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Abstract

We consider the vacuum polarisation, 〈φ2〉 , of a quantum scalar field on a black hole

background. We introduce additional space-like dimensions and study the vacuum polar-

isation outside the event horizon. We consider a massless, quantum scalar field on the

static, hyperspherically symmetric Schwarzschild-Tangherlini metric with zero cosmolog-

ical constant. We calculate all results for a Hartle-Hawking vacuum state. The brane

and bulk cases are considered separately; the metric on the brane is the four dimensional

projection resulting from a bisection of the general black hole metric. On the brane we

extend previous work on the Schwarzschild metric, for a conformally coupled field, such

that we choose to include up to seven extra dimensions in the bulk. To conclude the

work on the brane we present numerical results for the vacuum polarisation and outside

the event horizon. For the bulk with five dimensions we present a complete methodology

from initial set up to test results that demonstrates a way in which such a calculation

can be completed for the first time. This is achieved by the introduction of non-physical

Minkowski terms into the renormalisation scheme. Finally we discuss the prospects for

extending our methodology to calculating the vacuum polarisation in the bulk for more

than five dimensions.



Preface

Chapters 1 and 2 contain reviews of previous work. Chapter 3 shows new work and

results for on the brane. Chapters 4 and 5 are original work covering the bulk with five

and six dimensions.

In Ch. 1 we give a qualitative introduction to quantum field theory in curved space

and the brane/bulk universe with a review of previous work. Chapter 2 reviews the

mathematics required in this research that has been been published by other authors.

In Ch. 3 we present our new work on the brane, this is complete, beginning at the

initial construction of the vacuum polarisation and ending with the results we aimed to

achieve.

Chapter 4 contains the main body of this research and is original work. We demon-

strate a methodology allowing the, previously incalculable, renormalised vacuum polar-

isation outside the event horizon in the five dimensional bulk to be found. We present

work extending four dimensional objects into five dimensions and investigate the reper-

cussions. We then discuss the higher dimensional renormalisation. Then we introduce

the original idea of equating renormalisation components to their equivalents in the more

easily calculable Minkowski spacetime case. We then demonstrate a complete method

(with test results) to find the renormalised vacuum polarisation. We follow this in Ch. 5

with original work comprising of a brief review of how the calculation would be set up in

a bulk of six dimensions and a discussion of which renormalisation methods may prove

advantageous for future research.

We end in Ch. 6 with conclusions drawn from the original results on brane and our

unique approach to handling higher dimensional renormalisation in the bulk. This is

followed by a review of future work based on this research.
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Chapter 1

Introduction

In this chapter we shall introduce the main topic of this work before detailing its physical

set up. We shall further discuss the motivation for this set up as well as reviewing relevant

past work and contemporary investigations into similar topics.

We have purposefully kept this introduction mathematically light except for a few key

equations. This is so we can present the background mathematics in more detail in the

following chapter, Ch. 2.

1.1 Notation

Throughout this work we use the MTW [54] metric signature (−,+,+,+) and units such

that 8πG = ~ = c = kB = 1. All other notation and uses of symbols are described as they

are introduced.

15



1.2. QUANTUM FIELD THEORY IN CURVED SPACE

1.2 Quantum Field Theory in Curved Space

One ongoing goal of mathematics and science goal is the achievement of a theory of

quantum gravity, a theory that would unify the laws of quantum behaviour with gravity.

The major obstacle in achieving such a theory is the incompatibility of quantum field

theory and general relativity, regarded as highly successful in their respective areas. One

explanation of this failed connection is that gravity is perturbatively unrenormalisable

and hence cannot be easily expressed as a quantum field. With this in mind a first

approximation to quantum gravity can be constructed by considering quantum fields but

allowing the spacetime to remain classical. This approach is termed quantum field theory

(QFT) in curved space [9, 56].

As this approach has a classical spacetime, i.e. its metric is treated classically, QFT

in curved space is considered a semi-classical approach. We then allow any quantum

fields to propagate through this spacetime. This approximation serves two purposes;

firstly to provide new predictions of physical phenomena and secondly to provide a check

on any proposed theory of quantum gravity. Finding phenomena predicted from this

approximation validates its use but also any theory of quantum gravity must produce the

same phenomena under certain limits as a check on its validity.

Quantum field theory in curved space has already produced important predictions,

the most publicly famous being black hole evaporation through Hawking radiation [38].

It has also obtained results pertaining to the Casimir effect [42] and the Unruh effect [70].

The Unruh effect states that an inertial observer detects a particular vacuum state but

an accelerating observer will see black body radiation at a temperature proportional to

the relative acceleration. This means observers with relative acceleration will see differing

vacuum states.

An object of fundamental importance in general relativity is the stress-energy tensor

16



CHAPTER 1. INTRODUCTION

[54], Tab , which describes the density and flux of energy and momenta of matter, radiation

and force fields. As these classical objects have now been subsumed into quantum fields

the stress-energy tensor itself can no longer be classical. As it is now a quantum object we

must treat it as an operator and look at its expectation value. Given a normalised state |s〉

we write the expectation value of the stress-energy tensor operator as 〈s|Tab|s〉. An added

advantage of this object is it allows us to bypass the concept of particles, which in a curved

spacetime with a quantum field become observer dependent as discussed in §1.8. We can

now express the connection between the quantum field and the background geometry

through the semi-classical Einstein equations [9, 72] (with no cosmological constant)

Gab = Rab −
1

2
Rgab = 〈s|Tab|s〉 (1.2.1)

containing Einstein’s tensor Gab, the Ricci tensor Rab, Ricci scalar R and the spacetime

metric gab. A failure of this expectation value of a quantum operator is that it is divergent

when naively calculated at a point (see §2.5 and Appendix A) and hence the expecta-

tion value is formally infinite [73]. As such the expectation value must in some way be

renormalised to produce 〈s|Tab|s〉ren, the renormalised stress-energy tensor (RSET).

Quantum field theory in curved space has been developing now for over forty years

but its application is restricted to systems that have a metric solution to equation (1.2.1).

As such investigations into black hole spacetimes can be greatly rewarding as they have

simple descriptions but also have large enough gravitational curvature to produce effects

in any quantum field not apparent at lower energies.

1.3 Brane World Theory

Brane world theory is a higher dimensional model based on the concept that our universe

can be treated as a four dimensional manifold (termed the brane) embedded in a higher

17



1.3. BRANE WORLD THEORY

dimensional spacetime (the bulk). The brane contains our four usual dimensions and is

described by parameters such that it models our perceived universe [60]. While the brane

is strongly proscribed in advance by needing to match our observations of the universe we

are free to some extent in how we characterise the bulk. The size, nature and warping of

the extra dimensions can be modeled in many ways. However certain freedoms of choice

have been constrained by work demonstrating unphysical interferences on the brane, such

as disproportionate gravitational strength [52].

In a brane world model it is usual to assume that non-scalar, non-gravitational particles

are trapped on the brane resulting in scalar particles and gravitons escaping into the bulk,

such as in the ADD model [4, 5] discussed further in §1.6. The Randall-Sundrum model [59]

places the same restriction on particle propagation but introduces only a single, warped,

extra dimension to account for modifications of gravity.

Such a brane world set up can be used as a solution to the hierarchy problem. In

general a hierarchy problem is an issue encountered when theoretical values are vastly

out of scale to those seen in experiment. In the standard model the issue termed the

hierarchy problem can be briefly summarised as one of two equivalent questions; why is

the weak force 1032 times stronger than the gravitational force or why is the Higgs boson

(c. 120GeV) so much lighter than the Planck mass (c. 1019GeV). Calculations for the

quantum corrections to the Fermi constant in weak force studies show that it should result

in a scale similar to the gravitational constant but this is not true in experiment. A similar

discrepancy is seen in the theoretical versus experimental results for the Higgs mass (as

demonstrated in the mass values above). In essence the problem is that current models

expect the four fundamental forces to be equivalent in such a way that they can be unified

for certain energies scales. This is true for the the strong nuclear, weak nuclear and the

electromagnetic forces but not for gravity.

The brane world solution to the hierarchy problem makes use of the fact that the model
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CHAPTER 1. INTRODUCTION

allows gravitational particles to escape the brane into the bulk. This would mean that

the gravitational force witnessed on the brane does not represent the true scale of gravity.

Now consider that stating the gravitational force is too weak (on the brane compared to

the weak force) is equivalent to stating that the 4d Planck mass, Mp,4 = 2.2× 10−8kg, is

too massive (the associated value for the weak force is of the order 10−25kg). The brane

solution states that the true Planck mass in the d dimensional bulk, Mp,d, is of the correct

scale to other forces by the following relation

M2
p,4 = (2πR)d−4Md−2

p,d . (1.3.1)

where the 2πR is a scale factor relating to higher dimensional volume. This relation

provides some guidance on the construction of a physically allowable model for the bulk

as the ratio of the extra dimensional radius to the number of dimensions must allow for a

Planck mass that results in the observed gravity on the brane [46].

Additional to this bulk Planck mass we can calculate the bulk Planck length, informing

us of the true scale at which quantum gravity dominates over other interactions. The

derivation is performed with non-natural units based on the bulk gravitational constant

and allows us to express the bulk Planck length, lp,d, as

lp,d =
(
l2p,4
) 1
d−2 . (1.3.2)

Beyond the hierarchy problem allowing for extra dimensions is physically motivated.

Both string theory [63] and the Kaluza-Klein [45, 50] model show the possibility of some

unification in higher dimensions however Kaluza-Klein theory is heavily constrained and

string theory has yet make enough testable predictions. Researching quantum field theory

in curved space with higher dimensions allows for the investigation of extra dimensions

through microscopic black hole evaporation. The signature of such evaporation will be
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detectable at colliders (if black holes are produced there) and such signatures will contain

traces of any extra dimensions, for reviews see [18, 34].

1.4 Objectives and Setup

As stated in §1.2 the fundamental object we want for any system is 〈s|Tab|s〉ren however

it has no generalised method of calculation. As we will be performing research in an

area of little previous investigation we initially choose factors that will allow progress

to be achieved. We restrict ourselves to a scalar field and only investigate the vacuum

state (to be determined, see 1.8) exterior to a black hole, 〈0|Tab|0〉 = 〈Tab〉. With these

criteria the RSET depends on the renormalised object 〈φ2〉ren and its derivatives [3, 41].

The object 〈φ2〉 is the auto-correlation of the field, termed the vacuum polarisation, and

gives a measure of the screening effect caused by polarised pseudoparticle pair production.

The concept is more familiar for an electromagnetic field in QED where its equivalent is

polarisation resulting in charge screening and from where it derives its name [31]. The

renormalised vacuum polarisation’s direct usefulness is that its behaviour is similar to the

RSET, notably both will tend to diverge at the same places, and that it is much easier to

calculate.

Our work will be to investigate the vacuum polarisation however unlike in other work

we have both a brane and a bulk to consider. We can anticipate that to some extent the

methodology for the vacuum polarisation on the brane will mimic that for the calculation

on the Schwarzschild metric so we consider this the first of our objectives. However it is still

of relevance to see how 〈φ2〉ren changes as the number of extra dimensions increases from

zero. There has been no known previous attempt to calculate the vacuum polarisation

within the bulk and so we identify this as our primary investigation target. It is prudent

to state that our goal in the bulk is to find methodology that will allow calculation and

accurate results in future work.
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In sections 1.6 , 1.7 and 1.8 we will detail the specific choices for our physical setup

(metric, brane model and vacuum state) after a review of previous work.

1.5 Previous Research

We review here some previous research that leads into our investigation, all these papers

listed assume a zero cosmological constant unless stated otherwise. In 1976 Christensen

[19] demonstrated a methodology from which calculations of the RSET and the vacuum po-

larisation (see §1.4) could be performed. The first calculations were performed by Candelas

[16] who derived values for the vacuum polarisation on the horizon of a Schwarzschild black

hole for a massless, conformally coupled scalar field. Candelas had previously produced in

his thesis [15] necessary geometrical derivations concerning the lengths of geodesics and

the expression of the vacuum polarisation. These results were followed up by Candelas and

Howard [17] who extended the calculation away from the horizon. Howard [41] then was

able to numerically calculate values of the stress-energy tensor for the same parameters.

Still for a Schwarzschild black hole Jensen and Ottewill [44] successfully calculated

components of the stress-energy tensor for an electromagnetic (hence vector) field keeping

other assumptions as before. This was followed up by Jensen, McLaughlin and Ottewill

[43] who now produced the same derivation but for a field of gravitons extending previous

methodology to different particle fields.

Importantly Anderson [2] collected and generalised the previous methodologies to cal-

culate the renormalised vacuum polarisation for fields neither with general mass and cou-

pling on a Reissner-Nordström black hole. From this work came the standardised base

method from which much work in this area is derived. Anderson, Hiscock and Samuel

[3] then advanced Anderson’s work by developing a general method for the renormalised

stress-energy tensor of a scalar field on any spherically symmetric spacetime. For a general

field [21] present a methodology to achieve a qualitative picture of the RSET and lay the
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groundwork for explicit calculation for four dimensions. This general method is extended

to higher dimensions by [55].

Concerning spacetimes with non-zero cosmological constant, Winstanley and Young

[75] first calculated the vacuum polarisation for a de Sitter, Reissner-Nordström black

hole. A method was then developed by Breen and Ottewill [12] which improved upon the

approach in [75] near the event horizon for more accurate results in this region. Breen

and Ottewill then progressed their research to develop a method to calculate RSET on the

horizon [13]. Calculations of the vacuum polarisation for an asymptotically Anti de Sitter

black hole were produced by Flachi and Tanaka [29] but only for the massless, conformally

coupled case.

Of note at this point is a problem encountered in more than one of these works [3, 75].

Calculation of the vacuum polarisation, and hence the RSET, became problematic near

the horizon due zero frequency modes. This problem was overcome in [12] and is an issue

that will be returned to at several points later in this thesis.

For black holes in more than four dimensions Frolov, Mazzitelli and Paz [32] calculated

the value of the vacuum polarisation on the horizon of a Schwarzschild-Tangherlini black

hole in five dimensions. In six dimensions Lemos and Thompson [69] solved the same

problem in the context of a Reissner-Nordström black hole and presented a method for

incorporating the renormalisation terms for any even dimension. These two studies repre-

sent all the research performed in higher dimensions that have produced results. Further

both of these studies use a deWitt-Schwinger expansion to handle divergent terms. It has

been recently shown in the d dimensional case [23] that using the Hadamard form is much

more rigorous. The results of using the Hadamard form make calculations easier [23] and

may be the way to design a general method for calculating divergent terms.
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1.6 The Brane Model

For this investigation we will use the ADD brane world model [4, 5] wherein our extra

dimensions are flat and sufficiently large in comparison to our black hole. If the extra

dimensions were small then additional effects would be generated by the gravitational

force propagating along side the brane through the thin bulk, this should be avoided as

no such effects are evident [52]. Also the scales generated would not adequately account

for the loss of gravitational strength on the brane in regards to the hierarchy problem.

In addition if the extra dimensions were small we would not be able to use our metric,

§1.7, as it would no longer be an accurate measurement of the spacetime. We note that

for both these issues there is not a difficulty for small, compact dimensions. The fact the

extra dimensions are flat means the cosmological constant in the bulk is zero.

We must then consider our extra dimensions to be compact but large enough compared

to the black hole so that compactness can be ignored. If not compact then we encounter

additional dimensions of infinite extent. We disallow such an occurrence by application of

Gauss’s law shown in the low mass and separation limit. This application demonstrates

that the gravitational acceleration, g(r), at radial coordinate r in n spatial dimensions

depends on the total mass M contained within the surface area of a (n− 1)-sphere, Sn−1,

by

g(r) =
−4πGM

Sn−1
= −4πM

GΓ(n2 )

2π
n
2 rn−1

. (1.6.1)

From this relation and tests performed at the nanometer scale [24] we see that infinite

extent dimensions must be disallowed to be physically relevant. A constraint is still in

place on the size of compact dimensions to prevent gravity on the brane being too weak

so their size must be kept below the millimeter scale. Note that the existence of extra

dimensions of infinite extent is not an issue for the Randall-Sundrum model [59].

As is evident in equation (1.2.1) we are also taking the cosmological constant on the
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brane to be zero, this is equivalent to stating that the brane is tensionless or flat. We

are also assuming that our brane is four dimensional, three spatial and one temporal, and

that all extra dimensions are spatial. We will denote the total number of dimensions in

the bulk by d such that if we let d = 4 there are no extra dimensions. The black hole is

then positioned so that its singularity is attached to the brane giving it a d dimensional

horizon through which the brane makes a flat slice [35]. This construction matches that

used at the LHC to calculate potential black hole signatures [30, 47, 74].

1.7 The Metric

For our investigation we use a simple metric so we omit charge and spin to choose the

Schwarzschild-Tangherlini [67] metric,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−2. (1.7.1)

Details concerning the metric and its properties (definitions, temperature, surface gravity

etc.) can be found in §2.3 where its implementation will be developed.

This metric is appropriate for outside the body of the black hole with Hawking tem-

perature [8, 39] of TH = κ/2π (where κ is the surface gravity) and a radiation spectrum

at spatial infinity determined by TH . In the case where d = 4 equation (1.7.1) is identical

to the Schwarzchild metric but they share some properties for d 6= 4. Importantly this

metric represents the most general (classical) vacuum solution for a static black hole that

is hyperspherically symmetric and asymptotically flat. This means we may assume the

black hole horizon is a hypersphere in the bulk and is time invariant.

Knowing our black hole horizon is a hypersphere we take the simplest flat slice to be

our brane. This is a bisection and is performed by (WLOG) setting θi>1 = π/2 we obtain
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(also setting θ1 = θ)

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θ dφ2) (1.7.2)

for the metric projection on the brane.

1.8 The Vacuum State

Related to the Unruh effect mentioned in §1.2 is that it is impossible to define an absolute

vacuum state for a quantum field in a general curved space. This phenomenon arises from

the definition of the creation and annihilation operators (e.g. â† and â respectively) by

the choice of positive frequency in the mode expansion [56]. An observer accelerating with

respect to another will naturally make a different choice of positive frequency and produce

a second set of particle operators (say b̂† and b̂). Either can be used to create a particle

basis in a Hilbert space and they are related by the Bogolyubov transformations

â†k = αk b̂
†
k + β∗k b̂-k

and âk = α∗k b̂k + βk b̂
†
-k.

(1.8.1)

Here k is spatial momentum and αk and βk are the Bogolyubov coefficients. This result

allows us to define a relative vacuum such as |0〉(a), which is void of a particles but will still

contain b particles if b̂k 6= 0. As there is no absolute vacuum we are forced to choose one

with which to calculate. It is in fact relatively easy to calculate the difference in expectation

value between two vacuum states [21] as this process requires no renormalisation. This

fact allows us to choose the vacuum state which will make our calculation easiest.

There are three standard vacua defined on black hole spacetimes. The Unruh vacuum

[70] is a time asymmetric static state that models the late time of a Hawking collapse with

the expected thermal spectrum at infinity for a black hole with a Hawking temperature.
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The Boulware vacuum [10] is empty of particles at infinity and is also empty as seen

by an observer moving along the integral curves of the static Killing vector field. This

leads to the quantities calculated from the state being divergent at the horizon and so it

is used to model the region near a neutron star just before the surface collapses within

the horizon. Our choice will be the Hartle-Hawking vacuum [37] (sometimes referred to

as the Israel-Gibbons-Perry vacuum) which provides the most advantageous properties

for our calculations. Physically this represents a state with a thermal spectrum from a

particle bath at infinity that is in equilibrium with the thermal radiation from the black

hole. This means the black hole remains in thermal equilibrium, will not lose mass over

time and hence will not evaporate. This vacuum has several key features: it is regular on

the horizon allowing calculation in the nearby region, it allows for incoming and outgoing

particles, it is non-empty at spatial infinity, particles have positive energy with respect to

Kruskal coordinates on the horizon and the state is time symmetric. It is the regularity

and symmetry properties that make calculations on this vacuum easier than in the other

states.

1.9 Outline of Remaining Chapters

Chapter 2 reviews the mathematics required in this research that has been been published

by other authors. This includes a more rigorous description of our set up, the construction

and behaviour of higher dimensional functions (such as harmonics and Green’s functions),

renormalisation through the Hadamard expansion and the WKB approximation to nu-

merical solutions of ODEs.

In Ch. 3 we present our new work on the brane, this is complete, beginning at the

initial construction of the vacuum polarisation and ending with the results we aimed to

achieve. This initially extends on previous work by modifying a function in the metric

so it is now dependent on dimension and then presents new approaches and calculations
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based on the new behaviour of this function. We also discuss the difficulties caused by

this function in numerically solving a core ODE. Finally we present original results for

the vacuum polarisation on the brane outside the event horizon in a near, and more

extended, region for a bulk of up to eleven dimensions. This chapter includes the vacuum

polarisation on the horizon provided by Adrian Ottewill and Cormac Breen of University

College Dublin.

Chapter 4 contains the main body of this research and is original work. We demonstrate

a methodology allowing the, previously incalculable, renormalised vacuum polarisation

outside the event horizon in the five dimensional bulk to be found. We present work

extending four dimensional objects into five dimensions and investigate the repercussions.

We then discuss the higher dimensional renormalisation. We demonstrate an extension

to the dimensional reduction method that fails in our case but shows promise in other

applications. Then we introduce the original idea of equating renormalisation components

to their equivalents in the more easily calculable Minkowski spacetime case. We then

review several ways in which this idea can be implemented before demonstrating a complete

method (with test results) to find the renormalised vacuum polarisation. Calculations in

this chapter were supported by programming assistance from Adrian Ottewill. We follow

this in Ch. 5 with original work comprising of a brief review of how the calculation would

be set up in a bulk of six dimensions and a discussion of which renormalisation methods

may prove advantageous for future research.

We end in Ch. 6 with conclusions drawn from the original results on brane and our

unique approach to handling higher dimensional renormalisation in the bulk. This is

followed by a review of future work based on this research.
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Chapter 2

General Methodology

This chapter contains a review of useful definitions, initial equations and general methodol-

ogy applicable for both brane and bulk cases. Specialisation of these methods to either case

can be found in subsequent chapters. The methodology scheme is based on [2, 3, 19, 75]

and extensions to higher dimensions are based on [23, 32, 69].

2.1 Biscalars

For our purposes we define a general biscalar as operating on two spacetime points in our

manifold, M, such that, given a biscalar A(x, x′),

A :M×M→ C. (2.1.1)

We define

∇αA(x, x′) =
∂A(x, x′)

∂xα
= A;α (2.1.2)

as the covariant derivative of A at x such that A;α is a dual vector at x and a scalar at

x′. We define A;α′ as a dual vector at x′ and a scalar at x. We similarly extend this to
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second derivatives such that we have

∇βA;α = A;αβ and ∇β′A;α′ = A;α′β′ . (2.1.3)

In (2.1.3) we have defined two objects that are scalar valued at one event and rank two

tensors at the other, by the properties of the covariant derivative the rank two tensors are

symmetric. We also have

∇β′A;α = A;αβ′ =
∂2A

∂xβ′∂xα
= A;β′α (2.1.4)

by the properties of partial derivatives.

The definitions and notation for biscalars can be simply used for higher order deriva-

tives. However note that the first covariant derivative at one event is actually a simple

partial derivative and so may be transposed with derivatives at the other event. For

example,

∇δ′A;αβγ = A;αβγδ′ = A;αβδ′γ = A;αδ′βγ = A;δ′αβγ . (2.1.5)

Although we know from equation (2.1.3) that α and β may be transposed we have no

such rule for exchanges with γ. The property displayed in (2.1.5) can be generalised [58]

such that given A...(x, x
′) (where ... indicates any combination of primed and unprimed

indices) we have

A...;αβ′... = A...;β′α.... (2.1.6)

As a result the ordering within the primed and unprimed indices must be preserved but

primed and unprimed indices may always be transposed.
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2.2 Hyperspherical Harmonics

We define hyperspherical harmonics [27, 33, 57] which represent the angular part of solu-

tions to equations such as the higher dimensional Laplace equation. Firstly let P be the

space of homogeneous polynomials of degree l in d− 1 variables such that ∀Pl ∈ P

Pl(λx) = λlPl(x) (λ is any constant). (2.2.1)

Let A be the subspace of P such that Al ∈ A is harmonic. The polynomial Al is deemed

harmonic if it is a solution to Laplace’s equation

4d−1Al =
d−1∑
i=1

∂2Al
∂x2

i

= 0. (2.2.2)

Now let H be the space of harmonic functions Al restricted to the (d− 2)-sphere where

Sd−2 = {x ∈ Rd−1 : |x| = 1}. (2.2.3)

In line with the literature [33] the elements of H are denoted Yl and are named the spherical

harmonics.

The Laplacian (2.2.2) is re-expressed in spherical coordinates so that

4d−1 =
∂2

∂r2
+
d− 2

r

∂

∂r
+

1

r2
4Sd−2 (2.2.4)

where 4Sd−2 contains all the angular components of the Laplacian on Sd−2. Now from

(2.2.1) Al can be expressed as

Al(x) = Al(rζ) = rlAl(ζ) (2.2.5)
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where ζ is a unit vector. As Al(ζ) is restricted to the unit sphere we know Al(ζ) is Yl(ζ)

for every ζ ∈ Sd−2 and so Al(x) = rlYl(ζ). Hence from the definition of A and (2.2.4) we

obtain [33]

4d−1Al(x) = l(l − 1)rl−2Yl +
d− 2

r
lrl−1Yl +

rl

r2
4Sd−2Yl = 0 (2.2.6)

so that

rl−2 (4Sd−2Yl + l(l + d− 3)Yl) = 0, (2.2.7)

resulting in

4Sd−2Yl = −l(l + d− 3)Yl. (2.2.8)

Therefore the spherical harmonics are eigenvectors of the operator 4Sd−2 .

An important quantity to be used later is the number of linearly independent spherical

harmonics of degree l in d− 1 variables, N(d− 1, l). First note that that every monomial

(i.e., product of variables) in an l-th degree homogeneous polynomial must be of degree l.

Hence there are K(d− 1, l) linearly independent, homogeneous lth degree polynomials in

d− 1 variables where [33]

K(d− 1, l) =

(
l + d− 2

l

)
=

(
l + d− 2

d− 2

)
. (2.2.9)

Now we apply this to harmonic polynomials through equation (2.2.2) in one of two ways

that must provide identical N(d − 1, l). Firstly consider the homogeneous condition for

each value of the index i from (2.2.2) which totals to K(d−1, l−2) [6] hence the difference

between this number and (2.2.9) is N(d− 1, l) as

N(d− 1, l) = K(d− 1, l)−K(d− 1, l − 2). (2.2.10)
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Secondly start with Al ∈ A expressed as [33]

Al(x1, .., xd−1) =

l∑
j=0

xjd−1hl−j(x1, .., xd−2) (2.2.11)

where hl−j are homogeneous polynomials of degree l − j in d− 2 variables. Using (2.2.2)

gives

4d−1Al =

(
∂2

∂x2
d−1

+4d−2

)
Al =

l∑
j=2

j(j − 1)xj−2
d−1hl−j +

l∑
j=0

xjd−14d−2hl−j

=

l∑
j=0

xjd−1 [(j + 2)(j + 1)hl−j−2 +4d−2hl−j ] = 0, (2.2.12)

such that hi<0 = 0, from which we obtain recursion relations for hl−j . Then [33] shows

that the choice of hl and hl−1 determines all hl−j and hence all Al. Both hl and hl−1 can

be expressed as the sum of, K(d − 2, l) and K(d − 2, l − 1) respectively, countable basis

polynomials hence the number of linearly independent Al is K(d−2, l) plus K(d−2, l−1).

Collecting the information from equation (2.2.9) onwards we have

N(d− 1, l) = dimH = dimA = K(d− 1, l)−K(d− 1, l − 2) (2.2.13)

providing the final value

N(d− 1, l) = K(d− 1, l)−K(d− 1, l − 2)

=
(l + d− 2)!

l!(d− 2)!
− (l + d− 4)!

(l − 2)!(d− 2)!

=
(2l + d− 3)(l + d− 4)!

l!(d− 3)!
. (2.2.14)

The next result is obtained from the Al through application of the divergence theorem
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in d− 1 dimensions [33],

∫
Bd−1

∇d−1 · F (x)dd−1x =

∫
Sd−2

F (ζ) · ζdΩd−2, (2.2.15)

for vector F , unit (d− 1)-ball, Bd−1, and F (ζ) · ζ being the scalar product. Consider the

terms An∇Am and Am∇An where n 6= m then

∫
Bd−1

∇d−1 · (An(x)∇Am(x)−Am(x)∇An(x)) dd−1x

=

∫
Sd−2

(An(ζ)∇Am(ζ)−Am(ζ)∇An(ζ)) · ζdΩd−2 (2.2.16)

from the divergence theorem. However we also know

∇d−2 · (An∇d−2Am) = ∇d−2An · ∇d−2Am +An4d−2Am (2.2.17)

and 4d−2Am = 4d−2An = 0. Thus

∫
Sd−2

(An(ζ)∇Am(ζ)−Am(ζ)∇An(ζ)) · ζdΩd−2 = 0. (2.2.18)

From Al(tζ) = tlAl(ζ) for t ∈ R we may write ∇d−2Al(ζ) · ζ = lAl(ζ) giving

(m− n)

∫
Sd−2

An(ζ)Am(ζ)dΩd−2 = 0 (2.2.19)

which integrated over Sd−2 is the same as

(m− n)

∫
Sd−2

Yn(ζ)Ym(ζ)dΩd−2 = 0 (2.2.20)

and due to m 6= n ∫
Sd−2

Yn(ζ)Ym(ζ)dΩd−2 = 0. (2.2.21)
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However there are N(d − 1, l) linearly independent spherical harmonics of degree l

so the result (2.2.21) must be extended to include each harmonic of degree l. We also

apply an orthonormalisation scheme (e.g. Gram-Schmidt [33]) to produce a new complete,

orthonormal set of harmonics

{Y m
l (ζ)}N(d−1,l)

m=1 (2.2.22)

such that ∫
Sd−2

Y m
l (ζ)Y n

l (ζ)dΩd−2 = δmn. (2.2.23)

This can be further generalised [6, 32] to give

∫
Sd−2

Y m
k (ζ)[Y n

l (ζ)]∗dΩd−2 = δklδmn. (2.2.24)

Finally we make use of the completeness of the spherical harmonics set [7] to find

∑
l,m

(Y m
l (ζ)[Y m

l (η)]∗) = δd−2(ζ, η) (2.2.25)

for η, a unit vector on Sd−2 and the Dirac bi-scalar is defined as

δd−2(ζ, η) =
d−2∏
i=1

δ(ζi − ηi) (2.2.26)

and is sometimes called the bi-density [53].

2.3 Classical Field Dynamics

We begin with a classical scalar field φ(x) in a d dimensional, curved spacetime (M, gµν).

The field has the action

S =

∫
M

√
−gL(φ, x)ddx (2.3.1)
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where g is the metric determinant and the manifold is assumed to have no boundary,

∂M = ∅. The Lagragian L is given by

L = −1

2

(
gµνφ(x);µφ(x);ν +m2φ(x)2 + ξR(x)φ(x)2

)
(2.3.2)

where m is the mass associated with the field (later the mass of the individual quanta) and

ξ the constant coupling the field to the scalar curvature of the spacetime, R(x). Varying

the action with respect to the field gives

δS

δφ
=
√
−g
(
2−m2 − ξR

)
φ (2.3.3)

which, once extremised, gives the Klein-Gordon equation

(
2−m2 − ξR

)
φ = 0. (2.3.4)

The differential operator 2 in equation (2.3.4) is

2φ = gµν∇µ∇νφ = (−g)−
1
2∂µ

(√
−g gµν∂νφ

)
. (2.3.5)

Variation of the action (2.3.1) with respect to the metric yields the stress-energy tensor

[23], Tµν , as follows

Tµν =
2√
−g

δ

δgµν
S[φ, gµν ]

= (1− 2ξ)φ;µφ;ν +

(
2ξ − 1

2

)
gµνg

αβφ;αφ;β − 2ξφ φ;µν

+ 2ξgµνφ2φ+ ξ

(
Rµν −

1

2
gµνR

)
φ2 − 1

2
gµνm

2φ2.

(2.3.6)

Looking at the above shows that the object φ2 only appears in the last two terms, it is

this object that will become known as the vacuum polarisation after the field has been
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quantised.

We now explicitly introduce our d dimensional black hole space-time, the Schwarzschild-

Tangherlini metric [67],

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−2. (2.3.7)

Here we have Schwarzschild-like coordinates, with time t, radial distance r, angular com-

ponents θ1, .., θd−3, ϕ and with dΩ2
d−2 being the metric of a unit (d− 2)-sphere such that

dΩ2
1 = dϕ2, dΩ2

i+1 = dθ2
i + sin2 θi dΩ2

i (i ≥ 1). (2.3.8)

The metric function f(r) is

f(r) ≡ 1−
(rh
r

)d−3
, (2.3.9)

usually written only as f , where rh is the event horizon radius.

The Hartle-Hawking state (see §1.8) represents a black hole in thermal equilibrium with

a heat bath at temperature TH such that the black hole must have a non-zero Hawking

temperature, as measured by an observer at infinity, of TH = κ/2π. Here κ is the surface

gravity of the black hole and with metric (2.3.7) is found to be

κ =
1

2

df

dr

∣∣∣∣
r=rh

=
d− 3

2rh
(2.3.10)

so that

TH =
d− 3

4πrh
. (2.3.11)

For a black hole in thermal equilibrium calculations are made easier by using a Eu-

clidean approach [3, 75]. A Wick rotation is performed on our time coordinate so that

we set tE = itL where tL is our original Lorentzian time and tE is our new Euclidean
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time coordinate (sometimes simply referred to as the imaginary time). The Wick rotation

transforms metric (2.3.7) to the Euclidean metric

ds2
E = fdt2E + f−1dr2 + r2dΩ2

d−2 (2.3.12)

where sE is the Euclidean invariant interval. It is important to note that the temperature

(2.3.11) and the surface gravity (2.3.10) remain the same after the Wick rotation. Note

also this variable change removes from our manifold, M, the region interior to the event

horizon restricting any calculation with this metric to the exterior of the black hole.

There is a secondary effect of the Wick rotation that is seen when we consider that

the Euclidean metric appears to have a conical defect at the event horizon where the

Lorentzian case has a coordinate singularity. We can investigate the behaviour near (but

outside) the event horizon by looking at r = rh + δ2 for small δ such that the metric

function is now

f = 1−
(

rh
rh + δ2

)d−3

=
(d− 3)rd−4

h δ2

rd−3
+O(δ4). (2.3.13)

In this region outside the event horizon the metric (2.3.12) is approximately (ignoring

terms of O(δ4) or higher)

ds2
E =

(d− 3)rd−4
h δ2

rd−3
dt2E +

4rd−3

(d− 3)rd−4
h

dδ2 + r2dΩ2
d−2. (2.3.14)

If we now only look at the tE − δ plane of metric (2.3.14) (which contains the conical

defect at δ = 0) then we see the invariant interval in this plane, ς, is defined by

dς2 =
4rd−3

(d− 3)rd−4
h

((d− 3)rd−4
h

2rd−3

)2

δ2dt2E + dδ2

 . (2.3.15)
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This plane no longer contains a conical defect if our scaled coordinate
(d−3)rd−4

h

2rd−3 tE has

period 2π at r = rh, in other words we must have (using ∼ for equivalence)

tE ∼ tE + lim
r→rh

(
4πrd−3

(d− 3)rd−4
h

)

∼ tE +
4πrh

(d− 3)
.

Comparing this to temperature (2.3.11) we see that the period is the inverse of the Hawking

temperature (commonly denoted as T−1
H = β).

Hence, from the above, states on metric (2.3.12) will be periodic with period β, as an

example this will be useful when applying (2.5.11). This result is not surprising as we are

aware from quantum statistical mechanics that states at thermal equilibrium are periodic

with respect to imaginary time with period T−1, see for example [9].

For this research the implementation of the Wick rotation has no impact on our results

(only the calculations). As we are investigating a static system any results hold for all

values of tE including at the origin where tE = 0 = tL, hence our results still hold for the

Lorentzian system.

Important Note: For the rest of this thesis, unless explicitly stated, we will work

with the Euclidean time and invariant interval denoting them respectively as t and s for

simplicity. Additionally the Hawking temperature will be denoted as T .

Using our new unit definitions we can express the Euclidean metric simply as

ds2 = fdt2 + f−1dr2 + r2dΩ2
d−2 (2.3.16)

which will now be used instead of (2.3.7).
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For the scalar field mode solutions to (2.3.4) we use the ansatz

φ(x) = e−iωtΥ(r)Θ(θ1, .., θd−3)eimϕ (2.3.17)

with coordinates as used in metric (2.3.16) such that the field is the sum of these modes.

Here ω and m are introduced as arbitrary constants but we associate ω with the field

mode frequency and later with the quanta frequency. Passing this ansatz through equation

(2.3.4) gives an ODE for Υ(r), which is termed the radial ODE and is metric dependent,

and an ODE for the angular functions.

Looking at (2.3.4) we note that from within 2 there is a Laplace type operation on

the angular functions the details of which are discussed in §2.2. First let Yl(θ1, .., θd−3, ϕ)

be a harmonic function on the unit (d− 2)-sphere such that

Yl(θ1, .., θd−3, ϕ) = Θ(θ1, .., θd−3)eimϕ. (2.3.18)

Then from equation (2.2.8) we have

4Sd−2Yl = −l(l + d− 3)Yl (2.3.19)

creating a contribution to equation (2.3.20).

Bringing together equations (2.3.4), (2.3.16) and (2.3.17) explicitly gives us the radial

ODE [48],

1

rd−4

d

dr

[
rd−2f

d

dr
Υ(r)

]
−
(
ω2r2

f
+ (m2 + ξR)r2 + l(l + d− 3)

)
Υ(r) = 0. (2.3.20)
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2.4 Quantisation

We return to equation (2.3.4) except we now assume the field is quantised raising φ(x) to

a field operator. In accordance with the literature the symbol for φ(x) remains unchanged.

This leaves (2.3.4) unchanged in form though now we note that meaningful results can

only come from expectation values.

As there is now a quantum field in curved space we must define our state, for which

we choose the Hartle-Hawking vacuum [37]. We will only be using the Hartle-Hawking

vacuum, whose ket vector is |0H〉, in all following calculations. We simplify our notation

such that for some field operator A(x) we set 〈0H |A(x)|0H〉 = 〈A〉. We then call 〈A〉 the

expectation value of A(x).

Also, as the field is quantised we can no longer calculate a stress-energy tensor and

must instead look at its expectation value. Equation (2.3.6) can now, schematically, be

thought of as

〈Tµν〉 = (1− 2ξ)〈φ;µφ;ν〉+

(
2ξ − 1

2

)
gµνg

αβ〈φ;αφ;β〉 − 2ξ〈φφ;µν〉

+ 2ξgµν〈φ2φ〉+ ξ

(
Rµν −

1

2
gµνR

)
〈φ2〉 − 1

2
gµνm

2〈φ2〉.
(2.4.1)

A more precise derivation is given in (2.5.7).

