge of 

gel surface. Prior to adding the stacking mixture, isopropanol was removed from the top of 

the gel by flushing with distilled water. Excess water was removed gently by using a small 

piece of filter paper. A suitable comb was inserted into the stacking gel swiftly before the gel 

set to create the loading wells.  

40µg of each sample was then loaded carefully into each well with loading the 

appropriate molecular size standard. Gels were then electrophoresed at 50V for 30 mins 

(until samples entered the resolving gel) and the current increased to ~90-120V (depending 

on the size of protein of interest). Current was disconnected as soon as the edge of the dye 

frontreached the bottom of the gel.  

2.2.4.3 Immunoblotting 

The next step was to transfer the proteins from the acrylamide gel onto a PVDF 

membrane suitable for immunoblotting. The PVDF membrane was cut to an appropriate size 

and activated by immersion in methanol for 15 seconds before being rinsed in transfer 

buffer. To carry out the process of transfer, eight fitted pieces of filter papers, four sponges 

and a PVDF membrane were soaked briefly in transfer buffer, and then sandwiched with the 

gel between the covers of transferring cassette (Bio-Rad, Hemel Hempstead, UK). Proteins 

were transferred onto PVDF at 250mA for 60 minutes where the sandwich is kept 

surrounded by ice to ensure the solutions are kept chilled.  
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Non-specific binding of the primary antibodies was prevented by incubating the 

membranes in blocking solution for 60 mins at RT, and membranes were incubated 

overnight at 4°C with primary antibodies diluted in blocking solution placed on a tube roller 

(Table 2.3)  

Membranes were washed 3 times for ten mins each in PBST before they were incubated 

with secondary antibody diluted in 5% skimmed milk powder in PBS-T (Table 2.4). 

Membranes were incubated for 1 hour at RT followed by a 3 ten mins washes in PBST at 

RT.  

Proteins were detected using ECL chemiluminescence (Amersham Ltd., Amersham, 

UK). Equal volumes of EZ-ECL Reagent A and EZ-ECL Reagent B (developing reagent) 

were mixed thoroughly for one min prior to addition to the membrane. The acridan-based 

substrate present in reagent B interacts with the HRP of the secondary Ab and generates a 

detectable chemoluminescence. 

  2.2.4.4 Development of membrane and densitometric analysis  

Membranes were developed and scanned using the G:BOX (Syngene, UK). The 

software scanned the membrane and automatically calculated the time required for 

membrane development according to the intensity of the bands. Images were captured using 

the Intelli Chemi setting in the GeneSnap software. Intelli Chemi works through patented 

technology to detect chemiluminecence and automatically capture a sub-saturated image of 

the membrane. To enable detection of saturation and presentation of the raw data of the 

image, a histogram was automatically generated.  

Densitometric analysis was carried out in GeneTools (Syngene). Developed bands 

were manually framed in equal size rectangular boxes that were manually designed to fit the 

largest band. Background was corrected by the software automatically.  Raw data of the 

pixel intensity and the intensity of the bands in proportion to a defined control was 
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calculated and the intensity of developed bands of interest was normalized to the loading 

control. 

  

2.2.5 RT qPCR array 

  2.2.5.1 RNA extraction 

Whole brain tissue RNA extraction was performed on the WM frozen cohort (Table 

2.8). 50µg of tissue was placed in a sterile 1.5mL eppendorf and homogenized in 500µL of 

Tri-reagent (Ambion, UK). The homogenate was then centrifuged at 12000g for 1 min at 

RT. This was followed by the addition of 500µL of absolute ethanol (volume equal to Tri-

reagent added previously) and mixed thoroughly by vortexing. The mixture was then loaded 

into zymo-spin IIC column in collection tubes and centrifuged at 12000g for 1 min at RT. 

The flow through was discarded. 400µL of direct-zoe RNA prewash reagent was then added 

to the column and centrifuged at 12000g for 1 min at RT. The flow through was discarded. 

The RNA pre-washing step was repeated twice. After that, 700µL of RNA washing buffer 

was added and the tube was centrifuged at 12000g for 1 min at RT. The flow through was 

discarded. The column was then transferred into a sterile collection tube and 25µL of RNase 

free water was added and centrifuged for 1 min at maximum speed at RT. The flow through 

was the purified RNA which was collected and checked after that for its quality and 

concentration.  

  2.2.5.2 Determination of RNA concentration 

The RNA concentration was determined using the Nano-drop Spectrophotometer 

(Labtech International). To do this, 1µL of RNase free water was pipetted onto the 

spectrophotometer pedestal to act as a blank. This was removed and replaced by 1µL of the 
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RNA sample. The sample is analysed use fiber optic technology and the software 

automatically calculates the RNA concentration.  

  2.2.5.3 Quality assessment of RNA 

Following determination of RNA concentration, the quality of the RNA was 

checked on the Agilent 2100 Bioanalyser using an RNA 6000 Nano kit. This kit is capable 

of analysing 5-500ng/µl RNA concentration sample by calculating the 28s/18s ribosomal 

ratio. A qualitative assessment of RNA integrity is then provided.   

  2.2.5.4 cDNA synthesis 

cDNA was synthesized from the extracted RNA samples using the RT
2
 first strand 

kit. The kit includes a proprietary buffer that eliminates any residual genomic DNA 

contamination in RNA samples, before amplification, that would otherwise produce 

erroneous results. The quality of reverse-transcription controls (RTC) on the PCR array can 

only be checked with the built-in external RNA control of the RT
2
 first strand kit. These 

controls are not evaluated when used with other cDNA synthesis kits. This makes it essential 

and critical to use the RT
2
 first strand kit to ensure a high quality RT qPCR array 

experiment. 

Genomic DNA elimination mix was prepared for each RNA sample according to 

table 2.10.  The prepared mix containing the RNA extract was then incubated for 5 mins at 

42ºC followed by incubation on ice for at least 1 min. After that, the reverse-transcription 

mix was prepared (Table 2.11) where the volumes were adjusted according to the number of 

reactions, and 10µL was added to 10µL of genomic DNA elimination mix. Samples were 

then incubated at 42ºC for exactly 15 mins. The reaction was stopped by incubating at 95ºC 

for 5 mins. Then, 91µL of RNase free water was added to each reaction tube and samples 

were then stored at -20ºC until required for use in the RT-qPCR array.  
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Table 2.11: Genomic DNA elimination mix preparation 

Component Amount 

RNA 25ng-5µg 
Buffer GE 2µL 

RNase free water variable 

Total volume  10µL 
 

Table 2.12: reverse-transcription mix preparation 

Component Volume for 

1 reaction 

5x buffer BC3 4µL 
Control P2 1µL 

RE3 reverse transcriptase mix 2µL 
RNase free water 3µL 

Total volume 10µL 
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2.2.5.5 RT2 SYBR-Green master mix 

To ensure accuracy and precision in PCR arrays, it is essential to use the RT
2
 first 

strand kit in combination with RT
2
 SYBR Green mastermix. This will ensure a maximum 

level of sensitive with nanogram to microgram amounts of total RNA.  

The PCR component mix was prepared in a sterile loading reservoir (Table 2.12). 

The components of the mix were adjusted to fit the customized 96-well plate which was 

designed to fit 4 samples in each array run. 

Table 2.13: PCR component mix preparation 

Array format 4 columns of 96-well 

plate (A,B,C,D) 

2x RT
2
 SYBR Green 

mastermix 
337.5µL 

cDNA synthesis reaction 25.5µL 
RNase-free water 312µL 

Total volume 675µL 
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2.2.5.6 RT2 profiler PCR array  

Initially, RNA isolated from 3 brains (CNL, CL, DSCL) were run on a readymade 

qPCR array plate that contained 81 selected genes known to be affected or involved in DDR 

and senescence/apoptotic pathways. From there, I have analysed the qPCR data and chose 

the key genes that showed to be altered in the primary screen. 96 well RT-qPCR arrays were 

customised with 18 primers of 18 key genes involved in DNA-damage response and 

senescence pathways (Figure 2.3).    
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Figure2.3: Array layout. A customised qPCR array plate has been designed probed with 18 

key genes that are involved in DDR and senescence/apoptot ic pathways. The array also 

included 3 housekeeping genes and quality control probes 
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Following the preparation of PCR components mix, the PCR array plates were 

warmed for 1 min at RT and 25µL of PCR mix was added to each well using an 8-channel 

pipette. Wells were then tightly sealed using optical thin wall 8-cap strips. The plate was 

then centrifuged at 1000g for 1 min at RT to remove bubbles and placed in the Real Time 

PCR cycler.  

  2.2.5.7 Assessing the quality of SYBR Green-based qPCR 

reaction 

3 housekeeping genes were included in the arrays to enable normalization of the 

data. The plate was also designed with a genomic DNA control (GDC) which detects non-

transcribed genomic DNA contamination with a high level of sensitivity. The reverse-

transcription control (RTC) tests the efficiency of the reverse-transcription reaction. The 

positive PCR control (PPC) tests the polymerase chain reaction itself.  

The combination of these sensitive assays with normalization of the data with 

housekeeping genes yields high quality and tightly monitored PCR array results. For this 

reason, each sample was run only once and the obtained data was considered highly reliable 

for analysis. 
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2.2.5.8 qPCR array data analysis 

After the end of each qPCR run, raw qPCR data was exported into an excel spread 

sheet, and thedata categorized into three groups: DSCL, CNL and CL. Data analysis was 

done using the relative quantification comparative delta threshold cycle (ΔCT) method 

(Schmittgen and Livak, 2008), where CT stands for the cycle number at which the 

fluorescence passes the detection threshold. The first step of the analysis was to consider any 

individual CT value which was less than 35 as a negative call, except for the genomic DNA 

control well (GDC) where CT value should be greater than 35 thereby indicating that the 

level of genomic DNA contamination is too low to affect gene expression profiling results.  

For each WM group ( DSCL, CNL, CL), the average ΔCT for each gene was 

calculated using the CT value for the gene of interest (GOI) and the average of the 

housekeeping genes (HKG)  used for normalization using the formula below: 

ΔCT = CT
AVG GOI - CT

AVG HKG 

After that, ΔΔCT was calculated using the following formula 

ΔΔCT = ΔCT
AVG GOI 

- ΔCT
AVG HKG

 

The relative expression of the gene of interest to the endogenous control in each 

sample was then calculated using the following formula: 

Relative expression = 2-ΔΔCT 
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2.2.6 Mass spectrometry 

2.2.6.1 Whole tissue DNA extraction 

Total genomic DNA extraction was performed on CFAS frozen cohort (Table 2.8) 

using the QIAamp DNA mini kit. As per the manufacturer’s instructions, 25mg of WM was 

collected into a sterile eppendorf containing 80µL PBS. Tissue was then homogenized in 

100µL of buffer ATL. After that, 20µL of Proteinase K was added, mixed thoroughly and 

sample incubated at 56ºC for 1-2 hours with occasional vortexing until the tissue completely 

lysed. Tubes were then centrifuged briefly and 200µL of buffer AL was added to the sample, 

mixed by pulse-vortexing for 15 seconds, and incubated at 70°C for 10 mins. 200µL of 

absolute ethanol was added to the sample and mixed by pulse vortexing for 15 seconds. 

After that, the mixture (including the precipitate) was carefully transferred to the QIAamp 

Mini spin column (in a 2mL collection tube) and centrifuged at 8000 rpm for 1 min. The 

QIAamp Mini spin column was placed in a sterile 2mL collection tube and the filtrate was 

discarded. 500µL of buffer AW1 was then added to the sample, centrifuged and the column 

was then transferred to a sterile collection tube and the filtrate discarded. 500µL of buffer 

AW2 was added to the column, and centrifuged at full speed for 3 mins. Columns were 

placed in a sterile 2mL collection tube and centrifuged at full speed for 1 min. The QIAamp 

mini spin columns were placed in sterile1.5mL microcentrifuge tubes. 200µL of RNase free 

water was added and let to stand in RT for 5 mins. Samples were then centrifuged at 8000 

rpm for 1 min and the flow through collected and stored at-20ºC until required.  

  2.2.6.2 DNA hydrolysis   

For enzyme hydrolysis, DNA concentrations were determined by the nano-

drop spectrophotometer (Labtech) with the ND-1000 v3.2.1 software, and 

concentrations were adjusted to approximately 1µg/µL. DNA hydrolysis was done in a 

simple single step protocol which efficiently degrades DNA to its individual nucleoside 
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components using the DNA degradase plus (which has Alkaline Phosphatase). The 

nucleosides product which lacks the negatively charged phosphate makes the digested DNA 

ideal for DNA analysis using the LC/MS (Figure 2.4). Typically, 5 µg of genomic DNA is 

incubated with 1µl (5 U) of DNA Degradase Plus™ in 25µl reaction volume and incubated 

at 37°C for 1 hour in the presence of 3µl of TEMPO (1.5M) to eliminate any possibility of 

artificial oxidation formation. Foraccurate quantitation of 8-oxo-dG, 500 fmol of 

[
15

N5]8OHdG was added. 

