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Abstract 

 

Derived from the Heterogeneous Multiscale Methods (HMM), a two-scale 

method is developed in this thesis for the analysis of Elastohydrodynamic Lubrication 

(EHL) and micro-EHL in tilted-pad bearings with three-dimensional topography. A 

relationship linking the pressure gradient to mass flow rate is derived and represented in 

the bearing domain through homogenisation of near-periodic simulations which 

describe the Fluid Structure Interaction (FSI) of topographical features. This 

relationship is approximated using Response Surface Methodology (RSM) which allows 

the scales to be coupled by a Moving Least Squares (MLS) metamodel at a reduced 

computational effort. 

For the parameters investigated the influence of compressibility and 

piezoviscosity was found to be more significant than that of non-Newtonian (shear-

thinning) behaviour on textured bearing performance. As the size of topography 

increased two-scale solutions demonstrated that at constant load the coefficient of 

friction increased and the minimum film thickness decreased over a range of pad 

lengths and tilt angles. Through the two-scale method the micro-EHL effect on film 

thickness was quantified and shown to be at least an order of magnitude or less than that 

of the total EHL effect. 

 Parameterisation of topography led to an optimisation procedure which aimed to 

reduce the coefficient of friction in textured bearings as to improve their performance 

under load. It was shown through this procedure that a transverse topography benefits 

the performance over a longitudinal one. The best performing topography was found to 

have a mix of both longitudinal and transverse components, and it was also shown that 

very different topographies can exhibit similar characteristics. Through the 

metamodelling process deviation from the smooth surface model was quantified by the 

constants associated with the MLS approximations. 

 

 

 

 



iv 

 

 

 

Table of Contents 

 

Chapter 1 – Introduction ................................................................................................... 1 

1.1 Thesis Layout .......................................................................................................... 3 

Chapter 2 – Review of Elastohydrodynamic Lubrication ................................................. 5 

2.1 Introduction ............................................................................................................. 5 

2.1.1 Definition of EHL ............................................................................................. 5 

2.2 EHL Modelling........................................................................................................ 6 

2.3 Surface Roughness Modelling................................................................................. 8 

2.4 Governing Equations ............................................................................................. 13 

2.4.1 The Reynolds Equation ................................................................................... 13 

2.4.2 Elastic Deformation and Film Thickness........................................................ 15 

2.4.3 Thermal Effects............................................................................................... 17 

2.4.4 Viscosity-Pressure-Temperature Relations..................................................... 18 

2.4.5 Non-Newtonian Behaviour ............................................................................. 18 

2.4.6 Compressibility ............................................................................................... 19 

2.5 Numerical Methods ............................................................................................... 20 

2.6 Summary................................................................................................................ 21 

Chapter 3 – Review of Response Surface Methodology................................................. 22 

3.1 Introduction ........................................................................................................... 22 

3.1.1 Definition of RSM .......................................................................................... 22 

3.2 Design of Experiments .......................................................................................... 22 

3.2.1 Full Factorial Design....................................................................................... 23 

3.2.2 Fractional Factorial Design ............................................................................. 24 

3.2.3 Central Composite Design .............................................................................. 24 

3.2.4 Box-Behnken Design ...................................................................................... 25 

3.2.5 Other Level-Based Designs ............................................................................ 26 



v 

 

 

 

3.2.6 Space-Filling Designs ..................................................................................... 27 

3.2.7 Latin Hypercube.............................................................................................. 27 

3.2.8 Optimum Latin Hypercube ............................................................................. 28 

3.2.9 Other Space-Filling Designs ........................................................................... 29 

3.3 Model Building...................................................................................................... 30 

3.3.1 Least Squares Method ..................................................................................... 31 

3.3.2 Moving Least Squares Method ....................................................................... 33 

3.3.3 Radial Basis Functions.................................................................................... 37 

3.3.4 Kriging ............................................................................................................ 38 

3.3.5 Support Vector Regression ............................................................................. 40 

3.3.6 Multivariate Adaptive Regression Splines...................................................... 40 

3.3.7 Artificial Neural Networks.............................................................................. 41 

3.4 Model Validation ................................................................................................... 42 

3.4.1 Error Assessment Criteria ............................................................................... 42 

3.4.2 k-fold Cross Validation ................................................................................... 44 

3.4.2 Leave-One-Out Cross Validation ................................................................... 44 

3.4.2 Nested Design of Experiments........................................................................ 45 

3.5 Summary................................................................................................................ 45 

Chapter 4 – Two-Scale Elastohydrodynamic Lubrication: Theoretical Formulation and 

Numerical Solution Procedure ........................................................................................ 47 

4.1 Introduction ........................................................................................................... 47 

4.2 Heterogeneous Multiscale Method ........................................................................ 47 

4.3 Large Scale Simulation.......................................................................................... 48 

4.3.1 Bearing Domain .............................................................................................. 48 

4.3.2 Fluid Flow Model ........................................................................................... 49 

4.3.3 Elastic Deformation ........................................................................................ 50 

4.3.4 Separation of the Deformation Matrix ............................................................ 50 



vi 

 

 

 

4.3.5 Pressure - Deformation Coupling ................................................................... 51 

4.3.6 Bearing Performance....................................................................................... 52 

4.4 Small Scale Simulations ........................................................................................ 52 

4.4.1 Fluid Domain .................................................................................................. 52 

4.4.2 Fluid Flow Model ........................................................................................... 54 

4.4.3 Fluid Properties ............................................................................................... 54 

4.4.4 Fluid Boundary Conditions ............................................................................. 55 

4.4.5 Spring Column Representation ....................................................................... 57 

4.4.6 Solid Domain .................................................................................................. 58 

4.4.7 Solid Deformation Model ............................................................................... 58 

4.4.8 Solid Boundary Conditions ............................................................................. 59 

4.4.9 Pressure – Deformation Coupling................................................................... 59 

4.5 Homogenisation..................................................................................................... 60 

4.6 Analogy with the Smooth Surface Model ............................................................. 62 

4.7 Response Surface Methodology (RSM) ................................................................ 62 

4.7.1 Moving Least Squares (MLS) Approximation ............................................... 63 

4.7.2 k-fold Cross Validation (CV).......................................................................... 64 

4.7.3 Leave-One-Out CV ......................................................................................... 65 

4.8 Numerical Method ................................................................................................. 66 

4.8.1 Geometry and Materials.................................................................................. 66 

4.8.2 Stiffness Properties ......................................................................................... 66 

4.8.3 Solution Procedure .......................................................................................... 69 

4.9 Optimisation of Topography ................................................................................. 74 

4.9.1 Theoretical Formulation.................................................................................. 74 

4.9.2 Solution Procedure .......................................................................................... 77 

4.10 Summary.............................................................................................................. 79 



vii 

 

 

 

Chapter 5 – Two-Scale Elastohydrodynamic Lubrication: Effect of Three-Dimensional 

Topography in Tilted-Pad Bearings ................................................................................ 80 

5.1 Introduction ........................................................................................................... 80 

5.2 Numerical Accuracy .............................................................................................. 80 

5.2.1 Grid Independence .......................................................................................... 80 

5.2.2 RSM Accuracy ................................................................................................ 82 

5.3 Small Scale Solutions ............................................................................................ 84 

5.4 Large Scale Solutions .......................................................................................... 109 

5.4.1 Effect of Fluid Flow Phenomena .................................................................. 109 

5.4.2 Effect of Topography Amplitude .................................................................. 113 

5.4.4 Micro-EHL Effect on Minimum Film Thickness ......................................... 125 

5.5 Summary.............................................................................................................. 127 

Chapter 6 – Two-Scale Elastohydrodynamic Lubrication: Metamodelling and 

Optimisation of Topography ......................................................................................... 129 

6.1 Introduction ......................................................................................................... 129 

6.2 Metamodel Building and Validation ................................................................... 129 

6.2.1 Metamodel Building ..................................................................................... 129 

6.2.2 Cross Validation............................................................................................ 130 

6.2.3 RSM Accuracy .............................................................................................. 133 

6.3 Optimisation of Topography ............................................................................... 136 

6.4 Optimal Design.................................................................................................... 139 

6.4.1 Bearing Performance..................................................................................... 139 

6.4.2 MLS Constants.............................................................................................. 143 

6.5 Summary.............................................................................................................. 149 

Chapter 7 – Conclusions and Future Developments ..................................................... 151 

7.1 Introduction ......................................................................................................... 151 

7.2 Conclusions ......................................................................................................... 151 



viii 

 

 

 

7.2.1 Numerical Modelling .................................................................................... 151 

7.2.2 Effect of Topography .................................................................................... 152 

7.2.3 Optimisation of Topography ......................................................................... 153 

7.3 Future Developments........................................................................................... 154 

7.3.1 Cross-Flow and Side-Leakage ...................................................................... 155 

7.3.2 Highly-Loaded Contacts ............................................................................... 156 

7.3.3 Cavitation ...................................................................................................... 156 

7.3.4 Representation of Topography...................................................................... 157 

7.3.5 Design of Experiments.................................................................................. 158 

7.3.6 Response Surface Methodology ................................................................... 158 

Bibliography .................................................................................................................. 159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

 

List of Figures 

 

Fig. 2.1 - Schematic of the Stribeck curve (Kondo, et al. [6]), where η is the lubricant 

viscosity, V is the speed of the surface motion, and P is the load applied to the surface . 5 

Fig. 2.2 – Pressure and film thickness distributions in an EHL line contact under sliding 

conditions (Almqvist and Larsson [7]).............................................................................. 7 

Fig. 2.3 – Illustration of the separation in scales between surface roughness and the 

bearing domain (Chu, et al. [8]) ........................................................................................ 8 

Fig. 2.4 – Effect of the Reynolds equations and the Navier-Stokes equations on the 

pressure reached in a textured runner bearing (Dobrica and Fillon [9]) ........................... 9 

Fig. 2.5 – The two-scale homogenisation based approach to EHL (de Boer, et al. [3]) . 11 

Fig. 2.6 – Effect of elastic deformation on the lubricant profile (Stachowiak and 

Batchelor [10]) ................................................................................................................ 16 

Fig 3.1 – Simple full factorial designs (Cavazzuti [11]) ................................................. 23 

Fig. 3.2 – Three one-third fractions of the 33 factorial design (Box and Draper [12])... 24 

Fig. 3.3 – Examples of central composite design (Cavazzuti [11]) ................................ 25 

Fig. 3.4 – Box-Behnken design for 3 design variables (Box and Draper [12]) .............. 26 

Fig. 3.5 – Correlation reduction of an LHC for k = 2, N = 10 (Cavazzuti [11]) .......... 27 

Fig. 3.6 – Morris-Mitchell and Audze-Eglais OLHCs for k = 2.................................... 29 

Fig. 3.7 – Visualisation of the effect of tuning a MLS metamodel (Alexa, et al. [13]) .. 34 

Fig 3.8 – LS and MLS data fitting of a numerical function in one-dimension ............... 36 

Fig. 4.1 – Large scale bearing geometry ......................................................................... 48 

Fig. 4.2 – Small scale fluid domain................................................................................. 53 

Fig. 4.3 – Deformed small scale fluid domain ................................................................ 56 

Fig. 4.4 – Small scale solid domain ................................................................................ 58 

Fig. 4.5 – Schematic of the ALE approach used in the small scale simulations ............. 59 

Fig. 4.6 – Graphical illustration of the derivation of the stiffness matrix  ....................... 67 



x 

 

 

 

Fig. 4.7 – Effect of the number of pad surface elements on the diagonal stiffness matrix 

term and the separation of scales in the two-scale method ............................................. 68 

Fig. 4.8 – Flow chart of the large scale pressure-deformation solver ............................. 71 

Fig. 4.9 – Flow chart of the shooting method for pressure solving................................. 72 

Fig. 4.10 – Flow chart of the bisector approach for fixed load simulations.................... 73 

Fig. 4.11 – Topography in μm at ψ = 0 (100% longitudinal) ........................................ 75 

Fig. 4.12 – Topography in μm at ψ = 0.25 (75% longitudinal, 25% transverse) .......... 75 

Fig. 4.13 – Topography in μm at ψ = 0.5 (50% longitudinal, 50% transverse) ............ 76 

Fig. 4.14 – Topography in μm at ψ = 0.75 (25% longitudinal, 75% transverse) .......... 76 

Fig. 4.15 – Topography in μm at ψ = 1 (100% transverse) ........................................... 77 

Fig. 4.16 – Flow chart of the bracketing optimisation method ....................................... 79 

Fig. 5.1 – Small scale grid independence........................................................................ 81 

Fig. 5.2 – Large scale grid independence ........................................................................ 82 

Fig. 5.3 – Pressure distributions with and without topography....................................... 83 

Fig. 5.4 – Film thickness distributions with and without topography............................. 83 

Fig. 5.5 – Contours of pressure at the FSI interface in Pa, 
dp

dx
 = -20 MPa/mm, p = 5 MPa, 

g = 10 μm ........................................................................................................................ 86 

Fig. 5.6 – Contours of pressure at the sliding wall in Pa, 
dp

dx
 = -20 MPa/mm, p = 5 MPa, 

g = 10 μm ........................................................................................................................ 86 

Fig. 5.7 – Contours of pressure in the film obtained from the smooth surface model in 

Pa, 
dp

dx
 = -20 MPa/mm, p = 5 MPa, g = 10 μm ................................................................ 87 

Fig. 5.8 – Contours of film thickness in m, 
dp

dx
 = -20 MPa/mm, p = 5 MPa, g = 10 μm  87 

Fig. 5.9 – Contours of small scale velocity components in m/s in the y-z plane, 
dp

dx
 = -20 

MPa/mm, p = 5 MPa, g = 10 μm .................................................................................... 89 

Fig. 5.10 – Contours of small scale velocity components in m/s in the x-z plane, 
dp

dx
 = -

20 MPa/mm, p = 5 MPa, g = 10 μm ............................................................................... 90 



xi 

 

 

 

Fig. 5.11 – Contours of pressure at the FSI interface in Pa, 
dp

dx
 = 10 MPa/mm, p = 5 

MPa, g = 10 μm ............................................................................................................... 92 

Fig. 5.12 – Contours of film thickness in m, 
dp

dx
 = 10 MPa/mm, p = 5 MPa, g = 10 μm 92 

Fig. 5.13 – Contours of small scale velocity components in m/s in the y-z plane, 
dp

dx
 = 10 

MPa/mm, p = 5 MPa, g = 10 μm .................................................................................... 93 

Fig. 5.14 – Contours of small scale velocity components in m/s in the x-z plane, 
dp

dx
 = 10 

MPa/mm, p = 5 MPa, g = 10 μm .................................................................................... 94 

Fig. 5.15 – Contours of pressure at the FSI interface in Pa, 
dp

dx
 = 0 MPa/mm, p = 0 MPa, 

g = 10 μm ........................................................................................................................ 96 

Fig. 5.16 – Contours of film thickness in m, 
dp

dx
 = 0 MPa/mm, p = 0 MPa, g = 10 μm  . 96 

Fig. 5.17 – Contours of small scale velocity components in m/s in the y-z plane, 
dp

dx
 = 0 

MPa/mm, p = 0 MPa, g = 10 μm .................................................................................... 97 

Fig. 5.18 – Contours of small scale velocity components in m/s in the x-z plane, 
dp

dx
 = 0 

MPa/mm, p = 0 MPa, g = 10 μm .................................................................................... 98 

Fig. 5.19 – Contours of pressure at the FSI interface in Pa, 
dp

dx
 = 10 MPa/mm, p = 10 

MPa, g = 10 μm ............................................................................................................... 99 

Fig. 5.20 – Contours of film thickness in m, 
dp

dx
 = 10 MPa/mm, p = 0 MPa, g = 10 μm 99 

Fig. 5.21 – Contours of small scale velocity components in m/s in the y-z plane, 
dp

dx
 = 10 

MPa/mm, p = 10 MPa, g = 10 μm ................................................................................ 100 

Fig. 5.22 – Contours of small scale velocity components in m/s in the x-z plane, 
dp

dx
 = 10 

MPa/mm, p = 10 MPa, g = 10 μm ................................................................................ 101 

Fig. 5.23 – Contours of pressure at the FSI interface in Pa, 
dp

dx
 = 0 MPa/mm, p = 5 MPa, 

g = 5 μm ........................................................................................................................ 103 

Fig. 5.24 – Contours of film thickness in m, 
dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 5 μm  . 103 



xii 

 

 

 

Fig. 5.25 – Contours of small scale velocity components in m/s in the y-z plane, 
dp

dx
 = 0 

MPa/mm, p = 5 MPa, g = 5 μm .................................................................................... 104 

Fig. 5.26 – Contours of small scale velocity components in m/s in the x-z plane, 
dp

dx
 = 0 

MPa/mm, p = 5 MPa, g = 30 μm .................................................................................. 105 

Fig. 5.27 – Contours of pressure at the FSI interface in Pa, 
dp

dx
 = 0 MPa/mm, p = 5 MPa, 

g = 30 μm ...................................................................................................................... 106 

Fig. 5.28 – Contours of film thickness in m, 
dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 30 μm 106 

Fig. 5.29 – Contours of small scale velocity components in m/s in the y-z plane, 
dp

dx
 = 0 

MPa/mm, p = 5 MPa, g = 30 μm .................................................................................. 107 

Fig. 5.30 – Contours of small scale velocity components in m/s in the x-z plane, 
dp

dx
 = 0 

MPa/mm, p = 5 MPa, g = 30 μm .................................................................................. 108 

Fig. 5.31 – Effect of fluid flow phenomena on bearing performance: Case (i) 

incompressible, isoviscous, α = 5 µm, W = 100 kN; Case (ii) – compressible, 

piezoviscous; Case (iii) – non-Newtonian (shear-thinning) behaviour......................... 111 

Fig. 5.32 – Effect of fluid flow phenomena on bearing performance: Case (i) 

incompressible, isoviscous, α = 5 µm, W = 75 kN; Case (ii) – compressible, 

piezoviscous; Case (iii) – non-Newtonian (shear-thinning) behaviour......................... 112 

Fig. 5.33 – Contour plots showing the effect of topography amplitude on bearing 

performance, W = 100 kN  ............................................................................................ 114 

Fig. 5.34 – Plot of the effect of topography amplitude on bearing performance, W = 100 

kN  ................................................................................................................................. 115 

Fig. 5.35 – Contour plots showing the effect of topography amplitude on bearing 

performance, W = 75 kN  .............................................................................................. 116 

Fig. 5.36 – Plot of the effect of topography amplitude on bearing performance, W = 75 

kN  ................................................................................................................................. 117 

Fig. 5.37 – Pressure distributions from the two-scale method, W = 100 kN  ............... 119 

Fig. 5.38 – Close-up of maximum pressures from the two-scale method, W = 100 kN

 ....................................................................................................................................... 119 



xiii 

 

 

 

Fig. 5.39 – Pressure gradient distributions from the two-scale method, W = 100 kN .. 120 

Fig. 5.40 – Load per unit area distributions from the two-scale method, W = 100 kN 120 

Fig. 5.41 – Film thickness distributions from the two-scale method, W = 100 kN ...... 121 

Fig. 5.42 – Shear stress distributions from the two-scale method, W = 100 kN........... 121 

Fig. 5.43 – Pressure distributions from the two-scale method, W = 75 kN  ................. 122 

Fig. 5.44 – Close-up of maximum pressures from the two-scale method, W = 75 kN. 123 

Fig. 5.45 – Pressure gradient distributions from the two-scale method, W = 75 kN .... 123 

Fig. 5.46 – Load per unit area distributions from the two-scale method, W = 75 kN .. 124 

Fig. 5.47 – Film thickness distributions from the two-scale method, W = 75 kN ........ 124 

Fig. 5.48 – Shear stress distributions from the two-scale method, W = 75 kN............. 125 

Fig. 5.49 – Micro-EHL effect on minimum film thickness .......................................... 127 

Fig. 6.1 – Frequency histogram of the minimum normalised distance between DoE 

points ............................................................................................................................. 130 

Fig. 6.2 – Cross validation response for the MLS pressure gradient – mass flow rate 

metamodel building ....................................................................................................... 131 

Fig. 6.3 – Cross validation response for the MLS load per unit area – mass flow rate 

metamodel building ....................................................................................................... 131 

Fig. 6.4 – Cross validation response for the MLS shear stress – mass flow rate 

metamodel building ....................................................................................................... 132 

Fig. 6.5 – Pressure distributions for ψ = 0.25,0.5,and 0.75 ....................................... 133 

Fig. 6.6 – Film thickness distributions for ψ = 0.25, 0.5, and 0.75 ............................. 133 

Fig. 6.7 – Response and optimisation of the coefficient of friction with the 

longitudinal/transverse ratio .......................................................................................... 136 

Fig. 6.8 – Response of the minimum film thickness with the longitudinal/transverse 

ratio................................................................................................................................ 137 

Fig. 6.9 – Response of the mass flow rate with the longitudinal/transverse ratio......... 137 

Fig. 6.10 – Contour plot of topography in μm at ψ = 0.6579 (local minimum) ......... 138 

Fig. 6.11 – Contour plot of topography in μm at ψ = 0.8421 (global minimum) ....... 139 



xiv 

 

 

 

Fig. 6.12 – Pressure distributions for ψ = 0.6579, 0.8421 and the smooth surface 

model ............................................................................................................................. 140 

Fig. 6.13 – Pressure gradient distributions for ψ = 0.6579, 0.8421 and the smooth 

surface model ................................................................................................................ 140 

Fig. 6.14 – Load per unit area distributions for ψ = 0.6579, 0.8421 and the smooth 

surface model ................................................................................................................ 141 

Fig. 6.15 – Film thickness distributions for ψ = 0.6579, 0.8421 and the smooth surface 

model ............................................................................................................................. 141 

Fig. 6.16 – Shear stress distributions for ψ = 0.6579, 0.8421 and the smooth surface 

model ............................................................................................................................. 142 

Fig. 6.17 – MLS constant C1 distributions for ψ = 0.6579, and 0.8421 ..................... 144 

Fig. 6.18 – MLS constant C2 distributions for ψ = 0.6579, and 0.8421..................... 144 

Fig. 6.19 – MLS constant C3 distributions for ψ = 0.6579, and 0.8421..................... 145 

Fig. 6.20 – MLS constant C4 distributions for ψ = 0.6579, and 0.8421..................... 145 

Fig. 6.21 – MLS constant C5 distributions for ψ = 0.6579, and 0.8421..................... 146 

Fig. 6.22 – MLS constant C6 distributions for ψ = 0.6579, and 0.8421..................... 146 

Fig. 6.23 – MLS constant C7 distributions for ψ = 0.6579, and 0.8421..................... 147 

Fig. 6.24 – MLS constant C8 distributions for ψ = 0.6579, and 0.8421..................... 147 

 

 

 

 

 

 

 

 

 



xv 

 

 

 

List of Tables 

 

Table 4.1 - Parameters values and ranges ....................................................................... 66 

Table 4.2 – Ranges applied to the DoE used for the small scale simulations ................. 70 

Table 5.1 – Percentage error in mass flow rate inclusive of topography and flow 

phenomena ...................................................................................................................... 84 

Table 5.2 – Percentage difference in bearing performance from the two-scale method 

with the smooth surface model Case (i) – incompressible, isoviscous, α = 5 µm, W =

 100 kN; Case (ii) – compressible, piezoviscous; Case (iii) – non-Newtonian (shear-

thinning) behaviour ....................................................................................................... 110 

Table 5.3 – Mass flow rates from the two-scale method, W = 100 kN ........................ 122 

Table 5.4 – Mass flow rates from the two-scale method, W = 75 kN .......................... 125 

Table 6.1 – Percentage error in mass flow rate for ψ = 0.25 ....................................... 135 

Table 6.2 – Percentage error in mass flow rate for ψ = 0.5 ......................................... 135 

Table 6.3 – Percentage error in mass flow rate for ψ = 0.75 ....................................... 135 

Table 6.4 – Mass flow rates for ψ = 0.6579,0.8421 and the smooth surface model . 142 

 

 

 

 

 

 

 

 

 

 

 



xvi 

 

 

 

Abbreviations 

 