We concentrate on the object 〈φ2〉 in (2.4.1), which is formally the vacuum expectation

value of the auto-correlation of the field, the so-called vacuum polarisation. This is the

object we seek to construct as it is the simplest to calculate and the methods required to

calculate the other expectation values in (2.4.1) are based on the method to solve 〈φ2〉.
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2.5 Point-splitting

In a naive calculation 〈φ2〉 (and as a result 〈Tµν〉) diverges as the operators act on the same

spacetime point (see Appendix A), hence it will need to be renormalised. Therefore the

vacuum polarisation in (2.4.1) is unrenormalised, 〈φ2〉unren, and we seek its renormalised

value, 〈φ2〉ren. So instead of concentrating on a single spacetime event we consider two

nearby events x and x′ such that x′ is within the normal convex neighborhood of x (this

condition is to guarantee that in later steps there is a unique geodesic connecting the two

events). The intention is to express the behaviour of the field modes between these points

in such a way that should we allow x′ → x the cause of any divergences can be isolated

and removed in our renormalisation step. We refer to this approach as point-splitting.

We use a biscalar, the Feynman propagator GF (x, x′), defined as

GF (x, x′) = i〈T (φ(x)φ(x′))〉 (2.5.1)

where the image of T () is the time ordered products of its arguments. We want such

a propagator to be a Green’s function of a Klein-Gordon equation, previously equation

(2.3.4). It has been shown [23] that GF (x, x′) satisfies

[
2−m2 − ξR

]
GF (x, x′) = (−g(x))−

1
2 δd(x− x′) (2.5.2)

where g(x) is the determinant of the metric at x. However we have yet to account for the

Euclideanisation of the manifold, to do so we define a Euclidean propagator, GE(x;x′), as

GE(x;x′) = −iGF (x, x′) = 〈T (φ(x)φ(x′))〉. (2.5.3)

This Euclidean propagator must be related to the vacuum polarisation to be useful and it
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can be shown [3] that in fact,

〈φ2〉unren = Re[ lim
x′→x

GE(x;x′)]. (2.5.4)

Furthemore GE(x, x′) is the Green’s function solution of the Klein-Gordon equation on

the Euclidean spacetime (2.3.16) [23]

[
∇xµ∇µx −m2 − ξR

]
GE(x;x′) = −g−

1
2 (x)δd(x− x′) (2.5.5)

where ∇x denotes the covariant derivative at x. Equation (2.5.5) is an elliptic partial

differential equation (its Lorentzian form would be hyperbolic) and as such its solutions

are uniquely determined by the boundary conditions. Here the lack of a compact boundary

implies equation (2.5.5) is sufficient to define the unique solution.

Having now defined the Euclidean Green’s function (2.5.3) the proper form of the

expectation value of Tµν (2.4.1) is given by [23],

〈Tµν〉 = lim
x→x′

Tµν(x, x′)
(
GE(x, x′)

)
(2.5.6)

where the operator Tµν(x, x′) is defined as

Tµν = (1− 2ξ)gν
ν′∇µ∇ν′ +

(
2ξ − 1

2

)
gµνg

αβ′∇α∇β′ − 2ξgµ
µ′gν

ν′∇µ′∇ν′

+ 2ξgµν∇α∇α + ξ

(
Rµν −

1

2
gµνR

)
− 1

2
gµνm

2,

(2.5.7)

where gµ
µ′ is termed the bivector of parallel transport [19] and is defined in (2.10.17).

The action of Tµν on GE(x, x′) says that the calculation of the stress-energy tensor’s

expectation value is dependent on 0th, 1st and 2nd order derivatives of the Euclidean

Green’s function. Thus any attempt to calculate 〈Tµν〉 in such a fashion requires the

methodology presented here to first derive GE(x, x′). Hence calculation of the vacuum
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polarisation is treated as a first step in calculating the stress-energy tensor.

Looking at the right hand side of the Klein-Gordon equation (2.5.5) we find

−δd(x− x′) = −δ(t− t′)δ(r − r′)δ(Ω,Ω′). (2.5.8)

Also for our metric (2.3.16) we have noting that δ(Ω,Ω′) represents the d− 2 dimensional

delta function of two vectors on the unit (d− 2)-sphere, and

g
1
2 (x) = rd−2

d−3∏
i=1

sin(θi)
i. (2.5.9)

Now we may write the explicit form of (2.5.5) as

(
r−(d−2)∂r(r

d−2f∂r) + f−1∂2
t + r−24Sd−2 −m2 − ξR

)
GE(t, r,Ω; t′, r′,Ω′)

= −

(
rd−2

d−3∏
i=1

sin(θi)
i

)−1

δ(t− t′)δ(r − r′)δ(Ω,Ω′) (2.5.10)

with operator 4Sd−2 as defined in equation (2.2.4). The form of equation (2.5.10) sug-

gests we expand the Euclidean Green’s function by separation of variables allowing us to

immediately separate independent equations in (t, t′) and (Ω,Ω′). Using standard Green’s

function techniques [32] we know that the t and Ω dependence of the Green’s function is

related to an appropriate form of the corresponding delta function.

For a thermal state at temperature T , such as the Hartle-Hawking state, the Euclidean

Green’s function is periodic in t − t′ with period T−1 so a suitable representation of the

delta function of time is [32, 69]

δ(t− t′) = T

∞∑
n=−∞

exp[2πniT (t− t′)]. (2.5.11)
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We now let ε = t− t′. A related integral

δ(t− t′) =
1

2π

∫ ∞
−∞

exp[iωε]dω (2.5.12)

would be used for a non-thermal state [3].

2.6 The Angular Delta Function

We know from §2.2 that the spherical harmonics {Y m
l (ζ)} form a complete, orthonormal

set and are thus an orthonormal basis of the Hilbert space of square-integrable functions

on the unit sphere. This allows us to express any function on the unit sphere as sums over

the spherical harmonic basis.

However first we must correctly associate angles with their spherical harmonic indices.

To give each index a unique and physical meaning in association with an angular degree

of freedom they are read as the angular momentum quantum number for that degree. The

angle of most importance is θ1, which can be thought of as the primary angle as it is

the only angular degree of freedom that exists in all d ≥ 3 (d = 3 is a case we will not

investigate). Associated with θ1 is index l which is the total angular momentum quantum

number and is the reason for its prevalence as the prime index in §2.2. The association

is extended to include the azimuthal angle ϕ and the azimuthal quantum number m such

that given a function h(θ1, ϕ), square integrable on the (2)-sphere, we may write

h(θ1, ϕ) =

∞∑
l=0

m=l∑
m=−l

hml Y
m
l (θ1, ϕ). (2.6.1)

Note the index m here is the equivalent to index m first encountered in equation (2.3.17).

We extend the above indexing scheme by example in d = 5 where there now exist

indices l, m1 and m2. Given a function h(θ1, θ2, ϕ), square integrable on the (3)-sphere,
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we may now write [27, 57]

h(θ1, θ2, ϕ) =

∞∑
l=0

l∑
m1=0

m1∑
m2=0

hm1,m2

l Y m1,m2

l (θ1, θ2, ϕ) where l ≥ m1 ≥ m2. (2.6.2)

It can be seen that the indices have been redefined from the d = 4 example to remove

negative values of m hence none of these indices can be considered equivalent to the index

m from (2.3.17). However md−3 is always held to be the azimuthal quantum number

irrelevant of its scaling. For d dimensions equation (2.6.2) is generalised to contain an

index for every angular degree of freedom and is expressed in common notation [32] as

h(θ1, ..., θd−3, ϕ) =

∞∑
l=0

∑
{m}

h
{m}
l Y

{m}
l (θ1, ..., θd−3, ϕ) where l ≥ m1 ≥ ... ≥ md−3

(2.6.3)

where {m} = {m1, ...,md−3}. However, independent of the number of indices required we

know from equation (2.2.14) the exact number of terms within the l sum and so we rewrite

(2.6.3) in its final form

h(θ1, ..., θd−3, ϕ) =
∞∑
l=0

N(d−1,l)∑
m=1

hml Y
m
l (θ1, ..., θd−3, ϕ). (2.6.4)

Finally to express δ(Ω; Ω′) we compare equations (2.2.25) and (2.6.4) to find [32, 69]

δ(Ω; Ω′) =

∞∑
l=0

N(d−1,l)∑
m=1

Y m
l (ζ)Y m

l (η)∗. (2.6.5)
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2.7 Mode Sums

From equations (2.5.11) and (2.6.5) we may write the Green’s function (2.5.5) as [32, 69]

GE(x, x′) =
κ

2π

∞∑
n=−∞

exp [iωε]

∞∑
l=0

Sωl(r, r
′)

N(d−1,l)∑
m=1

Y m
l (ζ)Y m

l (η)∗ (2.7.1)

where we have set ε = t− t′, the constant κ is the surface gravity of the black hole and the

function Sωl(r, r
′) is a radial Green’s function to be determined. This series is convergent

for x 6= x′ as noted in Appendix A. We will only consider modes for which ω = 2πnT (for

n ∈ N) and is related to the surface gravity and metric function by

ω = 2πnT = nκ =
n

2

df

dr

∣∣∣∣
r=rh

. (2.7.2)

Using solution (2.7.1) in the Klein-Gordon equation (2.5.10) provides a differential

equation for Sωl(r, r
′) [32], referred to as the point split radial equation,

1

rd−4

d

dr

[
rd−2f

d

dr
Sωl

]
−
(
ω2r2

f
+ (m2 + ξR)r2 + l(l + d− 3)

)
Sωl = − 1

rd−2
δ(r − r′).

(2.7.3)

In anticipation of r and r′ coinciding we define the radial Green’s function as [2]

Sωl(r, r
′) = Cωlpωl(r<)qωl(r>) (2.7.4)

such that r< is the lesser of r and r′ and r> is the greater. The functions pωl and qωl

are solutions to the homogeneous form of (2.7.3) with appropriate boundary conditions as

detailed following (2.8.1). A normalising constant, Cωl, is to be defined in (2.8.3) after we

let r → r′. As (2.7.1) is acted upon in equation (2.5.5) we note that from within 2x there

is a Laplace type operation on the harmonics Y m
l (ζ) and Y m

l (η). Defining 4Sd−2 as the
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Laplace-Beltrami operator on the (d− 2)-sphere we have [32]

4Sd−2Y m
l = −l(l + d− 3)Y m

l , (2.7.5)

as discussed for equation (2.2.8), creating a contribution to equation (2.7.3).

To tidy equation (2.7.1) for later use we apply Müller’s addition theorem [27, 57] which

states (using notation from sections §2.2 and §2.6)

N(d−1,l)∑
m=1

Y m
l (ζ)Y m

l (η)∗ =
N(d− 1, l)

Sd−2
Gλl (cos γ) (2.7.6)

where cos γ = ζ.η and Gλl is the Gegenbauer polynomial of order l and degree λ = (d−3)/2

with

Sd−2 =
2π

(d−1)
2

Γ
(

(d−1)
2

) , (2.7.7)

the surface area of a unit (d − 2)-sphere. Note that in the original literature [57] this

surface area is denoted ωd−2.

Expressing N(d− 1, l)/ωd−2 as Ñd,l we can now write (2.7.1) as

GE(x, x′) =
κ

2π

∞∑
n=−∞

exp [iω(t− t′)]
∞∑
l=0

Ñd,lG
λ
l (cos γ)Sωl(r, r

′) (2.7.8)

where

Ñd,l =
(2l + d− 3)(l + d− 4)!

l!(d− 3)! 2π
d−1
2

Γ

(
d− 1

2

)
(2.7.9)

and is called the degeneracy factor.

Finally some notes on equation (2.7.8); firstly this object will be referred to as the mode

sum irrespective of which (if any) independent variables have been allowed to coincide.

Secondly the order of the sums it contains is not fixed, as the independent variables are

allowed to coincide whichever is brought together last determines the fixed order as is
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explained in the next section.

2.8 Point Coincidence

To express (2.7.8) in a useful form we must choose a point splitting scheme. This means

making a choice of which variables remain separated as the other variables coincide. We

can thus express the divergence in (2.7.8) as the limit of this remaining variable coinciding.

We allow the point-split variables to coincide in stages. First we consider r → r′.

We define two functions pωl(r) and qωl(r) which are the solutions to the homogeneous

form of (2.7.3), which is equivalent to the radial ODE (2.3.20),

1

rd−4

d

dr

[
rd−2f

d

dr
Sωl

]
−
(
ω2r2

f
+ (m2 + ξR)r2 + l(l + d− 3)

)
Sωl = 0. (2.8.1)

Equation (2.8.1) can be solved analytically in certain numbers of dimensions in combina-

tion with certain values of ω, m, l and R, these cases will be stated explicitly when they

arise. In general (2.8.1) must be solved numerically creating its own difficulty in guar-

anteeing accurate and correct results. This will be discussed in detail when values need

to be calculated such as in §3.8 onwards and §4.6 onwards. Analysis near both singular

points, r = rh and r = ∞, shows that at each point one solution of (2.8.1) will diverge

and one will be regular. The functions pωl and qωl are distinguished by letting pωl be the

solution that is regular on the horizon and qωl being that which is regular as r approaches

infinity. These are then the functions pωl and qωl in equation (2.7.4). Note that we are able

to define the behaviour of these functions in this manner by analysis of their associated

Frobenius series, see for example §3.8.

The functions pωl and qωl allow us to usefully express Sωl(r, r
′) from equation (2.7.3)

by [2, 75]

lim
r′→r

(
Sωl(r, r

′)
)

= Cωlpωl(r)qωl(r), (2.8.2)
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where Cωl is a normalising constant satisfying the Wronskian condition from equation

(2.8.1) [2]

Cωl

[
pωl

dqωl
dr
− qωl

dpωl
dr

]
= − 1

rd−2f
. (2.8.3)

Inserting equation (2.8.2) into equation (2.7.8) gives

GE(x, x′) =
κ

2π

∞∑
n=−∞

exp [iω(t− t′)]
∞∑
l=0

Ñd,lG
λ
l (cos γ)Cωlpωl(r)qωl(r). (2.8.4)

Note that the order of the sums in equation (2.8.4) is not fixed and will depend on

the order in which we allow the remaining split variables to coincide. Should the angular

variables coincide last then the l sum will be the outer operation and equivalently if the

time variable coincides last then the n sum will be outer. We can understand this from

example in the Schwarzschild case where the difference between the order of summation is

a finite amount [16]. This value is equal to the difference of the regular components of the

temporal and angular Hadamard expansions. We know not to expect absolute convergence

in (2.8.4) due to the distributional nature of the Green’s function, see Appendix A. This

can be clearly seen in a comparison of [17] and [68] which demonstrates that the order of

summation will give different results.

Next we demonstrate two approaches; firstly by allowing angular coincidence and leav-

ing temporal splitting then allowing temporal coincidence and leaving angular splitting.

Angular point coincidence is performed by taking γ → 0, this requires being able to

calculate the value of the Gegenbauer polynomial in equation (2.7.6). From [66] we know

that Gλl (x) is a special case of the Jacobi polynomial with generating function

1

(1− 2xt+ t2)λ
=

∞∑
l=0

Gλl (x)tl (2.8.5)
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and can be calculated from the recurrence relations

Gλ0(x) = 1 (2.8.6)

Gλ1(x) = 2λx (2.8.7)

Gλl (x) =
1

l
[2x(l + λ− 1)Gλl−1(x)− (l + 2λ− 2)Gλl−2(x)]. (2.8.8)

For our calculation we will always have d ≥ 4 (λ ≥ 1
2), thus letting γ → 0 we obtain

lim
γ→0

Gλl (cos γ) = Gλl (1) =


1 d = 4

1

(d− 4)!

d−4∏
i=1

(l + i) d ≥ 5
(2.8.9)

where the product in the second line can be expressed in several ways

d−4∏
i=1

(l + i) =
(l + d− 4)!

l!
=

Γ(l + d− 3)

Γ(l + 1)
= (l + 1)d−4 (2.8.10)

and the last entry is written as a Pochhammer symbol.

Now we bring together the coincident Gegenbauer polynomial (2.8.9) and the degen-

eracy factor resulting in, for d = 4,

G
1
2
l (1)Ñ4,l =

2l + 1

4π
(2.8.11)

and, for d ≥ 4,

Gλ≥1
l (1)Ñd≥5,l =

(2l + d− 3)Γ(d−1
2 )

(d− 3)!(d− 4)!2π
d−1
2

d−4∏
i=1

(l + i)2. (2.8.12)

For conciseness of notation this equation will not be inserted into our expression for the

Green’s function.
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Our Euclidean Green’s function (2.8.4) now has the form

GE(x, t;x, t′) =
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

Ñd,lG
λ
l (1)Cωlpωl(r)qωl(r)

=
κ

π

∞∑
n=1

cos(ωε)
∞∑
l=0

Ñd,lG
λ
l (1)Cωlpωl(r)qωl(r)

+
κ

2π

∞∑
l=0

Ñd,lG
λ
l (1)C0lp0l(r)q0l(r), (2.8.13)

where we have set ε = t− t′.

Undoing the temporal point-splitting first is done by taking ε → 0. Applying this to

(2.8.4) gives

GE(r, t, γ; r, t, 0) =
κ

2π

∞∑
l=0

Ñd,lG
λ
l (cos γ)

∞∑
n=−∞

Cωlpωl(r)qωl(r) (2.8.14)

after the correct ordering of the sums due to the angular variables still being split.

2.9 Renormalisation

Previous work [22, 23] has shown that the most rigorous method of isolating divergences

within a Green’s function of the type in (2.5.5) is through the Hadamard expansion. This

is due to its ability to capture short distance behaviour and that GE(x, x′) is symmetric

under exchange of x and x′, exactly the behaviour a Hadamard expansion emulates. The

Hadamard method expands a Green’s function into a sum of symmetric biscalars regular

as r′ → r [23]. In order to derive the expansion several objects need to be defined and it

must be noted the expansion depends on whether d is odd or even. The DeWitt-Schwinger

expansion [20] in d = 4, used for example in [75], when applied to the metric (2.3.16) agrees

with the Hadamard expansion up to a term dependent on the mass of the scalar field.
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Firstly Synge’s world function [65], σ(x, x′), is defined by

σ(x, x′) =
1

2
s(x, x′)2 (2.9.1)

where s(x, x′) is the length along the unique geodesic connecting x and x′. The calculation

of σ(x, x′) is discussed in §2.10.

Secondly we define the biscalar form of the Van Vleck-Morette determinant [25, 71],

∆(x, x′), which measures the tidal focussing (defocussing) of geodesic flows in a spacetime.

It is defined as

∆(x, x′) = −
√
g(x) det

(
−σ;µν′(x, x

′)
)√

g(x′) (2.9.2)

and satisfies the PDE

2xσ = d− 2∆−1/2(∆1/2);µσ
;µ (2.9.3)

and boundary condition

lim
x′→x

∆(x, x′) = 1. (2.9.4)

Lastly we introduce a dimensionally based constant, αd, by

αd =
Γ(d2 − 1)

(2π)
d
2

(d ≥ 3). (2.9.5)

For d 6= 2 and even we may expand our Green’s function (2.5.5) [23]

GE(x, x′) =
αd
2

(
U(x, x′)

σ(x, x′)
d
2
−1

+ V (x, x′) ln[σ(x, x′)] +W (x, x′)

)
(2.9.6)
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where U , V and W may be expressed as

U(x, x′) =

d/2−2∑
n=0

Un(x, x′)σn(x, x′)

V (x, x′) =

∞∑
n=0

Vn(x, x′)σn(x, x′)

W (x, x′) =
∞∑
n=0

Wn(x, x′)σn(x, x′).

(2.9.7)

Note that in practice we introduce a dimensionful constant inside the logarithm, for a

massive field this constant is the field mass otherwise it is free but with units of mass.

The coefficients Un and Vn are regular, symmetric biscalars governed by the recursion

relations [23]

(n+ 1)(2n+ 4− d)Un+1 + (2n+ 4− d)Un+1;µσ
;µ

− (2n+ 4− d)Un+1∆−1/2(∆1/2);µσ
;µ + (2x −m2 − ξR)Un = 0 (2.9.8)

for n = 0, 1, ..., d/2− 3 with boundary condition

U0 = ∆1/2 (2.9.9)

and

(n+ 1)(2n+ d)Vn+1 + 2(n+ 1)Vn+1;µσ
;µ

− 2(n+ 1)Vn+1∆−1/2(∆1/2);µσ
;µ + (2x −m2 − ξR)Vn = 0 (2.9.10)

with boundary condition

(d− 2)V0 + 2V0;µσ
;µ − 2V0∆−1/2(∆1/2);µσ

;µ + (2x −m2 − ξR)Ud/2−2 = 0. (2.9.11)
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For d odd even we may expand our Green’s function (2.5.5) [23]

GE(x, x′) =
αd
2

(
U(x, x′)

σ(x, x′)
d
2
−1

+W (x, x′)

)
(2.9.12)

where U and W may be expressed as

U(x, x′) =
∞∑
n=0

Un(x, x′)σn(x, x′)

W (x, x′) =

∞∑
n=0

Wn(x, x′)σn(x, x′).

(2.9.13)

The coefficients Un are regular, symmetric biscalars governed by the recursion relations

[23]

(n+ 1)(2n+ 4− d)Un+1 + (2n+ 4− d)Un+1;µσ
;µ

− (2n+ 4− d)Un+1∆−1/2∆1/2
;µ σ;µ + (2x −m2 − ξR)Un = 0 (2.9.14)

with boundary condition

U0 = ∆1/2. (2.9.15)

It is important to note that for any d the coefficients Wn are regular, symmetric

biscalars that obey recursion relations similar to those for the Un and Vn. For d 6= 2 and

even we have

(n+1)(2n+d)Wn+1 +2(n+1)Wn+1;µσ
;µ−2(n+1)Wn+1∆−1/2∆1/2

;µ σ;µ+(4n+2+d)Vn+1

+ 2Vn+1;µσ
;µ − 2Vn+1∆−1/2∆1/2

;µ σ;µ + (2x −m2 − ξR)Wn = 0 (2.9.16)
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and for d odd we have

(n+ 1)(2n+ d)Wn+1 + 2(n+ 1)Wn+1;µσ
;µ

− 2(n+ 1)Wn+1∆−1/2∆1/2
;µ σ;µ + (2x −m2 − ξR)Wn = 0. (2.9.17)

Now note that Un and Vn are purely geometric in construction and do not depend

on the quantum state being considered. Specifically Un and Vn are determined only

by the behaviour of the recursion relations along the geodesic connecting x and x′. In

comparison there is an apparent issue in that from relations (2.9.16) and (2.9.17) we see

W0 is unconstrained and hence so are all Wn≥1. However this lack of constraints can be

used to encode the quantum state information of the system in theWn. By specifyingW0 in

accordance with a quantum state all the Wn, and hence W (x, x′), are determined uniquely.

This means that expansions (2.9.6) and (2.9.12) contain two pieces, the first is based on

the Wn(x, x′) which contain geometric and quantum state information. The second, based

on the Un(x, x′) (and in even d Vn(x, x′)), contain purely geometric information and are

state independent. This means this second part, the purely geometric terms, will contain

any divergences present as x′ → x.

The singular terms of the Hadamard expansion are therefore [23]

GE,sing =
αd
2

(
U(x, x′)

σ(x, x′)
d
2
−1

+ V (x, x′) ln[σ(x, x′)]

)
(d 6= 2 and even) (2.9.18)

and

GE,sing =
αd
2

(
U(x, x′)

σ(x, x′)
d
2
−1

)
(d odd). (2.9.19)

Our renormalisation scheme will be to remove the expansions (2.9.18) and (2.9.19) from

mode sums (2.8.13) and (2.8.14). The appropriate terms are those which are divergent or

finite as x′ → x and have had the correct point-split scheme applied (i.e. letting r′ → r
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and either t′ → t or γ → 0). Noting that

lim
x′→x

σ(x, x′) = 0 (2.9.20)

all terms that will not be divergent or finite in (2.9.18) and (2.9.19) will be zero. This

means the renormalised vacuum polarisation can be expressed as

〈φ2〉ren = lim
ε→0
or
γ→0

(
GE(x, x′)−GE,sing

)
. (2.9.21)

2.10 Deriving Divergent Terms

In the previous section we laid out the scheme by which we will implement renormalisation.

We constructed this by reviewing the Hadamard expansion of a Green’s function and

finding that all singular behaviour is expressed in a finite number of terms. We also showed

how these terms are constructed from a power series in σ depending on coefficients with

specific recursion relations and boundary conditions shown in the last section. However

this has not yet allowed us to construct these in practice for a specific spacetime. In this

section we will firstly demonstrate how the coefficients can be expressed in a useful form.

Then we discuss Synge’s theorem that will allow us to more easily handle higher order

derivatives of the world function as we allow point coincidence. Then we will demonstrate

how Synge’s theorem applies in practice to set up for finally calculating the world function.

2.10.1 Structure of Singular Terms

To express (2.9.18) and (2.9.19) in a usable form U(x, x′) and V (x, x′), and hence the

coefficients Un and Vn, must be calculated. Technically this can be done by integrating

the recursion relations (2.9.8), (2.9.10) and (2.9.14) along the geodesic connecting x to x′
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2.10. DERIVING DIVERGENT TERMS

with boundary conditions (2.9.9), (2.9.11) and (2.9.15). An alternative, more practical,

method [22, 23] is to apply a covariant Taylor expansion of Un and Vn for x′ near x such

that

Un(x, x′) = un(x) +
∞∑
j=1

(−1)j

j!
un(j)(x, x

′)

Vn(x, x′) = vn(x) +
∞∑
j=1

(−1)j

j!
vn(j)(x, x

′).

(2.10.1)

The un(j)(x, x
′) and vn(j)(x, x

′) are biscalars and our new notation is (for example for

un(j))

un(j)(x, x
′) = una1...aj (x)σ;a1 ...σ;aj . (2.10.2)

From equations (2.10.1) covariant expansions of U0 and V0 can be easily constructed in

terms of the new functions un(j)(x, x
′) and vn(j)(x, x

′) but we cannot yet simply state their

value from the boundary conditions.

With expansions (2.10.1) and terms for U0 and V0 the recursion relations (2.9.8),

(2.9.10) and (2.9.14) can now be used for calculation. This can be performed with knowl-

edge of how to calculate the Van Vleck-Morette determinant, however this rapidly becomes

unwieldy in a general spacetime. To simplify the calculation the Van Vleck-Morette de-

terminant and objects like ∆−1/2∆
1/2
;µ σ;µ derived from it are expressed as series in σ;µ.

Deriving these expansions (and similar) to higher orders is ongoing work [14, 20, 22, 25]

as more complicated calculations are attempted. To low order these objects are [22]

∆1/2 = 1 +
1

12
Ra1a2σ

;a1σ;a2 − 1

24
Ra1a2;a3σ

;a1σ;a2σ;a3 + ...

∆−1/2∆1/2
;µ σ;µ =

1

6
Ra1a2σ

;a1σ;a2 − 1

24
Ra1a2;a3σ

;a1σ;a2σ;a3 + ....

(2.10.3)

Using (2.10.3) U(x, x) and V (x, x′) can now be expressed only in terms of curvature

functions and σ;µ(x, x′).
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2.10.2 Synge’s Theorem and Corollary

We introduce notation for the coincidence limit of x and x′ such that

[σ;µ] = lim
x′→x

σ;µ(x, x′) (2.10.4)

and similarly for other quantities. Using this notation we can now express Synge’s theorem

which will be key for calculations in the next section.

Synge’s theorem states [3, 58, 65] for any bitensor T

[Tα1...αnβ′1...β
′
n;µ′ ] = [Tα1...αnβ′1...β

′
n
];µ − [Tα1...αnβ′1...β

′
n;µ]. (2.10.5)

For the final calculation of the world function we will only need to consider derivatives

with respect to one variable at either point. Using the variable t as an example we can

simplify (2.10.5) to

[σ
; t..t︸︷︷︸

k

t′..t′︸︷︷︸
n

] = [σ
; t..t︸︷︷︸

k

t′..t′︸︷︷︸
n−1

];t − [σ
; t..t︸︷︷︸
k+1

t′..t′︸︷︷︸
n−1

] (2.10.6)

which we shall express using the notation

[σ;t1..tkt
′
1..t
′
n
] = [σ;t1..tkt

′
1..t
′
n−1

];t − [σ;t1..tk+1t
′
1..t
′
n−1

]. (2.10.7)

Now for ease of notation in the rest of this section we will rewrite equation (2.10.7)

treating the coincidence limits as functions of n and k, such that

[σ;t1..tkt
′
1..t
′
n
] = f(n, k) = f(n− 1, k);t − f(n− 1, k + 1). (2.10.8)

The equation (2.10.7) is used repeatedly in the calculation of the world function to
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shift all the derivatives from x′ to x. During this process a pattern was observed allowing

us to posit a corollary to the single variable form of Synge’s theorem, namely

f(n, k) =
n∑
i=0

(−1)i
(
n

i

)
f(0, i+ k);t1..tn−i (2.10.9)

which is a binomial theorem. We shall prove this by induction where the base statement

is clear from (2.10.7) and then

f(n+ 1, k) = f(n, k);t − f(n, k + 1) (2.10.10)

⇒ f(n+ 1, k) =
n+1∑
i=0

(−1)i
(
n+ 1

i

)
f(0, i+ k);t1..tn+1−i . (2.10.11)

Hence from equation (2.10.10)

f(n+ 1, k) =

n∑
i=0

(−1)i
(
n

i

)
f(0, i+ k);t1..tn+1−i −

n∑
i=0

(−1)i
(
n

i

)
f(0, i+ k + 1);t1..tn−i

=

n∑
i=0

(−1)i
(
n

i

)
f(0, i+ k);t1..tn+1−i −

n+1∑
i=1

(−1)i−1

(
n

i− 1

)
f(0, i+ k);t1..tn+1−i

= f(0, k)t1..tn+1 +

n∑
i=1

(−1)i
(
n

i

)
f(0, i+ k);t1..tn+1−i

−
n∑
i=1

(−1)i−1

(
n

i− 1

)
f(0, i+ k);t1..tn+1−i − (−1)nf(0, k + n+ 1)

= f(0, k)t1..tn+1 +

n∑
i=1

(−1)if(0, i+ k);t1..tn+1−i

[(
n

i

)
+

(
n

i− 1

)]
− (−1)nf(0, k + n+ 1)

=

n+1∑
i=0

(−1)i
(
n+ 1

i

)
f(0, i+ k);t1..tn+1−i � (2.10.12)

The final step to achieve equation (2.10.12) makes use of Pascal’s identity.

Finally we simply extend our corollary (2.10.9) by the properties of covariant deriva-

tives to

f(n, k);t1..tl =

n∑
i=0

(−1)i
(
n

i

)
f(0, i+ k);t1..tl+n−i . (2.10.13)
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2.10.3 Preparing the World Function

Next we look at how Synge’s world function is to be derived, although the final calculation

will depend on the number of dimensions and our choice of point-splitting scheme. Al-

though as stated in equation (2.9.1) the world function is half the squared distance along

the geodesic connecting x to x′ it is calculated from the equivalent expression

σ(x, x′) =
1

2
σ;µσ

;µ =
1

2
σ;µ′σ

;µ′ . (2.10.14)

This expression implies σ;µ ∼ σ;µ ∼ σ;µ′ ∼ σ;µ′ ∼ O(σ1/2) which will be useful in the

calculation of equations (2.9.18) and (2.9.19) to determine the finite and singular terms in

the Hadamard form.

To calculate σ(x, x′) by equation (2.10.14) we need to know σ;µ which is a vector at x

and a scalar at x′ or σ;µ′ , a vector at x′ and a scalar at x. We shall proceed to calculate

σ;µ though results obtained from finding σ;µ′ will also be included. As σ;µ is a scalar at

x′ it can be expanded as a Taylor series in the neighbourhood of that point [3] in powers

of εµ = xµ − xµ′ . This could be continued in general but for our purposes we only want

εt = t − t′ or εγ = γ and we shall proceed to outline the method using the former as an

example.

We take εµ = εδt
µ for ε = t− t′ and expand σ;µ in a Taylor series as

σ;µ(x, x′) = [σ;µ]−
[
σ;µ

,α′
]
εα +

1

2!

[
σ;µ

,α′β′
]
εαβ − ... (2.10.15)

making use of the notation introduced in equation (2.10.4). In order to make use of

expansion (2.10.15) three steps must be completed [3, 19]

1. All the partial derivatives in equation (2.10.15) need to be converted to covariant

derivatives.
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2. These covariant derivatives at x′ need to be transformed to covariant derivatives at

x.

3. The coincidence limits must be calculated.

In order to employ Synge’s theorem (2.10.5) in step 2 and be able to work with biten-

sors, whose properties are known, we cannot have partial derivatives in our terms. We

convert the partial derivatives to covariant derivatives by simple use of the definition of a

covariant derivative such that given a scalar function A(x)

A,µ = A;µ

A,µν = A;µ,ν = A;µν + ΓρµνA;ρ.

(2.10.16)

The most helpful advantage of choosing to expand (2.10.15) in t−t′ is that the higher order

derivatives will become simplified. As our metric (2.3.16) has no time dependence time

derivatives of objects depending solely on this metric, such as the Christoffel connection,

will be zero by definition.

The second step is not strictly necessary but does simplify further calculation [19]. As

the vacuum polarisation is calculated at the point x we wish to eventually express all our

terms at the point x while isolating objects that diverge as x′ → x. This can be done

through repeated uses of gµν′ , the bivector of parallel transport, and the calculation of

mixed derivative coincidence limits, though this quickly becomes too bulky for efficient

use. However the bivector will still be useful so we define it with respect to σ;µ′ . We do

this by noting that σ;µ′ is the tangent at x′ to the geodesic connecting x and x′ directed

x→ x′. By construction gµν′ must parallel transport a vector defined at x′ to x along the

geodesic and so it must obey

−σ;µ = gµν′σ
;ν′ . (2.10.17)

The minus sign is required as σ;µ is directed x′ → x [19].
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For now we will instead apply Synge’s theorem (2.10.5) to the coefficients in (2.10.15)

in conjunction with (2.10.16) as follows

[σ;µ
,t′ ] = [σ;µ

;t′ ] = [σ;µ];t − [σ;µ
;t] (2.10.18)

[σ;µ
,t′t′ ] = [σ;µ

;t′t′ + Γρt′t′σ
;µ

;ρ]

= [σ;µ];tt − 2[σ;µ
;t];t + [σ;µ

;tt] + [Γρt′t′σ
;µ

;ρ]. (2.10.19)

It is clear from these first two examples how rapidly these transformations will grow in

size and why corollary (2.10.9) is of use. However these calculations can be simplified

in conjunction with step three by seeing if any of the coincidence limits will allow the

re-expression of (2.10.18) and (2.10.19) in a more compact form.

2.10.4 Calculation of Limits and the World Function

First note that by definition [19]

[gµν ] = [gµν′ ] = [gµ′ν′ ] = gµν (2.10.20)

which for the bivector of parallel transport gives

[gµν′ ] = δµν . (2.10.21)

Now by way of (2.10.20) or (2.10.21) we can state

[Γαβγ ] = [Γαβγ′ ] = [Γαβ′γ′ ] = [Γα
′
β′γ′ ] = Γαβγ . (2.10.22)

From the definition of σ(x, x′) in equation (2.9.1) we can simply read off its coincidence

limit. By comparison of (2.9.1) and (2.10.14) we see that the length of σ;µ is also the

geodetic distance between x and x′ so we can simply state the coincidence limits of lowest
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order

[σ] = 0

[σ;µ] = 0.

(2.10.23)

To find the coincidence limits of higher order derivatives of σ(x, x′) we differentiate

equation (2.10.14) multiple times to obtain, for the first few orders,

σ;µ = σ;ρσ;µ
;ρ

σ;µ
;ν = σ;ρ

;νσ
;µ

;ρ + σ;ρσ;µ
;ρν

σ;µ
;ντ = σ;ρ

;ντσ
;µ

;ρ + σ;ρ
;νσ

;µ
;ρτ + σ;ρ

;τσ
;µ

;ρν + σ;ρσ;µ
;ρντ .

(2.10.24)

From these and equations (2.10.23) we find [3, 58]

[σ;µ
;ν ] = gµν

[σ;µ
;νρ] = 0

[σ;µ
;νρτ ] = Sµνρτ ≡ −

1

3
(Rµρντ +Rµτνρ)

[σ;µ
;νρτυ] =

3

4
(Sµνρτ ;υ + Sµντυ;ρ + Sµνυρ;τ ) .

(2.10.25)

Now we apply the coincidence limits in (2.10.23) and (2.10.25) to (2.10.18) and (2.10.19)

to obtain

[σ;µ
,t′ ] = −δµt

[σ;µ
,t′t′ ] = −Γµtt.

(2.10.26)

Higher derivatives have been calculated but take substantial space so we include their
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results in the final form of (2.10.15) by

σ;µ =gµtε−
1

2
Γµttε

2 +
1

6
ΓνttΓ

µ
νtε

3 − 1

24
Γνtt (Rµtνt + Γτ νtΓ

µ
τt) ε

4

− 1

120

(
−2ΓµrtΓ

r
ttR

r
trt + (Γrtt)

2Rµrtr − (Γrtt)
2ΓtrtΓ

µ
rt

)
ε5 +O(ε6)

(2.10.27)

in agreement with [3].

Using (2.10.27) we can now express σ(x, x′) and its derivatives in terms of the metric

(2.3.16),

σ(x, x′) =
1

2
f(r)ε2 − 1

96
f(r)f ′(r)2ε4 +O(ε6)

σ;t(x, x′) = ε− 1

24
f ′(r)2ε3 +O(ε5)

σ;r(x, x′) =
1

4
f(r)f ′(r)ε2 − 1

96

(
1

2
f(r)f ′(r)3 + f(r)2f ′(r)f ′′(r)

)
ε4 +O(ε5)

σ;γ(x, x′) = 0

(2.10.28)

where the derivative with respect to γ means with respect to any angular coordinate. The

derivative results in (2.10.28) are in agreement with [3] up to certain signs explained by

the fact that in their work σ was calculated on the Lorentzian manifold.

The method presented from subsection §2.10.1 to this point can now be used to ex-

plicitly find the Hadamard expansion terms. We applied this method and calculated all

required steps by hand to derive U and V (where appropriate) for d = 4, 5, 6, the results

for d = 4 being a check on our implementation on a simpler known case. The results in

d = 5, §4.3, and d = 6, 5.3, were checked against [23], this guaranteed a better under-

standing of the method in case of complications and that we agreed in every detail with

others’ results.

Finally, as noted previously the derivatives did not need to be shifted from x′ to x.

Primed and mixed derivative coincidences can be found [19, 58] such as from the first
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derivative of (2.10.17),

σ;µ
;ν′ = −gν′ρ;µσ;ρ − gν′ρσ;µρ (2.10.29)

which gives

[σ;µ
;ν′ ] = −gµν . (2.10.30)

However this method takes longer than the steps laid out in this section so is discussed

no further.

