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Abstract

Swarm robotics aims to use a large group of relatively simple robots to solve tasks

that can hardly be achieved by a single robot in the group. Compared to single

robot systems with increased capability, a swarm robotic system may have ad-

vantages in robustness, flexibility and scalability. However, designing cooperative

behaviors for a swarm robotic system is a challenging problem, especially when

the robots may not have communication capabilities and thus only know local

information. For a swarm of miniature mobile robots that cannot communicate

explicitly, this thesis studies fully decentralized solutions of two problems. For

the problem of cooperative transport, the thesis presents a strategy to push an

object that is large enough to occlude the robots’ perception of the goal of the

transportation. For the problem of pattern formation, the thesis investigates algo-

rithms based on the Brazil nut effect that can organize the swarm of robots into

an annular formation. These problems are studied using physics-based computer

simulations as well as experimental implementations based on the e-puck robotic

platform. The simplicity of the solutions make them suitable for applications that

require the individual robots to be as simple as possible. Example application

scenarios could be micro robot swarms working in the human body.
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Chapter 1

Introduction

Social insects such as ants or bees demonstrate that a large number of simple

individuals can accomplish difficult tasks through cooperation. This has inspired

the field of swarm robotics, which investigates intelligent behavior that ‘emerges’

from the interactions of simple robots. Such intelligence (often referred to as

‘swarm intelligence’ [126]) can let a group of robots solve tasks that may be too

difficult for an individual robot to solve.

Instead of pushing the hardware capability of a robot in the system beyond

the state-of-the-art, swarm robotics focuses more on making the robots cooperate

so that the capability of the system can be extended by increasing the number of

robots. Compared to conventional robotic systems, a swarm robotic system offers

potential advantages in robustness, flexibility and scalability [105]. Moreover,

the benefits of having multiple robots to work cooperatively could also increase

super-linearly with group size [22][81]. Theories of self-organization also reveal

that randomness or uncertainty in individual behavior may greatly enhance the

system’s ability to explore new behaviors and find new solutions rather than being

harmful [62]. Furthermore, the simplicity of the individual robots makes a swarm

robotic system suitable for some application scenarios. Examples of such scenarios

could be micro-robot swarms working in the human body, or, dispensable robots

in which the cost of each individual needs to be as low as possible.
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1.1 Challenges in Swarm Robotics

Communication and Localization

Cooperative behaviors appear in creatures of all levels of intelligence, for example,

as advanced as human or as simple as bacteria (e.g. decision-making based on

quorum sensing [79]). In robotics, using multiple robots capable of cooperation

may reduce the hardware requirement of individual robots in the system. However,

robots working cooperatively usually require the capability of communication.

Via communication, the information available for any individual in the group

is not limited to what can be acquired by the individual’s own perception. For

example, in a multi-robot searching task, every robot could know a target’s position

when one of the robots finds the target and makes a broadcast. Such information

that is not necessarily within the reach of a robot’s own perception range can be

considered as global information.

Technically, sharing global information among a group of robots can be achieved

by state-of-the-art technologies, such as WiFi and GPS. However, technologies pro-

viding global information are often sophisticated and add limitations to a swarm

robotic system [64][108]. For example:

• Addressed communications can introduce a bottleneck in the maximum num-

ber of robots working in a same area. For example, connection quality of

mobile telecommunication networks can degrade when a large number of de-

vices are used in a small area sharing a same communication channel [144].

• The system may be limited in terms of applicable working environments. For

example, radio based communication as a whole can barely work in under-

water environments whereas GPS is not suitable for indoor environments.

• The performance or availability of the technology may not scale well with

the system. For example, GPS’s perception may be sufficient for an outdoor

cooperation in urban environments, but it would be insufficient for a swarm

of miniature robots on a table.

• The infrastructure may become a single point of failure in the system. For

example, a typical WiFi network requires a router, which is a single point of

failure.
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Thus, a system developed in a research environment using such technologies may

have limited applicability to other environments.

Swarm robotics aims at the cooperation of a large number of robots [13][105].

Swarm robotic systems have the potential to operate in a wide range of environ-

ments, for example, micro-robot swarms could act inside the human body and

under-water searching swarms could act in the deep sea. In these kinds of environ-

ments, solutions based on the types of communication technologies listed above

may not be valid anymore. While research can be aimed to solve these limitations,

to avoid using such types of communication technologies or even global informa-

tion entirely may be a choice that is more suitable for swarm robotics. Hence,

complex communication may not always be helpful in some cases [6].

From Local Information to Global Behavior

A swarm robotic system is expected to accomplish tasks that are meaningful from

the global point of view. To make the whole swarm behave in a desired way by

designing the behavior of the individual robots is a challenging problem. As we

argued in the previous section, the individuals in a swarm robotic system should

only rely on local information. Under such a constraint, achieving a desired global

behavior becomes even more challenging [73].

In many natural swarm systems, individuals rely only on local information.

For example, the perception range of ants and bees are much smaller than the

range of their activities. The principles and phenomena behind existing swarms

in nature are also important to study in the context of swarm robotics. Often, the

relation between the global behavior and the individual behavior is not explicit,

and in some cases counter-intuitive [42].

Compared to studying present swarms in nature, designing a swarm robotic

system could be an even more challenging problem. Lack of global information

can mean that individuals do not know all of the key elements in a task. As a result,

conventional ideologies in robotics may not be applied when solving problems in

swarm robotics. For example, an absolute position in the environment may not

be exchanged among a group of robots without a global reference frame. Thus,

any actions based on global positions may not be applied unless the problem of

localization is solved first (also known as collective localization [86]). Under such
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a condition, tasks as simple as making a group of robots go to a common location

(also known as aggregation) may become challenging to achieve.

1.2 Problem Statement

This thesis aims to study how a swarm of robots can cooperate without com-

munication. Which kind of interactions can be considered as communication is

somewhat subjective.

In general, communication is used to exchange data. For example, a cooper-

ative behavior may be achieved assuming that the robots are capable of broad-

casting data packets using infrared range-and-bearing boards. In such a case, the

communication mechanism itself (e.g. addressing, modulation and error checking)

does not need to be a part of the behavior. Rather, the design of the cooperative

behavior employs a method of communication to ensure that the required infor-

mation is exchanged in a straight forward manner. This kind of communication

may be referred to as ‘explicit communication’ [91].

In some cases, the observation of the presence of an entity in the environment

can communicate information and, thus, may be considered as communication.

For example, a robot can know whether it is inside a formation by checking the

number of neighboring robots. The status of an LED on a robot can also be

viewed as a ‘Yes or No’ message to other robots. In these cases, the mechanisms

are typically simple and robust while the process of communication is implemented

as a part of the cooperative behavior. These kinds of interactions, if considered

as communication, but not explicit (e.g. signaling), are referred to as ‘implicit

communication’ [91]. A particular case where the robots communicate indirectly

via applying changes to the environment may also be referred to as ‘stigmergic

communication’ [71].

In our swarm robotic systems, no explicit communication is used. This also

implies that localization methods based on explicit communication have to be

avoided. To investigate how a swarm robotic system can cooperate without these

elements, this thesis investigates two tasks in particular.
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(a) (b)

Figure 1.1: The two problems studied in this thesis: (a) a cooperative transport task, (b) a

pattern formation task. While the robots are aware of the presence of nearby robots, they are

not required to communicate with each other explicitly to solve these task.

Cooperative Transport

In a cooperative transport task, a group of robots need to move an object to

a desired position (target position). It is expected that the object needs to be

manipulated by multiple robots cooperatively due to its physical properties.

We attempt to solve such a task using a swarm robotic system. Without explicit

communication, the target position can hardly be specified for the robots in the

form of coordinates in a global reference frame. Therefore, the target position

is represented by a physical item (the goal). The goal can be perceived by the

robots using their own sensors. In such a scenario, robots manipulating the object

typically require consistent perception of the goal. In general, when the object is

much larger in size than an individual robot, the robots’ perception of the goal

may be occluded by the object. Such an occlusion problem usually exists when the

robots are pushing the object towards the goal. Fig. 1.1(a) shows such a scenario.

The thesis will investigate how the swarm robotic system can collectively overcome

the occlusion problem.

Pattern Formation

A typical pattern formation task requires the robots to form a spatial structure

that is meaningful from the global perspective. For example, a swarm of robots

that are initially randomly located on a plane attempt to form a required shape.
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Fig. 1.1(b) shows an annular pattern in which robots of the same color are in a

same layer.

Pattern formation can be observed in nature in both passive and active particle

swarms. We are specifically interested in the Brazil nut effect [101], where hetero-

geneous repulsion and homogeneous attraction make a large number of particles

form layered structures when being shaken. A swarm of robots may be organized

into such a formation when the robots emulate the motion of the particles in such

a system. However, to achieve such a motion, a robot may need to know the size of

the particle that nearby robots are emulating. Moreover, a consistent perception

of a global attraction point may also be needed [51]. We attempt to design and im-

plement an algorithm based on the Brazil nut effect even when these assumptions

are violated.

1.3 Contributions

Cooperative pushing of large objects that cause visual occlusion We

propose a cooperative transport strategy that can be applied in scenarios where

the object is large enough to occlude the robots view of the goal. The individ-

ual robots manipulate the object by pushing. They behave only relying on local

information acquired from their own sensors and do not need to communicate ex-

plicitly with each other. The performance of the group of robots scales well with

the number of robots, making it possible to transport objects of various shape and

size without adjusting the controller. Through a mathematical analysis in an ideal

2-D environment, the strategy is proved to be able to transport arbitrary convex

shaped object to the goal, while a counter example of a concave object is provided.

Experiments with 20 robots and objects of different shapes are reported and the

results are compared against model predictions.

Human-swarm interaction through an agent robot The goal in the trans-

port strategy can be replaced by a mobile robot. In our experiments, we let a

human operator control the ‘goal robot’ remotely. As a consequence, the group of

robots essentially transport the object along the desired direction as defined by the

operator. Such an experiment can be viewed as a successful human-swarm inter-

action in which the human commands a swarm robotic system remotely through
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an agent robot.

Spatial segregation without communication We ported onto physical robots

an existing algorithm inspired by the Brazil nut effect [51], which makes a swarm

of robots form an annular ring formation. The robots emulate the motion of par-

ticles of different sizes, and the robots belonging to the same particle-size group

will end up being in the same layer in such a formation. The algorithm does not

require robots to discriminate among robots of different groups; a robot only needs

to know which group itself is in. We test the effects of different particle size ratios

and present experiments with up to 30 robots. The different groups were able to

segregate with a high level of accuracy.

Decentralized construction of global gradient From the segregation algo-

rithm, we abstracted a fully decentralized method to form a global gradient with-

out explicit communication between robots. Initially, all robots in the swarm have

homogenous (or valueless) status. With the algorithm being applied, a radial gra-

dient can be constructed among them. This gradient makes it possible to implicitly

decide a center or origin within the swarm.

An e-puck library alongside the official one In this thesis, the robotic plat-

form used for physical experiments is the e-puck [28]. It comes with the official

e-puck library. Partially based on this library, we have developed a new e-puck

library that overcomes some of the drawbacks of the official e-puck library. The

e-puck controllers in this thesis are all programmed based on the new library. The

library has been made open to the public under the MIT license on GitHub [24].

Apart from some technical advantages, we believe this library is more user friendly

as it has a better interfacing model.

1.4 Thesis Outline

The thesis is organized as follows.

Chapter 2 first provides a background on swarm robotics. Then related works

in the problems of cooperative transport and pattern formation are introduced

and discussed.
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Chapter 3 focuses on the technological developments of this thesis, which pro-

vided the framework for the case studies.

Chapter 4 presents the occlusion based cooperative transport strategy, includ-

ing a detailed controller description, two series of systematic physical experiments

and two computer simulations.

Chapter 5 describes the physical implementation and experiments about the

Brazil nut effect inspired segregation algorithm, which was presented in previous

research [51].

Chapter 6 introduces an improved algorithm to achieve segregation which over-

comes some of the requirements of the algorithm presented in Chapter 5.

Chapter 7 concludes this thesis and discusses potential directions for future

work.

1.5 Related Publications

Some of the contents presented in the thesis were published in the scientific liter-

ature. In the following, these contents are summarized.
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Verlag.

A preliminary version of the implementation in Section 4.4 and the technical

development introduced in Section 3.1 were published in:
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Chapter 2

Background and Related Works

2.1 Background

The field of cooperative mobile robotics1 investigates the use of multiple robots

to solve tasks cooperatively. It has been established for decades [2]. Cooperative

task solving behaviors are widely observed in animal kingdom. In the robotics

context, such behaviors are of interest for a number of reasons. For example, the

reliability of a single robot tends to decrease as its capability and thus complexity

is increased. Therefore, making a number of simple robots that work cooperatively

may be more suitable in some circumstances, in particular where the overall system

remains intact despite failure in some of its robots. Moreover, some types of tasks

are inherently suited for a multi-robot system [22]. Tasks involving searching are

examples of these.

A swarm robotic system uses a large number of simple robots to solve tasks co-

operatively. It can be categorized under multi-robot systems but the differentiation

from a multi-robot system to a swarm robotic system could be more substantial

than just the number of robots [105]. For example, swarm robotic systems tend

to be a group of decentralized and homogeneous robots. The emphasis on the

simplicity of an individual robot in a swarm robotic system could be stronger than

in a multi-robot system. Swarm robotics is a domain focused on studying method-

ologies, phenomena and applications of swarm robotic systems. This section will

give a brief survey around the common topics in the domain of swarm robotics.

1also referred to as distributed autonomous mobile robotics
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2.1.1 Origins and Terminology

“Swarm intelligence” is a rather inclusive term to describe the essence of swarm

robotics. It originates from biological research around swarms in nature, especially

social insects [41]. It can be used to describe the high level intelligence of a

swarm that surpasses the intelligence of its individuals. The ant colony is an

iconic example of such a swarm. To analyze the swarm as an intelligent system

to solve a task, the intelligence required to overcome the difficulties in the task

is not necessarily the intelligence of an individual in the swarm. For example, a

single ant may not have enough brain power to work out the shortest path to a

prey while the shortest path can be achieved through a chain of causes and effects.

Though behaviors to form a shortest path are still based on intelligent choices

made by each ant, the intelligence behind these choices seem to be much more

primitive than the final outcome it achieves. Such intelligence may be viewed as

swarm intelligence.

Though swarm intelligence is generally a wider area than swarm robotics, the

concept of swarm robotics probably formed first. In 1988, a paper titled “The

Concept of Cellular Robotic System” [12] was published. The cellular robotic

system proposed in the paper distinguished itself from conventional distributed

robotic systems as a robot in the system tends to communicate with only nearby

robots (typically direct neighbors). In [14], the relation between the cellular robotic

system and swarm intelligence has been discussed while the term “robot swarm”

was used to describe a type of cellular robotic system. In [35], a taxonomy of

swarm robots was provided. In [13], the term “swarm robotics” appeared to be

formed as well as many definitions and motivations about it were discussed.

In [105], Sahin proposed a definition of swarm robotics: “Swarm robotics is the

study of how large number of relatively simple physically embodied agents can be

designed such that a desired collective behavior emerges from the local interactions

among agents and between the agents and the environment.” He also proposed

explicit criteria for distinguishing swarm robotics research from other research. It

was also emphasized that these criteria are subjective and are not intended to

impose restrictions to studies. Nevertheless, a multi-robot system following these

criteria may inherit some of the advantages of being a swarm robotic system. The

criteria are summarized below with their possible advantages analyzed:
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1. Autonomous robots. Each of the robots needs to be autonomous and

interact with the world physically. This sets swarm robotics apart from

intelligent systems without mobility such as virtual agent-based systems or

distributed control systems [85].

2. Large number of robots. In [105], it was suggested that a swarm robotic

system should be able to have more than 10 robots. In research and experi-

ments, it is not always necessary to use a large number of robots. However,

the design should make it possible to directly cope with a large number of

robots. For instance, a system studied with 8 robots could be expanded to

15 to 20 robots without changing the design. This specification is strongly

related to the advantage of scalability. To guarantee scalability, the number

of robots in a design should also be dynamic. If instead, a design only works

with a fixed number of robots (e.g. 20), building a single robot with the to-

tal capability of such a group may be more efficient where the task scenario

allows.

3. Few homogenous groups of robots. Ideally, all of the robots in a swarm

robotic system share the same design, both in their controllers and hard-

ware platforms. Differences between the individual robots in the swarm can

however be accepted. Where the robots sharing the same design define a

group, it should be avoided that the total number of groups is significant

when compared to the total number of robots. By following this specifica-

tion, the robustness of swarm robotic systems may be inherited. Otherwise,

the failure of a critical group may cause the whole swarm to fail.

4. Relatively incapable or inefficient robots. The incapability of an indi-

vidual robot is relative to the task. A swarm robotic system should be able

to solve tasks that a single robot in the swarm cannot solve efficiently. In

some cases, the use of a swarm of robots makes a difference to the feasibility

of the task, such as in cooperative searching tasks or cooperative transport

tasks. In some other cases, cooperation between individuals can increase the

capability of the individual super-linearly. For example, the pheromone trail

of ants can optimize the route of foraging [19]. One advantage of studying

swarm robotics using on simple robots in a research environment is that:
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the solution may inherently rely less on sophisticated technologies that often

have restrictions in applicable environment and poor scalability.

5. Local sensing and communication capabilities. The perception of the

environment and the communication between the robots need to be achieved

by the robot’s own sensors. In [105], it was also suggested that the robot

can only communicate with a very limited number of robots near it. This

point has also been highlighted in Chapter 1 because it is related to most of

the advantages of swarm robotic systems. For example, the robustness of a

cooperative behavior may be enhanced if it is achieved with minimum com-

munication [4]. Many communication technologies are centralized systems

by themselves, which introduce a single point of failure to any swarm robotic

system utilizing them. The capacity of a communication network can intro-

duce a bottleneck to the scalability. The communication hardware may also

not be scalable in the aspects of physical size and applicable environment.

2.1.2 Physical Entities

Because swarm robotics does not focus on solving problems by extending the

capability of individual robots beyond the state-of-art, the hardware of the robots

used in research can be compromised when the scope of research needs to be

limited. However, low individual capability may not be a necessary condition of a

swarm robotic system. A swarm robotic system in future could consist of a large

number of humanoid robots built with cutting-edge technologies. Furthermore, low

individual capability generally does not mean the basic mechanism of the robot

needs to be common; novel but simple mechanisms may also be pursued in swarm

robotics. Therefore, hardware development is still an important topic in swarm

robotics. This sections will introduce a number of present hardware platforms or

concepts related to swarm robotics.

Mobile Vehicles

A swarm robotic system can be a large number of conventional mobile vehicles, for

example, differential wheeled robots, legged robots or unmanned aerial vehicles.

When the number of robots are large, the cost to build and operate a large number

14



of robots will be high. Therefore, suitable robot platforms may be needed to

reduce such costs, especially for research purposes. Such platforms primarily aim

to serve as research and education platforms. They are typically used indoors, for

example, on desktops. Depending on the research topic, they may only be used in

experiments as abstract models of the agents in the system to be studied.

Many research and education platforms that are suitable for swarm robotic

research were presented, for example, Alice [23], Jasmine2, Khepera3, etc. In the

following, a selection of these platforms are discussed in more detail.

1. e-puck4 [28] [82]. It is a differential wheeled robot with a cylindrical body of

diameter 7.0 cm. It has a series of simple sensors: a directional camera, eight

proximity sensors, a three-axis accelerometer and three microphones. The

proximity sensors are distributed around its body to collect local information

within an approximate range of 8.0 cm. The directional camera is facing to

the front. It is only able to capture pictures with very low resolution (e.g.

40 × 40). Because the hardware mechanism of e-puck is very generic, it is

used as the implementation platform in most of the studies in this thesis.

2. Swarm-Bot (s-bot)5 [84]. It has cylindrical body with a diameter of 12.0 cm

and a height of 19.0 cm. It is a differential wheeled robot with additional

tracks (sometimes referred as “treels”). The design enables the S-bot to

move in outdoor environments with a moderately rough ground. It has a

series of sensors, including an omni-directional camera. Moreover, it has a

gripper. This gripper can be used to form physical connections between the

robots. Thus, the s-bot can be used to study self-assembling robots. For

example, a group of s-bots can assemble themselves into a larger robot to

overcome gaps in the ground [46].

3. Kilo-bot6 [102]. Its diameter is 2.8 cm. It is driven by two paper motors,

which use vibrations to cause the robot move slowly. The only sensor it has

is an infrared range-and-bearing sensor facing the ground. Via the reflection

2http://www.swarmrobot.org/
3http://www.k-team.com/mobile-robotics-products/khepera-iii
4http://www.e-puck.org/
5http://www.swarm-bots.org/
6http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html
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and diffusion of the floor, this sensor can broadcast very simple messages

to nearby kilo-bots within a range around 9 cm. It was designed to be low-

cost; each kilo-bot is claimed to be made with only $14 worth of parts.

The systematic design of the kilo-bot platform also makes it possible to

program, command and charge large number of kilo-bots simultaneously.

