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Abstract

This thesis investigates the dynamics of information flow within brain net-

works during the resting state and visual word recognition. Functional con-

nectivity within brain networks has become increasingly prominent across

cognitive neuroscience and neuroimaging in recent years and conventional

approaches for identifying instantaneous interactions within brain network

and across the whole head are now commonplace. Magnetoencephalogra-

phy (MEG) recordings have a very high temporal resolution which allows

for the characterisation of delayed interactions between distant brain re-

gions such as those caused by limited conduction speeds along white matter

fibres. This thesis presents an approach to characterising such time-delayed

interactions and critically, inferring the direction of information flow. This

approach is used to demonstrate the existence of statistically significant dif-

ferences in the information flow in each direction of a connection between two

nodes in a resting state network. A Hidden Markov Model is then used to

characterise dynamic changes in this directionality. Task driven directional

connectivity is then investigated in the context of visual word recognition.

A complex and rapidly evolving pattern of connectivity arises during visual

word recognition, with specific connections modulated by the psycholinguis-

tic properties of the stimulus. Critically, the influence from the Left Inferior

Frontal Gyrus is shown to transfer more information to visual regions when

reading a challenging stimulus.
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Spatio-temporal patterns of neural activity evolve rapidly both at rest

and in response to stimuli in the natural environment. This spatiotem-

poral structure has been widely studied since the advent of neuroimaging,

building upon decades of neuropsychological research into the structure and

functional organisation of the brain. More recently, increasing attention has

been paid to the functional relevance of connections between brain regions.

This thesis investigates the dynamics of neural systems with an empha-

sis on directed functional connectivity. In other words, how information is

transferred within brain networks and how this is modulated both sponta-

neously over time and during visual word recognition. Spontaneous brain

activity has long been considered “noise” in investigations into brain func-

tion and is often subtracted off or averaged out during neuroimaging anal-

ysis. Yet, as already indicated, spontaneous brain activity has a robust

spatiotemporal structure comprising several brain networks. Of these, the

default mode network (DMN, containing principally the medial prefrontal

cortex and posterior cingulate cortex) is unique in being discovered purely

from neuroimaging analyses. However the network has been consistently

identified in both fMRI and MEG and across very large datasets. Despite

the large literature on the DMN, little is known about the dynamics of

information flow between its parts or how this may change over time.

Recent evidence suggests that there is a correspondance between the

brain’s functional networks during the resting state and task situations

(Smith et al., 2009). A critical difference is that while resting brain function

may evolve on a relatively slow time-scale (from hundreds of milliseconds

up to minutes), cognitive processes related to a specific task can evolve over

milliseconds. As such, the analysis of a the reading network as it processes

a word is highly challenging. Yet interrogating these very rapid task related

dynamics may be criticallly important.

Reading plays a vital role in modern society; thoughts and ideas ab-

stracted into writing can be transported great distances and preserved for

long periods of time with relative ease. As such, writing systems have had a

profound impact on human society and development in the 5000 years since

their invention. A skilled reader can effortlessly extract the meaning and
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name of a word within a few hundreds of milliseconds, yet this is a difficult

process which can take many years to perfect. Continuous reading of sen-

tences is a highly complex process, about which we known very little. Visual

word recognition is the process that allows a person to efficiently identify a

written word. It plays a vital role in the fluent reading of continuous writing

and has been the subject of research for over a century. This thesis inves-

tigates the mechanisms within the brain associated with the recognition of

single written words, an essential component to contextual reading.

Early visual processing starts with a representation of the inputs to the

visual system and culminates with a description depending on both the

inputs and the purpose for which they are viewed; the key problem is deter-

mining the processes between (Marr, 1976). In the case of reading, abstract

visual word forms are detected and processed in such a way as to enable inte-

gration of visual information with the language networks of the brain. From

these processes and interactions the phonological and semantic associations

of the word form can be elicited.

In contrast to the DMN, the brain network associated with reading and

word recognition has been investigated long before the introduction of neu-

roimaging. They are common in that, though the brain regions involved

are well known, relatively little is known about the dynamics of directional

information flow within these networks.

1.1 Chapter Outlines

This section provides a brief outline of the motivation behind each chapter

and it’s principal aims.

1.1.1 Literature Review

Previous research into the neural substrate underlying visual word recogni-

tion is outlined, starting with early neurology and cognitive models. The key

contributions of neuroimaging are then introduced alongside the emerging

resting state literature.
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1.1.2 Estimating Directed Functional Connectivity From Dy-

namics In An Embedding Space

The mathematical context for the analysis used in the thesis is introduced.

Critically, the change of a dynamical system over time can be reconstructed

with a time-delay embedding. This can then be used as the basis of a

multivariate autoregressive model which, in turn, provides an estimate of

the linear temporal dependencies within a network of brain regions.

1.1.3 Realistic Simulations Of Causal Brain Network

Several practical aspects of the analysis outlined in chapter 2 are tested with

multivariate simulations. Principally, the importance of having sufficient

data for accurate parameter estimates and the conditions determining the

frequency resolution of a model are investigated.

1.1.4 Directed Functional Connectivity In An Endogenous

Brain Network

The analysis above is applied to identify whether the functional interactions

between nodes in the DMN are symmetrical, ie equivalent in both directions.

Eyes open resting state MEG data is acquired and source activity time-

series estimated within the DMN and several associated brain regions. The

directed functional connectivity is estimated and each pair of connections

tested identify any asymmetries in functional influence.

1.1.5 Dynamic Changes In Within Network Directed Con-

nectivity

Temporal changes in directed functional connectivity in the DMN from the

previous chapter are characterised with a Hidden Markov Model (HMM).

Four functional states are identified each with specific directional interac-

tions within the network.
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1.1.6 Neural Dynamics Of Visual Word Recognition

The analysis pipeline is adapted to estimate dynamics over very short time-

scales. This is applied to MEG data collected while participants viewed

Words, Consonant Strings and False Font stimuli. Each stimulus category

is shown to be associated with different patterns of directional connectiv-

ity within a reading network identified from beamformer power contrasts.

Critically the Left Inferior Frontal Gyrus is shown to provide more top-

down influence on visual brain regions during the unrecognisable stimuli

(consonant strings and false fonts). This suggests that the LIFG may be

most critical when viewing stimuli whose orthographical and phonological

structure is challenging to decode, if not impossible.

1.1.7 Multiple Routes To Recognition

In a final experiment, the functional role of the early interactions between the

LIFG and visual regions is probed using a contrast between the processing

of high and low frequency words. It is shown that low frequency words

elicit greater top-down influence from LIFG adding support for its role in

decoding challenging word-like stimuli.

1.1.8 Discussion

The overall themes of the thesis are discussed and linked to specific results

throughout the thesis.
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Chapter 2

Literature Review
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2.1 Visual Word Recognition

Many writing systems are in use by humans across the globe, however the

majority of these use one of three strategies. A morpho-syllabic system,

such as Chinese Hanzi or Egyptian Hieroglyphics, encodes a whole word

with one symbol whereas a syllabic system, such as Japanese Kana, encodes

a syllable or combination of sounds into one letter. Finally an alphabetic

system, such as English written in the Latin script, represents a word as

a series of phonemes, each represented by one or more letters. This thesis

will be restricted to the discussion and analysis of the alphabetic writing

system of English. In an alphabetic system such as English, there exists

an orthography defining the mapping from letter shapes into phonemes or

sounds. This representation of the sound of a word is known as its phonology,

and both the orthographic and phonological information can play a role in

accessing the meaning or semantics of a word. These mappings are a vital

part of learning to read. Once learnt, they can be applied to read and

pronounce novel words or pseudo-words. There is not necessarily a one-to-

one mapping between a given visual word form or letter and a sound, English

vowels in particular may change their sound depending on the surrounding

letters and the identity of the word itself. For instance, the letter ’i’ may

refer to an /aI/ sound in ’pint’ or an /I/ sound in the word ’mint’.

Word recognition is further complicated by variability in the written

script. Writing can appear in a wide range of sizes, fonts, positions and

colours; yet a skilled reader is able to read a known language in a huge

range of styles, even those they are naive to. The speed and effortlessness

with which a reader is able to extract information from such a variety of

possible inputs suggests a flexible and highly efficient system is present in

the skilled reader. Moreover, it provides a considerable challenge to scientists

looking to model and understand this system. The following section outlines

previous work towards understanding visual word recognition in the human

brain.
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2.1.1 A Historical Perspective

During the nineteenth century Carl Wernicke suggested that only primary

perceptual functions can be localised in specific regions of cortex and that

any higher functions, such as thought or consciousness, rest on the fibre

bundle connecting disparate regions of cortex (Wernicke 1874 as cited in

Eggert, 1977). Specifically, Wernicke suggested that reading is learned by

developing a strong association between the visual and acoustic ’images’ of

the word. The acoustic image could then be used to activate the motor

image through interaction with Broca’s region in the inferior frontal lobe so

the word can be spoken aloud. Thus the union of the visual and acoustic

images constitute the concept of the letter rather than a letter necessarily

having its own representation (Eggert, 1977). Consequently, damage to a

connection between regions may not just lead to lost communication but

loss of higher level representations themselves.

In 1892 Jules Déjérine reported the case of patient who presented with

a left hemianopia as well as an inability to read but with preserved writing

ability and auditory language. Post-mortem examination of the patient

revealed damage to the left central white matter leading to disconnection

of the occipital radiation to the left visual cortex and disconnection to the

bilateral visual cortices to the angular gyrus (Déjérine 1891,1892 as cited

in Catani and Ffytche, 2005). Déjérine proposed that these disconnections

might lead to pure alexia as it prevented integration of information between

the primary visual cortices and communication between visual cortex and

the left hemisphere Angular gyrus which was thought to act as a visual

verbal centre, a store for visual word forms. (Déjérine 1891,1892 as cited in

Catani and Ffytche, 2005). This was in contrast to Wenickes suggestion that

the connection itself contained the representation of the word, yet the idea

that cognitive function can be impaired by disconnecting two brain regions

remains central.

Norman Geschwind outlined a novel account of disconnection syndromes

(Geschwind, 1965a,b). Geschwind’s innovation was based on the assump-

tion that there were no connections between primary sensory areas in man
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(Flichsig 1901). Geschwind suggested that the development in association

cortex in humans allowed for cortical connections between unimodal process-

ing in the primary sensory cortices, whereas in Monkeys and lower mammals

these associations are mediated via the Limbic system. Thus in man, the

existence of this higher/multimodel association cortex (such as the angular

gyrus) allows for the sensory association cortices to interact in more com-

plex ways (Geschwind, 1965b). In this sense, visual word recognition may

arise from early visual processing in primary and associative visual cortex,

before the visual association cortex engages the rest of the language network

via higher association cortex (angular gyrus). More modern consideration

of this theory suggests that the link between pure alexia and damage to

left inferior occiptotemporal cortex (iOTC) involving the surrounding white

matter ’cannot be doubted’ (Bub et al., 1993) however there is less support

for a visual verbal store in the left angular gyrus.

The classical neuropsychological evidence has provided increasingly de-

tailed accounts of how damage to specific brain structures may lead to spe-

cific cognitive impairment. Though the precise model of how this might

arise changes, the idea that disconnection between brains regions leading to

cognitive deficits has remained prominent for over 100 years.

2.1.2 Models Of Word Recognition

The early part of the twentieth century saw a move towards the study of

groups of participants in conjunctions with the development novel of sta-

tistical techniques. These developments played a part in what is known

as the Cognitive Revolution (Gardner, 2008), during which cognition was

conceptualised as a series of statistical processes with complex behaviours

arising from combinations of simpler component processes. Cognitive sci-

ence therefore places an emphasis on mental states and processes rather

than considering the underlying biology. The focus was placed on the goals

of visual word recognition and tested with observations of typical and disor-

dered reading behaviour. What appropriate steps must be taken? and what

strategies would be appropriate for undertaking these steps?
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Early models of psychological phenomena such as visual word recogni-

tion tended to outline the sequence of component processes verbally (Jacobs

and Grainger, 1994). These models typically contained several specialised

components which process aspects of the stimulus. One influential model as-

sumed the existence of a device called a logogen which receives linguistically

relevant information from sensory processes and yields a response when a

this input reaches a threshold (Morton, 1969). In the case of visual word

recognition, a logogen might receive information about the visual features

of a presented word and respond when sufficient information has accrued

to confirm the identity of the word. Other models have a wider scope and

describe how word representations interact with phonological and semantic

information (LaBerge and Samuels, 1974) or how the duration of eye fixa-

tions while reading relates to several levels of cognitive processes (Just and

Carpenter, 1980).

Many models of reading have been based on the idea that there are two

or more routes from a seeing a word to recognising it (Davelaar et al., 1978;

Coltheart et al., 1993; Ellis and Young, 1996). Of these a dual route archi-

tecture with two routes to recognition has been most influential (Coltheart

et al., 1993). One route maps from vision to semantics and the other from vi-

sion to phonemes. The grapheme to phoneme (letters to sounds) is thought

to be predominantly used for when learning to read or reading unfamiliar

words. This allows for the possibility of ’indirect’ recognition facilitated by

the auditory lexicon which is activated by the conversion to phonemes. This

model can be extended to incorporate speech input and written output (Ellis

and Young, 1996), an example architecture can be see in figure 2.1.

Early theories emphasised the word as a whole perceptual unit (Cattell,

1886). Though having a holistic perception of a whole word would be effi-

cient, even for skilled readers the fundamental unit of perception for written

words is the letter (Pelli et al., 2003). This suggests that letter identities

constitute a major part of the representation of a word. Beyond letters

themselves, the order of the letters within a word must be encoded in order

to distinguish between anagrams such as able and bale. Slot based coding

schemes may be able to explain how we can disambiguate anagrams. These
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Writ ten Word
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Visual Input Lexicon

Grapheme-Phoneme Convers ionSemant ic  Sys tem

Speech Output  Lexicon

Phoneme Level

Speech

Figure 2.1: A model for recognising and speaking written words adapted
from Coltheart et al. (1993) and Ellis and Young (1996). This features a
highly modular dual route processing stream. Two routes from writing to
speech are proposed: a direct route via the semantic system and an indirect
route via grapheme to phoneme conversion.
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state that there are a series of slots each representing letter positions within

a word, perceived letters are sequentially added to successive slots to form

a word level representation. For instance, the word brain might be repre-

sented with B in the first slot, R in the second and so on, forming a full

representation of the word (B1R2A3I4N5)

These slot models imply that letter position and identity are encoded

simultaneously, as a consequence the R2 in BRAIN would have a completely

separate representation to the R5 in its anagram ABNIR. This assumption

has been criticised on the grounds that it is possible for a non-word to

prime a target real word containing similar letters, the extent of the priming

increasing with orthographic overlap (Humphreys et al., 1990; Peressotti and

Grainger, 1999). Current theories that may account for these effects are open

bigram coding, the SERIOL models and the SOLAR model.

Open bigrams represent words as a series of letter pairs, allowing for

the letters in the pair to be separated by another letter as long as the rel-

ative order of the pair is maintained. This concept suggests that the word

HEAD might be represented as the bigrams HE HA HD EA ED AD, and

has become quite influential as evidence that the brain uses a relative letter

position encoding scheme (Schoonbaert and Grainger, 2004). The SERIOL

model presents a mechanistic account of how open bigrams might be used

to activate a representation of the entire word (Whitney, 2001). Bigrams

are very specialised mechanisms, tailored to one specific purpose. As such,

models containing bigram representations imply that a totally specific pro-

cessing pathway for reading must exist within the brain. Given that reading

is learnt rather than innate and has only been in existence for the last few

thousand years, it seems unlikely that such a mechanism might have evolved

(Dehaene and Cohen, 2007).

Often models of reading tend to be underspecified, as they may be de-

fined verbally or diagrammatically it is possible that critical details about its

operation are not defined sufficiently or neglected all together (Jacobs and

Grainger, 1994; Coltheart et al., 2001). For instance, all of the models ref-

erenced above include some reference to the encoding of visual information

about a word. The inputs to a logogen are ”visual attributes” which arise
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from earlier visual processing (Morton, 1969), an ”extract physical features”

process is identified in Just and Carpenter (1980) and LaBerge and Samuels

(1974) suggest that visual processing proceeds along a hierarchy such that

features→ letters→ spelling→ words. These processes are defined in vary-

ing detail, yet none of these models provide an explicit mechanism for the

visual feature processing in word recognition. It is therefore challenging to

empirically evaluate the performance of these models, making it difficult to

objectively improve a theory or explicitly compare the performance of two

models.

Computational Models

Computational models are computer programs capable of simulating a cog-

nitive task via a mechanism specified in a theory of how this task is processed

in a human (Coltheart et al., 2001) (Figure 2.2A). These models provide a

way to systematically test and develop theories of human behaviour. The

design of a computational model is very flexible and allows for several philo-

sophical approaches to be directly tested. For instance the Dual Route

Cascaded (DRC) model of visual word recognition is explicitly a computa-

tional realisation of the dual-route model of reading (Coltheart et al., 2001).

Its design is motivated by the anatomical models from the nineteenth cen-

tury and cognitive models of the twentieth, specifically, that language is

best modelled as a multicomponent modular cognitive information process-

ing system. In contrast the Parallel Distributed Processing (PDP) model

is derived from a set of general principles concerning the nature of neural

computations (Seidenberg, 2006) (Figure 2.2B).

There has been a series of models developed from these two frameworks

and their relative performance is hotly debated (Coltheart et al., 1993, 2001;

Zevin and Seidenberg, 2006). Yet, a direct comparison between the two

approaches may not be appropriate. The DRC has a bottom-up data-fitting

approach designed to account for maximum amount of variance in data

collected from a series of lab experiments. A such they are tailored to a

discrete range of specific tasks and may struggle to explain data from subtly
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A. B.

Figure 2.2: A - The Dual Route Cascaded (DRC) model (Coltheart et al.,
2001). B - The Parallel Distributed Processing (PDP) model (Seidenberg
and McClelland, 1989)
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different tasks (Seidenberg, 2006). In contrast, the PDP approach is less

able to explain data in specific instances, however its goal is to use evidence

provided by a principled model along with evidence from other sources to

converge on the correct theory Seidenberg (2005).

These computational models have a broad scope, tackling the whole pro-

cess from seeing a word to reading it out loud. As such they may simplify

subcomponent processes such as how letter position is encoded. Both the

DRC and PDP suggest that letter position is encoded via the relatively sim-

ple slot based mechanism rather than bigrams (McClelland and Rumelhart,

1981; Coltheart et al., 2001). This is a critical question in visual word recog-

nition, what is the precise nature of the representation of a word form in

the brain?

Bayesian Models

Models which incorporate open bigram coding schemes can account for a

wide range of behavioural findings and have provided a successful mecha-

nism for several computational models, if this is true the brain has a highly

ordered and specialised representation of letter strings. Moreover the SO-

LAR and SERIOL models propose a highly complex series of specialised

mechanisms geared towards word recognition. Finally these models all as-

sume that all the visual input occurs simultaneously.

This assumption may not be necessary. Many of the behavioural effects

that inspired the development of these models can be accounted for by treat-

ing the word recognition process as a the categorisation of the outputs of

a noisy channel rather than a specific orthographic code. In other words,

the mechanisms underlying word recognition are best understood though

analysis of the probabilistic computations that must be performed rather

than the nature of its representations (Norris and Kinoshita, 2012).

The Bayesian Reader (BR) is a computational model assuming that a

human acts as an optimal Bayesian decision maker when recognising a word

(Norris, 2006). This model has successfully replicated several major be-

havioural word recognition effects such as the relationship between word
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frequency to reaction time and identification thresholds (Norris, 2006, 2009).

Words are represented as simple letters strings rather than the more complex

open bigrams, suggesting that some of the more complex reading phenomena

do no require a stage of representation beyond the letter string.

The Bayesian reader assumes that all possible words can be represented

in one multidimensional perceptual space, perceptual inputs are then a

method for sampling evidence about a stimulus from the environment, over

successive samples this evidence can be used to compute the conditional

probability of observing the perceptual input (I) for any given word (W).

Bayes law in this context states that:

P (W |In) = P (W ) ∗ P (In|W )∑j=n
j=0 (P (Ij) ∗ P (Ij |W ))

(2.1)

Bayes theorem can be used to calculate the posterior probability of a

particular word (W ) being presented given the evidence sampled so far (I).

This posterior probability is computed from the a prior probability (P (W ))

that the word occurred and the likelihood that the evidence is consistent

with that word being presented (P (Ij |W )) (Norris et al., 2008). The BR

uses metrics such as the frequency of a word in a given language to determine

its prior probability which imply the meta-features of words are represented

alongside the words themselves.

Summary

A variety of reading models have been developed since the nineteenth cen-

tury, yet the approaches to modelling have shown some consistencies. Broadly,

the modeller either takes a data driven stance and tries to explain some

observed data with a specific mechanism or computational framework (lo-

gogens,the bigram, the DRC) or they take a more theoretical stance based

on some principles of the system (PDP,BR). Both the data-driven and prin-

cipled approaches attempt to make the workings of an unobserved system

explicit, and converge on an optimum explanation for how the brain com-
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pletes a specific task. Several keys findings and consistencies can be draw

from across aspects of this literature. The majority of models encompass a

division of labour across distinct yet interactive modules or nodes.

The modelling literature attempts to explain how particular tasks might

be achieved by specifying component processes in a computer program.

While this evidence is often compelling, it remains abstracted from the brain

itself. The development of neuroimaging techniques in recent decades has

made it possible measure neural activity directly, providing a source of evi-

dence about how the brain itself processes different aspects of a visual word

form. The next section will outline this emerging literature on how and

where different processes occur within the brain.

2.1.3 The Brain Basis Of Word Recognition

Modern neuroimaging methods allow the opportunity to investigate how

brain responses measured in vivo correlate with perceptual and psychologi-

cal events. Measures based on cerebral blood flow such as Positron Emission

Tomography (PET) and Functional Magnetic Resonance Imaging (fMRI)

are indirectly sensitive to neuronal activity, the assumption being that an

increase in the activity of a population of neurons will lead to an increase

in blood flow in that region. These methods typically make measurements

every 1-3 seconds and can accurately localise activity in the brain within

millimetres. Electrophysiological methods such as Electroencaphalography

(EEG) and Magnetoencephaolography (MEG) measure neural activity more

directly by observing the electrical and magnetic fields on the scalp origi-

nating from current flow in populations of neurons. These methods are able

to take hundreds or thousands of samples per second. Inverse solutions for

determining the brain region which generated a given measurement are in

continuous development and are able to localise activity, under optimal con-

ditions, with centimetre (EEG) or millimetre (MEG) resolution. Finally,

invasive neuronal measure record activity from a single neuron or popula-

tions of neurons directly with a temporal resolution similar to EEG and

MEG, however these methods require surgical implantation of electrodes
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and as such opportunities to carry out such measurements are relatively

rare.

All of these methods have been recruited to investigate the brain basis of

visual word recognition. The functional and anatomical evidence they pro-

vide is typically used to localise cognitive functioning to a region in the brain

and /or a time during a behavioural task. The following section provides an

overview of contemporary literature seeking to investigate the neural basis

of visual word recognition. Moreover the potential of neuroimaging to inves-

tigate localist versus distributed approaches to word recognition is discussed

and related to the cognitive and computational models in the previous sec-

tion.

Localising Word Recognition

Cohen et al. (2000) used fMRI and EEG to investigate the location and

timing of brain responses to words presented in left and right visual fields

in patients with posterior callosal lesion and healthy controls. They found

early visual activation in controls to be contralateral to the visual field the

stimulus was presented in, however a more anterior site was active in the left

hemisphere only for both conditions. In contrast, the patients with posterior

callosal lesions only showed this lateralised activation in words presented in

the right visual field. Cohen et al. (2000) suggest that the visual word form

system is localised in this anterior region and label it the Visual Word Form

Area (VWFA). This anterior site in the ventral occipito-temporal cortex

(vOT) has further been shown to respond preferentially to real words and

pronounceable non-words over checkerboards or consonant strings (Cohen

et al., 2002). Moreover there is evidence that it only responds to visual

rather than spoken words (Dehaene et al., 2002) and that these represen-

tations are invariant to the retinal location of the visual input (Dehaene

et al., 2004). Due to the apparent equivalence of words and pronounceable

non-words, it has been suggested that the VWFA contains an abstracted

sub-lexical representation of a visual word form. Many of these fMRI stud-

ies use an averaged BOLD signal change contrast to identify populations of
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neurons which selectively respond to a given stimulus category, however a

BOLD adaptation approach may be a more sensitive way to identify selec-

tivity. Indeed, this approach has shown evidence that the VWFA is tuned

to representations of whole, real words rather than a sub lexical visual word

form (Glezer et al., 2009). This evidence suggests that the the VWFA in

the vOT is tuned for the representation of words itself, this is in contrast

with Déjérine’s suggestion that the AG was the seat of representations of a

visual words.

The assignment of a function to a discrete region in the brain can be

problematic. In the case of left inferior occipito-temporal cortex, activity

in the VWFA can be modulated by several tasks including visual motion

discrimination, tactile word and object recognition and spoken word recog-

nition (Price and Friston, 2005). This is hard to reconcile with cognitive

models of reading which often present the components of a cognitive pro-

cess as separate, discrete processes. Several avenues of investigation may

help to resolve these difficulties and build upon this work on localisation.

Firstly, due to the many to one mapping between function and region, it

would be beneficial to consider multiple brain regions in such as way that a

cognitive process is represented through the connection between these brain

regions (Wernicke 1874 as cited in Eggert, 1977). Moreover it may be that

this wider network context drives a regions function rather than any inherent

specialisation (McIntosh, 2000). Secondly, activity within the brain unfolds

on millisecond timescale. A region may perform subtly different roles at

different points in the processing of a word, perhaps influenced by the wider

state of the network. The next section discusses the timings associated with

visual word recognition.

Dynamics Of Word Recognition

A common method for investigating the temporal evolution of brain activity

elicited by a word is the event related potential (ERP) which is a measure

of phase locked or evoked activity. Neural responses to a word are measured

over many trials and averaged to remove inter-trial variability. Furthermore
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source estimation techniques such as minimum norm estimates or beam-

forming can be used to reconstruct source activity as it changes over time.

This section outlines how findings from these methods can be used to dif-

ferentiate serial and parallel processing in the brain and how these findings

relate to models of visual word recognition.

Pulvermüller et al. (2009) draw a distinction between serial and parallel

models of word recognition (an outline can be seen in Figure 2.3). Serial

models outline a chain of subprocesses which may have onset asynchronies of

hundreds of milliseconds, in contrast parallel models allow several perceptual

and cognitive processes to occur at or around the same time. Dien (2009)

identify seven reading components from within the first 400ms of reading a

single word. Neural generators for these components are suggested and the

two broad stages of processing identified. The first ’estimation’ phase in-

volves early visual and inferior occipito-temporal areas processing the word

and attempting a grapheme to phoneme conversion based on local infor-

mation. The second ’resonance’ stage involves refinement of the estimate

by coordinating information across the whole reading network. A further

literature review suggested that the early ERP responses reflect near par-

allel processing of several aspects of word recognition (Pulvermüller et al.,

2009). These findings are more in line with a parallel distributed mechanism

supporting visual word recognition.

Direct recordings of electrical activity on the cortex of patients undergo-

ing treatment prior to surgery to relieve severe epilepsy allow for recordings

with high spatial and temporal resolution. This method was used by Nobre

et al. (1994) who found several large activations to words in the inferior

temporal lobes within 500ms of stimulus onset. Two distinct regions were

found; a posterior region responded equally to words and non-words was

active around 200ms and was unaffected by context. Subsequently a more

anterior region was sensitive to the difference between words and non words

around 400ms and modulated by context. These regions were shown to be

dissociated from regions responsive to other complex visual stimuli suggest-

ing that they comprise a specialised processing stream within the ventral

stream. This result provides a temporal scale to the cortical response to
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Figure 2.3: Pulvermüller et al. (2009)’s description of serial/modular theo-
ries of visual word recognition and interactive parallel accounts
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words and is in general agreement with suggestions that the inferior tem-

poral lobes contains regions which processes visual aspects of written words

(Petersen et al., 1990; Pugh et al., 1996; Cohen et al., 2000).

Magnetoencephaolography (MEG) measures the modulation of magnetic

fields generated by cortical sources outside the head, and provides a mea-

surement technique with a high temporal resolution, and in conjunction with

source estimation algorithms, a reasonable spatial resolution. MEG source

analysis has shown that posterior visual region responses equivalently to

both words and consonant strings around 130ms after stimulus onset, how-

ever, more anteriorly, the vOTC response does differentiate between the

two (Tarkiainen et al., 1999; Cornelissen et al., 2003). More exploratory

whole brain, analyses with MEG data have provided more direct evidence

for the posterior to anterior processing direction by showing the evolution

of the cortical response across the cortex over time in healthy individuals

(Marinkovic et al., 2003; Pammer et al., 2004). Though these biomagnetic

and blood flow based methods both measure signals coupled with neuronal

responses, there is evidence that they reveal different neuronal functions in

the occipito-temporal cortex during reading (Vartiainen et al., 2011).

2.1.4 Brain Models Of Word Recognition

The cognitive models outlined in section 2.1.2 provide a detailed account

of the sub-processes that support word recognition. In recent decades new

models of word recognition inspired by functional anatomy have been de-

veloped in light of growing neuroimaging literature. The following sections

outline two such models.

Hierarchical Models

The Local Combination Detector (LCD) model (Dehaene et al., 2005) is an

influential hierarchical model of orthographic encoding. The LCD model

describes how different parts of the ventral visual stream might be tuned

into different letter and word features in a hierarchical configuration. The

premise is that as visual information about a word travels down the visual
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stream both the type of information encoded by the cortex and its recep-

tive field size changes to reflect the integration of simple visual features into

size and position invariant representations of letters, bigrams and complete

words. Early in the model simple features such as contrast in the LGN and

orientation in V1 are encoded retinotopically before V2 encodes letter frag-

ments or combination of lines. Beyond this case-specific letters are encoded

in V4 and abstract case-invariant letters in V8. All of these representations

are bilateral. The first lateralised stage in the model is bigram encoding

thought to reside in the left OTS posterior to the cortex encoding small

words and morphemes.

This model would predict more selective responses to words over word-

like stimuli in anterior over posterior parts of the left hemisphere ventral

visual stream as has previously been found in the VWFA literature (Cohen

et al., 2000, 2002). This prediction was tested in fMRI by (Vinckier et al.,

2007) who found posterior occipital regions responded to all stimulus cat-

egories with more anterior cortex responding successively more selectively

to the more word like stimuli. The LCD model can be considered within

the wider framework of cultural recycling of cortical maps (Dehaene and

Cohen, 2007), this is a mechanism by which regions of cortex which have

evolved specialisations can be recruited to support relatively recent cultural

innovations such as reading.

The LCD model contains bigram detectors similar to those in several cog-

nitive and computational models and as such is open to the same criticisms.

Primarily, the inclusion of a very specific and highly specialised mechanism

in the brain for reading is unlikely to have developed in the 5000 years since

writing systems began to develop. Moreover, little consideration is given

for how feedback both within the visual hierarchy and between the visual

system and the rest of the brain might fit into the process. The empha-

sis is firmly on how a simple-to-complex hierarchy of representations might

be instantiated. This experiment is designed and justified purely in terms

of orthographic processing, however the progression from letter strings to

pronounceable non-words and finally words leads to a increasingly realistic

orthographic structure which is increasingly pronounceable. Thus the find-
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ings of Vinckier et al. (2007) might be equally attributable to phonological

or orthographic processes, indeed same the pattern of differences found in

the vOT was also seen in the LIFG.

There is also evidence against a the existence of areas specifically spe-

cialised for written words. Büchel et al. (1998) tested the reading of visual

word forms and braille in sighted and blind participants. They found that

anterior iOTC was activated in a word over consonant string reading in both

blind people reading braille and sighted people reading visual words. The

authors suggest that the role of this region is not linguistic per se but may

promote activity in other regions which them leads to lexical access. This

view is supported by the suggestion that there are no cases with exclusive

reading deficit from a left mid fusiform lesion, and that this same region has

been associated with a range of tasks (Price and Devlin, 2003).

The LCD model has the advantage that it makes explicit statements

about where in the brain different types of information are extracted and

integrated. In addition several aspects of the model are based on successful

heuristics from other visual processing models, such as the visual processing

hierarchy working from posterior to anterior regions idea from object recog-

nition (Ungerleider and Mishkin, 1982; Goodale and Milner, 1992; Riesen-

huber and Poggio, 1999). It also follows directly from several very influential

cognitive and computational approaches proposing increasingly abstract se-

rial sub-processes underlying reading.

Interactive Models

Price and Devlin (2011) advocate an interactive account of ventral occipito-

temporal function in reading. This is based on the premise that perception

depends on interactions between sensory cortex and higher order processing

regions via reciprocal connections. vOT activation is explained in terms of

three things: 1) The bottom up connections communicating visual inputs 2)

the top-down connections communicating predictions made by higher order

cortical regions and 3) the mismatch between these inputs and predictions.

Fundamentally, according to this approach vOT activity during reading is
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modulated by top-down predictions and non visual properties of words, fur-

thermore interaction between the ventral visual stream and higher order

language areas optimised for comparing top-down predictions with bottom-

up sensations is key to reading (Twomey et al., 2011). A key difference with

hierarchical models is that the interactive account does not require a special-

ist mechanism to represent words in the visual cortex. They suggest that a

the generic representation of a word form in the visual system is sufficient for

recognition, this arises as higher regions of cortex are tuned to estimate the

sensory input that would exist if a given word were present. This approach

is similar to the BR computational model and implies that specialisation for

language exists in non-visual parts of the brain but that these areas contain

abstracted representations that can generate sensory predictions.

The Bayesian Brain Hypothesis (BBH) suggests that the brain has an

internal representation of the external world which it uses to predict and ex-

plain sensory inputs (Knill and Pouget, 2004). In contrast to the hierarchical

approach, the BBH states that sensory inputs are encoded probabilistically.

In this sense, a letter or word would not be discretely represented by a single

detector or similar, rather a probability density or likelihood function would

represent the relative probability that a given letter or word generated the

available sensory information. This is analogous to the BR (Norris, 2006)

which models word recognition using a probabilistic letter representation to

cope with noisy sensory input. When this representation is considered with

a prior belief, Bayes Law can be used to calculate the posterior probability

of a word given the sensory input so far. One criticism of these approaches

is the source of the prior belief in these models, which is typically taken from

an abstract, task relevant source such as relative word frequencies (Norris,

2006). The ’Free Energy Principle’ (Friston, 2010) builds upon this idea by

introducing the idea of an empirical prior, which provides a framework for

optimising the priors on a model from the data rather than making a priori

assumptions about what they are.

The vOT may act as the brain region in which the visual sensation of

letters and words and the predictions from higher areas are evaluated. In

this sense it can been seen how one region of cortex might assume different
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functions in difference contexts as top-down modulations arrive from differ-

ent networks in different context. This provides a framework for describing

how the brain achieves visual word recognition in terms of prediction, yet

no specific statements are made about the nature of the information repre-

sented in the cortex. The free energy approach might suggest that visual

cortex represents high dimensional probability density functions based on

sensory input, this representation is then modulated by a prior expectation

or prediction from attentional or language circuits in the brain leading to the

final representation of the word in cortex. In contrast to the LCD model, the

interactive and bayesian approaches do not make specific statements about

the nature of representation in the cortex.

The interactive model presents an approach which could explain how

visual word recognition can be achieved by the interaction between the

bottom-up visual process and a top-down predictive mechanism. Though

this is a powerful framework, the precise nature of this interaction and the

neural representations necessary for it to occur are underspecified. Further-

more, the Bayesian models imply that the brain deals directly with complex

probability functions across a space which theoretically encompasses any

possible word form. It may not be necessary for the brain to encode this

entire function, just its sufficient statistics (for instance the mean, and vari-

ance of a normal distribution). Yet even the sufficient statistics of a rapidly

evolving probability function with many peaks could potentially be very

challenging to derive and encode efficiently.

Bayesian models of reading provide emphasis several important features

of a successful reading system. Principally, any perceptual model must

account for noise in the system. Noise can arise at any point in visual

processing and probabilistic models such as the BR are able to demonstrate

how a reader might be able to cope with it. Furthermore the emphasis on the

interface between internal predictions about the world and incoming sensory

information is a stark departure from the almost deterministic mechanisms

outlined in the LCD. A significant difficulty with interactive models is their

underspecification, though they present a relatively simple mechanism by

which word recognition might occur under some very general assumptions,
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they require the brain to process several abstracted probability functions. In

short, hierarchical models such as the LCD make precise statements about

how aspects of a word form can be represented in the brain, therefore the

representations are simple. A feature or bigram is either present or not.

In contrast the interactive models remove the necessity for detailed and

specialised representational schemes but these then imply that the brain

can represent abstract probability functions.

2.1.5 Overview

Broadly speaking, many cognitive, computational and brain models of word

recognition fall into one of two camps. Firstly the cognitive models that

dominated psychology from the 1960s are focuses on abstract symbolic com-

putations. Key to these models are the structure and processes underlying

mental representation and how these lead to complex behaviours (Gard-

ner, 2008). Many models explain visual word recognition through these

abstracted mental states (Morton, 1969; Just and Carpenter, 1980; Ellis

and Young, 1996). In contrast, more recent computational PDP models

have sought to explain word recognition from a few simple principles of the

nervous system (Seidenberg, 2005). Models containing large numbers of in-

terconnected and parallel computational units which behave like neurons are

able to learn and perform many tasks remarkably similarly to humans. The

implication being that the traditional view on abstracted cognitive repre-

sentation may be over-conceptualised and that relatively simple biologically

inspired mechanisms might explain many behavioural findings.

Neuroimaging research to date has primarily focused on the localisation

of cognitive representations and processes. This approach provides more

readily testable hypotheses for current neuroimaging methods to investigate

the functioning of different brain regions. Moreover models such as the LCD

(Dehaene et al., 2005; Dehaene and Cohen, 2011) provide explicit statements

about how information is encoded in the brain. In contrast, the Interactive

account of word recognition Price and Devlin (2011) explains the process

in more general terms derived from lower level properties of neurons. This
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explanation is related to the PDP approach in its attempt to build processes

from simple principles and the Bayesian literature in its focus on internal

models of the world. Yet it remains underspecified, these models do not

currently state explicitly what neurons must represent or how they might

represent it.

The nature of representation and information flow in the early visual sys-

tem might be able to disambiguate between these approaches. Is there more

evidence to support a symbolic processing hierarchy in which information is

interactively processed in a simple-to-complex series of representational lev-

els, or a noisy probabilistic process in which internal representations about

the cause of sensations are dynamically updated across the whole processing

stream as the visual system provides pieces of evidence?

2.2 Early Visual System

A general principle for the global function of visual cortex would have to

account for both the specialisations and interactions within the system, and

remains controversial (Zeki, 2001; Wandell et al., 2007). One influential

model in object recognition makes a distinction between a dorsal ’where’

stream and a ventral ’what’ stream specialised in locating and identifying

stimuli in space respectively (Ungerleider and Mishkin, 1982; Goodale and

Milner, 1992), though this model provides a framework for visual processing

it stops short of a mechanistic account of how specialisation and interaction

within the system give rise to visual percepts. Grill-Spector and Malach

(2004) propose another model in which visual processing is described as a

hierarchy of visual regions starting in V1 and ascending to higher level spe-

cialised regions such as the fusiform face are and PPA, within each stage of

the hierarchy there is a specialisation gradient, in V1 this is a specialisation

for the foveal visual inputs and in higher cortex specialisations from central

stimuli such as faces to more peripheral-biased stimuli such as buildings and

scenes.

In contrast to these hierarchical views, it has been suggested that the

visual system operated in a reverse hierarchy (Hochstein and Ahissar, 2002).
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Initial vision at a glance identifies general categories in the visual scene

before a top-down process scrutinises the sensory input in more detail. The

idea is that very rapid automatic visual processes are able to activate high

level representations such as an object category or a word within a few

hundred milliseconds, and only then are the fine grained details investigated

in detail. Source estimates from MEG recordings have demonstrated that

the orbito-frontal cortex is recruited during object recognition around 50ms

before semantic/recognition related regions in the temporal lobes, moreover

this activation is modulated by the low spatial frequencies in the image (Bar

et al., 2006). This distinction between a rapid feed-forward early process and

later interactive processing has been demonstrated during object recognition

in the Macaque (Lamme and Roelfsema, 2000) who suggest that the early

process reflects pre-attentive vision and that the later recurrent processing

supports the attentive processing required for awareness.

Overall, the visual system begins processing in the eye. A range of

information including the local contrasts and spectral content of light in

the visual field is extracted a passed up several parallel routes to process-

ing in the cortex. Very early in the cortex, several interactive processing

streams further extract information from the visual scene, possibly guided

by a prior belief or prediction about the world or the result of an automatic

and rapid interpretation of the visual scene. Different types of visual infor-

mation are available at different latencies with information from the Mag-

nocellular pathway reaching cortex around 20ms before information from

the Parvocellular pathway. Finally there is no clear end point to visual pro-

cessing, top-down, bottom-up and lateral connections between many areas

imply that recurrent feedback/feedforward processes, rather than a bottom-

up hierarchy, may be key.