2.11 WKB Approximation

In order to take our schematic view of renormalisation in equation (2.9.21) to a concrete

calculation we must overcome a complication. In that scheme the right hand side involves

the difference between an infinite sum of numerical solutions of an ODE and a singularity

given in closed form. Clearly, guaranteeing that the divergences cancel to the correct fi-

nite value will pose problems, not least of which is knowing how many modes need to be

calculated to demonstrate convergence of the remaining terms. In order to bypass these

problems and allow us more control over the calculation we will employ an analytic ap-

proximation to the modes such that we can then concentrate on renormalising an analytic

expression.

We use the WKB-like approximation of Howard [41, 75] by defining a new function

βωl(r) as

βωl(r) = Cωlpωl(r)qωl(r) (2.11.1)

which will be expanded into a series of WKB terms. The WKB approach will allow us to

approximate well modes with large l or n. Thus a mode sum of WKB terms will contain

the divergent behaviour and we only need numerical calculations of modes with low l or

n. This allows us to re-approach our schematic renormalisation (2.9.21) and re-express it
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as

〈φ2〉ren =
∑
finite

(modes−WKB terms) + lim
ε→0
or
γ→0

(∑
WKB terms−GE,sing

)
. (2.11.2)

The only problem introduced by this approximation is that it will break down near the

horizon where qωl diverges [12, 13, 75]. This will need to be monitored during calculations

to discover at what value of r the approximation breaks down. A detailed look at the

cause of this breakdown is presented in the following subsection §2.11.1.

Although the equations for using the WKB approximation are known, see for example

[41, 75], these have only been used in the d = 4 case. We reproduce here the method

to find the WKB terms for an unspecified number of dimensions. To apply the WKB

approach we wish to have an ODE for βωl(ζ), for some variable ζ(r), of the form [41]

d2Sωl
dζ2

=
(
χ2(ω, l, ζ) + η(ζ)

)
Sωl. (2.11.3)

It is not necessary for χ in equation (2.11.3) to contain all the dependence on ω and l

however the method proves easier if η is independent of these.

To begin we look at the radial ODE (2.8.1)

1

rd−4

d

dr

[
rd−2f

d

dr
Sωl

]
−
(
ω2r2

f
+ (m2 + ξR)r2 + l(l + d− 3)

)
Sωl = 0 (2.11.4)

which is obeyed by pωl(r) and qωl(r). We introduce a change of variables by

d

dζ
= rd−2f

d

dr
(2.11.5)

which converts the radial ODE to

d2Sωl
dζ2

=
(

(ωrd−2)2 + (m2 + ξR)fr2d−4 + l(l + d− 3)fr2d−6
)
Sωl. (2.11.6)
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Comparing equations (2.11.3) and (2.11.6) we rewrite the l term by completing the square

such that (2.11.6) is now

d2Sωl
dζ2

=

(
(ωrd−2)2 +

[(
l +

d− 3

2

)
f

1
2 rd−3

]2

+ (m2 + ξR)fr2d−4 −
[
d− 3

2
f

1
2 rd−3

]2
)
Sωl (2.11.7)

from which we can read off that

χ2(ω, l, ζ) = (ωrd−2)2 +

[(
l +

d− 3

2

)
f

1
2 rd−3

]2

(2.11.8)

and

η(ζ) = (m2 + ξR)fr2d−4 −
[
d− 3

2
f

1
2 rd−3

]2

. (2.11.9)

The final step in preparing the WKB approximation is to find an ODE such that βωl is

equal to terms containing its own derivatives to facilitate solution through series expansion

as displayed in (2.11.17) . This requires some pieces which will be written without indices

and using prime notation (′) for d
dζ . First consider the Wronskian (2.8.3)

W [p, q] = C

[
p
dq

dr
− q dp

dr

]
=

C

frd−2

[
pq′ − qp′

]
= − 1

frd−2

⇒ C2
[
pq′ − qp′

]2
= 1.

(2.11.10)

Now consider

(β′)2 = C2
[
p2q′2 + q2p′2 + 2pqp′q′

]
= 1 + 4Cp′q′β from equation (2.11.10)

(2.11.11)
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and

β′′ = C
[
pq′′ + p′′q + 2p′q′

]
= 2β

(
χ2 + η

)
+ 2Cp′q′ from equations (2.11.3) and (2.11.7).

(2.11.12)

Combining equations (2.11.10) to (2.11.12) we arrive at

0 = 2ββ′′ − 4Cp′q′β − 4β2(χ2 + η)

= 2ββ′′ − (β′)2 − 4β2(χ2 + η) + 1. (2.11.13)

Then noting that

d2
√
β

dζ2
=

β′′

2
√
β
− β′2

4β
√
β

(2.11.14)

we can rewrite (2.11.13) as follows

4β2(χ2 + η)− 2ββ′′ + (β′)2 = 1

⇒ β2 − β2

χ2

(
β′′

2β
− β′2

4β2
− η
)

=
1

4χ2

⇒
[
1− 1

χ2

(
1√
β

d2
√
β

dζ2
− η
)]

β2 =
1

4χ2

(2.11.15)

and hence into the final form of our desired ODE as

β =
1

2χωl

[
1− 1

χ2

(
1√
β

d2
√
β

dζ2
− η
)]− 1

2

. (2.11.16)

In (2.11.16) we have rewritten the arguments, ω and l, of χ as indices in line with other

objects in our choice of notation.

To find the series expansion of βωl we introduce a small, fictitious parameter δ into
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equation (2.11.16) and return the indices to obtain [75]

βωl =
1

2χωl

[
1− δ2

χ2
ωl

(
1√
βωl

d2
√
βωl

dζ2
− η
)]− 1

2

. (2.11.17)

Then we expand βωl in powers of δ multiplying the WKB terms

βωl = β0ωl + δ2β1ωl + δ4β2ωl + ... (2.11.18)

and finally let δ → 1. It is readily seen that the first WKB term has the form

β0ωl =
1

2χωl
(2.11.19)

which, containing f , is dependent on the number of dimensions.

All WKB terms can be expressed as sums of coefficients multiplying inverse powers of

χωl but the presence of the dimensionally dependent η and derivatives of χωl with respect

to r prevent a simple, predictable pattern emerging. In fact the WKB terms, though easy

in to find in principle, rapidly become large and unwieldy to calculate. This makes it an

important point to decide how many WKB terms to include in our calculations. Previous

work such as Winstanley and Young [75] in d = 4 used three WKB terms but at the cost

of needing modes for the first twenty values of ω and hundreds of values of l to guarantee

convergence in the mode sums. In anticipation of our dimensionally dependent modes

becoming harder to calculate accurately as d increases we will use four terms in d = 4 and

extend this is for other values of d as follows

βωl(r) =

d−1∑
i=0

βiωl(r). (2.11.20)

We have calculated all the WKB terms for d = 4 → 11 though, due to computational

restrictions, for d ≥ 6 these are expressed in a simplified form as functions of r, ω and χωl
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only. The WKB terms of relevance are included in appendix C and referenced as they are

needed in the work.

In conclusion we can now express our schematic idea (2.11.2) in more detail by com-

bining the results of this section with equation (2.9.21) and Green’s function (2.8.13)

〈φ2〉ren =
κ

2π

∞∑
n=−∞

∞∑
l=0

Ñd,lG
λ
l (1)

[
Cωlpωl(r)qωl(r)−

d−1∑
i=0

βiωl(r)

]

+ lim
ε→0

(
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

Ñd,lG
λ
l (1)

d−1∑
i=0

βiωl(r)−GE,sing(ε)

) (2.11.21)

or Green’s function (2.8.14)

〈φ2〉ren =
κ

2π

∞∑
l=0

Ñd,lG
λ
l (1)

∞∑
n=−∞

[
Cωlpωl(r)qωl(r)−

d−1∑
i=0

βiωl(r)

]

+ lim
γ→0

(
κ

2π

∞∑
l=0

Ñd,lG
λ
l (cos γ)

∞∑
n=−∞

d−1∑
i=0

βiωl(r)−GE,sing(γ)

)
.

(2.11.22)

Remember that the first lines of equations (2.11.21) and (2.11.22) are found numerically

while the second lines require more analytic work. This means that in practice the numeric

lines will only be summed to finite values large enough to guarantee convergence of the

sums to within desired numerical accuracy.

2.11.1 Breakdown of the WKB Terms

The reason the WKB approximation breaks down near the horizon is due to the particular

properties of the mode functions it attempts to describe. The series expansions of the

mode sums are investigated in more detail in §3.8 and §4.6. We include here some detail

to discuss the relation between the series expansions and the WKB breakdown.

If we express each mode as a Frobenius series then the Frobenius roots, ν, are defined
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as

ν = ± ωrh
d− 3

= ±nκrh
d− 3

= ±nrh
2
, (2.11.23)

hence they differ by an integer for n > 0 and are zero for n = 0. This means the

corresponding Frobenius series are expressed as

p = (r − rh)ν
∞∑
j=0

aj(r − rh)j

q = (r − rh)−ν
∞∑
j=0

bj(r − rh)j +Dωlp log(r − rh)

(2.11.24)

where Dωl is a constant that cannot vanish for n = 0 but may go to zero for n > 0. The

aj , bj and the resulting cj in the next equation are constants.

This means the object we wish to approximate has the form

pq =

∞∑
j=0

cj(r − rh)j + p2 log(r − rh). (2.11.25)

For n > 0 we have p2 log(r−rh) ∼ 0 for r ∼ rh and for n = 0 near r ∼ rh the sum is close to

zero. The issue arises in that the WKB approximation only captures the behaviour from

the sum and so when used for n = 0 near the horizon there is a remaining logarithmic

term that diverges. This is a potential problem that will be discussed as it arises, the

major example is in the results of Ch. 4, as it is not possible to state in advance how

close to the horizon this issue will cause any problems. A better approximation near the

horizon has been presented in [12] but is more complicated to implement, we will return

to this improvement if required.

72



CHAPTER 2. GENERAL METHODOLOGY

2.12 Summary

In this chapter we have demonstrated and investigated the mathematical framework im-

plemented within this project. We began by defining the object that this project was setup

up to calculate (the vacuum polarisation (VP), 〈φ2〉) in two key situations; firstly by ex-

tending previous work in d = 4 without a bulk to a brane within a higher dimensional bulk

(see Ch. 3) and secondly to demonstrate the first known methodology for its calculation

within the bulk (Ch. 4 and 5). We have expressed the VP using a Green’s function as well

as constructing this Green’s function using a point splitting regime. We demonstrated

that the VP is initially divergent, requires renormalisation and which method of renor-

malisation is most appropriate. Further we established how to implement this method to

produce renormalisation terms and the variable they depend on (Synge’s world function).

Finally we have reviewed an approximation scheme for the scalar field modes.

It is not possible to write a general calculation scheme for the following chapters but

certain points of the methodology are consistent:

• Find the initial equations in the relevant case, such as the metric, Ricci tensor, radial

ODE etc.

• Choose a point splitting scheme

• Given the choice of point splitting scheme a Green’s function is constructed which

is regular (until point coincidence)

• Determine the renormalisation terms

• Given the form of the Green’s function attempt to find a way in which the renor-

malisation terms can be similarly expressed

• Choose the parameters, such as mass, coupling constant, that will allow final calcu-

lation (e.g. calculation domain, any masses, coupling constant etc.)
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• Using this set of parameters determine the relevant WKB terms (this is done after

fixing certain parameters to prevent WKB expressions growing too large)

• Numerically calculate the field modes and any other quantities which cannot be

found analytically

We now proceed to looking at the calculation of 〈φ2〉 on the brane.

74



Chapter 3

〈φ2〉 on the Brane

In this chapter we use the methodology outlined in Ch. 2 to find the vacuum polarisation

on the brane. We define the parameters (projected metric, gravitational coupling etc.)

on the brane on with which we will calculate. Once parameters have been set, allowing

results to be calculated, we will go through the choices of calculation method relevant

to the renormalised mode sum on the brane. Finally we present our results along with

any interpretation, in particular we will compare our results to the Schwarzschild case

[17]. The core of the methodology in this chapter follows [3, 75] though many authors

contributed work leading to these papers.

3.1 The Metric on the Brane

As discussed in §1.3 and §1.6 our choices for the brane are to make it a model for our

4d universe assuming there is no cosmological constant, Λ = 0. This is the equivalent

of having no tension in the brane and allows the brane to be a flat slice through our

spacetime (2.3.16). For simplicity we choose this slice to be a proper bisection through

the hyperspherical, d dimensional, black hole spacetime. Due to the inherent symmetries
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of the hypersphere this is achieved by setting θi>1 = π/2 (we set θ ≡ θ1 for the brane) in

(2.3.16). On this bisection we retain time symmetry but any other symmetries must be

found from the metric projection on the brane which from (2.3.16) is

ds2 = fdt2 + f−1dr2 + r2dΩ2
2

= fdt2 + f−1dr2 + r2dθ2 + r2 sin2(θ)dϕ2.

(3.1.1)

As can be seen from (3.1.1) we now have a 4d black hole spacetime where all influence

from the number of dimensions is felt only through the metric function f (2.3.9) in which

we set rh = 1 without loss of generality. Note that (3.1.1) is not a solution to the vacuum

Einstein field equations although metric (2.3.16) is [61] but an effective metric suitable for

describing the effect of gravity on fields on the brane.

From the metric (3.1.1) we can immediately calculate the Ricci tensor, Rab, Ricci

scalar, R, and the square root of the metric determinant, g
1
2 , to be the following

Rab =



−f(2f ′+rf ′′)
2r 0 0 0

0 −2f ′+rf ′′

2rf 0 0

0 0 1− f − rf ′ 0

0 0 0 − sin2(θ) (f + rf ′ − 1)



=



(d−3)(d−4)(rd−r3)
2r2d−1 0 0 0

0 (d−3)(d−4)r
2(rd−r3)

0 0

0 0 (4−d)
rd−3 0

0 0 0 (4−d) sin2(θ)
rd−3


,

(3.1.2)

R =
2f + 4rf ′ + r2f ′′ − 2

r2
=

(d− 4)(d− 5)

rd−1
(3.1.3)

and

g
1
2 = r2 sin(θ). (3.1.4)
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In (3.1.2) we see that Rab = 0 for d = 4 and in (3.1.3) we see R = 0 for d = 4, 5. From this

we can anticipate similar behaviour occurring for the vacuum polarisation in d = 4 and 5

then some shift in behaviour as d changes from 5 to 6 however the specific forms cannot

be anticipated.

3.2 Brane Mode Sums

In line with previous work in four dimensions [3, 17, 75] we choose temporal point splitting

so we look at a mode sum of the form in equation (2.8.13). The angular separation, γ, is

such that

cos(γ) = cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(ϕ− ϕ′) (3.2.1)

and the angular coincidence makes cos(γ) = cos(0) = 1. For our four dimensional space-

time the Gegenbauer polynomial has upper index λ = 1
2 so that

G
1
2
l (cos(0)) = Pl(1) = 1 (3.2.2)

where Pl is the Legendre polynomial of the first kind. The degeneracy factor Ñl,d (2.7.9)

takes the form

Ñl,4 =
2l + 1

4π
. (3.2.3)

Bringing together the terms on the brane allows us to express the mode sum as

GE(x, t;x, t′) =
T

4π

∞∑
n=−∞

eiωε
∞∑
l=0

(2l + 1)Cωlpωl(r)qωl(r)

=
T

2π

∞∑
n=1

cos(ωε)

∞∑
l=0

(2l + 1)Cωlpωl(r)qωl(r)

+
T

4π

∞∑
l=0

(2l + 1)C0lp0l(r)q0l(r),

(3.2.4)
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where we have used κ = 2πT .

The functions pωl(r) and qωl(r) are solutions to the radial ODE (2.8.1) expressed on

the brane,

f
d2Sωl
dr2

+

(
2f

r
+
df

dr

)
dSωl
dr
−
[
ω2

f
+m2 + ξR+

l(l + 1)

r2

]
Sωl = 0. (3.2.5)

3.3 Unphysical Divergences

Even though the points are still split (ε 6= 0) our expression (3.2.4) is divergent due to

the sum over l. This is technically impossible by our definition of the Green’s function.

A Green’s function solution that still has points split must be finite so we conclude that

the problem has arisen from the manner in which we set up our point splitting approach.

Luckily this problem has been encountered and accounted for in previous works (first in [16]

with more detailed discussion in [3, 75]). A term must be subtracted from equation (3.2.4)

that contains a multiple of the delta function and results in an established modification

[2, 3] to the Green’s function

GE(x, t;x, t′) =
T

4π

∞∑
n=−∞

exp(iωε)

∞∑
l=0

[
(2l + 1)Cωlpωl(r)qωl(r)−

1

rf
1
2

]

=
T

2π

∞∑
n=1

cos(ωε)

∞∑
l=0

[
(2l + 1)Cωlpωl(r)qωl(r)−

1

rf
1
2

]

+
T

4π

∞∑
l=0

[
(2l + 1)C0lp0l(r)q0l(r)−

1

rf
1
2

]
.

(3.3.1)

We must now address how this modification has been introduced if equation (2.7.1)

was in fact the unique solution to the Klein-Gordon equation (2.5.5). It is important

to remember that solution (2.7.1) is unique however the order of summation was never

determined. After equation (2.8.4) we justified that the summation order is determined
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by the order of point coincidence but we also know that the order of summation cannot

be simply changed as the sum is not absolutely convergent, see also Appendix A. We

must accept that in the point coincidence scheme presented some rigour was lost in the

consideration of the summation order. This leads to equations (2.7.1), (2.7.8) and (2.8.4)

being correct, the last due to the radial point coincidence not affecting the summation

order. This then means that equation (3.2.4) is in fact wrong and requires correction.

This correction is what has been previously referred to as the removal of the unphysical

divergence.

There have been several methods used to calculate (3.3.1), we present here a recent

method [75] based on dimensional reduction which will demonstrate an idea that will be

applied later in the bulk. We begin by rewriting our initial result (2.7.1) for the Euclidean

Green’s function (in d = 4) as

GE(x;x′) =
T

4π

∞∑
n=−∞

exp(iωε)× Gω(r, θ, φ; r′, θ′, φ′) (3.3.2)

where

Gω(r, θ, φ; r′, θ′, φ′) =

∞∑
l=0

(2l + 1)Pl(cos(γ))Sωl(r, r
′). (3.3.3)

Returning to the wave equation that we used to define GE (2.5.5) we can find a PDE

satisfied by our new function Gω

− δ(x,x′)

r2 sin θ
=

1

r2

∂

∂r

[
fr2∂Gω

∂r

]
+

1

r2 sin θ

∂

∂θ

[
sin θ

∂Gω
∂θ

]
+

1

r2 sin2 θ

∂2Gω
∂φ2

−
[
ω2

f
+m2 + ξR

]
Gω. (3.3.4)

This has a similar form to a three dimensional wave equation with a quasi-potential

Ṽ =
ω2

f
+m2 + ξR. (3.3.5)
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Dividing (3.3.4) by a factor of f gives the governing wave equation

[
∇̃i∇̃i − V (x)

]
Gω(x;x′) = −g̃−

1
2 (x)δ3(x,x′) (3.3.6)

for potential

V (x) =
Ṽ

f
= f−1

(
ω2

f
+m2 + ξR

)
. (3.3.7)

on a three dimensional metric [75]

ds̃2 = dr2 + r2fdθ2 + r2f sin2 θ dϕ2. (3.3.8)

The term g̃(x) is the determinant of the metric (3.3.8) and the labels on the covariant

derivatives also refer to this metric. It is important to note here that throughout the above

expressions the Ricci scalar R is still that from our original metric on the four dimensional

brane (3.1.1).

Now we repeat an important point from the source material, ‘we emphasise that [this

metric] has no physical significance’ [75]. The metric (3.3.8) has a curvature singularity on

its horizon where f → 0 though it is asymptotically flat at infinity. The potential (3.3.7)

is also divergent on the horizon so this system should only be seen as mathematical tool.

In this artificial system we can see that Gω is a Euclidean Green’s function solution for

the scalar field in (3.3.6). Fortunately the strange structure of this system does not affect

the singularity structure of the Green’s function. This means we may still express this

structure in the normal three dimensional Hadamard form (which in three dimensions has

no logarithmic term [23])

Gω(x,x′) =
U(x,x′)

[2σ(x,x′)]
1
2

+W (x,x′). (3.3.9)

The biscalars U(x,x′) and W (x,x′) can be expanded in terms of σ(x,x′), which has
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already been performed [22, 58]. Only the lowest order term of U(x,x′) will be useful

here,

U(x,x′) = 1 +O(σ), (3.3.10)

where we note the important lack of dependence on the potential up to this order.

We now implement a point splitting regime for our function Gω in three dimensions,

choosing r = r′ and φ = φ′. As our metric (3.3.8) is spherically symmetric we can choose

to take θ′ = 0 without loss of generality, which in (3.2.1) gives us cos γ = cos θ, allowing

us to rewrite (3.3.3) as

Gω(r, θ, φ; r, 0, φ) =

∞∑
l=0

(2l + 1)Pl(cos(θ))Cωlpωl(r)qωl(r). (3.3.11)

Due to the restriction in size of the Pl(cos θ) terms (|Pl(x)| < 1 for |x| < 1) the sum

over l here is kept finite in spite of us bringing together two of the coordinates. From this

point splitting we may state

2σ = r2fθ2 +O(θ4). (3.3.12)

Now we may express our Hadamard form (3.3.9) as

Gω(x,x′) =
1

rf
1
2 θ

+ finite terms (3.3.13)

which for small θ gives us

∞∑
l=0

(2l + 1)Pl(cos(θ))Cωlpωl(r)qωl(r) =
1

rf
1
2 θ

+O(1), (3.3.14)

thus showing our earlier sum in (3.2.4) diverges.
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Making use of a previously proven identity [41],

∞∑
l=0

Pl(cos(θ)) =
1

θ
+O(θ), (3.3.15)

we multiply (3.3.15) through by 1/(rf
1
2 ) to find an appropriate term to subtract from

(3.3.14) to render it finite. This yields

∞∑
l=0

[
(2l + 1)Cωlpωl(r)qωl(r)−

1

rf
1
2

]
Pl(cos(θ)) = O(1) (3.3.16)

which in the limit θ → 0 demonstrates the subtraction term (r
√
f)−1 does in fact make

our mode sum in (3.3.1) finite.

There is a final point on this topic that will be discussed in more detail when applied in

the bulk in §4.12. Although we have guaranteed that (3.3.1) is finite for ε 6= 0 no method

in handling the divergence in the l sum guarantees that no lower order terms should not

have also been taken away. The subtraction of any term of order O(l−k) for k > 1 would

not alter the divergence structure but would change the final solution.

3.4 Brane Renormalisation

Now we shall apply the method laid out in §2.9, to calculate the renormalisation terms

on the brane, which is the 4d Hadamard expansion. In this expansion the dimensional

constant (2.9.5) is

α4 =
1

4π2
(3.4.1)

and the singular terms (2.9.18) are

G4d
E,sing =

1

8π2

(
U(x, x′)

σ(x, x′)
+ V (x, x′) ln[σ(x, x′)]

)
. (3.4.2)
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The final general form of the 4d renormalisation terms has been well established [19]

and has been used repeatedly [2, 3, 75]. However the version in those sources came from

DeWitt-Schwinger version, as discussed in §2.9. We state here the form derived from the

Hadamard method (3.4.2) which we calculated ourselves, starting with

G4d
E,sing =

1

8π2σ
+

1

96π2
Rαβ

σασβ

σ
+

1

8π2

(
m2 + (ξ − 1

6
)R

)(
C +

1

2
ln

[
µ2|σ|

2

])
. (3.4.3)

If in (3.4.3) we consider a massive scalar field then the constant µ is equal to m however, for

a massless scalar field, the constant µ remains free [3]. In the massless case it corresponds

to a finite renormalisation of terms in the gravitational action [75].

The restriction of (3.4.3) to temporal splitting using equations (2.10.28) is also well

established in [3, 75] so again it is quoted,

G4d
E,sing(x, ε;x, 0) =

1

4π2ε2f
+

1

8π2

(
m2 +

(
ξ − 1

6

)
R

)(
C +

1

2
ln

[
µ2fε2

4

])
+

1

192π2f

(
df

dr

)2

− 1

96π2

d2f

dr2
− 1

48π2r

df

dr
,

(3.4.4)

where the limit of (3.4.4) as ε→ 0 is called 〈φ2〉div.

In order to make use of (3.4.4) we wish to express it in terms of mode sums, this is

achieved through identities derived in appendix B,

1

ε2
= −κ2

∞∑
n=1

n cos(nκε)− κ2

12
+O(ε2)

and − 1

2
ln(κ2ε2) =

∞∑
n=1

cos(nκε)

n
+O(ε2).

(3.4.5)

Using these identities with κ = 2πT and ω = nκ we can rewrite (3.4.4) in a form suitable
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to be subtracted from (3.3.1) as

G4d
E,sing(x, ε;x, 0) =− κ

4π2f

∞∑
n=1

ω cos(ωε)− κ

8π2

(
m2 +

(
ξ − 1

6

)
R

) ∞∑
n=1

cos(ωε)

ω

+
1

8π2

(
m2 +

(
ξ − 1

6

)
R

)(
C +

1

2
ln

[
µ2f

4κ2

])
+

1

192π2f

(
df

dr

)2

− 1

96π2

d2f

dr2
− 1

48π2r

df

dr
− κ2

48π2f
+O(ε2).

(3.4.6)

Achieving the form of (3.4.6) has an added benefit in that now the ε limit can be taken

across both (3.3.1) and (3.4.6) very simply. Once this limit has been taken, the terms

within (3.4.6) subtracted from (3.3.1) and the resulting terms are then categorised into

two groups such that we may write [3, 75]

〈φ2〉ren = 〈φ2〉analytic + 〈φ2〉numeric (3.4.7)

where

〈φ2〉analytic =
κ2

48π2f
− 1

192π2f

(
df

dr

)2

+
1

96π2

d2f

dr2
+

1

48π2r

df

dr

− 1

8π2

(
m2 +

(
ξ − 1

6

)
R

)(
C +

1

2
ln

[
µ2f

4κ2

])
,

(3.4.8)

〈φ2〉numeric =
T

2π

∞∑
n=1

{ ∞∑
l=0

[
(2l + 1)Cωlpωlqωl −

1

rf
1
2

]
+
ω

f
+

1

2ω

(
m2 +

(
ξ − 1

6

)
R

)}

+
T

4π

∞∑
l=0

[
(2l + 1)C0lp0lq0l −

1

rf
1
2

]
.

(3.4.9)

It is easy to see that (3.4.8) requires no more work before calculation so we turn to

implementing the WKB approximation for mode functions in (3.4.9).
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3.5 WKB Terms on the Brane

In a more complicated case it may be prudent here to move to a more general analysis

of our calculations in order to attempt to find any simplifications that could be made.

However for the d = 4 case we know from previous work such as [75] that the number of

relevant terms is small enough that proceeding directly to introducing the WKB terms is

justified.

We quickly restate equations (2.11.8) and (2.11.9) in their on brane forms

χ2
ωl = ω2r4 +

(
l +

1

2

)2

fr2

η = (m2 + ξR)fr4 − 1

4
fr2.

(3.5.1)

The ODE (2.11.17) is unchanged in form for the brane and therefore so is its expansion.

For d = 4 we have the expansion

βωl(r) =
3∑
i=0

βiωl(r) (3.5.2)

where as mentioned in §2.11

β0ωl =
1

2χωl
. (3.5.3)

The WKB terms can then in general be expressed as

βiωl =
2i+1∑
k=1

Ai,k(ω,m, r)χ
−(2i+2k−1)
ωl (3.5.4)

for some functions Ai,k which depend on ω but not l, from which it is important to note

that for large ω or l (i.e. large χωl)

βiωl ∼ χ
−(2i+1)
ωl . (3.5.5)
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The full list of the Ai,k can be found in Appendix C though note that they are explicitly

listed by the associated beta term and hence the i is removed for conciseness.

3.6 WKB Implementation

We will now introduce the WKB terms into the n > 0 line of equation (3.4.9) as discussed

in §2.11, giving

∞∑
n=1

[ ∞∑
l=0

(2l + 1)[Cωlpωlqωl − β0ωl − β1ωl − β2ωl − β3ωl]

+

∞∑
l=0

(2l + 1)

[
β0ωl + β1ωl + β2ωl + β3ωl −

1

rf
1
2

]
+
ω

f
+

1

2ω

(
m2 +

(
ξ − 1

6

)
R

)]
.

(3.6.1)

As we know all the βωl terms analytically this part of the approximation is complete.

Some manipulation is required to complete the sum over l in a satisfactory way and this

is handled in §3.7.

The calculation of the beta terms in §3.5 only holds for ω 6= 0, we now look at n = 0.

For this we implement the WKB terms into the n = 0 line of (3.4.9) as

∞∑
l=0

[(2l + 1)[C0lp0lq0l − β00l − β10l − β20l − β30l]

+(2l + 1)[β00l + β10l + β20l + β30l]−
1

rf
1
2

]
.

(3.6.2)

For n = 0 we have

χ0l(r) =

(
l +

1

2

)−1

rf
1
2 (3.6.3)
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and using this for our first beta term gives

β00l =
1

2rf
1
2

(
l +

1

2

)−1

. (3.6.4)

So (3.6.4) will cancel within (3.6.2) giving the n = 0 sum as

∞∑
l=0

[(2l + 1)[C0lp0lq0l − β00l − β10l − β20l − β30l]

+(2l + 1)[β10l + β20l + β30l]] .

(3.6.5)

In (3.6.5) the first line requires numerical calculation while the second line can be

handled analytically so we need do no more manipulation on this part. In fact βk0l is

equal to the leading order term of βkωl with χωl replaced with χ0l as only the leading

coefficient is non-vanishing for ω → 0. Thus using equations (3.5.4), noting the only l

dependence is in χωl and that the leading terms are always χ
−(2k+1)
ωl , we know

∞∑
l=0

(2l + 1)βi0l =
2Ai,1

(r
√
f)2i+1

∞∑
l=0

(
l +

1

2

)−2i

. (3.6.6)

Calculating (3.6.6) for the three betas in line two of (3.6.5) and naming the results we

obtain

∆1 =

∞∑
l=0

(2l + 1)β10l =
π2

r3f
3
2

A1,1 from

∞∑
l=0

(
l +

1

2

)−2

=
π2

2
,

∆2 =

∞∑
l=0

(2l + 1)β20l =
π4

3r5f
5
2

B1,1 from

∞∑
l=0

(
l +

1

2

)−4

=
π4

6

and ∆3 =

∞∑
l=0

(2l + 1)β30l =
2π6

15r7f
7
2

C1,1 from

∞∑
l=0

(
l +

1

2

)−6

=
π6

15
,

(3.6.7)

refer to Appendix C for A1,1, B1,1 and C1,1.
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This gives us a new form of equation (3.4.9)

〈φ2〉numeric =
T

2π

∞∑
n=1

[ ∞∑
l=0

(2l + 1)[Cωlpωlqωl − β0ωl − β1ωl − β2ωl − β3ωl]

+

∞∑
l=0

(2l + 1)

[
β0ωl + β1ωl + β2ωl + β3ωl −

1

rf
1
2

]

+
ω

f
+

1

2ω

(
m2 +

[
ξ − 1

6

]
R

)]
+
T

4π

∞∑
l=0

[(2l + 1)[C0lp0lq0l − β00l − β10l − β20l − β30l]]

+ ∆1 + ∆2 + ∆3.

(3.6.8)

We note that in (3.6.8) line five has been calculated, the mode sums in lines one and four

will be found numerically then summed over a finite value of n and l such that we can

find these sums to some desired numerical accuracy. Lines two and three, the second line

in (3.6.1), will require some manipulation in §3.7 before final calculation.

3.7 Calculating 〈φ2〉numeric

We now look at how to calculate lines two and three of equation (3.6.8.) We begin by

looking at a method to handle the l sum as proposed by [17, 44, 75]. We apply the

Watson-Sommerfeld formula, in the form from [17], to transform the l sum into integrals.

The Watson-Sommerfeld identity is

∞∑
l=0

F(l) =

∫ ∞
0
F
(
λ− 1

2

)
dλ−Re

[
i

∫ ∞
0

2

1 + e2πλ
F
(
iλ− 1

2

)
dλ

]
(3.7.1)

and is derived in the following section.
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3.7.1 Derivation of the Watson-Sommerfeld Identity

We begin with a function, f(l), that is holomorphic for Re(l) ≥ −1
2 and real for l ∈ R.

Now we construct the function

g(l) = π cot(πl)f(l), (3.7.2)

this function is holomorphic for Re(l) ≥ −1
2 except at the poles l = lk such that lk ∈ N.

Now consider the contour, γ1, which starts at (−1
2 , 0) and goes to positive, real infinity.

This is except at each lk where its path describes a semi-circle centred at lk with radius

ε, for small ε, protruding into positive, imaginary l. This is equivalent to Fig. 1 of [17].

We term the contour around any semi-circle γε and the contour only along the real axis

γ̃1. Hence we have ∫
γ1

g(l)dl =

∫
γ̃1

g(l)dl +
∑
k

∫
γε

g(l)dl. (3.7.3)

Using the fact that g(l) is real and holomorphic for real l except at lk we can multiply

equation (3.7.3) by i and take the real parts of both sides to find

Re

[
i

∫
γ1

g(l)dl

]
= Re

[
i
∑
k

∫
γε

g(l)dl

]
. (3.7.4)

Next we consider the summand in the RHS of equation (3.7.4) by looking at the integral

around a generic lk. For γε we find l = lk + εeiθ for θ going from π to 0, which allows us

to write the integral as

∫
γε

g(l)dl = π

∫ 0

π
cot(πlk + επeiθ)f(lk + εeiθ)εieiθdθ. (3.7.5)
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Note that we can expand the cotangent as

cot(πlk + πεeiθ) = cot(επeiθ) =
1

επeiθ
+O(1) (3.7.6)

hence integral (3.7.5) can be written as

∫
γε

g(l)dl = i

∫ 0

π
f(lk + εeiθ) +O(ε)dθ

= if(lk)

∫ 0

π
dθ

= −iπf(lk) (3.7.7)

where we have taken the limit ε→ 0. Comparing (3.7.7) with (3.7.4) we see

Re

[
i
∑
k

∫
γε

g(l)dl

]
= π

∞∑
l=0

f(l) (3.7.8)

where the index on the sum matches the values of l to lk, hence we can rewrite (3.7.4) as

∞∑
l=0

f(l) = Re

[
i

π

∫
γ1

g(l)dl

]
. (3.7.9)

Next we use an alternative representation of the cotangent,

cot(πl) = −i+
2i

1− e−2πil
, (3.7.10)

to write (3.7.9) as

∞∑
l=0

f(l) = Re

[∫
γ1

f(l)dl

]
−Re

[∫
γ1

2f(l)

1− e−2πil
dl

]
=

∫ ∞
− 1

2

f(l)dl − 2Re

[∫
γ1

f(l)

1− e−2πil
dl

]
(3.7.11)

where it is understood in the first integral of the RHS we have taken the limit ε→ 0.
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To proceed we investigate the second integral on the RHS of (3.7.11) which we will

call I. To do this we examine the integrand of I, f(l)
1−e−2πil , as it is integrated along a new

contour Γ. Contour Γ is constructed of three pieces:

• γH is identical to γ1 except it only extends a distance R from its start point,

• γR is a quarter circle centred at (−1
2 , 0) starting at the end of γH ,

• γV closes the contour in a vertical line from the end of γV to the start of γH ,

such that

I = lim
R→∞

∫
γH

f(l)

1− e−2πil
dl. (3.7.12)

Note that the integrand of I has no poles in or on contour Γ so we know

∫
Γ

f(l)

1− e−2πil
dl =

∫
γH

f(l)

1− e−2πil
dl +

∫
γR

f(l)

1− e−2πil
dl +

∫
γV

f(l)

1− e−2πil
dl = 0. (3.7.13)

On γR we have l = −1
2 +Reiθ for θ ∈ (0, π2 ]. Note that it is important that γR makes

a closed contour with γH but does not extend on to the real line, any evaluation on the

real line belongs to γH . The integral on γR becomes

∫
γR

f(l)

1− e−2πil
dl =

∫ π/2

α

iReiθf
(
−1

2 +Reiθ
)

1 + e−2πiReiθ
dθ (3.7.14)

where α is a small positive value arbitrarily close to zero but is not equal to zero. We may

then apply the Cauchy-Schwartz to evaluate the RHS of equation (3.7.14) as follows

∣∣∣∣∣
∫ π/2

α

iReiθf
(
−1

2 +Reiθ
)

1 + e−2πiReiθ
dθ

∣∣∣∣∣ ≤
∫ π/2

α

R
∣∣f (−1

2 +Reiθ
)∣∣∣∣1 + e−2πiReiθ
∣∣ dθ. (3.7.15)
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Now we note that from the triangle inequality we obtain

∣∣∣1 + e−2πiReiθ
∣∣∣ =

∣∣∣1 + e2πR sin(θ)e−2πiR cos(θ)
∣∣∣

≥ e2πR sin(θ) − 1. (3.7.16)

Hence from equations (3.7.14), (3.7.15) and (3.7.16) we may state

∣∣∣∣∫
γR

f(l)

1− e−2πil
dl

∣∣∣∣ ≤ ∫ π/2

α

R
∣∣f (−1

2 +Reiθ
)∣∣

e2πR sin(θ) − 1
dθ. (3.7.17)

Now as θ is defined on (0, π2 ] we have sin(θ) > 0. This means that the RHS of (3.7.17)

tends to zero as R tends to infinity providing
∣∣f (−1

2 +Reiθ
)∣∣ remains finite as R → ∞.

This marks a new, and final, condition on our original function, f(l).

Now we make use of equation (3.7.13) and define new contours γ̃H = limR→∞ γH and

γ̃V = limR→∞ γV . This allows equation (3.7.12) to be rewritten as

I =

∫
γ̃H

f(l)

1− e−2πil
dl = −

∫
γ̃V

f(l)

1− e−2πil
dl

=

∫
γ̂V

f(l)

1− e−2πil
dl (3.7.18)

where γ̂V is the reverse contour of γ̃V . On γ̂V we have l = −1
2 + iλ for λ ∈ (0,∞) hence

I becomes

I =

∫ ∞
0

if(−1
2 + iλ)

1 + e2πλ
dλ. (3.7.19)

We may now re-express equation (3.7.11) as

∞∑
l=0

f(l) =

∫ ∞
− 1

2

f(l)dl −Re

[
i

∫ ∞
0

2f(−1
2 + iλ)

1 + e2πλ
dλ

]

=

∫ ∞
0

f

(
λ− 1

2

)
dλ−Re

[
i

∫ ∞
0

2f(−1
2 + iλ)

1 + e2πλ
dλ

]
(3.7.20)
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where we have set l = λ− 1
2 in the first integral of the RHS. The second line of equation

(3.7.20) is now equivalent to equation (3.7.1).

3.7.2 Verifying the Watson-Sommerfeld Conditions

We must now verify that our WKB terms obey the conditions for the Watson-Sommerfeld

identity (3.7.1). The conditions for the function, f(l), to be summed over are:

1. f(l) must be holomorphic for Re(l) ≥ −1
2

2. f(l) must be real for l ∈ R

3. f(l) must decay to a finite value as l approaches infinity.