These features enable physical experiments with hundreds or thousands of

robots. For example, over one thousand kilo-bots were used in [104], which

presents an algorithm to organize a thousand-robot swarm into any desired

pattern.

Modular Reconfigurable Robots

Cooperation between robots can be enhanced by new types of robot hardware

that exploit physical interactions between the robots. A modular reconfigurable

robotic system is a group of typically homogeneous robots that are capable of

making physical connections with each other [151]. Once connected, the group

of robots may act as one robot with increased capabilities. The group of robots

may also assume different configurations to adapt to different tasks. Compared

to a single robot with comparable capabilities, a modular reconfigurable robotic

system has advantages in versatility, robustness and low cost [150].

In a modular reconfigurable robotic system, the capability of a single module

may be reduced to ‘atomic’ level, for example, one module has only one degree-

of-freedom (DOF) in terms of interacting with the environment. A representative

design can be found in [153] which was later developed into the (manually reconfig-

urable) “Molecubes” [152]. The overall shape of body is a cuboid that is composed

of two tetrahedrons. On each of the six faces of the cuboid, connection mechanism

are presents. The only actuator in the module is a servo motor that changes the

relative angle of the two tetrahedrons. In other words, each of the module can act

as a joint with one DOF. However, a number of modules can be combined in to a

super structure that may be as flexible as a human armature.

Micro Robotics

Less individual capability implies that the individual robots can be made very

simple in hardware. Thus, swarm robotics and micro robotics may become more
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and more related in future.

In [112], an introduction of micro or nano robotics was given and challenges

in such a domain were outlined. The most obvious difference between the micro

robotics and conventional robotics is the hardware design caused by the require-

ment of size. Not all of the present hardware technologies can scale with the size

of the robot to micro or nano meter level. Therefore, actuation, sensing, power

source and manufacturing methods need to be researched. Nevertheless, the hard-

ware capability of a single robot in a micro robotic system will always be extremely

limited. The differences are not only in the robot platform. The working envi-

ronment of a micro robotic system may also be vastly different from conventional

robotic systems. For example, “due to surface to volume ratio increases inversely

proportional to the scaling factor, therefore, surface properties and forces start to

dominate bulk properties and forces.” [111]

2.1.3 Common Methodologies

Inspiration From Nature

In [41], swarm intelligence is described to be “deeply embedded in the biological

study of self-organized behaviors in social insects”. The primarily methodology of

studying swarm robotics is to take inspiration from nature, for example, modeling

and simulating behaviors of social insects [17].

Social behavior of ants is a frequent subject of research in swarm robotics due

to the contrast between the simplicity of their individuals and the complexity of

the organization [64].

In [65] and [63], a model of cooperative transport in ants was studied and

several robots controlled using a finite state machine successfully transported a

large object towards a location indicated by a light spot. The transition between

task states or to some specific behaviors were made from perceptual cues. In

biology, perceptual cues are the narrow range of stimuli and situations that an

animal uses to solve perceptual tasks [145]. In robotics, it is a series of highly

abstracted orthogonal states computed from the sensors.

In [32], the ant society was described as a self-organized super-organism while

the individual behaviors might be as simple as molecules in a chemical-physics

system.
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Sometimes, research about swarm systems in robotics and biology make cross-

contributions to each other. Some interesting high-level behaviors in biological

systems may be hard to be understood when being studied using conventional

methods. Using swarm robotics to replicate the same behaviors can provide a

strong support in such studies.

For example, in [56], the behavior model of individual fish in a fish school was

studied by modeling and simulating the motion of individual fish to achieve a

same schooling behavior. Assuming that an individual fish takes only the position

and orientation of its nearest neighbor as external perception, a hypothesis about

the behavior model of the individual fish in a real fish school was proposed. It

was shown using computer simulations that the collective motion of a school of fish

using the behavior model achieved similar collective motions as a school of real fish.

[100] analyzed the case where some of the simulated fish in a fish school execute

an attraction/repulsion function that is different to the one executed by the other

fish of the school. Simulations showed that significant changes will appear in the

moving trajectory of the school.

Some researchers have also investigated hybrid societies composed of both

robots and animal collectives, for example, see [53][132].

Because taking inspiration from nature could possibly be the fundamental

methodology of swarm robotics, many related works introduced in this chapter

also applied it either explicitly or implicitly.

Evolutionary Approach

A critical problem in swarm robotic systems is that the cause-and-effect between

global behavior/phenomena and individual behaviors is not intuitive. Given the

desired global behavior, it is difficult to work out what the individuals need to do.

One method to address this problem is the evolutionary approach.

To apply the evolutionary approach in a homogeneous swarm robotic system,

the individual robots in the swarm are often given a relatively universal controller

(e.g. neural networks [38]). By mutating/crossing over the parameters in such

controllers, large variety of behaviors can be obtained. Typically, the fitness of a

generation in the simulation is evaluated based on the global behavior. In other

words, evolution is applied on the individuals while the fitness depends on the
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performance of the whole swarm.

In [110], Karl Sims presented a work centered around evolving embodied agents

(“virtual creatures”) in computer simulations. In addition to the behaviors, the

work also evolved the morphologies of the agents. In [109], he presented an artificial

evolution in which the creatures compete directly with each other in the virtual

world.

In [128], a evolved controller that can aggregate a swarm of robots in computer

simulation was published. In [33], an extended series of studies about evolving

self-organized behaviors using s-bots was presented. The artificial evolution used

a physics-based simulation framework. Multiple global behaviors have been stud-

ied, including aggregation, coordinated motion, group transport, etc. The evolved

controllers were claimed to be “simple but effective”. Analysis showed that the

controllers also reserved the advantages in scalability and robustness as a swarm

robotic system. In further works, some of the controllers of the individual robots

were also tested on physical s-bots. Experiments showed that the controllers ob-

tained in computer simulations also worked on the real robots [46][129].

When the controller synthesis is handed over to computers, the quality of the

controllers may be controlled. This gives the possibility to vary other aspects in

a system, for example, challenging the convention that a swarm robotic system

should be homogenous. In [135], the possibility of a swarm robotic system to be

heterogeneous was studied. The swarm were divided into different groups; the

controllers for the robots within each group were identical. Multiple strategies

for evolving such a swarm were studied. One representative method was that

the fitness evaluation and genetic composition were done group-wise. However,

the experiments did not show evidence of the effectiveness of such method. The

general conclusion of this paper was that homogenous systems were more suitable

for the evolutionary approach.

Machine learning is another relevant process of automated controller design in

swarm robotics. The review paper presented by Panait and Luke [90] summarizes

such methodologies.
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2.2 Collective Foraging

2.2.1 In Nature

Swarm intelligence was born from the study of biology in social insects [41]. In

many social insects, the capability of a swarm differs from the capability of an

individual significantly. Typically, the capability of an individual is insufficient to

support over long durations. Thus, for many social insect swarms, self-organization

is critical and “deeply embedded in their biology” [41] such that a swarm may be

treated as one functional unit.

For example, the self-organization of bees is based on several simple rules in

the behavior of individuals. With a large number of individuals, the variation in

the behavior of an individual makes the bee colony very flexible and capable of

carrying out multiple tasks in different conditions [21].

One of the most fascinating behaviors present in social insects is foraging. For-

aging is a systematic task, which includes a series of behaviors like searching, hunt-

ing, transporting, etc. Moreover, it often requires advanced interactions with the

complex world, for example, localization and navigation. Yet, it can be achieved

by simple individuals in some social insects. In some cases, it can be achieved

without explicit communication between the individuals [22]. Therefore, foraging

behaviors have been studied both in social insects and cooperative robotics. This

section will review some of these studies.

Foraging of Ants

Foraging of ants is probably the most well known collective foraging behavior

in social insects. Ants could transport their prey back to the nest following an

‘invisible highway’ across the field. This highway is a trail of pheromone which is

deposited by many species of ants [19]. And it is this pheromone trail that is the

key mechanism to organize the foraging of ants.

In [54], the functionality of the pheromone trail and the mechanism of recruit-

ment in ants foraging have been described. When a prey is discovered by an ant,

it could go back to the nest following the pheromone path left behind. Then,

in the nest, it will use multiple (e.g. head waggling and tactile stimuli) ways to

recruit members to use this path. Each of the ants recruited will reinforce the
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(a) (b)

Figure 2.1: (a) How bees know their flight direction on a horizontal plane using the sun as a

reference direction. (b) How direction and distance information are communicated using the

waggle dance in the hive (vertical planes) using gravity as a reference direction.

pheromone trail which may cause the pheromone density on this path to become

stronger than on other paths. Thus, more ants in the nest will be attracted to

this path. With the composition of these behaviors, a positive feedback (snowball

effect) on the number of transporting ants between the food source and the nest is

formed, therefore the growth curve at the beginning of this recruitment is logistic.

After some time, the labor in the ant colony will focus on this transporting route.

Because a pheromone trail will become weaker and weaker if it is not reinforced

by the ants due to saturation of the transportation group size, the number of ants

in this transporting path will begin to converge to a peak and then gradually fall

to null.

The property of the pheromone trail of ants also provides optimized solutions

to the transport route [11]. When an ant meets a branch, it will first choose a

random side to travel. Since the longer route will have less average coverage rate

of ants than the shorter route, the pheromone strength on the two routes will

become different. When the difference in strength is significant enough, the ants

will choose the branch with higher pheromone strength which is the shorter route.
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Nectar Collecting of Bees

The foraging of a hive of bees is mainly targeted at the nectar from flowers in a

wide area around the beehive. Two relatively advanced elements are found to play

an important role in the nectar collecting of bees: sun guidance and the waggle

dance [97]. The sun provides a global reference direction across the working region

of a bee colony, so all bees are essentially equipped with a ‘biological compass’.

Combined with the odometry of distance which is approximately proportional to

the flight time, a bee knows its relative position to the hive. After a bee finds a

nectar source and returns, it passes the approximate position of the nectar source

to others workers in the nest through a special movement known as waggle dance.

The waggle dance involves running through a small pattern similar to a figure-

eight: the bee will first run straight for a short distance with the wings vibrating

at approximately 260 Hz. The distance of this run is proportional to the distance

between the hive and the nectar source. The relative angle between the running

direction and the vertical down (direction of gravity) is same as the bearing of

the nectar source with respect to the hive when using the bearing of the sun as

the reference [20]. An illustration of how direction and distance are expressed in

the waggle dance is given in Fig. 2.1. Similar to recruitment in ant colonies, the

recruited bees will also recruit other bees which introduce a positive feedback in

the number of engaged workers. Thus, while the working region of a bee colony

could be several square kilometers, most foragers in the colony will work effectively

in transporting the nectar back to the hive from the best nectar source.

2.2.2 Multi-robot Systems

In swarms of ants and bees, the mechanisms to localize and communicate the posi-

tion of the prey may be the two critical elements to solve the task of foraging. The

mechanism of pheromone trail in ants colonies attracted research interest because

it has potential to be implemented in complex environments. However, to replicate

a pheromone laying and sensing mechanism using chemical based solutions as used

by ants is difficult for present technology; most research attempt to emulate the

key characteristics of a pheromone trail.

In [133], a “trail laying and following algorithm” inspired from ants was used to

organize a group of robots to search and retrieve resource in an unknown environ-
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ment. When an individual robot is searching a resource location, it will memorize

its path using odometric localization. Once it finds a resource location, the path

to the location — the trail — can be shared among the robots via a communi-

cation network. An experiment using a group of four robots in the corridor of

an office building was successful. The results of the experiment also showed that

sharing a global location by sharing the path to it (rather than its coordinates

alone) might help the system to overcome the problem of accumulated errors in

odometric localization.

An emulated pheromone trails can be called virtual pheromone trail. In [123],

based on a infrastructure called “Virtual Dynamic Environment for Autonomous

Robots (V-DEAR)”, pheromone trails of ants were emulated. V-DEAR includes

a projector that can project images on to the floor of a robot arena. The robot

was equipped with a color light sensor in the front that could detect the projected

virtual pheromone and a passive infrared sensor in the bottom to recognize the

nest area. The behavior of an individual robot was similar to an ant. The system

had been tested in both computer simulation with dozens of robots and in real

world with three robots. The results showed that the virtual pheromone trail was

still very effective in the foraging task. Furthermore, in the simulation, it was

verified that the characteristics of pheromone may directly affect the performance

of the foraging task. For example, the lower evaporation rate of virtual pheromone

would generally lead to higher efficiency (collected food per unit time) in the test

environment.

In [93], a virtual pheromone trail was realized using a decentralized mecha-

nism. Each robot in the system is equipped with an infrared range-and-bearing

board which consisted of eight infrared transceivers around its body. Each robot

will constantly broadcast a specific data packet that contains a type field, a hop-

count field, and a data field. The type field distinguishes what type of the virtual

pheromone the signal represents. The hop-count field essentially counts the num-

ber of times a data packet was relayed. After a robot receive a data packet, it will

decrease the hop-count and then relay it. When a robot receives the same type of

pheromone from multiple directions, the one with the highest hop-count value is

used. This mechanism can create a pheromone gradient which is able to provide

multiple types of information about a node within the entire virtual pheromone

network.
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Another behavior similar to the virtual pheromone trail is self-organized for-

mation. In [89], an experimental study of control policies that let a group of robots

forage by forming a chains was presented. In the foraging task, the robots would

work in three different roles through automatic division of labor. One of the group

will form a chain while explore the environment for the prey. After the prey was

found, some robots would be recruited to the front of the path through the path

formed by the explorers. Then, those recruited robots would become a retriever

which would transport the prey back to the nest along the formed path. When the

prey on a path was being transported back to the nest, the path formation would

decompose and the robots which formed the path would join the transporting.

Therefore, the chain formation established was a path between the nest and the

prey which guide all robots to work between the two locations. The robots were

equipped with an omnidirectional camera and a color LED ring, which enabled

them to communicate simple messages through vision. For example, the robots

could determine the direction of the path formation via the color sequence of the

robots forming the path.

[127] presented a navigation algorithm for a swarm of robots to perform a dirt

cleaning task. The task is similar to a foraging task in that the robots need to

retrieve objects from two locations far from the nest. The navigation algorithm

is based on a signal propagation mechanism inspired from slime mold. Similar to

pheromone trails of ants, this navigation algorithm also enables the robots to form

the shortest path between two locations.

2.3 Cooperative Manipulation

2.3.1 In Nature

While a swarm of ants is capable of foraging across a large field based on pheromone

trails, cooperation also exists at local level. Large prey that can not be moved by

a single ant may be moved cooperatively by a small group of ants.

The cooperative manipulation of a prey may begin with an uncoordinated pe-

riod in which ants try to handle the prey from any direction [117]. The conclusion

about this disordered phase was that it helps to rotate the prey to an orientation

in which lower friction force will incur. In [67], the transition into an organized
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phase was characterized by an increase in the linear speed of the load and a de-

crease in the sum of the ant interaction forces. In other words, the coordination

of forces will form gradually after the prey starts moving. The embodiment of the

prey can be viewed as a media in this process. Through touching the prey, an ant

essentially knows how other ants are attempting to move the prey.

Focusing on a species of ants, Pheidole oxyops, [30] tested the hypothesis that

a manipulation group may re-orient food items of various shapes to reduce drag.

It was found that turning of a item often involves a single ‘steering’ ant within the

group. Any ants in the group can take the place of the steering ant if there are no

steering ants. The paper also implied that the turning behavior is a property that

emerges from the combination of pre-existing retrieval behavior and the underlying

physics of large items.

In [31], a type of more sophisticated cooperative manipulation in army ants

was described. To lift a large item, “one worker, usually of larger size, straddles

an item at the front while one or more smaller workers help to lift at the back”.

According to the observations, the foraging task can be improved by the cooper-

ative manipulation of large items. For example, moving the entire prey directly

can save the time spent on splitting the prey.

In [15], cooperative manipulation of a large prey was studied among a group

of ants, Aphaenogaster Cockerelli. In this study, a small device which has several

high sensitivity springs around it and high visibility spots on its center part and

the end of those springs was used as a dummy prey. Therefore, when this device

was being moved by several ants, its position as well as strength and direction of

the force applied by each ants could be tracked by a video camera installed above

the transporting site. According to the experimental result, the ants will pull the

prey if they are in front of the prey and push the prey if they are behind the prey,

which means they knew the direction of transporting from the pheromone trail.

2.3.2 Multi-robot Systems

Over the past 20 years, multi-robot object transportation has become a canonical

task for studying cooperation in a group of robots. The three most common types

of strategies are pulling, pushing and caging.
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Prehensile Systems

In a prehensile system, each of the robots in the group has manipulator(s) that

can grasp or hold the object. When a robot is grasping or holding the object, it

physically connects itself to the object and can assert forces freely in terms of the

direction. To cooperatively transport the object to a goal, the robots can connect

to the object and simply move towards the goal in a coordinated way.

In nature, transport through grasping seems to require relatively little coordi-

nation of the individuals [15]. Many studies have attempted developing grasping

based cooperative transport systems [143][136][58][27], but most of them used only

a small number of robots with limited scalability.

In [83], a series of demonstrations involving using a swarm of s-bots [88][34]

was presented. The robot can use its gripper to grasp the object. The hardware

design of s-bots also enables a robot to grasp the hull of another s-bot. In the

task of cooperative transport, some of the robots may choose to pull those robots

that were already connected to the object. As a result, several chain formations

could be formed, each of them connected to the object. Such a formation made

the pulling forces contributed by each of the robots stack up in an efficient way.

Therefore, the performance of the system could scale well with group size [47].

A decentralized pulling algorithm for a group of s-bots was published in [52]. In

the experiment, the transport group was composed of up to 6 robots. Only some

of the robots (typically one) in the groups was able to perceive the goal directly.

They could push/pull the object using a simple algorithm. The other robots (the

blind robots) could not perceive the goal. A blind robot could estimate the speed

and orientation using an evolved neural network [48]. The neural network took

only the inputs from the robot’s own force sensors. The force sensors were used to

measure the force received from the object with respect to the chassis of the robot.

The experiment showed that the algorithm was able to make the group perform

almost as efficient as if all robots were able to perceive the goal.

The grasp manipulation can only be applied to objects suited for grasping.

One alternative way to cooperatively moving an object is to place the object

over the top of a number of robots [116]. In order to keep the object above the

robots while the transport group is moving, the speeds of the robots need to

be planned precisely. In [80], the problem of how to coordinate the motion of
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the robots were studied. In order to simplify the motion planning of individual

robots, a conceptual robot hand was designed for holding the object. The passive

mechanical components in the hand could deal with some complex dynamics in

the relative motion between the robot and the object. The robots were controlled

by a layered motion planning architecture, which is composed of both centralized

and decentralized planners. Within the group, some of the robots were “handling

robots”. They were firmly holding to the object and transporting the object. The

rest of the robots were “regrasping robots”. These were the robots that need to

adjust their relative positions to the object to achieve a optimal handling.

The object can also be held at its edges by multiple robots around it. A decen-

tralized approach to achieve such a coordination was discussed in [120][121]. The

proposed control algorithms and framework were designed for coordinating multi-

ple autonomous mobile robots while each of the robots were using an independent

controller. When holding the objects, the robots coordinate their motion through

direct sensing and communication. They can march in a tightly controlled forma-

tion while navigating autonomously. The experimental system containing three

robots demonstrated the transportation of flexible boards and large boxes.

When a solid object is held by multiple robots, it also becomes a communication

media where the force asserted by one robot can be estimated by other robots. [68]

and [140] proposed a decentralized object transportation system featuring leader-

follower coordination. Only the leader knew the high level information such as

goal/path. The leader could either be a human being or a robot. The followers were

homogeneous robots that were holding the object. Through estimating the motion

of the leader by measuring force/moment from the object, a follower was able to

assert both pulling and pushing forces on the object along the same direction as

the leader’s direction of manipulation.

Recently, aerial vehicles were designed to cooperatively lift and transport an

object. [37] developed a cooperative aerial towing system using three quad-rotor

aerial vehicles.

Pushing Systems

Transport by pushing does not require the robots to have mechanisms like grippers.

In principle, pushing can be achieved by simply making a robot collide with the
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object. In a cooperative transport scenario, the object is potentially larger than

the robots. Therefore, it is unlikely that a robot can achieve a force closure of the

object [115]. In fact, when the object is much larger than the robots, the contact

between a robot and the object is virtually a point on the object’s surface. In such

a case, the object will rotate if the position of the pushing robot is not ideal. Even

if the robot is able to determine a good position to push the object (e.g. based on

knowledge about its geometry and mass distribution), the overall motion is still

“generally unpredictable due to unknown support friction force.” [70]. Therefore,

the controller for pushing is difficult compared to the simple physical mechanism

it requires. Furthermore, in such a case, a pushing robot can hardly assert any

lateral force (in contrast to the normal force) to the object, which means the DOF

of the actuation is smaller than the DOF of the object’s motion. When the object

is being pushed by multiple robots, it’s rotation speed and translation speed can

be controlled by adjusting the moving speed of each of the pushing robots.

In [74], a physical system that uses two six-legged robots to push a large rect-

angular object was presented. The object was an elongated rectangular box. It

was moveable by one robot but the failure rate in the experiment was high. After

using two robots with that cooperated their action through wired communication,

the success rate of the transport could be substantially improved.