2.2.6.3 Gel electrophoresis 

In order to ensure the adequate hydrolysis of DNA by the degradase enzyme, 

a simple agarose gel was prepared loaded with digested vs non-digested DNA. The 

agarose gel was prepared by dissolving 500mg agarose in 50mL Tris Acetate-EDTA 

(TAE) buffer, heated in a microwave to homogenise the mixture. After that, 1μL of 

Ethidium Bromide (EtBr) was added. The hot gel mixture was then poured into a 

sealed gel cast (Bio-Rad) with a comb and left for 30 min to solidify. The gel was 

then placed in the electrophoresis apparatus filled with TAE buffer. 
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Figure 2.4: DNA hydrolysis by DNA degradase enzyme. In the presence of Alkaline 

Phosphatase, DNA is hydrolysed by degradase enzyme to its individual nucleosides which 

makes the product ideal for LC/MS analysis 
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3.1 Introduction 

The pathogenesis of WML in the brains of the elderly is not completely understood. 

However, theories of their origin have been proposed: chronic cerebral hypoperfusion 

established from the presence of small vessel disease, BBB dysfunction, CSF accumulation 

and glial cell activation are all thought to play a major role in WML formation and the 

pathology of the surrounding WM (Fernando and Ince, 2004, Simpson et al., 2007a, 

Simpson et al., 2010d).  

  Cellular damage is a known feature of brain ageing and a contributor to cognitive 

impairment (Davydov et al., 2003, Lovell and Markesbery, 2007). DNA damage due to 

oxidative stress is hypothesised to have a main role in several neurodegenerative diseases 

and is a major cause of pre-mature cellular death and senescence (Keller et al., 2005, 

Simpson et al., 2010d). Wang group have conducted a study in 2005 using post-mortem 

brain tissue from previously defined MCI and AD subjects to detect and quantify direct 

DNA damage in the cortex. The study used Mass spectrometry technique to quantify 

Guanine base modification as a result of oxidative DNA damage and concluded that DNA 

oxidative damage is upregulated in MCI brains when compared to controls and may be one 

of the earliest events which contribute to cognitive impairment and decline (Nunomura et al., 

2001, Wang et al., 2005).  

During oxidative phosphorylation, some of the oxygen consumed by the cell is 

transformed into ROS which can attack DNA bases and cause nucleic acid damage (Wang et 

al., 2005). DNA oxidative damage is seen in the form of single strand breaks (SSBs), double 

strand breaks (DSBs), base modifications and DNA-protein cross links. DNA double strand 

breaks can initiate about 20 oxidised base products in which 8-hydroxyguanine (8-OHdG) is 

the most prominent (Fiala et al., 1989, Cooke et al., 2001). Guanine among other three DNA 

bases has the lowest oxidation potential and therefore is most vulnerable to be oxidised 

(Singh et al., 2009) (Figure 1.4 from chapter 1). 
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As a consequence of DNA oxidative damage, changes in protein expression can 

occur and could be fatal to glial cells or cause altered function, such as an upregulation in 

p16 and p53, which are the two main cell cycle check proteins that get activated in the 

presence of persistence DNA damage response to either activate apoptosis or senescence 

(Wang et al., 2005). ROS may also react with proteins and cause changes in critical cellular 

metabolic pathways which cause changes in neuronal function (Poon et al., 2004).  Lipid 

peroxidation can also occur from oxidative stress and cause structural membrane damage 

which has been shown to be toxic to neurons grown in culture media (Lovell et al., 2000, 

2001).  

The products of oxidative stress, including mitochondrial and nuclear DNA damage, 

trigger the cellular mechanisms for DNA damage removal. DNA repair mechanisms are a 

complex system, whilst failure in maintaining genome integrity is implicated in ageing and 

disease (Hoeijmakers, 2009). The DNA damage response is associated with activation of 

several proteins that are involved mainly in DNA double strand break repair, such as DNA-

PK and H2AX (Stiff et al., 2004). DNA-PK activates p53 through phosphorylation of the 

amino terminal site and either triggers the onset of DNA repair or drives the cell to apoptosis 

(Soubeyrand et al., 2004, Ho and Li, 2010). Phosphorylation of H2AX, a member of the  

histone family of proteins, in response to DSB formation results in the formation of γ-H2AX 

which acts as an anchor between the two strands of DNA at the sight of a break and initiates 

DNA repair to maintain genomic stability (Stiff et al., 2004, Stucki and Jackson, 2006).  

Recent studies have shown that DNA damage and an associated DNA damage 

response occur in different types of cells in the ageing brain including neurons, astrocytes 

and microglia (Simpson et al., 2010a, Bradley‐Whitman et al., 2014). This ROS mediated 

cellular activity is considered as a characteristic change in the brain of the elderly (Simpson 

et al., 2007a). To date, studies have focused on studying oxidative cellular damage in early 

stages of AD, MCI and in well-defined AD patients but only very limited number of studies 

have looked into early changes in human brain during the earliest pathological phase of 
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disease progression. Accumulating evidence from studies based on the CFAS cohort suggest 

higher levels of oxidative stress and a DDR occur in subjects at low Braak and Braak 

neurofibrillary tangle stages (Simpson et al., 2010c). However, the role of oxidative stress 

and DNA damage in the pathogenesis of WML remains unknown.  

Studies of the pathology and pathogenesis of WML are hampered by the difficulty 

in recognising these lesions in the autopsy brain. The CFAS approach has been to use post-

mortem MRI of brain slices to guide sampling of WML (Fernando et al., 2004). This allows 

sampling of lesions, and of control white matter from cases with deep subcortical lesions and 

from cases without lesions. These studies have defined the glial pathology of WML and 

have shown up-regulation of microglial activity (Simpson et al., 2007b).  Recent CFAS 

studies showed that the presence of hypoxia markers in WM areas free of lesions from 

lesional brains (Simpson et al., 2010d). A study done by the same group also demonstrated 

that apparently normal white matter from cases with lesions also shows microglial up-

regulation and altered cellular pathways, similar to those of the lesions (Simpson et al., 

2007b, Simpson et al., 2009). This “field effect” suggests that WML (in a deep subcortical 

location) are associated with more widespread white matter abnormality which indicates an 

early change that could contribute towards an established form of the disease (Simpson et 

al.). These interesting findings established an important question about WML formation in 

ageing brain: Is oxidative stress only present in a well-defined WML, or is it present at a 

very early stage where it might impair glial cell function and contribute to WML formation?  

The hypothesis of the current study is that glial cells in WM and WML are exposed 

to oxidative stress which will affect macrocellular components including lipids, proteins and 

DNA through oxidation by which these end products might contribute to glial cell 

dysfunction and/or WML formation. The main aim is to assess the level of oxidation in glial 

cells in WM and WML in a selected CFAS cohort using 8-OHdG as a marker of oxidative 

damage; and γH2AX and DNA-PK as markers of DDR. Detection of oxidation endpoint 
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products including damaged DNA, oxidised protein and peroxidised lipids will define the 

presence and type of oxidative damage in three groups of WM (CNL, CL, DSCL).  

3.2 Results 

3.2.1 Histological characterisation of WM and WML  

Following the categorisation of WM into three groups (DSCL, CL, CNL) using MRI 

post-mortem brain scans as a guide (Figure 1.2 from chapter 1), tissue blocks were taken 

from the formalin fixed material and from the contralateral frozen brain hemispheres.  

Histological characterisation of the tissue was carried out using haematoxylin and eosin 

(H&E), luxol fast blue (LFB) and cluster of differentiation 68 (CD68). 

3.2.1.1 H&E characterisation of DSCL, CL and CNL WM 

The histomorphology of three groups of WM was determined using H&E stained 

tissue sections. Haematoxylin stains basophilic structures blue, and eosin stains eosinophilic 

structures red. 

Overall tissue morphology of DSCL was distinguished from CNL and CL in which 

the first showed dense astrogliosisa associated with increased intra-space between glial cells 

and a severe loss of the surrounding myelin tissue. Glial cells were mainly round and small 

resembling oligodendrocytes while astrocytes had larger oval shape nuclei (Figure 3.1).  
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Figure 3.1: H&E staining of three groups of WM. (a, b) H&E immunostaining of a CNL 

and CL brains respectively, showing round small shaped cells resembling astrocytes in the 

presence of intact interspaces (rarefaction) which is thought to be reserved myelin. (c) H&E 

immunostaining of a DSCL brain showing large interspaces between glial cells which reflect 

the loss of myelin associated with a lesion. Scale bar=100µm. (d) Higher magnification of 

DSCL brain. Scale bar=50µm 
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3.2.1.2 Histological examination of myelin attenuation  

In order to confirm the excessive loss of myelin that was reflected in the form of 

hyperintensities using the MRI scans, tissue sections were stained with luxol fast blue (LFB) 

which stains myelin. DSCL displayed little or no LFB reactivity indicating severe myelin 

attenuation.  In contrast both CNL and CL WM had a regular distribution of LFB staining 

indicating intact myelin (Figure 3.2). 

 

 

 

Figure 3.2: LFB staining of CNL and DSCL brains. (a) LFB staining of CNL brain 

showed intense blue colour reflecting the preservation of myelin when compared to (b) 

which showed severe loss of myelin associated with a DSCL. Scale bar=100µm 
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3.2.1.3 Microglial morphology as a landmark of WML 

IHC with CD68 antibody was performed on both FFPE and frozen CFAS tissue 

sections to confirm the lesion which was detected by MRI analysis had been successfully 

sampled. DSCL predominantly contained large numbers of microglia with an amoeboid 

phagocytic morphology compared to the smaller ramified bipolar morphology of microglia 

detected throughout the CNL (Figure 3.3).CL Sections stained for CD68 showed a mix of 

amoeboid as well as resting microglial morphology. 

 

 

Figure 3.3: CD68 staining of CNL and DSCL brains. The microglial ( or possibly a mix 

of microglia with perivascular macrophages) morphology demonstrated by CD68 was used 

as indiacator of the presence of a lesion. (a) CNL brain stained with CD68 showed ramified 

(resting) by-polar microglia. (b) DSCL brain stained with CD68 showed large swollen 

ameboid microglia. Scale bar=100µm 
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3.2.2 8-OHdG reactivity displays direct DNA damage in WM and WML 

Nucleic acid oxidation of glial cells in the three groups of WM was investigated 

histologically using 8-OHdG as a marker of direct DNA damage. 8-OHdG reactivity was 

detected in the nuclei and cytoplasm of glial cells morphologically resembling astrocytes, 

microglia and oligodendrocytes in a consistent manner between the groups: (i) CNL brains 

showed reactivity to 8-OHdG intracellularly as well as in the extra cellular matrix but it was 

not as intense as the staining observed in (ii) CL and (iii) DSCL brains where by those two 

lateral showed high reactivity to 8-OHdG (Figure 3.4). None the less, 4 out of 15 CNL 

brains showed intense 8-OHdG which mimics the staining intensity in CL and DSCL brains. 

Different types of cells were reactive to 8-OHdG where by morphologically resembling 

astrocytes, oligodendrocytes and microglia. However, reactive cells thought to be microglia 

from their morphology were in their resting ramified state in CNL brains, while clear 

swelling of what is thought to be amoeboid microglia was associated with DSCLbrains. CL 

showed a mixture of both reactive cells, amoeboid and ramified.  

Although there was wide spread oxidative damage in all three groups of WM, DSCL 

in specific showed occasional staining to be associated with star shaped cells resembling 

astrocytes while the intense reactivity was seen in round small cells morphologically 

resembling oligodendrocytes and in swollen large irregular shape cells morphologically 

resembling microglia.  

The distribution of 8-OHdG staining was usually even across brain sections, 

however, it was noted that two DSCL cases displayed high immunoreactivity of DNA 

oxidation at the margins of the lesions creating a ring (Figure 3.5). 
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Figure 3.4: DNA oxidative damage is present in three groups of WM. (a) 8-OHdG 

immunostaining of a CNL brain showed intranuclear and perinuclear (cytoplasmic) 

reactivity. (b,c) 8-OHdG immunostaining of CL and DSCL brains showed intense reactivity 

associated with large cells resembling amoeboid microglia as well as star shaped cells 

resembling astrocytes. Scale bar=100µm 
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Figure 3.5: Oxidised microglia form the edge of an active lesion. Severe myelin 

attenuation demonstrated with LFB stain (a) is associated with extensive number of 

amoeboid microglia which forms an edge around the lesion (b) (could be named as 

macrophage reactive zone). (C) Co-locolisation of 8-OHdG with microglial marker (CD68) 

indicated an on-going DNA oxidation. A and b scale bar= 150µm. c scale bar=50µm 
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3.2.3 Detection of DNA oxidation in specific cell type population 

8-OHdG reactivity was associated with cell types morphologically resembling 

microglia and oligodendrocytes. To determine the specific cell type, double labelling was 

performed using 8-OHdG and specific cell phenotype markers, including CD68 for 

microglia, OSP for oligodendrocytes, GFAP for astrocytes and collagen IV for endothelium 

of blood vessels nourishing the WM. Double labelling experiments were performed for 

qualitative investigation and was done on selected DSCL cases which revealed adequate 

tissue morphology. CNL and CL frozen sections were of inadequate quality and there for 

were not included in this part of the study. 