We can write the jth term of the ith beta function in an unspecified number of dimen-

sions, βij , as a function of only l as

βij = Fij
1((

l + d−3
2

)2
+K2

)i+j+ 1
2

(3.7.21)

such that Fij is a real coefficient depending on the beta term and is independent of l. The

new object K is

K =
(d− 3)nr

2
√
f

> 0 (3.7.22)

for d ≥ 4.

In order to discover where βij is holomorphic we make use of the Cauchy-Riemann

equations. Given a function of a complex variable, f(z), such that z = x+ iy then we can

write

f(z) = u(x, y) + iv(x, y). (3.7.23)
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The function, f(z), is then holomorphic where ever it satisfies the equations

∂u

∂x
=
∂v

∂y
(3.7.24)

∂u

∂y
= −∂v

∂x
(3.7.25)

which can can written concisely as

i
∂f

∂x
=
∂f

∂y
. (3.7.26)

For βij(l) with l = x+ iy we find

∂βij
∂x

= −Fij
(2i+ 2j + 1)

(
x+ iy + d−3

2

)((
l + d−3

2

)2
+K2

)i+j+ 1
2

(3.7.27)

∂βij
∂y

= −iFij
(2i+ 2j + 1)

(
x+ iy + d−3

2

)((
l + d−3

2

)2
+K2

)i+j+ 1
2

(3.7.28)

hence

i
∂f

∂x
=
∂f

∂y
(3.7.29)

for all l and βij meets condition 1.

From inspection of equation (3.7.21) and its associated definitions we can see that βij

is real for l ∈ R and hence meets condition 2.

We now consider βij as l approaches infinity by setting l = c + Reiθ, for finite real c,

and then taking the limit as R→∞. So we have

lim
R→∞

βij = lim
R→∞

Fij
1((

Reiθ + 2c+d−3
2

)2
+K2

)i+j+ 1
2

= 0, (3.7.30)

hence βij satisfies condition 3.
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We have now demonstrated that the the identity (3.7.1) is applicable to our WKB

terms.

3.7.3 Applying the Watson-Sommerfeld Identity

Now we use (3.7.1) to write

∞∑
l=0

(2l + 1)

[
β0ωl −

1

rf
1
2

]
=I0(ω, r) + J̃0(ω, r),

∞∑
l=0

(2l + 1)βkωl =Ik(ω, r) + Jk(ω, r), (k = 1, 2, 3),

(3.7.31)

where Ik refers to the integral in the left hand term of equation (3.7.1) and Jk refers to

the integral in the right hand term. We denote J̃0 differently as it must undergo some

manipulation before it can be brought into a form we may call J0 and calculated [75].

Firstly we look at the Ik integrals which can be calculated easily but rapidly increase in

number of terms as k increases. The full expressions can be found in appendix D however

we display I0 and I1 here due to their immediate relevance (note l = λ− 1
2)

I0(ω, r) =

∫ ∞
0

[
2λβ0ωl −

1

rf
1
2

]
dλ = −ω

f
,

I1(ω, r) =

∫ ∞
0

2λβ1ωldλ = − 1

2ω

[
m2 +

(
ξ − 1

6

)
R

]
− 1

24r2ω
.

(3.7.32)

95



3.7. CALCULATING 〈φ2〉NUMERIC

Substituting (3.7.31) and (3.7.32) into equation (3.6.8) we obtain

〈φ2〉numeric =
T

2π

∞∑
n=1

[ ∞∑
l=0

(2l + 1)[Cωlpωlqωl − β0ωl − β1ωl − β2ωl − β3ωl]

+I2 + I3 + J̃0 + J1 + J2 + J3 −
1

24r2ω

]
+
T

4π

∞∑
l=0

{
(2l + 1)[C0lp0lq0l − β00l − β10l − β20l − β30l]

}
+ ∆1 + ∆2 + ∆3.

(3.7.33)

Now we examine the J̃0 and Jk integrals, where now l = iλ− 1
2 ,

J̃0(ω, r) =−Re

[
i

∫ ∞
0

2

1 + e2πλ

(
2λiβ0ωl −

1

rf
1
2

)
dλ

]

and Jk(ω, r) =Re

[∫ ∞
0

4λ

1 + e2πλ
βkωldλ

]
(k = 1, 2, 3).

(3.7.34)

Starting with J̃0 we introduce a new variable [75]

a =
ωr

f
1
2

(3.7.35)

which when substituted into the first beta term gives (with l = iλ− 1
2)

β0ωλ =
1

r
√
f(a2 − λ2)

1
2

. (3.7.36)

Placing this into our integral from equation (3.7.34) gives

J̃0(ω, r) =
1

rf
1
2

Re

[ ∫ ∞
0

2i

1 + e2πλ
dλ

+

∫ a

0

2λ

(1 + e2πλ)(a2 − λ2)
1
2

dλ

+

∫ ∞
a

2λ

(1 + e2πλ)(a2 − λ2)
1
2

dλ

]
.

(3.7.37)

96



CHAPTER 3. 〈φ2〉 ON THE BRANE

Within (3.7.37) the first and third terms will be imaginary and so will not contribute

to the result. The second term is integrable but the integrand is not regular at λ = a.

The integral cannot be done analytically so we use numerics which is simplified by having

an integrand regular throughout the interval of integration. To achieve this we apply

integration by parts to (3.7.37) to obtain

J̃0(ω, r) =
ω

f
− 4πω

f

∫ a

0

(
1− λ2

a2

) 1
2 e2πλ

(1 + e2πλ)2
dλ (3.7.38)

which for large ω behaves as [75]

J̃0(ω, r) =
1

24ωr2
+O(ω−3). (3.7.39)

Next we introduce the term −(24ωr2)−1 from equation (3.7.33) into J̃0 allowing us to

write a final form for J0 at large ω

J0(ω, r) = J̃0(ω, r)− 1

24ωr2

=
ω

f
− 1

24ωr2
− 4πω

f

∫ a

0

(
1− λ2

a2

) 1
2 e2πλ

(1 + e2πλ)2
dλ

∼ O(ω−3).

(3.7.40)

Hence we know that
∑∞

n=1 J0 will converge quite rapidly so it can be considered separately

from the other terms within the n sum.

We will now look at the Jk integrals. Each βk can be schematically expressed as

βkωλ =
∑
y

Γyχ
−(2y+1)
ωλ . (3.7.41)

Here the index system of y depends on k but is irrelevant for this argument, where Γy is a

generic place holder for the appropriate coefficient. Taking a single y term we apply three
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3.7. CALCULATING 〈φ2〉NUMERIC

changes of variable

χωl =(ω2r4 − λ2r2f)
1
2 l = iλ− 1

2

=rf
1
2 (a2 − λ2)

1
2 a =

ωr

f
1
2

=raf
1
2 (1− q2)

1
2 λ = aq. (3.7.42)

Now we may write an equation for the generic term Jy>0

Jy =Re

[∫ ∞
0

4aq

1 + e2πaq
(rf

1
2a)−(2y+1)(1− q2)−

2y+1
2 a dq

]
=4a2(rf

1
2a)−(2y+1)Re

[∫ ∞
0

q

1 + e2πaq
(1− q2)−

2y+1
2 dq

] (3.7.43)

where we have used a single generic χ−(2y+1) term and ignored, for now, any coefficient

Γy as they are independent of q.

Figure 3.1: Contour used in the Jy integrals [75].

Clearly the integrands in (3.7.43) diverge at q = ±1 where they have branch points.
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We cut the plane along the interval [−1, 1] and consider the contour γ which in Fig. 3.1

is split into three components. The contribution from γ2 must be imaginary so we shall

consider the other two sections; γ1 takes the interval [0, 1 − ε] and q ∈ R while on γε we

have q = 1− εe−iθ for θ ∈ [0, π]. This gives

Jy =4a2(rf
1
2a)−(2y+1)Re lim

ε→0

[∫ 1−ε

0

q

1 + e2πaq
(1− q2)−

2y+1
2 dq

+

∫ π

0

1− εe−iθ

(1 + exp(2πa(1− εe−iθ)))
(2εe−iθ − ε2e−2iθ)−

(2y+1)
2 iεe−iθdθ

]
=4a2(rf

1
2a)−(2y+1)Re lim

ε→0
[Ly(ω, r) +My(ω, r)]

(3.7.44)

where Ly is the first integral on the right hand side of the first line and My is the remaining

integral in the first line.

At this point we shall take the simplest case of y = 1 as a sample calculation, which

for Ly gives

L1 =

∫ 1−ε

0

q

1 + e2πaq
(1− q2)−

3
2dq

=
1

2
√
ε(1 + e2πa)

− 1

2
+ 2πa

∫ 1−ε

0

e2πaq

(1 + e2πaq)2
(1− q2)−

1
2dq +O(ε

1
2 )

(3.7.45)

where the second line is given through integration by parts. Considering we wish to take

the limit as ε→ 0 we have isolated two relevant terms, a divergent component and a finite

integral. Applying the same approach to My we get

M1 =

∫ π

0

1− εe−iθ

(1 + exp(2πa(1− εe−iθ)))
(2εe−iθ − ε2e−2iθ)−

3
2 iεe−iθdθ

=− 1

2
√
ε(1 + e2πa)

+O(ε
1
2 ).

(3.7.46)

Expanding the integrand of M1 in powers of ε and integrating we see this also exhibits a

divergent term but one that cancels with that found in L1. So if we perform limε→0[L1 +
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M1] we do get a regular result that can be numerically calculated from a finite integral.

Unfortunately this integral does not have a regular integrand, to fix this integration by

parts can be applied again to give

lim
ε→0

[L1 +M1] =− 1

2a
+

π2e2πa

(1 + e2πa)2

+ 4π2

∫ a

0
sin−1

(
λ

a

)
e2πλ(e2πλ − 1)

(1 + e2πλ)3
dλ.

(3.7.47)

This method can be applied for y > 1 to demonstrate that Ly +My will be regular.

So far in this section we have followed the approach to these calculations as laid out in

[75], performing them ourselves as a check. The problem with this approach lies in the need

to apply integration by parts additional times during, and at the end of, the calculation as

y increases. These steps cannot be handled by a computer leaving complicated terms to

be calculated by hand. Instead we shall use a new approach, knowing that our end result

will not be divergent, such that the following expressions and computer calculations are

original work. We now express the Jk integrals as

Jk =Re

[∫ ∞
0

4aq

1 + e2πaq

∑
y

Γy(rf
1
2a)−(2y+1)(1− q2)−

2y+1
2 a dq

]

=4a2
∑
y

Γy(rf
1
2a)−(2y+1)Re

[∫ ∞
0

g(q)(1− q2)−
2y+1

2 dq

] (3.7.48)

where we have set

g(q) =
q

1 + e2πaq
. (3.7.49)

Next we rewrite our new function as

g(q) = g(q) + g̃(q)− g̃(q) (3.7.50)

where g̃(q) is the series expansion of g(q) around q = 1 up to order y + 1 calculated for
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each value of y. This gives us

Jy = 4a2
∑
y

Γy(rf
1
2a)−(2y+1)

{
Re

[∫ ∞
0

(g(q)− g̃(q))(1− q2)−
2y+1

2 dq

]
+Re

[∫ ∞
0

g̃(q)(1− q2)−
2y+1

2 dq

]}
.

(3.7.51)

The first term of equation (3.7.51) no longer contains a pole at q = 1. The pole is still

present in the second term but we know that this term will not be divergent as the total

was shown to be regular with the previous method. The second term is taken over the

same γ contour as before (with divergent terms cancelling between γ1 and γε) but the

problem of multiple steps of integration by parts has been removed allowing practical

calculation of these integrals by computer methods. This leaves our integrals, Jy, as

Jy = 4a2
∑
y

Γy(rf
1
2a)−(2y+1)

{∫ 1

0

[
g(q)− g̃(q)

]
(1− q2)−

2y+1
2 dq

+Re

[∫ ∞
0

g̃(q)(1− q2)−
2y+1

2 dq

]}
.

(3.7.52)

We have now reached a final form of the numeric component (3.7.33)

〈φ2〉numeric =
T

2π

∞∑
n=1

[ ∞∑
l=0

(2l + 1)[Cωlpωlqωl − β0ωl − β1ωl − β2ωl − β3ωl]

+I2 + I3 + J0 + J1 + J2 + J3]

+
T

4π

∞∑
l=0

[(2l + 1)[C0lp0lq0l − β00l − β10l − β20l − β30l]]

+ ∆1 + ∆2 + ∆3.

(3.7.53)

It remains to find pωl and qωl to which we turn in the next section.
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3.8 The Radial ODE on the Brane

We restate the on brane, radial equation (3.2.5) of which pωl and qωl are solutions

f(r)
d2

dr2
S(r) +

[
2f(r)

r
+

d

dr
f(r)

]
d

dr
S(r)−

[
ω2

f(r)
+m2 + ξR(r) +

l(l + 1)

r2

]
S(r) = 0.

(3.8.1)

As discussed in section §2.8 the function pωl is the solution regular on the horizon and

divergent at infinity and qωl is the solution regular at infinity and divergent on the horizon.

As we now need to know the values of these functions we must solve (3.8.1) numerically

for each combination of l and ω.

3.8.1 Solutions near the Horizon and Infinity

We will first analyse the singular point at r = rh by the standard method so we rewrite

(3.8.1) as

d2

dr2
S(r) + u(r)

d

dr
S(r)− v(r)S(r) = 0. (3.8.2)

where

u(r) =
2

r
+
f ′

f
and v(r) =

ω2

f2
+
m2 + ξR

f
+
l(l + 1)

r2f
. (3.8.3)

Since

u0 = lim
r→rh

u(r)[r − rh] = 1

v0 = lim
r→rh

v(r)[r − rh]2 =
r2
hω

2

(d− 3)2

(3.8.4)

are finite we may use the Frobenius method to write a power series for our function

p(r ∼ rh) '
∞∑
j=0

aj(r − rh)ν+j (3.8.5)
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or for the ease of future calculation we use x = r − rh

p(x ∼ 0) '
∞∑
j=0

ajx
ν+j (3.8.6)

where the aj are constants.

Using (3.8.6) we may produce initial values for pωl near the horizon and then numer-

ically integrate (3.8.1) outwards towards infinity. We get our unknown power ν from the

indicial equation

ν(ν − 1) + u0ν − v0 = 0 (3.8.7)

which gives

ν = ± ωrh
d− 3

. (3.8.8)

We choose ν > 0 for pωl so that this solution is regular at the horizon

For the singular point at r = ∞ it is useful to let r = s−1 so that s ∈ [0, r−1
h ]. This

transforms (3.8.1) to

s4f
d2S

ds2
+ s4f ′

dS

ds
−
[
ω2

f
+m2 + ξR+ l(l + 1)s2

]
S = 0 (3.8.9)

where it is understood f ≡ f(s), R ≡ R(s).

We again attempt to use the Frobenius method naming σ0 as the equivalent to u0 but

obtained from ODE (3.8.9) and similarly τ0 for v0. As s → 0 we see that σ0 does not

diverge but τ0 diverges unless m = ξR = ω = 0. Therefore s = 0 is an irregular singularity

of rank 1 and we must use an asymptotic series to approximate our function [2]:

q(s ∼ 0) ' e−Ωs−1
∞∑
j=0

bjs
ρ+j (3.8.10)

where the bj are constants.
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The introduction of the exponential term ensures rapid convergence to zero as s→ 0.

Our two unknown constants, Ω and ρ, in (3.8.10) are derived by placing our sum (3.8.10)

back into (3.8.9) and take the form

Ω2 = m2 + ω2, (3.8.11)

ρ = 1 +
rh
2

Ω +
rhω

2

2Ω
for d = 4 (3.8.12)

and ρ = 1 for d ≥ 5. (3.8.13)

From (3.8.10) we find our initial values for qωl near s = 0. Now qωl may be calculated by

numerically integrating (3.8.9) from s = 0 outwards.

To allow the use of the series solutions (3.8.6) and (3.8.10) in our calculations we set

a0 = 1 and b0 = 1 without loss of generality as any inconsistency will be corrected by the

normalisation constant Cωl from the Wronskian (2.8.3).

The main issue left before we begin attempting the calculations of pωl and qωl is

accuracy versus speed of convergence. As noted in section §2.11 the mode sums may need

many hundreds of l values per n and more than 20 values of n to ensure convergence [75].

We have already taken a step to reduce the number of modes required by using four terms

of the WKB approximation where other work used only two but we must be prepared

to use methods that hasten convergence. Here the problem is that implementing such

techniques (e.g. Shanks [41]) typically halves the number of accurate significant figures

from our calculation [75]. So aiming to produce final results of at least six significant

figure accuracy, and allowing for the application of two convergence hastening techniques,

we want to aim for results of pωl and qωl accurate to 30+ significant figures. Demanding

this level of accuracy will slow the numerical calculations and so we must now aim to

balance the time taken per mode function versus how many mode functions we wish to

produce.
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3.8.2 Complications for qωl(s)

We discuss here the complications that arise in finding qωl(s) from (3.8.9). The form of

ODE (3.8.9) is inspired by [75] for whom the calculation, performed in FORTRAN, had

no insurmountable difficulties. However in our calculation, performed in Mathematica,

the ODE became stiff for large ω and l even for d = 4 with solutions for qωl growing from

O(10−70) to O(10120) too rapidly across our domain. Mathematica has in built tools for

handling stiff ODEs but due to the lack of an exact definition of stiffness (a good, but

not definitive one, is provided by [51]) there is no structured approach for handling the

problem. In addition we could anticipate the problem becoming worse as we increase the

value of d.

As the stiffness arises from a too rapidly rising value for qωl we attempted to solve for

a less steep function. We let Q(s) = ln(q(s)) which transforms the radial ODE (3.8.9) to

a non-linear form,

s4f
d2Q

ds2
+ s3

(
fs
dQ

ds
+ f ′s

)
dQ

ds
−
[
ω2

f
+m2 + ξR+ l(l + 1)s2

]
= 0. (3.8.14)

This ODE (3.8.14) proved perfectly satisfactory for d = 4 but began to slow down for

large ω and l in d = 5. Attempts to solve (3.8.14) for d = 6 almost immediately ran in to

memory issues and so this ODE was discarded for general use.

The second attempt to handle the stiffness uses the change of variable

Q(s) = e
ω
s q(s) (3.8.15)

such that the exponential scale factor lets Q(s) ∼ q(s) near s = 1 but greatly raises its
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value as s→ 0. This transforms the radial ODE (3.8.9) to

s4f
d2Q

ds2
+ s2

(
2ω + f ′s2

) dQ
ds

−
[
ω2

f
+m2 + ξR+ l(l + 1)s2 + f(2ωs− ω2)− s2ωf ′

]
Q = 0. (3.8.16)

This form of the radial ODE suited our needs throughout the brane calculation and so is

the final form of the radial ODE for qωl(s). We note that this change of ODE does not

affect our power series solution (3.8.10) near s ∼ 0, we simply apply the same change of

variable (3.8.15) to the series, solve the ODE and transform the solution back.

3.9 Calculation Parameters

To proceed to final results we must state the values to be used in our formulae. First a

reminder that some simplification has already been chosen, we have set the cosmological

constant / brane tension to zero, we have an uncharged and static spacetime, any extra

dimensions are treated as flat (not periodic) and we have set the Schwarschild-Tangherlini

horizon radius to unity (rh = 1).

As this is the first calculation for a higher dimensional black outside the event horizon

we choose parameters that will give baseline results from which further work will evolve.

However we must not simplify our set up beyond physical relevance so the natural balance

is to set the mass of the scalar field to zero and have our quantum field conformally coupled

to the background. Conformal coupling occurs when the classical stress energy tensor is

traceless, i.e.

Tµ
µ = 0, (3.9.1)

which is equivalent to stating that the scalar field theory is conformally invariant [23].
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From equations (2.3.4) and (2.3.6) we see that the conformal coupling constant, ξc, is

ξc(d) =
1

4

d− 2

d− 1
. (3.9.2)

Hence we set ξ = 1
6 for the brane. If ξ 6= ξc there are additional complications, primarily

the WKB approach is no longer appropriate and a better approximation, such as Green-

Liouville asymptotics [12], would be required.

Finally we look at the region from just outside the event horizon to a distance far

enough away to see the behaviour as r tends to infinity, so we choose

r ∈ (1, 11] and s ∈ [
1

11
, 1). (3.9.3)

Due to our choice of the WKB approximation we cannot calculate on the horizon itself

(see §2.11) though if we could results would end here due to the Wick rotation removing

the manifold inside the event horizon in §2.3. We extend to r = 11rh because we expect

to see features in the region of strong curvature just outside the event horizon but we do

not yet know how far from the horizon these features will extend.

3.10 Mode Calculation Accuracy

First we note that all numerical calculations were carried out in Mathematica 8.0. Our

numerical solutions for ODEs were performed using the Extrapolation method of the

NDSolve command which, as stated in the manual, “adapt order and step size using

polynomial extrapolation”. On top of this is a multistep process using Adams and Gear

methods (depending on internally detected stiffness) adapting in response to internal error

checking should performance of Extrapolation fail.

Series used during calculation were found in §3.8, both were implemented at order
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80. The required order was tested over a wide range and although it appeared that

the order could be reduced to less than 80 doing so produced no significant increase in

calculations and so was implemented without change. Initial value points were tested for

balance between effect on final results and calculation time. Noting that we set x = r− rh

and s = 1/r we found that x = 10−4 and s = 1/50 produced results that could not be

improved for our chosen number of significant figures and did not perceptibly prolong the

calculation.

In order to monitor accuracy for our mode results we require test solutions for our

proposed computer method. For this we note that choosing m = 0, ω = 0 and d = 4 (i.e.

R = 0) transforms the radial equation (3.8.1) into a form of the Legendre ODE so

p0l(x) = Pl(2x+ 1)

q0l(x) = Ql(2x+ 1).

(3.10.1)

Hence p0l is the Legendre function of the first kind and q0l is the Legendre function of

the second kind. Both of these Legendre functions can be calculated to a high degree

of accuracy and compared with the numerical solutions of our ODE for these parameter

values. After making adjustments to the parameters in the Mathematica calculations we

found an agreement of 28 → 70 significant figures. However during this comparison we

noted that the second line in (3.10.1) requires a minor adjustment due to a scale factor

and that for some function h(l)

Ql(2x+ 1) = h(l)× q0l(x). (3.10.2)

As h(l) is a constant for each calculation it will simply be absorbed into our normalisation

factor Cωl along with any other consistent scaling factors not already taken into account.

A second feature seen during our comparisons was that the accuracy remained high

near x = 0 and x = 10 but became less accurate around the midpoint. This occurred
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when numerically solving across the whole of r or s and its cause could not be found. A

grid solution was suggested [11] in which our region was split into a large number of sub-

regions (in this case a hundred). We perform our numerical integration from a starting

point to the end of the first sub-region and then use our calculated value for this end

point as our initial value for the next sub-region. This is simply repeated until the entire

region has been spanned. Comparison of this technique to the original showed no change

in maximum accuracy but there was a significant increase in accuracy in the previously

troubling middle region.

As a secondary check on our method and to test varying the value of d we note that

for m = 0, ω = 0 but with d = 5 (still R = 0)

p0l(x) = Pl(x)

q0l(x) ∝ Ql(x).

(3.10.3)

Applying our comparison method again shows no difference in accuracy but gives confi-

dence our program works well for changes in d.

In another check to verify the accuracy of our modes for any value of d we turn to

the normalisation constant in the Wronskian (2.8.3). We take the produced modes and

calculate Cωl for every point on our integration grid to see if it remains constant. In

all dimensions Cωl remains constant to 26 significant figures, where the drop below 30

significant figures only occurs for d > 6 and large ω and l. This provides strong support

for the accuracy of our results.
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3.11 Results for 〈φ2〉analytic

Using the parameters from §3.9 we can rewrite (3.4.8) as

〈φ2〉analytic =
κ2

48π2f
− 1

192π2f

(
df

dr

)2

+
1

96π2

d2f

dr2
+

1

48π2r

df

dr

=
(d− 3)

192π2f

(
(8− 2d)

(
1

r

)d−1

+ (d− 5)

(
1

r

)2d−4

+ d− 3

)
(3.11.1)

where we used equation (2.7.2) to find the value of κ.

Having lost the logarithmic term in our expression (3.4.8), due to our choice of field

mass and coupling, our new function (3.11.1) can be plotted immediately for the dimen-

sional values we wish to study (see Fig. 3.2). In this figure our results have only been

plotted out to r = 4 as it is already clear that in all cases they exhibit rapid asymptotic

behaviour to finite, non-zero values as r tends to infinity. These asymptotic values are

easily read off from (3.11.1) for the dimensions in which we are interested, in units for

which rh = 1:

〈φ2〉(d=4)
analytic =

1

192π2
〈φ2〉(d=5)

analytic =
1

48π2

〈φ2〉(d=6)
analytic =

3

64π2
〈φ2〉(d=7)

analytic =
1

12π2

〈φ2〉(d=8)
analytic =

25

192π2
〈φ2〉(d=9)

analytic =
3

16π2

〈φ2〉(d=10)
analytic =

49

64π2
〈φ2〉(d=11)

analytic =
1

3π2
(3.11.2)

from the general form

lim
r→∞
〈φ2〉analytic =

(d− 3)2

192π2
. (3.11.3)

We see in Fig. 3.2 that the different dimensional cases do not act similarly near the

horizon. A close up view of this region for the d = 4 → 8 cases (see Fig. 3.3) shows the
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CHAPTER 3. 〈φ2〉 ON THE BRANE

Figure 3.2: 〈φ2〉analytic from r = rh to r = 4rh, the plots from bottom to top at r = rh run
from d = 4 to d = 11 respectively.

key shift in behaviour as the number of bulk dimensions changes. As first mentioned in

§2.3 the post Wick rotation manifold has no interior to the event horizon but the simple

analytic form of (3.11.1) allows for a natural extension across the horizon where it is clearly

regular. Although mathematically allowed we cannot draw too much from what we see in

this pseudo-interior as its validity is questionable. Further, even if we accepted the form

of 〈φ2〉analytic as valid inside the horizon we cannot state how close to the singularity this

form holds due to the break down of quantum field theory in curved space as we approach

the quantum gravity regime. However the behaviour of (3.11.1) just inside the horizon

does inform us about its nature in this region.

For d = 4 and d = 5 we see in Fig. 3.3 that 〈φ2〉analytic is monotonically increasing into

the black hole, seemingly tending to positive infinity at the singularity. At d = 6 we see

a maximum occur on the horizon (verifiable from (3.11.1)), following which the function

monotonically decreases tending to negative infinity at the singularity. As we increase the
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Figure 3.3: 〈φ2〉analytic from just inside the horizon to r = 2rh, the plots from bottom to
top run from d = 4 to d = 8 respectively and the vertical line marks the horizon.

number of dimensions past six 〈φ2〉analytic achieves a maximum that is slightly further out

from the horizon for each increase in d and displays a corresponding increasingly faster

descent to negative infinity. However from inspection of (3.11.1) it can be seen that its

value crossing the horizon will always remain positive and increases by a constant step

between each value of d:

〈φ2〉(d=4)
analytic =

1

48π2
〈φ2〉(d=5)

analytic =
1

24π2

〈φ2〉(d=6)
analytic =

1

16π2
〈φ2〉(d=7)

analytic =
1

12π2

〈φ2〉(d=8)
analytic =

5

48π2
〈φ2〉(d=9)

analytic =
1

8π2

〈φ2〉(d=10)
analytic =

7

48π2
〈φ2〉(d=11)

analytic =
1

6π2
(3.11.4)
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from the general form

lim
r→rh
〈φ2〉analytic =

d− 3

48π2
. (3.11.5)

We note that this change in behaviour at d = 6 coincides with two shifts in properties

in our original equations: the Ricci scalar (3.1.3) is non-zero for d ≥ 6 and our radial

equation (3.8.1) for ω = 0 can no longer be modified to become the Legendre differential

equation.

3.12 Results for 〈φ2〉numeric

In Fig. 3.6 we present 〈φ2〉numeric obtained from equation (3.7.53) where the final mode

sums were performed for n = 0 → 8 and l = 0 → 50. The results for d > 4 are original

calculations. However we must first check the convergence inside these results occur as

expected.

Although we know that the mode sums in (3.7.53), lines one and three, are finite by

construction it is important that we check we get such a result from our calculations.

Further we must be confident that we have summed over enough values of l and n to

achieve our desired level of accuracy. We show in Fig. (3.4) and Fig. (3.5) a simple

demonstration that we have achieved a desired level of accuracy in the mode sums. We

have removed from the plots the point closest to the horizon that demonstrated numerical

error due to the WKB terms. In Fig. (3.4) we show the modes, having been summed to

l = 50, for only n = 1, summing over n = 1→ 3 and summing over n = 1→ 8. The plots

are presented with thick lines for a clearer image but even with finer lines it is impossible

to distinguish between the sums over n = 1 → 3 and over n = 1 → 8 by sight. In Fig.

(3.5) we show plots of the absolute difference between successive partial sums over the

modes. The plot with the largest values shows the mode sum for n = 1 → 5 minus the

sum over n = 1 → 4, the next largest plot shows n = 1 → 6 minus n = 1 → 5, the
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Figure 3.4: The mode sums from 〈φ2〉numeric with the l sum completed from r ∼ rh to
r = 3

2rh, the smaller plot is only n = 1, the larger plot is the sum over the modes from
n = 1→ 8, a plot summing over n = 1→ 3 is obscured by the previous plot.

next n = 1 → 7 minus n = 1 → 6 and the smallest plot, n = 1 → 8 minus n = 1 → 7.

Even with some numeric error near the horizon Fig. (3.5) strongly implies the absolute

difference in successive partial sums goes to zero. Together Fig. (3.4) and Fig. (3.5)

provide some evidence we have achieved a level of desired accuracy with our values of n

and l.

A more analytic look can be taken by examining the summands within equation

(3.7.53). Working from investigations into the WKB terms in §2.11, §3.5, §3.6 and [75] we
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CHAPTER 3. 〈φ2〉 ON THE BRANE

Figure 3.5: The absolute difference between partial mode sums from 〈φ2〉numeric, the largest
plot is the sum over n = 1→ 5 minus the sum over n = 1→ 4, the next largest plot is for
n = 1→ 6 minus n = 1→ 5 until the smallest plot is for n = 1→ 8 minus n = 1→ 7.

may state

β0ωl ∼ O(χ−1) ∼ O(n−1)

β1ωl ∼ O(χ−3) ∼ O(n−3)

...

βkωl ∼ O(χ−(2k+1)) ∼ O(n−(2k+1)) (3.12.1)

which in turn allows us to state

∞∑
l=0

(2l + 1)β0ωl ∼ O(n)

...

∞∑
l=0

(2l + 1)βkωl ∼ O(n−2k+1). (3.12.2)
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Using the above we schematically construct (only the orders are relevant to this investi-

gation) a mode sum over several WKB terms as follows

∞∑
n=1

∞∑
l=0

(2l + 1)

[
Cωlpωlqωl −

k∑
i=0

βiωl

]
=
∞∑
n=1

∞∑
l=0

(2l + 1)O(χ−(2k+3))

=
∞∑
n=1

O(n−(2k+1)). (3.12.3)

So for our work, where we have used WKB terms up to and including β3ωl, we expect the

sum over n to be O(n−7).

In Appendix E we display results for a check on the order of convergence for our data.

This has been carried out for d = 4 where we are very confident of our data, d = 6 where

the Ricci scalar first becomes non-zero and for d = 11 where our numerical results were

harder to produce accurately. The check was carried out from the point closest to the

event horizon out to near the end of our domain to see if any problem with the WKB

terms could be seen and to confirm consistency of convergence across the domain. Each

check compares our data to the expected order shown above, O(n−7). It is clear that

there is some level of deviation from the expected order in all three dimensional cases

(unsurprisingly d = 11 has the worst results). This is especially true at either ends of the

domain with much less deviation from the expected values near the centre of the domain.

However all these deviations are small scale and for every instance of the order seeming to

be slightly worse than expected there is one or more case where the order of summation

is in fact better.

Before discussing the features of 〈φ2〉numeric we present in Fig. 3.7 a close up of the

numeric results, as functions of both number of dimensions and radius, in order to display

detail missing from Fig. 3.6.

As is readily apparent from both Figures 3.6 and 3.7 the numeric component begins

in d = 4 as a small positive contribution to 〈φ2〉ren but as d increases 〈φ2〉numeric becomes
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Figure 3.6: 〈φ2〉numeric from r = rh to r = 11rh, the plots from top to bottom run from
d = 4 to d = 11 respectively.

an increasingly negative contribution. However it is also clear that we lose detail in the

region close to the horizon, visible flicks are evident as we do not have enough calculated

points to retain smoothness. The worrisome issue is that we cannot tell if this means

〈φ2〉numeric diverges at the horizon for some, or all, of our values of d. We anticipate that

〈φ2〉numeric is finite on the horizon but we must keep in mind that the WKB approximation

breaks down in this region so divergences may not be correctly cancelling. This issue will

be investigated in §3.14.
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Figure 3.7: 〈φ2〉numeric from r = rh to r = 6rh from the singularity, the plots from top to
bottom run from d = 4 to d = 6 respectively.

3.13 Results for 〈φ2〉ren

It can be seen by comparing Figures 3.2 and 3.6 that 〈φ2〉numeric makes a much smaller

contribution to 〈φ2〉ren than 〈φ2〉analytic. This is true across out whole domain for d = 4

and d = 5 and remains so for d > 5 away from the horizon. We show in Fig. 3.8 the values

of 〈φ2〉analytic for r = 1.1→ 11 and d = 4→ 11. We then, immediately following, present

〈φ2〉ren in Fig. 3.9 over the same range of values (the full range over which numerics were

calculated). This is to allow direct comparison to be made between 〈φ2〉analytic pre- and

post- adjustment by 〈φ2〉numeric.

Of interest while comparing Figures 3.8 and 3.9 is the d = 4 case, the Schwarschild

metric. The values of 〈φ2〉ren and 〈φ2〉analytic for this case have been calculated previously

[17] and provide a final check on our results. Our data matches [17] to a minimum of

6 significant figures for all r, an impressive accuracy when considering the difference in
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Figure 3.8: 〈φ2〉analytic from r = rh to r = 11rh, the plots from bottom to top run from
d = 4 to d = 11 respectively.

Figure 3.9: 〈φ2〉ren from the r = rh to r = 11rh, the plots from bottom to top run from
d = 4 to d = 11 respectively.
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approaches and providing confidence in our original higher dimensional results.

Also of particular interest from the figures is comparing the d = 4 case to d > 4 on a

particular point commented on in [17]. When 〈φ2〉ren and 〈φ2〉analytic were first calculated

the authors noted that 〈φ2〉analytic ∼ 〈φ2〉ren as depicted in Fig. 3.10. The implication was

that in calculations not requiring greater accuracy the much easier and faster to calculate

〈φ2〉analytic could be used instead of 〈φ2〉ren. However as can be seen by comparing Figures

3.8 and 3.9 this approximation becomes less accurate as d increases. The table below

shows the maximum relative differences (δmax) between 〈φ2〉analytic and 〈φ2〉ren over the

hundred points for which we have numerical data:

d = 4, δmax ' 0.69% d = 5, δmax ' 1.5%

d = 6, δmax ' 14% d = 7, δmax ' 25%

d = 8, δmax ' 35% d = 9, δmax ' 42%

d = 10, δmax ' 48% d = 11, δmax ' 52%. (3.13.1)

It is clear that for d = 4, 5 〈φ2〉analytic is a good approximation to 〈φ2〉ren but the maximum

relative difference jumps for d = 5 → 6. Note that this coincides with the Ricci scalar

becoming non-zero and matches the changing behaviour of 〈φ2〉analytic at d = 6 from §3.11.
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Figure 3.10: A close look at the region of greatest difference between 〈φ2〉analytic and
〈φ2〉ren for d = 4.

3.14 〈φ2〉ren Near the Horizon

Inspecting the data presented in Fig. 3.6 to Fig. 3.9 we see that we have lost detail in

the most active region of 〈φ2〉ren, rh < r < 2rh. Secondly we are aware of the potential

failure of the WKB approximation close to the horizon and so this missing detail could

hide problems in our results.

It was decided that the calculation would be run again for r = 1.05 → 1.5, although

there is interesting activity extending beyond r = 1.5 the results demonstrate no loss of

detail in this outer region. Such a calculation expectedly proved more challenging as in

this region the terms that diverge at the horizon, like the n = 0 modes, provide much

larger contributions that need to be cancelled. Further the numerical ODE solver used

to calculate the modes required much better fine tuning to achieve reasonable accuracy

versus time required. Although the data processing took longer than for the larger radial
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region the experience gained calculating in that region helped keep overall computing time

required down.

Figure 3.11: 〈φ2〉numeric from r = rh to r = 3
2rh, the plots from top to bottom run from

d = 4 to d = 11 respectively.

There is no need to show a close up of 〈φ2〉analytic as this demonstrates no new features

that cannot be seen in the exterior region of Fig. 3.3. In Fig. 3.11 we show 〈φ2〉numeric in

our new region. It is now clear that close to the horizon 〈φ2〉numeric is finite (if not tending

to zero for low values of d) for our range of dimensions. Again we see a lack of smoothness

in the nearest few points but we have enough information here to not need to look at an

even closer region. Further we must remember that with every step closer to the horizon

the WKB terms could be distorting our result.

In Fig. 3.12 we show 〈φ2〉ren in our close up region. Here we can see more detail but

only one new feature of relevance. There is a strong indication that there is a maximum

on-horizon value with respect to dimension as the higher dimensional values of 〈φ2〉ren

rapidly fall under the influence of 〈φ2〉numeric. This is in contrast to our results on the
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Figure 3.12: 〈φ2〉ren from r = rh to r = 3
2rh, the plots from bottom to top run from d = 4

to d = 11 respectively.

larger region where 〈φ2〉analytic on the horizon increases linearly with respect to dimension

and 〈φ2〉numeric appeared to be a simple adjustment. The behaviour on the horizon is

discussed in the next section.

3.15 〈φ2〉ren on the Horizon

In order to investigate the behaviour of 〈φ2〉ren on the horizon we collaborated with Cormac

Breen who co-authored a paper [12] calculating 〈φ2〉ren on the horizon of a lukewarm black

hole. As stated previously our WKB approximation cannot be used on the horizon however

in [12] Breen and Ottewill developed an alternative approach making use of extended

Green-Liouville asymptotics that can be applied there. Making use of the same software

that had been used in [12] Breen was able to give us values of 〈φ2〉ren on the event horizon

for our range of bulk dimensions.
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Figure 3.13: 〈φ2〉ren on the horizon and for r/rh = 1.01 → 1.05. Looking at the far right
the plots from bottom to top run from d = 4 to d = 11 respectively and the on horizon
points match the dimensionally differentiated colours.