In [142], a physical experiment of cooperative box pushing was presented as a

case study to verify a muti-robot system which used a host system to dynamically

design and distribute homogeneous behavior-based controllers to the robots.

Cooperative pushing can also be achieved using very simple robots and behav-

iors. Kube et al. accomplished a series of works that involved pushing an object

using a number of simple robots and behaviors [63][65]. Inspired by the behavior

model of individual ants, the robots simply map the perceptual cues obtained from

a small number of sensors onto nine motion primitives. Due to the simplicity of

the control method, the number of robots working simultaneously in the cooper-

ative transport task was flexible and a physical system containing 3 to 6 robots

was used in the experiment.

In [148], a group of behavior-based robots pushed a transparent box towards

a lamp in the environment without explicit communication. Each of the robots

could select a suitable behavior set depending on the situation judged from its

own sensors. For transporting a box, the behavior sets were divided according to
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the number of robots nearby. In each set, the actions were a few discrete motion

primitives selected according to the perception of the box, the light and nearby

robots. The robots could also handle the situation where the light from the lamp

was occluded by other robots.

In pushing-based cooperative manipulation, it is very common that the object

needs to be specific so that it will not block the perception of those robots that

are pushing it. In most of the works referred to above, the object needs to be

transparent or lower than some of the sensors on the robots.

An alternative decentralized approach is through role differentiation using ex-

plicit inter-robot communication. For example, in [43], a box pushing system that

contains robots with different roles is presented. In the case of cooperative trans-

port, the roles are “pusher” and “watcher”. The watcher is in front of the object

so it can observe the goal while the pushers are behind the object. The robots

communicate through WiFi.

In [55], an underwater box-pushing system is presented with three robotic fish;

two of them work as pushers while the other works as an observer. The three fish

can share sensing information through explicit communication to work out the

approximate pose of the box, the two pushers can push on appropriate positions

without seeing the goal directly.

Caging Systems

Cooperative transport by caging means to organize a group of robots into a for-

mation around the object in a way that the object is caged inside the forma-

tion [98][118]. As long as the formation of the robots is maintained while they are

moving, the object will follow the group of robots. Therefore, a caging systems do

not need to deal with the complex dynamics of the object being pushed.

Caging an object using multiple robots is a problem similar to the problem of

grasping with a robot hand — each of the robots is essentially a finger. Sudsang’s

research group presented some caging algorithm based on the grasping theories

used in a robotic hand [118][119][96]. There many challenges to be overcome

to implement caging based solutions in decentralized multi-robot systems. One

reason is that much information is required to plan the caging cooperation. It is

not necessarily possible that the robots are able to collect this information using
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their own sensors.

In [113], a potential-field based controller was designed to transport an object

by surrounding it.

Wang and Kumar proposed a caging algorithm based on object closure [141].

Rather than ‘grasping’ the object with the robots, a solution is employed that

does not require the object to be in steady contact with all of the robots. As

long as the object’s origin point resides in an area called “closure configuration

space”, the object cannot escape the formation formed by the robots. The clo-

sure configuration space is an area bounded by the robots. To estimate it, each

of the robots need to know the shape of the object and the position of the other

robots. A series of papers had been published to exploit different aspects of the

algorithm [137] [94] [138] [139]. In [95], a physical system based on this algorithm

has been implemented using three robots. The controllers based on this algo-

rithm were considered decentralized because all information was collected using

the robot’s own sensor. However, the information needed by this algorithm is still

relatively large.

Fink et al. presented a physical caging system that copes with a variable

number of robots [36]. In their system, the caging behavior contained three phases:

approach, surround and transport. Within these three phases, surround is the

phase where the robots form and stabilize a dynamic formation which orbits the

object while avoiding collisions with other robots. Once the formation is stabilized,

it will begin to shrink until some of the robots collide with the object. Then, the

robots move toward the target location following a global navigation function or

track a reference trajectory derived from the object’s reference trajectory. In this

behavior, the object was only pushed by one or two robots at a given time. This

imposes a limit on the object’s weight that can be handled by the system.

Swarm Robotic Systems

Since pushing is a manipulation that can be achieved by simple robots, it is suited

for swarm robotic systems. However, one common point of pushing/caging based

systems (including all of the systems referred to before except for [63] and [36]) is

that the number of robots may not be large (typically not more than five). One

important factor that limits the number of robots is the use of explicit communi-
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cation to achieve highly cohesive behavior.

There are not many works that have studied how a relatively large group of

robots can be used in a cooperative transport task when the controller only requires

local information.

In [103], a physical system that includes up to 100 kilobots was used to study

a decentralized strategy for collective transport. The strategy was evaluated in

situations where the robots resided within the object being transported.

In [9], a large swarm of kilobots was controlled using a global input signal

issued by a human operator to transport objects towards a goal.

2.4 Pattern Formation

2.4.1 In Nature

The spatial segregation of a group of relatively small entities often results in pattern

formation. Pattern formations are widely existing in nature. Some of them are

formed passively under external global affections from nature (e.g. sand dunes,

Giants causeway). The kind of pattern formation considered here is self-organized

pattern formation, which emerged from the active interaction of the cells/particles.

Granular Convection

The granular convection phenomenon is the spatial segregation of a massive num-

ber of particles of different sizes that occurs after shaking. The phenomenon is

sometimes referred as the Brazil nut effect [101]. In [8], the Brazil nut effect is

explained as follows:

“During the periods when shaking loosens the packing, individual small

particles can move into voids beneath large particles and so prevent

them from returning to their previous positions. It is far less probable

that several small particles will move together so as to create a void

that can be occupied by a single large particle. The net effect is that

the smaller particles occupy the lower positions during the active part

of the shaking process and then become trapped there when the grains

fix into a new arrangement.”
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[59] studied the particle segregation in 3-D. Their results show that the degree

of segregation is “sensitive to both the size ratio and the number ratio for the case

of a binary mixture of spheres.”

Reaction-Diffusion Systems

A type of sophisticated pattern formation in nature can be found in the tissues

of animals. The initial homogeneity of the animal embryo breaks down while

developing. A well known theoretical model covering this phenomenon is the

Turing’s model [130]. His model suggested that such loss of homogeneity may be

caused by a system of chemical substances reacting together and diffusing through

the tissue. The difference in the propagation characteristics of different chemical

substances across the tissue can introduce a pattern in the distribution of the

chemical substances and thereby affects the biology of the cells. This model is also

called the reaction-diffusion model.

The review paper in [61] summarized this theory and the reaction-diffusion

model was promoted as follows:

“The Turing, or reaction-diffusion (RD), model is one of the best-

known theoretical models used to explain self-regulated pattern for-

mation in the developing animal embryo. Although its real-world rele-

vance was long debated, a number of compelling examples have gradu-

ally alleviated much of the skepticism surrounding the model. The RD

model can generate a wide variety of spatial patterns, and mathemat-

ical studies have revealed the kinds of interactions required for each,

giving this model the potential for application as an experimental work-

ing hypothesis in a wide variety of morphological phenomena.” [61]

Despite that the model alone may have limitations in the reliability of the

pattern formed [7], it can be used to describe to many self-organized patterns in

biological systems. An example are skin patterns of animals, such as the black-

white lateral pattern on zebra or the black-yellow pattern of cheetah.

Meinhardt et al. has published a number of works on theories of such biological

pattern formations from a different perspective [77][60][75]. Despite the cells only

reacting to the level of the chemical around themselves, they develop into a body

with an apparent global polarity. One of the factors that caused such polarity is
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the global gradient emerged from the long range nonlinear interactions of at least

two chemicals and on their diffusion in the cells. Some of these patterns can even

regenerate after being damaged. For example, the body of a hydra can recover the

missing end when it is cut into two [44][76].

2.4.2 In Robotic Systems

A number of studies have looked at spatial segregation of a group of robots in

computer simulation. For example, Şahin et al. [29] implemented a control law

based on a probabilistic framework. Kumar et al. [66] implemented a control law

based on artificial potential functions. In these studies, segregation is the result

of “individual choices that discriminate” [106].

Segregation phenomena observed in ant colonies [40] have inspired the imple-

mentation of control laws for robots that organize two distinct groups of items into

center-periphery patterns [147][78] (see also [1]).

Inspired from natural physical laws, [114] introduced an algorithm that uses

artificial forces between the robots to organize the global formation of a swarm

into a well arranged square or hexagon. The robots use only local information,

which are the distances to the nearby robots and a binary state of a nearby robot.

The paper also claimed that introducing noises in the system can improve the

formation.

Ngouabeu et al. [87] observed segregation phenomena in a system of vibrating

and non-vibrating mechatronic modules that float on the surface of water.

In [124], a control algorithm that can transform a circular formation into poly-

gon formations or divide the swarm into three groups was proposed. To divide the

swarm, some of the robots in the circular formation leave the formation while the

rest of the robots keep executing the same algorithm that produces the circular

formation. In [57], a robot can know its order in a periodic sequence in the circular

formation through executing the Turing morphogenetic function. Thus, the robot

can determine the required relative position to the adjacent robots to form a global

polygon formation.

In [149], a distributed controller that can stabilize a naturally unstable forma-

tion brought by the asymmetrical attractions in a group of robots were studied.

In [122] proposed an object transportation method inspired by the Brazil nut
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effect. In a space that contains a massive number of small robots and relatively

large objects, the robots emulate the motion of the particles in the Brazil nut

effect. Based on the effect, the objects will be moved along the direction opposite

to the direction of global attraction applied on the robots. In the homogeneous

version of this method, the global attraction was achieved through repulsion of the

robots away from the destination. In the heterogeneous version of this method,

two kinds of motion are propagated through the swarm. Both of the versions were

verified in simulation experiments.

Other studies have looked at spatial segregation in the context of macroscopic

self-assembly [49]. Bowden et al. [18] observed center-periphery structures when

millimeter scale objects of two different heights interacted with each other by

lateral capillary forces. In [16], an approach for self-reconfiguration of modular

robots to create “emergent structures” with the desired functionality was achieved.
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Chapter 3

Technological Platform

This thesis investigates how swarm robotic systems accomplish several tasks using

both computer simulation and real environments. Many of the technological devel-

opments underpinning the implementation of these systems are similar across the

tasks. For example, the computer simulations use the same simulation framework.

Moreover, the physical robots use the same sensory framework, which has been

further developed into a library published under the MIT license on GitHub [24].

This chapter presents the technological platforms used in this thesis.

3.1 Robot Platform

The robot used for physical implementation is the e-puck (see Fig. 3.1(a)), which

is an off-the-shelf robot designed for education and research purposes1. It was

developed by a collaboration among several laboratories in EPFL [82].

The e-puck is 7.0 cm in diameter, 5.5 cm high, and weighs 150 g. It is a

differential-wheeled robot driven by two step motors. Its maximum linear and

angular speed are 12.8 cm/s and 220 deg/s respectively.

The main microcontroller of the e-puck is dsPIC30F6014A. It has 8KB RAM,

144KB Flash ROM and sixteen 12-bit ADCs. The microcontroller is running at

58.9 Mhz, and has a processing capability of 14.7456 MIPS.

The e-puck has eight infrared proximity sensors distributed around its body.

The proximity sensors are 3.1 cm above the ground. The robot also has a direc-

1The official homepage of the e-puck is http://www.e-puck.org/.
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(a) (b)

Figure 3.1: The e-puck miniature mobile robot. (a) An unmodified e-puck. (b) An actual e-puck

as used in this study. It is fitted with a black shell and a green top marker.
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Figure 3.2: Top-view schematic of an e-puck, indicating the locations of its wheels, camera and

proximity sensors. A detailed description of the hardware of e-puck can be found in [82].
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tional color camera in the front of its hull, pointing towards the front. The camera

is 2.8 cm above the ground. On top of the e-puck, there is an infrared receiver. It

can decode the modulated infrared signal from a TV remote. Around its “ring”,

there are eight red LEDs that can be controlled separately.

Fig. 3.2 shows a schematic of the e-puck from above, including the locations of

the sensors used in this thesis.

3.1.1 Physical Modifications

The e-puck design has some shortcomings that may affect its application in a

swarm robotic system:

1. The color of an e-puck is mainly gray. Thus, in an experimental scenario with

a light-colored background, it is difficult for the e-puck’s onboard camera to

identify another e-puck effectively.

2. There are some red decals around the e-puck’s body. Red is frequently

used as the color of important clues in visual perception. For example, a

red cylindrical object is used as the goal in the cooperative transport study

presented here, while the red LEDs on the e-pucks are used for signaling in

the fully decentralized segregation study. The red decals on the e-puck may

cause misperception of such visual clues.

3. The infrared proximity sensors on an e-puck can hardly detect another e-

puck. Due to its mechanical design and building material, the e-puck does

not have an ideal infrared reflection property. In most situations, the abil-

ity of one e-puck to detect other e-pucks greatly depends on their relative

positions.

4. When viewing a group of e-pucks inside a arena from above, the top of an

e-puck can easily induce specular reflection of the main light source in the

environment. This can cause problems in robot tracking algorithms, even

during offline processing.

To deal with problems (1), (2) and (3), each of the e-pucks was fitted with a

black shell made of paper. By doing so, in the camera image from the e-puck,

other e-pucks are clearly distinguishable against the light-colored environment.
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Table 3.1: Working Configuration of The Camera on e-puck

Resolution 320×240 (Interlaced)

Color Format RGB565

Exposure Time Fixed at 1.0×
Gain Fixed at 1.0, 1.0, 1.0

White Balance Fixed at 1.125, 1.0, 1.4375

Resulting Frame Rate ≈ 18.4 fps

The black shell does not reflect infrared light at all. So the controller for the

robots can then be designed assuming the robots are not infrared reflectors. The

detection of nearby e-pucks was realized by changing the working mode of the

proximity sensors, which will be introduced in detail in Section 3.1.3.

To deal with (4), top markers made of card paper were placed over the e-pucks.

In the segregation study, the robots in different groups have tops with different

colors so the spatial segregation can be visualized.

Fig. 3.1(b) shows a photograph of one of the actual e-pucks used in this research.

The printable files of these materials can be found in [24].

3.1.2 Camera and Image Processing

The e-puck has a camera2 that is directly wired to its main micro-controller. The

camera is configured through the I2C bus while the pixel data are transferred byte-

by-byte through 8 digital pins. The configuration used in this research is given in

Table 3.1.

The camera is configured to send a QVGA interlaced video stream. In this

mode, each of the incoming frame has a resolution of 320× 120. The 120 rows in

the odd frames are all odd rows while the 120 rows in the even frames are all even

rows. Therefore, two of such frames can be composed into one full image with a

resolution of 320× 240.

The micro-controller on the e-puck is not capable of processing the 320× 120

frames in real time due to limited memory and clock rate. Therefore, the frames

are sub-sampled to 40× 15 pixels and each of them is considered as an individual

2The camera model of the e-pucks used in this research is PO6030K.
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Figure 3.3: What an e-puck “sees” when it is facing another e-puck nearby.

frame. As a result, the 40×15 pixels in the image are all refreshed when each of the

frames in the odd-even frame pairs is captured. This means that the refresh rate

of the camera images is the same as the refresh rate of the video stream provided

by the camera, which is ≈ 18.4 fps. The sub-sampling is implemented by taking

one pixel every 8 pixels from the original frames. Therefore, the field-of-view is

not affected significantly and there are no filtering algorithms applied.

Fig. 3.3 shows an image transmitted back from an e-puck when it is facing

another e-puck nearby.

In this thesis, the on-board camera on the e-puck was used to perceive the

existence and/or the relative angle of any entity within a range that is relatively

long (e.g. 1.5 m) compared to the size of an e-puck. To extract these information,

each of the captured images is processed to provide four scalar values: (i) the

number of pixels that are considered red and blue, denoted by cr and cb respectively,

and (ii) the horizontal distribution biases of the red and the blue pixels, denoted

by er and eb respectively. The algorithm to extracts these scalar values from image

is detailed in the following.

Let Rxy, Gxy and Bxy denote the red, green, blue components of pixel (x, y)

respectively.

Fred (x, y) determines whether the color of pixel (x, y) is considered as red:

Fred (x, y) =

{
1 if Rxy > 0.4 and Rxy

Gxy
> 1.4 and Rxy

Bxy
> 1.3

0 otherwise.
(3.1)

Fblue (x, y) determines whether the color of pixel (x, y) is considered as blue:

Fblue (x, y) =

{
1 if Bxy > 0.4 and Bxy −Rxy > 0.1 and Bxy −Gxy > 0.1

0 otherwise.

(3.2)
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The constants in the equations above were manually tuned to work well in the

environment used for experiments in this thesis.

The rest of the steps are described using the process on blue pixels as a instance.

These steps are similar for the process on red pixels.

The number of blue pixels, cb, is given by summing Fblue (x, y) over x and y:

cb =
∑
x

∑
y

Fblue (x, y), (3.3)

The horizontal bias of the blue pixels, eb, is horizontal center of “mass” of the

image when the “mass” of the blue pixels and the non-blue pixels are considered

1.0 and 0.0 respectively. Let w be the width of the image. If cb > 0, eb is calculated

as

eb =

(
2×

∑
x

∑
y xFblue (x, y)

wcb

)
− 1. (3.4)

Otherwise, eb is set to 0.

In (3.4), eb is clamped to [−1, 1] where negative and positive values correspond

to a left and a right bias, respectively.

The image processing of the camera is implemented using a dual buffer swap-

ping mechanism, in which the image acquisition and the image processing are

concurrently working on two different buffers. In this mechanism, as long as the

image processing does not take more time than the image acquisition, the results

of the image processing algorithm can be updated as frequent as the image acqui-

sition FPS (≈ 20 times per second in this case).

3.1.3 Proximity Sensors

The eight infrared proximity sensors on the e-puck are able to provide approximate

distance to objects with a range around 8.0 cm. Each of these sensors is composed

of one infrared emitter and one infrared transistor. The eight infrared emitters are

connected to four digital pins of the microcontroller, so they can be switch on and

off in groups of two. The eight infrared transistors are connected to eight ADC

pins independently.

In order to satisfy the sensing requirements of the experiments in this research,

different working modes for these components had been developed. Through

changing the working scheme of the components of the proximity sensors, three

working modes had been developed:
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• “EMITTER OFF” mode (same as the e-puck standard library)

• “EMITTER ON” mode

• “EMITTER NOISE” mode

The first two modes will be described in the following sections. The third work-

ing mode is not used in any of the systematic experiments (but only a demonstra-

tion) discussed in this thesis, so it will only be introduced briefly.

“EMITTER OFF” mode

This working mode follows the conventional working scheme of infrared proximity

sensors3. In this mode, the infrared emitters will be turned on only when the

sensors are going to be read. If the infrared light from the infrared emitter is

reflected by an object, the infrared transistor along side that emitter will detect

an increase in infrared intensity. This working mode is widely used in the detection

of the presence of an object and the approximate distance to that object.

Proximity sensors working in the conventional mode cannot detect objects if

their surface does not reflect infrared light effectively. As explained in Section 3.1.1,

the e-puck is not a good reflector for infrared light. To overcome this problem,

another working mode was implemented.

“EMITTER ON” mode

In this working mode, the e-pucks keep their infrared emitters turned on. As a

result, the proximity to another e-puck can be determined through the ambient

infrared intensity. The detailed implementation is as follow.

The eight infrared emitters are turned on when the robot is initialized. Then,

a sampling procedure will be executed once every 50 ms. In the beginning of a

sampling procedure, the eight infrared transistors are sampled immediately. Be-

cause the emitters on the robot are kept turned on beforehand, these samples are

the sum of the ambient and the reflected infrared intensities. The eight values can

be represented as a vector:

M =
[
m0 m1 . . . m7

]T
. (3.5)

3This mode is also the one used by the standard e-puck library.
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The subscripts of each element in this matrix corresponds to the id of the proximity

sensor, which can be seen in Fig.3.1(b).

Then, the emitters are turned off. After a 300µs delay, the transistors are

sampled again. These results represent only the ambient intensities:

A =
[
a0 a1 . . . a7

]T
. (3.6)

The emitters are then turned on again, in preparation for the next sampling pro-

cedure.

The reflected intensities are calculated as the difference between the combined

and the ambient intensities, i.e.: R = M−A, where

R =
[
r0 r1 . . . r7

]T
. (3.7)

The whole procedure of the sampling steps is given in Algorithm 1.

Algorithm 1 “EMITTER ON” mode sampling procedure.

Initialization (runs once at the start):

Turn on the 8 IR emitters;

Sampling procedure (runs every 20 ms):

M = Sample the 8 IR transistors;

Turn off the 8 IR emitters;

Wait for 300 us;

A = Sample the 8 IR transistors;

R = M−A;

Turn on the 8 IR emitters.

Most of the experiments in this thesis used a large number of e-pucks (e.g.

at least 20). The start signal of an experimental trial was broadcast from a TV

remote. Thus, the e-pucks should receive this signal simultaneously. Once the

start signal is received, the e-puck acquires a random seed. This random seed is

based on the proximity sensor readings and the standby duration from booting up,

therefore, it is likely to be unique for each of the e-pucks. This random seed is used

to keep the sampling routine of proximity sensors across the robots asynchronous.

