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Abstract

Line lists including positions and absolute intensities have been produced using a

combination of theoretical and experimental methods, for several spectroscopic systems

of diatomic molecules, including the C2 and 12C13C Swan systems, the CN, 13CN, and

C15N A2Π-X2Σ+ (red), B2Σ+-X2Σ+ (violet), and X2Σ+ state rovibrational systems, the

CP A2Π-X2Σ+ system, and the NH X3Σ− state rovibrational and rotational transitions.

Preliminary calculations for the OH X2Π state rovibrational transitions have also been

performed. RKR potential energy curves, vibrational wavefunctions, and matrix

elements (MEs) were calculated using the programs RKR1 and LEVEL. The MEs were

transformed from Hund’s case (b) to (a), for which an equation was derived. Einstein A

values were calculated from the case (a) MEs and molecular constants using PGOPHER.

These lists will be useful in the fields of astronomy, combustion science, materials science,

and anywhere else that transitions of these diatomic molecules are investigated.

Line intensities have also been used to retrieve an atmospheric CO2 volume mixing

ratio. A new technique for the satellite remote sensing of atmospheric greenhouse gases

via absorption of short-wave infrared laser signals transmitted between counter-rotating

satellites in low Earth orbit has recently been proposed; this would enable the acquisition

of a long-term, stable, global set of altitude-resolved concentration measurements. The

first ground-based experimental demonstration of this new infrared-laser occultation

method is presented, in which the atmospheric absorption of CO2 near 2.1 µm and CH4

near 2.3 µm were measured over a 144 km path length between two peaks in the Canary

Islands, using relatively low power diode lasers. The retrieved CO2 volume mixing ratio

of 400 ppm (±15 ppm) is consistent within experimental uncertainty with simultaneously

recorded validation measurements. The new method has a sound basis for monitoring

atmospheric CO2 and other greenhouse gases.
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Chapter 1

Introduction

In this thesis, the creation of spectroscopic line lists for diatomic molecules with a

particular focus on intensities will be described. These molecules have been chosen

mainly because they are of interest in astronomy, but also in other fields such as

combustion, materials science (see Section 3.2), and high precision spectroscopy. To be

able to understand and construct models of astronomical environments, it is vital to have

information on molecular and atomic abundances, and this information can be provided

in the form of extensive lists of transitions.

1.1 Stellar Molecules and Elemental Composition

Over the course of a star’s life, as various nuclear fusion reactions occur, its elemental

composition changes (Kaler, 1997). It is therefore vital to have knowledge of elemental

abundances to be able to understand stellar evolution. Relatively young stars such

as the Sun do not yet have hot enough cores to fuse helium and produce heavier

elements
(
though some are produced by neutron capture (Kappeler et al., 1989)

)
, but

do contain heavier elements that were produced in older, and now dead stars. These

heavier elements are important to a star’s evolution, for example for a given stellar mass,

the lifetime of a star is decreased by increasing metallicity (the ratio of the number of

non-hydrogen or helium atoms to the number of hydrogen and helium atoms) (Adams

and Laughlin, 1997).

Stars such as the Sun are cool enough for diatomic molecules to exist within their

atmosphere (Russell, 1934; Fujita, 1939; Wallace et al., 1998b,a), for example CO, C2, CN,

CH, NH, OH, MgH, AlH, CaH, and TiO (Bernath, 2009). Polyatomic molecules, however,
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are only present in stars of lower temperature (Swings and McKellar, 1948; Tsuji, 1986).

To properly classify a star and be able to develop accurate models, knowledge of

the abundances of these diatomic molecules is vital (Tsuji, 1986; Bernath, 2009). The

chemistry that occurs in a star is dependent on the elemental composition, for which

a good example is the C/O ratio. In the photosphere (the area from which photons

can escape from the star), most of the carbon and oxygen forms CO, and therefore

various carbon-containing molecules will be more likely to exist with a high C/O ratio,

and oxygen-containing molecules with a low C/O ratio. This dramatically affects

the chemistry, resulting in different stellar classifications (Wood, 1985; Wallerstein and

Knapp, 1998).

1.2 Stellar Elemental Abundance Calculations

Spectroscopic transitions of diatomic molecules have been used to calculate the elemental

abundance in cool stars (Lambert et al., 1984; Lambert et al., 1986; Smith and Lambert,

1986; Aoki and Tsuji, 1997; Suntzeff, 1981) and the Sun (Grevesse et al., 1990; Asplund

et al., 2009). Carbon, nitrogen, and oxygen atomic lines have been used for the same

purpose (Gies and Lambert, 1992; Grevesse et al., 2007).

Molecular lines in stellar spectra are normally seen in absorption (emission also

sometimes occurs). The spectral radiance of the Sun peaks in the visible region of

the spectrum, and based on this alone, the best spectral lines to use for abundance

calculations would be located in or near the visible region. However, as electronic

transitions of atoms and molecules are mainly in this region, it is very congested in stellar

spectra (Emerson, 1996), and so there are a limited number of atomic lines that can be

used successfully. Also, as mentioned above, most of the carbon, nitrogen, and oxygen

atoms exist in molecular form in stellar photospheres. Therefore, the infrared region that

contains most vibrational transitions can be very useful. This is especially true for cool

stars and brown dwarfs, in which the lower temperatures mean that diatomic molecules

are more common and atomic transitions become faint, and the wavelength peak moves

into the infrared. As a result, stellar elemental abundances are often determined using

either atomic or molecular lines, or both, in combination with models that link the

abundances of the molecules and atoms (Asplund et al., 2009).
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1.3 Other Astronomical Environments

1.3 Other Astronomical Environments

As a result of the ejection of heavy elements during the process of a star’s late

life and death, non-hydrogen or helium elements are found throughout astronomical

environments. At the high temperatures in stellar atmospheres, only simple molecules

can exist, and this results in the presence of some molecules that would be stable on

Earth such as CO and N2 (Kaler, 1997), but also others which would not, such as C2

(Mayer and O’Dell, 1968). They also exist, along with larger molecules (Herbst, 2005),

in cold environments such as interstellar clouds and planetary nebulae. This is mainly

because at the low concentrations of matter in these regions, the systems are not in

local thermodynamic equilibrium due to the scarcity of collisions (Dyson and Williams,

1980). Again, to be able to construct models of these systems, knowledge of molecular

abundances is vital (Herbst, 2005). Other astronomical environments in which diatomic

molecules have been detected include comets (Mumma and Charnley, 2011), exoplanets

(Swain et al., 2009), and circumstellar envelopes (Ziurys, 2006).

1.4 Spectral Lines, Concentrations, and Absolute Line

Intensities

In astronomy and in general for remote sensing, lists of line positions and absolute line

intensities are essential for the determination of molecular abundances (Bernath, 2009).

To obtain an abundance from an absorption spectrum, the spectrum needs be calculated.

This is accomplished using the Beer-Lambert law (including stimulated emission),

I

I0
= e
−σ
(
Nl−Nu 2J′′+1

2J′+1

)
l
, (1.1)

where I
I0

is the transmittance, Nl and Nu are the concentrations of molecules in the

lower and upper level in molecule cm−3, respectively, l is the path length in cm, J is

the total angular momentum quantum number, and σ is the absorption cross section in

cm2s−1molecule−1:

σ =
AJ ′J ′′ g

(
ν̃ − ν̃u−l

)
8πν̃2

u−l

2J ′ + 1

2J ′′ + 1
, (1.2)

where AJ ′J ′′ is the Einstein A coefficient, a ”rate constant” for a transition that is

independent of any level population factors (Section 2.5), g
(
ν̃ − ν̃u−l

)
is a lineshape
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function, ν̃ is the wavenumber of the transition in cm−1, and u and l are the upper and

lower energy levels, respectively, so that ν̃u−l represents the central wavenumber of the

transition.

At thermodynamic equilibrium, the concentration of molecules in each state can be

replaced as

NvJ =
N
(
2J + 1

)
e−EvJ/kT

Q
, (1.3)

where v is the vibrational energy level, so that Equation 1.1 can be written as

− ln

(
I

I0

)
= σ

(
2J ′′ + 1

)(e−Ev′′J′′/kT − e−Ev′J′/kT
)

Q
l (1.4)

=
AJ ′J ′′

(
2J ′ + 1

)
g
(
ν̃ − ν̃u−l

)
8πν̃2

u−l

(
e−Ev′′J′′/kT − e−Ev′J′/kT

)
Q

Nl, (1.5)

where N is in molecule cm−3, and the lower state energy is relative to the zero point

energy. The lineshape function can be removed by integrating over both sides, as
∫
g
(
ν̃−

ν̃u−l
)
dν̃ = 1:

−
∫

ln

(
I

I0

)
dν̃ =

AJ ′J ′′
(
2J ′ + 1

)
8πν̃2

u−l

(
e−El/kT − e−Eu/kT

)
Q

Nl. (1.6)

This equation shows that the concentration of a molecular species can be obtained from

the area under a line in a spectrum, the partition function, lower state energy, and Einstein

A value (or other absolute line intensity value).

A convenient factor is made up of the terms preceding N and l and defined as the

effective integrated cross section, S′, where

S′ =
AJ ′J ′′

(
2J ′ + 1

)
8πν̃2

u−l

(
e−El/kT − e−Eu/kT

)
Q

, (1.7)

and in these equations is in units of cm2cm−1molecule−1 ( ”HITRAN units”). S′ is not

usually written in terms of the Einstein A in this manner, but is in this case as absolute

line intensities in this thesis are calculated as Einstein A values.

1.5 General Procedure for the Production of Line Lists

A combination of laboratory measurements of molecules and theoretical methods can be

used effectively in the creation of line lists with positions and intensities (Bernath, 2009;
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Ridgway and Brault, 1984). If a line list was made with purely experimental methods,

it would likely contain the best possible positions, but only for the lines that were

observed. In practice, information on more lines is often required, and this requires the

assignment of quantum numbers and fitting of molecular constants using an appropriate

Hamiltonian (Section 2.4), allowing the positions of many more lines to be estimated.

Entirely theoretical methods rarely produce line positions as accurate as observations

(Bernath, 2009).

Determining absolute intensities from the laboratory spectra of molecules that are

not stable under normal laboratory conditions is extremely difficult or impossible.

This is because of several reasons; the molecules are produced by methods that cause

the concentration to be unknown, they are unlikely to be in local thermodynamic

equilibrium, the y-axis calibration is often not performed, and the signal-to-noise for

most lines is poor. Theoretical calculations of the (transition) dipole moment functions,

in combination with line positions observed and calculated as described above, provide

the best method of creating the required line lists.

1.6 Thesis Structure

After this introduction, all of the theory required for the line position and intensity

calculations that follow is described in detail. This is mostly well-established theory,

but also contains a derived ”transformation” equation (Section 2.5.4).

The following four chapters describe the production of line lists using this theory,

for the molecules C2, CN (and the isovalent CP), NH, and OH. They are present in

the order in which these projects were undertaken. The exact theory used changed as

the PhD progressed. Specifically, the effect of rotation on vibrational wavefunctions

was introduced after the C2 calculations, as was the transformation equation mentioned

above, which then underwent revisions during the final OH work. Despite not all being

used initially, all of the theory is described in the next chapter.

Following the four line list chapters, work on a ground based demonstration of a

potential satellite mission is presented. This involved measuring the carbon dioxide

concentration over a 144 km path length between two of the Canary Islands, using

laser absorption spectroscopy. This is in a slightly different area of spectroscopy to the

preceding chapters, but they all have a common theme of spectroscopic line intensities.
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Introductory information that is specific to each study is given at the start of Chapters

3 to 7, and short conclusions are also presented at the end of each of these chapters. The

final chapter is a general conclusion chapter that refers to all of the work chapters, 3 to 7.
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Chapter 2

Theory

2.1 Electronic, Vibrational, and Rotational Energy Levels

2.1.1 Schrödinger Equation

The energy of a molecule can be calculated from the Schrödinger equation,

Ĥψ = Eψ (2.1)

where Ĥ is is the total Hamiltonian operator (in atomic units; Bernath, 2005):

Ĥ =−
ne∑
i=1

1

2
∇2
i −

nN∑
I=1

1

2MI
∇2
I −

ne∑
i=1

nN∑
I=1

zI
riI

+

ne∑
i=1

ne∑
j>i

1

rij
+

nN∑
I=1

nN∑
J>I

zIzJ
RIJ

(2.2)

= T̂e + T̂N + V̂eN + V̂ee + V̂NN , (2.3)

in which ne is the number of electrons, nN is the number of nuclei, i and j represent the

indices of the electrons, I and J represent the indices of the nuclei, zI and MI are the

charge and mass of nucleus I , respectively, rij is the distance between particles i and j,

and∇2 is the operator

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.4)

The five operator terms in Equation 2.3 are:

• T̂e, the electronic kinetic energy

• T̂N , the nuclear kinetic energy

• V̂eN , the electron-nuclear attraction energy
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• V̂ee, the electron-electron repulsion energy

• V̂NN , the nuclear-nuclear repulsion energy

In this form, the Schrödinger equation is too difficult to solve, and instead the

Born-Oppenheimer approximation is invoked. Electrons move much faster than nuclei,

as they experience forces of a similar magnitude but are much lighter. Within the

Born-Oppenheimer approximation, electronic motion is separated from nuclear motion,

and the adjustment of the electronic part of the wavefunction is assumed to occur

instantaneously with a change in nuclear coordinates. The total wavefunction can

then be approximated as a product of the electronic wavefunction, ψel and the nuclear

wavefunction. The electronic structure part of the calculation can be performed

separately with the nuclei fixed in space:

Ĥelψel = Eelψel, (2.5)

where

Ĥel = T̂e + V̂eN + V̂ee. (2.6)

As the nuclei are fixed, the nuclear repulsion energy is simply a constant, so the potential

energy, V , can be calculated using the equation:

(Ĥel + V̂NN )ψel = V ψel. (2.7)

This can be solved by ab initio methods, providing eigenvalues and eigenfunctions,

and if the calculation is performed at multiple internuclear distances, a potential energy

curve, V (r), is obtained. The Rydberg-Klein-Rees procedure can also provide a potential

energy curve, based on experimental observations (Section 2.1.4).

The electronic state of a molecule generally has the largest contribution to its total

energy. This is determined by the electronic configuration, and the term symbols given

to different electronic states are described in Section 2.2.3. The remaining term for the

nuclear kinetic energy is the main subject of the next two sections.

2.1.2 Nuclear Rotation

The rotation of a diatomic molecule generally has a smaller contribution than the

electronic and vibrational contributions. The classical equation for the kinetic energy,
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EK , of an object with linear momentum p, mass m, and velocity v, is

EK = 1
2mv

2 =
p2

2m
. (2.8)

In terms of angular momentum (L), the expression is

EK = 1
2mω

2 =
L2

2I
, (2.9)

where ω is the angular velocity, L is equal to Iω, I is the moment of inertia, equal to mr2,

and r is the radius of the circular motion.

The term shown above for the nuclear kinetic energy, T̂N , is the quantum mechanical

operator relating to Equations 2.8 and 2.9. The gradient operator, ∇, gives the change in

coordinates, which is the equivalent here of momentum, and MI is the nuclear mass.

As all directions of angular momentum must be considered, the classical rotational

kinetic energy is

Tr =
L2
x

2Ix
+
L2
y

2Iy
+
L2
z

2Iz
. (2.10)

In a rigid diatomic molecule, the total angular momentum is J , Iz=0, and Ix=Iy, so

Tr =
J2
x

2I
+
J2
y

2I
(2.11)

=
J2

2I
, (2.12)

where J2 = J2
x+J2

y +J2
z . The corresponding quantum mechanical Hamiltonian is simply

− h̄2∇2

2I = Ĵ2

2I (McQuarrie, 2008), and

Ĵ2ψJ
2I

=
J(J + 1)h̄2ψJ

2I
(2.13)

= BJ(J + 1)ψJ , (2.14)

where J is now the total angular momentum quantum number, B is the molecular

rotational constant in joules, equal to h̄
2I , and the wavefunctions ψJ are the spherical

harmonics, YJM . Therefore, the rotational energy levels of a rigid diatomic molecule,

not considering electronic angular momentum, are equal to BJ(J + 1). Clearly, this

spacing increases with J , and it is much smaller than the splitting due to the vibrational
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levels. In reality, molecules are not rigid, and are affected by centrifugal distortion. This

is discussed further in Section 2.4.2.4. The effect of nuclear rotation on the line intensities

is of great importance in this thesis, and is discussed throughout Section 2.5.

2.1.3 Nuclear Vibration

2.1.3.1 One-Dimensional Schrödinger equation

The vibrational kinetic energy generally has a smaller effect on the energy than the

electronic part, and a greater effect than the rotational kinetic energy. The expression for

the vibrational kinetic energy in terms of momentum for a diatomic molecule is (Bernath,

2005)

Tv =
p(r)2

2µ
, (2.15)

where µ is the reduced mass. The classical expression for the total energy is equal to

Tv + V (r), and the quantum mechanical Hamiltonian version of this is:

−h̄2

2µ
∇2ψ + V (r)ψ = Eψ. (2.16)

If the vibrational and rotational parts of the total wavefunction are separated, so that ψ =

ψvJψJ , where ψJ is a spherical harmonic function, and a transformation from cartesian to

spherical polar coordinates is performed, then the one-dimensional Schrödinger equation

can be obtained:

−h̄2

2µ

d2ΨvJ

dr2
+ VvJ(r)ΨvJ = EΨvJ , (2.17)

where ΨvJ = rψvJ , and

VvJ(r) =
h̄2J(J + 1)

2µr2
+ Vv(r) (2.18)

Note that the potential VvJ(r), and wavefunctions ΨvJ , depend on rotation. This is due

to the J(J + 1) term above. The program LEVEL is used to solve Equation 2.17, and the

steps involved are described in the next few sections.
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Figure 2.1 – Potential energy curve within the harmonic oscillator
approximation. Also shown are the first three energy levels and
wavefunctions.

2.1.3.2 Quantum Harmonic Oscillator

To solve Equation 2.17 exactly, an analytic form for the potential energy is required. One

such simple analytic form comes from the harmonic oscillator approximation, in which

the force acting on two objects connected by a spring, with x = re − r, where r is the

separation distance and re is equilibrium separation, is (Herzberg and Spinks, 1950)

f = −kx, (2.19)

where f is the force and k is the force constant. This potential is shown in Figure 2.1.

Potential energy can be related to force through the equation (Hollas, 2004)

−dV
dx

= f(x). (2.20)
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Therefore,

V (x) =

∫
−kx dx+ c (2.21)

=
1

2
kx2, (2.22)

where c is chosen so that V (x) = 0 at x = 0

If this is applied to a diatomic molecule, Equation 2.17 becomes

−h̄2

2µ

d2ΨvJ

dx2
+

1

2
kx2ΨvJ = EΨvJ (2.23)

d2ΨvJ

dx2
+

2µ

h̄2

(
E − 1

2
kx2
)

ΨvJ = 0. (2.24)

The wavefunctions that solve this differential equation and satisfy the requirements that∫∞
−∞Ψv dr = 1 and that the wavefunctions are equal to zero at r = ∞ and r = −∞, are

(McQuarrie, 2008)

Nvα
1
2xHve

−αx2
2 , (2.25)

where Nv is the normalisation factor, Hv are the Hermite polynomials, and specifically

Nv =

(
1

2vv!

(
α

π

) 1
2

) 1
2

, Hv = (−1)vex
2 dv

dxv
e−x

2
, and α =

µ

h̄

√
k

µ
. (2.26)

The eigenvalues can then be shown to be equal to h̄
√

k
µ

(
v + 1

2

)
(McQuarrie, 2008). This

shows that the energy levels are evenly spaced, with the lowest equal to 1
2 h̄
√

k
µ , and not

zero. The eigenvalues and wavefunctions for the first three vibrational levels are shown

in Figure 2.1. Each level has two classical ”turning points”, where E = V .

2.1.3.3 Real Potential Energy Curves

The harmonic oscillator is only a good approximation for the vibrational motion of a

diatomic molecule at low energies (around the bottom of the well). At higher energies, as

the internuclear distance increases, the bond becomes weaker, and with enough energy

will dissociate, and a real potential energy curve is normally of the form shown in Figure

2.2.
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Figure 2.2 – Realistic diatomic molecule potential energy curve (solid line),
and a harmonic potential energy curve (dotted line)

A common analytical form for a real potential is the Dunham potential (Dunham,

1932)

V (ξ) = a0ξ
2
(
1 + a1ξ + a2ξ

2 . . .
)
, (2.27)

where

ξ =
(r − re

re

)
. (2.28)

If this is expanded and only the first term is retained, it is equal to the harmonic

oscillator approximation (Bernath, 2005), so the other terms are those that account for

the anharmonic behaviour shown in Figure 2.2. The Schrödinger equation cannot be

solved exactly for the Dunham potential, but approximate forms for the wavefunctions

can be found.

When attempting to solve the equation in the same manner in which the harmonic

oscillator version is solved, V (x) cannot be replaced by a single term like 1
2kx

2, but

the potential and wavefunctions can be calculated approximately by ab initio methods,

where the potential is the sum of the electronic energy and V̂NN . In this thesis however,

semi-empirical methods are used. The semiclassical WKB approximation (Child, 1991;

Schatz and Ratner, 2002) shows that the wavefunction can be approximated by different

equations before the first turning point, between the turning points, and after the second
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turning point. The approximation does not work at the turning points, and the equations

must be joined together. For example, between the turning points

Ψv(r) ∝
(
E − V (r)

)−1/4
exp

(
−
√

2µ/h̄2

∫ r√
(E − V (r′) dr′

)
. (2.29)

This also leads to an expression for the energy eigenvalues:

v +
1

2
=

1

π

√
2µ

h̄2

∫ r2

r1

(
E − V (r)

) 1
2
dr (2.30)

where r1 and r2 are the classical turning points. This equation requires a potential, the

calculation of which is described in the next section.

2.1.4 Calculation of Potential Energy Curves using the RKR Method

The potential energy curves calculated in this thesis are based on experimental

measurements and the Rydberg-Klein-Rees procedure (RKR; Rydberg, 1932, 1933; Klein,

1932; Rees, 1947). The RKR procedure calculates turning points for specified vibrational

levels, and is performed by the program RKR1 (Le Roy, 2004). The important RKR

equation provides equations for the turning points in terms of known values:

r1(v) =
√
f2 + f/g − fr2(v) =

√
f2 + f/g + f, (2.31)

where

f =

√
h̄2

2µ

∫ v

vmin

1(
Gv −Gv′

)1/2 dv′, and (2.32)

g =

√
2µ

h̄2

∫ v

vmin

Bv′(
Gv −Gv′

)1/2 dv′. (2.33)

As this is a semiclassical method, v is a continuous variable, and so turning points can

be calculated for as many points as required, as opposed to only for a small number of

real vibrational levels. This means that as input it requires equilibrium constants for the

electronic state, ωe, ωexe, ωeye, ωeze, etc. and Be, αe1 , αe2 , αe2 etc. (defined below), so

that it can calculate Gv and Bv for any value of v. These equilibrium constants can be
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calculated with least squares fits to the equations (Bernath, 2005)

Gv = ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ωeye(v +

1

2
)3 + ωeze(v +

1

2
)4 + . . . (2.34)

and

Bv = Be − αe1(v +
1

2
) + αe2(v +

1

2
)2 + αe3(v +

1

2
)3 + . . . , (2.35)

where higher order terms can be used if required. Values for Gv and Bv are obtained

along with the other molecular constants described in Section 2.4 by fitting to the

observed line positions, so that the RKR potentials generated are based on experimentally

observed transitions.

2.1.5 LEVEL program and example

LEVEL calculates a solution to Equation 2.17 numerically using the Cooley procedure

(Cooley, 1961), which is briefly described here. It requires the input of a potential energy

function, V (r), for the electronic state in question
(

these can be calculated using the

program RKR1 (Section 2.1.4)
)

. Vibrational wavefunctions and energies are calculated

for any specified values of the quantum numbers v and J .

Equation 2.17 can be rearranged as

d2ΨvJ(r)

dr2
= (VvJ(r)− E)ΨvJ(r), (2.36)

where −h̄
2

2µ has been incorporated into VvJ(r) and E, adjusting their units accordingly.

An equation can be derived (derivation not shown here) for the calculation of ΨvJ(r) at

a specific internuclear distance, using an equally spaced grid of spacing h, and the series

expressions:

ΨvJ(r + h) + ΨvJ(r − h) =
∞∑
k=0

2h2k

(2k)!
Ψ

(2k)
vJ (r), (2.37)

and

Ψ
(2)
vJ (r + h) + Ψ

(2)
vJ (r − h) =

∞∑
k=0

2h2k

(2k)!
Ψ

(2k+2)
vJ (r), (2.38)

where

Ψ
(n)
vJ (r) =

dnΨvJ(r)

dr(n)
, (2.39)
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so that

ΨvJ(r + h) =

h2(VvJ(r)− E)ΨvJ(r) + 2
(

1− h2

12

(
VvJ(r)− E

))
ΨvJ(r)−

(
1− h2

12

(
VvJ(r − h)− E

))
ΨvJ(r − h)(

1− h2

12

(
VvJ(r + h)− E

)) .

(2.40)

Due to the discarding of higher order terms from the series expressions, this equation is

not complete, but is a good approximation (Cooley, 1961). The first discarded term is very

small, and equal to −h
6

240 ΨvJ(r)(6). This equation is used in an iterative process, in which

an initial guess is made for E, and this is improved until the resulting wavefunction is

acceptable according to some convergence criteria. AsE is estimated, values for
(
VvJ(r−

h) − E
)

can be easily calculated at any value of r, and all that is required are the values

of the two preceding points of the wavefunction.

A grid with minimum and maximum values of r, rmin and rmax, is chosen so that

effectively all of the wavefunction will be present in this range. The wavefunction at

rmin is set to zero, and at rmin + h it is set to a small arbitrary number, which is all that

is required for Equation 2.29 to be used. The wavefunction is calculated up to a certain

specified point between rmin and rmax, and this part is the ”outward integration”.

As an example, this calculation will be shown for the v=0, J=0 level of the NH X3Σ−

state. For the first iteration, LEVEL initially estimates E to be equal to 3951.3301 cm−1.

The correct value is 1619.3251 cm−1, so this will also illustrate what happens with a very

poor initial estimate. The outward integration is shown in Figure 2.3

A similar process is then performed for the inward integration. First, a suitable

starting point is chosen where the value of the wavefunction is likely to be negligible,

then two points are assigned values so that the inward integration can proceed in the

same fashion. These two points are calculated using the WKB approximation for a

wavefunction where r is greater than the outer turning point:

ΨvJ(r) ∝
(
VvJ(r)− E

)−1/4
exp

(
−
√

2µ/h̄2

∫ r√
VvJ(r′)− E dr′

)
, (2.41)
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Figure 2.3 – Outward integration for the first iteration by LEVEL in the
calculation of the NH X3Σ−, v=0, J=0 wavefunction.

so that

ΨvJ(r − h) = ΨvJ(r)
(
VvJ(r)− E

)−1/4
exp

(
h
√
VvJ(r)− E + h

√
VvJ(r − h)− E

2

)
,

(2.42)

where −h̄
2

2µ has been incorporated into VvJ(r) and E as before.The inward integration is

then performed up to the same internuclear distance as before. For the example, this

results in the wavefunction in Figure 2.4.

Both sections are then separately normalised so that their values at the meeting point

are equal to unity, giving the example wavefunction in Figure 2.5. At the point at which

the two parts of the wavefunction meet, the slopes are compared, and if their difference

is less than a specified threshold, the wavefunction is accepted. If they are not, as clearly

must be the case in Figure 2.5, a new energy is estimated based on the result of the

previous iteration and the next iteration begins. For this example, LEVEL performs six

iterations, the wavefunctions for three of which are shown in Figure 2.6. Clearly, the

wavefunction arrived at has a node in the centre, and therefore it is for the v=1 J=0 level.

This is due to the poor quality of the initial estimate of E, however now that the energy

for the v=1 level is known, LEVEL can improve its estimate, and the actual wavefunction

is found using the same procedure.
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Figure 2.4 – Inward and outward integration for the first iteration by LEVEL

in the calculation of the NH X3Σ−, v=0, J=0 wavefunction

Figure 2.5 – Normalised wavefunction for the first iteration by LEVEL for
the NH X3Σ−, v=0, J=0 level. The shaded area shows the point at which
in inward and outward integrations meet.
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Figure 2.6 – Normalised wavefunctions for the first, second, and sixth of
six iterations performed by LEVEL, with its first estimate of E, for the NH
X3Σ−, v=0, J=0 level. The shaded area shows the point at which the inward
and outward integrations meet. The expanded area shows that the second
iteration still has a noticeable slope change, and the final wavefunction does
not. The wavefunctions from the third to fifth iterations are omitted as they
would appear almost identical to the final wavefunction.
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2.2 Electronic Angular Momentum

2.2.1 Electronic Angular Momentum in Atoms

The different quantised energy levels of an atom within an electronic state exist due

entirely to the angular momentum of the electrons and nuclei. The definition of angular

momentum, l̂, is

l̂ = r̂ × p̂, (2.43)

where r̂ is the radius and p̂ is the linear momentum. The quantum mechanical operator

for linear momentum on the x axis is (Zare, 1988) is

p̂x = −ih̄ ∂
∂x
. (2.44)

Using Equation 2.43, Equation 2.44, and equivalent expressions for the y- and z-axes,

expressions for the quantum mechanical operator versions of the component angular

momenta 2.10, l̂x, l̂y, and l̂z , can be derived:

l̂x = yp̂z − zp̂y (2.45)

l̂y = zp̂x − xp̂z (2.46)

l̂z = xp̂y − yp̂x. (2.47)

A further operator that commutes with these, l̂2, is defined as

l̂2 = l̂2x + l̂2y + l̂2z . (2.48)

The spherical harmonics, Ylm(θ,Φ), are simultaneous eigenfunctions of l̂2 and l̂z , with

the eigenvalues l(l + 1)h̄2 and mlh̄, respectively. This indicates that the energy levels are

quantised and described by l andml, where l is the angular momentum quantum number

of a single electron, and ml is the projection of the vector l on the laboratory z-axis.

The quantum number l is based on which orbital an electron occupies, and l=0,1,2,3...

correspond to s,p,d,f ... orbitals, respectively.

Equivalent electron spin operators can also be defined (ŝx, ŝy, ŝz , and ŝ2), where s and

ms are analogous quantum numbers. The difference in energy levels caused by different

nuclear angular momenta (hyperfine structure) is extremely small (for example, around

40 MHz (0.0013 cm−1) for OH), and the spectral line splitting caused as a result is not
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resolved in any of the spectra discussed in this thesis. All the intensities reported are

actually a sum over both upper and lower states of the unresolved hyperfine intensities,

and hyperfine structure is not discussed further.

2.2.2 Good Quantum Numbers

When a quantum number is described as ”good”, a simultaneous set of eigenfunctions

exist for both it and the total Hamiltonian operator, eg. for the operator Ĵ2,

Ĥψ = Eψ and Ĵ2ψ = J(J + 1)h̄ψ. (2.49)

Here, the operators commute:

[Ĥ, Ĵ2] = ĤĴ2 − Ĵ2Ĥ = 0 (2.50)

When an operator does not commute with the Hamiltonian, and simultaneous

eigenfunctions cannot be found, the associated quantum number is no longer good.

However, it is often still useful to use the quantum numbers as labels for states even when

they are not good, especially if the operator almost commutes with the Hamiltonian, and

if considering, say, Ŝ2,

Ŝ2ψ ≈ S(S + 1)h̄ψ. (2.51)

2.2.3 Electronic and Nuclear Rotational Angular Momentum in Diatomic

Molecules

A diatomic molecule has reduced symmetry compared to an atom, and the electrons are

forced to precess about the internuclear z-axis. The vector l is no longer known (and the

quantum number l is no longer good; see above), but its projection on the internuclear

axis, λh̄, is. This is the eigenvalue from l̂z operating on the electronic wavefunction. The

sign of λ can be thought of as the electrons precessing in opposite directions around the

internuclear axis. σ, π, and δ orbitals have λ values of 0, ±1, and ±2, respectively.

At this point it should be noted that the quantum numbers Σ, λ, Λ, and Ω are

defined as only having positive values (Herzberg and Spinks, 1950). However, there are

various points, for example when the basis states in the effective Hamiltonian (Section

2.4) are considered, that the possible negative values need to be accounted for. Therefore,
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Table 2.1 – Operators and their eigenvalues when operating on a set of
simultaneous eigenfunctions, in the absence of spin-orbit coupling (discussed
later.)

Operator Eigenvalue Equation
Ĵ2 J(J + 1)h̄2 Ĵ2ψ = J(J + 1)h̄2ψ

Ĵz Ωh̄ Ĵzψ = Ωh̄ψ

L̂z Λh̄ L̂zψ = Λh̄ψ

Ŝ2 S(S + 1)h̄2 Ŝ2ψ = S(S + 1)h̄2ψ

Ŝz Σh̄ Ŝzψ = Σh̄ψ

ΛΣ

L

R

S

Figure 2.7 – Angular momentum in a diatomic molecule

throughout this thesis, these quantum numbers can take both positive and negative

values.

Values of λ add together to give Λ, the quantum number associated with the

projection of the total orbital angular momentum on the internuclear axis. Conveniently,

they add as scalars as opposed to vectors, as the direction is always along the internuclear

axis (see Figure 2.7).

The spin quantum numbers are still good, and add together to give the total spin

quantum number, S. The projection of spin on the internuclear axis is given the symbol

Σ, which can take values separated by 1 between -S and +S. Λ and Σ add together to

give Ω, the total projection of angular momentum on the internuclear axis (see Figure 2.7).

These angular momenta couple together to form the resulting total angular momentum,

J . This can occur in different ways, which are explained in Section 2.2.4. The operators

and quantum numbers for the angular momentum in diatomic molecules are shown in

Table 2.1 The notation for an electronic state of a diatomic molecule is 2S+1ΛΩ. Terms

with Λ = 0,1,2 are given the symbols Σ, Π, and ∆. 2S + 1 is the multiplicity, where

multiplicities of 1, 2, 3, etc. are described as singlets, doublets, triplets, etc..

For example, in the C2 X1Σ+
g ground state, the atomic orbitals combine to give
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1σu
*

1πu

1σg

2σu
*

2σg

3σu
*

3σg

1πg
*

2px,y,z 2px,y,z

2s

1s 1s

2s

Figure 2.8 – Molecular orbital diagram of the C2 X1Σ+
g state

1πu

3σu
*

3σg

1πg
*

2px,y,z 2px,y,z

Figure 2.9 – Molecular orbital diagram of the C2 a3Πu state

molecular orbitals as shown in Figure 2.8. The first four molecular orbitals, 1σg to 2σ∗u

have l=0, so only the two degenerate 1πu orbitals must be considered. One 1πu orbital

has λ = +1, and the other −1, so the λ values add together to give Λ = 0, so this is

a Σ state. All of the electrons are paired, meaning that this is a singlet state. The next

lowest electronic state of C2 is the a3Πu state, the configuration for which is shown in

Figure 2.9. Here, there are two electrons in one degenerate 1πu orbital, and one in the

other. Electrons in these two orbitals have equal and opposite values of λ, giving rise to

Λ = ±1 +±1 +∓1 = ±1 (the electron in the 3σg orbital does not contribute to Λ as it has

λ = 0). There are two unpaired electrons with the same spin, and therefore S = 1.
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S

Λ Σ

L

R J

Ω

Figure 2.10 – Angular momentum coupling in a Hund’s case (a) diatomic
molecule

Table 2.2 – Possible combinations of Λ and Σ to give Ω in a 3Π state.

Λ Σ Ω

+1 +1 +2
+1 0 +1
+1 -1 0
-1 +1 0
-1 0 -1
-1 -1 -2

2.2.4 Hund’s Cases

The angular momenta can couple with each other and the internuclear and rotational

axes to different extents, resulting in different energy level patterns. These are called

Hund’s cases, and the two main cases, (a) and (b), are described in detail below. Cases

(c), (d), and (e) are briefly discussed.

2.2.4.1 Hund’s Case (a)

If, as described above, L couples strongly to the internuclear axis, then Λ is a good

quantum number. If spin-orbit coupling is very strong, ie. S and L couple very strongly,

then Σ and Ω are also good quantum numbers (Herzberg and Spinks, 1950). The vector

Ω then couples with the nuclear rotation, R, to give J . This is shown in Figure 2.10.

Hund’s case (a) is an idealised case in which S and L are completely coupled. Different

components within an electronic state arise from the combination of possible values of

Λ and Σ. Λ can be positive or negative, and Σ = S, S − 1, ...,−S. For example, for the

a3Πu state of C2 shown in Figure 2.9, which is best described by Hund’s case (a) at low

J , Λ = ±1 and Σ = +1, 0, or − 1. Therefore, values of |Ω| can be 0, 1, or 2, as shown in

Table 2.2.
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Ω=0
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J
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F2

F3
J=R+Λ-S

J=R+Λ+S-1

J=R+Λ+S

Figure 2.11 – Energy levels of the C2 a3Πu state. The order is correct but they
are not to scale.

The resulting states from Table 2.2 are 3Π0, 3Π1, and 3Π2. The positive and negative

values of Ω result from Λ being able to take positive or negative values. F labels are given

to the different components, with F1 for J = R + Λ + S, F2 for J = R + Λ + S − 1, up to

F2S+1 for J = R + Λ − S (Bernath, 2005). The quantum number R is used here because

although it not a good quantum number for case (a), it is useful as a label.

The energy levels for the C2 a3Πu state are ordered as shown in Figure 2.11, and this

is called an ”inverted” 3Π state, as the F1 level is lowest in energy. The main point is that

for a case (a) state, the energy levels are best described as first being split into Ω ”spin

components”, and there then is a progression of J values within each component.

2.2.4.2 Hund’s Case (b)

In a Hund’s case (b) state, the electron spin S is not coupled to the internuclear axis, and

Σ is not a good quantum number. In a case (a) system, S is coupled to the internuclear

axis indirectly, via its coupling to the orbital angular momentum L. If L is zero, then

this indirect coupling doesn’t occur, resulting in a case (b) state. It can also occur when

L > 0 if the spin-orbit coupling is small, which can occur in light molecules (Brown and

Carrington, 2003).

R combines with Λ to formN , and N is a good quantum number in case (b) (R = N

if L = 0. N then combines with S in 2S + 1 possible ways to give the 2S + 1 spin

components (see Figure 2.12).
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S

L

R

JN

Λ

Figure 2.12 – Angular momentum coupling in a Hund’s case (b) diatomic
molecule

N

0

1

2

3

0.5 F2 ( J=N+S-1)
1.5 F1 ( J=N+S)

1.5 F2 ( J=N+S-1)
2.5 F1 ( J=N+S)

2.5 F2 ( J=N+S-1)
3.5 F1 ( J=N+S)

0.5 F1 ( J=N+S)

J

Figure 2.13 – Energy levels of the CN B2Σ+ state. The order is correct but they
are not to scale (the splitting between spin components is much exaggerated
for clarity).

At first it may appear that the different spin components would be degenerate for

a specific value of N , but in fact the spin couples to an extent to the rotation, lifting

this degeneracy (see Section 2.4.2.1). The energy levels are therefore mostly affected by

their value of N , and are then split slightly into spin components, with the labels F1 for

J = N + S, F2 for J = N + S − 1, up to F2S+1 for J = N − S. Figure 2.13 shows the

energy levels of the CN B2Σ+ state as an example of an electronic state best described by

case (b).

2.2.4.3 Other Hund’s Cases

As mentioned, cases (a) and (b) are the extreme cases, and in reality, states with Λ > 0 lie

somewhere between the two. This is based on the amount of spin-orbit coupling, which

is quantified by the molecular constant A, discussed in Section 2.4. Most electronic states
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of diatomic molecules, including all of those investigated in this thesis, are either case (b)

or somewhere between (a) and (b).

There are three other Hund’s cases: (c), (d), and (e), although (e) was not identified by

Hund (Brown and Carrington, 2003). Case (c) results from L and S being more strongly

coupled to each other than the internuclear axis, and Ω is a good quantum number, but Λ

and Σ are not. In case (d), L is coupled to the molecular rotation and not the internuclear

axis, with no spin-orbit coupling. In case (e), L is not coupled to the internuclear axis,

but spin-orbit coupling is strong.

2.3 Parity

2.3.1 Total and Rotationless Parity

An energy level of a diatomic molecule can also be described by parity, which is based on

its symmetry. This is particularly important as there are selection rules based on parity

that govern which types of transition are possible.

The parity is calculated, like the angular momentum quantum numbers, with an

eigenvalue/eigenfunction equation, using a symmetry operator. For the total parity (+ or

–), the inversion (in laboratory coordinates) operator, Ê∗, is used, which inverts all of the

coordinates of nuclei and electrons, but does not act on nuclear spin. The parity equation

(which excludes nuclear spin) is:

Ê∗ψ = ±ψ. (2.52)

If the operation produces +ψ, the original wavefunction has + parity, and if it produces

-ψ, it has – parity. The result of its action on the vibrational wavefunction is simply

the same vibrational wavefunction, and acting on the rotational wavefunction it gives

(−1)J−Ω|−ΩJM〉. The electronic wavefunction, however, is not known in the laboratory

frame, and so the effect of Ê∗ on ψel cannot be expressed as easily. It is found that Ê∗ is

equivalent to the σ̂v operator (Hougen, 1970), which reflects in the symmetry plane of the

molecular frame. Acting on the electronic wavefunction, σ̂v gives (−1)S−Σ|S,−Σ〉 and

±(−1)Λ| − Λ〉, for the spin and orbital parts, respectively.