In recent CFAS studies, it was shown that blood brain barrier dysfunction plays a 

significant role in WML pathology and may contribute to WML formation. For this reason, 

it was essential to investigate in this study the presence of oxidative stress in the 

endothelium of small vessels nourishing the deep WM which is an important factor seen in 

ischaemic WML and vascular dementia. Double labelling with 8-OHdG and Coll.IV, OSP, 

CD68 and GFAP revealed the presence of direct DNA damage in the endothelium, 

oligodendrocytes, microglia and astrocytes respectively in DSCL (Figure3.6 and Figure 3.7).  
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Figure 3.6: DNA oxidative damage is present in the endothelium as well as 

oligodendrocytes of WML. Double labelling with 8-OHdG and Coll. IV revealed the 

presence of oxidative damage in endothelium of a DSCL case (a,b,c) as well as in 

oligodendrocytes when double labelled with 8-OHdG and OSP (d,e,f). Scale bar=100µm 
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Figure 3.7: DNA oxidative damage is present in migroglia as well as astrocytes of 

WML. Double labelling with 8-0HdG and CD68 revealed the association of DNA damage 

with microglia (a,b,c) as well as astrocytes in WML using GFAP as a marker of astrocytes 

(d,e,f). Scale bar=100µm 
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3.2.4 Oxidative DNA damage is highly expressed in DSCL and CL WM 

DNA oxidative damage was identified in all three groups of tissue (CNL, CL, 

DSCL). The protocol followed to quantify 8-OHdG within these groups was previously 

explained in details in materials and methods section. Briefly, within each region (CNL, CL 

and WML), 5 random fields were captured and images were transferred to a power point 

programme where a grid was overlaid on each image. The number of 8-OHdG positive 

nuclei and total number of nuclei were assessed in the five fields for each case, allowing 

determination of percentage positive nuclei. Only cells with positive nuclei, reflecting 

nuclear DNA oxidative damage, were assessed; cells with cytoplasmic only staining were 

not counted as positive.  

Inter-observer variation was determined in 8-OHdG scoring between the two 

different observers. This variation showed a consistent bias related to the creation of two 

independent threshold in which S.M consistently scored the number of reactive nuclei in all 

three groups slightly lower than J.S scores. Nevertheless, the scores were very highly 

correlated (Correlation Coefficient=0.656**; p<0.001) indicating that the two observers 

ranked cases in a similar order (Figure 3.8). Means of the two observers’ scores were used 

for the statistical comparisons between groups.  

Quantification of 8-OHdG showed that DNA oxidative stress is not similar between 

the groups (Table 3.1). Statistically, there was a significant difference in the level of DNA 

oxidative damage between three groups (Kruskal-Wallis p=0.01) (Figure 3.9). Post-hoc 

analysis revealed a significant difference in the level of DNA oxidation between control and 

lesional control (Mann Whitney, p=0.011<0.017) and between control and DSCL 

(p=0.007<0.017). There was no significant difference in the level of oxidised DNA between 

lesional control and DSCL (p=0.526>0.017).  
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Figure 3.8: Distribution of the two observers' 8-OHdG scores. Although SM scores were 

consistently lower than JS in this scatter plot, they were highly correlated (Correlation 

Coefficient=0.656**) 

 

 

Table 3.1: Description of the amount of oxidative stress among the cohort using 

quantification of 8-OHdG staining by calculating the percentage of positive nuclei 

present in the field 

WM group CNL CL DSCL 

Median 19.35 41.05 37.75 

Interquartile range 12.05 24.3 22.04 
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Figure 3.9: The level of oxidative DNA damage varies between groups . Box plot 

showing the level of DNA oxidation is significantly different between three groups (p=0.01) 
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3.2.5 Oxidative DNA damage repair response 

In response to DNA modification in the presence of oxidative stress, DDR response 

enzymes are activated and can be used as an indicator for the cell response to DNA 

oxidation. Activation of this response in three groups of WM tissue was investigated by 

immunohistochemical localisation of tissue expression as well as total protein detection 

using Western blotting for DNA-PK and γ-H2AX.  

  3.2.5.1 Histological detection of DNA damage repair response  

Despite several attempts at antigen retrieval using a variety of methods (including 

microwave, pressure cooker and enzyme digest retrieval techniques), the commercially 

available antibodies used to detect DNA damage response did not work consistently on 

CFAS FFPE cohort; therefore, frozen sections were used. DNA-PK and γ-H2AX reactivity 

was predominantly detected in the nucleus, although some cytoplasmic staining was also 

observed, in several types of cells morphologically resembling astrocytes, microglia and 

oligodendrocytes. However, in CL and DSCL tissue, the majority of DNA-PK and γ-H2AX 

reactive cells were small and round in shape likely representing oligodendrocytes (Figure 

3.10).  

The percentage of γH2Ax-positive nuclei was assessed and quantified (Table 3.2). 

The γH2Ax and 8OHdG counts showed a moderate correlation (Spearman=0.36) (p=0.07). 

The γH2Ax counts showed a similar effect with lesion type to the 8OHdG, although the 

effects were slightly attenuated (p=0.03) with CL being higher than CNL (p=0.03), though 

the other post-hoc adjusted comparisons were not significant (all p>0.05). (Figure 3.11) 
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Figure 3.10: Detection of DDR activation in DSCL. DSCL frozen section showing 

evidence of DDR activity demonstrated by (a) γH2AX which stained the nucleus as well as 

the cytoplasm of various cell types; and (b) DNA-PK which showed nuclear and perinuclear 

staining of glial cells. Scale bar=50µm 

 

Table 3.2: Quantification of γ-H2AX. 

Marker  CNL CL WML 

γH2Ax % 

positive 

nuclei 

Mean (SD) 3.6 (6.8) 20.6 (22.6) 14.1 (17.5) 

Median 

(IQR) 

0 (3.9) 14.7 (31.5) 3.2 (26.0) 
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Figure 3.11: Quantification of ɣH2AX in three groups of WM. Box plot showing 

variation in γ-H2AX scores between CNL, CL and DSCL brains by which are not 

statistically significant, however, γ-H2AX expression in CL brains showed wide variation 

with some brains expressing high levels of DDR molecules  
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3.2.5.2 Detection of DNA damage response by total protein 

extraction 

 Protein oxidation is one of the products of oxidative stress that can be detected and 

quantified by the application of Western blotting. Whole tissue protein extracts from the 

three groups of WM (frozen cohort) was immunoblotted for DNA-PK and γ-H2AX.  

   3.2.5.2.1 Total γ-H2AX expression 

 The DNA damage response in three groups of WM was performed by Western blot 

analysis using antibodies directed against γ-H2AX where a band was detected at the correct 

protein size (17 kDa) (Figure 3.12). Different levels of the DNA damage response were 

detected and demonstrated the population variation in expression between individual 

samples among each group (Figure 3.11).  Some of CNL cases revealed high level of DNA 

damage response while other DSCL cases revealed low levels of the same marker. This 

variation is shown to be consistent with pattern of γ-H2AX immunohistochemical staining 

where DNA damage response was concluded to be present but with case to case variation. 

 The quantification of DNA damage response on the protein level in three groups of 

WM using γ-H2AX did not reach clinical significance (Figure 3.13).  
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Figure 3.12: Western blot of γ-H2AX. Western blot of γ-H2AX showing bands at the 

expected protein size (17 kDa) 

 

 

Figure 3.13: Quantification of γ-H2AX Western blot. Box plot showing the quantification 

of densitometry obtained from γ-H2AX Western blotting. The variation in DDR expression 

between three groups of WM did not reach statistical significance (p=0.3) 
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3.2.5.2.2 Detection of expression of catalytic subunit of DNA 

protein kinase  

 DNA-PK is another key marker of DDR where by its expression in WM and WML 

was investigated by Western blotting. However, due to multiple difficulties that were 

encountered during the course of this experiment, such as the big size of the protein, the 

determination of DNA-PK catalytic subunit was only qualitative were a band was detected at 

the correct protein size (480 kDa) (Figure 3.14). 

   3.2.5.2.3 Total MDA expression 

 MDA is a marker of lipid peroxidation which is also a key endpoint product of 

oxidation. A band was detected at the expected protein size (64 kDa) (Figure 3.15). 

Quantification of MDA by densitometry did not reach statistical significance. However, the 

box plot showed a trend that is similar to the 8-OHdG where by the widest variation in MDA 

marker was associated with CL brains (Figure 3.16).  
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Figure 3.14: Detection of the expression of catalytic subunit of DNA protein kinase by 

Western blot. Western Blot of DNA-PK showing a band at the correct protein size (480 

kDa) 
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Figure 3.15: Expression of MDA by Western blot. MDA was detected at the correct 

protein size by Western blotting (64 kDa) 

 

 

 

 

 

Figure 3.16: Quantification of MDA expression. Box plot showing the variation in MDA 

expression by Western blotting between three groups of WM (CNL, CL, DSCL). Although 

did not reach statistical significance, there was a similarity in the trend of MDA expression 

that mimicked the one of 8-OHdG by which the widest variation was associated with CL 

brains 
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3.3 Discussion 

Evidence of an extensive oxidative DNA damage in WM and WML in the brains of 

the elderly in various cell types has been demonstrated in this part of the study. The current 

study also demonstrated that the increased level of DNA oxidation in lesional controls is 

very similar to the one quantified in DSCL which supporst the hypothesis that WML arise 

from a field effect in WM.  

3.3.1 Oxidative DNA damage is a common pathology in aged WM 

Recent research suggests that oxidative insult occurs on cellular DNA, proteins and 

lipids of AD human brains (Shackelford DA 2006; Simpson et al, 2010) as well as MS 

brains (Haider et al, 2011). The current study demonstrates that DNA oxidative damage is 

present at high levels in white matter lesions (DSCL), lesional controls as well as in control 

white matter. 

DNA oxidative stress was seen in various cell types morphologically resembling 

oligodendrocytes, macrophages and astrocytes. Specifically in DSCL cases, consistent DNA 

oxidative damage was seen in enlarged amoeboid macrophages which may contain engulfed 

degraded myelin. However, in addition to nuclear reactivity, increased cytoplasmic and 

perinuclear 8-OHdG staining in the cohort suggest a role of RNA and /or mitochondrial 

DNA oxidation which further support the proposed role of ROS in glial cell oxidation and 

neurodegeneration (Nunomura et al, 2001). 

Although the current study is looking at the pathology of WML in aged brains and 

their contribution to cognitive impairment, considerable similarities were observed between 

those WML of a suggested ischaemic origin and WML of an inflammatory origin seen in 

MS. Chronic active lesions in MS have a zone of preactivation that is packed with oxidised 

enlarged macrophages which contain remnants of early stage digested myelin (Haider et al, 

2011). Moving towards the centre of the lesion, fewer macrophages were seen with later 
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stages of degraded myelin or absence (removed) of macrophages (Reviewed by Lassmann, 

2011). Here, two of the DSCL cases showed similarities in the morphology of the lesions.. 

Dual staining showed that the area was packed with enlarged amoeboid oxidised microglia 

and towards the centre of the lesion, a decrease in the number of macrophages was noted. 

The centre of those two DSCL cases showed lack of cellular component. Further quantifying 

experiments will be carried out to further understand the nature of the zone of activity at the 

margins of lesions. 

3.3.2 Oxidative DNA damage varies between groups 

Quantifying DNA oxidation using 8-OHdG as a marker revealed a significant 

variation between the three groups: DSCL, lesional control and control WM. This suggests 

that DNA oxidative damage is present in the WM of aged human brain at different levels. 

However, while a significant increase in the level of DNA oxidation was seen in lesional 

controls and DSCL compared to controls,  no significant increase between lesional controls 

and DSCL was detected. This indicates that the level of oxidative DNA damage in lesional 

controls is very similar to that seen in actual lesions which suggest that WML arise in field 

effect pathology of WM. The study by Simpson et al (2007) concluded that normal 

appearing WM have significantly increased number of activated microglia (MHC II 

reactivity) compared to controls. Furthermore, microarray analysis on normal appearing 

WM revealed alterations in 419 gene expressions associated with key functional pathways 

compared to control WM (Simpson et al, 2009). These two results along with this study 

provide strong evidence of active pathological processes on-going in WM outside the 

lesions. However, the pathogenesis is not yet fully understood as to whether it represents a 

pre-lesional change or a secondary response to active WML. 

3.3.3 DNA oxidative damage may contribute to the pathology of WML 

 Several mechanisms have been proposed which might contribute to the pathology of 

WML associated with dementia and cognitive decline. Accumulating evidence of ischaemia, 
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blood brain barrier leakage and glial cell pathology strongly suggest a role in the pathology 

of WM. Evidence of hypoxia in WML and normal appearing WM (Simpson et al, 2010) 

reveals the presence of pathogenic free radicals and accumulating ROS in the WM of brain 

ageing. The findings of our study suggest a strong role of DNA oxidative damage which 

might be linked to accumulating ROS. Observed nuclear damage as well as cytoplasmic and 

mitochondrial oxidation reveals the wide cellular damage in WM tissue which might affect 

vital glial functions which if not repaired lead to senescence or premature apoptosis and 

degeneration (Zglinicki et al., 2005). 

Activation of DDR has been reported in AD brains (Mullaart et al, 1990). A study 

conducted by Myung’s group (2008) on AD brains demonstrated a variation in the level of 

ɣ H2AX in astrocytes, neurons and microglia reactivity with respect to Braak stage (Myung 

et al, 2008). In contrast, Simpson et al (2010) showed that DNA damage/repair is present in 

all Braak groups using CFAS brains. 

Assessment of the DDR marker -ɣH2AX - in this part of the study did not show 

significant variation between the three groups of WM, which suggests that induction of the 

DDR might be independent from type of lesion. This could also be referred to type of 

sample quantified for DNA damage markers: quantification of 8-OHdG was performed 

manually by scoring only positive niclei which reflects the DNA oxidation, while WB was 

performed on a pool of whole tissue protein extraction which contained other cellular 

components that diluted the signal of nuclear DNA oxidation. Also, 8-OHdG was performed 

on FFPT which contained a bigger number of sample (n=15/group of WM), while the WB 

study was performed using frozen tissue with a smaller sample size (n=6/group).  