In relation to models of visual word recognition, evidence from the visual

system would suggest a great deal more rapid interactive processing than

has been suggested by models such as the LCD. Moreover, it seems likely

that different information is available at different timescales with rapid pro-

cessing related to low spatial frequencies in the orbitofrontal cortex around

130ms after stimulus onset, possibly facilitated by the conduction times
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within the M pathway. This information must be integrated with the slower

more detailed processes that come later. The visual processes at the start

of written word recognition support a model of reading that emphasises in-

teraction and can account for information about the word form becoming

available dynamically over the first few hundred milliseconds after stimulus

onset.

2.3 The Language Network

In 1865 Paul Broca stated that articulate speech is located in ’the third

frontal convolution of the left hemisphere’ (Berker, 1986). This now classic

paper presented evidence that lesions in the left inferior frontal gyrus (LIFG)

were solely responsible for the loss of articulate speech, and in doing so sug-

gested that a single brain region might be responsible for a highly complex

behaviour such as speech. This idea of functional localisation of specific

processes has been influential ever since. More recent cognitive models of

reading identify three major subprocesses, orthography, phonology and se-

mantics, relating to the symbology, sound and meaning of a written word

respectively. The localisation and function of these components within the

brain has been the focus of a large neuropsychology and neuroimaging lit-

erature over the last century.

2.3.1 Language Areas And Recognition

Section 2.3.1 of this review outlined how lesion and neuroimaging evidence

can build a case for the localisation of a function such as word recognition.

Efforts to elucidate how phonology and semantics are accessed and influence

the recognition process have taken a similar path. Early work was domi-

nated by the deficits caused by lesions to different parts of the brain until

advances in medical imaging allowed for in vivo localisation of function us-

ing activation or adaptation paradigms. This section outlines recent work

on word processing outside the visual cortices, in particular, the brain basis

of phonology and semantics.
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The overall pattern of cortical recruitment over time during word recog-

nition can be estimated from MEG data. Source estimates of phase-locked

cortical activity during visual word recognition from anatomically constrained

MEG source analysis data have found a posterior to anterior progression of

activation (Marinkovic et al., 2003). Beamforming is another source estima-

tion technique which can recover the total, as opposed to evoked, activity in

the brain’s source space. Studies using this method have suggested a more

complex pattern of activity, including early activation of the LIFG, though

the general posterior to anterior trend in processing remains (Pammer et al.,

2004; Cornelissen et al., 2009).

A wealth of localisation studies in fMRI have been reported since the

1990s and this has lead to several formal meta-analyses looking for con-

sistent findings across this literature. Turkeltaub et al. (2002) conducted a

meta-analysis of 11 PET studies of single word reading which were compared

to a single fMRI study. Several regions showed consistent activation, includ-

ing bilateral motor and superior temporal cortices, the cerebellum and the

left hemisphere fusiform gyrus. These regions were validated with a novel

fMRI reading experiment which showed substantial correspondence with the

results of the PET meta analysis. Consistent activation of the left fusiform

supports findings outlined in section 2.3 about the relevance of this area

to the processing of visual aspects of words. The authors further suggest

a phonological role for the IFG and a semantic role for anterior fusiform

cortex. A further meta-analysis focusing on cross cultural differences ex-

pands on this suggestion, phonological processes are thought to be seated

in superior temporal region, inferior frontal, inferior parietal and pre-motor

regions, whereas semantic processes occur in anterior fusiform cortex and

the middle temporal gyrus (MTG) (Bolger and Perfetti, 2005). Several of

these regions have been shown to interact during the resting state (Koyama

et al., 2010). Finally (Jobard et al., 2003) conducted a meta-analysis of

35 fMRI studies with a view to evaluating cognitive dual-route models of

reading. They suggest that a graphophonological route, similar to the in-

direct pathway rests on superior temporal gyrus, supramarginal gyrus and

the posterior part of the IFG. In contrast, the lexicosemantic route arises
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from co-activation of the VWFA with inferior temporal regions, the MTG

and the IFG pars triangularis.

Phonology

The dual-route model of reading suggests a critical role for a mapping be-

tween a visual letter form and a sound, particularly while learning to read

(Coltheart et al., 2001). Originally the transformation to a phonological

code was thought to occur after the meaning had been extracted (Kleiman,

1975), yet this may occur before lexical access and provide a means for

lexical access when orthographic information is insufficient (Besner, 1987).

Broca’s area is the inferior frontal gyrus (IFG) of the left hemisphere and

was initially thought to be involved in producing speech. Recent neuroimag-

ing evidence has linked sections of it with phonological processes (Fiez, 1997)

though it has also been implicated in language-related functions such as

syntax, action perception, working memory (Grabowski et al., 1998) and

selection from competing alternatives (Moss et al., 2005). Broca’s area has

a complex cytoarchitecture (Amunts et al., 1999; Keller et al., 2009) and

structural connectivity profile (Anwander et al., 2007). As such, it may

serve several parallel functions within the reading network. Furthermore,

different subregions of the IFG are preferentially activated depending on

whether a linguistic or task-demand based BOLD contrast is used in the

analysis (Wright et al., 2011).

MEG evidence supports a role for the IFG in phonological processing

(Cornelissen et al., 2009; Wheat et al., 2010). Of particular interest in these

results is the early timing of the posterior IFG response; it is preferentially

activated within 100ms when a word is phonologically, as opposed to ortho-

graphically, primed (Wheat et al., 2010) suggesting that this sub-region is

involved in rapid phonological access. Whether this early response is nec-

essary for recognition remains controversial, Wheat et al. (2013) used TMS

to show that disruption to the IFG around 200-300ms after stimulus onset

was most disruptive to articulatory-phonological processes rather than word

recognition itself.
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The superior temporal gyrus has also been implicated in a conversion

from orthography to phonology though it is typically associated with pro-

cessing of speech (Simos et al., 2002; Jobard et al., 2003). In contrast, a

meta analysis of 120 fMRI studies suggests that it is associated with per-

ceptual auditory processes (Binder et al., 1997, 2009). Furthermore, though

the STG is associated with successful reading aloud its response is not corre-

lated with word/bigram frequency, imagability or consistency (Graves et al.,

2010), again suggesting a low-level perceptual rather than a more linguistic

role. A meta analysis of 36 studies showed that the STG was only present

in couple of studies using a word minus pseudoword or vice versa contrast

(Taylor et al., 2012). In summary, there is little evidence from the fMRI

literature that the STG is directly related to word recognition.

The evidence for phonological processes being important in visual word

recognition is controversial. The lack of consistency may be as skilled read-

ers only recruit the phonological pathway during recognition of difficult or

infrequent words.

Semantics

Semantic processing refers to concepts or meaning. In visual word recogni-

tion this process is thought to be necessary for access to and comprehension

of the meaning of a written word.

Semantic dementia patients typically show deteriorated semantic mem-

ory with relatively preserved linguistic function after damage to the temporal

pole (Hodges et al., 1992). This suggestion that the temporal pole may sub-

serve semantic processing is generally supported by the imaging literature

(Hotton and Yoshimi, 2011), though there are some inconsistencies possibly

based on the signal dropout around the temporal pole in fMRI (Visser et al.,

2012). In general there is strong support for the recruitment of the temporal

pole and ventral anterior temporal lobe in amodal semantic processing, as

such it may play an under appreciated role in semantic aspects of reading.

The superior temporal gyrus has long been accredited with an essential

role in language function, the posterior parts forming ’Wernicke’s Area’ along
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with the Angular Gyrus (AG) (Wernicke 1874 as cited in Eggert, 1977)

This region has been associated with language comprehension, with lesions

leading to receptive aphasias. In contrast to this, more recent evidence

presented in the section above suggests it is more associated with perceptual

processing of the sound of a word.

Jules Déjérine proposed that the AG near the temporoparietal junction

may act as a visual verbal word form store (Déjérine 1891,1892 as cited in

Catani and Ffytche, 2005). The AG is densely interconnected with other

relevant regions in the reading network (Catani et al., 2005; Seghier and

Friston, 2013) and appears in contemporary reading models (Price, 2012).

The precise role of the AG remains unclear, the early models of Déjérine

suggest a role in the initial identification of a stimulus as a word. The

consequences from a lesion to AG suggest a more general cognitive role with

damage potentially leading to a wide range of deficits from alexia, acalculia,

apraxia and dementia (Binder et al., 2009). As such, it may act as an amodal

high level conceptual integration area (Geschwind, 1965a).

The connections of the AG in relation to reading, present a clearer pic-

ture. The gray and white matter associated with the AG has been shown to

be different between early and late literate readers (Carreiras et al., 2009),

suggesting that rather than a mere association, the structure and connec-

tions of the AG may be shaped by reading. In addition, the angular gyrus of

people with developmental dyslexia has been shown to be relatively discon-

nected from the reading network in comparison to typical readers (Horwitz

et al., 1998). In summary, there is strong evidence to suggest that the AG

is relevant to the reading network, possibly acting as a visual lexical store.

Overall, several brain regions are associated with semantic processes re-

lating to the meaning of a word. This meaning must be access to fully

recognise a word suggesting that visual word recognition is very likely to

engage semantic regions such as the AG and temporal pole. The nature of

the interactions between vision and semantics remains unclear. A hierar-

chical model such as the LCD might suggest a bottom-up information flow

in which a representation of a word in vOT engages a semantic representa-

tion in the TP, in contrast interactive accounts would suggest that top-down
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interactions are necessary to recognise a word.

2.3.2 Summary

Despite the inputs to the reading system being visual, the processes that

follow recruit a widely distributed and highly interactive network of brain

regions. Phonological processes are associated with regions such as the su-

perior temporal lobe and Broca’s area in the inferior frontal gyrus, while

semantic processes are associated with the temporal pole, anterior fusiform

and middle temporal gyus. As previously discussed with the localisation

of word recognition, it can be problematic to make one-to-one structure-to-

function mappings McIntosh (2000); Price and Friston (2005). Though the

precise mapping of cognitive functions to brain regions is difficult, there re-

mains considerable evidence for specialisation of function within the reading

network.

Overall, there is considerable evidence in support of a distributed, dy-

namical network supporting the processing of visual words in the brain.

There are some difficulties mapping functions to specific regions within this

network, however these can be tackled by modelling the network as a whole.

A burgeoning connectivity literature in the field of neuroimaging provides

several approaches for the modelling of interdependencies and interactions

between brain regions. Understanding these interactions will be a critical

step towards understanding how we are able to recognise a visual word form.

2.4 Modelling The Visual Word Recognition Sys-

tem

The importance of interactions between brain regions in reading, has been

established through a consideration of contemporary theories of visual word

recognition, the distributed and interactive processing in the early visual

system and complex network of higher brain regions recruited as we read.

There is more evidence to support a distributed processing model such as the

PDP rather than a strictly hierarchical framework. Despite this evidence,
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the majority of contemporary neuroimaging research in this area still only

interrogates the brain using mass-univariate models which are optimal for

localisation. This is a powerful approach for localising isolated brain regions

associated with specific tasks, however different methods are needed to begin

to investigate the connections and interactions between brain regions.

Several approaches for estimating connections and information flow in

the brain are available. These are forms of multivariate time series analysis,

which enables us to quantify dependencies and causal relationships between

brain regions. There are two main approaches to multivariate modelling

of neural interactions. Data-driven methods draw on classical time-series

analysis commonly found in the physical sciences and engineering, whereas

dynamic causal modelling provides a hypothesis testing framework which

is explicitly designed and optimised for modelling the brain and neuronal

interactions. Both of these approaches are outlined in this section along with

examples of their application with respect to visual word recognition. More

mathematical detail on the following measures will be provided in Chapter

2 of this thesis.

The most common measures of association between two time series are

the correlation and cross-correlation (David et al., 2004). The coherence

function is the normalised Fourier transform of the cross-correlation and

expresses linear dependencies in the frequency domain. The cross-correlation

and coherence are measures of association only, characterising how related

two time series are. No causal inferences can be drawn due to the symmetry

of these metrics. That is the correlation of A and B is the same and the

correlation of B and A. Some directionality can be inferred from the cross-

correlation, which is asymmetric, however this does not necessarily imply a

causal relationship and may be mediated by an unmeasured third source.

Granger Causality (GC) is a test for statistical dependencies between

activity in one area and the past history of activity in a second. A time series

x can be said to be Granger Causal to a second time series y if prediction of

y given the past history of x and y is more accurate that the prediction of y

from the past history of y alone (Granger, 1969). This is intimately related

to the cross correlation function between x and y and has subsequently been
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extended into the frequency domain (Geweke, 1982). GC can be thought

of as a measure of directed functional connectivity (Friston et al., 2012) in

that the GC of A and B will not necessarily be the same as the GC from B

to A.

Multivariate auto-regressive (MVAR) models, provide a method for char-

acterising the multivariate dependencies between time-series. This is achieved

by fitting a model which predicts a subsequent data point in one node from

the past history of the node, and every other node in the network. These

models are derived from observed data and can be fitted with the appropri-

ate selection of two free parameters, the delay and the model order. The

delay determines the time between observations used as predictors in the

model and the model order the number of past history samples to include

from each node.

After a MVAR model has been fitted to the observed data, the parameter

matrix can be manipulated in a number of ways to express the influences

between the time series in the model. The parameters can be used in a

bivariate GC test to establish information flow between pairs of nodes in

the network. In addition, several multivariate causality measures have been

developed which express the relative strength of particular connections as a

ratio of the total information flow in a network. The most widely used meth-

ods are are the Directed Transfer Function (Kaminski and Blinowska, 1991)

and the Partial Directed Coherence (Baccala and Sameshima, 1998; Baccalá

and Sameshima, 2001). Both of these metrics can reveal information about

the structure of the dependencies between the modelled time-series, however

only PDC is able to discriminate between direct and indirect connections.

The temporal resolution of MEG is sufficient to allow estimation of

MVAR models over time windows as short as 50ms (Ding et al., 2000; Sun

et al., 2009a). This creates the potential to evaluate measures such as the

DTF and PDC on a very short time-scale using a sliding window approach.

This approach has been applied to object recognition (Supp et al., 2007)

and auditory word repetition (Korzeniewska et al., 2008), demonstrating a

highly dynamic and complex pattern of information flow.
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2.4.1 Application to Visual Word Recognition

In application to visual word recognition, a common analysis pathway is to

identify relevant brain nodes using a traditional activation paradigm before

estimating the connectivity between the nodes (Salmelin and Kujala, 2006).

In this way connectivity information can be used to directly extend the

existing literature.

Dynamic imaging of coherence sources is a metric applied to source es-

timates of brain activity designed to reveal information about coherence

between regions in the brain (Gross et al., 2001). It is able to establish asso-

ciations between brain regions in an exploratory way and as such is able to

naturally extend previous work charting the evolution of cortical responses

to words (Pammer et al., 2004). Applied to MEG collected as a partici-

pant performs a reading task many brain regions have been found to be

coherent in the alpha band, moreover coherence and GC patterns across the

whole left hemisphere have been estimated in this manner (Kujala et al.,

2008). Both metrics reveal a complex pattern of interconnections within

the left hemisphere. There have been several recent reports of directional

links between nodes in the reading network. Simos et al. (2002) used multi-

ple autoregressions to probe the time lagged dependencies between several

reading nodes. They found that early activity in fusiform contributed to

responses in AG around 200-250ms after stimulus onset, furthermore the

AG and STG activity contributes to later IFG responses between 350 and

450ms after stimulus onset.

GC analysis of the interactions between STG and vOT during a vi-

sual word priming task showed that despite reduced local activation as a

result of priming, connection strength between the superior temporal cor-

tex influences ventral occipito-temporal cortex increased between 150 and

290ms (Kujala et al., 2012). This finding suggests top-down modulation

of visual responses possibly based on the phonological content of a word.

More generally, the increased information flow on when reading a primed

word highlights the potential functional relevance of connections on cogni-

tive functioning.
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Given the pattern dynamic changes in source activation during reading

(Marinkovic et al., 2003; Pammer et al., 2004) we might expect to see dy-

namic changes in connectivity as well. The few studies that have applied

these methods to reading in a time-sensitive manner have found dynamic

shifts but have stopped short of a providing a detailed account of the in-

teractions across the whole network. Instead presenting connectivity over

relatively broad consecutive time windows or restricting analysis to very few

nodes. A principled investigation into the dynamic changes in connectivity

across the reading network has the potential to disambiguate between the

hierarchical and interactive accounts of visual word recognition by provid-

ing a framework to test for early or transient information flow during word

recognition.

2.4.2 Summary

Overall, data driven MVAR/GC methods provide a powerful metric for es-

timating information flow within the brain. They have been successfully ap-

plied to several other domains in neuroscience Supp et al. (2007); Kaminski

and Blinowska (1991) and have demonstrated the modulation of connections

within a reading network by both experimental manipulations and dyslexia.

These methods model dependencies between observations of a system, that

is dependencies between observed responses rather than neural systems per

se (Friston et al., 2012). As such there is no explicit modelling of the neural

system generating the observations.

2.5 Generative Models Of Visual Word Recogni-

tion

Hinton et al. (1995) makes the distinction between recognition and genera-

tive processes in neural network learning. Recognition is the transformation

from raw inputs to the model to some internal representation, while genera-

tive processes work to reconstruct the raw inputs from an internal state. In

the context of cognitive neuroscience, generative models seek to predict ob-
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served brain responses from a model of the brains hidden dynamics (Friston

and Price, 2001). Generative models use both a neuronal model of the un-

derlying dynamics and an observation model describing how these internal

states produce observed data in contrast to the more data driven approached

which only model dependencies between observed data. In the case of vi-

sual word recognition, the internal representation might be of a written word

form. The recognition process would then be the transformation of a visual

input into this abstracted word representation while the generative process

would reconstruct the sensory input associated with a word from.

As generative models account for internal states explicitly, they are able

to model causal effects between these states that might be hidden from the

observed data. Moreover, the distinction between recognition and generative

processes may provide a mechanism for learning and prediction in the brain.

Internal representations of perceptual inputs are are updated and optimised

in order to predict the sensory inputs with minimal error.

A Generative model can be fitted to optimally predict several brain re-

sponses. The majority of studies fit these models to explain raw brain

response data from neuroimaging experiments, however it is also possible

to optimise the model to explain more complex observations such as the

cross-spectral or even the PDC/DTF of the observed responses.

Dynamic causal modelling is the most prominent generative modelling

approach used in neuroimaging (Friston et al., 2003). Originally formulated

for fMRI data it has since been extended for EEG and MEG (Kiebel et al.,

2008). Observed data are explained by fitting parameters to one or more bi-

ologically motivated neural mass or neural field models located in the brains

source space. Typically, several DCMs with differing assumptions about the

nature of interactions within the network are investigated. Comparing the

ability of each of these models to explain the raw data provides a frame-

work for testing hypotheses about the interactions between the neuronal

assemblies underlying the responses we observe from neuroimaging.

There has been a strong debate in the literature about the ability of

DCM to accurately select the correct model given many alternatives and the

practicalities of comparing large numbers of models or models with large
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numbers of nodes (Lohmann et al., 2012; Friston et al., 2013; Lohmann

et al., 2013). Moreover, despite being grounded in the biophysics of the

brain (Daunizeau et al., 2011) there is as yet no evidence that the canonical

microcircuit model and other source models used in DCM accurately reflect

the working of the brain.

DCM And The Inferior Frontal Gyrus

The role of the inferior frontal gyrus in reading is hotly debated, it has a

presence in many brain models of language and as such provides a rich source

of potential connectivity hypotheses. The direction of influence between the

IFG and associated language areas is vital in determining its role. The

winning DCM which explains most of the data from an fMRI single letter

detection task Liu et al. (2011) contains top down connections originating

from the IFG to the right middle occipital gyrus. This implies the IFG has a

top-down role in VWR, highlighting relevant features for further processing.

A more complex spelling and rhyming task in fMRI has found converging

evidence for this top-down influence. The winning DCM suggested that task

modulated the target region for top-down influence from the IFG (Bitan

et al., 2005). The authors suggest that the IFG enhances sensitivity to task

dependent information. These findings support reading models in which the

IFG has an attentional role, modulating activity in earlier areas depending

on the task or context of the experiment.

Other language properties have been associated with connections be-

tween the IFG and the reading network. Heim et al. (2009) compared sev-

eral models involving two areas in the LIFG and the inferior temporal gyrus,

during visual presentations of words and pseudowords. The stimuli were as-

sumed to directly excite the ITG which would subsequently activate either

BA44 (more posterior), BA45 (more anterior) or both. The winning model

showed that the task modulated the ITG to BA45 connection, implying that

BA45 supports explicit lexical decision making. Mechelli et al. (2005) con-

ducted a DCM to establish how information is passed between the inferior

frontal gyrus, fusiform gyrus and superior temporal gyrus. They found that
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pseudoword reading was associated with a stronger connection from poste-

rior fusiform gyrus to the dorsal premotor cortex (just posterior to the IFG).

This may be indicative of a greater reliance on phonological processing in

the dorsal premotor cortex while reading pseudowords.

The above DCM studies all use fMRI data which typically samples

BOLD every two seconds. While this is sufficient data to fit a DCM, there is

no possibility of establishing how causal structure within a network changes

over time. EEG and MEG data do provide the temporal resolution to es-

tablish rapid changes in connectivity, however DCM for M/EEG has been

less widely applied to date. Yvert et al. (2012) used DCM of ERPs to look

at how effective connectivity within a fronto-temporal language network is

modulated by phonological and semantic processing. Multiple pathways in

language processing are established, in particular frontal areas are suggested

to exert a top-down control on temporal regions. The timing of any influ-

ence of the IFG on the reading network was investigated by Woodhead et al.

(2012) who conducted a MEG DCM study. The findings establish that the

LIFG influences vOT in a top-down manner within 200ms of stimulus onset.

2.5.1 Summary

DCM provides a powerful mechanism for testing hypotheses about how neu-

ral regions interact with each other. In its application to VWR a number of

important theories have been questioned. As proposed by several cognitive

and anatomical theories of reading, the DCM literature has found evidence

for a number of mechanisms for reading. These include number of posterior

to anterior routes as well as evidence for top-down influence of regions such

as the IFG. Finally, the Putamen has been implicated in reading out loud

though again, this connection may be one of several possible mechanisms in

the reading process.

Recently information about the timing of interactions between regions

has been found using DCM on MEG data (Woodhead et al., 2012). Of

particular interest in this result is support for the early influence of the

IFG, within 200ms of stimulus onset. Similarly to the data-driven methods,
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the majority of applications of DCM present a static view of the brain.

Most current applications of DCM are focused on testing hypotheses.

VWR has a rich history in psychology and neuroscience and as such pro-

vides a wealth of potential hypotheses about how the brain processes words;

however many of these posit multiple processing routes within the VWR

network and suggest complex patterns of interaction, even before consider-

ation of the timing and frequency content of such interactions. Given this

level of complexity, it is hard to be certain that the selection of models given

to DCM to test between will contain all possibilities. Moreover, for anything

more than a simple network an exhaustive search of the model space can

become computationally expensive if not impossible. (Lohmann et al., 2012)

Generative models can provide insight into the internal workings of a

system that might be hidden from observations. Biologically plausible gen-

erative models describing how layers of neurons in cortex might interact

provide the basis for the very influential DCM method. Currently formu-

lated as a hypothesis testing framework, DCMs can provide evidence for the

ability of a given model to explain observed data. The parameters of the

optimal model can then be interrogated to provide some insight to how the

neurons generating the data behave. Generative models have considerable

potential to predict and explain very complex interactions in observed data,

including cross-spectra and phase-coupling however this has been a very re-

cent development and has not yet been applied to visual word recognition.

2.6 General Summary

There has been a over a century of research into the brain basis of visual

word recognition, with contributions from a diverse range of fields such as

neurology, psychology and computer science. In general there have been

two broad approaches to uncovering how the system works. The cognitive

symbolic approach seeks to break down word recognition into discrete but

interactive subprocesses with a focus on the nature of how words are rep-

resented at different stages in word recognition. Models such as the LCD

suggest a brain basis for this kind of explanation. In contrast, the PDP
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style approach looks to explain word recognition from a simple set of princi-

ples. This approach is most apparent in PDP and BR computational models

and focuses on the nature of the processes that must occur rather than the

specifics of the representation used.

Evidence from the early visual processing suggests that visual word

recognition is supported by a dynamic system with several parallel process-

ing streams. Furthermore many regions within the frontal, temporal and

parietal lobes are recruited rapidly and in parallel when reading a word.

There are interactive models of visual word recognition that explain how

sensory inputs might interact with higher level representations and predic-

tions, however these tend to underspecify the nature of the representation

of hte word form in cortex.

A growing literature is investigating the connectivity within the language

network, however the results are often oversimplified and it is difficult to find

an consensus. Moreover, despite the problems with localising cognitive pro-

cesses to specific brain structures, much of the current literature still takes

this approach. DCM takes a more principled stance in its modelling, build-

ing from simple structures to explain complex behaviours, however again the

results to many applications of DCM boil down to an attempt to localise

a cognitive process to a discrete connection. Moreover, current implemen-

tations of DCM are dependent on hypothesis testing. Though visual word

recognition has a rich theoretical framework from which to draw hypotheses,

little exploratory work has been done to map pattern of connectivity in an

unbiased, data driven way.

This review has outlined evidence that visual word recognition is sup-

ported by a dynamic, distributed and highly interactive network of brain

regions. Convergent evidence from abstract cognitive and computational

models and neuroimaging imply that the connections between brain regions

are highly important. Data driven analysis techniques allow for a detailed

investigation into the the connectivity within the reading network and how

it changes over time. This approach has the potential to identify the crit-

ical connections and characterise how they are modulated by information

content of the written word.
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2.7 Research Question

Given the evidence presented above, this thesis will specifically address sev-

eral questions. Firstly, a set of analysis techniques which allow for robust

and principled estimation of directional connectivity within a brain network

are described. These methods are validated through simulations before ap-

plication to brain data. The methods are applied to resting state brain

dynamics on a timescale of seconds before the more rapid dynamics asso-

ciated with visual word recognition are probed. This will extend the work

of studies such as Kujala et al. (2007) by providing a temporally rich and

fully multivariate description of information flow within the reading net-

work. Once this method has been shown to be effective, further work will

investigate how manipulations of the orthographic structure of a word form

can modulate the strength and timing of these connections.
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Chapter 3

Estimating Directed

Functional Connectivity

From Dynamics In An

Embedding Space
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3.1 Introduction

The human brain is a complex system with a dynamic spatio-temporal struc-

ture. Many consistent functional structures within the brain have been ob-

served on the basis of functional neuroimaging data in recent years, however

we still know relatively little about the dynamics of the system we are ob-

serving. A critical issue is that the internal state of the brain is not directly

observable and as such we are limited to making inferences from external

observations of its behaviour. Several approaches are available to tackle this

problem. Dynamic causal modelling (DCM) makes use of an explicitly de-

fined model of the neural generators of the observed response which is then

parameterised by the data. Such models have a rich history in neuroscience

and although they have biologically plausible neural generators these rep-

resent a considerable simplification of the neuronal assembled in the brain.

Moreover the structure of neurons in gray matter is not uniform across the

brain (Mesulam, 2000). An alternative approach based on state-space re-

construction allows the investigator to remain agnostic about the nature of

the internal states generating our observations. This is achieved through

a reconstruction of the internal state-dynamics directly from the observed

data, under certain assumptions this has been shown to recreate the in-

ternal dynamics in a new coordinate space completely characterised from

the data. This state-space approach is the basis for the analysis pipeline

outlined within this chapter and is applied throughout this thesis.

3.2 Introduction To MEG

Magnetoencaphalography (MEG) is a non-invasive neuroimaging technique

which measures the magnetic fields naturally produced from neuronal activ-

ity within the brain (Cohen, 1972). The fields are recorded from a distance

of several centimetres from the scalp using a super conducting quantum in-

terference device (SQUID). These SQUIDs are used to measure current in a

pickup coil generated from electromagnetic flux. The SQUIDs are immersed

in liquid helium at temperatures close to absolute zero in a cryogenic dewar,
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which in turn, is place inside a magnetically shielded room. These steps are

required to ensure that the SQUID is sensitive enough to record the tiny

magnetic fluctuations arising from neuronal activity. This is challenging

as the biological signal is several orders of magnitude smaller than signals

caused from the environment or even the earth’s magnetic field (Hämäläinen

et al., 1993).

MEG has a very fine grained temporal resolution, being able to sample

in the kilohertz range. However, the growth in the use of MEG in recent

years has arisen from developments in source localisation techniques. Mod-

ern methods such as minimum norm estimation (Hämäläinen and Ilmoniemi,

1994; Vrba and Robinson, 2001) and beamforming (Hillebrand et al., 2005;

Van Veen et al., 1997; Huang et al., 2004; Johnson et al., 2011) are able to

offer a good spatial resolution in addition to the excellent temporal reso-

lution. This makes MEG a good compromise between the detailed spatial

resolution of functional magnetic resonance imaging (fMRI) and the rapid

temporal resolution of EEG. The details of MEG function and source local-

isation algorithms are outside of the scope of this thesis, for a more detailed

introduction see: (Vrba and Robinson, 2001; Baillet et al., 2001)

The methods outlined in this chapter begin with a set of virtual elec-

trodes; these are virtual sensors at a specific location in the brain whose

recordings are constructed from a weighted sum of the sensor recordings.

3.3 Dynamical Systems

A dynamical system is a set of rules which describe how a point in a coor-

dinate space depends on time. We can consider the brain to be a dynamical

system with three critical features; a state-space (S), set of times (T ) and

a rule (R) governing the evolution of the systems state (s ∈ S) over time

with initial conditions s0 at t0 (Meiss, 2007). A system’s internal state may

not be directly observable, therefore an additional rule (O) is defined which

relates the current state to the observable outputs of the system. The coor-

dinates of a state in S describe the values of the internal components of the

system at a given time which can be related to both the change in s over

64



time and the observable outputs of the system x by the following system of

two equations:

ṡ = R[t0, t, s0, st, ut] (3.1a)

x = O[t, st] (3.1b)

in which t ∈ T determines the time over which the system evolves and u

defines any inputs to the system. ṡ refers to the differential of s, which is

it’s change over time. In the case that R and O are linear combinations of

s and u we can rewrite the equations in matrix form

ṡ = Fst +Gut (3.2a)

x = Hst (3.2b)

Equation 3.2a is the state equation which is an explicit definition of R

that governs how s changes over time. F is the system matrix which relates

the current state to the subsequent change and G is the control matrix

relating inputs (u) to change in state. Equation 3.2b is the output equation

which determines the observable outputs of the equation to the s through

the output matrix H. This is the output equation in the case that O is

considered to be linear. Together these state-space equations form a model

of the dynamical evolution of the hidden state of a system and its observable

outputs.

Any system which can be described or approximated by a set of ordi-

nary differential equations (ODEs) can be described using the state-space

equations above. As such they provide a powerful means for describing a

system governed by an unknown system of ODEs.

The state-space equations can be reformed for a discrete time system

in which t is now an integer multiple of the sampling rate of observations

through T .
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st+1 = Fst +Gut (3.3a)

x = Hst (3.3b)

In an application to brain dynamics, s is unobservable and moreover, its

physical interpretation is unclear. In addition though u is likely to be related

to physical stimuli and sensory input, its precise form is very difficult to

quantify. As such, we are not able to directly solve the state equation as both

s and the differential equations which govern its motion are unknown. For

such cases there are methods for reconstructing the dynamics of s directly

from observed data. A highly influential example is time-delay embedding

and the method of delays.

3.4 Time Delay Embedding

A systems trajectory through S is determined through a system of unknown

and unobservable ODEs, however several methods exist for reconstruction

of these dynamics directly from the data.

Time delay embedding (TDE) is one such method for reconstructing the

dynamics governed by the state equation in a system from a sequence of

observations of the output. S is an d-dimensional manifold M or topolog-

ical space defining all possible states of a system. Though this cannot be

observed directly, a smooth and invertible mapping can be made from M to

space with a different coordinate system (Q) (Broomhead and King, 1986).

The advantage of such as step is that though M cannot be directly observed,

Q can be defined such that the coordinate of s within Q can be determined

directly from the observed data. As such the dynamics within M can be

realised within the new and observable coordinate space Q. A d-dimensional

manifold may be embedded within a new space of sufficient dimensionality

(2d+ 1) (Whitney, 1936). This finding has led to several techniques for re-

constructing state dynamics from time-series (Takens, 1981; Packard et al.,

1980)
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Φ∈ Q Φt,τ,p = [xt−3τ , xt−2τ , xt−τ , xt]

O

TDE

Figure 3.1: A schematic depicting the relation between the hidden state
space S to the embedding space Q through a time-delay embedding.

The method of Takens (1981) states that an embedding Φ, which maps

between M and Q, can be defined with coordinates from a sequence of

observations x of the system over time. The critical parameters for this

embedding are p - the dimensionality of the embedding and τ the time-

delay between observations to include.

Φt,p,τ =
[
xt,x(t−τ),x(t−2τ), . . . ,x(t−pτ)

]
(3.4)

where Φt,p,τ defines an embedding window, a vector containing p ele-

ments of the time series. If τ = 1 these observations are consecutive, other-

wise when τ is an integer multiple of the sampling frequency it defines the

delay in between observations in the embedding (see figure 3.1 for a graph-

ical depiction). When this embedding window is advanced stepwise along

the time-series it yields a sequence of vectors (Φt,p,τ as defined in equa-

tion 3.5) in the embedding space Q. Under the hypothesis/assumptions of
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Takens (1981) this trajectory will maintain the dynamics of the evolution

of s through M within the new coordinate space defined by the embed-

ding. The transformation between M and the embedding space may be

highly non-linear however a point-to-point mapping between the coordinate

systems should be preserved.

Φt,p,τ =
[
Φt,p,τ ,Φt+1,p,τ , . . . ,Φt,p,τ

]
(3.5)

The vector in equation 3.5 can then be used as an approximation to the

state equation in equation 3.3a. Finally the link between this approximation

to the internal states and the system outputs can be quantified by substitut-

ing Φ into the output equation in equation 3.3b. This use of a Multivariate

Autoregressive (MVAR) model to quantify this interaction is discussed in a

later section.

x = HΦt,p,τ (3.6)

3.4.1 State Space Reconstruction Parameters

We want to ensure that the space of past states to use in the reconstruction

are optimally sampled for the prediction of future states, conditional on

the avoidance of experimental noise. There are a range of methods for

objectively establishing optimal values for the delay and dimensionality of

the system (Ragwitz and Kantz, 2002; Cellucci et al., 2003) which have

been applied to non-linear analyses of neuroimaging data (Stam, 2005). An

inappropriate value for either p or τ can lead to a distorted representation

of the dynamics of the observed system potentially leading to the detection

of spurious dynamical relations or the omission of real ones. As such, a

large literature on the selection of optimal parameters has arisen. The fact

that the reconstruction parameters of critical importance to ensure a good

representation of the underlying dynamics is very clear, however the methods

for their selection often come with a health warning. Various methods have
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been shown to provide good reconstructions however they are often based

on rather arbitrary criteria. The performance of a given method depends

on the data being analysed (Kugiumtzis, 1996). Moreover, it is not the

case that there is ’correct’ reconstruction. The goal of TDE is to establish

an embedding which preserves the topological properties of the unknown

underlying dynamical system. In a very complex system there will be many

possible embeddings which approximate this objective. As such, we must

approach the selection of the state space reconstruction parameters as an

optimisation problem tuned to our specific needs. That is, ‘which selection

of p and τ gives the simplest embedding which allows for accurate prediction

of future observations? ’

In the case of the neural data in this thesis the final objective in the

analysis is to establish the predictive power of a systems state on subsequent

data observations. As such the methods for optimising the embedding of a

data set will be utilised to optimise the prediction of future neural behaviour.

Estimating Time Delay (τ)

With observations of a system in the presence of experimental or environ-

mental noise, the information between adjacent observations may become

highly associated. This can mask the systems true trajectory through state

space. Under the assumption that the noise will be locally correlated in time

and does not vary systematically with the observed systems state, this con-

found can be minimised through the selection of an appropriate time-delay

between observations to be included in the TDE.

In the analysis of chaotic time-series and non-linear attractors there

are two widely accepted criteria for selecting an appropriate time-delay

(Kugiumtzis, 1996):

• The reconstructed attractor must be expanded from the diagonal.

• The components of the delay vector must be uncorrelated.

The first of these criteria refers specifically to the unfolding of a chaotic

attractor and becomes problematic to find a meaningful value where p > 2
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(Kugiumtzis, 1996). As a neural data is likely to arise from a complex and

potentially very high order system and any useable reconstruction is likely

to have more than two dimensions, evidence from unfolding is not considered

in this thesis.

The second criterion is more tractable for high order systems and is

usually assessed using one of two methods. The first zero-crossing of the au-

tocorrelation function (equation 3.7) of the observed data provides a simple

metric for establishing τ where adjacent observations are decorrelated. The

autocorrelation function Rt,τ can be calculated as:

Rt,τ =
E[(xt − µ)(xt−τ − µ)]

σ2
(3.7)

in which E denotes a sample expectation, µ is a sample mean and σ2 is the

sample variance.

While the autocorrelation function characterises linear associations the

non-linear associations can be characterised by assessing the Mutual Infor-

mation (MI) function (equation 3.8) as suggested by Fraser and Swinney

(1986). These two approaches can yield different and possibly contradic-

tory results. The autocorrelation function provides the simplest solution

yet when empirically assessed, the optimal value for τ only equals the first

zero crossing when the signal contains very little or no noise. The optimal

value decreases monotonically with increasing noise until the point where a

highly stochastic system will have an optimal delay of one sample. (Ragwitz

and Kantz, 2002). As such the autocorrelation method may overestimate

τ in noisy systems, in contrast, the plateau of the MI function tends to

provide a value in a moderately noisy system in between these extremes.

The mutual information between two series of observations x1 and x2 can

be computed with:

MI(τ) =
∑
x1,x2

P (x1, x2) log2

P (x1, x2)

P (x1)P (x2)
(3.8)

in which P (x1) is the probability distribution of values in x1, P (x1, x2) is the
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joint probability density function of both series and P (x1)P (x2) the product

of the two single probability density functions. It may be expected that in

a highly noisy system, such as an externally observed brain response, the

optimal delay will be very short (perhaps only a few samples). In practice,

such a short delay might lead to a restrictive resolution in the spectral

representation of the reconstruction particularly if the sampling rate is very

high. This may present a problem for applications in which the spectral

content of a system is very important.

Both of these metrics can be complicated by periodicity in the observed

data which could lead to a case where xt and xt−τ are decorrelated but xt

and xt−2τ show some association.

For anything beyond a very simple system it is unlikely that a value

for τ that will satisfy each of the above criteria while avoiding all of the

pitfalls. Moreover, the sampling rate is likely to have been determined by

practical rather than a priori experimental reasons to optimise sampling of

the system in question. In addition the validity and results from any TDE

are specific to the dataset from which it was estimated, and as such might

not provide useful heuristics for optimising state reconstructions in unseen

data.

Estimating Dimensionality (p)

Typically the embedding dimension is chosen using a method such as False

Nearest Neighbours (FNN) which establishes the optimal dimensionality as

the point at which increasing dimensionality preserves the relative spatial

relationships between the observations (Kennel et al., 1992). This procedure

is highly computationally intensive, particularly for large datasets, as it

involves the computation of the distance between each observation and all

others in an increasingly high dimensional space. In addition it is explicitly

designed to minimise intersections in the reconstructed attractor rather than

optimise future predictions.

The criterion for selecting the optimal dimensionality for a system de-

pends on the objective of the study. For instance, in the reconstruction of a
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non-linear attractor we may prioritise the preservation of topological prop-

erties. In contrast, a study seeking to predict future states from past ones

might optimise dimensionality as the value which allows the best next step

prediction (Maus and Sprott, 2011). Such an estimate can be established

empirically by finding the value of p which minimises prediction error or

with a more sophisticated measure such as Akaike’s Information Criterion.

These approaches will be discussed in detail further on.

Time-Delay Embedding and Causality

The process of objectively time-delaying a set of observations naturally

leads to the estimation of predictive causality such as G-Causality (Granger,

1969). G-Causality asserts that if the prediction error in signal X1 from its

past history can be reduced by the inclusion of the past of X2, then X2

can be said to G-Cause X1. This is typically assessed with methods such

as MVAR models which fit parameters indicating the predictive power of

a point in a TDE on subsequent data points. In the context of the state-

equations, such a model can be seen to parameterise the predictive power

of each dimension in the embedding space on the observed outputs. This

pipeline represents an objective, data-driven framework for estimating pre-

dictive causality within a brain network, in contrast to model based meth-

ods such as Structural Equation Modelling and Dynamic Causal Modelling

which require prior statements about causal structure.

