The Development of a
Parametric Real-Time Voice Source Model for
use with Vocal Tract Modelling Synthesis on
Portable Devices

Jacob Harrison
MSc by Research
University of York
Electronics
November 2014

Abstract

This research is concerned with the natural synthesis of the human voice, in
particular, the expansion of the LF-model voice source synthesis method. The LF-
model is a mathematical representation of the acoustic waveform produced by the
vocal folds in the human speech production system. Whilst being used in many
voice synthesis applications since its inception in the 1970s, the parametric
capabilities of this model have remained mostly unexploited in terms of real-time
manipulation. With recent advances in dynamic acoustic modelling of the human
vocal tract using the two-dimensional digital waveguide mesh (2D DWM), a logical
step is to include a real-time parametric voice source model rather than the static

LF-waveform archetype.

This thesis documents the development of a parameterised LF-model to be used in
conjunction with an i0S-based 2D DWM vocal tract synthesiser, designed with the
further study of voice synthesis naturalness as well as improvements to assistive

technology in mind.

Table of Contents

23 1 T i
LISt Of FiGUIES . ss s s s sss s \
3 T 03 I 1) (T vii
List of Accompanying Material.......ss———s viii
AcCKnowledgements........ccmmmmmm s —————————————————- ix
Author’s Declaration ... —————————————— X
1. INErOAUCHION ... 1
1.1 TheSiS OVEIVIEW ... s s s s s 1
1.2 TheSIS StIUCTUTE.....cciiiisiissss s s 3

2. Literature ReVIEW ... 5
2.1 The ‘Source + Modifier’ PrincCiple..... s 5
2.2 Physiology of the Vocal FOIAScoussses 8
2.3 VOICE TYPES .cuiiirurrmssismssssmssssssssssssssssssssssssssssssssasssssssssssnsssssssssssssssssessssesssshsss e ssssssasstsasssssensssenes 11
2.4 Modelling the VOICE SOUICE ... ssssssssssssssssasssssssns 16
2.4.1 Existing Methods for Voice SOUrce SYNthesiscneneeneesesseeseissessssseeenas 17
2.4.2 The Liljencrants-Fant Glottal FIow Model.......ovececnenrennereenseneeseesseseeseessseesesseseens 20

2.5 Vocal Tract MOAelling ... sssssssssssssssssssssssassssssssns 28
2.6 ‘Naturalness’ in Speech Synthesis ... —————— 37

3. A Parametric, Real-Time Voice Source Modelcoiirnnnnmsnsnsnsnsnsssssssssacans 44
3.1 Motivation for DeSigN ... s sss s 45
3.2 SPECIHiCALIONS ... e nR s 47
BT 0 D 1T . o 48
3.3.1 ChoiCe Of PArameters. ...ttt sssessse s s s s st 48

3.3.2 WaVetable SYNTNeSiS .t sesaeessesssessse s sssssss st st sessss s st 53

3.3.3 V0ICE TYPES ciuuieureerireeeseeseetseesseesseessesasees s s s sse s s s s b bbb bbb 55
3.3.4 10S INTETTACE c.urreereeeeee ettt see et e e s ss e s s b bbb s R s bbb 58

3.3.5 FINAL DESIZIN cieureuiereiieeereeseetseesseesseessesaseesse st sessse s s sss s ssss b bbb s bbb bbb 59

R 0510130 1310 125 1 Uiz U (0) 61
3.4.1 Implementation in MATLAB .. issess st sess s ssssssssssssssssesss s 62

3.4.2 Implementation iN 10S ...t se e sss st sess bbb st 69

RIS A 1] (0T U] 0 80

3.5.1 Waveform RePrOAUCTION ... ereeneieeeseeeectseesessseesse e ssss s sssssessssssssssss s sssssssssses 83

3.5.2 FUNAamental FrEQUENCYcoeiereeseieeeseeiectseesesssessse et st sessssssssssss s st ssssss 86
3.5.3 'Vocal Tension’ PArameters ... eereesmeseesesssssssessssesssssssessssesssssssssssssssssssssssssenes 86
3.5.4 Automatic Pitch-Dependent VOiCe TYPES ...cocueeenrrermernmeenserseesseessesssesssssssessssssssssssssenns 90

3.5.5 AULOMALIC fO TTaJECTOTY ceoveureeereeureeareesereee et seessesssesssesssesss st esssess s st 95

3.6 CONCIUSIONS v 97

. Vocal Tract Modelling.......cconimnnmmnmssmssns 98
4.1 Vocal Tract Modelling with the 2D DWM........sssssssssssssssssssssns 98
4.2 Implementation of the 2D DWM in MATLAB......cccmimmsssssssssssssssssssssens 102
4.3 Implementation in 10S ... ———————————— 105

T T A 1) 1 T =T D 109
4.4.1 FOrmMant ANAlYSIS ...ooeeeeereeenectseessesssesssesssesssesssssssessssssssssssesssesssasssessss s s s sssssssees 109
4.4.2 MUILIPIE VOWELS ..ottt seesectseessesssesssesssessss s bbbt s sss s s st 111

4.4.3 SYStEM PeIrfOITNANCE . ..corteeeveereetect it sseesse e bbb sesb et s s s bs s s st 113

4.5 CONCIUSIONS ..o s 114

. Summary and ANAlYSis . ——————————————— 115
LT T 10 0010 1 115
LT 1T 12 1 116
5.2.1 Voice Source Synthesis using the LF-Modelcncncneneeseeseeseeseesseeneees 116
5.2.2 Extensions to the LE-MOdelceeeeeeresssssssessssessssssessssesssssssssssssssssessans 116
5.2.3 Use within 2D DWM Vocal Tract MOdelcouererneernemeeeeereesseesssesssessssesssssseesans 119
5.2.4 COTE AIINS couvrverermsiersiesseeesseessess s sssessss s sss st s s ss s as s eses s e asennans 119

5.3 Future Research.....ssssssssssssss s 121
5.3.1 Issues within LF-Model implementationeneensenssenesssessseessesssesssessesssesssees 121

5.3.2 Further Extensions to the Voice Source Model.......eneeeneerneenenseeseeens 122

5.3.3 Multi-touch, Gestural USEr INTEITACES ...t ssssssssss st ss s ssssssssassns 124
5.3.4 Implementation of Dynamic Impedance Mapping within the 2D DWM.............. 126

LT 001) 1 L1 1) 126
Appendix A - ‘LFModelFull.m’ MATLAB Source Code..........ccuummmnmmsmsnsassnssssssanens 128
Appendix B - ‘ViewController.h’ LFGen App Header File........cccocvnnrinnnirinnns 133
Appendix C - ‘ViewController.m’ LFGen App Main Filecconiinncsininsnninnnns 134
Appendix D - ‘AudioEngine.h’ LFGen App Header Filecnnrisnnrinnnscinnnns 136

iii

Appendix E - ‘AudioEngine.m’ LFGen App Main Fileinniicnnnsininsnninnns

References

iv

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19

The human vocal system

Cross-section of the human speech system
Glottal flow waveform and derivative
Comparison between F- and L- model waveforms
Annotated LF-model flow derivative waveform
Vocal tract represented as a series of tubes

1D Digital waveguide structure

Achieving a cross-sectional area function from MRI data
2D Digital waveguide mesh structure

Raised Cosine Function

2D and 3D DWM topologies

Wolfgang von Kempelen’s ‘Speaking Machine’
The ‘Uncanny Valley’ Effect

‘Typical’ LF waveform

‘Typical’ LF waveform with varying t. value
‘Typical’ LF waveform with varying t, value
‘Typical’ LF waveform with varying t, value
LFGen app interface with CorePlot waveform display
‘Breathy’ voice waveform

Black box diagram for LFGen app

Software diagram for LFGen app

LFGen app interface (final version)

3D-printed vocal tract model

Modal voice type waveform and spectrum
Breathy voice type waveform and spectrum
Vocal Fry voice type waveform and spectrum
Falsetto voice type waveform and spectrum
‘Typical’ voice type waveform and spectrum
‘Typical’ voice type waveform with varying vocal tension
‘Typical’ voice type spectrum

‘Typical’ voice type waveform with minimum VT

‘Typical’ voice type waveform with maximum VT

v

10
22
23
29
30
31
31
34
36
39
42
49
50
51
52
55
58
59
70
79
81
83
84
84
84
85
87
87
88
88

Figure 3.20
Figure 3.21
Figure 3.22
Figure 3.23
Figure 3.24
Figure 3.25
Figure 3.26
Figure 3.27
Figure 3.28
Figure 3.29
Figure 3.30
Figure 3.31
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3

‘Typical’ voice type waveform with varying t, values
‘Typical’ voice type spectrum

‘Typical’ voice type spectrum with minimum t,

‘Typical’ voice type spectrum with maximum t,
Waveform of an f0 sweep with ‘auto-voice’ enabled
Waveform between 24-52 Hz with ‘auto-voice’ enabled
Waveform between 52-94 Hz with ‘auto-voice’ enabled
Waveform between 94-207 Hz with ‘auto-voice’ enabled
Waveform between 207-208 Hz with ‘auto-voice’ enabled
Waveform above 288 Hz with ‘auto-voice’ enabled
Spectrogram of human /A/ vowel with varying f0
Spectrogram of synthesised /A/ vowel with varying f0
Spectrogram of synthesised /A/ vowel with ‘typical’ voice
English vowel chart

Xcode performance check

Idealised Vocal Fry waveform

HandSynth touchscreen interface

Proposed multitouch interface design

vi

88
89
89
89
91
92
92
93
93
94
95
96
110
111
113
123
125
125

List of Tables

Table 2.1
Table 2.2
Table 2.3
Table 3.1
Table 4.1

Four voice types and their corresponding waveforms

Four voice types with spectra, pitch range and noise amount
Four male voice types and their timing parameter values
Five LFGen voice types and their timing parameter values

Synthesised formants vs average English male speech formants

vii

12
14
25
56
112

List of Accompanying Material

The following material can be found on the accompanying data CD:
1. A PDF of this document
2. ‘Audio Examples’ folder - synthesised voice types and 2D DWM vowels:

&

‘Breathy110Hz.wav’ - breathy voice type at 110 Hz

b. ‘Falsetto110Hz.wav’ - falsetto voice type at 110 Hz

c. ‘Modall10Hz.wav’ - modal voice type at 110 Hz

d. ‘Typical3-bird.wav’ - typical voice type with /3/ vowel
e. ‘Typicall10Hz.wav’ - typical voice type at 110 Hz

f. ‘TypicalA-bart.wav’ - typical voice type with /A/ vowel
g. ‘TypicalAe-Bat.wav’ - typical voice type with /Ae/ vowel
h. ‘Typicall-beet.wav’ - typical voice type with /I/ vowel

-

‘TypicalQ-bod.wav’ - typical voice type with /Q/ vowel
j- ‘TypicalU-food.wav’ - typical voice type with /U/ vowel
k. ‘VocalFryFul10Hz.wav’ - vocal fry voice type at 110 Hz
3. ‘Code Listings’ folder
a. ‘LFGenMkVLzip’ - compressed folder containing xcode project for
LFGen iOS app
b. ‘LFModelFOData.m’ - matlab script for producing a synthesised vowel
for a given voice type with an fO sweep taken from a voice recording
c. ‘LFModelFullm’ - matlab script for producing any voice typewith
options for pitch, amplitude, duration, breathiness and vocal tension.

4. Demonstration video - ‘LFGenDemoVideo.mp4’

viii

Acknowledgements

To my parents, thank you for your constant love, support and encouragement

throughout this project.

To my supervisor David Howard, thank you for the inspiring supervisions and

general advice during this project and others throughout my time at York.

To Steve, Amelia, Laurence, Becky, Andrew, Tom, Eyal, Frank, Jude and Helena,
thank you for some truly memorable crossword sessions during the Audio Lab

lunch breaks, and the near-constant supply of cake.
To Jiajun, Ed and Simon, your patience and understanding with the often-
frustrating life of a post-graduate researcher made our house a pleasure to come

back to after many late nights in the library.

To Dimitri, your expertise and willingness to teach iOS and Core Audio helped this

project materialise at a crucial point in the development stages.

Special thanks to my friends on both sides of the country, especially Benedict, Sam,

JP, Ben, Mike, Annie and Rosie.

ix

Author’s Declaration

The work presented in this thesis is entirely the author’s own, with any substantial
external influences attributed in the text. None of the content in this thesis has been
published by the author in any form. This work has not previously been presented

for an award at this, or any other, University.

1. Introduction

1. Introduction

The title of this thesis is The Development of a Parametric Real-Time Voice
Source Model for use with Vocal Tract Modelling Synthesis on Portable
Devices. The research project described herein is concerned with digital
modelling of the human voice source to help improve the naturalness of existing
speech synthesis technology. This thesis contains an analysis of existing voice
source models, followed by a description of the development of a voice source

modelling application for iOS devices.

This chapter introduces the key themes of this research, and the motivation for
this specific project. An overview of the remaining chapters is given in section

1.2.

1.1 Thesis Overview

The human voice is the most expressive and versatile instrument we possess.
Whether delivering a public speech, singing in a church choir or having a private
conversation, the sheer flexibility of the vocal instrument allows us to convey a
huge spectrum of human emotion, with the subtlest of expressive touches. It is
not surprising that a totally accurate reproduction of the human vocal system
has not yet been achieved. Apple’s Siri software [1] is capable of producing

speech output that, on a casual listen, can sound indistinguishable from human

1. Introduction

speech, however the software’s vocabulary is limited to pre-recorded voice
sounds. The DECtalk system (commonly associated with Stephen Hawking's
communication aid) [2] is instantly recognisable as a computerised or ‘robotic’
voice and has an unlimited vocabulary, as it can produce any speech sounds. The
compromises inherent in both these systems are informed by the context in
which they are used - Siri users do not rely on the software to communicate, but
might prefer a pleasant voice. Users of communication aids such as DECtalk rely
on the ability to convey any information in an efficient and intelligible manner,

with naturalness or realism being of lesser importance.

The work described in this thesis is concerned with the idea of contributing to a
voice synthesis system that is both versatile and expressive. This work takes into
account the importance of the voice source (discussed in Chapter 2) in human
speech production, and aims to look at ways in which a more sophisticated voice

source model can be incorporated in existing speech synthesis applications.

The motivation for this research comes from two places of interest. Firstly,
natural voice synthesis provides a fascinating research area, with inspiration
from and implications for a variety of disciplines such as engineering,
psychoacoustics, linguistics, voice pathology and even philosophy. The software
developed for this work was designed predominantly as a research tool that
could be used in any of these fields, as an input source for a new vocal tract
model, for example, or as a means of exploring the nature of voice source

variation in the perception of synthesised voices.

1. Introduction

As well as a general interest in voice synthesis, the impact of related software for
assistive technology applications is considered a major motivation for improving
the technology in this field. This partly informed the decision to focus on
portable devices such as tablets and smartphones, which, for some users of
assistive technology, have become useful and often essential items [3] [4]. Whilst
the goal of this work was never to develop a fully formed communication aid, it is
hoped that the research and software described herein will contribute to future

developments for such an application.

1.2 Thesis Structure

Chapter 2 provides a summary of the existing literature on topics related to this
work. First, the ‘source + modifier’ model of speech production and voice
synthesis is explained, followed by a description of voice source physiology. The
main ‘voice types’ are then introduced, and an overview of voice source
modelling is given. Vocal tract modelling techniques are then described,
including a description of the digital waveguide mesh, which is used to model the
vocal tract in this work. Finally, previous research projects on the subject of

‘naturalness’ are recounted to set the work in context.

Chapter 3 describes the majority of the development process for a parametric,
real-time voice source model. The general motivation for this design is given as
well as a technical specification. The design of the software is described, followed

by an implementation report and system testing results.

1. Introduction

Chapter 4 documents the process of porting an existing 2D digital waveguide
mesh model of the vocal tract first to MATLAB and then iOS. Chapter 5 concludes
the work, with an analysis of the project as a whole, followed by a brief

exploration of potential future work on the subject.

2. Literature Review

2. Literature Review

This chapter summarises the key themes of the research undertaken, and
discusses existing literature on the subject. The impetus for this research came
from the conclusions from two earlier research projects [5] which dealt with the
concept of ‘naturalness’ in voice synthesis, and made attempts to improve or

explore this notion through real-time control.

During the initial stages of the current project, it was concluded that a different
approach should be taken, namely improving the synthesis engine, rather than
its interface. For the sake of completeness, and to place this work in context, a
brief summary of these earlier studies and related literature is included. The
relevant literature can, therefore, be split into four key areas:

* voice source physiology and acoustics

* speech synthesis and vocal tract modelling

* ‘naturalness’ in speech synthesis

* voice source modelling

The latter (voice source modelling) is the primary research area.

2.1 The ‘Source + Modifier’ Principle

Before discussing the physiology and acoustics of the voice source, it is necessary

to define what is meant by the ‘voice source’ in relation to speech production as a

2. Literature Review

whole. It is widely understood that an appropriate analogue of the human speech
system is its description consisting of a sound source with sound modifiers.
Howard and Murphy [6] provide a detailed introduction to voice science, which
encompasses everything from speech system physiology to speech and singing
recording techniques. This book includes another component to the ‘source and
modifier’ analogue: the ‘power source’, being the lungs. It is important to include
the power source when considering human speech production, however in
synthesised speech, the airflow from the lungs is (usually) not incorporated into
the synthesis engine, so a single ‘voice source’ can be considered as an
approximation of the waveform created when the airstream resulting from lung
pressure acts on the vocal folds. The sound modifiers are the acoustic cavities
between the glottis and the lips (the vocal tract), and the articulators (the tongue,
lips and jaw), which modify the voice source signal by acoustically filtering
certain frequencies, and creating speech components such as consonants. Figure
2.1 displays a cross-section of the human vocal system, detailing power and
noise source, compared with the voice source waveform created when they act

together.

2. Literature Review

Voice Source

Figure 2.1 - The human vocal system with waveform of voice source (equivalent to

power source + noise source)

It should be noted that, in reality, the vocal folds and vocal tract do not act fully
independently of each other [7], and a truly accurate model of the speech system
would take into account the cross-coupled relationship between the vocal tract
and vocal folds [8]. Most existing voice source models remain fairly rudimentary,
staying faithful to the discretised model presented above [7] [9]. There are
advantages and disadvantages to both approaches - complex, cross-coupled,
physical models are able to replicate the behaviour of the vocal folds under
certain conditions, at the expense of computational ease. Rudimentary
mathematical models of the glottal flow waveform can be more computationally

efficient, at the expense of realistic behaviour under certain conditions. However,

7

2. Literature Review

the flexibility given by these models allows for increased functionality in terms of

acoustic responses to given conditions.

2.2 Physiology of the Vocal Folds

Fig. 2.2 below shows a cross-section of the voice production system in humans.
Voice production begins at the diaphragm below and the intercostal muscles
surrounding the lungs. At rest, the diaphragm is bowed upwards, and flattens out
when constricted. When the diaphragm is constricted and the intercostal
muscles expand the ribs, air enters the lungs. Breathing out requires the lungs to
be compressed in some manner, through contraction of the intercostal or
abdominal muscles [6]. Airflow from the lungs then passes towards the glottis.
The glottis is the area between the vocal folds. The vocal folds are described as
‘the vibrating elements in the larynx’ [6] and are the two mucosal membranes
that traverse either side of the glottis, and meet in the middle to close the larynx
completely. The prevailing theory for the kinematic process of vocal fold
vibration is attributed to the Bernoulli effect [10]. This is the same process that is
used to describe lift in aeroplanes, helicopters and aerofoils, and occurs when an
airstream passes over a curved surface, creating an area of low pressure due to
the faster airstream closer to the curve. When air passes through the glottis, the
vocal folds are forced open. The curvature of the open folds creates an area of
low pressure in between and below them, drawing the folds back together. This
process repeats, creating a constant oscillation. It should be noted that more
recent research has discredited the use of the Bernoulli effect to explain

phenomena such as aerofoil lift and vocal fold vibration. In [11], Babinsky

8

2. Literature Review

explains the fallacy of invoking the Bernoulli equation, but an in-depth
discussion of this is outside the scope of this thesis. To put it briefly, the
Bernoulli equation can only legitimately be used when all airstreams originate
from the same source. In the case of vocal folds, where the airstreams above and
below the glottis have different origins (from the lungs below and the area above
glottis), Bernoulli’s equation cannot be used to describe the behaviour of both

airstreams simultaneously.

Hard palate
Nasal cavity
Nostril

Oral cavity

Figure 2.2 - Cross-section of the human speech system

The muscles surrounding the glottis alter the tension of the vocal folds. Like a
stringed instrument, a change in tension causes slower or faster oscillations - in
other words, a change in pitch or frequency. The frequency at which the vocal

folds oscillate is the fundamental frequency of any voicing produced. The terms

2. Literature Review

glottal flow and glottal flow derivative are used throughout the literature to
describe the observed glottal pulse waveform obtained via inverse-filtering and
its numerical derivative. The glottal flow derivative waveform takes into account
the effects of lip radiation, which can be modeled as a first-derivative filter [9].

Figure 2.3 displays the glottal flow waveform compared with its derivative:

1 «10° Glottal Flow
08} i
©
3 06 .
04l -
<X
0.2} .
U 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Time (samples)
Glottal Flow (Derivative)
05 T T T T T T T

Amplitude

1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Time(samples)

Figure 2.3 - One full pitch period of the glottal flow waveform and its numerical

derivative

The waveform displayed above is an approximation of the true acoustic
waveform, using the Liljencrants-Fant glottal flow model [12]. This is a
mathematical model of the voice source waveform, which will be discussed later

in this chapter. Fant’s earlier work on the acoustic and physical properties of the

10

2. Literature Review

voice source [7] [13] highlighted the complex, interactive nature of the role of
the vocal folds within the vocal system. He showed that the voice source is not
merely a function of a pitched vocal fold vibration, but was also dependent on the
speaker’s physiology, impedance load from sub- and supra-glottal air pressure,

and even the current vowel being spoken [7].

2.3 Voice Types

The voice type is a factor of voiced speech that is defined by the voice source. The
speaker’s age, gender, physiology, mood and setting all contribute to the overall
acoustic properties of the glottal flow waveform, and thus the overall speech
output. Childers and Lee [14] cite six distinct voice types: modal voice, vocal fry,
falsetto, breathy voice, harshness and whisper. In their study, harshness and
whisper were excluded due to the lack of periodicity in both voice types. The
four voice types are presented in table 2.1, along with inverse-filtered voice

source waveforms and their approximated LF-model fits.

11

2. Literature Review

Table 2.1 - Four voice types and their corresponding waveforms (LF-model fits to

inverse filtered glottal source recordings from [14])

Voice
Type

Description

LF-model waveform

Modal

The most commonly used voice
type for speech and singing. Also
referred to as the ‘typical’ voice
type, most cultures and languages
make use of the modal voice for
everyday phonation. Little to no
turbulent airflow present, meaning
no high frequency noise component
in the waveform [14]

'\/rv.\‘\ / \ .\\r
::dal \\\ f \(\

Vocal
Fry

Commonly employed to achieve
lower frequencies than is possible
using a modal voice (although can
extend into the modal pitch range
as well). Characterised by very
short glottal bursts followed by a
large closed quotient [14]

At TN
N11
vocal fry

Breathy

During breathy voice phonation, the
vocal folds do not fully seal the
glottis, allowing an amount of
turbulent airflow. This can be
perceived as a high-frequency noise
component during the closing and
opening stages of the glottal flow
cycle. [14]

Falsetto

Created by only vibrating a small
portion of the vocal cords, this
allows the speaker/singer to
achieve a much higher frequency
range than modal voice. A noise
component is also present due to a
lack of complete closure at the
glottis. [14]

Childers and Lee found that the voice type could be characterised by four main

factors, namely glottal pulse width, glottal pulse skewness, abruptness of glottal

closure, and turbulent noise [14]. ‘Glottal pulse width’ refers to the portion of the

12

2. Literature Review

waveform where the glottis is open, also known as the open quotient. In terms of
the glottal flow derivative, the open quotient ‘is estimated by the time duration
between a positive peak and the next adjacent negative peak’ [14]. Glottal pulse
skewness (or the speed quotient) refers to the relationship between the lengths
of the opening phase and the closing phase. Abruptness of glottal closure and
turbulent noise refer to the steepness of the return phase of the waveform and

the high frequency noise created by airflow through the glottis respectively.

Table 2.2 shows the approximate spectrum, fundamental pitch range and

turbulent noise properties for the four voice source types.

13

2. Literature Review

Table 2.2 - Four voice types with spectral content, pitch range, and noise

component information

Voice Spectrum Range Noise
Type (Diagrams taken from [14]) (approx. Component
male voice)
Modal ™ | ~52-207 Hz | None
¥ N14, modal § 1
: L
Vocal Fry “ | ~24-94 Hz None
Breathy 1 | ~52-207 Hz | Noise present at
= around 5% of
:: total signal
Falsetto :2 ~207-440 Noise present at
NI falserto = | Hz around 5% of
. 1 total signal
2 w J\] o
r i 6 y) A P 1 »
: fy ok "‘\«\/\M ‘\!}1./1«{\/\{?‘:\-‘;; :‘WA:'- (/’\ﬁ;‘u'3 :

The voice source type (also referred to as ‘voice quality’) has been shown to play
a major role in the perception of emotion and stress in speech [15]. Whilst there
have been many empirical studies analysing the nature of these voice qualities,
Gobl states that ‘very few ... have focussed on the voice source correlates of
affective speech’. In Gobl’s study, a recording of an utterance spoken in Swedish

was inverse-filtered to obtain an approximation of the voice source waveform. A

14

2. Literature Review

voice source model was then fitted to this approximation, which allowed for
parameterisation of the voice source to fit seven voice qualities. The voice source
model was then used to drive a formant synthesiser, and the original recorded
phrase was resynthesised for each voice quality. The resynthesised utterances
were played to a number of non-Swedish speaking subjects (so that the
emotional context of the words would not influence the subject’s perception of
emotion). It was found that the perceived ‘tenseness’ of the voice source
influenced the listener’s perception of emotional content in the voice, although
this was shown to be far more effective for some emotions (relaxed/stressed,

bored, intimate, content) than others (happy, friendly, sad, afraid).

Chen discusses the glottal gap phenomenon in [16]. This is a feature of the voice
source that occurs when the glottis does not fully close, such as in breathy or
falsetto phonations. It was found that the size of the glottal gap relative to the
pitch cycle affected the overall speech output to a significant degree, in terms of
the perceived voice quality. Most affected were the spectral tilt and the turbulent
noise component, both of which increased proportionally with the size of the

glottal gap.

Though not a distinct voice type in and of itself, vocal vibrato is a common vocal
feature that originates at the voice source, primarily used in singing. Sung
phrases are typically of the modal or falsetto voice types (although vocal fry is
somewhat prevalent in pop singing). In [17], the perceptual benefits of vocal
vibrato are discussed. One such benefit is the effective ‘gluing’ of partials, or

harmonics together. For example, while vocal sounds are generally perceived as
15

2. Literature Review

a homogenous blend of harmonics, it has been shown that, at a fixed pitch, it is
possible to discern between separate partials present in the speech signal [17].
When the f0 is constantly varied, as in vocal vibrato, these separate partials are
‘glued’ together again. Another hypothesised perceptual effect of vocal vibrato is
the increased intelligibility of vowels when vibrato is present. As Sundberg
states, it is reasonable to assume that as the harmonics above the fundamental
frequency undulate in time with the f0, those harmonics present around vowel
formant frequencies will reinforce the perception of the formant. This is due to
the amplitude modulation of these harmonics as they align with the formant
frequency. Counter-intuitively, further studies failed to prove this effect
conclusively [18] although during the current research it was also found that
subjective responses to a synthesised voice with varying pitch were much more

favourable than a constant 0.

2.4 Modelling the Voice Source

Any source/modifier approach to synthesising the human voice will employ
some form of voice source model. These can be fairly rudimentary, such as a
simple saw-wave or pulse-train [19] [20], to resynthesised human voice source
waveforms obtained via inverse-filtering [21]. As Chen et al. point out, ‘few
studies have attempted to systematically validate glottal models perceptually,
and model development has focused more on replicating observed pulse shapes
than on perceptual sufficiency’ [22]. Fitting existing models to observed pulse
shapes is so far the most reliable method for achieving accurate recreations, due

to the impracticality of capturing an isolated voice source waveform using

16

2. Literature Review

conventional recording methods [15] - this has been attempted, but the highly
invasive procedure involved miniature transducer microphones inserted
between the vocal folds, which necessitated the use of local anaesthetic [23].
Inverse filtered glottal pulse signals and LX-waveforms obtained via
laryngoscope [21] [24] are the most common references used for voice source
modelling. This sub-section summarises attempts made to recreate this signal

using mathematical modelling and other techniques.

2.4.1 Existing Methods for Voice Source Synthesis

In order to produce the formants that occur in natural speech, a complex source
waveform with sufficient harmonics must be used. It has been recognized since
at least the 1970s [25] that a source waveform approximating that found in
natural speech would provide the most accurate speech output. While it is
possible for very simple formant synthesisers to achieve speech-like results
using saw-waves, square waves, or even white noise as an input, the spectral
content of the glottal source signal is of significant importance to the overall
naturalness of the synthesised speech content. Rosenberg was one of the first to
compare differing methods of speech synthesis excitation using time-domain
representations of the source waveform. He showed that out of six wave shapes
of varying complexity, a complex trigonometric waveform, based on
observations of glottal pulse movement and speech recordings was the most

preferred in a listening test, when compared with a natural speech recording.

17

2. Literature Review

In [9], the distinction is made between:

1.) non-interactive parametric glottal models - mathematical models that assume
a linear separability between the voice source and vocal tract,

2.) interactive mechanical and parametric glottal models, which are based on the
interaction between the vocal source and the rest of the vocal system, either via a
mechanical model or numerical simulation, and

3.) physiological glottal models, in which an attempt is made to accurately

simulate the physical properties of the vocal folds in three dimensions.

Non-interactive parametric glottal models are intuitively the simplest to achieve,
requiring only knowledge of the voice source waveform and its spectrum. Early
studies such as Rosenberg’s [25] confirmed that as the glottal pulse shape
approached similarity with that observed through inverse-filtering techniques,
the perceived quality of voice synthesis improved. In these early studies, the
glottal flow waveform was modeled, rather than the glottal flow derivative.
Liljencrants and Fant [12] were one of the first to apply the first-derivative filter
to the glottal pulse model in order to simulate the effects of lip radiation. They
developed a parameterised model of the glottal flow derivative, known as the
Liljencrants-Fant or LF Model which is now the most commonly used among the
non-interactive parametric models [9]. Due to the model’s flexibility and ease of
adaptation to existing speech source waveforms, it has been widely accepted as
the standard voice source model for speech processing and analysis [14]. The LF
model has provided the basis for this research, and so will be further analysed
later in the chapter. Other parameterised models of the glottal flow derivative

have been developed, such as Fujisaki and Ljungqvist's model [26] which was
18

2. Literature Review

shown to be equally successful in minimising the linear predictive error when
directly compared with natural speech as the LF model, however due to the
computational complexity in calculating this model, the LF model is generally

favoured [9] [14].