ɣH2AX correlated with 8-OHdG scoring where both markers showed elevated level 

of expression associated with CL brains. Another key marker of DDR (DNA-PK) was also 

shown to be expressed in WM and WML by Western blotting, although its quantification 

was shown to be problematic. This could be related to several reasons, (i) the size of the 
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protein is very large (480 kDa) whereby it created some technical problems, (ii) the amount 

of protein yield from whole tissue extraction was very low and this could be referred to the 

quality of the tissue itself.  

Lipid peroxidation is a key endpoint product of oxidative stress that was detected by 

MDA. Although the level of MDA expression did not significantly vary between group, the 

highest level detected was associated with CL brains which statistically created a trend that 

was similar to that one of 8-OHdG. This again supports the idea that there is a field effect of 

pathology that is wide spread into areas that are free of lesions. Expanding the number of 

examined cohort might improve the statistical power of tests and might actually yield 

significance.  

In conclusion, extensive DNA damage was shown to be present in DSCL and CL 

brains in similar levels that were significantly higher when compared to CNL brains. This 

important observation suggests that although CL brains appear normal by MRI analysis, they 

are not actually normal and glial cell activation is present. The important question raised as a 

consequence of these findings is: Does extensive DDR activate cellular senescence and cell 

cycle check proteins in WML of the human ageing brain? 
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4.1 Introduction 

DNA double strand breaks (DSB) are powerful inducers of a DNA damage response 

(DDR) characterised by the activation of ATM (ataxia telangiectasia mutated), a member of 

the phosphoinositide‑3 kinase-like kinase (PIKK) family. This in turn  causes 

phosphorylation of  histone H2AX and activation of the cell cycle checkpoint protein p53 

(Shiloh, 2003). DNA double strand breaks that fail to be repaired result in a persistent DDR, 

prolonged p53-dependent growth arrest and eventually irreversible senescence arrest or cell 

death (Beauséjour et al., 2003) (Refer to Figure 1.8 from chapter 1). Cellular senescence was 

first described by Hayflick and Moorhead over fifty years ago (Hayflick and Moorhead, 

1961) as the ultimate loss of replicative cell capacity in somatic cell culture model. Since 

then, in vitro studies have suggested a number of important factors that trigger the 

senescence mechanism in which telomere uncapping is by far one of the most extensively 

investigated (Blackburn, 2000). It is known that short dysfunctional telomeres might induce 

growth arrest by activation of ATM pathway (Rouse and Jackson, 2002) and it was later 

suggested that uncapped telomeres might also trigger senescence by the formation of 

senescence associated DNA damage foci (SDfs) (Zglinicki et al., 2005) and could be used as 

an indicator for cellular senescence. Activation of the lysosomal hydrolase β-galactosidase is 

also widely used and accepted to be an important marker for cellular senescence (Cristofalo, 

2005), along with other major changes in cellular morphology and in gene expression 

(Campisi, 1999, Narita et al., 2003, Jurk et al., 2012).  

 Until recently, senescent cells were thought to lack function. However, mounting 

evidence suggests that senescence is a dynamic, multi-step process that might drive cellular 

proliferation and immune system response (Rodier et al., 2009) and is thought to be initiated 

by the transition of the cell from a temporal to a stable cell-cycle arrest, which involves 

prolonged inhibition of Cdk–cyclin activity by p21, p16 or both (van Deursen, 2014).  
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Importantly, senescent cells develop a phenotype that goes far beyond their limited ability to 

proliferate and replicate in addition to a change in cellular structure and gene expression. 

Among the set of genes that are functionally altered in senescence are genes which encode 

proteins including proteases, cytokines and chemokines along with other growth factors that 

could alter tissue structure and function and initiate a proinflammatory microenvironment 

collectively known as a senescence associated secretory phenotype (SASP) (Kuilman and 

Peeper, 2009).  

Emerging evidence suggests that the number of senescent cells in vitro expressing 

altered gene and protein expression increases with ageing (Franceschi et al., 2007, De 

Magalhães et al., 2009, van Deursen, 2014). Brain ageing is significantly associated with 

major structural and functional changes including the induction of an inflammatory response 

(Lucin and Wyss-Coray, 2009, Salminen et al., 2011). Astrocytes are the most numerous 

cellular type in the human brain where they play a significant role in maintaining brain 

homeostasis as well as an important role in response to tissue injury and in its repair (Chen 

and Swanson, 2003). Limited studies have looked at the cellular changes associated with 

human brain ageing and were performed in vitro using isolated primary human astrocytes. 

Salminen study (2011) was performed using astrocytes in cell culture model and had 

concluded that astrocytes are directly involved in brain ageing increased level of 

intermediate glial fibrillary acidic protein and vimentin filaments, (ii) increased expression 

of several cytokines and (iii) increased accumulation of proteotoxic aggregates. In addition, 

in vitro stress evokes a typical senescent phenotype in cultured astrocytes and, moreover, 

isolated astrocytes from aged brain display the proinflammatory phenotype. All of these 

observations indicate that astrocytes are capable of triggering the SASP and are a major 

component of it by altering brain microenvironment (Salminen et al., 2011).  

To- date, only two studies have looked at cellular senescence as a downstream effect 

of persistent DNA damage in vivo. Jurk’s group investigated cellular senescence and SASP 

using a mouse model (Jurk et al., 2012) which concluded that dysfunctional telomeres and/or 
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accumulated DNA damage can induce a DNA damage response leading to a phenotype in 

postmitotic neurons that resembles cell senescence in multiple features. Only one in vivo 

study has demonstrated cellular senescence in the ageing human brain which concluded that 

cortical neurons in AD individuals of low BRAAK stage, express the senescence marker β-

galactosidase (Simpson et al., 2010b). 

The aim of this part of the study was to investigate cellular senescence as a 

downstream effect of a persistent DNA damage response in WM and WML of the human 

ageing brain using β-galactosiadase as a marker of senescence. The presence of SASP was 

investigated by detecting changes in the gene expression profile that might alter cellular 

structure and function. Collectively, these events might feed into senescent state through 

activation of key cycle check proteins; therefore p53, p21 and p16 were investigated.  

4.2 Results 

4.2.1 Evidence of senescence in WM and WML  

In order to determine whether senescent cells are a feature of brain ageing and 

WML, histochemical staining of WM and WML was performed to detect SA-β-gal 

expression, which is a characteristic enzyme produced by senescent cells. SA-β-gal was 

observed to various extents and in different staining patterns across all three groups of WM 

(CNL, CL, DSCL). .  

In CNL brains, SA-β-gal reactivity in 5 out of 6 cases was uniform and very limited. 

Staining was observed in the pattern of condensed nuclear staining associated with small 

round cells morphologically resembling oligodendrocytes. However, one of the CNL cases 

revealed very high SA-β-gal granular reactivity in cellular cytoplasm as well as in the 

extracellular matrix allocated at the WM – cortex junction (Figure 4.1“a”). 

In CL sections, SA-β-gal reactivity in deep WM was observed as condensed nuclear staining 

of small round cells morphologically resembling oligodendrocytes; while in the WM 
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adjacent to the deepest layer of the cortex, SA-β-gal reactivity was seen as granules within 

the cytoplasm of large cells with cellular processes, morphologically resembling astrocytes 

(Figure 4.1”c”) 

In DSCL, SA-β-gal reactivity was granular covering an area of the cytoplasm of large 

branched cells thought to be astrocytes. However, 4 out of 6 DSCL brains revealed more 

SA-β-gal staining in superficial WM near the deep layer of the cortex (Figure 4.1”e”). 

Semi-quantification of SA-β-gal reactivity was done manually by counting positive 

cells in five captured field of interest in each slide of each brain. Although the highest level 

of SA-β-gal reactivity was observed microscopically in the CL group, quantification of the 

number of SA-β-gal positive cells in three groups of WM did not reveal significant 

differences (Kruskal Wallis p=0.50). 

Sections were also stained for p21, a cell cycle check protein, as another marker of 

senescence. p21 reactivity was observed only in 1 out of 6 CNL brains in an extracellular 

patchy pattern.  

p21 immunoreactivity was detected in 3 out of 6 of the CL brains. Reactivity was 

occasionally seen in the nucleus but was mostly associated with the cytoplasm of elongated 

star- shaped cellular processes of cells morphologically resembling astrocytes. Very little 

p21 reactivity was observed in 2 out of 6 DSCL brains and was also associated with star 

shaped cells resembling astrocytes (Figure 4.2”a”). 

 To detect the presence of a downstream effect of persistent DNA damage response 

that have activated apoptosis, the cohort was immunostained for activated caspase 3 which 

plays a central role in the execution-phase of cell apoptosis. Activated caspase 3 was 

detected in all groups of WM (CNL, CL, DSCL) with no significant differences in staining 

pattern. Immunoreactivity was associated with the nucleus and cytoplasm of large branching 

cells morphologically resembling astrocytes; with the nucleus and cytoplasm of enlarged 
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irregular shape cells morphologically resembling amoeboid microglia; and with small, round 

cells resembling oligodendrocytes (Figure 4.2”b”). Quantification of p21 and activated 

caspase 3 staining has shown to problematic due to the poor tissue morphology of the frozen 

sections. For this reason, the demonstrated data for those two markers was only descriptive.  

 

Figure 4.1: Expression of the senescence marker SA-β-gal. a-b, CNL sections: (a) CNL 

case associated with high SA-β-gal reactivity. (b) SA-β-gal associated with small round 

nucleus resembling oligodendrocytes. c-d, CL sections: (c) SA-β-gal associated with larger 

cells near the cortex-WM junction. (d) deep WM, reactivity associated with smaller round 

cells. e-f, DSCL sections: (e) WML near cortex showing SA-β-gal reactivity in larger cells. 

(f) SA-β-gal reactivity in deep MWL. Scale bar = 50µm  
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Figure 4.2: Expression of p21 and activated caspase 3. (a) p21 staining of CL section 

associated with the cytoplasm of star shaped cells (arrows) morphologically resembling 

astrocytes. (b) activated caspase 3 in CL section also associated with what is thought to be 

an astrocyte (arrow). Scale bar = 50µm 
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4.2.2 p16 expression  

WM and WML sections were stained for p16 as an additional marker of cellular 

senescence. Although p16 immunoreactivity was mostly associated with CL and DSCL 

brains when compared to CNL, the pattern of staining was not consistent and case to case 

variation within a group was frequently seen. Throughout the three groups of WM (CNL, 

CL, DSCL), p16 reactivity was mainly detected in the superficial layer of WM immediately 

underneath layer VI of the cortex. However, very limited p16 reactivity was still observed in 

deep WM of 12 out of 15 DSCL and 14 out of 15 CL brains which were associated with 

round small cells resembling oligodendrocytes.  

In CNL brains, 9 out of 15 cases showed low p16 reactivity (low intensity) 

compared to DSCL and CL brains, and was associated with the cytoplasm of cells 

resembling astrocytes and oligodendrocytes. 

p16 staining of CL brains revealed intense reactivity in 11 out of 15 cases that was 

perinuclear and mostly seen in the cytoplasm of the star shaped cells resembling astrocytes. 

Numerous immunopositive nuclei were also observed but not as frequent as in DSCL 

sections. 4 out of 15 CL cases showed very minimal p16 reactivity. 

In DSCL brains, p16 reactivity was associated with the nucleus as well as cytoplasm 

of large cells with long processes resembling astrocytes. However, one of the DSCL 

revealed p16 intense reactivity associated with large irregular shape cells that have vague 

nucleus, resembling “ghost” astrocytes. Some DSCL cases (6 out of 15) showed very low 

levels of immunoreactivity to p16, where it was primarily associated with the nuclei and 

cytoplasm of cells resembling astrocytes, with some punctate extracellular matrix staining 

also observed (Figure 4.3).   

Quantification of p16 was performed by the autoanalyzer which was set up to 

calculate the proportion of positive cells present in each of the five captured fields of our 
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interest from each brain. Statistically there was no significant difference (p=0.40) in the level 

of p16 expression between the three groups of WM (Figure 4.4). 
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Figure 4.3: Activation of p16 cell cycle check protein as an indicator for cellular 

senescence. (a) CNL section showing low intensity of p16 reactivity. Scale bar = 100µm. b-

c, p16 reactivity in CL sections at a high and low magnification respectively: (b) p16 is 

shown to be associated with star shaped cells morphologically resembling astrocytes 

(arrows), Scale bar = 50µm. (c) p16 positive cells lying adjacent to p16 negative cells. This 

could be owed to the activation of the SASP which stimulate senescent cells to commune 

their compromise to neighbouring cells which might lead to an immune response or low 

level of induction of inflammation. d-e, p16 reactivity in DSCL sections: (d) a DSCL brain 

showing reactivity of p16 in large irregular shaped cells that frequently lack nucleus (ghost 

cells) (arrows). Scale bar = 100µm. (e) p16 is associated with star shaped cells in another 

DSCL brain. Scale bar = 50µm 
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Figure 4.4: Quantification of p16 in three groups of WM (CNL, CL, DSCL). 

Quantification of p16 in three groups of WM did not reveal statistical difference by applying 

the Kruskal Wallis test (p=0.40) 
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4.2.3 Cellular senescence is associated with all glial subtypes 

To determine the phenotype of the SA-β-gal
+
 senescent cells, dual labelling 

experiments were performed for SA-β-gal with either the astrocyte marker GFAP, or the 

oligodendrocyte marker OSP or the microglial marker CD68.  