3.5 MultiVariate Autoregressive Modelling

The output equation defined in equation 3.3b relates a system’s inferred state

to it’s outputs. This can be reformulated such that the model parameterises

the predictive strength of each dimension in the embedding space on future

observations. In other words, which points in a systems state are most

predictive of future outputs.
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3.5.1 Formulation

Statistical dependencies between multivariate time series such as those de-

scribed in equation 3.6 can be described with a MultiVariate AutoRegressive

(MVAR) model. Each vector in the TDE includes a subset of past history

points, and so a subset MVAR model can be used to parameterise the pre-

dictive power of each point onto a subsequent value. The predicted value of

an output x̂ (where the hat denotes a prediction/estimate) can be estimated

with an MVAR of the form:

x̂t = −
p∑
j=1

Ajx(t−jτ) (3.9)

A vector x containing the samples from n locations at time t is modelled

as a linear combination of p past history values of the n time series. Aj

is a n x n MVAR coefficients matrix at lag j in which a1k represents the

interaction/influence of xj(t−k) has on x1(t). τ represents the delay between

past history values used as predictors in the model. In this form A is a fitted

output matrix H and values from xt−jτ can be seen to be vectors within

Φt,p,τ . MVAR equations have been successfully applied to many areas of

science and engineering and are very well understood - as such formulating

the output equation as an MVAR allows us to draw on this highly successful

methodology in subsequent stages of the analysis.

The residual error from the model fit can be determined with:

et = xt − x̂t (3.10)

given the residual prediction error after model fitting. Finally the error

covariance is:

Σ =
1

t− 1

∑
t

(et − êt)(et − êt)
T (3.11)
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3.5.2 Estimating A

Many methods for fitting the parameter matrix A to an observed dataset

have been developed. These include the Normal Equations and the Yule-

Walker equations. This thesis uses the Vieira-Morf (VM) algorithm, which

is a modification of the multivariate Yule-Walker method which has been

shown to perform well (Schlögl, 2006). The VM algorithm has been im-

plemented in several toolboxes including the Time Series Analysis toolbox

in BioSig (http://biosig-consulting.com/matlab/tsa/) and the Source Infor-

mation Flow Toolbox (http://sccn.ucsd.edu/wiki/SIFT). This thesis uses an

implementation developed in Python in conjunction with the Neuroimaging

Analysis Framework (http://vcs.ynic.york.ac.uk/docs/naf/).

The Vieira-Morf algorithm is an implementation of the Levinson-Durbin

recursion (Levinson, 1946; Durbin, 1960) which uses an estimate of the par-

tial correlation matrix based on the available data (Marple, 1987, chap-

ter 15). This is the critical step in the model fit recursion, if we are not able

to get a good estimate of the lagged correlation matrix then the parameters

will not be well estimated either. This places a limitation on the amount of

data observations that must be used to ensure a good model fit. This issue

is explored in more detail in chapter 3.

The Vieira-Morf algorithm estimates the parameters based on the partial

correlation matrix computed between channels of observations at increasing

lags. It is a recursive algorithm which computes the parameters at order p

based on the residuals of the model at p−1 before updating all previous co-

efficients depending those just computed. See appendix A for full derivation

of this algorithm.

3.6 Model Validation

3.6.1 Stability/Stationarity

MVAR modelling assumes that the time-series being modelled is a stationary

process i.e. that its mean and variance do not change as a function of time.

This assumption may be tested by way of the Perron-Frobenius theorem
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(Perron, 1907; Frobenius, 1912) which states that for a real-valued square

matrix A, there exists an eigenvalue r which is strictly larger than any other

eigenvalue associated with A. The magnitude of r is closely linked to the

amount of growth or decay in the system, in that where −1 > r or r > 1 the

system will grow or decay over time, reaching values of ±∞ in the limit, in

contrast where −1 < r < 1 the system can be regarded as stable.

This has been formulated as a formal stability condition (Lütkepohl,

1991) which states that the reverse characteristic polynomial must have no

roots in or on the unit circle for a system to be stable. A simpler test based

on this is that the modulus of the largest eigenvalue of the A1 matrix should

be less than 1. This indicates that we have a stable solution which will never

reach plus or minus infinity. This condition implies stationarity, a critical

assumption for the fitting of an MVAR model.

|r| < 1 (3.12)

3.6.2 Durbin Watson

The Durbin-Watson statistic (Durbin and Watson, 1950, 1951) tests for

serial autocorrelation in the model residuals. Though serial autocorrelation

in the residuals will not affect the consistency of the estimated parameters

it may lead to an under or over estimation of the standard errors, biasing

any subsequent statistical tests.

DW =

∑N
t=2(et − et−1)2∑N

t=1 e
2
t

(3.13)

in which N denotes the total number of observations.

As a consequence of using a subset autoregressive model which sparsely

samples the past history of the observed system, the model is explicitly not

parameterising part of the autocorrelation in the data. This is a design

choice with the implication that we are not interested in parts of the auto-
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correlation function, which may lead to the Durbin-Watson test suggesting

that this unmodelled correlation in the residuals is characteristic of a poor

model. To correct for this we can change the delay in the DW to our value

for τ .

DW (τ) =

∑N
t=τ (et − et−τ )2∑N

t=1 e
2
t

(3.14)

3.6.3 R2

This is the coefficient of determination, which is the square of the Pearson

product-moment correlation coefficient. It tells us how much of the variance

in the data we are explaining. This is taken as the scaled ratio between the

explained and unexplained variance.

R2 = 100 ∗
(

1− var(resid)

var(data)

)
(3.15)

3.6.4 Percent Consistency

Percent Consistency (Ding et al., 2000) assesses the amount of the auto

and cross correlation structure in the data captured by the model. This is

expressed by comparing the the auto/cross correlations in the real data and

the model’s fit.

PC(t) = 100 ∗
(

1− |Rfit −Rreal|
|Rreal|

)
(3.16)

Where Rfit refers to the correlation vector of the model’s fit to the data

and Rreal the correlation vector of the real data. Similarly to the Dubin-

Watson test this metric might be biased when applied to subset MVAR mod-

els as it is testing the entire autocorrelation series when it is only sparsely

modelled.
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3.7 Model Selection

3.7.1 Multivariate Likelihood Estimation

The likelihood of a set of model parameters gives the probability that the

parameters explain observed data. More formally, the likelihood function of

a set of model parameters (θ) given a set of observed outcomes (x) is equal

to the probability of outcomes given the model parameters.

L(θ|x) = p(x|θ) (3.17)

The multivariate likelihood function is:

L(y|x,b,Σ) =
N∏
i=1

1

(2π)
N
2 |Σ| 12

e(− 1
2

(x̂′Σ−1x̂) (3.18)

In which x′ denotes the transpose of x. This computes the probability of

each point within the dataset on a multidimensional Gaussian distribution.

The likelihood of the dataset is then the product of the probability of each

point. For large datasets this value can be below numerical precision as

the function involves the product of many values bounded between 0 and

1. As such, the log likelihood function is often used (See Appendix B for

derivation).

ln(L) = −N
2

2
ln(2π)− N

2
ln(|Σ|)−

N∑
i=1

(
1

2
(x̂′Σ−1x̂)) (3.19)

When comparing the likelihood of several models we can ignore the first

term which is constant across models with the same number of observations

of the dataset (N).

ln(L) ∝ −N
2

ln(|Σ|)−
N∑
i=1

(
1

2
(x̂′Σ−1x̂)) (3.20)
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A Likelihood can provide a method for evaluating the fit of a single

model, however it is often the case that we will want to compare multiple

models and identify the optimal one.

3.7.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence or information provides a directed

measure of the discrepancy between two probability distributions (Kullback

and Leibler, 1951). It provides a measure of the information lost when one

function is used to approximate another, or in application to model fitting,

the divergence between the distributions of the residuals from different mod-

els. The K-L information between two functions f1 and f2 applied to set of

observations x can be written as:

IKL(1 : 2) =

∫ ∞
−∞

f1(x)ln

(
f1(x)

f2(x)

)
dx (3.21)

note that IKL(1 : 2) 6= IKL(2 : 1) and as such the K-L divergence is not

strictly a measure of distance, rather it is a directed discrepancy. Equa-

tion 3.21 is valid in cases in which the value of f(x) comes from a contin-

uous distribution, though IKL can also be defined for discrete distributions

(Burnham and Anderson, 2010).

A logical, if implausible, method for identifying an ideal model would be

to compare each candidate to the absolute ‘truth‘. If we consider f0(x) to

denote a ‘true‘ model which produces the observed data and fn(x|θ) where

n = [1, 2, . . . , n] to be a set of candidate models dependent on parameters θ

fitted to the observed data, this comparison could be written as:

IKL(0 : n) =

∫ ∞
−∞

f0(x)ln

(
f0(x)

fn(x|θ)

)
dx (3.22)

This would provide a measure of the extent to which the information in

the true model f0 is preserved within the model. The optimal approximating

model would then be the one with the smallest K-L divergence. This can
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be further simplified by rewriting equation 3.22 as a subtraction.

IKL(0 : n) =

∫ ∞
−∞

f0(x)ln(f0(x))dx−
∫ ∞
−∞

f0(x)ln(fn(x|θ))dx (3.23)

It is typically the case that θ is unknown and has been estimated from

the data (let θ̂ denote an estimate). This introduces uncertainty into the

estimation of IKL. As such, we should deal with the expectations of the

right hand side terms. The expectation operator is a weighted average of a

set of observations, in this case the weights are taken from the probability

distribution of f0.

IKL(0 : n) = E0[ln(f0(x))]− E0[ln(fn(x|θ̂)] (3.24)

in which E0 denotes the expectation operator with respect to the distribu-

tion of f0. The first term in equation 3.24 depends on the unknown ideal

distribution alone and will be constant across a comparison between sev-

eral approximating models. This can be dropped to allow for a measure of

relative divergence.

IKL(0 : n)− constant = −E0[ln(fn(x|θ̂)] (3.25)

The right hand side of this equation quantifies the goodness of fit of fn(x|θ̂)
as an estimator of f0(x). The goodness of the estimation procedure can then

be measured by

EnE0[ln(fn(x|θ̂)] (3.26)

which is the expected log likelihood of the model with respect to the absolute

truth (Akaike, 1978). This value is critical to model selection approaches

based on the KL divergence (Burnham and Anderson, 2010), however it

cannot be estimated without knowledge of the unknown true distribution
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f0(x)

3.7.3 Akaike’s Information Criterion

Akaike 1973 showed that the maximised log likelihood of the model in ques-

tion is an upwardly biased estimator of the critical value in equation 3.26,

and with certain assumptions the difference between the two is around k, the

number of freely estimable parameters in the model. Therefore an unbiased

estimator of the relative expected K-L divergence is:

ln(L(θ̂|x))− k (3.27)

This relation between the log likelihood of a model and the relative expected

K-L divergence allows for an estimation of the quality of a model without

an unknown ’ideal’ model from just the number of parameters and the log

likelihood of the fitted model, both of which are relatively straightforward

to obtain.

For “historical reasons“ An Information Criterion (AIC) was then de-

fined by multiplying by −2 (Burnham and Anderson, 2010)

AIC = −2ln(L(θ̂|x)) + 2k (3.28)

thus the model with the lowest AIC can be taken as optimal as it is thought

to be closest (in terms of the K-L divergence) to some unknown ’ideal’ model

which actually generated the data.

Interpretation

There are two terms in the AIC calculation. The first term containing L

provides a measure of how well a model fits the data. The second term can be

seen as a complexity penalty for the model. It is likely that a more complex

model will be more able to fit the data, however increasingly complex models

will begin to fit unsystematic variation in the data. The second term seeks

to prevent this over fitting by penalising increasingly complex values.
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The optimal model will be the one with the lowest AIC estimate. Taking

the two terms as accuracy and complexity respectively, the AIC becomes:

AIC = −accuracy + complexity (3.29)

In this form, it can be seen that the lowest AIC value will arise from the

model which is most accurate without being too complex.

In terms of information theory and the K-L divergence the AIC is the

estimated expected relative K-L divergence. It is relative in the sense that

we are computing the divergence between a model and some unknown gener-

ating mechanism, when done multiple times the first term of equation 3.23

drops out as a constant and as such the AIC can be calculated without

reference to the unknown generating mechanism.

3.8 Connectivity Measures

Several informative metrics can be estimated from the fitted A matrix once

the optimal model from a set has been identified, fitted and validated. The

spectral content of the model is of particular interest in neural data. The

coefficients matrix Aj of a fitted MVAR model can be expressed in the

frequency domain through a discrete time Fourier transform.

A(f) =

p∑
n=1

Aie
−ifn (3.30)

in which i =
√
−1. A(f) is then a [signals by signals by frequency] matrix.

A(i, j, f) then contains the amount of variance in each vector A(i, j) which

can be found in the spectral component at frequency f . Where i ≡ j this

is the power spectral density and where i 6= j it contains the cross spectral

density. Critically, the cross spectral density contains the extent to which

the parameters which predict i from the history of j oscillate at frequency

f . The inverse of this A matrix give the transfer function of the system.
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T (f) = A(f)−1 (3.31)

The power spectrum of the system can be calculated from the trans-

fer function and the covariance of the model’s residuals (Priestley, 1981;

Sameshima and Baccalá, 1999).

PSD(f) = T (f)ΣT (f) (3.32)

in which Σ is the residual covariance matrix as defined in equation 3.11.

3.8.1 Coherence

The coherency at a frequency (f) can be estimated from this power spectrum

of the coefficients.

Cij(f) =
PSDij(f)

PSDii(f)PSDjj(f)
(3.33)

This coherency is a complex valued function from which a magnitude

and phase can be derived. A more commonly used metric is the real-valued

magnitude squared coherence.

MSCij(f) =
|PSDij(f)|2

PSDii(f)PSDjj(f)
(3.34)

This yields a real value between 0 and 1 where 0 indicates no asso-

ciation and 1 is a perfect association. The MSC is undirected, in that

MSCij ≡ MSCji and unable to distinguish direct connections from spuri-

ous connection generated by a common third source.

82



3.8.2 Directed Transfer Function

Directed associations between channels in the system can be calculated from

the Directed Transfer Function.

DTFij(f) =
|Tij(f)|2∑n
k=1 |Tik(f)|2 (3.35)

The DTF is able to resolve directionality (DTFij 6≡ DTFji) however due

to the mixing of information between channels when taking the inverse of

the A matrix it is still unable to differentiate between direct and indirect

connections.

3.8.3 Partial Directed Coherence

The A(f) matrix can also be used to compute the Partial Directed Coherence

(PDC)(Sameshima and Baccalá, 1999; Baccalá and Sameshima, 2001) which

provides a frequency domain measure of the directed influence each time

series has on the others.

PDCij(f) ,
Aij(f)√∑n

k=1A
H
kj(f)Akj(f)

(3.36)

PDC describes the relative strength of information flow between a source

and target node compared to the total influence of the source node on all

other nodes.

3.9 Statistics

Once the desired metric for characterising network structure has been com-

puted from our fitted model, the statistical significance of it’s findings must

be considered. This section outlines several methods for assessing signifi-

cance both within a single epoch and for a contrast between two epochs.

This section only considers the confidence of a PDC as this will be the focus

of the analyses within this thesis.
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3.9.1 Single Epoch

There are two methods for estimating confidence intervals from a PDC es-

timate from one epoch. The first is a method based on non-parametric

permutations at the level of the time series and the second is an analytic

method. Critically, both of these methods test against the null hypothesis

that there is no PDC within a connection.

Permutations

The random permutations technique first builds a surrogate or null distri-

bution of PDC estimates from time-series with the observations randomly

scrambled in time (Kaminski et al., 2001; Florin et al., 2011). For a delayed

parameter within an MVAR model to significantly predict future behaviour,

there must exist some non-zero auto or cross correlation at the time delay in

question. As a consequence, a non-zero PDC estimate is also critically de-

pendent on the whole auto/cross correlation having non-zero spectral power

at a given frequency. Scrambling the experimental observations in time will

hopefully remove these delayed correlations from the data, therefore any

MVAR or PDC estimate made from this scrambled data can be attributed

to chance alone.

The data are scrambled a large number of times (typically > 500) and

the PDC from each scrambled sample added to the null distribution. The

experimental estimate can then be compared to this null distribution and

declared significant if it is larger than the 1− α percentile.

Though effective, this procedure can be very computationally expensive.

Each iteration in building the null distribution restarts the analysis proce-

dure from before the MVAR model fitting. In cases where a confidence limit

is required for a single PDC estimate (with no condition or time window con-

trasts) the methods for estimating analytic confidence intervals defined in

(Schelter et al., 2006) is used. This procedure is described in the appendices.
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3.9.2 Contrasts

It will often be the case that differences between PDC estimates in different

windows or conditions will be the metric of interest rather than it’s absolute

value at one time point. There are no analytical methods for estimating

the significance of a difference between PDC estimates in two conditions,

however the question is well suited for a permutation approach.

We take the null hypothesis to be that there is no difference between

the distributions of PDC estimated from two conditions λ1 and λ2. Prior to

collecting any data, certain parts of our recording over time will be labelled

as one of these conditions. If the null hypothesis is true, these labels are

considered exchangeable. This means that the distribution of data under a

given sequence of labels will be equivalent to the distribution from any other

sequence of labels.

A difference between conditions defined in our experimental label se-

quence can then be considered significant if the distributions it produces are

sufficiently different to the distributions from a random label sequence. A

null distribution is built by randomly swapping the labels assigned to each

time-point and calculating a t-statistic based on the difference between the

distributions the randomised labels produce. Once complete the observed

t-statistic from our experimental label sequence is compared to the null dis-

tribution and can be considered significant if it is larger than the 1 − α

percentile of the null distribution.

Multiple Comparisons

When computing differences between PDC in different conditions, we are

computing the same metric across many connections and frequencies. The

total number of comparisons is m2f in which m is the number of channels

and as such we may expect several if not many of our comparisons to appear

significant by chance. This problem can be alleviated by taking a maximum

statistic approach when creating the null distribution.

The critical issue is that each shuffling of the condition labels is applied

to the entire network rather than just a single estimate in one connection at
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one frequency. The null hypothesis at the level of an entire network is the

omnibus hypothesis, that there is no experimental effect anywhere in the

network. This can be accepted or rejected if the maximum statistic within

the whole network is less than or greater than a critical threshold. The

critical threshold is then the value at which the probability that the maximal

statistic within the whole network exceeds it is 1 − α. As a consequence,

we need a distribution of the maximal statistics within the whole network

across our permutations (Nichols and Holmes, 2002).

This may be realised by taking PDC estimates across the whole network

for each epoch in the experiment, scrambling the condition labels, computing

the test-statistic and add the maximum test-statistic from the whole network

to a null distribution. These steps are then repeated many times and the

experimental test-statistic compared to the null distribution.

3.10 Summary & Conclusion

This chapter has outlined an analysis pipeline designed to accurately recon-

struct brain dynamics from a set of observed responses. Such a dynamical

system may be modelled with the state-space equations which relate the

current state of a system with change in state and the observed responses.

A critical issue is that the state transitions which characterise a system

may not be directly observable. Delay embedding methods provide a means

for approximating the dynamics of a system’s state from the observed data

alone. This method requires the somewhat subjective selection of two key

parameters (p and τ), however with the objective that our reconstruction of

the systems state must maximise our prediction of future observations we

may obtain a good approximation. A multivariate autoregressive model may

the be used to directly parameterise the predictive power of the coordinates

of each state on future observations. Subsequently these fitted parameters

can be used to calculate a metric such as partial directed coherence which

characterises the causal structure within a network in the spectral domain.

Finally, these estimates are subjected to significance testing.

Overall, this pipeline represents a theoretically justified method for the
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1) State-Space Equations

ṡ = Fst +Gut (3.37)

x = Hst (3.38)

2) Time-Delay Embedding

Estimate Rτ and MI from x and select

range of embedding windows Φt,p,τ to

approximate ṡ

3) MVAR Fit

Estimate A for each embedding win-

dow, compute AIC to select optimal

model.

4) MVAR Validation

Estimate R2, SI, Durbin-Watson and

Percent consistency to ensure validity

of selected model.

Accept A?

5) MVAR Metrics

Estimate PDC from fitted A matrix.

6) Statistical Assessment

Estimate Confidence Limits or Condi-

tion Contrast

No

Yes

Figure 3.2: A
schematic repre-
senting the analysis
pipeline outlined by
this chapter. The
decision whether A
is either accepted or
not is made based on
the MVAR validation
metrics described in
step 4. These are ob-
jective measure of the
quality of the model
and independent of
any experimental
outcomes.
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interrogation of the brain’s hidden states and its relation to observed re-

sponses and behaviour. No assumptions about the nature or dynamics of

the hidden states need to be made and the critical parameters may be di-

rectly estimated from the data.
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3.11 Notation

Most of the mathematical notation in this chapter is defined in the sur-

rounding text, this section is intended as a quick reference.

3.11.1 General

i
√
−1

I Identity matrix

|a| The determinant of a matrix a

3.11.2 Dynamical Systems

S A state-space containing all possible states

s A single state defining a systems internal parts where

s ∈ S
T A set of times over which a state evolves

t A single time-point, where t ∈ T
R A rule governing how state evolves through S over T

u The input to a system

x An observed outcome

O An output rule governing how s relates to x

F System matrix

G Control matrix

H Output matrix

3.11.3 Time-Delay Embedding

M A manifold on which S evolves

Q A diffeomorphic space to M

d A space’s dimensionality

p Model order

τ The time-delay between samples in an embedding

Φ A delay-embedding

89



µ A sample mean

σ2 Sample variance

P (x) The probability of x

P (x|y) The probability of x given y

3.11.4 Multivariate Autoregressive Modelling

x̂ An estimate of x

A Matrix of forward MVAR parameters

B Matrix of backward MVAR parameters

e Model prediction error

Σ The covariance of the model prediction errors

Pf
p Forward lagged covariance matrix at order p

Pb
p Backward lagged covariance matrix at order p

Λ̂p+1 Estimate of partial correlation matrix

3.11.5 Model Validation

r The largest eigenvalue of a square matrix as defined by

the Perron-Frobenius theorem
N The number of observations of a system

m The number of channels of observations of a system

R Pearson’s product moment correlation coefficient

R2 The coefficient of determination

R A vector containing the auto and cross correlations in a

system

3.11.6 Model Selection

L(x) The likelihood of x

L(x|y) The likelihood of x given y

θ A set of parameters

θ̂ A estimation of a set of parameters

f0 A hypothetical ‘true‘ model which produced the observed

observations
fn An approximating model
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k The number of parameters in a model

En Expectation operator with respect to Fn

ln Natural logarithm

3.11.7 Metrics

T The transfer matrix of a system

PSD The power spectral matrix of a system

C Coherency

MSC Magnitude squared coherence

DTF Directed transfer function

PDC Partial directed coherence
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Chapter 4

Realistic Stimulations Of

Causal Brain Networks
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4.1 Introduction

The previous chapter outlined one method for constructing a model of brain

interactions. This chapter more directly assesses the performance of this

modelling approach through simulating dynamical systems as defined by

known systems. Through this process we can establish the validity of our

modelling approach and gain an insight into the practical issues associated

with the data analysis.

There are three key features of a connectivity analysis which are inter-

rogated with simulations: 1. Directionality 2. Direct/Indirect connections

3. Spectral Resolution. Directionality is the identification of asymmetries

between the possible directions of information flow through a connection

i.e. the ability to disambiguate between x1 → x2, x1 ← x2 and x1 ↔ x2.

Directness is the ability to identify when a connection between two nodes is

entirely mediated through a third party. For example, if x1 influences both

x2 and x3, a direct measure will be able to correctly show that there is no

connection between x2 and x3. Finally the spectral response is the extent

to which a metric can identify the frequencies at which a connection might

be occurring.

4.1.1 Simulation In Connectivity Research

As in the previous chapter, the dynamics of a brain network are characterised

as a trajectory through an unobservable state space S. This trajectory is

governed by a ruleR which determined the change of s ∈ S over a set of times

T . These dynamics are then reconstructed with a time delay embedding Φ in

an embedding space U which can be established directly from the observed

data. Φ is then an approximation of the internal rule R through a coordinate

space established from the observations.

Φ ≈ ṡ = R (4.1)

Observations (x) from the generating state space are determined by the
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output or observer matrix H.

x = HR (4.2)

There is also an observer for Φ which relates the internal states to observed

outcomes, however as Φ is based in a different coordinate system to H, a

different observer may be required. This observer A may be related to H

however it is not necessarily the same. Moreover A may often be unknown

and estimated from the data, estimates of x and A will be denoted x̂ and Â.

x̂ = ÂΦ (4.3)

It is this relationship which is simulated as both the outcome on the

left and the approximation of the internal dynamics on the right are formed

from observations of the system and do not require knowledge of the in-

ternal states of the system. Once simulated, the relationship between the

approximation of the current state in the embedding space and forthcoming

observations are parameterised with a multivariate autoregressive model.

Finally, several metrics for describing the interactions between nodes in the

brain network are simulated form the fitted MVAR parameters.

The fitted Â matrix from an MVAR model can be used to estimate

several connectivity metrics as outlined at the end of the previous chapter.

These differ in their ability to detect frequency, directness and directionality

as outlined above, these features of Magnitude Squared Coherence, Directed

Transfer Function and Partial Directed Coherence are investigated in this

chapter.

4.1.2 Simulation Methods

In neuroimaging applications, there are three main approaches employed to

generate time series with a known relationship between the past and future

observations, equivalent to a known H matrix in equation 4.3. 1. Delayed

Signals 2. Time-Domain Difference Equations 3. Time-Domain Differential

Equations. Many other methods including Volterra and Wiener kernels may
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also be used, however these are not frequently used in simulations of linear

dynamics.

Delayed Signals

The delayed signals method defined in Kus et al. (2006) utilises a real

M/EEG signal to ensure that the signal is similar to real situations. The

interactions between different nodes are generated in steps in which the pre-

vious signal is delayed by one sample and adds more noise. This propagates

information from the original time-series through a network of time-series

at a set of known time delays as illustrated in figure 4.1.

This scheme has been widely applied through the multivariate signal pro-

cessing literature (Blinowska, 2011). The use of a real electrophysiological

recording ensures a realistic signal however there are disadvantages. Firstly

the delayed interactions are specified in the time-domain with the delayed

signal propagating through the system, as such the spectral content of the

interactions is difficult to control. In addition this method is not generative

in that the number of observations in the system is strictly limited to the

number of observations in the initial M/EEG signal. Finally, it is difficult

to add feedback or reciprocal connections into a network with this method.

Difference Equations

Many simulations explicitly define a set of MVAR parameters and driving

noise sources. The simulated signal is then established by multiplying the

driving noise by the known MVAR parameters. This method has been widely

used across the literature, examples including the original validation of Par-

tial Directed Coherence (Baccalá and Sameshima, 2001), in application to

short-window spectral analysis of ERPs (Ding et al., 2000), investigation

into the effect of signal-to-noise and number of epochs on PDC/DTF esti-

mation (Astolfi et al., 2008) and in the derivation of confidence limits for

PDC (Schelter et al., 2006).

Though effective, this method does not replicate many of the features

of the neural responses as observed with EEG or MEG recordings. Firstly,
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Figure 4.1: The simulation methodology used in Kus et al. (2006). The
signal in channel 1 is generated through the addition of white noise to an
EEG signal recorded from a scalp electrode. Signals 2− 6 are generated by
sequential delays of this signal (where ∆ denotes a time delay of one sample)
with additive noise Kus et al. (2006).
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the driving noise is typically white (flat spectrum), however the nature of

any driving noise in the brain is unknown. The observed outputs from

EEG/MEG signals typically have a 1
f spectrum, though this may arise from

the driving noise or the autoregressive coefficients themselves. In addition,

as the MVAR signal is defined in the time domain, it is very difficult to

create an interaction between channels in a specific frequency, though there

is a spectral response.

Differential Equations

More complex coupled systems such as coupled oscillators have also been

used for simulating neural systems. Single oscillators have a cyclical out-

put with a single degree of freedom, however more complex cases in which

the behaviour of each oscillator can influence the others. The coupling be-

tween these nodes is often highly non-linear and many very complex systems

can be described in this way. Such oscillators are defined using a series of

simultaneous differential equations.

When fitting to a linear system, an autoregressive model can out perform

a more complex non-linear model due to it’s higher statistical robustness,

however in a non-linear system it may make significant errors in predicting

non-linearities in the observations (Ragwitz and Kantz, 2002). As these

systems can be highly complex, a part of their interactions may not be linear

and as such, not approximated with an MVAR model. The linear part of

the interactions is visible to MVAR though the proportion of interactions

that are linear will vary considerably from system to system.

4.1.3 MVAR Connectivity Metrics

A wide variety of connectivity estimators based on the decomposition of a

fitted multivariate autoregressive model have been developed in recent years.

The previous chapter introduces the mathematical form of several of these

metrics while the more practical questions of their application and reliability

are discussed here.
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Overview

The properties of four commonly used connectivity metrics are summarised

in table 4.1. Perhaps the most commonly used connectivity metric is the co-

herence and the related Magnitude Squared Coherence (Nolte et al., 2004;

Faes et al., 2012). The complex valued-coherency is the normalised cross

spectral density of two signals, the squared magnitude of which is the real

valued Magnitude Squared Coherence (MSC). As outlined in table 4.1,

though the MSC is a frequency domain measure which is able to locate

and discriminate between interactions at different frequencies, it is not able

to reject indirection connections or identify dominant directionality. This

first criticism is alleviated with the partial coherence (pCOH) which esti-

mates the coherence between two time series factoring out the influence of

one or more other channels in the system. This value has directness, in that

the pCOH characterises the unique coherence between two time-series that

cannot be accounted for by influence from other mediating channels.

The Directed Transfer Function (DTF) is a spectral measure which is

able to estimated directionality within connections, however it not able to

disambiguate between direct and indirect connections (Kaminski and Bli-

nowska, 1991; Kaminski et al., 2001). Finally the Partial Directed Coher-

ence (PDC) is able to identify only direct and directional interactions in

the frequency domain from a fitted MVAR parameter matrix (Baccalá and

Sameshima, 2001).

Many reviews of these metrics have been published (Astolfi et al., 2007;

Blinowska, 2011; Florin et al., 2011) and in general, there is agreement about

many of their general properties illustrated in table 4.1.

Astolfi et al. (2006) introduce a modification to the PDC, the squared

PDC (sPDC) which provides a better description of network interactions

due to a greater weighting of the larger PDC estimates. They go on to show

that both the PDC and sPDC are able to accurately reconstruct known

connectivity patterns in a simulated multivariate dataset, provided with a

sufficiently long sample recording. The recommended number of samples

was 6750 when fitting an MVAR model on 5 channels with order 10. This
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Metric Abbreviation Spectral Directness Directional

Magnitude Squared Coherence MSC X × ×
Partial Coherence pCoh X X ×

Directed Transfer Function DTF X × X
Partial Directed Coherence PDC X X X

Table 4.1: Review of MVAR connectivity estimators and their properties.
Spectral indicates whether the metrics operates in the time or frequency do-
main, Directness indicates whether a metric can partial out common influ-
ence on two independent nodes from a third source and Directional indicates
whether the metrics produces symmetrical estimates for each direction of a
connection.

corresponds to a ratio of 27/1 samples to parameters fitted in the model.

Astolfi et al. (2007) replicate this result with DTF and dDTF, reinforcing

the need for a high number of samples relative to the number of parameters

to be fitted in the model. Blinowska (2011) provide further evidence that the

DTF and PDC are able to reconstruct known connectivity patterns using

the delayed signals method of data simulation. They further state that as

the directionality in these metrics arise from the phase differences in between

the time-series they are very robust in respect to noise.

The review by Florin et al. (2011) investigated the reliability of each of

these measures with different data lengths, noise levels, connections strengths

and model orders. It was found that a variant of the PDC Astolfi et al. (2006)

used was most robust across these tests while both the DTF and dDTF were

unable to distinguish direct from indirect connections. Moreover this valida-

tion was performed using both the Delayed Signals and Defined Equations

methods of data simulation.

Relation To Driving Sources And G-Causality

A test for causality or driving influence between signals in a multivariate

time-series can be defined based on the partial Coherences within the net-

work (Gersch and Goddard, 1970; Gersch, 1972). This concept, known as

Gersch-Driving, suggests that a time series x can be said to be causal relative
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to time series y and z if three conditions are met.

• There is a non-zero ordinary coherence between each pair of time-series

at a given frequency f

• The partialed coherence in between y and z at frequency f is zero.

• The partialed coherence in-between x and y and x and z at frequency

f is non-zero.

A recent assessment for this method has suggested that it may be highly

sensitive to signal-to-noise ratio in that the signal within a system with the

highest noise may often be found to ‘drive‘ the other nodes (Albo et al.,

2004).

The notion of causality rests on cause preceding effect, however the con-

cept of Gersch-Driving as outlined above is insensitive to temporal prece-

dence in time-series interactions and as such cannot be considered a true

measure of causality (Baccala and Sameshima, 2006). In contrast, a defini-

tion of causal interactions within a system of time-series can be given purely

in terms of temporal prediction. This concept of G-causality (Granger, 1969)

states that a time series x can be said to be G-causal to y if prediction future

observations of y from past observations of y can be significantly improved

by including past observations of x in the model. In other words, x is g-

causal to y if the past activity of x has information about the future of y

that is not contained in the past of y itself.

There have been claims that the DTF and PDC measures identify causal-

ity in terms of g-causality (Granger, 1969) by several authors (Sameshima

and Baccalá, 1999; Baccalá and Sameshima, 2001; Blinowska et al., 2004;

Blinowska, 2011). This has been stated most strongly for the DTF which

has been described as an extension of g-causality to an arbitrary number of

channels (Blinowska et al., 2004). These claims have been interrogated in

detail by Eichler (2006) who states that the PDC at frequency f reaches 0

if and only if the autoregressive parameters for that connection equal 0 for

all lags. As such, the PDC can be viewed as a frequency domain extension

of G-causality as it meets the critical condition that the causality estimate
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can only be zero in the case that the past of another signal has no predictive

power on future observations of another. In contrast, the DTF is computed

from the transfer function T = A(f)−1 of the autoregressive model and there

is no simple relationship between T and A(f) in which the element of the

transfer function for the connection i → j can equal zero (Tij = 0) if and

only if A(f)ij = 0. As such the DTF is a measure of the total influence of

a time series on another in contrast to multivariate g-causality which would

be only related to the direct effect of one time-series on another (Eichler,

2006).

As such, the work in this thesis will concentrate on the magnitude

squared PDC estimate and the complex valued PDC from which it is es-

timated. These metrics have been shown to be highly robust across many

critical factors and is sensitive to both directness and directionality within

connection in a network. Moreover the PDC has been shown to outperform

a more traditional frequency domain test of granger causality in tests into

correct rejection of fictitious causal interactions (Fasoula et al., 2013).

4.1.4 Volume Conduction

The question of field spread or volume conduction is a critical one in the

estimation of connectivity in brain networks. This is particularly the case

with instantaneous measures such as the MSC which may be particularly

sensitive to spurious connections arising from signal mixing when source

activity in the brain projects to distant M/EEG sensors (Nolte et al., 2004).

This problem is thought to be alleviated when analysing network interactions

in source space (Schoffelen and Gross, 2009) as the signal mixing should have

a much smaller impact when working with source projections.

Several more complex measures of coherence are said to be invariant to

volume conduction either though consideration of only the imaginary part

of coherency (Nolte et al., 2004) or through orthogonolising the signals at

each source to discount any spurious connection which may have zero-phase

differences (Hipp et al., 2012). This second approach is inherent in the

DTF and PDC estimations as they require a phase difference between the
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two channels for the connectivity estimate to be non-zero (Kaminski and

Blinowska, 2014).The propagation of a signal from a source to a sensor is

the spread of an electromagnetic wave and is assumed to happen almost

instantly. As such the DTF and PDC estimates should not be effected by

volume conduction. The authors of the DTF caution that this only holds

true if a phase difference is not induced by short-sighted data preprocessing

such as ICA, Laplace transforms or projection to the brain’s source space

(Kaminski and Blinowska, 2014). This last point is in contrast to previous

advice to only consider connectivity in source space (Schoffelen and Gross,

2009).

The critical issue is in preserving the phase in the signal, if the phase is

preserved then the connectivity estimates given by the PDC will be correct.

Beamforming is a commonly used technique for estimating neural activity in

source space (Huang et al., 2004; Van Veen et al., 1997). A beamformer is a

spatial filter across the EEG/MEG sensors which is optimised to maximise

the power at one point in the brain while minimising the power in the signal

elsewhere. Phase-based estimates at the source level are very commonly

used, with little evidence in the literature that the beamforming process

produces distorted phase information in source space. Beamformers can

underperform when spatially separate but temporally correlated sources are

present (Brookes et al., 2007). This means that the beamforming algorithm

might be unable to supress a distant signal in the brain which could cause

phase distortions in the reconstruted signal.

4.2 Time Domain Simulation And Fitting

This first set of simulations uses a set of simultaneous difference equations

which produce a set of time series with known interactions. This approach is

used as it allows for simple generation of many realisations of the time series

of arbitrary length. In addition, the equations chosen are used throughout

the literature and have served as validation examples for several metrics.

The initial question asked with this system is how many observations

are necessary to obtain a good reconstruction of the known equations? This
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has been interrogated previously using both DTF and PDC (Astolfi et al.,

2006, 2007) however these studies did not directly relate the number of

observations in the sample to the number of parameters to be estimated in

the model. The equations 4.4a-4.4e define a system which would require a

5 ∗ 5 ∗ 4 A matrix to be fitted in order to fully characterise the interactions.

1000 realisations of each of 5 different data lengths are generated and used

to fit an MVAR model of order 4 before the variance explained in the time

series and the correlation between the estimated and known parameters are

computed.

Secondly, a well fitted parameter matrix A can be used to compute

several connectivity metrics which are able to characterise the interactions

within the system. Three metrics defined in the previous chapter are tested:

1. Magnitude Squared Coherence (MSC) 2. Directed Transfer Function (DTF)

3. Partial Directed Coherence (PDC) . The ability of these measures to cor-

rectly identify directionality and directness is then discussed. All the con-

nections show directionality, though the connection between x4 and x5 is

reciprocal. In addition there is no direct connection between x1 and x5, a

metric which is not sensitive to directness in interactions should be able to

correctly estimate no interaction between these nodes.

4.2.1 Methods

The critical system analysed in the first part of this chapter is outlined in

figure 4.2 and defined in Baccalá and Sameshima (2001). This system is

used for both the data ratio testing and the MVAR metric validation.

Data Ratio

Five simultaneously observed time series were generated with equations 4.4a

to 4.4e as defined in (Baccalá and Sameshima, 2001). The system has 5

channels and is of order 4, therefore 100 parameters will have to be fitted

to model the system if we only know the order, not the specific delays and

connections with non-zero parameters. 5 realisations of the system were

generated with increasing numbers of samples.
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x1 x3

x2

x5x4

Figure 4.2: The vector autoregressive system used in the first set of simu-
lations. The interactions are governed by equations 4.4a to 4.4e below, as
defined in Baccalá and Sameshima (2001)

x1(t) = 0.95
√

2x1(t− 1)− 0.9025x1(t− 2) + w1(t) (4.4a)

x2(t) = 0.5x1(t− 2) + w2(t) (4.4b)

x3(t) = −0.4x1(t− 3) + w3(t) (4.4c)

x4(t) = −0.5(t− 2) + 0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + w4(t) (4.4d)

x5(t) = −0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + w5(t) (4.4e)

Realisation

1 2 3 4 5

№Parameters 100 100 100 100 100
№Observations 100 200 500 1000 5000
Ratio 1 2 5 10 50

Table 4.2: Number of parameters and data observations generated in each
realisation of the system.
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1000 MVAR models of order 4 were fitted to each realisation and the con-

sistency of the accuracy and explanatory power of the models assessed. The

accuracy was assessed by estimating Pearson’s product moment correlation

coefficient between the known coefficients and the estimate of each model.

Finally the explanatory power was the correlation between the generated

time series of observations and the model’s fit.

MVAR Metric Validation

Five simultaneously observed time series were generate with equations 4.4a

to 4.4e as defined in (Baccalá and Sameshima, 2001). 10000 observations

were generated before an MVAR model was fitted. The system is of order

4 but the MVAR model was fitted up to order 8 to allow a replication

of the frequency resolution seen in (Baccalá and Sameshima, 2001) without

interpolating the coefficients. The parameters from the fitted model are then

used to calculate the magnitude squared coherence and directed transfer

function. Finally the partial directed coherence with analytic confidence

limits with α = 0.001 were computed.

4.2.2 Results

Data Ratio

The R2 value indicating the variance in the signals explained by the fitted

models has a wide and low distribution with a low ratio between the number

of parameters and number of data observations. This increases to around

.8 for the higher ratio. The simulated system has noise added, as such this

value is unlikely to reach 1.0. In addition the maximum value for R2 is

likely to be considerably different between systems, depending on noise in

the interactions and measurement and any non-linearities in the interactions

between nodes

The correlation between the fitted MVAR coefficients and the known

parameters defined in equations 4.4a-4.4e can be seen in figure 4.3. There

is a wide distribution of r values which crosses 0 for data ratio 1, indicating

a poor and inconsistent model fit in this condition. The distribution of r
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increases dramatically for the larger ratios until realisation 5 in which there

is a tight distribution indicating a consistently high quality model fit.