Combined with the fact that the OFF period of the infrared emitters is negligible
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(300µs every 20 ms), each of the robots is effectively a constant source of infrared

radiation. For this reason, a robot is able to distinguish between other robots and

passive items (e.g. objects or walls). A positive ambient intensity corresponds to

the presence of nearby robots, while a positive reflected intensity corresponds to

the presence of a nearby passive item. The proximate distance to a robot or a

passive object can be estimated from these intensities. The range of the intensities

is scaled to [0, 1]. The higher the intensity, the closer is the source.

After extensive development, it is possible to utilize the proximity sensors to

achieve explicit communication [125][103][99]. This is however not considered here

due to the scope of the research.

The “EMITTER ON” mode can not be applied in an environment with strong

ambient infrared light, for example, in a room illuminated by day light or incan-

descent lamps. In such an environment, the ambient samples (A) cannot be used

to determine the proximity to other robots.

“EMITTER NOISE” mode

The “EMITTER NOISE” mode was implemented in this research for a demonstra-

tion of the cooperative transport in an environment lit mainly by day light. In this

mode, the infrared emitters are constantly emitting noise in the form of a series

of spikes with random intervals between them. By ignoring the constant level of

infrared light, a robot can determine the existence and approximate distance to

any nearby robots through the amplitude of the spikes in the level of infrared light

perceived.

This mode has been used in a demonstration of the cooperative transport

system in a domestic environment, which will be introduced in Section 4.9.

Note that the infrared receiver (the one used to receive a global start signal

from a TV remote) can be severely interfered by the proximity sensors working

under this mode, which may make it difficult to control the start of an experimental

trial. Therefore, this working mode has not been applied in any experiments for

scientific purpose.
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3.2 Simulation Framework

The experiments in this thesis use physical e-puck robots as the implementation

platform. However, to prepare a large number of physical robots is very time-

costly. For example, the microcontrollers on the e-pucks can only be programmed

one by one manually through a tedious Bluetooth pairing procedure. This was

especially problematic when the development was in its early stage because mod-

ifications need to be applied frequently. Furthermore, the systematic behaviors of

a swarm robotic system are often stochastic. It is often necessary to do repeated

trials to achieve the verification and analysis of the system. Therefore, a simula-

tion framework that is fast and simple enough for swarm robotics simulation is

important.

There are several robotic simulators available as freeware or commercial soft-

ware. Webots4 is one of the most widely used commercial simulator in robotics.

The robots in Webots have a very detailed physical and graphical model. This

means the accuracy of the simulation could be high when there are a small num-

ber of robots. However, its high computation cost makes Webots not suitable for

simulating a scenario that may involve dozens of robots. Stage5 is a multiple-

robot simulator that can be used to simulate a scene with hundreds of robots in

real time [131]. However, its collision detection is based on discretized space and

is not accurate enough for interactions like object pushing. Thus, a simulation

framework that is optimized for our research was developed.

The simulation framework is based on the Enki simulator6. Enki is a fast 2-

D simulator that can handle 2-D rigid body physics and sensor interactions. It

is used by Webots in 2-D mode. Moreover, it has a pre-built model for the e-

puck. However, Enki’s physics simulation was found to be not accurate enough

in some scenarios, for example, when multiple robots are pushing a large object

cooperatively. Our solution is to override the rigid body physics using the Bullet

Physics library7. The simulation framework is also able to render a visualization of

the simulation in real time. Fig. 3.4 shows a screenshot of a simulation built upon

the simulation framework. The rest of this section will introduce the simulation

4http://www.cyberbotics.com
5http://playerstage.sf.net
6http://home.gna.org/enki
7http://bulletphysics.org
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Figure 3.4: A screenshot of the simulator when the robots are running the cooperative transport

controller studied in Chapter 4.

framework.

3.2.1 Incorporating Bullet Physics Engine

In the simulation framework, the physics simulation is processed by Bullet Physics.

To simulate the e-puck robot using Bullet Physics, a 3-D physics model was built

according to the e-puck’s mechanical design. This model can be found in Ap-

pendix A.1.

The two stepper motors on the e-puck are simulated as two DC motors. In

Bullet Physics, this can be achieved by making the hinge constraint representing

the wheel shaft a DC motor. One can also specify the desired rotation speed of

such a DC motor directly. Therefore, the wheel speeds in the simulation framework

can be set in a very similar way to those on the real e-pucks.

The proximity sensors and camera of the e-puck are still simulated by Enki. In

Enki, the simulation of the proximity sensors is accurate enough for this research.

However, the image provided by the camera is simulated as a one dimensional

image. This image is equivalent to the center row of the camera image on the real

e-puck. In other words, the camera images are 40×1 pixels in the simulation while

it is 40× 15 on the real e-pucks.
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Figure 3.5: This diagram illustrates the role of each component in the simulation framework by

showing the data provided and taken by the components.

Simulating sensor interaction generally requires knowledge of the positions of

the robots. In the original Enki simulator, the positions of the robots are computed

using Enki’s built-in 2-D physics engine. In the simulation framework here, the

position of a robot is obtained from its physics model in Bullet Physics and then

passed to its physics model in Enki. Because Bullet Physics is a 3-D physics engine,

it provides positions as 3-D vectors. Only the x term and y terms are passed to

the Enki simulator. This may not cause a significant difference in the simulation

of a planar environment when the object can only rotate along the z-axis.

Fig. 3.5 illustrates the relation between the different components within this

simulation framework.

3.2.2 Expanding Proximity Sensors Simulation

The proximity sensors on the e-puck are simulated by Enki. However, Enki is only

capable of calculating the output of the proximity sensors assuming that they are

working in the conventional mode (the “EMITTER OFF” mode). As introduced in

previous sections, the “EMITTER ON” mode is important for the swarm robotic

system studied here. Therefore, the simulation of the “EMITTER ON” mode of

the proximity sensors were developed.
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Figure 3.6: This diagram shows the vectors that are involved in the calculation of the infrared

lighting from the infrared emitter in sensor j to the infrared transistor in sensor i.

In the “EMITTER ON” mode, the proximity sensors on the e-puck are always

on when it is not sampling the ambient infrared intensity. As a result, the infrared

light emitted by any e-puck can be easily detected by its nearby e-pucks. To

simulate this interaction, the infrared light emitted by e-pucks’ infrared emitters

needs to be calculated for each of the proximity sensors in the scenario.

Because the properties of infrared light are almost identical to visible light, the

mathematical modeling of this interaction is based on a lighting model used in

computer graphics. The particular model used is derived from the Phong reflec-

tion model. In this case, the output of a proximity sensor is based on diffusive

intensity at the position of the sensor. The detailed mathematical description of

this calculation is presented in the following.

A typical infrared proximity sensor consists of one infrared emitter and one

infrared transistor. Inside such a sensor, the positions and normals (direction vec-

tor) of the two components are approximately identical. For sensor i, its position

and normal vector are denoted pi and ni respectively.

In “EMITTER ON” mode, the ambient intensity8 output of a sensor is con-

tributed to by the emitters of other sensors nearby. Therefore, the ambient inten-

8Note that: this ambient intensity is not the ambient intensity in the Phong reflection model.

For a proximity sensor, the ambient infrared intensity is the intensity of infrared light that is not

sourced from the sensor’s own infrared emitter (via reflection).
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sity output of sensor i can be formulated as follows:

qi =
∑
j

Ii,j. (3.8)

In the above equation, Ii,j is the contribution of infrared light intensity of sensor

j to sensor i. Fig. 3.6 illustrates the above definitions.

The contribution of one sensor to another sensor (function I(·)) is calculated

through several steps. The first step is to compute the distance and the normalized

displacement vector between the two sensors. They are denoted as di,j and vi,j

respectively and defined as follows:

di,j = ‖pi − pj‖ . (3.9)

vi,j =
pi − pj
di,j

. (3.10)

The infrared emitter inside sensor j is modeled as a spot light with a 120 deg

coverage angle. The lighting effect of a spot light is related to the dot product of

its normal and the displacement vector. This dot product is often called the “spot

dot”. A spot dot is larger when the point to be lit is nearer to the normal axis of

the spot light. In the case here, the spot dot is calculated as:

wi,j = nj · vi,j. (3.11)

The spot dot is also used to judge whether the position is within the effective

cone (defined by coverage angle) of the spot light. In the case here, when the angle

between vi,j and nj is larger than 60 deg (wi,j < cos π/3), sensor i is considered to

be outside the effective cone of sensor j.

If sensor i is not in the effective cone of sensor j, the rest of the steps will be

skipped while the result (Ii,j) is constantly zero.

A spot light is a type of directional light. Therefore, its intensity on any point

on a surface is proportional to the dot product of the displacement vector and the

normal vector of the surface on that point. This dot product is

bi,j = −ni · vi,j. (3.12)

Distance attenuation is also considered, which means that the farther sensor i

is from sensor j, the weaker is the intensity. It is calculated as:

ai,j = ‖di,j‖−1.733. (3.13)
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Figure 3.7: Infrared ambient intensity of proximity sensor 2 on an e-puck in simulation and a

real e-puck.

The power index of −1.733 is estimated by fitting parameters of the sensor output

curve of the real e-pucks.

Finally, the contribution of sensor j to sensor j is

Ii,j = kwi,jbi,jai,j. (3.14)

In (3.14), k is a constant gain of 5000 that scales the output value to an approxi-

mate range of (0, 4000), which corresponds to the range used on real e-pucks.

Fig. 3.7 compares the reading from a real e-puck against the reading from an

e-puck in simulation. In both testing environments, an e-puck in “EMITTER ON”

mode was placed side-by-side by a distance to the measuring e-puck. Then, the

ambient sample of the proximity sensor 2 (on the right hand) was recorded. The

distance between the two e-pucks was measured between the two rings on the two

e-pucks.
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(a) (b)

Figure 3.8: Screenshots of the simulation framework, showing the graphic model of the e-puck.

The geometry primitives used to construct e-puck’s graphic model approximate the e-puck’s

physics model (see Appendix A.1), which means the rectangular box and the ‘disk’, as well as

the two wheels, have physical embodiments. (a) A swarm of e-pucks with caps of different colors

(b) Visualization of the ring LEDs on the e-pucks.

3.2.3 Graphic Rendering

The simulation framework is also capable of rendering the simulation scene in real

time on screen. The graphics system is developed based on OpenGL. In Fig. 3.8(a),

the graphics model of the e-puck can be seen.

To enhance the visibility of the moving direction of an e-puck, an black arrow

marker and a small rectangular box (without physical body representation) are

drawn above the ring of the e-puck. An overhead maker can be placed on top of

an e-puck when necessary. In simulation, the color of this marker can be changed

dynamically for debug purposes, for example, showing the internal state of an

e-puck.

Because the studies in this thesis do not require the 8 ring LEDs to be turned on

or off individually, these LEDs are rendered as one LED. To increase the visibility

of the LEDs, they are rendered as light sources in the scene. A customized GLSL

rendering pipeline was written to handle upto 64 light sources simultaneously. The

lighting effect of these LEDs can be clearly seen when the main light source in the

scene is disabled (see Fig. 3.8(b)). This visual enhancement played an important

role in the simulation study of the decentralized segregation (see Section 6.4.1).
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Chapter 4

Occlusion-Based Cooperative

Transport

This chapter introduces a strategy for transporting a large object to a goal using a

large number of mobile robots that are significantly smaller than the object. The

robots only push the object at positions where the direct line of sight to the goal

is occluded by the object. This strategy is fully decentralized and requires neither

explicit communication nor specific manipulation mechanisms. This strategy has

been implemented on the e-puck robotic platform in both computer simulations

and a real environment. A computer simulation in a 3-D environment has also

been presented using a conceptual robot. The simplicity of this strategy makes it

particularly well-suited for micro-scale robotic systems.

4.1 Problem Formulation

The task that we consider is as follows. A bounded environment contains a convex-

shaped object, a goal, and a number of robots. The environment is otherwise free

of obstacles. The aim is that the robots, which are initially placed in arbitrary

locations, transport the object to the goal. Note that the goal specified in the

problem may not be the final destination of the transportation. In a broader

scenario, the goal could be moving, or it could be one of a series of way points [89].

This scenario will be introduced later.

We make the following assumptions. The dimension of the object is large
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Figure 4.1: Illustration of how a swarm of robots can push a large object in a 2-D planar

environment. The robots keep pushing only along the section of the object’s perimeter that

occludes their views of the goal. As a consequence, the motion of the object will be approximately

towards the goal.

enough to occlude the robots’ perception of the goal when they are behind it (see

Fig. 4.1). The robots can perceive the goal from any point within the environment,

unless it is occluded by the object. The robots can only move the object by

pushing it. The robots are able to distinguish between the object, each other and

the boundaries of the environment.

4.2 Strategy Description

Consider a number of robots that can distribute themselves uniformly around the

section of the object’s surface that occludes their view of the goal (the “back

side” of the object), as shown in Fig. 4.1. Then, if all the robots push the object

by moving in a direction perpendicular to the object’s surface at their points of

contact, the overall motion of the object will be approximately towards the goal.

As the object moves, its occluded surface changes over time, thus changing the

direction of motion. If the robots keep pushing only against the occluded surface,

the object will eventually reach the goal. Note, the strategy could in principle be

also used for transporting objects that are not tall enough to occlude the robots’
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view of the goal. If a robot reached the object but the goal was visible ‘behind’ it,

the robot would then still push.

The occlusion-based transport strategy can be realized using a fully decentral-

ized controller and without explicit communication among the robots. In Fig. 4.2,

the behavior of the individual robots is given in form of a state machine. A

robot first searches the object using an algorithm that is suitable for the environ-

ment (‘Search Object ’). For bounded environments, as considered in this study,

the robot performs a random walk. More sophisticated search algorithms could

help the strategy to also cope with unbounded environments. Once the object is

seen, the robot moves towards it while avoiding other robots (‘Approach Object ’).

When the robot has reached the object, it enters state ‘Check for Goal ’ to work

out whether the goal can be seen from its position. If the goal can not be seen,

the robot will push the object simply by moving against it (‘Push Object ’). If the

goal can be seen, the robot will attempt to find another position around the object

(‘Move Around Object ’), for example, executing a left-hand-following behavior.

When executing the state machine, the robots eventually end up at different

positions along the occluded section of the object due to the stochastic nature of

the system [107]. However, the more robots that are used, the more likely it is

that they approximate a uniform distribution (as shown in Fig. 4.1).

4.3 Mathematical Analysis

In this section, we analyze the occlusion-based cooperative transport strategy for

the case of arbitrary convex objects in planar environments. We prove that, under

some idealized assumptions, the strategy always succeeds in moving the object to

the goal. Note that the transport strategy is not suited for objects of arbitrary

concave shapes (for a counter example, see Section 4.3.4).

4.3.1 Modeling of the Occlusion Problem

We assume that each of the goals and robots are points (without embodiment). Let

c ∈ R2 be the center of mass of a rigid convex object with respect to a coordinate

frame in which g = [0, 0]T is the goal point. Let the perimeter of the object be
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Figure 4.2: A state machine representation of the controller summarizing the core behaviors of

a robot in the strategy. The start state is ‘Search Object’. If the object is lost during any state,

the robot will restart from ‘Search Object’. The controller is fully decentralized and does not

require any explicit inter-robot communication.
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Figure 4.3: If normal forces are uniformly applied on the blue section of the convex-shaped

object’s perimeter (major arc ab in this diagram), the combined force vector, F, is the vector

(b− a) rotated by +π
2 and its magnitude is proportional to the length b− a (chord ab in this

diagram). Point q is an affecting point of F.

described by a closed, convex and differentiable curve given by:

p(θ) =

[
r(θ) cos θ

r(θ) sin θ

]
+ c, (4.1)

with θ ∈ [0, 2π] and r : [0, 2π]→ R differentiable and satisfying r(2π) = r(0). By

specifing r(θ), any convex shape can be approximated by p. Initially, g is outside

p.

The inwards pointing normal vector on p(θ), named N(θ), is the derivative of

p(θ) rotated by π
2
:

N(θ) =

[
0 −1

1 0

]
p′(θ). (4.2)

Points along p where the direct line of sight to g is occluded are between the

two tangent points of p from point g. We write the two tangent points as p(α)

and p(β), α, β ∈ [0, 2π]. As tangent points, they satisfy:

p(α) ·N(α) = p(β) ·N(β) = 0,

p(θ) ·N(θ) > 0,∀θ ∈ (α, β).
(4.3)
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Since p is convex and g is outside p, α and β are well defined. For convenience,

write a = p(α) and b = p(β). Additionally, they are named so a is the tangent

point on the right side of vector (c−g) while b is the one on the left side. Strictly

speaking, a and b satisfy

axcy − aycx > 0,

bxcy − bycx < 0,
(4.4)

with x and y subscripts denoting the x and y coordinates. These properties of a

and b will play an important role in the proof of the transport strategy later.

Fig. 4.3 illustrates the above definitions. In colloquial terms, all points p(θ)

with θ ∈ (α, β) are on the occluded perimeter of the object while all other points

on p are visible from g.

The Resultant Force Applied on The Object

Lemma 1. Assume that n→∞ robots are uniformly distributed along the occluded

perimeter of the object and they are the only robots asserting a force on the object.

The direction of the resultant force asserted on the object by the robots is equal to

the direction ofthe vector (b− a) rotated by +π
2

and its magnitude is proportional

to ‖b− a‖.

Proof. According to the strategy, all robots along the occluded perimeter assert

normal forces on p. Without loss of generality let the magnitude of the force be

one unit force per unit length. The combined force is the definite integral given

by

F =

∫ β

α

[
0 −1

1 0

]
p′(θ) dθ. (4.5)

The solution of the definite integral in (4.5) is:

F =

[
0 −1

1 0

](
p(β)− p(α)

)
, (4.6)

which is:

F =

[
0 −1

1 0

]
(b− a) . (4.7)
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We can also derive the torque around the z-axis caused by the robots. For this,

with slight abuse of notation, we interpret all previous points as embedded in the

x, y plane in R3. Again, we assume that the magnitude of the force is one unit

force per unit length. Then the magnitude of the torque around z-axis contributed

by all robots with respect to point c is

Q =

∫ β

α

[(p(θ)− c)×N(θ)] · ẑ dθ, (4.8)

where ẑ represents a unit vector pointing along the z-axis. The part within the

integral is equal tor(θ) cos(θ)

r(θ) sin(θ)

0

×
−r′(θ) sin(θ)− r(θ) cos(θ)

r′(θ) cos(θ)− r(θ) sin(θ)

0

 ·
0

0

1

 , (4.9)

which can be simplified to r′(θ)r(θ). Then (4.8) can be written as:

Q =

∫ β

α

r′(θ)r(θ)dθ. (4.10)

Its solution is:

Q =
r2(β)− r2(α)

2
. (4.11)

Lemma 2. If the combined force contributed by the robots, F, is considered as a

single force while Q is the torque induced by F, the mid point of segment ab is an

affecting point of F.

Proof. Naming the affecting point of F as q, F, q and Q must satisfy

Q = [(q− c)× F] · ẑ. (4.12)

The above equation can be transformed into

q · (b− a) =
r2(β)− r2(α)

2
+ c · (b− a), (4.13)

which can be viewed as the vector equation of a line.

While q can be any point on (4.13), we make q a convenient point on (4.13),

which is

q =
a + b

2
. (4.14)
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4.3.2 Motion Dynamics of the Object

As the object is moved, a and b can change over time. We assume that the robots

react instantly to such changes so that the occluded perimeter is always uniformly

filled up with pushing robots. Thus, (4.7) is valid at any point in time as long as

g is outside p. In other words:

F(t) =

[
0 −1

1 0

](
b(t)− a(t)

)
. (4.15)

From (4.15), it follows that the rotation of the object does not affect the re-

lationship between a, b and F. According to Newton’s laws, the translation dy-

namics of the center of mass of the object are

v = ċ, v̇ =
F

M
, (4.16)

where v̇ (respectively ċ) is the derivative of v (respectively c) with respect to time

t.

We can apply a quasi-static analysis to the case here in which some robots are

pushing a rigid object slowly [69]. Then the translation dynamics of the object is

ċ = kF, (4.17)

where k ∈ R+ is a positive constant that transfers F proportionally to the velocity

of the object.

4.3.3 Convergence of the Object’s Distance to the Goal

Theorem 1. The distance between c and g is strictly decreasing over time if the

velocity of the object is governed by (4.17). As t → ∞, g will be on the object

perimeter p.

Proof. Let l(t) = c(t) · c(t) be the squared distance of the center of mass c to goal

g, then its derivative with regard to time is

l̇ = 2kc · F. (4.18)

Substituting F with (4.7), we get

c · F = (bxcy − bycx)− (axcy − aycx). (4.19)
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According to (4.4), c · F < 0. Hence, l(t) is strictly decreasing. Since l(t) ≥ 0

for all t > 0 (as long as g is outside p), we get lim
t→∞

l(t) = L ∈ R. Therefore,

lim
t→∞

c · F = lim
t→∞

bxcy − bycx + aycx − axcy = 0, (4.20)

which together with (4.4) implies that:

lim
t→∞

bxcy − bycx = 0,

lim
t→∞

aycx − axcy = 0.
(4.21)

In other words, the areas of the triangles gca and gcb approach zero as t → ∞.