Dual labelling was performed on 4 DSCL, 4 CL and 4 CNL frozen brains. However 

due to poor tissue morphology, the dual labelling in only one case from each group was 

assessed. GFAP 
+
 cells showed typical satellite morphology however, not all GFAP

+
 

astrocytes were SA-β-gal
+
. Similarly, some, but not all, OSP

+
 cells were SA-β-gal

+
.  In 

contrast, dual labelling SA-β-gal with the microglia marker CD68 revealed no co-

localisation.  

SA-β-gal was also dual labelled with p16 to study senescence pathway activation. 

However, due to poor frozen tissue morphology, co-localisation of p16 and SA-β-gal
 
was 

only observed in 1 CL case in some cells with star shaped body morphologically resembling 

astrocytes. p16 reactivity was only seen in the cytoplasm of cells resembling astrocytes 

while SA-β-gal reactivity was distributed throughout the section in oval granular clusters. 

However, not all cells showed the co-localisation of both markers (Figure 4.5). 
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Figure 4.5: Senescence is associated with specific glial cell type. a-b: Double labelling of 

SA-β-gal and GFAP in a DSCL brain showing colocalisation in some astrocytes (black 

arrows) indicating an induction of senescence in an astrocyte. Red arrows indicate a non-

senescent astrocyte. c-d: Double labelling of  DSCL sections with SA-β-gal (black arrows) 

and CD68 (red arrows) does not show colocalisation. (e): Double labelling in DSCL with 

SA-β-gal and OSP showing colocalisation in some oligodentrocytes (black arrows) but not 

in others (red arrows). (f): Double labelling of SA-β-gal and p16 showing colocalisation in 

star shaped cell thought to be an astrocyte (Black arrow). The red arrow pointing to a p16
+
 

cell resembling an astrocyte that does not show evidence of senescence. The scale bar=50µm 
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4.2.4 Does p16 expression correlate with gliosis? 

One of the hypotheses raised in this chapter based on the observation that astroglial 

cells are often associated with markers of cellular senescence, is that increased p16 

expression is associated with gliosis in WM and WML. Therefore, serial sections were 

stained for GFAP, as a marker of astrocyte hypertrophy, and p16, as a marker of senescence.  

GFAP immunoreactivity was observed in all three groups of WM (CNL, CL, 

DSCL). Astrocytes cytoplasm showed reactivity to GFAP associated with star shaped 

cellular processes.  

GFAP reactivity showed a regular distribution of staining pattern in CNL and CL 

brains. Within DSCL, increased GFAP immunoreactivity was associated with swollen 

hypertrophic astrocytes revealing a densely gliotic pattern of staining. A distinct population 

of intensely GFAP
+
 astrocytes were detected at the WM border with the cortex. It was also 

noted that GFAP
+
 astrocytes frequently clustered around capillaries, and extended long 

processes to the blood vessels (Figure 4.6).  

Quantitation of GFAP area immunoreactivity within the three groups of WM was 

performed on serial sections to those stained for p16 expression and did not differ between 

the three group (p=0.47) (Figure 4.7). However, It was noted that in 2 out of 15 of DSCL 

and 1 out of 15 of CNL brains, higher levels of GFAP immunoreactivity was associated with 

higher p16 expression (Figure 4.8).    

Given the presence of p16 in the cytoplasm of astrocytes, we sought to determine 

whether p16 expression was associated with gliosis (irrespective of group). A non-

significant trend (Pearson r=0.36, p=0.052) of increasing p16
+
 cell count with GFAP area 

immunoreactivity was found (Figure 4.9). 
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Figure 4.6: GFAP staining in three groups of WM (CNL, CL, DSCL). (a): GFAP 

staining in a CNL section showing typical star shaped astrocytes. (b, c): GFAP in CL 

sections showing high background specific staining reflecting the condensed astrocytic 

population. (d, e): GFAP in a DSCL brain showing a densely gliotic pattern of staining with 

clustering around nourishing capillaries. (f): GFAP staining in CL section showing 

proliferated astrocytes at the cortex-WM junction. Scale bar = 100µm 
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Figure 4.7: Quantification of GFAP in three groups of WM (CNL, CL, DSCL). 

Quantification of GFAP of WM did not reach significant difference by applying the Kruskal 

Wallis test (p=0.47) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Cellular Senescence 

127 
 
 

 

Figure 4.8: GFAP reactivity is associated with high p16 staining. (a): CL brain showing 

high gliotic GFAP reactivity, that was also associated with high p16 staining (b).   
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Figure 4.9: Scatterplot showing the association between p16 cell count and area 

immunoreactivity for GFAP. Using the Pearson’s correlation coefficient, we were able to 

show, that although association between p16 cell count and area immunoreactivity for GFAP 

did not reach statistical significance (p=0.052), it was almost significant with a trend. This 

raises an interesting point where there might be an association between gliosis and induction 

of senescence or the opposite.   
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4.2.5 Investigation of DNA damage/ senescence gene expression in WM 

and WML using qPCR array 

qPCR array experiment was performed to identify putative candidate molecules that 

might play a significant role in DDR/senescence activation in WM and WML. An initial 

screen was performed using randomly selected samples from CNL, CL and DSCL RNA 

extract on a commercially available 96 well RT-qPCR array plate. The plate was probed 

with 81 genes that are known to be implicated in DNA damage response and in 

senescence/cell cycle check. The result showed an alteration in a number of genes in 

between the three groups of WM, and for this, a selection of genes was made to customise 

96 well qPCR array plate which contained only the genes of our interest, along with the 

housekeeping and quality control genes.  

RNA from WM and WML was used to determine alterations in 18 selected gene 

expression using a customised qRT-PCR array plate that was designed after a wider screen 

was completed on 81 genes known to be implicated in DDR and senescence pathways. The 

expression of a panel of eighteen genes involved in DNA damage/ senescence pathways was 

compared between three groups of WM where findings further supported our previous 

pathological results which indicated that there is an elevated level of DNA oxidation and 

DDR in CL and DSCL brains when compared to CNL ones (Figure 4.10).  

In particular, the expressions from the DDR genes were relatively increased in 

concentration in DSCL (H2AFX: 1.97; ATM: 1.68) when compared to CNL (Figures 4.11). 

Cell cycle checkpoint genes were also relatively expressed in a higher concentration in 

DSCL (TP53: 1.8; CDKN1B -encodes p27: 1.8) when compared to similar gene expression 

in CNL brains. The highest level of TP53 expression was in the CL group (2.04) (Figure 

4.12).  
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Figure 4.10: Variation in gene expression between three groups of WM (CNL, CL, 

DSCL) from RTqPCR array.  (A) A comparative study in gene expression between 18 key 

genes that are involved in DDR and senescence/apoptotic pathways. Data shows an 

alteration in several genes such as H2AFX, ATM, TP53 and IGF-1. (B) Variation in gene 

expression between control non-lesional (CNL), control lesional (CL) and deep subcortical 

WML (here labelled DSCL) from RTqPCR array, Error bars represent standard deviations 
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Figure 4.11: Variation in DDR gene expression between three groups of WM (CNL, 

CL, DSCL) from RTqPCR array. An elevated level of the two DDR gene expressions 

(H2AFX (Kruscal Wallis test p=0.09) and ATM (Kruskal Wallis test p=0.1)) in DSCL 
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Figure 4.12: Variation in cell cycle check point gene expression between three groups 

of WM (CNL, CL, DSCL) from RTqPCR array. An elevated level of CDKN1B gene 

expression was associated with DSCL (Kruskal Wallis test p=0.12), while the highest level 

of TP53 was detected in the CL group of WM (Kruskal Wallis test p=0.09) 
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4.2.6 Investigation of p53 expression as an indicator for apoptotic pathway 

activation  

As the previous qPCR data identified changes in p53 mRNA expression, and given 

the role of the protein in downstream effects of DNA damage, we immunostained for p53 

protein. p53 reactivity was mainly observed in the nucleus and cytoplasm of large cells 

morphologically resembling astrocytes, in smaller ramified bipolar cells resembling 

microglia and in small round cells resembling oligodendrocytes. Moreover, CNL sections 

revealed intra-cellular process granular p53 reactivity that was not associated with DSCL or 

CL brains (Figure 4.13). 

Expression of p53 showed significant variation between groups (Table4.1) (Kruskal 

Wallis, p=0.017) (Figure 4.14). p53 protein expression levels were lowest in the lesions 

which showed lower counts than the CL group (Mann Whitney p=0.004). 

 To determine p53
+
 cellular phenotype, we dual labelled p53 with the microglial 

marker CD68 and with the astrocyte marker GFAP respectively. p53 was determined to be 

associated with microglia as well as with astrocytes in a DSCL brain (Figure 4.13).   

 

Table 4.1: Quantification of p53 in three groups of WM 

 

 

 

Marker  CNL CL WML 

p53 %  

positive 

nuclei 

Mean 

(SD) 

15.4 (6.7) 20.9 (7.2) 12.2 (7.7) 

Median 

(IQR) 

17.2 (14.7) 19.6 (13.9) 10.1 (12.7) 
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Figure 4.13: p53 staining in three groups of WM (CNL, CL, DSCL). (a): Cellular and 

extracellular granular p53 reactivity in CNL brain (arrow pointing to a p53 positive glial 

cell, resembling oligodendrocyte). Scale bar = 50µm. b-c, p53 reactivity in CL brains is 

associated with multiple cell types morphologically resembling microglia and 

oligodendrocytes respectively (arrows). (b) low magnification showing p53 reactivity in 

glial cells as well as endothelial cells of a nourishing capillary. Scale bar = 100µm. (C) 

Higher magnification showing p53 reactivity in cell morphologically resembling microglia. 

Scale bar = 50µm. (d) p53 reactivity in a DSCL showing reactivity (arrow) in a cell 

morphologically resembling microglia. Scale bar = 50µm. e-f, Dual labelling of p53 with 

cell anatomical markers to determine type of glial cells associated with p53 activation. (e) 

Dual labelling of CD68 (red) and p53 (brown) showing some co-localisation in a DSCL 

brain (arrow). (f) Dual labelling of GFAP (red) and p53 (brown) in a DSCL brain showing 

colocalisation (arrow). Scale bar = 50µm 
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Figure 4.14: Quantification of p53 in three groups of WM (CNL, CL, DSCL).  Boxplot 

showing variation in % of nuclei positive for p53 between the 3 groups, with higher values 

in the CL group 
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4.3 Discussion 

In recent years, the concept and mechanism of cellular senescence has been studied 

extensively using cellular models where it is suggested to be a contributor to ageing and age 

related diseases (Herbig et al., 2006, Baker et al., 2008, Baker et al., 2011, Campisi, 2013). 

However, the current in vivo study is one of a few that have demonstrated the presence of 

cellular senescence in human aged brain and for the first time, studied cellular senescence as 

a consequence of persistent DNA damage to glial cells in WM and WML.  

Long established research suggests that a significant amount of DNA damage and 

DDR is present in aged neurons, however, recent studies have realised the impact of several 

stressors such as oxidative stress on glial cells in WM and how it might contribute to myelin 

loss and cognitive decline (Simpson et al., 2009, Simpson et al., 2010d). Our recent findings 

support the role of oxidative stress in contributing to DNA damage in glial cells in CL and 

DSCL of the human ageing brain and as a downstream effect of persistent DDR, activation 

of senescence and apoptotic pathways.  

Studying SA--gal activity as a marker of cellular senescence in glial cells did not 

reveal significant differences between the three groups of WM (CNL, CL, DSCL) but 

importantly, it reflected the variation that is likely to be seen in such a population based 

study that depends solely on the age of the participants and in this project on the 

presence/absence of WML.  

SA--gal activity has been considered to be a marker of senescence in in vitro cell 

models and recent studies have demonstrated SA--gal activity in neurons in mouse brain 

(Jurk et al., 2012, van Deursen, 2014) and in human cortical astrocytes (Simpson et al., 

2010b).  The expression of SA--gal now identified in WM astrocytes and oligodendrocytes 

thus suggests induction of senescence mechanisms in glial cells. It is worth noting the 

difficulty quantifying SA--gal expression, as has also been reported by another group 
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(Lawless et al., 2010).  In the current study there were no significant differences in the level 

of expression between the three groups of WM (CNL, CL, DSCL), therefore, senescence 

induction cannot specifically be associated with WML and may be related to other effectors 

such as age.  

Several studies have demonstrated that brain ageing  is associated with low levels of 

neuroinflammation  (Godbout and Johnson, 2009, Lucin and Wyss-Coray, 2009, Lynch, 

2009), and with an increase in the number of microglia as well as an increase in cytokine 

secretion (Salminen et al., 2011). In the current study, we demonstrated that although SA--

gal activity was associated with astrocytes and oligodendrocytes, it was not associated with 

microglia. This could be linked to the SASP which sets a proinflammatory environment 

recruiting microglia to the site of damage. The senescent cells that accumulate in ageing 

WM may create a pro-inflammatory environment through the secretion of proinflammatory 

growth factors, proteases and chemokines (van Deursen, 2014), including transforming 

growth factor β1 (TGFβ1), insulin like growth factor (IGF) and IL-1α and IL-6 ⁄ IL-8 

(Orjalo et al., 2009, Coppé et al., 2010).  

TGFβ1 is a multifunctional cytokine that has profound effects on angiogenesis and 

plays a major role in maintenance of vessel wall integrity in the human CNS (Pepper, 1997). 