ALE Arbitrary Lagrangian-Eulerian 

ANN Artificial Neural Networks 

BBD Box-Behnken Design 

BVP Boundary Value Problem 

CCD Central Composite Design 

CCC Centre Composite Circumscribed 

CCF Centre Composite Faced 

CCI Centre Composite Inscribed 

CCS Centre Composite Scaled 

CFD Computational Fluid Dynamics 

CV Cross Validation 

DoE Design of Experiments 

EHL Elastohydrodynamic Lubrication 

EPSRC Engineering and Physical Sciences Research Council 

FE Finite Element 

FFT Fast Fourier Transform 

FSI Fluid Structure Interaction 

GA Genetic Algorithm 

HMM Heterogeneous Multiscale Methods 

IVP Initial Value Problem 

LHC Latin Hypercube 

LOOCV Leave One Out Cross Validation 

LS Least Squares 

MARS Multivariate Adaptive Regression Splines 



xvii 

 

 

 

MLS Moving Least Squares 

OLHC Optimum Latin Hypercube 

PTFE Polytetrafluoroethylene 

RAAE Relative Average Absolute Error 

RAM Random Access Memory 

RBF Radial Basis Function 

RMAE Relative Maximum Absolute Error 

RMSE Root Mean Squared Error 

RSM Response Surface Methodology 

SVR Support Vector Regression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xviii 

 

 

 

Nomenclature 

 

A, ∆A Area, area deformation (m2) 

C1 − C10 MLS constants 

D0, D1 Dowson-Higginson compressibility 

E, E′ Young’s modulus, equivalent modulus (Pa) 

𝐅 Vector of forces per unit volume (N/m3) 

g Film gap (µm) 

h Undeformed film thickness (µm) 

𝐊, 𝐊G Stiffness matrix, global stiffness matrix (µm/MPa) 

k1 Local stiffness (µm/MPa) 

k Number of folds 

L Cell length (µm) 

Lp  Pad length (mm) 

p, ∆p Pressure, pressure jump (MPa) 

pr Viscous reference pressure (GPa) 

p∗ Load-per-unit-area (N/mm2) 

q Mass flow rate (kg/s) 

r Micro-EHL effect on minimum film thickness (%) 

s Small scale film thickness (µm) 

∆s Deformation of small scale film thickness (µm) 

smin Small scale minimum film thickness (µm) 

t, t′ Pad thickness, equivalent thickness (mm) 

U Wall velocity (m/s) 

𝐮 Fluid velocity (m/s) 

V Volume (m3) 
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W Load capacity (kN) 

x, y, z Cartesian coordinates (m) 

Z Piezo-viscous index 

α Topography amplitude (µm) 

γ̇ Shear rate (1/s) 

δ Deformation (µm) 

δt Topography function (µm) 

ξ Pressure error at outlet (Pa) 

η, η0  Viscosity, ambient viscosity (Pa.s) 

ηp  Piezoviscosity (Pa.s) 

ηr  Roelands reference viscosity (µPa.s) 

μ Coefficient of friction 

ν Poisson’s ratio 

ρ,ρ0 Density, ambient density (kg/m3) 

σ Stress (N/m2) 

θ Under relaxation factor 

τ, τ0 Shear stress, Eyring stress (N/mm2) 

φ Tilt angle (˚) 

ψ Longitudinal/transverse ratio 

 𝑠 Small scale variable 
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Chapter 1 – Introduction 

  

 Elastohydrodynamic lubrication (EHL) is a field of study concerned with 

tribology and describes the formation of a lubricant film between two non-conformal 

machine elements which are under load and in relative motion to each other. EHL exists 

in mechanical systems with a high elastic modulus such as roller bearings, cam-tappets, 

and gear teeth. Systems with a lower elastic modulus also experience this kind of 

lubrication and are often referred to as soft-EHL. Examples of soft-EHL include 

polymer-layered pad bearings, rubber seals, and car tyres on a wet road [14]. EHL has 

been the focus of many engineers since the publication of the Jost Report on tribology 

in 1966 [15] which quantified the financial importance of understanding the friction, 

lubrication and wear of mechanical systems and subsequently to improve engineering 

design and efficiency. 

 In an EHL contact the pressures can reach upward of 4 GPa, in soft-EHL 

pressures of 10 MPa can be readily achieved [16]. Under EHL conditions the properties 

of lubricating oils tend to be non-Newtonian. Both viscosity and density become heavily 

dependent on pressure and shear-thinning occurs if the sliding between surfaces is 

sufficient and the lubricant is a generalised Newtonian fluid. Viscous heating of the 

lubricant can also impact on the viscosity. 

 Conventionally the flow of lubricant in an EHL contact is modelled by the 

Reynolds equation [16], which is a version of the Navier-Stokes equations integrated 

across the film thickness. Elastic deformation in a highly-loaded EHL contact is 

calculated using Hertzian contact theory, or in soft-EHL other elastic contact theories 

can be used [17]. This approach has been applied with great success, comparing well 

with experiments under realistic operating conditions [18]. However the assumptions on 

which the Reynolds equation is based apply only to smooth surfaces and do not include 

the effects of surface roughness, which plays a major role in determining the fluid film 

lubrication [16]. Under these assumptions pressure is assumed constant across the film 

and the gradients of fluid properties across the film are assumed to be negligible or are 

greatly simplified, such that they are never truly resolved. 

The application of Computational Fluid Dynamics (CFD) to EHL problems has 

facilitated the solution of the Navier-Stokes equations for the entire fluid system, 
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allowing the solution for all gradients across the fluid film. CFD also allows for more 

sophisticated modelling of fluid flow phenomena than can be achieved through the 

Reynolds approach such as cavitation, rheology, and thermal transport. Dependencies of 

pressure, temperature, and shear rate on any other variable (viscosity, density, etc.) can 

be implemented and the corresponding effects studied. This makes the CFD approach 

favourable for researchers and a number of studies have been conducted which employ 

these methods to model an entire EHL contact, e.g. Hartinger [19], and Almqvist [20], 

[7]. 

The resolution required by the CFD approach to model the influence of surface 

roughness requires a fine mesh, leading to a large computational expense. Although the 

CFD approach may be capable of modelling the entire EHL system, it should be used in 

conjunction with other methods which either simplify surface roughness or allow the 

scales associated with topography and the bearing domain to be modelled independently 

and later coupled together. 

 Surface roughness plays a major role in influencing the formation of lubricant 

films in an EHL contact, often the size of the topography is of the order of magnitude of 

the film thickness leading to a breakdown of the assumptions of the Reynolds approach 

[16]. Much of the past and current research into EHL has been focused on analysing the 

role of surface roughness in determining the performance of bearings. Through the 

analysis of both experiments and simulations, it is not clear whether certain 

topographical features can lead to a reduction in friction coefficient or minimum film 

thickness for a given load capacity [21], [22]. Quantifying the effect of surface 

roughness is a complex issue because parameterising and modelling real surfaces is a 

challenge which authors have tackled either by deriving analytical, stochastic, or 

homogenisation based approaches to modelling surface roughness. 

 However various techniques have been developed by a number of researchers to 

analyse surface roughness in EHL. Some of these methods use CFD to model the scale 

of topography independently and then apply the results to the bearing domain by a 

modified Reynolds equation (usually of the form of Patir and Cheng [23]), which is 

inclusive of flow factors that account for perturbations introduced by the surface 

roughness. For example see de Kraker, et al. [24], [25] and Sahlin, et al. [26], [27]. 

More recently these homogenisation type approaches, which this group of methods are 

referred to, have become more applicable to EHL as the processing power of 
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computational facilities improves and modelling the scale of surface roughness 

develops as a more realistic aim. 

 One such homogenisation approach is to employ the Heterogeneous Multiscale 

Methods (HMM) [28] to the EHL problem. The HMM are a general set of modelling 

techniques that can be used wherever there is a significant separation in scales, such as 

the difference in scale between surface roughness and the bearing domain. The HMM 

have been employed to a range of thin film problems including direct gravure roll 

coating [29] and EHL [30]. In application to EHL the HMM replaces the Reynolds 

equation with a numerical function that does not have an analytical form, this function 

describes the pressure gradient – mass flow rate relationship inclusive of topography 

and is populated by homogenised near-periodic simulations undertaken at the small 

scale. Because the function is not analytical Response Surface Methodology (RSM) is 

used to approximate the discrete data over the range of variables, allowing non-linearity 

introduced by the topography at the small scale to be captured and modelled effectively 

in a large scale simulation. 

 

 The aim of this research is to: 

 Develop a two-scale method based on the HMM for modelling the effects of 

three-dimensional topography in an EHL contact. 

 Include compressibility, piezoviscosity, and non-Newtonian (shear-thinning) 

behaviour in the simulations. 

 Use response surface methods to couple the scales modelled. 

 Compare results with and without topography to the Reynolds approach. 

 Perform optimisation of topography in order to minimise the coefficient of 

friction generated by textured bearings under load. 

 

1.1 Thesis Layout 

 Chapter 2 forms a literature review of EHL which outlines the Reynolds 

approach, the application of CFD, and the current research into modelling surface 

roughness. In chapter 3 an overview of RSM is provided, indicating the current methods 

used for model building and validation. Chapter 4 details the two-scale EHL method 

based on the HMM for including the effects of three-dimensional topography in 
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textured bearings. In chapter 5 results for the two-scale EHL method outlined in chapter 

4 are presented using a tilted-pad bearing as an example. The influence of fluid 

properties and the size of topography are provided and compared against results of the 

Reynolds approach. Chapter 6 provides results of the two-scale method concerned with 

performing optimisation of topography. Results in chapter 6 are concentrated more with 

the aspects of RSM employed rather than the tribological implications explored in 

chapter 5. Chapter 7 summarises and concludes the results observed from the two-scale 

EHL method and goes on to make recommendations for future research. 
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Chapter 2 – Review of Elastohydrodynamic Lubrication 

 

2.1 Introduction 

 This chapter introduces the relevant literature and current research into the 

modelling of elastohydrodynamically lubricated contacts. A description of the 

formulation of the problem is given along with details of the governing equations and 

fluid properties. Also included is a discussion of the techniques used for modelling 

fluids and solids in elastohydrodynamic lubrication (EHL).  

 

2.1.1 Definition of EHL 

 The Stribeck curve (see fig. 2.1) is used to categorise the tribological and 

frictional properties between two surfaces, the curve stems from many carefully 

reproduced and wide-ranging experiments conducted on journal bearings [31]. Three 

main categories are identified: (1) – boundary lubrication where the surfaces asperities 

are in contact and rubbing or scuffing exists; (2) – mixed lubrication where some 

surface asperities contact and a lubricant film forms between; (3) – hydrodynamic 

lubrication where a full film of lubricant is formed between the two surfaces [32]. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 - Schematic of the Stribeck curve (Kondo, et al. [6]), where η is the lubricant 

viscosity, V is the speed of the surface motion, and P is the load applied to the surface 
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EHL exists between mixed and hydrodynamic lubrication corresponding to 

small film thicknesses, high pressures and a minimum coefficient of friction for the 

contact [33]. EHL is the regime of lubrication which occurs in contacts where elastic 

deformation of the bounding surfaces has a significant influence on the thickness of the 

fluid film. The elastic deformation is generated as a result of high pressures in contact, 

which generally also leads to a substantial increase in lubricant viscosity. Both these 

effects positively influence the film thickness [16]. Examples of where EHL contacts 

can be found include tilted-pad bearings, rolling bearings, cam-tappet systems, gear 

teeth, flexible seals, and synovial joints [14]. Often in these types of contacts the size of 

surface topography is comparable with the film thickness, causing a breakdown in 

smooth surface approximations and assumptions [34]. 

 

2.2 EHL Modelling 

 The origins of the analysis of EHL can be traced back to 1886 when Osborne 

Reynolds published his seminal article deriving the partial differential equation 

describing the pressure distribution and load-carrying capacity of lubricating films in 

journal bearings [35]. Both Martin [36] and Gümbel [37] applied the Reynolds equation 

to the lubrication of gear teeth in 1916 and found film thicknesses that were too small to 

explain the lubrication observed. Meldahl [38] in 1941 included elastic deformation due 

to contact pressures but was still unable to observe the correct film thicknesses. In 1945, 

Ertel [39] (published under the name of Grubin in 1949 [40]) used a semi-analytical 

method to solve Reynolds equation and added a pressure-viscosity effect on the film 

thickness such that he was finally able to predict the correct order of magnitude of the 

full film. Since then this regime of lubrication has been known as elastohydrodynamic 

lubrication.  

 The first numerical calculations for line contact problems were provided by 

Petrusevich [41] and Dowson and Higginson [42], [43]. By 1976/1977 Hamrock and 

Dowson [44], [45], [46] had derived and solved the EHL for circular oil lubrication. The 

curve fit to their numerical solutions is still the most widely used predictor for film 

thickness in EHL. Lubrecht, et al. [47], [48] introduced multilevel techniques which 

improved the efficiency of numerical calculations, this led to a significant increase in 

the accuracy of the solution. Venner [49] introduced performing transient calculations 

by further improving the multilevel technique. The multilevel method for solving EHL 
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problems is detailed in full by Venner and Lubrecht [50]. In 1994 Nijenbanning, et al. 

[51] produced a new film thickness formula based on a curve fit to the multilevel 

solutions, after this date there was no need to further improve the accuracy of smooth 

surface EHL.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 – Pressure and film thickness distributions in an EHL line contact under sliding 

conditions (Almqvist and Larsson [7]) 

 

 Tzeng and Saibel [34], [52] showed that surface roughness impacted the EHL 

performance of mechanical bearings and in 1978 Patir and Cheng [23] developed an 

average flow model which allowed the scales of surface topography and the bearing 

domain to be treated separately. This method demonstrated that a transverse roughness 

would benefit the performance of the bearing by reducing the coefficient of friction over 

a longitudinal one, a result which was confirmed by many experiments and calculations 

over the next few years (Jeng [53], Akamatsu, et al. [54], Greenwood and Johnson [55], 

Greenwood and Morales-Espejel [56], Venner and ten Napel [57]). The full EHL 

equations had also been solved at the scales of roughness and the bearing domain (Zhu 

and Hu [58]) but it was not until the concept of amplitude reduction was introduced by 

Venner and Lubrecht [59] that real surfaces could be investigated. Morales-Espejel [60] 

and Masen [61] used this methodology by employing Fast Fourier Transformations 
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(FFTs) of real surfaces and applying the results to the EHL model. Although these 

articles allude to the influence of topography on bearing performance there is still no 

definitive general methodology which can describe the influence of surface topography 

on EHL contact performance. 

 

 

 

 

 

 

 

 

 

Fig. 2.3 – Illustration of the separation in scales between surface roughness and the 

bearing domain (Chu, et al. [8]) 

 

 Much of the current and recent research is concerned with modelling surface 

roughness in EHL contacts, a more detailed discussion of this research topic relevant to 

the research presented in this thesis is given in section 2.3. For further details on the 

origins of EHL see Dowson [14], Dowson and Ehret [62], and Spikes [63]. And for 

further details on other current research topics in EHL such as greased or starved 

lubrication see Lugt and Morales-Espejel [64]. 

 

2.3 Surface Roughness Modelling 

The Reynolds equation (Reynolds [35]) is well established as an accurate means 

of describing fluid flow in the elastohydrodynamic lubrication of smooth surface 

geometries (Dowson and Higginson [42]). More recently the focus of lubrication 

engineers has been directed toward analysis of surface topography and the influence that 

this has on bearing load capacity and friction coefficients (Tzeng and Saibel [34]). The 

potential of topographical features to improve bearing performance has increased the 
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importance of surface roughness and texturing within bearing design (Etsion, et al. 

[21]). A number of authors have obtained solutions to the Reynolds equation which 

fully resolve lubrication flow at both the scale of topography and that of the bearing 

contact region (Venner and Lubrecht [59], Morales-Espejel, et al. [60], Hooke, et al. 

[65], Krupka and Hartl [66]). As topographical features become more important flow 

analyses based on solutions of the Stokes or Navier-Stokes equations have been shown 

to be more accurate than those based on the conventional Reynolds equation (Szeri 

[22]). 

 Studies which compare solutions to Reynolds, Stokes and Navier-Stokes 

equations for textured surfaces have been conducted by a number of researchers 

(Almqvist, et al. [67], [68], van Odyck and Venner [69], Tichy and Bou Said [70], 

Arghir, et al. [71], Sahlin, et al. [72], Dobrica and Fillon [9], Cupillard, at al. [73]). 

Significant differences in load capacity between Reynolds and Stokes solutions were 

found in the presence of topographical features. The inclusion of inertial effects via the 

generalised Reynolds equation (Wilson and Duffy [74]) or Navier-Stokes equations 

illustrated the influence of inertia on load capacity and the consequent benefit of using 

Computational Fluid Dynamics (CFD) to model the fluid film flow within a textured 

bearing. CFD has also been used on smooth geometries to enable the modelling of a 

range of phenomena which occur in EHL such as thermal transport, rheology, cavitation 

(Hartinger, et al. [19]), wall slip (Aurelian, et al. [75]) and structural models (Bruyere, et 

al. [76]).  

 

 

 

 

 

 

 

 

Fig. 2.4 – Effect of the Reynolds equations and the Navier-Stokes equations on the 

pressure reached in a textured runner bearing (Dobrica and Fillon [9]) 
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 Both single-scale deterministic (where the surface topographical features are 

fully described and resolved over the global domain) and two-scale homogenisation 

(where the flow about surface topographical features are solved independently and the 

results are applied to the global domain) models have been used by researchers to 

analyse bearings with surface texturing. Although CFD has the potential to 

comprehensively describe lubrication phenomena most research in this field to date 

remains focused on the use of the Reynolds equation, whether that is by single-scale 

deterministic (Mourier, et al. [77], Zhu, et al. [78], Gao, et al. [79], Felix-Quinonez, et 

al. [80]) or two-scale homogenisation (Tichy and Bou Said [70], Jai and Bou Said [81], 

Sahlin, et al. [82], [26], Martin [83]) models. Few single-scale deterministic models 

have been developed which employ the Navier-Stokes equations (Tichy and Bou Said 

[70], Almqvist [20], [84], [7], Li and Chen [85]) because of the large separation in 

scales between each local feature and the entire domain. The grid resolution required to 

model such a difference is beyond most computational facilities, making an analytical 

or two-scale homogenisation based approach more realistic. 

 Stochastic approaches to modelling roughness were introduced by Cheng and 

Dyson [86], their method derived an analytical approach for a simple roughness to be 

incorporated into EHL simulations. Greenwood and Johnson [55] noticed that a 

sinusoidal roughness produces pressure ripples in the presence of sliding and that 

roughness is largely flattened, from this observation they were able to develop 

analytical relationships to describe pressure and deformed roughness. Venner [49] 

observed that at the centre of a wavy EHL contact, the viscosity is so high that the 

Poiseuille term in the Reynolds equation can be disregarded, reducing the flow to a 

linear transport equation. Greenwood and Morales-Espejel [56] used this important 

result to develop an analytical method for calculating the pressures of any sinusoidal 

roughness. Using the amplitude reduction results of Venner and Lubrecht [59], Morales-

Espejel [60] and Masen [61] exploited the similarities in transverse and longitudinal 

amplitude reduction curves to expand this analytical approach to any 3D roughness by 

expressing it in Fourier terms. Hooke, et al. [65], [87] applied perturbation methods and 

developed a fully analytical model for sinusoidal waviness (which is extended to a real 

roughness) that does not depend on the amplitude reduction curves of Venner and 

Lubrecht [59]. 

Patir and Cheng [23] introduced the average flow model where the Reynolds 

equation is modified with flow factors that allow the scale of topography and that of the 
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domain to be treated separately. These flow factors were calculated from simulations 

describing the local surface texture with periodic boundary conditions which are 

subsequently coupled into a global-scale simulation. Using this average flow model 

Sahlin, et al. [82] developed a method of homogenisation for hydrodynamic bearings 

with periodic roughness, the flow factors were calculated from homogenised results of 

the compressible Reynolds equation. This concept was then extended by Sahlin, et al. 

[26] to a mixed lubrication regime with prescribed sinusoidal roughness. Still using the 

Reynolds equation to describe the small scale fluid flow, a contact mechanics model 

was used to determine both elastic and plastic asperity deformation. Solid-solid contact 

was implemented to derive the bearing surface and as such Fluid Structure Interaction 

(FSI) was not considered at either scale.  

 Studies have been conducted where the Navier-Stokes equations are used to 

describe the small scale problem. de Kraker, et al. [24], [25] applied the incompressible 

Navier-Stokes equations to describe small scale fluid flow and an averaged Reynolds 

equation (similar to that of Patir and Cheng [23]) with elastic deformation were 

implemented at the large scale. Flow factors were introduced to account for the small 

scale simulations but micro-EHL effects were not considered. A similar model 

developed for discrete cell gravure roll coating by Hewson, et al. [29]. A relationship 

was derived linking homogenised results of Stokes flow simulations at the small scale to 

a pressure gradient – mass flow rate relationship at the large scale. The linearity of 

Stokes flow allowed for simple incorporation of the small scale simulations into the 

large scale simulation.  

 

 

 

 

 

 

 

 

Fig. 2.5 – The two-scale homogenisation based approach to EHL (de Boer, et al. [3]) 
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Based on the Heterogeneous Multiscale Method (HMM) developed by E and 

Engquist [88], and E, et al. [89] a framework for the analysis of EHL and micro-EHL in 

two-dimensions was outlined by Gao and Hewson [30]. Both local and global EHL 

effects were described. The incompressible Navier-Stokes equations were used to define 

fluid flow at the small scale. Results of near-periodic small scale simulations were 

homogenised and applied to the global solution via a pressure gradient – mass flow rate 

relationship. Periodicity was vital to the coupling mechanism, allowing small scale 

simulations to be treated as a point at the large scale. The resulting relationship binding 

these two scales was shown to be non-linear due to deformation of the bearing surface 

and small scale flow effects. Interpolation was used at the large scale to inspect between 

previously obtained small scale results. These results were represented via a full 

factorial Design of Experiments (DoE). Deformation at both scales was treated through 

the separation of the stiffness matrix into local and non-local influences. Results of 

smooth surface simulations at the small scale were presented and compared well with 

the smooth surface model when applied to a tilted-pad bearing problem. Results 

including topography demonstrated the influence of micro-EHL and the robustness of 

this method in capturing these effects. 

 In de Boer, et al. [3] the multiscale framework outlined by Gao and Hewson [30] 

was extended to three-dimensional small scale simulations and more representative 

lubricant behaviour was considered. The two-scale method derived was valid where the 

bearing has no cross-flow or side-leakage implemented at the large scale. However, 

additional comments were made as to how the general solution could be achieved. The 

steady-state, isothermal, laminar and compressible Navier-Stokes equations governed 

fluid flow at the small scale, where piezoviscosity and non-Newtonian (shear-thinning) 

behaviour were also modelled. A method for the homogenisation of small scale 

simulations in three-dimensions was introduced. This data was similarly coupled to the 

large scale via a pressure gradient – mass flow rate relationship. The small scale data 

was represented by a Moving Least Squares (MLS) approximation, a metamodel 

describing this relationship was built and validated using k-fold Cross Validation (CV) 

in a method similar to that used by the author in Loweth, et al. [90] and also by 

Narayanan, et al. [91]. This method employed an Optimum Latin Hypercube (OLHC) to 

populate the DoE used for small scale simulations, in order to span the entire design 

space as effectively as possible with the fewest number of designs (Bates, et al. [92], 

Toropov, et al. [93]). Numerical simulations of this multiscale approach were presented 
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for a range of topography amplitudes and compared to the smooth surface model over a 

range of operating conditions and degrees of freedom. 

 The work of de Boer, et al. [3] was further expanded in de Boer, et al. [5] to 

perform optimisation of surface topography in order to minimise the coefficient of 

friction in textured bearings. It was shown using the two-scale method that a transverse 

topography produces lower coefficients of friction than a longitudinal one and that 

through the use of metamodelling a range of different surface topographies can be 

investigated.  

 

2.4 Governing Equations 

2.4.1 The Reynolds Equation  

 In general, fluid flow is described by the Navier-Stokes and continuity 

equations. Listed below are the assumptions which lead to the derivation of the 

Reynolds equation from the Navier-Stokes equations and form the basis of the smooth 

surface model [16]. 

 

1. No body forces are present. 

2. Pressure is considered constant across the lubricant film. 

3. No slip of the fluid at the bounding walls. 

4. The flow of lubricant is laminar. 

5. Both inertial and surface tension forces are negligible in comparison to viscous 

forces. 