124



CHAPTER 3. 〈φ2〉 ON THE BRANE

In Fig. 3.13 we display our calculated values for 〈φ2〉ren for the region r = 1.01→ 1.05,

this ignores the point we calculated closest to the horizon as these points suffer from

numerical error due to the WKB terms. We also display in Fig. 3.13 the on horizon values

provided by Breen, note that the vertical axis has been pulled slightly back from r = rh

to allow a clearer view of the values. It can be seen that for d = 4→ 7 our results match

up very well with the horizon but when the value begins to fall for d > 7 it lowers much

more rapidly on the horizon than our data would suggest. Using a quartic polynomial

extrapolation to extend our results to the horizon we can see the relative difference,

δ〈φ2〉ren =
(on horizon result)− (extrapolation result)

(on horizon result)
, (3.15.1)

between the accurate on-horizon and the extrapolation from our results:

d δ〈φ2〉ren

4 0.015

5 0.011

6 0.005

7 -0.007

8 -0.029

9 -0.066

10 -0.133

11 -0.251

Higher order polynomials used to extend our results to the horizon only affect δ〈φ2〉ren

beyond three decimal places.

To investigate this trend we try a new extrapolation that best fits to the on-horizon

results against dimension from our data and see what features can be found. We can see

from the interaction of 〈φ2〉numeric and 〈φ2〉analytic that the on-horizon total must continue

to fall rapidly. Also we are not interested in values for d < 4. We choose a quartic
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polynomial as the best fit from tests ran, higher order polynomials matching our data are

problematic extrapolating for d > 11 due to the potentially large number of turning points

in the output. The best fit quartic polynomial is

〈φ2〉horizon = −0.01561 + 0.006871d− 0.0007473d2 + 3.840× 10−5d3 − 1.035× 10−6d4.

(3.15.2)

This function for d = 4 → 11 compared to our data has a relative error with mean

µ = −1.5 × 10−5 and standard deviation σ = 4.8 × 10−4. From equation (3.15.2) we

see 〈φ2〉horizon achieves a maximum at d = 5.38 and equals zero at d = 13.91 (for d > 3).

Comparing these results to order six and eight order polynomials, which should be accurate

this close to the data, we see an agreement on the maximum at d = 5.38 so this result

has little physical relevance as d must be an integer. Looking for the value of d that gives

〈φ2〉horizon = 0 shows a value that lies close to d = 14. During testing with non-quartic

polynomials 〈φ2〉horizon = 0 occurred close and on either side d = 14 indicating that this

may be the value for which there is no vacuum polarisation on the horizon. However we

may state with confidence from the information gathered in these brane results §3.11-3.14

that 〈φ2〉horizon → −∞ as d→∞.

3.16 Summary

In this chapter we have extended previously developed methods to calculate 〈φ2〉ren in

d = 4 to the case of a d = 4 brane in a bulk of d = 5 → 11 dimensions. We have then

produced results for 〈φ2〉ren from numerical solutions accurate to over twenty significant

figures (up to the validity of our approximations as in previous works) on two radial

domains; r = 1.1 → 11 and r = 1.005 → 1.5. These results are valid for a bulk of

d = 4→ 11 (the d = 4 calculation is to check whether our results match those of previous

works). We demonstrated that, unlike in the d = 4 form of our metric, the analytic
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contributions to 〈φ2〉ren are no longer a good approximation to the whole value of 〈φ2〉ren

and in fact become worse as d increases. Finally in collaboration with Cormac Breen we

performed a check on our results near the horizon by comparing them to his results on the

horizon and found only a small, expected discrepancy caused by the WKB approximation

breaking down near the horizon.

In order to produce these results we had to find several analytic expressions and perform

multiple numerical calculations. Using our choice of temporal point splitting we have

derived a Green’s function from which 〈φ2〉ren can be calculated. We have derived the

WKB approximation terms for d = 4 → 11. We used these WKB terms to establish

the numeric contribution to 〈φ2〉ren. We used Mathematica to twice produce over four

hundred field mode values at one hundred radial points at accuracies of over twenty eight

significant figures. This involved reworking the radial ODE to determine values regular at

infinity, this was due to the numeric solutions of the original ODE breaking down for d > 4.

Using these accurate mode values we were able to determine the numeric contribution to

〈φ2〉ren which involved applying the Watson-Sommerfeld formula and finding numerical

integrals. We applied previously established methods to perform these numerical integrals

and introduced a new method that became required as d increased.

In the next chapter we demonstrate how to transfer the methodology for the calculation

of 〈φ2〉 from the brane into the bulk.
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Chapter 4

〈φ2〉 in the Bulk in 5d

In this chapter we will specialise our earlier general set up for the d = 5 bulk in which

we will calculate the vacuum polarisation. Following §2.12 we will then layout equations

from chapter 2 as relevant to this number of dimensions in what will hopefully be the most

useful form. Once calculation parameters have been set we will go through the choices

of calculation method that have been investigated in this research. This will include

previous methodologies extended to d = 5 with discussion of why they fail in this case.

We then present our new methodologies and their potential for success before describing

our original approach that proved most appropriate to this calculation. Finally we present

original results along with interpretation and comparison to previous works.

4.1 The Metric for the 5d Bulk

The bulk is our whole manifold and so is described simply, it is not warped, has zero

cosmological constant and, as mentioned in §1, we assume our black hole to be small

enough that we may ignore compactification. As there are no restrictions on the bulk it

has retained full hyperspherical symmetry allowing us to immediately present some initial
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geometric objects such as the metric from (2.3.16):

ds2 = fdt2 + f−1dr2 + r2dΩ2
3

= fdt2 + f−1dr2 + r2
(
dθ2

2 + sin2(θ2)dθ2
1 + sin2(θ2) sin2(θ1)dϕ2

)
.

(4.1.1)

The Ricci tensor is given by

Rab =



−fA(r)
2r 0 0 0 0

0 −A(r)
2rf 0 0 0

0 0 B(r) 0 0

0 0 0 − sin2(θ2)B(r) 0

0 0 0 0 − sin2(θ2) sin2(θ1)B(r)


(4.1.2)

where

A(r) = rf ′′ + 3f ′

B(r) = rf ′ + 2f − 2

and the Ricci scalar is

R =
6− 6f − 6rf ′ − r2f ′′

r2
. (4.1.3)

The metric function for d = 5 is

f(r) = 1−
(rh
r

)2
(4.1.4)

such that

Rab = 0

R = 0

(4.1.5)
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. The metric determinant is

g
1
2 = r3 sin(θ1) sin2(θ2). (4.1.6)

As expected these quantities show that the spacetime is Ricci flat which will greatly

simplify later geometric work.

4.2 Mode Sums in the 5d Bulk

We choose for now to move forward using the brane methodology as an example, see §3.2,

so we choose temporal point splitting and look at a mode sum of the form in equation

(2.8.13). Here the term cos(γ) has already been set to one hence we turn to the other

quantities. The Gegenbauer polynomial (2.8.9) for d = 5 has upper index λ = 1 so that

G1
l (1) = Ul(1) = l + 1 (4.2.1)

where Ul is the Chebyshev polynomial of the second kind. The degeneracy factor (2.7.9),

Ñl,d, takes the form

Ñl,5 =
(l + 1)2

2π2
. (4.2.2)

We could use the values of the Gegenbauer polynomial and the degeneracy factor in

our mode sum but in anticipation of later work we will leave out their explicit values. To

tidy our notation, unless stated explicitly otherwise, we write Gl = G1
l (1) and Nl = Ñl,5

so that the point-split Euclidean Green’s function is

GE(x, ε;x, 0) =
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

NlGlCωlpωl(r)qωl(r). (4.2.3)
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The functions p(r) and q(r) are solutions to the radial ODE (2.8.1) for d = 5,

1

r

d

dr

[
r3f

d

dr
Sωl

]
−
(
ω2r2

f
+m2r2 + l(l + 2)

)
Sωl = 0, (4.2.4)

where we have taken into account the fact that the spacetime is Ricci flat.

4.3 5d Bulk Renormalisation

As on the brane we follow the method laid out in §2.9 to calculate the renormalisation

terms but for d = 5. In this expansion the dimensional constant (2.9.5) is

α5 =
1

8
√

2π2
(4.3.1)

and the singular terms (2.9.19) are

G5d
E,sing =

1

16
√

2π2

(
U(x, x′)

σ(x, x′)
3
2

)
. (4.3.2)

In order to calculate U(x, x′) we require its expansion up to O(σ
3
2 ) (we must include

any finite terms) as discussed in sections 2.9 and 2.10. Hence the required expansion is

(dropping the arguments)

U = U0 + U1σ +O(σ2) (4.3.3)

with

U0 = u0 − u0aσ
;a +

1

2
u0abσ

;aσ;b − 1

6
u0abcσ

;aσ;bσ;c +O(σ2)

U1 = u1 − u1aσ
;a +O(σ)

(4.3.4)

where the order of σ;a was determined in §2.10.3.

The next step is to employ the boundary condition given in §2.9 allowing us to imme-
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diately read off some of the required terms [23]:

U0 = ∆
1
2 ⇒ u0 = 1

u0a = 0

u0ab =
1

6
Rab

u0abc =
1

4
Rab;c.

(4.3.5)

These results can then be used to solve for U1 in the recursion relation (2.9.14)

−U1 − U1;aσ
;a + U1∆−

1
2 ∆

1
2 ;aσ

;a + 2U0 − (m2 + ξR)U0 = 0, (4.3.6)

where we find that

U1;a = u1;a − u1a +O(σ
1
2 )

2U0 =
1

3
Ra

µ
;µσ

;a +
1

3
Ra

µσ;a
;µ −

1

4
R(ab;c)σ

;aσ;b
µσ

;cµ +
1

6
Rab

;µσ;aσ;b
;µ +O(σ)

(4.3.7)

and an expansion of ∆−
1
2 ∆

1
2 ;aσ

;a in powers of σ,

∆−
1
2 ∆

1
2 ;aσ

;a =
1

6
Rabσ

;aσ;b +O(σ
3
2 ), (4.3.8)

is provided by [22].

After several lines of algebra we achieve the results

U0 = 1 +
1

12
Rabσ

;aσ;b − 1

24
Rab;cσ

;aσ;bσ;c

U1 = −
(
m2 +

(
ξ − 1

6

)
R

)
+

1

2

(
ξ − 1

6

)
R;aσ

;a
(4.3.9)

which, making use of the spacetime’s Ricci flatness, can be used in (4.3.2) to find the

Hadamard singularity

G5d
E,sing =

1

16
√

2π2

(
1−m2σ

σ
3
2

)
. (4.3.10)
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Now we wish to find the form of (4.3.10) for temporal point splitting. We refer to

§2.10.4 in which we calculated σ for temporal point splitting and see that equations

(2.10.28) always hold, irrespective of brane or bulk (though higher orders of ε may be

needed). In fact σ only depends on the number of dimensions through the metric func-

tion, f . This means we can write equation (4.3.10) as

G5d
E,sing =

1

16
√

2π2

[
1

σ
3
2

− m2

σ
1
2

]
=

1

8f
3
2π2

[
1

ε3
+
f ′2

32ε
− m2f

2ε
+O(ε)

]
.

(4.3.11)

Finally we can bring result (4.3.11) together with equation (4.2.3) to give

〈φ2〉ren = lim
ε→0

[
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

NlGlCωlpωl(r)qωl(r)

− 1

8f
3
2π2

(
1

ε3
+
f ′2

32ε
− m2f

2ε

)] (4.3.12)

This concludes the construction of the renormalisation terms. Dealing with these terms

will form a major point of the methodology for the 5d bulk which will be discussed in later

sections after we have prepared all relevant terms in the mode sums.

As on the brane the modes pωl and qωl and the normalisation constant Cωl are all to

be found numerically. As on the brane we will employ the WKB approximation for the

modes to help hasten the convergence of the sums and provide analytic terms for analysis.
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4.4 Implementation of WKB Terms in the 5d Bulk

Implementation of the WKB approximation occurs as in §3.5 except equations (2.11.8)

and (2.11.9) for the 5d bulk become

χ2
ωl = ω2r6 + (l + 1)2fr4

η = m2fr6 − fr4.

(4.4.1)

For d = 5 we have the expansion

βωl(r) =
4∑
i=0

βiωl(r) (4.4.2)

where as mentioned in §2.11 we always have

β0ωl =
1

2χωl
. (4.4.3)

We mentioned in §2.11 that we have calculated, using Mathematica, the WKB terms

in general for d = 5. However their large size makes presentation problematic as even

Mathematica has memory issues outputting them to screen. We can state that the βiωl

can be written as

βiωl =
2i∑
j=0

Dij(r)
n2j

[Ω2 + n2]i+j+1/2
(4.4.4)

where this form of the numerator and denominator will more useful for later analysis of

the behaviour of n. The object Ω represents the relevant terms gathered from χωl which

for our curved spacetime is

Ω =
l + 1

r

√
f. (4.4.5)

The Dij are functions of r but importantly are independent of n. Hence we are guaranteed

that β0ωl has no dependence on n in its numerators.
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We implement the WKB terms here into equation (4.3.12) simply as

〈φ2〉ren = lim
ε→0

[
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

(
NlGlCωlpωl(r)qωl(r)−

4∑
i=0

βiωl(r)

)

+
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

4∑
i=0

βiωl(r)−
1

8f
3
2π2

(
1

ε3
+
f ′2

32ε
− m2f

2ε

)]
.

(4.4.6)

Unlike the calculation on the brane this is as far as we will take the general form of the

temporally point-split 〈φ2〉ren. By leaving equation (4.4.6) in this form we are left with the

most possible flexibility with which to attempt final calculation (for our choice of temporal

point splitting).

4.5 Calculation Parameters

We look now at the chosen calculation parameters as this will simplify our analysis of the

radial ODE. Just as in §3.9 we choose parameter values that are appropriate for a first

calculation in new research such that we will produce baseline results can be expanded

upon later. The most important of these is that we set the mass of the scalar field to zero.

Further in order to compare the results in the bulk to those on the brane we also choose

to set rh = 1 and to calculate over the same range of values of the radial coordinate,

r ∈ (1, 11] and s ∈ [
1

11
, 1) (4.5.1)

where s = r−1.

The only importance difference between the brane and bulk parameters is that we

do not have to choose conformal coupling to the background as the coupling constant

no longer appears in our equations. However this is only true as we are calculating the

vacuum polarisation, in the case of calculating the RSET we would need to fix the coupling

constant as it would appear in higher terms during renormalisation.
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4.6 The Radial ODE in the 5d Bulk

We proceed as in §3.8 by restating the radial ODE (2.8.1) in the 5d bulk,

1

r

d

dr

[
r3f

d

dr
Sωl

]
−
(
ω2r2

f
+ l(l + 2)

)
Sωl = 0. (4.6.1)

We keep the distinction between pωl and qωl the same as on the brane.

We investigate the radial ODE (4.6.1) using the same method of investigating the

indicial equation outlined in equations (3.8.2), (3.8.4) and (3.8.7) in order to expand pωl

near the event horizon with the Frobenius method as

p(r ∼ 1) '
∞∑
j=0

aj(r − 1)ν+j . (4.6.2)

We state here the general bulk (i.e. unspecified number of dimensions), then the 5d bulk,

coefficients of the indicial referenced above;

u(r) =
d− 2

r
+
f ′

f

v(r) =
ω2

f2
+
l(l + d− 3)

r2f

(4.6.3)

resulting in,

u0 =1

v0 =
ω2

(d− 3)2
=
ω2

4

(4.6.4)

which then gives,

ν = ± ω

d− 3
= ±n

2
(4.6.5)

such that we find ν is independent of the number of dimensions.
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The investigation of the qωl Frobenius expansion again follows that on the brane where

we now obtain, setting s = r−1, the following ODE

s4f
d2Sωl(s)

ds2
+ s3(f ′s+ (4− d)f)

dSωl(s)

ds
−
[
ω2

f
+ l(l + d− 3)s2

]
Sωl(s) = 0. (4.6.6)

The ODE (4.6.6) also fails to provide a standard Frobenius series near s = 0 like its d = 4

counterpart so we use the ansatz as used on the brane, equation (3.8.10),

q(s ∼ 0) ' e−Ωs−1
∞∑
j=0

bjs
ρ+j . (4.6.7)

As we have set the mass to zero we now have Ω = ω and therefore this series only hold

for ω 6= 0.

Substituting(4.6.7) into ODE (4.6.6) allows us to derive ρ though in practice this is

easier by reversing the variable change, s = r−1, and placing it in (4.6.1). We find

ρ =
d− 2

2
(4.6.8)

when m and ω are not both simultaneously zero. To investigate this alternate case, as we

must with our zero mass system, we turn back to ODE (4.6.6) and see that if m = ω = 0

then the standard Frobenius series is allowed;

q(s ∼ 0) '
∞∑
j=0

bjs
τ+j . (4.6.9)

for which we find

τ = l + d− 3 = l + 2. (4.6.10)
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4.6.1 Finding qωl(s) in the Bulk

We follow up on §3.8.2 by looking at what is required to calculate qωl(s) in the bulk. We

have already displayed our initial ODE with s = r−1 in equation (4.6.6). It can be seen

in the coefficient of the first derivative that we pick up an additional term when d 6= 4

however this term does not significantly change the type of the output during numerical

integration. The ODE are still stiff and so we again attempt a change of variables.

Using the first alternative, Q(s) = ln q(s), gives the ODE

s4f
d2Q

ds2
+ s3

(
fs
dQ

ds
+ f ′s+ (4− d)f

)
dQ

ds
−
[
ω2

f
+ l(l + d− 3)s2

]
= 0 (4.6.11)

where again we gain an additional term for d 6= 4. This ODE (4.6.11) suffers from the

same issues its equivalent had on the brane and so is of little use.

The second alternative proposed, Q(s) = eωs
−1
q(s), results in the ODE

s4f
d2Q

ds2
+ s2

(
2ω + f ′s2 + (4− d)fs

) dQ
ds

−
[
ω2

f
+ l(l + 1)s2 + f(2ωs− ω2)− s2ωf ′ − (4− d)ωfs

]
Q = 0. (4.6.12)

Here we have two additional terms for d 6= 4 which could potentially cause more problems.

At first this ODE seemed to be of little use as its output was highly dependent on the level

of accuracy demanded, changing not only detail but broader features as well. Eventually

a balance was found in which we demanded an overly high accuracy but adjusted this

demand through conditional clauses. The case for ω = 0 is more complicated, as can

be seen in equations (2.11.24), and as such required 200 significant figures of internal

accuracy to guarantee reliable results. For ω > 0 we required 100 significant figures of

internal accuracy. Surprisingly after these modifications it became the solutions for pωl

which became the greater drain on time as no automated conditions could be deduced in
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that case to balance accuracy and calculation time.

4.6.2 Radial ODE in the 5d bulk with ω = 0

Under the particular condition that we set ω = 0 we may rewrite the ODE (4.6.1) as

1

r

d

dr

[
r3f

d

dr
S0l(r)

]
− l(l + 2)S0l(r) = 0. (4.6.13)

Now using a series of transformations from [32] it is possible to express the ODE (4.6.13)

in a form that can be solved analytically.

We begin by setting

r = cosh
(x

2

)
and l = 2ν (4.6.14)

such that

d

dr
=

2

sinh
(
x
2

) d
dx
. (4.6.15)

This change of variable transforms the ODE (4.6.13) to

1

sinh(x)

d

dx

(
sinh(x)

d

dx
S0l(x)

)
− ν(ν + 1)S0l(x) = 0. (4.6.16)

Now set y = cosh(x) which transforms ODE (4.6.16) to

d

dy

(
sinh2(x)

d

dy
S0l(y)

)
− ν(ν + 1)S0l(y) = 0

⇒ (y2 − 1)
d2

dy2
S0l(y) + 2y

d

dy
S0l(y)− ν(ν + 1)S0l(y) = 0, (4.6.17)

the standard form of the Legendre ODE. Thus using

r2 = cosh2
(x

2

)
=

1

2
(1 + y) (4.6.18)
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we may immediately state

S0l(y) =C1Pν(y) + C2Qν(y)

S0l(r) =C1P l
2
(2r2 − 1) + C2Q l

2
(2r2 − 1)

(4.6.19)

where functions P and Q are the Legendre functions of the first and second kind re-

spectively and Ci are constants. We equate results (4.6.19) to our desired functions as

follows

pωl = P l
2
(2r2 − 1)

qωl = Q l
2
(2r2 − 1)

(4.6.20)

In order to make use of the results (4.6.19) and (4.6.20) we also require the normalising

constant, C0l, derived from the Wronskian. We look at a generalised Wronskian, W, for

Legendre functions given in equation (14.2.10) of [26]

W{Pµν (y), Qµν (y)} = eµπi
Γ(ν + µ+ 1)

Γ(ν − µ+ 1)(1− y2)

W{Pν(y), Qν(y)} =
1

1− y2
(µ = 0)

W{Pν(2r2 − 1), Qν(2r2 − 1)} =
1

1− (2r2 − 1)2

dy

dr

=
−1

r3f
. (4.6.21)

Hence comparing (4.6.21) to the Wronskian calculated from the ODE (4.6.13) requires

that C0l = 1.

This means for d = 5 we may use

C0lp0l(r)q0l(r) = P l
2
(2r2 − 1)Q l

2
(2r2 − 1). (4.6.22)

This substitution is advantageous in two ways; firstly it lets us avoid numerical work
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for ω = 0 which often presents problems in accuracy and secondly it provides a new

comparison by which we can test our numerical solver for the bulk radial ODE.

Note that substitution (4.6.22) is rarely shown explicitly during equation manipulation

for the rest of this chapter in order to keep methodology tidier.

4.7 〈φ2〉ren Complications in the Bulk

In order to proceed to calculation we look at §3.4 to see how the ε singularities were

handled on the brane. In that section we used distributional identities found in appendix

B to express our renormalised vacuum polarisation, schematically, as

〈φ2〉4dren = lim
ε→0

∑
n,l

cos(ωε)An,l −
∑
n

cos(ωε)Bn +O(ε2)

+ finite terms. (4.7.1)

In (4.7.1) An,l is the term derived from the modes and Bn is the term derived from the

renormalisation contribution. We may label the vacuum polarisation as 4d because on the

brane the renormalisation is calculated on the 4d projection on the brane irrespective of

the total number of dimensions considered. It is clear in equation (4.7.1) that the limit

ε → 0 can be taken simply allowing us to proceed so let us apply this approach in the

bulk.

First we look at the current form of our vacuum polarisation from equation (4.4.6)

implementing choices made since its statement

〈φ2〉ren =
κ

2π

∞∑
n=−∞

∞∑
l=0

NlGl [Cωlpωl(r)qωl(r)− β(r)]

+
κ

2π
lim
ε→0

[ ∞∑
n=−∞

eiωε
∞∑
l=0

β(r)− 1

8f
3
2π2

(
1

ε3
+
f ′2

32ε

)]
.

(4.7.2)
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where, for a tidier expression, we have set

β(r) =

d−1∑
i=0

βiωl(r) and for ω = 0 β0(r) =

d−1∑
i=0

βi0l(r). (4.7.3)

In equation (4.7.2) we see the relevant distributional identities in appendix B are

1

ε
=

∞∑
n=1

κ sin(nκε) +O(ε)

1

ε3
= −1

2

∞∑
n=1

κ3n2 sin(nκε) +O(ε).

(4.7.4)

Implementing these identities using the same scheme as in the brane case above we can

see the structure (with respect to epsilon) of the limit in equation (4.7.2),

〈φ2〉ren = lim
ε→0

∑
n,l

cos(ωε)An,l −
∑
n

sin(ωε)Bn +O(ε)

 . (4.7.5)

Immediately it is clear that there is a problem in that the limit ε → 0 can no longer be

simply taken inside the sum due to sin(ωε)→ 0. If this were to happen all renormalisation

terms would vanish and we would be left only with the modes sums which are by definition

not regular. This demonstrates a lack of absolute convergence in the sums and no apparent

method of handling said limit. Here we find our key difficulty for the d = 5 calculation.

We have no obvious way in which to express the divergent terms of (4.7.2) as a double

sum that we can take the limit of epsilon over.

This has demonstrated that the simple identity substitution approach used on the

brane is no longer applicable for the d = 5 bulk calculation and in the next sections we

review alternative methods. However first we look ahead at the bulk calculations for d > 5

to see where this complication leads. Using the information given in §2.9 and §2.10 we
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can write in general

GE,sing =
∑
i

ai
ε2i−1

for d odd

GE,sing =
∑
i

bi
ε2i

+ ci ln(ε) for d even

(4.7.6)

Here the ai, bi and ci are functions of r whose quantity are determined by the number

of dimensions such that the higher number of bulk dimensions implies more terms. Then

looking at the distributional identities in appendix B we may state in general

1

ε2i+1
=di

∑
n

n2i sin(ωε) +O(ε)

1

ε2i
=ei

∑
n

n2i−1 cos(ωε) +O(ε2)

(4.7.7)

where di and ei are functions of r similar to ai, bi and ci above. It is obvious that the use of

the distributional identities will fail to work for any odd value of d unless a method is found

to handle the limit. Although we see that the distributional identities are applicable for

even values of d there is the introduction of a logarithmic term that needs careful handling

as it may diverge. In our brane calculations this problem never arose due to our massless,

conformally coupled field however glancing at [23] shows this will not remain true for

d = 6. Other sources, for example [75], have to deal with this logarithm in d = 4 and so

will any extension of this work to massive or non-conformally coupled fields for any even

value of d hence some care must always be taken using the presented identities.

4.8 Dimensional Reduction

Our first method of handling the divergence is based on an idea introduced in §3.3. The

concept is to split our Green’s function in such a way that we may reduce the number of

dimensions required to proceed to further calculation. Although this approach requires
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us to start back before we allowed any point coincidence it should simplify the terms we

wish to renormalise. To begin with we will work in an unspecified number of dimensions

to create a general method, we will choose particular values of d when required.

4.8.1 d Dimensional Methodology

We begin by looking at equation (2.8.4) without allowing radial point coincidence, hence,

GE(x, x′) =
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

Ñd,lG
λ
l (cos γ)Sωl(r, r

′). (4.8.1)

For our massless system the Green’s function (4.8.1) satisfies the Klein-Gordon equation

2GE(x, x′) = 0 for x 6= x′ (4.8.2)

with our d dimensional metric (2.3.16) for which we will express the determinant function,

√
g as

√
g = rd−2

√
hd−2 (4.8.3)

where hd−2 is the determinant of the metric on the unit (d− 2)-sphere. Now we can write

the Klein-Gordon equation (4.8.2) by using equation (2.3.5) as

f−1∂2
tGE +

1

rd−2
∂r

(
frd−2∂rGE

)
+

1

r2
√
hd−2

∂θi

(
hiid−2

√
hd−2∂θiGE

)
= 0, (4.8.4)

where hiid−2 are the components of the metric on the unit (d− 2)-sphere.

Now we introduce the dimensional reduction by expressing our Green’s function in the

following way

GE(x;x′) =
κ

2π

∞∑
n=−∞

eiωε × Gω(x̃; x̃′) (4.8.5)

where x̃ = (r, θ1, ..., θd−2). Then our d−1 dimensional Green’s function, Gω(x̃; x̃′), satisfies
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the following

−ω
2

f
Gω +

1

rd−2
∂r

(
frd−2∂rGω

)
+

1

r2
√
hd−2

∂θi

(
hiid−2

√
hd−2∂θiGω

)
= 0. (4.8.6)

Now we find a d− 1 dimensional metric, g̃µν , with which the d− 1 dimensional Klein-

Gordon equation (possibly including a potential term) expands to become equation (4.8.6).

For g̃µν we begin with ansatz

d̃s
2

= A(r)dr2 +B(r)dΩ2
d−2 (4.8.7)

such that A(r) and B(r) are to be determined, then

√
g̃ =
√
ABd−2

√
hd−2. (4.8.8)

On the metric (4.8.7) the Klein-Gordon equation is

1√
ABd−2

∂r

(
A−1
√
ABd−2∂rGω

)
+

1

B
√
hd−2

∂θi

(
hiid−2

√
hd−2∂θiGω

)
= 0. (4.8.9)

Now we compare Klein-Gordon equations (4.8.6) and (4.8.9), this gives

A−1
√
ABd−2 = frd−2

D
√
ABd−2 = rd−2

BD = r2

(4.8.10)

for some D(r). After some algebra we then find

A = f
d−4
3−d

B = f
1
d−3 r2

D = f−
1
d−3

(4.8.11)
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which for d = 4 yields

A = 1

B = fr2
(4.8.12)

in agreement with the work carried out in [75] and §3.3. For general d, Gω satisfies the

following equation

0 =− ω2

f
Gω + f

1
d−32d−1Gω

0 =2d−1Gω − ω2f−
d−2
d−3Gω,

(4.8.13)

which has the form of a Klein-Gordon equation with additional potential Ṽ = ω2f−
d−2
d−3 .

We may now investigate the leading order divergence structure of Gω, beyond leading

order will require specifying the number of dimensions. To find the leading order divergence

we use the Hadamard method as discussed in §2.9 for which will need to know the form of

Synge’s world function, σ. We will proceed by allowing point coincidence on all variables

except θ1, setting γ = θ1 − θ′1, then we have

σ =
1

2
σ;µσ

;µ

=
1

2

(
Aσ;rσ

;r +Bhijd−2σ;iσ;j

)
=

1

2
Bγ2 +O(γ4).

(4.8.14)

Now we can construct the leading order singularity in the Hadamard expansion, Glos, as

follows

Glos =
αd−1

2

1

σ
d−3
2

= αd−1
2
d−5
2

rd−3f
1
2γd−3

. (4.8.15)

In order to proceed further with this method we now apply the results of this section to

d = 5.
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4.8.2 Application to d = 5

For d = 5 we now have the Klein-Gordon equation (4.8.13)

0 = 24Gω − ω2f−
3
2Gω (4.8.16)

for the metric

d̃s
2

= f−
1
2dr2 + f

1
2 r2dΩ2

3, (4.8.17)

where we stress that, as in §3.3, this metric is unphysical.

Using equations (4.8.16) and (4.8.17) we can find the Hadamard singularity of Gω.

We follow the notation used in §2.9, use the same point splitting as in the d dimensional

methodology above and retain the use of a tilde to mean an object derived from our

dimensionally reduced equations. This means R̃ab and R̃ are from the metric (4.8.17) and

do not disappear as for the d = 5 metric. This then gives;

Gsing =
α4

2

[
U

σ
+ V lnσ

]
=
α4

2

[
1

σ
+
R̃abσ

;aσ;b

12σ
+

1

2

(
Ṽ − 1

6
R̃

)
lnσ

]

=
α4

2

[
2

r2f
1
2γ2

+ Y (r) +
1

2

(
Ṽ − 1

6
R̃

)
ln

(
1

2
r2f

1
2γ2

)]
+O(γ2).

(4.8.18)

In Gsing the function Y (r) is the sum of all terms that do not diverge as γ → 0, specifically

Y (r) =
1

96r2f
3
2

(16f2 + 8rff ′ + r2f ′2) +
R̃abσ

;aσ;b

12σ

=
(1− 2r2)2

24r6f
3
2

+
R̃abσ

;aσ;b

12σ

(4.8.19)

though this form will be of little use to us. The coefficient of the logarithm can equally
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be shown explicitly to be

1

2

(
Ṽ − 1

6
R̃

)
=

ω2

2f
3
2

− 1

48r2f
3
2

(−48f2 + 3r2f ′2 − 12f(−4 + 5rf ′ + r2f ′′))

=
4r6ω2 − 1

8r6f
3
2

.

(4.8.20)

To proceed we express Gω as

Gω =

∞∑
l=0

Ñ5,lG
1
l (cos γ)Sωl(r)

= Greg + Gsing

(4.8.21)

such that we aim to subtract appropriate terms from its sum form in line one so that only

its regular part, Greg, remains in line two. In order to use Gsing effectively we follow the

on brane methodology and seek to express the singularities as sums. The only apparent

identity of relevance (excluding those listed in Appendix B) is the generating function of

the Gegenbauer polynomials

∞∑
l=0

tlGλl (x) =
1

(1− 2xt+ t2)λ
(4.8.22)

which under t→ 1, x→ cos γ and λ = 1 gives

∞∑
l=0

G1
l (cos γ) =

1

2(1− cos γ)
=

1

γ2
+

1

12
+O(γ2). (4.8.23)

We take a multiple of (4.8.23),

α4

2

∞∑
l=0

G1
l (cos γ)

2

r2f
1
2

=
α4

2

[
2

r2f
1
2γ2

+
1

6r2f
1
2

+O(γ2)

]
, (4.8.24)
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and subtract it from equation (4.8.21) to find

∞∑
l=0

[
Ñ5,lSωl(r)−

α4

r2f
1
2

]
G1
l (cos γ)

=
α4

2

[
− 1

6r2f
1
2

+ Y (r) +
1

2

(
Ṽ − 1

6
R̃

)
lnσ +O(γ2)

]
+ Greg. (4.8.25)

Expression (4.8.25) no longer has any pole-like singularities but retains its logarithmic

singularity, there are two ways to handle this remaining singularity and we present both.

First consider (4.8.25) for n = 0,

∞∑
l=0

[
Ñ5,lS0l(r)−

α4

r2f
1
2

]
G1
l (cos γ)

=
α4

2

[
− 1

6r2f
1
2

+ Y (r)− 1

8r6f
3
2

lnσ +O(γ2)

]
+ Greg. (4.8.26)

Adding (4.8.25)+(4r6ω2 − 1)(4.8.26) which gives

∞∑
l=0

[
Ñ5,l

[
Sωl(r) + (4r6ω2 − 1)S0l(r)

]
− 4α4r

4ω2

f
1
2

]
G1
l (cos γ)

=
α4

2

[
4r6ω2

(
Y (r)− 1

6r2f
1
2

)
+O(γ2)

]
+ Greg. (4.8.27)

It is clear that in the limit γ → 0 this expression is regular and so appears to be as desired.

However it is unclear if the expression is complete as the function Y (r) is still present.

In standard Hadamard renormalisation finite renormalisation terms must still be re-

moved when encountered and this has not been done here. We cannot be definite if Y (r)

should still be removed or if and how to do so rigorously. For the analogous method

applied on the brane no such finite terms remain as in that case we reduced from d = 4

to d = 3 which contains neither finite nor logarithmic terms and so is simpler. We shall

return to this point after we demonstrate the second method to remove the logarithm.

150



CHAPTER 4. 〈φ2〉 IN THE BULK IN 5D

In the second method we take note of the issue found in the first method and isolate

the logarithm by subtracting (4.8.26) from (4.8.25), giving

∞∑
l=0

[
Ñ5,l (Sωl(r)− S0l(r))

]
G1
l (cos γ) =

α4

2

[
ω2

2f
3
2

ln

(
1

2
r2f

1
2γ2

)
+O(γ2)

]
+ Greg.

(4.8.28)

Now we implement a slightly rearranged identity (the original can be found in Appendix

B)

ln
(
x2
)

= −2

∞∑
l=0

cos[(l + 1)x]

l + 1
(4.8.29)

which allows us to express (4.8.28) as

∞∑
l=0

Ñ5,l (S(r)− S0l(r))G
1
l (cos γ) +

α4ω
2

2f
3
2

cos[(l + 1) 1√
2
rf

1
4γ]

l + 1

 = O(γ2) +Greg. (4.8.30)

In this expression if we let γ → 0 what remains is a sum that should be regular as the right

hand side is Greg. The problem here is that actual calculation of the left hand side to find

Greg becomes intractable. Attempting to use the numerical modes does not demonstrate

convergence and using the WKB terms in their place also fails to give a convergent analytic

result.

In summary the dimensional reduction method shows great potential and may be useful

in other physical models (as demonstrated in [75]). However in our case, whether through

lack of identity options or uncertainty in our rigour, this method failed to help solve the

renormalisation problem. It did however provide some tangential inspiration as seen in

the next section.
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4.9 The Minkowski Bulk

While investigating the method presented in the previous section an important issue be-

came finding new methods to express the terms in a Hadamard singularity, preferably

in a double sum to match our Green’s function. One such is looking at the equivalent

physical system for the Euclidean Minkowski bulk [68]. The remaining methods presented

to handle the divergent terms for the Schwarzschild-Tangherlini bulk will make use of this

new method. In this section we will cover relevant information about the Minkowski bulk

Green’s function before returning to our renormalisation problem.

Most mathematical statements about the Minkowski bulk can be easily written down

by letting f → 1 in equations for our original bulk, such as for the metric

ds2 = dt2 + dr2 + r2dΩ2
3 (4.9.1)

giving Rab = 0 and R = 0 as expected. However, for both the spacetime and the Minkowski

Euclidean Green’s function GME , some properties become simplified and some quantities

take new values. These are covered below. In addition we will state some results for

massive fields that have not been touched on previously.

Statements apply for d ≥ 4 when possible, some statements apply only for d = 3 and

this is made clear where relevant.

4.9.1 Minkowski Radial ODE

First we consider massive scalar field modes. The homogeneous ODE (2.8.1) now has the

form

r2S′′ωl(r) + (d− 2)S′ωl(r)−
[
(ω2 +m2)r2 + l(l + d− 3)

]
Sωl(r) = 0 (4.9.2)
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but we will use the transformion

S(r) = r
3−d
2 Y (r) (4.9.3)

to investigate its solutions as well as letting Ω2 = ω2 +m2.

This transformation takes the ODE (4.9.2) to

r2Y ′′(r) + rY ′(r)−

[
Ω2r2 +

(
l +

d− 3

2

)2
]
Y (r) = 0 (4.9.4)

the solution to which is

S(r) = r
3−d
2 (AIα(Ωr) +BKα(Ωr)) (4.9.5)

where A and B are constants of integration, α = l + d−3
2 and Iα, Kα are modified Bessel

functions of the first and second kind respectively. Previously we associated the mode pωl

with the result from the radial ODE that is regular on the horizon so here we make the

connection pωl ∼ Iα. Similarly we associate qωl with the result that is regular infinity so

here we make the connection qωl ∼ Kα. Hence the mode functions take the form

pωl = r
3−d
2 Iα(Ωr)

qωl = r
3−d
2 Kα(Ωr).

(4.9.6)

From this result we find that the normalisation constant for the modes, Cωl, is equal to

one so we can write the modes as

Cωlpωlqωl = r3−dIα(Ωr)Kα(Ωr) Ω 6= 0. (4.9.7)

It is obvious solution (4.9.7) cannot hold for Ω = 0 as this would not give us a radial

ODE of the Bessel type. We return to the ODE (4.9.2) for m = ω = 0 and find in this
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case

S(r) = Arl +Br3−d−l, (4.9.8)

where A and B are constants of integration. As above we associate our modes by whether

they are regular on the horizon or infinity hence pωl ∼ rl (as l ≥ 0) and pωl ∼ r3−d−l (as

l ≥ 0 and d ≥ 4). Calculating the mode normalisation constant from the Wronskian now

gives

C0l =
1

2l + d− 3
(4.9.9)

and hence

C0lp0lq0l =
r3−d

2l + d− 3

(
= lim

Ω→0
Cωlpωlqωl

)
. (4.9.10)

Note that equation (4.9.10) is constant in r for d = 3, depending only on l. This may pose

a problem as the n = 0 modes being divergent at the horizon was a required feature for

the brane calculation. We will return to this later.