It has been reported that chronically increased astroglial secretion of TGFβ1 may promote an 

excessive secretion of basement membrane proteins associated with amyloid deposition in 

TGFβ1 mice that contribute to thickening of walls of capillaries. This was found to lead to 

microvascular degeneration in the cortex of an AD mouse model (Wyss-Coray et al., 2000, 

Salminen et al., 2011). TGFβ1 was one of the genes tested for altered expression in our 

customised qPCR plate; however, our data was inconsistent with Wyss-Coray’s group result 

in which there was a decrease in the level of TGFβ1 expression in CL brain when compared 

to CNL and DSCL (Wyss-Coray et al., 2000). This may reflect the different complexity 

between WM and the cortex where pathology in those two major brain compartments is 
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hugely variable. The field effect of WML on areas free of lesions (i.e. CL) might be an 

important trigger that stimulates glial cells to change their gene expression, including 

TGFβ1. However, whether this change is a defence mechanism or whether it is a 

compromise from glial cells that will probably lead to WML formation is unknown. 

 IGF-1 is a cytokine that has long been known for its role in the periphery as a 

metabolic hormone. However, only recently the importance of IGF-1 in the CNS has been 

recognised where it plays a key role in brain development and function (Castilla-Cortázar et 

al., 2014).  IGF-1 is critical for nerve protection against pathological insults that are 

associated with neurodegeneration by being responsible  for activation of anti-apoptotic 

cascades, and by induction of myelination both in vivo (Mozell and McMorris, 1991) and in 

vitro (McMorris et al., 1986). There is a growing body of evidence suggesting the 

association of altered IGF-1 levels in the brain with neurodegenerative diseases such as AD, 

Parkinson’s disease (PD) and Huntington disease (HD) (Rollero et al., 1998, Humbert et al., 

2002, Picillo et al., 2013) with the variation of IGF-1 secreted level between neurons and 

astrocytes. This was first reported by Moloney et al, (2010) where they concluded that IGF-1 

secretion was decreased in neurons but increased in astrocytes in AD patients (Moloney et 

al., 2010). Our data showed a consistency with this study where we demonstrated an 

increase in the level of IGF-1 gene expression in DSCL brains. This makes the study of IGF-

1 of critical importance in the onset and progression of ageing and age related diseases.  

A persistent DDR is a major stimulus that induces cellular senescence mainly by 

engaging either or both of the p53/p21 and p16 master transcriptional regulators (Beauséjour 

et al., 2003). p53 regulates the transcription of a large number of genes that include cell 

cycle arrest, apoptosis, DNA repair, cell growth and proliferation (Sengupta and Harris, 

2005, Hasty and Christy, 2013). Thus p53 activity is critical to maintain genomic integrity, 

cell growth and proliferation during times of stress. The p53 qPCR and 

immunohistochemistry data in the current study showed a significant increase in the level of 

p53 reactivity in CL brains, where a field effect of WM damage is present. However, it is 



Chapter 4: Cellular Senescence 

139 
 
 

unclear whether this stress induced response was initiated to minimise further damage and 

prevent further loss of cell function and myelin attenuation, or whether it contributes to 

WML formation. Several studies have addressed this important question from a similar 

prospective and studied the potential positive and negative sides of the SASP where one 

important suggested function is to ensure that damaged cells communicate their 

compromised state to neighbouring healthy ones and prepare the tissue for repair. Another 

function of the SASP is to trigger the immune system to identify and remove such a 

damaged cell (Campisi, 2013). On the other side, studies have also demonstrated the 

involvement of the SASP in age related pathology by driving tissue degeneration ultimately 

by activation of proteins, such as p16 that is expressed by most senescent cells where its 

function is to enforce the senescence growth arrest (Campisi et al., 2011). In the current 

study, astrocytes were predominantly associated with a SASP in both CL and DSCL brains, 

and considering the important role that astrocytes play, it is suggested that there is “a gain of 

function” in this cell population that might have created the largest component of the SASP. 

However, we have demonstrated that not all astrocytes express p16 which suggest that 

although there were senescent astrocytes detected, not all of them were part of the SASP. 

Cellular senescence is established and regulated by at least two major pathways: the 

p53/p21 and p16/pRB pathways (Campisi, 2013), and although both pathways lead to a 

similar cellular phenotype, the stimulus is different. The p53/p21 pathway is initiated by 

genomic or epigenetic damage that creates direct DNA damage (Rodier et al., 2009, Rodier 

et al., 2011), while the p16 pathway is activated after a prolonged exposure of the cell to 

DNA damage that created a prolonged DDR. This chronic DDR is the one that would trigger 

p16 activation (Takahashi et al., 2006, Freund et al., 2011). We have shown that there is a 

similarity in the level of GFAP and p16 expression in DSCL which suggests that gliosis is 

associated with a senescence phenotype that is not induced by direct DNA damage but rather 

by persistent DDR resulting in an irreversible growth arrest that is associated with a well-
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established lesion. This sets the possibility that induction of senescence in astrocytes in WM 

may involve mechanisms other than direct DNA oxidation.  

In summary, our results show that senescence is a feature of WM in the human 

ageing brain in oligodendrocytes and astrocytes. Detection of p53 activation by qPCR and 

by immunohistochemistry indicates induction of apoptosis/senescence as a result of direct 

DNA damage that was previously demonstrated to be significantly increased in CL and 

DSCL when compared to CNL brains. p16 is another indicator of cellular senescence and we 

found its activation to be associated with gliosis. However, this was not statistically 

significant but rather raises an interesting question about the different pathways and causes 

that triggers senescence as a downstream effect of persistent DNA damage. Senescence in 

ageing WM was also found to be closely associated with the SASP which is characterised by 

alteration of glial gene expression and glial cell proliferation. Expression of several key 

genes involved in DDR and apoptotic/senescence pathways was found to be affected in CL 

and DSCL brains. Also, the recruitment of microglia to the sight of damage which are 

negative for SA--gal is another indicator for the SASP induction by neighbouring senescent 

cells that secret proteases and cytokines to activate the immune response.  

This in vitro study is one of the very few that looked at the presence and activation 

of cellular senescence in the aged human brain and it is the first one to investigate 

senescence in WM and WML. However, studying such pathology at its end stage on post-

mortem human brain is challenging. Several attempts of antibodies used in the 

immunohistochemistry study were not successful due to the difficulty in antigen retrieval, 

and double labelling study was almost impossible to quantify due to the poor tissue 

morphology. Case to case variation within a group of WM was often seen and this reflects 

the difficulty expected when dealing with human tissue from a population based study. 

Nevertheless, the outcome of this part of the study compliments the previous observation 

which showed that there is a significant increase of DNA oxidation in CL and DACL brains 

using the 8-OHdG as a marker of direct DNA damage.  This comes consistent with the 
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available literature: persistent DNA damage activates senescence/apoptosis in glial cells in 

aged WM through multiple pathways and is also associated with a SASP. Several interesting 

research ideas can be investigated in the future, such as the effect of SASP on astrocytes and 

how this will alter its function in WML and the surrounding WM.   
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5.1 Introduction 

During oxidative phosphorylation, almost 2% of total oxygen consumed by cell to 

perform numerous endogenous processes form reactive oxygen species (ROS) (Markesbery, 

1997). The state where the internal produced ROS exceeds those being detoxified is known 

as oxidative stress.  Increasing evidence suggests that oxidative stress is a major contributor 

to ageing as well as neurodegenerative diseases.  ROS, especially hydroxyl radicals, can 

attack protein, lipid, mtDNA as well as nDNA (Cooke et al., 2003) and cause change in 

protein expression, lipid peroxidation, DNA double strand breaks and base modification 

(Lovell et al., 1999). The most commonly analysed marker to assess the extent of oxidative 

stress and its end point damage to DNA is the 8-hydroxy-2-deoxy-guanosine (8-OHdG) 

(Herbert et al., 1996, Gabbita et al., 1998, Dizdaroglu et al., 2002).  

Although 8-OHdG is a direct biomarker for oxidative DNA damage that can be 

detected in human tissue by immunohistochemistry, quantification techniques could be 

subjective and debatable. 8-OHdG scoring completed in the first part of this study was 

performed by two different observers (S.M and J.S) to check for consistency, and although 

the scores were highly correlated, S.M threshold was consistently lower than J.S. This show 

the subjectivity within histological studies that implies personal observation and judgment as 

a main factor. For this reason, quantification of immunohitochemical markers by manual 

scoring is not a gold standard protocol.     

For this reason, cellular 8-oxodG has been extensively analysed in vitro (cell 

cultures) and in vivo (rat liver, human CNS) using high performance liquid chromatography 

coupled to an electrochemical detector (HPLC-ECD), mass spectrometry (HPLC-MS), or 

liquid chromatography interfaced with electrospray ionization mass spectrometry (LC ESI 

MS) (Matter et al., 2006, Wang et al., 2006, Boysen et al., 2010). This gold star technique is 

a powerful tool that does not rely on amplification thus DNA post-transcriptional 

modification is preserved and could be directly assessed.  
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Studies have shown previously that oxidised DNA is increased in AD (Gabbita et al., 1998, 

Wang et al., 2005) and in mild cognitive impairment (Wang et al., 2005). In this study, we 

aimed at detecting and quantifying 8-OHdG as a direct marker of DNA oxidation in three 

groups of WM using tandem mass detection (HPLC-MS/MS). This will compliment and 

validate our previous immunohistochemistry findings of this marker where we will be able 

to detect and quantify accurately the number of modified guanosine base in the presence of 

persistent DNA damage.  

The main aim of this part of the study was to develop and optimise a method to 

detect and quantify base modification in DNA extracted from human autopsy tissue. Setting 

up the machine was not a straight forward technique and was very time consuming. A 

developed technique for the use of liquid chromatography/tandem mass spectrometry 

(LC/MS/MS) selected reaction monitoring (SRM) method that utilises online column-

switching valve technology to detect the biomarker of oxidative stress. To allow for the 

accurate quantitation of guanosine base, corresponding [
15

N5]-labelled stable isotope internal 

standard was added to samples prior DNA hydrolysis.  

The European Standards Committee for Oxidative DNA Damage (ESCODD) has 

highlighted the possibility of artificial formation of 8-oxodG during the process of DNA 

extraction and hydrolysis. This could be due to the high affinity of guanine base to oxidation 

in the presence of such harsh experimental conditions which could lead to false positive 

results. Previously, protocols have been revised to include antioxidants, metal chelators, or 

free radical minimising agents during sample preparation for the prevention of false 

oxidation (ESCODD, 2003). Boysen et al., (2010) group has been working for several years 

to establish a reliable and reproducible protocol that is used with ultra-high pressure liquid 

chromatography–heat assisted electro spray ionization–tandem mass spectrometry (UPLC–

HESI–MS/MS) to detect 8-OHdG with the prevention of artificial oxidation formation 

(Boysen et al., 2010). Their technique utilises Tetramethylpiperidine 1-oxyl (TEMPO), and 

for the success that their study made, we have chosen to also use the TEMPO in our 
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protocols to prevent formation of artificial DNA damage. TEMPO was added to all samples 

prior to DNA extraction.  

In a typical scenario, DNA would be extracted from tissue then DNA will be 

digested in the presence of [
15

N5]-labelled stable isotope. Samples will then be injected into 

HPLC where DNA bases will get separated and passed on to MS.  

Experiments started by calibration using commercially available standards then 

control extracted DNA (from fish) and finally our human brain samples were introduced. 

The main objective of this work is to validate the previous findings of the significant 

elevation of DNA oxidative damage in CL and DSCL brains using a developed protocol that 

utilises MS as a gold star technique to detect and quantify the amount of guanine base 

modification as a product of oxidation. 
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3.2 Results 

3.2.1 DNA isolation 

DNA was isolated from three groups of WM (CNL, CL, DSCL) as described 

previously. To avoid the formation of artificial DNA oxidation, DNA hydrolysis was 

performed in the presence of TEMPO, which is a chemical that has been used in previous 

studies where by it significantly decrease the amount of oxidation that could be introduced 

to samples while processing them. The concentration of isolated DNA was then measured 

using the nano-drop, which varied from as little as 20ng/µl to 200ng/µl.  

3.2.2 Enzyme hydrolysis 

In the presence of 150Pmol 0f [
15

N5]-labelled stable isotope, the adjusted 

concentration of genomic DNA was digested by DNA-degradase enzyme containing 

Alkaline Phosphatase to generate the corresponding nucleosides ((sugar + the DNA base 

(without the phosphate group). To check that DNA was digested adequately, a simple gel 

electrophoresis was done for the digested sample vs a non-digested DNA extract (Figure 

5.1). The results confirm the isolated genomic DNA was hydrolysed.  
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Figure 5.1: DNA hydrolysis. Gel electrophoresis showing the adequate hydrolysis of DNA 

isolated from DSCL brain using DNA degradase enzyme vs an undigested isolated DNA 

from the same DSCL brain in the absence of the degradase enzyme  
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3.2.3 HPLC analysis of the enzymatic hydrolysis of DNA 

The main aim of the MS work was to establish a reliable technique to measure and 

compare the endogenous level of 8-OHdG present in DNA from the three groups of WM 

(CNL, CL, DSCL). However, to allow an accurate quantification of the adduct, a 

corresponding internal [
15

N5]-labelled stable isotope was added to samples prior to running 

them on the HPLC. This enabled the construction of calibration lines by preparing a series of 

standards each containing varying amounts of [
15

N5]-labelled stable isotope added to 10ug of 

genomic DNA and the concentration of the solutions will be calculated using the extinction 

coefficient by determining the UV absorbance at 260nm (Singh et al., 2009).  