The operation of σ̂ on a total wavefunction (but excluding nuclear spin) is as follows
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Table 2.3 – Total and rotationless parity

J (J − 0.5 for half integer J) Total parity Rotationless parity
even + e
even – f
odd + f
odd – e

for a Hund’s case (a) wavefunction (Bernath, 2005):

σ̂v|v; ΛSΣ; ΩJM〉 = (−1)J−2Σ+S+σ|v;−ΛS − Σ;−ΩJM〉, (2.53)

where σ=1 for Σ− states and 0 for all other states. The results of Equation 2.53 do not

conform with Equation 2.52 due to the change of sign of the projection quantum numbers.

This is resolved if the basis functions are changed to the parity functions + and –. States

with Λ 6= 0, for example a 3Π state, for which the quantum numbers in a Hund’s case

(a) basis are shown in Table 2.2, have two levels for each |Ω|. The parity function for a

particular |Ω| is a linear combination of the +|Ω| and −|Ω| basis functions, and this is

explained in Section 2.5.7. Then,

σ̂v|2S+1Λ|Ω|(+)〉 = ± |2S+1Λ|Ω|(+)〉 and (2.54)

σ̂v|2S+1Λ|Ω|(−)〉 = ± |2S+1Λ|Ω|(−)〉. (2.55)

which conforms with Equation 2.52.

In the (−1)J−2Σ+S+σ term, the presence of J means that the total parity will alternate

signs with each change in J , for a sequence of levels in which the other quantum numbers

are the same. This irritation is eliminated with the use of rotationless (e/f ) parity, which

adds another (−1)J term
(
(−1)J−0.5 for half integer J

)
, so that e and f parity are given

to levels as shown in Table 2.3. The two levels produced due to Λ-doubling (see Section

2.4.2.3)have opposite parities (both total and rotationless parity) when the basis functions

are transformed to parity functions. The operation of σ̂v on just the orbital part of the

wavefunction, |Λ〉, gives ±|Λ〉. This results in the two degenerate positive and negative

values of Λ mentioned above for states with Λ > 0. For Σ states however, Λ can only

equal zero. The levels can still be described by the parity values e/f and +/−, but only

one of them exists for each J/Ω level. The operation of σ̂v on the orbital part of a Σ state
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is

σ̂v|Λ = 0〉 = ±|Λ = 0〉. (2.56)

If the result is +|Λ〉, a Σ state is given a + subscript and so is a Σ+ state, and if it is −|Λ〉,

it is a Σ− state.

If Ê∗ operates on the transition moment, µ, it returns −µ. This means that µ has

negative parity, and so for a transition moment matrix element (ME) to be non-zero the

parity must change between the upper and lower wavefunctions, giving rise to the total

parity selection rule (+→ − or − → +).

2.3.2 Gerade/Ungerade Parity

For homonuclear diatomic molecules, another inversion operation, î, acts in the

molecular frame, as opposed to Ê∗ (described above) which acts in the laboratory frame.

î acts on the electronic coordinate part of the wavefunction only, resulting in negative or

positive versions of the original electronic coordinates:

î|Λ〉 = ±|Λ〉, (2.57)

A result of +|Λ〉 or−|Λ〉means that the wavefunction has g or u parity, respectively. Since

the dipole moment operator has u parity, the selection rule (g → u or u → g) applies to

homonuclear diatomic molecules.

2.3.3 Symmetric/Antisymmetric Parity

Consideration of nuclear spin (for the only time in this thesis) means that another type

of symmetry (s/a for symmetric/antisymmetric) exists. The Pauli exclusion principle

requires the total wavefunction (including nuclear spin) to be either symmetric
(
or

antisymmetric (see below)
)

with respect to the interchange of two identical nuclei

(Bernath, 2005). This means that for homonuclear diatomic molecules, (s/a) symmetry

must be considered. The operator P̂12 exchanges two identical nuclei, which is equivalent

to the symmetry operation Ê∗ followed by î, giving the relationships between +/-, g/u,

and s/a parity shown in Table 2.4.

With respect to the interchange of the two identical nuclei, the total wavefunction

must be symmetric if the nuclei have integer nuclear spin (bosons), and antisymmetric if
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Table 2.4 – Relationships between +/-, g/u, and s/a parity

Total
parity

Gerade/
ungerade

Symmetric/
antisymmetric

+ g s
- g a
+ u a
- u s

they have half-integer nuclear spin (fermions). This becomes particularly important for

homonuclear diatomic molecules that have zero nuclear spin, as clearly only symmetric

nuclear wavefunctions can exist, and to satisfy the condition above, the rest of the

wavefunction and therefore the total wavefunction must have s symmetry. This means

that only + total parity levels exist for g electronic states, and – total parity levels for u

states.

2.4 The Effective Hamiltonian

This section describes the Hamiltonian matrix that is used to reproduce energy levels

and transitions from observed spectra. It is important to note that it is an ”effective”

Hamiltonian, and not a full Hamiltonian. The effective Hamiltonian can be set up

for a single electronic state, and correctly reproduce the energy levels
(
in the absence

of local perturbations (see Section 2.4.4)
)
. A full Hamiltonian would include basis

functions for all electronic states, and linking Hamiltonian MEs between basis functions

in different electronic states and different vibrational levels that are far apart in energy

would exist. The effective Hamiltonian is, effectively, a pre-diagonalised version of the

full Hamiltonian, in terms of the basis functions of one (or more if required) electronic

state, so that those linking MEs are zero. This means that the parameters described in

this section are ”effective” parameters, and not the real ones that would be present in the

full Hamiltonian, and as a result, their physical interpretation is not always clear.

A vibrational level of a diatomic molecule in a specific electronic state can be

described by a series of molecular constants. The individual fine-structure energy levels

can be calculated using these constants by setting up and diagonalising the Hamiltonian

matrix. The Schrödinger equation, Ĥψ = Eψ, can be expressed as the linear algebra
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equation:

ĤX = XE (2.58)

E = X−1ĤX, (2.59)

where Ĥ is the Hamiltonian matrix (discussed below), E is the diagonal eigenvalue

matrix, and X is a transformation matrix in which the eigenvectors are defined.

First of all, a suitable basis set must be chosen, and the matrix Ĥ must be set up. Ĥ

can be split into electronic, vibrational, rotational, and spin-orbit parts so that

Ĥ = Ĥel + Ĥvib + Ĥrot + Ĥso. (2.60)

Other terms are also required for more precise calculations, which will be discussed

later. The basis set that is normally used is a Hund’s case (a) basis set, which can be

analytically represent by the symmetric top basis functions with spin. This means that

the standard angular momentum operators that commute and can be evaluated are those

shown in Table 2.2 (Ĵ2, Ĵz , Ŝ2, Ŝz , and L̂z). The case (a) wavefunctions can be written

as |ηΛ;SΣ; JΩ〉, where η represents the electronic state and vibrational quantum number.

The electronic and vibrational kinetic energy parts of the Hamiltonian can be absorbed

into a single value, the energy origin of the vibrational level, Gv. The most convenient

angular momentum operator to use for Ĥrot is N̂2, as although it cannot be evaluated

directly as it does not commute with the others, it can expanded as follows:

Ĥrot = BN̂2 = B
(

(Ĵ− Ŝ)2
)

(2.61)

= B
(
Ĵ2 + Ŝ2 − 2Ĵ · Ŝ

)
(2.62)

= B
(
Ĵ2 + Ŝ2 − 2(ĴzŜz + ĴxŜx + ĴyŜy)

)
(2.63)

= B
(
Ĵ2 + Ŝ2 − 2ĴzŜz − Ĵ+Ŝ− − Ĵ−Ŝ+

)
, (2.64)

where B is the rotational constant discussed in Section 2.1.2,

Ĵ± = Ĵx ± iĴy, and Ŝ± = Ŝx ± iŜy. (2.65)
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The step between Equations 2.63 and 2.64 occurs because the terms cancel:

Ĵ+Ŝ+Ĵ−Ŝ+ =
(

(Ĵx + iĴy)(Ŝx − iŜy) + (Ĵx − iĴy)(Ŝx + iŜy)
)

(2.66)

=
(

(ĴxŜx − iĴxŜy + iŜxĴy − i2ĴyŜy) + (ĴxŜx − iŜxĴy + iĴxŜy − i2ĴyŜy)
)

(2.67)

=
(

(ĴxŜx − iĴxŜy + iŜxĴy + ĴyŜy) + (ĴxŜx − iŜxĴy + iĴxŜy + ĴyŜy)
)

(2.68)

=
(

2ĴxŜx + ĴyŜy)
)
, (2.69)

so that

ĴxŜx + ĴyŜy = 1
2(Ĵ+Ŝ− + Ĵ−Ŝ+). (2.70)

Ĵ · Ŝ = 1
2(Ĵ+Ŝ− + Ĵ−Ŝ+) + ĴzŜz. (2.71)

The new operators, Ĵ± and Ŝ±, are raising and lowering operators. This means that when

they operate on the wavefunction, the wavefunction produced is one where one of the

quantum numbers has been raised or lowered:

Ĵ±|ηΛ;SΣ; JΩ〉 = h̄
√
J(J + 1)− Ω(Ω∓ 1) |ηΛ;SΣ; JΩ∓ 1〉 (2.72)

Ŝ±|ηΛ;SΣ; JΩ〉 = h̄
√
S(S + 1)− Σ(Σ± 1) |ηΛ;SΣ∓ 1; JΩ〉 (2.73)

The spin-orbit part of Equation 2.60 is calculated as follows:

Ĥso = A
(
L̂ · Ŝ

)
(2.74)

= A
(
L̂xŜx + L̂yŜy + L̂zŜz

)
(2.75)

= A
(
L̂zŜz + 1

2(L̂+Ŝ− + L̂−Ŝ+)
)
, (2.76)

where L̂+ and L̂− are the orbital angular momentum equivalent of the total and spin

angular momentum raising and lowering operators, and the step between Equations 2.75

and 2.76 is due to equivalent reasoning as shown in deriving Equation 2.71.

2.4.1 Example with a 3Π State

Using a 3Π state as an example, there are six possible combinations of Λ and Σ as shown

in Table 2.2. For this example, the following notation will be used: With the operators

defined above, the MEs for Λ=1 and Λ=-1 with the same Ω will be equal, so only the Λ=1
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Table 2.5 – Possible combinations of Λ and Σ to give Ω in a 3Π state.

Λ Σ Ω full notation (|ηΛ;SΣ; JΩ〉) |3Π|Ω|〉
+1 +1 +2 |ηΛ=+1;S=1,Σ=+1; J,Ω=+2〉 |3Π2〉
+1 0 +1 |ηΛ=+1;S=1,Σ=0; J,Ω=+1〉 |3Π1〉
+1 -1 0 |ηΛ=+1;S=1,Σ=-1; J,Ω=0〉 |3Π0〉

Table 2.6 – Hamiltonian matrix for a 3Π state in a Hund’s case (a) basis

〈3Π0| 〈3Π1| 〈3Π2|
|3Π0〉 〈3Π0|Ĥ|3Π0〉 〈3Π1|Ĥ|3Π0〉 〈3Π2|Ĥ|3Π0〉
|3Π1〉 〈3Π0|Ĥ|3Π1〉 〈3Π1|Ĥ|3Π1〉 〈3Π2|Ĥ|3Π1〉
|3Π2〉 〈3Π0|Ĥ|3Π2〉 〈3Π1|Ĥ|3Π2〉 〈3Π2|Ĥ|3Π2〉

MEs will be considered here. This Hamiltonian matrix is shown in Table 2.6

Using the previous definitions of the operators, each ME is equal to

B
(
〈3Π|Ω′||Ĵ2 + Ŝ2 + 2ĴzŜz − Ĵ+Ŝ− − Ĵ−Ŝ+|3Π|Ω|〉

)
+A

(
〈3Π|Ω′||L̂zŜz + 1

2

(
L̂+Ŝ− + L̂−Ŝ+

)
|3Π|Ω|〉

)
,

(2.77)

however, Ĵ2, Ĵz , Ŝ2, Ŝz , and L̂z will only have non-zero values if 3ΠΩ′=3ΠΩ. Therefore,

for the five operators listed above, only diagonal MEs are non-zero. For the raising and

lowering operators Ĵ± and Ŝ±, only MEs with ∆Ω = ±1 are non zero, for the same

reason. Finally, the L̂± raising and lowering operators require a change in Λ of±1, which

only occurs between different electronic states, and so these terms can be completely

discarded here.

The Ĥrot + Ĥso is therefore:

Using Equations 2.72 and 2.73, and those in Table 2.1, the MEs become (in cm−1): For

a single value of J , this matrix is diagonalised (i.e. a matrix X is found so that Equation

2.58 yields a diagonal matrix E), and the eigenvalues are those along the diagonal of the

Table 2.7 – Ĥrot + Ĥso for a 3Π state in a Hund’s case (a) basis

〈3Π0| 〈3Π1| 〈3Π2|

|3Π0〉
〈3Π0|B(Ĵ2 + Ŝ2 + 2ĴzŜz)

+A(L̂zŜz)|3Π0〉
〈3Π1| −BĴ−Ŝ+|3Π0〉 0

|3Π1〉 〈3Π0| −BĴ+Ŝ−|3Π1〉
〈3Π1|B(Ĵ2 + Ŝ2 + 2ĴzŜz)

+A(L̂zŜz)|3Π1〉
〈3Π2| −BĴ−Ŝ+|3Π1〉

|3Π2〉 0 〈3Π1| −BĴ+Ŝ−|3Π2〉
〈3Π2|B(Ĵ2 + Ŝ2 + 2ĴzŜz)

+A(L̂zŜz)|3Π2〉
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Table 2.8 – Evaluated Ĥrot + Ĥso matrix for a 3Π state in a Hund’s case (a)
basis

〈3Π0| 〈3Π1| 〈3Π2|

|3Π0〉 B
(
J(J + 1) + 2

)
−A −B

√
2J(J + 1) 0

|3Π1〉 −B
√

2J(J + 1) B
(
J(J + 1) + 2

)
−B

√
2J(J + 1)− 4

|3Π2〉 0 −B
√

2J(J + 1)− 4 B
(
J(J + 1)− 2

)
+A

Table 2.9 – Ĥrot for the C2 a3Πu state, v=0, J=2 level in a Hund’s case (a)
basis.

〈3Π2| 〈3Π1| 〈3Π0|
|3Π2〉 6.496 -4.593 0
|3Π1〉 -4.593 12.992 -5.626
|3Π0〉 0 -5.626 12.992

resulting matrix E. For example, if we first of all exclude the spin-orbit term (Ah̄2), for

the C2 a3Πu state, v=0, J=2 level, this matrix is (in cm−1): The order of the Ω states in

Table 2.8 has been reversed so that they are in order of increasing energy. Diagonalising

this matrix gives the eigenvalues 3.2481, 9.7443, and 19.4885 cm−1 for the F1, F2, and

F3 states, respectively. As only the terms involving the constant B have been included,

these numbers will be degenerate with other levels (for example, the J=2, F2 energy

is equal to the J=3, F1 energy. The transformation matrix, X, contains the eigenvector

coefficients: The first row of this matrix states that the real F1 wavefunction is equal to

0.7746|3Π2〉+ 0.5477|3Π1〉+ 0.3162|3Π0〉, and so on. If the spin-orbit term (A0=-15.26986)

is now included, Tables 2.9 and 2.10 become: The eigenvalues are now -9.737, 12.053

and 30.165 cm−1. In Section 2.2.4.1 it was stated that a Hund’s case (a) state has strong

spin-orbit coupling, and can be described by the quantum number Ω. The C2 a3Πu state

is best described by Hund’s case (a), but it can be seen here that it is actually slightly

towards case (b). The eigenvector coefficients in Table 2.10 show that all of the Fi states

are mixtures of all three Ω states. When the spin-orbit coupling terms are included in

Table 2.10 – Eigenvector coefficient matrix (X̂) from the diagonalisation of
Ĥrot, for the C2 a3Πu state, v=0, J=2 level in a Hund’s case (a) basis.

|3Π2〉 |3Π1〉 |3Π0〉
F1 0.7746 0.5477 0.3162
F2 -0.5774 0.4082 0.7071
F3 -0.2582 0.7303 -0.6325
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Table 2.11 – Ĥrot + Ĥso for the C2 a3Πu state, v=0, J=2 level in a Hund’s case
(a) basis (in cm−1).

〈3Π2| 〈3Π1| 〈3Π0|
|3Π2〉 -8.774 -4.593 0
|3Π1〉 -4.593 12.992 -5.626
|3Π0〉 0 -5.626 28.262

Table 2.12 – Eigenvector coefficient matrix (X̂−1) from the diagonalisation of
Ĥrot + Ĥso, for the C2 a3Πu state, v=0, J=2 level (in cm−1).

|3Π2〉 |3Π1〉 |3Π0〉
F1 0.9782 0.2052 0.0304
F2 -0.2040 0.9249 0.3210
F3 0.0378 -.3202 0.9466

the Hamiltonian, it can be seen in Table 2.12 that the F1 state is mostly Ω=2, F2 is mostly

Ω=1, and F3 is mostly Ω=0. There are some contributions from the other Ω states, which

indicates that this state is not completely case (a), but that it can be reasonably well

described by the quantum number Ω.

2.4.2 Other Molecular Constants

2.4.2.1 Spin-Rotation Constant γ

As explained in Section 2.2.4.2, spin can also be coupled to the rotational axis. To include

this effect, an Ĥsr term must be added to the Hamiltonian in 2.60, where (Brown and

Carrington, 2003)

Ĥsr = γN̂ · Ŝ (2.78)

= γ(Ĵ− Ŝ) · Ŝ (2.79)

= γ(Ĵ · Ŝ− Ŝ · Ŝ) (2.80)

= γ
(

1
2(Ĵ+Ŝ− + Ĵ−Ŝ+) + ĴzŜz − Ŝ2

)
(from Equation 2.71). (2.81)

A state with no orbital angular momentum is the best example to demonstrate this; a 3Σ−

state will be used. The possible Ω components for this state are shown in Table 2.13.

Diagonal MEs will be equal to γ(ĴzŜz − Ŝ2) = γ(ΩΣ− 2). Using Equations 2.72 and 2.73

along with 2.81, it is found that MEs with ∆Ω = ±1 are all equal, as shown below:

If Hamiltonians as defined in Equation 2.60 are set up for the NH X3Σ− state, v=0,

J=2-4 levels, including only the term involving B as in the previous example (Ĥso = 0
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Table 2.13 – Possible combinations of Λ and Σ to give Ω in a 3Σ− state.

Λ Σ Ω full notation (|ηΛ;SΣ; JΩ〉) |3ΠΩ〉
0 +1 +1 |ηΛ=0;S=1,Σ=+1; J,Ω=+1〉 |3Σ−+1〉
0 0 0 |ηΛ=0;S=1,Σ=0; J,Ω=0〉 |3Σ−0 〉
0 -1 -1 |ηΛ=0;S=1,Σ=-1; J,Ω=-1〉 |3Σ−−1〉

Table 2.14 – Evaluated Ĥsr matrix for a 3Σ− state in a Hund’s case (a) basis

〈3Σ−1 | 〈3Σ−0 | 〈3Σ−−1|

|3Σ−1 〉 −γh̄2 γh̄2
(

1
2

√
2J(J + 1)

)
0

|3Σ−0 〉 γh̄2
(

1
2

√
2J(J + 1)

)
−2γh̄2 γh̄2

(
1
2

√
2J(J + 1)

)
|3Σ−−1〉 0 γh̄2

(
1
2

√
2J(J + 1)

)
−γh̄2

as there is no orbital angular momentum), the three resulting eigenvalues for N=3 are

degenerate (196.1193 cm−1). When the Ĥsr Hamiltonian
(
Table 2.14) is added to the

total Hamiltonian, using γ=-0.05485506 cm−1 (from (Ram and Bernath, 2010)
)
, the N=3

eigenvalues are split into 195.9547, 196.1742, and 196.3387 cm−1, for F1, F2, and F3,

respectively. This is shown in Figure 2.14. This occurs partly because with increased

rotation, the circulation of the electrons about the internuclear axis affected, including in

Σ states, and a magnetic moment occurs in the direction of N . Therefore, electrons with

their spin aligned with this field will have slightly lower energy than those aligned in the

opposite direction.

2.4.2.2 Spin-Spin Constant λ

When there are two unpaired electrons, the spin-spin constant, λ is required. The part of

the Hamiltonian for this is (Hirota et al., 1994):

Ĥss = λ

(
2

3

)(
3Ŝ2

z − Ŝ2
)
. (2.82)

This is also most easily illustrated using a state with Λ = 0. Using the same example as

for the spin-rotation constant, diagonal MEs will be equal to λ
(

2
3

)(
3Σ2 − S(S + 1)

)
=

λ
(

2
3

)(
3Σ2− 2

)
, and as there are no raising or lowering operators present, all-off-diagonal

MEs will be equal to zero: Starting again with the Hamiltonian that includes only the B

term, and therefore degenerate N levels, adding the Ĥss operator gives eigenvalues split

into 195.9120, 196.7326, and 195.6337 cm−1, for F1, F2, and F3, respectively. This is shown

in Figure 2.14.
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Table 2.15 – Evaluated Ĥss matrix for a 3Σ− state in a Hund’s case (a) basis

〈3Σ−1 | 〈3Σ−0 | 〈3Σ−−1|
|3Σ−1 〉 2

3λh̄
2 0 0

|3Σ−0 〉 0 −4
3λh̄

2 0
|3Σ−−1〉 0 0 2

3λh̄
2

degenerate
196.0

F3

F1

F2

F3

F2

F1
F3

F2

F1

rotation only
(B)

with spin-rotation
(B+γ)
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(B+λ)

with both
(B+γ+λ)
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Figure 2.14 – Energy levels of the NH X3Σ− state including different
constants.
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2.4.2.3 Lambda-Doubling Constants o, p, and q

As explained in Section 2.3 and shown in Table 2.2, the fact the Λ can have positive

or negative values means that two energy levels exist for each set of other quantum

numbers. The direction of the angular momentum along the internuclear axis itself does

not cause a difference in energy, and the real levels are actually linear combinations of

the positive and negative Λ wavefunctions.

There are three Hamiltonian terms that contribute to Λ-doubling. They connect states

in the Hamiltonian matrix with opposite values of Λ, resulting in the two levels being

slightly separated after diagonalisation. The Hamiltonian term is (Brown and Carrington,

2003; Western, 2014):

Ĥld = 1
2o
(
Ŝ2

+ + Ŝ2
−

)
− 1

2p
(
N̂+Ŝ+ + N̂−Ŝ−

)
+ 1

2q
(
N̂2

+ + N̂2
−

)
(2.83)

There is another term, e±2iθ, that is included so as to connect only ∆Λ = ±2 states, but it

has been omitted here for simplicity. Equation 2.4.2.3 can be evaluated by replacing N̂±

with Ĵ± − Ŝ±, ultimately resulting in (Brown and Merer, 1979):

Ĥld = 1
2(o+ p+ q)

(
Ŝ2

+ + Ŝ2
−

)
− 1

2(p+ 2q)
(
Ĵ+Ŝ+ + Ĵ−Ŝ−

)
+ 1

2q
(
Ĵ2

+ + Ĵ2
−

)
, (2.84)

which is easier to evaluate.

In the previous examples of a 3Π state using the C2 a3Πu state, the –Λ basis states

were omitted. The full matrices would include all six basis states, and be made of two

identical and diagonal 3 × 3 blocks, with the other elements all being equal to zero. The

Ĥld matrix has non zero terms in two identical off-diagonal 3 × 3 blocks, and zeroes in

the two diagonal 3× 3 blocks.

The separation of the two levels resulting from the diagonalisation is generally on

a similar order of magnitude to the spin-spin and spin-rotation splitting, depending on

the molecule and amount of rotation. The q term will contribute to any Π state, connect

all basis states with ∆Λ = ±2, and will split the levels equally across values of Σ. p

is required for states with S ≥ 0, and connects basis states in the Hamiltonian with

∆Λ = ±2 and ∆Ω = ±1 or 0. o only connects basis states with ∆Λ = ±2 and ∆Ω = 0,

and is required when S ≥ 1. The 3 × 3 block where Λ′ is positive is: The other 3 × 3

block where Λ′ is negative is: In these two matrices, 〈3Π−0| represents the basis state

|η,Λ=-1;S=1,Σ=+1; J,Ω=0〉. The evaluated form of these matrices is the same:
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Table 2.16 – Ĥld (∆Λ = +2 section) for a 3Π state in a Hund’s case (a) basis.

〈3Π2| 〈3Π1| 〈3Π0|
|3Π−2〉 0 0 1

2qĴ
2
−

|3Π−1〉 0 1
2qĴ

2
−

1
2(p+ 2q)Ĵ−Ŝ−

|3Π−0〉 1
2qĴ

2
−

1
2(p+ 2q)Ĵ−Ŝ−

1
2(o+ p+ q)Ŝ2

−

Table 2.17 – Ĥld (∆Λ = −2 section) for a 3Π state in a Hund’s case (a) basis.

〈3Π−2| 〈3Π−1| 〈3Π−0|
|3Π2〉 0 0 1

2qĴ
2
+

|3Π1〉 0 1
2qĴ

2
+

1
2(p+ 2q)Ĵ+Ŝ+

|3Π0〉 1
2qĴ

2
+

1
2(p+ 2q)Ĵ+Ŝ+

1
2(o+ p+ q)Ŝ2

+

2.4.2.4 Centrifugal Constants

In Section 2.4, it was stated that Ĥrot is equal to BN̂2. This indicates that the energy level

spacing increases by the same amount with increased rotation. However, centrifugal

distortion causes the spacing to change with increasing rotation, and in fact,

Ĥrot = BN̂2 −DN̂4 +HN̂6 + LN̂8.... (2.85)

The MEs of these higher order operators are obtained by taking the appropriate power of

the evaluated N̂2 matrix. For example, using the same 3Π system as previously, the N̂4

matrix would be equal to Higher powers of N̂ are obtained in a similar fashion.

Similarly, centrifugal distortion constants exist for the other molecular constants, to

which the subscripts D, H , L etc. are appended. The centrifugal distortion is included in

Table 2.18 – Evaluated Ĥld matrix for a 3Π state in a Hund’s case (a) basis

〈3Π2| 〈3Π1| 〈3Π0|

|3Π−2〉 0 0
1
2q
(√

J(J + 1)

×
√
J(J + 1)− 2

)
|3Π−1〉 0 1

2q
(
J(J + 1)

) −1
2(p+ 2q)

×
√

2J(J + 1)

|3Π−0〉
1
2q
(√

J(J + 1)

×
√
J(J + 1)− 2

) −1
2(p+ 2q)

×
√

2J(J + 1)
o+ p+ q
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Table 2.19 – Evaluated N̂4 matrix for a 3Π state in a Hund’s case (a) basis,
where x = J(J + 1).

〈3Π0| 〈3Π1| 〈3Π2|

|3Π0〉 −D
(
x2 + 6x+ 4

)
D
(

2
√

2x(x+ 2)
)
−D

(√
2x
√

2x− 4
)

|3Π1〉 D
(

2
√

2x(x+ 2)
)

−D
(
x2 + 8x

)
D
(

2x
√

2x− 4
)

|3Π2〉 −D
(√

2x
√

2x− 4
)

D
(

2x
√

2x− 4
)

−D
(

4x
)

the same manner; by including more N̂2 terms. For example, the term including AD is

AD
[N̂2, L̂ · Ŝ]+

2
(2.86)

=AD
[N̂2, L̂zŜz]+

2
(2.87)

=AD
N̂2L̂zŜz + L̂zŜzN̂

2

2
(2.88)

The same procedure of including extra N̂2 terms also applies to the other constants that

have been described.

Other constants are required when Λ > 1 or S > 1, but no such molecule is analysed

in this thesis.

2.4.3 Parity Matrices

As described in Section 2.4.2.3, the full Hamiltonian is in terms of basis states that take

into account Λ-doubling, which for example means six basis states for a 3Π state. There

are then non zero values in the Λ = ±2 MEs. This can be simplified by transforming the

pure Ω matrix into a ”parity” matrix, where the parity basis states are linear combinations

of their corresponding Ω states:

|2S+1Λ(|Ω|)(±)〉 =
|2S+1Λ+Ω〉 ± (−1)J−2Σ+S+σ|2S+1Λ−Ω〉√

2
(2.89)

|2S+1ΛΩ=0(±)〉 = |2S+1ΛΩ=0〉 (for Σ states only), (2.90)

where σ=1 for Σ− states and is zero for all other states, and the parentheses in the Ω

subscripts indicate that Ω is no longer a good quantum number. For the example 3Π
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Table 2.20 – Parity transformation matrix for a 3Π state

〈3Π+0| 〈3Π+1| 〈3Π+2| 〈3Π−0| 〈3Π−1| 〈3Π−2|
|3Π(0)(f)〉 1/

√
2 0 0 1/

√
2 0 0

|3Π(1)(f)〉 0 1/
√

2 0 0 1/
√

2 0

|3Π(2)(f)〉 0 0 1/
√

2 0 0 1/
√

2

|3Π(0)(e)〉 1/
√

2 0 0 −1/
√

2 0 0

|3Π(1)(e)〉 0 1/
√

2 0 0 −1/
√

2 0

|3Π(2)(e)〉 0 0 1/
√

2 0 0 −1/
√

2

state, the parity basis functions are, for odd J ,

|3Π(0)(+)〉 =
|3Π+0〉+ |3Π−0〉√

2
|3Π(0)(−)〉 =

|3Π+0〉 − |3Π−0〉√
2

(2.91)

|3Π(1)(+)〉 =
|3Π+1〉+ |3Π−1〉√

2
|3Π(1)(−)〉 =

|3Π+1〉 − |3Π−1〉√
2

(2.92)

|3Π(2)(+)〉 =
|3Π+2〉+ |3Π−2〉√

2
|3Π(2)(−)〉 =

|3Π+2〉 − |3Π−2〉√
2

(2.93)

For even J , the subtraction and addition of the negative Ω states are reversed. This

alternation with J is removed, as usual, by the use of rotationless parity (e/f parity;

Section 2.3). The Ω Hamiltonian matrix can be transformed into the parity Hamiltonian

matrix using a transformation matrix made up of eigenvectors based on the above

definitions. For the 3Π state, this transformation matrix is shown in Table 2.20.

2.4.4 Perturbations

As shown in the preceding sections, the Hamiltonian matrices link states with the same J

value within an electronic state. The result is that the energy levels are split from where

they would be if the linking MEs were zero. Hamiltonian MEs can also link states of

the same J value in different electronic states, and a larger Hamiltonian can be set up

including multiple electronic states. The result of diagonalising this Hamiltonian matrix

is that eigenvalues from the different electronic states that have a linking ME are ”pushed

apart” by the same amount, compared to what their values would have been if there were

no linking ME. This change in energy is called a perturbation, and a simple illustration is

shown in Figure 2.15.

The amount that they are perturbed is related to both the value of the ME and the
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Figure 2.15 – The effect of a single perturbation on two nearby energy levels
of different electronic states.

difference between the unperturbed energy levels, so that the closer the unperturbed

levels, the greater the perturbation. This means that such perturbations occur when the

J progression within a vibrational level of one electronic state is similar in energy to that

of one in a different electronic state (for which interactions are possible).

2.5 Line Intensities

Transitions can occur between the energy levels described in Section 2.1, if certain

selection rules are obeyed. The interaction of electromagnetic radiation with a molecule

can cause it to absorb a photon and cause a transition from a lower to an upper level, if the

photon energy is equal to the energy level spacing. This occurs because of the interaction

of the oscillating electric field of the radiation with the electric dipole of the molecule.

The probability of a photon being absorbed is defined by the EinsteinB coefficient, which

can be thought of as a ”rate constant” for absorption. Radiation can also cause stimulated

emission of a photon, and a transition from an upper to a lower level. The rate constant

for this process is actually also the Einstein B coefficient. Spontaneous emission of a

photon can also occur from a molecule in an excited state, causing a transition to a lower

level, for which the rate constant is the Einstein A coefficient.

The Einstein A and B coefficient are related by:

A =
8πhν3

c3
B, (2.94)

where ν is the frequency of the transition in Hz and c is the speed of light in ms−1.

Therefore, only one is required. The link between Einstein A coefficients and a real

spectrum was explained in Section 1.4. The main purpose of the ”Line Intensities for

Diatomic Molecules of Astronomical Interest” section of this work is to provide absolute

line intensities so that other workers can use them to calculate spectra, and Einstein A
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coefficients are provided for this purpose. They are calculated using the equation

AJ ′F ′JF =
16π3ν3SJ ′F ′JF
3ε0hc3(2J ′ + 1)

(2.95)

= 3.136 18932× 10−7 ν̃
3SJ ′F ′JF

(2J ′ + 1)
, (2.96)

where AJ ′F ′JF is in s−1, SJ ′F ′JF is the line intensity in debye, ν̃ is in cm−1, ε0 is the

vacuum permittivity constant in A2s4kg−1m−3,, and e is the elementary charge in C.

Astronomers often prefer the oscillator strength, fJ ′F ′JF , which can easily be

converted from AJ ′F ′JF using

fJ ′F ′JF =
meε0c

3

2πe2ν2

(2J ′ + 1)

(2J + 1)
AJ ′F ′JF (2.97)

= 1.499 193 78 27
1

ν̃2

(2J ′ + 1)

(2J + 1)
AJ ′F ′JF , (2.98)

where me is the mass of the electron in kg.

2.5.1 Notation

There are different EinsteinA values for every possible individual transition, between the

real spin components, denoted by F (as described in Section 2.4.1), that can be described

by linear combinations of the Hund’s case (a) basis states, |ηΛ;SΣ; ΩJ〉. It may seem

reasonable to use either the symbols Aη′Λ′S′Σ′Ω′J ′ηΛSΣΩJ or AJ ′J . However, clearly the

former is too cumbersome, and AJ ′J implies that it is for only a J transition, whereas in

reality there are multiple transitions for each J transition (when S ≥ 0, which is the case

for all of the electronic states considered in this thesis). As an alternative, AJ ′F ′JF and

SJ ′F ′JF are used. This still has the issue that the symbol F is also used as a quantum

number for nuclear spin, but as this is not considered in this thesis, F always refers to the

real fine structure component, and never the hyperfine structure quantum number.

In addition, MEs and wavefunctions in terms of the real F components will use the

symbol ψJF , as opposed to |ηΛ;SΣ; ΩJ〉. This is to make a clear distinction between

wavefunctions that describe the real F components and those that represent a basis state.

Finally, primes will always be used to indicate upper states, and so within an equation

or symbol where one state is clearly labelled as the upper state, the double primes

indicating a lower state will normally be omitted to improve readability. Sometimes,
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however, they will be included for clarity.

2.5.2 The Line Intensity, SJ ′F ′JF

The line intensity, SJ ′F ′JF , in Equation 2.95 is defined as (Whiting and Nicholls, 1974;

Whiting et al., 1980):

SJ ′F ′JF = 〈ψJ ′F ′ |µ̂|ψJF 〉2 (2.99)

where µ̂ is the dipole moment operator. The MEs in Equation 2.99 are obtained from the

combination of the eigenvectors from the diagonalisation of the upper and lower state

Hamiltonians, and a transition matrix in the same basis as the Hamiltonians (case (a) in

this thesis). This process is explained in Section 2.5.7. The required quantities are the

elements of this case (a) basis transition matrix, which are:

〈η′Λ′;S′Σ′; J ′Ω′|µ̂|ηΛ;SΣ; JΩ〉2 = Σp,M ′,M 〈η′Λ′;S′Σ′; J ′Ω′M ′|µ̂|ηΛ;SΣ; JΩM〉2, (2.100)

whereM is the projection of the total angular momentum J on the laboratory Z-axis, and

can take values from −J to J in steps of unity.

The dipole moment operator is a vector operator:

µ̂ =
∑
i

ziri. (2.101)

Here, the sum is over all of the charges zi in the molecule and ri is a vector representing

their coordinates. The wavefunctions in Equation 2.100 can be defined as product

wavefunctions:

|ηΛ;SΣ; JΩM〉 = |ηΛ;SΣ〉|JΩM〉, (2.102)

so that the MEs can be expressed (Bernath, 2005) as

〈η′Λ′;S′Σ′; J ′Ω′M ′|µ̂|ηΛ;SΣ; JΩM〉 = 〈η′Λ′;S′Σ′|µ̂|ηΛ;SΣ〉〈Ω′J ′M ′|µ̂|ΩJM〉. (2.103)

µ can be split in into its cartesian components, µx, µy and µz , where µz is the dipole

moment along the internuclear axis. Three other dipole moment operators can then be

74



2.5 Line Intensities

defined (Bernath, 2005):

µ̂0 = µ̂z (2.104)

µ̂+ =
1√
2

(µ̂x + iµ̂y) (2.105)

µ̂− =
1√
2

(µ̂x − iµ̂y). (2.106)

The positive, negative, and zero subscripts indicate that µ̂ raises, lowers, or doesn’t effect

Λ, respectively.

For a ∆Λ = 0 transition, SJ ′F ′JF would be equal to 〈η′Λ′;S′Σ′; J ′Ω′|µ̂0|ηΛ;SΣ; JΩ〉2

if the problem only needed to be considered in the molecular frame. However, real

intensities need to be calculated in the laboratory frame.

For the evaluation of 〈Ω′J ′M ′|µ̂|ΩJM〉 it is convenient to express the dipole moment

operator in the spherical tensor form, T kp (µ̂) and T kq (µ̂). Here, k is the rank of the tensor,

equal to 1 for single photon transitions, and p and q are the components, in the laboratory

and molecular frames, respectively, and can take integer values from −k to k. These

spherical tensors represent a rotation of the three-dimensional coordinate system that

defines a vector operator, and the important relationships here are: T 1
q=0 = µ̂0, T 1

q=1 = µ̂+,

and T 1
q=−1 = µ̂−.

The reason for changing into spherical tensor notation is because the dipole moment

operator can easily be transformed from the molecular to the laboratory coordinate

system, and the MEs can be easily evaluated. For this, the relationship (Brown and

Carrington, 2003)

T kp (µ̂) =
∑
q

Dk
p,q(ω)∗T kq (µ̂) (2.107)

is used, where Dk
p,q(ω)∗ is a rotation matrix with MEs of the form 〈j,m′|R(ω)|j,m〉, R is

the rotation operator, and ω represents the three angles through which the coordinate

system axes are rotated. The wavefunctions in the rotation matrix are the spherical

harmonics. The MEs in Equation 2.103 can then be expressed as:

〈η′Λ′;S′Σ′; J ′Ω′M ′|
∑
q

D1
p,q(ω)∗T 1

q (µ̂)|ηΛ;SΣ; JΩM〉

=
∑
q

〈Ω′J ′M ′|D1
p,q(ω)∗|ΩJM〉〈η′Λ′;S′Σ′|T 1

q (µ̂)|ηΛ;SΣ〉.
(2.108)
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The dipole moment operator has no effect on S and Σ, and the case (a) basis set is

orthonormal, so Equation 2.103 can be rewritten as

∑
q

〈Ω′J ′M ′|D1
p,q(ω)∗|ΩJM〉〈η′Λ′|T 1

q (µ̂)|ηΛ〉δS′,SδΣ′,Σ, (2.109)

where δ is the Kronecker delta. The MEs 〈Ω′J ′M ′|D1
p,q(ω)∗|ΩJM〉 can be evaluated

analytically (Brown and Carrington, 2003), so that the full ME has a rotational part and a

vibronic part:

∑
q

(−1)M
′−Ω′

√
(2J ′ + 1)(2J + 1)

 J ′ 1 J

−Ω′ q Ω

 J ′ 1 J

−M ′ q M

 〈η′Λ′|T 1
q (µ̂)|ηΛ〉.

(2.110)

The selection rules for S and Σ in the form of the Kronecker deltas will be enforced later.

Summing over M gives

∑
q

(−1)J
′−Ω′

√
(2J ′ + 1)(2J + 1)

 J ′ 1 J

−Ω′ q Ω

 〈η′Λ′|T 1
q (µ̂)|ηΛ〉. (2.111)

These values are those that make up the Hund’s case (a) transition matrix, which is

transformed into a transition matrix in terms of the real F components as described in

Section 2.5.7.

Another very important point to note about Equation 2.110 is that it gives the selection

rules ∆M = 0,±1 and ∆J = 0,±1.

2.5.3 The Vibronic Part

The ME 〈η′Λ′|T 1
q (µ̂)|ηΛ〉 is the vibronic only ME. Only diatomic molecules are being

considered and the rotation part is not present, so the wavefunctions here are the

solution of the one-dimensional Schrödinger equation, discussed previously and shown

in Equation 2.17.