4.9.2 Massless 〈φ2〉Mren and Renormalisation

The main difference between the vacuum polarisation calculation performed on Minkowski

spacetime and non-flat spacetimes is that the calculation can be achieved via an alternative

method. We see that using thermal field theory 〈φ2〉Mren can be calculated from the non-

thermal state without much difficulty.

We begin with the Euclidean propagator for the non-thermal field, GME,vac, which is

derived from the Feynman propagator, GMF,vac, expressed using Cartesian coordinates in

Minkowski spacetime,

GME,vac = −iGMF,vac =
αd
2

1

σ
d
2
−1

=
αd
2

[
(t− t′)2 +

∑
i

(xi − x′i)2

]−( d2−1)(
1

2

)−( d2−1)
,

(4.9.11)
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where the xi are the variables for the space-like dimensions. This gives us the thermal

propagator, GME , by taking advantage of the required temporal periodicity for a Euclidean

thermal field

GME = −iGMF =
∞∑

n=−∞
−iGMF,vac

(
t+ nβ, xi; t

′, x′i
)

=
αd
2

∞∑
n=−∞

[
(t− t′ + nβ)2 +

∑
i

(xi − x′i)2

]−( d2−1)(
1

2

)−( d2−1)
(4.9.12)

where β = T−1 and T is the temperature of the field.

We may now proceed directly to 〈φ2〉Mren by subtractingGME,vac fromGME then coinciding

all the variables (i.e. x′i → xi and t′ → t), renormalising and calculating the remaining

terms,

〈φ2〉Mren =
αd
2

∞∑
n=−∞
n6=0

[
(nβ)2

]−( d2−1)
(

1

2

)−( d2−1)

= αd2
d
2
−1β2−d

∞∑
n=1

n2−d

= αd2
d
2
−1β2−dζ(d− 2)

(4.9.13)

where ζ is the Riemann zeta function. The renormalisation of GME was implemented in

the first line by removing the n = 0 mode.

Note that (4.9.13) the calculation fails for d = 3. Some hint that this value of d may be

problematic was found from the modes but now we know that d = 3 Minkowski spacetime

cannot support massless thermal fields.

Finally for the massless Green’s function we cover the renormalisation terms. Assuming
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temporal point splitting we may simply state for the world function

σ =
1

2
ε2

σ;t = ε

(4.9.14)

where the other covariant derivatives are zero. For the Hadamard expansion we find

∆
1
2 = 1⇒ U0 = 1 (4.9.15)

and

Un>0

Vn

 = O(m2) = 0. (4.9.16)

Now we can state the Hadamard singularity of the Minkowski Green’s function

GME,sing =
αd
2
σ−( d

2
−1) =

αd
4

2
d
2 ε2−d. (4.9.17)

4.9.3 Massive 〈φ2〉Mren and Renormalisation

In the case of a massive thermal field we begin with the same concept as for the mass-

less case but must start carefully from the base definitions. We begin with a two point

correlation function similar to that constructed in [42] (ours is a Wick ordered two point

function while the source uses a different sign convention for a Lorentzian calculation)

〈φ(x)φ(x′)〉M = −i
[
GMF (x, x′)−GMF,vac(x, x′)

]
=

∫
2πδ(|k|2 −m2)

eβ|k0| − 1

[
θ(k0)e−ik.(x−x

′) + θ(−k0)eik.(x−x
′)
] dn+1k

(2π)n+1

(4.9.18)

where θ is the Heaviside function, k = (k0, ..., kn) is the momentum and d = n + 1 for n

being the number of space-like dimensions.

To proceed we change from a two point correlation to an auto-correlation function
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(the vacuum polarisation) by taking the limit x′ → x, by construction this will produce a

renormalised result as the vacuum has been subtracted. This results in

〈φ2〉Mren =

∫
δ(|k|2 −m2)

eβ|k0| − 1
[θ(k0) + θ(−k0)]

dn+1k

(2π)n

=

∫
δ(|k|2 −m2)

eβ|k0| − 1

dk0...dkn
(2π)n

.

(4.9.19)

Next we relabel the mass-momentum relation such that (a2 = m2 + k2
1 + ... + k2

n), hence

we write

〈φ2〉Mren =

∫
δ((k0)2 − a2)

eβ|k0| − 1

dk0...dkn
(2π)n

. (4.9.20)

We now make use of the following identity,

δ(x2 − y2) =
1

2|y|
[δ(x− y) + δ(x+ y)], (4.9.21)

so that equation (4.9.20) can be written as

〈φ2〉Mren =

∫
1

2|k0|
1

eβ|k0| − 1
[δ(k0 − a) + δ(k0 + a)]

dk0...dkn
(2π)n

. (4.9.22)

Now we restrict our calculation to being on shell which allows us to define

a = |k0| = ω =
√

(k1)2 + ...+ (kn)2 +m2 (4.9.23)

where we take ω to be the field mode frequency. Using this relation for a we may perform

the integral over k0 in (4.9.22) to result in

〈φ2〉Mren =

∫
1

ω(eβω − 1)

dk1...dkn
(2π)n

. (4.9.24)

To proceed from (4.9.24) we use the characteristics of being on-shell and introduce a

change of integration variables. This is done by exchanging k for r and θi through the
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addition of the Jacobean J(θ1, ..., θn−1), the definition r2 = ω2 − m2 and introducing a

factor of r for each introduced θi. This gives

〈φ2〉Mren =
1

(2π)n

∫ ∞
r=0

rn−1

ω(eβω − 1)
J(θ1, ..., θn−1)dθ1...dθn−1dr. (4.9.25)

Now we can perform the integration over the angular measure and transform the remaining

integration variable to achieve a final calculable form;

〈φ2〉Mren =
Sn−1

(2π)n

∫ ∞
m

rn−2

eβω − 1
dω

=
Sn−1

(2π)n

∫ ∞
m

(ω2 −m2)
n−2
2

eβω − 1
dω, (4.9.26)

such that Sn−1 is the surface area of a unit (n− 1)-sphere.

To conclude we must check that result (4.9.26) holds for d = 3, inputting n = 2 we

obtain

〈φ2〉Mren,3d =
S1

(2π)2

∫ ∞
m

1

eβω − 1
dω

=
1

2π
lim
α→∞

[
1

β

(
ln(eβω − 1)− βω

)]α
m

=
1

2πβ
lim
α→∞

[
ln(1− e−βα)− ln(1− e−βm)

]
=

1

2πβ
ln

(
eβm

eβm − 1

)
.

(4.9.27)

This gives a real value for m > 0 and diverges as m → 0 hence confirming that d = 3

Minkowski spacetimes cannot support massless thermal field, only massive thermal fields.

Now we look at renormalisation for the massive case, this will be done for d = 5 and

d = 3 specifically as only these numbers of dimensions will be used later and a general

expression becomes complicated. For d = 5 we may simply state, from [23] and equation
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(4.3.11), that

GM,m
E,sing =

α5

2

U

σ
3
2

=
α5

2

(
1

σ
3
2

− m2

σ
1
2

)
=
α5√

2

(
2

ε3
− m2

ε

) (4.9.28)

where we have used temporal point splitting and the Minkowski world function (4.9.14).

For the d = 3 case we have shown above that the field must be massive or the vacuum

polarisation diverges and the system is unphysical. However looking at the renormalisation

terms we see that the mass plays no role in the relevant terms [23] and so the terms are

derived from equation (4.9.29) as in the massless case. This results in

GM,3d
E,sing =

α3√
2ε
. (4.9.29)

4.9.4 Minkowski Summary

We briefly present how the results gathered in this section are expressed as explicit versions

of the equation

〈φ2〉Mren = lim
ε→0

(
〈φ2〉Munren − 〈φ2〉Msing

)
. (4.9.30)

We are able to do this as we have found 〈φ2〉Mren in two distinct ways; by direct calculation

and by expression of a mode sum subtracting Hadamard terms.

Expressing 〈φ2〉Mren as the above is accomplished by setting 〈φ2〉Munren equal to the mode

sum (2.8.13) expressed in the correct number of dimensions. We have further tidied the

expressions [17] by use of the identity (B.0.2),

∞∑
n=1

cos(nκε) = −1

2
, (4.9.31)
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to express 〈φ2〉Munren as a double sum over the standard mode minus the ω = 0 modes

(note ω = n for d = 5).

For a massless field we find

αd2
d
2
−1β2−d

∞∑
n=1

n2−d =

lim
ε→0

[
κ

π

∞∑
n=1

cos(ωε)
∞∑
l=0

Ñl,dG
d−3
2

l r3−d
[
Iα(nr)Kα(nr)− 1

2l + d− 3

]
− αd

4
2
d
2 ε2−d

]
.

(4.9.32)

For a massive field in d = 5 we obtain

1

16π3

∫ ∞
m

ω2 −m2

eβω − 1
dω =

lim
ε→0

[
κ

π

∞∑
n=1

cos(ωε)

∞∑
l=0

Ñl,5G
1
l r
−2 [Iα(Ωr)Kα(Ωr)− Iα(mr)Kα(mr)]− α5√

2

(
2

ε
3
2

− m2

ε
1
2

)]
(4.9.33)

and in d = 3 we find

1

2πβ
ln

(
eβm

eβm − 1

)
=

lim
ε→0

[
κ

π

∞∑
n=1

cos(ωε)

∞∑
l=0

[Iα(Ωr)Kα(Ωr)− Iα(mr)Kα(mr)]− α3√
2ε

]
. (4.9.34)

All of the above will be used from §4.11 onwards.

4.10 The Modified Abel-Plana Formula

In a final step before we return to our renormalisation problem we introduce the Abel-

Plana formula (APF) the use of which will be analogous to that of the Watson-Sommerfeld

160



CHAPTER 4. 〈φ2〉 IN THE BULK IN 5D

formula on the brane, see §3.7. The common form of the APF is the following [62]

∞∑
n=0

f(n) =

∫ ∞
0

f(x)dx+
1

2
f(0) + i

∫ ∞
0

f(ix)− f(−ix)

e2πx − 1
dx (4.10.1)

which holds for f(x) satisfying the following

lim
y→∞

e−2πy|f(x+ iy)| = 0 (4.10.2)

uniformly on any finite interval of x. Importantly it also requires the analyticity of f(x)

in the right hand half-plane [28].

The APF can be extended for non-integrable branch-point singularities in the modified

Abel-Plana formula (MAPF), derived in [28], resulting in

∞∑
n=0

f(n)

(n2 + w2)k+1/2
=

∫ ∞
0

f(x)

(x2 + w2)k+1/2
dx

− iπRes
z=0

(
f(z)

(n2 + w2)k+1/2

1

1− e−2πz

)
+ 2(−1)k

∫ ∞
w

∆h(x)

(x− w)k+1/2
dx (4.10.3)

where

∆h(x) =
f(xeiπ/2)

(x+ w)k+1/2

1

e2πx − 1
. (4.10.4)

The form of the initial sum in this expression is similar in form to our WKB terms in §4.4

and this connection has been investigated before [68].

We may express our ith beta term as the following

βiωl =

2i∑
j=0

Cij(r)
n2j

[Ω2 + n2]i+j+1/2
, (4.10.5)

where we note ω = n for d = 5. The object Ω represents the relevant terms gathered from
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χωl which for our curved spacetime is

Ω =
l + 1

r

√
f (4.10.6)

and for a Minkowski spacetime has f → 1. The Cij are functions of r but importantly are

independent of n

We now consider the n sum over an individual j term and apply the MAPF. A simplifi-

cation is made when looking at (4.10.3) by analysing the difference of the Taylor expansion

of the argument of the residue with the integrand of the final integral as detailed in [28].

This results in [68]

∞∑
n=0

n2j

[Ω2 + n2]i+j+1/2
= − δj0

2Ω2i+1
+

∫ ∞
0

n2j

[Ω2 + n2]i+j+1/2
dn

+ 2(−1)i+j
√
π

Γ(i+ j + 1/2)

∫ ∞
Ω

h(i+j)(s)

(s− Ω)
1
2

ds (4.10.7)

where δj0 is the standard Kronecker delta and h(s) is defined by

h(s) =
(−1)js2j

(s+ Ω)i+j+1/2

1

e2πs − 1
, (4.10.8)

such that h(i)(s) means the ith derivative of h with respect to s.

The first integral in the right hand side of (4.10.7) can be performed explicitly [68]

∫ ∞
0

n2j

[Ω2 + n2]i+j+1/2
dn =

1

Ω2i

Γ(i)Γ(j + 1/2)

2Γ(i+ j + 1/2)
(4.10.9)
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which allows us to state

∞∑
n=1

βiωl = − Ci0(r)

2Ω2i+1

+
2i∑
j=0

Cij(r)

2Ω2i

Γ(i)Γ(j + 1/2)

Γ(i+ j + 1/2)
+

2i∑
j=0

2Cij(r)(−1)i+j
√
π

Γ(i+ j + 1/2)

∫ ∞
Ω

h(i+j)(s)

(s− Ω)
1
2

ds. (4.10.10)

An important note is that the above methodology could as easily have been applied to

the internal l sum rather than the outer n sum. This would be done by re-expression of the

right hand side of (4.10.5) so that the Cij and Ω contain only n and r. This freedom will

allow us to apply the MAPF at different stages of analysis, whether to achieve calculation

or to study the behaviour of either sum. The specifics of using the MAPF in our particular

problem will be discussed as they arise.

4.11 Implementing the Minkowski Bulk

We will now make use of the information gathered about the Minkowski bulk in an attempt

to expressGE,sing in a useful manner. We takeGE,sing from equation (4.3.11) and restate it

here taking into account that we wish to study a massless field on the black hole spacetime

and that we will ultimately let ε→ 0,

GE,sing =
1

8f
3
2π2

[
1

ε3
+
f ′2

32ε

]
. (4.11.1)

Note that the lack of superscript notation now refers to quantities relating to our massless

field on the d = 5 Schwarzschild-Tangherlini spacetime.

Now we use the fact that the time interval ε = t−t′ is identical in both the Schwarzschild-

Tangherlini and Minkowski spacetimes. This means we may look at sections §4.9.2 to §4.9.4

to find alternate methods of expressing powers of epsilon. First note that from (4.9.29)
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we have

1

ε3
=

1√
2α5

GM,m=0
E,sing,5d, (4.11.2)

however from (4.9.30) GM,m=0
E,sing,5d can be expressed as a combination of its associated renor-

malised vacuum polarisation and mode sum hence we can write

2T 3ζ(3) = lim
ε→0

[
κ̃√

2πα5

∞∑
n=1

∞∑
l=0

Ñ5,lG
1
l

[
C̃ωlp̃ωlq̃ωl − C̃0lp̃0lq̃0l

]
− 1

ε3

]
. (4.11.3)

We have chosen to leave the modes in this form for now, we may later introduce their

exact Bessel forms.

We are able to implement this combination as we have calculated 〈φ2〉Mren in two distinct

ways. First we made use of §4.9.4 to calculate it directly. Secondly we have used the same

approach as we have in our black hole spacetimes by setting the metric function to unity

(f ≡ 1) and finding the exact mode solutions. By definition these different approaches

give the same result.

Similarly we may look at the case of d = 3 Minkowski case and write

T√
2α3π

ln

(
eβm

eβm − 1

)
= lim

ε→0

[√
2κ̂

πα3

∞∑
n=1

∞∑
l=0

[
Ĉωlp̂ωlq̂ωl − Ĉ0lp̂0lq̂0l

]
− 1

ε

]
. (4.11.4)

Before proceeding further we must take into account that we are now considering

three different spacetimes (one Schwarzschild-Tangherlini spacetime and two Minkowski

spacetimes) for which we have derived terms with almost identical notation. Firstly we

must address that we have introduced quantities κ̃ and κ̂ into equations (4.11.3) and

(4.11.4) without proper definition. In the black hole spacetime calculation these objects

would be the specific gravities but this has no meaning in a Minkowski spacetime. To

make this meaningful, and further simplify differences between the spacetimes, we choose

that all three spacetimes contain fields at the same temperature T and hence, as T = 2πκ,
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we also choose to fix κ̃ = κ̂ = κ. Secondly we know that any separation in point split

variables, whether temporal or in primary angle θ1, can be chosen to be identical in all

three. For example we choose ε = t− t′ to be the same for all three spacetimes. However it

is highly unlikely that radial measurements will match identically between the spacetimes

hence we clarify our ongoing notation. We introduce two new radial variables ρ and σ

such that

pωl = pωl(r)

p̃ωl = p̃ωl(ρ)

p̂ωl = p̂ωl(σ)

(4.11.5)

and in this example we retain characters with a tilde in association with a massless field

in d = 5 Minkowski and those with hats for a massive field in d = 3 Minkowski. During

the course of this approach we will look for mappings ρ = ρ(r) and σ = σ(r) so that final

calculations are made over one radial variable.

Now we collect our terms by considering equations (4.11.3), (4.11.4) and (4.11.1) then

expressing the new form of the vacuum polarisation (4.7.2), after taking the limit ε→ 0,

〈φ2〉ren =
κ

2π

∞∑
n=−∞

∞∑
l=0

NlGl [Cωlpωlqωl − β(r)]

+
1

8f
3
2π2

(
2T 3ζ(3) +

T√
2α3π

ln

(
eβm

eβm − 1

))
+
κ

π

∞∑
n=1

∞∑
l=0

NlGl (β(r)− β0(r))

− κ

8
√

2f
3
2π3

(
1

α5

∞∑
n=1

∞∑
l=0

NlGl

[
C̃ωlp̃ωlq̃ωl − C̃0lp̃0lq̃0l

]
+

f ′2

16α3

∞∑
n=1

∞∑
l=0

[
Ĉωlp̂ωlq̂ωl − Ĉ0lp̂0lq̂0l

])
,

(4.11.6)

after some tidying. Note that the above onwards we remove the tilde notation from the
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degeneracy factor, Nl, to avoid confusion with terms from the massless field in the d = 5

Minkowski spacetime. This will also help make it clear that this factor is dependent on

dimension only, not the spacetime metric.

In tidying equation (4.11.6) the limit on epsilon has been carried out leaving an object

that we may proceed to attempt to calculate. The order of the terms has been rearranged

on purpose; lines one and two are both finite (except potentially at the horizon but that

is not a renormalisation issue), lines three to five (hereafter referred to as the divergent

terms) contain all the information concerning the renormalised divergence and it is these

we will look at next. However note that this method has come at the cost of introducing

a free parameter, the mass of the d = 3 Minkowski field. Although we have managed to

construct an object of the type we know in principle how to calculate we must now be

wary of introducing any fine tuning issues.

The analysis of the divergent terms will be qualitatively and very briefly summarised

here as no matching of the radial coordinates leads to a regular result. Details of the

analysis methods that proved useful will be covered in the next section where an improved

implementation is attempted and a more thorough discussion of implementation is given.

We know from sources like [75] that double sums such as in line three of (4.11.6) func-

tion such that the result of the internal sum raises the order of the indexed variable of the

outer sum. Hence we desire an order of the inner summand so that its sum does not raise

the order of the outer summand to the point that the outer sum converges so slowly that it

is not practically calculable (convergence accelerators can be used but lose accuracy). The

structure of the inner and outer summands can be studied using one of, or in combinations

of, techniques such as direct numerical summation, expansions in inverse order of indexed

variables and applications of the Abel-Plana formula (original and modified). It is also

possible to investigate the high order l and ω behaviour separately by introducing WKB

approximations for the Minkowski modes. This may seems superfluous as we have analytic
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results for the modes but analysis of our combinations of modified Bessel functions can

be problematic; for testing radial matchings they can be highly oscillatory and have very

large gradients near the horizon often smearing out numerical calculations. Numerical

tests to achieve a final result for the vacuum polarisation were further complicated by

the presence of the f−
3
2 multiplying the Minkowski terms creating a non-renormalisation

related divergence at the horizon.

In this case no combination of ρ(r) and σ(r) could be found that resulted in a regular

output. An inverse power expansion of the inner summand over l showed that for any

combination of radial matching a term of O(1) remained, not only not low enough for the

outer sum but leading to a divergence on its own. This should not be possible as our setup

is intended to be regular by definition implying some detail was missing. Of interest is

that the next to leading order term was O(l−3), sufficient to proceed if potentially making

both sums slow to converge. This shows promise and again implies that a small change

in the methodology should provide the desired result. This is potentially a result of the

Minkowski spacetime Green’s functions not capturing all the angular behaviour of the

curved spacetime Green’s functions.

In the interest of seeing if this failure in finding a regular result was due to our choice

of expressing GE,sing in (4.11.1) in terms of a massless field in d = 5 and a massive field

in d = 3 Minkowski spacetimes, other combinations of Minkowski spacetime fields were

tested. A few were found that could be combined to match (4.11.1) by use of expressions

such as in (4.11.2), for example

GE,sing =
1

f
3
2

[(
1 +

f ′2

16m2

)
GM,m=0
E,sing,5d −

f ′2

16m2
GM,m 6=0
E,sing,5d

]
. (4.11.7)

All these cases demonstrated the same outcomes as discussed above.

Comparing the work of this section to that carried out in §4.8, both methods produce

terms that treat the order of l in the inner summand as having not changed from the d = 4
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case. We know that the order has increased and hence both have failed to capture some

piece of information. Interestingly the size of the terms at orders O(1) and O(l−3) that

remained in the best coordinate matching attempts were quite small and simple seemingly

indicating that if there was one more variable to be adjusted or if some change had been

made much earlier in construction of the inner summand then they could be removed. In

the next section we proceed with implementing the second of these concepts demonstrating

in more detail the analysis of the summands in question.

4.12 Unphysical Divergences in the Bulk

This approach is inspired from the results of the previous section reminding us of the work

carried out in §3.3. In that section an inner divergent sum was found to be unphysical

from its setup and its summand was adjusted at the beginning of the calculation to make

a guarantee a regular sum. The setup for the d = 5 bulk calculation is identical except in

the number of dimensions and so we may proceed with attempting a similar approach.

First though we must follow up on comments made at the end of §3.3 concerning the

rigour of this method. Two methods have been used to calculate the terms used to adjust

the unphysical sum, the first in [3] used a direct method of examining an expansion of the

summand in inverse powers of the sum’s variable to find terms that once removed then

regularise the sum. The second method, in [75] and in this work in §3.3, is more rigorous

in its justification of why those specific terms must be removed. However neither method

considers a potential complication namely whether there are any lower order corrections.

For a relevant example consider Hadamard renormalisation in §2.9, it is clear that under

many circumstances the divergent terms, GE,sing, contain a finite contribution that has

no effect on the divergence structure but is required for accurate renormalisation. Neither

of the two above approaches to the unphysical divergence problem can justify that they

should not contain terms of lower order than O(l−1). An important question then is what
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difference could lower order terms make. In the d = 4 or brane cases the additional terms

cannot contain any n of order higher than O(n−4). Any such terms would interfere with

the divergence structure of the outer sum and we have a strict renormalisation scheme

there that has worked in many situations. Any lower order terms would inevitably depend

on r but we can claim with confidence that such terms cannot diverge at the horizon or

infinity due to the required regularity of our Hartle-Hawking state at these points. Now,

knowing the previous two facts and that this work is an extension of the brane case, we

can say that the presence of the lower order terms is of lesser importance to our work

here. Lower order terms cannot interfere with our attempt to find a method of handling

renormalisation terms for the d = 5 bulk. Further, for purposes of interpreting final results,

they cannot result in any divergences in the final calculation of the vacuum polarisation.

Such divergences would be the only occurrences that could imply a breakdown of the

RSET and an unphysical situation. We must accept all of the above and in fact find

advantage in it, with this information we can justify using either method presented for

handling unphysical divergences as we are primarily concerned with finding a method to

handle renormalisation. We will choose whichever makes calculation more efficient.

We begin by introducing a function, gωl(r), which represents the terms to be subtracted

within the summand and is defined by writing the Euclidean Green’s function as

GE(x, x′) =
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

NlGl [Cωlpωlqωl − gωl] (4.12.1)

such that the inner sum is regular. Note that we set Nl ≡ Ñl,5 and Gl ≡ G1
l , this is to

avoid confusion with the use of the tilde and that in this section we have d = 5. Also the

values of the degeneracy factor, Nl, and Gegenbauer polynomial, Gl, depend only on the

hyperspherical symmetries of the spacetime and its number of dimensions, as these are

the same for Schwarzschild-Tangherlini and Minkowski spacetimes no additional indices

are required.
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We can now use the form of equation (4.12.1) and extend it to Minkowski spacetimes.

We find the following expressions of the form of equation (4.3.12) for the vacuum po-

larisation on our curved spacetime and our massless, and massive, fields on Minkowski

spacetimes. In this section we will use the expression of the renormalisation terms given

in (4.11.7) so all spacetimes have five dimensions;

〈φ2〉ren = lim
ε→0

[
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

NlGl [Cωlpωlqωl − gωl]−
√

2α5

f
3
2

(
1

ε3
+
f ′2

32ε

)]

〈φ2〉Mren = lim
ε→0

[
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

NlGl

[
C̃ωlp̃ωlq̃ωl − g̃ωl

]
−
√

2α5

ε3

]

= 2
√

2α5T
3ζ(3)

〈φ2〉M,m
ren = lim

ε→0

[
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

NlGl

[
Ĉωlp̂ωlq̂ωl − ĝωl

]
− α5√

2

(
2

ε3
− m2f

ε

)]

=
S3

(2π)4

∫ ∞
m

ω2 −m2

eβω − 1
dω where S3 = 2

π2

Γ(2)
.

(4.12.2)

We continue a similar notation scheme to that used in §4.11 such that a tilde refers to

quantities referring to a massless field in a d = 5 Minkowski spacetime and a hat now

refers to quantities relating to a massive field in a d = 5 Minkowski spacetime. Note that

this means we have three introduced functions, gωl, g̃ωl and ĝωl however as a group they

will be referred to as the functions gωl.

We now combine equations (4.12.2) and equation (4.11.7) to provide one expression
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for our vacuum polarisation in which we have take the limit ε→ 0,

〈φ2〉ren =
κ

2π

∞∑
n=−∞

∞∑
l=0

NlGl [Cωlpωlqωl − gωl]

− 1

f
3
2

[(
1 +

f ′2

16m2

)(
κ

2π

∞∑
n=−∞

∞∑
l=0

NlGl

[
C̃ωlp̃ωlq̃ωl − g̃ωl

]
− 〈φ2〉Mren

)

− f ′2

16m2

(
κ

2π

∞∑
n=−∞

∞∑
l=0

NlGl

[
Ĉωlp̂ωlq̂ωl − ĝωl

]
− 〈φ2〉M,m

ren

)]
,

(4.12.3)

such that now all we need do is find a way to calculate this object.

We begin by breaking equation (4.12.3) into pieces. First notice that the introduction

of WKB approximation terms and splitting of the sum allows line one of this equation to

be written as

κ

π

∞∑
n=1

∞∑
l=1

NlGl [Cωlpωlqωl − βωl]+
κ

π

∞∑
n=1

∞∑
l=1

NlGl [βωl − gωl]+
κ

2π

∞∑
l=1

NlGl [C0lp0lq0l − g0l] .

(4.12.4)

We then apply this expansion to the Minkowski terms as well allowing us to break equation

(4.12.3) into three pieces; a finite contribution,

〈φ2〉ren,finite =
κ

π

∞∑
n=1

∞∑
l=0

NlGl

(
Cωlpωlqωl − βωl

− 1

f
3
2

[(
1 +

f ′2

16m2

)([
C̃ωlp̃ωlq̃ωl − β̃ωl

]
− 〈φ2〉Mren

)
− f ′2

16m2

([
Ĉωlp̂ωlq̂ωl − β̂ωl

]
− 〈φ2〉M,m

ren

)])
,

(4.12.5)
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a contribution with a single sum,

〈φ2〉ren,l =
κ

2π

∞∑
l=0

NlGl

(
C0lp0lq0l − g0l −

1

f
3
2

(
1 +

f ′2

16m2

)[
C̃0lp̃0lq̃0l − g̃0l

]
+

f ′2

16m2f
3
2

[
Ĉ0lp̂0lq̂0l − ĝ0l

]) (4.12.6)

and a contribution with a double sum,

〈φ2〉ren,n =
κ

π

∞∑
n=1

∞∑
l=0

NlGl

(
βωl − gωl −

1

f
3
2

(
1 +

f ′2

16m2

)[
β̃ωl − g̃ωl

]
+

f ′2

16m2f
3
2

[
β̂ωl − ĝωl

])
.

(4.12.7)

In order to analyse equations (4.12.5) to (4.12.7) we now require the proper form of

the functions gωl. We look at (4.12.2) then, as discussed at the beginning of this section,

expand the inner summand in inverse powers of l and set the functions gωl be the divergent

terms that we require to be removed. This results in

gωl =
−16f2 + r2(f ′2 − 16n2) + 4f(12 + 16l + 8l2 − 5rf ′ − r2f ′′)

64(l + 1)3r2f
3
2

g̃ωl =
2(l + 1)2 − n2ρ2

4(l + 1)3ρ2

ĝωl =
2(l + 1)2 − (n2 +m2)σ2

4(l + 1)3σ2
.

(4.12.8)

For these functions we have guaranteed all sums over l in our mode expressions (4.12.2)

converge as O(l−2). This is not ideal as we would prefer the sums over l to be O(l−4),

such an order would guarantee quick convergence of the l sum and would not substantially

slow the convergence of the n sum. We may however be able to improve the order of l

through radial matching.

Initial analysis of the n based summand in (4.12.7), before the l sum is performed, by

expansion in inverse powers of n provides potential solutions for the radial matching. In
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order to cancel leading order terms in the expansion we set

ρ = σ =
r√
f

(4.12.9)

resulting in a leading order of O(n−3). This result is not final but this radial matching

produced the best results in §4.11 and also was hinted at in §4.8. This is encouraging that

this radial matching provides a starting point if calculation becomes problematic.

Equation (4.12.6) is the easiest to analyse as in contains only a single sum with a

summand that is analytic. The difference of the curved space modes and the function

gωl, multiplied by the degeneracy factor, must have a regular sum over l by construction

and so these pieces can be ignored for now. Attempting to sum the remaining pieces

of (4.12.6) is problematic in part because of the high frequency nature of the modified

Bessel functions for large n and l and also, as in the previous attempted calculations, the

presence of the metric function in the denominators. The issue of the Bessel functions

can be handled by introduction of WKB approximation terms which mimic large n and

l behaviour. Using the radial matching (4.12.9) the sum can then be attempted, a direct

summation reveals very slow convergence behaviour and convergence accelerators must

be used. We attempt both the Aitken’s [1] and Shank’s [64] methods as convergence

accelerators. Both take a sequence of numerical partial sums and, applying their own

individual algorithm, transform that sequence to a new sequence that converges to the

original sum much faster but at the price of halving expected accuracy. However both

methods show that this sum is not regular as repeated uses of either changes the sign of

the final sum and appear to demonstrate unrestrained growth in the limit of the partial

sums. The problem of repeated reflections occurring is a sign that the Aitken and Shanks

approximation to the partial sums do not capture all the behaviour. This is not unexpected

and means a regular overall result requires equations (4.12.7) and (4.12.6) to be calculated

together as in the brane calculation (except for those pieces of (4.12.6) identified as having
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a regular sum).

To consider equations (4.12.6) and (4.12.7) together we make use of identity (B.0.2)

so we have one double sum to analyse. As in previous sections we neglect the details here

as we immediately ran into unsurmountable difficulties. An initial attempt to roughly

calculate the double sum directly showed very slow behaviour so convergence accelerators

were again used. Both Shanks and Aitken’s techniques were employed and displayed

inconsistent results. The difference between using i and i+1 applications of either method

showed a reflection in the r axis as before and numerical artifacts that rapidly distorted the

results. This is inconclusive, either the sum is not convergent or the partial sums cannot be

approximated well with either technique. The form of the summand does seem well suited

to the Abel-Plana Formula so identity (4.10.1) was applied to the l sum. Within the APF

is a numerical integral that must be handled carefully, this integral could not be made to

give a regular result. This was problematic but not disastrous until is was discovered all

other pieces of the APF gave regular results leaving nothing for the divergent numerical

integral to cancel with.

We must stress that the above analysis was based upon the radial coordinate matching

(4.12.9) and this was not determined to be the only radial matching that would work.

Again creating a double sum and implementing the APF allows some attempt to see if

another radial matching scheme would give a regular result. This analysis is extremely

difficult due to the required balancing of analytic and numeric calculations and no alternate

radial scheme could be identified.

We do not deny that the method in this section could be made to work but the large

number of complications arising from the form of a summand including our functions gωl

proved too complicated to handle. The discovery of alternate identities (for convergence

acceleration, sum expansions etc.) to handle intermediate calculations may make this

approach viable but the number of difficulties to be handled makes this inefficient. A
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discussion of the difficulties encountered in this and previous sections is included in the

beginning of the following section where we will then present our solution.

4.13 Angular Separation and a Generalised Approach

4.13.1 Motivation and Construction

In the previous sections we have outlined several methods for calculating the vacuum

polarization, namely, (1) a method of dimensional reduction in §4.8, (2) an introduction

of Minkowski spacetime terms only in §4.11 and (3) using Minkowski spacetime terms

as well as removing unphysical divergences in §4.12. The key difficulties raised in these

methods are:

• The power of l introduced by the degeneracy factor (4.2.2) increased by two between

d = 4 and d = 5, this prevented the use of known identities to be used for a direct

calculation as shown in §4.7

• Our assumption that the outer sum of a mode sum such as in (4.11.6) has its indexed

variable raised by one order after the completion of the inner sum, as it did in the

brane case, has been disproven in §4.11

• Directly matching the Minkowski Green functions, §4.11, with the curved space

renormalisation terms does not provide enough flexibility to achieve canceling out

all singularities

• Inverse metric functions introduced by the time split renormalisation terms compli-

cate analysis and interfere with the cancelling of diverging terms seen in §4.11 and

§4.12

• Simplifying the calculation through the removal of unphysical divergences within

the l sum first introduces several problems seen in §4.12; difficulty in applying the
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Abel-Plana Formula (or other such techniques) for analysis, raises the the order of

the outer sum in unpredictable ways and complicates the required radial matching

A quick note on the last point is that an obvious suggestion to solve some issues is to

make the terms, gωl, cut off the unphysical divergence in the l based summand, including

removing terms at a lower order. While this would fix the influence on the outer sum

the functions gωl would become vastly more complex, hence analysis and radial matching

become equally more difficult. This is true even if attempted using Mathemetica which in

simpler attempts at radial matching requires guidance to find solutions without running

out of memory. Hence this is not a viable solution.

In order to handle these points we introduce two changes to our approach; a switch to

angular point separation and the introduction of terms we call coefficient functions. Such

an approach, also using terms from Minkowski spacetimes, has been previously seen to

work for a Schwarzschild spacetime threaded by a cosmic string in [68]. Angular point

separation, discussed in §2.8, will affect our first point above by having the order of l in

the final summand not determined until after all point coincidence has occurred. This

will also make the l sum the outer sum meaning it can be more easily handled by the

renormalisation terms. The angular split renormalisation terms also correct our fourth

point by removing the presence of inverse metric terms. Objects we have termed coefficient

functions will be used to fix the second and third points, these functions will multiply the

introduced Minkowski terms and will not be fixed until radial matching is to be attempted

thus rendering moot the influence of the inner sum and lack of flexibility. The fifth point is

handled by a combination of the two changes, any unphysical divergences are now handled

at the same time as the renormalisation so no disruptive functions need to be placed within

the sums and this approach is directly tied to the radial matching therefore simplifying

that step. Further as the l sum is now the outer sum we have simplified the n sum for

analysis by our chosen techniques.

176



CHAPTER 4. 〈φ2〉 IN THE BULK IN 5D

The structure of the curved space Green’s function is that shown in equation (2.8.14)

for d = 5 using our current notation

GE(r, t, γ; r, t, 0) =
κ

2π

∞∑
l=0

NlGl(cos γ)
∞∑

n=−∞
Cωlpωlqωl (4.13.1)

such that the vacuum polarisation is

〈φ2〉ren = lim
γ→0

[
κ

2π

∞∑
l=0

NlGl(cos γ)
∞∑

n=−∞
Cωlpωlqωl − 〈φ2〉div

]
. (4.13.2)

The world function σ, calculated as in §2.10.4, for angular point splitting is

σ(γ) =
r2γ2

2
− r2fγ4

24
+O(γ6) (4.13.3)

when expressed as a series in γ. Then the general, d = 5 renormalisation terms for a

massive field (of mass m) on a Schwarzschild-Tangherlini background are calculated from

σ and (4.3.10),

〈φ2〉div =

√
2α5

r3

[
1

γ3
+
f − 4m2r2

8γ

]
. (4.13.4)

We now introduce fields in Minkowski space, the previous approaches used two fields

so here we introduce three all in d = 5 spacetimes, one massless field and two of differing

masses µ and ν. We now have three Minkowski spacetimes as we do not yet know if

they share a radial coordinate. We retain r as the radial coordinate for our black hole

spacetime and is associated with objects with no overscript. For our massless field we use

radial coordinate ρ and associate it with objects with a tilde. One massive field has mass

µ, radial coordinate σ and objects with a hat, the other massive field has mass ν, radial
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coordinate τ and objects with a horizontal over-bar. This notation is summarised as

pωl = pωl(r)

p̃ωl = p̃ωl(ρ)

p̂ωl = p̂ωl(σ)

p̄ωl = p̄ωl(τ).

(4.13.5)

Using this notation we can implement our coefficient functions Ai by defining our renor-

malisation terms (4.13.4)

〈φ2〉div = A0〈φ2〉M,0
div +Aµ〈φ2〉M,µ

div +Aν〈φ2〉M,ν
div (4.13.6)

where all Ai = Ai(r, ρ, σ, τ).

The Minkowski vacuum polarisations are defined as in sections §4.9.2 and §4.9.3 but

with the angular separated world function (4.13.3). Hence we write the Minkowski field

vacuum polarisations in terms of their mode sums for angular separation as follows, such

that they have a similar structure to equation (4.13.2) with regards to the ordering of

sums,

〈φ2〉M,0
ren = lim

γ→0

[
κ

2π

∞∑
l=0

NlGl(cos γ)

∞∑
n=−∞

C̃ωlp̃ωlq̃ωl − 〈φ2〉M,0
div

]

= 2
√

2α5T
3ζ(3)

〈φ2〉M,µ
ren = lim

γ→0

[
κ

2π

∞∑
l=0

NlGl(cos γ)

∞∑
n=−∞

Ĉωlp̂ωlq̂ωl − 〈φ2〉M,µ
div

]

=
S3

(2π)4

∫ ∞
µ

ω2 − µ2

eβω − 1
dω where S3 = 2

π2

Γ(2)
.

(4.13.7)

where the vacuum polarisation of the field of mass ν is the same as the field for mass µ

with the masses and modes appropriately changed.
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We first proceed by introducing the WKB approximation terms, we have seen in §4.12

that the modified Bessel functions are not always amenable to analysis and the WKB

terms enable some tidying to be performed. The introduction to the curved space Green’s

function (4.13.1) appears as

GE(r, t, γ; r, t, 0) =
κ

2π

∞∑
l=0

NlGl(cos γ)
∞∑

n=−∞
[Cωlpωlqωl − βωl]

+
κ

2π

∞∑
l=0

NlGl(cos γ)

∞∑
n=−∞

βωl (4.13.8)

and is simply extended to the Minkowski expressions.