Since c is always inside p the triangles gca and gcb can never have 0 area unless

a = g and b = g (see Fig. 4.3). Hence as t→∞, g will be on p. In other words,

the object will ultimately coincide with the goal and stop moving.

4.3.4 A Counter Example for Concave Objects

The mathematical analysis has proven that the combined force introduced by the

transport strategy can always reduce the distance between a convex object and the

goal. Such result is not true for some extreme concave objects depending on the

relative distance and orientation of the object to the goal. For instance, Fig. 4.4

shows a counter example with c·F > 0. In other words, the resultant force asserted

by all robots will move the object away from the goal.

4.4 Implementation for e-puck

Section 4.2 described the individual behavior required to achieve this transport

strategy in a platform-independent form. Based on the frameworks introduced

in Chapter 3, this individual behavior is implemented as a fully decentralized

controller for the e-puck robotic platform.

4.4.1 State-machine Implementation

In Section 4.2, the core behaviors of this transport strategy are given in form of

a state-machine. For the e-puck robots, the strategy is also implemented as a

state-machine.
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Figure 4.4: On the perimeter of this concave object, both red and blue segments are occluded

from the goal. The coordinates in the drawing are the forces brought by each of the segments

measured in grid units. The combined force brought by the robots at the blue segments is zero,

whereas the combined force brought by the robots at the two red segments pushes the object

away from the goal.

The robot performs a random walk and approaches any blue object seen in

its camera. If the robot loses sight of the object, it resumes the search. When it

reaches the object, it does a full rotation to look for the red goal. If the goal is not

seen, the robot starts pushing the object. If the goal is seen, the robot executes

a left-hand-wall-following behavior, which relocates the robot to a position where

the goal may be occluded by the object.

When in the pushing formation, a robot’s perception of the goal may not only

be occluded by the object but also by its neighboring robots (or potentially the

environment boundaries). However, the robots at the two ends of the formation

(i.e. at Positions A and B in Fig. 4.1) can effectively monitor the visibility of the

goal. For the e-pucks with the sensing mechanism introduced in Section 3.1.3,

such a position could be judged from the inputs of the IR sensors on the left-hand

and right-hand side: if both give high values of ambient intensity, then the robot

has two neighbor robots. These robots can be considered as observers. When

an observer perceives the goal, it leaves the formation. As a consequence, its

neighbor becomes an observer. Thus, those pushing robots that are no longer in
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the occluded perimeter happen to leave in a recursive manner. For e-pucks, this

behavior is utilized so that only observers are required to scan the environment

for the goal while the other pushing robots can be devoted exclusively to pushing

the object.

In order to make the strategy work in a real environment, basic behaviors

like collision avoidance and error handling are added. The detailed state-machine

implemented on the e-puck is given in Fig. 4.5. The states are:

• S1: Search Object. The robot moves randomly while avoiding collisions

with other robots, the goal, and the boundaries of the environment. Its linear

speed and angular speed are randomized every 5 seconds.

• S2: Move to Object. The robot moves towards the object using the

camera output eb while avoiding other robots.

• S3: Close In on Object. The robot closes the gap between itself and the

object. In this state, the robot is ‘attracted’ to the object and ‘repelled’ from

other robots, such that it eventually comes into contact with the object’s

perimeter.

• S4: Scan and Align. The robot does a full rotation on the spot to scan for

the goal using its directional camera. While rotating, the robot also adjusts

the distance to its neighbors to achieve a relatively uniform arrangement.

• S5: Push Object. The robot pushes the object by moving perpendicularly

to the object’s surface in front of it. To increase the efficiency, only those

robots that have less than two neighbor robots are required to scan for the

goal after pushing for 3 seconds.

• S6: Move Around Object. The robot performs a wall-following behavior

to move around the object and other robots that are near the object (e.g.

pushing it). By doing so, the robot searches a point around the object’s

perimeter that is valid for pushing.

• S7: Evade. The robot moves away from anything nearby, avoiding colli-

sions.
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Figure 4.5: The full state machine implementation of the strategy on the e-puck robots, including

some behaviors to increase the robustness and handle errors. The initial state is S1: Search

Object.
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• S8: Scan Object. The robot rotates to scan for the object using its direc-

tional camera.

The state transition conditions are shown in Fig. 4.5. For most of the con-

ditions, certain sensory inputs are compared against a preset threshold. In each

of the states, specific low-level motion controllers are activated to achieve the re-

quired motion. The motion controllers for these behaviors are described in the

next section.

4.4.2 Low-level Motion Control

The e-puck’s motion is controlled by setting the rotation speeds of its left and

right wheels. These speeds are denoted by ωl and ωr, and are normalized within

the interval [−1, 1], where −1 and 1 correspond to the maximum backward and

forward rotation speeds of the wheels, respectively. They are calculated according

to: [
ωl

ωr

]
=

[
1 −s
1 s

][
S

D

]
, (4.22)

s =

{
1 if S ≥ 0,

−1 if S < 0.
(4.23)

In (4.22), S represents the linear speed of the robot, whereas D represents its

angular speed and both are within the interval [−1, 1]. For S, −1 and 1 represent

the maximum backward speed and maximum forward speed of the robot. For

D, −1 and 1 represents the maximum clockwise angular speed and maximum

anticlockwise angular speed of the robot. The values of ωl and ωr given by (4.22)

are saturated to [−1, 1] if they lie outside this range.

The values of D and S are calculated according to:

D = DAA + DRR + nD + keeb, (4.24)

S = SAA + SRR + nS, (4.25)

where A, R and eb are the variables from the sensors (as described in Section 3.1.3),

and the other values are the state-dependent parameters:

• ke is a scalar that weights eb. It is used to generate an angular speed bias to

turn the robot towards the object in relevant states.
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Table 4.1: The parameters configuration of the motion controllers.

R. L. R. L. F. B. F. B.

S1. Search Object 0.85 δ 0 U U U+ U+ N 0 N 0

S2. Move to Object 0.8 0 -0.4 U+ U+ U U N 0 N 0

S3. Close In on Object 0.6 0 -0.4 U+ U+ T T N 0 N+ 0

S5. Push Object * 0.55 0 0 U U T T N 0 N 0

S6. Move Around Object 0.5 0.5 0 0 U 0 U+ P 0 P 0

S7. Evade 0 0 0 U U U U N+ N+ N+ N+

S8. Scan Object 0 0.5 -0.3 0 0 0 0 N N N N

DRDA SRSAnS nD ke

T: Attractive

U: Repulsive

Weight Property: 

("+" sign means 

relatively strong)

P: Positive

N: Negative

0: Null

Sensor Number: R: #0~#3

L: #4~#7

F: #0, 1, 2, 5, 6, 7

B: #3, 4

*Note: S5. Push Object does not follow the generic rule strictly

• SA and SR are 1 × 8 matrices that contain the weighting factor of A on S

and R on S respectively. Depending on the signs and magnitudes of these

weights, they can accelerate or decelerate the robot relative to a nearby per-

ceived source. We call such an effect the property of a weighting matrix. The

properties of SA and SR can be either ‘Positive’ (accelerate) or ‘Negative’

(decelerate).

• DA and DR are 1 × 8 matrices that contain the weighting factor of A on

D and R on D respectively. They determine how the nearby robots and

passive reflectors will affect the angular speed of the robot. Their properties

can be either ‘Attractive’ or ‘Repulsive’, which turns the moving direction

of the robot towards or away from the perceived source respectively.

• nD and nS are scalars that represent the neutral values on D and S respec-

tively. These two neutral values give the ideal angular and linear speeds

required to achieve the motion in the corresponding states.

The properties of the four state-dependent weight matrices were selected ac-

cording to the desired motion in the corresponding state, so the coarse weights

were determined. Then, the weights, as well as other constant parameters in

the controller, were manually refined in pilot experiments using physical e-puck

robots. Table 4.1 shows a summary (in terms of properties) of the state dependent

64



parameters in (4.24) and (4.25). The entire set of parameters can be found in [25].

For 6 out of 8 states in the state machine, the motion controller followed the

rule described above. The two states that did not strictly follow the rule will be

introduced next.

For S4: Scan and Align

In this state, D is fixed to 0.35, such that the robot always rotates with a constant

angular speed in order to observe its surroundings. When the robot is rotating,

it will control its distance to any robots in front of it by applying a linear speed

S of magnitude 0.2 when the object is on either the left or the right side of itself.

Otherwise, S is set to 0. The pseudo code of this program is given in Algorithm 2.

Algorithm 2 Speed Control for S4: Scan and Align
S = 0.0

IF a0 > 0.04 AND a7 > 0.04 THEN

IF r2 > 0.08 OR r5 > 0.08 THEN

IF a0 < 0.15 AND a7 < 0.15 THEN

S = 0.2

ELSEIF a0 > 0.3 OR a7 > 0.3 THEN

S = −0.2

ENDIF

ENDIF

ENDIF

For S5: Push Object

In this transport strategy, the pushing robots move perpendicularly towards the

object’s surface in front of it. If the object has a curved perimeter (e.g. circle),

this means that the distance between two pushing robots will become smaller

when the object starts moving. Thus, collisions between the robots in the pushing

formation will occur. This problem is magnified by the e-puck’s design: two e-

pucks will easily get stuck when they collide. Thus, the motion controller used the

pushing state absolutely needs to deal with the collision avoidance problem.

From the physical experiments in the preliminary version of the controller pub-

lished in [26], we found that when a robot is in contact with the object, the attrac-

tion of the object (the DRR term in (4.24)) is very strong so that the repulsion of
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Table 4.2: The weight parameters used by the motion controller in state “S5: Push object”.

Sensor #0 #1 #2 #3 #4 #5 #6 #7

DA 1.5 1.125 0.75 0 0 -0.75 -1.125 -1.5

DR -1.5 -1.125 -0.375 0 0 0.375 1.125 1.5

SA -0.25 -0.125 0.0 0 0 0.0 -0.125 -0.25

SR 0.0 -0.125 -0.25 0 0 -0.25 -0.125 0.0

a neighbor robot (the DAA term in (4.24)) cannot effectively turn the robot away

from the neighbor robot. Therefore, an extra rule is applied to the design above.

When a nearby robot is too close (judging by the intensities in A), the robot will

only focus on avoiding that robot, which means the object attraction is nullified.

Otherwise, the robot only focuses on moving perpendicular to the object, which

means the repulsion from other robots is nullified. Algorithm 3 gives the details

of the angular speed motion controller used in S5: Push Object. The speed (S)

calculation remains as shown in (4.25).

Algorithm 3 Angular Speed Control for S5: Push Object
IF r0 + r7 > 0.6 THEN

IF a1 > 0.25 OR a2 > 0.5

OR a5 > 0.5 OR a6 > 0.25 THEN

D = DAA + nD

ELSE

D = DRR + nD

ENDIF

ELSE

D = DAA + DRR + nD

ENDIF

4.5 Experiments with Objects of Different Shapes

After analyzing the transport strategy mathematically, we obtained an indication

of objects with not-unusual shapes that are nevertheless challenging for the strat-

egy to handle. In this section, a set of experiments is introduced to evaluate the
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strategy using objects of these shapes as well as compare the experiments against

the prediction from the mathematical model.

4.5.1 Experimental Setup

Objects

Three objects of different shapes and sizes were used:

1. A circular object Theoretically, this is an ideal case as the resulting force

points directly to the goal. However, in practice, the curved perimeter could

make the robots more prone to collide with each other as the object is being

moved. Such a situation may also occur for a rectangular object. For ex-

ample, in Fig. 4.1, Position C is a point where all the pushing robots taxis

towards when the object is moving. Therefore, it is essential that the colli-

sion avoidance mechanism in the pushing state is effective. As the pushing

forces of e-pucks are rather limited, at least three robots are required to push

this object.1

2. A scalene triangular object This is a simple example of a non-symmetric

object. In this case, the ratio of the lengths of the triangle’s sides is 3:4:5.

According to Lemma 2, the robots cannot push this object along a straight

line, because the resultant force vector will never pass through the object’s

centroid (i.e. the resultant torque can never be zero). As a result, depending

on which side(s) the robots are pushing from, the object will rotate either

clockwise or anticlockwise. Two robots pushing on the same side near the

sharpest corner are enough to rotate this object. On the other hand, it

takes at least four robots pushing on the same side in order to induce a

translational motion.

3. An elongated rectangular object This shape is problematic for the

occlusion-based transport strategy, because the resultant force can deviate

by almost 90 degrees from the ideal direction of transport. The object easily

rotates if the pushing formation is not uniform; in fact, one robot pushing at

1Depending on the floor condition and robot power, occasionally this object may also be

pushed by just two robots.
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Table 4.3: summary of the experimental setup and data

Object Shape Circular Triangular Rectangular

Physical Property

Size (cm) diameter: 40.0 side: 45− 60− 75 side: 58.5× 13.5

Height (cm) 10 14 6.5

Mass (g) 222 432 160

Pushing Force (N) 0.75 1.5 0.5

Summary of Results

Successful Trials 15 out of 15 14 out of 15 14 out of 15

Completion Time mean 220.0 255.1 295.4

(sec) σ 26.3 63.0 183.1

Path Efficiency
mean 0.914 0.793 0.766

σ 0.029 0.099 0.192

AE (deg)
mean 26.7 90.1 204.6

σ 16.8 36.2 79.2

one end is sufficient to induce a rotation. It takes at least two robots pushing

on the same side in order to give a translational motion to this object.

The physical details of the three objects are given in Table 4.3. The mass of

each of the objects was chosen so that it is theoretically possible for the e-pucks to

push the object from all directions. The side of the objects are painted blue. Two

orange markers of different size are attached on the top of each object, so that its

position and orientation can be tracked in an off-line analysis.

Environment

The environment of the experiment is a rectangular arena of size 400×225 cm that

is bounded by 50 cm-high walls. The floor of the arena has light gray color, and

its walls are painted in white. The goal is a red cylinder of 25 cm diameter and

42 cm height, as shown in Fig. 4.7.
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Figure 4.6: Initial positions configuration of the experiment. The robots were placed approxi-

mately in such a formation because the self-calibration of the proximity sensors on the e-puck

requires a certain amount of space around the robot.

Trial Procedure

For each of the objects, we conducted 15 trials (45 trials in total). The number

of robots used in each trial was 20. This was much larger than the least number

of robots required for pushing the objects because the scalability of the strategy

benefits from the use of more robots when dealing with objects of various sizes

and shapes.

The initial configuration of a trial is illustrated in Fig. 4.6. The object’s centroid

was positioned as indicated. The orientation of the object was generated using a

random number generator. The robots were placed in a zone between the object

and the goal. The actual positions of the robots were loosely snapped to a grid

to ensure a minimum gap between robots which is required by our self-calibration
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routine for the e-puck. Before starting a trial, each robot rotated by a random

proportion of a full rotation to obtain its initial orientation. The trials were started

by issuing a signal via an infra-red remote control that is received by all of the

robots simultaneously. The robots were programmed to stop automatically after

15 minutes.

A trial was stopped if either of the following situations happened:

1. The object collided with the goal object. The trial was then considered

successful.

2. All of the robots stopped automatically due to the 15-minute time limit.

This means the trial was unsuccessful.

3. The object was too close to the wall and thus cannot be transported via

pushing any more. For example, either side of the triangular object fully

touched the wall. This means the trial was unsuccessful.

The trials were recorded with an overhead camera. The videos were used in the

off-line tracking of the object. The accompanying video shows three experimental

trials, one for each type of object, respectively. Videos of all the 45 trials are

available in [25].

4.5.2 Results and Discussions

Successful Trials

Overall, 43 out of the 45 trials were successful. The object reached the goal within

15 minutes. One trial with the triangular object failed. The other failed trial was

with the rectangular object. In both cases, one side of the object became very

close to the boundaries of the arena. This was due to the limited width of the

arena and a relatively large error in the transport direction.

Completion Time

The completion time, Tk, is defined as the time elapsed from the start of a trial

until the centroid of the object is less than 62.5 cm away from the center of the

goal (i.e. when the centroid of the object is within the goal region in Fig. 4.6).

70



(a) Circular Object (b) Triangular Object (c) Rectangular Object

T = 339 sec T = 345 sec T = 352 sec

Figure 4.7: Snapshots showing three trials with similar durations in the systematic experiments

with circular, triangular and rectangular object respectively. T is the total length of the videos

(in seconds), which ends at the moment when the object collides with the goal. Videos of all the

45 trials are available in [25].

71



100

200

300

400

500

600

circlular triangular rectangular

co
m

pl
et

io
n 

tim
e 

(s
ec

)

Figure 4.8: Completion time of the circular object, scalene triangular object, and elongated

rectangular object.

A box-and-whisker plot2 of the completion time is given in Fig. 4.8. The

deviation of the completion times of the triangular object and the rectangular

object are larger than the circular object, which shows that the shape of the

object will affect the transport. One case easy to be observed in the trials is that:

if the elongated rectangular object reaches an orientation with either of its two

small sides pointing towards the goal, it cannot be pushed effectively anymore. In

Fig. 4.7(c), it can be observed from the last three snapshots that such a situation

stalled the transport by more than 60 seconds. It depends on randomness when

the robots manage to rotate the object out of such situation.

Object Paths According to Lemmas 1 and 2, the resultant force and torque

applied on the object can be calculated given the initial position and orientation

of the object and goal position (assuming an infinite number of point robots are

equally dispersed around the occluded perimeter of the object). When the force

and torque are directly transferred to the velocity and angular velocity of the

2The line inside the box represents the median of the data. The edges of the box represent

the lower and the upper quartiles (25-th and 75-th percentiles) of the data, while the whiskers

represent the lowest and the highest data points that are within 1.5 times the inter-quartile range

from the lower and the upper quartiles, respectively. Crosses represent outliers.
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Figure 4.9: Predicted paths of the centroid of the objects based on Lemmas 1 and 2. These paths

are plotted using the same ratio on both of the axes, so they can be compared with Fig. 4.10.

The length unit of the x and y axis in these plots are centimeter.

73



(a) Circular Object

(b) Triangular Object

(c) Rectangular Object

Figure 4.10: Actual paths of the centroid of the objects. The dashed black lines are the paths of

the two failed trials. The dotted red line is the goal region. It can be observed that the strategy

has an effect to correct the direction in which the object is moved. Sometimes, this correction

resulted in a significant change in the transport direction.
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object, it is possible to predict the objects’ paths for the trials. The predicted

paths are given in Fig. 4.9. In addition, the actual paths of the objects were

traced from the videos recorded by the overhead camera. These true paths are

given in Fig. 4.10.

The differences between each pair of individual paths in Figs. 4.9 and 4.10 are

obvious; in only some trials, the prediction is close to the actual paths. This result

however was expected since many of the idealized assumptions made in Section 4.3

are violated in a physical environment. For example, the robots will not be able

to react instantaneously to changes in the object’s occluded perimeter. Moreover,

the robot’s embodiment raises the issue of physical interferences. However, the

overall distributions of the paths show a good correspondence:

• The circular object tends to move directly to the goal.

• The paths of the triangular object are typically curved. This object is difficult

to be pushed along a straight line towards the goal.

• The paths of the rectangular object have a more random but uniform distri-

bution.

Path Efficiency

We define the path efficiency of a trial as:

PE =
smin
s
. (4.26)

smin is the length of the shortest straight line from the start position to the goal

region. s is the length of the path of the object when its centroid enters the goal

region. An ideal transport path should have a PE of 1.0.

For all successful trials, both the actual PE values and the PE values corre-

sponding to the predicted paths shown in Fig. 4.9 are calculated. Fig. 4.11 shows

a box-and-whisker plot of predicted PE versus actual PE for each of the objects.

The predicted and actual PEs of an object both indicate the difference in the

efficiency when transporting objects of different shapes.
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Figure 4.11: Path efficiency in the successful trials. This metric compares the length of the path

that the object moved against the length of the ideal straight path to reach the goal. For each
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Figure 4.12: Accumulated angular error when the object enters the goal region. This metric

reflects how much unnecessary rotation appeared in the transportation.
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Accumulated Angular Error (AE)

The efficiency of a pushing-based transport strategy may also be affected if a

substantial amount of unnecessary object rotation occurs in the process.

We define the accumulated angular error as the difference between the relative

difference in the orientations at the beginning and the end of a trial and the total

amount of changes of orientation. Let p(t) and q(t) be the centroids of the two

tracking markers on top of the object in the video of a trial at time step t. Then,

the orientation vector of the object at time step t is

a(t) = p(t)− q(t). (4.27)

The step interval used in the off-line video tracking is 1 s. The change of the

orientation between two time steps, t0 and t1, is defined as:

D(t0, t1) =

∣∣∣∣arccos
a(t0) · a(t1)

‖a(t0)‖ ‖a(t1)‖

∣∣∣∣ . (4.28)

The accumulated angular error is calculated as:

AE =

∣∣∣∣∣D(Tk, 0)−
Tk∑
t=1

D(t, t− 1)

∣∣∣∣∣ . (4.29)

Note, the relative difference between the object’s initial orientation and its orien-

tation when it reaches the goal (D(Tk, 0)) is excluded, because we focus on quanti-

fying the wasted effort on rotation. e.g. two continuous rotations that cancel each

other.