For a rovibrational transition within the same electronic state (so ∆Λ = 0) this ME

is equal to 〈ηΛ|µ̂0(r)|ηΛ〉, where µ̂0(r) is the dipole moment function (DMF) and r is

the internuclear distance. Using the Born-Oppenheimer approximation, the electronic

wavefunction can be assumed to adjust immediately to any change in the nuclear

positions, so that the value of the dipole moment can be calculated at a number of values
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of r by fixing the positions of the nuclei, providing a DMF. The calculation of the DMF

is performed using ab initio methods. The calculation of the MEs requires the DMF,

and the solutions of the one-dimensional Schrödinger equation for the upper and lower

levels, which can be obtained using the program LEVEL (discussed in Section 2.1.5).

When there is also an electronic transition, the Born-Oppenheimer approximation is

used to separate the electronic and vibrational wavefunctions, so that

〈η′Λ′|µ̂|ηΛ〉 = 〈v′|〈n′Λ′|µ̂(r)|nΛ〉|v〉 = 〈v′|R̂e(r)|v〉. (2.112)

R̂e(r) is a transition dipole moment function (TDMF; note the separation of η into n,

the electronic quantum number, and v, the vibrational quantum number). This is also

calculated by ab initio methods, in which the electronic wavefunctions of the upper and

lower state are calculated at various fixed internuclear distances and the value R̂e(r)

is evaluated, giving another function of r. The MEs of R̂e(r) can then be calculated

similarly by LEVEL.

LEVEL requires the input of a potential energy curve and a DMF if MEs are to be

calculated between levels of the same electronic state, or two potentials and a TDMF if

between two electronic states. The calculation of the MEs by LEVEL is very simple; the

(T)DMF operates on the lower state wavefunction, and the resulting function which is

then multiplied by the upper state wavefunction. An example for the C2 Swan system

is given in Figure 2.16, in which the purple line is the function resulting from the above

process. This is then integrated with respect to r to give a single value for the ME.

2.5.4 Case (b) to (a) Transformation

There is a vital part of the line intensity calculations that is not performed by any of the

computer programs used (RKR1, LEVEL, or PGOPHER). The MEs that are calculated by

LEVEL (Section 2.1.5) do not include electron spin. This means that the basis functions of

the LEVEL MEs are in terms of N as opposed to J , and can be referred to as case (b) MEs,

which are of the form

〈η′Λ′N ′|T 1
q (µ̂)|ηΛN〉. (2.113)

Note that these are vibronic MEs, and exclude the angular dependence of the

wavefunction, which is included later as shown in Equation 2.111 (but they do include

the rotational dependence of the vibronic wavefunctions). The values that are required
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Figure 2.16 – Calculation of a ME by LEVEL, using a C2 Swan v′=4 and v′′=3
transition as an exmaple.

are those on the right hand side of Equation 2.111, 〈η′Λ′|T 1
q (µ̂)|ηΛ〉, that are used to make

up the transition matrix described in the previous section. As PGOPHER uses a case (a)

basis set, these are case (a) MEs with spin that depend on J and Ω, and those from LEVEL

are case (b) without spin, that depend on N . Therefore a transformation from case (b)

to case (a) with spin is required, and an equation to perform this transformation, the

”transformation equation”, was derived by Colin M. Western (University of Bristol), as

follows:

Starting from the general relationship given by Brown and Howard (1976),

|ηΛ;NKSJM〉 =
∑
Σ,Ω

(−1)N−S+Ω
√

2N + 1

J S N

Ω −Σ −K

 |ηΛ;SΣ; JMΩ〉, (2.114)

and applying the constraint K = Λ appropriate for linear molecules we have

|ηΛ;NΛSJM〉 =
∑

Σ

(−1)N−S+Λ+Σ
√

2N + 1

 J S N

Λ + Σ −Σ −Λ

 |ηΛ;SΣ; JMΩ〉.

(2.115)
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Both sides are multiplied by a trial function:

(−1)N−S+Λ+Σ
√

2N + 1

 J S N

Λ + Σ −Σ −Λ

 |ηΛ;NΛSJM〉

=
∑
Σ′

(−1)Σ′−Σ(2N + 1)

 J S N

Λ + Σ′ −Σ −Λ

 J S N

Λ + Σ −Σ −Λ

 |ηΛ;SΣ′; JMΩ′〉.

(2.116)

Summing both sides over N gives:

∑
N

(−1)N−S+Λ+Σ
√

2N + 1

 J S N

Λ + Σ −Σ −Λ

 |ηΛ;NΛSJM〉

=
∑
N

∑
Σ′

(−1)Σ′−Σ(2N + 1)

 J S N

Λ + Σ′ −Σ −Λ

 J S N

Λ + Σ −Σ −Λ

 |ηΛ;SΣ′; JMΩ′〉

=
∑
Σ′

(−1)Σ′−Σ
∑
N

(2N + 1)

 J S N

Λ + Σ′ −Σ −Λ

 J S N

Λ + Σ −Σ −Λ

 |ηΛ;SΣ′; JMΩ′〉

= |ηΛ;SΣ; JMΩ〉.

(2.117)

The last step follows from the orthogonality relationship:

∑
N,γ

(2N + 1)

J S N

α β γ

J S N

α′ β′ γ

 = δαα′δββ′ , (2.118)

given that the additional sum over γ collapses to the term with α+β+γ = 0 = α′+β′+γ.

Overall the conversion from a case (b) to case (a) wavefunction is

|ηΛ;SΣ; JMΩ〉 =
∑
N

(−1)N−S+Ω
√

2N + 1

J S N

Ω −Σ −Λ

 |ηΛ;NΛSJM〉. (2.119)

For transition strengths, we require the MEs of the space fixed electric dipole operator:

T kp (µ) =
∑
q

Dk
p,q(ω)∗T kq (µ). (2.120)
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The MEs of this are well known; in a Hund’s case (a) basis they are

〈η′Λ;SΣ′; J ′M ′Ω′|T kp (µ)|ηΛ;SΣ; JMΩ〉 =

∑
q

(−1)M
′−Ω′

√
(2J ′ + 1)(2J + 1)

 J ′ k J

−Ω′ q Ω

 J ′ k J

−M ′ q M

 〈η′Λ′|T kq (J ′Ω′JΩ)|ηΛ〉

(2.121)

This is essentially Equation (6.320) of Brown and Carrington (2003) generalised to

any value of p and q. In addition, to a first approximation the electronic ME

〈η′Λ′|T kq (J ′Ω′JΩ)|ηΛ〉 should not depend on J or Ω, but these have been added as

parameters here to allow for centrifugal distortion. A similar equation can be derived

for Hund’s case (b) wavefunctions:

〈η′Λ;N ′SJ ′M ′|T kp (µ)|ηΛ;NSJM〉 =

(−1)J
′−M ′

 J ′ k J

−M ′ q M

 (−1)N
′+S+J+k

√
(2J ′ + 1)(2J + 1)

N ′ J ′ S

J N k


×
∑
q

(−1)N
′−Λ′

√
(2N ′ + 1)(2N + 1)

 N ′ k N

−Λ′ q Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉

(2.122)

This is a generalisation of Equation (6.321) of Brown and Carrington (2003). Again the

purely electronic ME 〈η′Λ′|T kq (N ′N)|ηΛ〉 should not depend on N , but we allow it to

do so to account for centrifugal distortion. We now need to relate these two using the

transformation between bases derived above:

〈η′Λ;SΣ′; J ′M ′Ω′|T kp (µ)|ηΛ;SΣ; JMΩ〉 =

∑
N,N ′

(−1)N
′−N+Λ′−Λ

√
(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ −Λ′

J S N

Ω −Σ −Λ


× 〈η′Λ;N ′SJ ′M ′|T kp (µ)|ηΛ;NSJM〉.

(2.123)
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Substituting on both sides:

∑
q

(−1)M
′−Ω′

√
(2J ′ + 1)(2J + 1)

 J ′ k J

−Ω′ q Ω

 J ′ k J

−M ′ q M

 〈η′Λ′|T kq (J ′Ω′JΩ)|ηΛ〉

=
∑
N,N ′

(−1)N
′−N+Λ′−Λ

√
(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ −Λ′

J S N

Ω −Σ −Λ


× (−1)J

′−M ′

 J ′ k J

−M ′ q M

 (−1)N
′+S+J+k

√
(2J ′ + 1)(2J + 1)

N ′ J ′ S

J N k


×
∑
q

(−1)N
′−Λ′

√
(2N ′ + 1)(2N + 1)

 N ′ k N

−Λ′ q Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉.

(2.124)

The terms in M cancel out:

∑
q

(−1)J
′−Ω′

√
(2J ′ + 1)(2J + 1)

 J ′ k J

−Ω′ q Ω

 〈η′Λ′|T kq (J ′Ω′JΩ)|ηΛ〉

=
∑
N,N ′

(−1)N
′−N+Λ′−Λ

√
(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ −Λ′

J S N

Ω −Σ −Λ


× (−1)N

′+S+J+k
√

(2J ′ + 1)(2J + 1)

N ′ J ′ S

J N k


×
∑
q

(−1)N
′−Λ′

√
(2N ′ + 1)(2N + 1)

 N ′ k N

−Λ′ q Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉,

(2.125)

and with a little more simplification:

∑
q

(−1)J
′−Ω′

 J ′ k J

−Ω′ q Ω

 〈η′Λ′|T kq (J ′Ω′JΩ)|ηΛ〉

=
∑
N,N ′

(−1)N
′−N+Λ′−Λ(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ −Λ′

J S N

Ω −Σ −Λ


× (−1)N

′+S+J+k

N ′ J ′ S

J N k

∑
q

(−1)N
′−Λ′

 N ′ k N

−Λ′ q Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉.

(2.126)
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To enforce the ∆Σ = 0 rule, Λ and Λ′ must be the same on both sides, so the equation can

be used for a single value of q:

(−1)J
′−Ω′

 J ′ k J

−Ω′ q Ω

 〈η′Λ′|T kq (J ′Ω′JΩ)|ηΛ〉

=
∑
N,N ′

(−1)N−N
′+S+J+k+Λ(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ −Λ′

J S N

Ω −Σ −Λ


×

N ′ J ′ S

J N k


 N ′ k N

−Λ′ q Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉.

(2.127)

Finally,

〈η′Λ′|T kq (J ′Ω′JΩ)|ηΛ〉 = (−1)J
′−Ω′

 J ′ k J

−Ω′ q Ω

−1

×
∑
N,N ′

(−1)N−N
′+S+J+k+Λ(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ −Λ′

J S N

Ω −Σ −Λ


×

N ′ J ′ S

J N k


 N ′ k N

−Λ′ q Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉.

(2.128)

On the right hand side of the equation, 〈η′Λ′|T kq (N ′N)|ηΛ〉, is the Hund’s case (b) ME

that is calculated by LEVEL, which applies to a specific transition involving given values

of N ′ and N ′′. The case (a) ME on the left hand side specifies the transition in terms of

J and Ω, and these are calculated by summing over all of the case (b) MEs (specified in

terms of N ′ and N ′′) that can contribute to the to the chosen J ′Ω′-J ′′Ω′′ transition. The

final result is that a case (a) ME is calculated from a weighted average of the contributing

case (b) MEs.

Using the CN A2Π-X2Σ+ system as an example, for a particular combination of J

values, say J ′ = 5.5 and J ′′ = 4.5, the sum part of Equation 2.5.4 will require 3 MEs from

LEVEL with N ′-N ′′ equal to 5-4, 5-5 and 6-5. The sum formally includes N ′ −N ′′ = 6− 4

but this violates the selection rule on N , and so its contribution calculated in Equation

2.5.4 is equal to zero.

This equation must be used for each possible combination of J ′, Ω′, J ′′, and Ω′′, and
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Table 2.21 – Pure Ω transition matrix set up by PGOPHER for the CN
A2Π-X2Σ+ (1,0) R(4.5) example transition, using the transformation method.

|2Π−±1.5〉 |2Π−±0.5〉
|2Σ+
±0.5〉 -0.166203 0

|2Σ+
±0.5〉 0 -0.140229

for a particular J ′, J ′′ there are four possible combinations of Ω that have non zero MEs,

corresponding to 〈Ω′,Λ′,Σ′|Ω′′,Λ′′,Σ′′〉 = 〈+1.5,+1,+0.5|+ 0.5, 0,+0.5〉,

〈−1.5,−1,−0.5| − 0.5, 0,−0.5〉, 〈+0.5,−1,−0.5|+ 0.5, 0,+0.5〉,

and 〈−0.5,+1,+0.5| − 0.5, 0,−0.5〉. The first and second are symmetry related as the ME

is invariant to reversal of the signs of all the projections, as are the third and fourth. This

means that the resulting MEs will be the same for the ones involving the Ω = ±1.5 spin

component, and for the Ω = ±0.5 spin component.

The values of the LEVEL MEs for the example transition in the (7,5) band are

-0.0850773, -0.0857546, and 0.0848928, for N ′-N ′′ equal to 5-4, 5-5 and 6-5, respectively.

The results of using Equation 2.5.4 with these three N transitions are -0.0850568 and

-0.0849132, for the MEs with Ω′ equal to ±1.5 and ±0.5, respectively. When these are

multiplied by the factor in Equation 2.111, the transition matrix in Table 2.21 results.

Before continuing, it should be noted that in the course of the final project of my

PhD, Chapter 6, ”The OH X2Π Rovibrational Transitions”, a revision was made to the

transformation equation discussed above.

In the derivation, the assumption was made that ∆Σ = 0, and in fact this selection

rule was artificially enforced. This removed the sum over q that was present in Equation

2.5.4, and also made the Σ term in the second 3-j symbol equal to Σ′′ as opposed to

Σ′. If this assumption is not made, S and Σ can be retained in the case (a) ME, and the

transformation equation can be rewritten as

〈η′Λ′;S′Σ′|T kq (J ′J)|ηΛ;SΣ〉 = (−1)J
′−Ω′

 J ′ k J

−Ω′ Ω′ − Ω Ω

−1

×
∑
N,N ′

(−1)N
′−N+Ω′−Ω+S+J+Λ′+k(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ′ −Λ′

J S N

Ω −Σ −Λ


×

N ′ J ′ S

J N k


 N ′ k N

−Λ′ Λ′ − Λ Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉.

(2.129)
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If this modified transformation equation is used, very small off-diagonal MEs are present

in the transition matrix.

The CN (Chapter 4) and NH (Chapter 5) calculations were performed with the

original version of the transformation equation, and the final OH (Chapter 6) calculations

used the revised version. The revised version will be used in the future to adjust the CN

and NH line lists. The full effect of this change is discussed in the OH chapter, Chapter 6.

2.5.5 The Herman-Wallis (H-W) Effect

The rotation of a diatomic molecule results in a centrifugal force, which displaces the

atoms and increases the bond length (Herman and Wallis, 1955). This causes the

vibrational wavefunctions to change with different amounts of rotation, which therefore

means that the MEs depend on rotation. This is called the H-W effect. Also, as has been

shown before by Chackerian et al. (1989) (see their Equation 3), the sign and magnitude

of the H-W effect mainly depends on the dipole moment and its first derivative with

respect to the internuclear distance.

Calculations of the type reported in this thesis often use one rotationless ME for a

vibrational band, and the effect of rotation on the vibrational wavefunction is ignored.

This can be a very good approximation for molecules with heavier atoms, but NH

contains a light hydrogen atom which is strongly affected by the centrifugal force. An

illustration of the magnitude of the H-W effect in NH is shown in Figure 2.17, which

shows how the vibrational part of the wavefunction changes with N and J for NH and

C2. Although the effect is quite small for heavier atoms, if transitions in vibrational bands

with a small Franck-Condon factor in an electronic transition are being calculated, it can

still be noticeable (Le Roy and Vrscay, 1975; Brooke et al., 2014b; Ram et al., 2014). The

H-W effect has been included in these calculations by calculating MEs for the full range

of J values that are intended to be reported, and then entering the individual MEs into

PGOPHER (one for each J ′Ω′-J ′′Ω′′ transition).

2.5.6 The ”N Only” Method

Before the use of the transformation equation, a single rotationless ME for each

vibrational band was taken directly from LEVEL and entered into PGOPHER (this was

done for the C2 Swan system calculations). This ignores two parts of the calculations; the

inclusion of the H-W effect and the transformation between LEVEL’s case (b) MEs and
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Figure 2.17 – Effect of rotation on the vibrational wavefunctions of the d3Πg,
v=4 state of C2 and the X3Σ−, v=4 state of NH (v=4 levels chosen arbitrarily
as examples). Reprinted with permission from Brooke et al. JCP, 141, 054310,
(2014). Copyright 2014, American Institute of Physics.
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Figure 2.18 – Transformation from a Hund’s case (b) to (a) state for an
inverted 2Π state. The energy levels are ordered correctly but are not to scale.

PGOPHER’s case (a) MEs.

The reason that the case (a) and (b) MEs are different is that a case (a) ME, where

Ω is a good quantum number and N is not, is made up of wavefunctions that are

linear combinations of a number of case (b) wavefunctions, in which N is a good

quantum number and Ω is not. Making a direct link between them is therefore not

correct. However, if there is no H-W effect, the case (b) MEs will be identical, and

the transformation to case (a) will leave them unchanged. Hence the two points that

are ignored are strongly linked, and whether the approximation is reasonable or not

depends on the extent of the H-W effect. This is an approximation that is valid for heavier

molecules, like C2, but not for lighter ones such as NH.

It is possible to take the H-W effect into account and not the transformation, by

making the direct link described above between LEVEL and PGOPHER MEs, which is the

approximation of assigning N labels (not good quantum numbers) to the levels of the

case (a) state. This link is made using a diagram that shows the transformation between

the cases, which is shown in Figure 2.18 for the CN A2Π state.

MEs can then be transferred from LEVEL to PGOPHER based only on their N values,
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Table 2.22 – Pure Ω transition matrix set up by PGOPHER for the CN
A2Π-X2Σ+, (1,0), R(4.5) example transition, using the N only method.

|2Π−±1.5〉 |2Π−±0.5〉
|2Σ+
±0.5〉 -0.166242 0

|2Σ+
±0.5〉 0 -0.139077

which is referred to as the ”N only” method. Using the same example as in Section 2.5.4(
CN A2Π-X2Σ+ (7,5) R(4.5)

)
, the values taken from LEVEL would be R(4)=-0.0850773 and

S(4)=-0.0848928 for the MEs with Ω′ equal to ±1.5 and ±0.5, respectively. After inclusion

of the factor in Equation 2.111, the transition matrix in Table 2.22 is formed, which is very

similar but not identical to Table 2.21.

Another way of describing why the N only method is an approximation only, using

this example transition, is that it ignores the contributions from the Q(5) and R(5) LEVEL

MEs, and includes the contribution from the S(4) ME, which should be zero.

The ”N only” method has been described here as it was the original method used

for the CN, CP, and NH calculations discussed later, and was also used as a test in the

OH calculations. Whatever the real Hund’s case of an electronic state, the transformation

between case (b) and (a) is always required (if the H-W effect is not negligible), as it is

between the basis sets used by the programs LEVEL and PGOPHER, and doesn’t involve

the final states, the transformation to which is described in the next section.

2.5.7 Transformation of Hund’s Case (a) Transition Matrix

As stated in Section 2.5.2, the MEs in terms of the real F components are obtained from

the combination of the eigenvectors from the diagonalisation of the upper and lower state

Hamiltonians, and a transition matrix in a case (a) basis. This process is performed by

PGOPHER and it is described here using the NH X3Σ− state as an example.

For each J transition, a 3×3 pure omega transition matrix is set up by PGOPHER using

the case (a) MEs, 〈η′Λ′;S′Σ′; J ′Ω′|T 1
0 |ηΛ;SΣ; JΩ〉. This is transformed to a symmetrised

matrix, that has the basis functions described in Section 2.4.3. For the P and R branches,

this results in one 2×2 and one 1×1 matrix, for the |3Σ−(1)(e)〉/|
3Σ−(0)(e)〉 and |3Σ−(1)(f)〉

basis functions, respectively. For example, for the (1,0), R(4) transition, the original and

symmetrised matrices are shown in Tables 2.23 and 2.24.

The Hamiltonians are set up initially in the pure Ω case (a) form, and then transformed

into the parity Hamiltonian matrices as described in Section 2.4.3. The ”original”
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Table 2.23 – Pure Ω transition matrix set up by PGOPHER for the (1,0), R(4)
example transition.

|3Σ−+1〉 |3Σ−0 〉 |3Σ−−1〉
|3Σ−+1〉 -0.148373 0 0
|3Σ−0 〉 0 -0.151539 0
|3Σ−−1〉 0 0 -0.148373

Table 2.24 – Symmetrised parity transition matrices for the (1,0), R(4)
example transition.

|3Σ−(1)(e)〉 |
3Σ−(0)(e)〉 |3Σ−(1)(f)〉

|3Σ−(1)(e)〉 -0.148373 0 |3Σ−(1)(f)〉 -0.148373
|3Σ−(0)(e)〉 0 -0.151539

parity transition matrices, O, are then combined with the eigenvector matrices from the

diagonalisation of the parity Hamiltonian matrices, giving the ”transformed” transition

matrices, T, in terms of the real F levels, using

T = XT
l OXu, (2.130)

where Xu and Xl are the upper and lower eigenvector matrices, respectively.

For the example transition, the parity Hamiltonians diagonalise to give the

eigenvectors shown in Tables 2.25 to 2.28:

Application of Equation 2.130 to the eigenvalues in the above matrices and the

”original” transition matrices shown in Table 2.24 gives the e parity T matrix for shown

in Table 2.29.

These are the 〈ψJ ′F ′ |µ̂|ψJF 〉 MEs, and so SJ ′F ′JF and then the Einstein A values can be

calculated directly. For the example transition, SJ ′F ′JF is equal to the values in Table 2.29

squared, and the Einstein A values are 21.8182, 22.9405, .0067193 and 0.00001923 s−1 for

the F11, F33, F13 and F31 transitions, respectively.

Table 2.25 – Left - Symmetrised e Hamiltonian matrix for the v=1, J=4
example level. Right - eigenvectors resulting from the diagonalisation of this
matrix.

|3Σ−(1)(e)〉 |3Σ−(0)(e)〉 |3Σ−(1)(e)〉 |
3Σ−(0)(e)〉

|3Σ−(1)(e)〉 3439.3603 -139.9945 ψJ=4,N=3,F1 -0.7432 -0.6691
|3Σ−(0)(e)〉 -139.9945 3468.8251 ψJ=4,N=5,F3 -0.6691 0.7432
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Table 2.26 – Left - Symmetrised f Hamiltonian matrix for the v=1, J=4
example level. Right - eigenvectors.

|3Σ−(1)(f)〉 |3Σ−(1)(f)〉
|3Σ−(1)(f)〉 3439.4947 ψJ=4,N=4,F2 1

Table 2.27 – Left - Symmetrised e Hamiltonian matrix for the v=0, J=3
example level. Right - eigenvectors.

|3Σ−(1)(e)〉 |
3Σ−(0)(e)〉 |3Σ−(1)(e)〉 |

3Σ−(0)(e)〉
|3Σ−(1)(e)〉 196.4604 -113.1125 ψJ=3,N=2,F1 -0.7533 -0.6577
|3Σ−(0)(e)〉 -113.1125 227.2733 ψJ=3,N=4,F3 -0.6577 -0.7533

Table 2.28 – Left - Symmetrised f Hamiltonian matrix for the v=0, J=3
example level. Right - eigenvectors.

|3Σ−(1)(f)〉 |3Σ−(1)(f)〉
|3Σ−(1)(f)〉 196.5422 ψJ=3,N=3,F2 1

Table 2.29 – Transformed parity transition matrices for the (1,0), R(4)
example transition, in terms of the true F and parity levels

ψJ=4,F1e ψJ=4,F3e ψJ=4,F2f

ψJ=3,F1e -0.149798 0.000121 ψJ=3,F2f
-0.148373

ψJ=3,F3e 0.003030 -0.150099
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2.5.8 Band intensities and lifetimes

One of the most useful methods of validation of our calculated line intensities is to

compare them to experimentally observed radiative lifetimes. The radiative lifetime

(hereafter referred to only as lifetimes), τ (in s), of a quantum state is defined as the

time taken for the population of molecules in that quantum state to reach 1 − 1/e times

the original population, by spontaneous radiative decay to lower levels . Its value is

equal to the reciprocal of the sum of the Einstein A coefficients for all of the possible

transitions to lower levels (Larsson, 1983) from a single upper level. This can be observed

experimentally by monitoring the change in population with time of a specific quantum

state.

Vibrational band intensities are often reported in theoretical line intensity studies, so

they are also useful for validation. They are calculated in this thesis as the sum of Einstein

A coefficients for all possible transitions within a specific band, from the F level of lowest

energy in the upper state. These can also be converted into band oscillator strengths using

the equation (Larsson, 1983)

fv′v =
mec

8π2e2

1

ν̃2

(2− δ0,Λ′)

(2− δ0,Λ′′)
Av′v (2.131)

= 1.49919368
1

ν̃2

(2− δ0,Λ′)

(2− δ0,Λ′′)
Av′v. (2.132)

2.6 Summary

The full procedure for the production of line intensities, though not all is used in every

chapter, can be summarised as follows.

Spectroscopic molecular constants are obtained in PGOPHER (Western, 2014), which

sets up standardN2 Hamiltonians, by least-squares fitting to a set of observed transitions.

Perturbation constants are included here if required. Equilibrium constants are calculated

by fitting to the power series expansions in v + 1/2, using the constants Tv and Bv. These

are employed in the program RKR1 (Le Roy, 2004) to generate potential energy curves,

which are then entered into LEVEL (Le Roy, 2007) along with an ab initio DMF or TDMF.

LEVEL generates vibrational wavefunctions and transition matrix elements (MEs), but

does not include electron spin. These MEs are therefore in terms of N and not J , and we

refer to them as Hund’s case (b) MEs. They are converted to case (a) MEs which include
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Figure 2.19 – Overall method for the production of line lists for diatomic
molecules. The green boxes indicate the parts that could be mostly
automated, whilst more specific considerations are required for those in red.

electron spin using the ”transformation equation”. PGOPHER sets up case (a) transition

matrices, and converts the MEs from the molecular frame to the laboratory frame. The

case (a) Hamiltonians are then diagonalised, and the resulting eigenvectors are combined

with the transition matrices to give ”transformed” transition matrices in terms of the real

states. These MEs are the line strengths, S, which can be used with the line positions to

calculate Einstein A values. This method is also summarised in Figure 2.19, in which the

parts that could be mostly automated are highlighted.

The following chapter is the first work chapter, and involves the first use of the theory

described to produce a line list. This chapter includes all of the methods described above,

except for the H-W effect and transformation equation.
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Chapter 3

The C2 Swan System

3.1 Preface

This chapter describes the first use of the theory that has just been introduced, to produce

a line list for the C2 Swan system, which is a prominent electronic system of the C2

molecule.

3.2 Introduction

The most prominent electronic system in the visible region is the Swan system, which

involves the electronic transition d3Πg-a3Πu, with the (0,0) band near 19400 cm−1. The

a3Πu state was originally believed to be the ground state (Herzberg et al., 1969) as it

was observed to be easily excited, which is because it lies only about 700 cm−1 above the

actual X1Σ+
g ground state (this difference being that between the Tv values of v=0 for each

state). Figure 3.1 shows a number of low lying electronic states and electronic systems of

C2, with the Swan system in bold.

C2 is an important molecule in the fields of astronomy, combustion science, and

materials science. It has often been observed in comets (Mayer and O’Dell, 1968; Jackson,

1976; Lambert and Danks, 1983; Johnson et al., 1983; Sorkhabi et al., 1997; Kaiser et al.,

2003) and in other astronomical environments such as interstellar clouds (Souza and

Lutz, 1977; Chaffee and Lutz, 1978; Green, 1981; Hobbs and Campbell, 1982; Federman

and Huntress, 1989; Kaźmierczak et al., 2010; Casu and Cecchi-Pestellini, 2012), late-type

stars (Vardya, 1970; Querci et al., 1971; Klochkova et al., 2000; Hema et al., 2012) and

the Sun (Grevesse and Sauval, 1973; Brault et al., 1982). Its reactions are believed to be
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involved in the formation of hydrocarbons and other organic compounds in interstellar

clouds (Kaiser, 2002).

C2 has also been found in flames (Gaydon, 1957; Bleekrode and Nieuwpoort, 1965;

Baronavski and McDonald, 1977). It is present as a transient species, in the highest

temperature environment near the reaction centre (Nyholm et al., 1994, 1995; Bengtsson

et al., 1990), and its electronic transitions have been used to determine its concentration

and the temperature at each measurement point. These two properties are both important

in combustion modelling (Allen et al., 1986), and to improve the accuracy results, line lists

with intensities for the relevant transitions are vital.

The C2 Swan system has been exploited in soot detection and characterisation

(Goulay et al., 2010), as C2 in the d3Πg state is produced in the laser irradiation of soot

(Goulay et al., 2009). Soot detection is important in several areas, such in the as analysis

of combustion in diesel engines (Goulay et al., 2009)

C2 is also relevant to materials science, as it is involved in the production of carbon

nanostructures (such as fullerenes and carbon nanotubes). Carbon is vaporised, and the

resulting mixture, which includes C2, forms the nanostructures (Nemes and Irle, 2011;

Jakowski et al., 2012). The exact mechanisms are still poorly understood (Saveliev et al.,

2003; Jakowski et al., 2012), and to understand the role played by C2 and improve the

processes, knowledge of the C2 concentration is required.

The Swan system has been investigated extensively. Early vibrational band intensity

analyses include those of King (1948), Phillips (1957) and Hagan (1963). Mentall and

Nicholls (1965) reanalysed the data of three previous works to provide an updated

list of absolute band strengths, oscillator strengths, and Einstein A values for most

vibrational bands up to v′=4. A full review of previous work was given in 1967 by Tyte

et al. (1967). Phillips and Davis (1968) combined earlier published data with their most

recent rotational analysis. They calculated spectroscopic constants for the Swan system,

and published a full rotational line list including relative intensities. Danylewych and

Nicholls published a list of absolute band strengths, oscillator strengths and Einstein

A values covering most vibrational bands up to v′=9, with ∆v ≤ 4 (Danylewych and

Nicholls, 1974). The properties of C2 were extensively reviewed by Huber and Herzberg

(1979).

As new experimental techniques have become available, new studies of the lower

vibrational bands have been conducted at high resolution. These include the work of
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Amiot (1983), Curtis and Sarre (1985) and Suzuki et al. (1985), who investigated the (0-0),

(0-1) and (1-0) bands, respectively, using laser excitation techniques. Dhumwad et al.

(1981) observed the Swan system using a quartz discharge tube with tungsten electrodes

for the excitation of CO. Prasad and Bernath (1994) analysed nine low vibrational bands

v′ ≤ 3 and v′′ ≤ 4) of the Swan system of jet-cooled C2 (for low-J), and of C2 produced in a

composite wall hollow cathode (for J up to 25-46) with a Fourier Transform Spectrometer

(FTS). The previous observations of Amiot (1983) and Prasad and Bernath (1994) on the

(0,0) band were improved upon by Lloyd and Ewart (1999), using degenerate four-wave

mixing spectroscopy. These and other investigations have improved the accuracy of the

line assignments originally published by Phillips and Davis (1968).

The higher vibrational bands had not been analysed with modern high resolution

instrumentation until 2002, when Tanabashi and Amano observed the Swan system by

a direct absorption technique using a tunable dye laser. They measured three bands,

assigned as (5,7), (6,8) and (7,9). They found that their line positions did not agree with

those reported by Phillips and Davis (1968), which was the most recent rotational analysis

of the high vibrational bands. These discrepancies led to the reanalysis of the entire Swan

system with a high resolution FTS (Tanabashi et al., 2007). The assigned line positions

from this new comprehensive analysis agreed with their previous one for the (5,7), (6,8)

and (7,9) bands. Moreover, their line positions for bands involving the higher vibrational

levels differed significantly from those of Phillips and Davis (1968).

The old rotational line list reported by Phillips and Davis (1968) has recently been

used in deriving the carbon abundance and 12C/13C ratio in R Coronae Borealis and

hydrogen-deficient carbon stars (Hema et al., 2012), and in comets (Rousselot et al., 2012).

It would be beneficial to have a new rotational line list, based on recent measurements

and calculations. The purpose of this work is to use the data mainly of Tanabashi et al.

(2007) to calculate theoretical line intensities, and publish an extensive line list.

Tanabashi et al. assigned around 5700 observed rotational lines, for 34 vibrational

bands belonging to the ∆v = -3 to +2 sequences. Transitions up to a maximum of between

J=30 and 80, depending on the band, were assigned. Perturbations were found in the

d3Πg state for v = 0, 1, 2, 4, 6, 8, 9 and 10, and for v = 4, 6 and 9 they affected almost all

of the observed lines. They calculated molecular constants
(
Tables 3 and 4 in Tanabashi

et al. (2007)
)

for both electronic states.

Deperturbation studies of the d3Πg v′=4 (Bornhauser et al., 2010) and v′=6
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(Bornhauser et al., 2011) levels have been performed, using double-resonant four-wave

mixing spectroscopy. This enabled them to assign lines unambiguously, and calculate

perturbation constants (Table 3.1) and molecular constants (Table 3.2) of the interacting

b3Σ−g (v=16 and v=19) and 5Π states. They also gave a list of the few transitions that were

assigned incorrectly by Tanabashi et al.. Recently, the (4,8) and (5,9) bands were observed

by Yeung et al. (2013) using high resolution laser absorption spectroscopy.

In this work, the molecular constants from Tanabashi et al. (2007) are improved

slightly using the data from the deperturbation studies, but the main focus is the

calculation of line intensities using these constants and theoretical methods. This enables

the production of a comprehensive line list that can be used by those in the fields of

astronomy, combustion science, and materials science to calculate abundances from C2

Swan spectra.

3.2.1 C2 a3Πu and d3Πg States

For the reasons described in Section 2.3.3, only e parity levels exist for odd J and f for

even J in the lower a3Πu state, and the reverse in the upper d3Πg state. Both states have

similar molecular constants, and at low J , are closer to Hund’s case (a). At higher J they

get closer to case (b), and so N becomes a reasonably good quantum number. This is

illustrated in Figure 3.2, in which it can be seen that the energy levels are mostly defined

by N at higher J , whereas for lower J , the F components of the same N have noticeably

different energies.

Taking the selection rules for parity into account, transitions between any levels with

∆J=−1, 0, or +1 are possible in this electronic system. Therefore, any upper level will

have nine possible transitions to lower levels (in the same vibrational band, and for J ′ ≥

3), as shown in Figure 3.3.

At high J
(
case (b)

)
, the main features of the spectrum are triplets made up of

the F ′=F ′′ transitions with the same ∆J , for three consecutive J values, for example

R(10)F11, R(11)F11, and R(12)F11. However, at low J , as the states are closer to case (a),

the pattern is not as consistent. Lines with F ′ 6=F ′′ are mostly too weak to be observed.

For the important bands of the Swan system,B′v > B′′v . This means that as J increases,

the R branch spacing always increases. The P branch spacing, however, decreases until it

is zero, and then the branch turns round to follow the direction of the R branch, resulting

in a pile up at lines at the ”band head”. The J value at which this occurs varies from band
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Figure 3.2 – Calculated energy level progressions (excluding local
perturbations) of the three F components for the C2 a3Πu v=0 level. The
energy is relative to the vibrational origin of the v=0 level.

to band, based on the difference between the Bv values. Figure 3.4 shows an example for

the (1,1) band.

3.2.2 d3Πg Perturbations

Rotational perturbations were identified in the d3Πg v=0-2 levels by Callomon and Gilby

(1963), through their observations of the C2 Swan system. They identified the main

perturbing state as b3Σ−g (upper state of the Ballik-Ramsay system), and also suggested

that a level within the v′=0 level could be perturbed by an as yet undiscovered 1∆g

state
(
now b1∆g (Douay et al., 1988)

)
. Phillips identified further perturbations in these

levels and in v′=4-6, and similarly identified the perturbing state as b3Σ−g , though he

also suggested that the X1Σ+
g ground state could be perturbing v′=0. In 1983, Amiot

investigated the (0,0) band and gave further information about perturbations due to

the b3Σ−g state, explained that the X1Σ+
g state could not be perturbing v′=0, and also

suggested the unidentified 1∆g state (b1∆g) as a possible perturbing state. Tanabashi

et al. (2007) observed numerous perturbations in v′=0-2,4,6 and 8-10, and they agreed

with the above identifications by Callomon and Gilby (1963) and Amiot (1983). They

confirmed that the b1∆g state was perturbing a v′=0 level as suggested by Callomon
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Figure 3.4 – Calculated stick spectrum of the C2 Swan system (1,1) band, at
1500 K.

and Gilby (1963) and Amiot (1983), and also suggested that it may be perturbing some

v′=2 levels. Most other perturbations were believed to be caused by the b3Σ−g state.

The previously mentioned deperturbation studies (Bornhauser et al., 2010, 2011) then

quantified the perturbations between the d3Πg v=4 and b3Σ−g v=16 levels, and the d3Πg

v=6 and b3Σ−g v=19 levels. They also observed and quantified perturbations between

d3Πg v=6 and a new electronic state, 5Π. Their final values for the perturbation MEs are

shown in Table 3.1, and their b3Σ−g molecular constants are in Table 3.2. The ordering of

the levels relevant to the perturbations involving the b3Σ−g state is shown in Figure 3.5.

For local perturbations to occur, levels with the same J in different electronic

states that have non-zero Hamiltonian matrix elements linking them must have similar

unperturbed energies. For this to be likely to occur between two electronic states with

somewhat similar Bv values, at low J , the vibrational origins of two v levels in each state

must be of similar energy, with the level that has a lower Bv value below in energy. It

can be seen in Figure 3.5 that this occurs between the levels mentioned above. The Bv

values are different enough however for a vibrational level of the b3Σ−g state to cross

more than one vibrational level of the d3Πg state (on a graph of energy against J) within

the J range covered by this work. For example, the b3Σ−g , v=16 level crosses the d3Πg,

v=4 level between around J=0 and J=20 (accounted for here), and then crosses the v=3

level between around J=50 and J=70 (not accounted for here). Many other perturbations
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Table 3.1 – Perturbation constantsa for the d3Πg v′=4 and v′=6 levels of
the C2 Swan system. Those of Bornhauser et al. (2010, 2011), and those
resulting from the fit of all molecular constants are reported.

Parameter Bornhauser et al. value Value from fitb

〈d3Πg, v
′=4|ĤSO|b3Σ−g , v

′=16〉 -0.6401(86) -0.6147(59)
〈d3Πg, v

′=4|BL̂+|b3Σ−g , v
′=16〉 0.24737(61) 0.24869(21)

〈d3Πg, v
′=6|ĤSO|b3Σ−g , v

′=19〉 0.7855(110) 0.7417(82)
〈d3Πg, v

′=6|BL̂+|b3Σ−g , v
′=19〉 0.31192(37) 0.31123(12)

〈d3Πg, v
′=6|ĤSO|5Π〉 4.6220(88) 4.6150(94)

a Numbers in parentheses indicate one standard deviation to the last significant digits of
the constants.
b Please note that these values were floated to improve the fit, but the studies of Bornhauser
et al. (2010, 2011) were directly aimed at calculating these constants.

Table 3.2 – Molecular constantsa for the b3Σ−g , v′=16 and v′=19 and
5Π states, which perturb the d3Πg, v′=4 and v′=6 levels. Those of
Bornhauser et al. (2010, 2011), and those resulting from the fit of all
molecular constants are reported.

State Parameter Bornhauser et al. value Value from fit

b3Σ−g , v=16 T 26191.865(14) 26191.1742(29)
B 1.22858(15) 1.233492(68)

D×106 6.4351(fixed)b 6.4351(fixed)b

λ 0.172(18) 0.335(17)
b3Σ−g , v=19 T 29442.1348(843) 29442.589(14)

B 1.179368(214) 1.178182(49)
D×106 6.5066(fixed)b 6.5066(fixed)b

λ 0.142(22) 0.135(26)
5Π T 29258.5922(48) 29258.5824(65)

B 1.14413(11) 1.14442(11)
A 8.9450(47) 8.9428(54)
λv -0.0428(23) -0.0427(27)
o -0.0744(39) -0.0812(44)

a Numbers in parentheses indicate one standard deviation to the last significant digits
of the constants.
b As with Bornhauser et al., these D constants were fixed at values extrapolated from
the molecular constants of Amiot et al. (1979).
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3.3 Recalculation of Molecular Constants

that have not been accounted for here will therefore be caused by the various vibrational

levels of the b3Σ−g state. The 5Π state also causes perturbations and crosses more than one

vibrational level, but its vibrational level is unknown. The perturbations are included by

adding the basis states of the perturbing state to the Hamiltonian and including linking

MEs. The diagonalisation then results in eigenvalues for both electronic states. The

Hamiltonian terms that are included to link the b3Σ−g and d3Πg states are L̂+Ŝ− + L̂−Ŝ+

and Ĵ+L̂− + Ĵ−L̂+. These terms arose (Section 2.4) in the definition of the spin-orbit and

rotational Hamiltonians, respectively, but were not required previously as they raised or

lowered Λ. The term linking the 5Π and d3Πg states is L̂zŜz . The ĤSO MEs shown in Table

3.1 are the values 〈η′Λ′;S′Σ′; Ω′|ĤSO|ηΛ;SΣ; Ω〉, as these were reported by Bornhauser

et al.. This is however ambiguous, as there is more than one ME connecting the two

states. PGOPHER accepts the value 〈η′Λ′;S′|ĤSO|ηΛS〉, and the connection between these

two MEs is (Western, 2014)

〈η′S′Σ′Λ′Ω′|ĤSO|ηSΣΛΩ〉 = (−1)S
′−Σ′

 S′ 1 S

−Σ′ Σ′ − Σ Σ

 〈η′S′Λ′|ĤSO|ηSΛ〉. (3.1)

TheBL̂+ MEs reported by Bornhauser et al. are identical to the input to PGOPHER. These

are not ambiguous, as the MEs of BL̂+ can be used to calculate the full MEs of B
(
Ĵ+L̂−+

Ĵ−L̂+

)
.