Cummings et al. state that

‘although simple non-interactive glottal models produce intelligible
synthetic speech and are adequate for many coding and analysis tasks, very
high-quality speech synthesis and complex speech analysis necessitate the

ability to model glottal excitation more accurately’ [9]

Cummings summarises these methods, which are achieved numerically or via
equivalent-circuit design. Two common effects of source-tract interaction that
are included in these models are the effects of low first-formant frequencies on

the vocal tract’s impedance load and the glottal pulse ripple.

The most complex form of glottal source model is the physiological glottal model.
Titze and Talkin [27] [28] developed a four-parameter mathematical model of
the glottis based on earlier theoretical work by Titze [8] [29]. This is essentially a
mass-and-spring mathematical model of the physiology of the vocal folds, which
takes into account the following:

* ‘abduction quotient, a measure indicating the amount of adduction or

abduction of the vocal folds,

19

2. Literature Review

* shape quotient, a measure of the shape of the pre-phonatory glottis
(converging, diverging, or partly converging and partly diverging)

* bulging quotient, a measure representing the amount of medial surface
bulging of the vocal folds, and

* phase quotient, a measure of the phase delay between the upper and

lower edges of the vocal folds.” [9]

Physiological glottal models such as these are capable of creating a highly
sophisticated representation of the glottal flow. However, a precise knowledge of
glottal physiology is required in order to use models such as these, as the glottal
volume velocity waveform is an indirect result of the model, as opposed to the
simpler model types which attempt to recreate the volume velocity waveform

directly.

2.4.2 The Liljencrants-Fant Glottal Flow Model

As discussed, the Liljencrants-Fant (or LF-) model is one of the most widely used
glottal flow models in voice synthesis and speech processing applications. This is
largely due to its relative computational ease and parameterisation. Earlier work
by Gunnar Fant [7] established a foundation for this model by observing
predicted glottal flow volume velocity waveforms from inverse-filtered
recordings of connected speech. Findings from this study allowed Fant to
develop an early two-parameter glottal flow model (called the F-model). This
early model comprised a rising and descending branch around the boundary

between the opening and closing phases. The F-model contained a discontinuity
20

2. Literature Review

at the flow peak (Fig. 2.4), so a more sophisticated model was sought. The three-

parameter L-Model developed by Liljencrants was used as a starting point.

The advantage of the L-model over the F-model is its continuity, which means
that no secondary weak excitations are present in the acoustic waveform. The L-
model also displayed less spectral ripple than the F-model. Neither models
incorporated a term for the gradient of the return phase of the glottal pulse,
which was found to be crucial for modelling certain voice types and phonations
[12]. For example, during a voiced ‘H’ sound, the glottis remains open for most of
the pitch cycle, allowing turbulent airflow to create the high-frequency noise
component (also observed in breathy and falsetto voice types). In order to model
voice source effects such as these, an exponential return phase whose gradient
was a fourth parameter, based on observations by Liljencrants, Fant and

Ananthapadmanabha [12] [7] [13] was added.

21

2. Literature Review

1.0 Fips— /11

T T UrTrTeT

r

Flow

| T N T |

Flow derivative

Illllll-l
012345678ns _ 012345678ms

-

T T T 77

1.0 b —n

| IETES BT TR N T |

Ll i1y
012345686

N O B O B BN |

| T

0123456

Figure 2.4 - Comparisons between the F- and L- glottal model waveforms (left) and
their derivatives (right) with varying values of Ra- a ‘shape parameter’ based on

the amplitude and position of the positive peak - taken from [12]

22

2. Literature Review

Amplitude

08 -

-1 1 1 | 1 | | 1
0 50 100 150 200 250 300 350 400

Time (Samples)

Figure 2.5 - LF-model glottal flow derivative waveform with timing parameter
annotations. The value for t, is the distance between point t. and the zero crossing

of the derivative of the return curve (red line on graph).

Figures 2.4 and 2.5 show one pitch period of each of the aforementioned glottal
models. The timing parameters tp, te, ta, and tc are shown on the LF-model
diagram. These four timing parameters can be modified in order to fit existing
glottal flow measurements for speech analysis, or to synthesise new waveforms
in order to simulate different voice types in speech synthesis. These timing
parameters are defined as a percentage of the overall pitch cycle length To.
Parameter t, describes the length of the opening phase of the cycle, i.e when the
vocal folds are moving upwards and the glottis is opening (the moment of
maximum flow). Te gives the timing of the negative peak in the waveform, which
occurs at the beginning of the return phase. Ta gives the effective duration of the
return phase, calculated by the length of time between te, and the zero-crossing

of the derivative of the return slope at te. Tc describes the length of the open

23

2. Literature Review

phase, or the portion of the pitch cycle during which the vocal folds are in
motion. If t. is less than Ty, the remainder of the waveform between tc and To is
known as the closed phase. One requirement of the LF-model is that the overall

net gain of flow during a pitch period must equal zero:

f TOLF(t) =0

[2.1]

The waveform is calculated in two stages. The first stage involves an
exponentially growing sinusoid between the moment of glottal opening (¢t = 0)
and the negative peak at t = t,. An exponential component describes the second
stage - the return phase between te and t.. The two equations for the LF-model

waveform can be written as

LF(t) = Eje*sin(wyt),0<t < ¢,
[2.2]

E
LF(t) = € [e—s(t—te) _ es(tc—te)] S t<t. <T,
ety
[2.3]
Where Ey describes the maximum positive flow, E. the maximum negative flow, a
and wy are respectively the exponential growth factor and the angular frequency
of the sinusoidal component, and ¢ is the exponential time constant of the return

phase. In order to maintain the area balance condition described in equation 2.1,

€ then Epand a are solved iteratively so that the following conditions hold:

1— e_g(tc_te)

&=
ta
[2.4]

24

2. Literature Review

E,

Eo= —
0 e%tesin (wyt,)

[2.5]

(analysis of LF-Model equation based on Jack Mullen’s summary [30])

By manipulating the values of the timing parameters (¢ te, tp tq), the LF-model
can be modified to describe certain voice types, or matched to pre-recording
voice source data. ‘Voice quality factors: Analysis, synthesis, and perception’ [14]
is an example of one of the many studies into voice synthesis and analysis that
have used the LF-model in an attempt to synthesise different voice types, as well
as establish the role of various LF-parameters in terms of the perception of the
synthesised voice. Beginning with inverse-filtered speech waveforms and data
from electroglottographic recordings, Childers & Lee [14] analysed the spectral
content and waveform characteristics of four voice types - modal, breathy, vocal
fry and falsetto. From earlier studies [31], it was found that the LF-model
provided a convenient and efficient basis from which to recreate the timing and
spectral characteristics of the four voice types. By adjusting LF-parameters to fit
the initial recordings, then optimising the LF-model estimate using a least-mean-
squared error criteria, average values of the LF-parameters for different voice
types were found:
Table 2.3 - Four male voice types and corresponding timing parameter values

(taken from [14])

Te (%) | Tp(%) | Ta(%) | Tc(%)
Modal 55.4 41.3 0.4 58.2
Breathy 57.5 45.7 0.9 100
Vocal Fry 59.6 48.1 0.27 72
Falsetto 89 62 4.3 n/a

25

2. Literature Review

By modifying each timing parameter in turn followed by the overall pulse width
(open quotient or 0Q) and pulse skewing (speed quotient or SQ), keeping all
other parameters fixed, and synthesising short vowels using a Klatt formant
synthesiser [32], it was possible to evaluate the perceptual effects of each
parameter, and to establish which were most useful for synthesising different
voice types. Criteria for simulating hypo-/hyperfunction (lax/tense vocal quality)
were established in the time and frequency domains, with a high SQ creating
more high frequency energy, contributing to a perceptually more tense voice
quality. This study also incorporated a noise generator, in order to simulate
breathiness. It was found that white noise, high-pass filtered at 2 kHz added to
the LF-model signal contributed to the perception of breathiness. Modulating the
noise signal’s amplitude so that it was present during 50% of the pitch cycle
(roughly lining up with the closed part of the vocal fold oscillation), with a noise-
signal ratio of 0.25%, provided the best results for simulating breathiness. This
study confirmed the importance of a variation in voice source quality in natural
speech synthesis, and concludes that ‘various intonation and stress patterns may
be correlated to source parameters other than fundamental frequency and
timing’ [14]. This idea is the primary concept behind the current research, which
is aimed at developing a more natural, dynamic and user-configurable voice

source for voice synthesis applications.

Whilst the least-mean-squared-error technique described in [14] and [33]
provides a close fit of the LF-model waveform to a glottal source recording,
further research has been undertaken to optimise the timing parameter values in

order to more accurately recreate voice source qualities [34] [21] [24]. One such
26

2. Literature Review

method is described in [21], known as Extended Kalman Filtering (EKF). EKF is
an iterative error correction method that makes use of a priori estimates to
converge on an optimum estimate. By incorporating the EKF equations in those
describing the LF-model, it is possible to calculate @ and ¢ values to achieve an
optimum model fit. Further research into EKF techniques for model fitting also
generated a time-domain fitting algorithm using EKF that was shown to be far
more accurate than a previously used standard algorithm [35]. The timing
parameters described in [21] were originally obtained from [24], which
describes the use of a pitch-synchronous model-based glottal source estimation
method to obtain an accurate set of mean values for LF-parameters from an

inverse-filtered glottal source waveform.

In [36] the many parameters used to describe the glottal source model are
investigated and their importance in terms of vocal quality perception is
explored. It is acknowledged that ‘the closing phase constitutes the main
excitation of the vocal tract. The closing phase, or normalised amplitude
quotient (NAQ), describes the phase of the pitch period from the negative peak to
the point of glottal closure. The authors recommend varying the NAQ for the
largest and most effective perceptible variation in voice type. These findings are

corroborated in [37] [38] and [39].

27

2. Literature Review

2.5 Vocal Tract Modelling

As well as the voice source, the physical properties of the vocal tract can be
mathematically modeled in order to recreate its acoustic effects. This method of
voice synthesis falls into the category of ‘articulatory speech synthesis’. [40]

gives the following definition for articulatory synthesis:

‘Articulatory speech synthesis models the natural speech production process
as accurately as possible. This is accomplished by creating a synthetic model

of human physiology and making it speak.’ [40]

Palo acknowledges that articulatory speech synthesis methods are less effective
at creating intelligible speech when compared with concatenative synthesis, but
vastly more flexible in terms of the range of speech-like vocalisations that are
available. The first example of synthesised speech created by a vocal tract model
was developed by Kelly and Lochbaum in the 1960s [41]. This was a fully
digitised acoustic model of the human vocal tract, achieved by discretising the
vocal tract into a series of concatenated tubes (fig. 2.6). The travelling wave
solution for each tube was obtained, and then digitised using Nyquist’s sampling
theorem. Vocal tract area data was obtained via x-ray for several vowel sounds,
and the cross-sectional area of each tube section of the model was proportional
with the corresponding vocal tract area. This was one of the first and most

enduring examples of physical modelling synthesis.

28

2. Literature Review

Figure 2.6 - Representation of the vocal tract idealized as a series of concatenated
acoustic tubes, with glottis end at the left and lips at the right. Note that the ‘bend’
in the vocal tract that occurs above the glottis is not included in this

representation.

The advances made in computing by the 1980s meant that new methods of
physical modelling synthesis were being experimented with. One such method
that had implications for vocal tract modelling was digital waveguide synthesis.
Julius Orion Smith III describes the early conception of the one-dimensional
digital waveguide in [42]. As d’Alembert first pointed out, the vibration of an
ideal string can be described as the sum of two travelling waves going in
opposite directions [43]. The conception of the digital waveguide is based on this
principle. A digital waveguide is essentially a bi-directional digital delay line,
with the sample propagation travelling in opposite directions (fig. 2.7). This
approach allows for an efficient discrete-time simulation of the traveling wave
solution, which can be used to model ‘any one-dimensional linear acoustic
system such as a violin string, clarinet bore, flute pipe, trumpet-valve pipe, or the
like’ [44]. Terminations and changes in impedance along the acoustic system can

be modelled using boundary conditions and scattering junctions. A termination
29

2. Literature Review

(for example a bridge on a guitar) can be modelled simply by inverting the phase
of the incoming signal, which acts as a total reflection of the displaced wave.
Changes in impedance are modelled using the Kelly-Lochbaum scattering
junction. Conservation of mass and energy dictates that for a change in
impedance (such as from a narrow to a wide section of tube), the pressure and
volume velocity variables of the travelling wave must be continuous [44]. This
means that some of the acoustic energy will be transmitted across the impedance
discontinuity, and the remainder will be reflected back. This is achieved digitally

via the scattering junction.

Delay Unit

Z-l — Z-l

Y

Z-l

Z-l

N
[y
A

Z-l <

Figure 2.7 - 1D Digital Waveguide Structure. Sample delay units (marked z1)
propagate an input signal in left and right directions, with changes in impedance
modelled by attenuating the signal between delay units. Sampling points extract

the current sample and a particular space along the DWG - similar to a pickup

along a guitar string.

The 1D digital waveguide models changes in cross-sectional area in the vocal
tract as a series of impedance changes in a 1D linear acoustic system. A 2D

extension of this method, known as the 2D Digital Waveguide Mesh (DWM)
30

2. Literature Review

models the same cross-sectional area function as a 2D plane, with width-wise

delay lines of varying length, as seen in figures 2.8 and 2.9.

Vocal Tract Cross Section

Lips

—

M RI Data Glottis

Area

‘ Glottis r Lips |

. Length
Area Function g

Figure 2.8 - Achieving a cross-sectional area function from MRI data. Note the lack
of nasal cavity in the vocal tract cross-section and the ‘straightening’ of the track

when converted to an area function.

|
|

Figure 2.9 - 2D Digital Waveguide Mesh structure with impedance mapping, with
glottis end at the left and lips at the right (red indicates a high impedance, creating

effective ‘boundaries’ [highlighted in blue])

31

2. Literature Review

The 2D DWM was developed by Van Duyne and Smith in the early 1990s [45]
with further development at the Audio Lab at the University of York [46] [47]
[48] [49] [50] [51]. The DWM structure is ideally suited to modelling the
propagation of acoustic waves across a membrane or plate, although the extra
dimensionality is also an advantage over the 1D waveguide for modelling other
acoustic systems. In the example of vocal tract modelling, the cross-sectional
tract area can be directly modeled as a widthwise number of waveguide points,
as opposed to the 1D solution, which requires a conversion from area to
impedance. Inputs and outputs to the system can also be included at spatially
meaningful points on the mesh, due to the analogous topography of the mesh to

the modeled surface [46]. As Mullen points out,

it should be noted that the magnitude of vibrations is the physical variable
under simulation that would be observed in the real-world system. The bi-
directional travelling wave components are a hypothetical consideration to

facilitate propagation’. [30]

Waveguide mesh topographies are not limited to a grid layout as illustrated
above, and other arrangements of delay lines and scattering junctions have been

experimented with [50].

An extensive study into vocal tract modelling using the 2D DWM is described in
[30]. This thesis describes the theory behind digital waveguide mesh modelling,
and its application to vocal tract modelling. It also describes the development of

a novel method of modelling dynamic area function changes in real time, known
32

2. Literature Review

as dynamic impedance mapping. Conventional waveguide mesh structures follow
the layout of the acoustic area they are modelling. Vocal tract modelling requires
a more flexible method, as the layout is constantly changing depending on the
current articulation. Dynamic impedance mapping allows the mesh size and
shape to remain constant, while manipulating the impedances at each node to
effectively alter the shape of the area through which acoustic energy can
propagate. This is much less computationally expensive than altering the layout

of the mesh at each sample step, and allows for real-time, dynamic articulations.

The process for vocal tract modelling using the digital waveguide mesh is as
follows:
1. Obtain cross-sectional area function data of the vocal tract for a set of
specific vowels. This is achieved using a magnetic resonance imaging
(MRI) machine (see Figure 2.8 above).
2. Convert area function data to a series of discrete area values at regular
intervals along the tract.
3. Calculate size of a single waveguide. This is related to the theoretical
distance an acoustic wave would propagate during one sample length. It is

calculated using the following formula:

V2xc/f
[2.6]

Where c is the speed of sound and f; is the sampling frequency.

33

2. Literature Review

4. Calculate the size of the waveguide mesh in terms of the number of
individual waveguides in the x and y direction. The average dimensions
for a male vocal tract are 17.5 cm long and 5 cm wide.

5. Interpolate area function data from original number of values to number
of waveguides in x direction. Invert each value to obtain the related
impedance value for each cross-section.

6. The impedances of the width-wise waveguides (y direction) are
calculated using a raised-cosine area function (fig. 2.10). This was found
to be the ideal solution for maintaining an open ‘channel’ in the middle of
the mesh (i.e. at minimum impedance) with maximum impedance at the
outer edges of the impedance map. This means at each point in the x
direction, for a DWM n waveguides wide, a raised cosine function of n
samples is created. Each point in the y direction is assigned an impedance

value based on the corresponding raised cosine value.

A
Impedance

»
!

Width-wise location of scattering junction

Figure 2.10 - Approximation of raised cosine function, with minimum impedance

(Zmin) at the centre and maximum (Zmax) at the edges

34

2. Literature Review

7. The averages between adjacent points in the mesh are taken, and the
impedance map is updated based on these averages. The pressure at the
current junction (average of all surrounding points) is taken, and the
outgoing pressures are calculated.

8. At every timestep, the incoming pressures to each junction are calculated
based on the previous pressure values at surrounding points. Boundaries
are modeled in the same way as a termination in a 1-D waveguide, for
each outer point in the mesh. At the glottis end, the incoming pressure for
each junction is excited with the current sample of the input waveform
(i.e the voice source).

9. Finally, the output pressure is taken as the sum of all rightmost junctions

multiplied by the lip radiation.

The impedance-mapped 2D DWM was excited with Gaussian noise to obtain a
frequency response for several vowel area functions. The results showed that
formant frequencies obtained from the 2D DWM varied in accuracy when
compared with average formant frequency values for male speakers. For some
vowels, the 2D DWM formant frequencies were less in line with average values
than the 1D waveguide counterpart. It is acknowledged that these average
formant values are not definitive, and the strongest case for vowel accuracy
would be a perceivable similarity to the simulated vowel, based on subjective

listening results.

The increased dimensionality introduced by the 2D DWM allows for more

accurate plane-wave propagation simulations than the 1D counterpart. However,
35

2. Literature Review

the impedance mapping of the 2D DWM is based on the same 1D area function
data. The effects of the curve in the vocal tract, the addition of the nasal tract, and

3D asymmetrical cross-sections are not considered in the 1D or 2D models.

Further research has taken place which has attempted to expand on the
underlying theory of 1D and 2D waveguide modelling in order to develop a 3D
acoustic simulation of the vocal tract [52]. The 3D digital waveguide is a
theoretically straightforward but computationally expensive extension of the 2D
waveguide method, but which an acoustic resonator’s 3D properties can be
modelled by simply expanding the dimensionality of the DWM. As long as the
topology of the mesh remains constant throughout, any 3D acoustic resonator
can be modelled. Various mesh topologies exist for 2D and 3D acoustic
modelling, the most common being rectilinear (2D and 3D), triangular (2D) and

tetrahedral (3D) [47] [46](fig. 2.11).

(a) 4-Port 2D (b) 6-Port 2D (¢) 6-Port 3D (d) 4-Port 3D
Rectilinear Triangular Rectilinear Tetrahedral

Figure 2.11 - 2D and 3D DWM topologies [from [47]]

Speed’s method of 3D vocal tract acoustic modelling followed a similar principle
to Mullen’s 2D equivalent. This time, 3D area function data had to be obtained

from MRI scans using a biomedical structure segmentation algorithm [53]. These
36

2. Literature Review

3D structures were converted to 3D sampling grids following similar principles
to the 2D DWM construction. In this case, static sampling grids were used for
each vowel shape, as opposed to the dynamic impedance-mapping techniques
used with 2D implementations. This is due to the exponentially increased
number of calculations per sample involved with the increase in dimensionality.
A dynamic implementation of the 3D method would therefore be unfeasible

given the sheer amount of computional power required.

Speed also touches on the role of the voice source within articulatory voice
synthesis. In one study, both vocal tract area data and inverse-filtered voice
source recordings were taken for four different subjects. The voice source
recordings were then convolved with the vocal tract data of a different subject,
effectively splicing the vocal folds of one subject onto the vocal tract of another.
It was found that the perceived naturalness of the resulting voice synthesis was
not affected when a vocal tract model was excited by a non-matching voice
source - the physical correlation between the two being of less important than
‘natural’ features of phonation such as irregular pitch, prosody, amplitude and

rhythm [52].

2.6 ‘Naturalness’ in Speech Synthesis

While this research is primarily concerned with the development of a
parameterised voice source model, the wider aim is to contribute towards the

improved ‘naturalness’ of speech synthesis. This research follows on from two

37

2. Literature Review

previous projects that were concerned with speech synthesis naturalness, which
was explored via real-time dynamic control of Mullen’s VocalModel synthesiser
[5] [30]. One of the conclusions from the earlier research was that while real-
time responsive control of synthesised speech provided mostly positive
subjective results, the synthesis method itself was not fully adequate. This lead to
the current research project, as the fixed voice source wavetable model used
with the previous voice synthesiser was highlighted as an area to be improved
upon. In order to set this research in context, the two previous projects will be
summarised, followed by a brief review of the literature on speech synthesis

‘naturalness’.

The project began as part of a short research project with the York Centre for
Complex Systems Analysis (YCCSA). The primary aim of the project was to
recreate a 21st-century version of the von Kempelen ‘talking machine’ (fig. 2.11).
The von Kempelen machine was designed by Wilhelm von Kempelen in the late
18t century and described in his book ‘Mechanism of Human Speech and
Language’ [54] [55]. This was a system composed of a set of bellows, a reed, a
compressible leather tube and several valves, that were analogous to the lungs,
vocal cords, vocal tract, nasal cavities and articulators in the speech system. It
was supposedly possible to create speech-like sounds using this machine, and
while attempts to do so using replicas of the machine have not given convincing
results, its importance as a research and demonstration device has been

defended [56].

38

2. Literature Review

“SH"LEYER
REED CUTOFF

“SHWHISTLE

SPEECH
SOUNDS A

COME \\ ps
OUT HERE -

RESONATOR™
OF
LEATHER

AUXILIARY 7 g HISTLE
BELLOWS
LEATHER MNOSTRIL

ﬁf REED
= % g COMPRESSED
277 AR CHAMBER

Figure 2.12 - Wolfgang von Kempelen'’s ‘Speaking Machine’ [image taken from
[571]

The approach to creating a ‘21st-century’ von Kempelen machine was to develop
a controller for the MIDI-compatible VocalModel synthesiser, based on the
design of the original machine. As the voice source was already provided in the
software, the bellows and reed of the original machine were accounted for, so
only the leather tube and articulators were considered in the design. A MIDI
controller was developed, made up of a compressible foam tube with eight force-
sensing resistors (FSRs) at regular intervals along the tube. Using a series of
potential divider circuits, eight separate channels of varying voltage were
converted to MIDI messages based on the amount of compression. Each MIDI
channel controlled one of the eight on-screen sliders within the VocalModel
software, so that the compression of the foam tube was directly analogous to the
‘shape’ of the modeled vocal tract, and thus the vowel produced. The MIDI
conversion software used was Apollo Ensemble [58], and the FSR material used

was QTC, provided by David Lussey of Peratech [59].

39

2. Literature Review

Subjective responses to this system were that the real-time control of
articulations, pitch and amplitude were somewhat speech-like, but the method of
control was physically very difficult to use due to the latency introduced by the
intermediate Apollo software, and the lack of sensitivity of the controller device
itself. This prompted the second research project, which looked to improve the
comfort and usability of the controller device as part of a deeper study in
improving speech synthesis naturalness. One of the improvements made to the
system was the introduction of an Arduino board, which handled the voltage
input, scaling and MIDI conversion at the same time, which improved latency
issues by avoiding any intermediate software. Through consultations with David
Lussey, a controller device was developed with accessible FSR layers, and
different QTC types were tested, so that the sensitivity and layout of the device
could be changed. A more rigorous user test was involved in this study in order
to gain both subjective and objective results. Users were introduced to the
system over a number of tests and allowed to explore and experiment with the
controller device. They were then asked to recreate vowel sounds using
diagrams of the vocal tract shape, and also to identify pre-recorded vowels using
the same system. Their subjective responses to the system in terms of its control
method and the overall acoustic output were also collected. It was found that
while it was very difficult to create recognisable vowel sounds at first, either
using the visual aids or from memory, when a vowel-like sound was achieved,
the inherent spontaneity of the pitch, amplitude and rhythm of the output was
deemed far more ‘natural’ than the predictable ‘robotic’ voices produced by text-
to-speech systems, for example. It was also noted that using an articulatory

speech synthesiser allowed the user to create articulations such as plosives and
40

2. Literature Review

glottal stops using the control method, which many users discovered with no
prior instruction. While the control method was incredibly complex, after a
number of sessions experimenting with the system users were able to learn
short consonant-vowel utterances such as ‘ma’ and ‘ba’. The link between this

method of learning and early speech acquisition in children was noted.

A study that was formative in the conception of these earlier projects was
Newell’s ‘Place, Authenticity and Time: A Framework for Liveness in Synthetic
Speech’ [60]. This study used objective data collection as well as subjective
responses to various modes of synthetic speech performance in order to
determine their perceived ‘liveness’. By taking an interdisciplinary approach to
this research, with perspectives from the world of drama and music
performance, a generic framework for what constitutes a ‘natural’ performance
was proposed. One conclusion was that spontaneity of pitch, amplitude and
pauses in synthetic speech performances gave a degree of unpredictability that

was naturally associated with unprepared, conversational speech.

A commonly cited effect when discussing synthetic speech naturalness is the
‘uncanny valley’ phenomenon. This was first described in Mori’s ‘The Uncanny
Valley’ [61]. This phenomenon is a way of describing the change in attitude
towards imitations of human features as they approach total realism. For
example, a response to a simple stick drawing of a human isn’t likely to illicit
sympathetic responses. A well-drawn cartoon or video game character however
could convey enough human-like expression to provoke sympathy, and the

audience would forgive the obvious non-human characteristics (a willing
41

2. Literature Review

suspension of disbelief). However, the same audience might in fact find a hyper-
realistic 3D rendering of a human face, or a wax figure in Madame Tussaud’s,
somewhat disturbing. The reason for this, Mori posits, is that the near-total
realism causes the audience to give up their willing suspension of disbelief,
which is replaced by a more critical viewpoint, in which minor imperfections or
non-human qualities are more pronounced. Figure 2.12 displays Mori’s graph of

human likeness vs. affinity for the object.

+ Uncanny Valley o Healthy Person
——
_ Toy Robot
[~
g
‘g“ Bunraku Puppet
'E Industrial Robot
0}
2
£
<
Human Likeness 50% 100%
Prosthetic Hand

Figure 2.13 - Graph displaying the effect of human likeness on affinity or
‘Shinwakan’ with an object. The ‘Uncanny Valley’ refers to the large drop as the

subject approaches human likeness [image taken from [62]]

Newell and others have drawn the link between this effect and perception of
synthetic voices [60], which was also discussed in the previous research [5]. It
was hypothesised that there was such a thing as a synthetic voice that was ‘too
perfect’, with little to no spontaneity present, and that the unpredictability
introduced by real-time human interaction would contribute towards more

sympathetic responses.

42

2. Literature Review

While Mori’s uncanney valley theory is concerned with audience reactions to
humanoid figures, avatars, or other visual cues, it is straightforward to draw the
link to speech synthesis and perception when considering Moore’s Bayesian
model of the uncanny valley effect [63], in which an attempt is made to quantify
and model the level of ‘affinity’ one might have with any simulation of human
qualities. His explanation leads to the conclusion that the uneasiness felt by the
audience due to the uncanny valley effect is a result of the ‘mis-match in sensory
cues’ that help the viewer/listener to identify a subject as human-like. In the
context of speech synthesis, this might occur when the listener perceives a
certain ‘cue’ for human speech present in a synthesised word phrase, alongside a
non-human ‘cue’. This could mean that an accurate representation of a speech
signal in terms of formants and spectral content that lacks other cues such as
prosody, pitch and timing would evoke a similar feeling of uneasiness to Mori's
example of a life-like animatronic human figure that lacks typical human

characteristics such as breathing or blinking.

43

3. A Parametric, Real-Time Voice Source Model

3. A Parametric, Real-Time Voice Source Model

This research project began as a continuation of the author’s previous studies
into real-time implementations of vocal tract modelling described in the
previous chapter. The motivation for these earlier projects was from a general
interest in the theme of ‘naturalness’ in voice synthesis, as well as an interest in
assistive technology and human computer interaction (HCI). It was concluded
during the final stages of the previous work that while the HCI aspect of
naturalness-oriented voice synthesis research was an important one, the most
pressing issue is the synthesis engine itself. Developing a synthesiser that is
capable of producing in real time an equivalent range of vocalisations as the
human voice would ideally aid any future research into more HCI-focused areas.
Whilst the general motivation for the current research remains the same as
earlier projects, the scope of the project has been revised in order to focus on a
key component of the voice synthesis software used in the earlier projects: the

voice source.

This chapter describes the development of a parametric, real-time voice source
modelling application for i0S. The motivation for the application design is given
first, followed by the application specifications. The design and implementation
stages are documented, and the results from the system testing stage are given.
As with many software development projects, the progression from the initial

concept to design, implementation and testing is not a linear one. The following

44

3. A Parametric, Real-Time Voice Source Model

sub-sections are therefore not necessarily presented in chronological order (for
example, results from system testing informed certain changes in the design of

the app).

3.1 Motivation for Design

As stated in Chapter 1, the motivation for this project is twofold. Firstly, the
application is intended to be used as a research tool in voice synthesis projects.
This means the final application should be capable of producing a versatile and
expressive voice source model that can be incorporated into other voice synthesis
systems. In terms of versatility, the application should provide sufficient
parameters to the user so that an appropriately wide range of voice source
waveforms can be modeled. The term ‘expressive’ here means an application
that is capable of a wide range of pitch, amplitude, voice types and so on that can
be modified in real time, in a similar manner to ‘expression’ in musical

performance.