This metric will be zero if the transport process is ideal. Fig. 4.12 shows the

box-and-whisker plot of the accumulated angular error of the successful trials. Due

to the length of the elongated rectangular object, randomness in the distribution

of the pushing robots can cause a torque that is big enough to rotate the object

rapidly. However, it is also due to the randomness in such rotations that this

object will not always point with one of its ends towards the goal, which would

cause the occluded surface for pushing to be very small.

4.6 Experiments with A Moving Goal

In a more complex environment, the goal may not be perceived from any position

around the object. For example, there could be obstacles between the object and
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Figure 4.13: In this transport strategy, the position of the goal can be changed during the

transport process. Therefore, a mobile robot can be used as the goal. In this photo, the group of

e-pucks are pushing the object towards the e-puck with a red column on its top (the goal robot).

The goal robot can be moved at any time via Bluetooth remote control.

the goal, or the distance between them could be bigger than the range of sensors

of the robots. The transport strategy as it stands can not deal with such an

environment. However, it is possible to adapt the goal in the strategy to expand

the capability of the transport system.

If the goal is a mobile robot, it can change its position when the object arrives.

If this goal robot has enough intelligence, it can change its position along a route

that guides the transport robots to the final destination. How to implement such

an intelligent goal robot is a research topic in itself [5] [89]. In this section, we

present an experiment in which a tele-operated goal robot was used to guide the

pushing robots through a corridor with corners.

4.6.1 Implementation

The e-pucks in charge of pushing the object (the transport robots) used the con-

troller exactly as introduced in the previous section. In other words, these e-pucks

are programmed to push a blue object to a red goal.

An extra e-puck was used to implement a mobile goal (the goal robot). To

make this robot be perceived as the goal, a red cylinder was placed over it (see
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Figure 4.14: Setup for experiments with a moving goal. The initial position of the object was

alternated between a and b while their corresponding destination regions were A and B.

Fig. 4.13). To further increase its visibility, it kept all of its red LEDs turned on.

The goal robot was driven remotely by a human operator via Bluetooth. Be-

cause the transport robots push the object towards the goal robot, the operator

can indirectly control the transport direction by driving the goal robot.

4.6.2 Experimental Setup

Environment

The experiment was setup in the same arena as the one in the previous section

while using the same circular object. Fig. 4.14 illustrates the setup. Two walls

were placed within the environment. The initial position of the object was alter-

nated between the bottom left corner and the top right corner of the arena. The

destination was a rectangular region opposite the initial position of the object.

The direct line of sight between the object’s start position and the destination

were blocked by the walls.
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Figure 4.15: The traces of object’s centroid.

Trial Procedure

The human operator was required to move the guiding robot along a designated

path. The path was specified by a series of way points (see Fig. 4.14). When the

distance between the object and the goal robot was very small, the operator moved

the goal robot to the next way point. When the object touched the destination

region (finish line), the trial was considered successful.

4.6.3 Results

In all 20 trials, the object reached the destination region. The mean and median

of the completion times are 859 sec and 861 sec respectively. The minimum and

maximum are 649 sec and 1086 sec respectively.

The traces of the object’s centroid is shown in Fig. 4.15. From the plot, it is

clear that the object generally followed the designated route of the goal robot.

According to these results, the transport strategy is able to deal with a moving

goal. This means the transport strategy can potentially become part of a more

complex behavior to autonomously complete transport tasks in a more complex

environment. From another point of view, the human operator successfully com-

manded the swarm of robots to achieve an object transportation task through

remote control.
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t = 1 min t = 2 min t = 3 min

t = 4 min t = 5 min t = 6 min

t = 7 min t = 8 min t = 9 min

t = 10 min t = 11 min t = 12 min

Figure 4.16: Snapshots of one of the trials in the systematic experiments where the transport

group pushes the object towards a tele-operated goal robot and thereby through an environment

with obstacles.
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Figure 4.17: Setup of the simulation evaluating the scalability of the transport strategy.

4.7 Simulations Varying Number of Robots

To evaluate the scalability of the transport strategy, the number of robots in the

group needs to be varied in a wide range. This is difficult to do in real environment

due to the number of e-pucks available and the time cost to operate a large number

of e-pucks. Therefore, a computer simulation was established to study this problem

in which the number of robots (group size) was varied from 10 to 80 with 10 as

incremental step.

When using the simulation framework introduced in Chapter 3, the simulated

model of the e-puck is relatively realistic. For example, the proximity sensors on

the simulated e-puck output values that are similar to those obtained on a real

e-puck. Therefore, the controller for the simulated e-puck can be nearly identical

to the one used on the real e-puck.

4.7.1 Simulation Setup

The environment was a bounded arena of size 500 cm× 500 cm.

The object was a cuboid box. Its side length was varied from 20 cm to 60 cm

with 10 cm as incremental step. Its mass (in gram) was 0.4 times the square of its

side length (in cm), so the mass of an object with side length of 20 cm would be
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Figure 4.18: The box-plot showing completion time of the trials. Each box/pillar in the plot

represent 30 trails.

160 gram.

The overall configuration is illustrated in Fig. 4.17. In the beginning of a trial,

the robots were randomly distributed in a rectangular region of size 2.4 m× 1.6 m.

The initial position of the object was in the center of the arena. The goal was

placed 2.3 m from the center of the object. The relative orientation between the

goal and the object was randomly chosen from 75 deg or −75 deg.

For each size of the object and each group size, 30 trials were executed. When

the distance between the object and the goal was smaller than 50 cm, the trial

would be considered successful and stopped. The time limit of a trial was 1200

seconds of simulation time. The trial would be stopped and considered as failed

once the time limit was reached.

4.7.2 Results

In all of the trials, the group of robots successfully pushed the object to the goal.

Videos of typical situations in these trials can be found in [25].

Fig. 4.18 shows the completion time of the trials. It can be seen that an optimal
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group size of about 30 exists commonly for objects of all sizes. In the setup, the

cuboid object had a maximum side length of 60 cm, which implies 30 robots of

diameter 7 cm is enough to cover two of its sides. To further increase the number

of robots may reduce the efficiency slightly. Such a result is consistent with other

works, e.g. Vaughan [134]. According to the observation of the trials, robots in

front of the object may collide with the object temporarily when it is moving. The

more robots that are not in the pushing formation, the more likely there will be

robots in front of the object and thereby slow down the process. However, as long

as the environment is not overly crowded with robots, such interferences should

not cause the transport to fail because the force exerted by individual robot are

insignificant when compared to the combined pushing force of the robot in the

pushing formation.

4.8 Simulations in 3-D Environment

The transport strategy has potential to be implemented in a 3-D environment.

In this section, we present a conceptual implementation of the occlusion-based

transport strategy in a simulated 3-D environment3. The environment is a bounded

gravity-less rectangular space. The speed of any objects in this space are damped

such that consistent forces are required to maintain the motion of objects. These

conditions approximate underwater environments where the density of the object

equals the density of water. One hundred robots were deployed in this environment

to push an object towards a goal. The goal was set to be the dominant light source

in the environment. The robots were required to push across the portion of the

object’s surface where the direct light from the goal was occluded by the object.

Fig. 4.19 shows this scenario.

4.8.1 Conceptual Robot Design

A specific robot model was designed for the task (see Fig. 4.20). Following the

concept of swarm robotics, the capability of the robot was kept simple. The robot

is modeled as a cylinder of diameter 8 cm and height 6 cm. Its mass is 300 g. It is

3This simulation did not used the framework introduced in Chapter 3.2. It is based on Bullet

Physics library alone, which is used to handle rigid body physics.
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Figure 4.19: In this 3-D physics-based simulation, a swarm of robots are pushing an object (the

blue capsule) towards a light source (the white sphere). The robots only push across the shadow

side of the object where the direct line of sight to the goal light is occluded by the object.

p0

p1

p2

J

I

W J

IW

p1
p2

Figure 4.20: The graphic model of the conceptual robot used in the simulation of the transport

task in a 3-D environment. In this image, the three engines of the robot and the beams of the

three line of sight sensors are rendered in detail.
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propelled by three engines mounted on its back side. Each of them can generate

a thrust force both forward or backward, denoted as p0, p1 and p2.

The robot has four sensors that give binary outputs:

1. I: Long range object sensor. This sensor can detect whether there are

objects along the line of sight of it. Its normal vector (pointing direction) is

(1.0, 0.0, 0.0) in the robot’s local coordinate system. Its range is 1000 cm.

2. J : Short range object sensor. This sensor can detect whether there are

objects along the line of sight of it. Its normal vector is (1.0, 0.57,−0.57) in

the robot’s local coordinate system. Its range is 40 cm.

3. K: Ambient light sensor. This sensor can detect whether the robot is directly

illuminated by the goal light source. It simply checks the line of sight between

the robot and the goal light.

4. W : Obstacle sensor. This sensor can detect whether there are obstacles

along the line of sight of it. Walls, other robots and the goal light are

considered as obstacles in the environment. The sensor’s normal vector is

(1.0,−0.57,−0.57) in the robot’s local coordinate system. Its range is 40 cm.

4.8.2 Robot Controller

The thrust outputs of the three engines are computed from three motion outputs

– speed, yaw and pitch – as follows:p0p1
p2

 =

 1, 0,−1

1,−1, 0.5

1, 1, 0.5


speedyaw

pitch

 . (4.30)

The robot has four binary sensor inputs. For each sensor value combination, a

set of motion outputs was defined to achieve the desired motion in the transport

strategy. The mapping is given in Table 4.4. Ranges indicate that the value was

uniformly random chosen from with the range.

4.8.3 Simulation Setup

One hundred robots were randomly placed in a rectangular space of dimension

800 cm× 500 cm× 500 cm.
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Table 4.4: Mapping from inputs to outputs

W I J K speed yaw pitch

0 0 0 − 0.6 [−0.03, 0.07] [−0.1, 0.1]

0 0 1 0 0.2 [−0.03, 0.17] [−0.1, 0.1]

0 0 1 1 0.3 [0.02, 0.12] [−0.3, 0.3]

0 1 0 − 0.8 0.0 0.0

0 1 1 0 0.7 [−0.2, 0.2] [−0.2, 0.2]

0 1 1 1 0.0 [−0.13,−0.03] [−0.1, 0.1]

1 − − − −0.8 [−0.3, 0.3] [−0.3, 0.3]

Consider the environment as a box of which the two diagonal vertices have

coordinates of (0, 0, 0) and (800, 500, 500) in the global coordinate system. The

goal light was fixed at position (650, 250, 250). The object was initialized at

(280, 250, 250) while its initial orientation was randomized using uniform spher-

ical distribution.

Four types of objects were used:

1. a sphere with a radius of 41 cm;

2. a capsule with a side length 60 cm and a radius of 30 cm;

3. a cube with a side length 66 cm;

4. a cone with a height of 100 cm and a radius of 52 cm.

The mass of these objects were all approximately 280 kg (calculated from their

volumes using the density of water).

For each type of object, 100 simulation trials were run. When the centroid

distance between the object and goal light was less than 90 cm, the trial would be

stopped, and considered successful. The trial would also be stopped when 900 sec

elapsed. This time limit was chosen to be about 5 times the typical finishing time

in preliminary trials.

4.8.4 Simulation Results

In all 400 trials, the object reached the goal within the time limit. The box plot

of the completion times (in simulated seconds) for each of the objects is shown in

Fig. 4.21. The path efficiency of the trials are shown in Fig. 4.22.
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Figure 4.21: Compeletion time of the simulation trials in a 3-D environment.
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Figure 4.22: Path efficiency of the simulation trials in a 3-D environment.

Typical situations of the four objects are shown in the online supplementary

material [25].

According to both of the numeric results and the direct observation, the trans-

port task was successfully completed by the robots. Similar to the 2-D case, the

shape of the object affects the performance of the strategy.
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Figure 4.23: The cooperative transport system studied in this thesis has been used for a demon-

stration in a domestic environment.

4.9 Demonstration in a Domestic Environment

The cooperative transport system implemented on the e-puck was also used to

demonstrate a cooperate object pushing task in a domestic environment for a TV

broadcast on Channel 54. In the scenario showing in Fig. 4.23, a group of e-pucks

were required to push a pair of blue slippers (the object) to a red cushion seat (the

goal). There was no major obstacle between the object and the goal. Therefore,

the transport strategy could be applied directly.

In such a domestic environment, the ambient infrared intensity from the day-

light is strong. Therefore, the working mode of the infrared proximity sensors was

changed to “EMITTER NOISE” (see Section 3.1.3 for details). To cope with this

change, the weighting parameters used in the motion controller were also re-tuned.

Moreover, the e-puck’s hardware design was just robust enough to cope with the

unevenness of the wooden floor. Occasionally, a robot would change direction

when its wheel interfered with the interface between the floor boards.

4for details, check: http://naturalrobotics.group.shef.ac.uk/
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Chapter 5

Segregation Based on Brazil Nut

Effect

When a mixture of particles with different attributes undergoes vibration, a segre-

gation pattern is often observed. For example, in muesli cereal packs, the largest

particles—the Brazil nuts—tend to end up at the top. For this reason, this phe-

nomenon is known as the Brazil nut effect. In previous research [51], a decen-

tralized robotic controller inspired by this phenomenon was designed to produce

segregation patterns in swarms of simulated agents that move on a plane.

In the work introduced in this chapter, this controller was implemented on real

e-puck robots. In a swarm of e-pucks, different robots mimic disks of different sizes

(larger than their physical dimensions). The motion of every robot is governed by

a combination of three components: (i) attraction towards a common reference

point, which emulates the effect of a gravitational pull, (ii) random motion, which

emulates the effect of vibration, and (iii) repulsion from nearby robots, which

emulates the effect of collisions between disks. The algorithm does not require

robots to discriminate between other robots; yet, it is capable of forming annular

structures where the robots in each annulus represent disks of identical size. The

controller was verified through systematic experiments performed with a group of

physical e-pucks.
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Figure 5.1: An annular segregation pattern in a swarm of 20 e-puck robots.

5.1 Objectives

Segregation is a process whereby objects or individuals separate into distinct

groups. It can be observed on various scales, ranging from the molecular to the

macroscopic scale.

The Brazil nut effect [101] refers to the segregation that occurs when shaking

a mixture of granular material of different sizes. When shaken, the packing of

the particles will loosen. Therefore, there is a probability for the smaller particles

to move into the void between the larger particles. However, it is less probable

for larger particles to move into the void between the smaller particles. Such a

unidirectional process causes the overall distribution of the particles to become

segregated according to their size [8].

The Brazil nut effect can be utilized to create a spatial segregation among

a swarm of robots in a decentralized manner. In [51], a segregation algorithm

based on the Brazil nut effect was developed and tested in computer simulation.

Through emulating the Brazil nut effect with different particle sizes in a 2D space,

those homogeneous robots should be able to form a pattern that shows a spatial

segregation based on size of the particles they are mimicking. This chapter aims

to implement and verify this algorithm on a swarm of e-pucks in the real world.
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Figure 5.2: The three behavioral components of robot i. Vector ~vi,taxis points towards the

estimated location of the infrared radiation source. Vector ~vi,rand points in a random direction.

Vector ~vij,repul is due to the repulsion effect on robot i by robot j. Robot i is repelled by robot

j if it perceives the virtual body of robot j as intersecting with its own virtual body. As robot i

has no means of measuring the virtual radius of robot j (rj), it assumes that rj = ri.

5.2 Controller Implementation

The controller is based on the algorithm presented in [51]. Some assumptions in

the algorithm cannot be realized for the physical e-puck. Therefore, modifications

had to be applied to the algorithm. This section will describe the algorithm used

here and highlight the modifications made.

5.2.1 Motion Composition

The motion controller is implemented based on the motor schema paradigm [3], in

which the velocity of the robot is calculated from a weight summation of a number

of vectors.
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The robots emulate a mixture of differently-sized disks subjected to vibration

on a 2-dimensional plane. In particular, robot i emulates a disk of radius ri, whose

motion is governed by a combination of three components (see Fig. 5.2):

1. ~vi,taxis: attraction towards a point common to all the disks, which emulates

the effect of a gravitational pull,

2. ~vi,rand: random motion, which emulates the effect of vibration and

3. ~vi,repul: repulsion from nearby disks, which emulates the effect of collisions.

Hereafter, the disk a robot represents is also referred to as the virtual body of

the robot. The radius of the disk is also referred to as the virtual radius of the

robot.

In every control cycle, robot i calculates the aforementioned three vectors.

These are then combined as follows:

~vi = ~vi,taxis + crand~vi,rand + f(~vi,repul). (5.1)

Vector ~vi,taxis is always a unit vector. Vector ~vi,rand is also a unit vector but a

parameter crand is used to weight its magnitude. Vector ~vi,repul can have a large

magnitude because it is computed as a sum of possibly many vectors (for details,

see Section 5.2.1); therefore, its magnitude is capped by function f (·). Here, we

use crand = 0.6 and a maximum allowed magnitude of 6.4 units for ~vi,repul. These

settings follow suggestions from simulation results1 [51].

After constructing motion vector ~vi, robot i first turns to point in its direction,

and then moves forward for a fixed duration. The speed at which it moves forward

is proportional to the magnitude of the vector, so that the maximum magnitude

possible (i.e.,1 + 0.6 + 6.4 = 8 units) corresponds to the maximum speed of the

robot (12.8 cm/s).

The length of the control cycle used here is 5 s, which is substantially longer

than that used in simulation (0.1 s). The main reason for this is that the e-puck

robots are equipped with directional cameras, whereas the simulated robots had

omni-directional perception [51]. In each cycle, the robot spends around 2.4 s in

1The algorithm in [51] uses an additional parameter to weight ~vi,repul. This is not used here

because the repulsion mechanism has been modified. The weightings used here are identical

to [51] when one considers the maximum allowed magnitude of ~vi,repul.
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revolving to obtain an omni-directional image, 1.3 s in turning to point in the

direction of ~vi, and 1.3 s in moving forward.

The implementation is based on the sensing framework introduced in Chapter 3.

Thus, the e-puck’s infrared proximity sensors and camera are the sensor inputs. In

the following, we detail how vectors ~vi,taxis, ~vi,rand and ~vi,repul are computed based

on the sensor inputs.

Attraction to Center of Gravity

The algorithm requires a point of attraction in the environment to emulate the ef-

fect of a gravitational pull. Each robot is required to estimate the angular position

of this point (the distance to it is not needed).

In our experimental setup, we use an infrared radiation source—a light bulb—

as the point of attraction. In order to estimate its angular position, each robot

makes use of its eight infrared sensors. In every control cycle, the three sensors

giving the highest readings are selected. Each reading is then represented as a

vector pointing from the center of the robot to the physical location of the sensor,

with a magnitude proportional to the sensor’s reading. The three vectors are

summed, and the resulting vector is normalized to have a unit magnitude, giving

~vi,taxis.

Random Motion

The random motion vector ~vi,rand is taken to be a unit vector pointing in a random

direction in the interval [0, 2π). This direction is taken with respect to the robot’s

orientation at the beginning of the control cycle.

Repulsion

In principle, each robot should be repelled by every other robot whose virtual

body overlaps with its own virtual body. This would require the robots to know

the virtual radii of nearby robots. However, as shown in [51], segregation can still

be effectively achieved if every robot assumes for all other robots a constant virtual

radius, which is a parameter that needs to be fixed a prior. Here, we propose and

use an alternative, parameter-free heuristic: robot i assumes that the virtual radius

of all other robots is equal to its own, that is, ri.
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Figure 5.3: Image processing to analyze the distances to nearby robots. (a) Overview of a scene

with seven robots. (b) The corresponding concatenated image (here, with the original 15 pixel

height) formed by the green robot as it takes eight images in one revolution. Note how the green

robot sees the red robots 4, 5 and 6 as a single object that appears closer (see also Fig. 5.4).

5.2.2 Distance Sensing

Each of the e-pucks uses its camera to estimate the angular position of and distance

to nearby robots. In every control cycle, a robot turns through one revolution in

eight steps of 45◦ each. In each step, its camera takes a picture. From the center

of this picture, a horizontal line of 32 pixels is extracted (corresponding to a field

of view of 45◦). The pixel lines extracted from the eight images are concatenated

to give a panoramic view of the scene (see Fig. 5.3). The concatenated image is

traversed horizontally to scan for nearby robots. This is achieved by identifying

blocks of dark pixels. Each block represents a perceived robot j. The angular

position of that robot is estimated from the position of the block. Vector ~vij,repul
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Figure 5.4: Possible misperceptions. (a) Robot i sees three overlapping robots as a single object,

j. It incorrectly perceives a single robot at distance dij . (b) Robot i can not see the two robots

occluded by robot j.

points in the direction away from robot j. The distance to the robot, dij, is

estimated from the width of the block. The amount of repulsion from a perceived

robot j is proportional to the perceived amount of intersection. Formally,

||~vij,repul|| =

k (2ri − dij) dij < 2ri;

0 dij ≥ 2ri,
(5.2)

where k = 0.2.

The total repulsion on robot i, ~vi,repul, is giving by summing the individual

repulsion vectors for all blocks.