3.3 Recalculation of Molecular Constants

With the recent publication of perturbation constants for the d3Πg v=4 and v=6 levels

by Bornhauser et al. (2010, 2011) (Table 3.1), there was an opportunity to improve the

molecular constants reported by Tanabashi et al.
(
Tables 3 and 4 in Tanabashi et al.

(2007)
)
. The computer program PGOPHER (Western, 2014) was used to recalculate the

molecular constants, with the inclusion of the v′=4 and v′=6 perturbations, using the

standard N2 Hamiltonian for a 3Π state (Brown and Merer, 1979; Hirota et al., 1994). A

global least squares fit was performed including all lines from Tanabashi and Amano

(2002), Curtis and Sarre (1985), Suzuki et al. (1985), Lloyd and Ewart (1999) (for the (0,0)

band), the two deperturbation studies by Bornhauser et al. (both the Swan system lines

and the transitions between the perturbing states and the a3Πu state), and most lines from

Yeung et al. (2013) (see below).
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3.3.1 The (4,8) and (5,9) bands

Yeung et al. (2013) observed 153 and 121 transitions in the (4,8) and (5,9) bands,

respectively. They reported that the (5,9) band was unperturbed and that line assignment

was simple, and so all of these lines were included in our fit. The (4,8) band however was

heavily perturbed. To help in assigning the lines, they attempted to use the perturbation

constants from Bornhauser et al. (2010, 2011) to estimate line positions, but could not find

agreement with a number of lines. Ultimately, they assigned all of the lines without the

use of the perturbation constants. They gave two examples of transitions, R1(9) and R2(8)

(reported to be at 13907.568 and 13905.145 cm−1), for which no lines could be found in the

region of the calculated positions. Using molecular constants directly from Tanabashi and

Amano, these line positions are calculated as 13907.821 and 13905.788 cm−1, respectively,

and with the inclusion of the Bornhauser et al. perturbation constants, this changes to

13904.778 and 13907.437 cm−1, respectively. Therefore, there is a line in their data in

the region of the estimated (perturbation included) position for the R2(8) transition (at

13907.568 cm−1). For the R1(9) transition, the closest reported line is 0.37 cm−1 away at

13905.145 cm−1. Also, the reported positions are still 0.25 and 0.64 cm−1 away from the

expected positions using Tanabashi et al. molecular constants only. In fact, the average

difference between the expected positions using Tanabashi et al. molecular constants

only and those reported by Yeung et al., for all (4,8) lines that were retained in our fit,

was as high as 0.44 cm−1.

The inclusion of the perturbation constants improves the residuals of all of the lines

of the Swan system that Bornhauser et al. observed. Therefore, many of the (4,8) lines

seem to have been incorrectly assigned by Yeung et al.. However, the line positions

have an accuracy of 0.003 cm−1, and so it was considered worthwhile to investigate the

assignments and include as many of the lines as possible in our fit.

To check their assignments, a preliminary fit was performed using all other data

described (including the perturbation constants) to estimate positions for the (4,8) band.

This showed 19 (of 153) transitions whose assigned positions were more than 0.5 cm−1

away from the estimated value. The observed positions were compared with all nearby

calculated values with the aim of changing assignments, if there was only one obvious

option. Seven positions were reassigned, and most of the other positions either had

several nearby options and so could not confidently be reassigned, or had already been

assigned to a more likely transition as well (and noted as an overlapped line). Only
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three lines had no nearby (within 0.1 cm−1) options. Due to the lack of confidence in

the assignments, any lines that differed significantly from their calculated values and

could not be reassigned were removed from the fit. The fit was continued, and any

lines whose residuals were greater than 0.03 cm−1 were then removed. This process was

repeated iteratively until no lines differed by more than 0.03 cm−1. The entire process

was repeated several times, using the updated constants as the starting point. 100 of

the initial 153 lines remained after this treatment. This probably removed a number of

correctly assigned lines, but more importantly, it significantly decreased the chance of

including any incorrect lines in the fit.

3.3.2 Data Included in the Global Fit

In their calculation of molecular constants in 2007, Tanabashi et al. included lines from

several other studies. For nine bands up to (3,4), gaps in observations were filled in by

using lines from Prasad and Bernath (1994). High resolution measurements of the (0,1)

band by Curtis and Sarre (1985) were included, as were cross transitions (∆F 6=0) from

Suzuki et al. (1985) for the (1,0) band. Some cross transitions were also observed by Curtis

and Sarre, and these are particularly useful for the accurate calculation of the spin-orbit

coupling and Λ-doubling constants. All lines from Tanabashi and Amano (2002) for the

(5,7), (6,8) and (7,9) bands were also included.

Prasad and Bernath (1994) also calculated molecular constants, and included in their

fit all lines from Curtis and Sarre (1985), Suzuki et al. (1985) and Amiot (1983) (for the

(0,0) band). The recalculation is based mainly on that of Tanabashi et al., and also this fit

by Prasad and Bernath. An explanation of the specific differences is presented below.

The weights for the lines from Tanabashi et al.
(
including those from Tanabashi and

Amano (2002)
)

were unchanged here, except for those involving the v′=4 and v′=6 levels.

These had mostly been deweighted, and were weighted more strongly in this study as

the perturbations had been included in the fit. In their calculation of the perturbation

constants, Bornhauser et al. (2010, 2011) observed lines involving J ′=1-6, 10-12 and

17-23 for the v′=6 level, and J ′=4-14 for the v′=6 level. Lines involving these J levels

were weighted strongly, and other line weights were decreased with greater difference

between their J ′ level and these ranges. The actual lines observed by Bornhauser et al.

were weighted similarly to those of Tanabashi et al. for the same bands. The lines for both

bands observed by Yeung et al. (2013) were weighted based on the reported accuracy
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(0.003 cm−1). Lines marked as overlapped by Yeung et al. were slightly deweighted.

The five remaining sets of lines were treated as follows. The sets from Prasad and

Bernath (1994) (two sets), Curtis and Sarre (1985) and Suzuki et al. (1985) were given the

same weights as in the fit performed by Prasad and Bernath. Lloyd and Ewart (1999)

lines were assigned weights to be similar to those of Tanabashi et al. (2007) for the (0,0)

band. To ensure that all lines were on the same wavenumber scale, transitions from these

five sets were then compared to matching Tanabashi et al. transitions, and a weighted

average wavenumber difference (one for each set) using matching lines was calculated,

based on the assigned weights. This was added to all of the lines from each set as a

wavenumber offset, to compensate for any systematic differences between studies. In

their fit, Tanabashi et al. deweighted many lines due to the extensive perturbations, and

those lines were also deweighted here if they were present in these five sets. This process

excluded approximately 11% of these lines. To further decrease the possibility of using

any misassigned lines in the fit, any line whose wavenumber differed from a matching

Tanabashi et al. line by more than 0.03 cm−1 was deweighted, excluding a further ∼6%.

A preliminary fit was then performed to obtain calculated values of each transition. Lines

that had not been matched to Tanabashi et al. transitions were then deweighted if their

observed minus calculated values, as a result of this fit, were greater than 0.03 cm−1.

A final global weighted least squares fit was performed, in which all reported

molecular constants for the a3Πu and d3Πg states were floated, except for AD for v′=8,

9 and 10, AD for v′′=5, 7 and 8, and λ for v′=8. These were fixed at values based on those

calculated for the other levels to obtain a good fit. The updated molecular constants are

shown in Tables 3.3 and 3.4, where the constants are those described in Section 2.4. The

magnitudes of the perturbation constants reported by Bornhauser et al. (2010, 2011) and

the constants for the perturbing states were also floated to improve the fit, and both the

previous and changed values are shown in Tables 3.1 and 3.2. Bornhauser et al. fixed

the D constants for the b3Σ−g state at values extrapolated from the molecular constants of

Amiot et al. (1979), and the same was done here.

3.4 Calculation of Line Intensities

Equilibrium constants (as described in Section 2.1.4) were calculated (Table 3.5) in a

weighted least squares fit using the energy level expressions for a vibrating rotator, and
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Table 3.3 – Updated molecular constantsa for the d3Πg state of the C2 Swan system (in cm−1).

v T A AD B D×106 λ o p q

0 19378.46749(51) -14.00139(63) 0.0005068(83) 1.7455663(43) 6.8205(16) 0.03301(47) 0.61076(52) 0.003973(43) -0.0007752(43)
1b 21132.14977(25) -13.87513(49) 0.0005740(83) 1.7254062(53) 7.0194(77) 0.02972(38) 0.61713(36) 0.004133(44) -0.0008171(43)
2 22848.3877(21) -13.8205(23) 0.000600(43) 1.704516(21) 7.308(22) 0.0253(41) 0.6208(32) 0.00624(38) -0.000835(14)
3 24524.2201(19) -13.5361(28) 0.000775(17) 1.681437(16) 7.438(24) 0.0470(26) 0.5827(26) 0.00579(17) -0.0008568(85)
4 26155.0448(29) -13.3892(50) 0.001451(14) 1.656859(26) 7.684(43) 0.0219(38) 0.6313(32) 0.00954(29) -0.000923(21)
5 27735.6720(43) -13.0324(66) 0.000723(37) 1.630205(23) 8.573(32) 0.0601(28) 0.6161(23) 0.00685(32) -0.000912(15)
6 29259.3548(36) -12.820(10) 0.001203(56) 1.599876(31) 8.998(44) 0.0529(71) 0.5773(71) 0.00874(47) -0.000986(22)
7 30717.9011(46) -12.3458(71) 0.000814(41) 1.566047(32) 10.044(66) 0.0960(34) 0.5532(31) 0.00936(35) -0.001175(17)
8 32102.655(22) -12.107(22) 0.00076(fixed) 1.52675(31) 9.60(97) 0.095(fixed) 0.546(22) 0.0055(21) -0.00088(21)
9 33406.230(22) -11.698(39) 0.00076(fixed) 1.485755(96) 11.85(10) 0.172(26) 0.498(28) 0.0097(14) -0.002062(44)

10 34626.7860(94) -11.297(15) 0.00076(fixed) 1.441138(72) 12.837(73) 0.115(16) 0.399(12) 0.00745(90) -0.000977(30)

a Numbers in parentheses indicate one standard deviation to the last significant digits of the constants.
b In addition, H = 2.14(30)×10−11 for v=1 was used to obtain a good fit.

Table 3.4 – Updated molecular constantsa for the a3Πu state of the C2 Swan system (in cm−1).

v T A AD B D×106 λ o p q

0b 0 -15.26986(43) 0.0002634(71) 1.6240452(44) 6.4506(19) -0.15450(36) 0.67525(35) 0.002537(42) -0.0005281(44)
1 1618.02244(53) -15.25197(61) 0.0002266(73) 1.6074266(44) 6.4439(21) -0.15373(51) 0.67017(51) 0.002705(44) -0.0005772(42)
2 3212.72793(96) -15.2328(15) 0.0001996(94) 1.5907513(61) 6.4527(44) -0.1526(12) 0.6649(14) 0.003132(77) -0.0006457(48)
3 4784.0688(31) -15.1972(39) 0.000186(42) 1.574088(24) 6.455(24) -0.1333(61) 0.6815(51) 0.00488(42) -0.000618(17)
4 6332.1364(51) -15.2043(65) 0.000318(36) 1.557117(31) 6.338(39) -0.1551(72) 0.6674(67) 0.00632(36) -0.000894(16)
5 7856.8175(32) -15.2096(35) 0.00025(fixed) 1.540139(24) 6.312(35) -0.1492(36) 0.6546(37) 0.00734(25) -0.001246(12)
6 9358.1565(40) -15.1646(60) 0.000355(33) 1.523439(26) 6.034(38) -0.1551(46) 0.6886(38) 0.00504(32) -0.000676(16)
7 10836.1430(92) -15.085(11) 0.00025(fixed) 1.50869(25) 3.51(92) -0.1641(90) 0.704(14) -0.0244(23) 0.00632(49)
8 12290.7997(29) -15.1702(46) 0.00025(fixed) 1.488684(28) 5.329(52) -0.1665(36) 0.6742(30) 0.01449(29) -0.002053(23)
9 13722.0897(43) -15.0980(61) 0.000419(31) 1.472818(24) 6.066(35) -0.1584(27) 0.6926(23) 0.00303(33) -0.000081(16)

a Numbers in parentheses indicate one standard deviation to the last significant digits of the constants.
b In addition, H = 6.73(16)×10−12, oD = -6.86(114)×10−6 and qD = -9.60(41)×10−9 were used for v=0 to obtain
a good fit.

107



Chapter 3: The C2 Swan System

Table 3.5 – Equilibrium molecular constantsa for the C2 Swan system.

Constant d3Πg a3Πu

ωe 1788.45(33) 1641.3463(55)
ωexe 16.87(19) 11.6595(19)
ωeye -0.259(36) -0.00079(16)
ωeze -0.0396(20) -
Be 1.755408(92) 1.632355(78)
αe 0.01960(13) 0.016582(63)
γe -0.000144(39) -0.0000273(75)
δe -0.0000806(31) -

a Numbers in parentheses indicate one standard deviation to
the last significant digits of the constants.

the updated Bv and Gv values in Tables 3.3 and 3.4. The weightings of the vibrational

levels were based on the standard deviation of Bv and Gv values from the PGOPHER line

position fit. The equilibrium constants were used to calculate potential energy curves

using RKR1, and these are shown in Figure 3.6.

LEVEL was used as explained in Section 2.1.5. The C2 work was performed before

the derivation of the transformation equation (Equation 2.5.4), and the method of

transferring MEs from LEVEL to PGOPHER used involved taking only one rotationless

ME for each vibrational band. This was a reasonable approximation as the H-W effect is

very small for C2 (the average maximum H-W effect (Section 4.3.4) for observed bands is

only 4.3%).

3.4.1 Electronic Transition Dipole Moment

The calculations in this section were performed by Timothy W. Schmidt and George B.

Bacskay (University of Sydney, Australia).

This calculation of the electronic TDMF of the Swan system has been reported

previously (Kokkin et al., 2007; Schmidt and Bacskay, 2007; Nakajima et al., 2009),

with the results shown in Table 3.6 and Figure 3.7. A brief description is given

here. Wavefunctions were computed using the multi-reference configuration interaction

(MRCI) method (Werner and Knowles, 1988; Knowles and Werner, 1988), whereby all

single and double excitations from a complete active space self-consistent field (CASSCF;

Werner and Knowles, 1985; Knowles and Werner, 1985) reference state are included in the

MRCI wave functions. The active space included all molecular orbitals arising from the

C atoms’ 2s and 2p valence orbitals. The basis set is the augmented correlation-consistent
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3.4 Calculation of Line Intensities
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Figure 3.6 – The potential energy curves of the C2 Swan System. Reprinted
from JQSRT, 124, Brooke et al., Line strengths and updated molecular
constants for the C2 Swan system, 11-20, Copyright (2013), with permission
from Elsevier.

polarised aug-cc-pV6Z set of Dunning and co-workers (Dunning, 1989; Kendall et al.,

1992; Woon and Dunning, 1995; Wilson et al., 1996) and de Jong et al. (2001). Core

and core-valence correlation corrections were obtained using the aug-cc-pCVQZ basis

set (Dunning, 1989; Kendall et al., 1992; Woon and Dunning, 1995). Scalar relativistic

energy corrections were evaluated via the Douglas-Kroll-Hess approach (Douglas and

Kroll, 1974; Hess, 1985, 1986), in conjunction with the appropriate cc-pVQZ basis sets.

The transition moments were computed by utilizing the technique of bi-orthogonal

transformation (Mitrushchenkov and Werner, 2007) of the mutually non-orthogonal

orbitals of the two states. These quantum chemical calculations were carried out using

the MOLPRO 2006.1 program (Werner et al., 2006).

3.4.2 Vibrational Band Intensities

Einstein Av′v values for each vibrational band were also calculated, and are shown in

Table 3.7. They were calculated as the sum of all single rotational Einstein A values

for possible transitions within the relevant band from the J ′=1, F3 level. These were

converted into fv′v values using Equation 2.131, which are shown in Table 3.8.
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Chapter 3: The C2 Swan System

Table 3.6 – Calculated TDMF for the C2 Swan system.

r Re r Re r Re r Re
(au) (au) (au) (au) (au) (au) (au) (au)
1.50 1.15048 2.25 0.94723 2.70 0.67689 3.30 0.08683
1.60 1.13942 2.30 0.92430 2.75 0.63482 3.40 0.00847
1.70 1.12242 2.35 0.89994 2.80 0.58959 3.50 -0.06088
1.80 1.10056 2.40 0.87406 2.85 0.54125 3.60 -0.12274
1.90 1.07442 2.45 0.84653 2.90 0.49020 3.70 -0.17787
2.00 1.04372 2.50 0.81717 2.95 0.43709 3.80 -0.22590
2.10 1.00858 2.55 0.78578 3.00 0.38287 3.90 -0.26485
2.15 0.98935 2.60 0.75212 3.10 0.27558 4.00 -0.29146
2.20 0.96887 2.65 0.71591 3.20 0.17578
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Figure 3.7 – The electronic transition dipole moment of the C2 Swan system.
Reprinted from JQSRT, 124, Brooke et al., Line strengths and updated
molecular constants for the C2 Swan system, 11-20, Copyright (2013), with
permission from Elsevier.
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3.4 Calculation of Line Intensities

Table 3.7 – Einstein Av′v′′ valuesa of the C2 Swan system.

v′

v′′ 0 1 2 3 4 5 6 7 8 9 10

0 7.626 (+6) 2.814 (+6) 2.809 (+5) 4.333 (+3) 2.033 (+2) 3.642 (+1) 2.470 (-2) 2.140 (-1) 9.989 (-4) 3.827 (-3) 3.140 (-9)
1 2.135 (+6) 3.427 (+6) 4.072 (+6) 6.429 (+5) 8.720 (+3) 1.608 (+3) 1.591 (+2) 4.744 (+0) 1.822 (+0) 4.947 (-2) 3.540 (-2)
2 3.832 (+5) 2.746 (+6) 1.270 (+6) 4.422 (+6) 9.615 (+5) 7.432 (+3) 6.154 (+3) 3.223 (+2) 6.379 (+1) 4.108 (+0) 1.567 (+0)
3 5.590 (+4) 8.273 (+5) 2.568 (+6) 3.236 (+5) 4.301 (+6) 1.168 (+6) 1.085 (+3) 1.805 (+4) 1.707 (+2) 3.472 (+2) 1.346 (-2)
4 7.224 (+3) 1.710 (+5) 1.169 (+6) 2.066 (+6) 2.505 (+4) 4.005 (+6) 1.149 (+6) 4.993 (+3) 3.581 (+4) 1.535 (+2) 9.452 (+2)
5 8.592 (+2) 2.886 (+4) 3.215 (+5) 1.352 (+6) 1.510 (+6) 1.513 (+4) 3.459 (+6) 1.120 (+6) 5.272 (+4) 4.975 (+4) 4.445 (+3)
6 9.574 (+1) 4.280 (+3) 6.793 (+4) 4.745 (+5) 1.381 (+6) 1.038 (+6) 8.028 (+4) 3.438 (+6) 8.558 (+5) 1.863 (+5) 4.075 (+4)
7 1.006 (+1) 5.775 (+2) 1.218 (+4) 1.218 (+5) 6.009 (+5) 1.302 (+6) 6.443 (+5) 1.343 (+5) 3.253 (+6) 4.834 (+5) 4.111 (+5)
8 9.931 (-1) 7.206 (+1) 1.945 (+3) 2.582 (+4) 1.830 (+5) 6.840 (+5) 1.087 (+6) 4.546 (+5) 1.285 (+5) 3.081 (+6) 1.342 (+5)
9 9.005 (-2) 8.335 (+0) 2.828 (+2) 4.785 (+3) 4.495 (+4) 2.421 (+5) 6.721 (+5) 9.993 (+5) 3.120 (+5) 8.080 (+4) 2.824 (+6)

a The numbers in parentheses indicate the exponent.

Table 3.8 – fv′v′′ valuesa of the C2 Swan system (a), compared to those of Schmidt and Bacskay (2007)
(b).

v′

0 1 2 3 4 5
v′′ a b a b a b a b a b a b

0 3.045 (-2) 3.069 (-2) 9.450 (-3) 9.414 (-3) 8.067 (-4) 7.885 (-4) 1.080 (-5) 9.656 (-6) 4.455 (-7) 5.104 (-7) 7.100 (-8) 6.854 (-8)
1 1.015 (-2) 1.015 (-2) 1.350 (-2) 1.374 (-2) 1.355 (-2) 1.353 (-2) 1.837 (-3) 1.786 (-3) 2.172 (-5) 1.838 (-5) 3.536 (-6) 3.794 (-6)
2 2.199 (-3) 2.185 (-3) 1.283 (-2) 1.287 (-2) 4.939 (-3) 5.146 (-3) 1.460 (-2) 1.462 (-2) 2.739 (-3) 2.650 (-3) 1.853 (-5) 1.407 (-5)
3 3.936 (-4) 3.878 (-4) 4.642 (-3) 4.618 (-3) 1.180 (-2) 1.190 (-2) 1.245 (-3) 1.379 (-3) 1.412 (-2) 1.421 (-2) 3.326 (-3) 3.201 (-3)
4 6.365 (-5) 6.204 (-5) 1.171 (-3) 1.154 (-3) 6.428 (-3) 6.403 (-3) 9.361 (-3) 9.529 (-3) 9.560 (-5) 1.417 (-4) 1.311 (-2) 1.325 (-2)
5 9.707 (-6) 9.338 (-6) 2.456 (-4) 2.392 (-4) 2.145 (-3) 2.113 (-3) 7.296 (-3) 7.288 (-3) 6.764 (-3) 6.987 (-3) 5.741 (-5) 2.853 (-5)

a It should be noted that in the calculation of these values, a wavenumber for the band had to be used. The value chosen
was the wavenumber at which the forbidden Q(0) transition would appear. If the use of different wavenumbers here or
fv′v values for other bands are desired, the Einstein Av′v values in Table 3.7 can be used in conjunction with Equation 2.131
to calculate new fv′v values. The numbers in parentheses indicate the exponent.
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Chapter 3: The C2 Swan System

3.5 Analysis and Discussion

The final line list including positions, f -values and Einstein A values, contains lines for

all possible vibrational bands between v′=10 and v′=9, up to a maximum J of between

34 and 96, depending on the band. These maximum J values are based on the highest

observed J values for each vibrational level. A small section of the published line list is

shown in Table 3.9, as an example of the line lists produced in this thesis.

3.5.1 Spectral Validation

PGOPHER (Western, 2014) was also used for the purpose of validation, as it is able to

calculate and plot spectra based on a line list. Spectra were calculated and compared to

those recorded by Tanabashi et al. (2007). In all of the calculated spectra shown, a constant

Gaussian instrument function was added to best match the observed broadening. The

experimental procedure that Tanabashi et al. used involved observing C2 emission from

a microwave discharge in a flow of acetylene (C2H2) diluted in argon through a discharge

tube. In such a system the molecular vibration, and to a lesser extent the rotation, will not

be at thermal equilibrium. For this reason, the rotational and vibrational temperatures of

the simulation were also adjusted for best agreement. Two spectra were recorded, one

for the ∆v=-1 to +2 sequences and another for the ∆v=-2 and -3 sequences. Rotational

and vibrational temperatures of 1140 K and 6800 K, and 940 K and 5000 K were used for

the ∆v=-1 to +2 and ∆v=-2 to -3 spectra, respectively. The final parameter that had to be

added manually was a linear scaling factor, as the y-axis units of the recorded spectrum

are arbitrary. This value could not be kept constant during the production of each figure

given below (Figures 3.8 to 3.10). This is due to the presence of an instrument response

function, which cannot be corrected for at this point.

The spectra match very well for the lower vibrational and rotational levels; most of

the inaccuracies mentioned are present in the higher vibrational and rotational levels.

Typical example sections of the ∆v=-2 to +2 sequences are shown in Figures 3.8 to 3.15

that are typical of the rest of the range. These were chosen to show that there are many

regions where the observed and calculated positions show an excellent match, and also

some where they do not. This is mainly due to perturbations that are yet to be quantified

and included, as explained in Section 3.5.2.
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Figure 3.8 – A section of the (0,0) band of the C2 Swan system. P branch:
J ′′=36-41, R branch: J ′′=7-13. Reprinted from JQSRT, 124, Brooke et al., Line
strengths and updated molecular constants for the C2 Swan system, 11-20,
Copyright (2013), with permission from Elsevier.
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 Figure 3.9 – A section of the ∆v=+1 sequence of the C2 Swan system, showing
that the (1,0) R branch lines match well. The less intense lines do not match
as closely. They are a mixture of the (1,0) P branch, the (9,8) R branch and
the (8,7) P branch. (1,0) R branch: J ′′=39-45. Reprinted from JQSRT, 124,
Brooke et al., Line strengths and updated molecular constants for the C2

Swan system, 11-20, Copyright (2013), with permission from Elsevier.
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 Figure 3.10 – A section of the ∆v=+2 sequence of the C2 Swan system. Shown
is a mixture of the (2,0) R branch, the (3,1) R and P branches, the (4,2) and the P
branch,(5,3) P branch,(6,4) P branch.(2,0) R branch: J ′′=13-16, (3,1) R branch:
J ′′=47-51, (3,1) P branch: J ′′=2-4, (4,2) P branch: J ′′=5-12 and 39-48, (5,3) P
branch: J ′′=5-17 and 45-52, (6,4) P branch: J ′′=1-5. Reprinted from JQSRT,
124, Brooke et al., Line strengths and updated molecular constants for the C2

Swan system, 11-20, Copyright (2013), with permission from Elsevier.
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 Figure 3.11 – A section of the ∆v=-1 sequence of the C2 Swan system. The
less intense lines belong to the (0,1) Q branch. (0,1) P branch: J ′′=1-6, (0,1) R
branch: J ′′=25-31.
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 Figure 3.12 – A section of the ∆v=-2 sequence of the C2 Swan system, located
near the (0,2) band head. All of the features belong to the (2,0) P branch.
J ′′=1-5 and 17-22
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 Figure 3.13 – A section of the ∆v=0 sequence of the C2 Swan system. The less
intense lines are caused by the (1,1) P branch and the (0,0) P branch. (1,1) R
branch: J ′′=10-17, (0,0) R branch: J ′′=27-32.
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 Figure 3.14 – A section of the ∆v=0 sequence of the C2 Swan system. The less
intense lines are caused by the (3,3) P and R branches, the (2,2) P branch the
(1,1) P branch and the (8,8) P branch. (2,2) R branch: J ′′=17-22, (1,1) R branch:
J ′′=30-34, (0,0) R branch: J ′′=41-44.
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 Figure 3.15 – A section of the ∆v=-2 sequence of the C2 Swan system. (2,4)
R branch: J ′′=10-15, (2,4) P branch: J ′′=33-38, (1,3) R branch: J ′′=28-31. The
circular labels refer to the calculated lines
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3.5 Analysis and Discussion

3.5.2 d3Πg Perturbations

The numerous perturbations have caused many of the line positions calculated by

PGOPHER to be slightly inaccurate, and in turn have also had a small effect on the

reported intensities. With the inclusion of the perturbation constants for the v′=4 and

v′=6 levels, the average error for lines involving those upper levels is improved from

0.210 to 0.069 cm−1 and 0.571 to 0.038 cm−1, respectively. The average error for all

included lines was improved from 0.071 to 0.025 cm−1. The first values were calculated

using the molecular constants of Tanabashi et al., and the second using those in Tables

3.3 and 3.4, excluding any lines that had been heavily deweighted in the final fit. The

average error for all of the (4,8) lines that were included was reduced to 0.010 cm−1.

These improvements are due to the perturbation studies of Bornhauser et al. (2010, 2011).

3.5.3 Updated Molecular Constants

As was seen by Tanabashi et al. (2007), the major molecular constants Tv, Bv and

Av show a reasonably smooth vibrational dependence; the smoothness for Av for the

d3Πg state has improved from Tanabashi et al., specifically with a change in v′=6 level.

This improvement is presumably due to the inclusion of the perturbations. The other

constants still show several irregularities, particularly for v′′=7-9 and v′=9-10. This is

unsurprising as many fewer unperturbed/deperturbed observations are available for

these levels. Some AD constants showed a large uncertainty when floated, and so were

fixed at estimated values based on the other more certain ADv values. This applied to

v′=5, 7 and 8 and v′=8, 9 and 10. The same was also done for the spin-spin coupling

constant λ for v′=8.

3.5.4 Vibrational Band Einstein A and f -values

For further validation, lifetimes of vibrational levels have been calculated and are

compared to previous theoretical and experimental results in Table 3.10. For each upper

vibrational level, lifetimes were calculated as the reciprocal of the sum of the Einstein

A values for all possible transitions from the J ′=1, F3 level. Good agreement is shown

with both sets of data. The theoretical values of Schmidt and Bacskay (2007) include

transitions to the c3Σ+
g state, and they state that this system contributes 3-4% to their

radiative lifetimes. If this is taken into account, excellent agreement with our values is
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Table 3.10 – Lifetimes of vibrational levels of the C2 d3Πg state.

v′ Our value Theoreticala [1] Expt. [2] Expt. [3]
(ns) (ns) (ns) (ns)

0 98.0 95.1 101.8±4.2 106±15
1 99.8 96.7 96.7±5.2 105±15
2 102.4 99.1 104.0±17
3 106.0 102
4 110.9 107
5 118.2 113

a The theoretical values (of (Schmidt and Bacskay, 2007)) include
transitions to the c3Σ+

u state. They state that this system contributes
3-4% to their radiative lifetimes. If this is taken into account, excellent
agreement with our values is shown.
References: [1] Schmidt and Bacskay (2007), [2] Naulin et al. (1988),

[3] Bauer et al. (1986)

shown. Our Einstein Av′v values were converted into fv′v values for comparison with

those of Schmidt and Bacskay (for up to v′=5 and v′′=5) (Schmidt and Bacskay, 2007),

using Equation 2.131 and the wavenumber at which the forbidden Q(0) transition would

appear as the band wavenumber. It should be noted that slightly different fv′v values

would be obtained with a different choice of band wavenumber. Excellent agreement is

shown for most bands, however some of the higher vibrational bands disagree by up to

∼50% of the calculated values, as shown in Table 3.8.

3.6 12C13C Swan System

Different isotopes are produced in stars by various processes, and so relative isotopic

abundances can provide an insight into the processes that are occurring (Burbidge et al.,

1957). The 12C/13C ratio is related to the extent to which the CNO cycle, a hydrogen

burning mechanism catalysed by carbon, nitrogen, and oxygen, is operating (Climenhaga

et al., 1977), and can help in characterising other types of stars, for example R Coronae

Borealis stars (Hema et al., 2012). The 12C/13C ratio is much higher in many types

of stars than it is on Earth, for example it is normally between 2 and 20 in carbon

stars (Climenhaga et al., 1977). Therefore 12C13C lines are common, and accurate line

intensities are useful to calculate the 12C/13C ratio in stars, and other astronomical

environments such as comets (Rousselot et al., 2012; Lambert and Danks, 1983).

Unlike 12C2, 12C13C is not symmetrical, and so the levels that do not exist in 12C2 due

to g/u and a/s parity, do exist in 12C13C, doubling the number of lines in the spectrum.
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3.7 Conclusion

The available laboratory data for the 12C13C Swan system is much less extensive than

for 12C2; only lines in the (0,0) band have been recorded Amiot (1983). A line position

fit was performed including these lines, and also lines from the Ballik-Ramsay system

with v′′=0-2 (Amiot and Verges, 1982; Islami and Amiot, 1986), which shares its lower

electronic level with the Swan system. This provided accurate energy levels for the a3Πu,

v=0-2 levels and the d3Πg, v=0 level. The d3Πg, v = 1 and 2 levels were estimated using
12C2 spectroscopic constants and isotopic relationships, and the accurate v=0 constants.

Previous v≥ 1 line positions have been approximated using only the 12C2 spectroscopic

constants and isotopic relationships, and so the new line positions are an improvement.

Intensity calculations equivalent to those for 12C2 were performed, and the result was

a line list of all possible rovibronic transitions between v=0-2 in both electronic states, up

to J=60.

3.7 Conclusion

Many perturbations are present in the d3Πg state, and only those shown in Table 3.1

(involving the d3Πg, v=4 and v=6 levels) have been accounted for in these calculations.

While many of the line positions in the new line list do not match experiment precisely,

the intensities are an improvement on previously available data, where results have

been based on the partly incorrect assignments made by Phillips and Davis (1968).

The positions reported are also a slight improvement, mainly due to inclusion of the

perturbation data of Bornhauser et al. (2010, 2011). The calculated vibrational level

lifetimes show good agreement with experimental and theoretical studies. The 12C13C

line list includes line position improvements as described in Section 3.6, and also

intensities, and so is a more accurate and comprehensive list than was previously

available. The line lists will be of use to astronomers, materials scientists, and combustion

scientists in their analyses of the C2 Swan system.

The concentration of C2 in a star is strongly related to the C/O ratio. Almost all of

the carbon and oxygen in stellar atmospheres will form CO until one of the elements is

exhausted, and therefore the more abundant of the two elements is free to also form other

molecules (Wood, 1985), and the less abundant of the two exists almost entirely within

CO. If carbon is more abundant, and the star is cool enough for C2 to exist in relatively

high concentrations, then C2 spectral features will be observed. In fact, their presence
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defines a carbon star (Cohen et al., 2006). In stars that exhibit strong C2 spectral features,

they have been used to calculate the carbon abundance (Lambert et al., 1986; Hema et al.,

2012).

However, for calculations of carbon abundances in stellar atmospheres, the CH and

CN molecules are also available and are often used instead (Cohen et al., 2006; Asplund

et al., 2009). Transitions of C2 are more commonly used to calculate the 12C/13C ratio. CH

is much less useful for this purpose, because the separation of lines for different isotopes

depends on the ratios of the reduced mass. For CH, this is only 1.006, whereas it is 1.04

for C2. Therefore, 12C13C transitions are more separated from their 12C2 counterparts

than 13CH from 12CH, and so are more easily detected and analysed.

The studies of Cohen et al. (2006; extremely metal-poor carbon stars), Hema et al.

(2012; R Coronae Borealis and hydrogen-deficient carbon stars), and Rousselot et al.

(2012; comets) are recent examples of studies that use C2 Swan transitions to calculate

the 12C13C ratio (and carbon abundance in the case of the second study). The intensities

used by Cohen et al. (2006) are from a line list developed in 1971 (Querci et al.). As is often

the case with C2 observations, Hema et al. (2012) and Rousselot et al. (2012) calculated

their own line intensities. The line positions in all cases were mostly those of Phillips and

Davis (1968), which contain a number of errors. Based on this, it would clearly be useful

for astronomers to have access to the new C2 Swan line list (of both main isotopologues),

which is self consistent, has more accurate line positions and intensities, and covers all

possible transitions that could be required. This would mean that they can more easily

calculate C2 and carbon abundances, and 12C/13C ratios by reading the line list with

their code, and would not have to resort to older, less reliable data, or perform similar

calculations themselves.

The new line list has been used to calculate the carbon abundance and 12C/13C ratio

in one of the extremely metal-poor carbon stars analysed by Cohen et al. (2006), to test

its effectiveness (Ram et al., 2014). For star HE 0212-0557, Cohen et al. (2006) obtained

a carbon abundance of log ε(C)=8.06, where log ε(x) is the abundance of element x

in dex, equal to log10 (Nx/Nhydrogen) + 12, and a 12C/13C ratio of 4.0±30% using C2

transitions, and 3-4 using CH transitions. The values obtained using the new line list are

log ε(C)=8.09±0.05 and 12C/13C=4.5±0.5, which are in excellent agreement with those

of Cohen et al. (2006).

The line list has also successfully been used to calculate the carbon abundance in
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the Sun (Sneden et al., 2014), despite the weakness of the C2 Swan transitions. The

values obtained from two spectra were log ε(C)=8.48 and 8.53, which show excellent

agreement with equivalent calculations using CH lines in the same work, that suggested

an abundance of log ε(C)=8.48. The currently recommended value, from Asplund et al.

(2009), is log ε(C)=8.39± 0.04. The results using our line list are considered to be very

successful, as they use only the weak transitions of C2 and a 1D model as opposed to the

3D model used by Asplund et al. (2009).

These studies give good validation of the new line list, and indicates that it could be

used with confidence in the future in larger studies to obtain reliable results.

3.8 Future Work

There are still many local perturbations in the C2 Swan system that have not been

accounted for. More studies such as those performed by Bornhauser et al. (2010, 2011)

would be extremely useful, and hopefully a complete deperturbation study of all of

the bands reported here will eventually be performed. There are a number of other

electronic systems of C2, as shown in Figure 3.1, which could be analysed in a similar

manner. Specifically, all of the singlet systems shown in the figure could be analysed

simultaneously in a global fit, which would be slightly simpler as they are singlets. The

inclusion of the H-W effect as has been done for the other molecules in this thesis would

also be useful, but it is not vital for the strong vibrational bands.

The methods used in this chapter were then improved, for application to other

molecules. They were next applied to the CN molecule, for which the H-W effect and

transformation equation are now included.
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Chapter 4

The CN A2Π-X2Σ+ (red),

B2Σ+-X2Σ+ (violet), and Ground

State Rovibrational Systems

4.1 Preface

The CN molecule was studied to continue the theme of producing line lists for

astronomically important molecules. At this point, the calculation methods were

developed to include the H-W effect, and the case (b) to (a) transformation equation was

derived and applied. For C2, one electronic system was studied. In this chapter, there are

two electronic systems, both with states of different multiplicities to each other and to the

C2 Swan system, and also ground state vibration-rotation transitions were introduced.

All of this made the calculations much more complicated than they would have been if

simply another 3Π-3Π electronic system had been investigated. The computer programs

written previously had to undergo major changes.

4.2 Introduction

CN is an important molecule in astronomy and has been known of for more than a

century. Electronic spectra of CN consist of many transitions which span the near infrared

to the vacuum ultraviolet regions. Of the known electronic transitions, the A2Π-X2Σ+

(red) and B2Σ+-X2Σ+ (violet) systems have been studied extensively because of their

detection in a wide variety of sources. This free radical has been identified in comets
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(Greenstein, 1958; Ferrin, 1977; Johnson et al., 1983; Fray et al., 2005), stars (Fowler,

1912; Lambert et al., 1984), the Sun (Uitenbroek and Tritschler, 2007), circumstellar shells

(Wootten et al., 1982; Wiedemann et al., 1991; Bakker and Lambert, 1998), interstellar

clouds (Turner and Gammon, 1975; Meyer and Jura, 1985) and the integrated light of

galaxies (Riffel et al., 2007). The CN lines of the violet system were also identified in

the spectra of the Red Rectangle nebula, HD 44179 (Hobbs et al., 2004). The presence

of CN in astronomical environments makes it a useful probe of C and N abundances,

as well as isotopic ratios, which provide information on nucleosynthesis and chemical

evolution (Wang et al., 2004; Riffel et al., 2007; Savage et al., 2002; Adamczak and Lambert,

2013; Smith et al., 2013). Interstellar lines of the CN B2Σ+-X2Σ+ system have been used

to measure the temperature of the cosmic background radiation, for example by Leach

(2004, 2012), who has found the cosmic temperature to be 29 ± 2 mK higher than the

cosmological temperature of 2.725 ± 0.001 K, measured by the COBE satellite. This

difference was attributed, in part, to the interaction between the A2Π and B2Σ+ states.

Extensive studies of the A2Π-X2Σ+ (Ram et al., 2010a) and B2Σ+-X2Σ+ (Ram et al.,

2006) systems of 12C14N have been reported recently. The red and violet systems of the
13C14N (Ram et al., 2010b; Ram and Bernath, 2011, 2012) and 12C15N (Colin and Bernath,

2012) isotopologues have also been analysed.