6. Shear stress and velocity gradients are only significant across the film thickness. 

7. Viscosity of the lubricant is Newtonian. 

8. Viscosity is constant over the film thickness. 

9. The boundary surfaces are parallel or at very small angles to each other. 

 

 With these assumptions the Reynolds equation in two-dimensions is expressed 

by Eq. (2.1) [35]. Where x is the coordinate direction concurrent with the direction of 

flow, y is the coordinate direction perpendicular to x and the film thickness h, ρ is the 

lubricant density, η is the lubricant viscosity, p the pressure in the film, and t is time. 
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The bounding surface velocities u1,u2 , v1, and v2 correspond to the lower and upper 

surfaces of the geometry in the x and y directions respectively. 

 

∂

∂x
[
ρh3

η

∂p

∂x
] +

∂

∂y
[
ρh3

η

∂p

∂y
] = 

6{
∂

∂x
[ρh(u1 + u2)] +

∂

∂y
[ρh(v1 + v2)]+ 2

∂

∂t
[ρh]} 

(2.1) 

  

By considering only steady flow (negating time derivatives) in one-dimension 

and using the identity u = (u1 + u2)/2 to set the entrainment velocity u, Eq. (2.2) is 

derived. 

 

d

dx
[
ρh3

η

dp

dx
] = 12

d

dx
[ρhu] (2.2) 

 

 The Reynolds equation has been adapted by authors to incorporate non-

Newtonian behaviour including the dependency of viscosity on pressure, temperature, 

and shear rate and of density on pressure and temperature (Contry, et al. [94], Johnson 

and Tevaarwerk [95], Roelands [96], Dowson and Higginson [97], Hewson, et al. [98]). 

Dowson [99] introduced a generalised Reynolds equation which allowed fluid 

properties to vary over the film thickness and he also solved an energy equation for 

thermal transport in the lubricant. Spikes [100] derived and solved an extended 

Reynolds equation which allowed for effects of slip at the boundary surfaces to be 

included. 

 Boundary conditions applied to the Reynolds equation dictate that ambient 

pressure is met at both inlet and outlet. However toward the outlet of the bearing 

cavitation occurs as pressure drops below the vapour pressure of the lubricant, this is 

commonly modelled using the Swift-Steiber boundary condition or Reynolds exit 

condition (Eq. (2.3)) which sets the pressure to zero (ambient pressure) at the location 

where cavitation begins [33]. 
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dp

dx
= p = 0 (2.3) 

 

2.4.2 Elastic Deformation and Film Thickness 

 The Hertzian theory of elastic contact is commonly used to calculate 

deformation in highly-loaded EHL simulations, this method was originally formulated 

by Hertz [101] in 1881 for the contact of two bodies. Hertz considered two smooth, 

ellipsoidal contacting solids and by making the following assumptions was able to 

derive Eq. (2.4) for the elastic deformation in an elastic contact δ[18]. 

 

1. The contacting bodies are homogenous and the stresses experienced are inside 

the yield stresses of the materials. 

2. Tangential forces are not induced between the solids. 

3. The dimensions of the contacting region are negligible in comparison to the radii 

of the contact. 

4. The solids are at rest and equilibrium. 

5. The solids are semi-infinite (plane-strain dominates). 

 

δ =
1

Er

∬
p dx ′dy′

√(x − x′)2 + (y − y′)2

 

S

 (2.4) 

 

 In Eq. (2.4) p represents the pressure acting on the elemental area of dx ′dy′ and 

Er is the reduced elastic modulus for the contacting solids. The reduced elastic modulus 

allows the system to be modelled such that one surface is rigid and the other includes 

the total deformation of the system. Where E1,2 and ν1,2 are the Young’s moduli and 

Poisson’s ratios of the contacting bodies the reduced elastic modulus is expressed by 

Eq. (2.5). 

 

1

Er

=
1

π
(
1 − ν1

2

E1

+
1 − ν2

2

E2

) (2.5) 
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 For more information on the Hertz theory of elastic contact the reader is referred 

to Johnson [17]. 

 In EHL the geometry considered is commonly a converging-diverging bearing, 

including deformation the film thickness equation is expressed by Eq. (2.6). In general 

the film thickness equation is the sum of undeformed film thickness and elastic 

deformation of the bounding surfaces. 

 

h = h0 +
x2

2Rx

+
y2

2Ry

+ δ (2.6) 

 

 Where Rx,y are the contact radii in the x and y coordinate direction respectively 

and h0 is the central undeformed film thickness. The solution for elastic deformation 

requires a constant of integration which is included through h0 such that the 

undeformed film thickness can be negative but with deformation gives a positive overall 

film thickness. h0 is subsequently adjusted to solve for the load carrying capacity 

(integral of pressure over x and y) of the bearing since load will monotonically increase 

with decreasing h0. 

 

 

 

 

 

 

 

 

Fig. 2.6 – Effect of elastic deformation on the lubricant profile (Stachowiak and 

Batchelor [10]) 
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 In soft-EHL the contact mechanics considered are similar to Hertzian contact 

where the influence on deformation due to pressure diminishes with distance from the 

point of application. Using structural mechanics stiffness properties for the system can 

be derived, leading to a matrix operation which relates deformation to pressure, see Eq. 

(2.7). The stiffness matrix K describes the influence of pressure at any given point of 

application to the magnitude of deformation at a specific location, such that as they are 

superimposed the entire deformation profile due to a pressure distribution over the 

domain is described [102]. Film thickness becomes the sum of the undeformed 

geometry and deformation, the minimum undeformed film thickness can be 

subsequently adjusted to solve for a load carrying capacity. 

 

δ = 𝐊 × p (2.7) 

 

2.4.3 Thermal Effects 

 Thermal effects in EHL can be an important factor to consider, Dowson [99] 

was the first to solve an energy transport equation for the fluid flow for an EHL contact. 

Eq. (2.8) is derived by employing the following assumptions [16]. 

 

1. Velocity and temperature gradients are only significant across the thickness of 

the film and are negligible in the direction of flow. 

2. Velocity across the film is negligible. 

3. Thermal conductivity is constant across the film. 

 

βuT
∂p

∂x
+ η(

∂u

∂z
)

2

= ρuCp

∂T

∂x
− k

∂2T

∂z2
 (2.8) 

 

 Here z is the coordinate direction over the film, T is the lubricant temperature, β 

the coefficient of thermal expansion, Cp the lubricant specific heat capacity at constant 

pressure, and k the thermal conductivity. From left to right the terms of Eq. (2.8) 

represent compressive heating, viscous heating, convection and conduction. Jaeger 
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[103] and later Carslaw and Jaeger [104] provided the most commonly used boundary 

conditions for assessing the temperature at the solid surfaces. 

 

2.4.4 Viscosity-Pressure-Temperature Relations 

 The viscosity of lubricants varies significantly with pressure and temperature. 

Barus [105] proposed Eq. (2.9) for the pressure dependency of viscosity. 

 

ηBarus = η0 exp(αp) (2.9) 

 

Where η0 is the viscosity at ambient pressure and α the pressure viscosity 

coefficient. The Barus relation over predicts viscosity at pressures approaching 1 GPa, a 

more representative relation was formulated by Roelands [96] which can be written in 

the form of Eq. (2.10) [106]. 

 

ηRoelands = ηr exp(ln (
η0

ηr

) (1 +
p

pr

)
Z

) (2.10) 

 

 In Eq. (2.10) ηr is the Roelands reference viscosity, pr is the Roelands reference 

pressure, and Z the piezoviscous index. Houpert [107] extended this to include 

temperature dependency on the lubricant viscosity in EHL. Bair [108] demonstrated that 

the Roelands relation under predicts viscosity at high pressure and instead suggested an 

equation based on free volume theory and glass transition temperatures [109]. 

 

2.4.5 Non-Newtonian Behaviour 

 Johnson and Tevaarwerk [95] demonstrated that lubricants in 

elastohydrodynamic contacts do not exhibit Newtonian behaviour and that the shear 

stress in over predicted by the Newtonian model. The Ree-Eyring model (Eq. (2.11)) 

was instead proposed and includes a non-linear stress-strain relationship for shear-
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thinning behaviour, with γ̇ the shear rate, τ the shear stress, τ0 the Eyring stress, τ̇ the 

rate of shear stress, and ηEyring  the non-Newtonian viscosity. 

  

γ̇ =
τ̇

G
+

τ0

ηEyring

sinh (
τ

τ0

) (2.11) 

 

  Contry [94] used these findings to develop a Reynolds equation that replaced 

the viscosity with an effective viscosity which was calculated by averaging over the 

film thickness. In Eq. (2.11) the shear rate is written as the sum of elastic shear strain 

rate and viscous shear strain rate, however Bair, et al. [110] showed that time-

dependency in the viscous response in an EHL contact is unlikely and the term is 

therefore dropped. The non-Newtonian (shear-thinning) viscosity for an EHL contact is 

then expressed by Eq. (2.12). 

 

ηEyring =
τ0

γ̇
sinh−1 (

η0γ̇

τ0

) (2.12) 

 

 To compound the non-Newtonian behaviour with the pressure dependency of 

lubricant viscosity, the viscosity can be written as a function of pressure and shear-rate 

by Eq. (2.13) [19]. 

 

η(p, γ̇) =
τ0

γ̇
sinh−1 (

ηRoelands γ̇

τ0

) (2.13) 

 

2.4.6 Compressibility 

 Compressibility in lubricants is considered barotropic whereby the temperature 

effect on density is neglected in favour of the strong pressure dependency. A commonly 

used equation used to describe the variation of density with pressure was formulated by 

Dowson and Higginson [43] (Eq. (2.14)), where ρ0 is the density at ambient pressure. 
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ρ = ρ0

0.59 × 109 + 1.34p

0.59 × 109 + p
 (2.14) 

 

2.5 Numerical Methods 

 The first numerical solutions to the elastohydrodynamic problem were presented 

by Hamrock and Dowson [44], [45], [46] using an inverse method based on a Gauss-

Seidel iteration scheme. The results of these simulations were used to create their 

renowned minimum and central film thickness equations which are still widely used as 

bearing design tools to date. A number of authors developed this method to extend the 

range of operating conditions and load carrying capacity (Chittenden, et al. [111], [112], 

Evans and Snidle [113], [114]) and Okamura [115] used the Newton-Raphson method 

to improve the computing speed and rate of convergence.  

 Lubrecht [47], [48], [116] introduced multigrid techniques which accelerated the 

computational process. Venner [49], [117], [118], [119] developed a distributive 

relaxation scheme and distributive line-relaxation scheme allowing the EHL problem to 

be solved for high loads. Venner also adapted the multigrid EHL solvers to include the 

multi-integration method developed by Brandt and Lubrecht [120]. Evans and Hughes 

[121] and Holmes, et al. [122], [123], [124] used the differential deflection method to 

perform calculation of the elastic deformation based on a half-space approach, this led 

to a significant increase in efficiency and stability allowing the solution of heavy loads, 

transient problems, 3D roughness, and mixed lubrication problems.  

 More recently Habchi, et al. [125], [126] replaced the half-space approach for 

calculating elastic deformation in the film thickness equation with a full-body elasticity 

and derived the entire EHL formulation into a single system that is solved by an 

iterative loop. This is known as the full system approach and has indicated efficiency in 

dealing with high loads, thermal transport, and complex rheology (Habchi, et al. [127], 

[128], [129]). Recently work is ongoing to include the Navier-Stokes equations using 

this method, the current architecture only facilitates for the application of Reynolds 

equation. 

CFD methods have been used by a number of authors to solve the EHL problem 

using the Navier-Stokes equations (Hartinger, et al. [19], Almqvist, et al. [20]). So far 

only relatively low load cases have been investigated and the large separation in scales 
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between topography and the bearing domain limits these methods to smooth surfaces. 

Homogenisation approaches such as Sahlin, et al. [82], [26] and de Kraker, et al. [24], 

[25] have been used in favour of the deterministic CFD approach. Gao and Hewson [30] 

and de Boer, et al. [3], [5] used CFD via a homogenisation approach to include the 

effect of roughness in the global bearing domain, for more details on the modelling of 

surface roughness in EHL see section 2.3. 

 

2.6 Summary 

 In this chapter a history of EHL was presented along with a literature review of 

the past and present research into the effect of surface roughness in EHL contacts. An 

outline of the governing equations of the smooth surface model was given highlighting 

the Reynolds equation, Hertzian contact mechanics, thermal transport and lubricant 

rheology. A description of the literature relating to the numerical methods used in 

modelling EHL was presented. 
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Chapter 3 – Review of Response Surface Methodology 

 

3.1 Introduction 

 This chapter explores Response Surface Methodology (RSM) by introducing the 

fundamental aspects and research into these methods. RSM is used to represent a set of 

data through an approximation, in the context of this work it is used to describe a 

relationship which couples the two scales investigated in an EHL simulation. A 

discussion of the various approximation techniques is given and subsequently how these 

models are validated. The importance of a Design of Experiments (DoE) for effective 

metamodel building is highlighted and the methods used to formulate this are expanded.  

 

3.1.1 Definition of RSM 

 RSM refers to the process of model building and evaluation which leads to an 

approximation that predicts an unknown response using data obtained from previous 

experiments. This is also known as metamodelling or surrogate modelling (Box and 

Draper [130]), but will be referred to as RSM throughout the remainder of this work. 

RSM is a well-established means of reducing the effort required to predict responses 

over many variables and wide ranges, as well as smoothing numerical noise. 

 

3.2 Design of Experiments 

 Design of Experiments (DoE) is the name given to the choice of techniques used 

for selecting experiments within a certain design space. The choice of DoE is 

fundamental to the accuracy of the response surface over the range of the input 

variables, where the aim is to efficiently fill the entire design space. Efficient space-

filling is necessary to reduce the expense of performing each experiment (Keane and 

Nair [131]). The experiments refer to a series of tests for which input variables are 

changed according to a given rule over a known range in order to investigate changes in 

the output response. 

 In order to create a DoE it is necessary to select design variables, these are also 

referred to as factors or parameters. The range of variability for each design variable is 

determined and this defines the design space, or region of interest, for the response. The 
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term levels refers to the number of different values a parameter can hold according its 

discretisation. The objective function and set of experiments are known as the response 

variable and sample space respectively (Cavazzuti [11]). 

 

3.2.1 Full Factorial Design 

 The most common and intuitive strategy for creating a DoE is the full factorial 

design, where the samples are given by every possible combination of the factor values 

on each level. Letting k denote the number of factors and L the number of levels per 

factor the total sample size N for the general full factorial case is given by Eq. (3.1).  

 

N = ∏ Li

i=k

i=1

 (3.1) 

 

 Full factorial designs make efficient use of the sample data and enable the main 

and interaction effects of the factors to be identified. However as the number of design 

variables increases the sample size grows exponentially making them less applicable for 

large problems and other methods have been proposed (Box, et al. [132]).  

An nk full factorial design has n levels for each of the k design variables. Fig 3.1 

illustrates the full factorial designs of 22, 23, and 33. When implementing each of these 

DoEs the number of experiments matches the sum of polynomial terms in a two-

dimensional quadratic, three-dimensional quadratic, and three-dimensional cubic 

function respectively. This demonstrates the use of full-factorial designs for performing 

polynomial regression. 

 

 

 

 

 

Fig 3.1 – Simple full factorial designs (Cavazzuti [11]) 
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3.2.2 Fractional Factorial Design 

 The idea of a fractional factorial design is to only run a subset of the full 

factorial experiments such that the main and interaction effects of the response can still 

be identified. The size of the fractional design can be one-half, one-quarter, etc. of the 

full factorial one. The fractional samples must be selected particularly such that they are 

both balanced and orthogonal, in this sense balanced means that the sample space is 

created such that the factors have the same number of samples in each level. A wide list 

of the most common fractional designs can be found in the literature (see Montgomery 

[133]), it is of note that some fractional factorial designs are equivalent to Latin Square 

designs described later.  

An example of fractional factorial design is given in fig. 3.2 below.  

 

 

 

 

 

Fig. 3.2 – Three one-third fractions of the 33 factorial design (Box and Draper [12]) 

 

3.2.3 Central Composite Design 

 A Central Composite Design (CCD) is a 2k full factorial design upon which 

central and star points are added. Star points refer to sample points in which all 

parameters but one are set to the mean level, and the remaining parameter is given in 

terms of the distance from the central point. The distance from the central point to the 

star points can be chosen in different ways (Koch, et al. [134]): 

 Centre Composite Circumscribed (CCC), all the samples are placed on a 

hypersphere centred at the central point. 

 Centre Composite Faced (CCF), the value of the parameter remains on the same 

levels as the 2k full factorial design. 
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 Central Composite Inscribed (CCI), same as CCC but the specific limits of each 

level cannot be violated, a CCC design scaled so that all points have the same 

distance from the central point. 

 Centre Composite Scaled (CCS), applied different distances depending on 

whether the point is inside the design space or hypersphere. 

With k parameters, 2k star points and one central point are added to the 2k full 

factorial design such that the total sample size is 2k + 2k + 1.  

Fig. 3.3 illustrates some graphical examples of central composite designs of 

experiments. 

 

 

 

 

 

 

Fig. 3.3 – Examples of central composite design (Cavazzuti [11]) 

 

3.2.4 Box-Behnken Design 

 Box and Behnken [135] developed incomplete three-level factorial designs 

which are built by combining two-level factorial designs with incomplete block designs 

in a particular manner. Box-Behnken Designs (BBDs) were introduced in order to limit 

the sample size as the number of parameters increases (Massart [136]). The sample size 

is limited to a value which permits the evaluation of second order least squares 

polynomial coefficients. In this method a block of samples corresponding to a two-level 

factorial design is repeated over different sets of the parameters, parameters not 

included in the two-level design remain at the mean level throughout the block. The 

type and size of factorial design, and the number of blocks evaluated depend on the 

number of parameters investigated and are chosen so that the design meets the criterion 

of rotatability. An experimental design has rotatbility if the variance in the predicted 

response at any point is a function of the distance from the central point alone [135]. 
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 No general rule exists for defining BBD and so the reader is refered to Box and 

Behnken [135] for tables listing the various possibilities. BBD are similar to the CCC 

and CCI designs as all samples have the same distance from the central point. And as 

such the vertices of the design space lie far from the Box-Benken samples and any 

response surface built from this type of design may be inaccurate near these regions. 

The same property also exists for CCI designs. An example of a BBD for 3 design 

variables is given in fig. 3.4 below. 

 

 

 

 

 

 

 

Fig. 3.4 – Box-Behnken design for 3 design variables (Box and Draper [12]) 

 

3.2.5 Other Level-Based Designs 

 Plackett and Burman [137] created a factorial based design in which the sample 

size must be multiples of 4 up to 36 and the number of factors k can be up to N − 1 (the 

number of samples minus one). Placket-Burman designs are mainly useful for screening 

the interaction effects of the response over the design space. 

 Taguchi design [138] is a method developed for quality control which seeks the 

best values possible for controllable factors whilst reducing the sensitivity to 

uncontrollable factors. Taguchi design is a mix of fractional factorial and orthogonal 

designs, control variables are distinguished from noise variables the former of which 

can be varied. The two sets of variables form outer (control) and inner (noise) 

orthogonal designs. These are combined such that for each sample of the inner array the 

full set of experiments of the outer array is performed. This forms the crossed array 

which allows the interaction between control and noise variables to be deduced.  
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3.2.6 Space-Filling Designs 

 So far the designs discussed have their derivations from statistics and rely upon 

level-based discretisation to uniformly fill the design space. Space-filling designs do not 

need discretised parameters and the sample size is chosen by the user rather than given 

by the number of parameters in the problem. Space-filling designs are favoured when 

creating response surfaces since the likelihood of a region within the design space being 

far from a sample is significantly reduced (McKay, et al. [139]). However, space-filling 

designs do not allow the main and interaction effects between parameters to be as easily 

investigated as with level-based factorial designs (Sacks, et al. [140]). 

 The most inherent space-filling design is the random one by which the design 

space is filled with uniformly distributed random samples. The random DoE is however 

flawed since there is no guarantee that large clusters of samples will be close together, 

leaving gaps in other regions and overall failing to fill the entire design space. 

 

3.2.7 Latin Hypercube 

 A Latin Hypercube (LHC) DoE divides the design space into an orthogonal grid 

with N elements per k parameters. Within the multi-dimensional grid N sub-volumes are 

created such that along each row and column only one is chosen. It is imperative that 

the sub-volumes are chosen such that there are no spurious relations between 

dimensions and that the samples are spread over the design space, if this condition of 

correlation reduction is not met then the LHC would leave most of the design space 

unexplored (Olsson, et al [141]). An example of correlation reduction of an LHC for 

k = 2, N = 10 is given in fig. 3.5. 

 

 

 

 

 

 

Fig. 3.5 – Correlation reduction of an LHC for k = 2, N = 10 (Cavazzuti [11]) 
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3.2.8 Optimum Latin Hypercube 

 Optimal Latin Hypercube (OLHC) design attempts to fill the design space with 

the fewest number of designs possible this is very useful if the experiment evaluations 

are expensive. Two methods which have been derived to produce an optimised LHC are 

the Morris-Mitchell and Audze-Eglais optimality criterions.  

 Morris and Mitchell [142] used a series of randomly formed LHC to create an 

OLHC based on a criterion that maximises the minimum distances between the points 

rp,q , mathematically this is written using Eq. (3.2). 

 

max
 

(min 
 

(rp,q:1 ≤ p ≠ q ≤ N)) (3.2) 

 

 Alternatively, the Audze-Eglais optimality criterion distributes the points rp,q  by 

minimising the reciprocal of the squared distances between all points. The physical 

analogy for this is that by letting the points be considered unit masses then they will 

exert repulsive forces upon each other, meaning that the system of points has potential 

energy. The system of points will reach equilibrium when the potential energy of the 

repulsive forces is at a minimum. The repulsive forces are inversely proportional to the 

squared distance between points, leading to Eq. (3.3). 

 

min
 

(∑ ∑
1

rp,q
2

q=N

q=p+1

p=N

p=1

) (3.3) 

 

 Bates, et al. [92] and Toropov, et al. [93] achieved OLHC design using the 

Audze-Eglais optimality criterion by implementing a permutation genetic algorithm. 

The genetic algorithm solves for the best design by generational design, with the best 

designs inherited and the worst neglected. Mutation of random designs ensures that a 

global optimum is achieved.  

 Fig. 3.6 shows DoE’s created for various sample sizes using the two optimality 

criterions with k = 2. 
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Fig. 3.6 – Morris-Mitchell and Audze-Eglais OLHCs for k = 2 

 

3.2.9 Other Space-Filling Designs 

 Hammersley sampling is a statistical means of producing a space-filling DoE 

using low-discrepancy sequences (Simpson, et al. [143]). A LHC allows uniformity 

along one direction and has random placement up to the kth dimension, whereas 

Hammersley sampling allows uniformity for all N points in a k-dimesnional hypercube 
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(Kalagnanam and Diwekar [144]). Low-discrepancy implies a uniform distribution of 

points in space. 

 Low-discrepancy sequences such as the van der Corput sequence [145] which 

appear in Hammersley sampling have also been utilised by other authors to produce 

space-filling DoEs. These methods are based on pseudo-random number generators, 

whereby checks are performed on the quality of the random number generation. 

Examples include the Halton sequence [146], Faure sequence [147], [148], and the 

Sobol sequence [149]. 

  Uniform designs were introduced by Fang [150] and later refined by Fang and 

Wang [151], these provide uniformly spaced scatter designs of points and are a 

derivative of fractional factorial designs with the added property of uniformity. They are 

similar to LHC for one-dimensional DoEs but vary significantly for higher-dimensions, 

a review of uniform design theory can be found in Fang, et al. [152]. 

 

3.3 Model Building 

 The aim of the RSM is to approximate a response variable with respect to the 

corresponding design variables over the entire design space which it encompasses. RSM 

is directly related to the DoE such that the experiments selected will determine the 

response generated. The use of response surfaces is advantageous because it is 

inexpensive to compute in comparison to running the corresponding experiments. And 

in general RSM techniques assist with the smoothing of numerical noise.  