0.0

0.2

0.4

0.6

0.8

1.0

R2

1 2 5 10 100
Ratio ( numberofsamples

numberofmodelparameters
)

−1.0

−0.5

0.0

0.5

1.0

R

Figure 4.3: MVAR models were fitted to different realisations of the process
defined in figure 4.2. Realisations were of five different lengths were used.
These were calculated as the ratio between the number of samples in the re-
alisation and the number of parameters estimated in the model. The x-axes
denotes this ratio. top: The distribution of the coefficient of determination
(R2) over each of the 10, 000 model fits for each data length. bottom: The
distribution of the correlation coefficient between the known parameters (see
equations 4.4a-4.4e) and the estimated parameters for each data length.

MVAR Metric Validation

Several connectivity metrics were estimated from a signal realisation of the

system. Firstly the Magnitude Squared Coherence (figure 4.4) characterises

both the direct and indirect interactions within the network and as such

estimates a spurious connection between x1 → x5. In addition, MSC is a

symmetrical measure in that MSCij ≡ MSCji which leads to the connec-

tivity matrix being symmetrical about the diagonal.
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The Directed Transfer Function (green line in figure 4.4) is able to iden-

tify directional connections, however it may still identify indirect connec-

tions. The DTF value is normalised across each row in the coefficients

matrix, in which the square of the value at a given frequency in all the

connections along a row sum to 1.

Finally the Partial Directed Coherence (red line in figure 4.4) is able to

identify directional connections and disambiguate between direct and indi-

rect connections. Unlike the DTF, PDC is normalised within each frequency

down each column of the parameter matrix. This normalisation can be seen

on the diagonal of figure 5.4 wherein an increase in the PDC within the

off-diagonal connection is associated with a decreased PDC estimate on the

diagonal.

4.2.3 Interim Summary

The optimal ratio between the number of fitted parameters is likely to vary

from dataset to dataset and potentially very difficult to identify in a real

system with unknown dynamics. The results from the data length simula-

tions provide an illustration of the importance of a high (> 5) ratio between

the number of fitted parameters and number of observations. The potential

consequences of having too few observations is also illustrated. When there

are as many observations as parameters there is a high variability in the

variance explained by the fitted A matrix. Critically many realisations had

an R2 of close to 0 or 1. In the case that our experimental realisation has

a very low R2 we may correctly reject this model or attempt an alternative

approach. In contrast with a large R2 it is likely that we may accept this

model. These simulations demonstrate that fewer observations may lead to

an inflated possibility that we arrive at a good model through chance alone.

This is a type 1 error or false positive, the chance of which may be unusu-

ally high when our model is under powered, that is there are insufficient

observations to arrive at a robust model.

Overall the PDC provides the best method for characterising network

structure from the elements of a fitted MVAR parameter matrix. It pro-
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vides a directional measure of information flow which is not susceptible to

spuriously identifying indirect connections in a network. One caveat to this

second point is that the PDC can only disambiguate between x1 → x2 → x3

and x1 → x3 if all three nodes are included in the MVAR estimate.

The arbitrary normalisation seen in both the DTF and PDC can lead

to some problems in interpreting results, particularly change in DTF/PDC

estimates over time or condition. As both values are fractions in which

the denominator is consistent across a whole row or column of the spectral

representation of the fitted parameter matrix. As such, a change in either of

these metrics could arise from either the denominator of numerator of the

metric. Moreover, a change in one connection within the row/column can

lead to a change in the value of another connection which actually remains

constant over the modulations

4.3 Frequency Domain System

The frequency resolution of an MVAR system is determined by the de-

lay and order parameters and the frequencies observed in the interactions

determined by the cross spectral density of the autoregressive parameters.

Together these factors control the frequencies seen in the connectivity within

the modelled system. The spectral resolution has attracted much attention

in the literature alongside growing interest in oscillatory neural activity.

The MVAR model is a powerful spectral density estimator and has been

widely used in digital signal processing for this purpose (Marple, 1987),

moreover there is evidence that it might outperform multi-taper methods in

short-window spectral analysis (Nalatore and Rangarajan, 2009).

The frequency resolution ∆f is determined by the TDE parameters p and

τ . Critically, the sampling rate in the autoregressive parameters (determined

by τ) and the total number of past observations in the autoregression (p).

∆f =
SR

p
(4.5)
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The frequency resolution for a system is determined by equation 4.5

can be seen for a wide range of models in figure 4.5.Very low orders and

delays can lead to a physiologically uninformative frequency resolution of

∆f > 100Hz or more, however this rapidly decreases to around 10Hz in the

dark green colour. This implies that for a physiologically plausible frequency

resolution, MVAR parameters from around this region or to the bottom-right

of the plot must be used.
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Figure 4.5: The frequency resolution (4f) of MVAR models with different
delays and model orders. ∆f is displayed in a log scale in the colour bar.
The estimates for model orders > 3 have been set to zero as these systems
will only have one frequency component in addition to DC.

This principle is not strictly adhered to in the literature, though there is

acknowledgement of the limited frequency resolution of a model of a system

(Schlögl and Supp, 2006), in practice it is common for A(f) to be estimated

for an arbitrary set of frequencies. For instance, though many papers state

that p is importance for spectral resolution, spectral connectivity metrics

may be estimated over a wide frequency band (Brovelli et al., 2004; Pascual-

Marqui et al., 2014) or more commonly the precise frequencies estimated are
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unclear ambiguous (Korzeniewska et al., 2008; Supp et al., 2007; Sun et al.,

2009a).

Moreover, a debate into the power of the frequency response in PDC has

recently arisen. Pascual-Marqui et al. (2014) state that PDC may misinter-

pret the spectral representation of the connectivity in a system. To counter

this problem, the authors define isolated effective coherence (iCOH). The

issue with PDC and the solution given by the iCOH is illustrated with sim-

ulations from known differential equations of order 2 and applied to real EEG

data. The results demonstrate that the iCOH produces more defined peaks

that the PDC at the expected frequencies, however the PDC and iCOH are

estimated at 127 separate frequencies from the order 2 autoregressive pa-

rameters. This is an interpolation in the spectral domain and as such most

of the PDC and iCOH estimates will be smoothed versions of the small num-

ber of frequencies which naturally arise from the MVAR model. Moreover,

the iCOH computation scales the Aij(f) estimate by the inverse of the er-

ror covariance, or the precision matrix. This will prioritise the connections

with lower residuals giving greater weight to these connections. Critically

the iCOH still uses the A(F ) matrix in a manner completely analogous to

the PDC, as such, when the natural frequencies from the MVAR model are

used, neither measure will have more or less frequency information that the

other. Where the frequency response of the MVAR model is interpolated to

a larger number of frequencies, the higher response to strong/more precise

connections in the iCOH could lead to a larger peak in the estimate and an

apparently more accurate frequency response.

This critical issue is tested using the x1 → x2 connection in the system

with the known spectral density in the autoregressive parameters. MVAR

models from 3 time delay embeddings are fitted and the PDC and iCOH

estimated at the resolution given by equation 4.5. No spectral interpolation

is used, moreover the critical test is the two interactions within the x1 → x2

connection, rather than a localisation of one interactions. The ability of

both measures to correctly reconstruct the known connection at different

resolutions is discussed.
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4.3.1 Methods

Though the signals generated by known parameter matrices in the time do-

main do have a spectral profile, it is difficult to exert fine control over the

cross spectral densities between signals. This is particularly the case with

the very low order systems commonly used in connectivity simulation. As

such, the frequency resolution of the approach used in this thesis was inves-

tigated by simulating systems with known auto and cross spectral densities

in the autoregressive parameters. First the order and sample rate for the

system were chosen. The sample rate was 4069 which is consistent with the

MEG sampling frequency used in this thesis. A large order was chosen to

ensure that the small differences in frequency can be embedded in the sys-

tem. In this example a order of 1000 was selected which, with the sampling

frequency, allows for a frequency resolution of 10Hz.

A known set of cross spectral densities were defined to create the inter-

actions seen in figure 4.6. These were then converted into the time domain

using an inverse Fourier transform and used to generate a set of four si-

multaneously observed time-series with 100000 observations. This gives the

system a parameter to sample ratio of just over 6.

These time-series were modelled using an MVAR model which was then

used to estimate the Partial Directed Coherence of system with analytic

confidence limits at α = 0.001. Additionally, the complex form of PDC is

plotted in a z-plane to establish whether the phase of the known CSD could

be reconstructed from the PDC of the model.

Frequency Resolution and Time Delay Embedding

The p and τ parameters in the TDE and MVAR model are critical in deter-

mining the frequency resolution of our model. The Connection x1 → x3 is

used as a test case for the frequency resolution of different TDEs. MVAR

models are fitted to different frequency resolutions and the ability of the

model to disambiguate the two separate connections evaluated. two sepa-

rate connections evaluated.
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Figure 4.6: A system who’s parameters are designed in the frequency do-
main in order to establish connections with known interactions at specific
frequencies. Two main challenges arise from this model. 1) the connection
between x1 and x2 contains reciprocal directional connections but with a
known phase shift. 2) x1 and x4 have two driving influences at distinct
frequency bands.

4.3.2 Results

Frequency Validation

The absolute value of a Fourier transform of the estimated MVAR param-

eters for system 4.6 can be seen alongside the known value in figure 4.7.

Critically, there are no large peaks in spectral power for any frequencies

other than the known frequencies defined in figure 4.6. These estimates

form the numerator of the PDC estimation, and the denominator comes

from the sum within each frequency for each column.

The PDC estimated from the MVAR model fitted to the spectrally de-

fined system can be seen in figure 4.8. The PDC correctly identifies the

reciprocal interaction between x1 ↔ x2 at 40Hz and the directional connec-

tion x2 → x3 at 80Hz. Critically, the PDC is able to disambiguate between

the x1 → x3 connections at 60 and 80Hz. All of these interactions are above

the threshold defined by the analytic confidence limit.
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Phase Validation

PDC uses a modulus in the numerator in it’s definition, however if this is

not done the PDC estimate is complex valued. This form of PDC retains

information about the phase of the interactions between nodes in the system.

The complex valued PDC estimate is plotted on a z-plane in figure 4.9. In

this form the phase difference between directions in the reciprocal interaction

x1 ↔ x2 can clearly be seen as a rotation of the significant value around

the origin. The remaining significant connections have a value of 0 on the

imaginary axis and therefore contain phase delay.

The diagonal plots in figure 4.9 represent the PDC influence of a signals

own past onto it’s future. This is likely to be the largest value down each

column, and as such will make the largest contribution to the denominator

of the PDC. As a consequence, many of the diagonal PDC estimates are

very large and significant.

Figure 4.9 shows one spurious interaction in the x3 → x2 connection.

This is a chance finding and the only miss in the whole system, the rest

of the estimates either being correctly identified as significant or correctly

rejected as chance. One false alarm in the many tests seen in figure 4.9 is

not unexpected and well within acceptable number given the alpha value

used.

Frequency Resolution

As the frequency resolution of an MVAR model is critically dependent on

p and τ , the ability of three different TDEs to disambiguate the two in-

teractions in the x1 → x3 connection. Figure 4.10 shows the PDC results

with confidence limits on the right hand side and the iCOH estimate on the

left. Both metrics are clearly able to separate the two interactions at the

two higher resolutions (6 and 10Hz), in addition, the signal to noise ratio

appears to be higher for the peaks in the iCOH. This is due to the scaling

of the parameters by the inverse of the residual covariance prioritising the

larger values in A(f). Neither metric is able to separate the two interactions

at the lower resolution (20Hz).
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Figure 4.10: The PDC across 1−200Hz estimated from MVAR models with
different time delay embeddings. The system at the top has a resolution of
∆f ≈ 6Hz, the middle a resolution of ∆f ≈ 10Hz and the bottom system a
resolution of ∆f ≈ 20Hz. Only the top two systems are able to disambiguate
between the two interactions in this connection, with the resolution of the
bottom model being so wide that it integrates across the interactions and
only presents one significant frequency. To date, there are no methods for
estimating analytic confidence intervals for the IEC, as a consequence, the
confidence limits are only presented for the PDC.
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4.3.3 Interim Summary

The spectral resolution of an MVAR model and any metrics computed from

it is completely determined by the TDE parameters p and τ . A novel simu-

lation which constructs a system of time-series with parameters with known

power spectral density in the off-diagonal autoregressive coefficients was used

to test this principle. With a very large order and very small delay, both

the frequency and phase of the known interactions can be reconstructed val-

idating the simulation method. Moreover, the TDE parameters are shown

to critically determine the frequency resolution of the MVAR model rather

than the properties of a given connectivity metric. There is some indication

that a measure such as iCOH may provide a greater signal to noise ratio

that PDC, however this effect is similar to the principle behind the use of

the squared PDC.

4.4 Discussion

4.4.1 Time-Domain System

An investigation into the number of samples required to minimise type 1

errors in a model fit revealed that a minimum ratio of 5 : 1 between number

of observations and number of parameters produced reliable results. This

result builds on previous literature highlighting the importance of signal to

noise ratio and the data length (Astolfi et al., 2006, 2007; Fasoula et al.,

2013).

The present findings and along with the previous literature highlight

the importance of sample size when fitting a linear model. In this thesis

the linear model in question takes the form of an output or observer on an

approximation to a set of hidden states, which leads to the question of data

sufficiency for estimating the TDE parameters p and τ . As highlighted in

the previous chapter, there may be no such thing as an abstractly correct

or optimal TDE reconstruction (Kugiumtzis, 1996; Cellucci et al., 2003).

Moreover the results of any optimisation procedure are strictly only valid

for the data on which they were estimated. As such, there may be no sample
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size at which these parameters may be more or less robustly estimated as

results may not be comparable across different sets of input data. This

may not be an issue as the TDE simply provides a reconstruction of the

observed data rather than an abstracted model of it, moreover the only

viable measure of the quality of this reconstruction is whether is provides

a basis for prediction of future observations. This brings us back to the

question of optimising our observer model as discussed above.

Many connectivity metrics can be estimated from a fitted MVAR param-

eter matrix and much research has been done into their relative performance

and merits (Fasoula et al., 2013; Astolfi et al., 2007; Blinowska, 2011; Florin

et al., 2011). Critically these metrics differ in their ability to disambiguate

direct and directional connections as outlined in table 4.1. This section

replicated these findings and established that the PDC provides the most

viable metric for identifying structure within a network of time-series. This

is because the PDC is a spectral estimator which is sensitive to direction-

ality and able to disambiguate direct from indirect connections. Moreover,

unlike the Isolated Effective Connectivity, much work has been done in char-

acterising the asymptotic statistics of the PDC and establishing methods for

computing confidence limits for PDC estimates (Schelter et al., 2006).

4.4.2 Frequency-Domain System

The spectrally defined simulations in this chapter seek to validate the phase

and frequency information in the PDC estimate based on two conditions.

Firstly, can the PDC correctly estimate the frequency with a known mag-

nitude or phase in the spectral density of the autoregressive parameters?

And secondly, is the PDC able to disambiguate two interactions at different

frequencies within the same connection? The PDC was able to complete

both of these validation steps.

A critical question in neuroimaging literature concerns the spectral con-

tent of directed interactions in the brain. This interest is born out of a wide

understanding of the importance of oscillatory activity in the brain suggest-

ing that the same oscillations may be seen in functional connections. The
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frequency resolution of an MVAR model is completely determined by the

TDE parameters p and τ . Along with the sampling frequency in the param-

eters, these values determine the natural frequency resolution of the system.

Despite this limit, it is common to see frequency interpolated connectivity

estimates in the literature (Baccalá and Sameshima, 2001; Pascual-Marqui

et al., 2014; Korzeniewska et al., 2008; Supp et al., 2007). Estimating con-

nectivity at frequencies beyond the natural resolution of the MVAR model

does not increase spectral resolution of a system, rather these results will

simply be interpolations of the natural frequencies arising from the system.

In addition, we must be cautious when comparing the frequency response

of different metrics when using such an interpolation as we are not able to

attribute any differences to the metric or the smoothing itself. This issue

is addressed in the final part this chapter which shows that the spectral

response or selectivity of a system is determined by the MVAR parameters

alone and not the metric computed from it as suggested by some authors

(Fasoula et al., 2013; Pascual-Marqui et al., 2014).

4.5 Conclusions

There are several methods for creating systems of time-series with known

time-delayed interactions. Through the use of the known-difference equa-

tions method, this chapter has established the effectiveness of the Partial

Directed Coherence connectivity metric. A classic set of equations from

Baccalá and Sameshima (2001) were first used to illustrate the importance

of the ratio between the number of observed data points and the number

of parameters fitted in a model. Though the precise value might vary from

system to system a minimum ratio of around 5 : 1 was shown to be highly

desirable. Secondly the ability of PDC to rule out indirect interactions and

establish whether there are asymmetries in the dominant direction of infor-

mation flow in a connection.

A critical issue in MVAR based connectivity method is the spectral res-

olution of the model. There are suggestions in the literature that some con-

nectivity metrics estimated from a fitted MVAR model may provide better
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reconstructions of the frequency of any interactions. The known differential

equation method was extended to create a simulated dataset in which the

spectral density of the off diagonal autoregressive coefficients were known.

The PDC and iCOH estimates from this dataset from MVAR models with

different resolutions were used to demonstrate that though the signal-to-

noise from the connectivity metric may vary, this does not effect the fre-

quency resolution when the spectral estimates are not interpolated.

This chapter has outlined several practical issues with network connec-

tivity estimation from observed data including sample size and frequency

resolution. These questions have been directly interrogated using objective

data simulations and their validity and limits established. The next step is

to apply these methods to a set of real data acquired from a human resting

state MEG scan.
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Chapter 5

Directed Functional

Connectivity In An

Endogenous Brain Network
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5.1 Introduction

The idea that our cognition may depend on connections between brain re-

gions rather than isolated processes within individual brain areas is not

new (Wernike 1874 as cited in Eggert, 1977). There is now a wealth of neu-

ropsychological and neuroimaging evidence which demonstrates how specific

networks of brain areas map on to particular behavioural tasks and cogni-

tive processes. However, even when participants have no particular task

to perform, highly organised spatio-temporal structure has been identified

within neural networks from the low frequency (f < 0.1Hz) fluctuations of

their BOLD signal measured in fMRI (Biswal et al., 1995; Fox et al., 2005).

This structure generally follows the known functional topography within

sensory and motor regions whilst within association cortex, there is no clear

hierarchical structure (Yeo et al., 2011). One such example is the Default

Mode Network (DMN), a brain system which is preferentially active when a

participant is not focused on the external environment (Raichle et al., 2001;

Greicius et al., 2003; Buckner et al., 2008).

5.1.1 Default Mode Network

The DMN comprises the Medial Prefrontal Cortex (MPFC) and Posterior

cingulate cortex (PCC) in addition to the bilateral Angular Gyri and the

middle temporal gyrus (Raichle et al., 2001; Greicius et al., 2003; Buck-

ner et al., 2008). These are all regions thought to act as ’hubs’ which in-

terconnect functionally specialised systems (Buckner et al., 2009). These

hubs (particularly the PCC and MPFC) have a high network centrality in

both structural and functional networks and are located in known hetero-

modal/paralimbic association areas (van Oort et al., 2014a). As such, the

DMN has been linked to many cognitive processes including self-referential

processing (Fair et al., 2008) and has been shown to be dysfunctional in sev-

eral clinical disorders (Buckner et al., 2008). There is further evidence that

functionally specialised sub-components of the DMN exist, a midline core

(MPFC and PCC) relevant to self focused affective thought and a lateral

temporal system involved in memory (Andrews-Hanna et al., 2010). The
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interpretation of the functional relevance of the DMN and its subsystems

are complicated by findings of a DMN in rats (Lu et al., 2012) and uncon-

scious monkeys (Vincent et al., 2007), suggesting that its function may be

quite low level, possibly not requiring conscious awareness. As each of the

nodes within the DMN is associated with several functions both in and out-

side the context of endogenous brain networks - its functional role may best

be identified by the state of the network as a whole in any given context

(McIntosh, 2000; Price and Friston, 2005). If so, elucidating the direction of

information flow within the DMN should help to characterise any putative

role.

It is important to note that the ‘hubs‘ within the DMN are distinct from

the ‘rich-hubs‘ which are found within the human connectome (Bullmore

and Sporns, 2012; van den Heuvel and Sporns, 2011). There is some partial

overlap, particularly in the superior frontal cortex (Yeo et al., 2011) however

the medial frontal cortex, middle temporal gyrus and inferior parietal lobe

are not considered to be in the ‘rich-club‘ (van den Heuvel and Sporns,

2011). The precuneus is a ‘rich-hub‘ and can be found directly anterior

to the posterior cingulate, a critical hub in the DMN. As such the ‘hubs‘

within the DMN are not defined by a general interconnectedness with the

whole brain, rather they form a core within the DMN itself (Andrews-Hanna

et al., 2010). The exception might be in the PCC which is both a major node

within the DMN and a rich-hub potentially making it critical in interactions

between the DMN and the rest of the brain.

G-causality analysis in whole brain resting fMRI data have shown that

the nodes in the DMN are primarily driven by activity in other brain regions

(Yan and He, 2011). Moreover, within the DMN, fMRI has shown that the

ventral MPFC node exerts a driving influence on the PCC (Jiao et al., 2011;

Uddin et al., 2009; Zhou et al., 2011), a finding confirmed in a recent DCM

study (Di and Biswal, 2014). In contrast, a recent EEG connectivity study

has shown that the PCC exerts driving influence on the vMPFC during

resting state scans in which the participant has their eyes open, though

this influence disappears when the participants eyes are closed (Pascual-

Marqui et al., 2014). These results suggest that the direction of information
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flow within the DMN are very consistent on the longer time-scales analysed

in fMRI, however the more rapid dynamics may be more prone to larger

changes depending on perceptual and task constraints.

5.1.2 Magnetoencephalography

The fine-grained temporal resolution of Magnetoencephalography (MEG)

allows us to address the question of whether nodes interact and moreover,

specifically how they interact. In addition, its spatial resolution is sufficient

to reveal similar spatio-temporal structure to fMRI in ultra slow (f < 0.1Hz)

spontaneous power modulations (Liu et al., 2010). Beyond a replication of

the fMRI findings, two main types of coupling have been identified (ampli-

tude and phase) which may reflect different functionalities within the brain

(Engel et al., 2013). MEG has also identified non-stationarities in frequency-

band limited networks (de Pasquale et al., 2010; Baker et al., 2014). This

point is reinforced by the computational literature which suggests that over

the longer time-scales considered by fMRI functional connections are largely

related to structural connections, in contrast many configurations of sub-

systems are possible over faster time-scales (Deco et al., 2011). This variance

over shorter time scales may reflect an exploration of the possible functional

architectures allowed by the structural-anatomical skeleton of the brain.

MEG has additionally demonstrated that network connectivity may oc-

cur within frequency bands that are known to be physiologically relevant(alpha-

8 − 13Hz,beta-13 − 20Hz and gamma-20Hz+). Moreover, ICA applied to

band limited amplitude fluctuations has identified a DMN in MEG in the al-

pha band with no prior assumptions about its spatial configuration (Brookes

et al., 2011b). Correlations in spontaneous fluctuations show frequency spe-

cific spatial structure, though most strongly within the alpha to beta range,

however these methods (power envelope correlations) have not identified

functional networks in the gamma band (Hipp et al., 2012).

Although nodes within the DMN are well established, the causal struc-

ture within the network is not clearly understood. The vast majority of

evidence on endogenous brain networks are derived from correlational neu-

126



roimaging methods, limiting any interpretation to simple, instantaneous in-

teractions as seen with measures such as Magnitude Squared Coherence.

Another difficulty is the lack of neuropsychological evidence relating to the

behavioural relevance of the DMN (Buckner et al., 2008). One recent paper

directly investigated the causal structure within the DMN using a dynamic

causal model (Di and Biswal, 2014). The winning model contains a driving

influence from the MPFC to the PCC, suggesting that there may be hierar-

chical influences within and between the sub-components of the DMN. Such

characterisation of the behaviour of nodes within the DMN is essential for

establishing the network context of each node and subsequently, establish-

ing the functionality of both individual nodes and the network as a whole.

This is a critical step in establishing the functional relevance of the nodes

within the DMN. By establishing the nature of information flow any hier-

archy within the network can be established, furthermore we can estimate

the modulation of this structure with cognitive processes providing several

novel insights to both the functional structure and cognitive outputs of the

DMN.

5.1.3 Conduction Delays

An increasing literature on the role of delay in large-scale brain networks has

arisen in recent years. Several computational models simulating spontaneous

fluctuations in brain function suggest that non-zero transmission delays may

play a role in establishing the spatio-temporal structure of endogenous brain

networks (Deco et al., 2011). Delays due to conduction speeds of around

5-20 m/s and 1-5m/s are seen for myelinated and unmyelinated axons in

the adult primate (Ghosh et al., 2008). Physiologically detailed generative

models of spontaneous activity are most effective when a realistic delay in

this range is incorporated (Cabral et al., 2014b; Nakagawa et al., 2014). De-

layed interactions may lead to a reduction in the stability of a system and

are more influential when the delay is of the same order as the oscillation

period of the dynamics and may be neglected altogether when considering

very slow dynamics (Cabral et al., 2014a). The computational literature
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has demonstrated that realistic simulations of network dynamics only arise

with a proper scaling of connection strength and conduction delay resulting

in meta-stable dynamics giving rise to the low frequency synchronisation

observed with fMRI (Deco et al., 2011). Conventional correlation and co-

herence based connectivity measures are often insensitive to such delayed in-

teractions, focusing instead on instantaneous synchrony. Several approaches

are able to incorporate the interactions that might arise from the limited

conduction times seen in the brain and emphasised by the literature in this

paragraph. One such approach uses Time Delay Embedding (TDE) to cre-

ate a representation of the activity in the brain across several nodes and

time delays.

5.1.4 Time Delay Embedding

The present study seeks to characterise the predictive causal structure within

the DMN though characterisation of the predictive strength of delayed in-

teractions within observations of activity at each node. In this approach,

the rapid dynamics of the DMN are reconstructed before the causal struc-

ture is estimated. The coordinates for the state of a dynamical system are

established through a time delay embedding (TDE) of observations of the

system and their time delays, this may be done over any time-scale and

may establish either rapid or slow dynamics. A sufficiently large set of

independent delays (dimensionality) has been shown to provide acceptable

coordinates for the system (Takens, 1981). High data sampling rates are nec-

essary to characterise the physiologically relevant conduction delays. There

is a range of methods for objectively establishing optimal values for the de-

lay and dimensionality of the system (Ragwitz and Kantz, 2002; Cellucci

et al., 2003) which have been applied to non-linear analyses of neuroimag-

ing data (Stam, 2005). These approaches allow us to establish an objective

TDE before a multivariate autoregressive model is used to parametrise the

strength of the influence in between delayed observations across all nodes

in a network. In this way we are able to estimate the directionality of in-

formation flow within the system from the fitted regression model. This
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can be done in a data-driven manner in which causality estimates can be

made without a prior causal models being specified or tested. The interde-

pendencies between nodes in a fitted MVAR model are then characterised

in the frequency domain using Partial Directed Coherence (Sameshima and

Baccalá, 1999; Baccalá and Sameshima, 2001).

5.1.5 Chapter Outline

In this chapter, the rapid dynamics within an example resting state network

(RSN), the DMN, is characterised using TDE to explicitly account for de-

layed interactions between nodes. Critically, the inclusion of time delayed

interactions in this approach naturally leads to estimation of causal influ-

ences within the networks. The optimal TDE parameters are objectively

assessed and physiologically plausible values dimensionality and delay are

established. These parameters are used as the basis of a subset MVAR

model which in turn, provides a description of the causal structure within

several RSNs. Directionality within the RSN as a function of frequency is

further examined and its functional relevance discussed.

5.2 Methods

5.2.1 Data Acquisition

Data were continuously recorded at 4069.017Hz using a 4D Neuroimaging

Magnes 3600 whole head system. The data were passed through a low-pass

filter set at 1500Hz. Participant head shape and reference coil location were

recorded using a 3D digitiser (Polhemus Fastrak) allowing for co-registration

with a high resolution anatomical T1 MRI image acquired using a GE 3.0T

Signa Excite HDx (Kozinska et al., 2001).

Five participants completed 5 resting state recording sessions of 11 min-

utes each. Scans were taken across multiple days over a total time of 10

days. Participants were fully briefed prior to data acquisition and clearance

to acquire data was obtained from the York Neuroimaging Centre research

ethics committee.
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5.2.2 Data Analysis

Artefact Rejection

Data from each participant were split into non-overlapping 2 second seg-

ments. These epochs were visually inspected for artefacts and trials con-

taining muscle or eye movements were discarded from the analysis. The

MEG data were then co-registered with the individual’s structural T1 MRI

scan and the MNI 152 standard brain to allow for source analysis to be

conducted.

Data Preprocessing

A 1Hz high pass filter was used to remove drift from the reconstructed

signals and line noise removed using tight notch filters at 50Hz and it’s

first 4 harmonics. Previous work has shown that excessive filtering time-

series prior to g-causality estimation can distort the subsequent network

structure, however a simple notch filter such as this to remove line-noise is

recommended (Barnett and Seth, 2011). The samples within each epoch

were normalised by demeaning each sample and dividing by the standard

deviation. The epochs from each of the five runs were then concatenated.

Virtual Electrode Analysis

Nodes within the Default Mode network were taken from an analysis of

1000 fcMRI datasets (Yeo et al., 2011). Details of these nodes can be seen

in Table 5.1 and Figure 5.1. A tangentially constrained LCMV beamformer

(Van Veen et al., 1997) was used to generate source space estimates of the

current flow at each of these locations.

The processed sensor recordings were projected into the brain’s source

space at the locations defined in table 5.1. The magnetic field b is measured

from each of M sensors outside the head to form a t by M matrix B.

An adaptive spatial filter called a beamformer is used to estimate neuronal

activity Q at a specific source p in within the brain. The electrical activity

at time t is estimated from a weighted sum of the sensor measurements B.
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MFG

AG

MTG

PCC

dMPFC

vMPFC

Figure 5.1: Schematic representation of the location of six nodes in the
DMN projected onto the cortical surface of the left hemisphere. The nodes
are: MFG - Middle Frontal Gyrus, AG - Angular Gyrus, MTG - Middle
Temporal Gyrus, PCC - Posterior Cingulate Gyrus, dMPFC - dorsal Medial
Frontal Cortex and vMPFC - ventral Medial Frontal Cortex
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MNI coord

x y z Abbreviation AAL Location

-27 23 48 MFG Frontal Mid L
-41 -60 29 AG Angular L
-64 -20 -9 STG Temporal Mid L
-7 49 18 dMPFC Frontal Supp Medial L
-6 52 -2 vMPFC Frontal Supp Medial L
-7 -52 26 PCC Cingulum Post L

Table 5.1: ROIs used in the connectivity analysis. These coordinates were
taken from table 5 in Yeo et al. (2011) and anatomical locations estimated
in fslview

Q = WB (5.1)

A linearly constrained minimum variance (LCMV) beamformer was used

to estimate the sensor weightings W (Van Veen et al., 1997; Huang et al.,

2004) from an estimate of the covariance between all pair of MEG sensors.

To optimise the orientation of the reconstruction of electrical activity a tan-

gentially constrained search for the source orientation which maximises the

total power in the signal at each node was conducted across all 5 acquisitions

for each participant. The source reconstructions were reoriented into this

optimal orientation per node, per participant.

5.2.3 Time Delay Embedding

Time delay embedding (TDE) is a method for reconstructing a dynami-

cal system from a sequence of observations. TDE is described in detail in

chapter 2, and so only a brief introduction is included here. Practically,

TDE involves the conversion of a set of time-series into a sequence of vec-

tors containing observations across a number of time points. The number

of time-points included in the vector is the dimensionality or order of the

embedding space and is denoted p. The time-delay between the observations
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included in the embedding vector is known as lag or delay and denoted τ .

A p dimensional TDE (Φ) can be written as

Φt,p,τ =
[
xt,x(t−τ),x(t−2τ), . . . ,x(t−pτ)

]
(5.2)

An inappropriate value for either of these terms can lead to a distorted

representation of the dynamics of the observed system potentially leading

to the detection of spurious dynamical relations or the omission of real ones.

The process of objectively time-delaying a set of observations naturally

leads to the estimation of predictive causality such as G-Causality (Granger,

1969). G-Causality asserts that if the prediction error in signal X1 from its

past history can be reduced by the inclusion of the past ofX2, thenX2 can be

said to G-Cause X1. This is typically assessed with methods such as MVAR

models which fit parameters indicating the predictive power of a point in a

TDE on subsequent data points. This pipeline represents an objective, data-

driven framework for estimating predictive causality within a brain network,

in contrast to model based methods such as Structural Equation Modelling

and Dynamic Causal Modelling which require prior statements about causal

structure.

The TDE reconstruction can be thought of as a non-linear transforma-

tion of the dynamics of the underlying states in the brain (see chapter 2),

however in anything more than a very simple system this transformation is

likely to be highly complex. Moreover, we have no information about the

“true“ states producing the observable outputs. As such, the TDE process is

treated as an optimisation process which selects p and τ based on how able

we are to predict future observations on the basis of Φp,τ . This prediction

is performed with a multivariate autoregressive model.

5.2.4 sMVAR Model

Statistical dependencies between multivariate time series were described

with a MultiVariate AutoRegressive (MVAR) model. Each vector in the

TDE includes a subset of past history points, and so a subset MVAR model

can be used to parametrise the predictive power of each point onto a subse-
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quent value. This can be written as:

x̂t = −
p∑
j=1

Ajx(t−jτ) (5.3)

A vector x containing the samples from n locations at time t is modelled

as a linear combination of p past history values of the n time series. Aj

is a n x n MVAR coefficients matrix at lag j in which a1k represents the

interaction/influence of xj(t−k) has on x1(t). τ represents the delay between

past history values used as predictors in the model.

Assessing p and τ

The TDE and MVAR parameters p and τ are critical for ensuring that

any results are valid. As outlined in chapter 2, there are several methods

for selecting these parameters, however it is not the case that there is an

objectively correct or optimal choice, moreover any results are only valid for

the data in question. As such, the TDE parameters are optimised to ensure

that τ is sufficiently large to avoid including interdependent predictors in

the MVAR model. In addition, the choice of p (and further refinement of τ)

will come from identifying the state-space reconstruction that best allows

for prediction of subsequent observations.

This second criterion was assessed using the autocorrelation and Mutual

Information function (Stam, 2005; Abarbanel and Parlitz, 2006) which was

assessed within each epoch at each node from τ = 0 to τ = 200. The delay

at which the ACF and MI function reached 1
e of its initial value was used

to indicate the preferable delay. The criteria have previously been shown to

provide different results as the ACF is only sensitive to linear dependencies.

The non-linear dynamics literature has suggested that the MI function may

outperform the ACF (Fraser and Swinney, 1986). As MVAR models are

inherently linear, this preference for the MI function may be less pronounced.

As such, both functions will be investigated.

The MI and autocorrelation results were used to constrain a systematic
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search of the parameter space across both τ and p specifically designed to

identify models which best predict future observations. Akaike’s Information

Criterion (AIC) (Akaike, 1974) was calculated from the residuals of fitted

sMVAR models with each combination of parameters. The AIC is a trade

off between the accuracy and complexity of a model. The accuracy term is

taken as the negative log likelihood of the residuals from the fitted model,

while the complexity term comes from k - the number of parameters.

AIC = 2k − 2log(L) (5.4)

An ideal model is typically taken as the one with the lowest AIC estimate,

that is the model which is most accurate without becoming too complex.

The mean and variance across epochs of these AIC estimates were used to

identify an optimal set of parameters which provide a good, consistent model

with a good frequency resolution (4f < 10Hz).

Model Fitting and Validation

Four methods were used in model validation.

• Percent Consistency (Ding et al., 2000) assesses the amount of the auto

and cross correlation structure in the data captured by the model. This

is expressed by comparing the the auto/cross correlations in the real

data and the model’s fit.

• Stability Index (Lütkepohl, 1991) - The reverse characteristic polyno-

mial has no roots in or on the unit circle. A simpler test based on this

is that the modulus of the largest eigenvalue of the A1 matrix should

be less than 1. This indicates that we have a stable solution, which

implies stationarity.

• The Durbin-Watson tests for serial autocorrelation in the model resid-

uals. Though serial autocorrelation in the residuals will not affect the

consistency of the estimated parameters it may lead to an under or
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over estimation of the standard errors, biasing any subsequent statis-

tical tests.

• R2 - Coefficient of determination, this states how much variance of the

data we are explaining.

5.2.5 PDC and Directionality

PDC was calculated from the parameters of the fitted model in each epoch.

This yields a value for the directed influence in each direction of each con-

nection. A paired-sample t-test was used to establish directionality and

non-parametric shuffle permutations used to estimate significance thresh-

olds (Nichols and Holmes, 2002).

5.3 Results

5.3.1 Parameter Search

To ensure that the system is not oversampled, the Autocorrelation function

(ACF) and the MI were assessed (see Figure 5.2. The average first zero cross-

ing of the ACF was around 1500 samples, corresponding to around 360ms at

4069.17Hz. The first zero-crossing of the ACF is known to overestimate the

optimal delay when reconstructing a dynamical system, particularly in the

presence of noise (Ragwitz and Kantz, 2002), as an alternative the Mutual

Information (MI) function is estimated as a function of delay as outlined in

Fraser and Swinney (1986) with the optimal threshold given by the delay at

which the MI/ACF estimate reaches 1
e of it’s original value (Stam, 2005).

Figure 5.2 shows the ACF and MI functions across participants. Both func-

tions are highly variable in the very shortest delays until τ ≈ 5ms. The

slope then becomes much smoother before reaching an elbow around 20ms.

The 1
e value of the MI/ACF estimates were highly inconsistent, with the

optimal delay for the ACF being around 5ms and the MI around 200ms.

Part of this inconsistency may be driven by the very large value of the

first lag of the ACF, this one sample delay corresponds to approximately
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.025ms and is around double the value seen for the following autocorrela-

tions. In contrast the first lag of the MI function is much lower. This first lag

is very short and unlikely to reflect delayed interactions due to conduction

delays. The remaining parts of the ACF and MI function are quite similar

and both show a slight elbow at a lag of around 20ms. Though this suggests

a possible value for τ , neither the ACF or MI function directly address our

key criterion for establishing the TDE parameters; “Which values of p and

τ best allow us to predict future observations?”.
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Figure 5.2: top row - The autocorrelation function for each participant.
The ACF is calculated for each epoch for each node and the average per
participant is plotted. bottom row - The mutual information as a function
of delay.

To address this critical question more directly and build upon the ACF

and MI findings, a wider search of the parameter space was conducted. An

MVAR model was fitted to the data for a wide range of p and τ values.
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Akaike’s Information Criterion was estimated from each model and used to

establish which model provided the reconstruction which allowed for optimal

prediction of future observations. The optimal model was considered to

be the model with the lowest but most consistent AIC estimate across all

epochs.

The average and standard deviation of the AIC estimates across all

epochs for each point in parameter space are shown in figure 5.3a and b

respectively. Three main points can be seen from these plots.

• The very short delays produce unstable AIC estimates across trials.

These delays (τ < 3ms) are not physiologically plausible, as even a

rapid 10m/s transmission speed would only be able to travel a couple

of centimetres in this time. As such, it is likely that the low AIC

estimates in this region arise from fitting only the very top of the

autocorrelation function.

• Delays between 5 − 10ms have a higher AIC than where τ < 5ms ,

however these models are are much more stable across trials and fall

into a more plausible range. In addition the AIC descends monotoni-

cally with increasing model order, as has been previously reported in

the literature (Brovelli et al., 2004; Supp et al., 2007; Gow et al., 2008;

Gow and Segawa, 2009). Moreover this time-range contains the point

at which the ACF reaches 1
e of it’s initial value.

• longer delays (τ > 10ms) begin to show local minima in the AIC

function. These models are consistent across trial until the order passes

the minima at which point we have considerable trial by trial variation.