The secondary motivation for the design of this application is the implications
for its use within assistive technology software. This informed the decision to
focus on technology for portable devices. Technologies such as Voice Output
Communication Aids (VOCAs) [64] have been used by the disabled community
for many years as a means of communication. Since the advent of touchscreen

technology, users of limited mobility have made use of the large range of options

45

3. A Parametric, Real-Time Voice Source Model

made available by not being limited to hard-coded buttons [3]. Touchscreens
allow any part of the screen to be used as a controller, from onscreen switches
and sliders to more complex gestures such as pinching and multitouch swiping
[65]. Devices such as Apple’s iPad, often equipped with quad-core processors,
have surpassed the performance of the average desktop computer from a decade
ago, and so make the ideal platform for a touchscreen-based communication aid.
Modern VOCAs that make use of concatenative synthesis (a speech synthesis
method where appropriate diphones are selected from a bank of pre-recorded
samples and ‘stitched’ together to create entire phrases) are already capable of
producing highly realistic speech output. This is, however, at the cost of limited
vocabularies and lack of expressive options in terms of pitch, amplitude, speed of
talking, and voice source quality. It is proposed that a more flexible speech
synthesis system would incorporate some form of voice source modelling, and so
the application has been designed with this in mind. It should be noted that the
application is by no means intended as a completed speech synthesis tool, but is

intended to be incorporated into such projects.

46

3. A Parametric, Real-Time Voice Source Model

3.2 Specifications

The specifications for the design of the application are given below:

1.

In order to allow expressive control of voice source features and voice
types, the application will provide appropriate parameters for the user to

control.

The application will run as close to real time as possible. This means any
changes made to fundamental frequency, amplitude or any LF-model
parameters will be processed and heard instantly. This is essential for the
application both as a contribution to HCI and voice synthesis research, as

well as any potential use as an assistive technology enhancement.

Whilst it is not essential that the final application run on portable devices
at this stage, it is highly desirable that the application is at least designed
to be compatible with such devices. This is so that any future iterations of
the software can be easily incorporated into portable devices such as
tablets and phones, which are widely used as assistive technology devices,

as well as research and demonstration tools [66].

The application will be compatible with existing voice synthesis methods.
This means specifically that the voice source model will be designed to
run at the same sample rate (the rate at which audio samples are

calculated and played back) as existing vocal tract modelling applications,

47

3. A Parametric, Real-Time Voice Source Model

and the two models can be integrated without compromising the quality

of output.

3.3 Design

This section provides a detailed account of the design stages of the application,

with focus given to some of the more crucial design choices.

3.3.1 Choice of Parameters

The choice of voice source features to parameterise was a crucial decision in the
design of the software. Through many iterations of the design, various
parameters were made available to the user, with each parameter's effectiveness
and suitability noted. This version of the LF-model makes use of the four timing
parameters detailed in section 2.4.2. To reiterate, these are notated as t, te, t,,
and t.. Figure 3.1 illustrates how these timing parameters relate to the LF-model

waveform:

48

3. A Parametric, Real-Time Voice Source Model

Amplitude

08 -

-1 1 1 | 1 | | 1
0 50 100 150 200 250 300 350 400

Time (Samples)

Figure 3.1 - Annotated ‘Typical’ LF-waveform

Tp is the moment of zero crossing during the differentiated glottal flow
waveform. This relates to the moment of maximum flow during the original
waveform. T. refers to the negative peak. The section of the waveform from ¢t =0
(where t is the current sample) to t, is the exponentially growing sinusoidal
component. T, defines the gradient of the exponential return phase. It is notated
as the distance between the negative peak and the moment of zero crossing
when the return slope is differentiated. T¢ is the total length of the LF-waveform
portion of the pitch period (note that t. is usually equal to the length of one pitch
cycle). The values for these parameters are given as percentages of the total pitch

period.

MATLAB software was used throughout the prototype stages of the design in
order to test various algorithms and methods without the added complication of

working with Core Audio [67] in iOS. A basic fixed-parameter LF-model was
49

3. A Parametric, Real-Time Voice Source Model

implemented in MATLAB based on that found in the VOICEBOX toolkit [68]. Each
of the four LF-parameters was then altered within an appropriate range in order
to assess their acoustic function. It was found that altering each parameter
independently provided notable and predictable results corresponding to their

function described in the literature.

Parameter te, or the moment of the negative peak, can be varied over a range of
around 20% of the pitch cycle before losing the typical LF-model waveform
shape. In figure 3.2, it can be seen that at the extremes (te = 0.9 and t. = 0.7),
discrepancies in the waveform occur where the value of one parameter
approaches the value of another. This provides a rough estimate of the

appropriate ranges to be made available to the user on the iOS interface.

Te = 0.78 (typical)
Te=0.76
Te=0.74
Te=0.72

Te=07

Figure 3.2 - ‘Typical’ LF-waveform with varying t. value from 0.7 to 0.9 (x-axis

represents time in samples, with relative amplitude on the y-axis)

50

3. A Parametric, Real-Time Voice Source Model

The moment of zero crossing occurs at point tp. As with te, varying this parameter
has an extreme effect on the opening phase as well as the closing phase, in terms
of amplitude and steepness (fig. 3.3). Discontinuities occur at the upper ranges
(around t, = 0.66), while the sinusoid component of the open phase is more
pronounced for lower values of t,. The return phase remains constant for all

values.

0.6 T T T T T T

Figure 3.3 - ‘Typical’ LF-waveform with varying t, value from 0.52 to 0.665 (x-axis

represents time in samples, with relative amplitude on the y-axis)

Ta, which roughly describes the length and gradient of the return phase, has the
most pronounced effect on the spectrum of the waveform. This is due to the
negative peak being the main excitation of the voice source [7]. A steep gradient
in the return phase will produce more high frequency harmonics than a gradual
return. It was also found that t. could be set to a large range of frequencies

without causing any discrepancies in the typical LF-waveform (fig. 3.4).
51

3. A Parametric, Real-Time Voice Source Model

0.6

Ta=0.028 (typical)

Ta=0013
Ta=0.008
Ta=0.002

0.2

04

-0.6

Figure 3.4 - ‘Typical’ LF-waveform with varying t, value from 0.002 to 0.038 (x-

axis represents time in samples, with relative amplitude on the y-axis)

As te, tp and t, are all calculated independently of t., there was no audible effect
from modulating this parameter. If t. is set to a value approaching te, the
equation does not hold true, which in the worst case scenario results in digital
clipping in the audio output of the software. For voice types where the open
phase is less than the length of the pitch cycle (i.e where t. < 1), all four
parameters reflect this. It is possible to derive values for te, tp and ta from t. rather
than as a percentage of the total pitch cycle. This would, however produce timing
parameter values that are not related to any recorded function of the voice
source from the literature. An example of this would be a model of the vocal fry
voice type, in which tc is often set to less than half of the overall pitch cycle. The

waveform in this case does not simply represent a contracted version of a typical

52

3. A Parametric, Real-Time Voice Source Model

LF-model cycle, as the gradient of the return phase is much steeper than for a

modal or breathy voice.

In [14], Childers discusses the effects of voice source parameters in terms of
vocal ‘tension’, which relates to the perceived effort of the speaker. It was found
that varying te, t, and t. individually could produce shifts in perceived vocal
tension. However, a closer correlation to perception of vocal effort was found in
the speed quotient (SQ). The speed quotient is defined by a cross-coupled
relationship between the four LF-parameters, and therefore reflects a more
natural mode of modification of the vocal source, as opposed to altering each

parameter independently of the others.

3.3.2 Wavetable Synthesis

Initially, playback of the LF-waveform as a periodic signal was achieved via
wavetable synthesis. This is a method of digital synthesis in which a
precomputed waveform is stored as an array of discrete values. A lookup
address is calculated at each sample step depending on the pitch of playback and
sampling frequency. Often, this address will be a non-integer, and so some form

of interpolation is required to define a value for the current output sample.

Wavetable synthesis provided a stable playback method for pitch and amplitude
changes in the LF-model signal. However, when modifications such as timing
parameter changes were introduced, digital distortion occurred. This was due to

53

3. A Parametric, Real-Time Voice Source Model

the fact that to effect a change in the LF-model waveform, it had to be
recalculated from the first sample, thereby creating discontinuities. A less
computationally efficient alternative to wavetable synthesis was tested. This
involved performing the LF-model equations at every sample step. It was found
that this performed well in MATLAB and iOS, even when rapid changes were
made to timing parameters and pitch, with no detectable discontinuities. Further
additions to the software may affect the computational load, and so a more
optimised wavetable synthesis method such as those described in [69] could be

employed.

The advantage of using a fixed-size wavetable to represent the LF-model
waveform was that it was relatively straightforward to provide visual feedback
for the user in i0S. Using the Core Plot library [70] a simple on-screen graph was

produced that represented the values of each sample in the wavetable (fig. 3.5).

54

3. A Parametric, Real-Time Voice Source Model

Figure 3.5 - Screenshot from first implementation of the ‘LFGen’ application with

CorePlot waveform display

3.3.3 Voice Types

An important feature of a voice source modelling synthesiser is the ability to
synthesise different voice types. The four voice types that can be modelled with
an LF waveform are modal, breathy, vocal fry and falsetto [14]. Other voice types
exist, such as whisper, but these are aperiodic signals that consist largely of
white noise. LF-parameter values for these four voice types are found in [24] as
well as the source code for Mullen’s VocalModel synthesiser [71]. The
VocalModel source code also provides a ‘typical’ voice type. It is assumed that
this represents the archetypal waveform commonly associated with the LF-

model.
55

3. A Parametric, Real-Time Voice Source Model

These four voice types (as well as ‘typical’ voice) were made available to the
user. In MATLAB, the LF-parameters found in both [24] and [30] were provided
so that a preferential set of voice types could be used for the final application.
During informal subjective listening, the LF-parameter values from [24]
provided the most noticeable difference between each voice type, with the modal
and vocal fry voices eliciting more positive subjective responses than their

counterparts from Mullen’s VocalModel code.

Table 3.1 - Five voice types used for ‘LFGen’ app and their corresponding timing

parameter values
Te (%) Ty (%) Ta(%) Tc(%)
Modal 57.5 45.7 0.9 100
Breathy 75.6 52.9 8 100
Vocal Fry 25.1 19 0.8 100
Falsetto 77 57 13 100
‘Typical’ 78 60 2.8 100

Appropriate pitch ranges were considered for each voice type. In general,
breathy and modal voices are both used for typical speech and singing pitch
ranges, while vocal fry is associated with low speech and singing pitches, and
falsetto for high singing pitches. An fO-dependant voice type switching method
would mimic this feature of the human voice, and prevent irregularities such as a

vocal fry waveform appearing at high pitches.

Breathy and falsetto voice types also contain a high frequency noise component

[14]. A random number generator was implemented in the main processing loop

56

3. A Parametric, Real-Time Voice Source Model

to provide a white noise signal with values ranging between -1 and +1. The
turbulent noise component of a breathy or falsetto voice features a low-
frequency cutoff at around 2 kHz. Due to low-frequency masking effects when
added to the LF-model signal, it is not necessary to filter the noise component
first, and so non-filtered white noise was sufficient. The relative amplitude of the
white noise signal is quoted as around 5% of the source signal [14]. This value
was tested in MATLAB and provided a sufficient amount of ‘breathiness’ to the
voice source. Also significant to the turbulent noise component is the duration
and start time of the noise signal. Breathy voice is caused by an incomplete
closure of the glottis during the ‘closed phase’ of the signal. This produces a
turbulent airflow from the narrow constriction, causing noise. This usually
occurs with a start time at around 75% of the pitch period and for a duration of
50% [14], meaning that the ‘breathy’ phase of the cycle actually overlaps two
adjoining pitch periods. Three cycles of the breathy voice waveform with added

noise is displayed in figure 3.6 below.

57

3. A Parametric, Real-Time Voice Source Model

0.6

0.6 -

| | | |
0 200 400 600 800

Figure 3.6 — Three cycles of breathy voice type waveform with turbulent noise

quotient visible

3.3.4i0S Interface

In keeping with specification 3 from section 3.2, an iOS implementation of the
voice source model was developed alongside the MATLAB prototypes. This
meant developing a suitable interface alongside the voice source model. Several
approaches were considered, including a multitouch, gesture-based interface.
Early in the development stages, it was concluded that such an interface, whilst

providing an added layer of cross-coupling between the many variables at play

58

3. A Parametric, Real-Time Voice Source Model

during speech production, would constitute a lengthy development process that

would detract from the primary task.

3.3.5 Final Design

The final design for the application incorporates an LF-waveform generator, a
noise generator, pitch and amplitude modulation, voice type selection and
interpolation and a method of providing automatic f0 input. A simple i0S
interface provides the user with on-screen buttons and sliders for discrete and
continuous parameters. In MATLAB, the user is provided with a larger range of
options such as custom voice types, noise source amount and length, and audio

file playback and saving.

Figure 3.7 presents the functionality of the application in a ‘black box’ format.

Inputs Outputs
LF-Model Synthesiser Black Box
. o (pitch) . Continuous LF-model
. Amplitude LF-model equation Signal
. Noise Generator . Real-time modulations
. Voice Type]
Automatic fO generator to signal
A Auto 0 on/off Pitch-dependent voice type modulation
. Auto voice type on/off Gain multiplier
. Turbulent noise amount
. Turbulent noise duration

Figure 3.7 - Black box diagram for ‘LFGen’ application

The app design can be summarised in pseudocode as follows:

Set initial wvalues:
Set voice type to TYPICAL
Set f0 to 110 Hz
Set amplitude to 50%
Set auto f0 to OFF

59

3. A Parametric, Real-Time Voice Source Model

Set auto voice type to OFF
End

User input handling:
Set f0, amp, voice type to user selected values
End

Voice types:
Set VOCAL FRY max and min f0 values
Set FALSETTO max and min f0 values

SWITCH voice types
Case 0
Set to TYPICAL voice
Case 1
Set to MODAL voice
Case 2
Set to VOCAL FRY voice
Case 3
Set to BREATHY voice
Case 4
Set to FALSETTO voice
END

IF auto voice type is set to ON:
IF f0 is less than min VOCAL FRY fO0
Set voice type to VOCAL FRY

END
IF f0 is more than min VOCAL FRY f0 and less than max VOCAL FRY £fO0
INTERPOLATE between VOCAL FRY and MODAL/BREATHY/TYPICAL voice types
END

IF f0 is more than max VOCAL FRY f0 and less than min FALSETTO fO0
Set voice type to currently selected (MODAL/BREATHY/TYPICAL)
END

IF fO0 is more than min FALSETTO f0 and less than max FALSETTO fO0
INTERPOLATE between MODAL/BREATHY/TYPICAL and FALSETTO voice type
END

IF f0 is more than max FALSETTO fO
Set voice type to FALSETTO
END
END

LF-waveform calculation:
CALCULATE LF-equation coefficients

CALCULATE length of one full pitch period in number of samples
End

Main Processing Loop:
IF auto f0 is set to OFF
Perform LF-equation calculations
Assign value of current sample to output variable

IF BREATHY or FALSETTO voice types are selected (i.e if white noise

is needed)
CALCULATE white noise sample from random number function

60

3. A Parametric, Real-Time Voice Source Model

CALCULATE portion of waveform to add noise to. If start time +
duration is larger than one pitch period, CALCULATE the remainder to
add to the beginning of next pitch period

MULTIPLY noise sample by noise amplitude

ADD noise sample to current output variable
END

IF auto f0 is set to ON
IF current sample is at beginning of new pitch period

SET length of pitch period in samples
END

Perform LF-equation calculations

Assign value of current sample to output variable
IF BREATHY or FALSETTO voice types are selected (i.e if white noise
is needed)
CALCULATE white noise sample from random number function
CALCULATE portion of waveform to add noise to. If start time +
duration is larger than one pitch period, CALCULATE the remainder to
add to the beginning of next pitch period
MULTIPLY noise sample by noise amplitude
ADD noise sample to current output variable

END

END

SET output sample to output variable value
End

3.4 Implementation

The implementation stage comprised of two parallel tasks. First, each feature of
the application was implemented and refined in MATLAB. Once tested and
approved, this feature was incorporated into the iOS application. This allowed
for the functionality of each parameter to be studied closely in isolation from
other factors before being implemented in the final app. The MATLAB
simulations are not in real time, and take the form of a step-by-step process in
which a waveform of a defined length is calculated and converted to a PCM audio

file. The real-time processing in i0S is achieved via Core Audio. This allows for a

61

3. A Parametric, Real-Time Voice Source Model

continuous waveform that can be modified on the fly. Despite the MATLAB and

i0S development taking place in parallel, they are presented here separately for

the sake of clarity.

3.4.1 Implementation in MATLAB

The MATLAB implementation provides the user with several options in the form

of on-screen text prompts. The first section of code is a switch-case statement for

defining the timing parameters for each voice type:

)

% Voice type selection:

voicetype = input('Enter a voice type (number between 1-8):

switch voicetype

oo

for TYPICAL typical voice type
case 1
f0 = input('Enter a frequency between 94-287: ');
period = 1/£0;
tc = 1.000*period;
te = 0.780*period;
tp 0.600*period;
ta = 0.028*period;
for MODAL voice type
case 2
f0 = input('Enter a frequency between 94-287: ');
period = 1/£0;
tc = 0.582*period;

ooe

te = 0.554*period;
tp = 0.413*period;
ta = 0.004*period;

oo

for CUSTOM voice type
case 9
f0 = input('Enter a suitable frequency: ');

62

3. A Parametric, Real-Time Voice Source Model

period = 1/£f0;

TC = input('Enter a value for Tc (0-1): ');
TE = input('Enter a value for Te (0-1): ');
TP = input('Enter a value for Tp (0-1): ');
TA = input('Enter a value for Ta (0-1): ');
tc = TC*period;

te = TE*tc;

tp = TP*tp;

ta = TA*ta;

end

The timing parameters are given in terms of percentage of the overall pitch
period. The user is given nine possible options. These are typical, modal, vocal
fry and breathy voice, taken from the VocalModel source code, modal, vocal fry,
breathy and falsetto voice types obtained from [24], and a custom voice type for
user defined timing values. The user is also presented with suggested values for
fundamental frequency based on the selected voice type. These suggested
frequencies are: 94-287 Hz for typical, modal and breathy, 287-440 Hz for
falsetto, and 24-52 Hz for vocal fry. These pitch range values were obtained from

various sources, including [14], [72] and [17].

Next, the user is prompted for a ‘vocal tension’ value. This is a rough calculation
that raises or lowers the SQ by a factor of +/- 30%. This is achieved by
adding/subtracting a percentage from the previously defined timing parameters.
This allows the user to select, for example, a breathy voice type, but to modify

the SQ to illicit a more or less ‘tense’ voice than the standard breathy voice values

allow:

vocalTension = input('Enter a vocal tension value (+/1 0.3): ');
te = te + te*vocalTension;

tp = tp + tp*vocalTension;

ta = ta - ta*vocalTension;

SQ = tp/(tet+ta-tp); % Speed Quotient

63

3. A Parametric, Real-Time Voice Source Model

The bulk of the LF-waveform calculation is performed next. First, oversampling
is performed in order to avoid waveform discontinuities produced by a lower
sample rate, followed by the definition of the remaining coefficients. Next, values
for e, and Ey are calculated iteratively. In order to satisfy the area balance

condition,

f TOLF(t) =0

[3.1]

g, the exponential time constant of the return phase; a, the exponential growth
factor of the sinusoid portion (opening phase) and Ey which is the maximum
positive flow, are calculated and recalculated until the positive and negative

areas of the waveform are equal:

)

% Oversampling

period = period/overSample;
tc = tc/overSample;

te = te/overSample;

tp tp/overSample;

ta = ta/overSample;

% LF coefficent calculation
tn = te - tp;
tb = tc - te;

wg = pi/tp;
Eo = Ee;

areaSum=1.0;

peakChange=0.001;
optimumArea=le-14;
epsilonDiff=10000.0;
epsilonOptimumDiff=0.1;

% solve iteratively for epsilon

epsilonTemp = 1/ta;

while abs(epsilonDiff)>epsilonOptimumDiff

64

3. A Parametric, Real-Time Voice Source Model

epsilon = (l/ta)*(l-exp(-epsilonTemp*tb));
epsilonDiff = epsilon - epsilonTemp;
epsilonTemp = epsilon;

if epsilonDiff<0

epsilonTemp = epsilonTemp + (abs(epsilonDiff)/100);
end
if epsilonDiff>0

epsilonTemp = epsilonTemp - (abs(epsilonDiff)/100);
end

end

% iterate through area balance to get Eo and alpha to give Al + A2 =
0

while (areaSum > optimumArea)
alpha = real((log(-Ee/(Eo*sin(wg*te))))/te);

Areal = (Eo*exp(alpha*te)/(sgrt(alpha*alphatwg*wg)))...
* (sin(wg*te-atan(wg/alpha)))...
+ (Eo*wg/(alpha*alphat+wg*wg));

Area2 = (-(Ee)/(epsilon*epsilon*(ta)))...
* (1 - exp(-epsilon*tb*(l+epsilon*tb)));

areaSum = Areal + Area2;

if areaSum>0.0

Eo = Eo - le5*areaSum;
elseif areaSum<0.0

Eo = Eo + le5*areaSum;
end

end

The length of one full pitch period in samples is calculated, followed by the
turbulent noise coefficients. noiseburation is the length of the turbulent noise
portion, determined as a percentage of the pitch period. noisestart is the point

at which the noise begins:

)

% Noise parameters

noiseAmt = input('Enter a turbulent noise amount (0-1): ');
if noiseAmt > 0.0;

noiseDuration = input('Enter a turbulent noise duration: ');
noiseStart = input('Enter a turbulent noise start position: ');
noiseDuration = noiseDuration*dataLength;

noiseStart = noiseStart*datalength;

65

3. A Parametric, Real-Time Voice Source Model

The user is then prompted to define a length in seconds for audio output. This is
converted to a value in samples depending on sampling frequency, and an output

waveform array is created:

% playback section

durationSeconds = input('Enter a duration (s): ');
durationSamples = durationSeconds*Fs;

waveform = zeros(1l,durationSamples);

The main processing loop incorporates a sample-by-sample calculation of the LF-
waveform based on the LF-model equation

LF(t) = Eje*sin(wyt),0<t < ¢,
[3.2]

E
LF(t) = ——=[e7*te) —estentel] t, <t <t < T,
a

[3.3]

for i = l:durationSamples

t j*period/datalLength;

This is where the LF waveform is calculated

[

if t<te
LFSample = Eo*(exp(alpha*t)) * sin(wg*t);
end
if t>=te
LFSample = -((Ee)/(epsilon*ta))*(exp(-epsilon*(t-te))...
- exp(-epsilon*(tc-te)));
end
if t>tc
LFSample = 0.0;
end

This is followed by the turbulent noise samples being created using a random
number generator. These are added to the current sample depending on the
noiseAmt variable. If no noise is selected then the waveform stays the same. If a
noise amount has been defined, then a sample of random amplitude (scaled by
the noiseamt variable) is added to the current sample. Only the portions of the

waveform defined by noiseDuration, noisestart and remainder are assigned

66

3. A Parametric, Real-Time Voice Source Model

a noise sample:

if noiseAmt == 0.0;
waveform(i) = LFSample;
end
% Add noise
if noiseAmt > 0.0;
noiseSample = rand(1l,1)*noiseAmt;

)

>3

¥ This adds white noise to LF-waveform at noiseStart for
noiseDuration.

need to cycle around to the start of pitch period if noiseStart +
% noiseDuration is bigger than length of period (dataLength):

oo

if noiseStart + noiseDuration < dataLength;
if j >= noiseStart && j <=noiseStart+noiseDuration
waveform(i) = LFSample + noiseSample;

end

if j < noiseStart || j > noiseStart+noiseDuration
waveform(i) = LFSample;

end

end
if noiseStart + noiseDuration > dataLength;
remainder = (noiseStart+noiseDuration)-dataLength;
if j <= remainder || j >= noiseStart
waveform(i) = LFSample + noiseSample;
end
if j > remainder && j < noiseStart
waveform(i) = LFSample;
end
end
end

Finally, a counter j is incremented and reverted to 0 if its value is larger than the
pitch period size in samples. This allows multiple pitch periods to be calculated
in the same output waveform. The user is then provided with options for

playback and saving of the waveform, as well as a plot for visual reference:

j=j+1;
if j > datalength
j = j - dataLength;
end
end
plot(waveform);
p = input('press 1 to play sound: ');

14

67

3. A Parametric, Real-Time Voice Source Model

ifp::
sound (waveform,Fs)
end
s = input('press 1 to save sound: ');
if s ==
filename = input('Enter .wav filename: ');
audiowrite(filename, waveform, Fs);
end

g = input('press 1 to start or 0 to quit: ');
end

A separate MATLAB script was created to prototype an automatic fO trajectory
obtained from a recorded phrase. Praat software was used to obtain the fO data
from a short utterance with a rising and falling f0, lasting one second. This data
was then loaded into MATLAB. The sampling frequency of the fO acquisition was
100 Hz, so the data had to be interpolated to the MATLAB sampling frequency of
44.1 kHz. An output array equivalent to the size in samples of the interpolated fO
data was created. The rest of the code is similar to the previous, with the
exception that the processing loop encompasses the entire process, allowing the
waveform to be recalculated at each pitch cycle depending on the current f0

value:

f0_file = load('naturalf02.mat');

fo = f0_file.FO0_Hz;

lengthf0 = size(£f0,1);

fOsampleRate = 100; % sample rate for pitch data in PRAAT
Fs = 44100;

overSample = 1000;

fOchangeRate = Fs/f0sampleRate;

newf0 = interp(f0,fOchangeRate);

lengthNewf0 = size(newf0, 1);

output = zeros(1l,lengthNewf0);

q=1;
k=1;
while q ==
voicetype = input('Enter a number between 1-5: ');

68

3. A Parametric, Real-Time Voice Source Model

for i = 1l:lengthNewf0

period = 1/newfO(1i);

3.4.2 Implementation in iOS

Implementation of the application in iOS involved adding to a pre-written Core
Audio app template by Dimitrios Zantalis. This template provides the necessary
Core Audio configurations for a real-time audio app. The RemotelO audio unit is
configured for simple playback with no input sound source. The Audio Stream
Basic Description (ASBD) defines the format and size of the audio data, including
number of channels and bytes per channel. More information on core audio for

i0S is available in [67].

The Model-View-Controller (MVC) design paradigm [73] dictates that core
processes (the ‘models’) are calculated in separate functions from user interface
handling (the ‘views’), with communication between the two handled by
‘controller’ functions. This implementation follows the MVC paradigm, with user
input handling methods (the ‘View) provided in the ViewController function,
whilst the main audio processing (the ‘Model’) occurs in the AudioEngine
function. In order to pass variables and coefficients between these methods and
functions, a structure of type EffectState (the ‘Controller’) is declared in the
AudioEngine header file (figure 3.8). This structure allows basic operations such

as GUI handling and coefficient calculation to happen in separate threads to the

69

3. A Parametric, Real-Time Voice Source Model

high-priority DSP thread, passing variables via EffectState only when

necessary.
Interface
S Vi
. iew
setModal() etVocalFry()l fsetBreathy(f fsetFalsetiof)
setFo() setTension() setTa() setAmplitude() 7
pitchSlide() autoVoice() vowelOn()
o~ LN AW
SN Ly 1
' N\ AW Y 1
ettt L e et S R N TR e R A i etVoiceType()
init() initValues() createDWM() reateLFinput()
! Model
C o ntrol Ie r EffectState o4 playbackCallback()

Figure 3.8 - Software diagram for LFGen i0S application with Model-View-

Controller layout highlighted.

Aside from the Core Audio implementation, the algorithm for the iOS version
follows a very similar structure to the MATLAB version. First, the parameters
available to the user are set based on user input. The main deviation from the
MATLAB implementation is the inclusion of a set of initial values. This allows
instant playback as soon as the application is opened, rather than waiting for the

user to set every parameter value before any sound is processed:

70

3. A Parametric, Real-Time Voice Source Model

—(void)initValues{
effectState._f0 = 110.0;
effectState._k = 0;

//TYPICAL voice type
effectState._tcVal

= 1.0;
effectState._teVal = 0.575;
effectState._tpVal = 0.457;
effectState._taVal = 0.009;

effectState._amp = 0.5;
effectState._pitchSlide = FALSE;
effectState._autoVoice = TRUE;

This sets the initial voice type to ‘typical’, with an automatic f0 input and

amplitude set to 50%.

The following methods handle the user input from the interface class. If a
variable is used in another method, this method is called when the variable is
changed. For example if a timing parameter is altered, the main LF-waveform

method is called so that a new waveform can be calculated, for example:

—-(void)setTa: (Float32)taValue{
effectState._taVal=taValue;
[self createLFInputl;

The setVoiceType method defines the timing parameters and turbulent noise
quotients for the current voice type. The values are passed to the createLFInput
method, which calculates the LF-waveform. First, the pitch thresholds for vocal
fry and falsetto voice types are defined. These define the pitch ranges over which
the voice type will automatically modulate from low-f0 voice types (vocal fry) to
mid-f0 voice types (breathy, modal and ‘typical’) to high-fO voice types (falsetto).
These values are defined in terms of the amount of samples in one full pitch

period:

71

3. A Parametric, Real-Time Voice Source Model

int vocalFryMax, vocalFryMin, falsettoMax, falsettoMin;

vocalFryMax
vocalFryMin
falsettoMax
falsettoMin

848; // 52 Hz
469; // 94 Hz
213; // 207 Hz
153; // 288 Hz

The timing parameter and turbulent noise quotient values are given the same

values as in the MATLAB script, with an extra statement to call the

createLFInput method in order to update the waveform:

switch (effectState._voiceType) {
case 0: // typical voice type

effectState._tcvVal = 1.0;
effectState._teVal = 0.780;
effectState._tpVal = 0.600;
effectState._taVal = 0.028;
effectState._noiseOn = FALSE;
effectState._vocalTension = 0.0;

[self createlLFInput];

break;

The rest of this method handles the interpolation between voice types. An ‘if

statement checks if the ‘auto voice type’ option has been selected, and if true,

performs the interpolation:

if (effectState._autoVoice == TRUE){

// Set to Vocal Fry if datalLength is larger than vocalFryMax
(i.e. if f@ < 52 Hz)

if (effectState.