There have been several studies of the infrared rovibrational bands (Davis et al., 1991;

Horká et al., 2004) as well as microwave and millimeter-wave studies of the X2Σ+ ground

state (Hempel et al., 2003; Hübner et al., 2005; Dixon and Woods, 1977; Skatrud et al.,

1983; Johnson et al., 1984; Ito et al., 1991; Klisch et al., 1995) that provided measurements

of the pure rotational transitions for the v=0 to 10 vibrational levels. An experimental

dipole moment of 1.45±0.08 D for the X2Σ+ state was measured by Thomson and Dalby

(1968), on which current available rotational line intensities in spectroscopic databases

are based (Pickett et al., 1998; Müller et al., 2001). Other theoretical values include 1.48 D

(Das et al., 1974), 1.36 D (Urban et al., 1994) and 1.416 ± 0.008 D (Neogrády et al., 2002).

Langhoff and Bauschlicher (1989) calculated a full DMF using the MRCI method, which

resulted in an equilibrium dipole moment of 1.35 D. Their value for the square of the

1-0 band transition dipole moment (7.5× 10−4 au) was also in good agreement with an

experimental value (7.5 ± 3.1× 10−4 au) reported by Treffers (1975), although there is

clearly a large uncertainty in the experimental value. Intensities based on the Thomson

and Dalby (1968) dipole moment are still in general use, for example recently by Riechers
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et al. (2007) and Bayet et al. (2011). A new calculation using a high level of theory, a

large basis set and a greater range of bond distances would be of use in creating a larger

and more accurate list of intensities, and to help to resolve the discrepancies highlighted

above.

Jørgensen and Larsson (1990) have calculated line intensities for the A2Π-X2Σ+

system of CN at temperatures ranging from 1000 K to 6000 K. In this study the

rotational lines of different isotopologues of CN were calculated for transitions between

vibrational levels with v=0-30 of the ground and excited states using a limited set of older

spectroscopic constants.

There have been many experimental studies of the lifetimes of the A2Π state

(Jeunehomme, 1965; Katayama et al., 1979; Sneden and Lambert, 1982; Nishi et al., 1982;

Duric et al., 1978; Taherian and Slanger, 1984; Lu et al., 1992; Huang et al., 1993; Halpern

et al., 1996) and the B2Σ+ state (Nishi et al., 1982; Duric et al., 1978; Jackson, 1974; Luk

and Bersohn, 1973) over the past four decades. It has been noted that the experimental

lifetimes of the A2Π state reported by different groups show poor agreement with each

other. For example, the values reported by Katayama et al. (1979) are lower than the

values of most of the other experimental studies. Their values range from 2.5 µs for v=2

to 4 µs for v=9 of the A2Π state. On the other hand, Sneden and Lambert (1982) have

reported much higher values ranging from 14.2 µs for v=0 to 5.2 µs for v=10, based on an

analysis of the solar spectrum. However, the most recent experimental values of Taherian

and Slanger (1984) (6.67 ± 0.60 µs for v=2 to 4.3 ± 0.85 µs for v=5) and Lu et al. (1992)

(6.96±0.3 µs for v=2 to 3.38±0.2 µs for v=5) show better agreement, at least for the lower

vibrational levels. In contrast, the experimental lifetimes of the B2Σ+ state obtained in

different studies agree reasonably well with each other (Nishi et al., 1982; Duric et al.,

1978; Jackson, 1974; Luk and Bersohn, 1973).

There are also several theoretical studies of spectroscopic properties and radiative

lifetimes of the A2Π and B2Σ+ states (Cartwright and Hay, 1982; Larsson et al., 1983;

Lavendy et al., 1984; Knowles et al., 1988; Bauschlicher et al., 1988; Shi et al., 2010). It is

found that the majority of the A2Π state theoretical results agree well with each other,

but these lifetimes are considerably larger than the experimental values discussed above.

In the case of the B2Σ+ state, the theoretical values agree well with each other as well as

with the experimental results. It is still unclear why the experimental and the theoretical

lifetimes of the A2Π state do not agree, other than the fact that measuring relatively long
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lifetimes in the near infrared is experimentally challenging, and long lifetimes in general

are more sensitive to experimental issues such as collisional effects and molecules moving

out of the field of view.

The spectra used for measuring the rotational line positions of the red (Ram et al.,

2010a) and violet (Ram et al., 2006) systems of 12C14N were observed using different

experimental sources including a microwave discharge, nitrogen afterglow and high

temperature furnace. The spectra recorded using the nitrogen afterglow source provided

extensive bands for both systems involving high vibrational levels. For the A2Π-X2Σ+

system, a rotational analysis of 63 bands was obtained, with v=0-22 in the A2Π state and

v=0-12 in the ground state (Ram et al., 2010a). For the B2Σ+-X2Σ+ system, 57 bands

involving v=0-15 in both the ground and excited states (Ram et al., 2006) were analysed.

The final data set of the two systems included the existing infrared rovibrational

measurements by Davis et al. (1991), Horká et al. (2004), and Hübner et al. (2005) in

addition to the available microwave and millimeter wave measurements of the ground

state (Hempel et al., 2003; Hübner et al., 2005; Dixon and Woods, 1977; Skatrud et al.,

1983; Johnson et al., 1984; Ito et al., 1991; Klisch et al., 1995).

4.2.1 CN B2Σ+-X2Σ+ and X2Σ+-X2Σ+ Systems

The energy level structure of the X2Σ+ and B2Σ+ states is very simple. The only

parameter lifting the degeneracy of levels of the same N is γv. The splitting is very small,

and results in an F1e and F2f state for each N level. The energy levels of the X2Σ+ state

are shown in Figure 4.1, and the arrangement of the B2Σ+ levels is the same.

Figure 4.1 shows the possible transitions from one upper N level. There are strong

R and P branches (in terms of N ) that are slightly split into doublets due to the different

parity transitions, and very weak transitions that cross spin components. These are Q

branches in terms of J , which are weak as ∆Λ = 0. The Bv values are reasonably similar

for the two states, so at what point and whether within the P or R branch that the lines

turn round depends on v′ and v′′. An example spectrum is shown later in Figure 4.9. The

rovibrational transitions within the X2Σ+ state show the same pattern as the B2Σ+-X2Σ+

system, except that the branches do not turn round.
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Figure 4.1 – Possible transitions with N ′=3 in the CN B2Σ+-X2Σ+ system.
Stronger lines are indicated with thicker arrows.
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4.2.2 CN A2Π-X2Σ+ System

The A2Π levels have quite large Av values compared to their Bv values. This means that

at low J , the spin-orbit coupling has more of an effect than rotation on the energy, and it is

therefore close to Hund’s case (a). It is closer to case (a) than C2, which can be deduced by

examining the eigenvectors from the diagonalisation of the Hamiltonian. For example,

for the v=0, J=2.5, F1e level of the CN A2Σ+ state, the eigenvectors are -0.996 and -0.085

relating to Ω=1.5(e) and 0.5(e), respectively. For the v=0, J=3, F1e level of the C2 a3Πu

state, they are 0.951, 0.303, and 0.0623 relating to Ω=2(e), 1(e), and 0(e), respectively. A

pure case (a) state would have eigenvectors of 1 for one Ω state, and 0 for the others. Each

J level within each spin component is split further into e and f parity levels. The general

energy level structure is shown in Figure 4.2.

Figure 4.2 also shows the possible transitions from upper levels that have N=3 (for

the upper state, N is not a good quantum number, but can still be useful a a label). The

spectrum is much more complicated than the other examples seen so far. For the C2 Swan

system, the transition matrices only had non zero values where ∆Ω=0, as ∆Λ=0. This

results in the transitions that cross spin components being very weak, especially at high

J where the states are closer to case (b). The CN A2Π-X2Σ+ system has ∆Λ=+1 however,

and the parity transition matrices are made up of two MEs of similar values for each

possible parity transition and ∆J branch. These are 〈2Π(1.5)(e/f)|µ̂|2Σ+
(0.5)(e/f)〉 and

〈2Π(0.5)(e/f)|µ̂|2Σ+
(0.5)(e/f)〉. The transition matrices in terms of the real F components

will therefore still have reasonably similar MEs, and the F1 − F2 and F2 − F1 transitions

will have an intensity on the same order of magnitude as the F1 − F1 and F2 − F2

transitions. The difference is much greater as the A2Π state tends towards case (b) at

higher J . The result on the spectrum is that there are reasonably intense progressions

for each possible type of transition: pP11, qQ11, rR11, pP22, qQ22, rR22, oP21, pQ21, qR21,
qP12, rQ12, and sR12, using the notation ∆N∆JF ′′F ′ . As the parity only splits levels

by a small amount, some of these will appear as doublets, but with very different

intensities. Specifically, as can be seen by the similar energy separations in Figure 4.2, the

progressions that appear together are pP11 and pQ21, qQ11 and qR21, rR22 and rQ12, and
qQ22 and qP12. As the upper state tends towards case (b) at higher J , the doublet structure

of same-N transitions becomes clearer. The spectrum is further complicated as Bv in the

upper state is greater than in the lower state, so that the S and R branches (in terms of N )

turn round and cause all the branches to be on top of each other. The calculated spectrum
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Figure 4.3 – Calculated stick spectrum of the CN A2Π-X2Σ+, (2,1) band, using
a temperature of 2500 K.

for the (2,0) band is shown in Figure 4.3, using an example temperature of 2500 K.

4.3 Method of Calculation

In the previous work (Ram et al., 2010a), a least-squares fitting program was used to fit the

rotational lines. Several perturbations in the observed bands are caused by X2Σ+∼A2Π,

A2Π∼B2Σ+ and B2Σ+∼a4Π interactions (Kotlar et al., 1980; Ito et al., 1988, 1992; Ozaki

et al., 1983b,a), and rotational lines affected by perturbations were given lower weights.

A more detailed description of the observed perturbations is available in the previous

paper (Ram et al., 2010a).

In the present work, the same lines were fitted using PGOPHER (Western, 2014). As

mentioned by Ozaki et al. (1983b), the B2Σ+, v=10 level is perturbed by v=24 in the

A2Π state, and the only change made to the data set was that the weights of some

perturbed rotational lines of bands with v=10 in the B2Σ+ state were readjusted, and

only the constants T , B, D and γ were floated. Without any adjustment of the weights,

the calculated term values of the B2Σ+, v=10 level for higher J changed erratically with

increasing J (so much so that at very high J (> 100), the term values were negative),

because of incorrect values of the higher order constants used in the previous fit (Ram

et al., 2006). The new PGOPHER fit was obtained using the previous constants as initial
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Table 4.1 – Equilibrium molecular constants for the CN X2Σ+, A2Π, and
B2Σ+ states.

Constant X2Σ+ B2Σ+ A2Π

Te 0 25752.590(12) 9243.29599(53)
ωe 2068.68325(99) 2162.223(30) 1813.28845(74)
ωexe 13.12156(45) 19.006(22) 12.77789(27)
ωeye 0.1341(61) −0.1346(65) −0.001775(24)
ωeze −0.005426(74) −0.03673(85) ...
ωeηe −9.82(40)E-5 0.001430(37) ...
Be 1.8997872(28) 1.96797(41) 1.7157690(24)
αe1 −0.0173802(27) −0.01881(18) −1.72528(35)E-2
αe2 −2.235(69)E-5 −0.000643(16) −1.402(88)E-5
αe3 −6.64(48)E-7 ... −9.75(50)E-7
re(Å) 1.17180630(86) 1.15133(12) 1.23304492(86)

Numbers in parentheses indicate one standard deviation to the last significant digits.

Table 4.2 – Spectroscopic constants for the CN X2Σ+ state.

v Tv Bv Dv × 105 Hv γv γDv

0 0.0 1.891090248(84) 0.640771(18) 6.277(17)E-12 7.25393(56)E-3 −9.1(11)E-9
1 2042.42135(11) 1.873665679(78) 0.641647(18) 5.984(17)E-12 7.17190(82)E-3 −1.12(12)E-8
2 4058.54930(11) 1.856187457(76) 0.642639(18) 5.678(18)E-12 7.0801(12)E-3 −1.75(15)E-8
3 6048.34449(17) 1.83865289(13) 0.643809(23) 5.510(34)E-12 6.9798(14)E-3 −2.43(36)E-8
4 8011.76770(17) 1.82105955(22) 0.645051(29) 5.204(52)E-12 6.8636(16)E-3 −3.67(52)E-8
5 9948.77678(17) 1.80340446(25) 0.646440(35) 5.014(91)E-12 6.7213(16)E-3 −5.87(76)E-8
6 11859.32865(19) 1.78568518(26) 0.647525(51) ... 6.5456(17)E-3 ...
7 13743.37581(21) 1.76789886(23) 0.649207(93) ... 6.3134(16)E-3 ...
8 15600.87043(26) 1.75004067(30) 0.65094(18) ... 6.0118(18)E-3 ...
9 17431.75566(40) 1.73210142(28) 0.65297(56) ... 5.6130(25)E-3 ...

10 19235.96013(45) 1.71404986(30) 0.66358(75) ... 5.2324(30)E-3 ...
11 21013.29410(84) 1.695088(22) 0.192(14) −9.19(23)E-9 1.434(16)E-2 −8.111(76)E-5
12 22765.7282(10) 1.677608(27) 1.231(21) 1.099(47)E-8 1.3297(18)E-1 −2.274(11)E-4
13 24488.7305(13) 1.659501(23) 0.6610(68) ... 1.777(20)E-2 ...
14 26185.6928(18) 1.641413(46) 0.742(27) ... 1.179(25)E-2 ...
15 27856.2000a 1.62261(12) 0.617(46) ... 3.5(17)E-3 ...

Numbers in parentheses indicate one standard deviation to the last significant digits.
a Value kept fixed

values and, as expected, the new spectroscopic constants were slightly modified after

fitting the A2Π-X2Σ+, B2Σ+-X2Σ+ and X2Σ+ rovibrational lines simultaneously in a

combined fit. Most of the spectroscopic constants agree within the previous error bars

except for some higher order constants. The updated spectroscopic constants for the

X2Σ+, A2Π and B2Σ+ states have been provided in Tables 4.2, 4.4, and 4.3, respectively,

where the constants are those described in Section 2.4. Several vibrational levels of the

A2Π and B2Σ+ states are affected by perturbations, and therefore the values for the

affected levels were given lower weights or were completely deweighted to determine

the equilibrium constants. The equilibrium constants (as described in Section 2.1.4) for

all three states are provided in Table 4.1.
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Table 4.3 – Spectroscopic constants for the CN B2Σ+ state.

v Tv Bv Dv × 105 γv γDv

0 25797.87041(49) 1.9587206(15) 0.659524(62) 1.7153(60)E-2 −6.81(31)E-7
1 27921.46673(58) 1.9380395(52) 0.67308(33) 1.8162(95)E-2 −8.96(93)E-7
2 30004.90702(83) 1.916503(12) 0.7031(32) 1.839(15)E-2 −2.40(69)E-6
3 32045.94782(75) 1.894182(17) 0.7115(69) 2.453(18)E-2 −7.3(13)E-6
4 34041.97171(62) 1.8704798(76) 0.7451(17) 2.117(11)E-2 −5.18(41)E-6
5 35990.0982(24) 1.847108(28) 0.9139(61) 4.27(96)E-3 1.693(45)E-4
6 37887.42564(54) 1.8193419(61) 0.8099(12) 2.524(10)E-2 −8.53(31)E-6
7 39730.53557(59) 1.790760(14) 1.1049(67) 6.098(67)E-3 ...
8 41516.64447(62) 1.7621439(66) 0.9058(14) 3.488(11)E-2 −1.985(36)E-5
9 43242.98520(78) 1.730286(14) 0.9254(67) 1.576(12)E-2 −1.937(41)E-5
10 44908.7939(11) 1.696076(40) 0.313(40) 2.4897(38)E-1 −1.7970(62)E-3
11 46511.39737(85) 1.664979(12) 1.0253(31) 2.161(16)E-2 −1.866(62)E-5
12 48053.7308(11) 1.629785(33) 1.846(22) −9.17(26)E-3 −7.56(25)E-5
13 49537.3409(13) 1.598044(22) 1.0871(61) 3.344(25)E-2 −2.565(72)E-5
14 50964.5889(26) 1.564126(94) 1.207(41) 3.49(49)E-3 ...
15 52340.0287(20) 1.53238(13) 1.220(60) 8.61(17)E-2 −2.334(28)E-4

Numbers in parentheses indicate one standard deviation to the last significant digits.

4.3.1 Calculation of Transitions Dipole Moment Functions

The new calculations of the CN red and violet TDMFs were carried out by David W.

Schwenke (NASA Ames Research Center, California), with a modified version of the

quantum chemistry program MOLPRO 2012.6 (Werner et al., 2012).

The one electron basis set used started with the cc-pVQZ basis set of Dunning

(Dunning, 1989). However to treat core-valence correlation, further functions were

added (Schwenke, 2010). The molecular orbitals were determined by state-averaged

multi-configuration Hartree-Fock (MCHF) calculations, using dynamic weighting of the

state energies (Deskevich et al., 2004). The 1s-like orbitals on C and N were kept

doubly occupied in all configurations and the active space consisted of 4 a1, 2 b1 and

2 b2 orbitals. In the state averaging, 21 A1 states, 20 B1 and 20 B2 states, and 19 A2

states, all of doublet spin, were included. These molecular orbitals were then used to

compute wave functions using the internal-contracted MRCI (icMRCI) method (Knowles

and Werner, 1988; Werner and Knowles, 1988; Knowles and Wener, 1992). In these

calculations, all electrons were correlated. All calculations included scalar relativity via

the Douglas-Kroll-Hess method (Douglas and Kroll, 1974; Hess, 1985, 1986). Calculations

were carried out for 44 internuclear distances ranging from 100 bohr to 1 bohr (52.92

Åto 0.5292 Å), with step sizes 0.05 bohr (0.02646 Å) near the minima of the X2Σ+ A2Π

and B2Σ+ states. The transition moments were computed from these wavefunctions as

expectation values. Calculations were also carried out with the same procedure, but

using the one electron basis derived the same way from the cc-pVTZ basis set. The results
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were very similar to that obtained with the cc-pVQZ basis set.

4.3.2 The H-W Effect

The magnitude of the H-W effect is mostly quite small for CN, especially for the observed

bands, though there are some bands for which the effect is dramatic. Figure 4.4 shows

a band on which the H-W effect has a typical effect (the observed B2Σ+-X2Σ+ (9,

7) band) and an extreme case (the weak, unobserved (10, 2) band). In Section 2 it

states that the calculated Hund’s case (a) MEs can be entered directly into PGOPHER.

This newer method was not used until calculations were performed for NH. For CN,

the H-W effect itself was entered into PGOPHER. To achieve this, the vibronic TDM,

〈η′Λ|T kq (J ′Ω′JΩ)|ηΛ〉, is written as having a dependence on J and Ω. This expression

is used by PGOPHER to calculate line strengths, and the H-W effect can be included by

expressing the normally constant vibronic transition moment as an arbitrary function of

J ′,Ω′, J, and Ω. A dimensionless H-W factor FTDM (mJ ′Ω′JΩ) is defined as a ratio to a

reference value:

FTDM (mJ ′Ω′JΩ) =
〈η′Λ|T kq (J ′Ω′JΩ)|ηΛ〉

〈η′Λ|T kq (J ′ = Ω′Ω′J = ΩΩ)|ηΛ〉
(4.1)

which gives the correction scaling factor to the vibronic dipole moment, where mJ ′Ω′JΩ

is equal to J ′′ plus a value based on ∆J and ∆Ω. In Equation 4.1, Ω is used in the

wavefunctions in the reference value in the denominator as it represents the lowest

possible values of J in both of the A2Π spin components and in the B2Σ+ upper state.

The H-W factors, FTDM (mJ ′Ω′JΩ), are calculated using the transformed Hund’s case (a)

MEs. These FTDM (mJ ′Ω′JΩ) values can be expressed as a polynomial according to the

following equation:

FTDM (mJ ′Ω′JΩ) = 1 + CmJ ′Ω′JΩ +Dm2
J ′Ω′JΩ + Em3

J ′Ω′JΩ + . . . . (4.2)

There are six possible versions of this equation for the A2Π-X2Σ+ system, two for each

change in J , corresponding to the two possible spin components, Ω = ±0.5 and Ω = ±1.5,

in the A2Π state. The six different polynomials for each band were fitted to Equation 4.2

with effective polynomial orders (which were adjusted to give a good fit), using TDM

matrix elements up to the highest reported J values. The resulting coefficients (C, D,

E etc.; six sets for each band) were input into PGOPHER along with the reference TDM
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Figure 4.4 – Relative intensities of the CN B2Σ+-X2Σ+ system, 9-7 and
10-2 bands. The black lines are calculated by using only one TDM matrix
element for the whole band and including no H-W effect (”N only” method).
The green dots include the H-W effect and the Hund’s case (b) to (a)
transformation of the matrix elements. The red lines are calculated by not
performing the Hund’s case transformation, and using the quantum number
N instead of J to account for the H-W effect. For both parts of the figure,
the intensities have been calculated using a rotational temperature of 500 K,
showing J up to 30.5. The 9-7 band was used as one example as this has the
largest H-W effect for any observed band of the B2Σ+-X2Σ+ system. The 10-2
band is a typical example of the extent of the effect for the very weak bands.
Reproduced from (Brooke et al., 2014b) by permission of the AAS.
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matrix elements (the denominator in Equation 4.1). PGOPHER multiplies

〈η′Λ|T kq (J ′ = Ω′Ω′J = ΩΩ)|ηΛ〉 by the appropriate polynomial value according to the

value of mJ ′Ω′JΩ, ∆J , and the spin component for each transition. For the B2Σ+-X2Σ+

system, only three polynomials were required to be fitted to Equation 4.2 for each band,

as there is only one spin component in both states. Please note that this is not the standard

definition of the H-W factor; the subscripts ”TDM” and ”J ′Ω′JΩ” are present to indicate

this. Specifically, the correction must be made to the ME to allow for the Hund’s case

(a)/case (b) transformation rather than the square of the ME as is normally done for

simpler systems. The standard definition would also make no correction to the Q branch.

4.3.3 Transformation from Hund’s Case (a) to Case (b) MEs

The transformation equation in this case is

〈η′|Λ|′ = 1|T 1
q (J ′Ω′JΩ)|ηΛ = 0〉 = (−1)J

′−Ω′

 J ′ 1 J

−Ω′ q Ω

−1

×
∑
N,N ′

(−1)N−N
′+J+1.5(2N ′ + 1)(2N + 1)

J ′ 0.5 N ′

Ω′ −Σ −Λ′

J 0.5 N

Ω −Σ 0


×

N ′ J ′ 0.5

J N 1


 N ′ 1 N

−Λ′ q 0

 〈η′|Λ′| = 1|T 1
q (N ′N)|ηΛ = 0〉,

(4.3)

where q = Ω′ − Ω′′. The transformation of the CN A2Π-X2Σ+ MEs from case (b) to (a)

was partly described previously in Section 2.5.4, where an R(J ′′) transition was used as

an example. It required the case (b) MEs R(J ′′ − 0.5), Q(J ′′ + 0.5), and R(J ′′ + 0.5). The

P branch similarly requires P(J ′′ − 0.5), Q(J ′′ − 0.5), and R(J ′′ + 0.5), and the Q branch

requires P(J ′′ + 0.5), Q(J ′′ − 0.5), Q(J ′′ + 0.5), and R(J ′′ − 0.5) (when J > 0.5). For the

B2Σ+-X2Σ+ and X2Σ+-X2Σ+ systems, the R branch requires R(J ′′ − 0.5) and R(J ′′ + 0.5),

the P branch P(J ′′ − 0.5) and P(J ′′ + 0.5), and the Q branch R(J ′′ − 0.5) and P(J ′′ + 0.5).

As the MEs only vary slowly with N , the functions of N and J are very similar, and this

transformation only introduces a small correction in this case, as shown in Figure 4.4,

along with the difference observed using the N only method (Section 2.5.6).
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4.3 Method of Calculation

4.3.4 The A2Π-X2Σ+ System

For most vibrational bands of the CN A2Π-X2Σ+ system, the H-W effect is calculated to

be relatively small (∼5%), but for some weaker bands the effect is large. The largest

difference between the matrix elements for reported rotational transitions within a

vibrational band and the reference matrix element for that band (the denominator in

Equation 4.1; the maximum H-W effect) is 8% for the 0-0 band, 5% for the 6-8 band, and

67% for the 4-5 band (the greatest difference for an observed band). It is above 50% for

several unobserved bands and one observed band. It was therefore decided that the effect

should be included in these calculations.

In calculating the centrifugal part of the potential, (N(N + 1) − Λ2)h̄/2µr2, Λ = 1 is

used by LEVEL for the 2Π state. The effect of using Λ = 1 as opposed to Λ = 0 is mostly

small (< 0.5%), but for some bands it has a large effect. The bands in which this effect is

large are mostly ones where the vibrational overlap is very small, and therefore any small

alteration in the wavefunctions is more likely to cause a disproportionately large change

in the overlap. The extent to which this change occurs has been investigated before (Le

Roy and Vrscay, 1975), where a formula for its prediction, using rotational constants and

vibrational spacings, was presented. It can also be seen from the centrifugal term that Λ

will have more of an effect at lower J values.

The final output of this calculation consists of line positions, Einstein A-values and

f -values for 295 possible vibrational bands (63 observed), and rotational lines with J up

to between 25.5 and 120.5, depending on the band (see Table 3.9 for an example of the

line list format). To decide on the highest J transitions to report for a specific band, the

highest observed J values of each level (from any observed band) are taken, and to the

lowest of these two values, 5 is added, and then this is rounded up to the nearest 0.5 or

5.5. For example, for the reported A2Π-X2Σ+,(6,4) band, the highest observed J levels in

the A2Π, v=6 and X2Σ+, v=4 levels for any band are 88.5 and 72.5, respectively. 72.5 is

the lower, and adding 5 and rounding up to nearest 5 gives 80.5. Therefore, all possible

transitions up to J ′′ = 80.5 in the A2Π-X2Σ+, (6,4) band are reported.

Using the Einstein A-values obtained from this calculation, the radiative lifetimes for

some lower vibrational levels (v=0-4) of the A2Π state were calculated (as described in

the following sections) and compared with the available experimental and theoretical

lifetimes (see Table 4.5).
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Table 4.5 – Comparison of lifetimes (in µs) with the selected experimental and theoretical lifetimes of the v=0-4
vibrational levels of the CN A2Π state.

This work Experimental Theoretical

v A2Π1/2 A2Π3/2
TS

Ref. 1
LHH
Ref. 2

DEL
Ref. 3

J
Ref. 4

KWHC
Ref. 5

BLT
Ref. 6

LGR
Ref. 7

CH
Ref. 8

LSA
Ref. 9

0 11.08 11.29 8.50±0.5 ... 3.83±0.5 ... 11.16 11.2 11.3 11.1 8.1
1 9.60 9.76 8.02±0.6 ... 4.05±0.4 7.29±0.2 9.71 9.7 9.6 9.6 7.0
2 8.53 8.66 6.67±0.6 6.96±0.3 3.98±0.4 7.05±0.3 8.66 8.6 8.4 8.6 6.3
3 7.73 7.84 6.67±0.6 5.09±0.2 4.20±0.4 6.95±0.3 7.87 7.8 7.6 7.2 5.7
4 7.12 7.21 4.70±0.2 3.83±0.3 4.35±0.4 6.58±0.4 7.25 7.2 6.9 6.7 4.9

References. (1) Taherian and Slanger (1984); (2) Lu et al. (1992); (3) Duric et al. (1978); (4) Jeunehomme (1965); (5)
Knowles et al. (1988); (6) Bauschlicher et al. (1988); (7) Lavendy et al. (1984); (8) Cartwright and Hay (1982); (9) Larsson
et al. (1983).

Table 4.6 – Comparison of current and previous Einstein Av′v values for
several vibrational bands within the X2Σ+ ground state of CN

Einstein Av′v

Band
Langhoff and

Bauschlicher (1989)
This work

1-0 13.02 8.85
2-1 24.20 16.5
3-2 33.77 22.9
4-3 41.92 28.2
5-4 48.81 32.3
2-0 1.75 0.661
3-1 4.88 2.33
4-2 9.12 5.02
5-3 14.22 8.43
3-0 0.10 0.00563
4-1 0.38 0.0404
5-2 0.95 0.180

Table 4.7 – Comparison of calculated lifetimes (in ns) with the available experimental and theoretical
lifetimes of the v=0-5 vibrational levels of the CN B2Σ+ state.

Experimental Theoretical

v This work
DEL

Ref. 1
J

Ref. 2
LB

Ref. 3
NSH
Ref. 4

BLT
Ref. 5

KWHC
Ref. 6

LSA
Ref. 7

CH
Ref. 8

0 62.74 66.2±0.8 65.6±1.0 60.8±2.0 65.0±2.0 62.69 60.73 66.80 62.29
1 62.97 66.3±0.8 ... ... ... 63.25 61.21 66.63 62.88
2 63.46 64.3±2.0 ... ... ... 64.19 61.97 67.10 63.67
3 64.25 65.6±3.0 ... ... ... 65.52 63.13 68.22 64.84
4 65.39 68.2±4.0 ... ... ... 67.23 65.00 69.72 66.42
5 66.95 67.3±5.0 ... ... ... 69.32 66.44 71.43 68.42

References. (1) Duric et al. (1978); (2) Jackson (1974); (3) Luk and Bersohn (1973); (4) Nishi et al. (1982); (5) Bauschlicher et al.
(1988); (6) Knowles et al. (1988) (7) Larsson et al. (1983) (8) Cartwright and Hay (1982); (9).
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4.3.5 The B2Σ+-X2Σ+ System

The calculations for the B2Σ+-X2Σ+ system were performed in a similar manner as

described for the A2Π-X2Σ+ system. In this case a 1Σ-1Σ transition was calculated

by LEVEL. The H-W effect was again included as it is of a similar magnitude as the

A2Π-X2Σ+ system. For example, the maximum H-W effect (defined in Section 4.3.4)

is 0.4% for the 0-0 band, 10% for the 6-3 band, and 42% for the 9-7 band (the greatest

difference for an observed band). For several of the unobserved bands, this difference is

above 1000%.

The final line list consists of line positions and intensities for 253 bands of this system

with v′ = 0−15, v′′ = 0−15, and J up to a maximum of between 25.5 and 70.5, depending

on the band. The lifetimes of the B2Σ+ state levels calculated using the Einstein A-values

agree well with the values obtained in previous experimental and theoretical studies.

4.3.6 The X2Σ+-X2Σ+ System

The main focus of these CN calculations was to calculate intensities for the two electronic

systems mentioned. As this involved the calculation of a DMF and a potential energy

curve for the X2Σ+ ground state, intensities were also calculated and reported for the

rovibrational and rotational transitions within the ground state. The calculations for

these transitions were the same as those for the B2Σ+-X2Σ+ system, but with the upper

state wavefunctions replaced by X2Σ+ and using the X2Σ+ state DMF as opposed to the

TDMF. Again, the H-W effect was included, as the maximum effect (defined in Section

4.3.4) was more than 5% for most bands. For example, it is 81% for the 2-0 band (the

greatest difference for an observed band) and above 100% for several of the unobserved

bands. The final reported line list contains line positions and intensities for 253 bands of

rovibrational transitions with v=0-15, and J up to between 25.5 and 120.5, depending on

the band. Einstein Av′v values have been calculated and compared to previous values in

Table 4.6.

4.3.7 Vibrational EinsteinAv′v and fv′v Values

Separate Einstein Av′v values were calculated for the different spin components, using

J ′=0.5 for A2Π1/2 and J ′=1.5 for A2Π3/2. The Einstein Av′v values for the different spin

components are slightly different, which is mainly due to the wavenumber difference of
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the two spin component transitions.

The Einstein Av′v values have been used to calculate the oscillator strengths (fv′v)

using Equation 2.131. The wavenumber of the qQ2(0.5) line for the A2Π1/2-X2Σ+

sub-band and the rR1(0.5) line for the A2Π3/2-X2Σ+ sub-band, located close to the band

origins, were used in Equation 2.131. Einstein coefficients Einstein Av′v and oscillator

strengths fv′v have been computed for 290 bands of the red system with v′=0-22 and

v′′=0-15, 250 bands of the B2Σ+-X2Σ+ transition with v=0-15 for both states, and 136

bands of the rovibrational transitions within the X2Σ+ state with v=0-15.

4.4 Results and Discussion

4.4.1 The A2Π State

There is generally good agreement between other theoretical values and our calculated

A2Π1/2- X2Σ+ oscillator strengths. For example, Knowles and Werner (1988) have

predicted f3′0′′=3.34 ×10−4, compared to 3.35 ×10−4 from Bauschlicher et al. (1988). The

corresponding values from our calculation are f3′0′′=3.40×10−4 for A2Π1/2 and f3′0′′=3.39

×10−4 for A2Π3/2. A value of f3′0′′=4.58×10−4 was calculated by Larsson et al. (1983)

but it was pointed out by Gredel et al. (1991) that the f -values of Larsson et al. (1983)

were probably too large. Based on the calculations by Knowles and Werner (1988)

and Bauschlicher et al. (1988), Bakker and Lambert (1998) have adopted the following

fv′v values with a small correction: f0′0′′=23.7×10−4, f1′0′′=19.1×10−4, f2′0′′=9.0×10−4,

f3′0′′=3.3×10−4, and f4′0′′=1.1×10−4. These values are in very good agreement with

our values of f0′0′′=23.60×10−4, f1′0′′=19.15×10−4, f2′0′′=9.15×10−4, f3′0′′=3.39×10−4,

f4′0′′=1.10×10−4 (values shown are for the A2Π1/2 component). Adamczak and Lambert

(2013) have used the red system lines in their N abundance analysis of weak G band

stars. In this study they have used a line list of the red system provided by Plez (2011)

(unpublished data), which used the fv′v values recommended by Bakker and Lambert

(1998). The wavelengths of the useful lines were re-computed from energy levels given

by Ram et al. (2010a,b).

Although the calculated values agree well with the values obtained from several

theoretical calculations for the A2Π state, they were significantly larger than the most

recent experimental lifetimes Taherian and Slanger (1984); Lu et al. (1992). Also, the

experimental lifetimes of the A2Π state measured by different groups do not agree with
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each other, as can be seen in Table 4.5. Among the experimental values, the lifetimes

reported most recently by Taherian and Slanger (1984) and Lu et al. (1992) have better

agreement. Lifetimes of 8.5±0.05, 8.02±0.6, 6.67±0.5, 5.5±0.5 and 4.70±0.2 µs have been

reported for v=0, 1, 2, 3 and 4, respectively, by Taherian and Slanger (1984). Lu et al.

(1992) did not determine the lifetimes for v=0 and 1 for the A2Π state, but have provided

the values 6.96±0.3, 5.09±0.2 and 3.38±0.2 µs for v=2, 3 and 4, respectively. Their values

for v=2 and 3 agree within their quoted error with the values of Taherian and Slanger

(1984). Our A2Π1/2 (A2Π3/2) lifetimes are 11.08(11.29), 9.60(9.76), 8.53(8.66), 7.73(7.84)

and 7.11(7.21) µs for v=0, 1, 2, 3 and 4, respectively. If the DMF is increased by 15%,

these values become 8.38(8.54), 7.27(7.38), 6.45(6.55), 5.85(5.93) and 5.38(5.45) µs. These

modified values agree better with the lifetimes reported by Taherian and Slanger (1984)

and Lu et al. (1992), as well as the theoretical values of Larsson et al. (1983). However,

there is no basis for such an adjustment.

The high level ab initio calculations
(
except Larsson et al. (1983)

)
of lifetimes agree

with each other, and given the excellent quality of the calculations, it is unlikely that

the ab initio values would change with an even higher level method. There are

potentially problems with the experimental work, of which the most serious is collisional

population transfer as discussed by Lu et al. (1992), which would reduce the experimental

lifetimes. More experiments are needed, for example, on cold molecules in a collisionless

environment with selective excitation of the upper state levels.

4.4.2 The B2Σ+ State

The calculated lifetimes of the B2Σ+ state agree well with the known experimental and

theoretical values reported from previous studies. In particular, the present values

of 62.74, 62.97, 63.46, 64.25, 65.39, 66.95 ns agree within ∼5% with the experimental

values of Duric et al. (1978). The theoretical calculations of the oscillator strength of the

B2Σ+-X2Σ+ bands by Knowles and Werner (1988) and Bauschlicher et al. (1988) predict

f0′0′′=0.0345 and 0.0335, respectively, compared to f0′0′′=0.0337 in the present study. An

earlier calculation by Larsson et al. (1983) has provided a value of f0′0′′=0.0324. Since

the experimental lifetimes of the B2Σ+ state (Nishi et al., 1982; Duric et al., 1978; Jackson,

1974; Luk and Bersohn, 1973) agree well with theoretical results (Cartwright and Hay,

1982; Larsson et al., 1983; Lavendy et al., 1984; Knowles and Werner, 1988; Bauschlicher

et al., 1988), an average value of f0′0′′=0.033 was adopted by Bakker and Lambert (1998)
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Figure 4.5 – Theoretical DMFs for the CN X2Σ+ ground state. Reproduced
from (Brooke et al., 2014b) by permission of the AAS.

in their study of the 12CN and 13CN lines of the red and violet systems in the spectrum of

the post-AGB star HD 56126. Our value of f0′0′′=0.0337 also supports the value adopted

by Bakker and Lambert (1998). The much shorter lifetime of the B2Σ+ state means that

the experimental measurements will be much less sensitive to neglected loss mechanisms

in the excited state, so the existence of discrepancies in only the A2Π state lifetimes is not

surprising.

4.4.3 The X2Σ+ State

The calculated Einstein Av′v values have been compared to those of Langhoff and

Bauschlicher (1989) in Table 4.6. Our values are noticeably smaller; they are around 2/3

of the 1989 values for the ∆v=1 sequence, and as low as about 1/10 in one case (the 4-1

band). The reason for this can be seen in Figure 4.5, which shows the difference between

the 1989 DMF and ours. The differences here cause the discrepancies in the final Einstein

Av′v values. To confirm this, the full calculations described were performed using the

1989 DMF, and the Einstein Av′v values were calculated to be almost identical to those

reported by Langhoff and Bauschlicher.
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4.4.4 Validation of Computed Results

The spectrum of the A2Π-X2Σ+ system is spread over a wide range of wavenumbers

(from 4000-21500 cm−1), so it was recorded in two parts with different experimental

conditions. As mentioned earlier, spectra were observed in emission from an active

nitrogen afterglow source in which energy transfer takes place from the metastable

triplet A3Σ+
u and vibrationally-excited ground state of N2 to higher vibrational levels

of the excited and ground states of CN. In such a case, the vibrational and rotational

temperatures are very different, and because of incomplete relaxation the concept of

a vibrational temperature has little meaning. In this case, firstly the Lorentzian and

Gaussian contributions to linewidths were adjusted in PGOPHER to find the best match

between the observed and calculated line shapes. Next, the rotational temperature was

estimated by monitoring the intensity distribution of a large number of rotational lines

in a branch while varying the rotational temperature in small steps. A value of 500

K was estimated for the A2Π-X2Σ+ bands in the 4000-12000 cm−1 region. In order to

simulate the spectrum of a sequence of bands, the rotational temperature was held fixed

but the vibrational temperature was adjusted in steps. It was found that a vibrational

temperature of 15000 K produced a reasonable correspondence between the observed

and simulated spectra. A part of the spectrum of the ∆v=-1 sequence of the A2Π-X2Σ+

system is presented in Figure 4.6.

As can be seen, the intensity of the 0-1, 1-2, 2-3, 3-4, 4-5 and 5-6 bands decrease rapidly

and the 5-6 band is almost absent in the observed and simulated spectra. The higher

vibrational bands again appear gradually in both the observed and simulated spectra.

An expanded portion of the spectrum of the 0-1 band near the R2 head is presented in

Figure 4.7, and the sR21 branch of the 1-0 band is provided in Figure 4.8, showing good

agreement between the observed and simulated spectra.

For the B2Σ+-X2Σ+ system, a similar comparison is more difficult because of the

formation of a head of band heads in the different sequences. Also, interactions between

the excited state and nearby perturbing levels cause abnormal intensities in some of the

vibrational bands so the relative intensity of the simulated bands differs somewhat from

the observations. For this transition, rotational and vibrational temperatures of 300 K

and 3400 K result in a reasonable match between the observed and simulated spectra. A

section of the 13-13 band showing very good agreement between observed and simulated

spectra is provided in Figure 4.9.
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Figure 4.6 – A comparison of the observed (upper) and simulated (lower)
spectra of the v=-1 sequence of the A2Π-X2Σ+ system of CN. The unmarked
emission lines near the 6-7 and 7-8 bands are rovibrational lines of the 2-0
overtone of HCl, present as an impurity. The absence of the 5-6 band in both
spectra is consistent with the very small Franck-Condon factor calculated by
LEVEL. Reproduced from (Brooke et al., 2014b) by permission of the AAS.
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Figure 4.7 – A comparison of a part of the observed (upper) and simulated
(lower) spectra of the A2Π-X2Σ+, 0-1 band near the R2 head showing a very
good correspondence between the two spectra. Reproduced from (Brooke
et al., 2014b) by permission of the AAS.
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Figure 4.8 – A comparison of the observed (upper) and simulated (lower)
spectra of the A2Π-X2Σ+, 1-0, sR21 branch. Reproduced from (Brooke et al.,
2014b) by permission of the AAS.
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Figure 4.9 – A section of the observed (upper) and simulated (lower) spectra
of the B2Σ+-X2Σ+, 13-13 band comparing the intensity distribution of the R
and P branches. Reproduced from (Brooke et al., 2014b) by permission of the
AAS.