As part of our setup, we started our experiment with running a couple of blanks 

followed by injecting different concentrations of the four DNA nucleoside standards 

separately (Deoxyguanosine, Deoxyadenosine, Deoxycytidine and Deoxythymidine) into the 

HPLC until an effective signal was detected. A peak was detected for each standard using 

the UV detector (Figure 3.4) and a note was recorded for each standard retention time (i.e. 

the time spent for each sample to travel through the columns after the detection of the peak 

and until it gets dispensed from the machine). After that, the experiment was repeated and 

fractions containing standards were collected carefully according to their retention times in 

separate tubes.  

To characterise the enzymatic hydrolysis of DNA, HPLC analysis was performed to 

separate the nucleosides in conjunction with UV analysis (260nm) using the C30 hypercarb 

column. Nucleoside standard were used to optimise the gradients and enable verification 

based on their retention times. The HPLC analysis of Deoxycytidine is shown in figure 5.2. 

One of the challenges of using HPLC to analyse or purifiy 8-OHdG is the co-elution with 

the abundant nucleoside dG (Boysen et al., 2010). Therefore the proposed HPLC needs to 

separate the 8-OHdG from dG. A comparison of the HPLC analysis of [
15

N5]- 8-OHdG 
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compared to dG is shown in figure 5.3. The fraction was also collected after noting the 

retention time did not overlap with the dG.  

 

 

 

 

Figure 5.2: HPLC detection of Deoxycytidine. By injecting 100µM of DC a peak was 

detected using the UV light (260nm) 
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Figure 5.3: A comparision between Deoxyguanosine and the [15N5]- 8-OHdG HPLC 

analysis. (a) an adequate peak was detected by injecting 100µM of DG at a retention time 

that was separated from the [15N5]- 8-OHdG pesk (b). Both were detected by UV (260nm) 

detector 
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Following optimisation of the HPLC for the analysis of  the four nucleoside 

standards, the hydrolysed DNA isolated from a control DNA sample was injected (genomic 

DNA from fish). Multiple concentrations were assessed (10µg/µl, 50µg/µl and 100µg/µl). 

The adequate concentration was 50µg/µl where we were able to see the four separate DNA 

bases’ peaks (Deoxyguanosine, Deoxyadenosine, Deoxycytidine and Deoxythymidine) 

(Figure 5.4). Fractions were also then collected according to the correct retention times.  To 

further verify the nucleosides the fractions were collected with the aim to directly infuse into 

the mass spectrometer to further verify the nucleosides. Unfortunately following 

fractionation, the MS was unable to detect the corresponding masses of the nucleosides, due 

to the low concentration of the samples collected which were below the detection senstivity 

of the instrument. 
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Figure 5.4: HPLC analysis of control DNA sample. Detection of four DNA nucleosides 

peaks separated by HPLC and detected by UV detector (260nm): Deoxyadenosine (red 

arrow), Deoxyguanosine (green arrow), Deoxycytidine (black arrow), Deoxythymidine (blue 

arrow) at different retention times 
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3.2.7 LC MS analysis of nucleosides using a Hypercarb porous graphite 

column 

Since the previous protocol proved unsucsessful, we developed an alternative 

approach using liquid chromatography directly interfaced to the mass spectrometer. This 

system Combines the physical separation capabilities of HPLC with the mass analysis 

capabilities of mass spectrometry (MS) where sample is injected under high pressure 

(mobile phase) through a column that is packed with a stationary phase hyper-carb column 

C30 (stationary phase) which is a reversed phase liquid chromatography that is designed to 

provide high quality separation of hydrophobic structurally related products. To ensure a 

better sensitivity of analytes detection, I set the sample to flow in a lower flow rate 

(0.15ml/min) which should improve the sensitivity of detection. I started by injecting 

150pmol of [
15

N5]- 8-OHdG. The mass spectra revealed an unexpected mass (323 m/z  rather 

than 289 m/z expected for the M+H+ species). To confirm this observation, a different 

standard was prepared (5hydroxymethylC) and injected into the LC MS using the same 

column which also showed that oxidation had occurred. From this outcome we concluded 

that the Hyper-carb C30 column has the potential to oxidise chemical compounds and it had 

clearly oxidised the [
15

N5]-labelled stable isotope and changed its spectrum window (Figure 

5.5).  
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Figure 5.5: Detection of [
15

N5]- 8-OHdG using the C30 columnon the LC MS. Injection 

of 150pmol of [
15

N5]- 8-OHdG using the hypercarb C30 column revealed an unexpected 

mass (323 m/z) which indicates an evidence of artificial oxidation  
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3.2.8 LC MS analysis of nucleosides in conjunction with C18 reverse phase 

chromatography  

Since the hyper-carb C30 caused oxidation to the [
15

N5]-labelled stable isotope, we 

used another stationary phase column (C18). Similar to C30, the C18 is also a reversed 

phase liquid chromatography. The difference between the two columns is in the length of the 

carbon chain attached to the silica surface. Accordingly, C18 colum has packing material 

compoused of silica particles attached to C18 Carbon units, while the C30 column will have 

packing materilas coated with C30 hydrophobic units.    
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3.2.9 Analysis of the enzymatic hydorlysis of DNA using LC MS 

Followong enzymatic digestion of the control DNA sample using DNA Degradase 

the resulting nucleosides were analysed using LC MS on the C18 stationary phase column. 

Four nucleosides were detected with their corresponding masses.  Deoxyguanosine was 

detected at 268 m/z (Figure 5.6), Deoxyadenosine was detected at 252 m/z (Figure 5.7), 

Deoxycytidine at 228 m/z (Figure 5.8) and Deoxythymidine at 243m/z (Figure 5.9). The 

[
15

N5]-8OHdG was then injected into the LC MS using the C18 column this time and a peak 

was detected at the correct mass (289 m/z) (Figure 5.10). 

In order to confirm that the [
15

N5]-labelled stable isotope mass spectra was different 

from the four nucleosides standards, we overlapped the peaks and it clearly showed the 

retention time of the [
15

N5]-labelled stable isotope did not overlap with either dC, dG, dA or 

dG (Figure 5.11).  
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Figure 5.6: Detection of Deoxyguanosine from digested control DNA sample on the LC 

MS. Deoxyguanosine was detected at its correct mass (268 m/z) using the C18 column 
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Figure 5.7: Detection of Deoxyadenosine from digested control DNA sample on the LC 
MS. Deoxyadenosine was detected at its correct mass (252 m/z) using the C18 column 
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Figure 5.8: Detection of Deoxycytidine  from digested control DNA sample on the LC 
MS. Deoxycytidine was detected at its correct mass (228 m/z) using the C18 column 
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Figure 5.9: Detection of Deoxythymidine from digested control DNA sample on the LC 
MS. Deoxythymidine was detected at its correct mass (243 m/z) using the C18 column 
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Figure 5.10: Detection of [

15
N5]-8OHdG on the LC MS using the C18 column. The 

[
15

N5]-8OHdG was detected at its correct mass (289 m/z) using the C18 column   
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Figure 5.11: Aanalysis of control DNA sample on the LC MS did not overlap with 
[

15
N5]-8OHdG. An overlay of the control DNA sample profile with the [

15
N5]-8OHdG 

clearly showed the four DNA nucleosides did not overlap with [
15

N5]-8OHdG using the C18 

column 
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3.2.11 LC MS analysis of nucleosides generated from  DNA isolated from 

ageing brain  

After the establishment of a system that was able to separate and detect nucleosides 

standards as well as the [
15

N5]-labelled stable isotope, we e injected our previously treated 

DNA isolated from a DSCL spiked with [
15

N5]-8OHdG . Four nucleosides were successfully 

separated and detected at their correct mass (dG 268 m/z) (Figure 5.12), dA was detected at 

252  m/z (Figure 5.13), dC at 228 m/z (Figure 5.14) and dT at 243 m/z (Figure 5.15) on the 

LC MS. However, the peaks were of low abundance. Higher concentration (15µg) of DNA 

digest was prepared (extracted from 15 brain sections of 25µm thickness each) and the 

experiment was repeated with no significant change in the abundance of the nucleosides 

detected. Furthermore the presence of unknown analytes were detected that were much more 

abundant than the expected nucleosides. 
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Figure 5.12: Injection of hydrolysed DNA from DSCL: Detection of dG and [
15

N5]-
8OHdG. Analysis of DSCL hydrolysed DNA using the LC MS revealed a small peak of dG 
that was detected at the correct mass (268 m/z) and did not overlap with the [

15
N5]-8OHdG 

peak (289 m/z) using the C18 column 
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Figure 5.13: Injection of hydrlysed DNA from DSCL: Detection of dA. Analysis of 
DSCL hydrolysed DNA using the LC MS revealed a very small peak of dA that was 
detected at the correct mass (252 m/z) using the C18 column  
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Figure 5.14: Injection of hydrlysed DNA from DSCL: Detection of dC. Analysis of 
DSCL hydrolysed DNA using the LC MS revealed a very small peak of dC that was 
detected at the correct mass (228 m/z) using the C18 column  
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Figure 5.15: Injection of hydrlysed DNA from DSCL: Detection of dT. Analysis of 
DSCL hydrolysed DNA using the LC MS revealed a small peak of dT that was detected at 

the correct mass (243 m/z) using the C18 column  
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5.3 Discussion  

 
Oxidative damage to neurons has been previousely reported to play a significant role 

in neurodegenerative disease such as AD (Epstein and Martin, 1999, Markesbery and 

Carney, 1999, Lovell et al., 2001). This increased level of cellular damage includes elevated 

level of DNA base oxidation, protein oxidation and lipid peroxidation (Lovell et al., 1995, 

Gabbita et al., 1998, Butterfield and Boyd‐Kimball, 2004). Beacasue of the critical role of 

DNA in cellular function, oxidative DNA damage may be one of the most important factors 

that contribute to neurodegeneration (Wang et al., 2005).  

In this study, it has been reported that the level of oxidative nDNA damage is 

significantly increased in WML and the surrounding WM in the brain of the elderly using 8-

OHdG as a predominant marker of direct DNA oxidation by application of 

immunohistochemistry techniques. To validate this important observation, HPLC/ MS has 

been chosen as a gold star technique to compliment the previous findings where a developed 

method to detect 8-OHdG by MS was accomplished taking into account the critical need to 

prevent oxidation of the sample – both during extraction using TEMPO, and by the use of 

C18 column and not the C30 hypercarb column.  

The use of highly sensitive and specific mass spectrometry-based methods to detect 

DNA damage was intended to detect and quantify Guanosine base modification which 

reflects DNA oxidation since Guanine is the DNA base that is most vurneable to be oxidised 

in the presence of cellular insult to produce 8-Hydroxy-2’deoxy-Guanosine. The study 

structure included the three groups of WM (CNL, CL, DSCL) where DNA was isolated to 

be analysed. However, since the main objective was to quantify the level of DNA oxidation, 

it was cruicial to eliminate the induction of any artificial oxidative damage that could be 

created in the process of sample preparation where it has been previousely reported that the 

addition of TEMPO to samples significantly decreased the level of artifitial damage (Boysen 
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et al., 2010). For this reason, additions of this chemical compound during DNA isolation 

took place with all samples and controls.  

Taking into account previous studies which successfully used HPLC/MS as a tool to 

detect 8-OHdG as a marker of oxidation in different types of biological tissue, such as rat 

liver, an analytical methodology has been developed in this project to analyse nucleoside 

modification. Setting up the system was not straight forward, requiring extensive calibration 

for the sample as well as the machine. HPLC was adjusted several times for its parameters 

such as column pressure and temperature. It has been reported previousely that those 

parameters in addition to the pH of the column are very critical in the separation and 

analysis of samples by HPLC  (Boysen et al., 2010). The developed methodology was 

optimised and modified several times for instance by increasing extracted DNA 

concentration or by changing the column used in order to determine the best conditions that 

produce good sensitivity and precision. For example, it was noted by decreasing the flow of 

sample in the HPLC column will produce a better sensitivity of sample retention times. 

However, after the collection of separate fractions as a product of HPLC analysis, the MS 

was not able to detect them. This might be due to the fact that fraction collection requires 

calculation of the time the peak was detected on the monitor in the presence of UV detector 

added to it the estimated time the samples traveled from the UV sight to the dispensing 

column. Although this was carefully performed, an extra amount of the gradient (buffer) 

might have probably got mixed with the sample an produced a diluted concentration that 

was way too low for the MS to detect. This was overcomed by changing the technique to be 

run on LC that is connected directly to the MS (LC/MS).  

The use of LC/MS has shown to separate and detect the four nucleocide bases at 

their correct mass. However, when the [
15

N5]-8OHdG stable isotope was injected, it was 

shown that it was detected at a different mass which reflects a possible artificial oxidation 

that has been introduced to the stable isotope by the hyperCarb C30 stationary phase 

column. This observation has not been reported before in the literature. In order to overcome 
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this, the column has been changed to the C18 stationary phase which proved to give more 

accurate result and the analysis of [
15

N5]-8OHdG on the LC/MS was detected at its correct 

mass.  