We now combine equations (4.13.6), (4.13.7) and (4.13.8) into equation (4.13.2). The

result is large and unwieldy so we do not display it yet. The result now only contains γ

within well-behaved Gegenbauer polynomials and so we may take the limit γ → 0. After

some re-arrangement the curved space vacuum polarisation can then be written

〈φ2〉ren =
κ

2π

∞∑
l=0

NlGl(1)

∞∑
n=−∞

(
[Cωlpωlqωl − βωl]−A0

[
C̃ωlp̃ωlq̃ωl − β̃ωl

]
−Aµ

[
Ĉωlp̂ωlq̂ωl − β̂ωl

]
−Aν

[
C̄ωlp̄ωlq̄ωl − β̄ωl

])
+A0〈φ2〉M,0

ren +Aµ〈φ2〉M,µ
ren +Aν〈φ2〉M,ν

ren

+
κ

2π

∞∑
l=0

NlGl(1)

∞∑
n=−∞

[
βωl −A0β̃ωl −Aµβ̂ωl −Aν β̄ωl

]
.

(4.13.9)

This expression shall be treated as three pieces; line one is the mode sums minus large

n and l behaviour, line two is the Minkowski vacuum polarisations and line three deals

with the WKB approximation terms. Note that, excluding the potential influence of

the coefficient functions Ai, lines one and two are by definition finite, line three should

then also be finite (as otherwise our model would be unphysical) but contains cancelling

divergences so deserves more care. The important point from this is that the fact we have

introduced three unspecified functions should allow us to find a combination that leaves
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all three lines finite and thus easier to calculate.

Before we analyse any particular line we present information available about the coeffi-

cient functions Ai at this time. From equation (4.13.4) we find the massless Schwarzschild-

Tangherlini and Minkowski divergent terms

〈φ2〉div =

√
2α5

r3

[
1

γ3
+

f

8γ

]
〈φ2〉M,0

div =

√
2α5

ρ3

[
1

γ3
+

1

8γ

]
〈φ2〉M,µ

div =

√
2α5

σ3

[
1

γ3
+

1− 4µ2σ2

8γ

]
.

(4.13.10)

Using these divergent terms we may compare coefficients between equations (4.13.4) and

(4.13.6). This comparison finds A0 and Aµ in terms of only Aν ,

A0 =
ρ3

r3σ3τ3

(
σ3τ3 −Aµr3τ3 −Aνr3σ3

)
=

ρ3

4r3µ2σ2τ3

(
(4µ2σ2 − 1)τ3 + 4Aνr

3(ν2τ2 − µ2σ2) + fτ3
)
,

Aµ =
σ

4r3µ2τ

(
τ − τf − 4Aνν

2r3
)
.

(4.13.11)

We now have one undetermined function, Aν .

4.13.2 Analysis of the Sum over WKB Terms

We begin the proper analysis of (4.13.9) by looking at line three, this line is where we

expect divergences to cancel and may be the key to matching the radial coordinates. We

use the Modified Abel-Plana Formula as expressed in equation (4.10.10) but first we must

express our terms in a similar form as required by the formula. To begin we look at the
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n sum in line three of (4.13.9) and rewrite it as

∞∑
n=−∞

[
βωl −A0β̃ωl −Aµβ̂ωl −Aν β̄ωl

]
=2

∞∑
n=1

[
βωl −A0β̃ωl −Aµβ̂ωl −Aν β̄ωl

]
+ β0l −A0β̃0l −Aµβ̂0l −Aν β̄0l.

(4.13.12)

Next note that we may express a curved space beta term as in 4.4.4 [68],

βωl =
4∑
i=0

2i∑
j=0

Cij
n2j

(n2r6 + (l + 1)2fr4)i+j+
1
2

=

4∑
i=0

2i∑
j=0

Dij
n2j

(n2 + Ω2)i+j+
1
2

(4.13.13)

for

Ω =
l + 1

r

√
f (4.13.14)

where Dij is the appropriate coefficient depending only on r. This is simply extended for

the n = 0 case as

β0l =
4∑
i=0

Di0
1

Ω2i+1
(4.13.15)

with the value of Ω unchanged from (4.13.14). These expansions of the WKB terms are

applied in the Minkowski spacetimes by setting f → 1 and replacing r with the appropriate

radial coordinate, any mass terms exist in the coefficients Dij only and do not affect the

structure.

Now we can look at the first obvious source of any divergences within the sum in

(4.13.12), that is the case i = 0 (implying j = 0)

summand =
1

2r3(n2 + Ω2)
1
2

− A0

2ρ3(n2 + Ω̃2)
1
2

− Aµ

2σ3(n2 + Ω̂2)
1
2

− Aν

2τ3(n2 + Ω̄2)
1
2

(4.13.16)

which is order O(n−1). Inputting the expressions for A0 and Aµ from (4.13.11) produces
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a large expression that we determine is simplified by setting τ = σ = ρ leaving

summand =
1

2r3

(
1

(n2 + Ω2)
1
2

− 1

(n2 + Ω̃2)
1
2

)
. (4.13.17)

It is obvious this expression vanishes if we use the radial matching that was found in

(4.12.9), hence we choose

ρ = σ = τ =
r√
f
. (4.13.18)

We then apply this same matching to the WKB terms with n = 0 in (4.13.12) and

immediately find they cancel hence for these WKB terms i ≥ 1.

We briefly restate the form of the MAPF that we will immediately implement, (note

that although we have prepared the WKB terms to match the form of the functions in

the MAPF we did not need to apply the formula to find our proposed radial matching)

∞∑
n=0

n2j

[Ω2 + n2]i+j+1/2
= − δj0

2Ω2i+1
+

∫ ∞
0

n2j

[Ω2 + n2]i+j+1/2
dn

+ 2(−1)i+j
√
π

Γ(i+ j + 1/2)

∫ ∞
Ω

h(i+j)(s)

(s− Ω)
1
2

ds, (4.13.19)

such that h(i)(s) is the ith derivative and h(s) is defined by

h(s) =
(−1)js2j

(s+ Ω)i+j+1/2

1

e2πs − 1
. (4.13.20)

We also previously stated

∫ ∞
0

n2j

[Ω2 + n2]i+j+1/2
dn =

1

Ω2i

Γ(i)Γ(j + 1/2)

2Γ(i+ j + 1/2)
(4.13.21)

however note that if i = 0 this has a singular result so to be implemented we require i ≥ 1

as we have just shown. We can now the above expression of the MAPF to demonstrate

it applied to one of our WKB terms. We shall use the curved space version but as before
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the extension to the Minkowski terms is trivial,

4∑
i=1

2i∑
j=0

∞∑
n=1

Dij
n2j

(n2 + Ω2)i+j+
1
2

=

4∑
i=1

2i∑
j=0

Dij

[
− δj0

2Ω2i+1

+
1

2Ω2i

Γ(i)Γ(j + 1/2)

Γ(i+ j + 1/2)
+

2(−1)i+j
√
π

Γ(i+ j + 1/2)

∫ ∞
Ω

h(i+j)(s)

(s− Ω)
1
2

ds

]
. (4.13.22)

We now use equation (4.13.22) and consider only the j = 0 terms which gives (for our

sample WKB term)

4∑
i=1

∞∑
n=1

Di0
1

(n2 + Ω2)i+
1
2

=
4∑
i=1

Di0

[
− 1

2Ω2i+1

+
1

2Ω2i

√
πΓ(i)

Γ(i+ 1/2)
+

2(−1)i
√
π

Γ(i+ 1/2)

∫ ∞
Ω

h(i)(s)

(s− Ω)
1
2

ds

]
. (4.13.23)

Note that if this expression was doubled and added to the n = 0 beta term in (4.13.12)

for the same spacetime then the first term on the right hand side would cancel with that

n = 0 term. This is true for both the curved and Minkowski spacetimes. Now look again

at equation (4.13.12), in this equation we now have double the MAPF expression plus the

n = 0 beta for each spacetime hence the afore mentioned cancellation occurs.

We may now state the behaviour of a generic WKB term in line three of (4.13.9)

κ

2π

∞∑
l=0

NlGl

∞∑
n=−∞

Aβ =
κ

π

∞∑
l=0

NlGlA

4∑
i=1

2i∑
j=0

Dij

[
1

2Ω2i

Γ(i)Γ(j + 1/2)

Γ(i+ j + 1/2)

+
2(−1)i+j

√
π

Γ(i+ j + 1/2)

∫ ∞
Ω

h(i+j)(s)

(s− Ω)
1
2

ds

]
(4.13.24)

such that A = 1 for the Schwarzschild-Tangherlini WKB approximation, A = Aµ for the

massless Minkowski case etc. It is vital to remember the behaviour displayed in (4.13.24)

is only true in the context of all the WKB approximations being together as structured

in equation (4.13.9) under the radial matching stated in equation (4.13.18).
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We now look at the final form of equation (4.13.24), considering we really have four

such terms together, and examine it as a summand over l. We see in the second term of

the RHS that a series expansion in inverse l of the integrand is O(l−3) at leading order

but due to the structure of the integrand we cannot simply state the order of the resulting

integral. The integral is computed numerically for every value of l and r required and due

to the exponential cutoff in (4.13.20) the results rapidly diminish in size. This means that

the convergence of the l sum of this term can be quickly verified by direct summation.

The first term on the RHS of (4.13.24) (which we will call the gamma term) is clearly

O(l−2) at leading order and can be handled analytically. The leading order behaviour is

confirmed with a series expansion in inverse l over all the gamma terms from all the WKB

approximations. In this expansion the terms at O(l−2) and O(l−3) depend on f and r

only, inputting the correct form of the metric functions shows both terms to actually be

zero. The O(l−4) term is structurally simple and contains one unknown, the yet to be

fixed Aν . As we anticipate the other lines of (4.13.9) are finite but hard to analyse due

to numerical calculations we determine Aν here by setting the O(l−4) term to zero, this

gives

Aν =
1

240r3ν2(ν2τ2 − µ2σ2)
τ
(
2183− 60µ2σ2 − 2470f + 60µ2σ2f + 287f2 − 2240rf ′

+ 596rff ′ + 152r2f ′2 − 320r2f ′′ − 208r2ff ′′ − 32r3f ′f ′′

+8r4f ′′2 − 152r3ff (3) − 16r4f ′f (3) − 16r4ff (4)
)

=
1

240r4ν2(ν2 − µ2)
√
f

(
2183f − 60µ2r2 − 2470f2 + 60µ2r2f + 287f3 − 2240rff ′

+ 596rf2f ′ + 152r2ff ′2 − 320r2ff ′′ − 208r2f2f ′′ − 32r3ff ′f ′′

+8r4ff ′′2 − 152r3f2f (3) − 16r4ff ′f (3) − 16r4f2f (4)
)

(4.13.25)

which we state in full for completeness.
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We can now express all three general functions in (4.13.6) in terms of only r, µ and ν

as follows

A0 =
29− 42r2 − 3r4 + 80r12µ2ν2 − 20r8(µ2 + ν2) + 4r6(4 + 5µ2 + 5ν2)

80r12(1− r−2)
3
2µ2ν2

Aµ =
−29 + 13r2 + 16r4 − 20r6ν2

80r10(1− r−2)
1
2µ2(µ2 − ν2)

Aν = −−29 + 13r2 + 16r4 − 20r6ν2

80r10(1− r−2)
1
2 ν2(µ2 − ν2)

. (4.13.26)

When we look at these expressions of the general functions in (4.13.26) we can discern

several pieces of information. Concerning the masses we cannot have µ = ν, µ = 0 or ν = 0

without causing a singularity. This is expected as for any of these cases, with ρ = σ = τ ,

it would reduce us from three general functions to two as in previous approaches which

we demonstrated did not work. Also a singularity will be approached as r → 1, this is

more difficult to understand as the vacuum polarisation is regular across the horizon for

our vacuum state, and has been calculated before [32], so for now we must assume this

effect is negated in the final calculation.

We must also mention an issue that was first encountered with the approach in §4.11.

In that approach we made use of a massive field in Minkowski spacetime and how that

came at the cost of introducing a free parameter into the calculation (the mass). In

our current approach we now have two free parameters which have some restrictions on

their value discussed in the previous paragraph but otherwise must be kept free. If this

approach only works for certain values of µ and ν then we have a fine tuning problem and

our methodology will be weaker.

In summary we have demonstrated that line three of equation (4.13.9), which contains

the cancellation of divergences due to renormalisation, is regular up to the potential issues

at the horizon discussed directly above. From this analysis we have also been able to

fix the expressions for the coefficient functions, Ai. Calculation of the final value of line
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three of equation (4.13.9) will be discussed in concert with the calculation of the rest

of (4.13.9) but presents no problems as all the terms are analytic barring one numerical

integral (repeated in four sets) which is simple to calculate and can be demonstrated to

converge rapidly.

4.13.3 Analysis of the Sums over Numerical Contributions

We now look at at the other lines of equation (4.13.9) which are based around numerical

calculations. Line two reads

A0〈φ2〉M,0
ren +Aµ〈φ2〉M,µ

ren +Aν〈φ2〉M,ν
ren (4.13.27)

where we now know the coefficient functions (4.13.26) and have previously calculated,

〈φ2〉M,0
ren =

ζ(3)

(2π)5
(4.13.28)

and

〈φ2〉M,m
ren =

1

16π2

∫ ∞
m

n2 −m2

eβω − 1
dn (4.13.29)

as ω = n for d = 5. Although result (4.13.29) needs to calculated numerically it and result

(4.13.28) are simply constants and require no more work. As in the case for the WKB

terms in the last section the only complication in final calculations will be cancelling out

the divergences caused by the coefficient functions, Ai.

Line one of (4.13.9) reads

κ

2π

∞∑
l=0

NlGl(1)

∞∑
n=−∞

(
[Cωlpωlqωl − βωl]−A0

[
C̃ωlp̃ωlq̃ωl − β̃ωl

]
−Aµ

[
Ĉωlp̂ωlq̂ωl − β̂ωl

]
−Aν

[
C̄ωlp̄ωlq̄ωl − β̄ωl

])
. (4.13.30)

186



CHAPTER 4. 〈φ2〉 IN THE BULK IN 5D

In practice, as for the brane calculations in §3.12, these sums need not be taken to infinity

as the WKB terms cancel out any large l and n behaviour. The sums can be handled

directly using the same number of l terms and n terms as in the brane case, l = 0 → 50

and n = 0 → 8. The program used to produce the summed numerical modes was found

to produce modes that match analytic modes, where available, to a minimum of twenty

seven significant figures. This provides great confidence in the results of direct summation.

To facilitate easy calculation we split (4.13.30) into two pieces, for n = 0 and n > 0 then

restate the forms of the modes. Hence we have

κ

2π

∞∑
l=0

NlGl(1)
(

[C0lp0lq0l − β0l]−A0

[
C̃0lp̃0lq̃0l − β̃0l

]
−Aµ

[
Ĉ0lp̂0lq̂0l − β̂0l

]
−Aν

[
C̄0lp̄0lq̄0l − β̄0l

])
(4.13.31)

where

C0lp0lq0l = numerical results from §4.6

C̃0lp̃0lq̃0l =
1

2(l + 1)ρ2

Ĉ0lp̂0lq̂0l = σ−2 [Il+1(µσ)Kl+1(µσ)]

C̄0lp̄0lq̄0l = τ−2 [Il+1(ντ)Kl+1(ντ)] .

(4.13.32)

This means
[
C̃0lp̃0lq̃0l − β̃0l

]
= 0.

We also have

κ

π

∞∑
l=0

NlGl(1)
∞∑
n=1

(
[Cωlpωlqωl − βωl]−A0

[
C̃ωlp̃ωlq̃ωl − β̃ωl

]
−Aµ

[
Ĉωlp̂ωlq̂ωl − β̂ωl

]
−Aν

[
C̄ωlp̄ωlq̄ωl − β̄ωl

])
(4.13.33)
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where

Cωlpωlqωl = numerical results from §4.6

C̃ωlp̃ωlq̃ωl = ρ−2 [Il+1(ωρ)Kl+1(ωρ)]

Ĉωlp̂ωlq̂ωl = σ−2
[
Il+1

(√
(ω2 + µ2)σ

)
Kl+1

(√
(ω2 + µ2)σ

)]
C̄ωlp̄ωlq̄ωl = τ−2

[
Il+1

(√
(ω2 + ν2)τ

)
Kl+1

(√
(ω2 + ν2)τ

)]
.

(4.13.34)

This section has demonstrated that lines one and two of (4.13.9) contain no divergences

due to renormalisation but have the same issue as in the previous section, the need to

cancel divergences caused by the coefficient functions, Ai. In the next section we will

display results of these calculations and the influence the coefficient functions have.

4.14 〈φ2〉ren Results Using a Generalised Approach

Here we shall begin by showing total results for 〈φ2〉ren with different masses, µ and ν, for

the Minkowski fields. This will allow us to see if these masses are in fact free parameters

and how much influence the coefficient functions, Ai, hold (they strongly depend on the

two masses). We will then investigate further any features that become apparent. One

feature we can state immediately is that if the values of µ and ν are reversed the total

is unchanged which is not unexpected from our definition in (4.13.6). Calculations were

made to support this but the results are not featured as the results are identical to beyond

30 significant figures.

We display in Fig. 4.1 and Fig. 4.2 the 〈φ2〉ren for a range of masses, µ and ν, over

the region r = rh → 11rh (as in §3.13). In Fig. 4.3 we show a selection of mass values

chosen to display the emerging pattern we will discuss. It is clear that the results in

Fig. 4.1 and Fig. 4.2 appear strongly mass dependent and so we must concern ourself if

our methodology requires fine tuning. Also the potential problem of a divergence at the
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Figure 4.1: 〈φ2〉ren from r = rh to r = 11rh, the top plot is for (µ = 1, ν = 2), the middle
is (µ = 1, ν = 10) and the bottom is (µ = 10, ν = 11).

horizon is confirmed though interestingly whether the divergence is positive or negative

seems to be mass dependent. Finally we also note that for the larger mass values the

results also diverge as r tends to infinity.

Comparing all these mass values together in Fig. 4.3 shows a distinct pattern that may

provide more information. As r tends to infinity the large mass values cause a negative

divergence and as the mass is lowered 〈φ2〉ren tends to a finite value. Near the horizon large

mass values again cause a negative divergence but as the mass is lowered the divergence

flips sign to become a positive divergence. This poses the question of is there a specific

value for the masses that provides finite values for the whole domain. Unless the masses

become too high or too low we do see a finite agreement in the middle of our domain. If

we increase the masses beyond those displayed here we see a curve below the r axis that

diverges more strongly near the horizon and as r tends to infinity as hinted at in Fig. 4.1.

Decreasing the masses simply increases the rapidity of the divergence occurring near the
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Figure 4.2: 〈φ2〉ren from r = rh to r = 11rh from the singularity, the plots from left to
right are (µ = 1/4, ν = 1/5), (µ = 1/4, ν = 1/6), (µ = 1/10, ν = 1/11) and (µ = 1/10
ν = 1/100) respectively.

horizon as shown in Fig. 4.2.

First we look at the question of regularity across the horizon, we show a close up of this

region with some relevant mass values in Fig. 4.4. We see in Fig. 4.4 that it would seem

like there is an ideal set of mass values lying between (µ = 1/4, ν = 1/6) and (µ = 1/5,

ν = 1/6) that would provide a regular value of 〈φ2〉ren across the horizon. We posit that

this is not an issue of fine tuning but a relic of using the WKB approximation during

our methodology which we know breaks down near the horizon, see §2.11.1. We will now

display in Fig. 4.5 and Fig. 4.6 a breakdown of the components of 〈φ2〉ren for two of our

mass choices as samples to demonstrate the behaviour.

Looking at Fig. 4.5 and Fig. 4.6, which display the components of 〈φ2〉ren, there are

many important details to keep in mind. The plots are on very different scales such that

the contributions from line two of (4.13.9) (the Minkowski renormalised totals) in each

are comparable. In Fig. 4.6 we see how the divergence arises as r increases with larger
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Figure 4.3: 〈φ2〉ren from r = rh to r = 11rh from the singularity, the plots from bottom to
top show the results from Fig. 4.1 and Fig. 4.2 from masses (µ = 1, ν = 10) to (µ = 1/10,
ν = 1/100).

masses. The contributions from the mode sums and the numerical part of the MAPF

calculation begin to diverge with opposite signs. Then as the masses become too large

these contributions no longer successfully cancel, however we must allow that this could be

numeric problem caused by a lack of accuracy in our method. We also see at the horizon

three strong divergences that we had hoped would cancel but the results appear to have

been let down by the numerical work. A similar problem was encountered in [75] and was

solved in [12] through the use of extended Green-Liouville asymptotics that guarantee all

quantities are manifestly finite on the horizon.

It is strange that in comparing these results to those in Fig. 4.5 we see that the case

with smaller masses has two negative divergent components and two positive (the larger

mass had one and two respectively). Even with this the lower mass case still results in an

overall positive divergence at the horizon indicating how closely balanced the terms are

in this region. It appears that in these two cases (and in others), from the final results
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Figure 4.4: 〈φ2〉ren from r = rh to r = 4rh, the plots from bottom to top show results for
masses (µ = 1/4, ν = 1/5), (µ = 1/4, ν = 1/6) and (µ = 1/5, ν = 1/6).

and the analysis of the components, that these divergences should cancel. However the

final calculation relies on several numerical pieces: the curved space modes from (4.6.1),

the Minkowski renormalised totals (4.9.32), (4.9.33) and (4.9.34) and the integral within

the MAPF (4.13.22). However none of these pieces pose difficult calculation to us after

improving our numerical solving methods in this work, assuming those methods hold to

be appropriate. We must turn to the role of the coefficient functions which we previously

saw in (4.13.26) do diverge near the horizon. These functions were formed in section

§4.13.2 based on analysis of terms containing WKB approximations which we know lose

accuracy near the horizon (see §2.11). We claim the fault in final numerics lies with this

approximation and that we have strongly argued that our methodology has produced a

regular object to be calculated using more accurate techniques.
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Figure 4.5: Components of 〈φ2〉ren from r = rh to r = 11rh with (µ = 1/4, ν = 1/6).
The plot with negative divergence but no maximum is line one of (4.13.9), the plot that
is non-zero as r → ∞ is line two of (4.13.9), the plot with a maximum is the analytic
calculation from the MAPF used in line three of (4.13.9) and the remaining plot is the
numeric calculation from the MAPF used in line three of (4.13.9).
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Figure 4.6: Components of 〈φ2〉ren from r = rh to r = 11rh with (µ = 1, ν = 2). The plot
with negative divergence is line one of (4.13.9), the plot with smallest absolute value is
line two of (4.13.9), the plot with positive divergence closest to the horizon is the analytic
calculation from the MAPF used in line three of (4.13.9) and the remaining plot is the
numeric calculation from the MAPF used in line three of (4.13.9).
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4.15 〈φ2〉ren Results Near the Horizon

As in the brane calculation, §3.14, we repeated our numerics for a region close to the

horizon to see if this would provide more information. This meant calculating new curved

space modes and numeric integrals for the implementation of the MAPF. Even though

from the last section we strongly suspect that nothing can be done near the horizon

without a change of approximation scheme it would be preferable to see results that do

not contain fragments due to break downs in our numeric technique near the horizon (such

as the characteristic flicks in Figures 4.2 and 4.4).

Figure 4.7: 〈φ2〉ren from r = rh to r = 3
2rh, the plots from bottom to top show results for

masses (µ = 1, ν = 2), (µ = 1/4, ν = 1/5), (µ = 1/4, ν = 1/6) and (µ = 1/5, ν = 1/6).

We show in Fig. 4.7 a selection of the previously better behaved mass values in

the region r = rh → 3
2rh. These results were checked against the larger region results

and matched beyond thirty significant figures. At first glance these plots show nothing

significant except that in Fig. 4.4 the results for (µ = 1/5, ν = 1/6) appeared to diverge
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Figure 4.8: 〈φ2〉ren from r = rh to r = 3
2rh, the plots are as in Fig. 4.7 now also including

(µ = 1/10, ν = 1/11).

in a positive fashion as they approached the horizon. In Fig. 4.7 we clearly see that they

in fact tend to negative infinity as is the case for all larger mass values. To see if this is

a trend we then show in Fig. 4.8 the same plots as in Fig. 4.7 (for comparison) but also

include (µ = 1/10, ν = 1/11), a mass case that before clearly diverged positively at the

horizon in Fig. 4.4. Now we see again that in fact the result tends to negative infinity at

the horizon, tests on other masses (above the (µ = 1/20, ν = 1/21) scale) all demonstrate

the same behaviour. As we now know that the issue at the horizon is always a negatively

diverging trend we present in Fig. 4.9 a breakdown of the terms composing the (µ = 1/5,

ν = 1/6) case to complement the breakdowns displayed in Fig. 4.5 and Fig. 4.6. These

original breakdowns show that in general that the negative contribution is a result of the

sum over the modes while Fig. 4.9 is an example showing that within the mode sum it

is the contribution from the n = 0 modes that cause the divergence. This behaviour can

be shown in all investigated cases but we leave its discussion for our conclusions. This is
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Figure 4.9: Components of 〈φ2〉ren from r = rh to r = 3
2rh with (µ = 1/5, ν = 1/6). The

plots from top to bottom are; n 6= 0 modes, the renormalised Minkowski total, (plot that
is largest near the horizon) the numeric integrals from the MAPF used in line three of
(4.13.9), (plot that is mostly negative) the analytic calculation from the MAPF used in
line three of (4.13.9) and the n = 0 modes.

a problem that has occurred in other works on calculating the vacuum polarisation, the

n = 0 modes were cause of most of the problems experienced in [75].

We briefly note than unlike for the brane calculation where the results are regular on

the entire domain, the divergence in the d = 5 bulk results near the horizon prevents a

comparison of our results to those on the horizon. The on-horizon value is provided by

[32]

〈φ2〉ren|r=rh =
1

24π3r3
h

(4.15.1)

Although result (4.15.1) is of a similar order of magnitude to our results it is impossible

to say whether our plots would cross the horizon near this value.
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4.16 Summary

The main result of this chapter is that we have presented an original methodology to

calculate 〈φ2〉ren on the d = 5 black hole. In order for the methodology to work we

introduced the idea of using terms from the calculation of the vacuum polarisation for fields

in Minkowski spacetime. In Minkowski spacetime, calculations for a quantum scalar field

are much easier to perform, allowing the expression of the vacuum polarisation through

both direct calculation and as a mode sum. To link the renormalisation terms associated

with the black hole with the vacuum polarisation calculation from the Minkowski spacetime

we introduced coefficient functions, Ai, which depend on the radial coordinates from all

the spacetimes involved. The values of the Minkowski radial coordinates can be chosen to

be expressed in terms of our original r in such a way that we can guarantee the double

mode sum in line three of 4.13.9 does not diverge. A side effect of using massive fields in

the Minkowski spacetimes was the introduction of free mass parameters.

To check our methodology we have produced test results plotted on both r/rh =

1.1 → 11 and r/rh = 1.005 → 1.5 from which we can deduce three insights. Firstly,

our numerical results are highly sensitive to the values of the masses of the auxiliary

scalar fields on Minkowski space. This sensitivity adds to the difficulty of cancelling

divergent terms at the beginning and end of our domain which, as the masses grow larger,

means that the results are not regular near the horizon nor as r tends to infinity. When

we look at the final forms of our coefficient functions Ai (4.13.26) we can see how the

masses have such an effect. These functions show that the two introduced masses cannot

be equal and that the functions are divided by the difference of the squared masses so

we cannot use masses too large or too small. Finally our test results near the horizon

demonstrated that the major problem is always a negative divergence near the horizon.

The calculation component breakdown (plotted in Fig. 4.9) shows that this is due to

the n = 0 contribution from the field modes. This is not unexpected, as was discussed
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in §2.11.1, where we demonstrated that the WKB approximation breaks down near the

horizon. On the brane this did not become an issue, as we has a massless, conformally

coupled field, but clearly in this more complicated scenario the WKB terms are no longer

satisfactory. A difficulty arises in attempting to discern in general which terms should be

cancelling with this mode contribution as for differing masses different contributions are

positive and negative. Further we cannot state with confidence if the mode contribution is

too large or is correct and the cancelling terms are too small, this is because the coefficient

functions, Ai, are complicated to apply. It is also possible that the WKB terms play a role

in the lack of cancellation of divergences for larger r, if the WKB was correctly capturing

the mode function behaviour then the masses would not have as much effect on the values

here. A further point is that unlike other methods for vacuum polarisation calculations

[3, 32, 75] we chose to use angular rather temporal point splitting. This choice was made on

purpose as attempts to use temporal point splitting with a generalised approach proved too

difficult to work with, even with Mathematica, though this does not rule it out completely.

What the test results do show is that we can calculate results for 〈φ2〉ren that are,

for the most part, regular. We can even pin point that the central issue is the WKB

approximation. Hence we have provided the first methodology to solve the problem of

calculating the vacuum polarisation for d = 5 outside of the horizon, in that we have

presented a method in §4.13 that allows the incorporation of the renormalisation terms

(4.13.4) into the mode sum (4.13.2) in a calculable way 4.13.9. Further we have provided

the first keys for future work to produce improved calculations by identifying problem

areas and, in the case of the mode function approximation, a potential solution in the

extended Green-Liouville asymptotics.

In order to produce this methodology and the test results we were required to derive

many objects. We derived d = 5 Green’s functions (4.2.3) and (4.13.1) which are equal

to the two point correlation equivalent of 〈φ2〉 and calculated the Green’s function’s com-

ponents. We used Mathematica to twice produce over four hundred field mode values
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at one hundred radial points at accuracies of over thirty significant figures and derived

their WKB approximation terms (4.4). The mode calculations required further work to

strengthen accuracy and reduce calculation time as the ODE became more complicated

for d = 5, §4.6. We investigated a method of dimensional reduction, §4.8, in an attempt

to reduce our problem to one in d = 4. Although this showed promise (and hinted at

our final radial matching) it proved to be insufficient here. In order to investigate using

the VP calculation from Minkowski spacetimes we needed to derive, §4.9, all the same

terms in these scenarios as we needed in our curved space problem i.e. Green’s function

expressions, WKB terms, numeric mode values, renormalisation terms. This was done for

d = 5 massive and massless scalar fields and for d = 3 scalar fields (which must be massive)

along with the direct calculations to obtain 〈φ2〉ren, summarised in §4.9.4. We investigated

a method, 4.12, in which we isolated and removed the unphysical divergence within the

Green’s function caused by the inner summand. We calculated the terms required to be

removed but ultimately were unable to proceed to a final regular result. This step is

not wrong but requires careful handling once the renormalisation terms are introduced,

further the number and complexity of the terms to be removed will grow quickly if d

increases. Finally for our successful methodology, §4.13 , of a general approach we had to

recalculate the Green’s function and renormalisation terms to reflect angular separation.

For both analysis and final calculation we also implemented the Abel-Plana formula in

various forms, requiring both analysis of analytic terms and the calculation of numeric

integrals.

We end this chapter with a side note to be considered. We show in Fig. 4.10 the value

of 〈φ2〉ren on the brane for a bulk of d = 4 and d = 5 and within the bulk for d = 5. We have

presented several steps in our calculation that depend on whether the Green’s function is

in an even (as it is always for a on brane calculation) or odd number of dimensions. Hence

there is no reason to expect these three results to be similar but a simple comparison of

scale reveals a few details. Firstly the results are of comparable magnitude. Secondly
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Figure 4.10: The plots from top to bottom are 〈φ2〉ren for d = 5 brane, d = 4 brane and
d = 5 bulk.

we see the potential for a pattern emerging, in even numbers of dimensions it is possible

to separate 〈φ2〉ren into an analytic and a numeric contribution (as seen in the on brane

calculation, §3.4). The analytic contribution is always a finite amount and the numeric

is a much smaller modification. However the numeric contribution does grow larger for

higher numbers of dimensions but does so in a predictable manner, see Fig. 3.6. In an

odd number of dimensions there is a finite base made from the Minkowski 〈φ2〉ren results

but this is much smaller than the even dimensional case. The modification is also small

indicating that in odd numbers of the dimensions the result will always be much smaller

than in an even number. We hope to see such a trend is confirmed in further work.

This could be linked to previous work to calculate the Hawking flux from a higher

dimensional black hole as summarised in [49]. A discussion of scalar flux has not been

previously relevant as the calculations involved only use the off-diagonal terms of the

RSET and therefore do not need renormalising. A good example of how the flux results
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demonstrate the number of dimensions is in Table 6 of [36], which is calculated on a

Schwarzschild-Tangherlini black hole. It shows the ratio of bulk to brane emission rates

for a scalar field and demonstrates a trend that for d = 5 → 7 the ratio rapidly falls.

However as d increases after d = 7 the ratio increases again tending towards one. It is

possible that results for 〈φ2〉ren in the bulk increase after d = 7 in a matching pattern and

such an investigation would prove informative.

In the next chapter we briefly discuss the problem of calculating 〈φ2〉ren for the d = 6

bulk.
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Chapter 5

〈φ2〉 in the Bulk in 6d

In this chapter we present some objects relevant to the calculation of 〈φ2〉ren in the d = 6

bulk. Due to the difficulties in calculation of the d = 5 bulk we did not take this calculation

further but present what we have found for later use. Unless there is a significant difference

for an object between the d = 5 and d = 6 cases we will present our results briefly assuming

the techniques demonstrated in previous chapters.

5.1 The Metric for the 6d Bulk

The general spacetime structure remains similar so we state from (2.3.16):

ds2 = fdt2 + f−1dr2 + r2dΩ2
4

= fdt2 + f−1dr2 + r2
(
dθ2

3 + sin2(θ3)dθ2
2

+ sin2(θ3) sin2(θ2)dθ2
1 + sin2(θ3) sin2(θ2) sin2(θ1)dϕ2

)
.

(5.1.1)
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The Ricci tensor is

Rab =



−fA(r)
2r 0 0 0 0 0

0 −A(r)
2rf 0 0 0 0

0 0 −B(r) 0 0 0

0 0 0 −s2
3B(r) 0 0

0 0 0 0 −s2
2s

2
3B(r) 0

0 0 0 0 0 −s2
1s

2
2s

2
3B(r)


(5.1.2)

where

si = sin(θi)

A(r) = rf ′′ + 4f ′

B(r) = rf ′ + 3f − 3.

From (5.1.1) the metric function is

f = 1−
(rh
r

)3
, (5.1.3)

such that the Ricci tensor vanishes

Rab = 0. (5.1.4)

and so does the Ricci scalar

R =
12− 12f − 8rf ′ − r2f ′′

r2
= 0. (5.1.5)

As expected these quantities show that the spacetime is Ricci flat.

The metric determinant is

g
1
2 = r4 sin(θ1) sin2(θ2) sin2(θ3). (5.1.6)
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5.2 Mode Sums in the 6d Bulk

Due to the similarities between the d = 6 and d = 4 cases (as discussed in §4.7) we proceed

by returning to temporal point splitting. Here we present the degeneracy factor (2.7.9)

and the Gegenbauer polynomial (2.8.9) for d = 6,

G
3/2
l (1)Ñl,6 =

(2l + 3)(l + 1)2(l + 2)2

32π2
. (5.2.1)

The above factors then provide the mode sum expression derived from (2.8.13)

GE(x, ε;x, 0) =
κ

2π

∞∑
n=−∞

eiωε
∞∑
l=0

NlGlCωlpωl(r)qωl(r) (5.2.2)

where now the modes p(r) and q(r) are solutions to the radial ODE (2.8.1) for d = 6

1

r2

d

dr

[
r4f

d

dr
Sωl

]
−
(
ω2r2

f
+m2r2 + l(l + 3)

)
Sωl = 0. (5.2.3)

5.3 6d Bulk Renormalisation

The renormalisation terms are calculated as before from §2.9 producing

α6 =
1

(2π)3
(5.3.1)

and the total of the renormalisation terms

GE,sing =
1

2(2π)3

(
U

σ2
+ V ln[σ]

)
. (5.3.2)

The relevant expansion terms are then [23] (for an expansion relating to a massless
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field)

U = U0 + U1σ +O(σ2)

U0 = 1 +
1

360
Rp(a|q|bR

p
c
q
d)σ

;aσ;bσ;cσ;d +O(σ
5
2 )

U1 =
1

360
Rpqr(aR|pqr|b)σ

;aσ;b +O(σ
3
2 )

V = − 1

720
RpqrsR

pqrs +O(σ
1
2 ).

(5.3.3)

Hence the full expression for the renormalisation terms is

GE,sing =
1

16π3

(
1

σ2
+
RpaqbR

p
c
q
dσ

;aσ;bσ;cσ;d

360σ2

+
RpqraRpqrbσ

;aσ;b

360σ
− 1

720
RpqrsR

pqrs ln[σ]

)
. (5.3.4)

We note that to calculate enough terms to express σ usefully in this number of dimen-

sions goes beyond the limits of equations (2.10.25). We calculated the limit [σ;µ
t′t′t′t′t′ ] by

hand before discovering the calculation had been generalised to any variable in [40]. The

remaining calculations were performed using a program written in Mathematica supplied

by Adrian Ottewill of University College Dublin.

We use equation (2.10.28) and the material from [40] to find the renormalisation terms

(5.3.4) explicitly. We split GE,sing into two pieces, one that will contain only pole like

divergences GE,pole and one that will contain the logarithmic divergence GE,log. We are

now required to address a feature that first occurred in equation (3.4.3) but was not needed

to be discussed at that time as the coefficient of that logarithm was taken to zero. In order

for the argument of the logarithm to be dimensionless we introduce a parameter µ that

must have dimensions of mass, if we worked with a massive field then µ would be the mass

of the field. However as we are working with a massless field the parameter µ remains
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free. Hence our renormalisation terms are

GE,pole =
1

4π3f2

[
1

ε4
+

f ′2

24ε2
+

11r2f ′4 − 24r2ff ′2f ′′ + 16f2(4f ′2 + r2f ′′2)

11520r2

]
=

1

4π3f2

[
1

ε4
+

f ′2

24ε2
+

P (r)

11520r2

]
GE,log =

−(24− 48f + 24f2 + 8r2f ′2 + r4f ′′2)

11520π3r4
ln

[
fµ2ε2

2

]
=

−L(r)

11520π3r4
ln

[
fµ2ε2

2

]
(5.3.5)

where we introduce the terms P (r) and L(r) to keep the expressions succinct.

As mentioned in §5.2 our renormalisation terms are, in important ways, similar to

those in d = 4, particularly the fact that the only powers of epsilon are even and we have a

logarithmic term. This means we can proceed with the method implemented on the brane

by using distributional identities from appendix B, specifically

ln(κε) = −
∞∑
n=1

1

n
cos(nκε) +O(ε2)

1

ε2
∼ −

∞∑
n=1

κ2n cos(nκε)− κ2

12
+O(ε2)

1

ε4
∼ 1

6

∞∑
n=1

κ4n3 cos(nκε)− κ4

720
+O(ε2).