The chosen TDE parameters were taken with a delay sufficient to min-

imise interdependence between observations with a sufficient order to allow

for reasonable frequency resolution (4f < 10Hz). A deeper discussion of

the issue of frequency resolution can be found in chapter 3. The final values

selected were τ = 5ms and p = 20.
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Figure 5.3: Top The average AIC estimate from an MVAR model fitted with
the model order (p) indicated in the y-axis and the delay (τ) indicated in the
x-axis. A lower AIC estimate indicates a “better“ model (accurate without
being too complex). Bottom The standard deviation of AIC estimates from
MVAR models fitted with the model order (p) indicated in the y-axis and the
delay (τ) indicated in the x-axis. A lower variance indicates that the quality
(indicated by the absolute AIC estimate) of the MVAR model fitted to
each epoch was consistent across all epochs. Overall The blue dots indicate
TDE parameters that have been used in previous neuroimaging studies using
MVAR methods, details of these studies are included in Appendix D.
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Participant Epochs PC D-W(τ) SI R2

1 1159 42.6 1.89 0.42 0.18
2 1460 41.2 1.86 0.42 0.21
3 1353 45.4 1.9 0.39 0.19
4 1479 48.7 1.87 0.45 0.21
5 1482 51.4 1.88 0.4 0.24

Average 1386.6 45.86 1.88 .416 0.21

Table 5.2: Model assessment and validation measures for 5 participants.
Averaged across 1300− 1500 epochs. PC - percent consistency (Ding et al.,
2000), SI - stability index (Lütkepohl, 1991), D-W - Durbin Watson test.

5.3.2 Model Validation

Four measures of model fit and validity were applied to a fitted model from

each participant (see table 5.2). These indicated that the model was able to

explain around 21% of the variance in the data and 45% of its auto/cross

correlation structure. The Durbin-Watson test indicated that there was

no serial autocorrelation in the data at the τ used in the modelling and

the stability condition indicated that a stable solution was found for all

participants.

The values for the PC and R2 reported here are lower than some recom-

mended values in the literature (Ding et al., 2000). This is because many

past studies have fitted models with delays of 1 and as such, they oversam-

ple the upper part of the autocorrelation function leading to high variance

explained. The present approach sparsely parameterised the autocorrela-

tion function, though this may lead to a more accurate reconstruction of the

critical dynamics it explicitly and by design does not parameterise the very

short delays, which may carry information about subsequent observations.

5.3.3 Directional Interactions Within The DMN

The fitted A matrices within each epoch were used as the basis for a partial

directed coherence analysis. Statistical significance for each of the PDC esti-

mates were computed using the analytic confidence limit defined in Schelter
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et al. (2006). The average PDC estimate across epochs for each participant

are presented in figure 5.4

The PDC seen in figure 5.4 has a distinctive 1
f profile. This power

distribution can be seen in the signals arising from neural data in both EEG

and MEG. The existence of this profile in the PDC estimates may arise from

two factors. Firstly, as the lower frequency signals have a larger magnitude,

the signal to noise ratio of any phase differences may be higher. As such, the

MVAR is more likely to capture the relationship, resulting in higher PDC

estimates. The second factor is of consistency within the analysis window.

The MVAR model can only characterise relationships that are consistent

across a two second analysis window. The lower frequency oscillations are

likely to have slower dynamics that faster oscillations. We may therefore

expect that the low frequency phase differences may be more consistent

across a two second window than seen in a higher frequency which may

show far more complex dynamics within the same time-window.

A further contrast between the two directions in each connection was

performed to establish which connections show asymmetrical connectivity.

A paired t-test between the PDC estimates in each direction of each connec-

tion was computed for each participant and significance levels assessed using

non-parametric label permutations with a maximum statistic approach to

control for type-1 errors. The results of this contrast can be seen in figure 5.5

DMN Hubs

Figure 5.5 shows that the two ‘hub‘ nodes in the DMN, the Posterior Cin-

gulate Cortex (PCC) and ventral medial prefrontal cortex (vMPFC) have

very little consistency in the direction of interaction across participants at

the lower frequencies (< 20Hz). Above 20Hz, the vMPFC exerts a driv-

ing influence on the PCC for several participants with a peak around 70 in

which three out of the five participants showed this directionality.

The PCC itself exerts a highly consistent driving influence on the middle

frontal gyrus (MFG) and posterior middle temporal gyrus (pMTG). This

effect is present for all five participants across the whole frequency spectrum.
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In addition, the PCC drives the dorsal MPFC node in four participants

around 10Hz. This effect is less consistent at higher frequencies (> 10Hz)

where only one or two participants show significant directionality. There is

little evidence for directionality in the interactions in between the PCC and

AG. This does not imply that there is no integration between the two nodes,

figure 5.4 shows that both directions within this connection demonstrate

significant PDC. The lack of directionality implies that these influences are

equally weighted.

The two MPFC nodes show a similar directionality profile to the PCC,

including a strong driving influence on the MFG and pMTG across all tested

frequencies. Moreover there is again little evidence for consistent direction-

ality in d/vMPFCs interactions with the AG with most frequencies in these

connections only reaching significance in one or two participants. The excep-

tion being the vMPFC driving the AG in three participants around 40Hz.

The interactions between the dorsal and ventral MPFC show a slight

preference for directional influence from the ventral node to the dorsal. This

is most consistent across participants below 20Hz and above 70Hz.

5.3.4 Angular Gyrus

As outlined above, there is little evidence for consistent directionality in

the connections between the AG and the PCC/vMPFC and dMPFC. In

contrast the AG exerts a highly consistent driving influence over the MFG

and pMTG across all frequencies. The directional influence between AG and

pMTG is most consistent across participants from 20Hz and above, with

only three or four participants showing the effect at lower frequencies.

5.3.5 pMTG/MFG

The pMTG and MFG are very consistently driven by all of the other nodes.

This directionality is broadly consistent across frequencies and present for

four or five out of the five participants.

The interaction between pMTG and MFG shows some evidence for a

driving influence coming from pMTG in two participants. This effect is
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present in three participants around 40Hz.

Several connections show significant directionality across the 5 partici-

pants. Critically the connection between the two ‘hub‘ nodes in the DMN

shows that the posterior cingulate exerts a driving influence over the medial

prefrontal gyrus consistently across time, frequency and participant.

5.3.6 Between Subject Variability

Though several connections show very consistent effects across all partic-

ipants (PCC→MFG, PCC→pMTG, d/vMPFC→MFG and AG→pMTG)

many others show considerable variability. The connections between the

AG and PCC/vMPFC/dMPFC are the most variable as seen in Figure 5.5.

In each of these connections the average t-value from the directionality test

is very small, though individual participant do show an inconsistent pattern

of significant directionality. The connection between AG and PCC shows

one participant with a strong directionality effect from PCC to AG, in con-

trast the opposite effect is seen in one participant around 30Hz and two

participants at frequencies greater than 50Hz. Similar patterns can be seen

in the PCC - vMPFC and pMTG - MFG connections.

5.4 Discussion

This study set out to characterise the interdependencies between nodes in

the DMN from a reconstruction of the rapid dynamics of the system. This

novel approach considered the interplay between regions within the network

on a much finer time-scale than previously reported in fMRI or MEG. We

observed a complex parameter space and established a physiologically plau-

sible set of parameters for the time delay embedding. MVAR models fitted

with these embedding parameters yielded PDC estimates which revealed a

complex set of directional interconnections.

The pattern of directional connections within the DMN is complex, how-

ever subsets of nodes within the DMN appear to have similar functional con-

nectivity profiles. v/dMPFC, PCC and AG all exert a large influence on the
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MFG and MTG. Moreover there are consistent driving influences between

the two anterior driving nodes and the posterior driving nodes. The most

variable directionalities occur in the connections between these anterior and

posterior nodes.

5.4.1 Anterior Driving Nodes

The two nodes in the Medial Prefrontal Cortex exert a strong driving in-

fluence on both MFG and MTG in all five participants across all frequency

bands. In addition, the interactions between the two medial frontal nodes

shows a very strong tendency for the vMPFC to drive dMPFC, particu-

larly at less than 40Hz and greater than 70Hz. Though consistent, this

interactions is quite weak with t-values only just reaching significance.

There is a weak driving influence from the ventral MPFC to the PCC is

not significant in more than one participant in low frequency bands (<20Hz)

but becomes very consistent at higher frequencies. A weak directionality in

this connection (vMPFC→ PCC) is consistent with previous fMRI findings

(Di and Biswal, 2014; Jiao et al., 2011). These regions form the first key

regions in the DMN (Buckner et al., 2008) and a clear picture of a driving

influence from MPFC to PCC is building up.

5.4.2 Posterior Driving Nodes

The Angular Gyrus exerts a very consistent influence on pMTG and MFG,

however the rest of it’s connections are relatively inconsistent across partic-

ipants. The exception being a driving influence from vMPFC to AG around

40Hz. AG is structurally connected the pMTG by the arcuate fasisculus

(Catani et al., 2005) in addition there is strong evidence that the posterior

AG is functionally connected to the posterior cingulate and veteromedial

prefrontal cortex in fMRI though there is less evidence for a direct struc-

tural connection (Uddin et al., 2010). These latter two connections form

a crucial part of the DMN and are relatively symmetrical in terms of di-

rectional influences. However the strong driving influences seen here are

inconsistent with previous fMRI results (Jiao et al., 2011). This inconsis-
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tency may reflect the time-scale on which the interactions occur, sub-second

influences from the AG to the rest of the DMN might be invisible to an

fMRI analysis but may be readily apparent in MEG.

In contrast to the relationship between PCC and vMPFC discussed

above, the PCC exerts influence over the dMPFC. This is seen most consis-

tently across participants in the alpha band around 5-15Hz. Previous fMRI

findings have suggested that the PCC is primarily driven by other regions

within the DMN (Jiao et al., 2011; Yan and He, 2011). In contrast the cur-

rent MEG evidence suggests that the PCC exerts a consistent influence on

both MTG and MFG with a less consistent driving influence on dMPFC.

Moreover, this finding is consistent with a recent EEG study showing that

PCC exerts a driving influence on the anterior cingulate, primarily in the

theta and alpha frequency band (de Pasquale et al., 2010).

The PCC and MPFC are structurally connected by the Cingulum; a

white matter bundle which projects along the cingulate gyrus (van den

Heuvel et al., 2008; van Oort et al., 2014b). Diffusion tensor imaging (DTI)

data measuring the diffusion of water along white matter bundles has sug-

gested that participants who show higher fractional anisotropy in the Cingu-

lum also show greater DMN functional connectivity as estimated with fMRI

(van den Heuvel et al., 2008). The present results build on this literature

in two ways. Critically the interactions arising from this connection show

frequency specific asymmetries. In addition, there is different directionality

in the connections between the PCC and the d/vMPFC, suggesting that

fine grained functional parcellation within the MPFC might be associated

with differences in directional influence.

5.4.3 Driven Nodes

The MFG and pMTG are consistently driven by each of the other nodes

in the network with the exception of each other. The interactions between

these nodes shows a slight preference for pMTG to drive activity in MFG,

most consistently in the low gamma range. The MFG has been identified as

a predominantly ‘driven‘ hub in resting state fMRI (Yan and He, 2011).
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5.4.4 Frequency Specific Connections

Two connections show large differences in directionality as a function of

frequency. The vMPFC → PCC is weakly directional, however the direc-

tionality is most consistent at higher frequencies. In contrast the PCC →
dMPFC connection is only significant around 10Hz, though again this is a

relatively weak directionality.

These two connections suggest that the interactions between the primary

nodes in the DMN are critically dependent on frequency. There is growing

evidence that alpha band oscillations may govern top-down modulatory pro-

cesses while the bottom up processing is done in the gamma band (von Stein

and Sarnthein, 2000). In this context the PCC→ vMPFC connection might

reflect the modulatory top-down influence or integrative processes such as

decision making (Donner and Siegel, 2011), while the dMPFC → PCC con-

nection reflects interactions more relevant to stimulus driven bottom up

processes. Though this theory is very influential in neural oscillations re-

lated to specific tasks, it is less clear what “top-down“ and “bottom-up“

might mean in connection between two heteromodal brain regions such as

the PCC and MPFC. Further investigation into the task modulation of the

interactions between these brain regions might provide deeper insight.

5.4.5 Individual Differences

Many of the asymmetries identified in this study are consistent across 5

recording sessions for all 5 participants. In contrast, some connections show

considerable individual differences, for instance connection between MFG

and MTG has participants showing a significant directionality in both di-

rections of the connection. A portion of this variance may reflect estima-

tion/fitting error, however it is possible that variance in these connections

may have a cognitive or perceptual correlate that reflects individual differ-

ences in state-of-mind in the scanner.
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5.4.6 Methodological Statements

The reconstruction of rapid dynamics from very short time delays in this

study allows for the inference of directional influence within RSNs. This has

not been possible with previous methods based around instantaneous cor-

relation/coherence based measures, which do not take delayed interactions

into account and explicitly focus on dynamics over much larger time scales.

Moreover it has been shown that data preprocessing methods such as band-

pass filtering can distort measures of G-Causality (Barnett and Seth, 2011).

Specifically, the smoothing effect of a filter can dramatically affect the em-

pirical model order estimate making it an inappropriate step in estimating

causal influences within a system (Barnett and Seth, 2011).

The time-delay embedding method used here is optimised to find the

reconstruction of past observations that best predicts future observations.

This provides a mechanism by which the TDE/MVAR parameters p and

τ can be established relatively objectively. Moreover the inclusion of τ as

an explicit parameter in the MVAR may allow for more consistency in the

MVAR and neuroimaging literature in which different studies may use very

difference sampling frequencies in their models.

In addition, though state-reconstruction through TDE can naturally lead

to directional connectivity estimation with MVAR modelling it can be ap-

plied to other approaches. These include the estimation of Markov Chain

models (Ragwitz and Kantz, 2002) and more traditional non-linear dynam-

ical methods. MVAR modelling is a linear approach, while this provides

many advantages in stability and simplicity the brain is a highly non-linear

system. This limits the amount of variance that the model can account for.

As such, the application of TDE state reconstruction to more complex bi-

linear or non-linear equations may provide a more complete account of the

underlying neural dynamics. In addition, as time-delays are more widely

incorporated into computational models of neural dynamics, TDE could po-

tentially provide a mechanism for establishing these quantities from observed

data.
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5.4.7 Future Directions

There is considerable evidence that many critical brain networks are dis-

rupted as a result of clinical or psychiatric disorders (Buckner et al., 2008).

The present study has characterised network interactions in neurally typ-

ical participants however this method may provide a critical insight into

disruption of directional information flow in clinical disorders.

The directionality of the connections within the DMN demonstrated in

this chapter represent a step forward in our understanding of the structure

of this network. Critically the idea that the MPFC and PCC are highly

influential can now be explicitly modelled and found within several par-

ticipants. This is, however, a static picture of these interactions. Much

of the computational modelling done on resting state brain networks have

emphasised the dynamic nature of the network structure within the brain.

Even suggesting that the structure changes over time as the brain explores

the dynamic repertoire allowable from the underlying anatomical skeleton.

Further research looking to explicitly characterise these dynamic changes in

brain connectivity would provide a link back to the computation modelling

literature which currently works mainly on dynamics on an fMRI timescale.

Moreover the long (2 second) time windows used here will reflect brain con-

nectivity which is stable over a long time period for the brain. Critically, this

window is too long for a direct investigation into the task related dynamics

which are known to unfold on a millisecond timescale.

The cognitive/perceptual relevance of the connections identified in this

chapter remain unclear. A critical avenue for future work could look for the

cognitive/behavioural correlates of the individual differences in connection

strength or directionality within brain networks. This would provide strong

evidence for the role of different parts of the network. This may be simpler

to achieve within an explicitly task related brain network, though the DMN

is a compelling example of ongoing interactions within a brain network it

has been linked to a great many cognitive processes. Moreover, these tend

to be rather abstract processes such as self-referential thought which may

be challenging to manipulate experimentally.
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5.4.8 Conclusion

The critical novel contribution of this chapter is an illustration of how time

delay embedding can naturally provide a principled foundation for MVAR

models and subsequent connectivity and information flow analyses. Previ-

ous literature in this area has typically focused on instantaneous measures

of neural synchrony. Moreover previous analyses incorporating delayed in-

teractions, such as MVAR, have not investigated the choice of τ leaving

it set implicitly by the data sampling rate. Finally, detailed computational

models have begun to incorporate delayed interactions and emphasised their

importance in neural function, however to date these models have been used

to show that a system of delayed interactions between nodes may produce

the slow-wave fluctuations in BOLD seen in fMRI. Though this represents

an important step forward, these models demonstrate that such interactions

are capable of producing the observations we make rather than inform us

about the nature of the actual interactions in the brain. This work provides

a middle ground between these three literatures, building upon the large lit-

erature on instantaneous synchrony in resting state networks by using TDE

to make an informed choice about the delay and order in the MVAR model

which characterises information flow within a network.

This study has provided the first insight into the directionality of in-

formation flow within the DMN during a resting MEG scan. Many of the

connections within the DMN showed significant asymmetries which were

consistent with previous fMRI and EEG studies, however these results chal-

lenge the claim that the PCC is a primarily driven node. Moreover the extent

to which the PCC is driving or driven by the medial PFC may modulate as

a function of frequency.
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Chapter 6

Dynamic Changes In Within

Network Directed

Connectivity
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6.1 Introduction

The previous chapter demonstrated that there are many asymmetrical con-

nections within the DMN, in that there are significant differences in the

directed functional connectivity between the two directions of a single con-

nection. This builds upon previous work demonstrating the functional con-

nectivity between these regions in multiple neuroimaging modalities, how-

ever we are still left with a static image of brain connectivity. The TDE

does capture the dynamic interactions between brain regions, however the

MVAR model is only able to parameterise any interactions which are con-

sistent within a single epoch. This chapter uses Hidden Markov Modelling

to characterise structure in the modulation of PDC on an epoch-by-epoch

basis. In other words, attempting to model dynamic changes in the interac-

tions within the default mode network.

6.1.1 Non-Stationarity

Fluctuations in band-limited power correlations within resting state net-

works have suggested that networks such as the DMN may form tran-

siently and switch between periods of relatively high or low connectivity

(de Pasquale et al., 2010). Such fluctuations in within network functional

connectivity have been robustly identified in a number of contexts and

modalities (de Pasquale et al., 2012; Chang and Glover, 2010) and have

become a feature of many computational models of resting state brain func-

tion (Deco et al., 2013). Indeed, this non-stationarity in within network

functional connectivity has been highlighted as a critical area for future

work (Cabral et al., 2014a).

It may be the case that these non-stationarities reflect “noise” in the

brain rather than structured dynamics, in which case such spontaneous or

background activity would have no functional role. However this view has

long been thought of as an over simplification (Pinneo, 1966). Recent com-

putational evidence suggests that the spatio-temporal structure of the rest-

ing brain cannot be replicated without the presence of some neural noise to

drive “exploration of the brain’s dynamic repertoire” (Ghosh et al., 2008).
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This idea may be pushed further when considering a Bayesian brain model

in which the brain is constantly striving to generate predictions about future

events and establishing optimal network structures to deal with them (Knill

and Pouget, 2004). Within this context variance in predictions driven by

noise could provide a mechanism which ensures that a wide range of hy-

potheses are tested (Deco et al., 2011).

Though the specific role of noise or non-stationarities in resting state net-

work configurations is not well understood, current methodologies such as

Hidden Markov Modelling used in conjunction with MVAR-PDC estimates

are well placed to provide objective descriptions of which the dynamic reper-

toire of a functional network such as the DMN. In addition, this provides a

critical step towards investigation of the highly dynamic brain responses to

external stimuli.

6.1.2 Functional States

One very influential approach to accounting for non-stationary neural be-

haviour has been the identification of ‘functional states‘. In contrast to the

abstracted states referred to in previous chapters, a functional state is a

period in time in which the observed responses show homogeneous charac-

teristics. For example, spatial configurations in EEG topologies have been

identified and shown to be stable over short periods of time by segmenting

EEG scalp recordings (Lehmann, 1984; Lehmann et al., 1998). Such “mi-

crostates” remain stable for around 100ms and transition in a rapid, almost

step-wise way. Moreover information in the EEG microstates may be re-

lated to the resting state activation patterns seen in the much slower BOLD

fluctuations in fMRI which are typically below 1Hz (Musso et al., 2010;

Britz et al., 2010). Finally, microstates prior to onset of a visual stimulus

have been show to predict subsequent perceptual awareness of the stimulus

(Britz et al., 2014) suggesting that such states represent cognitively relevant

neural configurations. It has further been suggested that such microstates

are the “building blocks of spontaneous thinking” (Lehmann et al., 1998) in

that chains of microstates might combine small steps to produce meaningful
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cognitive processes.

In a practical sense, this allows for a simplification of the brain’s highly

complex dynamics by segmenting or clustering observed data into discrete

functional states. This may be done over several time-scales from millisec-

onds to seconds, trading off time and frequency resolution (Koenig et al.,

2005). In addition this process may be applied to either sensor or source

space M/EEG data (Lefèvre and Baillet, 2009). This approach has been

highly influential, however it seeks only to quantify the spatio-temporal

structure of each state and does not consider the dynamics of the transi-

tions between states themselves.

These transitions can be characterised with a Hidden Markov Model

which provides a probabilistic description of transitions between states. This

method has been applied to sensor MEG data to identify points in time with

similar sensor covariance matrices providing a more finely tuned spatial filter

for beamforming (Woolrich et al., 2013). Moreover, HMMs have been used

to identify how brain networks reorganise on a sub-second time-scale (Baker

et al., 2014). This approach has demonstrated that spatial topographies

in the brains source space show transient functional states which remain

stable for 100-200ms at a time. Moreover, the transitions between these

states are not equally probable, with the brain being highly unlikely to

transition directly between DMN and dorsal attention network (Baker et al.,

2014). Critically, this builds on the EEG micro-state literature by providing

a spatial map of each state in the brain rather than on the EEG sensors.

This chapter applies the HMM iethodology recently developed in appli-

cation to MEG data (Woolrich et al., 2013; Baker et al., 2014) and apply

it directly to the PDC estimates from the previous chapter. The fitted

HMM will then probabilistically characterise dynamic transitions between

functional states in which the directional connectivity within the DMN is

relatively homogeneous. The directionality test outlined in the previous

chapter will then be applied to the epochs within each functional state pro-

viding a description of how modulations in directional influence within the

DMN change over time.
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6.1.3 Markov Models

As outlined above, the dynamics of brain states can be characterised with a

Markov model which describes the probabilities that a system moves through

a series of discrete states. This section outlines the basis theory and structure

of a Markov model.

Markov Chains

As described in chapter two, a system at a given point in time may be

described by its state. That is, a complete description of the internal parts

of the system. A completely stationary system may only occupy one state

over time, whereas a non-stationary system may transition through many

different states during the time it is observed.

A Markov model creates a probabilistic description of a systems change

in state through time. For a discrete, first order Markov chain the probability

that the system will by in one of N given states at time t is determined by

the state of the system at time t− 1.

P (st|s1, . . . , st−2, st−1) = P (st|st−1) (6.1)

In which, P (st|st−1) is the conditional probability that the system is in

each of the N states at time t given the state at time t − 1. Equation 6.1

describes the Markov Property, and indicates that the process in question

is memoryless in that its future is conditioned only on its present and not

on its past. In contrast to the state space used in chapter 2 and the TDE-

MVAR analyses in previous chapters, a Markov process uses a categorical

distribution of states.

If we consider 3-state Markov process with states s1, s2 and s3 . We may

assume that brain activity at a given time point is well described by one of

these states and estimate a set of transition probability from a sequence of

observations of neuronal activity.
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η =

 P (s1|s1) P (s2|s1) P (s3|s1)

P (s1|s2) P (s2|s2) P (s3|s2)

P (s1|s3) P (s2|s3) P (s3|s3)

 (6.2)

The transition matrix η then contains the conditional probabilities that

given the weather in in one state, what is the probability that the weather

is in the other state on the next day.

Hidden Markov Models

The examples and models discussed so far assume that the state of the

system is directly observable, however this is not the case for many systems.

such as the brain. For these systems, we may generalise the Markov Process

to one in which the observations are some probabilistic function of a hidden

(non-observable) state. This is known as a Hidden Markov Model (HMM).

This process is embedded in two probabilistic functions, one hidden process

governing the change in state over time and a second which produces an

observation depending on the current state.

s(t)

O(t)

s(t+ 1)

O(t+1)

s(t+ 2)

O(t+2)

. . . . . .

Figure 6.1: Schematic of a Hidden Markov Model. The top line shows
the first probabilistic process describing how a state at a given time can
condition the probability of which state is present at time t+ 1. The second
probabilistic process is shown in the top to bottom arrows which illustrate
the how the observation at time t is influenced by the current state alone.

An HMM is characterised by five parameters (Rabiner, 1989):
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N The number of discrete hidden states.

M The number of possible observation symbols, the output of the system.

η The state transition probability matrix.

B The probability distribution of the observations.

π The initial state distribution.

The outputs of the system must have been observed and N and M must

be defined prior to fitting the HMM. Once these are known the probability

measures η, B and π may be computed. For clarity, the compact notation:

λ = (η,B, π) (6.3)

is used to denote the full parameters of the model.

The first critical question concerns optimisation of the model. Given a

priori expectations about λ and and observation sequence O, how can we

optimise λ to maximise P (O|λ). A Variational Bayesian inference as de-

scribed in (Rezek and Roberts, 2005) and applied in (Baker et al., 2014;

Woolrich et al., 2013) is used to train the HMM. This method is fully prob-

abilistic and provides full posterior distributions for the model parameters.

The priors for the model are chosen to be non-informative.

The probability of a given state at time t given the observed data (P (st|O))

after this training or optimisation phase is used to determine which state

is active at a given time. This is done by Viterbi decoding, only the most

probable a posteriori state at a given time point is considered to be ‘on‘, the

other less likely states are all classified as ‘off‘.

6.1.4 Summary

In this chapter a HMM will be used to characterise the transitions between

hidden states over time within the Default Mode Network. The PDC esti-

mates calculated in the previous chapter will be used as the observations for
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this model and the hidden states assumed to reflect some specific configu-

ration of neuronal connectivity within the DMN.

This analysis will provide several informative statistics, critically we will

be able to group time points during a resting state scan during which the

network connectivity within the DMN is similar. Secondly, the total time

and average length of time that the brain spends in each state can be esti-

mated. These metrics will allow for a detailed characterisation of how stable

the DMN is over time and whether all connections are equally variable. We

will then be able to build on the results of the previous chapter by repeat-

ing the directionality analysis within each state identified by the HMM to

identify any connections whose directionality is modulated by state. Fi-

nally a finer grained interrogation into which connections are modulated by

the transitions between different Markov states will be done with a state

time course regression. This regresses the epoch-by-epoch PDC estimate in

each connection against the state-time course, providing a measure of which

states predict modulation in PDC.

6.2 Methods

6.2.1 PDC Estimates

The input to the HMM process were the estimates of the Partial Directed

Coherence within the Default Mode Network calculated in chapter 4. The

PDC from all two second epochs for all participants were included in the

analysis.

6.2.2 PDC Dimensionality Reduction

Each PDC estimate was unfolded into a [1, nchannels×nchannels×nfrequencies]
vector containing all of the estimates for all connections at all frequencies

for that epoch. A total of ≈ 6500 vectors were unfolded from all participants

and used as the input to the HMM. The large dimensionality of these vectors

can lead to numerical instability in the estimation of the Kullback-Leibler

divergences when estimating the free energy of the HMM. As such, PCA
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was used to reduce the dimensionality of these PDC vectors.

PCA was performed over the PDC vectors for all epochs from all partic-

ipants, 53 principle components explaining 66.174% percent of the variance

in the PDC estimates. The weighting of each component for each epoch was

then computed, these weightings formed the observation sequence O for the

HMM.

6.2.3 Markov Processes

An HMM with four discrete hidden states was inferred from the PCA

weights. The state with the most probable posterior after fitting was iden-

tified using the Viterbi algorithm (Rezek and Roberts, 2005). The state

time-course (u) was defined to indicate which of the k states was most prob-

able for each successive two second window. HMM analyses were performed

using the HMMBox toolbox for MatLab which can be downloaded from

www.fmrib.ox.ac.uk/˜woolrich/HMMtoolbox.

6.2.4 Within State Directionality

The observation sequence used to fit the HMM contained the weightings

from the first 53 principle components of the unfolded PDC vector. As such

the multivariate normal distributions defining each state only span this re-

duced subspace. This means that the posterior distributions cannot be read-

ily interrogated to identify connection and frequency specific asymmetries

in the DMN as one component may load onto the PDC estimate from sev-

eral connections. Therefore, the state time course was used to group epochs

which contained the same winning state. The original, full-dimensionality,

PDC estimates from these epochs were then used to compute the directional-

ity test as described in the previous chapter Therefore, the state time course

was used to group epochs which contained the same winning state. The orig-

inal, full-dimensionality, PDC estimates from these epochs were then used

to compute the directionality test as described in the previous chapter.
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6.2.5 State Time Course Regression

For each state and connection in turn, the state time course u which indicates

whether that particular state was “on” or “off” was used to predict the PDC

estimates over time. This performed two critical tasks.

Firstly, the HMM is a probabilistic description of the PDC estimates,

as such it is difficult to estimate a “goodness of fit” measure that would

compare the difference between the HMM and some “true” model producing

the data. In order to validate the HMM, we look to establish the extent to

which the fitted HMM is able to predict our data observations. The tests the

null hypothesis if there were no probabilistic structure to be captured within

the observations the HMM would still return four states this is determined

a priori. Moreover if this were the case, the state-time course would be

random and unable to predict variance in the observations.

One possible complication is that the four states may not act equally

on all connections within the DMN. Therefore, by estimating the extent to

which the states predict the PDC for each connections at each frequency we

may objectively determine which connections are modulate most in by the

HMM state transitions. As a consequence of computing so many regressions

the statistical significance of each will be subject to a Bonferroni correction.

Moreover, as the PDC distribution is highly unlikely to be Gaussian, the p-

value will be adjusted by a Greenhouse-Geisser correction. Any remaining

significant state modulations of PDC estimates are likely to be highly robust.

The result of this analysis will be a regression β values for each connec-

tion (both directions and for each frequency) for each state which quantifies

the extent to which the state is able to predict change in the PDC in that

connection. In addition the coefficient of determination is calculated for the

significant β estimates. It is important to note that this β value will indicate

whether the state predicts something different in the coefficients relative all

other states. That is, as positive value will indicate that the PDC estimate

for that state was significantly larger than in the other states.
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6.3 Results

6.3.1 Number Of States

Figure 6.2 shows the Free Energy estimates from HMMs with different as-

sumed numbers of states (k = 2, . . . , 10). As the HMM inference may be

affected by variance in the initialisation, the distribution of free energy is

shown for each number of states. The median of the free energy distribution

drops from k = 2 to k = 4 before plateauing before increasing again after

k = 8. The median is used as the estimation procedure is affected by the

random initialisation conditions and as such, some iterations may produce

very different results. The median of the distribution is less susceptible to

bias from any outliers in the distribution potentially caused by noise in the

initialisation.

The notches in figure 6.2 indicate whether the distributions of two boxes

are likely to be significantly different. The overlapping notches in the dis-

tributions for 4,5 and 6 states indicate that these distributions are not sig-

nificantly different. As such, the final number of states was chosen to be

four, as this is the smallest number of states with the lowest free energy

distributions and as such will produce the simplest model.

6.3.2 HMM Inference

Figure 6.3 shows the state time courses for the HMM inference with four

states for the PDC windows from five participants concatenated in time. A

close up of one section of this plot for one participant is shown in the lower

part of the figure.

Differences between the five participants can clearly be seen in this plot,

indicating that there may be high individual difference in the transition

matrix between participants. For participant one State 4 is highly dominant

with no time spend in any of the other states. State 4 is then only revisited

regularly in participants 4 and 5. Participants 2-5 all show rapid transitions

in and out of States 1,2 and 3. A close up of one section of the state time

course for participant five can be seen in figure 6.3. This clearly shows the
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Figure 6.2: Distribution of free energy estimates from HMMs with different
numbers of states fitted to the PDC estimates from the previous chapter.
Lower free energy suggests a more stable solution. The red line indicates
the median Free Energy for a given number of states, while the box extends
from the lower to upper quartile values of the data. The whiskers show
extend to 1.5 time the interquartile range (1.5× (75%− 25%)). The height
of the notches indicate the standard error of the median, if the notches for
two boxes overlap it is likely that the distributions they represent will not
be significantly different.
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Figure 6.3: top - State time course for the five participants concatenated in
time. Each time series represents whether one state was “on” or “off” as
determined by the Viterbi decoding. Only one state may be on at a given
time. The black box represents an example period of time which is shown in
close up in the bottom figure. bottom - A close up on a ten minute segment
of the state time course for one participant.
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short-lived states and rapid transitions between windows.

6.3.3 State-Specific Directionality

The epochs from each of the four states were used for a directionality analysis

identical to the one described in the previous chapter except that epochs

from all five participants were included in the analysis. The t-values for a

paired t-test between the PDC estimates for the different directions of each

connection can be seen in figure 6.4.

Figure 6.4 clearly shows that the state transitions have a relatively subtle

effect on the directionality within the DMN. There are no cases in which a

state transition reverses the directionality in a clearly directional connection.

However, several connections with no significant directionality in two or

three of the state may show significant directionality in the remaining state.

Though there are differences in the directionality within the DMN as a

function of state, we cannot establish whether these differences are signifi-

cant from this picture. It may be the case that by dividing up the epochs

from the state time course, we are simply one distribution differently in each

state leading to an expected variance in the resulting directionality. The fol-

lowing section quantifies the strength of influence of the state transitions on

the PDC estimates themselves and seeks to establish the extent to which

state transitions predict connectivity within the DMN.

6.3.4 State Time Course Regression

Figure 6.5 shows the significant β estimates from the state time course re-

gression. The first point is that despite the highly conservative Bonfer-

roni and Greenhouse-Geisser correction to the p-values the states have been

shown to predict the PDC values for several connections. This suggests that

the HMM has been able to characterise some probabilistic structure within

the PDC estimates. Critically, this is not the case for all connections. The

MTG → dMPFC connection is not predicted significantly by the presence

of any state. In addition, several other connections are only predict during

the presence of one state. For instance, MTG → AG, MTG → PCC and
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PCC → dMPFC are only predicted by state 4, even then only between 20

and 60Hz.

States 1 and 3 have opposing influences on many connections. Critically,

during state 1 the PDC from AG and MTG to the rest of the network is

significantly increased, whereas the same connections are decreased during

state 3. Again this is a frequency specific effect, the modulation only oc-

curring between 10 and 30Hz for most connections. Indeed, there are no

connections for which state 1 predicts a decrease in PDC, suggesting that

this state reflects the time points at which the DMN is maximally connected.

In contrast, the decreased output from AG and MTG predicted in state 3 is

accompanied with an increase in influence in the PCC→ AG connection and

from dMPFC to the rest of the network (particularly at higher frequencies,

above 50Hz).

State 2 does not predict modulation in PDC for any connection from

10Hz and above. As the regression analysis for each state was done inde-

pendently for each state against all other states, this does not mean that

state 2 does not modulate connectivity at all. Rather it may reflect an “av-

erage“ or “baseline“ state in which none of the other states were able to

characterise anything meaningful. In other words, in the other three states

we are able to explain variance in the PDC on the basis of the Markov state

which is associated with a multivariate Gaussian probability density func-

tion predicting the PDC. Each of these probability functions for states 1,3

and 4 have biases for larger PDC values in certain connections, in contrast

the probability function for state 2 may not contain any such biases.

Finally state 4 completely dominates the dynamics in participant 1 and

characterises much of the time for participant 4 as can be seen in figure 6.3.

In contrast, this state is relatively rare in the remaining 3 participants.

This relatively static pattern for participant 1 may arise as 4 states were

not sufficient to unfold the dynamics for all participants, though figure 6.2

suggests that there is not sufficient evidence to move to an HMM with 5

or 6 states. This may be a shortcoming of the analysis being based on

a small number of participants. In this case it maybe that with a large

amount of data from relatively few participants, the HMM may not be able
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to characterise some less common states well. As a result, the inclusion of

these states does not modulate the free energy of the model enough to justify

their inclusion, instead these dynamics may end up being represented one

apparently static state as seen in participant 1.

6.3.5 Frequency Specific Modulation Of PDC By State

The previous section looks in general at the results of the state-time course

regression. This section describes the state modulation of DMN connectivity

within three frequency bands: theta (1-5Hz), alpha (5-15Hz) and one part

of the gamma spectrum (55-65Hz).

Theta Modulation

The results from the theta band can be seen in figure 6.7. States 1 and 4 do

not predict any significant modulation in PDC, as outlined above this may

not reflect a lack of influence. Rather the contrasts in the regression were

between each state and all other states. As such this may mean that any

structured variance during this time may be common to all states. Critically,

the theta band is the only frequency in which state 2 is predictive of variance.

This state is associated with an increase in the PDC from the dMPFC to all

other nodes in the network along with a decrease in influence from vMPFC

to the MTG. In contrast, state 3 is associated with an increase in influence

from vMPFC to AG,dMPFC and MTG and a decrease in influence from

dMPFC to MFG. Finally, state 4 contains a slight decrease in influence

from vMPFC to dMPFC.

Alpha Modulation

The results for the alpha modulations can be seen in figure 6.8. State 1

contains a large increase in influence from both AG and PCC over many

of the other nodes in the network. Critically, while the AG’s influence on

v/dMPFC increases in this state, PCC’s interactions with MPFC do not

change. Moreover, AG’s influence on the PCC also increases during state 1.

State 2 is not predictive of any changes in PDC in the alpha band.
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Lateral Medial Dorsal

State 4

State 3

State 2

State 1

Figure 6.7: Representation of the state time course regression betas for the
1-5Hz frequency band within a glass brain. The edges indicate significant β
estimates from the state changes indicated in the row. A red edge denotes
a positive beta and a blue edge indicates a negative beta. The taper in the
edge describes the direction of the connection in which the thick end of the
edge is the source and the thin end the target, an untapered connection
indicates that both directions were modulated by that state. The overall
width of an edge indicates the magnitude of the beta estimate. Three views
on the glass brain are shown in the columns, from left to right: looking at
the lateral face of the left hemisphere, the medial wall of the left hemisphere
and down on the dorsal part of the hemisphere.
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Lateral Medial Dorsal

State 4

State 3
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Figure 6.8: Representation of the state time course regression betas for the
5-15Hz frequency band within a glass brain. The edges indicate significant
β estimates from the state changes indicated in the row. A red edge denotes
a positive beta and a blue edge indicates a negative beta. The taper in the
edge describes the direction of the connection in which the thick end of the
edge is the source and the thin end the target, an untapered connection
indicates that both directions were modulated by that state. The overall
width of an edge indicates the magnitude of the beta estimate. Three views
on the glass brain are shown in the columns, from left to right: looking at
the lateral face of the left hemisphere, the medial wall of the left hemisphere
and down on the dorsal part of the hemisphere.
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In a large contrast to state 1, state 3 is characterised by a large decrease

in influence from AG to the rest of the network. In addition, the influence of

dMPFC on both MFG and MTG increases. Finally state 4 sees a decrease

in connection strength between the frontal nodes in addition to an decrease

in the connections from vMPFC to AG and MTG. MTG → AG is the only

connection to show an increase in PDC in state 4.

Gamma Modulation

The results for the gamma modulation on DMN connectivity can be seen

in figure 6.9. Neither state 1 or 2 predict any significant changes in PDC in

this frequency band, while on the the dMPFC→ MTG connection increases

in state 3. Finally, state 4 shows a similar set of modulations to those seen

in the alpha band. The influence of dMPFC on all other nodes decreases

significantly. In contrast to state 4 in the alpha band there are no increases

in PDC for this gamma band, moreover figure 6.5 shows that state 4 is only

predictive of decreases in all frequencies above 60Hz.

6.4 Discussion

The chapter has characterised the time-varying directional connectivity within

the DMN using an HMM. Changes in connectivity were resolved within two

second time windows to allow for a relatively fine grained frequency resolu-

tion. The inferred states revealed dynamic changes in several connections

within the DMN. Moreover two of the states were associated with modula-

tions in the directionality of two or more connections, suggesting that the

directionality in several connections may co-vary in time. The modulation

of the states on the PDC estimates was quantified by using the state time

courses to predict epoch-by-epoch variance in the PDC.

6.4.1 Functional States Within The DMN

Four states were identified in the HMM, each of these states were fitted to

principle components of the PDC to make the dimensionality of the Vari-
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Lateral Medial Dorsal

State 4

State 3

State 2

State 1

Figure 6.9: Representation of the state time course regression betas for the
55-65Hz frequency band within a glass brain. The edges indicate significant
β estimates from the state changes indicated in the row. A red edge denotes
a positive beta and a blue edge indicates a negative beta. The taper in the
edge describes the direction of the connection in which the thick end of the
edge is the source and the thin end the target, an untapered connection
indicates that both directions were modulated by that state. The overall
width of an edge indicates the magnitude of the beta estimate. Three views
on the glass brain are shown in the columns, from left to right: looking at
the lateral face of the left hemisphere, the medial wall of the left hemisphere
and down on the dorsal part of the hemisphere.
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ational Bayes fit computationally tractable. As such, the key analyses in

this chapter arose from the state time series (u) computed by Viterbi de-

coding as seen in figure 6.3. The first analysis was applied the directionality

metric from chapter 4 to the entire DMN for each state. This showed rel-

atively subtle differences in directionality as a function of stats. Critically,

there were no instances in which a strongly directional connection changes

directionality between states. Though there are instances in which a weak

directionality in one state becomes insignificant, or even weakly directional

in another.