 Mathematically any response variable y can be written as a function of the 

design variables 𝐱 such that y = f(𝐱). The RSM approximation ŷ can be interpolated to 

any position in the design space 𝐱 through the response surface equivalent function f̃ 

using the DoE data. The response surface may also require tuning parameters θ to be 

selected to reduce the error in the approximation, leading to Eq. (3.4) as the general 

equation of an RSM predictor. 

 

y = f(𝐱) ⇒ ŷ = f̃(𝐱, 𝐱, y, θ) (3.4) 
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The concept of RSM was introduced by Box and Wilson [153] who were the 

first to suggest using a first-order polynomial model for approximating response 

variables. Since this date many RSM techniques have been developed and the most 

prominent are outlined in this section.  

 

3.3.1 Least Squares Method 

 The Least Squares (LS) method is a solution process for solving an over-

determined system of equations and can be interpreted as a method for data fitting. 

Gauss developed the method in 1795 but the work was not published until a few years 

later (Gauss [154]).  

 LS involves fitting a polynomial to a data set obtained from a DoE such that the 

coefficients are tuned to the data set. For example a linear regression would take the 

form of Eq. (3.5).  

 

f̃i = β0 + ∑ xi,jβj

j=k

j=1

  ,   i = 1, … , N (3.5) 

 

 Where β are the polynomial coefficients which the system of equation must be 

solved for, k is the number of parameters, and N the number of DoE points. The LS 

method solves for the best fit of the data set by minimising the sum of squared residuals 

S at the DoE points. The residual errors are the difference between the experimental 

responses and the value predicted by the LS regression at the same positions in the 

design space, leading to Eq. (3.6) 

 

S = ∑(fi − β0 − ∑ xi,jβj

j=k

j=1

)

2
i=N

i=1

 (3.6) 

 

 In order to minimise S, Eq. (3.6) is differentiated with respect to each of its 

components and set equal to zero giving Eqs. (3.7) and (3.8). 
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∂S

∂β0

= −2 ∑(fi − β0 − ∑ xi,jβj

j=k

j=1

)

i=N

i=1

= 0 (3.7) 

∂S

∂βl

= −2∑ (fi − β0 − ∑xi,jβj

j=k

j=1

)

i=N

i=1

xi,l = 0    ,    l = 1, … , k (3.8) 

 

 Letting 𝐗 be the matrix of DoE points, 𝐲 the vector of response variables and 𝛃 

the vector of polynomial coefficients, Eqs. (3.7) and (3.8) can be rewritten to form Eq. 

(3.9). 

 

∂S

∂𝛃
= −2(𝐗T × 𝐲) + 2(𝐗T × 𝐗) × 𝛃 = 0 (3.9) 

 

 Which solving for 𝛃 yields Eq. (3.10). 

 

𝛃 = (𝐗T × 𝐗)−𝟏 × (𝐗T × 𝐲) (3.10) 

 

The approximation function then reads as Eq. (3.11) for the vector of response 

surface approximations 𝐲̂ at the interpolation locations 𝐗̂. 

 

𝐲̂ = 𝐗̂ × 𝛃 (3.11) 

 

 The LS method forms a closed solution and is advantageous because of the fast 

computing speed, the matrix inversion operation only has to be performed once and the 

coefficients are then known throughout the design space. However the models tend not 

to be very accurate and are best for interpreting the main trends in the response variable, 

weighted versions of the LS method have been derived to tune the response to closer fit 

the DoE data. 
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3.3.2 Moving Least Squares Method 

 Moving Least Squares (MLS) is a form of weighted LS where the weights are 

functions of the Euclidian distance between the sample points and where the response 

surface is assessed. The weight associated with each sample location decays as the 

evaluation location moves away from it, according to a decay type response. The 

method was developed by a number of authors including McLain [155], Gordon and 

Wixom [156], Barnhill [157], and Lancaster [158] using the weighted metric of Shepard 

[159]. However the formulation presented by Lancaster and Salkauskas [160] is 

commonly noted as the first full derivation of the method now referred to MLS. 

 The first step of the MLS method is to define an estimate ŷ at an arbitrary 

location in the design space based on the values at a series of sample locations fi. 

 

ŷ = ∑ wi(ri)fi

i=N

i=1

 (3.12) 

 

 In Eq. (3.12) the weights wi  are functions of the Euclidian norm ri = ‖x − xi‖ 

between the sample locations xi and the assessment location x.  

It is possible to control the closeness of fit of the MLS approximation by altering 

a parameter in the weight decay function. The closeness of fit parameter θ (see Eqs. 

(3.13) – (3.17)) enables the control of the rate of decay which the weight function 

produces, or in another sense the radius beyond which a sample point has no influence 

on the resulting approximation. This feature allows MLS approximations to handle 

numerical noise in the response variable and produce a smooth function over the design 

space. A popular choice for the weight function is Gaussian decay as described by Eq. 

(3.13). 

 

wi = exp(−θri
2) (3.13) 

 

 The closeness of fit can vary between zero (LS regression) and any value until 

over-fitting occurs (where the response fits so closely to the sample data that no 
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interpolation takes place between the sample locations (Myers, et al. [161])). Other 

weight decay functions include cubic, fourth, fifth, and seventh order polynomials as 

described by Eqs. (3.14), (3.15), (3.16), and (3.17) respectively. 

 

wi = 1 − 3ρi
2 + 2ρi

3 (3.14) 

wi = 1 − 6ρi
2 + 8ρi

3 − 3ρi
4 (3.15) 

wi = 1 − 10ρi
3 + 15ρi

4 − 6ρi
5 (3.16) 

wi = 1 − 35ρi
4 + 84ρi

5 − 70ρi
6 + 20ρi

7 (3.17) 

 

 Where ρi = ri/Rmax, Rmax is the normalised radius of the sphere of influence 

and ρi is limited to an upper bound of unity. Rmax inversely relates to the closeness of 

fit parameter θ where a lower value indicates a closer fit. The effect of tuning the 

closeness of fit parameter to the data set can be seen in fig. 3.7 where the image on the 

right-hand-side is a more accurate representation of the surface. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 – Visualisation of the effect of tuning a MLS metamodel (Alexa, et al. [13]) 

un-tuned fit                  tuned fit 
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The MLS method is conducted by selecting a basis function, for example using 

the linear regression fit of Eq. (3.5) the sum of squared residuals becomes Eq. (3.18) 

which is inclusive of the weights associated with each sample location. 

 

S = ∑ wi (fi − β0 − ∑ xi,jβj

j=k

j=1

)

2
i=N

i=1

 (3.18) 

 

 Differentiating Eq. (3.18) with respect to each of the design variables and setting 

equal to zero solves for the minimum squared error between the approximation and 

sample values, this yields Eqs. (3.19) and (3.20). 

 

∂S

∂β0

= −2 ∑ wi (fi − β0 − ∑ xi,jβj

j=k

j=1

)

i=N

i=1

= 0 (3.19) 

∂S

∂βl

= −2 ∑wi (fi − β0 − ∑ xi,jβj

j=k

j=1

)

i=N

i=1

xi,l = 0    ,    l = 1,… , k (3.20) 

 

 Using the same rationale as applied to the derivation of Eq. (3.9), Eqs. (3.19) 

and (3.20) can be written as Eq. (3.21), where 𝐖 is the matrix of weights between the 

assessment and sample locations. 

 

∂S

∂𝛃
= −2(𝐗T × (𝐖× 𝐲)) + 2(𝐗T × (𝐖 × 𝐗)) × 𝛃 = 0 (3.21) 

 

 Solving for the location specific coefficients 𝛃 gives Eq. (3.22). 

 

𝛃 = (𝐗T × (𝐖 × 𝐗))
−𝟏

(𝐗T × (𝐖× 𝐲)) (3.22) 
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 Once the weights are computed from Eq. (3.22) the operation of (3.11) can be 

used to assess the MLS approximation 𝐲̂ at the interpolation points 𝐗̂. The difference 

between the LS operation and this is that the weights used to determine 𝛃 change with 

the interpolation points and so no analytic form of the approximation exists. Fig. 3.8 

illustrates the difference in interpolation between the LS and MLS methods for a one-

dimensional numerical function. 

 

 

 

 

 

 

 

 

 

Fig 3.8 – LS and MLS data fitting of a numerical function in one-dimension 

 

 Currently there is much research involving the MLS method for various 

applications including investigating the dependency of variables in a given response 

(Coelho [162]), developing meshless methods (Salehi and Dehghan [163], [164]), using 

derivative information to analyse the sensitivity of the response (Mirzaei, et al. [165]), 

and for solving optimisation problems (Loweth, et al. [90], Song and Lee [166], [167], 

Choi, et al. [168]). 

 de Boer, et al. [3] used MLS response surfaces to couple two scales of a 

simulation where the information provided at one scale was modelled independently at 

the other. Later in de Boer, et al. [5] this method was extended to perform optimisation 

of the features at one scale based on the information provided at the other. The use of 

MLS ensured accuracy in capturing the non-linear response generated and how the 

response function varied from the trend without the separation of scales associated with 

the problem.  
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3.3.3 Radial Basis Functions 

 Radial Basis Functions (RBFs) were introduced by Hardy [169] in 1971, the 

RBF uses a linear combination of radially symmetric functions based on the Euclidian 

distance between data points to build an approximation. An RBF takes the form of Eq. 

(3.23), where ψ are the basis functions and w the corresponding weights. 

 

f̂ = ∑ wiψ

i=N

i=1

(ri) (3.23) 

 

 The solution to the RBF function is obtained by estimating the wi , this is 

achieved by letting the basis function centres coincide with the actual data points 

forming a square matrix from which the inverse can be found. The beauty of the RBF 

function is that Eq. (3.23) is linear with respect to the function weights but the estimator 

f̂ can express highly non-linear responses.  

The choice of basis function will have an important effect on the accuracy of the 

RBF, common choices of basis functions include linear, cubic, thin plate spline, 

Gaussian, multiquadratic, and inverse multiquadratic which are expressed by Eqs. 

(3.24) – (3.29) respectively. Where σ2 is the variance in the observed values. 

 

ψ(ri) = ri (3.24) 

ψ(ri) = ri
3 (3.25) 

ψ(ri) = ri
2 ln(ri) (3.26) 

ψ(ri) = exp(−ri
2/2σ2) (3.27) 

ψ(ri) = (ri
2 + σ2)

1
2 (3.28) 

ψ(ri) = (ri
2 + σ2)−

1
2 (3.29) 
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RBFs have been shown to produce good approximations for both smooth and 

noisy data (Forrester, et al. [170]) and also an array of deterministic and stochastic 

response functions (Powell [171]). Gaussian and inverse multiquadratic basis functions 

are favoured because they tend to produce a symmetric positive matrix (Vapnik [172]), 

ensuring this and a well-spread distribution of function centres will lead to accurate 

computation of the weights (Michelli [173]).  

 

3.3.4 Kriging 

 Krige [174] developed a method for approximating response variables in 

application to mathematical statistics on ore mining, this method was later referred to as 

Kriging (Matheron [175]) and first applied to computer experiments by Sacks, et al 

[140]. Kriging is similar to an RBF where the basis function takes the form of Eq. 

(3.30). 

 

ψ(i) = exp(− ∑θj |xj

(i)
− xj |

pj

j=k

j=1

) (3.30) 

 

 Eq. (3.30) is similar to the Gaussian type basis function (Eq. (3.27)) where 

instead of varying with 1/σ2 the Kriging basis has a vector 𝛉 where the elements θj can 

vary allowing the width of the function to vary from variable to variable. The Gaussian 

basis vector has an exponent exclusively of 2 whereas in the Kriging basis the 

exponents 𝐩 are allowed to vary for each dimension of 𝐱. Typically θj ∈ [10−3, 102] 

and pj ∈ [1,2].  

 In order to build the Kriging model we must view the observed responses as if 

they are obtained from a stochastic process by denoting a set of random vectors 𝐘. The 

random field has a mean of 𝟏μ and the random variables are correlated with each other 

using the basis function expression (Eq. (3.31)). 
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cor[Y(𝐱(i)),Y(𝐱(l))] = exp(− ∑ θj |xj

(i)
− x

j

(l)
|
pj

j=k

j=1

) (3.31) 

 

The values of 𝛉 and 𝐩 are estimated by maximizing the ln-likelihood of 𝐲, the 

ln-likelihood ln(L) of the sample data is expressed by Eq. (3.32). 

 

ln(L) = −
N

2
ln(2π) −

N

2
ln(σ2) −

1

2
ln|𝛙| −

(𝐲 − 𝟏μ)T𝛙−1(𝐲− 𝟏μ)

2σ2
 (3.32) 

 

 Where 𝛙 is the correlation matrix of observed data, obtained through Eq. (3.31). 

The maximum ln-likelihood is subsequently found by taking derivatives of Eq. (3.32) 

and setting equal to zero, giving Eqs. (3.33) and (3.34) for the maximum likelihood 

estimates of the mean μ̂ and variance  σ̂2. 

 

μ̂ =
𝟏T𝛙−1𝐲

𝟏T𝛙−1𝟏
 (3.33) 

σ̂2 =
(𝐲 − 𝟏μ)T𝛙−1(𝐲 − 𝟏μ)

N
 (3.34) 

 

 Substituting μ̂ and σ̂2 back into Eq. (3.32) and removing constant terms gives 

the concentrated ln-likelihood function Eq. (3.35). 

 

ln(L) ≈ −
N

2
ln(σ̂2) −

1

2
ln|𝛙| (3.35) 

 

 The value of Eq. (3.35) depends upon the values of the unknown parameters 𝛉 

and 𝐩 which need to be chosen to maximise the function. It is not possible to 

differentiate the function and so the function is optimised instead. The evaluation of the 

concentrated ln-likelihood is inexpensive and so a global search optimisation using a 

genetic algorithm or simulated annealing are proposed (Forrester, et al. [170]). The 
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complexity of using a Kriging model lies with the model building because optimisation 

is needed to setup the values of 𝛉 and 𝐩, while the implementation and numerical 

assessment after these parameters are known is computationally inexpensive (Jia and 

Taflanidis [176]). 

 

3.3.5 Support Vector Regression 

 Support Vector Regression (SVR) is an application of statistical learning theory 

for support vector machines developed by Vapnik and Lerner [177] and Vapnik and 

Chervonenkis [178] in Russia during the 1960’s. The theory generalises the properties 

of learning machines which enables them to be applied to unseen data. The method was 

further developed and became applicable outside of learning machines, specifically to 

regression analysis (Vapnik [179], Schölkopf and Smola [180]).  

The SVR method allows calculation of an error margin of the sample set ε 

which the user is willing to accept without affecting the SVR prediction. This can be of 

great use if the data is derived from a physical experiment or if numerical noise is 

expected in the response. The error margin forms what is referred to as the ε-tube about 

the predictor, sample points which lie inside the ε-tube are ignored and the predictor is 

defined purely by those which lie outside or on this region (the support vectors).  

In general the SVR prediction is an extension of an RBF where the sum of basis 

functions ψ(i) and corresponding weights w(i) are added to a base term μ to form Eq. 

(3.36). However in SVR the calculation of the predictor is different to an RBF where 

the concern is with minimising the vector norm |𝐰|2. This becomes a trade-off between 

the model complexity and margin of tolerable error, for more details see Smola and 

Schölkopf [181]. 

 

f̂ = μ + ∑w(i)ψ

i=N

i=1

(𝐱, 𝐱(i)) (3.36) 

 

3.3.6 Multivariate Adaptive Regression Splines 

 Multivariate Adaptive Regression Splines (MARS) were introduced by 

Friedman [182] in 1991, in this method the basis functions are selected through a 
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forwards and backwards iterative approach. MARS can be seen as an extension of linear 

regression models which automatically captures non-linearity and interactions between 

variables. The major advantages to a MARS model are that they produce accurate 

results and there is a major reduction in computational cost associated with constructing 

the model.  The MARS model can be written using Eq. (3.37) and solved by the 

algorithm of Chen [183]. 

 

f̂ = ∑ amBm(𝐱)

m=M

m=1

 (3.37) 

 

 Where am are the coefficients of expansion, and Bm are the basis functions 

which are represented by Eq. (3.38). 

 

Bm(𝐱) = ∏[sk,m(xv(k,m) − tk,m)]
+

q

Km

k=1

 (3.38) 

 

 Where Km are the number of factors in the mth basis function, sk,m = ±1, 

xv(k,m)  is the vth variable, 1 ≤ v(k, m) ≤ N, and tk,m is a knot location on each of the 

corresponding variables. The subscript + means that the function is a truncated power 

function of the form of Eq. (3.39). 

 

[sk,m(xv(k,m) − tk,m)]
+

q
= {[sk,m(xv(k,m) − tk,m)]

q

0
   

sk,m(xv(k,m) − tk,m) > 0

sk,m(xv(k,m) − tk,m) ≤ 0
 (3.39) 

 

3.3.7 Artificial Neural Networks 

 Artificial Neural networks (ANN) have also been used to create response 

surfaces, this is because they have been shown to accurately reproduce a wide range of 

non-linear functions in a range of applications from metal-cutting to cancer diagnosis 

(Gosavi [184]). In an ANN the function is represented by a series of neurons at which 
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data processing is performed. Each neuron has k connected neurons with an associated 

weight w and a basis b, the sum of input signals gives the output v according to Eq. 

(3.40). See Desai, et al. [185] for more details. 

 

vk = ∑ wk,jxj

j=m

j=1

+ bk (3.40) 

 

3.4 Model Validation 

 In order to create an accurate response surface the approximation must be tuned 

or trained to the DoE data, and specifically with respect to Gaussian MLS metamodels 

the closeness of fit parameter must be chosen which best represent the observed values. 

The best value of the closeness of fit parameter can be found by assessing and 

subsequently minimising the error between the response surface prediction and the 

response variable at each of the observed locations. Two sets of training data are 

identified: (1) the building set which is used to build the approximation over a range of 

closeness of fits; (2) the validation set where the known observations can be compared 

with the response surface approximation created from (1). The choice of error 

assessment criteria and the method of selecting the building and validation sets are 

important factors to consider when performing a Cross Validation (CV) procedure, 

which is the name given to this type of process.   

 

3.4.1 Error Assessment Criteria 

 There are various criteria which can be used in CV to assess the error between 

the response surface prediction and the observed values. These include: (1) the Root 

Mean Squared Error (RMSE); (2) the R2 value; (3) the Relative Average Absolute Error 

(RAAE); and (4) the Relative Maximum Absolute Error (RMAE). As RMSE, RAAE, 

and RMAE tend toward zero the accuracy of the response surface increases, and for R2 

the value tends toward unity (Jin, et al. [186]).  

 The RMSE is calculated using Eq. (3.41), where n is the number of validation 

measurements being assessed, ŷi are the response surface predicted values, and yi the 

observed values.  



43 

 

 

 

RMSE = √
1

n
∑(ŷi − yi)

2

i=n

i=1

 (3.41) 

 

 The R2 value is given by Eq. (3.42), where y̅ is the mean of the observed values. 

 

R2 = 1 − ∑(ŷi − yi)
2

i=n

i=1

/ ∑(ŷi − y̅ )2

i=n

i=1

 (3.42) 

 

 Letting σ denote the standard deviation of the observed values, the RAAE is 

determined by Eq. (3.43). 

 

RAAE = ∑|ŷi − yi|

i=n

i=1

/nσ (3.43) 

 

The RMAE is described by Eq. (3.44), where ℤn
+ is the set of positive integers 

up to and including n. 

 

RMAE = max
i∈ℤn

+
|ŷi − yi| /σ (3.44) 

 

 The work by the author in Loweth, et al. [90] and also by Narayanan, et al. [91] 

demonstrated that using the different error assessment criteria can lead to very different 

choices of the closeness of fit parameters for any given data set. They also go on to 

select the RMSE as the most consistent choice of error measurement, a criteria which 

other authors have gone on to use as a result of their recommendations (Taflanidis, et al. 

[187], de Boer, et al. [3], [5]). 
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3.4.2 k-fold Cross Validation 

 k-fold CV is a method for tuning the closeness of fit parameter to a given data 

set by minimising the error between observed and predicted values. The method selects 

a random subset (fold) of size k from the DoE and calls this the validation set, the 

remaining points are deemed the building set and from which the approximation is 

subsequently generated. The error between the response surface predicted values and 

observed values are recorded and averaged over many randomly selected folds. The 

closeness of fit is varied and the value which produces the minimum averaged error is 

chosen as the optimal closeness of fit for the data set. 

 By removing points from the DoE and building the response surface without 

them bias is placed toward points which are used more often as measurements of the 

response surface error. Therefore the process of selecting the validation set, the size of 

the validation set, and the number of repeat validations are important factors to consider 

in order to reduce noise in the validation response. The method of random selection 

must ensure that over the number of repeat validations an even distribution of times 

each point is used to build and to validate is upheld. This implies that some tests to the 

random selection method should be conducted and that the number of repeat validations 

should be just enough to cover the use of each point in both the building and validation 

phases. The size of the fold can drastically change the performance of the response 

surface because if large regions of the design space are sparsely populated once the 

validation points are removed then the response surface prediction will be poor in these 

regions. The error between the response surface and observed value is likely to be 

smaller when most of the points are used for building, leading to the Leave-One-Out 

CV method be favoured as discussed in section 3.4.3. de Boer, et al. [3], [5] suggested 

using a validation set up to 30% of the total DoE size whereas Loweth, et al. [90] used 

folds of size 3, 5, and 7 (6%, 10%, and 14% of the DoE size respectively), both found 

good and consistent validation curves and were able to identify the optimal closeness of 

fit parameter.  

 

3.4.2 Leave-One-Out Cross Validation 

 In Leave-One-Out Cross Validation (LOOCV) the size of the validation set 

(fold) is k = 1, the process therefore becomes an iterative one where each point in the 

DoE is removed in turn and the error between the response surface prediction and 
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observed value calculated and averaged over the number of DoE points. In a similar 

fashion to k-fold CV the closeness of fit is varied and the value which produces the 

minimum averaged error is selected as the optimum closeness of fit for the data set. 

 The LOOCV was shown by de Boer, et al. [5] to have a smooth response over a 

reasonable range of the closeness of fit parameter, this can be attributed to the lack of 

bias in the way that building and validation points are selected using the method. Each 

point in the DoE is used to validate the approximation once and used to build the 

approximation N − 1 times. This implies that the validation response surfaces are likely 

to be stable as most of the DoE points are used to build them, reducing the number of 

regions in the design space where there are few experiments. Also the systematic way of 

choosing the validation points reduces the need for a random selection, subsequently 

leading to a noise-free validation curve and determination of the optimal closeness of fit 

(Goel and Stander [188]).  

 

3.4.2 Nested Design of Experiments 

 A nested DoE creates two separate designs which independently form a space-

filling DoEs over the design space and combined together still form a space-filling 

design. The validation set is chosen to be approximately 
1

3
 of the size of the combined 

DoE, using the remaining 
2

3
 to be used as building points. Because the building set forms 

a DoE on its own the resulting response surface should be a good representation of the 

observed values over the entire design space, meaning that the error assessment always 

produces a good judgement of the total approximation (Qian, et al. [189]). This avoids 

the issues associated with the k-fold and Leave-One-Out CV methods where the 

validating response surfaces are created from designs that do not represent the entire 

design space. However creating a nested DoE is not a simple process, due to the 

optimality conditions for space-filling as discussed in sections 3.2.6 to 3.2.9. 

 

3.5 Summary 

 In this chapter a literature review of RSM was presented and included 

descriptions of the relevant material associated with DoEs, model building and model 

validation. A range of different concepts for selecting the experiments (DoE) required to 
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subsequently create accurate response surfaces was given. Various types of RSM 

concepts were presented along with the methods used to validate their accuracy. 
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Chapter 4 – Two-Scale Elastohydrodynamic Lubrication: Theoretical Formulation 

and Numerical Solution Procedure 

 

4.1 Introduction 

In this chapter the theoretical formulation and numerical solution procedure for 

two-scale Elastohydrodynamic Lubrication (EHL) are outlined. The two scales are those 

of the bearing domain and surface topography respectively. The large scale EHL 

simulation considered is a one-dimensional tilted-pad bearing, this is coupled using the 

Heterogeneous Multiscale Method (HMM) to three-dimensional small scale simulations 

which describe the micro-EHL of surface topography. A description of the Fluid 

Structure Interaction (FSI) problem at both scales is given and subsequently an outline 

of how the two scales are coupled via periodicity and homogenisation. Metamodelling 

techniques are used to represent small scale simulations in the large scale simulation 

and reduce the total number of simulations needed to accurately perform the analysis. A 

numerical procedure for computationally solving the two-scale EHL problem is 

described. 