}

_dataLength > vocalFryMax) {

effectState._tcVal = 1.0;
effectState._teVal = 0.251;
effectState._tpVval = 0.19;
effectState._taVal = 0.008;
effectState._noiseOn = FALSE;
effectState._vocalTension = 0.0;

[self createlLFInput];

// Interpolate from Vocal Fry to Breathy/Modal if datalLength
is between vocalFryMax & vocalFryMin (i.e if 52 < f@ < 94)

if ((effectState._datalLength < vocalFryMax) &&
(effectState._datalLength > vocalFryMin)){

interpFraction = ((double)vocalFryMax -

72

3. A Parametric, Real-Time Voice Source Model

(double)effectState._datalLength)/((double)vocalFryMax -
(double)vocalFryMin);

if (effectState._voiceType == 3) { // if BREATHY voice
is selected, interpolate from vocal fry params to breathy params
effectState._noiseOn = TRUE;
effectState._noiseDuration = 0.5;
effectState._noiseStart = 0.75;

effectState._noiseAmount = 0.025xinterpFraction;

effectState._teVal = (0.251x(1-
interpFraction))+(0.756xinterpFraction);

effectState._tpVal = (0.19%(1-
interpFraction))+(0.529kinterpFraction);

effectState._taVal = (0.008%(1-
interpFraction))+(0.082xinterpFraction);

b

if (effectState._voiceType == @) { // if TYPICAL voice

is selected

effectState._noiseOn = FALSE;

effectState._teVal = (0.251x(1-
interpFraction))+(0.780xinterpFraction);

effectState._tpVal = (0.19%(1-
interpFraction))+(0.600xinterpFraction);

effectState._taVal = (0.008%(1-
interpFraction))+(0.028xinterpFraction);

b

if (effectState._voiceType == 1) { // if MODAL voice is

selected

effectState._noiseOn = FALSE;

effectState._teVal = (0.251x(1-
interpFraction))+(0.575%interpFraction);

effectState._tpVal = (0.19%(1-
interpFraction))+(0.457%interpFraction);

effectState._taVal = (0.008%(1-
interpFraction))+(0.028xinterpFraction);

}
[self createlLFInput];

}

// Set to Falsetto if datalLength is less than falsettoMin
(i.e if f@0 > 288 Hz)
if (effectState._datalLength < falsettoMin) {

effectState._tcVal = 1.0;
effectState._teVal = 0.770;
effectState._tpVval = 0.570;

effectState._taVal = 0.133;
effectState._noiseOn = TRUE;
effectState._noiseAmount = 0.015;
effectState._noiseDuration = 0.5;
effectState._noiseStart = 0.75;
effectState._vocalTension = 0.0;

73

3. A Parametric, Real-Time Voice Source Model

[self createLFInputl];

}

// Interpolate from Breathy/Modal to Falsetto if datalLength
is between falsettoMin and falsettoMax (i.e if 207 Hz < f@ < 288 Hz)
if ((effectState._dataLength >= falsettoMin) &&
(effectState._datalength < falsettoMax)) {
interpFraction = ((double)vocalFryMax -
(double)effectState._dataLength)/((double)vocalFryMax —
(double)vocalFryMin);

if (effectState._voiceType == 3) { // if BREATHY voice
is selected, interpolate from breathy params to falsetto
effectState._noiseOn = TRUE;
effectState._noiseDuration = 0.5;
effectState._noiseStart = 0.75;

effectState. noiseAmount = (0.025%(1-
interpFraction))+0.015xinterpFraction;
effectState._teVal = (0.756%(1-
interpFraction))+(0.770xinterpFraction);
effectState._tpval = (0.529%(1-
interpFraction))+(0.570%interpFraction);
effectState._taVal = (0.082x(1-
interpFraction))+(0.133%interpFraction);

b

if (effectState._voiceType == @) { // if TYPICAL voice
is selected
effectState._noiseOn = TRUE;
effectState._noiseDuration = 0.5;
effectState._noiseStart = 0.75;

effectState._noiseAmount = 0.015xinterpFraction;

effectState._teVal = (0.780%(1-
interpFraction))+(0.770xinterpFraction);

effectState._tpval = (0.600%(1-
interpFraction))+(0.570%interpFraction);

effectState._taVal = (0.028%(1-
interpFraction))+(0.133%interpFraction);

b

if (effectState._voiceType == 1) { // if MODAL voice is
selected
effectState._noiseOn = TRUE;
effectState._noiseDuration = 0.5;
effectState._noiseStart = 0.75;

effectState._noiseAmount = 0.015xinterpFraction;

effectState._teVal = (0.575%(1-
interpFraction))+(0.770xinterpFraction);

effectState._tpVal = (0.457%(1-
interpFraction))+(0.570%interpFraction);

effectState._taVal = (0.028%(1-
interpFraction))+(0.133%interpFraction);

74

3. A Parametric, Real-Time Voice Source Model

[self createLFInputl];
¥

// if datalLength is between vocalFryMin and falsettoMax,
keep t values the same
if ((effectState._datalLength >= 213) &&
(effectState._datalLength <= 469)) {
if (effectState._voiceType == 3) { // if BREATHY voice
is selected, interpolate from breathy params to falsetto
effectState._noiseOn = TRUE;
effectState._noiseDuration = 0.5;
effectState._noiseStart = 0.75;

effectState._noiseAmount = 0.025;

effectState._teVal = 0.756;
effectState._tpVal = 0.529;
effectState._taVal = 0.082;

b

if (effectState._voiceType == @) { // if TYPICAL voice
is selected

effectState._noiseOn = FALSE;
effectState._teVal = 0.780;
effectState._tpVal = 0.600;
effectState._taVal = 0.028;

}

if (effectState._voiceType == 1) { // if MODAL voice is

selected

effectState._noiseOn = FALSE;
effectState._teVal = 0.575;
effectState._tpVal = 0.457;
effectState._taVal = 0.028;

b

[self createLFInputl];

The createLFInput method is largely identical to its MATLAB counterpart, with
some minor differences. Due to the real-time nature of the waveform calculation,
any changes made to the timing parameters that result in discontinuities or
abnormal waveforms can produce unwanted digital distortion and clipping. In

75

3. A Parametric, Real-Time Voice Source Model

order to prevent timing parameter values from falling outside their appropriate

ranges, the following lines of code were added:

if (te <= tp) {
te = tp + tp*0.01;

if (te >= (tc-ta)){
te = tc-ta - (tc-ta)x0.01;
}

This simply ensures that te never falls before the point t, or after the return

phase (at tc - ta).

Once the LF-waveform parameters have been calculated, they are passed to the
effectState structure to be accessed in the main processing loop. The LF-
model equations 3.2 & 3.3 are calculated here, with the turbulent noise

component created and added to the waveform:

if (noiseOn == TRUE) {
// Creates white noise between -1 and +1

noiseSample = rand() % 200;
noiseSample = noiseSample - 100;
noiseSample = noiseSample/100;

// Attenuate noise signal by noise amount selected

noiseAdd = noiseSamplexnoiseAmount;
// Turbulent noise portion of waveform begins at the closing phase
and ends during the opening phase (i.e. crosses over two pitch
cycles)
// Need to 'wrap' noise around so that the opening phase portion of
noise begins at the start of the pitch cycle
// Calculate remainder (portion of noise that extends beyond pitch
period):

noiseRemainder = (noiseStart + noiseDuration) - datalength;

// if start time + duration is less than length of period (i.e no
remainder)
if (noiseStart + noiseDuration < datalLength) {
if (k >= noiseStart + noiseDuration){
LFcurrentSamplel = LFcurrentSample;
}

if (k < noiseStart) {
LFcurrentSamplel = LFcurrentSample;

76

3. A Parametric, Real-Time Voice Source Model

b

if (k > noiseStart & k <= noiseStart + noiseDuration) {
LFcurrentSamplel = LFcurrentSample+noiseAdd;

b

}

// if start time + duration is greater than length of period (i.e
noise wraps round)
if (noiseStart + noiseDuration >= datalength){
if (k > noiseRemainder && k < noiseStart) {
LFcurrentSamplel = LFcurrentSample;

}
if (k <= noiseRemainder || k >= noiseStart) {
LFcurrentSamplel = LFcurrentSample+noiseAdd;
}
b

The ‘auto f0O’ option allows the user to select a pre-recorded pitch sequence taken
from a natural speech recording using Praat [74]. The fO data from this recording
is stored in an array f@Data[]. This data is recorded at a sampling frequency of
100 Hz, while the iOS system sampling frequency is set 44.1 kHz. This means in
order to play back the recorded pitch sequence, the f0 must be updated every
441 samples. A variable sampleCount is incremented every loop. When this
variable reaches 441, a new f0 value is taken from f@Data[]. In order to prevent
waveform discontinuities, the pitch period length is only updated at the

beginning of a new cycle (i.e. when the variable kk =0):

if (kk>datalLength) {
kk = 0;
}

if (sampleCount == f@Update) {
sampleCount = 0;
}

// Update new value for datalLength based on natural f@ data
if (sampleCount == 0) {

period = (1/f@Data[f@Count])/overSample;

foCount += 1;

if (f@Count == 100) {

77

3. A Parametric, Real-Time Voice Source Model

foCount = 0;
}

if (kk == 0) {
datalLength = floor(FsxperiodxoverSample);
}

kk += 1;

sampleCount += 1;

The interface for the app is a simple design with a single view (fig. 3.8). Only on-
screen buttons and sliders are used to provide control of toggle events and
continuous variables. The user is given the five voice type options, buttons for
automatic pitch and voice type modes, pitch control, ‘vocal tension’ (or speed
quotient), vocal fold return rate (the value for t.) and amplitude. Another button
allows the user to start and stop audio processing, with a final button for
switching between only voice source synthesis and voice source with vocal tract

modelling synthesis (discussed further in the next chapter):

78

3. A Parametric, Real-Time Voice Source Model

iOS Simulator - iPad / iOS 7.1 (11D167)

Carrier ¥ 414 PM 100% ()
TYPICAL Voice Type MODAL Voice Type
BREATHY Voice Type VOCAL FRY Voice Type
FALSETTO Voice Type VOWEL On/Off
Auto 0 On/Off

Start/Stop Audio

Auto VoiceTypes On/Off

fO/Pitch

Vocal Tension

Vocal Fold Return Rate

Amplitude

Figure 3.9 - Screenshot of final implementation of ‘LFGen’ application interface (a
screen-captured demonstration video is available with the accompanying files

under ‘LFGenDemoVideo.mp4’)

79

3. A Parametric, Real-Time Voice Source Model

3.5 System Testing

In order to verify the functionality of this application, a set of criteria must be set
out that should be fulfilled by a completed system. Based on the specifications
and design given earlier in the chapter, the system testing criteria for this
application are:

1. Reproduction of the glottal source waveform based on the LF-equation
given earlier. The output waveform should resemble that discussed in
[12] [14] [21] etc., with matching spectra (i.e. -12 dB/octave slope for
falsetto and breathy voice).

2. Fundamental frequency matches that specified by the user.

3. Appropriate manipulation of breathiness, vocal tension, and vocal fold
return rate available to the user. These should alter the output spectrum
whilst maintaining the overall properties of the LF-waveform.

4. Automatic pitch mode gives an accurate reproduction of the f0 slide of an
existing voice recording.

5. Automatic voice type mode modulations across voice types for specific

frequency ranges.

A point of interest from the testing stages is the method by which the voice
source model was subjectively verified. Even a highly accurate reproduction of
the voice source waveform would sound unrecognisable as a human voice, due to
the effects on the signal of the vocal tract. In order to evaluate the voice source
model during testing stages, a 3D printed vocal tract model was used (fig. 3.9).

These were developed at the University of York, produced from 3D MRI data. The
80

3. A Parametric, Real-Time Voice Source Model

3D printing process converts this data into a physical object with an acoustic
cavity of the exact dimensions as a human vocal tract during a single sung vowel.
When attached to a loudspeaker at the glottis end, any acoustic signal can be
used to excite the printed tract’s acoustic chamber. Some accuracy is lost due to
the rigidity of the material used to produce the model when compared with the
soft tissue within the vocal tract, as well as the static nature of the vowel
produced. However, it was considered that this provided a good enough way of

quickly assessing the perceived effects of voice source modulation.

Figure 3.10 - A 3D printed vocal tract model for a sung /A/ vowel. The loudspeaker

is attached via a seal at the glottis end.

The process for evaluating the voice source model via the 3D printed vocal tract
consisted of noting subjective responses from the author and colleagues to the
various modifications made to the voice source model. This was an informal

process, however care was taken not to skew external listener’s responses with
81

3. A Parametric, Real-Time Voice Source Model

leading questions such as ‘does this version sound more breathy?’, for example.
Static pitch tests were played at 110Hz except in the case of vocal fry and
falsetto, which were also tested at 40 and 300Hz respectively. Unfortunately no
acoustic recordings were made of the resulting waveforms when used in
conjunction with 3D vocal tract, however, the voice source waveforms can be
found in the accompanying data CD under ‘Audio’. Varying pitch was applied
using a linearly rising and falling fO between 20 and 400 Hz, followed by the pre-
recorded f0 trajectory described earlier in this section. These tests were largely
brief comparisons between different versions of the same voice type being

modelled in order to ascertain which illicited the most positive response.

A more quantitative study was considered for ascertaining the accuracy of each
model as well as the 3D printed vocal tract. This would have consisted of taking
anechoic recordings of a.) the ‘default’ LF waveform (from the VocalModel synth
implemenetation) exciting the 3D vocal tract, b.) the extended LF-model for each
voice type exciting the 3D vocal tract, c.) both versions of the LF-model used with
the 2D DWM digital vocal tract model, and c.) a human voice singing the same
vowel and pitch as the synthesised versions. The human voice recording would
be recorded first so that the f0 and amplitude data could also be extracted and
applied to the synthesised versions. By comparing the frequency response of
each recording, it would be possible to determine the effectiveness of each
combination of models in simulating a spoken or sung vowel. As well as time
constraints, one of the reasons for not implementing this testing methodology in

this study is that fact that in order to ensure a fair comparison across each model

82

3. A Parametric, Real-Time Voice Source Model

type, a new set of MRI data would have to be captured so that the 3D and digital
models were of the same human vocal tract. Currently, the MRI data used for the

2D DWM is taken from a separate study to the 3D vocal tract.

3.5.1 Waveform Reproduction

In order to verify the accuracy of the LF-model equation and its corresponding
audio output, plots were made of a full pitch period of each voice type, along with
an amplitude spectrum of the signal. The following waveform plots were
captured by plotting the data from the PCM-encoded .wav files created in
MATLAB (the corresponding audio files can be found under the ‘Audio Examples’

folder with the accompanying media):

Amplitude Spectrum of the signal

05— — 140

D —

05k

Amplitude

o}
o

Magnitude (dBVY)

[=2]
o

"o 50 100 150 200 250 300 350 400 0 1000 2000 3000 4000 5000
Time (Samples) Frequency (kHz)

N
(=)

Figure 3.11 - Waveform and spectrum for modal voice type

83

3. A Parametric, Real-Time Voice Source Model

0.8 T

Amplitude

- L

s L

0 50

04

L L L
150 200 250 300 350 400

Time (samples)

100

Amplitude Spectrum of the signal

Figure 3.12 - Waveform and spectrum for breathy voice type

Amplitude

L

L L L L L
150 200 250 300 350 400

Time (Samples)

L
50 100

Figure 3.13 - Waveform and Spectrum for vocal fry voice type

Amplitude

L
350

L L L hy
150 200 250 300 400

Time (Samples)

L L
50 100

140 T
120+ : ; : 1
2
) ;
e} :
E : é
E’ 80} g : B
[v] : : :
= i 5 s :
40 H;H‘IIIM;W.I|;||||
0 1000 2000 3000 4000 5000
Frequency (kHz)
Amplitude Spectrum of the signal
140 : T T
120+
2
T 100
2 , , Q
2 ' , .
= :
= :
“ H’H“M\MI
0 1000 2000 3000 4000 5000
Frequency (kHz)
Amplitude Spectrum of the signal
140 T T T T
120,
2
© 100
L]
o : :
2 ; :
© :
= : :
60! ‘ ’ 2 : ,]
4 "||;\‘|‘|||Hll\lllllmlm.}.,
0 1000 2000 3000 4000 5000

Frequency (kHz)

Figure 3.14 - Waveform and spectrum for falsetto voice type

84

3. A Parametric, Real-Time Voice Source Model

Amplitude Spectrum of the signal

M 140
02}
120} ; .]
0 = : 5 ; :
Z : : : :
S 2 : : ;
g4 g 80f : : :
] :

06} = ; :
LT
N B 40 : : :

"o 50 100 150 200 250 300 350 400 0 1000 2000 3000 4000 5000
Time (Samples) Frequency (kHz)

Figure 3.15 - Waveform and spectrum for ‘typical’ voice type

These plots show that the algorithm produces a very similar waveform to the LF-
model. It can immediately be seen that the ‘flute-like’ falsetto voice (fig 3.12)
more closely resembles a sine wave, whereas the tense vocal fry waveform (fig

3.11) possesses a far steeper return curve with a shorter open quotient.

Figures 3.10 and 3.12 both clearly display a small amount of amplitude
modulated white noise at the beginning and end of the waveform. It can be seen
from the amplitude spectrum plot that this makes up for the interharmonic
white noise portion of the spectrum, consistent with the breathy voice
simulations explained in [14]. As Childers et al. found, the effect of the strong
low-frequency harmonics masking the noise component can be seen clearly in
the spectrum. This confirms that a high-pass filter is not necessary to eliminate

perceptible noise below 2 kHz.

85

3. A Parametric, Real-Time Voice Source Model

3.5.2 Fundamental Frequency

The fundamental frequency for each voice type in MATLAB AND iOS was
analysed when set to 24 Hz, 110 Hz and 440 Hz. This was achieved Using the
Pitch Detection Nyquist plug-in for audacity [75] routing the system audio from
MATLAB and iOS to the DAW using the SoundFlower internal soundcard plug-in
[76]. This was considered the optimum method as no digital-to-analogue
conversion (and vice versa) was required, leaving the PCM signal largely
untouched. All voice types produced the desired pitch when set to 24 and 110
Hz, with small discrepancies (+/- 1 Hz) when set to 440 Hz. This could be purely
due to the pitch detection algorithms used within the plug-in (indeed, using the
spectrum plotting plug-in yields differing results from the dedicated pitch
detection plug-in, and is variable with window types and sizes) but may also

require further work to improve the fundamental frequency accuracy.

3.5.3 ‘Vocal Tension’ Parameters

The two parameters identified as capable of producing a noticeable change in
vocal tension (i.e relaxed or stressed voices) were the speed quotient (SQ) and
the vocal fold return rate (t.). Tense voices are defined as possessing a ‘broad
peak in the spectrum at high frequencies’ while relaxed voices possess a ‘steeply
declining spectral slope’ [14]. To confirm that altering these parameters
produces the desired spectral effects, the ‘typical’ voice source was synthesised
with no vocal tension and a return rate of 0.028. The vocal tension parameter

86

3. A Parametric, Real-Time Voice Source Model

was then set to -0.3 and +0.2 (found to be the outer limits that this value can be
set to before the waveform becomes distorted and clipping occurs). Vocal fold
return rate variation is achieved by adding or subtracting a percentage of the
default ta value. This was set to -0.9 then 0.1. The resulting waveform plots and

spectra are presented in figures 3.15 to 3.22.

Amplitude

1 1 1 | 1
0 50 100 150 200 250 300 350 400
Time (Samples)

Figure 3.16 - ‘Typical’ voice type waveform with minimum (black) and maximum

(red) ‘vocal tension’ values superimposed

Amplitude Spectrum of the signal
140 e O s .

120+

100+

Magnitude (dBV)

0 1000 2000 3000 4000 5000
Frequency (kHz)

Figure 3.17 - ‘Typical’ voice type spectrum with no adjustments to ‘vocal tension’

(V1)

87

3. A Parametric, Real-Time Voice Source Model

Amplitude Spectrum of the signal

140 T T T T
120k : JO S _
3 : | |
g 100k g e : R — b i
3 : : ;
& 80L| |1t [T ; F SRR i
< : : :
= : ; :
oLl IH ‘ } H ‘ l } ‘ ’ ‘ R i
. LT e
0 1000 2000 3000 4000 5000

Frequency (kHz)

Figure 3.18 - ‘Typical’ voice type with minimum VT

Amplitude Spectrum of the signal

140 T T T T
s | | : |
3100_]
3 2 : '
2 - : : :
© : :
= ; ; ;
soLft |- H } ‘ \ ‘ } ‘ H ’ ‘ T
0 1000 2000 3000 4000 5000

Frequency (kHz)

Figure 3.19 - ‘Typical’ voice type spectrum with maximum VT

06 T T T T

Amplitude

- 1 L L

1 1 1 1
0 50 100 150 200 250 300 350 400
Time (Samples)

Figure 3.20 - ‘Typical’ voice type waveforms with minimum t, value (black), default

(blue) and maximum (red) superimposed.

88

3. A Parametric, Real-Time Voice Source Model

Amplitude Spectrum of the signal

140_ R
120_ FE
&
E100w
3
= :
© : :
= ;
0 1000 2000 3000 4000 5000
Frequency (kHz)

Figure 3.21 - ‘Typical’ voice type spectrum with no adjustments to t, value

Amplitude Spectrum of the signal
140 T

130 : ~

120 B

110+ B

-
o
o
T
i

LRIy

Frequency (kHz)

Magnitude (dBV)

00

Figure 3.22 - ‘Typical’ voice type spectrum with minimum t,

Amplitude Spectrum of the signal
140

130 : B

120} B . . i

= 100} : 1

80

Magnitude (dB

QO ||y -
70

2 m

Frequency (kHz)

gt

5000

[M —
o

Figure 3.23 - ‘Typical’ voice type spectrum with maximum t, value

89

3. A Parametric, Real-Time Voice Source Model

The spectra show that an increase in the VT parameter provides a small boost in
high frequencies above 3 kHz. A steeper high-frequency roll-off occurs with a low
SQ. From the waveform plots, it is clear that the most marked effect of altering
the SQ is the extension of the opening phase and decrease in the positive peak
amplitude due to the area balancing condition. While the effect on the waveform
is quite extreme, the audible spectral effects are far more subtle. This is due to
the main excitation of the glottal source being the negative peak and the return
slope gradient, which is only marginally increased with the SQ value, and has no

variation in amplitude.

Variations in t, value provide more distinct spectral effects, in line with Childer’s
definition of hypo-/hyper-tension. This also provides a more stable alternative,
as explained in section 3.3; t, can be altered over a wide range of values without

producing discontinuities, while maintaining the overall LF-model ‘shape’.

3.5.4 Automatic Pitch-Dependent Voice Types

A key feature of this application designed to mimic the way the human voice
source responds to pitch is the automatic modulation between voice types, with
vocal fry voice for low frequencies, modal, breathy or ‘typical’ for mid-range, and
falsetto for high frequencies. In natural speech the voice type does not instantly

change as it passes certain pitch thresholds, but modulates between voicings.

90

3. A Parametric, Real-Time Voice Source Model

A recording of the output from iOS was made using Audacity, in order to closely
analyse the waveforms produced by the ‘auto-voice’ function. An fO0 sweep over
the entire accessible range of the app (24-440 hz) was made and the output

waveform image produced (fig. 3.23):

XRudio Trac ¥] 10
32-bit float =

07

0.6

0.4

03

Ll
; |

—— |

Figure 3.24 - Waveform of audio output produced with ‘auto-voice’ function

enabled, with an f0 sweep from 24-440 Hz

From observing the full waveform, it is immediately obvious that the
interpolation between modal and falsetto induces a much larger positive peak.
This is due to the falsetto waveform’s close similarity to a sine wave, with
positive and negative peaks at almost equal magnitudes. This is an artefact from
the area balance condition in the LF equation (equation 2.1). Because the
negative peak is set to -1, as the waveform becomes more sinusoidal, the positive
peak approaches +1. This produces a perceived level increase that future

implementations of the falsetto voice type would ideally take into account.

91

3. A Parametric, Real-Time Voice Source Model

Zooming in, it is possible to observe the vocal fry waveform from 24-52 Hz (fig.

3.24):

Figure 3.25 - Two cycles of waveform between 24-52 Hz with ‘auto voice-type’

enabled

Between 52-94 Hz, the voice type modulates from vocal fry to modal. This is

evidenced by the shorter open phase and shallower return slope (fig. 3.25):

Figure 3.26 - Waveform between 52-94 Hz with ‘auto voice-type’ enabled

92

3. A Parametric, Real-Time Voice Source Model

From 94-207 Hz, the voice type remains an unaltered modal voice (fig. 3.26):

Figure 3.27 -Waveform between 94-207 Hz with ‘auto voice-type’ enabled

From 207-288 Hz, the modal voice type modulates to a falsetto waveform, with

the noise quotient increasing in amplitude over this range (fig. 3.27):

Figure 3.28 - Waveform between 207-288 Hz with ‘auto voice-type’ enabled

93

3. A Parametric, Real-Time Voice Source Model

Finally, at 288 Hz and above, a pure falsetto waveform is produced, with noise

quotient at around 5% of the total amplitude (fig. 3.28):

Figure 3.29 - Waveform above 288 Hz with ‘auto voice-type’ enabled

An important note on the ‘auto-voice’ function: the ‘default’ voice (i.e the voice
type for mid-range frequencies) will always revert back to the most recently
selected voice type. This means that if the user selects Vocal Fry on-screen, then
uses the auto-voice feature, the vocal fry waveform will be also used for mid-

range frequencies.

94

3. A Parametric, Real-Time Voice Source Model

3.5.5 Automatic f0 Trajectory

Figure 3.29 below displays the waveform of the original voice recording and its
corresponding spectrogram. The phrase lasts just under one second and

modulates over a range from 75 Hz to 121 Hz:

0.900960

0.3433]
Channel 1
-0.111

-0.3622
0.3471

0|
-0.1126}

Channel 2

-0.3665]
5000 Hz|

500 Hz

"”N’”L“' il ,;

(100 Ol
651.8 Hz} 1 ey it 1215Hz
0 Hy| il (Ll ' JMMI w2 (75 Hz
0.458804 0.422754
0.442156 [0.442156 Visible part 0.881558 seconds 1.323715 3.575696

Figure 3.30 - Screenshot of Praat software spectrogram produced from an audio

recording of a human voice producing an /A/ vowel with a modulating f0

After synthesis using the same fO data taken from the Praat software, the

waveform was stored as a .wav sound file and loaded back into praat. The

fundamental frequency was then analysed following the same process (fig. 3.30):

95

3. A Parametric, Real-Time Voice Source Model

0.543347

0.03458|

0 T

-0.01043

-0.03577
5000 Hz|

TITTT|500 Hz

|
i

|

00000000 A

nmmmnnn;»m||mnlnil|mHHNHWME!H‘NNH»lmi‘mm UL

ARERLALL

o AN
0543347 | 0.456653
0 Visible part 1.000000 seconds 1.000000|

118.4 Hz
75 Hz

il

Figure 3.31 - Screenshot of Praat software spectrogram produced from an audio

recording of a synthesised voice producing an /A/ vowel with a modulating f0

It can clearly be seen that the resynthesised audio possesses a remarkably
similar, though not identical, fO trajectory to the original voice recording. The
resynthesised audio lasts for just over 0.1 second longer, with a peak frequency
of 3 Hz less than the original recording. This indicates that there is some minor
discrepancy between the sampling frequency of the original audio and the
playback in MATLAB. It is also worth noting that the synthesised audio was
produced with the 2D DWM vocal tract model (discussed in detail in the next
chapter) enabled. The spectrogram shows similar formant patterns to the

original recording.

96

3. A Parametric, Real-Time Voice Source Model

3.6 Conclusions

In this chapter, the key concepts to consider for the final app design have been
explored. The effects of modulating each of the available LF-parameters were
presented, and an appropriate set of parameters available to the user were
chosen based on these findings. Responses to subjective listening from both the
author and colleagues, corroborated by literature on the subject, showed that an
fO trajectory taken from existing voice recordings provided a greater sense of
realism. The acoustic attributes of each voice type were considered, including the
turbulent noise portion of the breathy and falsetto voice types. The final design
was set out, with key stages of the implementation process documented. System
test results confirm that voice type waveforms and spectra are sufficiently
similar to those described in the literature. Alterations to perceived ‘vocal
tension’ can be achieved by altering the vocal fold return rate, with the spectra
associated with ‘hypo-/hyper-tension’ similar to those described in [14]. The
‘auto-voice’ function modulates voice types across the pitch range at the

intended values.

97

4.Vocal Tract Modelling

4.Vocal Tract Modelling

This chapter details the vocal tract modelling techniques that were implemented
as part of the final application. Although this research focuses on the voice
source, a large portion of the development and design stages were focused on
vocal tract modelling. As the voice source model described in the previous
chapter is designed to work with existing voice synthesis software, a suitable
mode of voice synthesis was chosen. The 2D Digital Waveguide Mesh (DWM)
vocal tract model described in [30] was chosen, as a real-time articulatory synth
allows a similar level of flexibility and expression as is intended for the vocal

source model.

The fundamentals of the 2D DWM are described in detail in section 2.5. For
clarity, a brief restatement of the 2D DWM vocal tract model is given below. This
is followed by a technical report of the implementation stages in MATLAB and

i0S, and finally the results from the system testing are presented.

4.1 Vocal Tract Modelling with the 2D DWM

The digital waveguide is a means of representing wave propagation within a
digital system. In acoustic terms, a one-dimensional waveguide is implemented
as a bi-directional digital delay line. 1D digital waveguides (DWGs) are useful for

modelling wave propagation in one dimension, such as vibrations on a string or
98

4.Vocal Tract Modelling

acoustic pressure waves in a tube [77]. Terminations, reflections and changes in
acoustic impedances (such as the nut on a guitar string or the holes in a flute
bore) can be modeled using 1D waveguides by altering the amplitude of the

propagated signal between delay units.

Extensions to the 1D waveguide method include 2D and 3D waveguide meshes
using a variety of topologies. The effectiveness of these synthesis methods can
also be improved using accurate models of the input source signal (i.e turbulent

airflow models for flute synthesisers, and excitation for guitar ‘plucks’).

The 2D digital waveguide mesh (DWM) extension has been shown to provide a
computationally efficient and acoustically accurate model of the human vocal
tract [30] [49] [50]. The 2D DWM allows a further dimension of reflection to the
1D DWG, with widthwise reflections allowing for more complex wave
propagation to be modeled. The following summarises the 2D DWM process as

described in detail in section 2.5:

1. Cross-sectional area function data of the vocal tract for a set of vowels is
obtained via MRI imaging techniques.

2. Area function data is stored as a set of discrete area values at regular
intervals, and the size of a single waveguide is calculated based on the
length of the vocal tract and the wave propagation distance over the

length of one sample step.