4.5 Isotopes of CN

As the 12C/13C ratio is often much higher in some types of stars than on Earth, where CN

spectral features are observed, 13CN features are also likely to be present. Calculations

using 13CN observations can be used as well as 12C13C observations to calculate the
12C/13C ratio (Climenhaga et al., 1977; Lambert and Ries, 1977; Smith et al., 2013). The
14N/15N ratio is generally much higher than the 12C/13C ratio, and so C15N lines are

encountered less often, but have still been used to calculate the 14N/15N ratio in some

stars (Hedrosa et al., 2013).

Analogous calculations to those for CN were performed to generate line lists for 13CN

and C15N. For 13CN, the observed line positions and molecular constants were taken

from Ram et al. (2010b), Ram and Bernath (2011), and Ram and Bernath (2012), and cover

v=0-15 for the B2Σ+ state, v=0-22 for the A2Π state and v=0-15 for the X2Σ+ state. The

experimental data for C15N are those of Colin and Bernath (2012) for v=0-3 for the B2Σ+

state, v=0-4 for the A2Π state, and v=0-5 for the X2Σ+ state. The final output of these

calculations consists of line positions, Einstein A values, and f -values for all possible
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bands (101 observed) for 13CN, and all possible bands (28 observed) for C15N. These data

files also contain predictions for pure rotational transitions and rovibrational transitions

in the X2Σ+ state.

Previously available line lists have some substantial line position uncertainties

(Jørgensen and Larsson, 1990; Hill et al., 2002; Kurucz, 2011), and this work provides

increased line position and intensity accuracy in an internally consistent data set.

4.6 The CP A2Π-X2Σ+ System

4.6.1 Introduction

CP is much less abundant than the other molecules examined in this thesis, but has

nevertheless been observed in circumstellar shells (Guelin et al., 1990), and is one of

the few gas phase phosphorous-containing molecules that have been astronomically

observed. Knowledge of its abundance can contribute to the understanding of

phosphorous chemistry in astronomical environments (Milam et al., 2008).

Despite being isovalent with CN, the CP A2Π state is quite different. CP’s Av values

are around three times higher, and its Bv values are less than half those of CN A2Π.

This means that it is a very good Hund’s case (a) state for all of the observed J levels.

At J=1.5, the eigenvectors for the F1 state are -0.99997 and -0.00779 for 2Π(1.5)(e/f) and
2Π(0.5)(e/f), respectively, and so Ω is a very good quantum number. The result is that

the spectrum for a single vibrational band appears as two similar spectra separated

by around 150 cm−1, one for each spin component of the upper state. The possible

transitions are of course the same as in the CN A2Π-X2Σ+ system.

4.6.2 Calculations

A new line position fit was performed, using observational data from Ram and Bernath

(1987), Saito et al. (1989), Ram et al. (1992), and Klein et al. (1999). These include lines

involving the v=0-4 levels in both states, and the fitted molecular constants are shown in

Tables 4.8 and 4.9, where the constants are those described in Section 2.4.

Equilibrium constants were calculated in the usual manner (as described in Section

2.1.4), and are shown in Table 4.10.

Predicted positions for the v=5-8 levels in each state were also included. To achieve

this, Tv and Bv were estimated using the equilibrium constants, Dv and γv in the X2Σ+
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Table 4.8 – Spectroscopic constants for the CP X2Σ+ state.

v Tv Bv Dv × 106 γv × 102

0 0 0.7958810907(66) 1.328045(11) 1.8566387(96)
1 1226.12738(28) 0.78989476(80) 1.33152(43) 1.85056(75)
2 2438.57460(27) 0.78389278(88) 1.33625(54) 1.84458(80)
3 3637.33389(35) 0.7778735(13) 1.34164(96) 1.8390(10)
4 4822.3972(14) 0.771835(11) 1.345(20) 1.8376(73)

Numbers in parentheses indicate one standard deviation to the last
significant digits.

Table 4.9 – Spectroscopic constants for the CP A2Π state.

v Tv Bv Dv × 106 Av ADv × 105 qv × 105 pv × 103 pDv × 107

0 6884.00566(21) 0.70927602(56) 1.28042(29) −156.24385(22) 4.869(25) −4.791(64) 9.410(18) −1.26(15)
1 7934.41445(22) 0.70364906(66) 1.28296(37) −156.12665(31) 4.305(43) −4.85(13) 9.436(25) −1.06(22)
2 8972.76570(26) 0.69801455(94) 1.28510(66) −156.04334(37) 3.038(62) −4.89(12) 9.632(39) −0.88(48)

3 9999.06544(36) 0.6923799(13) 1.29156(89) −156.01825(22) 2.00b −4.96(16) 10.161(20) −0.88b

4 11013.30165(66) 0.6867172(27) 1.2928(21) −156.02b 2.00b −4.96b 14.9(17) −0.88b

Numbers in parentheses indicate one standard deviation to the last significant digits.
b Fixed close to the value for the last vibrational level varied.

Table 4.10 – Equilibrium molecular constants for the CP X2Σ+ and A2Π
states.

Constant X2Σ+ A2Π

Te 0 6972.46893(53)
ωe 1239.79987(11) 1062.4724(14)
ωexe 6.834102(48) 6.03353(88)
ωeye −0.0013211(62) 0.00105(15)
Be 0.79886750(33) 0.7120860(26)
αe1 0.00596862(74) 0.0056184(34)
αe2 −8.56(17)E-6 −4.03(85)E-5
re(Å) 1.56197826(32) 1.6544214(30)

Numbers in parentheses indicate one standard deviation to the last
significant digits.
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state were extrapolated, and the remaining constants in the A2Π state were fixed close to

the value for the last vibrational level varied.

The H-W effect in CP is small in the lower vibrational bands, but not negligible in the

higher vibrational bands for which lines are reported. For example, the largest difference

between the matrix elements for reported transitions within a vibrational band and the

reference matrix element for that band is 1.7% for the (0,0) band, 2.0% for the (4,3) band

(the largest difference for an observed band), but 23% for the (5,3) band (the largest

difference for any band), and so it was decided that it should be accounted for in the

calculated line list.

The remaining calculations were analogous to those for the CN A2Π-X2Σ+ system,

using the TDMF from de Brouckère and Feller (1998), and resulting in a line list of 75

possible vibrational bands with J up to between 30.5 and 55.5, depending on the band.

4.6.3 Results and Analysis

An example of the difference between the intensity distributions resulting from the use

of the ”N only” and ”transformation” methods (Sections 2.5.6 and 2.5.4) is shown in

Figure 4.11. It shows again that when the H-W effect is strong, the two methods give

non-negligibly different results.

A portion of the spectrum of the (0,0) band near the qQ11 and rR11 heads of the

A2Π-X2Σ+, (0,0) band is presented in Figure 4.10, comparing the simulated and the

observed spectrum. As can be seen, a good correspondence exists. A portion of the

observed spectrum of the A2Π-X2Σ+, (1,0) band (upper plot) near the rR22 and sR21

heads has been compared with the simulated spectrum (lower plot) in Figure 4.12, again

showing a good agreement. Figure 4.13 provides a portion of the sR21 branch of the (0,0)

band, and compares the relative intensity of a few rotational lines in the observed (upper)

and simulated (lower) spectra.

So far no experimental values of lifetimes of electronic states of CP are available for

comparison with our computed lifetimes.

4.7 Conclusion

MEs were calculated using the previously described method. Their J dependence was

quantified and the effect of rotation on the matrix elements was included before their
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Figure 4.10 – A comparison of intensity distribution in the observed (upper)
and simulated (lower) spectra of the CP A2Π-X2Σ+, (0,0) band, showing good
agreement. Reprinted from JQSRT, 138, Ram et al., Einstein A-values and
oscillator strengths of the A2Π-X2Σ+ system of CP, 107-115, Copyright (2014),
with permission from Elsevier.

input into PGOPHER. A line list consisting of line positions, Einstein A coefficients

and f -values for 290 bands of the A2Π-X2Σ+ system with vibrational levels v′=0-22,

v′′=0-15, 250 bands of the B2Σ+-X2Σ+ transition with v′=0-15, v′′=0-15, and 136 bands

of the rovibrational transitions within the X2Σ+ state with v=0-15 has been generated.

The Einstein A values have been used to compute radiative lifetimes in the A2Π and

B2Σ+ states. The calculated f -values of the two transitions agree with the theoretical

values of Knowles and Werner (1988), Bauschlicher et al. (1988) and Cartwright and Hay

(1982), and the values adopted by Bakker and Lambert (1998). The A2Π state lifetimes

have also been calculated with the modified TDMs (increased by 15%) which compare

well with the recent experimental values for the lower vibrational levels of the A2Π

state, but the use of the unmodified ab initio values has more validity. The B2Σ+ state

lifetimes and f -values have good agreement with the previously reported experimental

and theoretical values as well as the values adopted values by Bakker and Lambert

(1998) in their chemical abundance analyses. The Einstein Av′v values for the X2Σ+ state

rovibrational transitions are significantly smaller than previous values from Langhoff

and Bauschlicher (1989), but the reason for this is explained in Section 4.4.3 and in Figure
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Figure 4.11 – Relative intensities of the CP A2Π-X2Σ+, (1,1) and (8,5) bands.
The black lines are calculated by using only one TDM matrix element for
the whole band and including no H-W effect. The green diamonds include
the H-W effect and the Hund’s case (b) to (a) transformation of the matrix
elements. The red circles are calculated by not performing Hund’s case
transformation, and using the “ N only” method, described in Section 2.5.6.
For both parts of the figure, the intensities have been calculated using a
rotational temperature of 500 K. J up to 55.5 is shown for the (1,1) band and
to 30.5 for the (8.5) band. The (1,1) band was used as a typical example of the
difference between the methods for the observed vibrational levels. The (8.5)
band is shown as an example of when the H-W effect is strong. Reprinted
from JQSRT, 138, Ram et al., Einstein A-values and oscillator strengths of the
A2Π-X2Σ+ system of CP, 107-115, Copyright (2014), with permission from
Elsevier.
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Figure 4.12 – A comparison of a portion of the observed (upper) and
simulated (lower) spectra of the A2Π-X2Σ+, (1,0) band of CP, showing a good
correspondence between the two spectra. Reprinted from JQSRT, 138, Ram
et al., Einstein A-values and oscillator strengths of the A2Π-X2Σ+ system of
CP, 107-115, Copyright (2014), with permission from Elsevier.

4.5, and the new DMF is believed to be more accurate. To validate the calculated relative

line intensities, laboratory spectra were simulated and good agreement has been found

between observed and calculated spectra.

Previously available CN line lists suffered from some substantial line position

uncertainties, and these lists provide more extensive and accurate line positions and

intensities. As an example of where such a list line could be used is in large scale surveys

such as The Apache Point Observatory Galactic Evolution Experiment
(
APOGEE;

Eisenstein et al. (2011)
)
. This is a high resolution near-infrared spectroscopic study of

chemical abundances of around 100,000 red giants. Nitrogen elemental abundances have

been calculated using CN A2Π-X2Σ+ transitions (Smith et al., 2013), from the APOGEE

master line list
(
M. Shetrone et. al. (submitted)

)
. The line list produced in this work

would be very useful if incorporated into such a list, and has the potential to result

in different nitrogen abundances being calculated for thousands of stars (Sneden et al.,

2014).

CN lines have also been used in calculations of the nitrogen abundance in the Sun,

although NH lines and nitrogen atomic lines are given more weight in such calculations
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Figure 4.13 – Comparison of the observed (upper) and simulated (lower)
spectra of the (0,0), sR21 branch, showing good agreement. Reprinted from
JQSRT, 138, Ram et al., Einstein A-values and oscillator strengths of the
A2Π-X2Σ+ system of CP, 107-115, Copyright (2014), with permission from
Elsevier.
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(Asplund et al., 2009), as CN is only a trace species. Sneden et al. (2014) calculated

the nitrogen abundance in the solar photosphere to be log ε(N)=8.05
(
where log ε(x) is

the abundance of element x in dex, equal to log10 (Nx/Nhydrogen) + 12
)
, using only CN

transitions, with the line list reported here. Although this is higher than the value of log

ε(N)=7.83, the abundances obtained were highly consistent using a number of different

lines, and some of the difference could be due to the use of a 1D model (Holweger and

Mueller, 1974), compared to the more sophisticated 3D model used by Asplund et al.

(2009). This suggests that the line list will be of some but limited use for the Sun, but

could be very useful for large scale nitrogen abundance analyses when more importance

is placed on CN lines, such as the APOGEE study mentioned above.

There does not appear to have been a CP A2Π-X2Σ+ line list available previously that

contains both rotationally resolved positions and intensities, and one is now available to

astronomers investigating phosphorus chemistry.

At the conclusion of the CN and CP work, the calculation methods had been

improved as described, to properly take into account the effect of rotation on the

vibrational wavefunctions. This means that they could then be applied with more

confidence to other molecules, but in particular to molecules that exhibit a strong H-W

effect. This was particularly prudent, as the next molecule studied was the NH radical,

the light hydrogen atom of which absolutely requires the inclusion the H-W effect for all

bands.
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Chapter 5

NH X3Σ− Ground State

Rovibrational and Rotational

Transitions

5.1 Preface

The next system for which a line list was produced was the ground state

vibration-rotation system of NH (another astronomically important molecule), which

involves transitions within the X3Σ− state. The calculation method was not developed

further for this work as in the previous chapter, but it still required an adjustment to a
3Σ−-3Σ− system, the first calculation of rotational transitions, and some experimental

work at Old Dominion University, Norfolk, VA, USA. The previous inclusion of the H-W

effect in the calculation method was absolutely vital for the work, due to the light H atom

causing rotation to have a large effect on the vibrational wavefunctions.

5.2 Introduction

NH is an important molecule in the study of astronomical environments, as it is present

in cool stars (Lambert and Beer, 1972; Lambert et al., 1984; Smith and Lambert, 1986; Aoki

and Tsuji, 1997), comets (Litvak and Kuiper, 1982), diffuse interstellar clouds (Meyer

and Roth, 1991; Crawford and Williams, 1997; Goicoechea et al., 2004; Weselak et al.,

2009) and the Sun (Roach, 1939; Farmer and Norton, 1989; Grevesse et al., 1990; Geller

et al., 1991; Grevesse et al., 2007). It has also been magnetically trapped at temperatures
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< 1 K (Campbell et al., 2007; Hoekstra et al., 2007; Campbell et al., 2008; Hummon

et al., 2008), and there is potential for trapping (Kajita, 2006; Janssen et al., 2011a;

Janssen et al., 2011; Janssen et al., 2011b) and chemical reactions (Janssen et al., 2013)

at ultracold temperatures (< 1 mK) (Kajita, 2006; Wallis and Hutson, 2009; Wallis et al.,

2011), applications for which include high precision spectroscopy (Kajita, 2006; Bethlem

and Ubachs, 2009) and quantum computing (Demille, 2002). NH is also important in

the nitrogen chemistry that occurs in combustion processes (Miller and Bowman, 1989;

Smoot et al., 1998), and is a key species in the transformation of N2 to NH3 (and vice

versa) in stellar and exoplanet atmospheres (Lodders and Fegley, 2002; Moses et al., 2011).

The rovibrational transitions within the X3Σ− ground state are the focus of this

chapter, and their importance is illustrated by the fact that as well being used to calculate

NH abundance, they have been used to calculate the total nitrogen abundance in cool

stars (Lambert et al., 1984; Lambert et al., 1986; Smith and Lambert, 1986; Aoki and Tsuji,

1997) and the Sun (Grevesse et al., 1990; Asplund et al., 2009). The CN molecule has also

been used for this purpose (Asplund et al., 2009) but it is less useful as the spectroscopic

knowledge has been less complete, although this situation has recently been improved

(Brooke et al., 2014b).

The first observations of these transitions were of the 1-0 band by Bernath and Amano

in 1982 (Bernath and Amano, 1982). In 1986, Boudjaadar et al. observed the ∆v=1

sequence up to the 5-4 band (Boudjaadar et al., 1986), and transitions in these bands

were detected for a greater number of N values by Ram et al. (1999), at the National

Solar Observatory at Kitt Peak, Arizona. Ram and Bernath reported additional lines in

these bands (Ram and Bernath, 2010), and also transitions in the previously unobserved

6-5 band. In 1989, Chackerian et al. (1989) studied the relative intensities of the lines

recorded by Boudjaadar et al. (1986).

Pure rotational transitions were first seen by Radford and Litvak (1975), who

observed only the N=1-0 transition in the v=0 level. Wayne and Radford then detected

more rotational transitions within both v=0 and 1 (1976). van den Heuvel et al. (1982)

reported more observations of the v=0, N=1-0 transition, but higher N transitions

remained undetected. Solar spectra recorded in space by the ATMOS FTS (Geller et al.,

1991) (FTS; part of Spacelab 3 onboard some Space Shuttle flights) provided infrared

rotational lines between 600 and 900 cm−1, covering N ′′=20-35 in v=0, and N ′′=21-29

in v=1. Similar solar spectra taken by ACE (Bernath et al., 2005; Hase et al., 2010),
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also from LEO, provided higher N rotational lines; up to N ′′=42 in v=0. More recent

laboratory measurements of lower N rotational transitions have been made for v=0 by

Klaus et al. (1997) (N=1-0), Lewen et al. (2004) (N=2-1) and Flores-Mijangos et al. (2004)

(up to N=5-4). Robinson et al. (2007) observed transitions up to N=5-4 in v=1, and also

for the first time in v=2 (up to N=5-4).

The most recent set of molecular constants for the X3Σ− state were reported by Ram

and Bernath (2010). Their calculations used rovibrational lines from Ram et al. (1999),

Geller et al. (1991), Bernath and Amano (1982), spectra from the ACE mission (Hase

et al., 2010) and their new 6-5 band observations reported in that paper. They used pure

rotational lines from Robinson et al. (2007), Flores-Mijangos et al. (2004), Lewen et al.

(2004), Klaus et al. (1997), Geller et al. (1991) and the ATMOS instrument (Geller et al.,

1991). They performed a line position fit to provide updated molecular constants for

vibrational levels up to v=6.

An experimental average ground state dipole moment, µ0, of 1.389±0.07 D was

obtained in 1974 by Scarl and Dalby. They compared it to theoretical dipole moments

available at the time, which varied widely between 0.36 and 2.17 D. Dipole moments and

DMFs have been calculated several times since then using various theoretical methods,

and a summary of such studies showing their resulting values of µe and µ0 is shown

in Table 5.1. Using µe as a comparison, there is still some disagreement between

these values, and all of them are somewhat higher than the experimental value of

µe=1.405±0.077 (Scarl and Dalby, 1974; Chackerian et al., 1989; Muenter, 1975). The

difference between the full DMFs is more complicated than this of course (see Section

4.4.3 for an example). Values for µe are compared in Table 5.1 as they are readily available

in the literature and give an indication of the quality of the calculations. More recent

theoretical studies of NH include those of Feller and Sordo (2000) and Temelso et al.

(2004), in which high levels of theory were used to calculate potential energy curves and

spectroscopic constants, but no DMFs were reported. Currently available line intensities

in the JPL (Pickett et al., 1998) and CDMS (Müller et al., 2001, 2005) spectroscopic

databases are based on the dipole moment from 1974 of Scarl and Dalby. These line

intensities are still being used, for example by Goicoechea et al. (2004). Grevesse et al.

(1990) and Asplund et al. (2009) calculated the nitrogen abundance in the Sun (Grevesse

et al., 1990; Asplund et al., 2009), and they used the 1975 DMF of Meyer and Rosmus to

calculate their own line intensities. Aoki and Tsuji (1997) also used this DMF in their
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Table 5.1 – Summary of equilibrium dipole moments, µe, and v=0 averaged
dipole moments, µ0, for the X3Σ− ground state of NH, since 1974. All
but Paldus and Li (1996) and the experimental study calculated full dipole
moment functions. Our calculated values are also included.

Year Authors µe (debye) µ0 (debye)

1974 Scarl and Dalby (1974) (expt.) 1.405±0.077a 1.389±0.075
1974 Das et al. (1974) 1.5353b 1.5155b

1975 Meyer and Rosmus (1975) 1.578 1.5546b

1976 Hay and Dunning (1976) 1.526 ...
1987 Goldfield and Kirby (1987) 1.511 1.480
1992 Stallcop et al. (1992) 1.530 ...
1992 Cantarella et al. (1992) 1.5054 1.4827
1996 Paldus and Li (1996) 1.536 ...
2014 This work 1.5434 1.5246

a Calculated by Chackerian et al. (1989); Muenter (1975) using the reported data of
Scarl and Dalby (1974)
b Calculated by Cantarella et al. (1992) using the reported data of Das et al. (1974)
or Meyer and Rosmus (1975)

calculations of N abundance in oxygen-rich giants. A new DMF would be useful to

resolve the above discrepancies and calculate a new set of line intensities.

In 2008, Campbell et al. magnetically trapped NH to obtain an accurate experimental

vibrational lifetime for v=1 of 37.0± 0.5stat
+2.0
−0.8syst ms. They found disagreement with the

previous values of Dodd et al. (1991), who used the DMF of Goldfield and Kirby (1987)

to calculate A10 = 51.7 s−1 (τv=1 = 19.3 ms), and with Rosmus and Werner (1980) who

gave A10 = 34.9 s−1 (τv=1 = 28.7 ms). To compare their experimental result to theory,

they calculated a new DMF using the MRCI method with an aug-cc-pV6Z basis set. The

resulting lifetime of 36.99 ms is an excellent match to their experimental lifetime. They

calculated a value of µ0 of 1.5246 D. The DMF itself was not published, and the purpose

of this chapter is to use this DMF and the positions from Ram and Bernath (2010) to create

a new line list for the NH X3Σ− state rovibrational transitions, complete with positions

and absolute intensities. The range of the DMF has been extended for this study to 0.6-20

a0 (0.32-10.6 Å).

5.3 NH X3Σ− Ground State

As a Σ state has no orbital angular momentum, it has no spin-orbit coupling. The energy

levels are therefore arranged in the manner of a Hund’s case (b) state. For each N level,
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Figure 5.1 – Energy levels of the NH X3Σ− state. The distribution of F levels
within each N level is approximately correct, but the difference between the
F levels is greatly exaggerated.

there are three J states, labelled F1, F2, and F3 for the three fine structure levels arising

from interaction of the spin angular momentum (S=1) with the nuclear rotational angular

momentum. For F1, N=J-S, for F2, N=J , and for F3, N=J+S. The order of the energy

levels is shown in Figure 5.1.

For P and R branch transitions (in terms of J), e → e and f → f transitions are

possible, and for the Q branch, e → f and f → e transitions are possible. This results in

∆N =-3, -1, 1, and 3. The ∆N = ±3 transitions are very weak, and as shown above, N

is the quantum number that has the main effect on the energy level. Therefore, the main

features of the spectrum of one vibrational band are a P and R branch in terms ofN . Each

P or R branch N transition (except where N = 0 in either state) has six J transitions. The

three strongest of these have ∆J = ∆N and F ′=F ′′, and make up the main triplet. There

are then two weaker transitions with ∆J = 0 and J = N ′ or J = N ′′. Finally, there is one

very weak transition where ∆J = −∆N , which is between the F1e and F3e components.

This is shown in Figure 5.2, using transitions from the N ′ = 6 level as an example.
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Table 5.2 – Equilibrium molecular constants for the NH X3Σ− state

Constanta Value

ωe 3282.220(15)b

ωexe 78.513(15)
ωeye 0.1341(61)
ωeze −0.0066(11)
ωeηe −0.003141(70)
Be 16.667704(29)
αe1 0.649670(91)
αe2 0.001674(71)
αe3 −0.000067(25)
αe4 −0.0000633(24)

a These constants are the usual power series
expansions in v+1/2, with negative signs in
front of ωexe and αe1 .
b Numbers in parentheses indicate one standard
deviation to the last significant digits of the
constants.

5.4 Calculation of line intensities

The general procedure for the calculation of line intensities described in Section 2 was

used. The equilibrium constants (as described in Section 2.1.4) calculated from fitting to

Gv and Bv values are shown in Table 5.2. The RKR potential energy curve is shown in

Figure 5.3. LEVEL was run using Λ = 0, providing one ME for each possible N transition.

5.4.1 Calculation of the New Dipole Moment Function

The DMF calculation was performed by Gerrit Groenenboom (Radboud University,

Nijmegen, The Netherlands) and Marc C. van Hemert (Universiteit Leiden, Leiden, The

Netherlands), and was described by Campbell et al. (2008), and it will be briefly explained

here.

It was calculated with the ab initio icMRCI method (Werner and Knowles, 1988;

Knowles and Werner, 1988), using MOLPRO 2006.1 (Werner et al., 2006), and a large

aug-cc-pV6Z one electron basis set (Dunning, 1989; Woon and Dunning, 1995; Wilson

et al., 1996) was employed. A large active space of five σ, four π, and one δ orbitals was

used to generate reference configurations. In Campbell et al., the DMF used had been

calculated for internuclear distances between 1.0 and 3.0 a0 (0.53 to 1.59 Å). In order to

be able to accurately calculate MEs for vibrational levels up to v=6 and J=40, this range
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Figure 5.3 – Calculated potential energy curves and DMFs for the X3Σ−

ground state of NH. The black line is the potential used in LEVEL, and the
green circles are the ab initio potential

(
calculated along with the DMF and

reported by Campbell et al. (2008)
)
. The red dashed line is the DMF used in

this study
(
reported by Campbell et al. (2008)

)
, and the blue diamonds are

the DMF calculated by Meyer and Rosmus (1975). Reprinted with permission
from Brooke et al. JCP, 141, 054310, (2014). Copyright 2014, American
Institute of Physics.
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was later extended to 0.6-20 a0 (0.32-10.6 Å). The calculated DMF is shown in Table 5.1

(converted from atomic units using 1 D = 0.39343031369 ea0 and 1 A = 1.88972612 a0).

This ab initio DMF is believed to be the most accurate DMF available, based on

arguments provided by Campbell et al. (2008). In the MRCI calculations, the DMF

was used to compute the radiative lifetime of the v=1 vibrational state of NH, and the

result was 36.99 ms, in perfect agreement with the experimental value of 37.0±0.5 ms

determined in the same study. It was also shown that a DMF computed with another

high-level ab initio method, the RCCSD(T) method, gave very similar results and that

the dipole moment of the v=0 state computed with the MRCI DMF is in good agreement

with the high level ab initio calculation of Paldus and Li (1996).

5.4.2 Hund’s case (b) to (a) transformation

The case (b) to case (a) transformation equation is:

〈η′Λ′|T kq (J ′Ω′JΩ)|ηΛ〉 = (−1)J
′−Ω′

 J ′ k J

−Ω′ q Ω

−1

×
∑
N,N ′

(−1)N−N
′+S+J+k+Λ(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ −Λ′

J S N

Ω −Σ −Λ


×

N ′ J ′ S

J N k


 N ′ k N

−Λ′ q Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉,

(5.1)

which in this case is:

〈η′Λ′=0|T 1
0 (J ′Ω′JΩ)|ηΛ=0〉 = (−1)J

′−Ω′

 J ′ 1 J

−Ω′ 0 Ω

−1

×
∑
N,N ′

(−1)N−N
′+J+2(2N ′ + 1)(2N + 1)

J ′ 1 N ′

Ω′ −Σ 0

J 1 N

Ω −Σ 0


×

N ′ J ′ 1

J N 1


N ′ 1 N

0 0 0

 〈η′Λ′=0|T 1
0 (N ′N)|ηΛ=0〉.

(5.2)

This equation was derived mainly for use with the CN (Brooke et al., 2014b) and
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CP (Ram et al., 2014) A2Π-X2Σ+ transitions, as the upper A state is case (a) for CP

and a mixture of (a) and (b) for CN, and therefore transformation from the LEVEL case

(b) MEs was obviously important. However, it still has an effect when the involved

states are case (b) because of the use of the case (a) basis set by PGOPHER, and so as

the transformation was possible, it was also used for the B2Σ+-X2Σ+ transition and the

X2Σ+ state rovibrational transitions of CN (Brooke et al., 2014b), and it is used in the

calculations for NH for the same reason.

For an X3Σ− state, PGOPHER uses the Hund’s case (a) basis states |ηΛ;SΣ; JΩ=+1〉,

|ηΛ;SΣ; JΩ=0〉 and |ηΛ;SΣ; JΩ=−1〉. For the P and R branches (in terms of ∆J), there

are three non-zero MEs between these basis states:

〈η′Λ′;S′Σ′; J ′ Ω′ = +1|T 1
0 |ηΛ;SΣ; JΩ = +1〉, 〈η′Λ′;S′Σ′; J ′ Ω′ = 0|T 1

0 |ηΛ;SΣ; JΩ = 0〉

and 〈η′Λ′;S′Σ′; J ′ Ω′=−1|T 1
0 |ηΛ;SΣ; JΩ = −1〉 (except for where J ′′ or J ′ are 0). For

the Q branch, the non-zero MEs are 〈η′Λ′;S′Σ′; J ′ Ω′ = +1|T 1
0 |ηΛ;SΣ; JΩ = +1〉 and

〈η′Λ′;S′Σ′; J ′ Ω′=−1|T 1
0 |ηΛ;SΣ; JΩ=−1〉. 〈η′Λ′;S′Σ′; J ′ Ω′=+1|T 1

0 |ηΛ;SΣ; JΩ=+1〉 and

〈η′Λ′;S′Σ′; J ′ Ω′=−1|T 1
0 |ηΛ;SΣ; JΩ =−1〉 are equal by symmetry, as they are invariant

to reversal of the signs of all the projections (Λ=0 and Σ=Ω). Therefore, values must be

calculated for five MEs for each lower J level:

〈η′Λ′;S′Σ′; J ′ Ω′= +1|T 1
0 |ηΛ;SΣ; JΩ = +1〉 and 〈η′Λ′;S′Σ′; J ′ Ω′= 0|T 1

0 |ηΛ;SΣ; JΩ = 0〉

for both the P and R branches, and 〈η′Λ′;S′Σ′; J ′ Ω′=+1|T 1
0 |ηΛ;SΣ; JΩ=+1〉 for the Q

branch. Values for these MEs for all required rotational transitions were calculated using

Equation 5.4.2. The resulting case (a) MEs were set up in PGOPHER, which first transforms

these pure Ω MEs into symmetrised case (a) MEs, and then performs the diagonalisation

of the Hamiltonian in the symmetrised case (a) basis, resulting in a transformed transition

matrix in terms of the true states. This is described in more detail in Section 2.5.7.

The summation part of the equation is over all N ′-N ′′ transitions that are possible for

a particular J and Ω transition. For the R branch transitions (except for where J ′′ or J ′

are 0), there are four N transitions that contribute to the overall intensity. These are, for

example, for the R(6) transition, N ′−N ′′ = 6-5, 6-7, 8-7 and 7-6. These are included in the

summation part for the calculation of both the 〈η′Λ′;S′Σ′; J ′ Ω′=+1|T 1
0 |ηΛ;SΣ; JΩ=+1〉

and 〈η′Λ′;S′Σ′; J ′ Ω′=0|T 1
0 |ηΛ;SΣ; JΩ = 0〉 MEs. Similarly, there are four N transitions

for the P branch 〈η′Λ′;S′Σ′; J ′ Ω′=+1|T 1
0 |ηΛ;SΣ; JΩ=+1〉 and

〈η′Λ′;S′Σ′; J ′ Ω′=0|T 1
0 |ηΛ;SΣ; JΩ=0〉MEs, and four for the Q branch ME.
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Figure 5.4 – H-W effect for the NH X3Σ− state (1,0) band. F (m) is equal to
the ME divided by the ME for the Q(0) transition.

5.4.3 H-W Effect

As described in Section 2.5.5 and shown in Figure 2.17, the H-W effect is strong for NH

due to the light hydrogen atom. Figure 5.4 shows how the MEs for the (1,0) band vary

with N , which clearly means that the R branch will be much stronger than the P branch,

as seen in the spectra.

5.5 Results and Discussion

5.5.1 New NH FTS Spectrum

To validate the results it is useful to compare the relative intensities of a calculated

spectrum with an observed spectrum (recorded at Old Dominion University, Norfolk,

VA, USA), as the measurement of absolute intensities is extremely difficult. The H-W

effect has a major impact on the spectrum, with a decrease in intensity of the P branches

relative to the R branches. To see if the inclusion of the H-W effect has been done correctly,

the intensities need to be compared over a large enough wavenumber range to cover both

branches. The spectrum observed by Ram and Bernath (2010) would probably suffice for

this purpose, but its y-axis had not been calibrated for the instrument response, and so

the intensity may drift over the wavenumber range observed.

A new spectrum was recorded at Old Dominion University, Norfolk, VA, USA, with

the aim of providing relative intensities that are calibrated across the full wavenumber

range. NH was created in a microwave discharge of a mixture of N2 (0.8 Torr), H2 (0.3
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Torr) and He (0.9 Torr). The emission spectrum was recorded with a Bruker IFS 125

HR FTS, using a CaF2 beam splitter and a liquid nitrogen cooled InSb detector. Data

were recorded between 1800 and 5000 cm−1, limited by the InSb detector and a Ge

filter. As intensities but not line positions were important, a relatively low resolution

of 0.04 cm−1 was used to improve the SNR, and 688 scans were coadded to give the

uncalibrated spectrum. Immediately afterwards, the discharge cell was replaced by

a 1256 K blackbody, and 144 scans were coadded under the same conditions. The

instrument function was corrected for by dividing the NH spectrum by the blackbody

spectrum and the baseline was then subtracted to give the final spectrum.

The relevant wavenumber range is shown along with the calculated spectrum in

Figure 5.5, and a good match is seen. The calculated spectrum was convolved with a

Gaussian function to best match the observed broadening, and rotational and vibrational

temperatures of 1800 K and 5000 K, respectively, were found to give the closest match.

In the microwave discharge, energy transfer between the excited gases and various

vibrational and rotational levels of the NH molecules will occur, resulting in level

populations that are not in thermodynamic equilibrium. This means that specifying

separate rotational and vibrational temperatures provides only an approximate model for

the spectrum. This also explains why the two temperatures are very different, and why,

as can be seen in Figures 5.5 and 5.7, the intensity within the R branch decreases more

quickly with increasing wavenumber in the calculated spectrum than in the observed

spectrum. However, this is not an issue when comparing the H-W effect, as explained in

the following section.

5.5.2 Spectral Validation

In checking that the H-W effect has been applied correctly, it is the difference in intensity

between the R and P branch that is most important. To quantify this, the observed

and calculated intensities in the 1-0 band were compared for as many N ′ levels as

were available in both branches. For each observed N ′ level, the peak heights of the

F1-F1, F2-F2 and F3-F3 lines (where available) were summed for the R and P branches

separately, and the R branch total was divided by the P branch total, giving the R/P

ratio. The same was done for the calculated spectrum, using exactly the same peaks (the

intensities vary with temperature, but the R/P ratio does not). The results are shown in

Figure 5.6. The inclusion of the H-W effect is clearly an improvement. This improvement
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Figure 5.5 – Observed (at Old Dominion University, Norfolk, VA, USA) and
calculated spectra of NH. The lines that continue past the top of the y-axis are
intense atomic lines. The features that can clearly be seen are the R branches
of the 1-0, 2-1, 3-2, 4-3 and 5-4 bands. The calculated spectrum was convolved
with a Gaussian function to best match the observed broadening. Effective
rotational and vibrational temperatures of 1800 K and 5000 K were used,
respectively. Reprinted with permission from Brooke et al. JCP, 141, 054310,
(2014). Copyright 2014, American Institute of Physics.
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is also seen in Figure 5.7, where the spectrum calculated (using the conditions described

in Section 5.5.1) using the H-W effect clearly better matches the difference between R and

P branch intensity in the observed spectrum.

Observed intensities were also obtained from Chackerian et al. (1989), who analysed

the spectra observed by Boudjaadar et al. (1986). They reported reduced intensities, in the

form ln(6.23×1023×S∆J
J ′′ Iν̃

4), where S∆J
J ′′ is the Hönl-London factor, and I is the required

observed intensity. They described how they calculated their Hönl-London factors, and

so values for I could be calculated. The resulting R/P ratios are also shown in Figure 5.6.

5.5.3 Lifetimes and Band Strengths

The experimental lifetime of the NH v=1 level of Campbell et al. (2008) of 37.0 ±

0.5stat
+2.0
−0.8systms matches very well with their calculated lifetime of 36.99 ms. Vibrational

lifetimes have been calculated using our final Einstein A values, by taking the reciprocal

of the sum of the Einstein A values for all possible transitions from the same N ′=0, J ′=1

level. This results in a lifetime of 36.77 ms, which compares well to recent values of

Campbell et al.. Similarly, lifetimes of 17.09, 10.93, 8.10, 6.57 and 5.71 ms were calculated

for v=2-6, respectively.

Einstein Av′v values have been calculated for all reported vibrational bands, and the

observed ∆v=1 sequence values are shown in Table 5.3, where disagreement with those

of Dodd et al. (1991) and Rosmus and Werner (1980) is shown. These are calculated by

summing over the Einstein A values for all possible transitions with N ′=1, J ′=1, for each

band. The Einstein Av′v values have also been converted into vibrational band oscillator

strengths (fv′v-values) using Equation 2.131, where Λ′ = Λ′′ = 0.

Our value for µ0 of 1.5246 D compares well to the values of the theoretical studies

shown in Table 5.1 (µe is also shown to enable comparison with all studies). However,

it lies just outside the error bounds of the experimental value obtained in 1974 by Scarl

and Dalby. As discussed above, our v=1 lifetime shows excellent agreement with the

experimental value measured recently by Campbell et al. (2008) using magnetic trapping.

Scarl and Dalby determined µ0 from the Stark shift in the A3Π-X3Σ− transition, assuming

that µ0(A) = 1.3 D. µ0(A) was calculated here at the same level of theory as the ground

state, and a value of 1.412 D was found. If we adapt Equation 10 of the Scarl and Dalby

paper by replacing 2.80±0.13 in the numerator by 2.80 × (1.412/1.3)2, µ0(X) is found to

be equal to 1.38...1.52 D, where the upper limit agrees with the ab initio value calculated
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Figure 5.6 – Ratio of P and R branch relative intensities for the new
experimental spectrum (recorded at Old Dominion University, Norfolk, VA,
USA), the calculated spectrum, the spectrum observed by Boudjaadar et al.
(1986) and analysed by Chackerian et al. (1989), and the calculated spectrum
without the inclusion of the H-W effect. The error bars are large for the higher
N ′ values due to the low signal to noise ratio observed in the P branch. A
good match is seen between both sets of observed values and the calculated
values including the H-W effect, except forN ′=5 from the spectrum observed
in this work. This could be due to a line overlapping the pP3(6) line as this
appears more intense than expected. Reprinted with permission from Brooke
et al. JCP, 141, 054310, (2014). Copyright 2014, American Institute of Physics.
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Figure 5.7 – Observed and calculated IR spectra of NH. a - FTS spectrum
obtained at Old Dominion University, Norfolk, VA. The red line and dots
indicate the intensity of the 1-0 band P branch (left) and R branch (right).
The lines that continue past the top of the y axis are intense atomic lines.
The R branches of the 2-1, 3-2, and 4-3 bands are the other features that are
clearly visible here. b and c - Calculated spectra of the NH 1-0 band only,
with and without the inclusion of the H-W effect. Its inclusion gives a better
relative intensity difference between the P and R branches. The calculated
spectrum was convolved with a Gaussian function to best match the observed
broadening. A rotational temperature of 1300 K was used. Reprinted with
permission from Brooke et al. JCP, 141, 054310, (2014). Copyright 2014,
American Institute of Physics.
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5.6 Conclusion

Table 5.3 – Einstein Av′v and fv′v values for vibrational transitions within the
X3Σ− state of NH, where ∆v=1

Einstein Av′v (s−1)
Ours Da R&Wb M&Rc fv′v

1-0 27.19 51.7 34.9 31.69 3.941(-6)d

2-1 57.91 92.3 69.18 9.349(-6)
3-2 90.14 144.4 108.12 1.632(-5)
4-3 121.40 144.49 2.481(-5)
5-4 148.70 173.94 3.461(-5)
6-5 168.92 191.70 4.527(-5)

a Dodd et al. (1991)
b Rosmus and Werner (1980)
c Our calculations repeated using the 1975 DMF of Meyer
and Rosmus (1975)
d Numbers in parentheses indicate the exponent.

in this work.

In 1989, Chackerian et al. measured the Herman-Wallis effect from an observed

spectrum and used this along with the value of µ0 from Scarl and Dalby in their

calculations of the matrix element 〈v=1|µ|v=0〉. If, in their Equation 3, all of the terms

are replaced by our values (µ0=1.52456, ωe and Be from Table 5.2, and C1
0 =0.07895), the

result is 0.0559 D, which shows a much better match to our ab initio value of 0.05615 D.