 

4.2 Heterogeneous Multiscale Method 

The Heterogeneous Multiscale Method (HMM) is a general modelling technique 

based on the analysis of problems with two distinct scales (E and Engquist [88]). As a 

starting point a solver is chosen for a known large scale model, in which some terms are 

explicitly unknown. The HMM replaces these unknown quantities with the results of 

numerical simulations at the small scale. The key to the application of HMM proposed 

by Gao and Hewson [30] was how the two scales were coupled and the application of 

near-periodicity in the small scale simulation. By using the same rationale a similar, 

though more general, formulation is described here. Homogenised small scale results 

describe the pressure gradient – mass flow rate relationship, and the large scale 

subsequently applies this to a global pressure distribution and conservation of mass. 

This approach is limited because only small scale inertial effects can be included, 

however by neglecting large scale inertial effects the resulting simulation is consistent 

with the assumptions which define the smooth surface model. Large scale variables are 

determined via the homogenised relationship through interpolation of the small scale 
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solutions. In this method a response surface approximation is used in place of the small 

scale data as a route to interpolation. 

 

4.3 Large Scale Simulation 

The large scale simulation describes EHL in the global bearing domain. In a 

manner similar to that of conventional EHL analyses, hydrodynamic lubricant pressure 

is coupled with elastic deformation of the bearing surface. A Cartesian coordinate 

system (x, h) is defined for the large scale simulations. 

 

4.3.1 Bearing Domain 

Fig. 4.1 illustrates the linear-converging tilted-pad bearing which is analysed in 

this study at the large scale. Such geometry minimises cavitation in the outlet region as 

the pressure will remain above the ambient value (although this may not necessarily 

hold at the small scale where micro-cavitation could conceivably occur). This geometry 

is chosen as an example of the how the two-scale method can be utilised.  

 

 

 

 

 

 

 

Fig. 4.1 – Large scale bearing geometry 

 

The pad length (Lp) is representative of the contact region for the bearing. The 

deformable polytetrafluoroethylene (PTFE) layer of the pad has a thickness (t) and 

incorporates elastic deformation from the resulting simulation. The backing to the pad is 

assumed to be rigid. A minimum undeformed film thickness for the tilted-pad bearing 

φ

ℎ 
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(hb) at outlet is adjusted for a given tilt angle (φ) such that the undeformed film 

thickness distribution (h) is determined by Eq. (4.1).  

 

h = hb + (Lp cosφ − x)tan φ (4.1) 

 

The lower surface of the bearing contact moves with speed U in the x-coordinate 

direction and the upper PTFE layer remains stationary. Topography is defined at the 

small scale (outlined in section 4.4.1) and can be parameterised such that the effects of 

different topographies can be studied at large scale (see section 4.9). These 

topographical features are periodically distributed across the length of the pad on the 

PTFE layer. The function describing topography does not change along the bearing 

length. 

 

4.3.2 Fluid Flow Model 

One-dimensional flow is considered at the large scale in this study. This is 

governed by equations defining the pressure gradient and mass conservation: 

 

dp

dx
= f(p, q, g) (4.2) 

dq

dx
= 0 (4.3) 

 

The pressure gradient (
dp

dx
) is a homogenised function of the pressure (p), mass 

flow rate per unit width (q) and film gap (g). The three parameters on the right hand 

side of Eq. (4.2) are the only large scale parameters which influence the small scale 

flow. This relationship is obtained from the small scale simulations, the details of which 

can be found in the following subsection. Dirichlet boundary conditions apply to Eqs. 

(4.2) and (4.3) such that pressure at the global inlet (pa) and outlet (pb) is zero (ambient 

pressure): 
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pa = pb = 0 (4.4) 

 

The one-dimensional large scale problem could be extended to two-dimensions 

to account for cross-flow or side-leakage by deriving a similar expression to that given 

by Eq. (4.2), whereby the relationship between the flow rate in both the x and y 

directions can be expressed as functions of the pressure gradients in these directions, the 

pressure, and local large scale geometry. Conservation of mass in the x and y directions 

can then be applied to close the two-dimensional problem. 

 

4.3.3 Elastic Deformation 

 Elastic deformation of the bearing surface is calculated in a similar way to 

classic EHL analyses. Deformation is found via a matrix operation, where the influence 

of pressure on displacement decreases with the distance from the point at which it is 

applied [33]. The total deformation influence matrix (𝐊), also known as the deformation 

coefficient matrix, is calculated using elasticity theory [190]. More details on how the 

stiffness matrix is obtained can be found in section 4.8.2. The relationship describing 

how pressure (load per unit area (p∗)) relates to surface deformation is given by Eq. 

(4.5): 

 

δ = 𝐊 × p∗ (4.5) 

 

4.3.4 Separation of the Deformation Matrix  

 Eq. (4.5) can be rewritten such that total deformation is the sum of local and 

non-local influences: 

 

δ = k1(𝐈 × p∗) + 𝐊G × p∗  (4.6) 

 



51 

 

 

 

In Eq. (4.6), k1 is the local stiffness which comprises only the diagonal matrix 

terms and is subsequently modelled at the small scale. The term k1(𝐈 × p∗) accounts for 

local deformation and 𝐊G × p∗ non-local deformation. Where 𝐊G is the global 

deformation influence matrix, this can be solved for given the relationship with the total 

deformation matrix in Eq. (4.7): 

 

𝐊G = 𝐊 − k1𝐈 (4.7) 

 

Separating deformation of the pad into these two terms highlights how 

deformation at local and global scales can be treated independently. By implementing 

this mechanism both micro-EHL and global EHL effects are described by the two-scale 

method. 

 

4.3.5 Pressure - Deformation Coupling 

 By separating the deformation influence matrix into the large scale problem 

described the effect of local deformation (characterised by the local stiffness (k1)) on 

the pressure gradient – mass flow rate relationship is given by Eq. (4.2). The film gap 

(g) becomes the sum of the undeformed film thickness (h) and non-local deformation: 

 

g = h + 𝐊G × p∗ (4.8) 

 

Eqs. (4.2), (4.3) and (4.8) are coupled and solved iteratively until convergence in 

the pressure field is reached. Due to the presence of topography at the small-scale Eq. 

(4.2) will also describes small scale fluid flow and structural effects which are not 

defined by the large scale mechanics, as described in the following subsection.  
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4.3.6 Bearing Performance 

 Two important bearing performance criteria are derived from the large scale 

simulation: the load capacity (W) and coefficient of friction (μ). These are calculated 

from Eqs. (4.9) and (4.10): 

 

W = ∫ p∗ dx
Lp cosφ

0

 (4.9) 

μ =
1

W
∫ τ dx

Lp cosφ

0

 (4.10) 

 

 τ is the shear force per unit area (shear stress) in the fluid. In the two-scale 

method this and the load per unit area (p∗) are derived from the small scale simulations 

along with the pressure gradient – mass flow rate relationship. As such both τ and p∗ 

are also homogenised functions of the pressure (p), mass flow rate per unit width (q) 

and film gap (g). 

 

4.4 Small Scale Simulations 

The small scale simulations are defined by steady-state, isothermal, 

compressible, laminar flow as described by the Navier-Stokes equations and elastic 

deformation of the small scale features. Coupling is achieved through an Arbitrary 

Lagrangian-Eulerian (ALE) approach in a Finite Element (FE) simulation. For the small 

scale simulation a Cartesian coordinate system (xs, ys, zs) is defined, and where 

appropriate a subscript s is used to distinguish the small scale variables and operators. 

 

4.4.1 Fluid Domain 

 Fig. 4.2 illustrates the small scale fluid domain used in this study. The domain is 

described by the undeformed film gap (g) and the cell size (L) in both the x and 

𝑦 dimensions respectively. For the purpose of simplicity the cell size in both dimensions 

are equal, however this is not a requirement for the multiscale approach described. The 

cell film thickness (s) is the sum of film gap (g) and the periodic function describing 

topography (δt).  
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s = g + δt (4.11) 

 

Periodicity must be maintained in the cell film thickness (pre-deformation) at the 

boundaries in order to satisfy the underlying multiscale theory assumptions. Therefore 

the function describing topography must also be periodic, Eq. (4.12) has been chosen 

for the purpose of this study. α is the topography amplitude where a value of α = 0 

corresponds to a smooth surface, the solution for which can be directly described by 

Reynolds equation. The different topography amplitudes investigated are represented 

through multiple metamodels. 

 

δt =
α

4
[sin (2π

xs

L
− π) + sin (2π

ys

L
− π) + 2] (4.12) 

 

 Parameterisation of topography is possible using this two-scale method, the 

parameters describing δt become additional variables in the pressure gradient – mass 

flow rate relationship (Eq. (4.2)). A single topographical feature has been chosen for the 

first part of this study however in section 4.9 parameterisation of the small scale 

simulations is discussed in more detail.  

 

 

 

 

 

 

 

 

Fig. 4.2 – Small scale fluid domain 
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4.4.2 Fluid Flow Model 

The small scale flow is considered steady, laminar, compressible and isothermal 

as described by the Navier-Stokes equations in the following form [191]: 

 

∇s ∙ (ρs𝐮s) = 0 (4.13) 

ρs(𝐮s ∙ ∇s)𝐮s = ∇s ∙ [−ps𝐈 + ηs(∇s𝐮s + (∇s𝐮s)
T) −

2

3
ηs(∇s ∙ 𝐮s)𝐈] (4.14) 

  

Where ρ𝑠 denotes the fluid density, η𝑠 is the fluid viscosity, p𝑠 is the fluid 

pressure, 𝐮𝑠 is the velocity vector and 𝐈 the unit tensor. Eq. (4.13) is the continuity 

equation which describes the conservation of mass in the fluid domain and Eq. (4.14) is 

the partial differential equation describing the conservation of momentum for laminar 

flow of a compressible fluid. Applying the assumptions of the smooth surface model 

which includes neglecting inertial terms (left hand side of Eq. (4.14)) and derivatives 

across the film thickness, allows Eqs. (4.13) and (4.14) to be reduced to the Reynolds 

equation. 

 

4.4.3 Fluid Properties 

Compressibility is modelled via the Dowson-Higginson equation (Eq. 4.15) 

where fluid density is barotropic [43]. ρ0 is the ambient density, and D0, D1are 

constants. 

 

ρs = ρ0

D0 + D1ps

D0 + ps

 (4.15) 

 

Viscosity is both piezoviscous and non-Newtonian (shear-thinning). The 

piezoviscous response is governed by Eq. (4.16) as defined by the Roelands equation 

[96]. ηp is the piezoviscous viscosity, η0 is the viscosity at ambient conditions, ηr the 

Roelands reference viscosity, pr the Roelands reference pressure, and Z the pressure-

viscosity index [106]. 
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ηp = ηr exp(ln(
η0

ηr

) (1 +
ps

pr

)
Z

) (4.16) 

 

Shear-thinning behaviour is modelled using the Ree-Eyring model (Eq. (4.17)) 

as originally developed by Johnson and Tevaarwerk [95] and further refined by Bair, et 

al. [110], where τ0 is the Eyring stress and γ̇𝑠 the shear rate. 

 

ηs =
τ0

γ̇s

sinh−1 (
ηpγ̇s

τ0

) (4.17) 

 

4.4.4 Fluid Boundary Conditions 

In reference to fig. 4.2 the fluid flow boundary conditions are described. The 

lower surface ADHE is a moving wall with velocity U in the x-coordinate direction. 

BCGF is a no-slip boundary which forms the fluid/solid interface. The remaining faces 

form two sets of near-periodic (scaled to account for deformation and compressibility) 

boundaries, ABCD/EFGH and ABFE/DCGH. The boundaries which are normal to the 

direction of motion of the moving wall (ABCD/EFGH) experience a jump in pressure, 

generating a pressure gradient in x over the domain. The other set (ABFE/DCGH) 

remains fully periodic with pressure as there is no gradient defined in this direction for 

the large scale solution. If the large scale model requires such gradients then these can 

be generated by another jump condition imposed on these boundaries, however this 

adds an extra dimension to the design space. 

The pressure jump condition is modelled by Eq. (4.18) where the pressure 

profile is shifted by ∆p𝑠. Subscripts 1 and 2 denote downstream and upstream 

boundaries respectively.  

 

ps,2 = ps,1 + ∆ps (4.18) 
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Deformation of the upper surface creates challenges when implementing a 

boundary condition for velocity because the resulting outward facing area (A𝑠 ) of each 

pair face are no longer equal, as portrayed in fig. 4.3.  

Mass flow rate must be equal across the boundaries in order to satisfy mass 

conservation at both scales and the underlying assumptions of the HMM analysis. This 

leads to the application of a near-periodic boundary condition for velocity Eq. (4.19) 

and corresponding equations (4.20) and (4.21) for density and area ratios.  

 

 

 

 

 

 

 

 

 

Fig. 4.3 – Deformed small scale fluid domain 

 

𝐮s,2 = 𝐮s,1 ∙
ρs,1

ρs,2

∙
As,1

As,2

 (4.19) 

ρs,1

ρs,2

=
(D0 + D1ps,1)(D0 + ps,1 + ∆ps)

(D0 + ps,1) (D0 + D1(ps,1 + ∆ps))
 (4.20) 

As,1

As,2

=

1 +
∆As,1

As,0

1 +
∆As,2

As,0

 (4.21) 

 

Eq. (4.20) accounts for compressibility at the boundaries. Eq. (4.21) describes 

how the ratio of areas relates to the strain in area over the boundary. As,0 is the 

boundary outward facing area pre-deformation and ∆A is the area deformation of the 
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boundary. This boundary condition is consistent with the HMM, where near-periodicity 

is maintained over a small scale feature. As the scale separation increases this becomes 

an increasingly valid assumption. As the length of the small scale feature tends toward 

zero the small scale feature vanishes (the Reynolds equation is obtained) and the 

problem can be solved analytically. 

 

4.4.5 Spring Column Representation 

The small scale EHL model is based on the fluid flow due to topography and the 

local stiffness properties. Deformation at the small scale uses an equivalent thickness 

(t′) of the solid domain to ensure that the resulting deformation due to fluid pressure is 

equal to the column deformation achieved from the local stiffness (k1) at the large 

scale. This is described by Eq. (4.22). 

 

t′ = k1E′ (4.22) 

  

The equivalent elastic modulus (E′) is derived to represent the mechanical 

properties of the large scale problem to a fully constrained column of bearing material 

in three-dimensions at the small scale [190].  

 

E′ =
(1 − ν)E

(1 + ν)(1− 2ν)
 (4.23) 

 

Where E and ν are the Young’s Modulus and Poisson’s Ratio of the bearing 

material respectively. Eq. (4.23) is not valid for incompressible materials (ν = 0.5) 

since t′ will tend to infinity, invalidating the column of material approach. By applying 

an equivalent thickness to the problem the small scale FSI is accurately described as the 

material properties and required stiffness properties are maintained. It is important to 

note that this approach is only valid where the size of the equivalent thickness is an 

order of magnitude greater than the size and deformation of the topographical feature. 

Because discretisation at the large scale determines the magnitude of the local stiffness 
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k1, ensuring this separation in scales raises some challenges, as discussed in section 

4.8.2. 

 

4.4.6 Solid Domain 

 The solid column is located above the fluid domain as illustrated by fig. 

4.4. FSI occurs at the interface connecting the two domains using an ALE approach as 

described in section 4.4.9. The thickness (t′) is derived as previously outlined from the 

material and stiffness properties required at the large scale. Topography (δt) is removed 

from the solid column. The size and subsequent deformation of topography must be an 

order of magnitude smaller than the solid column thickness such that the local 

topography dependent stress field is not affected. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 – Small scale solid domain 

 

4.4.7 Solid Deformation Model 

Structural mechanics is considered at the small scale using a conventional three-

dimensional FE analysis in order to represent the local stiffness (k1) required at the 

large scale. The force balance is characterised by Eq. (4.24) where the solid material is 
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assumed homogeneous, isotropic and linearly elastic [192]. In Eq. (4.24), σ𝑠  is the stress 

tensor, 𝐅𝑠 the vector of load per unit volume, and V𝑠 the volume.  

 

−∇s ∙ σs = 𝐅sVs (4.24) 

 

4.4.8 Solid Boundary Conditions 

With reference to fig. 4.4 the small scale solid boundary conditions are 

described. The upper boundary PQSR is fully constrained. The sides of the spring 

column BPQC, BPRF, FRSG and CQSG are constrained normal to the surface. The 

fluid/solid interface BCGF is loaded by the pressure p𝑠 generated from the fluid flow 

simulations, i.e. the stress normal to the boundary is equal to the pressure. 

 

4.4.9 Pressure – Deformation Coupling 

 An Arbitrary Lagrangian-Eulerian (ALE) approach is used to fully-couple the 

pressure and deformation in the small scale simulations by moving the elements of the 

meshed domains. The ALE incorporates features of both Lagrangian and Eulerian 

approaches where elements can either be moved systematically, arbitrarily, or not at all 

such that distortion of the mesh is reduced and large deformations can be modelled 

[193]. The FSI problem is solved iteratively, where pressures cause deformation and 

deformation alters the pressure field, until convergence in both the pressure and 

deformation fields is achieved.  

 Here the FSI interface BCGF dictates deformation of the mesh (∆z𝑠) where the 

elements on this surface are moved by the exact amount calculated due to the pressure 

loading (∆s). Elements within the fluid and solid domains are deformed by the amount 

given at BCGF as a function of xs and ys and subsequently scaled using Laplace 

smoothing such that there is no deformation of the mesh elements at the moving wall 

ADHE and fully constrained solid boundary PQSR respectively. Fig. 4.5 provides a 

schematic of the ALE approach used in this study. 
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Fig. 4.5 – Schematic of the ALE approach used in the small scale simulations 

 

4.5 Homogenisation 

 Given a pressure constraint (placed directly in the centre of ADHE of fig.2, 

denoted by p) and the initial gap (g, which includes the undeformed film thickness plus 

deformation of non-diagonal terms of the stiffness matrix, excluding the diagonal 

terms), the solution fields for pressure and velocity can be obtained by solving for small 

scale model. The homogenised pressure gradient (
dp

dx
) over a unit cell is calculated 

using Eq. (4.25). 

 

dp

dx
=

∆ps

L
 (4.25) 

 

The mass flow rate per unit width (q) at the large scale is determined from the 

mass flow rate which characterises the small scale flow and the magnitude of the extra 

dimension considered at this scale. Eq. (4.26) is calculated on the deformed boundary 

AB’C’D of fig. 4.3. 

ADHE: ∆z𝑠 = 0 

PQSR: ∆z𝑠 = 0 

BCGF: ∆z𝑠 = ∆s 

0 < ∆z𝑠 < ∆s 

0 < ∆z𝑠 < ∆s 
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q =
1

L
∫ ∫ρsus dysdzs

L

0

s+∆s

0

 (4.26) 

 

Where ∆s is the deformation of the fluid domain thickness. The pressure 

constraint (p), pressure gradient (
dp

dx
), initial gap (g), and the mass flow rate per unit 

width (q) are required for interpolation of the small scale results for use in a large scale 

simulation. 

 As pressure is not linearly distributed with the x-direction in the small scale 

domain due to effects which occur in the presence of topography as well as that due to 

deformation, compressibility, piezoviscosity, etc., an average cell pressure (p∗) is 

derived which describes the load per unit area in the large scale simulation and from 

which the load capacity and elastic deformation of the bearing is determined. 

 

p∗ =
1

L2
∫ ∫ ps dxsdys

L

0

L

0

 (4.27) 

 

This average cell pressure is used to determine the deformation at the large 

scale. The shear force per unit area (τ) is calculated from Eq. (4.28) at the small scale, 

this is equivalent to shear stress in the large scale model. The integration of Eqs. (4.27) 

and (4.28) is over the moving wall boundary ADHE of Fig. 4.2. 

 

τ =
1

L2
∫ ∫ηs

dus

dzs

 dxsdys

L

0

L

0

 (4.28) 

 

The small scale minimum film thickness (smin) can be reported using Eq. 

(4.29). This film thickness is representative of the EHL and micro-EHL effect and is 

thus a measure of the deformation of the small scale features. Eq. (4.29) is performed on 

the deformed fluid/solid interface B’C’G’F’. 
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smin = min
xs ,ys

(s + ∆s) (4.29) 

 

The role of additional flow phenomenon such as viscosity and density cannot be 

shown at the large scale because they vary significantly in the small scale solutions, 

meaning that homogenisation does not reflect the true magnitude of the variable in the 

small scale domain.  

 

4.6 Analogy with the Smooth Surface Model 

When considering fluid flow, the smooth surface case (where the size of the 

topography is zero, α = 0) can be compared with Reynolds equation to provide a 

benchmark for the multiscale approach. This is because without topography the small 

scale problem can be accurately described by the lubrication approximation. Eq. (4.30) 

is the corresponding incompressible, isoviscous Reynolds equation in one-dimension 

using the separation of the stiffness matrix assuming a Newtonian viscosity. Note that in 

the smooth surface case the load-per-unit-area and pressure are equivalent. 

 

dp

dx
=

12η0

ρ0(g + k1p)3
(
ρ0U

2
(g + k1p) − q) (4.30) 

 

4.7 Response Surface Methodology (RSM) 

 RSM refers to the process of building, validating and implementing the 

approximation based on the previously obtained experiments, this is also known as 

surrogate or metamodelling [130]. Representation of the small scale data at the large 

scale is achieved through the use of a Moving Least Squares (MLS) approximation. The 

approximation describes the small scale solutions over the entire design space. The 

design space encompasses the complete range of values required by the large scale 

solver. Creating a model of this nature requires a Design of Experiments (DoE) which 

ensures the most efficient spread of simulations in the design space. An Optimum Latin 

Hypercube (OLHC) was used to span as much of the design space with as few designs 

as possible [92]. Eq. (4.2) is replaced by Eq. (4.31) where the tilde notation represents 
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known values corresponding to small scale simulations of the evaluated function and θ 

is a metamodel tuning parameter. Similar representations are defined for the load per 

unit area (p∗), shear force per unit area (τ), and small scale minimum film thickness 

(smin). 

 

dp

dx
≅ f̃ (p̃, g̃, q̃,

dp

dx

̃
, p, g, q,θ) (4.31) 

 

4.7.1 Moving Least Squares (MLS) Approximation 

MLS is derived from conventional weighted least squares model building, 

however the weights describing the influence of a point in the approximation do not 

remain constant but are functions of the normalised Euclidian distances from sampling 

points to the point where the metamodel is evaluated. The weight associated with a 

particular sampling point decays as an evaluation point moves away from the sampling 

point. It is not possible to obtain an analytical form of the MLS function representing 

the metamodel but its evaluation is computationally inexpensive and therefore used in 

this work. Eqs. (4.32), (4.33), (4.34), and (4.35) illustrate polynomial basis functions 

used to model the multiscale relationships for the pressure gradient, load per unit area, 

shear force per unit area, and small scale minimum film thickness respectively. Each of 

these is based upon the corresponding equations obtained from the smooth surface 

model but inclusive of extra constants which are determined through the MLS 

operation. These constants (C1 − C10) are functions of the position within the design 

space at which the metamodel is being assessed. The dimensions of C3 are MPa/mm, C5 

and C8 are N/mm2, C10 is μm, and the remaining constants are dimensionless. 

 

dp

dx
=

12η0

ρ0(g+ k1p)3
(
C1ρ0U

2
(g + k1p) − C2q) + C3 − 1 (4.32) 

p∗ = C4p + C5 − 1 (4.33) 

τ =
6η0

ρ0(g + k1p)2
(
2C6ρ0U

3
(g + k1p) − C7q) + C8 − 1 (4.34) 
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smin = C9(g + k1p) + C10 − 1 (4.35) 

 

Deviations from the smooth surface model introduced by the small scale model 

are captured by these constants. In the incompressible, isoviscous, smooth surface case 

the set of constants will be unity throughout the design space as the computational 

results are the same as the smooth surface model.  