99

4.Vocal Tract Modelling

3. The overall size of the waveguide mesh is calculated based on the size of
one waveguide. The area function data is interpolated across the number
of waveguides in the x direction.

4. A raised-cosine function converts the area data to width-wise impedance
values (waveguide impedance in the y direction)

5. An ‘impedance map’ is calculated based on the pressure values at each
waveguide junction (this is an average of the incoming pressure from
surrounding junctions). Incoming pressure values at the left-most end of
the DWM (i.e the glottis end) are taken from the current sample produced
by the voice source model.

6. Output pressure is taken as the sum of all rightmost junctions multiplied

by a lip radiation value.

As discussed in section 2.5, voice synthesis using vocal tract modelling
techniques allows a large variety of phonations and articulations to be directly
modelled. A complex enough model could theoretically reproduce any

articulation possible with the human vocal tract.

A 2D DWM implementation of the vocal tract model that provided the design for
this project is the VocalModel software, described in [71]. This was developed by
Jack Mullen at the University of York, and was the first vocal tract model capable
of producing articulations in real-time, thanks to a technique known as dynamic
impedance mapping. This technique allows for a static DWM structure, whilst
manipulating the impedance values at the boundaries to emulate variations in

the area function being modeled. This was found to be far more computationally
100

4.Vocal Tract Modelling

efficient than recalculating the mesh size and shape for each area function, and
also allowed dynamic modulation between vowel area functions, allowing for

diphthongs and short vowel-only phrases to be synthesised.

Spectral analysis of the resulting synthesis output showed that the impedance-
mapped 2D DWM approach could be used as a somewhat accurate formant
synthesis method. The increased dimensionality provides simulation of non-
planar acoustic effects such as cross-axial modes which are not represented by
the 1D DWG alternative. Concessions are made to the fact that the 2D DWM
method utilises one-dimensional area function data obtained by considering the
vocal tract as a straight cylindrical tube of varying diameter, as with the 1D
counterpart. It is acknowledged that the 2D DWM presented in Mullen’s thesis is
more of a proof of concept that the heightened dimensionality provides an extra
degree of accuracy, and that the extension to a 3D mapping of an asymmetric,
non-cylindrical vocal tract model is viable. Despite these concessions, the results
were comparable with formants produced by the tried-and-tested 1D DWG
method, and diphthongs were reproduced in a stable and accurate manner with
no discontinuities [30]. For these reasons (as well as the extensive
documentation made available by Mullen), this 2D DWM implementation was

chosen as the basis for the vocal tract model used with the current software.

101

4.Vocal Tract Modelling

4.2 Implementation of the 2D DWM in MATLAB

The full code listing discussed in this section can be found in the appendix under

‘LFModelStaticVowel. m’

The original VocalModel software was written using C++ and compiled as a
Microsoft Windows application. In order to port sections of this software to iOS,
an interim MATLAB port was considered worthwhile. This would allow the
development and testing of a stable vocal tract model within an environment

suited for straightforward and in-depth debugging.

[NB: The 2D DWM MATLAB port described below is heavily based on Amelia Gully’s
work, which was produced at the University of York Audio Lab at the same time as

this research]

The primary difference between the MATLAB and C++ implementations is the
move from object-oriented programming to MATLAB'’s procedural processing.
This meant that each individual function found in the VocalModel source code
was consolidated into one process. The advantage of this is the removal of any
processes to do with real-time articulations, meaning only the fundamentals of
the 2D DWM model are required to recreate the vowel. The disadvantage is that

real-time articulations are impossible using MATLAB.

102

4.Vocal Tract Modelling

The first lines of code define the size of the DWM based on the average length of
the human vocal tract, and the size of one waveguide based on the sampling

frequency and speed of sound:

vtLength = 0.175;
vtWwidth = 0.05;

wgSize = sqrt(2) * 343 / Fs;

sizeXMax = floor(vtLength/wgSize);
sizeYMax floor(vtWwidth/wgSize);

The waveguide mesh ‘grid’ is made up of two sets of two-dimensional arrays:
pressure and impedance. The pressure arrays are made up of incoming and
outgoing pressure values for each junction, whilst the impedance arrays store

impedance values between junctions:

% Pressure:

pNPlus = zeros(sizeYMax, sizeXMax);
pNMinus = zeros(sizeYMax, sizeXMax);
PEPlus = zeros(sizeYMax, sizeXMax);
pEMinus = zeros(sizeYMax, sizeXMax);
pSPlus = zeros(sizeYMax, sizeXMax);
pSMinus = zeros(sizeYMax, sizeXMax);
pWPlus = zeros(sizeYMax, sizeXMax);
pWMinus = zeros(sizeYMax, sizeXMax);

% Impedance

zNorth = ones(sizeYMax,sizeXMax);
zEast = ones(sizeYMax,sizeXMax);
zSouth = ones(sizeYMax,sizeXMax);
zWest = ones(sizeYMax,sizeXMax);

The vowel area function data is stored in an array of size nslices, so this datais
interpolated across an array of size sizexMax. This area data is converted to
impedance data, so that a 1D array containing length-wise impedance values is
stored. To convert this 1D information to two dimensions, a raised cosine

103

4.Vocal Tract Modelling

function is applied to the impedance value at each data point, providing a width-
wise array of impedance values, with maximum impedance at the outer edges

and minimum impedance at the centre.

The width-wise raised cosine function allows for a total reflection at the outer
edges of the waveguide mesh, whilst providing a central channel for signal
propagation. A raised cosine of sufficient amplitude allows for an obstruction in

the mesh, allowing for plosives and glottal stops to be simulated [51].

Now that the 2D impedance map has been defined, the incoming and outgoing
acoustic pressure at each junction is calculated. Nested ‘for’ loops cycle through
every value in the 2D arrays and calculate the pressure value for the current

junction based on the average of all incoming pressures and impedance values:

for x = l:sizeXMax
for y = l:sizeYMax

% Calculate pressure at current junction

pd = 2*((pNPlus(y,x)/zNorth(y,x) + ...
pEPlus(y,x)/zEast(y,x) + ...
pSPlus(y,x)/zSouth(y,x) + ...
pWPlus(y,x)/zWest(y,x))) /
((1/zNorth(y,x)) + (1/zEast(y,Xx))
+ (1/zSouth(y,x)) + (1/zWest(y,X)));

% Calculate outgoing pressures from junction
pNMinus(y,x) pJ - pNPlus(y,Xx);
PEMinus(y,x) pJ - pEPlus(y,Xx);

pJd - pSPlus(y,Xx);

pSMinus(y,x)
pWMinus(y,x) pJ - pWPlus(y,Xx);

end;
end;

104

4.Vocal Tract Modelling

At each timestep, the incoming pressure values are updated, with reflection
values applied to the mesh boundaries. At this point, the current input sample is
taken from the LF-waveform output and applied to west-going pressure values at
the glottis end (i.e when x = 1). Finally, the output pressure is taken as the sum
of all right-most pressure values multiplied by the lip radiation amount, and

divided by lip impedance (the right-most impedance value).

4.3 Implementation in i0S

The full code listing discussed in this section can be found in the appendix under

‘AudioEngine.m’ and ‘AudioEngine.h’.

The i0S implementation of the 2D DWM is a fairly straightforward port from
MATLAB to C (the app is written in Objective-C, however C language is supported
and in fact recommended for audio applications [67]). The intention is to test the
compatibility between the LF-model and the 2D DWM synthesis techniques and
to ascertain the plausibility of these two methods as a full voice synthesis
package for portable devices. As such, dynamic vowel articulations are
considered unnecessary at this stage of development. This allows for a far more
streamlined implementation of the 2D DWM than that found in the VocalModel
source code, as only one vowel area function is accounted for, with the
waveguide structure also remaining static. This allows for the size of the
waveguide mesh to be defined as a constant in the header file, using values

obtained from the MATLAB script:

105

4.Vocal Tract Modelling

#define SIZE_X_MAX 15
#define SIZE_Y_MAX 4

Using a constant vowel shape also allows the area function data array to be
initialised directly, rather than loaded from a text file (found in the createbwM()

method):

double areaDatall = { 0.5625,
0.4620,
0.2074,
0.2139,

4,2713,
4.6729,
5.0273};

The key difference between the MATLAB and iOS implementation is the use of
1D arrays to store pressure and impedance values. This is due to the fact that the
arrays are defined and calculated outside of the main processing loop, and must
be passed to the effectState structure in order to be referenced at each
timestep. Passing a 2D array between methods requires the use of multiple
pointers, whereas a 1D array can be passed straight to the structure and then to
the processing loop. This allows for a much more straightforward

implementation, but requires a small amount of array manipulation.

A 2D array such as my2DArray[Y][X] can be considered equal to a 1D array
mylDArray[Y*X]. In order to initialise and address the 1D array, the value at
my2DArray[a][b] is equal to mylDArray[a*X + b]. In this manner, the

pressure and impedance arrays are initialised:

// initialise empty arrays for pressure and impedance

106

4.Vocal Tract Modelling

// Pressure:
Float32 pNPlus[sizeYMaxkxsizeXMax];
Float32 pNMinus[sizeYMaxxsizeXMax];
Float32 pEPlus[sizeYMaxkxsizeXMax];
Float32 pEMinus[sizeYMaxxsizeXMax];
Float32 pSPlus[sizeYMaxkxsizeXMax];
Float32 pSMinus[sizeYMaxksizeXMax];
Float32 pWPlus[sizeYMaxkxsizeXMax];
Float32 pWMinus[sizeYMaxxsizeXMax];
// Initialise pressure arrays to 0
for (int y = 0; y < sizeYMax; y++) {
for (int x = @; x < sizeXMax; x++) {
pNPlus [yxsizeXMax + x] = 0;
pNMinus [yxsizeXMax + x] = 0;
pEPlus [yxsizeXMax + x] = 0
pEMinus [yxsizeXMax + x] =
pSPlus [yxsizeXMax + x] = 0
pSMinus [yxsizeXMax + x] =
pWPlus [yxsizeXMax + x] = 0
pWMinus [yxsizeXMax + x] =

}

// Impedance

Float32 zNorth[sizeYMaxksizeXMax];

Float32 zEast[sizeYMaxxsizeXMax];

Float32 zSouth[sizeYMaxksizeXMax];

Float32 zWest[sizeYMaxxsizeXMax];

// Initialise impedance arrays to 1

for (int y = 0; y < sizeYMax; y++) {

for (int x = 0; x < sizeXMax; x++) {

zNorth[yxsizeXMax + x] = 1;
zEast[yxsizeXMax + x] = 1;
zSouth[yxsizeXMax + x] = 1;
ZWest [yxsizeXMax + x] = 1;

As with the MATLAB script, the reflection coefficients are defined here (lines
1416-1418), and the impedance power is defined (line 1422). Lines 1442-1461
contain the linear interpolation code as well as the conversion from area data to
impedance. The minimum impedance value is then found and raised to the area

power (lines 1463-1470)

Lines 1476-1517 contain the raised cosine function and its application to the

impedance map:

107

4.Vocal Tract Modelling

for (int i = @; i<sizeYMax; i++) {

raisedCosinel[i]l = (0.5 + ...
0.5%cos(2%MY_PIx((double)i/(double) (sizeYMax-1))));

Lines 1527-1553 pass all arrays and variables required in the processing loop to

the effectState structure.

The waveguide synthesis portion occurs in the main processing loop. First, an ‘if
statement checks if the user has selected the vowel synthesis function (line 287).
If false, the waveguide synthesis is skipped, and the output sample is set to
LFcurrentSamplel. Otherwise, the same process is followed as in the MATLAB
implementation. The pressure at the current junction and its outgoing pressure

values are calculated from lines 288-304.

The acoustic pressure values are then propagated to their adjacent sampling
points. For example, the current outgoing pressure value for east-going signals
(stored in pEPlus[]) is assigned the incoming pressure value from the
corresponding west-going signal from the previous sample step (stored in
pWMinus[]). In this way, the acoustic pressure value is propagated in all
directions across the waveguide mesh, and averages of these values are taken at
the sampling points. If a boundary is reached, reflection coefficients are applied

to the signal (lines 306-343).

Lines 346 to 354 sum the right-most pressure values to obtain the total output

pressure, which is then divided by the right-most impedance value. It was found

108

4.Vocal Tract Modelling

that in order to maintain a consistent amplitude with the non-vowel output, the

signal had to be multiplied by 125.

4.4 System Testing

The system testing criteria for the 2D DWM functionality are:

1. Formant analysis corroborates with /A/ vowel formants from VocalModel
software and other sources.

2. 2D DWM is capable of synthesising other vowel formants using various
sets of area function data.

3. An overall system performance check should be conducted to identify any
bugs or anomalies in the system. Unwanted signals and waveform
discontinuities should be non-existent or sufficiently trivial so as not to
affect the perceived output. CPU and memory usage should be minimal,

ideally efficient enough to operate stably on an iOS device.

4.4.1 Formant Analysis

Each vowel sound has its own spectral peak or ‘formant’ that distinguishes it
from other vowels. Articulations in the vocal tract attenuate or augment certain
frequencies present in the voice source spectrum. These formant frequencies can

vary across gender, age, accent and other factors, so it is difficult to quantify

109

4.Vocal Tract Modelling

whether synthesis of a specific vowel is successful. However, comparison to
average formant values, such as those given in [30], allows for good enough

evaluation of successful vowel synthesis.

NB: the notation of vowels in this subsection is given using the SAMPA alphabet

[78], as well as an example use in a word.

Spectral peaks in an audio file can be automatically detected using the Praat
software package. A waveform lasting two seconds at a static frequency of 110
Hz, with area function data for an /A/ (as in ‘bart’) vowel was produced using
MATLAB. Figure 4.1 displays the waveform and its accompanying spectrogram,

with formant values highlighted:

W
», thINJWU.MIIMUIUIHHINJH IHHHIMM!HMHanlHIUUWHJHMIHNNJWIM{HlHrUUHHIH\WIMHIIMUMJIMNNHNHJL

OO 111 A i

|

2941 Hz

1136 Hz
819 Hz

0 HZ i ”: ” ll ”'i””' ”""‘”' ”“"”" m ”' A H‘H (i “ o H T “ ” ”'i” 75 HZ

Figure 4.1 - Spectrogram produced from two second audio file of synthesised /A/

vowel using 2D DWM and voice source model set to ‘typical’ voice type

110

4.Vocal Tract Modelling

The average values for F1, F2, F3 and F4, given in [30] are 673 Hz, 1097 Hz, 2457
Hz and 3464 Hz respectively. Whilst the reproduced formants differ somewhat
from the average, the high F1 and low F2 values concur with the placement of the
/A/ vowel within the vowel chart described in [79], representing the high tongue

position at the back of the mouth which produces this vowel.

4.4.2 Multiple Vowels

In order to confirm that this implementation of the 2D DWM vocal tract produces
the expected formants for other vowel area functions, five more vowels were
synthesised using area function data from the VocalModel source code. The
resultant formants were examined using the same methods described above.
Figure 4.2 is a reproduction of the vowel chart found in [79] for the six vowels

that were simulated and their SAMPA symbols:

high F2 low
low | i/ peer
/3/ "bird /u/ 'boot’
F1

/Q/ 'bod' /a/ bard’
/}/ bat’

high

\J

Figure 4.2 - Vowel chart for English vowels

111

4.Vocal Tract Modelling

The first four formants of each vowel are presented in table 4.1 alongside

average formant values for English vowels taken from [30].

Table 4.1 - Formant frequencies produced from 2D DWM vocal tract model versus
average recorded formant values in male English speech. The corresponding audio
files were created using the ‘Typical’ voice type and can be found in the ‘Audio Files’

folder with the accompanying media.

Vowel Synthesised Formants (Hz) Average Formants (Hz)

F1 F2 F3 F4 F1 F2 F3 F4

/a/ 819 1136 2941 4299 673 1097 2457 3464

/i/ 168 2438 | 2910 4318 303 2172 2851 3572

/3/ 447 1731 1936 3257 477 1276 1707 3201

/u/ 261 826 2903 4902 342 1067 | 2219 3342

/Q/ 298 893 2792 4578 645 1622 2357 | 3464

/} 707 1954 | 2829 3908 N/A

It is immediately apparent that whilst some formant values are remarkably
similar to the average, most of the synthesised vowel formants deviate by up to
several hundred Hz compared with the average (the most marked deviation
being the first two formants for /u/ and /Q/). The synthesised results however
are similar or identical to those produced using the VocalModel software, which
suggests more refinement is needed in 2D DWM vocal tract modelling methods,
such as the inclusion of more sophisticated boundary reflection methods, as well

as incorporating the nasal tract within the mesh model.

112

4.Vocal Tract Modelling

4.4.3 System Performance

Whilst compatibility with mobile devices is ensured through the use of the
Objective-C language and the Xcode IDE, physical performance of the app is of
equal importance. At the time of writing, the application has been tested solely
using the built-in i0S simulator program within Xcode. This is a useful tool for
testing and debugging purposes, but does not provide an accurate platform for
performance requirements of the variety of iOS compatible devices. A simple
way to ensure that the app will run smoothly on a physical device is to use the
performance check function within Xcode (fig. 4.3). The application was run with
breathy voice selected, vocal tract modelling enabled, and the automatic f0
modulation. This was deemed to be the most memory-intensive combination of
functions. The app performed well, with maximum CPU usage of 23% and 19.7
MB of memory used. This is well below the 1 GB+ of memory that current iPad
models are equipped with, so assuming the application is used in isolation,
performance should not be an issue. This is worth considering for future
iterations of the application that may include more complex graphical user
interfaces (GUIs) or more computationally expensive synthesis procedures such

as dynamic impedance mapping within the 2D DWM.

LFGenMkVI

PID 41102, Running O aib
[cpu 23%
) Memory 19.7 MB

Figure 4.3 - Performance check for ‘LFGen’ application within Xcode

113

4.Vocal Tract Modelling

4.5 Conclusions

In this chapter, methods for acoustic modelling of the vocal tract via digital
waveguides were summarised. An in-depth analysis of the MATLAB and iOS
ports of the ‘VocalModel’ 2D Digital Waveguide Mesh vocal tract model was
provided, and test results presented. The test results confirm that identical or
similar functionality to the results described in [30] [51] and [49] was achieved,
indicating a successful port of the software. Significant deviations from the
average vowel formant frequencies for English male speakers suggest further
refinement of existing methods, however the key focus of this exercise was to
establish similar functionality to existing software, and the viability of such
methods with mobile devices. Areas for worthwhile future development have
been highlighted, including improvements to the interface, accuracy in vowel

reproduction, and dynamic vowel articulations.

114

5. Summary and Analysis

5. Summary and Analysis

5.1 Summary

The primary focus of this research was to expand upon existing articulatory
voice synthesis methods to include a more sophisticated voice source model.
This was achieved via the implementation of the well-established LF-model
within an i0S application. Secondary research showed that voice qualities such
as type, breathiness, tension and so on are highly important in terms of voice
perception [15], but are often overlooked where voice synthesis is concerned. It
was proposed that a voice source model that is compatible with existing vocal
tract modelling methods, but also capable of producing a wider range of vocal
features than a simple LF-model or similar excitation method, would improve the
perceived ‘naturalness’ of the synthesised voice. This was achieved using
MATLAB and iOS implementations, with input parameters for voice type,
breathiness and tension. Other features such as automatic f0 tracking based on
recorded utterances and fO-dependent voice type modulation were also
implemented to varying degrees of success. This provided the bulk of the
research and implementation stages, however a final task was to integrate the
voice source model with the existing 2D Digital Waveguide Mesh model of the
vocal tract, originally implemented in the VocalModel software [71] and
described in [30]. This involved porting sections of the VocalModel source code
first to MATLAB for testing and debugging, followed by an Objective-C

implementation for iOS.
115

5. Summary and Analysis

5.2 Analysis

5.2.1 Voice Source Synthesis using the LF-Model

Chapter 3 described the design and implementation process of an extended LF-
model voice source synthesiser within MATLAB and iOS. Implementation in i0S
allowed for real-time modification of various parameters. Amplitude and f0 can
be altered on the fly with no detectable distortions. Voice types can be selected

during audio processing with instantaneous and easily perceptible results.

The voice types available are: ‘typical’, modal, breathy, vocal fry and falsetto. The
resulting spectra of each of these voice type models are sufficiently similar to
those described in [14] and were deemed recognisable as their intended type
during informal, subjective listening sessions, although at the extremes in pitch it
was harder to differentiate between certain voice types (e.g. vocal fry and modal

at low frequencies).

5.2.2 Extensions to the LF-Model

Extensions to the basic LF-model include: real-time modifications to the
waveform using the LF timing parameters, an additional white noise generator
to simulate turbulent airflow in breathy voice, voice type selection, a ‘vocal
tension’ parameter, automatic fO-tracking and fO-dependent voice type
modulation. Spectrograms taken of the resulting waveforms proved that the
extensions were achieved with some success.

116

5. Summary and Analysis

Modulation to individual timing parameters (te, t,, ta and t¢) was originally made
possible using the first iterations of the iOS app. Using wavetable synthesis, it
was found that adjusting these parameters during playback caused digital
distortion. A new method of implementation was tested which involved simply
performing the LF-model equations at each sample step. This allowed for the
waveform to be updated at any point during the pitch period without affecting
the output waveform. It was found, however, that individual alterations either
had no significant effect on the output waveform, or produced waveforms that
did not fit the LF-waveform archetype. This is due to the cross-coupled nature of
these timing parameters. The exception is the value of t,, which adjusts the
exponential return rate of the waveform, corresponding to the rate at which the
vocal folds return to the closed position. This can be altered independently and
was found to corroborate with Childers’ assertion that it can affect the perceived

tension present in the voice [14].

Another voice source parameter that has been shown to affect perceived ‘vocal
tension’ is the speed quotient (SQ) [14] [15] [16]. An SQ variable called Vocal
Tension was implemented in MATLAB and iOS, which altered the values of t, t,
and tato modify the timing positions of the minimum and maximum peaks in a
cross-coupled manner. This has a similar, yet less pronounced, effect on the
spectrum as alterations of t, alone. Simply modifying t. proved also to be a more
stable method than the SQ option due to the larger range of values that could be

produced whilst maintaining a stable LF-waveform.

117

5. Summary and Analysis

The addition of a random number generator to produce a relatively weak white
noise signal allowed for turbulent airflow to be simulated for breathy and
falsetto voice. This additional signal was pulse modulated in accordance with
[14] and set to an amplitude of 5% of the peak amplitude. The resulting spectra
displayed a noticeable amount of white noise above 2 kHz. Subjective listening
also provided promising results, with an audible noise component that provided

a distinctly noticeable ‘breathy’ component.

Fundamental frequency tracking using the Praat software showed that
resynthesis of a pre-recorded f0 trajectory was successful. It has already been
suggested that constantly varying fO signals provide an enhanced realism to

vowel synthesis [17], which would appear to be the case with this feature.

It was recognised early on in the research that simply allowing for various voice
types to be synthesised is not sufficient for human voice source modelling. Voice
quality is dependent on many factors such as pitch and amplitude. A fairly
rudimentary attempt at modelling this behaviour was implemented within the
i0S app. With ‘Auto VoiceTypes’ selected, as the fundamental frequency rises
from 24 to 440 Hz, the voice type modulates from Vocal Fry to Falsetto, with an
interpolation stage between Vocal Fry-Modal/Breathy and Modal/Breathy-

Falsetto.

118

5. Summary and Analysis

5.2.3 Use within 2D DWM Vocal Tract Model

Analysis of the output spectrum showed that both the voice source and vocal
tract models operated as expected, with appropriate modifications to the signal
when various voice source parameters were adjusted. Formant frequencies
varied in terms of their correlation to average values in English male speakers,
but this was also found in the original implementation of the 2D DWM vocal

tract.

At present, vocal tract modelling within the software is only applicable with a
static vowel. This provided sufficient information to determine feasibility of 2D
DWM modelling within i0S, but does not allow for further extensions to the LF-
model such as vowel-dependent modulations to the voice source as documented

in [7].

5.2.4 Core Aims

The primary aims of the project (as stated in section 1.1 and 3.1) were to develop
an application that could be applicable to voice science research as well as
assistive technology development. It is considered that these core aims were
met, at least partially, in a ‘proof-of-concept’ manner. In terms of a contribution
to voice science and synthesis research, the application developed provides a
versatile and expressive mode of voice source production that is capable of
producing LF-model waveforms for five voice types. As far as existing research is

concerned, the spectral qualities of the voice types produced are consistent with

119

5. Summary and Analysis

previous studies. In addition to voice type selection, ‘vocal tension’ has been
explored as a parameterised feature of the voice source model, and has to some
extent been successfully implemented. Real-time modifications to the vocal
tension parameters produce noticeable digital distortion, which does limit the
expressiveness of this particular feature, however if a tension value is selected
before a phrase is synthesised, no distortion is present. In the case of full speech
synthesis, this would be sufficient for adding or removing tension to a single
word or phrase. Other parameters such as ‘breathiness’, vibrato or glottal gap

size could easily be made available to the user for further research using the app.

The contribution of this project towards assistive technology development is less
conclusive. The implementation of a somewhat sophisticated voice synthesis
engine within a portable device proves that vocal tract modeling synthesis is a
viable method for assistive technology purposes. By extending the functionality
of the voice source model, a larger, more expressive range of voice qualities can
be modeled than current voice synthesis techniques commonly associated with
mobile devices, such as Siri [1], which makes use of concatenative synthesis - a
technique far more limited in terms of voice type, as well as pitch and rhythm.
However, at this stage of development of both the voice source model and the 2D
DWM vocal tract model, entire words and phrases cannot be recognisably
created, and so effectiveness of the system’s use within an assistive technology

context remains speculative.

120

5. Summary and Analysis

5.3 Future Research

As stated above, the primary focus of this research was to expand on existing
methods of voice source modelling in order to explore more natural sounding
voice synthesis techniques. There are many potential avenues towards achieving
this goal, many of which fall outside of the scope of this project, or were
considered only after the work described herein was completed. The following

section summarises the main considerations for future work in this area.

5.3.1 Issues within LF-Model implementation

Some extensions to the LF-model that were included in this application were
either intended as a proof of concept, or found to be far more complex than
originally considered. Because of this, fairly rudimentary implementations of
these extensions were used, leaving room for expansion on pre-existing methods
and ideas. One such area for improvement is the f0-dependent voice type
modulation technique. This method would benefit from further primary research
into voice type modulation in natural speech. As no voice source recordings were
made specifically for this research, voice type information such as pitch range
and timing parameters was taken from secondary sources. It would be beneficial
to probe the effects of pitch on voice source through inverse filtering or similar
techniques, in order to ascertain the ranges in which certain voice types are
present. This would also go towards defining the behaviour of the voice source
as it modulates between voice types, so that a more complex technique than

linear interpolation could be employed at the thresholds between voice types.

121

5. Summary and Analysis

This could also be used to develop amplitude-dependent voice source

modulation.

Two parameters for ‘vocal tension” were made available to the user: SQ and t..
Both of these were shown to have a noticeable effect on the spectral qualities for
vocal tension as outlined in [14]. However, the use of vocal tension in natural
speech is clearly a complex issue, as it relates to perceived emotional content of
speech, as well as being affected by factors such pitch, amplitude and vocal
pathology. Further research into vocal tension, perhaps through detailed
analysis of inverse-filtered speech waveforms, would allow a more complex,
rule-based vocal tension parameter to be incorporated within the model. At
present, the inclusion or exclusion of vocal tension in the voice source model is
defined only by the user, whereas a thoroughly verified rule-based system would

prevent inappropriate use of a ‘tense’ or ‘relaxed’ voice source.

5.3.2 Further Extensions to the Voice Source Model

This implementation of the voice source model focused purely on voice types
that could be modeled as a single pitch-period of an LF-model waveform variant.
This excludes other voice types such as whisper and harsh voice [15] as well as
accurate vocal fry representation, whose pitch period is in fact made up of

several weaker LF pulses following the initial pulse (fig. 5.1).

122

5. Summary and Analysis

Idealised Yocal Fry Waveforn
04 T T T T T T T T T T

Amplitude

1 1 Il 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Time (Samples)

Figure 5.1 - One pitch period of an idealised vocal fry waveform displaying two

secondary pulses

It is clear that the current implementation does not cover every possible voice
type, so it is an intuitive extension to add to the existing software. This may
involve the inclusion of a wavetable synthesis method resembling that described
earlier. A stable wavetable synthesis approach would allow for any waveform to
be stored and resynthesised, as opposed to only those which can be modeled

using the LF-equation.

It has been acknowledged since the early days of voice source research that voice
source qualities can be altered by supraglottal factors such as vowel choice and
other articulations [7]. A worthwhile extension to the existing voice source
model would be the inclusion of these dependent variations in voice quality.
Again, this would benefit from primary research including analytical recordings

of the voice source under a variety of conditions.

123

5. Summary and Analysis

5.3.3 Multi-touch, Gestural User Interfaces

Whilst skeuomorphic interfaces made up of on-screen buttons and sliders,
usually with a one-to-one relationship between control and parameters affected,
are the most immediately intuitive to use, it has been suggested many times in
HCI-related research that this approach does not directly lend itself to intuitive
performance in real-time [80]. With a subject as complex as the vocal system,
providing individual and independent user control of every possible parameter
would not make sense in terms of modelling voice source behaviour in real time.
An alternative approach would be to develop a gestural touch-screen interface
that departs from the instantly recognisable skeuomorphic layout in favour of a
highly cross-coupled, expressive interface such as that presented in figure 5.3. In
formant synthesis, this approach has already proved effective with the
HandSynth [81] software and hardware which allows a variety of vowels, pitch
and amplitude to be controlled using a single touchscreen interface and a
pressure-sensitive stylus (fig. 5.2). This method could conceivably be adapted to

control an array of voice source features concurrently.

124

5. Summary and Analysis

Figure 5.2 - HandSynth stylus operated touchscreen interface for articulatory

synthesiser [image taken from [81]]

Figure 5.3 - Proposed design for multitouch interface. Position on x/y plane could
control pitch and amplitude, with multitouch gestures such as ‘pinch’ (i.e. distance
between two touch points) could be used to control parameters such as vocal

tension

125

5. Summary and Analysis

5.3.4 Implementation of Dynamic Impedance Mapping within the 2D DWM

In [30], a method for simulating vowel articulations with the 2D DWM vocal tract
model is described. This allows for multiple vowels to be synthesised in
software, with minimal digital distortion present. Other vocal artefacts such as
dipthongs and some consonants can also be modeled using this technique. As a
proof of concept, a single static vowel was modeled using the same method,
however a full implementation of the dynamic impedance mapping feature
would allow for multiple vowels and articulations to be used with the extend LF-
model software. This would not only provide a more fully-fledgedd voice
synthesis software application, but would also allow for further extensions to be
implemented such as the vowel-dependent voice source factors mentioned in

section 5.3.2.