5.5.4 Calculations With the 1975 Meyer and Rosmus Dipole Moment Function

As the Meyer and Rosmus DMF from 1975 has previously been used to calculate NH

rovibrational line intensities, the full set of calculations described in this chapter were

also performed with this DMF as a test. The resulting Einstein Av′v values can be seen

in Table 5.3. This shows that even though the values of µe of the new DMF and the 1975

DMF only disagree by ∼3.5%, the differences between the full DMFs and the amount of

extrapolation necessary cause the resulting line intensities to disagree by a much greater

percentage. The two DMFs are shown in Figure 5.3.

5.6 Conclusion

Discrepancies have previously been seen in NH line strengths (see Sections 5.2 and 5.5.3),

and with the aim of helping to resolve them, a new DMF for the X3Σ− state of NH has

been reported that is believed to be the most accurate to date. It has been used along

with the data of Ram and Bernath (2010) to calculate a new line list of rotational and
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rovibrational transitions, including line positions and intensities in the form of Einstein

A values and f -values, taking the H-W effect into account.

The NH line list could also provide another method of improving or further

validating the value for nitrogen abundance in the Sun. Before 2001 (Allende Prieto

et al., 2001), the recommended nitrogen abundance in the solar photosphere was log

ε(N)=8.05 (Anders and Grevesse, 1989), where log ε(x) is the abundance of element x in

dex, equal to log10 (Nx/Nhydrogen) + 12, but this has recently been revised downward

to 7.83 (Asplund et al., 2009). This value was calculated using NI, NH, and CN lines,

and could be reevaluated using the updated NH line strengths. A small change would

be observed, due to the differences shown in Table 5.3. This line list will also be useful

for the study of NH in other astronomical environments, cold and ultracold molecular

systems, and in the nitrogen chemistry of combustion. To ensure that the NH line list is

likely to be used by other groups in the future, it is likely that it will be included in the

next edition of the HITRAN database.

This work was expected to be the last line list based chapter of this thesis. The work

on OH that follows was initially considered to be a small extra project, that used the

same methods as used in this chapter, but slightly adjusted for a different electronic state.

However, an extensive investigation into intensity discrepancies had to be performed,

which resulted in a change to the transformation equation. This means that ultimately,

the intensities obtained in this chapter will need to be recalculated, which will be the

subject of a future short publication. This could also be done for the CN intensities, but

there the change is mostly negligible due to the much smaller H-W effect.

172



Chapter 6

The OH X2Π Rovibrational

Transitions

6.1 Preface

The OH ground state rovibrational transitions are discussed in this chapter, which is the

final line list based chapter in this thesis. It was initially expected to be a short project

that was not to be included in the thesis, with no changes to the calculation method and

no new molecular constant fit. However, some new observations were discovered, and

more importantly, a change in the transformation equation was required to give a good

match to observed intensity ratios. This meant that it became a larger project, and the

results were relevant to the previous chapters. Also, OH is arguably the most important

molecule discussed in this thesis, due to its presence in astronomical environments and

role in the Earth’s atmosphere. Because of the above, the work described in this chapter

is ongoing, and a brief description of the study and an analysis of the initial results is

presented here.

6.2 Introduction

The OH radical is very important in atmospheric chemistry due to its high reactivity

with volatile organic compounds (Atkinson and Arey, 2003; Lelieveld et al., 2004), and

it is the major oxidising species in the lower atmosphere (Prinn et al., 1995). OH is

also produced in the upper atmosphere in excited vibrational levels, and near infra-red

emission to lower levels is the main cause of the nighttime airglow of the upper
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atmosphere (Meinel, 1950; Oliva and Origlia, 1992). This airglow is often an unwanted

feature in astronomical observations (Maihara et al., 1993), but has sometimes been

used for wavelength calibration (Oliva and Origlia, 1992) and atmospheric temperature

retrievals (Sivjee and Hamwey, 1987). OH is also present in stars (Wilson et al., 1972),

interstellar clouds (Heiles, 1968), extra-terrestrial atmospheres (Piccioni et al., 2008;

Atreya and Gu, 1994), and often in relatively large concentrations (Settersten et al., 2003)

in flames (Maillard et al., 1976; Ewart and O’Leary, 1986; Abrams et al., 1994).

The transitions of interest in this work are in the Meinel system, which are the

rovibrational transitions within the X2Π ground state. These have been used to calculate

the oxygen abundance in the Sun (Grevesse et al., 1984) and other stars, for example by

Meléndez and Barbuy (2002) and Smith et al. (2013).

There have been several ab initio DMFs calculated for the OH ground state (Stevens

et al., 1974; Langhoff et al., 1986; Langhoff et al., 1989; van der Loo and Groenenboom,

2008). Accurate experimental dipole moments were obtained for the v=0, 1, and 2

levels by Peterson et al. (1984), and these were used by Nelson et al. (1989; 1990) in

combination with their own experimental line intensities to calculate an experimental

DMF at internuclear distances between 0.70 and 1.76 Å. Another experimental DMF was

obtained by Turnbull and Lowe (1988), also using the Peterson et al. values and their own

experimental intensities. The various DMFs have all disagreed to some extent (Nelson

et al., 1990) (also see Figure 6.1), including around the equilibrium internuclear distance

(re), which is where the DMF peaks.

A list of transition probabilities was calculated by Mies (1974), and more recently

Goldman et al. (1998) produced a list of Einstein A values, which is now the most widely

used, for example by Meléndez and Barbuy (2002). This list by Goldman et al. is currently

in the HITRAN database (Rothman et al., 2013), and the intensities are based on the DMF

of Nelson et al. (1990) between 0.70 and 1.76 Å, and that of Langhoff et al. (1989) at other

distances. Another line list including Einstein AJ ′F ′JF values was calculated recently

(van der Loo and Groenenboom, 2008), however it did not cover all of the available

vibrational levels, the accuracy of the line positions compared to experiment can be

improved, and the DMF calculated used the relatively small aug-cc-pVQZ basis set. This

DMF is included in the comparisons in Figure 6.1

The OH X2Π state has both large Av (around 140 cm−1) and Bv (around 18 cm−1

at low v) values. This means that it is reasonably well described by Hund’s case (a)
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Figure 6.1 – Calculated and experimental dipole moment functions for the
OH X2Π state.

at very low J , and the state quickly becomes closer to case (b) as J increases. The

resulting spectrum of a vibrational band consists of strong rR11, rR22, pP11, pP22, qQ11,
qQ22 branches. The P and R branch lines that cross spin components are extremely weak.

The lines of the same branch (in terms of J only), but between different spin components

clearly appear as doublets (except at very low J), with the F11 lines being stronger than

the F22 lines. All of these lines are split into further doublets due to the two possible

parity transitions.

6.3 Initial Calculations

A new fit of molecular constants was performed using the data of Bernath and Colin

(2009), who in turn used data from several previous studies (Melen et al., 1995; Farmer

and Norton, 1989; Colin et al., 2002; Abrams et al., 1994, 1996) for rovibrational bands

with v up to a maximum of 13, and pure rotational transitions up to v=4. New pure

rotational data from Martin-Drumel et al. (2011) was included in the fit, as it has a higher

accuracy than the previously available lines. The same molecular constants as calculated
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Table 6.1 – Calculated and experimental lifetimes of the OH X2Π, v=1, J=1.5,
F1 level (all values in ms).

DMF Reported by Authors
Calculated with our methods,
potential, and line positions

van de Meerakker et al. (2005) 59 ± 2 ...
van der Loo and Groenenboom (2008) 56.84 56.97
Nelson et al. (1990) 62.8 56.6
Langhoff et al. (1989) 73.3 66.7
HITRAN 2004 (Rothman et al., 2005) 56.6 ± 10-20% 56.6
This work ... 65.36

by Bernath and Colin were used, and the constants that were fixed in their fits were also

fixed here.

A new DMF was calculated by Gang Li (Harvard-Smithsonian Center for

Astrophysics) using MOLPRO 2012.1 (Werner et al., 2012), with the averaged

coupled-pair functional (ACPF) method and the aug-cc-pV6Z basis set. This followed

a complete active space self-consistent field (CASSCF) calculation using an active space

of four σ, four π, and one δ orbital. All core correlation was included. A comparison of

this new dipole moment and three previous DMFs is shown in Figure 6.1.

6.4 Initial Data Analysis

Validation of the new DMF was performed by comparing results to the experimental

dipole moments of Peterson et al. (1984), and an experimental lifetime obtained recently

by van de Meerakker et al. (2005). The dipole moments (Figure 6.2) show a better match

to those of Peterson et al. than the other DMFs, except for that of Nelson et al., which

is expected as it is partly based on these experimental measurements. Unfortunately,

the calculated lifetime does not fall within the error bounds of the recent experimental

measurement (Table 6.1).

The calculated Einstein AJ ′F ′JF values were compared to those of HITRAN, and the

comparison is shown in Figure 6.3, with HITRAN intensity units on the x-axis. The

results are expected to be different, however the disparities seen in Figure 6.3 are clearly

greater than would be expected. The intensities for the lines that have been observed

do compare reasonably well, and so a further comparison (Figure 6.4) was performed by

removing the less important lines that cross spin components. An improvement is seen,

but the differences are still greater than expected. This and the discrepancy in the lifetime
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Figure 6.2 – Calculated and experimental µv values of OH (X2Π). The error
bars of the experimental values for v=0 and v=1 are not shown as they are
slightly smaller than the size of the symbols.
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Figure 6.3 – Ratio of Einstein AJ ′F ′JF values calculated in this work to those
in HITRAN. Intensities for lines that have been observed are shown in blue,
while non-observed lines are in red.

prompted a thorough investigation into the calculation of the intensities.

6.5 Intensity Investigation

A worthwhile test of the calculations is to perform them using the molecular constants,

potential, and DMF used for HITRAN by Goldman et al. (1998), to attempt to replicate

their intensities using the methods described in this thesis. A DMF that was effectively

equivalent to that used by Goldman et al. (1998) was constructed (hereafter referred to

as the HITRAN DMF), and their molecular constants and potential were obtained. The

results of these calculations did not match the HITRAN intensities, but the differences

were systematic, and depended on the branch that is considered. For example, the

intensities are slightly too high for the rR11 branch, and too low by a similar amount for

the rR22 branch. A similar but opposite effect was seen in for the pP branches, but the qQ

branches matched almost perfectly. All transitions that crossed spin components showed
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Figure 6.4 – Ratio of Einstein AJ ′F ′JF values calculated in this work to those
in HITRAN. Intensities for lines that have been observed are shown in blue,
while non-observed lines are in red. Only transitions with F ′=F ′′ are present.
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similar systematic differences, but the discrepancies were larger. These effects were

reproduced in all of the analysed vibrational bands. An equivalent test was performed

by using the data from van der Loo and Groenenboom (2008) and attempting to replicate

their intensities. Similar systematic differences were found, which can be described as a

difference in the distribution of intensity between F transitions for the same J transition.

The calculated intensities were compared to an experimental FTS spectrum from

Abrams et al. (1994). This spectrum was recorded at the Kitt Peak National Observatory,

Arizona, by observing OH emission from an ozone flame, and the SNR was excellent.

The y-axis was calibrated using a lamp spectrum that was recorded using the same

equipment. The strongest and cleanest OH lines were found to be in the ∆v = 2 region,

and the (2,0) band was chosen for analysis. As was done for NH (Section 5.5.2), the

strong H-W effect present in OH was exploited for a relative intensity comparison. This

is extremely useful as all effects from energy level population are cancelled in the results.

This includes the effects from rotational, vibrational and spin temperatures, and the

partition function. An equivalent figure to the NH figure (5.6) was produced (Figure

6.5a).

Figure 6.5a shows that the new results are closer to the observed values than those

of HITRAN. However, an important feature to observe in these graphs is the ”splitting”

of the solid (F11 transitions) and dotted (F22 transitions) lines of the same colour. This

splitting is affected by the distribution of intensity between the F11 and F22 transitions,

which was causing the differences described above between these and the HITRAN

calculations. In Figure 6.5a, the splitting of the red lines clearly does not match the

observed lines. The splitting of the HITRAN lines matches the observed splitting

well, but the lines are displaced upwards on the graph from the observed lines. This

displacement of lines upwards on the graph can be caused by a change in the DMF, as

can be seen in Figure 6.5b, in which the calculations of the red lines use the HITRAN DMF.

The major effect of changing the DMF between Figures 6.5a and 6.5b is a displacement

upwards of the red lines, and the splitting is still too large compared to the observed and

HITRAN values.

A further attempt was made to replicate the HITRAN results by using their data with

the N only method (Section 2.5.6). The results of this are shown in Figure 6.5d, and it is

seen that the values are closer than with the use of the transformation equation. Using

the N only method with the new DMF gives the values in Figure 6.5c, which is clearly a
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Figure 6.5 – H-W effect in the OH X2Π, (2,0) band. The values plotted are
equal to the R branch intensity divided by the P branch intensity for specified
F transitions that share an upper level. The observed (green) and HITRAN
(blue) lines are the same on each graph, and are present for the purpose of
comparison with our calculations using four different methods (red lines).
The red lines on the top row are calculated using the transformation method,
and those on the bottom use the N only method. The red lines on the left use
the newly calculated DMF, and those on the right use the HITRAN DMF.
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better match to the observed values than with the transformation method.

6.6 Hund’s Case (b) and Adjusted Transformation Methods

To attempt to resolve this issue, various tests were performed, including performing all of

the calculations in a Hund’s case (b) basis. This involved transforming the Hamiltonian

matrix so that it was in a case (b) basis, and using Equation 2.5.4 to generate transition

matrices from the LEVEL MEs, then transforming the transition matrix as before (Section

2.5.7). Using this new method and the HITRAN DMF, the HITRAN Einstein AJ ′F ′JF

values were replicated almost exactly. Therefore, it appears that the transformation

equation is causing small inaccuracies in the intensities. The transformation equation

was adjusted and the changes were described in Section 2.5.4, but they are repeated here

for clarity.

The transformation equation is

〈η′Λ′|T kq (J ′Ω′JΩ)|ηΛ〉 = (−1)J
′−Ω′

 J ′ k J

−Ω′ q Ω

−1

×
∑
N,N ′

(−1)N−N
′+S+J+k+Λ(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ −Λ′

J S N

Ω −Σ −Λ


×

N ′ J ′ S

J N k


 N ′ k N

−Λ′ q Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉.

(6.1)

In the derivation, the assumption was made that ∆Σ = 0. This removed the sum over q

that was present in Equation 2.5.4, and also made the Σ term in the second 3-j symbol

equal to Σ′′ as opposed to Σ′. If this assumption is not made, S and Σ can be retained in
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6.7 Conclusion

Table 6.2 – Left - Symmetrised e transition matrix for the (2,0), R(1.5) example
transition level with original transformation equation. Right - including
∆Σ 6= 0 MEs.

|2Π(1.5)(e/f)〉 |2Π(0.5)(e/f)〉 |2Π(1.5)(e/f)〉 |2Π(0.5)(e/f)〉
|2Π(1.5)(e/f)〉 -0.01157 0 |2Π(1.5)(e/f)〉 -0.01157 -0.0002774
|2Π(0.5)(e/f)〉 0 -0.01418 |2Π(0.5)(e/f)〉 -0.0001114 -0.01418

the case (a) ME, and the transformation equation can be rewritten as

〈η′Λ′;S′Σ′|T kq (J ′J)|ηΛ;SΣ〉 = (−1)J
′−Ω′

 J ′ k J

−Ω′ Ω′ − Ω Ω

−1

×
∑
N,N ′

(−1)N
′−N+Ω′−Ω+S+J+Λ′+k(2N ′ + 1)(2N + 1)

J ′ S N ′

Ω′ −Σ′ −Λ′

J S N

Ω −Σ −Λ


×

N ′ J ′ S

J N k


 N ′ k N

−Λ′ Λ′ − Λ Λ

 〈η′Λ′|T kq (N ′N)|ηΛ〉.

(6.2)

If this modified transformation equation is used, very small off-diagonal MEs are present

in the transition matrix. For example, for the (2,0), R(1.5) transition, the transition matrix

changes from that on the left, to that on the right of Table 6.2 The Einstein AJ ′F ′JF values

calculated using this new method and the HITRAN data also match the HITRAN Einstein

AJ ′F ′JF values, and the splitting of intensity between spin-components shows a better

match with the observed data. However, the calculated lifetime remains the same as

when using the original transformation equation (65.36 ms).

6.7 Conclusion

The initial results of the OH study have shown that it is likely that more accurate

intensities are obtained by removing the ∆Σ = 0 assumption made in the derivation

of the transformation equation. Of the three pieces of experimental data that the initially

calculated OH intensities have been compared to, the H-W effect and dipole moments

show a very good match, but the calculated lifetime (65.36 ms) of the v=1 level does

not match within the experimental error bars (59±2 ms). This experimental lifetime was

obtained by magnetic trapping of OH radicals, and by measuring the temporal decay of

the population of the X2Π, v=1, J=1.5, F1 level (van de Meerakker et al., 2005), and this is
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expected to be a high quality measurement. As there have been various DMF calculations

that have all shown discrepancies, the error is likely to be in the DMF. The next stage in

this OH work is to fit a DMF to the three types of experimental data mentioned above.

Due to time constraints, so far the H-W effect has only been extracted from the observed

spectrum for the (2,0) band, but more bands are available and will be included in this fit.

The resulting line list should be the most accurate available for the OH Meinel system, in

terms of positions and intensities, and is likely to be included in the next iteration of the

HITRAN database.

A line list will ultimately be produced, that includes transitions for v up to 13, and

J up to between 9.5 and 59.5, depending on the band. It will be useful in the areas

of atmospheric chemistry, combustion science, and astronomy. Oxygen is the third

most abundant element in the universe, after hydrogen and helium, and knowledge

of its abundance is important in understanding stellar and galactic evolution (Asplund

et al., 2009). After the comprehensive summary of elemental abundance in the solar

photosphere by Anders and Grevesse (1989), the recommended solar oxygen abundance

was log ε(O)=8.93. This was significantly revised downwards in 2001 (Allende Prieto

et al.) to log ε(O)=8.69±0.05. Several other studies have suggested similar values (Caffau

et al., 2008; Scott et al., 2009), and a recent review by Asplund et al. (2009) also suggested

log ε(O)=8.69±0.05.

OH rovibrational and rotational lines have been used to calculate solar oxygen

abundances previously (Grevesse et al., 1984; Sauval et al., 1984; Meléndez, 2004;

Asplund et al., 2004), and the recent value suggested by Asplund et al. (2009) is an

averaged result obtained using OH rovibrational and rotational lines, and O atomic

transitions. A paper describing the OH vibration-rotation line part has not yet been

published, but the absolute intensities used are most likely to have been those from

HITRAN. It would be helpful for these calculations to be repeated with the new line

list discussed here, to improve the reliability of the solar oxygen abundance.

A preliminary line list has been produced using the method described in the

first paragraph of this section, and calculations using the new intensities of the

∆v=2 transitions have been performed, in which the oxygen abundance in the solar

photosphere and five other stars was obtained (Table 6.3). An abundance of log ε(O)

= 8.72 was obtained for the solar photosphere, which is in excellent agreement with the

recommended value, and is closer than that previously calculated using the OH ∆v=2
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Table 6.3 – Stellar Model Parameters and Abundance Summary

Star Teff log ε(O) log ε(O)
K lit. OH

Sun 5780 8.69 ±0.05c 8.72
Arcturus 4286 8.76 ±0.17d 8.68

HIP54048 5100 8.60e 8.59
M67a 4623 ... 8.74
M71b 4314 ... 8.44

HD122563 4600 6.73f 6.71
a star 2M08490674+1129529 in open cluster M67
b star 2M19533986+1843530 in globular cluster M71
c Asplund et al. (2009)
d Ramı́rez and Allende Prieto (2011)
e Afşar et al. (2012)
f Sneden et al. (2014)

transitions (Meléndez, 2004). Similarly good matches to literature data were obtained for

Arcturus , HIP54048, and HD122563, and new oxygen abundances were calculated for

two stars in the M67 and M71 clusters. These calculations were performed using a 1D

solar model (Holweger and Mueller, 1974) and only OH ∆v=2 transitions, and so they

are not likely to be as accurate as the literature values, and the agreement shown is good

evidence for the reliability of the new intensities.

The infrared OH transitions discussed here are used in the large-scale red giant

APOGEE study (Eisenstein et al., 2011; first mentioned in Section 4.7). They are favoured

here as opposed to atomic oxygen lines because the stars are cooler than the Sun, which

means that OH concentrations will be relatively higher, and the intensity of infrared

radiation emitted by the stars will be higher. This project is currently using the HITRAN

intensities, and incorporation of the new intensities into the line list for projects such as

this would provide more reliable oxygen abundances.

This concludes the diatomic molecular line intensity section of this thesis. The next

chapter describes a different project, which is still connected to the general theme through

the use of spectroscopic line intensities.
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Chapter 7

IRDAS

7.1 Preface

The work in this chapter departs from the main theme of this thesis, but is still

connected through the subject of spectroscopic line intensities. It describes IRDAS-EXP

(InfRared long range Differential Absorption experiment for trace gas measurementS

- EXPeriment), a ground based demonstration of a potential future satellite mission,

funded by ESA (European Space Agency). The IR part of the satellite mission would

be aimed at measuring greenhouse gas concentrations in the atmosphere, and this

demonstration measured carbon dioxide concentrations along a 144 km path between

two of the Canary Islands, La Palma and Tenerife.

7.2 Introduction

Climate change is primarily driven by anthropogenic greenhouse gas emissions, with

the largest positive radiative forcing contribution due to increasing levels of long-lived

carbon dioxide (CO2) in the atmosphere (Solomon et al., 2007). Atmospheric CO2 is

therefore monitored by in situ observations at ground stations and in aircraft as well

as by remote sensing methods.

In situ measurements include numerous precise instruments on the ground, for

example at Mauna Loa Observatory, Hawaii (Keeling et al., 1976; Komhyr et al., 1989); on

tall towers, for example in Europe for the CHIOTTO project (Continuous HIgh-precisiOn

Tall Tower Observations of greenhouse gases; Vermeulen et al., 2011) as well as in the US

(Bakwin et al., 1998); and in aircraft, for example in the CARIBIC project (Civil Aircraft for

187



Chapter 7: IRDAS

the Regular Investigation of the atmosphere Based on an Instrument Container; Schuck

et al., 2009), for calibration of the TCCON (Total Carbon Column Observing Network;

Wunch et al., 2010) and as part of the NACP network (North American Carbon Program;

Crevoisier et al., 2006).

Remote sensing of column CO2 is carried out from the ground using direct sunlight

in the near-infrared in the TCCON (Wunch et al., 2010); recently from low Earth

orbit (LEO) using reflected sunlight, for example by SCIAMACHY (SCanning Imaging

Absorption spectroMeter for Atmospheric ChartographY; Schneising et al., 2011) and

GOSAT (Greenhouse gases Observing SATellite; Yoshida et al., 2011); and using thermal

infrared emission, for example by AIRS (Aumann et al., 2003) and IASI (Clerbaux

et al., 2009). As a further fundamental advance, carbon cycle science would benefit

from an accurate and long-term, stable, global set of altitude-resolved greenhouse

gas measurements as recently proposed using an infrared laser occultation technique

(Kirchengast and Schweitzer, 2011).

The short-wave infrared (SWIR) spectral region, in particular 2.0 µm to 2.5 µm, is

attractive for active remote sensing measurements because of the availability of high

quality lasers and detectors in this region, which contains rovibrational absorption lines

of many greenhouse gases and their isotopologues (e.g. H2O, HDO, H2
18O, CO2, 13CO2,

C18OO, CH4, N2O, O3, CO) (Kirchengast and Schweitzer, 2011). Natural background

radiation is also low in the SWIR region because it lies between the thermal IR region

at longer wavelengths, where radiation is emitted by the Earth, and the visible region at

shorter wavelengths, where emitted sunlight peaks (Liou, 2002).

The application of the IR laser occultation technique to satellite remote sensing

requires measurements to be taken in a limb geometry, with a laser source on one satellite

and a detector on a second, resulting in atmospheric path lengths of several hundred

kilometers. The laser radiation is absorbed by molecules in the atmosphere and is subject

to a number of ”broadband” effects, such as aerosol and Rayleigh scattering, atmospheric

scintillation and cloud absorption, that have weaker wavelength dependence than sharp

molecular absorption lines (Schweitzer et al., 2011a). The influence of these broadband

effects can largely be cancelled by making a differential measurement with two laser

beams: one tuned to the peak absorption of a suitable rovibrational line and the other

to a nearby ”reference” wavelength subject only to broadband effects (Kirchengast

and Schweitzer, 2011). This concept is part of a satellite mission called ACCURATE

188



7.3 Plan

Figure 7.1 – Illustration of the laser link between the Canary Islands La Palma
and Tenerife. Image 2012 Google © 2012 TerraMetrics © and 2012 GRAFCAN
©.

(Kirchengast et al., 2010) that was proposed as an Earth Explorer Mission to ESA and

viewed by ESA evaluation panels to be of very high scientific value and meriting further

studies.

7.3 Plan

7.3.1 Basic Setup, Site, and Equipment Design

The experiment would consist of two optical setups, a laser transmitter (Tx) and a

receiver (Rx), on two mountain tops in the Canary Islands, 144 km apart (Figure 7.1).

Due to the clear skies and dry climate around the Canaries, the astronomical ”seeing”

is very good at higher elevations, and so the islands offer an ideal site for atmospheric

measurements with long path lengths. There are several astronomical observatories on

the Canaries, including the Roque de los Muchachos Observatory (ORM) on La Palma

and the Teide Observatory (OT) on Tenerife, both at altitudes of ∼2.4 km. There is a

clear line of sight between these two observatories, which has previously been used for

quantum communication experiments (Ursin et al., 2007).

The Tx would be located close to the Nordic Optical Telescope (NOT) at the ORM,

and a receiver connected to ESA’s Optical Ground Station telescope (OGS) at the OT. At

the NOT site, the Tx would be located in a parking area near the telescope building and

the laser beam transmitted through a commercial 15 cm Newtonian telescope. The 1 m

OGS telescope would collect the incoming radiation, and pass it to the Rx, installed near
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Table 7.1 – SWIR lasers and regions.

Laser Type Region (cm−1) Species

L1 Primary 4765-4780 CO2, H2O
L2 Reference 4765-4780 CO2, H2O
L3 Primary 4340-4350 CH4

L4 Reference 4318-4325 CH4

Table 7.2 – Originally selected absorption lines.

Absorption species Wavenumber (cm−1)
13CO2 4772.657
13CO2 4766.641
C18OO 4767.041
H2O 4771.968
None (CO2 region absorption minimum) 4770.150
CH4 4348.166
None (CH4 region absorption minimum) 4322.927

the focal point from the telescope. IRDAS-EXP planned to test the SWIR occultation

method by investigating CO2, CH4 and H2O. Appropriate microwindows within the

SWIR region containing absorption lines of these species were chosen (Kirchengast et al.,

2010), and tuneable distributed feedback diode (DFB) diode lasers covering these regions

were purchased. Two SWIR regions would be tested, ∼2.1 µm (mainly CO2 absorption)

and∼2.3 µm (mainly CH4 absorption), hereafter referred to as the CO2 and CH4 regions,

respectively. Predicted spectra for these regions, showing CO2 or CH4 absorption and

also the absorption of all species, are shown in Figures 7.2, 7.3, and 7.4. These regions

were chosen to include lines where almost all of the absorption is due to the target species,

and regions of almost no absorption ( ”reference” points; explained later). The original

target lines are shown in Table 7.2.

The initial planned setup can be seen in Figures 7.5 and 7.6. Four diode lasers with

(∼4 to∼10 mW) emitted power would scan within these regions (Table 7.1): two devoted

for use as CO2 region lasers (L1 and L2), and two for the CH4 region (L3 and L4). The

emitted laser wavelength could be tuned by adjusting the laser temperature and the

applied current. Each laser was tuneable with high spectral resolution over a maximum

spectral range of about 4 cm−1 (fine tuning) by adjusting the current, and about 10 cm−1

(coarse tuning) by adjusting the temperature.

At any one time only two lasers would be in use, either L1 and L2, or L3 and

L4. L1 and L3 are hereafter referred to as the ”primary” lasers, and L2 and L4 the
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Figure 7.2 – Calculated spectrum of the CH4 (2.1 µm) region. This shows the
region covered by the two IR lasers for CH4 and H2O measurements (L1 and
L2). CH4 only - calculated for CH4 only. All species - calculated including all
relevant atmospheric species; almost all extra absorption is due to H2O. The
labels indicate the originally targeted absorption line positions and reference
(minimum absorption) position (Table 7.2). Depending on actual frequency
scan ranges (Table 7.1), other spectral sections are used. For conditions see
Section 7.6.8.

Figure 7.3 – Calculated spectrum of the CH4 (2.3 µm) signal region. This
region is covered by the IR laser for CH4 measurements (L4). CH4 only
- calculated for CH4 only. All species - calculated including all relevant
atmospheric species; almost all extra absorption is due to H2O. The label
indicates the target absorption line position (Table 7.2). Depending on actual
frequency scan ranges, other spectral sections can be used. For conditions see
Section 7.6.8.
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Figure 7.4 – Calculated spectrum of the CH4 (2.3 µm) reference region. This
region is covered by the IR laser for CH4 reference measurements (L3). CH4

only - calculated for CH4 only. All species - calculated including all relevant
atmospheric species; almost all extra absorption is due to H2O. The label
indicates the target reference (minimum absorption) position (Table 7.2).
Depending on actual frequency scan ranges, CH4 might also be retrieved in
this region. For conditions see Section 7.6.8.

”reference” lasers. They would be polarised at 90° to each other, so that their beams

could be combined by a polarising beam splitter, to then pass through a mechanical

chopper running at 500 Hz (depending on mode). The beams would then be separated

at the Rx based on wavelength using a custom designed étalon (hereafter referred to

as the Rx étalon), so that their power could be recorded separately. A green Nd:YAG

laser (200 mW) would be used for alignment purposes. A wavemeter would record the

SWIR laser wavelength when necessary, and photodiode detectors would record the laser

power at both sides. National Instruments (NI) data acquisition boards (analogue to

digital / digital to analogue converters; ADCs) would be used at both the Tx and Rx.

These units are able transform a digital input signal from LabVIEW into an analogue

voltage/current, and vice-versa. The main purpose of the LabVIEW programs was to

use the ADCs to apply voltages to the lasers at the Tx, and record the voltage signal from

the detectors at both sides.

7.3.2 Initial Measurement Mode

IRDAS-EXP was expected to mimic the ”differential absorption” measurement mode of

the potential ACCURATE mission. This would consist of setting the lasers to constant

wavelengths; one situated at the peak of a selected absorption line, and the other at a

”reference” point (a point of minimum absorption), and recording transmission. If the
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Figure 7.5 – Initial Tx breadboard schematic
1-4: SWIR diode lasers
10: 1-5 µm wavemeter
5, 6, 14, 19, 23, 25, 26: Protected silver-coated mirrors with reflectivity of ca.
96% at 2.1 µm
7, 11: Dichroic mirrors: Maximum reflectivity at ca. 2310 nm and maximum
transmission at ca. 2096 nm
12, 13, 17, 18, 24, 27: Beam splitters
21, 22: InGaAs Photodiode detectors
28: Polarising beam splitter (used as combiner)
29: Chopper
15, 20: parabolic mirror

193



Chapter 7: IRDAS

Figure 7.6 – Initial Rx breadboard schematic
3: Beam from telescope
4: Rx Étalon
5: Protected silver-coated mirror with reflectivity of ca. 96% at 2.1 µm
6, 7: Parabolic Mirrors
8, 9: InGaAs Photodiode detectors
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intensity was too low to be observed directly, a mechanical chopper would be used in

conjunction with a lock-in amplifier at the Rx. This was named the ”static mode”. See

Figures 7.2, 7.3, and 7.4 for the spectral positions of the reference and peak positions.

7.4 Preparation and Testing

7.4.1 First Gas Cell Tests

To verify the performance of the system, a series of tests were performed, initially on

a laboratory bench. The equipment was set up using the minimum required optics for

simplicity, and a 1 m sample cell containing either CH4 or CO2 was positioned in the

beam path.

”Slow scans” were performed by adjusting over several minutes the current applied

to the laser diode and, therefore, the wavelength of the emitted light. These scans were

successful for CH4 (lasers 3 and 4), and resulted in the spectra with clearly resolved

peaks. For the CO2 scans, however, the intensities of the targeted lines were extremely

low, as they had been selected to give reasonable levels of absorbance over 144 km, and

the atmospheric volume mixing ratio (VMR) of CO2 is ∼200 times greater than that of

CH4. As a result, the CO2 lines could not be detected by the ”slow scan” method.

7.4.2 Fast Scan Mode

It was decided at an IRDAS-EXP meeting that another measurement mode should be

used during the campaign, which was named the ”fast scan” mode. The purpose of this

mode was to scan a specific wavelength range quickly and repeatedly (at several hundred

hertz) using one laser, providing many individual (and sometimes noisy) spectra that can

then be averaged to yield a final spectrum, with a much greater SNR than the ”slow scan”

method. This is achieved by applying a repeating ramp voltage to the primary laser via

the ADC (Figure 7.7).

The detectors at the Tx also record signals, so that the laser power change with

changing wavelength can be observed and later accounted for. The data acquisition

can continue for up to a few seconds (longer fills the computer’s RAM), yielding a final

spectrum. This process will hereafter be referred to as a 4 s repeat.

Before each 4 s repeat, the primary laser would begin scanning and the reference

laser would be turned on, and after a short time, the reference laser power would briefly
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Trigger

Reference

Primary

Voltage

Time

Figure 7.7 – Pre-campaign fast scan mode

drop to zero to trigger data acquisition at both sides, as shown in Figure 7.7. Before each

section of 4 s repeats, the voltage applied to the reference laser would be automatically

adjusted to find the correct wavenumber. A similar process would occur for the primary

laser.

The final fast scans planned pre-campaign would scan both broad and narrow

spectral regions, aiming at several or single lines, take 3000 or 1000 samples per ramp

(spectrum) at 133 or 400 Hz (ramps per second), respectively. Data points would be

sampled at 400 kHz, and repeats would last 4 s. Using an early version of this mode that

used only the primary laser, the CO2 gas cell experiment was repeated, and a spectrum

was obtained, in which several CO2 peaks were clearly visible.

7.4.2.1 Preliminary Wavelength Calibration for Fast Scan

A linear ramp voltage was applied to scan the laser, but the laser wavenumber is not

a linear function of the applied voltage. The wavenumber axis had to be calibrated

separately for each chosen scan range. To achieve this, each scan was performed while

the beam passed through étalons. This results in transmission fringes, with their peaks

separated by the étalon’s free spectral range (FSR).

To ensure that each scan covered the desired wavenumber range, rough

wavenumbers near the start and end of the scan were found using an étalon with an FSR

much larger than the scan range, so that only one fringe is observed in one scan (the Rx

étalon). A constant current near the end of the scan range was set, wavenumber recorded

196



7.4 Preparation and Testing

by the wavemeter, étalon angle set to maximum transmission, and scan performed.

This showed one fringe where the scan sample number at maximum transmission

corresponds to the recorded wavenumber. It was repeated for another constant current

near the start of the scan range. The sample numbers at the two maximum transmissions

were recorded (S1 and S2).

The relative wavenumber change was obtained accurately by scanning the laser

wavelength with the beam passing through a second étalon, hereafter referred to as the

Tx étalon, with an FSR of ∼0.0125 cm−1. The fringes obtained were fitted to quantify

the change in wavelength with sample number. To create a preliminary wavelength

axis, the results from the first étalon scans were used to give one absolute wavenumber

point (at S2), and to estimate a value for the small FSR (by dividing the wavenumber

difference between S1 and S2 by the number of small fringes in that range). The digital

sample number could then be transformed into wavenumber. A program was written

to automatically perform scans, fit the transmission fringes, and create a calibrated

wavenumber axis (using previous data from scans with the Rx étalon), so that this could

be done pre-scan. This preliminary axis was improved later by fitting to a calculated

spectrum.

7.4.3 Rx Étalon Performance

The Rx étalon was the last piece of equipment to be obtained. It has an FSR of ∼7 cm−1,

which would be large enough to easily separate two wavelengths. Its wavelength

separation performance at the relevant wavelengths was tested and deemed acceptable

(>95% maximum transmission and reflection of required wavelengths). This was later

proved not to be the case, and actually it was only providing between 75 and 90%

transmission, but still >95% reflection. The reason for this was believed to be that the

beam hitting the étalon was not perfectly collimated, and therefore was hitting it at

varying incident angles. To account for this as much as possible, before each scan, static

or fast, the amount of reflection and transmission of each laser would be measured and

recorded separately. For the fast scan, this meant making a profile of % transmission for

the scanning primary laser as a function of sample number.
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7.4.4 Corridor Testing

Tests were performed twice along the ca. 40 m corridor in the Department of Chemistry

at the University of York (downstairs A-block) using the fully constructed Tx and Rx

breadboards to demonstrate the quality of beam collimation from the transmitter and

the sensitivity of the InGaAs detectors in the Rx. The only component missing from

the system was, of course, the 1 m receiving telescope. Since it was expected on the

campaign to receive a signal using a 1 m telescope to collect radiation from a 100 m wide

beam, it was necessary in the test to be able to detect a signal using a 2.5 cm mirror and

a 15 cm collimated beam. The results showed that good signal to noise ratio was readily

obtainable and that the beam was well collimated over that distance. A cell containing

CH4 was also placed in the beam path, and the fast scan mode was tested using a

separate computer at each end (but with no network link which would be required in

the campaign). A spectrum was successfully obtained.

7.4.5 Static Modes

Two versions of the static were developed, one that used the lock-in amplifier and

chopper (static mode A) and one that did not (static mode B). For both, the primary

and reference lasers would be on simultaneously, and the Rx étalon would separate the

reference beam by transmission, and the signal beam by reflection. The two Rx detectors

would constantly record the signal of their respective lasers. As with the fast scan mode,

the Tx detectors would record the laser power so that this could be accounted for in

post-processing.

Pre-scan, for both static modes, the applied voltage would be adjusted automatically

until the required wavenumber was produced, for both lasers. This would be repeated

every few minutes in case there had been any wavenumber drift. Ideally, the

wavenumber would have been monitored and adjusted during data acquisition, but this

would have required a non-negligible amount of the beam to be diverted.

Static mode A would include 5 ms of zero voltage samples every 1 s for the purpose of

recording detector offsets. For static mode B, the lock-in amplifier would correct for the

offsets internally. The lock-in amplifier is able to take a chopped signal (i.e. half on and

half off), as low as a few nV (from the detector), and produce a constant signal (Meade,

1982). It could only transform one signal at once, but it also outputs an oscillation signal

which defines when the laser signal was on or off. This would also be recorded, along
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with the transformed primary laser signal and the untransformed reference laser signal.

The reference signal could then be transformed in post-processing.

The reference beam, by definition, should suffer from a much lower level of loss due

to molecular absorption, and therefore be of higher power at the Rx detector. For this

reason, it was to be used as a trigger, so that data acquisition would start when the signal

dropped below a certain level. This means that the start of the data at one site would

correspond to the start at the other, and the laser power change recorded at the Tx could

be taken into account. In the static mode however, data acquisition would continue for

several minutes, and it is possible for there to be time drift between the clocks in the

two ADC units. In order to synchronise and time-stamp the detector data from the

Tx and Rx, GPS timing units with reported 30 ns accuracy were purchased. The GPS

time signals would be recorded simultaneously with those from the detectors. The units

have three outputs: data in ASCII format, analogue pulse per second signal (PPS), and

an analogue 500 Hz square wave (FRQ). The PPS and FRQ signals would be recorded

by the ADC along with the detector signals. The ASCII data would be output at 1 Hz,

providing a timestamp. The PPS signal is a 1 Hz, 100 µm wide pulse, where the rising

edge corresponds to the start of the next second (i.e. #.000 s). This enables a timestamp

to be assigned to the data for the start of each second. The FRQ square wave enables

timestamps to be assigned to the points in between.

7.4.6 Roof testing

Further tests were then carried out over a distance of ca. 500 m between the roofs of the

Physics Department and Chemistry D-block at York. In all, three separate roof tests were

performed. It was found that the green alignment laser could not be seen in daylight

which made alignment extremely difficult. After dusk, the laser beam could easily

be seen and alignment was then possible. It was decided to incorporate the spotting

telescope, firmly attached to the transmitting telescope, to assist in alignment. In the first

tests, at night, an IR signal from two lasers was eventually detected. In the second of

these tests the chopper and lock-in amplifier were also tested, and signals detected from

all four lasers, both with the chopper and lock-in amplifier and without them. In the final

test, the fast scan and static modes were fully tested. Some ”beam wander” over time

was observed, but with occasional realignment, the signal was clearly stable enough for

the modes to operate as intended. The atmospheric concentration of CO2 and CH4 is not
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high enough to allow their detection in the appropriate wavelength regions over only

500 m, and insertion into the system of a gas cell was not practical. Therefore, the signal

was tested but no absorption lines were seen.