  MLS metamodels can be tuned to the DoE data by varying the closeness of fit 

parameter θ. Changing θ controls the rate at which the weight decays with distance 

from a sampling point or in another perspective the sphere of influence surrounding an 

evaluation point beyond which a sample point will have no effect on the resulting 

metamodel approximation. This parameter allows MLS approximations to efficiently 

deal with numerical noise, where the user has choice over how ‘close’ or ‘loose’ the fit 

is [131]. Several strategies have been derived in order to automatically predict the 

closeness of fit parameter for a given data set [170]. Following from the work of 

Loweth, et al. [90] θ is best determined using the either the k-fold or Leave-One-Out 

Cross Validation (CV) methods. 

 

4.7.2 k-fold Cross Validation (CV) 

 In k-fold CV a random set of size k is removed from the DoE and the MLS 

approximation is built from the remaining sample points (building set) using a given 

closeness of fit parameter (θ). The approximation is then compared against the known 

function value at the removed locations (validation set) by calculating the Root Mean 

Squared Error (RMSE).  

 

RMSE = √
1

k
∑(fi − f̃i)

2

i=k

i=1

 (4.36) 

 

In Eq. (4.36), k is the number of validation points, f̃i belong to the set of known 

function evaluations and fi to the set of corresponding MLS approximations. This 
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process of error checking is repeated over many k-sized folds of the validation set as to 

include all points in both the building and validation phases. An average of the RMSE is 

then used to provide the error for the approximation at the current closeness of fit 

parameter (θ). A range of θ values is specified and the above process is carried out 

across this range. The smallest average RMSE calculated gives the value of the 

closeness of fit which produces the most accurate MLS approximation for the data 

provided. The average RMSE versus closeness of fit parameter response is subject to a 

significant amount of numerical noise making the search for a minimum RMSE 

difficult. Practical experience [90] suggests that the following must all be specified in 

order to reduce this noise: the number of repeat folds (1000 is chosen to limit numerical 

cost), the size of each fold used (~30% of the DoE size), the method of randomisation 

by which folds are chosen, and the range of the closeness of fit parameter chosen for 

investigation (this can vary between zero (least squares regression) and any value until 

over-fitting occurs [161], the range of 0-100 was found to be suitable in this case). 

 

4.7.3 Leave-One-Out CV 

 Leave-One-Out CV differs from k-fold CV in that the size of the validation set 

k = 1. Each point in the entire data set is removed in turn and the metamodel built from 

the remaining points (building set). The error at the validation point is then assessed and 

averaged for a given closeness of fit over the total number of points held. The closeness 

of fit is varied and the value which produces the minimum error over all values is 

selected. The RMSE is again employed as a metamodel assessment criteria, however 

since k = 1 this is equivalent to the absolute error between the metamodel 

approximation and the known observed value. Leave-One-Out CV produces a smoother 

error response than k-fold CV because the folds are not randomly selected but 

systematically chosen in turn. This implies that each point is assessed only once as part 

of the error criteria giving equal weighting to the error at each location, whereas the k-

fold method will bring bias to the error criteria at locations where the error assessment 

has been made numerous times. Leave-One-Out CV is also much faster since each time 

there is a call to the MLS function only one matrix inversion operation is required, in k-

fold CV each call to the MLS function requires k independent matrix operations.  

 



66 

 

 

 

4.8 Numerical Method 

4.8.1 Geometry and Materials 

The lubricant modelled is an idealised compressible, piezoviscous and non-

Newtonian (shear-thinning) fluid, the solid considered is a linearly elastic PTFE as 

described earlier. Details of the constants related to these fluid and solid properties and 

those used as operating conditions and geometrical identities are listed in Table 4.1.  

 

Parameter Value/Range Unit 

D0, D1 0.59x109, 1.34 - 

E  0.5 GPa 

k1  0.4667 µm/MPa 

L  10 µm 

Lp  [20, 25] mm 

pr  0.196 GPa 

t 0.5 mm 

U  1 m/s 

W  75, 100 kN 

Z 0.4486 - 

α [0, 7.5] µm 

η0  1 Pa.s 

ηr  6.31x10-5 Pa.s 

ν 0.4 - 

ρ0  870 kg/m3 

τ0  5 N/mm2 

φ [0.05, 0.06] °  

 

Table 4.1 - Parameters values and ranges 

 

4.8.2 Stiffness Properties 

In this study only elastic deformation of the pad is modelled and bending is not 

considered. The stiffness matrix (𝐊) is calculated using the method described by 

Rodkiewicz and Yang [102]. The FE method is used to model solid deformation of the 
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∆ 

pad. By implementing the principle of virtual work mechanical characteristics for the 

pad are formulated. The pad is discretised evenly and unit loads applied to each of the 

pad face elements in turn. The resulting deformation distributions become a row in the 

total deformation matrix. As these distributions are superimposed they provide the pad 

deformation due to pressure acting on all elements. This can be scaled directly to 

account for any load within the elastic limit of the material. A graphical illustration of 

this method is outlined in fig. 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

δj = ∑ Ki,jpi

i=N

i=1

 (4.37) 

 

Fig. 4.6 – Graphical illustration of the derivation of the stiffness matrix 
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The value of the diagonal terms of the matrix (Ki,i) which govern the large scale 

local stiffness are affected by the size of elements chosen to represent the bearing 

surface. This leads to a potential breakdown of the multiscale theory required at the 

small scale. In order for the spring column approach to remain valid, the magnitude and 

deformation of topography at the small scale (δt + ∆s) must be at least an order of 

magnitude smaller than the equivalent thickness (t′) derived from the local stiffness 

properties (k1). If there are too many discrete elements the resulting thickness (Ki,iE′) 

becomes too small for this assumption to hold, as illustrated in fig. 4.7. 

 

   

 

 

 

 

 

 

Fig. 4.7 – Effect of the number of pad surface elements on the diagonal stiffness matrix 

term and the separation of scales in the two-scale method 

 

To solve this issue the stiffness at the small scale is set to a value which will 

always provide a large enough thickness, the local stiffness (k1). The small scale 

simulations provide a solution corresponding to this stiffness. Because deformation is 

linearly elastic the result can be scaled directly to match the required large scale local 

stiffness, which leads to the inverse spring model represented in Eq. (4.8). In this study 

the local stiffness is constant and thus the same small scale data can be used for any 

large scale definition of the stiffness matrix. The formulation outlined here is therefore 

more general than the method developed by Gao and Hewson [30]. 
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4.8.3 Solution Procedure 

The first stage of the solution procedure is to determine suitable ranges for the 

gap, pressure and pressure gradient which will result in flow rates of the order required 

to compute the large scale pressure field. These limits were found by running 

simulations with Reynolds equation (Eq. (4.30)) in place of the pressure gradient – mass 

flow rate relationship using the method as outlined below. The resulting limits are 

tabulated in Table 4.2. The OLHC DoE was specified using a permutation Genetic 

Algorithm (GA) code [92] and the small scale simulations setup and run sequentially 

using the FE method as implemented by COMSOL Multiphysics (USA). k-fold CV was 

subsequently performed on the resulting data sets to find the closeness of fit parameters 

needed for the MLS approximations, ready for large scale implementation. 

For a given large scale undeformed geometry (h), the solution procedure begins 

with an initial guess of the pressure distribution (pold) and load-per-unit-area (pold
∗ ). 

This was chosen as the corresponding smooth surface solution to the Reynolds equation 

fRe(h) (Eq. (4.30)). The film gap (g) was then updated according to Eq. (4.8) to include 

non-diagonal deformation terms. The pressure (p), load-per-unit-area (pnew
∗ ), shear 

stress (τ), and mass flow rare (q) were then solved from this updated geometry and the 

pressure gradient – mass flow rate relationship (Eq. (4.2)), which is inclusive of the 

local elastic deformation obtained for the small scale simulations. The actual 

representation of this is governed by the MLS approximations (Eqs. (4.32) – (4.34)) 

derived after the small data is acquired. This process was subsequently repeated until 

convergence in the pressure field was obtained, the tolerance chosen for this was 10−3. 

For each iteration the large scale load per unit area (p∗) was relaxed by a factor of, 

θ = 0.5 due to instabilities in the numerical solution method. A flow chart of this 

process is given in fig. 4.8.  

The solution of Eqs. (4.2) and (4.3) are obtained using a shooting method for the 

mass flow rate (q) to satisfy the pressure boundary conditions. The mass flow rate was 

initially selected by intersecting pre-determined upper (qU) and lower bounds (qL). The 

mass flow rate was adjusted each iteration depending on whether the error in the 

pressure boundary condition at outlet (ξ) is either under (ξU) or over predicted (ξL). The 

mass flow rate was determined each iteration by using a linear bisector approach to 

predict the value which gives a pressure error at outlet ξ = 0. The bounds were then 

adjusted according to whether the current mass flow rate over or under predicts the 
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pressure at outlet. A flow chart describing this solution procedure is given in fig. 4.9.  

This is an Initial Value Problem (IVP) which was solved using the MATLAB (The 

Maths Works Inc., USA) solver ode45 to perform 4th/5th order Runge-Kutta integration 

of the pressure gradient equation. Once this process converged the pressure, pressure 

gradient, load per unit area, shear force per unit area and mass flow rate were returned. 

In order to generate comparable results across varying operating conditions and 

degrees of freedom a fixed load was required for all large scale simulations. In order to 

implement this the minimum film thickness of the bearing (hb) was adjusted subject to 

Eq. (4.1), where a reduction in hb increases the bearing load capacity (W). From the 

processes outlined in figs. 4.8 and 4.9 the load capacity of the bearing was determined 

as a function of the undeformed geometry and small scale simulations. By 

implementing a method of bisectors the minimum deformed gap (gb) and coefficient of 

friction (μ) for a given load was obtained. Upper (hU) and lower (hL) bounds for the 

minimum undeformed film thickness were selected and the corresponding load 

capacities determined (WU and WL respectively). The value of hb for the next iteration 

(hI) was selected by determining the value which gives a load capacity of WR according 

to the linear relationship provided by the bounding cases. The bounds were then 

updated according to whether the calculated load capacity (WI) was over or under 

predicted at the current undeformed film thickness. Convergence was reached when the 

difference in the calculated load capacity and required load capacity (WR) were within 

10-3 of each other. A flow chart of this process is outlined in fig. 4.10. 

 

Parameter Range  Unit 

dp

dx
  [-40, 10]  MPa/mm 

p  [0, 10]  MPa 

g  [5, 50]  µm 

 

Table 4.2 – Ranges applied to the DoE used for the small scale simulations 

 

 

 

 

 



71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 – Flow chart of the large scale pressure-deformation solver 

 

 

 

 

 

 

 

 

START 

h = hb + (Lp cosφ − x)tan φ 

pold , pold
∗ = fRe(h) 

g = h + 𝐊Gp∗ 

 

p, pnew
∗ , τ, q = f(g) 

p∗ = θpold
∗ − (1 − θ)pnew

∗  

g = h + 𝐊Gp∗ 

|p − pold| < 10−3 

FINISH 

Y 

pold = p 

pold
∗ = p∗ 

N 
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Fig. 4.9 – Flow chart of the shooting method for pressure solving 

 

 

 

START 

q ∈ [qL , qU] 

ξL , ξU = f(qL), f(qU) 

ξL < ξ < ξU 

q =
ξUqL − ξLqU

ξU − ξL
 

|ξ| < 10−3 

FINISH 

ξ < 0 

qU = q 

ξU = ξ 

qL = q 

ξL = ξ 

ξ = f(q) 

Y 

Y 

N N 
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Fig. 4.10 – Flow chart of the bisector approach for fixed load simulations 

 

 

 

START 

hb ∈ [hL ,hU] 

WL ,WU = f(hL), f(hU) 

WL < WR < WU 

W = A + Bh 

(
A
B
) = [

1 hL

1 hU
]
−1

(
WL

WU
) 

𝑊 = 𝐴+𝐵ℎ

 

hI =
WR − A

B
 

WI = f(hI) 

 

|WI − WR|

< 10−3  

FINISH 

WI < WR 

hU = hI 

WU = WI 

hL = hI 

WL = WI 

 

Y 

N N 
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4.9 Optimisation of Topography 

 Optimisation of topography was achieved using the two-scale method, the 

function describing topography was parameterised at the small scale and one extra 

dimension added to the pressure gradient – mass flow rate relationship to describe the 

effect of varying the geometry. Using the same methods and metamodels as outlined 

previously the topography can be varied for the textured bearing and the performance 

assessed over a range of the design variables at the large scale. The lowest coefficient of 

friction was identified for the range of topographies by a bracketing type optimisation 

procedure. 

 

4.9.1 Theoretical Formulation 

 The function describing topography (δt) was parameterised with the variable ψ 

which is referred to as the longitudinal/transverse ratio. By varying ψ the shape of the 

topography can be controlled and the effect of different topographies on the pressure 

gradient – mass flow rate relationship investigated. The topography function is given in 

Eq. (4.37). 

 

δt =
α

2
[ψ(sin (2π

x𝑠

L
) + 1) + (1 − ψ)(sin (2π

y𝑠

L
) + 1)] (4.37) 

 

 When ψ = 0 topography is longitudinal to the flow direction and conversely 

when ψ = 1 topography is transverse to the flow direction. Between these limits the 

topography described is a linear combination of longitudinal and transverse waviness, 

such that at ψ = 0.5 both components are of equal measure. The optimisation process 

will indicate the value of the longitudinal/transverse ratio (ψ) which produces the 

lowest coefficient of friction (μ) for the textured bearing.  

 Contour plots of the different topographies which are achieved using Eq. (4.37) 

are presented in figs. 4.11 – 4.15 for ψ = 0, 0.25, 0.5, 0.75, and 1 respectively. For the 

optimisation procedure, the topography amplitude is set to α = 7.5 μm, the pad length 

and tilt angle are Lp = 25 mm and φ = 0.05°, the load capacity is set to W = 100 kN, 

and all other parameters are specified in Table 4.1.  
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Fig. 4.11 – Topography in μm at ψ = 0 (100% longitudinal) 

 

 

 

Fig. 4.12 – Topography in μm at ψ = 0.25 (75% longitudinal, 25% transverse) 
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Fig. 4.13 – Topography in μm at ψ = 0.5 (50% longitudinal, 50% transverse) 

 

 

 

Fig. 4.14 – Topography in μm at ψ = 0.75 (25% longitudinal, 75% transverse) 
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Fig. 4.15 – Topography in μm at ψ = 1 (100% transverse) 

 

The two-scale method can be conducted in the same manner described when 

parameterising the topography was not considered, except that the pressure gradient – 

mass flow rate, load per unit area – mass flow rate, shear stress – mass flow rate 

relationships must now include the extra dimension introduced by varying the small 

scale geometry. Eq. (4.38) is used in place of Eq. (4.2) and subsequently for the 

metamodel Eq. (4.39) in place of Eq. (4.31). The same MLS basis functions as 

described by Eqs. (4.32) – (4.35) are used for the four-dimensional metamodels. 

 

dp

dx
= f(p,q, g, ψ) (4.38) 

dp

dx
≅ f̃(p̃, g̃, q̃, ψ̃,

dp

dx

̃
, p, g, q,ψ, θ) (4.39) 

 

4.9.2 Solution Procedure 

 A four-dimensional OLHC DoE is needed to specify the required small scale 

simulations, this was generated using the same permutation GA code [92]. The ranges 

used for this are the same as Table 4.2 and the longitudinal/transverse ratio (ψ) is 
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bounded by [0,1]. The remainder of the solution procedure follows the same processes 

as outlined in section 4.8.3 where the function describing topography does not change 

over the length of the bearing, however the method for pressure solving at the large 

scale is conducted via an alternative method to the IVP outlined. 

A Boundary Value Problem (BVP) is setup using the MATLAB solver bvp4c to 

solve Eqs. (4.2) and (4.3). This method guarantees the boundary conditions for pressure 

are met and requires a close initial guesses of p and q to perform the operation. The 

initial guesses are initially specified as the corresponding Reynolds solution but are 

updated at convergence of the BVP to the values obtained from the latest iteration of the 

deformation loop. The pressure gradient – mass flow rate relationship and continuity 

equation must be written in Cauchy form to use this method. The number of calls to the 

metamodel function is not controlled by the user and as such the range of values which 

the BVP solver uses may fall outside the range covered by the small scale simulations. 

Because the metamodels are based on the corresponding smooth surface model 

equations, if the metamodel is assessed far away from the design space the function will 

become the smooth surface model and is therefore well-conditioned. Assessment of 

values which fall outside the range of the DoE do not influence the final solutions, all of 

which are inside the design space.  

One further process is needed to perform the optimisation. ψ is varied 

parametrically over the entire range and the coefficient of friction (μ) recorded for the 

textured bearings under load. The value of ψ which produces the minimum μ is 

recorded and the range of ψ refined around this value, this is repeated until the location 

of the minimum μ converges. The minimum μ is determined by inspecting that the first 

derivative of μ with ψ is zero, the second derivative is greater than zero and that the 

value of μ is lowest over the entire set. The gradients required are assessed numerically 

using finite differencing. This type of process for finding the global minimum is known 

as an unconstrained heuristic-based bracketing optimisation [194]. A flow chart of this 

process is given in fig. 4.16. 
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Fig. 4.16 – Flow chart of the bracketing optimisation method 

 

4.10 Summary 

 In this chapter the theoretical formulation and numerical solution procedure for 

the two-scale EHL method were presented for a one-dimensional converging tilted-pad 

bearing geometry, additional comments were made as to how the method can be 

expanded to two-dimensional problems. Details of the simulations at both scales are 

described along with the RSM used to couple them. Further to this an explanation of 

how optimisation of topography can be performed is given along with the solution 

procedure used to achieve this. 

START 

ψL = 0,ψU = 1 

ψold = 1010
 

ψ ∈ [ψL ,ψU] 

μ,
dμ

dψ
,
d2μ

dψ2
= f(ψ) 

dμ

dψ
= 0,

d2μ

dψ2
> 0, μmin < μ 

ψopt = f −1(μmin) 

 ψopt − ψold < 10−3 

FINISH 

Y 

ψL = max(0,0.9ψopt) 

ψU = min(1,1.1ψopt) 

ψold = ψopt 

N 
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Chapter 5 – Two-Scale Elastohydrodynamic Lubrication: Effect of Three-

Dimensional Topography in Tilted-Pad Bearings 

 

5.1 Introduction 

This chapter describes solutions generated from the two-scale method for a 

tilted-pad bearing with a single three-dimensional topography. Results presented and 

discussed here are divided into three subsections. The first establishes the numerical 

accuracy of the two-scale method, the second subsection analyses the small scale 

simulations, and the third analyses contains results relating to smooth and textured 

surfaces at the large scale. 

 

5.2 Numerical Accuracy 

 The numerical accuracy for the two-scale method is assessed through grid 

independence of simulations at both scales and validation of the RSM used to couple 

these scales. 

 

5.2.1 Grid Independence 

Small scale grid independence was determined by varying the total number of 

elements for each case and comparing the resulting mass flow rate. The absolute 

percentage error in mass flow rate against the mass flow rate with the largest number of 

elements (31,250) is plotted in fig. 5.1 for a topography amplitude α = 7.5 µm. In this 

simulation compressibility, piezoviscosity, and non-Newtonian (shear-thinning) 

behaviour were included, the cell pressure p = 5 MPa, the pressure gradient 
dp

dx
 = -10 

MPa/mm, and the gap g = 25 µm. 

From fig. 5.1 it was seen that the change in percentage error is reduced as the 

number of nodes increases illustrating convergence. 16,000 elements were chosen for 

this study as this allowed the small scale phenomena to be accurately captured at a 

moderate computational cost. Each small scale simulation at this resolution took 

between 15 and 20 minutes to compute on a 2.7 GHz 6 core processor, whereas at 

31,250 elements this was more in the region of 40 minutes. 8 GB of RAM (Random 
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Access Memory) was required for the selected resolution, with the 31,250 elements 

simulations requiring upwards of 20 GB of RAM. 

 

 

 

 

 

 

 

 

 

Fig. 5.1 – Small scale grid independence 

 

Grid independence at the large scale is considered by comparison of the mass 

flow rate predicted by the solver for a set case and geometry over a range of the number 

of nodes. Using the metamodel generated from small scale data where the topography 

amplitude α = 5 µm and the flow phenomena are included the absolute percentage error 

in mass flow rate against the mass flow rate with the largest number of nodes (4,000) 

was compared. The pad length, tilt angle, and load capacity were set to Lp = 22.5 mm, 

φ = 0.05°, and W = 100 kN respectively and the result shown in fig. 5.2. All large scale 

simulations in this chapter use the IVP shooting method outlined in section 4.8.3 for 

large scale pressure solving. 
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Fig. 5.2 – Large scale grid independence 

 

Convergence is achieved as the error in the resulting mass flow rate tends 

toward zero with increasing discretisation. In light of the findings presented in fig. 5.2 a 

conservative 1,000 nodes was chosen as an appropriate compromise between accuracy 

and computational expense. The 1,000 node simulation took ~5 minutes to compute at 

1.5GB of RAM and the 4,000 node simulation took ~20 minutes at 3.5 GB of RAM.  

 

5.2.2 RSM Accuracy 

The response surface approach used to couple the large and small scale 

simulations was validated by assessing the accuracy in predicting Reynolds equation for 

incompressible, isoviscous flow against the smooth surface case and from homogenised 

small scale simulations where topography, compressibility, piezoviscosity, and non-

Newtonian behaviour are present. To achieve this a 200 point DoE for each set of the 

small scale simulations was specified using the permutation GA of Bates, et al. [92]. 

These DoEs were subsequently populated and the corresponding metamodels validated 

using k-fold CV with k = 60. These metamodels were then applied to a large scale 

simulation under typical operating conditions for which the load carrying capacity of 

the bearing was set to W = 100 kN, the pad length and tilt angle were Lp = 22.5 mm and 

φ = 0.05° respectively and the topography amplitudes investigated were α = 0 and 7.5 

µm. 
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Fig. 5.3 – Pressure distributions with and without topography 

 

 

  

 

 

 

 

 

 

Fig. 5.4 – Film thickness distributions with and without topography 

 

From figs. 5.3 and 5.4 it can be seen that the difference between the solution of 

the Reynolds equation and smooth surface pressure and film thickness solutions is 

negligible, demonstrating the accuracy of the multiscale method in modelling the 

smooth surface lubrication problem. In comparison to the smooth surface case it can be 

seen from fig. 5.3 that due to the presence of topography and flow phenomena the 

resulting maximum pressure reached in the bearing is lower and occurs closer toward 

the inlet. This has an impact on the distribution of deformation and as such the shape of 
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the film thickness seen in fig. 5.4. The film thickness is significantly decreased in 

magnitude across the length of the bearing. 

In order to validate the trends presented in figs. 5.3 and 5.4 results generated at 

the large scale through the metamodel are compared against the exact corresponding 

small scale simulations. The mass flow rate as predicted by the large scale solver is 

compared to the corresponding mass flow rate determined by separate simulations at the 

small scale. Three locations along the distributions of pressure gradient, pressure and 

gap: maximum gap (0 mm), maximum pressure (19.75 mm), and minimum gap (22.5 

mm) are selected and the results of this test are tabulated in Table 5.1. 

 

 Large Scale x-Coordinate 

Parameter 0 mm 19.75 mm 22.5 mm 

Pressure gradient, 
dp

dx
 0.4596 MPa/mm 0 MPa/mm -31.74 MPa/mm 

Pressure, p 0 MPa 7.297 MPa 0 MPa 

Gap, g 27.14 µm 22.08 µm 11.14 µm 

% error in mass flow rate -0.261 % -0.099 % 0.833 % 

 

Table 5.1 – Percentage error in mass flow rate inclusive of topography and flow 

phenomena 

 

The absolute percentage error in mass flow rate predicted between the 

metamodel and exact small scale simulations is < 1% for all cases considered. This 

indicates that the metamodel is accurately capturing the effects of topography and flow 

phenomena upon bearing performance. This also validates the choice in size and spread 

of the DoE used. 

 

5.3 Small Scale Solutions 

Contours of pressure at the FSI interface and sliding wall are shown for a 

representative example small scale simulation in figs. 5.5 and 5.6 respectively. Fig. 5.7 

shows, for the same conditions, pressure contours in the film obtained from the smooth 

surface model. The corresponding contours of film thickness for this example 

simulation are given in Fig. 5.8. In this simulation the cell pressure p = 5 MPa, the 
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pressure gradient 
dp

dx
 = -20 MPa/mm, the gap g = 10 µm, the topography amplitude α = 

7.5 µm. 