The vision based implementation differs from [51] in that two types of misper-

ceptions can occur: (i) it is possible for several robots to be perceived as a single

block of pixels (see Fig. 5.4(a)); (ii) it is possible for a robot to occlude one or more

robots completely (see Fig. 5.4(b)). In order to compensate for these mispercep-

tions, the repulsion mechanism places more emphasis on robots that are perceived

to be close (see (5.2)). This is in contrast with the mechanism used in simula-

tion [51], where the amount of repulsion is constant regardless of the distance to

a perceived robot.
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5.3 Experiments using Two Groups of Robots

5.3.1 Experimental Setup

We use n to denote the number of robots in the swarm. Furthermore, we use m to

denote the number of groups, and nk to denote the number of robots in group k,

k ∈ {1, 2, . . . ,m}. The robots in group k all have virtual radius r(k). Recall that

ri denotes the virtual radius of robot i. Thus, ri = r(k), if robot i is in group k.

We consider a system with n = 20 robots and with m = 2 different groups.

The virtual radius of robots from group k is chosen as follows:

r(k) = abk−1, (5.3)

where a is the size (in cm) of the smallest disk and b is the minimum size ratio

between disks of different groups. We use a = 8 cm and b ∈ {1, 2, 3, 4, 5}.
Ideally, we expect the robots to organize into an annular structure, where the

disks of radius r(k), k ∈ {1, 2, . . . ,m}, are fully contained within the area of the

annulus formed by the concentric circles of radii (k − 1)g and kg in the center of

the environment. Parameter g represents the “thickness” of the annulus and can

be controlled by group size n [51].

An approximation of the ideal pattern can be obtained by choosing nk as

follows [51]:

nk =

2k−1
(r(k))2

m∑
j=1

2j−1
(r(j))2

n. (5.4)

In our physical implementation, the robots moved in a square arena of sides

2.5 m. A light bulb was placed over the center of the arena, acting as the infrared

radiation source, that is, the point of attraction.

The initial placement of the robots was done as follows: a square grid of 6× 6

points was marked on the arena floor, centered around the light bulb, with all

points being 20 cm apart. For each trial, 20 points were chosen randomly without

replacement. Additionally, for each robot, the orientation was selected randomly

from four possibilities: north, south, east and west.

Each trial was recorded from start to finish with an overhead camera sys-

tem. All robots were started simultaneously using an infrared remote control.

98



They would stop automatically after 20 minute elapsed (duration of a trial was 20

minute).

5.3.2 Performance Metric

To measure the quality of segregation, we calculate the segregation error (SE)

as defined in [51]. Consider two robots i and j and let xi and xj denote their

positions.

Furthermore, let o denote the position of the ‘center of gravity’ in the same

co-ordinate system, that is, the point to which all robots are attracted.

The pair of robots (i, j) contributes to the segregation error if one of the robots

has a larger virtual radius and is closer to o than the other one. It does not

contribute to the segregation error if either the robots have identical virtual radii,

or if the robot with a smaller virtual radius is closer to o than the other one.

Formally,

eij =


1 (ri < rj) ∧ (‖xi − o‖ ≥ ‖xj − o‖) ;

1 (ri > rj) ∧ (‖xi − o‖ ≤ ‖xj − o‖) ;

0 otherwise.

The segregation error is given by summing eij over all pairs of robots, and

normalizing by (only) the number of errors possible. Formally,

SE =

∑n
i=1

∑n
j=1 eij

n2 −
∑m

k=1 n
2
k

, (5.5)

where SE ∈ [0, 1]. Randomly placed robots will have a segregation error of 0.5

on average. An error of 1.0 is achieved if the robots are in an ‘inverse Brazil nut’

configuration, that is, if for all (i, j) s.t. ri < rj, ‖xi − o‖ ≥ ‖xj − o‖.
We considered m = 2 groups of robots. Robots of the first group represented

disks of radius r1 = 8 cm, whereas robots of the second group represented disks

of radius r2 = 8b cm, b ∈ {1, 2, 3, 4, 5}. As reported in [146], the size ratio b is a

critical variable—increasing it results in a decrease in the segregation error.

For each value of b, we performed 20 trials with n = 20 robots each, that is, we

ran 100 experimental trials in total. Every trial lasted for 20 minutes. Table 5.1

shows the number of robots in each group see (5.4).
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Table 5.1: Overview of configurations studied

radius factor b n1 r(1) n2 r(2)

1.0 5 8.0 cm 15 8.0 cm

2.0 11 8.0 cm 9 16.0 cm

3.0 15 8.0 cm 5 24.0 cm

4.0 17 8.0 cm 3 32.0 cm

5.0 18 8.0 cm 2 40.0 cm

5.3.3 Results

Fig. 5.5 shows a sequence of snapshots taken during three typical trials with radius

factor b = 1, 2 and 4.

Influence of Size Ratio on Segregation Error

Fig. 5.6 shows a box-and-whisker plot [10] of the segregation errors for the different

radius factors (b).

For b = 1, all e-pucks represented disks of identical size. Consequently, the

segregation error (47.3%) was, on average, similar to the expected error for purely

randomly distributed e-puck robots (50%). In no trial was perfect segregation

observed.

For b > 1, the median segregation errors are all 0. The mean segregation errors

are 1.31%, 0.07%, 0.49% and 0.28% for b ∈ {2, 3, 4, 5}, respectively. For b = 2,

error free segregation was observed in 14 out of 20 trials. For b ∈ {3, 4, 5}, error

free segregation was observed in 19, 18 and 19 of the 20 trials, respectively. That

is, in these trials, all 20 e-pucks were spatially distributed as intended.

In 4 out of 60 trials for b ∈ {3, 4, 5} the segregation was not error free. This

was due to mechanical failures that caused robots to stop moving. For example, a

robot became stuck on the arena floor, or lost contact with its battery.
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Figure 5.5: Sequences of snapshots taken during trials with radius factor b equal to 1 (top), 2

(center) and 4 (bottom). Robots with green markers represent disks of 8 cm radius. Robots with

red markers represent disks of radius 8 cm (top), 16 cm (center) and 32 cm (bottom). The first

and last images in each sequence (from left to right) show the initial and final configurations

after 0 and 1200 sec. The other two images show intermediate situations.

Segregation Dynamics

Fig. 5.7 shows the segregation error over time as observed in trials with radius

factor b = 4. Initially, the segregation error rapidly decreased until it became zero

after 3.5 mins in most of the trials.

Influence of Size Ratio on Spatial Distribution

To understand better the effect of the size ratio (b), we analyzed the spatial dis-

tribution of robots of both groups. Fig. 5.8 shows the distances of all robots from

the center of the arena as observed at the end of the trial. The data is grouped

101



●

●

●
●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

radius factor, b

se
gr

eg
at

io
n 

er
ro

r

1 2 3 4 5

Figure 5.6: Box-and-whisker plot showing the segregation error observed in experimental trials

with 20 e-puck robots for different radius factors (20 trials per radius factor).
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Figure 5.7: Segregation error over time for 15 experimental trials with 20 e-puck robots and

radius factor b = 4.0. Data from the remaining five trials are not included because of some

missing frames in the corresponding video recordings.
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Figure 5.8: Box-and-whisker plot showing the distances of all robots from the center of the arena

for groups of different radius factor (400 data points per radius factor). Green (light gray) boxes

represent data from those robots that used the basic virtual radius, whereas red (dark gray)

boxes represent data from those robots with the corresponding radius factor applied.

according to the two groups of robots presenting disks of different sizes in addition

to the radius factor used.

For b = 1, robots of both groups were similarly distributed in space. The mean

distances from the center of ‘smaller’ robots (green marker) and ‘larger’ robots

(red markers) were 16.9 cm and 17.5 cm, respectively.

As b increased, the distance between robots of different groups increased.

For robots representing small disks (of 8 cm radius), the mean distance from

the center of the arena mainly depends on the number of disks of that size. The

largest number of small disks was present for b = 1 (in this case, all 20 robots were

identical). For b ∈ {2, 3, 4, 5}, the numbers were 11, 15, 17, and 18, respectively

(see Table 5.1).

The mean distance of ‘larger’ robots from the center grew almost linearly with

the radius factor, setting them spatially apart from the other group. This caused

the segregation error to decrease.
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Figure 5.9: Box-and-whisker plot showing the distances of all robots from the center of the arena

for groups of different radius factor.

5.4 Experiments using Three Groups of Robots

The previous systematic experiments shows that the segregation pattern can be

formed when the virtual radii applied on the two groups of robots are different while

a radius factor of 1 (no difference between groups) brought no segregation effect.

The controller should also be effective when the number of groups in the formation

is bigger than two, as long as the virtual radius of each group is sufficiently different.

Using three groups of robots (m = 3), 20 trials were performed in the same

environment as the previous experiment. The number of robots in each group were

9, 12 and 9. The base virtual radius was 8 cm. The radius factor was k = 1.5. Thus,

the virtual radii of the three groups were 8 cm, 12 cm and 18 cm (see Equ.(5.3)).

The duration of a trial was 30 min.

The mean segregation error of the 20 trials was 0.288. Typical final patterns

observed in these trials are shown in Fig. 5.10. The distance between robots of

different groups to the centroid of the formation is shown in Fig. 5.9. These result

shows that the controller is still effective when there are more than two groups of

robots.
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Figure 5.10: Positions of the robots at the end of 6 out of the 20 trials with three groups of

robots. Robots with green, red and blue markers had a virtual radius of 8 cm, 12 cm and 18 cm,

respectively.
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Chapter 6

Fully Decentralized Segregation

In Chapter 5, a decentralized controller was implemented to organize a swarm of

e-pucks that allows e-pucks to mimic the behavior of particles. We showed that a

swarm of robots representing particles of 2 to 3 different size can segregation in to

an annular pattern. The motion of a robot was governed by a combination of three

components:(i) attraction towards a global location, which emulates the effect of a

gravitational pull, (ii) random motion, which emulates the effect of vibration, and

(iii) repulsion from nearby robots, which emulates the effect of collisions between

the particles. Although this controller only used information from a robot’s own

sensors, the presence of a global reference point and the assumption of all robots

to perceive it may not be met in practical applications.

In this chapter, we introduce a new algorithm to form an annular structured

segregation that does not require a global reference point. In this algorithm the

motion of a robot is still based on the three components in the Brazil nut effect.

However, the attraction towards a global location was achieved through a collective

signaling mechanism that does not involve any global information (see 6.1). Fo-

cusing on this new attraction mechanism, a simulation was implemented to study

the performance of this controller.

6.1 Controller Design

The e-puck robot has limited capabilities but its architecture is very typical. There-

fore, this segregation controller is design based on the model of e-puck. This means:
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Figure 6.1: Segregation of 32 robots into an annular structure with two layers. There is no center

of attraction (global reference point) in the environment. Instead, the robots are attracted by

those robots that turn on their red LEDs. The red LEDs on all the robots are turned on and off

according to a specific mechanism that was designed for achieving such a segregation. It is the

main focus of this chapter.

the controller takes proximity sensors and directional camera as inputs to the while

the motion of the robot only depends on the differential wheeled drive mechanism.

In the segregation controller introduced in Chapter 5, a robot needed to scan

its surroundings through eight discrete rotation steps. In the controller presented

here, such omni-direction perception is achieve through a continuous rotation,

which means the robot keeps gather information from its directional camera while

maintain a constant angular speed. The repulsive motion and attractive motion

required in the Brazil nut effect are imposed on the rotational motion. However,

these two effects do not affect the angular speed severely so the robot can still

perceive information from all directions.

In the controller presented in Chapter 5, the random component and the re-

pulsion component in the Brazil nut effect had already been implemented in a

decentralized manner. Therefore, the challenge to design a fully decentralized

segregation controller lies in the attraction component.

Two types of attraction mechanisms are designed. They are referred to as

RANDOM PROPAGATION (RP) mode and EQUAL ATTRACTION (EA) mode.

RP mode is a relatively novel mechanism that takes inspiration from those reaction-
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diffusion systems in nature that are able to form apparent patterns [130] [76]. For

example, the zebra stripes or the giraffe pattern are both patterns formed through

local interactions of skin cells. EA mode employes a basic method that originates

from aggregation behaviors of a swarm of mobile agents. Its purpose is to serve as

a benchmark for comparison with the RP mode.

The RP mode is the focus of this chapters. When the decentralized segregation

behavior is referred in a general context (e.g. in other chapters), it means the

controller based on RP mode.

EQUAL ATTRACTION mode

The apparent consequence of the attraction effect in the segregation behavior in

Chapter 5 is to aggregate the robots. Such aggregation effect was achieved by

making all of the robots taxis towards a global infrared light source. Therefore, it

is possible that any aggregation behavior can be applied to substitute the role of

the global center of attraction in the Brazil nut effect. Following this idea, EQUAL

ATTRACTION mode was designed.

Aggregation is a well studied behavior in swarm robotics; many solutions and

phenomenons have been published [92] [72] [128]. One basic decentralized method

to achieve aggregation is to make each robot move towards its neighbor. As a

consequence of such a behavior, the swarm of initially separated robots may come

together.

Such a simple aggregation method has its flaws in an aggregation task. For

example, if the initial distribution of the robots is non-uniform, this behavior may

lead to a partial aggregation in which the separated robots form a number of

clusters instead of one clusters [42]. Because this project is not focusing on the

aggregation behavior, this method can serve its purpose to keep the group of robots

aggregated.

RANDOM PROPAGATION mode

From the perspective of a segregation controller, the EA mode can be viewed as

each of the robots having an equivalent attraction to its nearby robots.

In RANDOM PROPAGATION mode, the robots are also attracted by each

other rather than a global reference point. However, the attraction of a robot
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towards the robots around it does not constantly exist. Instead, the robot is

attracted only by those robots that have a specific signal activated. The effective

range of such signals are not global. The signal can be observed by the other

robots within a limited range and it can be occluded by the robots.

These signals appear dynamically among the robots. When a robot does not

have the signal activated, two events will make it activate the signal:

1. The robot has a certain probability to activate the signal. This is the rule

of random activation.

2. When it perceived a signal from the other robots. This is the rule of propa-

gated activation.

Once the signal is activated, it will be deactivated automatically after a period.

This period is called the signal period. Within this period, the robot will contribute

an attraction effect towards the robots that can perceive the signal. Furthermore,

once the signal is activated, the robot will ignore any of the activation rules stated

above for a period that is longer than the signal period. This period is called the

inhibitory period.

In the description, the rules of the signal activation will be referred to as the

signal propagation mechanism. The event of activating a signal will be specifically

referred as fire while the signal it-self with just be referred as the signal. Thus, if

a robot fired, the other robot may be able to perceive the signal of the robot.

6.2 Controller Implementation

The segregation controller was implemented using the simulation framework intro-

duced in Section 3.2 and ported on to physical e-pucks. Because the systematic

experiments in this study had been done in computer simulations, this section

will introduce the details of the implementation based on the version used in the

simulation. However, the description in this section is also valid for the version on

the physical e-pucks that are used to do demonstration trials showing in Fig. 6.1.
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6.2.1 Motion Controller

The motion of the robot is controlled by a reactive controller, in which the wheel

speeds of the robot is calculated in each time step according to the sensor inputs.

The basic control framework is similar to the one used in the motion control

of the cooperative transport controller introduced in Section 4.4.2. The left and

right wheel speeds (ωl and ωr) are calculated from the linear speed, S, and the

angular speed, D, using the following equation:[
ωl

ωr

]
=

[
1 −s
1 s

][
S

D

]
, (6.1)

s =

{
1 if S ≥ 0,

−1 if S < 0.
(6.2)

In this controller, the linear speed (S) is calculated by

S = Sattract + Srepel + Srandom + nS. (6.3)

In the above equation, Sattract, Srepel and Srandom are the linear speed augmen-

tations to impose the attraction, repulsion and random motion in the Brazil nut

effect respectively. nS is the neutral linear speed.

The angular speed, D, is calculated by

D = Drepel + nD. (6.4)

In the above equation, Drepel is the angular speed augmentation to impose the

repulsion. nD is the neutral linear speed.

The two neutral speeds are constant values. They determine the motion of the

robot when it is not affected by anything in the environment. The design of the

controller makes the robot rotate on its position so it can scan the surrounding

using its directional camera. This is realized by setting nS and nD to 0 and 0.4

respectively.

The augmentation values represent the effects of the three motion components

required by the segregation behavior. Among them, the random component is

simply achieved by adding Srandom to the linear speed. Srandom is a value that

is randomized once every Tr second in the range of [−M,M ]. The attraction

components and repulsion components are determined according to sensors inputs,
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they will be introduce in detail in next sections. All constant parameters involved

in the expressions can be found in Table 6.2.

Attraction Augmentation

If a robot perceives signals from another robot, the robot is attracted by that

robot. The signal is implemented using the red LEDs on the e-puck. The robot

uses its camera to perceive any firing robots in front of it. The presence of firing

robots can be judged from the sensor output wr provided by the camera image

processing routine introduced in Section 3.1.2.

When the robot perceived the signal from another robot, it will set Sattract to

a positive value. Because the robot is more or less facing the firing robot, the

forward motion brought by this change is essentially attracting the robot to the

firing robot.

The pseudocode of attraction mechanism is given in Algorithm 4.

Algorithm 4 The Attraction Augmentation in The Motion Controller
IF wr > Hs THEN

SeesSignal = TRUE;

ELSE

SeesSignal = FALSE;

ENDIF

IF SeesSignal is TRUE THEN

Sattract = Ca;

ELSE

Sattract = 0;

ENDIF

Repulsion Augmentation

In this segregation controller, the proximity sensors on the robots are working in

the EMITTER ON mode. In this mode, the presence and the proximity of nearby

robots can be measured in the ambient samples of the proximity sensors, A (see

Section 3.1.3).
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Table 6.1: Weight of Proximity Sensor Inputs

Sensor #0 #1 #2 #3 #4 #5 #6 #7

DA 2.25 1.75 1.5 1.5 -1.5 -1.5 -1.75 -2.25

SA -0.25 -0.25 0.125 0.5 0.5 0.125 -0.25 -0.25

The repulsion terms, Srepel and Drepel are calculated based on A:

Srepel = kSAA. (6.5)

Drepel = kDAA. (6.6)

The value k is the factor of the repulsion augmentation. Different groups in the

segregation behavior have different repulsion factors. After the behavior reaches

stable stage, the group with a higher k is supposed to be further outside in the

formation than those with lower k’s.

The weighting matrices SA and DA are given in Table 6.1. This configuration

makes the robot move away nearby robots or obstacles. For the linear speed, SA

matrix contributes a positive term when there are things on the robot’s back and

negative term for things in front of the robot. Therefore, this controller let the

robot ‘bounce’ away from other robots in front or behind. For the angular speed,

this matrix generates a angular speed augmentation that turns the robot away

from nearby objects to achieve the repulsion effect.

6.2.2 Signal Propagation Mechanism

To implement the EA mode, the robot keeps the red LEDs turned on constantly.

Because the motion controller make the robot move towards any red LEDs, the

robot is attracted by all robots it sees in this mode.

In the RP mode, a robot that has not fired for a certain period will fire randomly

by chance or when it sees a firing robot.

These rules are implemented accordingly. The pseudocode of the implementa-

tion is given in Algorithm 5. Variable InhibitoryTimer is the timer that memorize

the time after the last firing. Variable SignalTimer is the timer that is used to

keep the red LEDs turned on for a period of time.
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Table 6.2: Parameters in the controller

Symbol Value Description

T 1/60 step size of a time step in second

Ts 6 signal period in number of time steps

Th 7 inhibitory period in number of time steps

Tr 60 the interval in time steps that Srandom is randomized

M 0.064 random span of Srandom

Ca 0.4 the speed augmentation when the robots see a firing robot

pinit 0.01 probability to initiate a signal firing in each time step

Hs 3 the pixel count threshold to judge the presence of any signals

k ∈ [1, 8] repulsion factor of a group

The code to set the attraction motion augmentation (Sattract) is also included in

Algorithm 5 to clarify its relation to the signal propagation mechanism. Therefore,

Algorithm 5 can be viewed as the entire distributed attraction mechanism purposed

in this fully decentralized controller.

6.3 Computational Experiments

In order to further study and compare the two modes of the controller, systematic

experiments were conducted. Unlike the cooperative transport system, this system

does not involve many physical interactions. Ideally, no collisions between robots

should happen. Thus, the accuracy of the collision physics in computer simulation

would not significantly affect the experimental result. Therefore, the simulated

system was also used to conduct systematic computational experiments.

6.3.1 Setup

Three groups of robots were used in the experiments. The only difference between

the robots in different groups was the repulsion factor, k, applied in their con-

trollers. The number of robots in each of the groups and their common repulsion

factor are listed in Table 6.3.