The objective of this analysis was to establish whether different func-

tional states as defined by the HMM might be associated with different

directionality within the DMN. The evidence supports a weak form of this

statement in which directionality is modulated, but only reversed in cases

with weakly directional connections. This supports suggestions from the

computational literature which say that the brain is exploring a dynamic

repertoire which is constrained by the anatomical skeleton provided by its

biology (Deco et al., 2011).

The second analysis was the state-time course regression. This linked the

HMM state observation probabilities (which were fitted to principle compo-

nents of the PDC) back to the original PDC estimates. This was done by pre-

dicting the epoch-by-epoch PDC estimates from the the state time course,

established by selecting the state with the highest a posteriori evidence for

each time point in order to identify connections which are modulated by

state transitions. In contrast to the directionality analysis, which does not

directly test for whether the HMM actually explains any variance, this ap-

proach is able to validate the HMM by establishing whether is has captured

any structure in the PDCs variance over time. The evidence showed that

the HMM was able to capture structure in the evolution of the PDC over

time. Figure 6.6 shows the variance explained by each state in each con-

nection. These values are quite small (around 2− 10%) however each point

is the variance explained over the entire time course from five participants

from a single state. Moreover, many potential sources of noise or variance in

the PDC estimates are not modelled (for instance the time courses from all
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five participants were concatenated and the joins between scanning sessions

within or between individuals not accounted for) or potentially not possible

to model (noise/distractions during the scan or movement). As such, these

values, though small, are taken as evidence that the HMM has identified

some real structure in the data.

The state-time course regression identified a very different range of mod-

ulated connections for different frequencies (see figures 6.7-6.9. In general

the pattern on connections modulated by the state transitions is quite com-

plex, even within a frequency band, however some specific results can be

identified.

Firstly, the majority of the state modulations in the theta band involve

the MPFC. State 2 being characterised by an increase in the influence from

dMPFC and state 3 showing an increase in influence from vMPFC. This is

in contrast to the alpha band which mainly modulates the connectivity from

the AG and PCC. State 3 (which shows an increase in influence from vMPFC

in the theta band) is associated with a significant decrease in connectivity

from AG and PCC in the alpha band. In addition, state 1 (which shows

no modulation in theta) shows large increases in PDC in alpha. Critically

this suggests that increases in theta connectivity from vMPFC tend to co-

occur with a decrease in PDC from PCC and AG in alpha. Moreover, when

AG and PCC are strongly influential (state 1 in alpha) neither the dorsal

or ventral MPFC show modulation with state transitions in either theta or

alpha.

State 4 is associated with decreases in influence from MPFC in all three

frequency bands, specifically the vMPFC → dMPFC connection in theta

and output from dMPFC in alpha and gamma. It is important to note that

this state dominates the state time course for participant 1, who spends the

entire time (across five scanning sessions) in this state. It is unlikely that

this participant showed no fluctuations in functional connectivity within the

DMN during this time, rather the four states from the HMM may not be

sufficient to unfold the dynamics during this time. As a result this state is

dominated by epochs from one or two participants. Further recordings from

a much larger cohort of participants will be needed to establish whether some
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participants show less variance than other or if there is currently not enough

evidence from a limited number of participants to describe the dynamics

during this time.

6.4.2 Individual Differences

The HMM in this chapter was fitted on the concatenated PDC estimates

for all five participants, however figure 6.3 clearly shows differences in both

the fractional occupancy and transition probabilities between participants.

Several approaches might allow us to characterise these differences. The

first option would be to fit a separate HMM to each participant, however

this would severely limit any group inferences that we could make as each

participant would have a unique set of hidden states. An alternative might

be to fit one HMM for the group but compute the descriptive statistics

within each individual.

The critical question relating to individual variances is whether these

differences reflect typical variance in the recording and model estimation

process or if they reflect some cognitive/behavioural differences between

the participants. Further investigation into the typical variance in these

measures across participants and the behavioural/cognitive correlates of the

observed brain states will be needed to definitively answer this question.

Though there are quite large differences between participants, the transitions

between states between individual scanning sessions within each participant

appear remarkably consistent. We might take this as an indication that

the differences between participants do reflect genuine individual differences

in the dynamics of functional connectivity within the DMN rather than an

confounding influence in the scanning/analysis.

6.4.3 Methodological Considerations

The PDC estimates for the five participants were concatenated in time prior

to fitting the HMM, this results in one HMM with one set of states for

all participants. This approach has been used in previous applications of

HMMs to MEG state dynamics (Baker et al., 2014) however it makes several
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critical assumptions. Firstly, that there is one consistent set of state that is

representative for all participants. This point is challenged by participant

one who remains in state 1 for almost the entire recording, moreover state

1 occurs very infrequently in three of the other four participants. It is

unclear whether this represents typical individual differences in functional

state dynamics or that the group states do not sufficiently represent the

dynamics of that participant.

The Viterbi decoding assumes that only one state can be active at a

given time. This is done by assessing the posterior evidence for each state

at each time point and assigning the state with the most evidence to that

time point. This may not accurately represent the dynamics of the system

in which two or more state might be active at a given time. A “fuzzy“

decoding in which the a posteriori evidence for each state at each time point

is carried forward to the state-time course regression might allow for more

realistic predictor variable rather than the binary series used in this chapter.

6.4.4 Conclusion

This chapter has applied a dynamic state allocation from Hidden Markov

Model methodology (Woolrich et al., 2013; Baker et al., 2014) to explain

the epoch-by-epoch evolution of directed functional connectivity within the

DMN. This has been successful in estimating sets of epochs whose observa-

tions may have been generated from the same hidden functional state. state

time course regression was then used to establish whether the transitions

of these hidden states predict variance in any of the PDC estimates within

the DMN. This established which connections might be modulated by the

transitions of the hidden states.

The present work builds upon past methods by exposing the HMM di-

rectly to directional connectivity estimates based on TDE and MVAR mod-

elling. This allows for characterisation of dynamics within the DMN on two

time-scales. Firstly, time delay embedding is used to transform the data

into a surrogate state space based on time delays of the data. This repre-

sentation of the data provides a picture of the dynamics within the DMN on
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a millisecond timescale. Time-delayed interactions which predict future ob-

servations consistently over a two second epoch are then parameterised with

an MVAR model and expressed in the frequency domain with PDC. This

first dynamic level describes the extent to which activity at one frequency

in one node is able to predict activity in another node several milliseconds

before it occurs. The slower modulations of this first level are then char-

acterised on the time-scale of seconds using the HMM. This time-scale is

rather slower than used in previous MEG-HMM studies (Woolrich et al.,

2013; Baker et al., 2014), however this is necessary to ensure sufficient data

points for the accurate characterisation of the rapid dynamics on the first

level (see chapter 3 and 4 for a discussion).

This data limit prevents the direct application of this methodology to the

very rapid dynamic changes seen in the brain in response to visual stimuli

such as written words. In order to characterise both the rapid information

flow at the first dynamic level and its slower modulation over time on the

millisecond time-scale seen required for cognitive tasks, we need to compute

the first level dynamics across many realisations of the cognitive process.

The next two chapters explore this how this can be achieved in the context

of visual word recognition
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Chapter 7

Neural Dynamics Of Visual

Word Recognition

182



7.1 Introduction

The last chapter explored the endogenous connectivity within a set of brain

regions known as the Default Mode Network. Though recent years have seen

an increase in interest in these self-generated brain networks, ultimately they

are challenging to link to specific behaviours. As such, the following chapters

will deal with brain dynamics related to specific cognitive and task demands.

7.1.1 Visual Word Recognition

Word reading is commonly thought to involve the decoding of three aspects

of the word:

Orthography The visual structure of the word and its letters

Phonology The sounds associated with the word as it might be spoken

Semantics The meaning of the word

These “aspects” of a word have formed the basis of much of the theory

on visual word recognition, appearing in many cognitive and computational

models.

7.1.2 Models Of Visual Word Recognition

While the cognitively relevant features of a visual word form outlined above

remain relatively uncontroversial in the literature, there is much debate

about the processing framework in which they are resolved. Two approaches

have dominated the behavioural and computational literature on this sub-

ject: the modular-hierarchical models which suggest that visual input pro-

duces and orthographic representation which feeds forward again to phono-

logical and semantic processes, and secondly the interactive approach which

allows for high level information to influence orthographic processing at an

early stage. These contrasting frameworks form one of the oldest debates in

visual word recognition (Carreiras et al., 2014).

A major argument from proponents of the feedforward framework is

that phenomena such as the word superiority effect can be solved using
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computational models with both feedforward and interactive architectures.

As such, the simpler feedforward models should be preferred (Norris et al.,

2000). A critical implication being that low level visual pattern recognition

systems are sufficient for orthographic decoding and do not require linguistic

experience or expectation (Grainger et al., 2012).

In contrast to this view, connectionist models such as the Interactive Ac-

tivation Model (McClelland and Rumelhart, 1981) and Parallel Distributed

Processing (PDP) readily include the potential for protracted interactions in

between orthographic, phonological and semantic processes. In such models,

visual input feeds into the orthographic representation, however the repre-

sentation of the orthography, phonology and semantics converge together.

Feedback in these models might allow for partially computed phonological

representations to aid in the convergence on the appropriate orthographic

representation. Interactions of this kind do and must occur in connectionist

models (if all connections to all nodes are weighted), however the critical

further question is the extent to which this feedback is influential or even

necessary for accurate recognition of a word form.

Not all connectionist models contain a feedback component and many

complex recognition tasks can be completed without feedback or backpro-

pogation (Riesenhuber and Poggio, 1999). The importance of feedback in-

creases greatly during unsupervised learning processes, whereby backpro-

pogation of errors provides a very powerful method for learning weights

and top-down modulation of visual processes such as attentional modula-

tion. The question of top-down influence within a triangle model of word

recognition is different from both of these processes. Rather than post-

hoc modulation of weights or the influence of a previously known processes

such as attention, the focus is on whether partially computed orthography,

phonological and semantic processes are able to influence each other during

the recognition process itself.

One type of computation model in which feedback is critical and clearly

defined is the deep learning (Hinton, 2006, 2007). These generative models

contain feedback connections from layers encoding abstract concepts with

weights trained to reproduce the data observations associated with them.

184



Though such models have successfully been applied to visual letter (Hinton,

2007, 2006) and word recognition (Di Bono and Zorzi, 2013) the feedback

connections are only engaged during the learning of feedforward connections

rather than during perceptual inference itself (Lee and Mumford, 2003).

Such an idea might be supported by the priming effects seen in MEG.

In contrast, an increasing number of computational models are including

explicit top-down influence to visual processes during perception itself (Rao

and Ballard, 1997). Moreover, feedback influences during the act of per-

ception/recognition can be conceptualised as a hierarchical Bayesian system

(Lee and Mumford, 2003). Such a system would allow for higher order ar-

eas to act directly or indirectly as priors influencing the inferences at lower

levels. Low level sensory areas would then form a posteriori estimates of the

stimulus causing novel sensory input by multiplying the probability of the

sensory evidence by the contextual prior expectations and maximising the

result by competition to arrive at a most probable external stimulus (Lee

and Mumford, 2003). In such a model feedback may represent the prior

expectation about a stimulus at a given time and would serve to shape the

posterior probability of a given stimulus at lower levels in the perceptual

hierarchy.

The studies and theories above do not directly interrogate the brain basis

of visual word recognition, rather they focus on theoretical points relating

to the cognitive and computational aspects of reading. The recent develop-

ment of neuroimaging methodologies with the power to interrogate the brain

basis of word recognition and potentially shed some light on whether ortho-

graphic recognition occurs without influence from semantic and phonological

processes/expectations.

7.1.3 Brain Basis Of Visual Word Recognition

In the skilled reader, a distributed and dynamic cortical network sub-serves

the extraction and integration of orthographic, phonological and semantic

information from a visual word form. Application of magnetoencephalog-

raphy (MEG) to the study of visual word recognition has demonstrated a
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complex pattern of cortical activation propagating from primary sensory

cortices towards anterior temporal and inferior frontal regions (Marinkovic

et al., 2003; Pammer et al., 2004; Cornelissen et al., 2009). Moreover, these

regions show a dense pattern of functional connections (Kujala et al., 2007)

which are likely to recruit a range of white matter pathways (Catani et al.,

2005; Ben-Shachar et al., 2007).

The initial stages of reading are visual and potentially only depend on

the presence of orthographic information. Noise masking paradigms have

demonstrated modulation of activity in posterior occipital cortex by noise

intensity but have equivalent responses to visual presentation of words and

consonant strings around 100ms. In contrast, a later response around 150ms

in the ventral occipito-temporal cortex (vOT) preferentially responds words

over syllables, consonant strings and noise. (Tarkiainen et al., 1999, 2002).

This later response is more invariant to changes in latter position in the

left hemisphere than the right (Cornelissen et al., 2003) suggesting a more

abstracted, object level representation of a word form in the left hemisphere.

There is clear evidence suggesting that the vOT is involved in the reading

process, though its precise role remains unclear.

One account states that the vOT acts as a visual perceptual stage in a

specialised hierarchical processing stream in which information is processed

from low-level retinotopic feature extraction to feature invariant represen-

tation of bi-grams and whole words (Dehaene et al., 2005; Vinckier et al.,

2007). These models emphasise the internal organisation of the vOT and

how it as a region within a hierarchy may support reading. In contrast, an

interactive account of reading places the emphasis on interactions with non-

visual regions of cortex (Price and Devlin, 2011). In this sense the internal

organisation of the vOT may not involve reading specific mechanisms, such

as bigram detectors etc, rather the reading specific phenomena arise from

top-down predictions, based on a probabilistic representation of the cause

of sensory inputs (Friston, 2010).

Recent studies modelling neural responses to visual word recognition

support an interactive model in which top-down predictions may arise from

the inferior frontal gyrus (IFG). The left hemisphere IFG responds rapidly to
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word forms (Cornelissen et al., 2009). This rapid response is enhanced when

a word is phonologically primed (Wheat et al., 2010). This may indicate that

the IFG responds preferentially to more predictable words, possibly using the

prediction to streamline lower level processes. In a recent Dynamic Causal

Modelling (DCM) study on reading Yvert et al. (2012) showed the winning

family of models contained a direction connection between early visual areas

and the IFG, as well as feedback from the IFG to either the vOT or superior

temporal sulcus. In addition, this early influence on IFG from visual areas is

stronger when reading real words than false fonts (Woodhead et al., 2012).

In summary, though the computational modelling literature may find

that exclusively feedforward models are the most parsimonious, there is

mounting evidence for both the theoretical (Lee and Mumford, 2003) and

neural (Cornelissen et al., 2009; Wheat et al., 2010) basis for early feedback

influences during visual word recognition. DCM analyses of MEG data

have demonstrated that this influence is likely to arise from the LIFG and is

stronger for real words than false font stimuli (Woodhead et al., 2012). This

chapter looks to build on these findings firstly by establishing the dynamics

of the connectivity within the reading network using MVAR models and

PDC.

Real words, consonant string and false font strings were presented to

participants during an MEG scan, power changes in the brain were charac-

terised for each condition prior to connectivity analysis. The connections

which are sensitive to recognition of the different features associated with

reading are identified. Critically, which connections are crucial for recognis-

ing orthography and are visual regions sufficient to distinguish consonant

strings from real words without early interactions with higher regions.

It is predicted that if vOT is sufficient for orthographic representation

without top-down influences, then there will be no influence from non-visual

brain regions to vOT prior to 200ms after stimulus onset during any con-

dition. If vOT is able to discriminate arbitrary visual forms from a known

orthography, the connectivity between higher areas and vOT will only be

present for the consonant string and real word stimuli. Finally, if early

top-down influences are present for all three conditions, this will indicate
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that a full orthographic representation is only possible with interaction with

higher level processes. That is to say that visual cortex can only rule out

the presence of orthography in a word form with help from higher regions.

7.1.4 Overview

This chapter will address the question of whether the neural response and

connectivity of the ventral occipito-temporal cortex reflects only the pres-

ence of orthographic information or is modulated by existence of semantics

and phonology in addition. The answer to this question is likely to be dif-

ferent at different times during the recognition process. For instance it is

possible that top-down influence on vOT occurs, but after the encoding of

the orthographic information. As such the MVAR modelling in this chapter

is modified to characterise the delayed interactions within a network on a

much shorter time-scale (around 100ms). This time-scale is much more ap-

propriate for task dynamics that the 2 second windows used in the resting

state chapters, however to ensure that there are sufficient observations to

get a good model fit, the MVAR fitted here will reflect the average delayed

covariance across many epochs rather than providing one model per epoch.

A short window ‘evoked‘ MVAR model is computed for three stimulus

categories, real words, consonant strings and false fonts within short sliding

windows across the experimental epoch. The temporal evolution of the con-

nectivity within the epoch is then characterised before differences between

the three conditions at different times statistically evaluated.

7.2 Methods

7.2.1 Participants

Data were recorded from five healthy participants (4 males) with an average

age of 24.44 (SD:1.41) years. Participants were right handed and achieved

a maximum hand dominance score on an Annett‘s Test (Annett, 1970). All

participants had normal vision and no history of dyslexia. This study was

approved by the York Neuroimaging Centre Research Ethics Committee

188



and conducted according to their guidelines. Each participant provided full

written consent at each session and was fully debriefed at the end of the

experiment.

7.2.2 Experimental Design

Stimuli

The stimuli consisted of 300 real words, 300 consonant strings and 300 false

font words. The word stimuli were between four and six letters long (Mean

Length= 4.8; Mean Concreteness= 428.59; Mean Familiarity= 560.11; Mean

Imagability= 464.44; Mean Kucera and Francis Frequency= 146.24) and

taken from the MRC Psycholinguistics Database (Coltheart, 1981).

The consonant strings matched the real words for length and randomly

generated from a uniform distribution of consonants (vowels and the letter

Y were excluded). The false font stimuli were selected from a set of ancient

fonts retrieved from http://users.teilar.gr/˜g1951d/. Characters from the

Lydian, Carian and Lycean alphabets were used. The ancient characters

were matched to consonants from the Latin alphabet and the pairings used

to generate false font words from the consonant strings. The false font

stimuli share some of the basic visual features of Latin characters such as

superpositions of straight lines and curves. Despite sharing these elements

of visual form, these letters are not familiar to the participants and as such

will not be associated with an phonological information.

Participants were asked to identify animal names presented during the

experiment and to press a button with their left index finger whenever one

appeared. There were 30 animal name trials in total. These catch trials

ensured that the participants were attending to the stimuli and that they

had to semantically process the word if possible. This task was not possible

from visual matching, orthographic or phonological processes alone.

Words, Consonant strings and animal names were presented in white on

a black background in an upper case Arial Mono-spaced font. The stimuli

were presented using a Dukane 8942 ImagePro 4500 lumens LCD projector

at a virtual visual angle of 1°and horizontal angle of 4.5°. Vertical red lines
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Word Consonant Strings False Fonts

Examples

Four Characters

Five Characters

Six Characters
Features

Visual Form X X X
Orthography X X ×

Phonology X × ×
Semantics X × ×

Figure 7.1: Examples Example stimuli from each condition and each word
length. Features Indication of which features of a real word are present in
each stimulus category.

above and below the centre of the screen indicated the fixation point and

remained on the screen for the duration of the experiment.

Procedure

The stimuli were split into 6 blocks each containing 90 experimental trials

from each of the three conditions and 30 animal name catch trials. Each

block lasted around 15 minutes. Trials from each condition were presented

in a random order and each trial was only presented once across all blocks.

In addition the order of the blocks was counter balanced across participants.

Figure 7.2 contains a schematic of the trial sequence and timings used

in the experiment.

7.2.3 Data Acquisition

Data were continuously recorded at 4069.017Hz using a 4D Neuroimaging

Magnes 3600 whole head system. The data were passed through a low-pass

filter set at 1500Hz. Participant head shape and reference coil location were

recorded using a 3D digitiser (Polhemus Fastrak) allowing for co-registration

with a high resolution anatomical T1 MRI image acquired using a GE 3.0T

Signa Excite HDx (Kozinska et al., 2001).
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Figure 7.2: Schematic showing the stimuli presentation and ordering. The
two red lines remain on the screen for the duration of the experiment and
their center point indicated the fixation for the participant. The first two
stimuli are from the Word and Consonant string conditions and the final
stimulus is an animal name catch trial. The 1850 ± 250ms inter stimulus
interval includes an 800ms blink period.
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Electrooculogram (EOG) and electrocardiogram (ECG) data were ac-

quired alongside the MEG acquisition and used to aid the artefact rejection

process.

7.2.4 Data Analysis

Artefact Rejection

Data from each participant were split into non-overlapping 2 second seg-

ments. These epochs were visually inspected for artefacts and trials con-

taining muscle or eye movements were discarded from the analysis. The

MEG data were then co-registered with the individual’s structural T1 MRI

scan and the MNI 152 standard brain to allow for source analysis to be

conducted.

Beamformer Contrasts

Beamforming estimates the current at a source location in the brain from

a weighted sum of the observed magnetic fields on the sensors. A type

1 vectorized, linearly constrained minimum variance (LCMV) beamformer

(Van Veen et al., 1997; Huang et al., 2004) was used before the oscillatory

power in a passive window (−200ms to 0ms) was compared to the power in

four sequential active windows (0ms - 200ms, 100ms - 300ms, 200ms - 400ms

& 300ms - 500ms). These contrasts were performed in an alpha (5 - 15Hz)

and beta (15 - 25Hz) frequency bands. Non-parametric label permutations

were used to compute statistical thresholds (Nichols and Holmes, 2002).

Local maxima within these contrasts were used alongside a review of network

nodes from the literature to establish the 6 node reading network used in

this chapter.

Virtual Electrodes

Connectivity analysis was based on six nodes identified from the beamformer

contrast results (details are in table 7.2). Current was estimated for each

trial in these locations using a vectorized LCMV beamformer as defined by
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Van Veen et al. (1997) which has been shown to generate the most accurate

source reconstructions (Johnson et al., 2011). VEs were estimated at the

full sampling rate (4069.017Hz) across the entire epoch for each location.

Data Preprocessing

A 1Hz high pass filter was used to remove drift from the reconstructed

signals and line noise removed using tight notch filters at 50Hz and it’s first

4 harmonics. The samples within each epoch were normalised by demeaning

each sample and dividing by the standard deviation. The epochs from each

of the five runs were then concatenated.

7.2.5 Connectivity

The MVAR model fitting procedure outlined in chapter two and applied in

chapters 3 and 4 makes use of the lagged covariance matrix (R) estimated

from the system. The accurate estimation of R is critical to ensure that the

model parameters (A) are accurate. Chapter 3 demonstrated the effect of

data length on estimation of A and showed that fitting many parameters

from few observations is likely to result in an unreliable model. In chapters 4

and 5, this limitation resulted in relatively long time windows being used in

chapters 4 and 5. As a result, chapter 5 characterises dynamic modulations

in connectivity on the time scale of seconds. Though this may be appropriate

for resting state dynamics, it is orders of magnitude slower than the brain

responses arising from seeing a visual word. A solution to this issue can be

found in the estimation of R from many very short realisations of a neural

response (Ding et al., 2000). If we have many realisations of a brain response

to a single category of stimulus, we can compute the average R across all

realisations in a manner analogous with an ERP. The resulting ‘evoked‘ R

matrix will contain an accurate representation of the consistent covariance

across all observed epochs. The R can then be used to accurately estimate

A. This approach has been successfully applied to EEG data many times

(Ding et al., 2000; Supp et al., 2007), with time windows as short as 50ms

allowing for characterisation of dynamics on a time-scale relevant to the
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neural response to a word (Sun et al., 2009a).

Each epoch was split into 150ms sliding windows which advanced in 25ms

steps from stimulus onset until stimulus offset 300ms later as described in

figure 7.3. All the time series from each sliding window were used to compute

an evoked R matrix which was used to estimate A through the Vieira-Morf

algorithm. The PDC is then calculated from the A matrix for each sliding

window.

-200 0 200 400 600 800

Stimulus

Windows

Figure 7.3: Schematic of the sliding analysis windows used in the connec-
tivity analysis. The arrow at the top denotes time in milliseconds. The
stimulus line shows when the stimulus appears within the epoch. The slid-
ing windows are indicated with horizontal bars shown in the next section
with the blue background. The PDC from within each window is presented
in subsequent sections and labelled with the centre time of the window. The
different colour of bar indicates the groups of windows which are combined
to make the windows seen in figures 7.10, 7.11 and 7.12.

7.2.6 Condition Comparisons

A distribution of PDC estimates for each participant and sliding window was

generated from jackknifing the trials used to fit the MVAR model. A total

of 50 jackknives in which a random 80% of the trials were entered into the

model. Once this distribution has been established, any differences between

the conditions were characterised using unpaired t-tests. This produced

three t-maps for the different contrasts (Word - Consonant, Word - False
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Font and Consonant - False Font) for each direction of each connection.

The time-domain simulations in Chapter 4 indicated that the ratio be-

tween the number of observations and the number of parameters to be fitted

in the MVAR model is of critical importance. A minimum acceptable ratio

was suggested to be around 5 or 10 samples per parameter, but a ratio of 50

is more desirable. The visual word recognition data used in this experiment

are likely to yield much more complex dynamics than the simulation used

in Chapter 4, as such, a ratio of 100 to 150 data observations per parameter

to be fitted was set as the minimum for this experiment. When sampling

at 4069Hz, a 150ms window will contain around 270 samples. Given this,

200 to 300 epochs are needed to make the required data ratio. 540 trials

were collected from each participants for each condition to allow for suffi-

cient epochs in each jackknife after manual artefact rejection. As a result,

each participant committed around 4 hours of time in MEG (including set

up). This large commitment that only 5 participants were recruited for this

experiment, not a sufficient number to allow for a traditional group level

analysis, though the analysis for each individual will have sufficient power

to reliably model temporal dependencies.

A meta-analysis was performed across the available participants by z-

transforming the t-maps for each participant and then combining them using

the Stouffers method for combining the results from several independent

tests of the same experimental hypothesis.

Z ≈
∑k

p=i zi√
k

(7.1)

in which zi is a z-value from one participant and k is the total number of

participants. The Z-map across participants from this meta-analysis was

then arbitrarily thresholded at Z = 2.3.
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7.3 Results

7.3.1 Behavioural

The participants were able to correctly identify 78.06% of the animal name

catch trials with an average reaction time of 472.4ms. The results per subject

can be seen in table 7.1. The reaction times are very consistent across

participants, however there is a larger variance for the number of correctly

identified catch trials.

Participant Percent Correct Reaction Time (ms)

1 86.6 480
2 83.3 474
3 55.5 476
4 71.6 467
5 93.3 465

Average 78 472

Table 7.1: Behavioural results per participant. Percent correct indicates the
proportion of animal name catch trials which the participant was able to
respond to across the six experimental blocks. Reaction time is the aver-
age time in milliseconds for a correct response from the participant. Only
responses within 1 second of the catch trial were included in this analysis.

7.3.2 Node Identification

Beamformer Contrasts

The results of the beamformer contrasts were combined across participants

using Stouffer’s method for combining independent tests of the same hy-

pothesis. The sliding window results for the three conditions in the alpha

and beta bands can be seen in figures 7.4 and 7.5.

The beamformer power contrasts clearly replicate the posterior to an-

terior spread of activation over time previously reported in the literature

(Marinkovic et al., 2003; Pammer et al., 2004). Critically, the word con-

dition in the alpha band also shows considerable increases in power in the
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Figure 7.4: Z-stats from an active-passive beamformer power contrast in the
alpha band (5 − 15 Hz), each surface contains the combined Z-stats across
the five participants arbitrarily thresholded at Z = 1.96. The sliding window
results from the three experimental conditions are shown. The results have
been rendered onto the surface of a fsaverage brain with the lateral (top)
and ventral (bottom) views of the left hemisphere shown.
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Figure 7.5: Z-stats from an active-passive beamformer power contrast in the
beta band (15 − 25 Hz), each surface contains the combined Z-stats across
the five participants arbitrarily thresholded at Z = 1.96. The sliding window
results from the three experimental conditions are shown. The results have
been rendered onto the surface of a fsaverage brain with the lateral (top)
and ventral (bottom) views of the left hemisphere shown.
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posterior inferior frontal gyrus in an early (100-300ms) time window. This

finding has been identified several times in the literature and associated with

a rapid access to phonological information in a word form (Cornelissen et al.,

2009; Wheat et al., 2010). In addition, large increases in power can be seen

in ventral visual areas, though this activation is stronger for the consonant

strings and false font stimuli. This is in contrast to previous fMRI findings

which showed that Word stimuli were more likely to activate anterior ventral

occipital temporal regions (Vinckier et al., 2007). Several nodes in the read-

ing network were identified from these beamformer analyses. The middle

occipital gyrus, ventral occipital temporal cortex, inferior frontal gyrus pars

opercularis and the superior temporal gyrus.

Though the results of the beamformer power analysis highlight the con-

tributions of several brain regions critical to visual word recognition, an

increase in power does not necessarily indicate any modulation in directed

connectivity. As such, several additional brain regions were identified from a

literature review of previous connectivity studies into the reading network.

The locations of nodes within a reading network are shown in figure 7.6.

Two locations which did not produce a power change in any contrast were

included in the reading network after this literature search. Firstly the

Angular gyrus which was identified in Jobard et al. (2003) has long been

implicated in reading Brais (1993). Finally, the temporal pole included as

seen in Yvert et al. (2012). This region is thought to be critical in seman-

tic processing however it is rarely identified in fMRI studies of language

potentially due to signal drop-out (Visser et al., 2010).

The final nodes included in the reading network are identified in table 7.2.

7.3.3 Model Validation

The model validation results are summarised in table 7.3. Though some

participants have quite different number of epochs for the two conditions

(as a result of the epoch rejection), the models are very consistent across

participant and condition.All the stability indices are well below 1, indicating

that the models are stable, which implies stationarity. Moreover the Durbin-
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Figure 7.6: Critical nodes within the reading network identified from the
literature. Nodes are taken from published studies localising locations in the
reading network or investigating the dynamical interactions within a reading
network. The node locations are projected onto an average cortical surface
taken from the left hemisphere. The nodes used in the present chapter are
identified in Green.

200



MNI coord

ROI Abbreviation x y z

Middle occipital gyrus MOG -30 -96 2
Ventral occipito-

temporal cortex vOT -44 -58 -14
Angular gyrus AG -56 -52 22
Superior temporal

gyrus/ Heschls gyrus STG -48 -14 2
Inferior frontal gyrus

pars opercularis IFG -44 -2 24
Temporal pole TP -52 14 -20

Table 7.2: ROIs used in the connectivity analysis. These were generated
from local maxima in the beamformer power contrasts and a review of the
reading literature

Watson test shows that there is no indication of serial autocorrelation in

the residuals of the model. Finally the percent consistency and R2 shows

that a good proportion of the variance in the data and its autocorrelational

structure are being captured in four of the participants. The MVAR model

fitted from participant four . Critically these values are very similar for both

conditions, implying that any differences we see between the two are a result

of the structure of the model itself rather than one condition being better

described that the other.

7.3.4 Partial Directed Coherence

The average PDC across all participants for Words,Consonants and False

Fonts can be seen in figures 7.7, 7.8 and 7.9 respectively. In contrast to

the PDC estimated from the resting state data in chapter 4, there is little

indication that the PDC here has a 1
f profile. This is because the task

related model uses many realisations of the same process to allow for shorter

analysis windows. As a result the samples are discontinuous which leads to

a phase scrambling of any ongoing activity which would be picked up in a

longer analysis. This is analogous to a traditional “evoked“ analysis which
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Participant Epochs SI DW(τ) PC R2

1
Word 523 0.41 1.92 37.47 0.22

Consonant 528 0.42 1.91 38.92 0.23
False Font 534 0.42 1.92 38.2 0.23

2
Word 498 0.44 1.91 34.51 0.2

Consonant 508 0.44 1.92 35.96 0.21
False Font 506 0.44 1.92 33.62 0.2

3
Word 526 0.46 1.92 31.4 0.18

Consonant 524 0.46 1.92 30.15 0.18
False Font 524 0.46 1.92 31.24 0.18

4
Word 490 0.41 1.92 24.58 0.13

Consonant 484 0.41 1.92 24.51 0.13
False Font 495 0.4 1.92 26.66 0.13

5
Word 517 0.45 1.91 33.54 0.24

Consonant 517 0.46 1.91 34.51 0.24
False Font 513 0.46 1.91 34.94 0.24

Table 7.3: Model assessment and validation for the MVAR model fitted
in this chapter for each condition and participant. epochs: the number of
epochs included in the analysis after artefact rejection, SI: Stability Index,
DW(τ): Durbin-Watson with lag of τ . PC: Percent Consistency, R2: Vari-
ance Explained.
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would ongoing oscillations leaving only activity which is phase locked to the

stimulus. In the same way, the model fitting across epochs will lead to the

scrambling the phase of any cross correlations which are not consistent in

all epochs.
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Figure 7.7: The average PDC estimates across all participants for the Word
condition. In the matrix, a single subplot indicates the PDC for the connec-
tion in which the area in the column heading is driving the area in the row.
The x axis indicates time and the y axis indicates frequency. Each time
point represented a sliding window as described in figure 7.3. The black line
indicates stimulus onset.

A clear result in all three conditions is that the PDC is not equal in

all connections. This is simple but critical statement suggesting that some

connections within the reading network may be more influential. For in-

stance STG→TP, AG→IFG and STG→MOG all show relatively high PDC

values for all conditions. Moreover, this is also true in the prestimulus pe-

riod and as such is likely to reflect some ongoing interactions between these

nodes rather than a specific response to the condition. In contrast, the
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MOG→STG, MOG→IFG, MOG→TP and TP→AG connections are all rel-

atively weak across conditions and frequencies. This may be an indication of

which connections within the reading network are interacting even without

a visual stimulus.
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Figure 7.8: The average PDC estimates across all participants for the Con-
sonant string condition. In the matrix, a single subplot indicates the PDC
for the connection in which the area in the column heading is driving the
area in the row. The x axis indicates time and the y axis indicates frequency.
Each time point represented a sliding window as described in figure 7.3. The
black line indicates stimulus onset.

7.3.5 Condition Contrasts

The distributions of PDC estimates between each pair of conditions was

compared using a t-test, to combine these results across a small group of

participants the resulting t-maps were Z-transformed and combined. This

meta-analysis across participant was then thresholded at Z = 2.3. The
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Figure 7.9: The average PDC estimates across all participants for the False
Font condition. In the matrix, a single subplot indicates the PDC for the
connection in which the area in the column heading is driving the area in
the row. The x axis indicates time and the y axis indicates frequency. Each
time point represented a sliding window as described in figure 7.3. The black
line indicates stimulus onset.
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results of this analysis for three comparisons. words - consonant strings,

words - false fonts and consonant strings - false fonts can be seen in fig-

ures 7.10, 7.11 and 7.12 respectively. The Z-values which survived the

combination across participants and the thresholding at Z = 2.3 were inte-

grated across frequency within three time bins (Details of the time bins can

be seen in figure 7.3). These integrated scores are presented in glass brains

for easier visualisation in figures 7.13, 7.14 and 7.15.

Many of the condition differences within individuals were very strong,

with t-values reaching as much as ±50. The T-values were normally dis-

tributed around zero for each condition of each participants, as such, a

Z-score which survives the group meta-analysis is likely to be associated

with a very large t-value across all participants. This is a very conserva-

tive approach which should only preserve the largest differences which are

consistent across participants.

All three plots show complex patterns of condition specific PDC dif-

ferences which change rapidly in both time and frequency. The following

sections discuss each contrast in more detail.

Words >Consonant Strings

The contrast between Words and Consonant Strings was designed to identify

connections whose strength was modulated by the presence of phonological

and semantic content. Words induce a larger PDC estimate that Consonant

Strings in several outgoing connections from MOG. Within 100ms of stim-

ulus onset Word stimuli produce larger PDC in both the MOG→AG and

MOG→STG connections. The effect is more extensive in the connections

from vOT in which words produce larger PDC estimates in vOT→AG,vOT→STG

and vOT→TP. The vOT→MOG connection is more complex. Though this

connection is initially larger for Words around 80Hz the largest difference

within 100ms is a region a little later around 30Hz which is larger for con-

sonant strings, though again this connection is larger for Words around

100-150Ms at 10Hz. Several connections originating from visual areas are

more influential for Consonant Strings than Words between 100 and 300MS,
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Figure 7.10: The thresholded meta Z map for the Words>Consonant Strings
comparison. t-values from each individual were z-transformed and combined
to make this Z-map which has been thresholded at Z=2.3. Each subplot
indicates the PDC for the connection in which the region in column is driving
the region in the row, the x-axis indicates time in milliseconds relative to
stimulus onset and the y-axis indicates frequency. A positive value (red)
indicates that the PDC for Words was greater than Consonant Strings across
participants at that point, and a negative value (blue) indicates that the
reverse was true.
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most notably MOG→vOT, MOG→AG, MOT→TP and vOT→IFG.

There are no differences between Words and Consonant Strings in con-

nectivity from visual areas to the IFG within 100ms, however both vOT and

AG exert more influence on IFG between 100 and 300ms when viewing a

consonant string. There are several small differences in top-down influence

from IFG within 200ms of stimulus onset. The connection from IFG to

vOT is slightly stronger for Words than Consonant strings in the very first

window, however the remaining differences suggest that the IFG’s influence

is stronger for Consonant Strings. All of the differences in figure 7.10 from

IFG to the rest of the network are small, however the meta-analysis method

used here is very conservative.

Finally, the largest differences between Words and Consonant Strings

arises between 50 and 150 ms after stimulus onset in the TP→IFG connec-

tion around 60Hz. At the same time, the TP→AG connection is stronger for

Consonant Strings. A top-down feedback from TP to both MOG and vOT

can be seen later in the experimental epoch around 300ms after stimulus

onset.

Words >False Fonts

This was the broadest contrast which should identify differences in connec-

tivity which arise from the presence of orthography, phonology or seman-

tics. Within the first 200ms after stimulus onset, both MOG→vOT and

MOG→AG show greater influence for the false font stimuli below 60Hz,

though there is an indication of increased influence from MOG to vOT at

100Hz. Words elicited a stronger influence from vOT to both AG and STG

within 200ms though only above 10Hz. At exactly 10Hz these same connec-

tions were stronger for False Fonts.

Two connections from AG showed a strong preference for False Fonts. A

late top-down connection from AG to vOT at 60Hz and the AG→IFG con-

nection around 40Hz around 200ms after stimulus onset. In contrast there

is an indication for an early increase in PDC for Words in the AG→MOG,

AG→IFG and AG→TP connections.
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Figure 7.11: The thresholded meta Z map for the Words >False Fonts com-
parison. t-values from each individual were z-transformed and combined to
make this Z-map which has been thresholded at Z=2.3. Each subplot indi-
cates the PDC for the connection in which the region in column is driving
the region in the row, the x-axis indicates time in milliseconds relative to
stimulus onset and the y-axis indicates frequency. A positive value (red)
indicates that the PDC for Words was greater than False Fonts across par-
ticipants at that point, and a negative value (blue) indicates that the reverse
was true.
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The STG→vOT and STG→AG connections were larger for False Fonts

than Words, both between 200 and 300ms after stimulus onset. In contrast

STG→MOG was more strongly active for Words around the same time.

Top-down influence from the IFG to MOG was stronger for False Fonts than

Words within 200ms of stimulus onset, however the picture was more mixed

in IFG→vOT and IFG→STG in which there are indications for greater PDC

in both conditions. The IFG to AG connection showed a clear preference

for False Font stimuli.

Finally there is a preference for Word stimuli within 100ms in both the

TP→STG and TP→IFG connections, however this picture becomes more

mixed later in the epoch.

Words >Consonants ∩ False Fonts

Several connections showed the same modulations in the Words >Consonant

Strings and Words >False Fonts contrast. The connections which were more

active to words were. MOG→STG around 100ms and TP→IFG before

100ms. As these connections were more active for Words than Consonant

Strings and False Fonts, they are likely to reflect phonological or semantic

processes.

In contrast, MOG→AG around 200-300ms, vOT→IFG around 150-200ms,

AG→IFG around 150-250ms and TP→STG around 200-300ms were all more

active to either False Fonts or Consonant Strings than Words. These con-

nections are harder to interpret. They are all later in the epoch (generally

around 200ms or after) these connections are recruited when a word is not

easily or automatically recognised. As such, they may represent a second

attempt by the system to extract information from the stimulus after the

initial processing has failed to identify the word form.

Consonants >False Fonts

Only the longer range connections originating in the MOG show a differ-

ence between Consonant Strings and False Fonts within 100ms. These are

a preference for Consonant Strings in MOG→STG and MOG→IFG and
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Figure 7.12: The thresholded meta Z map for the Consonant Strings >False
Fonts comparison. t-values from each individual were z-transformed and
combined to make this Z-map which has been thresholded at Z=2.3. Each
subplot indicates the PDC for the connection in which the region in column
is driving the region in the row, the x-axis indicates time in milliseconds
relative to stimulus onset and the y-axis indicates frequency. A positive
value (red) indicates that the PDC for Consonant Strings was greater than
False Fonts across participants at that point, and a negative value (blue)
indicates that the reverse was true.
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a preference for False Fonts in MOG→TP. Later in the epoch different

points in time and frequency show a preference for different conditions in

the MOG→AG connection while Consonants induce a larger PDC estimate

in the MOG→IFG connection and False Fonts produce more PDC in the

MOG→STG connection.