(5.3.6)

Using these identities allows us to write the renormalisation terms (5.3.5) as

GE,pole =
1

4π3f2

[
1

6

∞∑
n=1

n3κ4 cos(nκε)− κ4

720
− f ′2

24

∞∑
n=1

nκ2 cos(nκε)− f ′2κ2

288
+

P (r)

11520r2

]

=
1

576π3f2

(
P (r)

80r2
− f ′2κ2

2
− κ4

5

)
+

κ

24π3f2

∞∑
n=1

[
n3κ3 − f ′2

4
nκ

]
cos(nκε)

(5.3.7)

and

GE,log =
−L(r)

11520π3r4

(
ln

[
fµ2

2κ2

]
− 2

∞∑
n=1

cos(nκε)

n

)
. (5.3.8)
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We can now add equations (5.3.7) and (5.3.8) to achieve a final form of the renormal-

isation terms,

GE,sing =
1

576π3f2

(
P (r)

80r2
− f ′2κ2

2
− κ4

5
− f2L(r)

20r4
ln

[
fµ2

2κ2

])
+

κ

24π3f2

∞∑
n=1

(
n3κ3 − f ′2

2
nκ+

f2L(r)

240r4

1

nκ

)
cos(nκε).

(5.3.9)

5.4 Further Calculation

Besides what has already been stated in this chapter we have taken the calculation no

further but can still discuss some aspects. Using equation (5.3.9) we could now write an

expression for the vacuum polarisation however we again take inspiration from the work

carried out on the brane and split the vacuum polarisation into numeric and analytic

contributions,

〈φ2〉analytic =
−1

576π3f2

(
P (r)

80r2
− f ′2κ2

2
− κ4

5
− f2L(r)

20r4
ln

[
fµ2

2κ2

])
(5.4.1)

and

〈φ2〉numeric =
κ

π

∞∑
n=1

[ ∞∑
l=0

NlGlCωlpωlqωl −
1

24π2f2

(
n3κ3 − f ′2

2
nκ+

f2L(r)

240r4

1

nκ

)]

+
κ

2π

∞∑
l=0

NlGlC0lp0lq0l.

(5.4.2)

It seems that it will be a simple extension to keep following the brane methodology

from this point (e.g. point coincidence has been completed as almost a side note, we

already have WKB terms and known transforms for series calculation). However there

are three pertinent issues presented in these calculations that prevented any sort of rapid

analysis. Firstly, 〈φ2〉analytic contains a logarithmic term that diverges at the horizon so
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this object is not a simple as it was on the brane even though we have a massless field on

a Ricci flat spacetime. The effect of this term is then strengthened by the overall factor of

dividing by the square of the metric function leading every term in 〈φ2〉analytic to diverge

at the horizon. Behaviour like this has been encountered previously (e.g. [75]) so this is

not an insurmountable obstacle. Also as suggested in §4.14 this may be better handled by

the introduction of Green-Liouville asymptotics [12].

The next issue is that we cannot be sure that we do have appropriate techniques

to calculate the sums in (5.4.2). The summand in this expression is similar to, but more

complicated than, that encountered on the brane (3.4.9), and for d = 6 has a leading order

of O(n3). From the brane methodology we have the Watson-Sommerfeld formula (3.7.1)

however this results in multiple integrals that require careful work if used within a double

sum and required key terms to cancel, see §3.7. From the work in the d = 5 bulk we found

the Abel-Plana formula, §4.10, to be extremely useful but its application was not simple.

Both the Watson-Sommerfeld and Abel-Plana formulae produce integrals that could only

be handled numerically for the brane and d = 5 bulk calculations. The introduction

of more complicated integrands to these integrals will make numeric calculations more

difficult. The Watson-Sommerfeld also has a second integral, (3.7.31), that was handled

analytically on the brane but this may not be the case for more complicated integrands.

The third issue may be one that renders the first two points temporarily moot. If

we return to look at equation (5.2.2) we have proceeded ignoring the fact that we began

with a Green’s function that was divergent even without full point coincidence, the issue

we have referred to as an unphysical divergence, §3.3. We demonstrated in §4.11 and

§4.12 that renormalisation without dealing with the unphysical divergences posed a serious

problem. Even knowing this we showed in §4.12 that attempting to regularise the inner

sum with a summand of large leading order is also not a guaranteed method to allow final

renormalisation. In the d = 6 case the leading order is O(l4), continuing the increase of

the order by two with every single step up in dimension.
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We could remove from the mode sum (5.2.2) the five terms needed (there is no O(l−1)

term) to guarantee the inner sum to be regular. However this seems impractical as it

introduces terms into the mode sum that we cannot predict how to handle when we wish

to implement a technique, like the Watson-Sommerfeld formula, to proceed. However

this has not been tested to the stage of including the renormalisation terms which, after

using using the distributional identities (B.0.4), may be in form to help calculate the

terms we introduced. If cutting off the leading orders approach is not feasible then the

only known solution would be to turn to our final methodology for the d = 5 case. The

introduction of terms from Minkowski spacetimes, §4.9, and a generalised approach, §4.13,

could be used to take into account the removal of the unphysical divergence and the final

renormalisation however this introduces its own application problems. Analysis will be

required to investigate which point splitting scheme leads to a practical calculation. Also

introducing fields in Minkowski spacetimes will be more complex than before and it will

require determining which and how many Minkowski setups will be needed (considerations

include how many fields will be enough, how many massless, how many massive and in

which numbers of dimensions).

5.5 Summary

In this chapter we have laid out the initial steps for the calculation of 〈φ2〉ren in the

d = 6 bulk. We have derived the Green’s function, and its components, for the mode sum

expression of 〈φ2〉ren. We have numerically calculated all the modes required, that is over

four hundred values at two hundred radial points, and derived their WKB approximation

(in fact we have done this for all the cases d = 6 → 11 but have no more to say on the

additional cases). We have also produced the required renormalisation terms required to

progress to final calculation.

Finally we have discussed how a complete calculation of 〈φ2〉ren can be attempted.
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We have reviewed multiple methods and also raised the difficulties attached to each. The

methodology from the brane calculation and that which we introduced for the d = 5 bulk

both could be used to progress towards results. However the brane calculation approach

requires the removal of unphysical divergences which here would mean introducing four

complicated terms into the calculation. Our new bulk approach will work in theory for this

problem but derived the functions for a generalised approach, which Minkowski spacetimes

to use and the radial matching all present serious challenges. Further using the bulk

methodology will fall prey to the problem we encountered in our test results from Ch. 4

in that the WKB approximation cannot be assumed to hold near the horizon. However

we have posited that the use of Green-Liouville asymptotics [12] will help with this issue.
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Chapter 6

Conclusions and Future Work

For a complete description of what we have achieved we quickly restate the setup of our

problem from Ch. 1 . We have taken a thermal quantum scalar field and placed it on

a curved spacetime background assuming no backreaction. Our spacetime exists as a

brane world in which we place a d = 4 tensionless brane within a higher dimensional bulk

consisting of additional, periodic, space-like dimensions of small radius. The background

is curved due to the presence of a black hole attached to the brane with a Schwarzschild-

Tangherlini metric meaning it possesses hyperspherical symmetry (but no charge or spin).

Further we assume that the black hole is small compared to the radius of the additional

dimensions and hence we may treat them as flat. The eventual purpose of looking at

this setup is to find the renormalised stress-energy tensor for the field. Without loss

of generality we place the field in a Hartle-Hawking vacuum as this is the easiest to

work with and the difference in expectation values between this and another quantum

state is easier to calculate than a renormalised expectation value. The construction of the

renormalised stress-energy tensor requires the object 〈0H |φ(x)φ(x)|0H〉 (denoted 〈φ2〉) and

its derivatives. This object is the auto-correlation of the field and is termed the vacuum

polarisation. Our aim has been to investigate the vacuum polarisation.
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6.1. ON THE BRANE

In Ch. 2 we demonstrated the equations required to formulate our setup, methodology

from previous successful calculations of the vacuum polarisation in d = 4 and the mathe-

matical objects to be used later (Synge’s world function, hyperspherical harmonics etc.).

We provided a rough outline of the application of previous methodologies for these types

of objects along with the derivations of the steps involved. Finally we derived the method-

ology to find the WKB terms that will approximate numeric modes in later chapters and

discussed its implementation.

6.1 On the Brane

We have considered a massless field on the metric projected onto the bisection of the

Schwarzschild-Tangherlini spacetime which we use as the brane. We have chosen the

field to be conformally coupled to the background geometry which for d = 4 gives the

coupling constant ξc = 1
6 . The Schwarzschild-Tangherlini metric projected on the brane is

an extension of the Schwarzschild metric except with a metric function dependent on the

number of bulk dimensions. The Schwarzschild-Tangherlini metric and the Schwarzschild

metric are identical if d = 4. Our main result on the brane is that we have shown that

the calculation of the vacuum polarisation can be extended to include a bulk through this

function. Further we can plot results for the vacuum polarisation within r = 1.005→ 11rh

for a bulk with d = 4→ 11.

This calculation can be done using a previously established methodology [3, 17, 75].

The method of introducing the renormalisation terms through distributional identities

holds but summing over the results of these identities becomes trickier. Numerical modes

calculated from the radial ODE must be kept to high accuracy (at least twenty eight

digits) to avoid errors in the differential solver for higher numbers of dimensions. We have

shown that with this level of numerical accuracy our analytic approximation (WKB) to

our numerical modes allows for smooth plotting of the polarisation down to r = 1.006.
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We have also compared the results near to the horizon to the on horizon results, provided

by Cormac Breen, to show a match within the expected error of our approximation.

A result from the original methodology with the normal Schwarzschild metric showed

that the analytic components of the calculation are a good approximation to the final

value. We have demonstrated that this is not generally true, for a bulk of d = 5 the

approximation is weak and as d then increases such an approximation is not applicable as

numeric contributions take over.

The work on the brane can be continued in several avenues. Firstly a bulk with

d > 11 could be considered though we feel this would add little as we have established a

clear pattern in behaviour as d increases. As the value of d is increased the difficulty of

required numerical calculations also increases. Similar to work in d = 4 this calculation

could now be attempted including a massive field, other couplings to the background or

a modification to the metric through a brane with tension (cosmological constant Λ 6= 0),

non-zero charge, non-zero spin etc. The most important extension to this work would be

its application in calculating the renormalised stress-energy tensor for this system. This

would allow us to see for the first time the effect of a higher dimensional bulk on the

RSET on the brane for QFT in curved space. There has been much work done, some

results are summarised here [49], to calculate Hawking fluxes in the same setup as ours,

as well as including some of our suggested extensions. However Hawking fluxes are off

diagonal components of the RSET that do not require renormalisation.

6.2 In the Bulk

In the bulk we have considered a massless field extending through all the dimensions of the

brane and bulk. We have demonstrated that the value of the coupling to the background

can be left unspecified for our calculations as the spacetime is Ricci flat. Our primary

result in the bulk, and the main result of this research, is that we have found a methodology
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that produces a regular value for the vacuum polarisation in the d = 5 bulk. No previous

work has produced a methodology for calculation of a regular vacuum polarisation for the

d = 5 bulk away from the horizon. We have produced plots of test calculations, in the

region r = 1.005 → 11rh, using this methodology and numerical techniques such as from

[68]. The application of this new methodology makes use of two free parameters and our

test calculations have been performed for fifteen combinations of these parameters.

In the bulk (for unspecified d) we have shown the required Green’s function that is

equivalent to the point split vacuum polarisation. It has been previously established that

the renormalisation terms differ between odd and even dimensions [23]. As mentioned

above the d = 5 calculation (as a test of solving for odd d) had not previously been solved

and the d = 6 calculation, which has similarities with the d = 4 calculation, was also

unperformed outside the horizon (on the horizon performed by [69]). In our d = 5 work

we investigated three main approaches to handling the renormalisation terms. The first

applied a method of dimensional reduction to produce a simpler problem but this proved

intractable. The second made use of directly matching the renormalisation singularities

to identical singularities in the equivalent vacuum polarisation calculations for a massive

quantum scalar field on Minkowski spacetimes that do not share the radial coordinate with

the original curved spacetime. We demonstrated that this method did not contain enough

freedom to cancel the divergent sums. Our final, and successful, approach introduces

multiple Minkowski scalar fields each multiplied by a function, of all radial coordinates,

and then summed together. Although we demonstrated analytically that this will produce

a finite value for the vacuum polarisation our test calculations did not properly confirm

this as a negative divergence remained at the horizon. The newly introduced functions

are sensitive to two free parameters and their influence is difficult to account for. Also

we know that the WKB approximation breaks down near the horizon but this effect was

not apparent during the calculations on the brane, in the bulk it is clear that it does not

capture and cancel all the divergent behaviour.
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Above we mentioned methods one and two that failed in our work specifically because

they were inspired by the cancellation of an unphysical divergence in [75] and the black hole

spacetime threaded by a cosmic string [68]. Although unsuitable for our calculation here

they should be considered as potential approaches calculations of the vacuum polarisation

in other circumstances, particularly when d is even. This is true for the d = 6 bulk where we

have given some preliminary discussion. Although the similarity to the d = 4 case suggests

a common approach, this may become intractable or involve numerical too complex work

so any of the three proposed methods for the d = 5 bulk may become appropriate. While

working with d > 4 we attempted to keep our work general and we retained quantities,

such as as field mass, in our calculations until simplification was needed to achieve results.

We can see from the behaviour of these quantities in the early stages of calculation that

they will not simplify calculations as d increases. In fact more new approaches may be

needed. However we have demonstrated some behaviour in the final result that allows

some speculation. it appears that for even dimensions there will always be a sizable finite

amount produced by analytic contributions to the total that increases with d. A numeric

contribution increases more rapidly with d modifying the result near the horizon. For odd

d there is no such sizable, analytic contribution for the numeric contribution to modify

(although there is a small one). Hence, although we expect the final results for odd and

even dimensions are of similar order the odd results will likely remain smaller.

As for the brane this work can be extended in d = 5 by the removal of certain simpli-

fications (e.g. m 6= 0, Λ 6= 0) these scenarios will likely contain new difficulties and are

beyond discussion here. In our opinion the first step from the d = 5 work is a confirma-

tion of the methodology through calculation. This will require an approximation for our

numeric modes that encodes the behaviour of the modes near the horizon and at infinity

much better. We have suggested Green-Liouville asymptotics [12] but this requires test-

ing. The above mentioned d = 6 methodology requires completion and may only require

an application of our successful d = 5 approach to be finished, algebraic and numeric
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complications not withstanding. We select this method as an approach to investigate first

as if it is proven to work for d = 6 then it is a methodology for any value of d, however

again the numerics and approximations may render accurate results unreliable. Our final

point is that, of course, the obvious extension of this work is to produce a methodology

for calculating the RSET. We accept that actual calculation of the RSET will first require

refinement of the numerical work on the vacuum polarisation. Once achieved this would

provide the first look at a RSET in a higher dimensional bulk within QFT in curved space.
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Appendix A

A Note on Distributions

Here we briefly discuss some details concerning distributions (also known as generalised

functions) relevant to this work. We shall do this using the Dirac delta function as an

example.

As a distribution the delta function can be defined by its action on a continuous,

compactly supported test function producing a finite result,

∫ ∞
−∞

δ(x− a)f(x)dx = f(a). (A.0.1)

Formally δ is a linear functional on the space of test functions to the finite values of those

test functions. We may also state that

δ(x− a) = 0 (A.0.2)

but only for x 6= a (other distributions may be finite but non-zero under a similar condi-

tion), in the limit x→ a the delta function diverges.
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The delta function can be represented as a series by way of Fourier theory,

δ(x− a) =
1

2π

∞∑
n=−∞

ein(x−a) =
1

2π
+

1

2π

∞∑
n=1

cos [n(x− a)] , (A.0.3)

which clearly only holds for x 6= a and the series are not absolutely convergent. Series

representations like those above are common in this work (see below for an example) and

we term these series to be convergent in the sense that if used as an integral kernal with

a test function the result would be finite, see (A.0.1) above.

Now we may look at a clear example in equation (2.5.3) which relates the unrenor-

malised vacuum polarisation, 〈T (φ(x)φ(x′))〉, and the Euclidean Green’s function, GE(x, x′).

Such objects are understood to be well defined distributions (an operator valued distribu-

tion in the case of the vacuum polarisation) for x 6= x′ and the mode sum representation

of GE(x, x′), (2.7.1), is deemed convergent. We then allow for renormalisation techniques

by accepting that it is possible to subtract terms from a series representation such that

the series converges in the standard summation sense after taking the limit x→ x′.

A final note on the Green’s function mode sum representation paraphrased from [68];

it is a sum over a complete set of mode functions and equations of the form (2.7.1) are

understood in the sense of smearing with smooth functions of compact support in our

manifold M.
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Distributional Identities

Here we state and justify some distributional identities used within this text. The status

of series representations of distributions was discussed in Appendix A.

First, from the statement of the Fourier series of the Dirac delta function with constants

λ and a

δ(λx− a) =
1

2π
+

1

π

∞∑
n=1

cos[n(λx− a)] (B.0.1)

we can write
∞∑
n=1

cos(nκε) = −1

2
(B.0.2)

which holds for ε 6= 0.

Now as presented by [41] we demonstrate a re-expression of a series divergent in the
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limit ε→ 0

∞∑
n=1

sin(nκε) =
1

2i

∞∑
n=1

(
einκε − e−inκε

)
=

1

2i

(
− eiκε

1− eiκε
− 1

eiκε − 1

)
=

1

2i

(
eiκε + 1

e−iκε − 1

)
=

1

2
cot
(κε

2

)
=

1

κε
− κε

12
+O(ε3).

(B.0.3)

We may then take the result of (B.0.3), including its higher order terms, and through

differentiation and integration produce the following identities which hold as ε tends to

zero;

ln(κε) ∼ −
∞∑
n=1

1

n
cos(nκε)

1

ε
∼
∞∑
n=1

κ sin(nκε)

1

ε2
∼ −

∞∑
n=1

κ2n cos(nκε)− κ2

12

1

ε3
∼ −1

2

∞∑
n=1

κ3n2 sin(nκε)

1

ε4
∼ 1

6

∞∑
n=1

κ4n3 cos(nκε)− κ4

720

(B.0.4)

and so on.
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WKB Terms on the Brane

The complete list of βωl(r) expressions referenced in §3.5 are given below. For conciseness

we write f ≡ f(r), R ≡ R(r) and χ ≡ χωl.

Note that these functions were calculated using Mathematica and the typesetting was done

by the TeXForm, Collect and Simplify commands, using the notation g(k)(x) = dkg(x)
dxk , only

alignment has been corrected.

For β0ωl(r) there are no coefficients

β0ωl =
1

2χ(r)
(C.0.1)

For

β1ωl = A1χ(r)−3 +A2χ(r)−5 +A3χ(r)−7 (C.0.2)

we have the coefficients below.
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A1 =
r2

64

[
−4r2ff ′′ + r2f ′2 − 12rff ′ (C.0.3)

−16m2r2f − 16ξr2fR− 4f2 + 4f
]

A2 =
ω2r6

32

[
2r2ff ′′ − 3r2f ′2 + 8rff ′ − 8f2

]
(C.0.4)

A3 =
ω4r10

64

[
5r2f ′2 − 20rff ′ + 20f2

]
(C.0.5)

For

β2ωl = B1χ(r)−5 +B2χ(r)−7 +B3χ(r)−9 +B4χ(r)−11 +B5χ(r)−13 (C.0.6)

we have the coefficients below.

B1 =
27f ′4r8

4096
+

3

16
m4f2r8 +

3

16
ξ2f2R2r8 − 3

128
m2ff ′2r8 − 3

128
ξfRf ′2r8

+
5

256
f2f ′′2r8 +

3

8
m2ξf2Rr8 − 1

32
ξf2f ′R′r8 +

3

32
m2f2f ′′r8

− 11

512
ff ′2f ′′r8 +

3

32
ξf2Rf ′′r8 − 1

16
ξf3R′′r8 − 1

64
f3f (4)r8

− 17

512
ff ′3r7 +

7

32
m2f2f ′r7 +

7

32
ξf2Rf ′r7 − 5

16
ξf3R′r7

+
9

128
f2f ′f ′′r7 − 1

8
f3f (3)r7 − 5

32
m2f3r6 − 3

32
m2f2r6

+
43

512
f2f ′2r6 +

3

512
ff ′2r6 − 5

32
ξf3Rr6 − 3

32
ξf2Rr6

− 25

128
f3f ′′r6 − 3

128
f2f ′′r6 +

1

128
f3f ′r5 − 9

128
f2f ′r5 +

3

256
f4r4

− 3

128
f3r4 +

3

256
f2r4

(C.0.7)
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B2 = ω2

[
− 145f ′4r12

1024
+

15

64
m2ff ′2r12 +

15

64
ξfRf ′2r12 − 13

128
f2f ′′2r12

− 5

32
ξf2f ′R′r12 − 5

32
m2f2f ′′r12 +

165

512
ff ′2f ′′r12

− 5

32
ξf2Rf ′′r12 − 7

64
f2f ′f (3)r12 +

1

64
f3f (4)r12

+
185

256
ff ′3r11 − 15

16
m2f2f ′r11 − 15

16
ξf2Rf ′r11 +

5

16
ξf3R′r11

− 153

128
f2f ′f ′′r11 +

9

32
f3f (3)r11 +

5

4
m2f3r10 − 349

256
f2f ′2r10

− 15

256
ff ′2r10 +

5

4
ξf3Rr10 +

153

128
f3f ′′r10 +

5

128
f2f ′′r10

+
9

8
f3f ′r9 +

5

32
f2f ′r9 − 3

32
f4r8 − 5

32
f3r8

]

(C.0.8)

B3 = ω4

[
1085f ′4r16

2048
− 35

128
m2ff ′2r16 − 35

128
ξfRf ′2r16 +

21

256
f2f ′′2r16

− 385

512
ff ′2f ′′r16 +

7

64
f2f ′f (3)r16 − 385

128
ff ′3r15

+
35

32
m2f2f ′r15 +

35

32
ξf2Rf ′r15 +

343

128
f2f ′f ′′r15

− 7

32
f3f (3)r15 − 35

32
m2f3r14 +

847

128
f2f ′2r14 +

35

512
ff ′2r14

− 35

32
ξf3Rr14 − 343

128
f3f ′′r14 − 427

64
f3f ′r13 − 35

128
f2f ′r13

+
357

128
f4r12 +

35

128
f3r12

]

(C.0.9)

B4 = ω6

[
− 693f ′4r20

1024
+

231

512
ff ′2f ′′r20 +

1155

256
ff ′3r19

− 231

128
f2f ′f ′′r19 − 3003

256
f2f ′2r18 +

231

128
f3f ′′r18

+
231

16
f3f ′r17 − 231

32
f4r16

] (C.0.10)

B5 = ω8

[
1155f ′4r24

4096
− 1155

512
ff ′3r23 +

3465

512
f2f ′2r22 − 1155

128
f3f ′r21

+
1155

256
f4r20

] (C.0.11)
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For

β3ωl = C1χ(r)−7+C2χ(r)−9+C3χ(r)−11+C4χ(r)−13+C5χ(r)−15+C6χ(r)−17+C7χ(r)−19

(C.0.12)

we have the coefficients on the following pages.
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C1 = − r6

131072

[
320f6 + 64

(
32ξR(4)r6 + 8f (6)r6 + 448ξR(3)r5 + 136f (5)r5

+ 1680ξR′′r4 + 668f (4)r4 + 1680ξR′r3 + 1008f (3)r3 + 252m2r2 + 252ξRr2

+ 279f ′′r2 − 3f ′r − 15
)
f5 − 16

(
6720ξ2R2r4 + 579f ′2r2 + 32ξR

(
40ξR′′r4

+ 10f (4)r4 + 280ξR′r3 + 96f (3)r3 + 420m2r2 + 221f ′′r2 + 73f ′r − 25
)
r2

− 8f ′
(

48ξR(3)r5 + 10f (5)r5 + 344ξR′′r4 + 94f (4)r4 + 300ξR′r3 + 140f (3)r3

− 292m2r2 − 183f ′′r2 − 5
)
r + 4

(
160ξ2R′2r6 + 18f (3)2r6 + 320m2ξR′′r6

+ 80m2f (4)r6 + 768m2f (3)r5 + 1680m4r4 + 441f ′′2r4 − 80ξR′′r4 − 20f (4)r4

− 160f (3)r3 + 16ξR′
(

4f (3)r3 + 140m2r2 + 27f ′′r2 − 25
)
r3 − 200m2r2

+ 2f ′′
(

8ξR′′r4 + 10f (4)r4 + 134f (3)r3 + 884m2r2 − 125
)
r2 − 15

))
f4

+ 32
(

640ξ3R3r6 + 160ξ2R2
(

12m2r2 + 3f ′′r2 + 5f ′r − 3
)
r4 + 377f ′3r3

− 4ξR
(
− 231r2f ′2 + 4r

(
20ξR′r3 − 100m2r2 − 47f ′′r2 + 35

)
f ′ − 10

(
5f ′′2r4

+ 6
(

4m2r2 − 1
)
f ′′r2 + 3

(
1− 4m2r2

)2))
r2 + f ′2

(
88ξR′′r4 + 34f (4)r4

+ 296ξR′r3 + 356f (3)r3 + 924m2r2 + 1215f ′′r2 − 215
)
r2 + 2f ′

(
309f ′′2r4

+ 8ξR′
(
− 20m2r2 + f ′′r2 + 5

)
r3 + 5

(
80m4r4 − 56m2r2 + 9

)
+ f ′′

(
54f (3)r5

+ 376m2r4 − 90r2
))
r + 2

(
31f ′′3r6 + 25

(
4m2r2 − 1

)
f ′′2r4

+ 15
(

1− 4m2r2
)2
f ′′r2 + 5

(
4m2r2 − 1

)3))
f3 − 4r2f ′2

(
960ξ2R2r4 + 3117f ′2r2

+ 160ξR
(

12m2r2 + 11f ′′r2 + 19f ′r − 3
)
r2 + 8f ′

(
20ξR′r3 + 58f (3)r3 + 380m2r2

+ 681f ′′r2 − 85
)
r + 4

(
387f ′′2r4 + 110

(
4m2r2 − 1

)
f ′′r2 + 15

(
1− 4m2r2

)2))
f2

+ 540r4f ′4
(

4m2r2 + 4ξRr2 + 9f ′′r2 + 11f ′r − 1
)
f − 1125r6f ′6

]
(C.0.13)
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C2 =
r10ω2

65536

[
− 6528f6 + 32

(
8f (6)r6 + 448ξR(3)r5 + 320f (5)r5 + 5376ξR′′r4

+ 3436f (4)r4 + 16464ξR′r3 + 12912f (3)r3 + 12096m2r2 + 12096ξRr2

+ 16095f ′′r2 + 4308f ′r − 168
)
f5 − 16

(
13440ξ2R2r4 + 24569f ′2r2

+ 112ξR
(

2f (4)r4 + 40ξR′r3 + 44f (3)r3 + 240m2r2 + 253f ′′r2 + 338f ′r

− 40
)
r2 + 4f ′

(
5404ξR′r3 + 15479f ′′r2 + 2

(
56ξR(3)r5 + 22f (5)r5 + 672ξR′′r4

+ 431f (4)r4 + 2900f (3)r3 + 4732m2r2 − 504
))
r + 4

(
5729f ′′2r4 + 56ξR′

(
2f (3)r3

+ 20m2r2 + 34f ′′r2 − 5
)
r3 + f ′′

(
168ξR′′r4 + 124f (4)r4 + 2186f (3)r3

+ 7084m2r2 − 1071
)
r2 + 2

(
39f (3)2r6 + 14

(
44m2r2 − 9

)
f (3)r3 + 7

(
4m2r2

− 1
)(
f (4)r4 + 60m2r2 − 5

))))
f4 + 16r

(
34442r2f ′3 + r

(
336ξR′′r4 + 502f (4)r4

+ 6552ξR′r3 + 10284f (3)r3 + 30632m2r2 + 30632ξRr2 + 61177f ′′r2 − 4886
)
f ′2

+ 4
(

392m2f (3)r5 + 705f ′′f (3)r5 + 2240m4r4 + 2240ξ2R2r4 + 4973f ′′2r4

+ 5180m2f ′′r4 + 28ξR′
(

20m2r2 + 16f ′′r2 − 5
)
r3 − 98f (3)r3 − 840m2r2

− 1071f ′′r2 + 28ξR
(

20ξR′r3 + 14f (3)r3 + 160m2r2 + 185f ′′r2 − 30
)
r2

+ 70
)
f ′ + 2rf ′′

(
560ξ2R2r4 + 461f ′′2r4 + 182

(
4m2r2 − 1

)
f ′′r2

+ 56ξR
(

20m2r2 + 13f ′′r2 − 5
)
r2 + 35

(
1− 4m2r2

)2))
f3 − 112r2f ′2

(
240ξ2R2r4

+ 3678f ′2r2 + 20ξR
(

24m2r2 + 33f ′′r2 + 88f ′r − 6
)
r2 + f ′

(
140ξR′r3

+ 286f (3)r3 + 1760m2r2 + 4277f ′′r2 − 370
)
r + 3

(
264f ′′2r4 + 55

(
4m2r2 − 1

)
f ′′r2

+ 5
(

1− 4m2r2
)2))

f2 + 70r4f ′4
(

464m2r2 + 464ξRr2 + 1329f ′′r2 + 2312f ′r

− 116
)
f − 26285r6f ′6

]
(C.0.14)
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C3 =
3r14ω4

131072

[
503360f6 − 64

(
23352ξRr2 + 38323f ′r + 2

(
36f (5)r5 + 616ξR′′r4

+ 990f (4)r4 + 5544ξR′r3 + 8032f (3)r3 + 11676m2r2 + 23111f ′′r2 − 1071
))
f5

+ 16
(

6720ξ2R2r4 + 300467f ′2r2 + 224ξR
(

12f (3)r3 + 60m2r2 + 191f ′′r2

+ 696f ′r − 15
)
r2 + 16f ′

(
9f (5)r5 + 308ξR′′r4 + 405f (4)r4 + 3234ξR′r3

+ 5048f (3)r3 + 9744m2r2 + 23783f ′′r2 − 1281
)
r + 4

(
46f (3)2r6 + 15984f ′′2r4

+ 168
(

4m2r2 − 1
)
f (3)r3 + 2f ′′

(
38f (4)r4 + 616ξR′r3 + 1550f (3)r3 + 5348m2r2

− 1029
)
r2 + 105

(
1− 4m2r2

)2))
f4 − 32r

(
2f ′′2

(
252m2r2 + 252ξRr2 + 367f ′′r2

− 63
)
r3 + 159825f ′3r2 + 2f ′2

(
308ξR′′r4 + 353f (4)r4 + 5236ξR′r3 + 9718f (3)r3

+ 28952m2r2 + 28952ξRr2 + 84617f ′′r2 − 5082
)
r + 2f ′

(
1680ξ2R2r4 + 15620f ′′2r4

+ 56ξR
(

6f (3)r3 + 60m2r2 + 169f ′′r2 − 15
)
r2 + 2f ′′

(
308ξR′r3 + 699f (3)r3

+ 4732m2r2 − 1029
)
r2 + 21

(
4m2r2 − 1

)(
4f (3)r3 + 20m2r2 − 5

)))
f3

+ 28r2f ′2
(

960m4r4 + 960ξ2R2r4 + 9688f ′′2r4 + 5280m2f ′′r4 − 480m2r2

+ 111657f ′2r2 − 1320f ′′r2 + 160ξR
(

12m2r2 + 33f ′′r2 + 154f ′r − 3
)
r2

+ 16f ′
(

110ξR′r3 + 249f (3)r3 + 1540m2r2 + 5233f ′′r2 − 330
)
r + 60

)
f2

− 420r4f ′4
(

248m2r2 + 248ξRr2 + 962f ′′r2 + 2467f ′r − 62
)
f + 145005r6f ′6

]
(C.0.15)
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C4 =− 11r18ω6

32768

[
31773r6f ′6 − 126r4ff ′4

(
519r2f ′′ + 2076rf ′ + 88m2r2 + 88ξr2R

− 22
)

+ 168r3f2f ′2
(
rf ′′
(

164r2f ′′ + 44m2r2 + 44ξr2R− 11
)

+ 5457rf ′2

+ 2f ′
(

37r3f (3) + 1261r2f ′′ + 240m2r2 + 10ξr3R′ + 240ξr2R− 55
))

− 96f5
(

50r4f (4) + 1064r3f (3) + 6709r2f ′′ + 13196rf ′ + 1792m2r2 + 280ξr3R′

+ 1792ξr2R− 308
)

+ 48rf4
(

41407rf ′2 + 2rf ′′
(

86r3f (3) + 1087r2f ′′ + 308m2r2

+ 308ξr2R− 77
)

+ 4f ′
(

25r4f (4) + 748r3f (3) + 6793r2f ′′ + 1652m2r2

+ 210ξr3R′ + 1652ξr2R− 308
))
− 16r2f3

(
61r4f ′′3 + 110266rf ′3

+ 6rf ′f ′′
(

43r3f (3) + 1087r2f ′′ + 308m2r2 + 308ξr2R− 77
)

+ 3f ′2
(

25r4f (4)

+ 1482r3f (3) + 22497r2f ′′ + 4844m2r2 + 420ξr3R′ + 4844ξr2R− 1001
))

+ 373888f6

]
(C.0.16)

C5 =
429r22ω8

131072

(
rf ′ − 2f

)2
[
4943r4f ′4 − 4r2ff ′2

(
1671r2f ′′ + 6684rf ′ + 140m2r2

+ 140ξr2R− 35
)
− 16f3

(
80r3f (3) + 1339r2f ′′ + 4006rf ′ + 140m2r2 + 140ξr2R

− 35
)

+ 16rf2
(

83r3f ′′2 + 3709rf ′2 + f ′
(

40r3f (3) + 1339r2f ′′ + 140m2r2

+ 140ξr2R− 35
))

+ 30928f4

]
(C.0.17)

C6 = −255255r26ω10

65536

(
rf ′ − 2f

)4
[
3r2f ′2 − 2rf

(
rf ′′ + 4f ′

)
+ 8f2

]
(C.0.18)

C7 =
425425r30ω12

131072

(
rf ′ − 2f

)6
(C.0.19)
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Integral Results for Ii(ω, r)

Here is the complete list of Ii expressions calculated in Mathematica from section 3.7 using

f ≡ f(r) and R ≡ R(r).

We remind the reader that the objects Ii are arrive from the application of the Watson-

Sommerfeld identity,

∞∑
l=0

F(l) =

∫ ∞
0
F
(
λ− 1

2

)
dλ−Re

[
i

∫ ∞
0

2

1 + e2πλ
F
(
iλ− 1

2

)
dλ

]
, (D.0.1)

to the inner summand of our mode sum. The Ii are then the terms that result from the

left integral on the right hand side of the equation.

I0(ω, r) = −ω
f

(D.0.2)

I1(ω, r) = − 1

2ω

[
m2 +

(
ξ − 1

6

)
R

]
− 1

24r2ω
(D.0.3)
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I2(ω, r) =
r2f

1920r2ω3

[
r3
(

160m2f ′ + 32(5ξ − 1)Rf ′ − 160ξfR′ + 32fR′
)

+ r4
(
− 160ξf ′R′ + 24f ′R′ − 80ξfR′′ + 8fR′′ + 240m4 + 480m2ξR

+ 8
(

30ξ2 − 1
)
R2
)

+ r
(

40f ′ − 192ff ′
)

+ r2
(

160m2f + 80(2ξ − 1)fR

− 120m2 − 120ξR+ 32R
)
− 192f2 + 192f − 17

]
(D.0.4)
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I3(ω, r) =− f

107520r6ω5

[
36480f4 − 16

(
− 42ξR(4)r6 + 3R(4)r6 − 168ξR(3)r5 + 24R(3)r5

+ 728ξR′′r4 − 116R′′r4 − 896ξR′r3 + 220R′r3 + 1568m2r2 + 112(14ξ + 1)Rr2

+ 6120f ′r + 800
)
f3 + 8

(
− 420ξ2R′2r6 − 252ξR′2r6 + 44R′2r6

− 840m2ξR′′r6 + 336m2R′r5 − 1680m2ξR′r5 + 1680m4r4

+ 4
(

420ξ2 − 182ξ − 109
)
R2r4 + 1386ξR′′r4 − 160R′′r4 − 1792ξR′r3 + 78R′r3

+ 2380m2r2 − 15660f ′2r2 − 4R
(

210ξ2R′′r4 + 147ξR′′r4 − 20R′′r4

+ 2
(

210ξ2 − 91ξ − 4
)
R′r3 + 182m2r2 − 840m2ξr2 − 4(84ξ − 415)f ′r

− 595ξ − 543
)
r2 + 4f ′

(
168ξR(3)r5 − 15R(3)r5 − 4(56ξ + 1)R′′r4

+ (293− 420ξ)R′r3 + 336m2r2 + 4870
)
r − 2841

)
f2 +

(
6720m6r6

+ 16
(

420ξ3 + 210ξ2 − 11
)
R3r6 − 11760m4r4 + 16R2

(
3
(

35
(

12m2r2 − 7
)
ξ2

+ 35
(

4m2r2 − 1
)
ξ + 22

)
+ 4r

(
210ξ2 + 161ξ − 41

)
f ′
)
r4 + 13440f ′3r3

+ 4620m2r2 + 2R
(

48r2(378ξ − 41)f ′2 − 16r
((

630ξ2 + 259ξ − 57
)
R′r3

− 14m2(60ξ + 23)r2 + 1169ξ − 346
)
f ′ + 3

(
560m4(6ξ + 1)r4

− 280m2(14ξ + 1)r2 + 770ξ − 317
))
r2 + 16f ′2

(
(574ξ − 67)R′′r4

− 4(441ξ − 59)R′r3 + 2268m2r2 − 70
)
r2 − 16f ′

(
− 840m4r4

+
(

7
(

180m2r2 − 193
)
ξ + 228

)
R′r3 + 2338m2r2 + 518

)
r + 883

)
f

− 14r2f ′2
(

240m4r4 + 8
(

30ξ2 − 1
)
R2r4 − 120m2r2 + 8R

(
60m2ξr2

+ 4(5ξ − 1)f ′r − 15ξ + 4
)
r2 − 8f ′

(
r3(20ξ − 3)R′ − 5

(
4m2r2 + 1

))
r − 17

)]
(D.0.5)
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Appendix E

Mode Sum Convergence Checks

The following three pages contain plots to check the order of convergence for n in the on

brane mode sums of equation (3.7.53). Each page contains results for a single value of

bulk d. For
∑

n an, where an is the result of the l sum over the modes minus the WKB

terms, each plot shows on the horizontal ln(n) and on the vertical ln |an|. From left to

right the kth plot shows the values at r = 0.7+0.4k; this is purely due to space constraints

on the page, plots were checked at all available values of r. The blue lines are that taken

from our data while the purple lines show the log results for O(n−7) (the expected order

of convergence) shifted vertically to share a starting point with our data.
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Results for d = 4.
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Results for d = 6.
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Results for d = 11.
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