5.4 Conclusion

Any research project conducted under a time constraint will be affected by
limitations in size and scope, with the research described above being no
exception. The primary goal of this project was to develop an application that
could contribute to voice synthesis research, via a voice source synthesis engine
that is both expressive and versatile. It is considered that the voice source model
developed during this project is more expressive and versatile than other similar
software. However, as discussed in section 5.3, there are many further

improvements and extensions to consider.

126

5. Summary and Analysis

The research provides an impetus for further voice synthesis investigation, as
well as a first step towards assistive technology development. The importance of
the voice source in accurate synthesis of vocal effects such as breathiness and
tension has been established, and a platform for further work into the perception

of such effects has been developed.

127

Appendices

Appendix A - ‘LFModelFull.m’ MATLAB Source Code

[y
O VWO JOU & WN R

=
N =

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Implementation of Liljencrants-Fant glottal flow model, based on
Jack Mullens 'LFInput' code from 'VocalModel' synthesiser.
Expanded with timing parameters taken from (Fu 2006),

HPF gaussian noise for BREATHY and FALSETTO voices (Childers 1991)

o0 00 o op

g = 1; % QUIT on/off
while g ==

Fs = 44100; % Sampling rate

overSample = 1000; % Oversampling used for more accurate waveform
calculation

Ee = 1.0; % Positive peak amplitude

% Voice type selection:
voicetype = input('Enter a voice type (number between 1-9): ');
switch voicetype

% for TYPICAL typical voice type
case 1
f0 = input('Enter a frequency between 94-287: ');
period = 1/£0;
tc = 1.000*period;
te = 0.780*period;
tp 0.600*period;
ta = 0.028*period;
% for MODAL voice type
case 2
f0 = input('Enter a frequency between 94-287: ');
period = 1/£0;
tc = 0.582*period;
te = 0.554*period;
tp 0.413*period;
ta 0.004*period;
% for VOCAL FRY(?) typical voice type
case 3
f0 = input('Enter a frequency between 24-52: ');
period = 1/£0;
tc = 0.720*period;
te = 0.596*period;
tp = 0.481l*period;
ta = 0.027*period;
% for BREATHY voice type
case 4
f0 = input('Enter a frequency between 94-287: ');
period = 1/£0;
tc = 0.771*period;
te = 0.660*period;
tp 0.462*period;
ta = 0.027*period;
% for MODAL voice type (from Fu 2006)
case 5
f0 = input('Enter a frequency between 94-287: ');
period = 1/£0;

128

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

tc
te
tp
ta

% for VOCAL FRY voice type

case 6
f0

tc
te
tp
ta

1.0*period;

0.575*period;
0.457*period;
0.009*period;

Appendices

(from Fu 2006)

input('Enter a frequency between 24-52: ');
period = 1/£f0;

1.0*period;
0.251*period;
0.19*period;
0.008*period;

% for BREATHY voice type (from Fu 2006)

case 7
f0

tc
te
tp
ta

input('Enter a frequency between 94-287: ');
period = 1/£f0;

1.0*period;

0.756*period;
0.529*period;
0.082*period;

% for FALSETTO voice type (from Fu 2006)

case 8
f0

tc

te =

tp
ta

% for CUSTOM

case 9
f0

input('Enter a frequency between 287-440: ');
period = 1/£f0;

1.0*period;
0.770*period;
0.570*period;
0.133*period;
voice type

input('Enter

period = 1/£0;

TC
TE
TP
TA
tc
te
tp
ta
end

input('Enter
input('Enter
input('Enter
input('Enter
TC*period;
TE*tc;
TP*tp;
TA*ta;

100 % Vocal Tension modulation.
101 % Quotient (SQ) achieved by
original
% timing parameters

102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118
119

vocalTension

= input('Enter
te = te + te*vocalTension;
tp = tp + tp*vocalTension;
ta = ta - ta*vocalTension;

suitable frequency: ');

value for Tc (0-1): ')
value for Te (0-1): ')
value for Tp (0-1): ')
value for Ta (0-1): ')

This is a rough calculation of the Speed
adding/subtracting a percentage of the

a vocal tension value (+/1 0.3): ');

vocalFoldReturnRate = input('Enter a vocal fold return rate value (-

0.9 — 1.0):

")

ta = ta + (ta*vocalFoldReturnRate);

SQ

tp/ (te+ta-tp);

% Oversampling
period = period/overSample;
tc = tc/overSample;

te = te/overSample;
tp = tp/overSample;
ta = ta/overSample;

% Speed Quotient

129

Appendices
120
121 ¢ LF coefficent calculation
122 tn = te - tp;
123 tb tc - tej;
124
125 wg = pi/tp;
126 Eo = Ee;
127
128 areaSum=1.0;
129 peakChange=0.001;
130 optimumArea=le-14;
131 epsilonDiff=10000.0;
132 epsilonOptimumDiff=0.1;

133

134 % solve iteratively for epsilon

135

136 epsilonTemp = 1l/ta;

137

138 while abs(epsilonDiff)>epsilonOptimumDiff

139

140 epsilon = (l/ta)*(l-exp(-epsilonTemp*tb));

141 epsilonDiff = epsilon - epsilonTemp;

142 epsilonTemp = epsilon;

143

144 if epsilonDiff<0

145 epsilonTemp = epsilonTemp + (abs(epsilonDiff)/100);
146 end

147 if epsilonDiff>0

148 epsilonTemp = epsilonTemp - (abs(epsilonDiff)/100);
149 end

150

151 end

152

153 % iterate through area balance to get Eo and alpha to give Al + A2 = 0
154

155 % original line in JM's code. causes MATLAB to keep running until Eo
is

156 % NaN:

157 % while (areaSum<-optimumArea) || (areaSum>optimumArea)

158

159 % use this line for MATLAB

160 while (areaSum > optimumArea)

161 alpha = real((log(-Ee/(Eo*sin(wg*te))))/te);
162

163 Areal = (Eo*exp(alpha*te)/(sqgrt(alpha*alphatwg*wg)))...
164 * (sin(wg*te-atan(wg/alpha)))...

165 + (Eo*wg/(alpha*alphat+wg*wg));

166

167 Area2 = (-(Ee)/(epsilon*epsilon*(ta)))...

168 * (1 - exp(-epsilon*tb*(l+epsilon*tb)));
169

170 areaSum = Areal + Area2;

171

172 if areaSum>0.0

173 Eo = Eo - leS5*areaSum;

174 elseif areaSum<0.0

175 Eo = Eo + leS5*areaSum;

176 end

177

178 end

179

180 % Calculate length of one pitch period in samples (dataLength)
181 datalLength = floor(overSample*Fs*period);
182 output = zeros(1l,datalength); % Output waveform for one pitch period

130

183
184
185
186
187
188
189
190
191
192
193
194
195
196

197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

243

Appendices

% Noise parameters

noiseAmt = input('Enter a turbulent noise amount (0-1): ');

if noiseAmt > 0.0;
noiseDuration = input('Enter a turbulent noise duration: ');
noiseStart = input('Enter a turbulent noise start position: ');
noiseDuration = noiseDuration*dataLength;
noiseStart = noiseStart*datalength;

% Calculate filter coefficients for HPF @ 2 kHz
% Fc = 2000; % Filter cut-off freq.

% Wn = Fc/(Fs/2); % Normalised Fc between 0-1 where 1 corresponds
to Nyquist

% [b, a] = butter(2, Wn, 'high'); % Computes b and a coefficients
for 2nd order butterworth HPF

% b0 = b(1l);

% bl = b(2);

3 b2 = b(3);

% al = a(2);

% a2 = a(3);

end

% playback section

durationSeconds = input('Enter a duration (s): ');
durationSamples = durationSeconds*Fs;

waveform = zeros(1l,durationSamples);

j = 1; % counter

% checkNoise = zeros(l,durationSamples);

for i = l:durationSamples

t

j*period/datalLength;

% This is where the LF waveform is calculated

if t<te
LFSample = Eo*(exp(alpha*t)) * sin(wg*t);
end
if t>=te
LFSample = -((Ee)/(epsilon*ta))*(exp(-epsilon*(t-te))...
- exp(-epsilon*(tc-te)));
end
if t>tc
LFSample = 0.0;
end

LFSampleQ = trapz(LFSample);

if noiseAmt == 0.0;
waveform(i) = LFSample;
waveformQ(i) = LFSampleQ;

end

% Add noise
if noiseAmt > 0.0;
noiseSample = rand(1l,1)*noiseAmt;
% Could HPF noise here if found necessary

% This adds white noise to LF-waveform at noiseStart for
noiseDuration.
% need to cycle around to the start of pitch period if noiseStart +

131

Appendices
244 % noiseDuration is bigger than length of period (datalength):
245
246 if noiseStart + noiseDuration < dataLength;
247 if j >= noiseStart && j <=noiseStart+noiseDuration
248 waveform(i) = LFSample + noiseSample;
249 end
250 if j < noiseStart || j > noiseStart+noiseDuration
251 waveform(i) = LFSample;
252 end
253 end
254 if noiseStart + noiseDuration > dataLength;
255 remainder = (noiseStart+noiseDuration)-dataLength;
256 if j <= remainder || j >= noiseStart
257 waveform(i) = LFSample + noiseSample;
258 end
259 if j > remainder && j < noiseStart
260 waveform(i) = LFSample;
261 end
262 end
263 end
264
265 % Increment counter and cycle back to start of waveform if counter
266 % > dataLength
267
268 j=j+1;
269
270 if j > datalength
271 j = j - dataLength;
272 end
273
274 end
275
276 plot(waveform);
277
278 p = input('press 1 to play sound: ');
279
280 if p ==
281 sound (waveform, Fs)
282 end
283
284 s = input('press 1 to save sound: ');
285
286 if s ==
287 filename = input('Enter .wav filename: ');
288 audiowrite(filename, waveform, Fs);
289 end
290
291
292 g = input('press 1 to start or 0 to quit: ');
293
294 hold on
295
296 end

132

Appendices

Appendix B - ‘ViewController.h’ LFGen App Header File

OO0 WDN B

//

// ViewController.h
// LFGen

//

// Created by Jacob Harrison on 11/12/2013.
// Copyright (c) 2013 Jacob Harrison. All rights reserved.

#import <UIKit/UIKit.h>
#import "AudioEngine.h"

@interface ViewController : UIViewController{
AudioEngine *_ ae;

}

(IBAction)startStop: (UIButton *)sender;

(IBAction)setF0: (UISlider *)sender;

(IBAction)setTension: (UISlider *)sender;

(IBAction)setTa: (UISlider *)sender;

(IBAction)setAmplitude: (UISlider *)sender;

@end

133

Appendices

Appendix C - ‘ViewController.m’ LFGen App Main File

// ViewController.m
// LFGen

Created by Jacob Harrison on 11/12/2013.
// Copyright (c) 2013 Jacob Harrison. All rights reserved.

0oV WN
~
~

9 #import "ViewController.h"

11 @interface ViewController ()
13 @end

15 @implementation ViewController

17 - (void)viewDidLoad

18 {

19 [super viewDidLoad];

20 // Do any additional setup after loading the view, typically from
a nib.

21 _ae=[[AudioEngine alloc] init];

22

23 }

24

25 - (void)didReceiveMemoryWarning

26 {

27 [super didReceiveMemoryWarning];

28 // Dispose of any resources that can be recreated.

29 }

30

31

32 //Start and Stop audio playback

33 - (IBAction)startStop: (UIButton *)sender {

34

35 if([_ae isPlaying]){

36 [_ae stopPlayback];

37 }

38 else{

39 [_ae startPlayback];

40 }

41

42 }

43

44

45

46

47 (IBAction)setTa: (UISlider *)sender {

48 [_ae setTa:[sender value]];

49 }

50

51 (IBAction)setF0: (UISlider *)sender {

52 [_ae setFO0:[sender value]];

53 }

134

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

- (IBAction)setTension: (UISlider *)sender {
[ae setTension:[sender value]];

- (IBAction)setAmplitude: (UISlider *)sender({

[_ae setAmplitude:[sender value]];

- (IBAction)setTypical: (UIButton *)sender {

- (IBAction)setModal: (UIButton *)sender {

- (IBAction)setBreathy: (UIButton *)sender {

- (IBAction)setVocalFry: (UIButton *)sender {

- (IBAction)setFalsetto: (UIButton *)sender {

- (IBAction)vowelOn: (UIButton *)sender {

- (IBAction)pitchSlide: (UIButton *)sender {

- (IBAction)autoVoice: (UIButton *)sender {

@end

[ae setTypical];

[_ae setModal];

[_ae setBreathy];

[_ae setVocalFry];

[_ae setFalsetto];

[_ae vowelOn];

[ae pitchSlide];

[_ae autoVoice];

135

Appendices

Appendices

Appendix D - ‘AudioEngine.h’ LFGen App Header File

AU WN -

10
11
12
13
14
15
16

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

//

// AudioEngine.h
// LFGen

!/

// Created by Jacob Harrison on 11/12/2013.

// Credit to Dimitrios Zantalis for initial implementation of
EffectState structure

// Copyright (c) 2013 Jacob Harrison. All rights reserved.

//

#import <Foundation/Foundation.h>
#import <AudioToolbox/AudioToolbox.h>
#import <AVFoundation/AVFoundation.h>

#define MY PI 3.14159265359

// in order to declare arrays in the EffectState structure, the sizes
need to be defined first (there is probably a way of declaring a
variable size array here).

// for the pressure and impedance arrays to be made available in the
processing loop, they will be declared here, meaning that the
'sizeXMax' and 'sizeYMax' variables will also be fixed here

#define SIZE X MAX 15
#define SIZE Y MAX 4

typedef struct{
Floaté64 _hardwareSampleRate;
AudioUnit _rioAU;
AudioStreamBasicDescription _clientASBD;

// coefficients for LF waveform calculation
double _fO0;
double _period;
int _dataLength;
double _Eoj;
double _Eej;
double _alpha;
double _wg;
double _epsilon;
double _taVval;
double _tcVal;
double _tpVal;
double _teVal;
double _taj;
double _tcj;
double _tp;
double _te;
int k;
int _kk;
// noise coefficients
double noiseAmount;
double noiseDuration;
double noiseStart;
BOOL _noiseOn;
// double noiseFilter[490];

double vocalTension;
// vibrato coefficients

136

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

Appendices
double _vibratoFreq;
double _vibratoDepth;
double _vibratoOut;
int _WTSize;
BOOL _vibratoOn;
double _dt;

// pressure and impedance arrays for 2D DWM
Float32 pNPlus[SIZE Y MAX*SIZE X MAX];
Float32 pNMinus[SIZE Y MAX*SIZE X MAX];
Float32 pEPlus[SIZE Y MAX*SIZE X MAX];
Float32 pEMinus[SIZE Y MAX*SIZE X MAX];
Float32 pSPlus[SIZE Y MAX*SIZE X MAX];
Float32 pSMinus[SIZE Y MAX*SIZE X MAX];
Float32 pWPlus[SIZE Y MAX*SIZE X MAX];
Float32 pWMinus[SIZE Y MAX*SIZE X MAX];
// Impedance
Float32 zNorth[SIZE Y MAX*SIZE X MAX];
Float32 zEast[SIZE Y MAX*SIZE X MAX];
Float32 zSouth[SIZE Y MAX*SIZE X MAX];
Float32 zWest[SIZE Y MAX*SIZE X MAX];

double _impData[SIZE_X_ MAX];
double reflectionGLottis;

double _reflectionLips;
double reflectionWalls;

int _sizeXMax;
int _sizeYMax;
BOOL _vowelOn;
double _amp;

BOOL _pitchSlide;
int _count;

int _sampleCount;
int _fO0Count;

BOOL _autoVoice;

int _voiceType;

}EffectState;

@interface AudioEngine : NSObject{
AVAudioSession *_AudioSession;
BOOL _playing;

BOOL _recording;

//USING FS
Float64 _samplingRate;

NSFileManager *_ FileManager;

NSURL *_audioDirURL;
}

@property (assign) EffectState effectState;

137

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

//Public interface

- (OSStatus)startPlayback;

- (OSStatus)stopPlayback;
//-(0SStatus)exportAudioWithName: (NSString*)fileName;
-(BOOL)isPlaying;

-(void)setF0: (Float32)f0vValue;

-(void)setTa: (Float32)tavalue;

-(void)setModal;

-(void)setVocalFry;

-(void)setBreathy;

-(void)setTypical;

-(void)setFalsetto;
-(void)setAmplitude: (Float32)ampValue;
-(void)vowelOn;

-(void)pitchSlide;

-(void)autoVoice;

-(void)setVoiceType;

-(void)setTension: (Float32)tensionValue;

//-(void)makeNoise;

- (void) checkErr: (OSStatus) error

@end

withMessage: (const char *) message;

138

Appendices

Appendices

Appendix E - ‘AudioEngine.m’ LFGen App Main File

b wWN R

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

//

// AudioEngine.m

// 'LFGen' Liljencrants-Fant (LF) glottal source modelling App.

// This app creates an acoustic model of the human voice source via
the LF Equation

// A 2D Digital Waveguide Model of the vocal tract based on Jack
Mullen's VocalModel

// software is used to synthesis vowel formants

// 2D DWM port based on Amelia Gully's MATLAB implementation

// Generic Audio App template provided by Dimitrios Zantalis
// (credited in code where appropriate)

// Created by Jacob Harrison on 11/12/2013.
// Copyright (c) 2013 Jacob Harrison. All rights reserved.

#import "AudioEngine.h"
// Main Processing Loop

static OSStatus playbackCallback(void *inRefCon,
AudioUnitRenderActionFlags
*ioActionFlags,
const AudioTimeStamp *inTimeStamp,
UInt32 inBusNumber,
UInt32 inNumberFrames,
AudioBufferList *ioData
) |
// Get the tone parameters out of the view controller
EffectState *fxs=(EffectState*)inRefCon;
Float32 output;

// Get LF waveform coefficients
double t;

double LFcurrentSample;

double LFcurrentSamplel;

double period = fxs-> period;
int datalength = fxs-> dataLength;
double te = fxs->_tej;

double Eo = fxs->_ Eo;

double alpha = fxs->_alpha;
double wg = fxs-> wg;

double Ee fxs->_Ee;

double epsilon = fxs-> epsilon;
double ta = fxs->_ta;

double tc = fxs->_tcj;

int k = fxs-> k;

int kk = fxs-> kk;

// Turbulent noise coefficients

BOOL noiseOn = fxs-> noiseOn;

double noiseAmount = fxs-> noiseAmount;

double noiseDuration = fxs-> noiseDuration*datalLength;
double noiseStart = fxs-> noiseStart*dataLength;

// double *noiseFilter = fxs-> noiseFilter;

139

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

double noiseRemainder;
double noiseAdd;
double noiseSample;

// Pressure arrays

Float32 #*pNPlus = fxs-> pNPlus;
Float32 *pNMinus = fxs-> pNMinus;
Float32 #*pEPlus = fxs-> pEPlus;
Float32 *pEMinus = fxs-> pEMinus;
Float32 #*pSPlus = fxs-> pNPlus;
Float32 *pSMinus = fxs-> pNMinus;
Float32 #*pWPlus = fxs-> pSPlus;
Float32 *pWMinus = fxs-> pSMinus;

// Pressure arrays

Float32 #*zNorth = fxs->_ zNorth;
Float32 *zEast = fxs->_ 2zEast;
Float32 *zSouth = fxs->_ zSouth;
Float32 *zWest = fxs->_ zWest;

// 2D DWM coefficients

double *impData = fxs-> impData;
int sizeXMax = fxs->_sizeXMax;
int sizeYMax = fxs->_sizeYMax;

Appendices

double reflectionLips = fxs-> reflectionLips;
double reflectionGlottis = fxs-> reflectionGLottis;
double reflectionWalls = fxs-> reflectionWalls;

BOOL vowelOn = fxs-> vowelOn;

double pJ;
double opPressure;

int y,x;
double amp = fxs->_ amp;

BOOL pitchSlide = fxs-> pitchSlide;

// Set max and min datalLength (pitch period in samples) values for

automatic fO.

// int dataLengthMax = 490; //490 samples

(90 Hz)
// int dataLengthMax

(190 Hz)
// int dataLengthMin = 100;

int count = fxs->_count;

double fOData[] = {86.7656730000000,
86.4178010000000,
90.9541950000000,
87.9545930000000,
88.6849350000000,
89.0769560000000,
88.8090830000000,
89.0420040000000,
89.2941220000000,
89.8216050000000,
89.1064770000000,
88.1318270000000,
87.5954940000000,

140

= pitch period 1/90 s

1837; //1837 samples = 24 Hz
// int datalLengthMin = 232; //232 samples

= pitch period 1/190 s

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

87.
87.
87.
88.
88.
88.
88.
89.
89.

90

91

6932790000000,
3959820000000,
4183820000000,
0824290000000,
3171960000000,
5990350000000,
4426470000000,
4475360000000,
8663800000000,

.2665200000000,
90.
90.
90.
90.
.2230760000000,
91.
92.
92.
92.
93.
94.
94.
95.
96.
97.
97.
98.
99.

7101400000000,
9507130000000,
9308580000000,
9280150000000,

7717330000000,
1247940000000,
2978610000000,
6453840000000,
4096030000000,
1552810000000,
9410550000000,
6436490000000,
6370420000000,
3720470000000,
9702550000000,
9070940000000,
5896930000000,

100.512675000000,
102.135056000000,
103.595169000000,
104.852445000000,
106.072966000000,
107.397000000000,
109.136166000000,
110.146401000000,
111.279139000000,
112.631598000000,
114.156086000000,
115.526537000000,
117.073030000000,
117.894042000000,
118.334215000000,
118.261941000000,
117.169850000000,
115.665968000000,
113.811616000000,
111.960755000000,
110.023637000000,
107.281944000000,
104.210637000000,
100.919823000000,

97.
.2202820000000,
93.
91.
90.
89.
88.
88.
87.
87.
87.
87.

95

4242660000000,

8211850000000,
8860980000000,
6061610000000,
8349510000000,
9622060000000,
1375650000000,
7454650000000,
5657920000000,
1366340000000,
1113610000000,

141

Appendices

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205

206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236

237
238
239
240

86.9435590000000,
86.7299700000000,
86.3627780000000,
85.9939510000000,
85.6657360000000,
84.7229040000000,
85.2134430000000,
84.7120240000000,
84.4130280000000,
84.3421640000000,
84.5041810000000,
84.2591300000000,
83.7980820000000,
83.2793240000000,
82.9630780000000,
82.6915980000000,
82.0845250000000,
80.9131000000000,
80.6771400000000,
79.3941160000000,
77.4358050000000,
75.9000770000000,
76.3403430000000}; // £0 data from 1ls pitch slide obtained

from PRAAT

Appendices

int fOsampleRate = 100; // Sample rate at which f0 data is

recorded

// int fOsamples = sizeof(f0OData);
int fOUpdate = fxs-> hardwareSampleRate / fOsampleRate; //

interval at which f0 is updated

int sampleCount = fxs-> sampleCount;

int fO0Count = fxs-> f0Count;

int Fs = fxs-> hardwareSampleRate;

int overSample = 1000;

for(UInt32 i = 0; i < ioData->mNumberBuffers;

for(int j = 0; j < inNumberFrames;

// If automatic f0 is not selected:
if (pitchSlide == FALSE) {

// 'k' is sample increment counter. wrap around to 0

if k > datalength
if (k>dataLength) {

k = k - datalLength;

}

// Main LF-waveform calculation performed here:

t = (double)k*period/(double)dataLength;

if (t<te) {

Eo* (exp(alpha*t)) * sin(wg*t);

-((Ee)/(epsilon*ta))* (exp(-

0.

0;

LFcurrentSample

}

if (t>=te) {
LFcurrentSample

epsilon*(t-te)) - exp(-epsilon*(tc-te)));

}

if (t>tc) {
LFcurrentSample

}

142

Appendices

241

242 // If breathy or falsetto is selected, add noise

243 if (noiseOn == TRUE) {

244 // Creates white noise between -1 and +1

245 noiseSample = rand() % 200;

246 noiseSample = noiseSample - 100;

247 noiseSample = noiseSample/100;

248 // Attenuate noise signal by noise amount
selected

249 noiseAdd = noiseSample*noiseAmount;

250 // Turbulent noise portion of waveform begins at

the closing phase and ends during the opening phase (i.e. crosses
over two pitch cycles)

251 // Need to 'wrap' noise around so that the
opening phase portion of noise begins at the start of the pitch
cycle

252 // Calculate remainder (portion of noise that
extends beyond pitch period):

253 noiseRemainder = (noiseStart + noiseDuration) —
dataLength;

254

255 // if start time + duration is less than length
of period (i.e no remainder)

256 if (noiseStart + noiseDuration < dataLength) {

257 if (k >= noiseStart + noiseDuration){

258 LFcurrentSamplel = LFcurrentSample;

259 }

260 if (k < noiseStart) {

261 LFcurrentSamplel = LFcurrentSample;

262 }

263 if (k > noiseStart & k <= noiseStart +
noiseDuration) {

264 LFcurrentSamplel =
LFcurrentSample+noiseAdd;

265 }

266 }

267

268 // if start time + duration is greater than
length of period (i.e noise wraps round)

269 if (noiseStart + noiseDuration >= dataLength){

270 if (k > noiseRemainder && k < noiseStart) {

271 LFcurrentSamplel = LFcurrentSample;

272 }

273

274 if (k <= noiseRemainder || k >= noiseStart) {

275 LFcurrentSamplel =
LFcurrentSample+noiseAdd;

276 }

277 }

278 }

279

280 // If no noise is needed, the current sample remains
the same.

281 if (noiseOn == FALSE) {

282 LFcurrentSamplel = LFcurrentSample;

283 }

284

285

286 // This section performs the calculations for
pressure and impedance arrays in 2D DWM

287 // Unlike MATLAB implementation, 1D arrays are used
to store the 2D information

288 // MATLAB version: pNPlus[y][x] is equivalent to iOS

version: pNPlus[y*sizeXMax + Xx]

143

289
290
291
292

293

294

295

296

297

298
299

300

301

302

303

304
305
306
307
308
309
310

311
312

313
314
315

316
317
318

319
320
321
322

323
324
325

326
327
328
329
330

331
332
333

Appendices
if (vowelOn == TRUE) {
for (y = 0; y<size¥Max; y++) {
for (x = 0; x<sizeXMax; x++) {
pJ 2 * ((pNPlus[y*sizeXMax + x] /

zNorth[y*sizeXMax + x])
+ (pEPlus[y*sizeXMax + x] /
zEast[y*sizeXMax + x])
+ (pSPlus[y*sizeXMax + x] /
zSouth[y*sizeXMax + x])
+ (pWPlus[y*sizeXMax + x] /
zWest[y*sizeXMax + x]))
/ ((1 / zNorth[y*sizeXMax + x]) + (1 /
zEast[y*sizeXMax + x])
+ (1 / zSouth[y*sizeXMax + x]) + (1 /
zWest[y*sizeXMax + x]));

// calculate outgoing pressures from

junction

pNMinus[y*sizeXMax + x] = pJ —
pNPlus[y*sizeXMax + x];

pEMinus[y*sizeXMax + x] = pJ —
PEPlus[y*sizeXMax + x];

pSMinus[y*sizeXMax + x] = pJ —
pSPlus[y*sizeXMax + x];

pWMinus[y*sizeXMax + x] = pJ —

pWPlus[y*sizeXMax + x];

}

for (y = 0; y<size¥YMax; y++) {
for (x = 0; x<sizeXMax; x++) {
// if x = 0 then we are at the glottis
end, need to take input signal (LFcurrentSamplel)
if (x == 0) {
pWPlus[y*sizeXMax + x] =
reflectionGlottis * pWMinus[y*sizeXMax + x] + LFcurrentSamplel;

}
else {
pWPlus[y*sizeXMax + x] =
pEMinus[y*sizeXMax + x-1];
}

// update eastgoing pressures (towards
lips)
// if x = sizeXMax we are at the lip end

if (x == sizeXMax-1) {
pEPlus[y*sizeXMax + x] =
reflectionLips * pEMinus[y*sizeXMax + X];

}
else {
pEPlus[y*sizeXMax + x] =
pWMinus[y*sizeXMax + x+1];
}

// if y = 1 we are at the bottom wall
if (y == 0) {
pSPlus[y*sizeXMax + X]
reflectionWalls * pSMinus[y*sizeXMax + x];
}
else {
pSPlus[y*sizeXMax + x]

pNMinus|[(y-
l)*sizeXMax + x];

144

334
335
336

337
338

339
340
341

342
343

344
345
346
347

348
349
350
351

352
353
354

355

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

374
375

376
377
378
379
380

381
382
383
384
385

Appendices
}

// if y = sizeYMax -1 we are at the top
wall
if (y == size¥YMax - 1){
pNPlus[y*sizeXMax + x]
reflectionWalls * pNMinus[y*sizeXMax + x];
}
else {
pNPlus[y*sizeXMax + x] =

pSMinus[(y+1l)*sizeXMax + x];
}
// printf("%f %f %f \n",
reflectionGlottis, reflectionLips, reflectionWalls);
}
}

// initialise current sample output pressure to
zero
opPressure = 0;

for (y = 0; y<size¥YMax; y++) {
opPressure = opPressure + (1l-
reflectionLips)*pEPlus[y*sizeXMax + sizeXMax-1];

}

// multiply by 125 to normalise to non-vowel
amplitude (value obtained through trial and error - not sure why DWM
reduces amplitude by so much)

output = 125 * (opPressure/impData[sizeXMax —
11):

}

// if no vowel is used
if (vowelOn == FALSE) {
output = LFcurrentSamplel;

}
output = output*0.95*amp;

// check for clipping
if (output > 1.0) {
// printf ("output clipped at %f \n", output);
output = 1.0;

// printf("%d %d %d %f %d %f\n", datalength,
sampleCount, fO0Count, period, k, output);

memcpy (ioData->mBuffers[i].mData+j*fxs-
> clientASBD.mBytesPerFrame, &output, sizeof(Float32));

}

if (pitchSlide == TRUE) {
// This is the same as previous section but with
automatic £0 input

if (kk>dataLength) {

kk = 0;
}

145

Appendices

386 if (sampleCount == f0Update) {

387 sampleCount = 0;

388 }

389

390

391 // Update new value for datalLength based on natural
f0 data

392 if (sampleCount == 0) {

393 period = (1/f0OData[f0Count])/overSample;

394

395 f0Count += 1;