After a prof of the established setting of the the LC/MS principle has been shown, 

the induction of the isolated DNA sample from a DSCL brain has been performed. Although 

four peaks of DNA nucleosides were dtetcted at their correct masses, the intensity of the 

peaks was very low and associated with allot of noise that it was very difficult to isolate our 

peaks of interest from the high background of contamination. This could be to the fact of 

dealing with the quality of post-mortem tissue that has previously shown to be inadequate  

when dealing with such a technique that is highly sensitive. It was also noted during  DNA 

isolation experiments that the amount of total genomic DNA retrieved from the three groups 

of WM brain sections was very little and it only reached the lower scale of isolated DNA 

concentration that was previously reported to be used in literature. Again this could also be 

owed to the possible poor quality of the human tissue we are using in the LC/MS analysis.  

In conclusion, a new approach to DNA damage detection and quantification has 

been developed. The LC/MS is a high quality technique that is reliable and widely used in 

analysis of different bio-molecules. However, due to this machine’s high sensitivity, 

establishing a new system that can be applied in the current project to validate previous 

findings using the 8-OHdG as a marker of DNA oxidation, was very time consuming and 

required further calibration that did not meet my time line. In the future, the established 

technique can be reconcidered for DNA analysis of better quality samples and with higher 

amount of genomic DNA. Making use of the developed technique will create significant 

literature that would add allot to our understanding of DNA damage and its contribution to 

WML formation and neurodegeneration. 
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 To date, the number of true population based studies that exist are very limited 

which makes this a distinctive opportunity to investigate the early events associated with 

glial pathology in WM and WML of the human ageing brain. Also, the study has 

investigated post-mortem human brain tissue blindly, depending only on categorisation of 

WM using MRI scans and not depending on age, sex or mental status of volunteers. , which 

makes it different from classical well-defined case/control type of studies where clinical 

observation and diagnosis accuracy are unstable factors. The study has defined a number of 

important observations and issues that will be discussed in this chapter. 

6.1 Summary of results 

 Oxidative stress affects macrocellular components including DNA, lipids and 

proteins where these end products have been linked to several pathologies including 

neurodegenerative diseases. The first part of the current study showed oxidative DNA 

damage and an extensive DNA damage response in glial cells in the ageing brain, especially 

within DSCL. In addition the study also demonstrated oxidative DNA damage and the 

activation of this DDR not only in the well-defined areas of WM attenuation (DSCL), but 

also in areas that are free of lesions (CL) and appeared normal on MRI scans. This study 

offered an insight into glial cell pathology in the ageing brain and demonstrated that the 

DSCL arise in a field of glial pathology.  

DNA damage (8-OHdG) was a feature of the three groups of WM (CNL, CL, DSCL) 

in the ageing brain. Interestingly, the level of oxidative DNA damage in the CL brains is 

very similar to the level detected in DSCL. This indicates that, although CL brains appear 

normal by MRI analysis, their profile is more similar to DSCL than to control WM free of 

WML. In fact, CL WM contains a high level of DNA damage associated with glial cells 

which could probably activate several key down-stream effect pathways including 

senescence. This raises the question whether this early pathological event of glial cell 
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activation is a forerunner in lesion formation, or whether it is a protective mechanism to 

prevent lesion formation.  

Presence of cellular senescence was defined by detecting SA-β-gal activity, in 

all three groups of WM and was associated with oligodendrocytes and astrocytes but not 

microglia in all groups. Also, activation of cell cycle check proteins (p53, p21 and p16) was 

significantly increased in CL brains, confirming that WML arise in a field effect of glial 

pathology. Studies have reported p53 activation in the presence of senescence which if it 

persists, activates p21 (Campisi, 2013). Activation of this pathway induces senescent cells to 

alter their gene expression profile resulting in the production and secretion of a range of pro-

inflammatory cytokines, proteases and chemokines collectively known as a SASP, which in 

turn could affect neighbouring cells and set a proinflammatory microenvironment. The 

SASP is well defined in cell culture models but to date, very few studies have looked at the 

SASP in vivo  (Simpson et al., 2010b, Jurk et al., 2012, Garwood et al., 2014). The current 

study looked at expression changes in key genes implicated in senescence pathways and 

showed that there is an alteration of genes expression indicating the presence of a SASP.  

Markers of senescence were predominantly associated with astrocytes which play a 

key role in a number of important functions of the human brain such as maintaining the 

homeostasis of the microenvironment. Therefore, impaired astrocytes function may impact 

WM pathology and might contribute to a formation of a lesion.  

The current study also developed a method that quantifies the amount of modified 

DNA base associated with extensive DNA damage, with the aim of validating the 

immunohistochemical detection of  8-OHdG using mass-spectrometry. Previous studies 

have detected guanosine base modification in rats using MS as this base is highly vulnerable 

to oxidation (Boysen et al., 2010). In this chapter, setting up a system that was able to detect 

the four DNA bases as well as the 8-OHdG [
15

N5] stable isotope was accomplished taking 

into account important issues such as using the TEMPO and a suitable C18 column to 
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prevent any artificial oxidation that might be introduced during the course of experiment. 

However, quantifying guanosine in WM and WML has shown to be problematic and very 

time consuming where this will be further discussed in the limitations and the future 

directions at the end of this chapter.  

6.2 WML and oxidative stress: implications for novel therapeutic approaches  

Basic research into the proposed impact of oxidative stress in the ageing brain has 

identified several approaches for the possible therapeutic treatment of age-related 

pathologies. Oxidative stress plays a crucial role in ageing and age related disease(s) 

whereby oxidative stress is implicated in vascular dementia, stroke and ischaemic 

pathologies (Floyd and Hensley, 2002). Several key therapeutic approaches to minimise the 

effect of oxidative stress on cognition in the elderly are available, and can mainly be 

categorised into two  groups: antioxidants and anti-inflammatory drugs (Behl, 1999, Floyd 

and Hensley, 2002).  

Antioxidant therapy has been used as a therapeutic treatment in a number of 

neurodegenerative disorders including AD, PD and ischaemia (Hall and Braughler, 1989, 

Ames et al., 1993, Halliwell, 2006). A number of antioxidants have been tested in vitro on 

models of neuronal cell death, and include Vitamin E, melatonin hormone and mifepristone. 

The studies concluded that the use of such anti-oxidants had a small effect on neuronal 

survival in the presence of an insult such as oxidative stress (Braughler et al., 1989, 

Moosmann et al., 1997, Behl, 1999). Studies investigating the effect of Vitamin E in AD 

patients have shown interesting results (Sano et al., 1997, Hamilton et al., 2001). Given the 

time frame Sano’s study was performed within (two years), there was a delayed small effect 

on cognitive performance. The results of the trial gave major hope that a longer treatment 

might yield a better effect (Grundman, 2000, MGEKN et al., 2008).  

Accumulating evidence strongly suggests a role for inflammatory mechanisms 

(though not frank inflammation) in neurodegenerative diseases such as AD and WML (Lleo 
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et al., 2007, Simpson et al., 2007b). Therefore, therapy targeted against the inflammatory 

mechanism associated with astrocytes and microglia has been considered as an approach for 

treatment (Lleo et al., 2007). The effect of non-steroidal anti-infammatory drugs (NSAIDs) 

was shown to be beneficial on slowing the progression of AD (Breitner, 1996, Lleo et al., 

2007). The main activity of NSAIDs is the inhibition of COX (an enzyme responsible of 

inflammation and pain) which will disrupt prostaglandin synthesis that will in turn block 

ROS formation (Breitner, 1996, Behl, 1999).  

The current study is nested within a large population based study which randomly 

selects individuals based solely on their age, thereby truly reflecting the burden of dementia 

in the general population of the UK. Such a uniquely population based approach is ideal to 

be applied on collaborative studies of clinical controlled therapeutic trials of the effect of 

NSAIDs for instance, to define whether NSAIDs can actually prevent or treat the symptoms 

of AD and dementia from a broader prospective. Also, most of the available clinical 

therapies for cognitive impairment target the well-defined pathologies such as misfolded 

proteins in AD brains using Abeta (Aβ) immunisation, but as our knowledge about the 

early effect of pathologies associated with several diseases of the CNS continues to increase, 

the need for a therapeutic approach that predicts and rescues this impairment also increases. 

The current study demonstrates that oxidative damage creates a field effect on glia in the 

ageing brain.  Furthermore, oxidative DNA damage and an associated DDR are common in 

CL WM indicating that WML may arise in an ongoing field effect of pathology.  If targeted 

early enough, the WM may be rescued and further damage caused by increased ROS 

production prevented, thereby reducing the DDR and preventing induction of senescence or 

altered cellular functions.  
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6.3 Future work 

LC/MS work 

The current study successfully optimised DNA extraction and detection  of nuclear 

bases using LC/MS method, however, measurement of guanosine base modification in WM 

and WML from CFAS tissue was not successfully fulfilled due to the inadequate quality of 

post mortem tissue. 

Had time allowed, this method would have complemented and validated the 

immunohistochemical part of the study which quantitated 8-OHdG oxidative damage in 

three groups of WM. Future studies to complete the optimisation of the LC/MS protocol 

should be completed using larger volumes of high quality DNA extracted from CFAS brains. 

The system has been optimised and proven to detect the four DNA bases, and offers a good 

opportunity to accomplish the quantification of oxidatively modified guanosine in the future. 

Investigation of the role of astrocytes in SASP mediation 

The current study clearly demonstrated the involvement of astrocytes in senescence, 

as determined by detection of both activated SA-β-gal and p16. Histological observation and 

dual labelling studies of senescence markers showed that astrocytes were predominantly 

affected. To date, only a few papers in the current literature implicate astrocytes in SASP 

mediation (Salminen et al., 2011) which suggest a change of astrocytic function and gene 

expression in the presence of senescence in ageing pathology. The current study showed an 

altered gene expression of pooled cDNA that was isolated from whole tissue. Future studies 

to isolate individual cell populations from post mortem material derived from DSCL, CL 

and CNL brains using laser capture microdisection (LCM) could be applied to examine the 

gene expression profile of astrocytes against microglia and against oligodendrocytes. This 

approach will determine key pathways that might be affected in glial cell signalling in the 

presence of an insult such as oxidative stress. Therapeutic targets are developed from such 
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approaches where this could make a good potential in the field of neurodegeneration. A 

recent paper suggests that senescence pathways might be modulated and so be an 

intervention target  (Dalle Pezze et al., 2014). 

6.4 Limitations of the study 

General limitations 

Working with post mortem human brain tissue has a number of advantages and 

disadvantages as well. A key advantage when studying human degenerative diseases is that 

preserved human brain give a clear reflection of the ongoing pathology. Since most 

degenerative diseases are believed to be multifactorial that are probably an outcome of 

multiple cellular compensations in an altered microenvironment, the human retrieved CNS is 

the best model to demonstrate the wide picture of events. Animal models are also of great 

use whereby they are economically better, easier to replace and maintain; however, a major 

drawback especially when studying human brain pathology including WM, is the small size 

of the animals’ brain (rodents are mostly used to study human CNS diseases) which does not 

reflect the actual state of human pathology. In particular, they do not have large areas of 

white matter, and there are not good models of white matter ischaemic lesions in rodents.  

Cellular models have been used extensively in the field of neurodegenerative diseases, but a 

major disadvantage of this model of study is that it usually focuses on a single cell type to be 

cultured and phenotyped. Cellular models lack the actual interaction that is ongoing in the 

human brain which involves multiple cell types with multiple functions and different 

signalling pathways.  

One of the major limitations of working with post mortem human brain tissue is that 

it is considered as the endpoint of pathology. Dealing with such a broad spectrum of factors 

that might collectively contribute to the pathology seen in CFAS wide population based 

study; case to case variation was common using different biomarkers during the course of 

research. This reflects the diversity in the elderly population in the UK and on the scientific 



Chapter 6: General Discussion 

178 
 
 

level, makes it more challenging to define significant differences between tested groups of a 

given pathology. Such an issue might be overcome by expanding the cohort to yield a 

stronger statistical power. Another major obstacle is the quality of the preserved human CNS 

tissue. This important factor creates variability in several parameters such as post mortem 

delay and pH of the retrieved tissue. Since CFAS is a multicentre population based study, 

inconsistency in fixation policies and procedures for those parameters are likely to be seen.  

Antigen detection 

There are a number of issues regarding the limitations of immunohistochemical 

studies. Although the antibodies used in this study which were commercially available are 

well characterised antibodies and have been proven to be very specific, several issues have 

been encountered during the course of work. A major one was the difficulty in retrieving the 

antigen. This is owed to the prolonged fixation of CFAS brain tissue in formalin (over 10 

years) which formed cross links that act as a shield masking the epitopes and making it very 

difficult to retrieve the antigen binding sites. This issue was overcome by the usage of harsh 

antigen retrieval methods such pressure cooker treatment. However, some antibodies failed 

to bind to the specific binding sites on tissue sections. As an alternative, frozen sections were 

used, which indeed did not have the antigen retrieval issue, but is of poor cellular 

morphology comparing to the well-preserved cellular morphology seen in FFPE sections.  

Setting up of LC/MS 

The setting up and optimisation of the LC/MS was challenging in such a sensitive system. 

Given the fact that extracted DNA from post-mortem material was of relatively poor quality, 

it made it even harder to detect the peaks of our interest on the MS. The masses were 

associated with background noise of surrounding molecules. Also, the issue with the C30 

column which introduced artificial oxidation was not expected and took a while to be 

successfully resolved. If time had of permitted, longer optimisation of the sample and the 

machine, and better quality of DNA extracted may all have yielded better quality MS results.  
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