Within 100ms of stimulus onset Consonants produce larger PDC in the

vOT→MOG and vOT→IFG connections while False Fonts produce larger

PDC in vOT→AG in the same time frame. The largest difference in this

contrast is a preference for False Fonts late in the connections from AG to

vOT.

There are larger PDC estimates in the IFG→MOG connection for False

Fonts within 100ms of stimulus. False Fonts also produce larger PDC in the

IFG→vOT and IFG→AG connections later in the epoch. Finally Consonant

Strings produce larger PDC in early in the TP→STG connection and later

in TP→IFG. In contrast, False Fonts produce a large amount of PDC in the

TP→vOT connection around 300ms after stimulus onset.

Words ∩ Consonants >False Fonts

Several connections showed consistent behaviour in both Words and Conso-

nant Strings relative to False Fonts. The MOG→IFG connection was larger

in both Words and Consonant Strings around 200ms after stimulus onset at

40Hz. As such, this connection is likely to reflect an interaction associated

with the existence of orthographic information in the stimulus.

In contrast, many connections were consistently larger for False Fonts

than Words and Consonant Strings. These include MOG→AG between 100-

200ms at 60Hz, vOT→STG at 100ms around 20Hz, AG→vOT at 300Hz at

60Hz and IFG→MOG around 50ms at 30Hz. These connections were con-

sistently larger for False Fonts implying that their function might be related

to visual processing of shapes without recognisable orthography. Another

possibility is that these reflect processes which are only engaged when dif-

ficult or irregular orthographic challenges are present. In such cases when

the first pass of orthographic decoding has not succeeded, a wider network
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is engaged perhaps to produce a likely estimate.

7.4 Discussion

This chapter has applied the methodologies established in previous chapter

to characterise the rapid dynamics within a network of brain regions as

a person reads a word, consonant string or string of false font characters.

The connectivity within the reading network showed widespread changes in

response to all three stimulus categories. Moreover there was evidence of

integration between visual and language regions within the network for all

categories within 100ms.

7.4.1 Orthography

The critical contrasts to isolate connections which may carry orthographic

information were Consonant Strings >False Fonts and Words >False Fonts.

Both Words and Consonant Strings contain recognisable characters from

the Latin alphabet which should engage processing related to orthographic

decoding and representation. The contrast between Consonant Strings and

False Fonts showed that the presence of such recognisable characters changes

the pattern of connectivity within the reading network dramatically. Criti-

cally, when Latin characters are present both the MOG→IFG and vOT→IFG

connections are strengthened within 100ms of the stimulus onset. In con-

trast, when the characters are not recognisable in the False Font condition,

the strength of the IFG’s influence on both MOG and vOT is increased.

This shows that when recognisable visual characters are present the visual

regions produce a greater influence over the IFG. In contrast, when the or-

thographic information cannot be decoded the IFG begins to influence the

visual areas.

This suggests that the visual cortex nodes (MOG/vOT) are sufficient

to produce a first pass orthographic decoding which feeds forward into the

reading network, however when this first system does not reach a solid repre-

sentation then influence from the IFG increases, perhaps providing top-down
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Word >Consonant Consonant >Word

0-125ms

125-250ms

250-350ms

Figure 7.13: The connections within the reading network who show larger
activation to Words relative to Consonant Strings. The size of the connec-
tions are established by integrating the results seen in figure 7.10 across
frequency and within the three time bins described in figure 7.3. Each edge
represents a connection whose source is the thick end and target the thin
end. The overall size of the edge indicates the extent to which the connection
is modulated by the condition contrast.
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Word >False Font False Font >Word

0-125ms

125-250ms

250-350ms

Figure 7.14: The connections within the reading network who show larger
activation to Words relative to False Fonts. The size of the connections are
established by integrating the results seen in figure 7.11 across frequency and
within the three time bins described in figure 7.3. Each edge represents a
connection whose source is the thick end and target the thin end. The overall
size of the edge indicates the extent to which the connection is modulated
by the condition contrast.
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Consonant >False Font False Font >Consonant

0-125ms

125-250ms

250-350ms

Figure 7.15: The connections within the reading network who show larger
activation to Consonant Strings relative to False Fonts. The size of the
connections are established by integrating the results seen in figure 7.12
across frequency and within the three time bins described in figure 7.3.
Each edge represents a connection whose source is the thick end and target
the thin end. The overall size of the edge indicates the extent to which the
connection is modulated by the condition contrast.
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influence which helps to converge on a representation of the orthography if

there is one to be found. In the context of the literature on word recognition,

this account sits between the feedforward (Dehaene et al., 2005; Vinckier

et al., 2007) and interactive (Price and Devlin, 2011) models of word recog-

nition. The present results suggest that the visual system may be sufficient

for orthographic decoding when it is clearly present, however top-down in-

fluence from the IFG does come into play when no solution is reached. The

precise effect of the influence from the IFG is not clear from this study alone.

It may be the case that the IFG is not providing any influence relevant to

the recognition of the word, rather the connections we see in this chapter

reflect some other function which occurs after the visual system has ruled

out linguistic content. In contrast, this may be an indication that the influ-

ence of the IFG on visual areas during word recognition is only necessary in

challenging cases, and in fact the visual system may need input from IFG

to rule out orthographic information.

Corroboration for this second claim comes from Wheat et al. (2010) who

showed that rapid masked prime words containing orthographic or phono-

logical information about a forthcoming target word modulates the induced

activity seen in the LIFG within 100ms of stimulus onset. This suggests that

relevant information about potential phonological content of a word is able

to reach the IFG in time for the top-down influences seen in this chapter.

A study by Woodhead et al. (2012) used DCM to characterise connec-

tivity within the reading network in response to real words and false font

stimuli. They showed that the winning model included a top-down connec-

tion from left IFG to left vOT which was more active for the word rather

than false font stimuli. The present results provide a partial replication of

this word in that the Word >False Font contrast indeed shows an increase in

PDC in the IFG→vOT connection within 200ms of stimulus onset, however

this is a relatively small difference and occurs within the context of many

other changes occurring at the same time.
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7.4.2 Phonology And Semantics

The Word >Consonant String contrast is designed to isolate connections

which may be carrying phonological or semantic information. Similarly to

the previous contrasts the presence or absence of this information can be

seen to produce large changes in the configuration of the reading network.

Very quickly after stimulus onset, Words induce a stronger influence in both

the vOT→STG and vOT→TP connections, in addition real words greatly

increases the influence from TP to the IFG.

Later in the epoch, around 300ms after stimulus onset Words produces

a larger connection from TP to both MOG and vOT relative to both Conso-

nant Strings and False Fonts. As this difference in present in both contrasts

it is likely that these top-down connections are relevant to the phonologi-

cal or semantic information in the stimulus rather than its orthography or

visual form. Similarly Words increase the influence from AG to TP within

100ms of stimulus onset in both the Word >Consonant String and Word

>False Font contrasts, again this likely to reflect phonological or semantic

processes. The involvement of the temporal pole in these differences might

suggest that these modulations are more related to the semantics than the

phonology.

Finally, the connection most likely to reflect phonological or sound based

information in these results is from MOG to STG which shows larger PDC

estimates for words than either Consonant String or False Fonts around

60Hz just prior to 100ms after stimulus onset.

7.4.3 Models Of Visual Word Recognition

The present results do not clearly support or reject either of the main theo-

ries of visual word recognition as discussed above. There is clear evidence of

top-down influence from IFG to visual areas during all three conditions, how-

ever it’s role remains unclear. The early changes in connectivity from IFG

in the Consonant String and False Font conditions (within 100ms) suggests

that this connectivity is related to the recognition process itself. However,

the clearest evidence of strong feedforward influence from visual areas is in
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the real word condition, suggesting that the top-down connection might be

least important in this case.

In a Bayesian sense, the IFG might be providing a further information

about prior expectations about the stimulus which the visual system can

used to converge on the a posteriori most likely visual stimulus which gave

rise to the incoming information. However this top-down expectation might

be redundant when the orthographic information is trivially decoded from

a clearly presented word or consonant string. The brain may only use the

priors from the IFG when the visual evidence is not sufficient to provide an

orthographic representation of an incoming word. This approach to cogni-

tion has been widely influential in recent year and the present results may

partly support it (Lee and Mumford, 2003). This idea can be further refined

by explicitly defining a “prior expectation” to include the current evidence

in a brain region rather than the a priori expectation irrespective of the

information currently in the system. There is increasing evidence that the

low frequency content of a visual stimulus is able to rapidly ascend the pro-

cessing hierarchy and reach frontal brain regions very quickly (Bar et al.,

2006). The top-down influence from the IFG may then include a very rough

representation of the linguistic content of the stimulus gleaned from the very

rapidly processed low frequency visual information. Such an idea might be

supported by the priming effects seen in MEG (Cornelissen et al., 2009;

Wheat et al., 2010) which suggests that phonological information is very

quickly available in IFG.

7.4.4 Blurring Orthography and Phonology

This chapter makes a simplifying assumption that orthographic and phono-

logical information can be cleanly separated (see table 7.1. However the

truth may not be this simple. Vinckier et al. (2007) used a similar false font

to word stimulus set in an fMRI study to identify which regions in visual cor-

tex are recruited with increasing amounts of psycholinguistic information.

They conclude that the more anterior parts of the ventral visual stream are

only activated with the most word-like stimuli. This is mainly interpreted
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in terms of orthography. However, a similar response bias to more word-like

stimuli can also be seen in the LIFG. This may arise as the more ortho-

graphically word-like stimuli will inevitably become more pronounceable as

well. For example a consonant string will be associated with the sounds of

it’s constituent letters whereas a false font stimulus will not.

In terms of this present results, this may suggest that the top-down

influence from the LIFG might be working the other way around. It might

be the case that the LIFG’s role is to interrogate words which are more

challenging to pronounce rather than contributing to orthographic decoding.

7.4.5 Methodological Statements

A critical limitation of this study is the number of participants. A large

number of samples are needed to fit a reliable MVAR model, and in order

to use a short-analysis window in this chapter several hundred experimental

trial were collected per condition per participant. This allowed for a detailed

and robust MVAR model to be estimated for each person. Practical limita-

tions meant data collection was restricted to 5 participants, severely limiting

any group inferences that can be made to the meta-analysis described in the

methods section. This is a conservative and principled approach for com-

bining the results of independent tests of the same experiment, however

the significance of the outcome was determined by an arbitrary threshold-

ing of the final Z-map. This chapter has demonstrated the application of

a TDE-MVAR-PDC approach for characterising the rapid dynamics associ-

ated with visual word recognition, however further work should endeavour

to collect data from larger numbers of participants, allowing the application

of group-level non-parametric permutation tests to establish the statistical

significance of the final results. Moreover, the thresholding of the Z-maps

was done without any cluster correction. Such correction may eliminate

some of the smaller differences seen in the results above, particularly weaker

Z-values with no visible neighbourhood.

More participants and cluster corrected group statistics may also have

the benefit of cleaning up the highly complex results arising from this anal-
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ysis. The theoretical discussion above has focuses on the larger connections

surviving the group meta-analysis and in particular connections which show

consistent modulations in two of the three contrasts. As such, many smaller

or less consistent connections are not discussed. With more robust group

statistics the functional relevance of these other connections may be inter-

rogated as well.

Two of the participants who completed this study had a much lower

accuracy rate in the in-scanner behavioural task than the rest of the cohort.

Table 7.1 shows that participants 3 and 4 were only able to correctly identify

around 55 and 73 percent of the catch trials respectively, though their reac-

tion time was equivalent to the group. It is unclear whether this reflected a

practical or attentional which may have impaired performance, however ta-

ble 7.3 clearly shows that these participants also showed the lowest percent

consistency and R2 measures from the fitted MVAR models. This may imply

that these participants were relatively disengaged with the experiment lead-

ing to noisier data in which the MVAR model under-performs, even when

several hundred epochs are available for modelling.

7.4.6 Future Directions

The present results raise intriguing questions about the role of the IFG in

relation to the recognition of visual words. There are, however, several

outstanding questions. Firstly, does the influence from the IFG arise as the

brain is trying “harder” to recognise the Consonant String and False Font

stimuli? Visual input to the brain is noisy, and as such, when a Consonant

String or False Font stimulus is perceived when a real word is anticipated

the brain may seek more evidence from linguistic processes in addition to

the visual system to rule out the possibility that the stimulus is a noisy

presentation of a real word and only then stop looking for phonological and

semantic associations with the stimulus.

Finally, the theoretical accounts discussed in this chapter do not extend

far beyond the visual system. However there are many models of reading

which include the entire reading network up to the point of reading out
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loud. These models raise new questions not considered here, for instance,

there may be more than one way to recognise a word. Different pathways

within the reading network may be tuned towards different features and

depending on the content of the word itself, one or other of these routes

may be engaged.

7.5 Conclusions

This chapter has sought to characterise the dynamic changes in connectivity

within the reading network and how these are modulated by the presence

of different categories of linguistic information. Through the application

of the TDE-MVAR-PDC approach outlined in previous chapters a wide

network of connections has been established which is highly sensitive to

the linguistic content of a word. Critically, the relationship between visual

nodes and the IFG seen in this chapter suggests that there exists very rapid

connectivity between these regions in all conditions. The direction of the

connectivity seems to be related to the presence of orthographic information

in the stimulus. The visual areas exert a driving influence when clear Latin

characters are presented, while the False Fonts lead to a larger top-down

influence.
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Chapter 8

Multiple Routes To

Recognition
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8.1 Introduction

The previous chapter outlined the connectivity within the reading network

in response to stimuli containing different levels of orthographic and se-

mantic information. Critically two of the three conditions in this previous

experiment were not recognisable as real words, as such the analysis was

tuned to look at the response of the system to the presence or absence of

specific types of information. This is a very blunt manipulation as many

factors within the domain of real words modulate the speed and/or ease of

their recognition. This chapter builds on the previous results characteris-

ing the connectivity associated with recognisable or unrecognisable stimuli

by establishing the extent the recognition process is modulated by word

frequency. This subtler contrast allows us to identify whether visual word

recognition of any word is founded on a consistent set of brain state or is it

the case that high and low frequency word recruit distinct functional states

during the recognition process?

The faster recognition of words that appear more frequently in written

language is one of the most robust effects in cognitive psychology and has

influenced many cognitive and computational models of visual word recog-

nition (Grainger, 1990).A major argument in the word recognition literature

has been whether there are distinct routes to recognition or if phenomena

such as the word frequency effect can arise from a densely interconnected

network.

8.1.1 Multiple Routes To Recognition

Many models of reading have been based on the idea that there are two or

more routes from a seeing a word to recognising it (Davelaar et al., 1978;

Coltheart et al., 1993; Ellis and Young, 1996). Of these a dual route archi-

tecture with two routes to recognition has been most influential (Coltheart

et al., 1993). Dual-route models suggest that there are two pathways from

visual input to lexical access: a direct mapping from graphemes to the lexi-

con and an indirect process in which graphemes are mapped to the lexicon

via phonology. The mapping from orthography to phonology is rule gov-
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erned, however the mapping for a given word may either be in line with

these rules or not. All words are processed by both streams and according

to dual-route theory, for regularly spelt words the routes should converge on

the same answer, however in the case of irregular words the indirect route

would process the word according to regular spelling rules and interfere with

the direct route, thus slowing the correct identification. The rapid recogni-

tion of highly frequent words is though to arise from the direct route which

is so efficient in processing high frequency words that an identification is

achieved before the indirect route has a chance to produce any interference.

This explanation has some support from neuroimaging results which sug-

gest the direct pathway activates bilateral visual cortex and the left middle

temporal gyrus (MTG) whereas the indirect pathway leads to greater activa-

tion in the left inferior frontal gyrus (LIFG) pars opercularis, insula, thala-

mus and caudate nucleus (Fiebach et al., 2002). Moreover, the graphophono-

logical and lexico-semantic processes relating to the indirect and direct path-

ways respectively are consistently associated with distinct clusters of activity

within the left hemisphere (Jobard et al., 2003). Connectivity analysis of

fMRI data within the left hemisphere further supports a dual route model

Levy et al. (2009) in which the occipito-temporal cortex is involved in sub-

lexical orthographic processing however familiar words can be read with a

direct connection from early occipital cortex to parietal regions. In this

model the occipitotemporal cortex would only be necessary for the process-

ing of infrequent words.

While dual-route models remain influential they have given rise to a

lot of debate, critically there it is not the case that the dual-route archi-

tecture is the only mechanism that is able to account for a large amounts

of behavioural effects (Humphreys and Evett, 1985). Moreover, some neu-

roimaging data suggests that the connectivity within the reading network

in the brain are rather more complex than we might expect from a simple

dual-route account. Kujala et al. (2007) mapped coherences within the left

hemisphere during reading and showed that many of the nodes within the

network were densely interconnected with little evidence for two separate

routes. In addition, there is evidence for three separate processing routes
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from occipital cortex to regions within the temporal cortex during reading

(Richardson et al., 2011).

8.1.2 Connectionist Account Of Recognition

Connectionist accounts of recognition take a different approach. In Con-

nectionist models such as the triangle model, information enters the system,

before all cognitive aspects of the word are resolved simultaneously. Though

there may be some separation between the orthographic, phonological and

semantic nodes within this network, they converge on a final representation

simultaneously and information in any one point in the network may influ-

ence any other point. As such, these models may be better represented by

a series of states within the network rather than an ordered set of discrete

processes.

Connectionist/interactive models of reading such as the Parallel Dis-

tributed Processing (PDP) models (McClelland et al., 1986; Seidenberg and

McClelland, 1989) would suggest the structure of the network processing a

word should depend on the networks previous experience with that word.

These networks do not comprise a hierarchical processing stream, rather

they distribute incoming information to all parts of the network at once.

The ‘triangle‘ models include three clusters of nodes representing orthogra-

phy, phonology and semantics. Visual information enters the model through

the orthography cluster, however this cluster interacts with the phonology

and semantics clusters immediately, even before the orthographic represen-

tation has completely resolved.

The connections between the nodes in are weighted and may be trained

or adapted to optimise the recognition of a set of words. In this framework,

more frequent exposure of a word to a Connectionist model would lead to

the weights having more opportunity to optimise. This would suggest that

the word frequency effect arises as the links between spelling and sound are

learned statistically over many presentations of many different words. This

task will be simpler for regular spelling-to-sound relations however with

sufficient presentations the weights within the network could optimise to
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accommodate irregular words.

Similarly a Bayesian model might adapt its priors to account for the

greater or lesser likelihood of a given word appearing. This would imply

that high frequency words would be more efficiently processed, or in the

Bayesian framework, require less evidence for them to be confidently recog-

nised (Norris, 2006). Though Bayesian models of word recognition and per-

ception in general (Knill and Pouget, 2004) are gaining in popularity, there

are few specific hypotheses about the origin of prior expectations within the

brain. In contrast, there are specific hypotheses about the location of the

aspects of the triangle model in the brain (Carreiras et al., 2014). Moreover,

there is considerable overlap with the brain regions thought to play a role

in dual-route theories (Jobard et al., 2003).

According to arguments such as these, the PDP approach would predict

that the whole reading network should be modulated by word frequency. A

skilled reader would have a system optimised for frequent words and as such

the network would converge on a correct identification faster than a low fre-

quency word. In the case of low frequency words, a regularity effect arises

as the network has been (as yet) unable to compensate for the statistically

unlikely spelling of irregular words and as such identification becomes more

difficult. Neuroimaging results looking to characterise the performance of

a whole network have found interconnected functional networks with the

strength of many connections being modulated by task demands such as

reading sentences in which each word is presented individually at a man-

ageable or unmanageable rate (Kujala et al., 2007). The success of this

statistical learning mechanisms used in many PDP models implies greater

global efficiency when processing more frequent words rather than a greater

efficiency in one distinct route.

8.1.3 Recognition And Functional State

The section above outlines the evidence for several routes to word recogni-

tion each with different functional roles, though there is very strong evidence

for this the computational literature on Connectionist modelling might sug-
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gest that this is an oversimplification. Perhaps difference in the recognition

process for different word are the result of globally different functional brain

states rather than a greater or lesser recruitment of one or more relatively

discrete pathways. This chapter will characterise the directional influences

within the reading network over time in using the same methodology as the

previous chapter. The dynamic changes in connectivity are then charac-

terised as a series of functional states.

8.1.4 Connectivity

The previous chapter showed that the psycholinguistic content of a word-

form can modualate the directional connectivity within the reading network,

critically the top-down influence from the LIFG onto visual areas. The de-

sign from Chapter 7 interrogated differences when psycholinguistic content

(orthography, phonology or semantics) are present or absent, the present

chapter builds on these findings by looking for similar modulations in con-

nectivity depending on the ease with which psycholinguistic content can

be accessed. This contrast is performed with the word frequency effect as

described above.

8.2 Methods

8.2.1 Participants

Six right handed participants (4 male, mean age 29) took part in this ex-

periment. All participants had normal vision and no history of dyslexia.

This study was approved by the York Neuroimaging Centre Research Ethics

Committee and conducted according to their guidelines. Each participant

provided full written consent at each session and was fully debriefed at the

end of the experiment.
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8.2.2 Experimental Design

Stimuli

The stimuli were 1500 words evenly split between three word frequency

groups: high, medium and low. The words were taken from the CELEX2

database (Baayan et al., 1996) and details on the average word frequency for

each group can be seen in table 8.1. The words were uniformly distributed

between four to six characters in length.

Word Frequency

Condition mean max min

High 2.2 3.54 0.33
Medium 0.63 0.86 0.37

Low -0.21 0 -0.47

Table 8.1: Word frequency statistics for the three conditions used in this
study. All values are in log10 frequency per million.

Procedure

Participants silently read the words which were projected at 60Hz in a white

font onto a black screen with a viewing distance of around 75cm. Vertical

nonius lines acted as a fixation reference.

Recording was done over ten sessions across multiple days. Each trial

consisted of a single word presentation of 300ms followed by a 3000±500ms

uniformly jittered interstimulus interval (ISI). 150 catch trials were evenly

dispersed throughout scanning in which the word from the preceding exper-

imental trial was repeated and the participant pressed a button with their

left index finger, an additional 2000ms was added to the ISI after catch tri-

als to ensure motor artefacts did not affect subsequent trials. Stimuli were

presented using Presentation V 14 (http://www.neurobs.com).

229



—

NEURON

—

300ms

—
—

3000± 500ms

—

brain

—

300ms
—

—

3000± 500ms

—

BRAIN

—

300ms

—
—

5000± 500ms

time

Figure 8.1: Schematic showing the stimuli presentation and ordering. The
two red lines remain on the screen for the duration of the experiment and
their center point indicated the fixation for the participant. The first two
stimuli are experimental conditions and the final stimulus is an example of
a catch trial. The case of the font was alternating for the duration of the
experiment. The 3000ms interstimulus interval included a ‘blink period‘
during which participants were encouraged to blink in order to minimise
ocular artefacts contaminating the experimental epochs.
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8.2.3 Data Acquisition

Data were continuously recorded at 4069.017Hz using a 4D Neuroimaging

Magnes 3600 whole head system. The data were passed through a low-pass

filter set at 1500Hz. Participant head shape and reference coil location were

recorded using a 3D digitiser (Polhemus Fastrak) allowing for co-registration

with a high resolution anatomical T1 MRI image acquired using a GE 3.0T

Signa Excite HDx (Kozinska et al., 2001).

8.2.4 Data Analysis

Artefact Rejection

Data were visually inspected for artefacts and trials containing muscle or

eye movements were discarded from the analysis. The MEG data were then

co-registered with the individual’s structural T1 MRI scan and the MNI 152

standard brain to allow for source analysis to be conducted.

Beamformer Contrasts

Beamforming estimates the current at a source location in the brain from

a weighted sum of the observed magnetic fields on the sensors. A type

1 vectorized, linearly constrained minimum variance (LCMV) beamformer

(Van Veen et al., 1997; Huang et al., 2004) was used before the oscillatory

power in a passive window (−200ms to 0ms) was compared to the power in

four sequential active windows (0ms - 200ms, 100ms - 300ms, 200ms - 400ms

& 300ms - 500ms). These contrasts were performed in an alpha (5 - 15Hz)

and beta (15 - 25Hz) frequency bands. Non-parametric label permutations

were used to compute statistical thresholds (Nichols and Holmes, 2002)

Virtual Electrodes

Connectivity analysis was based on six nodes identified from the beamformer

contrast results. Current was estimated for each trial in these locations using

a vectorized LCMV beamformer as defined by Van Veen et al. (1997) which
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has been shown to generate the most accurate source reconstructions (John-

son et al., 2011). VEs were estimated at the full sampling rate (4069.017Hz)

across the entire epoch for each location.

8.2.5 Connectivity

The MVAR model fitting procedure was identical to the one used in the

previous chapter. Each epoch was split into 150ms sliding windows which

advanced in 25ms steps from 75ms prior to stimulus onset to 350ms after

(see “Windows” in figure 8.2). All the time series within each sliding window

were used to compute an evoked R matrix which was used to estimate A

through the Vieira-Morf algorithm. The PDC is then calculated from the A

matrix for each sliding window.

The PDC within each functional window was compared to a control or

passive window defined at −225ms to −75ms relative to stimulus onset. To

allow for statistical comparison the trials within each window were jackknifed

50 times. In other words the PDC within each window was calculated using

a random 80% of the available epochs each time. The distributions of the

PDC estimates across jackknives were then compared to the control window

using an independent samples t-test. p values were Bonferroni corrected to

correct for multiple comparisons.

8.2.6 Condition Contrasts

Finally the connectivity within the reading network for the high and low

frequency words are directly compared using the same Z-score based meta-

analysis seen in the previous chapter. In brief, any differences within each

connection are characterised in each individual using a t-test, the results of

which are then Z-transformed. These Z-scores are then summed across par-

ticipants and divided by the square root of the total number of participants.

This is Stouffer’s method for combining Z-score from several independent

iterations of the same test. This group Z-map is then thresholded at Z=2.3.
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Figure 8.2: Schematic of the sliding analysis windows used in the connec-
tivity analysis. The arrow at the top denotes time in milliseconds. The
stimulus line shows when the stimulus appears within the epoch. The ac-
tive sliding windows are shown in the section with the blue background.
The PDC from within each window is presented in subsequent sections and
labelled with the centre time of the window. The different colour bars in
this section denote the three time bins in which the condition differences in
PDC are integrated over for the glass brain plots.

8.3 Results

8.3.1 Behavioural Data

The six participants correctly responded to 94.7% of the catch trials with

an average reaction time of 740 milliseconds.

8.3.2 Node Selection

The reading network in the previous chapter was identified from a combi-

nation of local maxima and minima in a set of sliding window beamformer

contrasts and the literature. This chapter uses the same approach.

8.3.3 Model Validation

The beamformer contrast results again show the general trend for activation

to spread from posterior to anterior brain regions as reported in the previous

chapter and the literature Marinkovic et al. (2003); Pammer et al. (2004).
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Participant Percent Correct Reaction Time (ms)

1 98 325.4
2 91.3 318.7
3 88.7 325.0
4 86 336.0
5 93.3 342.3
6 98 326.8

Average 92.55 329.03

Table 8.2: Behavioural results per participant. Percent correct indicates the
proportion of animal name catch trials which the participant was able to
respond to across the six experimental blocks. Reaction time is the aver-
age time in milliseconds for a correct response from the participant. Only
responses within 1 second of the catch trial were included in this analysis.

MNI coord

ROI Abbreviation x y z

Middle occipital gyrus MOG -30 -96 2
Vetral occipito-

temporal cortex vOT -44 -58 -14
Angular gyrus AG -56 -52 22
Superior temporal

gyrus/ Heschls gyrus STG -48 -14 2
Inferior frontal gyrus

pars opercularis IFG -44 -2 24
Temporal pole TP -52 14 -20

Table 8.3: ROIs used in the connectivity analysis. These were generated
from local maxima in the beamformer power contrasts
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Figure 8.3: Z-stats from an active-passive beamformer power contrast in the
alpha band (5 − 15 Hz), each surface contains the combined Z-stats across
the five participants arbitrarily thresholded at Z = 1.96. The sliding window
results from the sliding window contrast across all words is shown followed
by the same contrast for just the high frequency word and finally just the
low frequency words. The results have been rendered onto the surface of a
fsaverage brain with the lateral (top) and ventral (bottom) views of the left
hemisphere shown.
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Figure 8.4: Z-stats from an active-passive beamformer power contrast in the
beta band (15 − 25 Hz), each surface contains the combined Z-stats across
the five participants arbitrarily thresholded at Z = 1.96. The sliding window
results from the sliding window contrast across all words is shown followed
by the same contrast for just the high frequency word and finally just the
low frequency words. The results have been rendered onto the surface of a
fsaverage brain with the lateral (top) and ventral (bottom) views of the left
hemisphere shown.
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The large early activations in the LIFG seen in chapter 6 are not seen in

these results, however as this finding has been replicated a number of times

Pammer et al. (2004); Cornelissen et al. (2009); Wheat et al. (2010) this is

likely to be due to the small number of participants included in the study.

The beamformer contrasts show a strong justification for inclusion of the

middle occipital gyrus, ventral occipito-temporal cortex, temporal pole and

superior temporal gyrus as seen in the previous chapter. Moreover there is

an indication that the angular gyrus is activated in response to low frequency

words in the alpha band. Guided by these results and the literature, the

same reading network is used as seen in chapter 6. This is justified in part

by the present beamformer contrasts and comes with the large advantage

that the connectivity results in chapters 6 and 7 will be easily comparable.

The nodes included in the reading network are summarised in table 8.3.

The model validation results are summarised in table 8.4. Though some

participants have quite different number of epochs for the two conditions

(as a result of the epoch rejection), the models are very consistent across

participant and condition.All the stability indices are well below 1, indicating

that the models are stable, which implies stationarity. Moreover the Durbin-

Watson test shows that there is no indication of serial autocorrelation in the

residuals of the model. Finally the percent consistency and R2 stats show

that a good proportion of the variance in the data and its autocorrelational

structure are being captured. Critically these values are very similar for

both conditions, implying that any differences we see between the two are

a result of the structure of the model itself rather than one condition being

better described that the other.

8.3.4 Partial Directed Coherence

PDC was estimated from the MVAR parameters for each sliding window for

each participant and each condition. The average PDC across participants

for the high and low word frequency conditions can be seen in figure 8.5.

The first critical result is that, similarly to the previous chapter, the distinc-

tive 1
f frequency profile seen in the resting state chapter has been strongly
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Participant Condition Epochs SI DW(τ) PC R2

1
Low 467 0.45 1.91 35.38 0.21

Medium 459 0.44 1.91 35.13 0.2
High 456 0.45 1.91 33.86 0.2

2
Low 349 0.5 1.92 28.99 0.19

Medium 358 0.5 1.92 28.95 0.19
High 350 0.49 1.92 28.38 0.18

3
Low 414 0.41 1.91 36.85 0.22

Medium 423 0.41 1.91 35.63 0.21
High 423 0.41 1.91 35.95 0.22

4
Low 388 0.45 1.91 31.38 0.22

Medium 398 0.46 1.91 31.31 0.22
High 404 0.46 1.91 32.21 0.22

5
Low 420 0.44 1.91 37.83 0.21

Medium 421 0.44 1.91 37.93 0.21
High 427 0.43 1.91 37.58 0.21

6
Low 479 0.41 1.9 41.97 0.24

Medium 477 0.41 1.9 42.16 0.24
High 472 0.42 1.91 41.56 0.24

Table 8.4: Table containing the model validation results for the six partici-
pants in this chapter. SI: stability index, DW(τ): Durbin-Watson test with
lag of τ , PC: Percent consistency (Ding et al., 2000) and R2: The amount
of variance explained by the model.

238



attenuated. This is as the MVAR models in this chapter are calculated from

the average lagged covariance matrix from a short window across many tri-

als. This allows for the estimation of directed influences that are consistent

within a time window across many realisations. As these windows are dis-

continuous any ongoing oscillations that are not task related may not be

modelled. In contrast, the longer continuous windows used in the resting

state analysis will be able to pick up on such oscillations. A deeper discus-

sion into how this may lead to a 1
f frequency profile can be found in chapter

4.

Similarly to the directionality analysis in chapter 4, several clear asym-

metries can be seen in figure 8.5. This directionality is often consistent over

the two conditions (for instance vOT→MOG and STG→AG) though may

be modulated in strength over the course of the epoch.

Many of these connections are similar to the Words condition seen in

the previous chapter. For instance the influence from MOG is stronger over

vOT and AG than the rest of the network. STG has a stronger influence

on MOG then in the reciprocal connection and finally the Temporal Poles

influence is stoniest on the STG than the rest of the network.

8.3.5 Low vs High Frequency Contrast

In order to more directly characterise the differences between the high and

low frequency words in time, a direct comparison between the conditions was

carried out within each individual and combined using Stouffer’s method.

The results of this test can be seen in figure 8.6.

As seen in the previous chapter, the condition differences have a widespread

and complex impact on the connectivity of the reading network. There are

many rapidly differences in almost all connections

High >Low Frequency

The blue values in figure 8.6 indication connections which were stronger

for the high frequency words than the low frequency words. The earliest

differences occur within 100ms in which the MOG→vOT connections is
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Figure 8.5: top: The average PDC estimates across all participants for the
high word frequency condition. bottom: The average PDC estimates across
all participants for the low word frequency condition. In each matrix, a
single subplot indicates the PDC for the connection in which the area in the
column heading is driving the area in the row. The x axis indicates time
and the y axis indicates frequency. Each time point represented a sliding
window as described in figure 8.2.
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Figure 8.6: The difference in PDC between the Low and High word frequency
conditions. The difference within an individual was characterised using a
t-test before the t-maps were converted to Z-scores and combined using
Stoffer’s method for combining the results of independent repetitions of the
same test. This group level Z-map was arbitrarily thresholded at Z = 2.3.
Each subplot indicates the connectivity for the connection in which the
region in the column is driving the region in the row. The x-axis indicates
time in ms relative to stimulus onset and the y-axis denotes frequency in
Hz. A red value indicates that that connection was more active for low
frequency words, whilst the blue values indicate that the PDC was higher
for high frequency words.
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more influential for high than low frequency words. There is a much smaller

preference for high frequency words in MOG→IFG around 10Hz at the same

time.

The next strongest early preferences for high frequency words occur

within 100ms in the TP→STG and TP→IFG connections. Around the same

time point there is a small indication at the AG→TP connection shows the

same bias for high frequency words. Around 100ms there is a larger PDC

estimate in the STG→IFG connection before the STG→vOT connection

shows the same effect around 200ms.

In general, the high frequency words tend to increase the early influence

from MOG to vOT and IFG while also increasing the influence from TP

onto AG and STG. STG has a more driving influence on vOT and IFG later

in the epoch.

Low >High Frequency

The red values in figure 8.6 indicate connections which were stronger for

low than high frequency words. The largest differences within 100ms which

are larger for low frequency words are in connections originating in the

IFG. the IFG→MOG/vOT/AG and TP connections are all stronger for

the low frequency words within 100ms, though the IFG→TP difference is

small. This influence continues in IFG→AG in between 100 and 200ms after

stimulus onset.

There is a small indication of larger PDC in the MOG→TP connection

around 10Hz very early in the epoch. Similarly, there are small increases in

MOG→vOT/AG/STG from around 80ms to 200ms. The top-down connec-

tion vOT→MOG is also larger for infrequent words during this time.

Both AG and STG appear to influence visual areas more for infrequent

words, though this occurs later than the top-down influence from the IFG.
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Low >High High >Low

0-125ms

125-250ms

250-350ms

Figure 8.7: The connections within the reading network who show larger
activation to Words relative to False Fonts. The size of the connections are
established by integrating the results seen in figure 8.6 across frequency and
within the three time bins described in figure 8.2. Each edge represents a
connection whose source is the thick end and target the thin end. The overall
size of the edge indicates the extent to which the connection is modulated
by the condition contrast.
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8.4 Discussion

This chapter seeks to characterise the connectivity within the reading net-

work using the TDE-MVAR-PDC approach outlined in previous chapter.

The critical question arose from the results of chapter 6, which showed that

top-down influence from the IFG to MOG was strongest for False Font stim-

uli. This chapter aimed to ask whether the role of the IFG was specific to

False Font stimuli or if it played a role in recognition of challenging words

in general.

The neural substrate which may underlie the rapid recognition of high

frequency words can be seen in these results. Critically, high frequency word

induce stronger feedforward connections from visual areas to IFG within

100ms. At the same time, the influence from the TP on STG and AG is

stronger for high frequency words. This earlier engagement of the temporal

pole might indicate an earlier access to semantic content which can begin

to feedback into the system within 100ms. In contrast the low frequency

words show little indication of large modulations of the connectivity from

the temporal pole. Rather driving influences from AG,STG and IFG are

more prominent.

8.4.1 The IFG

The connectivity from the IFG to the rest of the reading network was con-

siderably stronger for the more challenging low frequency words. This mod-

ulation occurs very rapidly after stimulus onset, with some of the long range

top-down connections increasing within 100ms of stimulus onset. In relation

to the results in the previous chapter, the present results strongly support

the argument that the IFG’s early role in visual word recognition might

be much more prominent with challenging/ difficult to recognise stimuli.

The present results build on the previous chapter by demonstrating that

this early top-down influence does occur with challenging linguistic stimuli

rather than just word-like stimuli with no linguistic content.

These findings are further supported by MEG evidence that linguistic

aspects of a visual word such as its phonology can modulate IFG activation
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on a very rapid time-scale (Cornelissen et al., 2009; Wheat et al., 2010). A

TMS investigation into whether this fast phonological access is necessary

for visual word recognition has suggested that disruption to the IFG prior

to 225ms after stimulus onset does not affect reading speeds (Wheat et al.,

2013). However, this study used high frequency words, which the present

results show to induce the least top-down influence from the IFG. Moreover,

the study was carried out in Dutch which has a very transparent orthogra-

phy which, unlike English, will not contain any irregular spelling-to-sound

conversions.

Overall, there is clear evidence that the linguistic content of words and

word-like stimuli can modulate inferior frontal and temporal brain regions

within 200ms of stimulus onset (Pammer et al., 2004; Cornelissen et al.,

2009; Wheat et al., 2010) though the function of this fast response remains

unclear. Previous DCM studies have suggested that the IFG may provide

rapid feedback to visual an temporal areas during word recognition (Yvert

et al., 2012; Woodhead et al., 2012). The results of the previous two chap-

ters does support the existence of such early feedback, however it is most

prominent in words and word-like stimuli which are not easily recognised,

such as low frequency words and non-words.

A Bayesian approach may provide the best interpretation as it allows

for a fully probabilistic account. As visual information feeds into the brain

it combines with a priori expectations (perhaps such as word frequency) to

produce an a posteriori probability distribution across the set of possible

stimuli which could have produced the sensory input. The rapid access to

phonology discussed above suggests that this first process may happen simul-

taneously on several levels, resulting in a probability distribution based on a

very fast visual and phonological analysis of the sensory input. If the a pos-

teriori evidence in the visual system is sufficient, that suggests the brain has

recognised the word and the phonological evidence not further considered in

the context of recognition. In contrast, if the a posteriori visual probabilities

are ambiguous (as would be the case for infrequent words or non-words) in

that several or many words are similarly likely to have produced the incom-

ing bottom-up sensory information, then the rapid phonological decoding
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may provide further top-down evidence. The combination of these two may

then produce a match, or be sufficient to conclude that the stimulus was not

a word.

8.4.2 Multiple Routes To Recognition?

The results show that the IFG is preferentially influential for low rather

than high frequency words, and that the semantic regions are influential

earlier for high frequency words. This may be taken as support for a dual-

route account in which the indirect phonemic route is only influential for

difficult words (Coltheart et al., 2001). However the interpretation may not

be that simple. The wider results from the last two chapters have shown

that False Font, Consonant String, Frequent Words and Infrequent words all

induce modulations in activity across most of the reading network. Even the

False Font stimuli induce large increases in directed functional connectivity

between higher “linguistic” brain regions which would not be predicted by

a hierarchical feedforward model of word recognition.

It would appear that the entire network responds to a word-like visual

stimulus as would be predicted by a distributed Connectionist account.

However the psycholinguistic and orthographic content of the word does

induce differences in specific parts of the reading network as might be pre-

dicted by a more modular approach. The answer is likely to lie in between

these two accounts in which a widely distributed and highly interactive net-

work of specialised brain regions co-operate to identify an incoming stimulus.