From figs. 5.5 and 5.6 it is shown that pressure in the small scale domain is not 

constant through the film due to the presence of topography and use of the Navier-

Stokes equations to describe fluid flow. This is in contrast to that predicted by the 

smooth surface model at this scale under the same conditions (fig. 5.7). The mass flow 

rate predicted by the Navier-Stokes solution was found to be 31.23 % greater than that 

obtained from the smooth surface model. The numerical cost of the Navier-Stokes 

solution was 193.0 % of the smooth surface solution. It is also shown in figs. 5.5 and 

5.6 that the jump in pressure over the domain which leads to the homogenised pressure 

gradient is not uniformly distributed. As such the cell pressure and load-per-unit-area at 

this scale differ and subsequently need to be defined separately. The distribution of film 

thickness shown in fig. 5.8 is similar to that of the topography modelled such that as the 

solid spring column moves the shape of topography is maintained, although local 

deformation of topography does occur and is at least an order of magnitude or more 

smaller than average change in film thickness over the domain. The difference in film 

thickness between the upstream and downstream boundaries, which generates the 

difference in area that leads to the near-periodic boundary condition for velocity, is 

small but not negligible. With the result that the velocity field varies slowly from one 

cell to the next remaining consistent with the HMM used to derive the method. 
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Fig. 5.5 – Contours of pressure at the FSI interface in Pa, 

dp

dx
 = -20 MPa/mm, p = 5 MPa, g = 10 μm 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 – Contours of pressure at the sliding wall in Pa, 

dp

dx
 = -20 MPa/mm, p = 5 MPa, g = 10 μm 
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Fig. 5.7 – Contours of pressure in the film obtained from the smooth surface model in 
Pa, 

dp

dx
 = -20 MPa/mm, p = 5 MPa, g = 10 μm 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8 – Contours of film thickness in m, 

dp

dx
 = -20 MPa/mm, p = 5 MPa, g = 10 μm 
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Contours of small scale velocity components (u,v, w) from the same example 

small scale simulation as figs. 5.7 and 5.8 are presented in fig. 5.9 for two planes cut 

through the domain at x = L/4 and x = 3L/4 and in fig. 5.10 for two planes cut through 

the domain at y = L/4 and y = 3L/4. From figs. 5.9 and 5.10 the near-periodic boundary 

condition for velocity can be visualised where the flow entering and exiting the fluid 

domain is almost identical at the boundaries, slight differences in the contours can be 

attributed to deformation of the FSI interface and compressibility of the lubricant. 

Fluid is driven through the domain by entrainment from the moving wall and the 

pressure jump leading to a majority of flow travelling in the x-coordinate direction as 

shown in figs. 5.9.1a, 5.9.2a, 5.10.1a, and 5.10.2a. The flow in the x-direction is slightly 

faster than the speed of the moving wall before reducing to the no-slip condition at the 

FSI interface. Slight perturbation of the x-component velocity field from that which 

would be given by the smooth surface model is exhibited and the magnitude of this is 

linked to the inclusion of y and z velocity components. 

Figs. 5.9.1b, 5.9.2b, 5.9.1c, and 5.9.2c indicate that in the presence of 

topography flow across the thickness of the film, cross-flow, and recirculation are 

observed. The patterns seen in these are non-symmetrical and can be attributed to the 

inclusion of inertial terms in the Navier-Stokes equations (Eqs. (4.13) and (4.14)) used 

to govern flow at this scale. A single local minimum is observed for the y-component of 

velocity in both slices which lies directly within the domain. The centre of this local 

minimum moves from one slice to the next indicating that this flow feature exists 

entirely along the x-direction of the domain. The z-component of velocity indicates a 

region containing a local maximum which exists between the near-periodic boundaries 

of the fluid domain and similarly extends along the x-direction of the domain. 

The y-component of velocity in the x-z plane seen in figs. 5.10.1b and 5.10.2b 

indicates a local minimum which exists across the near-periodic boundaries and another 

within a central region of the domain. However fig. 5.10.2b indicates that two minima 

exist across the boundary whereas fig. 5.10.1b only shows one. Figs. 5.10.1c and 

5.10.2c demonstrate the growth of a maximum and a minimum for the z-component of 

velocity along the y-direction of the fluid domain, the maximum is located within the 

domain and the minimum exists between the near-periodic boundaries. 
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 x = L/4 x = 3L/4 

u 

 

Fig 5.9.1a – u vs. y and z at x = L/4 

 

 

Fig 5.9.2a - u vs. y and z at x = 3L/4 

 

v 

 

Fig 5.9.1b - v vs. y and z at x = L/4 

 

 

Fig 5.9.2b - v vs. y and z at x = 3L/4 

 

w 

 

Fig 5.9.1c - w vs. y and z at x = L/4 

 

 

Fig 5.9.2c - w vs. y and z at x = 3L/4 

 

 

Fig. 5.9 – Contours of small scale velocity components in m/s in the y-z plane, 

 
dp

dx
 = -20 MPa/mm, p = 5 MPa, g = 10 μm 
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 y = L/4 y = 3L/4 

u 

 

Fig 5.10.1a – u vs. x and z at y = L/4 

 

 

Fig 5.10.2a - u vs. x and z at y = 3L/4 

 

v 

 

Fig 5.10.1b - v vs. x and z at y = L/4 

 

 

Fig 5.10.2b - v vs. x and z at y = 3L/4 

 

w 

 

Fig 5.10.1c - w vs. x and z at y = L/4 

 

 

Fig 5.10.2c - w vs. x and z at y = 3L/4 

 

 

Fig. 5.10 – Contours in m/s of small scale velocity components in m/s in the x-z plane, 

 
dp

dx
 = -20 MPa/mm, p = 5 MPa, g = 10 μm 
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Figs. 5.11 and 5.12 show contours of pressure at the FSI interface and film 

thickness for an example simulation where 
dp

dx
 = 10 MPa/mm, p = 5 MPa, and g = 10 

μm. Comparison of these figures with figs. 5.7 and 5.8 allows the influence of pressure 

gradient on flow features to be inspected when pressure and film gap are kept constant.  

Fig. 5.11 shows how pressure is increased over the length of the domain due to 

the positive pressure jump, whereas in fig. 5.7 pressure is reduced from one side of the 

domain to the other. Fig. 5.7 exhibits a sharp increase and decrease in pressure near the 

region which corresponds to the minimum film thickness. The maximum pressure is 

spread over the length of the domain perpendicular to the direction of flow in both 

figures. The maximum pressure is reached by a much steeper gradient in fig. 5.7 than 

fig. 5.11, and in fig. 5.11 there is no sudden drop to a minimum pressure after the 

maximum. This indicates that a positive pressure gradient has the effect of smoothing 

the pressure distribution over the domain. Both figures also represent a plateau of 

pressure near the region of maximum film thickness where the contour lines are sparse 

in these regions. The film thickness distributions presented in figs. 5.8 and 5.12 are 

almost identical, this indicates that the magnitude of the pressure gradient has a 

negligible effect on the deformation of the small scale simulations.  

 Velocity contours are presented for the same conditions as investigated above in 

figs. 5.13 and 5.14 and from which clear differences in the flow structure can be seen to 

that observed in figs. 5.9 and 5.10. Figs. 5.13.1a, 5.13.2a, 5.14.1a, and 5.14.2a all 

demonstrate that the x-component of velocity is dominated by entrainment from the 

moving wall and that it does not increase beyond this speed, contrasting the 

observations made from figs. 5.9 and 5.10. In these figures negative flow velocities 

travelling in the opposing direction to the moving wall motion is observed, this was not 

seen when a negative pressure gradient was applied. 

 Figs. 5.13.1b, 5.13.2b, 5.13.1c, and 5.13.2c illustrate that local maxima and 

minima of the y and z velocity components move significantly along the x-direction of 

the domain, which is in direct contrast to that shown in fig. 5.9. However figs. 5.14.1b, 

5.14.2b, 5.14.1c, and 5.14.2c show that these flow features do not move far along the y-

direction of the domain, which is consistent with that presented in fig. 5.10. In general, 

for the conditions investigated the magnitude of local maxima and minima for the y and 

z velocity components are smaller when a positive pressure gradient is applied over the 

domain than when a negative gradient is applied. 
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Fig. 5.11 – Contours of pressure at the FSI interface in Pa, 

dp

dx
 = 10 MPa/mm, p = 5 MPa, g = 10 μm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 – Contours of film thickness in m, 

dp

dx
 = 10 MPa/mm, p = 5 MPa, g = 10 μm 
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 x = L/4 x = 3L/4 

u 

 

Fig 5.13.1a – u vs. y and z at x = L/4 

 

 

Fig 5.13.2a - u vs. y and z at x = 3L/4 

 

v 

 

Fig 5.13.1b - v vs. y and z at x = L/4 

 

 

Fig 5.13.2b - v vs. y and z at x = 3L/4 

 

w 

 

Fig 5.13.1c - w vs. y and z at x = L/4 

 

 

Fig 5.13.2c - w vs. y and z at x = 3L/4 

 

 

Fig. 5.13 – Contours of small scale velocity components in m/s in the y-z plane, 

 
dp

dx
 = 10 MPa/mm, p = 5 MPa, g = 10 μm 
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 y = L/4 y = 3L/4 

u 

 

Fig 5.14.1a – u vs. x and z at y = L/4 

 

 

Fig 5.14.2a - u vs. x and z at y = 3L/4 

 

v 

 

Fig 5.14.1b - v vs. x and z at y = L/4 

 

 

Fig 5.14.2b - v vs. x and z at y = 3L/4 

 

w 

 

Fig 5.14.1c - w vs. x and z at y = L/4 

 

 

Fig 5.14.2c - w vs. x and z at y = 3L/4 

 

 

Fig. 5.14 – Contours of small scale velocity components in m/s in the x-z plane, 

 
dp

dx
 = 10 MPa/mm, p = 5 MPa, g = 10 μm 
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 Figs. 5.15 – 5.18 show pressure, film thickness and velocity contours of a 

simulation where 
dp

dx
 = 0 MPa/mm, p = 0 MPa, g = 10 μm and figs. 5.19 – 5.22 show the 

same but for a different simulation where 
dp

dx
 = 10 MPa/mm, p = 0 MPa, g = 10 μm. 

These figures facilitate the investigation of the influence of pressure on the small scale 

simulations.  

 Figs. 5.15 and 5.19 demonstrate for both the conditions investigated that the 

profiles of pressure over the domain are similar but differ in magnitude by the constraint 

pressures specified. This leads to the conclusion that the constraint pressure does not 

have a large influence on the pressure distribution, contrasting the conclusion drawn 

from the effect of the pressure gradient. Figs. 5.16 and 5.20 support this conclusion 

because the film thickness distributions are also almost identical but shifted in 

magnitude by the amount of deformation caused by the constraint pressure, for the 

conditions investigated the amount by which the film thicknesses differ is 

approximately 5 μm. 

 Similar flow features are seen for both conditions investigated, as presented in 

figs. 5.17, 5.18, 5.21, and 5.22. For each velocity component and domain slice the 

contour plots presented show small differences at the two conditions.  

The x-component of velocity across figs. 5.17, 5.18, 5.21, and 5.22 demonstrates 

that entrainment from the moving wall dominates the flow. Due to a zero pressure jump 

being applied over the domain the fluid is increased beyond the moving wall speed or 

driven to a value less than provided by the no-slip condition at the FSI interface. The y 

and z components of velocity presented across figs. 5.17, 5.18, 5.21, and 5.22 show that 

in all the slices taken very similar locations and magnitudes of local maxima and 

minima are given by the two sets of conditions. The differences in these flow features 

are not directly scalable by the difference in film thickness between the two conditions, 

indicating the non-linearity in the velocity field due to the presence of topography. 

Despite the difference in pressure and subsequently film thickness for the two 

conditions it is interesting that there is very little difference in the flow. This indicates 

that pressure has little influence in determining the flow in the domain. However the 

difference in film thickness does lead to deviation between the two sets of results and if 

this was increased further then a larger difference would be observed. 
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Fig. 5.15 – Contours of pressure at the FSI interface in Pa, 

dp

dx
 = 0 MPa/mm, p = 0 MPa, g = 10 μm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.16 – Contours of film thickness in m, 

dp

dx
 = 0 MPa/mm, p = 0 MPa, g = 10 μm 

 



97 

 

 

 

 x = L/4 x = 3L/4 

u 

 

Fig 5.17.1a – u vs. y and z at x = L/4 

 

 

Fig 5.17.2a - u vs. y and z at x = 3L/4 

 

v 

 

Fig 5.17.1b - v vs. y and z at x = L/4 

 

 

Fig 5.17.2b - v vs. y and z at x = 3L/4 

 

w 

 

Fig 5.17.1c - w vs. y and z at x = L/4 

 

 

Fig 5.17.2c - w vs. y and z at x = 3L/4 

 

 

Fig. 5.17 – Contours of small scale velocity components in m/s in the y-z plane, 

 
dp

dx
 = 0 MPa/mm, p = 0 MPa, g = 10 μm 
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 y = L/4 y = 3L/4 

u 

 

Fig 5.18.1a – u vs. x and z at y = L/4 

 

 

Fig 5.18.2a - u vs. x and z at y = 3L/4 

 

v 

 

Fig 5.18.1b - v vs. x and z at y = L/4 

 

 

Fig 5.18.2b - v vs. x and z at y = 3L/4 

 

w 

 

Fig 5.18.1c - w vs. x and z at y = L/4 

 

 

Fig 5.18.2c - w vs. x and z at y = 3L/4 

 

 

Fig. 5.18 – Contours of small scale velocity components in m/s in the x-z plane, 

 
dp

dx
 = 0 MPa/mm, p = 0 MPa, g = 10 μm 
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Fig. 5.19 – Contours of pressure at the FSI interface in Pa, 

dp

dx
 = 10 MPa/mm, p = 10 MPa, g = 10 μm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.20 – Contours of film thickness in m, 

dp

dx
 = 10 MPa/mm, p = 10 MPa, g = 10 μm 
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 x = L/4 x = 3L/4 

u 

 

Fig 5.21.1a – u vs. y and z at x = L/4 

 

 

Fig 5.21.2a - u vs. y and z at x = 3L/4 

 

v 

 

Fig 5.21.1b - v vs. y and z at x = L/4 

 

 

Fig 5.21.2b - v vs. y and z at x = 3L/4 

 

w 

 

Fig 5.21.1c - w vs. y and z at x = L/4 

 

 

Fig 5.21.2c - w vs. y and z at x = 3L/4 

 

 

Fig. 5.21 – Contours of small scale velocity components in m/s in the y-z plane, 

 
dp

dx
 = 10 MPa/mm, p = 10 MPa, g = 10 μm 
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 y = L/4 y = 3L/4 

u 

 

Fig 5.22.1a – u vs. x and z at y = L/4 

 

 

Fig 5.22.2a - u vs. x and z at y = 3L/4 

 

v 

 

Fig 5.22.1b - v vs. x and z at y = L/4 

 

 

Fig 5.22.2b - v vs. x and z at y = 3L/4 

 

w 

 

Fig 5.22.1c - w vs. x and z at y = L/4 

 

 

Fig 5.22.2c - w vs. x and z at y = 3L/4 

 

 

Fig. 5.22 – Contours of small scale velocity components in m/s in the x-z plane, 

 
dp

dx
 = 10 MPa/mm, p = 10 MPa, g = 10 μm 
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Figs. 5.23 – 5.26 show pressure, film thickness and velocity contours of a 

simulation where 
dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 5 μm and figs. 5.27 – 5.30 show the 

same but for a simulation where 
dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 30 μm. These figures 

facilitate inspection of the influence of film thickness on the small scale simulations. 

 Pressure contours for the two conditions presented in figs. 5.23 and 5.27 show 

similar trends whereby the maximum pressure is located near the minimum film 

thickness and that the minimum pressure is located near to this region. However for the 

small film thickness simulation in fig. 5.23 the steepness in the pressure distribution and 

magnitude of the pressure maximum are larger than that shown for the larger film 

thickness in fig. 5.27. Figs. 5.24 and 5.28 illustrate that the profile of film thickness over 

the domain are consistent at the two conditions investigated, meaning that the 

topography is not altered between the two simulations. However the film thickness 

differs in magnitude by the amount specified for the two conditions and that which 

deformation dictates. 

 Velocity contours for the two simulations are presented in figs. 5.25, 5.26, 5.29, 

and 5.30. Investigating the x-component of velocity indicates that entrainment of the 

moving wall dominates such that most of the fluid travels parallel to it. Due to the 

presence of topography and both y and z flow components a slight deviation of the x-

component of velocity to that would be predicted from the smooth surface model is 

observed. 

 The y and z velocity components observed in the y-z plane from figs. 5.25 and 

5.29 show that some similarities exist in the flow features between the two conditions. 

The z component of velocity has a local maximum which exists at the near-periodic 

boundaries and can be seen across all figs. 5.25.1c, 5.25.2c, 5.29.1c, and 5.29.2c. The y 

component is less consistent where the centre of the observed local minimum moves 

between figs. 5.25.1b and 5.25.2b and in figs. 5.29.1b and 5.29.2b the local maxima and 

minima seen are smaller in magnitude but more of them exist. Inspection of figs. 5.26 

and 5.30 shows that for the y and z velocity components in the x-z plane there exists a 

consistent set of flow features observed under both conditions. More complexity in the 

flow field is observed where the film thickness is larger, however the magnitude of 

these flow features is smaller than for the small film thickness case. Overall the effect of 

increasing film thickness on the flow field is to reduce the strength of the cross-flow and 

flow across the film, as well as introducing more local maxima and minima. 
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Fig. 5.23 – Contours of pressure at the FSI interface in Pa, 

dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 5 μm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.24 – Contours of film thickness in m, 

dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 5 μm 
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 x = L/4 x = 3L/4 

u 

 

Fig 5.25.1a – u vs. y and z at x = L/4 

 

 

Fig 5.25.2a - u vs. y and z at x = 3L/4 

 

v 

 

Fig 5.25.1b - v vs. y and z at x = L/4 

 

 

Fig 5.25.2b - v vs. y and z at x = 3L/4 

 

w 

 

Fig 5.25.1c - w vs. y and z at x = L/4 

 

 

Fig 5.25.2c - w vs. y and z at x = 3L/4 

 

 

Fig. 5.25 – Contours of small scale velocity components in m/s in the y-z plane, 

 
dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 5 μm 

 

 

 



105 

 

 

 

 y = L/4 y = 3L/4 

u 

 

Fig 5.26.1a – u vs. x and z at y = L/4 

 

 

Fig 5.26.2a - u vs. x and z at y = 3L/4 

 

v 

 

Fig 5.26.1b - v vs. x and z at y = L/4 

 

 

Fig 5.26.2b - v vs. x and z at y = 3L/4 

 

w 

 

Fig 5.26.1c - w vs. x and z at y = L/4 

 

 

Fig 5.26.2c - w vs. x and z at y = 3L/4 

 

 

Fig. 5.26 – Contours of small scale velocity components in m/s in the x-z plane, 

 
dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 5 μm 
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Fig. 5.27 – Contours of pressure at the FSI interface in Pa, 

dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 30 μm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.28 – Contours of film thickness in m, 

dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 30 μm 
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 x = L/4 x = 3L/4 

u 

 

Fig 5.29.1a – u vs. y and z at x = L/4 

 

 

Fig 5.29.2a - u vs. y and z at x = 3L/4 

 

v 

 

Fig 5.29.1b - v vs. y and z at x = L/4 

 

 

Fig 5.29.2b - v vs. y and z at x = 3L/4 

 

w 

 

Fig 5.29.1c - w vs. y and z at x = L/4 

 

 

Fig 5.29.2c - w vs. y and z at x = 3L/4 

 

 

Fig. 5.29 – Contours of small scale velocity components in m/s the y-z plane, 

 
dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 30 μm 
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 y = L/4 y = 3L/4 

u 

 

Fig 5.30.1a – u vs. x and z at y = L/4 

 

 

Fig 5.30.2a - u vs. x and z at y = 3L/4 

 

v 

 

Fig 5.30.1b - v vs. x and z at y = L/4 

 

 

Fig 5.30.2b - v vs. x and z at y = 3L/4 

 

w 

 

Fig 5.30.1c - w vs. x and z at y = L/4 

 

 

Fig 5.30.2c - w vs. x and z at y = 3L/4 

 

 

Fig. 5.30 – Contours of small scale velocity components in m/s in the x-z plane, 

 
dp

dx
 = 0 MPa/mm, p = 5 MPa, g = 30 μm 
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5.4 Large Scale Solutions 

In order to examine the tribological performance of the bearing, a range of pad 

lengths and tilt angles were specified and the resulting coefficients of friction and 

minimum film thicknesses examined under fixed load. With respect to the multiscale 

method developed and bearing performance two things are of particular interest: (i) the 

effect of fluid flow phenomena (including compressibility, piezoviscosity, and non-

Newtonian behaviour) in conjunction with topography and (ii) the effect of the 

topography amplitude. Also analysed in this section is the micro-EHL effect of 

topography on the small scale minimum film thickness. 

 

5.4.1 Effect of Fluid Flow Phenomena 

To examine the influence of fluid flow phenomena on the tribological 

performance of the bearing and to show the range of solutions possible using the two-

scale method, three cases are considered: (i) incompressible, isoviscous, and Newtonian 

flow; (ii) case (i) with the addition of of compressibility and piezoviscosity; (iii) case 

(ii) with the addition of non-Newtonian (shear-thinning) behaviour. Two loads were 

specified W = 75 kN and 100 kN, in the low load case the pad length Lp ∈ [20, 22.5] 

mm and for the high load case Lp ∈ [22.5, 25] mm. The tilt angle in both cases φ ∈ 

[0.05, 0.06]˚. The 100 kN result is shown in fig. 5.31 and the 75 kN result is presented 

in fig. 5.32. 

For a bearing load capacity of W = 100 kN, pad length Lp = 22.5 mm, and tilt 

angle φ = 0.05˚, the percentage difference in mass flow rate (q), coefficient of friction 

(μ), and minimum film thickness (gb) produced from the two-scale method compared 

with that obtained from the smooth surface model are tabulated in Table 5.2. 
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Case % difference in 𝐪 % difference in 𝛍 % difference in 𝐠𝐛 

i -7.44 % 8.23 % -12.21 % 

ii -5.79 % 16.43 % -9.99 % 

iii -5.79 % 16.44 % -10.01 % 

 

Table 5.2 – Percentage difference in bearing performance from the two-scale method 

with the smooth surface model: Case (i) – incompressible, isoviscous, α = 5 µm, W =

 100 kN; Case (ii) – compressible, piezoviscous; Case (iii) – non-Newtonian (shear-

thinning) behaviour 

 

Figs. 5.31 and 5.32 demonstrate that, for the range of solutions generated, as the 

bearing pad length and tilt angle are increased the coefficient of friction and the 

minimum film thickness monotonically increase for both load cases. Table 5.2 shows 

that the two-scale method inclusive of topography predicts a lower mass flow rate and 

minimum film thickness than produced from the smooth surface model, whereas the 

friction coefficient is increased. Using the information available from table 5.2 and figs. 

5.31 and 5.32 it can be seen that as compressibility and piezoviscosity are included in 

(ii) the magnitude of the mass flow rate, coefficient of friction, and minimum film 

thickness are, for a given pad length and tilt angle, increased from (i). The inclusion of 

non-Newtonian (shear-thinning) behaviour in (iii) has a negligible effect on the 

response when compared to (ii), where the mass flow rate, coefficient of friction, and 

minimum film thickness remain unchanged.  

Closer inspection of the small scale data used to generate Table 5.2 showed that 

the percentage difference in mass flow rate over all simulations between (i) and (ii) 

varied from -169.4 to 188.9 %, and between (ii) and (iii) from -0.3 to 3.1 %. 