In preliminary tests, it was shown that the final formation of the swarm tends
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Algorithm 5 The Attraction Mechanism

IF wr > Hs THEN

SeesSignal = TRUE;

ELSE

SeesSignal = FALSE;

ENDIF

IF SeesSignal is TRUE THEN

Sattract = Ca;

ELSE

Sattract = 0;

ENDIF

IF InhibitoryTimer > 0 THEN

InhibitoryTimer = InhibitoryTimer - 1;

ELSE

IF SeesSignal is TRUE OR Rand(0, 1) < pinit THEN

InhibitoryTimer = Th;

SignalTimer = Ts;

ENDIF

ENDIF

IF SignalTimer > 0 THEN

Turn On All LEDs;

SignalTimer = SignalTimer - 1;

ELSE

Turn Off All LEDs;

ENDIF
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Table 6.3: The Specifications for Each Group

Group k Value Group Size Marker Color

Group A 2.0 19 Orange

Group B 4.0 18 Blue

Group C 8.0 24 Green

to be circular (e.g. Fig. 6.2(b)). Therefore, the number of robots in each group

was chosen according to the ideal number of robots to form certain layers in a

hexagonal packing arrangement of circles [45]. For instance, Group A is supposed

to be the first three layers in such an arrangement, which ideally needs (1+6+12)

robots.

The robot model used in the simulation was again the e-puck, which has a

diameter of 7.0 cm. The environment was a square arena of size 400 cm× 400 cm.

The initial positions of the swarm of 61 robots were randomly chosen from an 8×8

grid that has a total dimension of 150 cm × 150 cm and is centered in the arena.

The orientation of the robots are uniformly random. A typical result of such a

random initial formation is shown in Fig. 6.2(a).

In preliminary tests using the setup introduced above, a visible segregation

pattern may occur for both of the modes after 150 sec. Thus, the duration of a

trial in the systematic experiment was set to 300 sec. The simulation framework

was running at 60 times steps per simulation second. The status of each robot was

logged once every two time steps, so each robot generated 9000 data steps. For

each of the RANDOM PROPAGATION mode and the EQUAL ATTRACTION

mode, 30 trials were executed.

6.3.2 Results

Segregation Error

The metric used to the evaluate the degree of spatial segregation of the robots is

the segregation error introduced in Section 5.3.2. This definition of the segregation

error was first proposed in [51].

In this metric, the value 0.5 means the robots in different groups are well mixed,

which implies no spatial segregation appears in the swarm. The value 0.0 means
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(a) (b)

Figure 6.2: (a) A typical initial formation of the swarm in the systematic experiment. (b) A

typical final formation of the swarm in RANDOM PROPAGATION mode.

the robots formed an annular structure in which the robots in a group with a

higher repulsion gain are always further outside the groups with lower repulsion

gains. This is the segregation error that this segregation behavior was supposed

to achieve. The value 1.0 means that the robots formed a annular structure in

which the robots in a group with a higher repulsion gain are always surrounded

by groups of robots with lower repulsion gains. This is the opposite of what the

segregation behavior was supposed to achieve.

The dynamics of the mean segregation error of the trials is shown in Fig. 6.3.

Fig. 6.5 plots the segregation error over time for each of the trials. Fig. 6.3 also

shows a second order exponential fit of each of the curves. For the EA mode, the

fitted function is:

f(x) = 0.5391e−0.01707x + 0.0009604e0.007137x. (6.7)

For the EA mode, the fitted function is:

f(x) = 0.1429e−0.04481x + 0.3575e−0.00262x. (6.8)

Considering Fig. 6.5, the spatial segregation occurred in all of the trials in RP

mode. Whereas, the trials for EA mode have a much slower progression of the

spatial segregation.
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Figure 6.3: Segregation error mean plot of all of the trials in each of the modes, each fitted with

a second order exponential function.

Group Distance

Let a robot’s centroid distance be the distance between its position and the centroid

of the formation. The group distance is then defined as the mean of the centroid

distances of the robots in the corresponding group in a trial. Fig. 6.6, the group

distances of the trials are plotted. The group distances are normalized so that the

group distance of Group C is always 1.0.

From Fig. 6.6, it is clear that the group distances observed in the RANDOM

PROPAGATION mode trials are much more stable than the group distances of

the EQUAL ATTRACTION mode trials.

Firing Rate

Among all trials, a common phenomenon was observed in the firing pattern of the

robots running the RP mode controller: the robots near the center of the formation

fires more frequently. In order to verify this observation, the firing rate metric was
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Figure 6.4: Firing rate of the zones for all trials of the RANDOM PROPAGATION mode, fitted

with a sigmoid function. For details, see text.

designed.

To study the spatial distribution of the firing rate of the swarm, this metric is

measured for different regions in the formation. Because the segregation behavior

forms an annular structured formation, different regions are divided according to

the robots’ centroid distance. More particularly, a region in which the positions

inside has a similar centroid distance is defined as a zone. As a result, the division

of the zones in the formation looks like a marksman target. The function to judge

which zone robot i is in is defined as

J(i) = ceiling(di/w), (6.9)

in which di is robot i’s centroid distance. w is the width of all zones, which is

7 cm.
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The firing rate of zone j is defined as

qj =
Ej
Oj

, (6.10)

in which: Oj is the occurrence count of the robots in zone j. In every time step,

Oj will be increased by 1 for each of the robots occurred in zone j. Ej is the firing

count of the robots in zone j. For each firing event occurred in zone j, Ej will be

increased by 1.

Fig. 6.4 shows the bar plot of the firing rate distributions. In this plot, Ej and

Oj was counted across the full durations of all trials of the RP mode1.

It can be observed that the firing rate of the robots are almost monotonically

increasing when the distance to the centroid is decreasing, which is far different

from the firing rate in the random initiation rules defined in the signal propagation

mechanism. This could probably be one of the explanations of why RP mode

performed much better than EA mode in the systematic experiments. In Fig. 6.4,

the distribution of the firing rate against zone is fitted with the following sigmoid

function:

f(x) = 0.2190− 0.1721

1 + 0.2624 ∗ 10(11.2471−x) (6.11)

1due to how the EA mode is implemented, ‘firing rate’ of the EA mode trial would be con-

stantly 1 for all zones.
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6.3.3 Discussion

The performance of the two modes in the systematic experiments were evaluated

using both of the segregation error and the group distance as the performance met-

rics. According to the metrics, spatial segregation successfully appeared. However,

the RP mode controller performed much better than the EA mode controller.

Videos recording the typical situations in the computational experiments can

be found in [25]. The RP mode controller has also been ported to physical e-puck

robots. A demonstration trial using 32 e-pucks divided in to two groups has been

performed successfully. Video of this trial are also included in [25].

The only difference between the two modes was the method to simulate the

gravitational attraction in the original Brazil nut effect. The significant difference

in the performance of the two modes shows that the signal propagation mechanism

is much more effective than the uniform attraction mechanism employed from a

common aggregation behavior. However, the reason behind this was not very

obvious. Two hypothesis had been raised:

1. The attraction strength caused by the two mode is different. Generally, the

attraction augmentation in EA mode is constantly existing (non-zero) while

it exists in RP mode sometimes only. A lower attraction strength of RP

mode may improve the segregation performance over the EA mode.

2. The distribution of the firing rate caused by the emergent behavior of the

signal propagation mechanism generates a attraction towards the center of

the formation for all of the robots. Comparing to the uniform adhesion be-

tween the robots in EA mode, this centripetal motion trends is more similar

to the attraction effect in the original Brazil nut effect. Therefore, the signal

propagation mechanism can serve its role in the segregation behavior better.

The later case has been studied further because of the distribution of the firing

rate unveiled in Fig. 6.4. In order to fully understand the cause-and-effect of this

phenomenon, some further investigations focused on it have been done. The next

section will introduce these investigations.
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6.4 Further Investigation

6.4.1 Visualizing the Gradient of Firing Rate

In order to observe the firing pattern of the robots better, an extra trial was done

using the same configuration used in Section 6.3. During this trial, screenshots

were captured at different stages of the trial. These screenshots are shown in

Fig. 6.7. In this figure, it can be observed that: regardless the segregation stage,

the center area is always illuminated better than the area near the edge.

Fig. 6.8 is the result of super-positioning all of images in Fig. 6.7. This is

achieved by adding the red channels of the images and then normalizing the sum.

Essentially, it is the same as normalizing the mean of the red channels of the

images. According to Fig. 6.8, it is clear that the center area has a higher mean.

Combined with Fig. 6.4 and Fig. 6.7, the firing rate of the robots has a radial

gradient in the circular formation.

In the implementation of the fully decentralized controller, the signal propa-

gation mechanism barely has any cohesion with the motion of the robots. For

example, it only requires the motion of robot to have an angular speed so that the

robot can use its directional camera to scan the surrounding. Therefore, it is very

possible that the signal propagation mechanism alone caused the radial gradient.

6.4.2 A Cellular Automaton Based Simulation

A radial gradient appeared in the firing rate of the fully decentralized segrega-

tion behavior. In order to study whether this phenomenon was related to only

the signal propagation mechanism or the whole segregation controller, the signal

propagation mechanism was abstracted to a set of rules that can be applied as a

cellular automaton. This means there are no motion or sensing problems involved.

The firing rule applied on individual cells is very similar to the signal propa-

gation mechanism in the segregation controller. An individual cell has a certain

probability of firing. This is the rule of random activation. In each time step,

the cell will also randomly selected one of its four adjacent cells. If this selected

adjacent cell fired, the cell will fire too. This is the rule of propagated activation.

Note, the cell will only read the randomly selected neighbor cell in each time step,

which is originated from the directional perception of the signals in the segregation
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(a) Early Stage (b) Middle Stage (c) Late Stage

(After 20 sec) (After 60 sec) (After 180 sec)

Figure 6.7: Snapshots showing three stages in a simulation trial. The images were captured every

53 time steps after the first image (top row) in the corresponding stage. The prime number 53 was

used as the capture interval to prevent alias. It can be observed that regardless the segregation

stage, the center area is typically better illuminated by the LEDs than the area near the edge.
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Figure 6.8: This gray-scale image was made by normalizing the addition of the red channels

of the 21 images in Figure 6.7. It can be observed that the lighting caused by signal firing if

the robots had a radial gradient. This phenomenon might be caused by two situations: (1) the

spatial distribution of the robots near the center had a higher density. (2) the robots near the

center were firing more frequently. According to the observation of the final formation, the first

situation was not convincing. Therefore, the second situation was investigated further.

controller. This is unlike typical cellular systems in which each of the cells usually

take inputs from all of its adjacent cells (e.g. 8 for Moore neighborhood and 4

for von Neumann neighborhood). After a firing event, the fired cell will enter a

inhibition period in which it will not use either of the firing rules.

The plot of the firing counts of a trial is given in Fig. 6.9. The whole firing count

landscape of the cellular automaton (Fig. 6.9(a)), reveals a centered radial gradient

appear among the cells. In this cellular automaton, the cells did not move and

they only read from their adjacent cells. Yet, an apparent global pattern formed.

This result could support the hypothesis that the firing rate gradient caused by

the signal propagation mechanism is independent from the segregation controller.
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Figure 6.9: The normalized firing counts of the cells. This firing counts are normalized so the

cell fired most has a score of 1.0 whereas the cell fired least has a score of 0.0. (a) the entire

landscape of the 32 × 32 automaton; (b) the scores of the 32 cells along the y = x diagonal on

the plane.
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Chapter 7

Conclusion

Inspired by social insects in nature, swarm robotics aims to use a large number of

relatively simple robots to solve complex tasks through cooperation. In a swarm

robotic system, the individual robots are typically simple. Their behaviors often

rely only on local information which is collected directly from their own sensors.

Such simplicity may bring the system advantages in robustness, flexibility and

scalability. However, under these assumptions, it is challenging to coordinate

large numbers of individuals to achieve tasks that are meaningful from a global

perspective. For example, organizing a group of robots into a formation is difficult

to achieve when there is not a common global reference frame.

Focusing on groups of miniature mobile robots without explicit communication

capability, this thesis studied the problems of cooperative transport and pattern

formation using fully decentralized controllers. This chapter summarizes the out-

comes as well as provides directions for future work.

7.1 Summary of Outcomes

The thesis considered three controllers for two tasks. In the following, the outcome

and directions for future work for these works are discussed.

Cooperative Transport Based on Occlusion

This study introduced a cooperative transport strategy that uses a large number

of relatively simple and small mobile robots to transport a large object that can
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occlude the robots perception of the goal. The strategy makes robots push along

the surface of the object where the robots’ line of sight to the goal is occluded

by the object itself. By ensuring that the robots only push the object over the

occluded surface, the object will eventually reach the goal (but the orientation of

the object can not be controlled). A mathematical formulation of the strategy

in a 2-D work space was provided. We proved that any convex-shaped object

will always be successfully transported to the goal point and that the same is not

necessarily true for objects of concave shape.

The strategy was implemented on the e-puck platform. Systematic experiments

were performed to verify the implementation using three particularly challenging

types of objects. In 43 out of 45 trials in total, the objects were successfully

transported to the goal by 20 e-pucks. The self-correction effect introduced by the

occlusion-based strategy can be clearly observed in these trials. Depending on the

shape of the objects, the paths traced were on average 9.5% to 32.6% longer than

the shortest possible path. The paths were also compared against predictions from

the mathematical model. While most individual paths differed substantially, their

overall distribution showed a good correspondence in both visual inspection and

the path efficiency comparison. In an extended experiment, an extra e-puck was

used as the goal. This goal robot was remotely controlled by a human operator.

Following the path of the goal robot, the transport robots pushed the object in all

20 trials through an environment with obstacles.

A physics-based simulation was used to show an implementation of the trans-

port strategy in a 3-D environment using a swarm of conceptual robots that have

only four binary sensors. The simulation shows that the transport strategy has

potential to be implemented in a 3-D environment using a large swarm of simple

robots. For example, nano-robot swarms could transport materials such as drugs

within the human body.

To the best of our knowledge, this is the first successful attempt of using a large

number of autonomous robots to push a large non-specific object. Moreover, the

experiment using a mobile goal can be viewed as a successful instance of human-

robot interaction in which a human remotely controls a swarm of robots through

a single agent robot. Finally, we have shown the potential for the strategy to

be applied in real world environment, through a proof-of-concept experiment in a

domestic environment.
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Segregation Based on the Brazil Nut Effect

An algorithm inspired by the Brazil nut effect from computer simulations [51] was

ported to the e-puck robot. The algorithm lets a group of robots mimic a mixture

of embodied particles in 2-D space (disks) under vibration and centrifugal gravity.

Each of the robots assumes the other robots have the same disk radius as itself,

so the robots do not need to communicate the disk radius with each other.

The original algorithm in [51] assumed that every robot can instantly measure

the relative position of all the robots in its vicinity. Here, we showed how this

algorithm can be modified to allow for an implementation using directional vision.

This implies that (i) robots have to revolve in order to obtain an omni-directional

picture and (ii) the algorithm has to cope with misperceptions, for example, due

to visual occlusion. The robot also needs to sense the relative direction to a point

of attraction in the environment (to emulate the effect of a gravitational pull).

Here, we used a light bulb, which was perceived by the e-puck’s infrared sensors.

We believe that the new algorithm is applicable to a wider range of robotic

platforms when compared to the original algorithm. In principle, the new al-

gorithm can be implemented on any wheeled robot with a camera or equivalent

sensor to detect nearby robots. Note that in principle, the light bulb could also

be perceived using the directional camera while the e-puck revolves to obtain the

omni-directional picture.

We presented a series of experiments with 20 e-puck robots that validate the

efficiency of the algorithm. The e-pucks were programmed to simulate a system of

two groups of disks. The desired target pattern was an annular structure around

a common point of attraction, where the robots in each annulus represent disks of

identical size. The percentage of incorrectly-ordered pairs of disks from different

groups decreased as the size ratio of disks in different groups was increased. This

percentage was, on average, below 0.5% for size ratios from 3.0 to 5.0. More-

over, for these size ratios, all segregation errors observed were due to mechanical

failures that caused robots to stop moving. Demonstration trials with 30 robots

divided into three groups were also successful. To the best of our knowledge, this

is the first example of segregation in a swarm of physical robots with no explicit

communication and where such a high level of accuracy is achieved.
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Fully Decentralized Segregation

Based on the segregation algorithm implemented for the e-puck robots, an im-

proved algorithm has been developed to achieve the Brazil nut effect segregation.

In the new algorithm, the center of attraction to the swarm is not a dedicated

infrared light source. Instead, each of the robots is attracted by any nearby robots

that have their LEDs activated. Each of the robots has two rules to activate its

LEDs: (i) by probability, (ii) when it sees any robot with LEDs on. Once an

activation occurred, new activation is prohibited for a duration. The emergent be-

havior of such a set of rules make the robots move on average towards the centroid

of the swarm. Such bias in motion replaces the need for attraction to a global refer-

ence point (simulating gravitational pull) in the Brazil nut effect. Combined with

random motion and heterogeneous repulsion, annular structures will be formed.

Compared to the original segregation algorithm based on the Brazil nut effect,

the new algorithm does not contain a global center of attraction in a physical form.

Therefore, the robots are not required to have consistent perception of the center.

In computer simulations, the algorithm successfully organized 61 robots into

annular structures in 30 trials. A demonstration using 32 physical e-puck robots

into two groups had also been achieved.

Moreover, the propagation of the LED signals had been studied more thor-

oughly using the data collected in the trials. From the direct observation, the

robots near the center of the formation appeared to fire the LED signal more fre-

quently than those near the edge of the formation. The data plot confirmed this

observation; it revealed that a radial gradient exists in the firing rate of the LED

signals within the formation.

A further cellular-space-based simulation had been constructed to study the

signal propagation phenomenon observed in the segregation algorithm. Again, the

radial gradient of the firing rate emerged across the board. In this study, the cells

are static and only able to read information from four neighbor cells of the space,

this means the radial gradient which emerges from the firing rules is independent

of the segregation algorithm.
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7.2 General Conclusions and Future Work

As shown in this thesis, several tasks have been achieved using a swarm of robots

with no capability of explicit communication nor specific physical mechanisms such

as grippers or specifically designed bodies. The swarm systems have good scal-

ability; despite the fact that an optimal number of robots may exist, changes in

the number of robots used may not affect the task performance dramatically. The

robustness of the systems was also demonstrated through numerous physical ex-

periments; regardless of the task considered and despite many failures in individual

robots, the overall successful rate of the trials was always high.

Nevertheless, these systems have potential to be improved or expanded further.

For the cooperative transport strategy, the potential of transporting object of

concave shapes could be investigated. Furthermore, improved individual behavior

could be studied that allows multiple layers of robots to push objects that are

heavy but small in surface area [50]. The possibility of controlling the orientation

of the object during the transportation could also be studied. To expand the

system, the goal could also be one of a series of way points formed by a group

of robots (e.g. mimicking a trail of virtual pheromones [89][123]). Such a system

may accomplish a more complex cooperative transport task autonomously. To

fully expand the work to 3-D environments is also a valuable topic to study. For

example, the conceptual robot used in the simulation could be developed.

In principle, the Brazil-nut-effect-based segregation could form annular struc-

tures in 3-D environments as well [39]. Future work could be aimed to implement

a 3-D version of either of the two segregation controllers described in this thesis.

Furthermore, the radial gradient phenomenon observed in the signaling based seg-

regation controller can be utilized in collective localization algorithms. In current

studies (e.g. [86][104]), global gradients typically need to be constructed based on

a specified global center or ‘root’ while explicit communication among the robots

is required. Our mechanism of gradient construction may be used to remove such

assumptions despite relatively low hardware requirements.

Due to the simplicity of the controllers studied in this thesis, they are suitable

for implementation on a large number of robots with limited capabilities. In the

long term, swarms of such robots could be implemented at very small scales.

Potential applications for swarms of such minimalist robots could be the delivery
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of drugs through the vascular network of humans or forming functional structures

at the microscopic level.
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Appendix A

Appendices

A.1 Bullet Physics Model of e-puck
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rigid body 1: 

    collision shape 2:

        cylinder_z,

        extent = { 7.4, 7.4, 0.8 } cm,

        euler = { 0, 0, 0 } deg,

        offset = { 0, 0, 1.95 } cm.

 

 

rigid body 1: 

    collision shape 1:

        boxshape,

        extent = { 5.7, 4.3, 4.0 } cm,

        euler = { 0, 0, 0 } deg,

        offset = { 0, 0, 0 } cm. 

        

 

 

rigid body 2: 

    collision shape 1:

        cylinder_z,

        extent = { 4.2, 4.2, 0.25 } cm,

        euler = { -90, 0, 0 } deg,

        offset = { 0, 2.7, 0 } cm.

 

 

rigid body 3: 

    collision shape 1:

        cylinder_z,

        extent = { 4.2, 4.2, 0.25 } cm,

        euler = { 90, 0, 0 } deg,

        offset = { 0, -2.7, 0 } cm.

 

 

x

z

x

y

constraint 1: 

    hinge,

    rigid body 1:

        pivot = { 0, 2.7, 0 } cm,

        axis = { 0, 1, 0},

    rigid body 2:    

        pivot = { 0, 0, 0 } cm,    

        axis = { 0, 0, 1}.

 

constraint 2: 

    hinge,

    rigid body 1:

        pivot = { 0, 2.7, 0 } cm,

        axis = { 0, -1, 0},

    rigid body 3:    

        pivot = { 0, 0, 0 } cm,    

        axis = { 0, 0, 1}. 

 

 

Figure A.1: This is the Bullet Physics model of the e-puck.
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