The connectivity within the reading network does change rapidly over time,

further suggesting that there may be several stages of processing, though

each stage may be associated with the coordinated activity of a number of

nodes in the network. Moreover, the same node may not play the same role

in different stages of processing with different network contexts (Price and

Friston, 2005). It may be that the functional “state“ of whole network is

better able to describe how psycholinguistic aspects of a word are processed

than a modular or route based account.
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8.4.3 Methodological Statements

The results in this chapter are subject to the same statements about group

level statistics as the previous chapter.

8.4.4 Future Directions

This chapter has provided direct evidence that top-down influence from the

IFG occurs during the recognition (or attempted recognition) or challenging

word-like stimuli with or without linguistic content. Further work look-

ing to characterise this effect should first look to build a larger cohort of

participants to provide more robust statistical confidence to the presented

findings.

The Hidden Markov Model approach applied to the resting state data in

chapter 5 could potentially be applied to task data such as this. By fitting

a set of hidden states and their transitions, the very complex dynamics seen

in the previous two chapter could be simplified considerably.

Spelling Regularity

Finally, more information about the precise function of the top-down in-

fluence from the IFG could come from a design which manipulates both

word frequency and spelling regularity. The relationship between these two

variables has been the source of considerable debate in the computational

modelling literature and dual-route and Connectionist model provide dif-

ferent accounts of how the reading network might cope with irregular and

infrequent words. Critically, the dual route account would suggest that

irregular words such as yacht cannot be easily identified by the indirect

grapheme-to-phoneme conversion route and this would interfere with the

direct recognition process which identifies a word form directly from its vi-

sual form. In contrast, a Connectionist account would suggest that the

entire network is able to compensate for irregular spelling, but only through

repeated exposure to the stimulus. As such, the whole network should be

able to deal with a frequent but irregular word but converge slower for an

infrequent irregular word.
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As such, an early modulation of the connectivity of brain regions asso-

ciated with phonology for any irregular word might support a dual-route

account whereas if any frequent word is processed similarly irrespective of

regularity then this would support the Connectionist models.

8.4.5 Conclusion

Overall, this chapter aimed to identify the neural substrate which gives rise

to the word frequency effect. High frequency words were found to induce

larger feedforward connections from MOG and top-down influence from the

temporal pole. In contrast, the high frequency word were associated with

much stronger top-down influence from the IFG on several other regions.

This builds on the results of the previous chapter by confirming the linguistic

relevance of the top-down influence from the IFG. Moreover, in the context

of previous literature, there is increasing evidence for the role of the IFG in

processing difficult word and word-like stimuli is becoming clearer.
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Chapter 9

Discussion
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9.1 Chapter summaries

9.1.1 Maths

An analysis pipeline which reconstructs local brain dynamics from observed

multivariate data before statistically assessing the direction of information

transfer was introduced in this chapter. The theoretical justification of the

first stages of this pipeline are drawn from non-linear dynamics, specifically,

the work of Takens (1981) who showed that the dynamical structure of a

system may be reconstructed from a vector of time lagged observations of its

behaviour. The representation of the system in its embedding space is then

used as the predictors in a multivariate autoregressive model which char-

acterises which delays contain information about any future observations.

This information transfer was quantified in the frequency domain using par-

tial directed coherence, which expresses the information flow from node A

to B as a proportion of the total influence from A to the whole network.

9.1.2 Simulations

While the theoretical justification of the analysis pipeline is outlined in chap-

ter 2, this chapter validated several important practical issues. Firstly, the

accuracy with which a model can be fitted from a set of observed data is

critically dependent on the ratio of observations to parameters. A simple

simulation was used to demonstrate that while more observations are always

better, a ratio of around 5:1 should lead to an accurate model. Secondly,

several different information transfer metrics can be computed from a fit-

ted MVAR parameter matrix. The use of PDC in this thesis is validated

by demonstrating that it can establish the direction of information trans-

fer within a system (unlike coherence) and disambiguate a direct from an

indirect connection (in contrast to coherence and Directed Transfer Func-

tion). Finally the issue of frequency resolution is discussed. The relation-

ship between the sampling rate, window length and frequency resolution

is outlined before a novel set of simulations introduced. These simulations

produce multivariate systems with a known spectral content in the cross
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correlations. In other words, the cross correlation between nodes oscillated

at a known frequency. In contrast to claims from the literature, this simu-

lation demonstrated that the frequency resolution of a connectivity metric

estimated from an MVAR model is completely determined by the time delay

between coefficients and the total number of predictors.

9.1.3 Directionality In The Resting State

The first application of the analysis pipeline outlined in chapters 2 and 3

sought to identify directionality within the Default Mode Network. This

is a very well known endogenous brain network which has been robustly

identified across many modalities (fMRI and MEG) and methods (ICA, Seed

based correlation) however the causal structure between its component nodes

is not well known. As this was the first application of the analysis pipeline

a thorough search through the time delay embedding parameter space was

conducted to identify which combination of model order and delay produced

a model most able to predict future observations consistently and without

over fitting. This identified a delay of around 5ms and an order of 20.

The final model order was determined with the additional constraint that it

should provide a reasonable frequency resolution.

This approach identified many asymmetries in information flow within

the DMN. Critically, the ventral and dorsal medial prefrontal cortex,posterior

cingulate and angular gyrus were identified as predominantly driving nodes.

In contrast the middle frontal gyrus and posterior middle temporal gyrus

were predominantly driven. Moreover the connection between the anterior

and posterior driving nodes was show to vary as a function of frequency,

with influence from vMPFC to PCC decreasing with increasing frequency.

9.1.4 Dynamics In RSN Directionality

The directional asymmetries within the DMN were significant across the

entire recording time, but recent results suggest that the strength of con-

nections within endogenous brain networks might fluctuate over time. This

temporal variance was characterised using a hidden markov model. This
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produces a number of hidden states which are associated with an particu-

lar distribution of observations and provides a probabilistic description of

the transitions between these states over time. This chapter first reduced

the dimensionality of the PDC estimates from the 2 second windows gen-

erated in the previous chapter with a PCA before the HMM was fitted to

the weights from each component. Four states were generated as this is the

smallest number of states which produce HMMS with the lowest expected

Free Energy (an approximation of the model evidence). Finally the predic-

tive power of the state transitions on specific connections within the DMN

was characterised by regressing the original PDC estimates against the state

time course. This identified which connections at each frequency increase or

decrease in strength with the presence of each HMM state. Many dynamic

changes were identified, critically the influence of the posterior driving nodes

across the network in the alpha band increased in one state and decreased in

another while remaining constant in the other. The anterior driving nodes

were not modulated by state transitions at this frequency.

9.1.5 Visual Word Recognition

Dynamics in directionality within brain networks occur on multiple time-

scales. The previous chapter demonstrated variance in directed functional

connectivity on a time-scale of seconds. While this is informative over the

course of many minutes, this rate of change is an order of magnitude slower

than the brains response to a stimulus such as a word. This chapter modified

the MVAR parameter matrix fitting to parameterise temporal dependencies

which are consistent within very short time windows over many experimental

trials rather than within one large time window. This is applied to a visual

word recognition task in which False Fonts, Consonant Strings and Words

are presented to a participant.

Several theories describe how the brain might recognise a word or word

like stimulus. Feed forward hierarchical models would suggest that increas-

ingly complex features of a visual input are represented by layers in a pro-

cessing hierarchy. Features such as simple shapes and angles are represented
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by early visual cortex and single letters, bigrams and eventually words are

represented by more anterior regions along the ventral occipital temporal

cortex. In contrast, an interactive account would say that complex features

such as a word are not explicitly represented by visual cortex. Rather, the

visual input is compared to a top-down prediction of which stimulus may

have caused the sensory input. Through interaction between the visual rep-

resentation and top-down prediction the word is identified. Critically this

does not occur without interactions with “higher“ areas.

It was found that the false font and consonant string stimuli produced

a larger top-down PDC from LIFG to visual brain regions within 150ms of

stimulus onset. In contrast the words produced more early feed forward con-

nections from the vOT and early influences from the temporal pole. These

connections show different magnitudes in different conditions in very short

time scales after stimulus onset. Moreover the magnitude of the differences

between conditions changes rapidly over the course of the first 300ms after

stimulus onset.

These results generally support a mixture of the two accounts outlined

above. Firstly, a word may most simply be recognised through a feed for-

ward process potentially similar to the hierarchical models in the literature.

However these models may not account for cases in which the stimulus is

challenging or impossible to recognise. False Font and Consonant Strings

are impossible to recognise but word like-stimuli. These stimuli support a

more interactive account of recognition, in which visual cortex receives in-

fluence from IFG during the early processing of the stimulus. This top-down

influence is interpreted as a source of extra information to aid recognition

when the visual cortex is unable to identify the stimulus itself.

9.1.6 Multiple Routes To Recognition

The previous chapter suggests that the reading network features more top-

down influence on visual cortex when the stimulus is impossible to recognise

as a word. However the interpretation that this top-down influence is an

aid to recognition may be spurious if the top-down interactions were unre-
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lated to word reading and only occurred with non-word stimuli. Chapter 7

investigates this confound by comparing the PDC within a reading network

as a participant reads either high or low frequency words. Both of these

categories are real words, however the high frequency words are very easily

recognised by a skilled reader. In contrast the low frequency words present

more of a challenge to the reading system.

It was found that the low frequency words did increase the top-down in-

fluence from LIFG to both visual regions in the the reading network within

100ms of stimulus onset. In contrast the high frequency words elicited

stronger feed forward connections from visual cortex.

9.2 Concept Summaries

Several of the major themes within this thesis are discussed with reference

to the relevant chapters below.

9.2.1 Dynamics of Dynamics

Time delay embedding is used to reconstruct the evolution of a systems state

over time (Abarbanel et al., 1994). A TDE is a vector containing observed

data at a given time and its delays. This representation of the local dynamics

of a brain network may have a very fine temporal resolution and is likely to

be very high dimensional. Though complex, this representation is a some

unknown transform of the internal state dynamics of the hidden system

which is generating the observations. Due to the fine temporal resolution and

inclusion of delayed observations in the TDE vector, estimates of Granger

causality and temporal precedence may naturally be estimated.

The first state in this causality estimation is a parameterisation of the

relationship between an observation at time t and its past. This is performed

by fitting a multivariate autoregressive model to the TDE. This fits a pa-

rameter to each dimension in the TDE vector, however to ensure that the

parameters represent an ongoing dynamic relationship between an observa-

tion an its time delay, the parameters are fitted across many TDE vectors
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within a wider time window. In chapters 4 and 5, this window was 2 sec-

onds long and the TDE based on a delay of 5ms and an order of 20. At

the 4 kilohertz sampling rate this resulted in around 7700 TDE vectors

each containing 720 dimensions. The MVAR parameter matrix contained

720 parameters which describe the extent to which each dimension in the

TDE is able to predict future observations across all 7700 vectors within

a window. Critically, though the time-window is two seconds long in this

case, the MVAR model does describe the very rapid dynamics of the system

on a millisecond time-scale. However it will only model the rapid dynamics

which were consistent across the two second period.

Chapters 6 and 7 used a different approach designed to allow good MVAR

fits across much shorter time windows. Instead of one continuous time win-

dow from which to extract the TDE vectors, this approach uses many reali-

sations of much shorter time windows. This as the MVAR parameters may

be directly estimated from a lagged covariance matrix R, the covariance be-

tween signals at different time delays (delays = τ, 2 ∗ τ. . . . , p ∗ τ). Chapters

4 and 5 estimate this across all TDE vectors within a window, however in

chapters 6 and 7 the time-windows being considered are too short to ensure

a good estimate of R. Ding et al. (2000) show that a good estimate of R can

be obtained from a very short time window if many comparable realisations

of the same dynamics are available. This short-window approach uses the

average R estimated from within many short time windows, picking up on

any delayed covariances which are consistent across all realisations. In this

way the time-window can be shorted from 2 seconds to tens or hundreds

of milliseconds. This approach was not applied in chapters 4 and 5 as we

cannot assume that consecutive time windows in a resting state scan could

be considered different realisations of the same dynamics. In contrast, the

controlled stimulus presentation used in chapters 6 and 7 should evoked a

similar dynamic process associated with word recognition and as such the

average covariance over many realisations should pick up on consistencies in

the responses across experimental epochs.

After the estimation of the lagged covariance matrix by either method,

the MVAR model fit parameterises the extent to which the covariance struc-
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ture is predictive of future observations. As mentioned above, the fitted

MVAR parameters may be further transformed to provide estimates of

Granger causality in the frequency domain. The Partial Directed Coher-

ence expresses the amount of influence the past history of one node has on

future observations in the rest of the network. This is performed in the

frequency domain after a Fourier transform of the MVAR coefficients for

each pair of nodes across all delays. This representation provides a further

simplification of the rapid dynamics originally reconstructed by the TDE

vectors. The rapidly changing and very high dimensional TDE represen-

tation is transformed and simplified until the PDC expresses the extent to

which specific delayed interactions are predictive of future observations in

the frequency domain. Critically the PDC is a representation of the causal

influences in the rapid dynamics which are consistent over a time-window

(or many windows over the same local dynamics.

Chapter 5 looked to extend this representation of local dynamics within a

single window to describe how these local and rapid dynamics might change

over longer time-scales. A hidden Markov model was used to characterise

how the PDC description of brain dynamics change over the course of min-

utes. The dimensionality of the PDC was reduced using PCA before the

HMM used to provide a probabilistic description of the change in PDC

through a discrete space comprising several PDC states. It is important to

note that the HMM states and state transitions are entirely different from

the TDE vector state-space. The HMM space is discrete over a predeter-

mined set of states each associated with a PDC description of the data. In

contrast, the TDE state dynamics are continuous and constructed from the

observed data itself.

The HMM approach was not applied to the dynamics of the task data

for several practical reasons. Firstly, the resting state analysis allowed for

several thousand epochs to enter the HMM estimation with a ratio of around

125:1 observations to dimensions. In contrast the task data would only pro-

vide several hundred epochs with a much smaller ratio between observations

and dimensions in the data. Secondly, the overlapping windows in the task

chapters make the concatenations seen in chapter 5 problematic as succes-
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sive windows may be interdependent. Despite these practical challenges, this

approach remains a highly promising approach for future research. Identifi-

cation of functional connectivity states on a millisecond timescale during the

brain’s response to a range of stimuli would provide a powerful approach for

characterising the similarities and differences in the processing of different

visual word forms.

9.2.2 Task Dynamics

The previous section outlined the theory behind modelling the rapid task

dynamics seen in chapters 6 and 7 in relation the modelling seen in previous

chapters. Across both chapters 6 and 7 this approach has lead to several

insights which are summarised in this section.

A critical advantage of estimating the covariance across many experi-

mental epochs is that we can work with shorter time windows. This allows

for a detailed model of the structure of the reading network on a time-scale

of tens or hundreds of milliseconds. This method does not require the defi-

nition of a set or family of model structures a priori nor presumptions about

when a task effect might occur. A set of nodes comprising the reading net-

work were required a priori as well as the time delay embedding parameters

(a deeper discussion into the TDE parameter requirements can be found in

the methodological statements).

Both chapters 6 and 7 showed considerable variance in the connection

strength between different nodes in the reading network. Critically, the

average PDC for the connections from MOG to both vOT and AG were

higher than the other connections below 20Hz. In addition the vOT→MOG

connection was larger than the MOG→vOT. These biases in the PDC esti-

mates were generally present in the passive period prior to stimulus onset,

though modulation over time is seen, it appears within the context of these

apparently ongoing directional biases in connection strength.

The task contrasts in both chapters highlighted several interesting out-

comes. Firstly, almost all connections within the reading network showed

some significant modulation in strength by different stimulus categories at
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some point in time or frequency. This result is most consistent with a paral-

lelised and distributed account of visual word recognition in which identity

of a recognised word is encoded in the state of the network as a whole.

However, these PDP models doe not include any encoding of the temporal

differences in connectivity. For instance, the Words >False Font contrast in

chapter 6 shows early modulations in connectivity in the PDC from LIFG

within 150ms, in contrast there are more late modulations in the connec-

tions from Temporal Pole. Though the widespread modulations do follow

predictions made from PDP models, the same models do not incorporate

any temporal predictions such as the findings highlighted above. This is

perhaps as many sets of temporal constraints might produce models which

accurately predict behavioural outcomes. As such this may provide an av-

enue in which modelling of neural dynamics may provide a set of biological

constraints on the temporal evolution of computational models.

Secondly, these results highlight the need for information about the dy-

namics in functional connectivity on a millisecond time-scale. Many highly

influential accounts of the connectivity subserving visual word recognition

provide a relatively static picture of the network interactions (Kujala et al.,

2007). Moreover, many models of neural interactions during recognition

derived directly from experimental data show equally static images. The

present results build upon previous demonstrations of rapidly spreading ac-

tivation across the cortex by showing that this representation of the con-

nectivity is highly simplistic. This dynamic representation of brain connec-

tivity may provide more detailed hypotheses for future experimental work,

for instance the example in the paragraph above might suggest a double

dissociation between early and late TMS to LIFG and Temporal Pole whilst

reading word a False Fonts. This avenues of future work might be critical

in attributing cognitive and behavioural outcomes to connections in specific

time windows.

Finally, the rapid modulations seen in almost all contrasts across chap-

ters 6 and 7 support the increasingly popular view that highly complex

information may be extracted from a visual stimulus very rapidly. Results

from EEG and MEG have suggested that high level linguistic information
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such as phonology and semantic representations may arise within 100ms of

stimulus onset (Wheat et al., 2010; Cornelissen et al., 2009), challenging ear-

lier hierarchical models of processing. This distinction between sequential

and parallel decoding of linguistic stimuli has been made previously primar-

ily based on ERP evidence (Pulvermüller et al., 2009). The present results

build on this by showing that the connectivity within the reading network

also shows rapid modulations in connectivity between brain regions thought

to encode/process high level linguistic information.

9.2.3 Dynamics In The Resting State

Previous work on dynamics during the resting state in humans has typically

focused on transitions between entire networks defined by either seed based

correlation or ICA decomposition (Brookes et al., 2011a; Baker et al., 2014;

de Pasquale et al., 2010). The present work presents a different approach in

which the connectivity within an endogenous brain network is investigated.

This distinction is important as the present approach allows more easily for

investigations into directional influences between brain regions, particularly

if the analysis can be constrained to a relatively small number of brain

regions which can be expected to interact a priori. There has been an

immense amount of work in this area using fMRI to identify brain regions

which are functionally related during the “resting state“ (Yeo et al., 2011;

Raichle et al., 2001; Buckner et al., 2008). Chapter 4 used the large analysis

in Yeo et al. (2011) to identify 5 brain regions which comprised the default

mode network and several related brain regions. An additional anterior

prefrontal hub was included from the literature to ensure that a ventral

MPFC region was included in the analysis as this area is considered to be

critical in the core of the DMN (Andrews-Hanna et al., 2010).

The present work builds upon this existing literature not by questioning

whether the regions within this network are connected but whether there are

asymmetries in their connectivity. That is, whether one region may exert

more influence on a second than vice versa. The results showed that many

of the connections within the DMN and associated areas were strong asym-
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metrical. Intriguingly, these directional asymmetries were often consistent

across frequency. One of the only two connections which showed differences

across frequency were between the two areas within the “midline core“ of the

DMN (Andrews-Hanna et al., 2010) which showed that the PCC→vMPFC

was most consistently directional across participants at frequencies higher

than 20Hz. In addition, the vMPFC→PCC connection was dominant for

frequencies below 20Hz.

Though the functional relevance of these directional connections is not

known at this point, the present result raises intriguing directions for fu-

ture research. These avenues take advantage of individual differences in the

strength of connections and the extent to which connections are directional

within the DMN. Previous work with fMRI has shown that individual dif-

ferences in coupling strengths between nodes in resting state networks may

be correlated with explicit behavioural outcomes. Specifically the extent

to which the two regions in the mid-line core of the DMN were connected

was predictive of comprehension in a reading task (Smallwood et al., 2013).

This link between DMN connectivity and cognitive performance arises from

differences between individual participants. This approach could readily be

applied to the data from chapter 4, but perhaps the most intriguing pos-

sibility for future research arises from the Hidden Markov Model approach

used in chapter 5. Critically chapter 5 shows considerable individual dif-

ferences in the fractional occupancy and the transition matrix for across

time both within and between participants. This highlights the possibility

that behavioural outcomes such as comprehension in reading tasks might

be related to the occupancy of a given state prior to stimulus onset. This

may provide a promising avenue for future work in this area, explicitly re-

lating the function states identified in chapter 5 to specific cognitive and

behavioural outcomes.

9.2.4 Multiple Routes to recognition

Several sections above have outlined the theoretical justification of the dy-

namical modelling used in this thesis and general outcomes from its appli-
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cation to task related neural responses measures from MEG. The specific

theoretical contributions of this work in relation to visual word recognition

is outlined in this section.

Two questions are tackled in chapters 6 and 7, firstly chapter 6 asks

whether interactions between visual and higher linguistic brain regions are

an integral part of the recognition process or are epiphenomenal. The rela-

tionship between visual nodes and the LIFG seen in this chapter suggests

that there exists very rapid connectivity between these regions in all condi-

tions. The direction of the connectivity seems to be related to the presence

of orthographic information in the stimulus. The visual areas exert a driving

influence when clear Latin characters are presented, while the False Fonts

lead to a larger top-down influence. These results implicate the LIFG.

Chapter 7 asks whether the top-down influence from the LIFG is related

to a linguistic process by comparing high and low frequency words. Crit-

ically both these categories The neural substrate which may underlie the

rapid recognition of high frequency words can be seen in these results. Crit-

ically, high frequency word induce stronger feed forward connections from

visual areas to IFG within 100ms. At the same time, the influence from

the TP on STG and AG is stronger for high frequency words. This earlier

engagement of the temporal pole might indicate an earlier access to seman-

tic content which can begin to feedback into the system within 100ms. In

contrast the low frequency words show little indication of large modulations

of the connectivity from the temporal pole. Rather driving influences from

AG,STG and IFG are more prominent.

A Bayesian approach may provide the best interpretation as it allows

for a fully probabilistic account. As visual information feeds into the brain

it combines with a priori expectations (perhaps such as word frequency) to

produce an a posteriori probability distribution across the set of possible

stimuli which could have produced the sensory input. The rapid access to

phonology discussed above suggests that this first process may happen simul-

taneously on several levels, resulting in a probability distribution based on a

very fast visual and phonological analysis of the sensory input. If the a pos-

teriori evidence in the visual system is sufficient, that suggests the brain has
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recognised the word and the phonological evidence not further considered in

the context of recognition. In contrast, if the a posteriori visual probabilities

are ambiguous (as would be the case for infrequent words or non-words) in

that several or many words are similarly likely to have produced the incom-

ing bottom-up sensory information, then the rapid phonological decoding

may provide further top-down evidence. The combination of these two may

then produce a match, or be sufficient to conclude that the stimulus was not

a word.

It would appear that the entire network responds to a word-like visual

stimulus as would be predicted by a distributed connectionist account. How-

ever the psycholinguistic and orthographic content of the word does induce

differences in specific parts of the reading network as might be predicted

by a more modular approach. The answer is likely to lie in between these

two accounts in which a widely distributed and highly interactive network

of specialised brain regions co-operate to identify an incoming stimulus.

The connectivity within the reading network does change rapidly over time,

further suggesting that there may be several stages of processing, though

each stage may be associated with the coordinated activity of a number of

nodes in the network. Moreover, the same node may not play the same role

in different stages of processing with different network contexts (Price and

Friston, 2005). It may be that the functional “state“ of whole network is

better able to describe how psycholinguistic aspects of a word are processed

than a modular or route based account.

9.3 Methodological Statements

9.3.1 Delay Embedding Parameters

The MVAR methodology used in this thesis has often been criticised due

to difficulties in selecting an appropriate model order. Several studies using

MVAR methods have reported that Akaike’s Information Criterion mono-

tonically decreases with increasing model order, making the choice of p seem-

ingly arbitrary (Schlögl and Supp, 2006; Supp et al., 2007). Moreover, there
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are large inconsistencies in the model orders used in the literature. These

inconsistencies are compounded by the fact that many studies using MVAR

methodologies do not explicitly parameterise delay in the model. The table

in appendix A of chapter 4 summarises the variance in model order and

delay selection in a selection of the literature.

Though there is evidence that an incorrect selection of model order can

distort estimates of functional connectivity (Porcaro et al., 2013) others

suggest that the choice of model order may make little difference to the

performance of the PDC estimate if the ratio of parameters to observations

remains high (Florin et al., 2011; Supp et al., 2007). The results of the

parameter space search performed in chapter 4 can provide some context to

these results. The change in AIC as a function of model order is different

at different delays, critically there is a middle range of delay values in which

the AIC does decrease almost monotonically as previously reported in the

literature. In contrast for very short or very long values the AIC does plateau

or reach a local minima, suggesting that an overestimate of the order might

result in overfitting the model. As such, both the expected minima in the

AIC and reported monotonic decreases can exist within the same dataset at

different delays.

In the context of the time delay embedding the model order parameter

denotes the dimensionality of the embedding space. The embedding theorem

of Takens states that the embedding space must be of at least dimension

2d + 1 in which d is the dimensionality of the hidden state space. In the

context of MEG data, the underlying dimensionality of the brain is unknown,

as is the dimensionality of the observed signal. Methods such as false nearest

neighbours are able to estimate the dimensionality of a system however the

estimation process is extremely computationally intensive particularly for

large datasets of richly sampled observations. As a consequence the model

order used in this thesis was selected from two key criterion. Firstly, the

upper bound for the range of possible model orders is set by a local minima

in the AIC estimates seen in chapter 4. Secondly, the largest model order

within this bound that still allowed for a good ratio between the number

of parameters to be estimated and observed data points. This allows both
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for a good frequency resolution and by taking as large a model order as

possible we increase the likelihood that our embedding space is sufficient to

reconstruct the dimensionality of the hidden state space.

9.3.2 Participants

Each of the experimental chapters have been restricted by a practical trade

off between collecting sufficient data from a single participant to allow for

complex models to be accurately fitted and obtaining enough complete

datasets to allow for robust group statistics. As this work represents a novel

application of TDE-MVAR-PDC methodology to the resting state and read-

ing networks, it was decided that the first criterion was most important. As

such, each chapter contains several hour of MEG recordings from each of a

handful of participants. The results individual analysis are therefore very

detailed and robust, however this is at the expense of a second level group

analysis. Future work along these lines building to a larger group dataset

would allow for stronger generalisations of the results presented in this the-

sis. However, as highlighted in chapter 3, this should not be completed at

the expense of a ratio of observations to model parameters of at least 5:1.

9.4 Conclusions

Overall, this thesis presents a rigourus application of Time Delay Embed-

ding and Multivariate Autoregressive modelling to identify directed func-

tional connectivity during the resting state and visual word recognition.

This modelling approach was firstly placed in a detailed theoretical con-

text before more practical issues such as the effect of sample size and fre-

quency resolution were probed with simulations. Next several experimental

chapters apply this method to build on contemporary work in two areas of

cognitive neuroscience. Firstly, whether resting state networks exhibit direc-

tional connections and how these might change over time and secondly, how

brain regions within the reading network communicate during the process

of recognising a visual word form.
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The methodology is applied to a resting state network featuring a core

of the Default Mode and several associated areas revealing many asym-

metrical connections. A Hidden Markov Model then characterised the dy-

namics changes in this directed functional connectivity and identified four

functional states across participants. Critically, each state is predictive of

modulations in difference connections within the network. Task dynamics

are then probed using a visual word recognition paradigm comparing net-

work connectivity in the brain in response to Word, Consonant String and

False Font stimuli. Many rapid and directional connections were modulated

by each stimulus category. Intriguingly a top-down connections from the

Inferior Frontal Gyrus was found to be stronger for False Font stimuli than

Words, raising the possibility that this connection is associated with pro-

cessing a stimulus which is challenging, if not impossible to recognise. The

final chapter demonstrates that this increase in top-down influence from the

IFG exists for challenging real-word stimuli.
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Appendix A

Vieira-Morf Algorithm

The Vieira-Morf algorithm is an extension of the multichannel Levinson-

Durbin-Whittle recursion for estimating multivariate autoregressive coeffi-

cients from a set of time series. The VM algorithm uses estimates of the

partial correlation matrix based on the residual variance and covariance ma-

trices.

Initialisation The covariance of the raw data is estimated and the error

variance is initialised as the raw time series.

Pf
0 = Pb

0 =
1

N

N∑
n=1

x[n]xH [n] (A.1)

The error variance is initialised as the raw time series for 1 ≤ n ≤ N .

ef0 [n] = eb0[n] = x[n] (A.2)

The algorithm iterates over all model orders from 1 to the predefined max-

imum M . The current model order for a given iteration is denoted by p.

Main Loop

• In the main loop, estimates of the covariance at the next lag are ob-
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tained from the error variance left from the previous step. These are

only estimates, the real values come from the error variance remaining

after the new parameters are estimated.

P̂f
p =

1

N

N∑
n=p+2

efp [n]efHp [n] (A.3)

P̂b
p =

1

N

N∑
n=p+2

ebp[n− 1]ebHp [n− 1] (A.4)

P̂fb
p =

1

N

N∑
n=p+2

efp [n]ebHp [n− 1] (A.5)

• the current model order is incremented

p = p+ 1 (A.6)

• An estimate of the partial correlation matrix is generated from these

estimated covariances.

Λ̂p+1 = (P̂f1/2
p )−1(P̂fb

p )(P̂b1/2
p )−H (A.7)

• This estimate of the partial correlation matrix is then used with the

actual error covariances from the previous lag to compute the forward

and backward reflection co-efficients.
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Appendix B

Multivariate Likelihood

In most brain connectivity estimation questions we will want to assess the

fit of a multivariate rather than univariate model. The univariate likelihood

above can be extended to a multivariate case by using a multivariate normal

distribution. The non-degenerate case the multivariate normal distribution

is

yi =
1

(2π)
N
2 |Σ| 12

e(− 1
2

(yi−xib)′Σ−1(yi−xib)) (B.1)

B.1 Mahalanobis Distance

The exponential term in equation B.1 is intimately related to the Maha-

lanobis distance. This is a measure of the distance between two data points,

in this case the observation and the model’s prediction. If we take:

ŷi = (yi − xib) (B.2)

The Mahalanobis distance is then:

D =
√

ŷ′Σ−1ŷ (B.3)

This provides a measure of how far the observed data point is from the

models prediction, normalised by the covariance matrix of the residuals. The
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likelihood for the whole multivariate sample is the product of the likelihood

of each individual sample

L(y|x,b,Σ) =
N∏
i=1

1

(2π)
N
2 |Σ| 12

e(− 1
2
Tr(Σ−1ŷ′ŷ) (B.4)

the log likelihood is therefore

lnL =

N∑
i=1

ln

(
1

(2π)
N
2 |Σ| 12

e(− 1
2
Tr(Σ−1ŷ′iŷi)

)

=

N∑
i=1

(
ln(1)− ln((2π)

N
2 |Σ| 12 )− 1

2
Tr(Σ−1ŷ′iŷi)

)

= N ln(1)−N ln((2π)
N
2 |Σ| 12 )−

N∑
i=1

(
1

2
Tr(Σ−1ŷ′iŷi))

= N ln(1)−N(ln((2π)
N
2 + ln(|Σ| 12 ))−

N∑
i=1

(
1

2
Tr(Σ−1ŷ′iŷi))

= −N ln((2π)
N
2 )−N ln(|Σ| 12 )−

N∑
i=1

(
1

2
Tr(Σ−1ŷ′iŷi))

= −N
2

2
ln(2π)− N

2
ln(|Σ|)−

N∑
i=1

(
1

2
Tr(Σ−1ŷ′iŷi)) (B.5)
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Appendix C

Analytic Confidence Limits

In contrast to the permutation method, several analytical methods are avail-

able to compute confidence intervals based on the experimental estimate

alone. One such technique developed by Schelter et al. (2006) first esti-

mates the covariance matrix from the data observations

Q(k, l) =


Q11(kl) . . . Q1m(kl)

...
. . .

...

Qm1(kl) . . . Qmm(kl)

 (C.1)

where m is the number of channels in the system. The inverse of this matrix

is then a critical term in the calculation of C

Cij(f) = Σii

[ p∑
k,l=1

Q−1jj(k, l)
(

cos(kf) cos(lf) + sin(kf) sin(lf)

)]
(C.2)

Which can be used to approximate the significance level with

CLi,j =

(
Ĉij(f)χ2

1,1−alpha
N
∑n

k=1 Ā
H
kj(f)Ākj(f)

)
(C.3)
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In which χ2
1,1−α is the 1 − alpha percentile of the χ2-distribution with 1

degree of freedom and N the total number of observations in the model.

Note that the denominator of the confidence limit is a scaled version of the

denominator in the PDC calculation seen in equation 3.36.

This approach is far more computationally efficient than the permutation

method and may be computed alongside the experimental PDC estimation

due to shared terms in the denominator. As such, this method will be used

to establish confidence limits from PDC estimates in this thesis.
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Appendix D

Previous MVAR Literature
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Sameshima, K. and Baccalá, L. A. (1999). Using partial directed coher-

ence to describe neuronal ensemble interactions. Journal of Neuroscience

Methods, 94(1):93–103.
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Supp, G. G., Schlögl, A., Trujillo-Barreto, N., Müller, M. M., and Gruber,

T. (2007). Directed cortical information flow during human object recog-

nition: Analyzing induced eeg gamma-band responses in brain’s source

space. PLoS ONE, 2(8):e684.

Takens, F. (1981). Detecting strange attractors in turbulence. Lecture Notes

in Mathematics, page 366–381.

Tarkiainen, A., Cornelissen, P. L., and Salmelin, R. (2002). Dynamics of

visual feature analysis and object level processing in face versus letter

string perception. Brain, 125(5):1125–1136.

Tarkiainen, a., Helenius, P., Hansen, P. C., Cornelissen, P. L., and Salmelin,

R. (1999). Dynamics of letter string perception in the human occipitotem-

poral cortex. Brain, 122 ( Pt 1:2119–32.

Taylor, J. S. H., Rastle, K., and Davis, M. H. (2012). Can Cognitive Models

Explain Brain Activation During Word and Pseudoword Reading? A

Meta-Analysis of 36 Neuroimaging Studies. Psychological Bulletin.

300



Turkeltaub, P. E., Eden, G. F., Jones, K. M., and Zeffiro, T. a. (2002).

Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading:

Method and Validation. NeuroImage, 16(3):765–780.

Twomey, T., Kawabata Duncan, K. J., Price, C. J., and Devlin, J. T. (2011).

Top-down modulation of ventral occipito-temporal responses during visual

word recognition. NeuroImage, 55(3):1242–51.

Uddin, L. Q., Clare Kelly, A., Biswal, B. B., Xavier Castellanos, F., and

Milham, M. P. (2009). Functional connectivity of default mode network

components: Correlation, anticorrelation, and causality. Human Brain

Mapping, 30(2):625–637.

Uddin, L. Q., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D. A.,

Greicius, M. D., and Menon, V. (2010). Dissociable connectivity within

human angular gyrus and intraparietal sulcus: Evidence from functional

and structural connectivity. Cerebral Cortex, 20(11):2636–2646.

Ungerleider, L. G. and Mishkin, M. (1982). Two cortical visual systems. In

Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W., editors, Analysis

of Visual Behavior, volume 549, chapter 18, pages 549–586. MIT Press.

van den Heuvel, M., Mandl, R., Luigjes, J., and Hulshoff Pol, H.

(2008). Microstructural organization of the cingulum tract and the

level of default mode functional connectivity. Journal of Neuroscience,

28(43):10844–10851.

van den Heuvel, M. P. and Sporns, O. (2011). Rich-Club Organization of

the Human Connectome. Journal Of Neuroscience, 31(44):15775–15786.

van Oort, E., van Cappellen van Walsum, A., and Norris, D. (2014a). An

investigation into the functional and structural connectivity of the default

mode network. NeuroImage, 90:381–389.

van Oort, E., van Cappellen van Walsum, A., and Norris, D. (2014b). An

investigation into the functional and structural connectivity of the default

mode network. NeuroImage, 90:381–389.

301



Van Veen, B., Van Drongelen, W., Yuchtman, M., and Suzuki, A. (1997).

Localization of brain electrical activity via linearly constrained minimum

variance spatial filtering. IEEE Transactions on Biomedical Engineering,

44(9):867–880.

Vartiainen, J., Liljeström, M., Koskinen, M., Renvall, H., and Salmelin, R.

(2011). Functional magnetic resonance imaging blood oxygenation level-

dependent signal and magnetoencephalography evoked responses yield

different neural functionality in reading. The Journal of Neuroscience,

31(3):1048–58.

Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Es-

sen, D. C., Zempel, J. M., Snyder, L. H., Corbetta, M., and Raichle,

M. E. (2007). Intrinsic functional architecture in the anaesthetized mon-

key brain. Nature, 447(7140):83–86.

Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., and Cohen,

L. (2007). Hierarchical coding of letter strings in the ventral stream:

dissecting the inner organization of the visual word-form system. Neuron,

55(1):143–56.

Visser, M., Jefferies, E., Embleton, K. V., and Ralph, M. A. L. (2012).

Both the Middle Temporal Gyrus and the Ventral Anterior Temporal Area

Are Crucial for Multimodal Semantic Processing: Distortion-corrected

fMRI Evidence for a Double Gradient of Information Convergence in the

Temporal Lobes. Journal Of Cognitive Neuroscience, 24(8):1766–1778.

Visser, M., Jefferies, E., and Ralph, M. A. L. (2010). Semantic Process-

ing in the Anterior Temporal Lobes: A Meta-analysis of the Functional

Neuroimaging Literature. Journal Of Cognitive Neuroscience, 22(6):1083–

1094.

von Stein, A. and Sarnthein, J. (2000). Different frequencies for different

scales of cortical integration: from local gamma to long range alpha/theta

synchronization. Int J Psychophysiol, 38(3):301–313.

302



Vrba, J. and Robinson, S. E. (2001). Signal processing in magnetoen-

cephalography. Methods (San Diego, Calif.), 25(2):249–71.

Wandell, B. a., Dumoulin, S. O., and Brewer, A. a. (2007). Visual field maps

in human cortex. Neuron, 56(2):366–83.

Wheat, K. L., Cornelissen, P. L., Frost, S. J., and Hansen, P. C. (2010).

During visual word recognition, phonology is accessed within 100 ms and

may be mediated by a speech production code: evidence from magnetoen-

cephalography. The Journal of Neuroscience, 30(15):5229–33.

Wheat, K. L., Cornelissen, P. L., Sack, A. T., Schuhmann, T., Goebel, R.,

and Blomert, L. (2013). Charting the functional relevance of Broca’s area

for visual word recognition and picture naming in Dutch using fMRI-

guided TMS. Brain And Language, 125(2, SI):223–230.

Whitney, C. (2001). How the brain encodes the order of letters in a printed

word: the SERIOL model and selective literature review. Psychonomic

bulletin & review, 8(2):221–43.

Whitney, H. (1936). Differentiable manifolds. The Annals of Mathematics,

37(3):645.

Woodhead, Z. V. J., Barnes, G. R., Penny, W., Moran, R., Teki, S., Price,

C. J., and Leff, a. P. (2012). Reading Front to Back: MEG Evidence for

Early Feedback Effects During Word Recognition. Cerebral Cortex, pages

1–9.

Woolrich, M. W., Baker, A., Luckhoo, H., Mohseni, H., Barnes, G., Brookes,

M., and Rezek, I. (2013). Dynamic state allocation for meg source recon-

struction. NeuroImage, 77:77–92.

Wright, P., Randall, B., Marslen-Wilson, W. D., and Tyler, L. K. (2011).

Dissociating linguistic and task-related activity in the left inferior frontal

gyrus. Journal of Cognitive Neuroscience, 23(2):404–13.

Yan, C. and He, Y. (2011). Driving and driven architectures of directed

small-world human brain functional networks. PLoS ONE, 6(8):e23460.

303



Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,

Hollinshead, M., Roffman, J. L., Smoller, J. W., Zoeller, L., Polimeni,

J. R., Fischl, B., Liu, H., and Buckner, R. L. (2011). The organization of

the human cerebral cortex estimated by intrinsic functional connectivity.

Journal Of Neurophysiology, 106(3):1125–1165.

Yvert, G., Perrone-Bertolotti, M., Baciu, M., and David, O. (2012). Dy-

namic causal modeling of spatiotemporal integration of phonological and

semantic processes: an electroencephalographic study. The Journal of

Neuroscience, 32(12):4297–306.

Zeki, S. (2001). Localization and globalization in conscious vision. Annual

Review of Neuroscience, 24(1):57–86. PMID: 11283305.

Zevin, J. D. and Seidenberg, M. S. (2006). Consistency effects and individual

differences in nonword naming: A comparison of current models. Journal

of Memory and Language, 54(2):145–160.

Zhou, Z., Wang, X., Klahr, N. J., Liu, W., Arias, D., Liu, H., von Deneen,

K. M., Wen, Y., Lu, Z., Xu, D., and et al. (2011). A conditional granger

causality model approach for group analysis in functional magnetic reso-

nance imaging. Magnetic Resonance Imaging, 29(3):418–433.

304