At various times during data acquisition, the Tx and Rx LabVIEW programs were

required to communicate with each other. For example the Rx would say that it is

will start data acquisition if triggered, and the Tx will then initiate the trigger. This

communication was also tested successfully during the final roof test.

7.5 Campaign

For the campaign, eleven measurement nights were available (11/12 to 21/22 July 2011).

Unfortunately, the first week was plagued by calima, a weather phenomenon blowing

dust over the Canaries from sandstorms in the Sahara desert, through which the beams

could not pass due to strong aerosol extinction.

7.5.1 Final Tx Setup

It was hoped that the Tx equipment could be housed inside our portacabin, but

unfortunately this was not possible due to a lack of stability that caused the beam

to move, and so it had to be positioned outside. This did mean that it was directly

vulnerable to being shaken by the wind, and so beam movement was still a problem.

To align the optics, a combination of a power meter, thermal paper, and a beam profiler

were used. The power meter and the beam profiler were much more difficult to use in

bright and/or windy conditions, and thermal paper was of course much less effective

at cool or hot temperatures. Due to these difficulties, it was decided to simplify the Tx

breadboard as much as possible for easier alignment. It was changed from a four to a two

laser system, which would require realignment to use the other set of two lasers. The Tx

étalon was also removed as it was extremely difficult to align correctly, partly because it

was not specifically designed for this experiment. Tx étalon scans were performed post

campaign in York.

The entrance lens of the telescope was adjusted to change the beam collimation

produced by the telescope, thus enabling control of the beam size at the Rx. A scanning

slit optical-IR beam profiler was used to spatially overlap the green and the two IR lasers.

This beam overlap, complemented by collimation tests of the green laser over a path of
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about 500 m, was crucial to success.

Figure 7.8a shows the final Tx setup used.

7.5.2 Final Rx Setup

During the first week, the operators at the Rx had to devise a method to get the received

beams from the inner focal point of the telescope to the Rx optics. On reaching the Rx

étalon, it would need to be well collimated and small enough to pass through the 1 inch

diameter étalon optics. Beam movement was also much greater than expected, which

meant that the signal was extremely unstable. Eventually, after several attempts, it was

decided that using the étalon would be too problematic, and it was removed. Figure 7.8b

shows the final Rx setup used.

7.5.3 Changes to Modes of Operation

When the calima cleared, the green beam could be seen by the operators at the Rx, so it

could be guided into position using the Tx angle adjustments. This beam was so bright

that it was visible on the OGS building, and caused clearly visible shadows. The first IR

signals (for CH4) were successfully detected during night 7 using a∼30 m beam diameter

at the OGS. However, they were too unstable for a trigger to occur on the loss of a signal.

The operational modes then had to be adjusted to accommodate the changes made

to the two breadboards, and an unstable signal. Only one laser could now be detected

at a time, and so the static mode would not be able to correctly mimic the differential

absorption method planned for the ACCURATE mission. Also, the time was not

available to rewrite both modes and still take data. Therefore, it was decided that the

static mode would not be used, and that all efforts would be concentrated on the fast

scan mode.

The fast scan mode was adjusted to perform 4 s repeats, alternating between primary

and reference lasers. During a scanning session, the ramp voltage was continuously

applied to both lasers even when their signal was not being recorded, as this increases

wavelength stability, and the motorised flip mirrors were used to automatically select

which beam was used. Also, instead of using a trigger to synchronise the data on the two

sides, the fast scan mode now also made use of the GPS signals for this purpose.
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Figure 7.8 – Schematic diagram of the optical Tx and Rx breadboards. a - Tx.
b - Rx.
AT - Neutral density filter to attenuate green laser (when necessary),
BD - Beam dump in motorized flipping mount,
BS - Dichroic beam splitter with transmission enhancing coating for ca. 2000 nm.
C - ARTEMIS beam collimator (focal length = 1350 mm, beam diameter = 34 mm),
GT - Glan-Thomson polarising prism, L - CaF2 lens (focal length = 10 mm),
LG - Frequency-doubled, Nd:YAG laser (200 mW, 532 nm).
LR - IR diode laser 2 (serial number 592/21-24/nanoplus) or 4 (592/21-19/nanoplus),
LS - IR diode laser 1 (264/3-9/nanoplus) or 3 (264/17-19/nanoplus),
M - Protected silver-coated mirrors with reflectivity of ca. 96% at 21 µm,
MF - Silver-coated IR mirrors (M) in motorised flipping mount,
PD - InGaAs photodiode detector, PM - Gold-plated parabolic mirror,
Wavemeter - 1.0-5.0 µm wavemeter (Bristol Instruments 621-a).
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7.5.4 Good Data Acquisition

Over the last few days of the campaign, the wind increased, causing the transmitter

to shake, so that beam movement became more of a problem. To compensate for

this, the beam diameter was increased to ∼100 m at the OGS so that part of the beam

would always hit the Rx telescope. This decreased the received intensity, and the

beam movement brought great intensity variations. It was however, with occasional

adjustments of the beams, consistent enough to take measurements. Nights 10 and 11

were mostly spent successfully acquiring data in the CO2 region. Some CH4 region data

were obtained at the end of night 11. Table 7.3 lists the scans performed.

7.6 Data Analysis

The raw data obtained in the campaign were processed into the ”level 1” format required

by the Wegener Center. A detailed analysis of all the level 1 data was later carried out

there, and a coauthor publication is currently under review. At the University of York,

one spectrum was analysed from one 4 s repeat for CO2, and another for CH4, and these

results are discussed in Section 7.6.2.

7.6.1 Level 0 to Level 1 Data Processing

The following procedure was applied to each 4 s repeat (recorded using one laser only)

to obtain an averaged spectrum. There were two 4 s pieces of data, one from the Rx

and one from the Tx. The detector offsets (measured every ∼1 min; see Section 7.6.7)

were first subtracted. The data of the Tx were interpolated to use the same timestamps

as the Rx data so that each Rx data point can then be divided by its corresponding Tx

point to correct for the smooth laser power change over wavelength, thus normalising

the data. The points at which the ramp (spectrum) ends were found by observing when

sudden drops in signal intensity occurred in the Tx data. The timestamps of these points

were used to separate the individual spectra, which were then normalised to the one of

highest average signal intensity, based on their means. They were then averaged in a

weighted averaging process, in which the weight was based on the original mean (before

normalisation) of the individual spectra, giving one final raw spectrum for a 4 s period.

The weighted averaging process was used to account for the variation in signal intensity

between individual spectra in one 4 s period, which is caused primarily by the wind
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shaking the Tx and by atmospheric scintillations.

To complete the calibration of the wavenumber axis, the final spectra were

compared to those calculated by the forward model (GATS Spectralcalc; see

http://www.spectralcalc.com/). In all cases the spectra match extremely well, and there

is minimal uncertainty in assigning peaks. For each scan type (see Table 7.3), a fit

was then performed to minimise the residuals (observed minus calculated) between the

observed and calculated peak positions (using only CO2 or CH4 peaks) with the FSR

and wavenumber offset as the only changing parameters. The profile of non-linearity

of wavenumber with respect to digital sample number recorded by the Tx étalon was

therefore still used in the calibration.

7.6.2 Final Results

During the campaign, the VMRs of CO2, CH4 and H2O were recorded at 1 s

intervals using two cavity ring-down spectrometer (CRDS) units for validation purposes,

complemented by routine meteorological station data both at the Rx and Tx. An average

CO2 VMR along the line of sight was retrieved, which is found to be in good agreement

with the validation measurements as described below. Additionally, a CH4 spectrum

covering the spectral region 4345.96 cm−1 to 4348.43 cm−1 (Table 7.3, label 12, laser L3) is

presented (Figure 7.10), however the VMR cannot readily be retrieved due to equipment

problems in the final hours of the campaign (see Section 7.6.7).

7.6.3 Fitting

For the full fitting procedure see Section 7.6.5. The spectral region 4768.27 cm−1 to

4771.75 cm−1 was investigated (Table 7.3, label 7, laser L1), using the 4 s period of

highest average signal intensity. A forward model based on the HITRAN 2008 line

parameters (Rothman et al., 2009) and the line by line simulation procedure outlined by

Rothman et al. (1998) was written and used to simulate and fit atmospheric transmittance

spectra. A fit was performed, in which the simulation was repeated whilst altering

several parameters including CO2 concentration to minimise the residuals between the

observed and calculated spectra; the resulting spectra are shown in Figure 7.9. The final

CO2 concentration from this fit was taken as the result, yielding 400.1 ppm (±14.7 ppm),

which is consistent with the validation value of 386.7 ppm (±0.21 ppm; see Section 7.6.6).
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Figure 7.9 – Observed and calculated atmospheric transmittance spectra in
the CO2 region. All features arise from CO2 absorption except for one, which
is due to H2O (labelled).
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Figure 7.10 – Observed and calculated atmospheric transmittance spectra in
the CH4 region.
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7.6.4 Error Calculations

Atmospheric pressure and temperature along the beam path for the time of the

investigated scan were modelled using the atmospheric analyses from ECMWF

(European Centre for Medium-range Weather Forecasts). For both of these variables,

the calculated full beam path values were adjusted based on the difference between their

computed values at the start and end points, and those recorded by the local weather

stations. The adjusted ray path values were then averaged, giving 285.2 K and 795.8 mbar.

The standard deviations resulting from this averaging were used as error bars. The fitting

procedure was repeated using the minimum pressure and temperature values calculated

from the error bars, and again with the maximum values. The difference between the

CO2 concentration results from these extra fits and that from the main fit were 11.3 ppm

and 10.7 ppm. The larger of the two was taken as the error caused by temperature and

pressure uncertainties. The path length of 143.65 km was calculated using the recorded

GPS coordinates.

The fitting procedure provides a final error covariance matrix, from which the

standard deviation in the CO2 concentration estimate was extracted. For the main fit,

this value was 9.0 ppm. This was combined with the temperature and pressure error of

11.3 ppm and the detector offset error of 2.7 ppm (see Section 7.6.7) using the root sum

squares method, yielding the final error of 14.7 ppm.

7.6.5 Floated Fitting Parameters

Four parameters were adjusted by the fitting program. Two were the VMRs of CO2 and

H2O. The observed spectrum obtained from the procedure outlined above is in units of

volts, which is effectively an arbitrary number, and the real position of the baseline is

unknown. To be able to compare the spectrum to a calculated transmittance spectrum,

it was necessary to use a multiplicative scaling factor. This scaling factor was the third

fitting parameter, which was applied to the whole calculated spectrum after all other

calculations. For the final presented spectra, the calculated and observed spectra are both

divided by this parameter, to scale them to transmittance spectra. The laser radiation will

have been subject to aerosol scattering, but with no wavelength dependence across the

scan regions. The effects of this scattering are taken into account by this multiplicative

factor, and will therefore have no noticeable effect on the final spectra.

The final fitting parameter was used to increase the broadening of the calculated
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spectrum from the theoretical values, as the observed spectra are broader than the

calculated ones (see Section 7.6.7). The spectra were fitted using Voigt lineshapes, a

convolution of the Lorentzian and Gaussian lineshapes, resulting from a combination

of mainly pressure-induced broadening and Doppler broadening, respectively. In the

fit, the extent of pressure broadening was kept constant at the calculated level, and the

multiplicative factor increased the influence of Gaussian broadening, effectively adding

a Gaussian instrument function. The best broadening parameter from the fit was 1.31.

The pressure, temperature and path length were kept constant in all the fits (see Section

7.6.7).

7.6.6 CO2 and H2O VMR Values

The validation CO2 value reported is simply an average of the CRDS Rx and Tx values

recorded at the time of the investigated scan. To estimate an error for this, the recorded

CRDS CO2 values for a ten minute period (five minutes either side of the actual scan time)

from both the Tx and Rx were averaged, and the standard deviation was used as the error

(±0.18 ppm). This was combined with the reported error of the CRDS units (±0.1 ppm)

using the root sum squares method, giving the final validation error of ±0.21 ppm. The

VMR of H2O across the beam path is likely to vary much more than that of CO2 and so

an actual average value could not be confidently calculated, and therefore its VMR was

floated in the fitting process.

7.6.7 Detector Gain and Offsets

It was necessary that the Rx detector used a high gain setting (∼70 dB) due to the extent of

power loss over the full path. The losses are primarily due to beam divergence, Rayleigh

and aerosol scattering, and molecular absorption. This high gain limited the bandwidth

of the detector so that the detector could not respond fast enough to rapid changes in

laser power for the scan speeds used (400 kHz sampling rate). This has affected the

observed spectra in two ways. Firstly, all of the spectra recorded on the campaign have

broader peaks than expected from simulations; an effect which was not observed in prior

studies in the laboratory when lower gain settings were used. Secondly, detector offsets

(hereafter referred to only as offsets) were not measured as often as intended. The original

plan was to use 20 zero current samples at the start of each waveform so that an offset

measurement could be taken regularly for each spectrum with zero laser power. This
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meant that any offset drift would be accounted for. The number of zero current samples

used was kept small, as using more samples causes the laser wavelength not to respond

as quickly to the applied current. This number of zero current samples was sufficient for

recording an offset when using lower gain settings, but it was not satisfactory at higher

gain settings. As a contingency, every ten 4 s repeats, a full 4 s repeat was recorded

whilst both lasers were blocked, and the recorded values were averaged to give an offset

value for that 4 s repeat time. These were used to provide the offsets used in the data

processing. For each 4 s repeat, the two closest (in time) recorded offset values were used

to estimate an offset for the 4 s repeat, assuming a linear offset change between the two

recorded times.

After the campaign, laboratory tests were performed to confirm that the gain setting

and not the laser linewidth was the cause of the broadened peaks and offset problem. A

gas cell was filled with CH4 and spectra were recorded using both a high and a low gain

setting. The laser power was reduced using several layers of tissue. These tests showed

the expected extra broadening and lack of offsets using the high gain setting.

To estimate the error due to the offsets, all of the offsets recorded during the scanning

session that contains the investigated 4 s repeat were averaged. The standard deviation

was added to and subtracted from the actual offset used, and final spectra were calculated

for each case. The fitting procedure was repeated, and the larger of the two differences

between the calculated VMRs and the main VMR result was taken as the offset-caused

error. An error of 2.7 ppm was estimated in this manner for the sample spectrum of

Figure 7.9.

To obtain a general idea of the possible effect of the offset variation on the 4 s repeats

within a scanning session, the offset variation was quantified. The standard deviation

of the recorded offsets was divided by the average received signal intensity. For the

investigated CO2 scanning session this gave a variation of ∼1.0%. For the best CH4

session it is over 200%. The detailed reason for this high variation is unknown, but

clearly there was a problem with the equipment when the CH4 measurements were

taken. For this reason, CH4 spectra were not used in this study to retrieve concentrations,

and the fit quality of the investigated CH4 is significantly lower than that for CO2. The

underlying limitation is that CH4 data could only be obtained in a short time at the end of

the available measurement time; if more time had been available then better data could

have been recorded.
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Table 7.3 – SWIR lasers and regions

Wavenumber range (cm−1)
Label Laser Start End Scan time

CO2(1)
L1
L2

4772.00
4768.03

4772.84
4768.92

Night 10
01:50-01:55

CO2(2)
L1
L2

4770.97
4766.36

4774.53
4768.18

Night 10
02:23-02:30, 02:31-02:39, 02:41-02:43

CO2(3)
L1
L2

4768.45
4765.32

4769.34
4766.25

Night 10
03:27-03:41

CO2(4)
L1
L2

4768.24
4763.94

4771.18
4768.21

Night 10
04:32-05:04

CO2(5)
L1
L2

4771.03
4768.55

4771.86
4769.50

Night 11
22:15-22:30, 22:37-22:44

CO2(6)
L1
L2

4770.35
4768.48

4771.20
4769.42

Night 11
22:59-23:00, 23:19-23:34

CO2(7)
L1
L2

4768.27
4764.11

4771.75
4768.20

Night 11
00:14-00:33, 00:34-00:43

CO2(8)
L1
L2

4770.91
4766.35

4774.52
4768.19

Night 11
00:54-01:13, 01:14-01:18

CO2(9)
L1
L2

4773.81
4766.35

4777.55
4768.19

Night 11
01:31-01:38, 01:56-02:09

CO2(10)
L1
L2

4771.17
4768.67

4771.98
4769.60

Night 11
02:55-03:09

CH4(11)
L3
L4

4346.48
4321.57

4347.39
4323.72

Night 11
05:44-05:51

CH4(12)
L3
L4

4345.96
4321.57

4348.43
4323.72

Night 11
06:21-06:38
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7.6.8 Conditions for Calculated Spectra

The spectra shown in Figures 7.2 to 7.4 were calculated with the same forward model

as was used in the fitting procedure, using the following conditions: altitude = 2.0 km

and pressure = 795 hPa (to compensate for the varying altitude of the beam path due to

the curvature of the Earth), temperature = 275.2 K, path length = 143.65 km, CO2 VMR =

330 ppm, CH4 VMR = 1700 ppb and H2O VMR = 0.00463.

7.7 Conclusion and Future Work

It has been successfully demonstrated that atmospheric carbon dioxide concentrations

can be determined from SWIR absorption measurements over very long path lengths,

with relatively low power diode lasers (∼4 to 10 mW). The accuracy of these

demonstration measurements (±15 ppm for CO2) is limited by errors in determining

the temperature and pressure along the atmospheric path length, uncertainties in the

least-squares fitting procedure (partly due to low SNR and errors in spectral line

parameters - see below), and problems in the field associated with a detector offset error

(see Section 7.6.7). The static link between the Islands also does not demonstrate the

scanning of the atmosphere which occurs between LEO satellites, and the experiment

was too short to monitor trace gas variability over time. A detailed description of how

the monitoring with the LEO system works is given by (Kirchengast et al., 2010).

In general, the desired precision for remote sensing of CO2 for carbon cycle science

is about 1 ppm (Rayner and O’Brien, 2001); a detailed discussion of the observational

requirements for the ACCURATE concept is available in (Larsen et al., 2009), adopted

by the mission proposal of (Kirchengast et al., 2010). While the accuracy of this first

demonstration experiment is not ideal, previous studies (Kirchengast and Schweitzer,

2011; Proschek et al., 2011) indicate that greenhouse gas profiles for an ACCURATE

mission are obtainable with <1 to 4% r.m.s. error (outside clouds; above 5 km; the

goal for CO2 is <1%). The sources of error contributing to the value of ±15 ppm are

expected to be significantly smaller for an ACCURATE mission than in this least-cost

demonstration. The detector offset error is a fixable issue (see Section 7.6.7) and

significantly more accurate frequency knowledge and higher SNRs will be available

from advanced instrumentation. Furthermore, accurate temperature, pressure and

humidity will be determined from simultaneous microwave occultation measurements
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(Kirchengast and Schweitzer, 2011; Schweitzer et al., 2011b), and a more accurate retrieval

algorithm (Proschek et al., 2011) will be used to extract greenhouse gas concentrations

from the infrared occultation measurements.

Implicit in the high accuracy of the ACCURATE mission is as well the requirement

for accurate spectroscopic line parameters. Unfortunately, the accuracy of the line

parameters presently available in the HITRAN database limits the accuracy of the

demonstration measurements. For example, the CO2 line intensities in the SWIR spectral

region have reported errors in the range >10% and <20%. It is necessary to improve

the HITRAN line parameters for the targeted absorption lines substantially in order for

the ACCURATE mission to meet its accuracy goals (Harrison et al., 2011). In summary,

we conclude from this first experimental analysis that infrared laser occultation between

LEO satellites (Kirchengast and Schweitzer, 2011) has a sound basis for monitoring CO2

in the free atmosphere; other greenhouse gases such as methane, nitrous oxide and water

vapour can be monitored in the same way. The next step is to use the lessons from this

work to perform a more stringent demonstration.
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Summary, Conclusion, and Further

Work

Spectroscopic line lists including both positions and absolute intensities have been

produced for several molecules and transition types, including the C2 and 12C13C Swan

systems, the CN, 13CN, and C15N A2Π-X2Σ+ (red), B2Σ+-X2Σ+ (violet) and X2Σ+ state

rovibrational systems, the CP A2Π-X2Σ+ system, the NH X3Σ− state rovibrational and

rotational transitions, and the OH X2Π state rovibrational and rotational transitions.

8.1 General Calculation Method

The line lists have been produced using a procedure that is a combination of experimental

and theoretical methods, which have been refined and improved throughout this work.

The purpose of the method is to base the line positions mainly on experimental data,

and the intensities mainly on theoretical calculations. This is because positions can easily

be obtained to good accuracy and precision experimentally, but intensities rarely can

(especially for unstable radicals as studied in this thesis), as described in Section 1.5.

The general procedure involves first combining all available experimental line

positions for a particular spectroscopic system, and fitting molecular constants to them

(using PGOPHER; Section 2.4). This enables line positions for transitions between all

observed energy levels (and slightly more) to be estimated accurately. Equilibrium

constants are then calculated by fitting to the molecular constants, and these are used

to obtain potential energy curves using the program RKR1. These are combined in

the program LEVEL with ab initio (transition) dipole moment functions to produce
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vibrational wavefunctions and then transition matrix elements, from which absolute line

intensities can be calculated (using PGOPHER; Section 2.5).

8.1.1 Changes to Calculation Method

The method has evolved somewhat as the work progressed, mainly in the calculation and

treatment of the MEs before their use in the calculation of the final absolute intensities (in

the form of EinsteinA values). The wavefunctions, ΨvJ(r), calculated from the potentials

in LEVEL are vibrational wavefunctions, and these are then combined with the transition

dipole moment to calculate transition MEs of the form 〈Ψv′J ′(r)|Re(r)|ΨvJ(r)〉. The MEs

calculated for the C2 work included only one transition ME for each vibrational band.

As indicated by the J subscripts, the wavefunctions are affected by rotation, which is

due to the presence of a centrifugal term that affects the potential (Equation 2.18). This

results in the MEs being dependent on rotation, an effect which is much greater for

lighter molecules, which is clear from Equation 2.18 as the reduced mass, µ, is present in

the denominator. This is called the Herman-Wallis effect when applied to rovibrational

transitions, but the term is used also for rovibronic transitions in this thesis, as the cause

is the same.

The first calculations performed were those for the C2 Swan system (Chapter 3), and

the LEVEL output for this work included only one transition ME for each vibrational

band. This ignores the H-W effect, but C2 is a heavy enough molecule for it to be a very

good approximation for most vibrational bands. The next project was expected to be the

NH work (Chapter 5), which clearly involves a much lighter molecule, and the inclusion

of the H-W effect was vital. A method for its inclusion was partially developed, but then

the CN and CP (Chapter 4) work took precedence, which was actually the next work

completed.

It has been found throughout this work that vibrational bands with lower absolute

intensities are generally subject to a stronger H-W effect, which is because the overlap

between the wavefunctions is small in these cases, and any change to the wavefunctions

is more likely to have a greater effect on the resulting overlap. As transitions in all

possible vibrational bands were planned to be included in the final line list, including

extremely weak bands, and as the H-W effect had been partly studied for the future NH

work already, it was decided that it would be included for CN.

LEVEL calculates MEs in terms of the quantum number N (Section 2.2.4.2), as it does
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not include electron spin, and these are considered to be in a Hund’s case (b) basis.

PGOPHER takes case (a) MEs in the molecular frame as input (and converts them to the

laboratory frame), and this needs to be considered when transferring MEs from LEVEL

to PGOPHER. Case (a) and (b) wavefunctions can be expressed as linear combinations

of each other, but if the H-W effect is not included, then all wavefunctions for a single

vibrational band are identical, whether case (a) or (b), and therefore case (a) and (b)

MEs are also identical. This means that for the C2 work, no transformation of MEs

between LEVEL and PGOPHER was necessary. However for CN, as the H-W was to

be included, a method of transformation between case (b) and (a) MEs was required.

The ”transformation ” equation (Equation 2.5.4) was derived for this purpose by Colin

Western.

The transformation equation was used for all of the CN and CP transitions, and also

for the NH work. During the final OH project (Chapter 6), it was discovered that an

approximation had been made in the derivation of the transformation equation, and with

its removal, the relative intensity results give a much better match to observed values

(Section 6.6). This resulted in a refined method that is very effective in the calculation

of line intensities for diatomic molecules, and will be of use to astronomers, materials

scientists, and combustion scientists in their analyses of the C2 Swan system.

The problems mentioned above were solved by investigating the comparison in

Figure 6.5, which shows the H-W effect for the various calculation methods, the HITRAN

values, and a set of observed values. Performing this comparison could not have been as

conclusive in the previous studies. This is because, for CN, the H-W effect is far too small

in the observed bands to be able to resolve the differences between these methods, and for

NH, the observed spectrum has a much lower SNR than the OH spectrum, resulting in

large error bars. However, now that this adjusted transformation equation is available,

Figure 5.6 can be reproduced to show the change in the NH H-W results, and this is

shown in Figure 8.1. The new results appear to be slightly better when compared to the

observed values.

8.2 Summary of Results

For the C2 Swan system, a large amount of data was obtained, and an extensive refit

of molecular constants was performed with the inclusion of some recently obtained
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Figure 8.1 – H-W effect for the NH X3Σ−, (1,0) band, including the results
with the adjusted transformation equation.

perturbation constants. Intensity calculations were performed as described above, and

the final line list includes positions, f -values and Einstein A values for lines in all

possible vibrational bands between v′=10 and v′=9, up to a maximum J of between

34 and 96, depending on the band. The line list previously in common use contained

many incorrectly assigned lines, which means that many positions and intensities will be

inaccurate, and any abundances resulting from its use may suffer from inaccuracies. This

new line list provides the most comprehensive set of positions and intensities for the C2

Swan system that is available.

An equivalent but much less extensive list was produced for the 12C13C Swan system,

containing all possible rovibronic transitions between v=0-2 in both electronic states, up

to J=60. It includes intensities and line position improvements, especially where v is

greater than 0. A list with this many transitions and with this accuracy was not previously

available.

The CN line list contains line positions, Einstein A-values and f -values for 295

possible vibrational bands (63 observed), and rotational lines with J up to between

25.5 and 120.5, depending on the band. Similar lists were produced for the 13CN and

C15N isotopologues. Previously available line lists have some substantial line position

uncertainties (Jørgensen and Larsson, 1990; Hill et al., 2002; Kurucz, 2011), and are
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not as extensive. This work provides increased line position and intensity accuracy in

an internally consistent data set. In particular, the rovibrational transitions previously

available are based either on an experimental dipole moment from 1968 (Thomson

and Dalby) or a dipole moment function from 1989 (Langhoff and Bauschlicher). The

differences obtained from these new calculations are around 30% lower for the strongest

(∆v=1) bands. This will result in significantly different abundances if calculated using

the CN rovibrational transitions.

Another line list was calculated for the CP A2Π-X2Σ+ system, for 75 possible

vibrational bands with v′ and v′′ up to 8, and J up to between 30.5 and 55.5, depending on

the band. This appears to be the first available line list with both positions and intensities

for the CP A2Π-X2Σ+ system.

Previously available NH rovibrational intensities are based on an experimental dipole

moment from 1974 (Scarl and Dalby, 1974), which based on all calculations since, appears

to have suffered from some inaccuracy. A more accurate DMF has also been used in

abundance calculations (Meyer and Rosmus, 1975), but these results, obtained from using

a new DMF calculated at a higher level of theory, give intensities approximately 20%

lower for the most important ∆v=1 transitions. The line list contains transitions for all

possible bands up to v=6, and for J up to between 25 and 44.

The final OH line list will contain all possible transitions in the Meinel (ground state

rovibrational) system, with v′ and v′′ up to 13, and J up to between 9.5 and 59.5. OH is

arguably the most important molecule discussed in this thesis, due to its importance

in both astronomy and atmospheric chemistry. Preliminary results suggest that the

difference in line intensities compared to those previously available will be around 10%

for the strongest ∆v=1 transitions

8.3 Application to Astronomy

As discussed in Section 1, knowledge of molecular and elemental abundances in various

astronomical environments is vital for the understanding of galactic, stellar and planetary

evolution (Tsuji, 1986; Grevesse and Sauval, 1998; Bernath, 2009). They are generally

obtained by observing absorption lines of atoms and molecules, where the light source

is either that of the star being measured, or in the case of non-stellar observations, a star

behind the absorbing system on the line of sight of the observation. The intensity of a
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particular spectral line can be used to calculate the concentration as described in Section

1.4. The quantities required are the lower state energy, the line position, an absolute line

intensity, and the temperature. The line lists produced in this thesis contain the first three

of these properties, and it is extremely useful for astronomers to have access to extensive

and reliable lists such as these.

Astronomers will use these line lists to generate synthetic spectra for comparison

with observations, and the more accurate the intensities are that they are provided with,

the more accurate the spectral lines that they synthesise and the concentrations that

they retrieve will be. Another factor that should be considered when evaluating the

importance of these line lists and their accuracy, is that in reality multiple line lists will

be used at once, due to the presence of the spectral features of many different atoms and

molecules. This means that the new line lists will not only be useful for direct retrievals

using the lines themselves, but also for more accurately taking into account the effects of

these lines when they overlap with target lines of different species.

Transitions of all of the molecules studied in this thesis except for CP have been used

to calculate elemental abundances as well as their own abundance (Eisenstein et al., 2011;

Smith et al., 2013; Sneden et al., 2014; Asplund et al., 2009; Sauval et al., 1984; Meléndez,

2004; Asplund et al., 2004; Ram et al., 2014). For the calculation of oxygen and nitrogen

abundances, CN, NH, and OH transitions are commonly used in conjunction with atomic

transitions (Asplund et al., 2009). C2 is sometimes used to calculate carbon abundances

(Hema et al., 2012), but this is more often accomplished using CH and CN, and atomic

C transitions (Asplund et al., 2009). C2 transitions are commonly used to calculate the
12C/13C ratio in various cosmic environments (Cohen et al., 2006; Hema et al., 2012;

Rousselot et al., 2012), which is another important parameter for understanding the

evolution of astronomical systems (Busso et al., 1999). Transitions of 13CN are also used

for this purpose and are contained in one of the line lists produced in this thesis.

The C2, CN, and OH lists have been used to calculate carbon, nitrogen, and oxygen

abundances in the Sun, and good agreement with literature data has been observed (see

Sections 3.7, 4.7, and 6.7 for more details). CN and C2 are not normally used for such

calculations because there is more oxygen than carbon in the solar photosphere, and as

explained in Section 3.7, this means that carbon containing molecules (other than CO)

will have low abundances. The fact that good agreement is seen with values calculated

mainly using C and N atomic lines, and NH and CH lines, is good evidence for the
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reliability of these line lists. The oxygen abundance result was compared to values

derived from atomic O lines, and this good agreement suggests that the new OH list

can also be used with confidence.

Elemental abundances for other stars were calculated in the same studies, that were

chosen as their conditions made them appropriate for studies of C2, CN, and OH lines.

Arcturus is a well studied, mildly metal-poor red giant (Ramı́rez and Allende Prieto,

2011). Its cool temperature and C/O ratio (in favour of oxygen) make it extremely

well suited for studying OH lines, but neither of these properties are so extreme as to

exclude a CN and C2 analysis. Good agreement with literature values was seen for all

three elements. Other stars analysed included two extremely metal-poor carbon stars,

for which CN and C2 lines were used, and a very metal-poor giant star, for which

OH rovibrational lines were analysed. These were chosen firstly as carbon-containing

molecules have relatively high abundances in carbon stars, and secondly as OH lines

are stronger in this star than usual due to very little CO formation, a low temperature,

and low C/O ratio. Again, good agreement with literature values was found for carbon,

oxygen and nitrogen abundances, and for 12C/13C ratios, where calculated. For details

of all of the results described here, see Sections 3.7, 4.7, and 6.7. Similar studies have not

yet been performed with the NH line list, but this will be carried out in the near future.

All of the line lists that have been produced in this thesis are improvements over what

was previously available. For the C2 Swan list, many line positions had been assigned

incorrectly (Tanabashi et al., 2007; Brooke et al., 2013), and although new positions were

recently made available (Tanabashi et al., 2007), intensities had not yet been calculated

based on the fully correctly assigned lines. The intensities that were available were also

based on very old data (Querci et al., 1971), and this has often resulted in astronomers

calculating their own intensities; for recent examples see Hema et al. (2012) and Rousselot

et al. (2012). This new list, along with the new list for the 12C13C isotopologue, can now be

used with confidence by astronomers to perform such studies as those described above.

For the CN lists, previously available line lists have some substantial line position

uncertainties (Jørgensen and Larsson, 1990; Hill et al., 2002; Kurucz, 2011), and intensities

were based on older (transition) dipole moment functions. The new lists are also

self-consistent in terms of positions and intensities for all three electronic states and

systems, and so astronomers can use this one list easily for most CN transitions.

For NH, the regularly used intensities in the JPL (Pickett et al., 1998) and CDMS
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(Müller et al., 2001, 2005) catalogues are based on a dipole moment from 1974 (Scarl and

Dalby), with which most more recent calculations disagree. When astronomers have not

used this standard list, they have, like with C2, opted to calculate their own intensities.

For example, for the NH transitions used to calculate the nitrogen abundance in the Sun

(Grevesse et al., 1990; Asplund et al., 2009), the authors used a DMF that is now quite

old (Meyer and Rosmus, 1975). The new DMF, which was calculated at a higher level

of theory is believed to be the most accurate currently available (Campbell et al., 2008),

and it produces significantly different intensities (Section 5.5.4). Therefore, the new list

would be very useful if adopted by astronomers in any reevaluation of the solar nitrogen

abundance, and also in other stars and astronomical environments, particularly cool stars

where there is more infrared radiation.

There was previously an OH line list available that was in standard use (Goldman

et al., 1998), and so unlike for C2 and NH, astronomers were not forced to produce

their own intensities. It has, however, been shown that the new intensities are more

accurate than in the previous list, based on comparisons to observed H-W ratios, an

experimental lifetime (van de Meerakker et al., 2005), and experimental dipole moments

(Peterson et al., 1984). This new list will be particularly useful to atmospheric chemists

investigating OH abundances in the atmosphere or performing temperature retrievals

using the OH airglow, and to astronomers who wish to calculate oxygen abundances.

For stellar atmospheres, OH Meinel transitions will be most effective for cool stars with

a low C/O ratio.

A specific example of the type of study for which the line lists would be extremely

useful, other than the small-scale studies described above, is the APOGEE project

(Eisenstein et al., 2011). This is a survey of over 100,000 red giants using transitions

in the near-infrared, including lines of the CN A2Π-X2Σ+ and B2Σ+-X2Σ+ systems, the

OH Meinel system, and some lines from the C2 Swan system. A master line list has been

produced for this project in an easily accessible form, so that all of the individual studies

will be consistent, and will not require any manual line intensity calculations. The new

lists from this thesis are also presented in a self-consistent and easily accessible form, and

if incorporated into such a master list, would provide the same benefits and more reliable

results. There would also be less or no need for the mixing of multiple lists, as the line

lists produced here span all of the transitions that are at all likely to be observed.

220



8.4 Further Work

8.4 Further Work

There is further work that could build directly on what has been described in this thesis.

The NH intensities will soon be updated to incorporate the changes to the transformation

equation, and the OH work will continue as described. For the C2 Swan system, the

recalculation of the intensities with the inclusion of the H-W effect, the addition of

more perturbation constants, and the use of the new transformation method would

provide a more accurate list of positions and intensities. For the CN systems, the new

transformation method will soon be used to update the line list, which will provide some

improvements in the unobserved bands.

It has been observed that to obtain the best possible line positions it is often necessary

to collect available experimental data from the literature, consider other effects such as

local perturbations, and perform a refit of molecular constants. The ab initio calculation

of the (T)DMF also requires specific considerations of the molecule and electronic state.

It would be possible, however, to mostly automate the remainder of the calculations, if

a large number of checks and comparisons were also automatically performed, and this

is something that may be considered in the future. The whole method described in this

thesis is shown as a flow chart in Figure 2.19, in which the parts that could be mostly

automated are highlighted.

The recent OH work has helped to finalise the method of line intensity calculations,

and this has been shown to be an efficient and effective way of combining experimental

and theoretical data to create line lists for diatomic molecules containing line positions

and intensities. Similar calculations could be performed for other molecules and systems

using this method.

Line intensities have been a part of all of the work in this thesis, having been

calculated in most of the projects, and they were also important in Chapter 7 for the

retrieval of atmospheric concentrations of CO2 and CH4. Overall, line intensities are vital

in a number of scientific fields, such as astronomy, combustion science, and atmospheric

science; and the complex models that are created in these fields would not be possible

without them.

221





Abbreviations

ACCURATE Atmospheric Climate and Chemistry in the UTLS Region And climate

Trends Explorer

ACE Atmospheric Chemistry Experiment

ADC Analogue/Digital Converter

CASSCF Complete Active Space Self-Consistent Field

CDMS Cologne Database for Molecular Spectroscopy

DMF Dipole Moment Function

ESA European Space Agency

FRQ analogue 500 Hz square wave

FSR Free Spectral Range

FTS Fourier Transform Spectrometer

GPS Global Positioning System

HITRAN HIgh-resolution TRANsmission molecular absorption database

H-W Herman-Wallis

IR InfraRed

IRDAS-EXP InfraRed Differential Absorption Spectroscopy - EXPeriment

JPL Jet Propulsion Laboratory

LEO Low Earth Orbit

ME Matrix Element

MRCI Multi-Reference Configuration Interaction

NOT Nordic Optical Telescope
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OGS Optical Ground Station

ORM Roque de los Muchachos Observatory

OT Teide Observatory

PPS Pulse Per Second

RCCSD(T) spin Restricted Coupled Cluster Singles Doubles (Triples)

RKR Rydberg-Klein-Rees

Rx Receiver

SNR SNR

SWIR Short-Wave InfraRed

TDM Transition Dipole Moment

TDMF Transition Dipole Moment Function

Tx Transmitter

UV UltraViolet

VMR Volume Mixing Ratio

WKB Wentzel-Kramers-Brillouin

APOGEE The Apache Point Observatory Galactic Evolution Experiment
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G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, S. Schweitzer,

V. Proschek, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher. Atmos.

Meas. Tech., 5; 2309, 2012. doi:10.5194/amt-5-2309-2012

Brooke, J. S. A., P. F. Bernath, T. W. Schmidt, and G. B. Bacskay. J. Quant. Spectrosc. Radiat.

Transfer, 124; 11, 2013. doi:10.1016/j.jqsrt.2013.02.025

Brooke, J. S. A., P. F. Bernath, C. M. Western, M. C. van Hemert, and G. C. Groenenboom.

J. Chem. Phys., 141; 054310, 2014a

Brooke, J. S. A., R. S. Ram, C. M. Western, D. W. Schwenke, G. Li, and P. F. Bernath.

Astrophys. J.Supp. Ser., 210; 23, 2014b. doi:10.1088/0067-0049/210/2/23

227



BIBLIOGRAPHY

Brown, J. and A. Carrington. Rotational Spectroscopy of Diatomic Molecules. Cambridge

Molecular Science (Cambridge University Press, 2003)

Brown, J. and A. Merer. J. Mol. Spectrosc., 74; 488, 1979. doi:10.1016/0022-2852(79)90172-3

Brown, J. M. and B. J. Howard. Mol. Phys., 31; 1517, 1976. doi:10.1080/00268977600101191

Burbidge, E. M., G. R. Burbidge, W. A. Fowler, and F. Hoyle. Rev. Mod. Phys., 29; 547,

1957. doi:10.1103/RevModPhys.29.547

Busso, M., R. Gallino, and G. J. Wasserburg. Annu. Rev. Astron. Astrophys., 37; 239, 1999.

doi:10.1146/annurev.astro.37.1.239

Caffau, E., H.-G. Ludwig, M. Steffen, T. R. Ayres, P. Bonifacio, R. Cayrel, B. Freytag, and

B. Plez. Astron. Astrophys., 488; 1031, 2008. doi:10.1051/0004-6361:200809885

Callomon, J. H. and A. C. Gilby. Can. J. Phys., 41; 995, 1963. doi:10.1139/p63-105

Campbell, W. C., G. C. Groenenboom, H.-I. Lu, E. Tsikata, and J. M. Doyle. Phys. Rev.

Lett., 100, 2008. doi:10.1103/PhysRevLett.100.083003

Campbell, W. C., E. Tsikata, H.-I. Lu, L. D. van Buuren, and J. M. Doyle. Phys. Rev. Lett.,

98; 213001, 2007. doi:10.1103/PhysRevLett.98.213001

Cantarella, E., F. Colot, and J. Liévin. Phys. Scripta., 46; 489, 1992.
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Technical Report # 93-001, National Solar Observatory, Tucson, 1998b. URL

ftp://ftp.noao.edu/fts/niratl/

Wallerstein, G. and G. R. Knapp. Annu. Rev. Astron. Astrophys., 36; 369, 1998.

doi:10.1146/annurev.astro.36.1.369

Wallis, A. O. G. and J. M. Hutson. Phys. Rev. Lett., 103; 183201, 2009.

doi:10.1103/PhysRevLett.103.183201
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