396

397 if (f0Count == 100) {

398 f0Count = 0;

399 }

400 }

401

402 if (kk == 0) {

403 datalength = floor(Fs*period*overSample);

404 }

405

406 t = (double)kk*period/(double)datalLength;

407

408 if (t<te) {

409 LFcurrentSample = Eo*(exp(alpha*t)) * sin(wg*t);

410 }

411 if (t>=te) {

412 LFcurrentSample = -((Ee)/(epsilon*ta))*(exp(-
epsilon*(t-te)) - exp(-epsilon*(tc-te)));

413 }

414 if (t>tc) {

415 LFcurrentSample = 0.0;

416 }

417

418 if (noiseOn == TRUE) {

419 noiseSample = rand() % 200;

420 noiseSample = noiseSample - 100;

421 noiseSample = noiseSample/100;

422 noiseAdd = noiseSample*noiseAmount;

423 noiseRemainder = (noiseStart + noiseDuration) —
dataLength;

424

425 if (noiseStart + noiseDuration < dataLength) {

426 if (kk >= noiseStart + noiseDuration){

427 LFcurrentSamplel = LFcurrentSample;

428 }

429 if (kk < noiseStart) {

430 LFcurrentSamplel = LFcurrentSample;

431 }

432 if (kk > noiseStart & kk <= noiseStart +
noiseDuration) {

433 LFcurrentSamplel =
LFcurrentSample+noiseAdd;

434 }

435 }

436

437 if (noiseStart + noiseDuration >= dataLength){

438 if (kk > noiseRemainder && kk < noiseStart) {

439 LFcurrentSamplel = LFcurrentSample;

440 }

441

442 if (kk <= noiseRemainder || kk >= noiseStart)
{

443 LFcurrentSamplel =

146

444
445
446
447
448
449
450
451
452
453
454
455
456

457

458

459

460

461

462
463

464

465

466

467
468
469
470
471
472
473
474
475

476
477
478

479
480
481
482

483
484
485

486
487
488
489

490
491

LFcurrentSample+noiseAdd;

}
}
}

if (noiseOn
LFcurren

}

if (vowelOn

for (y =

for
zNorth[y*sizeXMax + x])
zEast[y*sizeXMax + x])
zSouth[y*sizeXMax + x])
zWest[y*sizeXMax + x]))

zEast[y*sizeXMax + x])

zWest[y*sizeXMax + x]));

pNPlus[y*sizeXMax + x];
PEPlus[y*sizeXMax + x];
pSPlus[y*sizeXMax + x];

pWPlus[y*sizeXMax + x];

}

}

for (y =
for

== FALSE) {

tSamplel = LFcurrentSample;

== TRUE) {

0; y<sizeY¥YMax; y++) {

0; x<sizeXMax;

(x
pJd

+ (pEPlus[y*sizeXMax
+ (pSPlus[y*sizeXMax

+ (pWPlus[y*sizeXMax

x++) {
2 * ((pNPlus[y*sizeXMax +

Appendices

x] /
+ x] /
+ x] /

+ x] /

/ ((1 / zNorth[y*sizeXMax + x]) + (1 /

+ (1 / zSouth[y*sizeXMax + x]) + (1 /

pNMinus[y*sizeXMax
pEMinus[y*sizeXMax
pSMinus[y*sizeXMax

pWMinus[y*sizeXMax

x]
x]
x]

x]

0; y<sizeY¥YMax; y++) {

(x = 0; x<sizeXMax;

if (x == 0) {

pWPlus[y*sizeXMax + Xx]

x++) {

pJ
pJ
pJ

pJ

reflectionGlottis * pWMinus[y*sizeXMax + x] + LFcurrentSamplel;

pEMinus[y*sizeXMax + x-1];

reflectionLips * pEMinus[y*

pWMinus[y*sizeXMax + x+1];

reflectionWalls * pSMinus[y

}

else {
pWPlus[y*sizeXMax +

}

if (x == sizeXMax-1) {

pPEPlus[y*sizeXMax +

sizeXMax + x];

}

else {
pPEPlus[y*sizeXMax +

}

if (y == 0) {

pSPlus[y*sizeXMax +

*sizeXMax + xX];

}

else {

147

Appendices
pNMinus|[(y-

492 pSPlus[y*sizeXMax + Xx]
l)*sizeXMax + x];

493 }

494

495 if (y == size¥Max - 1){

496 pNPlus[y*sizeXMax + x]
reflectionWalls * pNMinus[y*sizeXMax + x];

497 }

498 else {

499 pNPlus[y*sizeXMax + x] =
pSMinus[(y+1l)*sizeXMax + x];

500 }

501 }

502 }

503

504 opPressure = 0;

505

506 for (y = 0; y<size¥YMax; y++) {

507 opPressure = opPressure + (1l-
reflectionLips)*pEPlus[y*sizeXMax + sizeXMax-1];

508 }

509

510 output = 125 * (opPressure/impData[sizeXMax —
11):

511 }

512

513 if (vowelOn == FALSE) {

514 output = LFcurrentSamplel;

515 }

516

517 output = output*0.95*amp;

518

519 if (output > 1.0) {

520 // printf ("output clipped at %f \n", output);

521 output = 1.0;

522 }

523

524 kk += 1;

525 sampleCount += 1;

526

527

528 // printf("%d %d %d %f %d %f\n", datalength,
sampleCount, fO0Count, period, kk, output);

529
530 memcpy (ioData->mBuffers[i].mData+j*fxs-
> clientASBD.mBytesPerFrame, &output, sizeof(Float32));
531
532 }
533 }
534 }
535
536 // Assign values for counter and dataLength for next sample
537 fxs-> k = k;

538 fxs-> kk = kk;

539 fxs->_ count = count;

540 fxs-> dataLength = dataLength;
541 fxs-> f0Count = fO0Count;

542 fxs-> sampleCount = sampleCount;
543 fxs-> period = period;

544

545

546

547 return noErr;

548 }

148

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

569
570
571
572
573
574
575
576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

Appendices
// Implementation of AudioEngine by Dimitrios Zantalis:
@implementation AudioEngine

@synthesise effectState;

-(id)init{
if(!(self=[super init])) return self;

OSStatus err=0;

//

//STEP 1 - CONFIGURE AND INITIALISE AUDIO SESSION

//

err=[self initialiseAudioSession];
[self checkErr:err withMessage:"Failed to configure and
initialise Audio Session!"];

//

//STEP 2 - CONFIGURE CLIENT AUDIO STREAM BASIC DESCRIPTION

//

[self configureASBD];

/7

//STEP 3 - SETUP THE REMOTEIO AUDIO UNIT FOR RECORDING AND
PLAYBACK

/7

err=[self setupRemoteIO];

[self checkErr:err withMessage:"Failed to setup RemoteIO AU!"];

//
//STEP 4 - Initialise Wave table
//
[self initValues];
[self createLFInput];
[self createDWM];

/7
//STEP 5 - Initialise File Manager
/7
//[self initFileManager];

/7
//STEP 6 - INITIALISE STATE
/7
_playing=NO;

_recording=NO;

if(err){
[self checkErr:err withMessage:"Failed to initialise
SimpleRecorderDemo!"];
}
else{
fprintf(stdout,"Simple Recorder initialised!\n");

}

return self;

Appendices

610 // initialiseAudioSession function

3

612 —(0OSStatus)initialiseAudioSession{

613 NSError *err=nil;

614 BOOL success=FALSE;

615

616 fprintf (stdout,"Configuring Audio Session...");

617

618 //Implicit initialisation of audio session.

619 _AudioSession=[AVAudioSession sharedInstance];

620

621 success=[_AudioSession
setCategory:AVAudioSessionCategoryPlayAndRecord

622 error: &err];

623 if(!success){

624 [self checkErr:[err code] withMessage:"Failed to set category
for AVAudioSession"];

625 }

626

627 //Check for input availability

628 BOOL hasInput=[_ AudioSession isInputAvailable];

629 if(!hasInput){

630 UIAlertView *alert=[[UIAlertView alloc] initWithTitle:@"No
audio input available"

631 message: @"The
application cannot record because no audio input has been detected!”

632 delegate:nil

633 cancelButtonTitle:@"OK"

634 otherButtonTitles:nil];

635 [alert show];

636 }

637

638 //Get hardware sample rate

639 effectState. hardwareSampleRate=[_ AudioSession sampleRate];

640

641 //Activate audio session

642 success=[_AudioSession setActive:YES

643 error:&err];

644 if(!success){

645 [self checkErr:[err code] withMessage:"Failed to activate
audio session"];

646 }

647

648 if(lerr)

649 fprintf(stdout, "OK\n");

650

651 return [err code];

652 }

653

654 //——————

655 // configureASBD function

656 //——————

657 —-(void)configureASBD{

658

659 fprintf(stdout, "Configuring client stream format...");

660 //Initialise ASBD structure

661 memset (&effectState. clientASBD, 0, sizeof
(effectState. clientASBD));

662

663 //Set up ASBD for stereo playback

664 effectState._clientASBD.mFormatID = kAudioFormatLinearPCM;

665 effectState._clientASBD.mFormatFlags

=kAudioFormatFlagsNativeEndian|kAudioFormatFlagIsFloat |kAudioFormatF
lagIsNonInterleaved;

150

666

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

693

694

695
696
697
698
699

700
701
702

703
704
705
706
707
708

709

710
711
712
713
714
715
716
717
718

719
720

Appendices
effectState._clientASBD.mSampleRate =

effectState._hardwareSampleRate;

effectState. clientASBD.mChannelsPerFrame = 1;
effectState._clientASBD.mBitsPerChannel = 32;
effectState._clientASBD.mBytesPerPacket = 4;
effectState. clientASBD.mFramesPerPacket = 1;
effectState._clientASBD.mBytesPerFrame = 4;
effectState._clientASBD.mReserved=0;

fprintf(stdout,"OK\n");

- (OSStatus)setupRemoteIO{

OSStatus err=0;
UInt32 propsize=0;

fprintf(stdout, "Configuring RemoteIO AU...");

//Specify RemoteIO Audio Unit Component Desciption.
AudioComponentDescription RIOUnitDescription;
RIOUnitDescription.componentType =

kAudioUnitType Output;

RIOUnitDescription.componentSubType =

kAudioUnitSubType RemoteIO;

RIOUnitDescription.componentManufacturer

kAudioUnitManufacturer Apple;

RIOUnitDescription.componentFlags = 0;
RIOUnitDescription.componentFlagsMask = 0;

//Get RemoteIO AU from AUdio Unit Component Manager
AudioComponent rioComponent=AudioComponentFindNext (NULL,

&RIOUnitDescription);

of

err=AudioComponentInstanceNew(rioComponent, &effectState. rioAU);
[self checkErr:err withMessage:"Failed to create a new instance
RemoteIO AU!"];

2 P
//Set up the RemoteIO AU.

2 P
//Enable output bus of RemoteIO.

UInt32 enableOutput = 1; // to enable output (enabled by

default).To disable set this to zero.

AudioUnitElement outputBus = 0; //Bus 0 of RemoteIO AU is the

hardware output.

propsize=sizeof (enableOutput);

err=AudioUnitSetProperty(effectState. rioAU,
kAudioOutputUnitProperty EnableIO,
kAudioUnitScope Output,
outputBus,
&enableOutput,
propsize);

[self checkErr:err withMessage:"Failed to enable output bus of

RemoteIO AU."];

/ *
151

Appendices

721 //Enable input bus of RemotelIO.

722 UInt32 enableInput = 1; // to disable input (disabled by
default). To enable set this to one.

723 AudioUnitElement inputBus = 1; //Bus 1 of RemoteIO AU is the
hardware input.

724 propsize=sizeof (enableInput);

725

726 err=AudioUnitSetProperty(effectState. rioAU,

727 kAudioOutputUnitProperty EnableIO,

728 kAudioUnitScope_ Input,

729 inputBus,

730 &enableInput,

731 propsize);

732 [self checkErr:err withMessage:"Failed to disable input bus of
RemoteIO AU."];

733 */

734

735 //Set the stream format of the RemoteIO AU.

736 propsize=sizeof(effectState. clientASBD);

737

738 //Set format for output (outputBus/input scope).

739 err=AudioUnitSetProperty(effectState. rioAU,

740 kAudioUnitProperty StreamFormat,

741 kAudioUnitScope Input,

742 outputBus,

743 &effectState._clientASBD,

744 propsize);

745 [self checkErr:err withMessage:"Failed to set StreamFormat
property of RemoteIO AU (output bus/input scope)!"];

746

747 /*

748 //Set format for input (inputBus/output scope).

749 err=AudioUnitSetProperty(effectState. rioAU,

750 kAudioUnitProperty StreamFormat,

751 kAudioUnitScope Output,

752 inputBus,

753 &effectState._clientASBD,

754 propsize);

755 [self checkErr:err withMessage:"Failed to set StreamFormat
property of RemoteIO AU (input bus/output scope)!"];

756 */

757

758 //Set up render callback function for the RemoteIO AU.

759 AURenderCallbackStruct renderCallbackStruct;

760 renderCallbackStruct.inputProc=playbackCallback;

761 renderCallbackStruct.inputProcRefCon=&effectState;

762 propsize=sizeof (renderCallbackStruct);

763

764 err=AudioUnitSetProperty(effectState. rioAU,

765 kAudioUnitProperty SetRenderCallback,

766 kAudioUnitScope_Global,

767 outputBus,

768 &renderCallbackStruct,

769 propsize);

770 [self checkErr:err withMessage:"Failed to set SetRenderCallback
property for RemoteIO AU!"];

771

772 [/ ettt ittt ettt ettt e oo seenaenan

773 //Initialise RemoteIO AU.

774 /e ettt ettt ettt e e ssesaenannan

775 err=AudioUnitInitialize(effectState. rioAU);

776 [self checkErr:err withMessage:"Failed to initialise RemoteIO
AU!"1;

777

152

Appendices
778 if(lerr)
779 fprintf(stdout, "OK\n");
780
781 return err;
782 }
783
784
785 //=———— e LF-waveform and 2D DWM implementation by Jacob

786

787 // Set initial values (when App is first opened)
788 // Typical voice with automatic £fO0

789 - (void)initValues{

790 effectState. f0=110.0;

791 effectstate._k = 0;

792

793 //TYPICAL voice type

794 effectState._tcval = 1.0;

795 effectState._teval = 0.575;

796 effectsState._tpval = 0.457;

797 effectState._taval = 0.009;

798

799 effectState._vibratoOn = FALSE;
800 effectState._amp = 0.5;

801 effectState._pitchSlide = FALSE;
802 effectState._autoVoice = TRUE;
803

804 effectState._vowelOn = FALSE;
805 }

806

807 // Set f0 manually if auto-£f0 is off
808 -(void)setF0:(Float32)f0vValue{

809 if (effectState. pitchSlide == FALSE) {
810 effectState._ f0=f0Value;

811 [self setVoiceTypel;

812 [self createLFInput];

813 }

814 }

815

816 // Set 'vocal tension'
817 -(void)setTension: (Float32)tensionValue{

818 effectState._vocalTension=tensionValue;
819 [self createLFInput];

820 }

821

822 // Set 'Ta' (can also be considered as vocal tension parameter)
823 -(void)setTa:(Float32)tavValue{

824 effectState._taVal=taValue;

825 [self createLFInput];

826 }

827

828 —(void)setAmplitude: (Float32)ampValue{
829 effectState. _amp = ampValue;

830 }

831

832 // Typical voice type (from VocalModel source code)
833 -(void)setTypical{

834 effectState. voiceType = 0;
835 [self setVoiceType];

836 }

837

838 // Modal voice type

839 -(void)setModal{

840 effectState. voiceType = 1;

153

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865
866

867
868

869

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

[self setVoi
}

// Vocal Fry voi
-(void)setVocalF
effectState.
[self setVoi

}

// Breathy Voice
-(void)setBreath
effectState.
[self setVoi

}

// Falsetto Voic
-(void)setFalset
effectState.
[self setVoi

}

-(void)setVoiceT

_voiceType

_voiceType

_voiceType

ceType];

ce type
ry{

I
N
~e

ceType];

v{

I
w
~e

ceTypel;

e
to{

]
IS
~e

ceTypel;

ype{

Appendices

// This function sets the voice type according to pitch or

selected type

// pitch thresholds for falsetto and vocal fry. between these
values, interpolate from vocal fry -> breathy/modal -> falsetto
// calculated in number of samples for single pitch period

// to avoid
samples, which

confusion: 'max
is in fact the

'minimum' pitch.

here indicates maximum number of

// these are rough estimates based on conversations with

supervisor

int vocalFryMax, vocalFryMin, falsettoMax,

vocalFryMax

vocalFryMin =

falsettoMax

falsettoMin =

double inter

= 848; // 52 Hz
469; // 94 Hz
213; // 207 H
153; // 288 H

pFraction;

4
4

switch (effectState. voiceType) {

case 0:
effe
effe
effe
effe

// typical voic
ctState._tcval

ctState._teval =

ctState._tpval
ctState._taval

e type
=1.0;
0.780;
0.600;
0.028;

effectState._noiseOn = FALSE;
effectState._vocalTension = 0.0;
[self createLFInput];

break;

case 1: // modal voice
effectstate._tcVval
effectsState._teval
effectstate._tpval
effectstate._taval
effectState. noiseO
effectstate._vocalT

type

.0;

.575;
.457;
.009;

n = FALSE;
ension = 0.0;

I
I © 0o or

[self createLFInput];

break;

case 2: // vocal fry voice type

effectState

._tcval

=1.0;

154

falsettoMin;

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

939

940
941
942

943
944
945
946
947
948
949
950
951
952
953

954

955
956

Appendices

effectState._teval = 0.251;
effectState. _tpval = 0.19;
effectState._taval = 0.008;
effectState._noiseOn = FALSE;
effectState._vocalTension = 0.0;
[self createLFInput];
break;

case 3: // breathy voice type
effectState._tcval = 1.0;
effectState._teval = 0.756;
effectState._tpval = 0.529;
effectState._taval = 0.082;
effectState._noiseOn = TRUE;
effectState. noiseAmount = 0.025;
effectState. noiseDuration = 0.5;
effectState._noiseStart = 0.75;
effectState._vocalTension = 0.0;
[self createLFInput];

case 4: // falsetto voice type
effectState._tcval = 1.0;
effectState._teval = 0.770;
effectState._tpval = 0.570;
effectState._taval = 0.133;
effectState. noiseOn = TRUE;
effectState. noiseAmount = 0.015;
effectState. noiseDuration = 0.5;
effectState._noiseStart = 0.75;
effectState._vocalTension = 0.0;

[self createLFInput];

break;
default:
break;
}
// When 'autoVoice' is TRUE, voice type automatically changes

depending on pitch

// As f0 rises, voice moves from Vocal Fry -> interpolated Vocal
Fry & Breathy/Modal -> Breathy/Modal -> interpolated Breathy/Modal &
Falsetto -> Falsetto

if (effectState. autoVoice == TRUE) {

// Set to Vocal Fry if datalLength is larger than vocalFryMax

(i.e. if £f0 < 52 Hz)
if (effectState. datalength > vocalFryMax) ({

effectState._tcval = 1.0;
effectState._teval = 0.251;
effectState. _tpval = 0.19;
effectState._taval = 0.008;
effectState._noiseOn = FALSE;
effectState._vocalTension = 0.0;

[self createLFInput];
}

// Interpolate from Vocal Fry to Breathy/Modal if dataLength
is between vocalFryMax & vocalFryMin (i.e if 52 < f0 < 94)

if ((effectState. dataLength < vocalFryMax) &&
(effectState. datalLength > vocalFryMin)) {

interpFraction = ((double)vocalFryMax —

(double)effectState. datalLength)/((double)vocalFryMax —
(double)vocalFryMin);

155

Appendices

957

958 if (effectState. voiceType == 3) { // if BREATHY voice is
selected, interpolate from vocal fry params to breathy params

959 effectState._noiseOn = TRUE;

960 effectState. noiseDuration = 0.5;

961 effectState. noiseStart = 0.75;

962

963 effectState._noiseAmount = 0.025*interpFraction;

964 effectState._teval = (0.251*(1-
interpFraction))+(0.756*interpFraction);

965 effectState. _tpval = (0.19*%(1-
interpFraction))+(0.529*interpFraction);

966 effectState._taval = (0.008*(1-
interpFraction))+(0.082*interpFraction);

967

968

969

970 }

971

972 if (effectState. voiceType == 0) { // if TYPICAL voice is
selected

973 effectState._noiseOn = FALSE;

974 effectState._teval = (0.251*(1-
interpFraction))+(0.780*interpFraction);

975 effectState. _tpval = (0.19*%(1-
interpFraction))+(0.600*interpFraction);

976 effectState._taval = (0.008*(1-
interpFraction))+(0.028*interpFraction);

9717

978 }

979

980 if (effectState. voiceType == 1) { // if MODAL voice is
selected

981 effectState._noiseOn = FALSE;

982 effectState._teval = (0.251*(1-
interpFraction))+(0.575*interpFraction);

983 effectState. _tpval = (0.19*%(1-
interpFraction))+(0.457*interpFraction);

984 effectState._taval = (0.008*(1-
interpFraction))+(0.028*interpFraction);

985

986 }

987 [self createLFInput];

988

989 }

990

991 // printf("interp fraction: %f \n", interpFraction);

992

993 // Set to Falsetto if dataLength is less than falsettoMin
(i.e if £f0 > 288 Hz)

994 if (effectState. datalength < falsettoMin) ({

995 effectState._tcval = 1.0;

996 effectState._teval = 0.770;

997 effectState._tpval = 0.570;

998 effectState._taval = 0.133;

999 effectState._noiseOn = TRUE;

1000 effectState. noiseAmount = 0.015;

1001 effectState. noiseDuration = 0.5;

1002 effectState. noiseStart = 0.75;

1003 effectState. vocalTension = 0.0;

1004 [self createLFInput];

1005

1006 }

1007

156

1008

1009

1010

1011
1012

1013
1014
1015
1016
1017

1018

1019

1020

1021
1022

1023
1024
1025
1026

1027
1028
1029
1030
1031
1032

1033

1034

1035
1036
1037
1038

1039
1040
1041
1042
1043
1044

1045

1046

1047
1048
1049
1050
1051
1052

Appendices

// Interpolate from Breathy/Modal to Falsetto if dataLength
is between falsettoMin and falsettoMax (i.e if 207 Hz < f0 < 288 Hz)
if ((effectState. datalLength >= falsettoMin) &&
(effectState._dataLength < falsettoMax)) {
interpFraction = ((double)falsettoMax —
(double)effectState. datalLength)/((double)falsettoMax —
(double)falsettoMin);
if (effectState. voiceType == 3) { // if BREATHY voice is

selected, interpolate from breathy params to falsetto

effectState. noiseOn = TRUE;

effectState. noiseDuration = 0.5;

effectState._noiseStart = 0.75;

effectState. noiseAmount = (0.025*(1-
interpFraction))+0.015*interpFraction;

effectState._teval = (0.756*(1-
interpFraction))+(0.770*interpFraction);

effectState._tpval = (0.529*%(1-
interpFraction))+(0.570*interpFraction);

effectState._taval = (0.082*(1-
interpFraction))+(0.133*interpFraction);

// printf("te = %f, tp = %f, ta = %f,
interp = %f \n", effectState. teval, effectState. tpVval,
effectState. taval, interpFraction);

}
if (effectState. voiceType == 0) { // if TYPICAL voice is
selected
effectState. noiseOn = TRUE;
effectState. noiseDuration = 0.5;
effectState._noiseStart = 0.75;
effectState. noiseAmount = 0.015*interpFraction;
effectState._teval = (0.780*(1-
interpFraction))+(0.770*interpFraction);
effectState._tpval = (0.600*(1-
interpFraction))+(0.570*interpFraction);
effectState._taval = (0.028*(1-
interpFraction))+(0.133*interpFraction);
}
if (effectState. voiceType == 1) { // if MODAL voice is
selected
effectState. noiseOn = TRUE;
effectState. noiseDuration = 0.5;
effectState._noiseStart = 0.75;
effectState. noiseAmount = 0.015*interpFraction;
effectState._teval = (0.575*%(1-
interpFraction))+(0.770*interpFraction);
effectState. _tpval = (0.457*(1-
interpFraction))+(0.570*interpFraction);
effectState._taval = (0.028*(1-
interpFraction))+(0.133*interpFraction);
}
[self createLFInput];

157

Appendices

1053

1054 }

1055

1056 // if datalength is between vocalFryMin and falsettoMax, keep
t values the same

1057 if ((effectState. dataLength >= 213) &&
(effectState._dataLength <= 469)) {

1058 if (effectState. voiceType == 3) { // if BREATHY voice is
selected, interpolate from breathy params to falsetto

1059 effectState._noiseOn = TRUE;

1060 effectState. noiseDuration = 0.5;

1061 effectState. noiseStart = 0.75;

1062

1063 effectState. noiseAmount = 0.025;

1064 effectState._tevVal = 0.756;

1065 effectState._tpval = 0.529;

1066 effectState._taval = 0.082;

1067

1068 }

1069

1070 if (effectState. voiceType == 0) { // if TYPICAL voice is
selected

1071 effectState._noiseOn = FALSE;

1072 effectState._teval = 0.780;

1073 effectState._tpvVal = 0.600;

1074 effectState._taval = 0.028;

1075

1076 }

1077

1078 if (effectState. voiceType == 1) { // if MODAL voice is
selected

1079 effectState._noiseOn = FALSE;

1080

1081 effectState._teval = 0.575;

1082 effectState._tpval = 0.457;

1083 effectState._taval = 0.028;

1084

1085 }

1086

1087 [self createLFInput];

1088

1089 }

1090

1091 }

1092

1093 }

1094

1095 -(void)vowelOn{

1096 if (effectState. vowelOn == FALSE) ({

1097 effectState._vowelOn = TRUE;

1098 }

1099 else {

1100 effectState._vowelOn = FALSE;

1101 }

1102 }

1103

1104 -(void)pitchSlide({

1105 if (effectState. pitchSlide == FALSE) {

1106 effectState._pitchSlide = TRUE;

1107 }

1108 else {

1109 effectState._pitchSlide = FALSE;

1110 }

1111 }

158

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

1126
1127
1128
1129
1130
1131
1132
1133
1134

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

Appendices

-(void)autoVoice{

if (effectState. autoVoice == FALSE) ({

effectState. autoVoice = TRUE;
}
else {
effectState. autoVoice = FALSE;

}
}
//-(void)createVibrato{
// effectState. vibratoDepth = 1;
// effectState. vibratoFreq = 6;
// int WTSize =
effectState. hardwareSampleRate/effectState._ vibratoFreq;
/7 double dt = 1/effectState. hardwareSampleRate;
/7
// int 1i;
// double t;
/7
// if (effectState. vibratoOn == TRUE) {
// for (i = 0; i < WTSize; i++) {
// t = i*dt;
// effectState._vibratoOut =
cos(2*MY PI*effectState. vibratoFreqg*t);
// [self createLFInput];
/7 }
/7 }
/7
/7
/7}
// This function calculates LF equation coefficients based on

currently selected voice type
-(void)createLFInput{

double £f0;

int Fs;

int overSample;

Float32 period;

double Ee, Eo;

double tc, te, tp, ta, tn, tb;
double wg;

double areaSum, areal, area?2;
double optimumArea;

double epsilon, epsilonTemp, epsilonDiff, epsilonOptimumDiff;

double alpha;
int dataLength;
double vocalTension;

Fs effectState._hardwareSampleRate;
f0 effectState. f0;

overSample = 1000;

period = 1/£0;

Ee = 1.0;

tc = effectState._tcVal;
te effectState._teval;
tp effectState._tpVval;
ta = effectState._taVval;

vocalTension = effectState._ vocalTension;

159

Appendices

1173

1174 te = te + te*vocalTension;

1175 tp = tp + tp*vocalTension;

1176 ta = ta - ta*vocalTension;

1177

1178

1179

1180 tc = tc*period;

1181 te = te*period;

1182 tp = tp*period;

1183 ta = ta*period;

1184

1185 // These if statements prevent timing parameter values from
going outside of their range with respect to other values.

1186

1187 if (te <= tp) {

1188 te = tp + tp*0.01;

1189 }

1190

1191 if (te >= (tc-ta)){

1192 te = tc-ta - (tc-ta)*0.01;

1193 }

1194

1195

1196

1197 // over sample values (can omit this section if it impacts real
time operation)

1198 period = period/overSample;

1199 tc = tc/overSample;

1200 te = te/overSample;

1201 tp = tp/overSample;

1202 ta = ta/overSample;

1203

1204 // dependant timing parameters

1205 tn = te - tp;

1206 tb = tc - te;

1207

1208 // angular frequency of sinusoid section

1209 wg = MY PI/tp;

1210

1211 // maximum negative peak value

1212 Eo = Ee;

1213

1214 // epsilon and alpha equation coefficients

1215 areaSum = 1.0;

1216 optimumArea = le-14;

1217 epsilonDiff = 10000.0;

1218 epsilonOptimumDiff = 0.1;

1219 epsilonTemp = 1/ta;

1220

1221 // solve iteratively for epsilon

1222 while (abs(epsilonDiff)>epsilonOptimumDiff) {

1223 epsilon = (l/ta)*(l-exp(-epsilonTemp*tb));

1224 epsilonDiff = epsilon - epsilonTemp;

1225 epsilonTemp = epsilon;

1226

1227 if (epsilonDiff<0) {

1228 epsilonTemp = epsilonTemp + (abs(epsilonDiff)/100);

1229 }

1230

1231 if (epsilonDiff>0) {

1232 epsilonTemp = epsilonTemp - (abs(epsilonDiff)/100);

1233 }

1234 }

160

1235
1236

1237
1238
1239
1240
1241
1242
1243

1244
1245

1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

1285
1286
1287
1288

1289
1290

Appendices

// iterate through area balance to get Eo and alpha to give areal

+ area2 = 0

//while ((areaSum< -optimumArea)||(areaSum>optimumArea)) {
while (areaSum > optimumArea) {

alpha = (log(-Ee/(Eo*sin(wg*te))))/te;

areal = (Eo*exp(alpha*te)/(sqrt(alpha*alphat+wg*wg))) *
(sin(wg*te-atan(wg/alpha))) + (Eo*wg/(alpha*alpha+wg*wg));

area2 = (-(Ee)/(epsilon*epsilon*(ta))) * (1 - exp(-
epsilon*tb*(l+epsilon*tb)));

areaSum = areal + area?2;

if (areaSum>0.0) {
Eo = Eo - leS5*areaSum;

}

if (areaSum<0.0) {
Eo = Eo + leS5*areaSum;

}
}

//calculate length of waveform in samples
if (effectState. pitchSlide == FALSE) {
datalength = floor(overSample*Fs*period);
}
else{
dataLength = effectState._dataLength;

}

//calculate length of waveform in samples without overSample
// dataLength = floor(Fs*period);

// pass all variables needed for waveform calculation to
effectState

effectState._period = period;

effectState._dataLength = datalLength;

effectState. Eo = Eo;

effectState. Ee = Ee;

effectState._alpha = alpha;

effectState. _wg = wg;

effectState. epsilon = epsilon;

effectState._tc = tc;
effectState._te
effectstate._tp
effectState._ta =

[T
& o o
o T 0

// printf("tc = %f, te = %f, tp = %f, ta = %f \n", tc, te,
ta);
}

/ *
2D DWM Implementation of Vocal Tract based on Jack Mullen's

VocalModel synthesiser and Amelia Gully's MATLAB port. This function

calculates the impedance maps necessary for a static 'ah' vowel
*/

1291 -(void)createDWM{

161

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303

1304
1305
1306

1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352

Appendices

int nSlices;

// double vtLength, vtWidth;
// int fs;
// double wgSize;

int sizeXMax;

int sizeYMax;

double reflectionGlottis, reflectionLips, reflectionWalls;
double zPower;

double interpFraction;

double count;

int prevSlice, nextSlice;

double zMinl, zMin, zX, 2zXPlus, zXY, zXPlusY, zXPlusYPlus,

zXYPlus;

nSlices = 44;
// initialise array manually to avoid reading the vowel .txt

file. May need to find a way around this later if diphthongs are
needed

double areaData[] = { 0.5625,
0.4620,
0.2074,
0.2701,
0.2139,
0.3268,
0.3224,
0.3771,
1.0755,
1.0756,
0.7692,
0.6199,
0.3926,
0.2908,
0.2182,
0.2829,
0.3003,
0.2896,
0.2978,
0.4969,
0.8996,
1.1699,
1.2484,
1.9049,
2.3760,
2.7038,
2.8647,
2.8949,
3.4448,
4.3501,
4.9672,
5.6775,
6.5906,
6.3094,
6.2851,
6.0513,
5.3630,
4.8184,
3.9153,
4.0989,
4.2489,
4.2713,
4.6729,
5.0273};

162

1353
1354
1355

1356

1357
1358
1359
1360
1361
1362
1363
1364

1365
1366
1367
1368
1369
1370

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412

/ *

- THIS
LENGTH OF V

SECTION CALCULATES 'sizeXMax'
OCAL TRACT/WAVEGUIDE SIZE.

and

'sizeYMax'

Appendices

BASED ON

- THEY ARE #DEFINED IN THE HEADER FILE INSTEAD SO THIS PART IS

COMMENTED O

vtLengt
vtWidth

fs = effectState._hardwareSampleRate;

/7 Ca
/7 wa
sampling fr

wgSize

UT (SEE AudioEngine.h)

h = 0.1750;
= 0.0500;

lculate waveguide size

veguide size = sqgrt(dimensionality) * speed of sound /

eq.
= sqrt(2) * 343 / fs;

// Number of waveguides in X and Y directions

sizeXMa
sizeYMa
// P
$f",sizeXMa

*/

sizeXMax
sizeYMax

x = (int)floor(vtLength/wgSize);
x = (int)floor(vtWidth/wgSize);
rintf("sizeXMax = %d, sizeYMax =

X, sizeYMax, wgSize);

SIZE X MAX;
SIZE Y MAX;

¢d, wgSize

// initialise empty arrays for pressure and impedance

// Pre
Float32
Float32
Float32
Float32
Float32
Float32
Float32
Float32

// Initialise pressure arrays to 0

for (int

ssure:
pNPlus[sizeYMax*sizeXMax];
pNMinus[sizeYMax*sizeXMax];
pEPlus[sizeYMax*sizeXMax];
pEMinus[sizeYMax*sizeXMax];
pSPlus[sizeYMax*sizeXMax];
pSMinus[sizeYMax*sizeXMax];
pWPlus[sizeYMax*sizeXMax];
pWMinus[sizeYMax*sizeXMax];

y = 0; y < size¥Max; y++) {

for (int x = 0; x < sizeXMax; x++) {

}

// Impe
Float32
Float32
Float32
Float32

// Initialise impedance arrays to 1

for (int
for

pNPlus[y*sizeXMax + x] = 0;
pNMinus[y*sizeXMax + Xx]
PEPlus[y*sizeXMax + x] =
pPEMinus[y*sizeXMax + Xx]
pSPlus[y*sizeXMax + x] =
pSMinus[y*sizeXMax + Xx]
pWPlus[y*sizeXMax + x] = 0
pWMinus[y*sizeXMax + Xx]

o o
O~ O~ O~ O
~e

~e

~e

~e

dance
zNorth[sizeYMax*sizeXMax];
zEast[sizeYMax*sizeXMax];
zSouth[sizeYMax*sizeXMax];
zWest[sizeYMax*sizeXMax];

y = 0; y < sizeYMax; y++) {

(int x = 0; x < sizeXMax; x++) {

zNorth[y*sizeXMax + x] =
zEast[y*sizeXMax + x] =1
zSouth[y*sizeXMax + x] =
zWest[y*sizeXMax + x] =1

163

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435

1436
1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458

1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

raised)

for (int i = 0; i
diamDatal[i]

double diamDatal[nSlices];

< nSlices;

i++) {

Appendices

}
}
// Set reflection parameters
reflectionGlottis = 0.97;
reflectionLips = -0.9;
reflectionWalls = 0.94;
// Impedance map
// Power for impedance/area function (power to which radius is
zPower = 2.5;
// Convert from cm sq to diameter in m

= 0.02*(sqrt(areaData[i]/MY PI));

// printf("%£f\n", diamDatal[i]);

}

// Might need to find way of performing zero-check here (like

in MATLAB script)

// Interpolate areaData from original size to new size (no. of

interpFraction =

for (int i = 0; i
count = (i+l)
prevSlice = f

if (prevSlice
prevSlice

}

if (prevSlice
nextSlice

}

else {
nextSlice

}

diamData[i] =

impData[i] =

}
zMinl = impDatal[0
for (int i=0; i<s

if (impDataf[i
zMinl =
}
}

zMin = pow(zMinl,

waveguides in X direction)

(double)nSlices/(double)sizeXMax;

double diamData[sizeXMax];
double impData[sizeXMax];

< sizeXMax; i++)
*interpFraction;
loor(count)+1;

> nSlices) {
= prevSlice - 1;

== nSlices) {
= ceil(count);

= ceil(count)+1;

{

diamDatal[prevSlice-1] + ((diamDatal[nextSlice-

l1/diamData[i];

1;

izeXMax; i++) {
] < zMinl) {

impDatal[i];

zPower) ;

164

1] — diamDatal[prevSlice-1]) * (count-prevSlice));

Appendices

1473 // initaliase array to store raised cosine in

1474 double raisedCosine[sizeYMax];

1475

1476 // go through each x location and generate raised-cosine
function

1477 for (int x=0; x<sizeXMax; x++) {

1478

1479 // impedance at edges of raised cosine (max impedance)

1480 zX = pow(impData[x], zPower);

1481

1482 // max impedance of next slice (reuse final value when
x+1 > sizeXMax)

1483 if (x == sizeXMax-1) {

1484 zXPlus = pow(impData[x], zPower);

1485 }

1486 else {

1487 zXPlus = pow(impData[x+1l], zPower);

1488 }

1489

1490 // fill array with raised cosine of size 'sizeYMax'

1491 for (int i = 0; i<sizeYMax; i++) {

1492

1493 raisedCosine[i] = (0.5 +
0.5*cos(2*MY_PI*((double)i/(double) (size¥Max-1))));

1494

1495 }

1496

1497 // cycle through each y-direction sample in the
current slice and assign it an impedance value

1498 for (int y = 0; y < size¥YMax; y++) {

1499

1500 // calculate impedance value at points
surrounding current x/y

1501 zXY = zMin + (2X - zMin)*raisedCosine[y];

1502 zXPlusY = zMin + (2zXPlus - zMin) * raisedCosine[y];

1503

1504 // again reuse last value for y+1

1505 if (y == size¥Max-1) {

1506 zXYPlus = zMin + (2X - 2zMin) * raisedCosine[y];

1507 zXPlusYPlus = zMin + (zXPlus - zMin) *
raisedCosine[y];

1508 }

1509 else {

1510 zXYPlus = zMin + (2X - 2zMin) * raisedCosine[y+1];

1511 zXPlusYPlus = zMin + (zXPlus - zMin) *
raisedCosine[y+1];

1512 }

1513

1514 // use averages of the relevant values to
update impedance map

1515 zNorth[y*sizeXMax + x] = (zXYPlus + zXPlusYPlus)/2;

1516 zEast[y*sizeXMax + x] = (zXPlusYPlus + zXPlusY)/2;

1517 zSouth[y*sizeXMax + x] = (zXPlusY + zXY)/2;

1518 zWest[y*sizeXMax + x] = (zXYPlus + 2zXY)/2;

1519

1520

1521

1522 }

1523 }

1524

1525

1526

1527 // assign values of pressure and impedance arrays to those in

effectState structure

165

1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

1539
1540

1541

1542

for (int x = 0; x < sizeXMax; x++) {
effectState. impData[x] = impData[x];
for (int y = 0; y < size¥YMax; y++) {

effectState. pNPlus[y*sizeXMax + x]

Appendices

pNPlus|[y*sizeXMax +

x1;
effectState. pNMinus[y*sizeXMax + x] pNPlus[y*sizeXMax
+ xX];
effectState. pEPlus[y*sizeXMax + x] pEPlus[y*sizeXMax +
x1;
effectState. pEMinus[y*sizeXMax + x] pEPlus[y*sizeXMax
+ xX];
effectState. pSPlus[y*sizeXMax + x] pSPlus[y*sizeXMax +
x1;
effectState. pSMinus[y*sizeXMax + x] pSPlus[y*sizeXMax
+ xX];
effectState. pWPlus[y*sizeXMax + x] pWPlus[y*sizeXMax +
x1;
effectState. pWMinus[y*sizeXMax + x] pWPlus[y*sizeXMax
+ x];
effectState. zNorth[y*sizeXMax + x] zNorth[y*sizeXMax +
x1;
effectState. zEast[y*sizeXMax + x] zEast[y*sizeXMax +
x1;
effectState. zSouth[y*sizeXMax + x] zSouth[y*sizeXMax +
x1;
effectState. zWest[y*sizeXMax + x] zWest[y*sizeXMax +
x1;
}
}
effectState._sizeXMax = sizeXMax;
effectState._size¥YMax = sizeYMax;
effectState. reflectionGLottis = reflectionGlottis;
effectState. reflectionlLips = reflectionLips;
effectState. reflectionWalls = reflectionWalls;
}
[/ =——m e End of LF-waveform and 2D DWM implementation by
Jacob Harrison---—-—-—————————————- //
/ *
[/ -
// initFileManager function
[/ -

-(void)initFileManager{

fprintf(stdout,"Initialising file manager...");

NSError *err;

//Get an instanse of the default file manager.

_FileManager=[NSFileManager defaultManager];

//Get documents directory in app space.

NSArray *dirPaths=[_ FileManager URLsForDirectory:NSDocumentDirectory

inDomains:NSUserDomainMask];
NSURL *_ docsURL=[dirPaths objectAtIndex:0];

166

Appendices
1579
1580 //Create a directory where all exported audio files are saved.
1581 _audioDirURL =[NSURL URLWithString:@"audio" relativeToURL: docsURL];
1582
1583
1584 [_FileManager createDirectoryAtURL:_audioDirURL
1585 withIntermediateDirectories:YES
1586 attributes:nil
1587 error:&err];
1588 [self checkErr:[err code] withMessage:"Failed to create audio
directory"];
1589
1590 if(!err)
1591 fprintf(stdout,"OK\n");

1592

1593 }

1594 */

1595

1596 //-———————

1597 // startPlayback function

1598 //-——————

1599 -(OSstatus)startPlayback{

1600 OSStatus err=0;

1601

1602 //Reset sample into loop

1603 //_sampleIntoLoop=0;

1604

1605 //_recording=NO; //unless monitor option is avaliable.

1606

1607 err=AudioOutputUnitStart(effectState. rioAU);

1608 [self checkErr:err withMessage:"Failed to start RemoteIO AU!"];

1609 if(lerr){

1610 _playing=YES;

1611 fprintf(stdout, "Playing audio...\n");

1612 }

1613

1614 return err;

1615 }

1616

1617 / /e e e e

1618 // stopPlayback function

1619 //-——————

1620 -(OSstatus)stopPlayback{

1621 OSStatus err=0;

1622

1623 //_sampleStoppedRecording=_ sampleIntoLoop; //Keep this for
playback and saving file purposes

1624

1625 //Reset smaple into loop

1626 //_sampleIntoLoop=0;

1627

1628 err=AudioOutputUnitStop(effectState. rioAU);

1629 [self checkErr:err withMessage:"Failed to stop RemoteIO AU!"];

1630

1631 if(lerr){

1632 fprintf(stdout, "Stopped audio.\n");

1633 _playing=NO;

1634 }

1635

1636 return err;

1637 }

1638

1639 //-———————

1640 // isPlaying function

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658

1659
1660
1661
1662

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

1678
1679
1680
1681
1682
1683
1684
1685

1686
1687
1688
1689
1690
1691
1692

1693
1694

1695
1696
1697

Appendices

[mm e
-(BOOL)isPlaying{
return _playing;

}
/*

[mm e e
// exportAudio function

[mm e e
- (0SStatus)exportAudioWithName: (NSString*)outputFileName

{

OSStatus err=0;

//Declate and set-up an ASBD structure for the output file.
AudioStreamBasicDescription outputASBD;

outputASBD.mFormatID = kAudioFormatLinearPCM;
outputASBD.mFormatFlags

=kAudioFormatFlagIsSignedInteger |kAudioFormatFlagIsPacked;
outputASBD.mSampleRate = effectState. hardwareSampleRate;
outputASBD.mChannelsPerFrame = 2;

outputASBD.mBitsPerChannel = 16;

outputASBD.mBytesPerFrame =

outputASBD.mChannelsPerFrame* (outputASBD.mBitsPerChannel/8);
outputASBD.mBytesPerPacket =outputASBD.mBytesPerFrame;
outputASBD.mFramesPerPacket = 1;

outputASBD.mReserved=0;

// Declare and initialise an audio file reference.

ExtAudioFileRef extAudioFileObj = 0;

//Set the type of the output file.

AudioFileTypeID outputFileType=kAudioFileWAVEType;

//Extension of output file.

NSString *fileExtension=@"wav";

// Create full path for output file.

NSString *fullPath=[NSString
stringWithFormat:@"%@/%@.%@", [audioDirURLpath],outputFileName, fileE
xtension];

// Create file URL.

NSURL *fileURL = [NSURL fileURLWithPath:fullPath isDirectory:NO];
// Get CFURLRef from NSURL.

CFURLRef outputAudioFileURL=(CFURLRef)CFBridgingRetain(fileURL);

// Create an extended audio file object and link it to the reference
above.

err=ExtAudioFileCreateWithURL (outputAudioFileURL,

outputFileType,

&outputASBD,

NULL,

kAudioFileFlags EraseFile,

&extAudioFileObj);

[self checkErr:err withMessage:"Failed to create a file for
output."];

//Set client ASDB property of extended audio file. The object needs
to know the

//data it will accept so that it converts it accordingly.
err=ExtAudioFileSetProperty(extAudioFileObj,

kExtAudioFileProperty ClientDataFormat,

168

Appendices

1698 sizeof(AudioStreamBasicDescription),

1699 &effectState._clientASBD);

1700 [self checkErr:err withMessage:"Failed to set client ASBD."];

1701

1702 fprintf(stdout, "Writting audio file to disk...");

1703 //Write the data found in ioBuffer into the file pointed by
extAudioFileObj.

1704 err=ExtAudioFileWrite(extAudioFileObj,

1705 _smpPerLoop,//This could be a user setting. If user changes this
size of _ioBuffer has to change accordingly.

1706 _ioBuffer);//Our data is in ioBuffer AudioBufferList.

1707 [self checkErr:err withMessage:"Failed to write file to disk!"];

1708

1709 //We finished with the file so dispose the reference properly.

1710 err=ExtAudioFileDispose(extAudioFileObj);

1711 [self checkErr:err withMessage:"Failed to dispose extended audio
file reference"];

1712

1713 if(!err)

1714 fprintf(stdout, "OK\n");

1715 return err;

1716 }
1717 =*/
1718
1719 #pragma mark Utility Functions
1720 //====— =
1721 // checkErr function
1722 / /===
1723 - (void) checkErr: (OSStatus) error
1724 withMessage: (const char *) message{
1725
1726 if (error==noErr) return;
1727
1728 char errorString[20];
1729 *(UInt32*) (errorString+1l)=CFSwapInt32HostToBig(error);
1730
1731 if(isprint(errorString[l]) && isprint(errorString[2])
1732 && isprint(errorString[3])&&isprint(errorString[4])) {
1733 errorString[0]=errorString[5]='\"";
1734 errorString[6]='\0";
1735 }
1736 else sprintf(errorString, "%d", (int)error);
1737
1738 fprintf(stderr, "\nError: %s [Error code:
¢s]1\n" ,message,errorString);
1739 }
1740 @end

169

References

References

[1]
[2]
[3]

[4]

[5]
[6]
[7]
[8]
[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

“Siri,” apple.com. [Online]. Available:
https://www.apple.com/ios/siri/. [Accessed: 11-Nov-2014].

W. L. Hallahan, “DECtalk software: Text-to-speech technology and
implementation,” Digital Technical Journal, 1995.

T. Guerreiro, H. Nicolau,]. Jorge, and D. Gongalves, “Towards

accessible touch interfaces,” presented at the the 12th international
ACM SIGACCESS conference, New York, New York, USA, 2010, p. 19.
L. Anthony, Y. Kim, and L. Findlater, “Analyzing user-generated
youtube videos to understand touchscreen use by people with motor
impairments,” presented at the the SIGCHI Conference, New York,
New York, USA, 2013, p. 1223.

J. Harrison, “Exploring the Naturalness of Speech Synthesis using a
Real-Time Handheld Controller Device” May 2013.

D. M. Howard and D. T. Murphy, Voice Science, Acoustics and
Recording. 2008.

G. Fant, “Voice source dynamics,” Speech Transmission Labs-Quarterly
Progress Status ..., 1980.

[. R. Titze, “On the mechanics of vocal-fold vibration,” The Journal of
the Acoustical Society of America, 1976.

K. E. Cummings and M. A. Clements, “Glottal models for digital speech
processing: A historical survey and new results,” Digital Signal
Processing, 1995.

J. W. Van den Berg and |. T. Zantema, “On the air resistance and the
Bernoulli effect of the human larynx,” The Journal of the Acoustical
Society of America, vol. 29, no. 5, p. 626, 1957.

H. Babinsky, “How do wings work?,” Physics Education, 38(6) pp. 1-8,
Oct. 2003.

G. Fant, |. Liljencrants, and Q. Lin, “A four-parameter model of glottal
flow,” STL-QPSR, 1985.

G. Fant, “Preliminaries to analysis of the human voice source,” STL-
QPSR, 1982.

D. G. Childers and C. K. Lee, “Vocal quality factors: Analysis, synthesis,
and perception,” The Journal of the Acoustical Society of America, vol.
90, no. 5, pp. 2394-2410, Nov. 1991.

C. Gobl, “The role of voice quality in communicating emotion, mood
and attitude,” Speech Communication, vol. 40, no. 1, pp. 189-212, Apr.
2003.

G. Chen, J. Kreiman, Y. L. Shue, A. Alwan, and D. Australia, “Acoustic
Correlates of Glottal Gaps.,” INTERSPEECH, 2011.

170

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

References

J. Sundberg, “Acoustic and psychoacoustic aspects of vocal vibrato,”
STL-QPSR, 1995.

J. Sundberg, “Vibrato and vowel identification,” Arch Acoust, 1977.

S. E. Levinson and C. E. Schmidt, “Adaptive computation of
articulatory parameters from the speech signal,” The Journal of the
Acoustical Society of America, 1983.

L. R. Rabiner, “Digital-Formant Synthesiser for Speech-Synthesis
Studies,” The Journal of the Acoustical Society of America, 2005.

H. Li, R. Scaife, and D. O'Brien, “LF model based glottal source
parameter estimation by extended Kalman filtering,” presented at
the Proceedings of the 22nd IET Irish Signals and Systems Conference,
2011.

G. Chen, M. Garellek, J. Kreiman, B. R. Gerratt, and A. Alwan, “A
perceptually and physiologically motivated voice source model.,”
presented at the INTERSPEECH, 2013, pp. 2001-2005.

B. Cranen and L. Boves, “Pressure measurements during speech
production using semiconductor miniature pressure transducers:
Impact on models for speech production,” The Journal of the
Acoustical Society of America, 1985.

Q. Fu and P. Murphy, “Robust Glottal Source Estimation Based on
Joint Source-Filter Model Optimization,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 14, no. 2, pp. 492-501.

A. E. Rosenberg, “Effect of Glottal Pulse Shape on the Quality of
Nattural Vowels,” The Journal of the Acoustical Society of America,
2005.

H. Fujisaki and M. Ljungqvist, “Proposal and evaluation of models for
the glottal source waveform,” IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 11, pp. 1605-1608, Apr.
1986.

[. R. Titze, “A four-parameter model of the glottis and vocal fold
contact area,” Speech Communication, vol. 8, no. 3, pp. 191-201, 1989.
[. R. Titze, “Parameterization of the glottal area, glottal flow, and
vocal fold contact area,” The Journal of the Acoustical Society of
America, 1984.

[. R. Titze and D. T. Talkin, “A theoretical study of the effects of
various laryngeal configurations on the acoustics of phonation,” The
Journal of the Acoustical Society of America, 1979.

J. Mullen, “Physical modelling of the vocal tract with the 2D digital
waveguide mesh,” 2006.

D. G. Childers and K. Wu, “Quality of speech produced by analysis-
synthesis,” Speech Communication, vol. 9, no. 2, pp. 97-117, 1990.

171

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]

References

D. H. Klatt, “Software for a cascade/parallel formant synthesiser,” The
Journal of the Acoustical Society of America, vol. 67, no. 3, p. 971,
1980.

D. G. Childers and C. Ahn, “Modelling the glottal volume-velocity
waveform for three voice types,” The Journal of the Acoustical Society
of America, vol. 97, no. 1, pp. 505-519, Jan. 1995.

J. Pérez and A. Bonafonte, “Automatic voice-source parameterization
of natural speech.,” INTERSPEECH, 2005.

H. Li, R. Scaife, D. O'Brien, “Automatic LF-Model Fitting to the Glottal
Source Waveform by Extended Kalman Filtering,” Signal Processing
Conference (EUSIPCO), 2012 Proceedings of the 20th European pp. 1-
5, Oct. 2012.

M. Airas and P. Alku, “Comparison of multiple voice source
parameters in different phonation types.,” INTERSPEECH, 2007.

P. Alku, T. Backstrom, and E. Vilkman, “Normalized amplitude
quotient for parametrization of the glottal flow,” the Journal of the
Acoustical Society of America, vol. 112, no. 2, pp. 701-710, 2002.

G. Fant, “Some problems in voice source analysis,” Speech
Communication, vol. 13, no. 1, pp. 7-22, 1993.

R. B. Monsen and A. M. Engebretson, “Study of variations in the male
and female glottal wave,” The Journal of the Acoustical Society of
America, 1977.

P. Palo, "A review of articulatory speech synthesis". 2006.

J. L. Kelly and C. C. Lochbaum, “Speech synthesis,” In Proc. Fourth Int.
Congr. Acoustics (September 1962), pp. 1-4, pp- 1-4, 1962.

J. O. Smith, Efficient simulation of the reed-bore and bow-string
mechanisms. 1986.

J. d'Alembert, Investigation of the curve formed by a vibrating string.
Acoustics: Historical and Philosophical Development, 1973.

J. O. Smith, Physical audio signal processing: For virtual musical
instruments and audio effects. 2010.

S. A. Van Duyne and J. O. Smith, “Physical modelling with the 2-D
digital waveguide mesh,” presented at the Proceedings of the
International ..., 1993.

D. Murphy, A. Kelloniemi,]. Mullen, and S. Shelley, “Acoustic
Modelling Using the Digital Waveguide Mesh,” Signal Processing
Magazine, IEEE, vol. 24, no. 2, pp. 55-66, Mar. 2007.

D. T. Murphy and D. M. Howard, “Digital waveguide mesh topologies
in room acoustics modelling,” 2000.

M.]. Beeson and D. T. Murphy, “RoomWeaver: A digital waveguide
mesh based room acoustics research tool,” Int Conference on Digital

172

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

References

Audio Effects (DAFx'04), 2004.
J. Mullen, D. M. Howard, and D. T. Murphy, Digital waveguide mesh
modelling of the vocal tract acoustics. IEEE, 2003, pp. 119-122.

“Acoustical simulations of the human vocal tract using the 1D and 2D
digital waveguide software model,” 2004.
J. Mullen, D. M. Howard, and D. T. Murphy, “Real-Time Dynamic

Articulations in the 2-D Waveguide Mesh Vocal Tract Model,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 15, no. 2,
pp.- 577-585, Feb. 2007.

M. D. A. Speed, Voice Synthesis Using the Three-dimensional Digital
Waveguide Mesh. 2012.

P. A. Yushkevich,]. Piven, H. C. Hazlett, R. G. Smith, and S. Ho, “User-
guided 3D active contour segmentation of anatomical structures:
significantly improved efficiency and reliability,” Neuroimage, 2006.
W. von Kempelen, Mechanismus der menschlichen Sprache. 1791.

H. Dudley and T. H. Tarnoczy, “The speaking machine of Wolfgang
von Kempelen,” The Journal of the Acoustical Society of America, 1950.
J. Trouvain and F. Brackhane, “The relevance of today Wolfgang von

Kempelen's speaking machine,” 2011.

“Talking Heads: Simulacra,” haskins.yale.edu. [Online]. Available:
http://www.haskins.yale.edu/featured /heads/SIMULACRA/kempele
n.html. [Accessed: 11-Nov-2014].

“Apollo Ensemble,” apolloensemble.co.uk. [Online]. Available:
http://www.apolloensemble.co.uk/. [Accessed: 10-Nov-2014].
“QTC™ Material Technology,” peratech.com. [Online]. Available:
http://www.peratech.com/qtc-technology.html. [Accessed: 10-Nov-
2014].

C. H. Newell, “Place authenticity and time : A framework for liveness
in synthetic speech,” 2009.

M. Mori, 1970.“The Uncanny Valley.” Trans. Karl F. McDorman and
Norri Kageki. IEEE, 2012.

“The Uncanney Valley,” spectrum.ieee.org. [Online]. Available:
http://spectrum.ieee.org/automaton/robotics/humanoids/the-
uncanny-valley. [Accessed: 11-Nov-2014].

R. K. Moore, “A Bayesian explanation of the ‘Uncanny Valley’ effect
and related psychological phenomena,” Scientific Reports, vol. 2, Nov.
2012.

A. D. N. Edwards, Speech synthesis. Paul Chapman Educational

Publishing, 1991.

J. Han, “Multi-touch Interaction Research,” cs.ny.edu. [Online].
Available: http://cs.nyu.edu/~jhan/ftirtouch/. [Accessed: 11-Nov-
2014].

173

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

References

N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, J. Bishop, A.
Samuel, and T. Xie, “The future of teaching programming is on mobile
devices,” presented at the the 17th ACM annual conference, New
York, New York, USA, 2012, p. 156.

“Core Audio Overview,” developer.apple.com. [Online]. Available:
https://developer.apple.com/library/mac/documentation/MusicAu
dio/Conceptual/CoreAudioOverview/Introduction/Introduction.htm
l. [Accessed: 11-Nov-2014].

M. Brooks, “VOICEBOX: Speech Processing Toolbox for MATLAB,”
ee.ic.ac.uk. [Online]. Available:
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.
[Accessed: 11-Nov-2014].

R. Bristow-Johnson, “Wavetable Synthesis 101, A Fundamental
Perspective,” Nov. 1996.

“Core Plot source code and example applications,” github.com.
[Online]. Available: https://github.com/core-plot/core-plot.
[Accessed: 11-Nov-2014].

J. Mullen and D. T. Murphy, “Vocal Tract Modelling with the 2D Digital
Waveguide Mesh.” [Online]. Available: http://www-
users.york.ac.uk/~dtm3/vocaltract.html. [Accessed: 11-Nov-2014].
H. Silén, E. Helander, J. Nurminen, and M. Gabbouj, “Parameterization
of vocal fry in HMM-based speech synthesis.,” INTERSPEECH, 2009.
“Model-View-Controller,” developer.apple.com. [Online]. Available:
https://developer.apple.com/library/mac/documentation/General /
Conceptual/DevPedia-CocoaCore/MVC.html. [Accessed: 11-Nov-
2014].

P. Boersma and D. Weenink, “Praat: doing phonetics by computer,”
fon.hum.uva.nl. [Online]. Available:
http://www.fon.hum.uva.nl/praat/. [Accessed: 11-Nov-2014].
“Nyquist Analyze Plug-ins,” wiki.audacityteam.org. [Online].
Available: http://wiki.audacityteam.org/wiki/Nyquist_Analyze_Plug-
ins#Pitch_Detect. [Accessed: 11-Nov-2014].

“Soundflower,” code.google.com. [Online]. Available:
https://code.google.com/p/soundflower/. [Accessed: 17-Feb-2015].
“Digital Waveguides,” 2010. [Online]. Available:
https://ccrma.stanford.edu/~jos/pasp/Digital_ Waveguides.html#11
226.

“Speech Assessment Methods Phonetic Alphabet,” wikipedia.org.
[Online]. Available:
http://en.wikipedia.org/wiki/Speech_Assessment_Methods_Phoneti

c_Alphabet. [Accessed: 12-Nov-2014].

174

[79]

[80]

[81]

References

T. P. Szynalski, “English vowel chart,” antimoon.com. [Online].
Available: http://www.antimoon.com/how/english-vowel-
chart.htm. [Accessed: 12-Nov-2014].

A. Hunt, D. M. Howard, G. Morrison, and]. Worsdall, “A real-time
interface for a formant speech synthesiser,” Logopedics Phoniatrics
Vocology, vol. 25, no. 4, pp. 169-175, 2000.

sensimetrics, “One-Hand-Operated Speech Synthesis,” sens.com.

[Online]. Available: http://www.sens.com/handsynth/index.htm.
[Accessed: 12-Nov-2014].

175

References

176