Demonstrating that in combination with topography the effects of fluid flow phenomena 

(compressibility, piezoviscosity, and non-Newtonian (shear-thinning) behaviour) should 

not be neglected. Much more significant effects due to these fluid flow phenomena 

would be experienced at higher pressures and shear rates than those modelled in this 

study. Overall, the non-linear influence of fluid flow phenomena on bearing 

performance has been successfully captured by the two-scale method and the 

metamodels representation of the small scale simulations. 
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Case μ gb (µm) 

i 

 

Fig. 5.31.1a – μ vs. Lp  and φ for Case (i) 

 

Fig. 5.31.2a – gb vs. Lp  and φ for Case (i) 

ii 

 

Fig. 5.31.1b – μ vs. Lp  and φ for Case (ii) 

 

Fig. 5.31.2b – gb vs. Lp  and φ for Case (ii) 

iii 

 

Fig. 5.31.1c – μ vs. Lp  and φ for Case (iii) 

 

Fig. 5.31.2c – gb vs. Lp  and φ for Case (iii) 

 

Fig. 5.31 – Effect of fluid flow phenomena on bearing performance: Case (i) – 

incompressible, isoviscous, α = 5 µm, W = 100 kN; Case (ii) – compressible, 

piezoviscous; Case (iii) – non-Newtonian (shear-thinning) behaviour 
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Case μ gb (µm) 

i 

 

Fig. 5.32.1a – μ vs. Lp  and φ for Case (i) 

 

Fig. 5.32.2a – gb vs. Lp  and φ for Case (i) 

ii 

 

Fig. 5.32.1b – μ vs. Lp  and φ for Case (ii) 
 Fig. 5.32.2b – gb vs. Lp  and φ for Case (ii) 

iii 

 

Fig. 5.32.1c – μ vs. Lp  and φ for Case (iii) 

 

Fig. 5.32.2c – gb vs. Lp  and φ for Case (iii) 

 

Fig. 5.32 – Effect of fluid flow phenomena on bearing performance: Case (i) – 

incompressible, isoviscous, α = 5 µm, W = 75 kN; Case (ii) – compressible, 

piezoviscous; Case (iii) – non-Newtonian (shear-thinning) behaviour 
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5.4.2 Effect of Topography Amplitude 

By incrementing the topography amplitude in steps of 2.5 µm from α = 0 µm to 

7.5 µm the change in performance of the bearing as the size of topography increases 

was investigated. For each value of the topography amplitude the small scale problem 

was solved and the metamodels constructed and validated. In order to illustrate the 

range of solutions that the metamodels can provide, parametric sweeps over pad length 

and tilt angle were performed for each load and topography amplitude investigated. 

Two loads were specified W = 75 kN and 100 kN, in the low load case the pad length 

Lp ∈ [20, 22.5] mm and for the high load case Lp ∈ [22.5, 25] mm. The tilt angle in 

both cases φ ∈ [0.05, 0.06]˚. The 100 kN result is presented in figs. 5.33 and 5.34, with 

the 75 kN result shown in figs. 5.35 and 5.36. Figs. 5.33 and 5.35 are contour plots 

showing the dependency of μ and gb with Lp and φ over a range of α, whereas figs. 

5.34 and 5.36 demonstrate the same information but instead show the influence of α on 

μ and gb over a range of Lp and φ. 

It is shown in figs. 5.33, 5.34, 5.35, and 5.36 that increasing the topography 

amplitude tends to increase the magnitude of the coefficient of friction and reduce the 

magnitude of the minimum film thickness. Although for a topography amplitude of α = 

7.5 µm and load capacity of W = 100 kN the minimum film thickness remains almost 

constant for low values of pad length and tilt angle. For the topography amplitudes 

investigated, as both pad length and tilt angle are increased the coefficient of friction 

monotonically increases and the minimum film thickness monotonically decreases. It is 

also observed that as the topography amplitude is increased that the gradients of the 

responses with pad length and tilt angle are reduced, particularly in the region of low 

pad length and tilt angle. These large scale effects can be attributed to the flow features 

seen in the small scale simulations, where the presence of topography leads to a 

significant deviation from the smooth surface model in the pressure gradient – mass 

flow rate relationship derived.  
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α  
(µm) 

μ gb (µm) 

0 

 

Fig. 5.33.1a – μ vs. Lp  and φ for α = 0 µm 

 

Fig. 5.33.2a – gb vs. Lp  and φ for α = 0 µm 

2.5 

 

Fig. 5.33.1b – μ vs. Lp  and φ for α = 2.5 µm 

 

Fig. 5.33.2b – gb vs. Lp  and φ for α = 2.5 

µm 

5 

 

See fig. 5.31.1c 

 

Fig. 5.33.1c – μ vs. Lp  and φ for α = 5 µm 

 

See fig. 5.31.2c 

 

Fig. 5.33.2c – gb vs. Lp  and φ for α = 5 µm 

7.5 

 

Fig. 5.33.1d – μ vs. Lp  and φ for α = 7.5 µm 

 

Fig. 5.33.2d – gb vs. Lp  and φ for α = 7.5 

µm 

 

Fig. 5.33 – Contour plots showing the effect of topography amplitude on bearing 

performance, W = 100 kN 
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φ μ gb (µm) 

0.05°  

 

Fig. 5.34.1a – μ vs. α for φ = 0.05°  

 

Fig. 5.34.2a – gb vs. α for φ = 0.05°  

0.055° 

 

Fig. 5.34.1b – μ vs. α for φ = 0.055°  

 

Fig. 5.34.2b – gb vs. α for φ = 0.055°  

0.06°  

 

Fig. 5.34.1c – μ vs. α for φ = 0.06°  

 

Fig. 5.34.2c – gb vs. α for φ = 0.06°  

 

Fig. 5.34 – Plot of the effect of topography amplitude on bearing performance, W = 100 

kN 
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α  

(µm) 

μ gb (µm) 

0 

 

Fig. 5.35.1a – μ vs. Lp  and φ for α = 0 µm 

 

Fig. 5.35.2a – gb vs. Lp  and φ for α = 0 µm 

2.5 

 

Fig. 5.35.1b – μ vs. Lp  and φ for α = 2.5 µm 

 

Fig. 5.35.2b – gb vs. Lp  and φ for α = 2.5 

µm 

5 

 

See fig. 5.32.1c 

 

Fig. 5.35.1c – μ vs. Lp  and φ for α = 5 µm 

 

See fig. 5.32.2c 

 

Fig. 5.35.2c – gb vs. Lp  and φ for α = 5 µm 

7.5 

 

Fig. 5.35.1d – μ vs. Lp  and φ for α = 7.5 µm 

 

Fig. 5.35.2d – gb vs. Lp  and φ for α = 7.5 

µm 

 

Fig. 5.35 – Contour plots showing the effect of topography amplitude on bearing 

performance, W = 75 kN 
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φ μ gb (µm) 

0.05°  

 

Fig. 5.36.1a – μ vs. α for φ = 0.05°  

 

Fig. 5.36.2a – gb vs. α for φ = 0.05°  

0.055°  

 

Fig. 5.36.1b – μ vs. α for φ = 0.055°  

 

Fig. 5.36.2b – gb vs. α for φ = 0.055°  

0.06°  

 

Fig. 5.36.1c – μ vs. α for φ = 0.06°  

 

Fig. 5.36.2c – gb vs. α for φ = 0.06°  

 

Fig. 5.36 – Plot of the effect of topography amplitude on bearing performance, W = 75 

kN 
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 Figs. 5.37 – 5.42 illustrate over a range of topography amplitudes the pressure, 

pressure maxima, pressure gradient, load-per-unit-area, film gap, and shear stress 

respectively for a set of example large scale simulations where the pad length Lp = 

23.75 mm, the tilt angle φ = 0.055˚, and the load capacity W = 100 kN. Figs. 5.43 – 

5.48 correspond to the same data displayed figs. 5.37 – 5.42 but for a set of example 

simulations where the pad length Lp = 21.25 mm, the tilt angle φ = 0.055˚, and the load 

capacity W = 75 kN. Table 5.3 and 5.4 provide the mass flow rates for the 100 kN and 

75 kN simulations respectively. 

 Figs. 5.37 and 5.43 show for both load cases that over a range of topography 

amplitudes the pressure distributions in the bearing are very similar. Closer inspection 

of the maximum pressure given by figs. 5.38 and 5.44 indicates that as the topography 

amplitude is increased there is a reduction in the maximum pressure and that this occurs 

closer toward the inlet of the bearing, coinciding with the evidence drawn from fig. 5.3. 

The effect of additional fluid flow phenomena in the parallel plate case (where α = 0) 

leads to an increase in the maximum pressure achieved. The differences in pressure seen 

over a range of topography amplitudes in figs. 5.37 and 5.43 are obtained through 

integration of the pressure gradient distributions displayed in figs. 5.39 and 5.45 

respectively. These figures show that the pressure gradients generated by the 

metamodels under constant load are very close together for each of the topography 

amplitudes investigated. Figs. 5.40 and 5.46 indicate that the load per unit area and 

pressure in the bearing are almost identical where the difference between these two 

distributions is orders at least 3 orders of magnitude smaller than that of pressure. 

  Investigating figs. 5.41 and 5.47 leads to the conclusion that as the topography 

amplitude is increased the film thickness of the bearing is reduced, this matches the 

evidence observed in figs. 5.33 – 5.36 for the minimum film thickness. Similar to 

pressure in the parallel plate case, the effect of additional fluid flow phenomena is to 

increase the film thickness from that obtained from incompressible, isoviscous smooth 

surface model. 

 An increase in the shear stress distribution is observed in figs. 5.42 and 5.48 as 

the topography amplitude is increased and as additional fluid flow phenomena are 

included. This increase explains why the coefficient of friction for the bearing increases 

with topography amplitude and fluid flow phenomena as seen in figs. 5.31 – 5.36. 
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 Tables 5.3 and 5.4 demonstrate that at constant load the mass flow rate through 

the bearing is reduced with increasing topography amplitude, and that for the parallel 

plate case additional flow phenomena causes a small increase in the mass flow rate. 

 

 

 

 

 

 

 

 

 

Fig. 5.37 – Pressure distributions from the two-scale method, W = 100 kN 

 

 

 

 

 

 

 

 

 

Fig. 5.38 – Close-up of maximum pressures from the two-scale method, W = 100 kN 
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Fig. 5.39 – Pressure gradient distributions from the two-scale method, W = 100 kN 

 

 

 

 

 

 

 

 

 

Fig. 5.40 – Load per unit area distributions from the two-scale method, W = 100 kN 
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Fig. 5.41 – Film thickness distributions from the two-scale method, W = 100 kN 

 

 

 

 

 

 

 

 

 

 

Fig. 5.42 – Shear stress distributions from the two-scale method, W = 100 kN 
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Case Mass flow rate, q 

Reynolds 0.01520 kg/s 

α = 0 μm 0.01552 kg/s 

α = 2.5 μm 0.01516 kg/s 

α = 5 μm 0.01430 kg/s 

α = 7.5 μm 0.01251 kg/s 

 

Table 5.3 – Mass flow rates from the two-scale method, W = 100 kN 

 

 

 

 

 

 

 

 

 

 

Fig. 5.43 – Pressure distributions from the two-scale method, W = 75 kN 
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Fig. 5.44 – Close-up of maximum pressures from the two-scale method, W = 75 kN 

 

 

 

 

 

 

 

 

 

 

Fig. 5.45 – Pressure gradient distributions from the two-scale method, W = 75 kN 
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Fig. 5.46 – Load per unit area distributions from the two-scale method, W = 75 kN 

 

 

 

 

 

 

 

 

 

 

Fig. 5.47 – Film gap distributions from the two-scale method, W = 75 kN 
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Fig. 5.48 – Shear stress distributions from the two-scale method, W = 75 kN 

 

 

 

Case Mass flow rate, q 

Reynolds 0.01534 kg/s 

α = 0 μm 0.01564 kg/s 

α = 2.5 μm 0.01531 kg/s 

α = 5 μm 0.01443 kg/s 

α = 7.5 μm 0.01259 kg/s 

 

Table 5.4 – Mass flow rates from the two-scale method, W = 75 kN 

 

5.4.4 Micro-EHL Effect on Minimum Film Thickness 

To investigate the effect of micro-EHL on the predicted minimum film thickness 

by the two-scale method the parameter r is introduced. This parameter, which was 

originally defined using the two-scale method for EHL de Boer, et al. [3], allows for the 

numerical assessment of the influence of micro-EHL. 
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r =
smin − (g + k1p)

g + k1p
× 100% (5.1) 

 

Eq. (5.1) measures the percentage difference between the homogenised small 

scale minimum film thickness obtained with topography and the deformed film 

thickness predicted at the small scale without topography. r is therefore representative 

of the micro-EHL (separate from the large scale EHL) effect on film thickness in 

comparison to that which would be obtained from the smooth surface model alone. Fig. 

5.49 is a plot of r over the x-coordinate direction for a tilted-pad bearing of pad length 

Lp = 22.5 mm, tilt angle φ = 0.05˚, load capacity W = 100 kN and the topography 

amplitudes investigated are α = 2.5 µm, 5 µm, and 7.5 µm. 

The micro-EHL response on minimum film thickness in fig. 5.49 illustrates a 

percentage difference in the range of -0.01 to -0.16 % between that predicted by the 

smooth surface model for a smooth surface and from the two-scale method inclusive of 

topography. This indicates that topography has deformed by an amount representative 

of the local stiffness and that the trends seen are due to the effects of flow phenomena 

and the presence of topography. The magnitude of r suggests that topography deforms 

locally by an amount at least an order of magnitude or more smaller than that 

representative of the local stiffness, coinciding with the evidence drawn from fig. 5.8. 

The minimum film thickness achieved at the small scale is less than that achieved from 

column deformation of a smooth surface. Increasing the topography amplitude tends to 

generate a larger magnitude of r. The relationship between r and the pressure, pressure 

gradient, and film thickness is complex with some dependency of the parameters 

observed. As the film thickness is decreased and pressure increased along the bearing 

length r is reduced. A peak in r exists at the location of maximum pressure. Toward the 

outlet of the bearing where there is a reduction in both pressure and film thickness there 

is also a corresponding drop in r. 
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Fig. 5.49 – Micro-EHL effect on minimum film thickness 

 

5.5 Summary 

Based on the HMM a new two-scale method for EHL and micro-EHL analyses 

was developed and applied to tilted-pad bearings with three-dimensional topography. 

Elastic deformation together with the Navier-Stokes equations inclusive of 

compressibility, piezoviscosity, and non-Newtonian (shear-thinning) behaviour describe 

the small scale problem. A pressure gradient – mass flow rate relationship was used to 

couple the two scales. By decomposing the stiffness matrix into diagonal and non-

diagonal terms elastic deformation of the bearing surface was addressed at both the 

large and small scales. An inverse spring method was introduced in order to model any 

stiffness at the large scale whilst maintaining consistency with the assumptions of the 

multiscale theory at the small scale. Small scale solutions were homogenised and 

through interpolation used at the large scale. A MLS metamodel was used to represent 

the small scale solutions as a root to interpolation, this process of metamodel building 

was validated using k-fold CV. 

 Grid independence and metamodel validation showed that the small scale effects 

were accurately captured and described at the large scale. Results using this method 

agreed well with the smooth surface model without topography. Contours of small scale 

velocity components illustrated that non-symmetrical fluid flow patterns not described 

by the smooth surface model occur in the presence of topography and that 

homogenisation of the small scale problem captures micro-EHL effects not described at 
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the large scale. Analysis at the large scale showed that compressibility and 

piezoviscosity had a far more significant effect on bearing performance than non-

Newtonian behaviour, although more significant effects would be observed at higher 

pressures than those investigated. For a given pad length and tilt angle it was shown at 

constant load that the inclusion of topography produced a lower maximum pressure 

which was located closer towards the inlet and the film thickness was reduced. 

Increasing topography amplitude at constant load over a range of pad lengths and tilt 

angles leads to an increase in the friction coefficient and reduction in minimum film 

thickness. Also the gradients at which both responses increased with pad length and tilt 

angle were reduced. The micro-EHL effect on minimum film thickness was quantified 

by introducing the parameter r. It was shown that the micro-EHL effect on film 

thickness was a non-linear response over the length of the bearing and that it was at 

least an order of magnitude or more smaller than that representing local stiffness. 
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Chapter 6 – Two-Scale Elastohydrodynamic Lubrication: Metamodelling and 

Optimisation of Topography 

 

6.1 Introduction 

 In this chapter the two-scale method is applied to tilted-pad bearings with a 

parameterised three-dimensional topography. By using metamodelling techniques, 

optimisation is conducted and the topography identified which minimises the coefficient 

of friction. The chapter is divided into three subsections: metamodel building and 

validation, optimisation of topography, and dissemination of optimal design.  

 

6.2 Metamodel Building and Validation 

 Building the metamodel required to couple the scales of the two-scale method 

begins with generating an effective space-filling DoE, this is subsequently populated by 

small scale simulations and cross validation performed on the resulting approximations, 

assessment of the accuracy of the metamodels at the large scale can then be obtained.  

 

6.2.1 Metamodel Building 

The OLHC DoE was created using the GA code as provided by Bates, et al. 

[92]. 1000 DoE points were specified and 106 iterations of the GA performed. This size 

of DoE and number of GA iterations were chosen as to ensure that the design space was 

well populated and the designs well spread, resulting in a metamodel approximation 

which is accurate in all regions. The DoE building phase took ~13 days of 

computational time to complete due to the large number of iterations needed by the GA 

to minimise the distances between all points. Fig. 6.1 shows the frequency histogram of 

minimum normalised distance of each point to another point in the DoE. 
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Fig. 6.1 – Frequency histogram of the minimum normalised distance between DoE 

points 

 

The range of minimum distances shown in fig. 6.1 illustrates that the DoE is 

relatively well conditioned as the frequency distribution is close to normal, indicating 

that the OLHC has reduced the spread of the minimum distance to other points across 

all points in the domain. An outlier does exist and there is a slight skew in the 

distribution toward larger distances between points. Running the GA for a larger 

number of iterations would eventually solve these issues, however this was not practical 

to implement as the process of DoE building already took a long period of time and 

little change in the distribution was seen after the first 2 days of calculation. The 

selected DoE shown in fig. 6.1 is a compromise between numerical accuracy and 

computational expense.  

 

6.2.2 Cross Validation 

 Using the DoE created in section 6.2.1 the small scale simulations required were 

set-up and computed. The process of obtaining all 1000 points took ~11 days of 

calculation. Cross validation for the MLS pressure gradient – mass flow rate, load per 

unit area – mass flow rate, and shear stress – mass flow rate metamodels were 

performed using both k-fold CV and LOOCV on the DoE data once all of the small 
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scale simulations were obtained. The result of the cross validation process is given in 

fig. 6.2. 

 

Fig. 6.2 – Cross validation response for the MLS pressure gradient – mass flow rate 

metamodel building 

 

 

Fig. 6.3 – Cross validation response for the MLS load per unit area – mass flow rate 

metamodel building 
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Fig. 6.4 – Cross validation response for the MLS shear stress – mass flow rate 

metamodel building 

 

 Fig. 6.2 indicates that the optimal closeness of fit for the pressure gradient – 

mass flow rate relationship from both k-fold CV (with k = 120) and LOOCV are very 

close together, k-fold CV gives θ = 39.09 and LOOCV gives θ = 40.13. This shows 

that both cross validation methods can be used to perform accurate analysis of the 

closeness of fit response and that the best closeness of fit for this DoE data is 

approximately 40. Similar conclusions can be drawn from figs. 6.3 and 6.4 for the load 

per unit area – mass flow rate and shear stress – mass flow rate relationships, in these 

cases the optimal closeness of fits were found to be approximately 24 and 38 

respectively. 

Each LOOCV procedure took less than 5 minutes to complete whereas the k-

fold CV procedures took more than 2 hours to run, this is because the k-fold CV method 

requires many more calls to the MLS assessment function than LOOCV and it is 

therefore recommended that LOOCV should be used for CV procedures of this type in 

the future. It is also shown in figs. 6.2, 6.3, and 6.4 that the LOOCV error is less than 

that given by k-fold CV. Because the building DoE used in LOOCV is larger than the 

building DoE used for k-fold CV it is likely that the approximation generated in regions 

where the validation points lie will be closer to building points and therefore be more 

accurately predicted.  
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6.2.3 RSM Accuracy 

 Pressure and film thickness distributions for three different values of the 

longitudinal/transverse ratio (ψ = 0.25,0.5,and 0.75) are given in figs. 6.5 and 6.6 

respectively. These distributions are generated by solving the large scale problem using 

the MLS metamodel created in sections 6.2.1 and 6.2.2 and the values specified in 

section 4.9.1.  

 

Fig. 6.5 – Pressure distributions for ψ = 0.25,0.5,and 0.75 

 

 

Fig. 6.6 – Film thickness distributions for ψ = 0.25, 0.5, and 0.75 
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Fig. 6.5 shows that at ψ = 0.25 the maximum pressure reached in the bearing is 

less than that obtained at ψ = 0.5 and 0.75 under a constant load, it is also observed 

that this maximum occurs closer toward the inlet of the bearing. Pressure in the 

ψ = 0.25 case is generally higher over the most of the length of the bearing, the shape 

of this distribution is significantly different to that given in the ψ = 0.5 and 0.75 cases. 

Fig. 6.6 demonstrates that at ψ = 0.25 a larger film thickness is generated than in either 

of the ψ = 0.5 or 0.75 cases, the shape of the ψ = 0.25 film thickness differs from the 

other two cases which coincides with the evidence drawn from fig. 6.5. No clear trend 

between the longitudinal/transverse ratio and the pressure and film thickness 

distributions is initially obvious, however the results seen at ψ = 0.5 and 0.75 are more 

similar to each other than at ψ = 0.25. This suggests that the effect of a longitudinal 

roughness on bearing performance is significantly different to that of a transverse or a 

longitudinal/transverse roughness. This result is of significant interest because similar 

conclusions about the influence of transverse roughness in EHL have been made by a 

number of practical and computer experiments (Patir and Cheng [23], Jeng [53], 

Akamatsu, et al. [54], Greenwood and Johnson [55], Greenwood and Morales-Espejel 

[56], Venner and ten Napel [57]). 

In order to validate the trends presented in figs. 6.5 and 6.6 results generated at 

the large scale through the metamodel are compared against the exact corresponding 

small scale simulations, similar to the check performed in section 5.2.2. The mass flow 

rate as predicted by the large scale solver is compared to the exact corresponding mass 

flow rate determined at the small scale for three arbitrary locations (0 mm, 10 mm, 20 

mm) along the distributions of pressure gradient, pressure and film thickness. This 

check is performed for each of the longitudinal/transverse ratios shown and the results 

tabulated in Tables 6.1 – 6.3. 
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 Large Scale x-Coordinate 

Parameter 0 mm 10 mm 20 mm 

Pressure gradient, 
dp

dx
 0.4302 MPa/mm 0.2700 MPa/mm -0.0714 MPa/mm 

Pressure, p 0 MPa 4.306 MPa 6.156 MPa 

Gap, g 34.27 µm 32.33 µm 27.11 µm 

% error in mass flow rate -0.873 % 3.786 % 2.213 % 

 

Table 6.1 – Percentage error in mass flow rate for ψ = 0.25 

 

 Large Scale x-Coordinate 

Parameter 0 mm 10 mm 20 mm 

Pressure gradient, 
dp

dx
 0.3658 MPa/mm 0.3633 MPa/mm 0.0221 MPa/mm 

Pressure, p 0 MPa 3.704 MPa 6.491 MPa 

Gap, g 35.71 µm 32.77 µm 29.06 µm 

% error in mass flow rate 1.198 % 1.997 % -0.225 % 

 

Table 6.2 – Percentage error in mass flow rate for ψ = 0.5 

 

 Large Scale x-Coordinate 

Parameter 0 mm 10 mm 20 mm 

Pressure gradient, 
dp

dx
 0.4867 MPa/mm 0.4081 MPa/mm 0.0777 MPa/mm 

Pressure, p 0 MPa 3.798 MPa 6.282 MPa 

Gap, g 37.83 µm 35.00 µm 30.76 µm 

% error in mass flow rate 0.453 % 1.244 % -0.866 % 

 

Table 6.3 – Percentage error in mass flow rate for ψ = 0.75 

 

The absolute percentage error in mass flow rate predicted between the 

metamodel and exact small scale simulations is < 4% for all cases considered. This 

indicates that the metamodel is accurately capturing the effects of the parameterised 

topography on the bearing performance. This also validates the choice in size and 

spread of the DoE used and implies the subsequent optimisation procedure will lead to 

an accurate prediction. The largest % error is seen at ψ = 0.25,  here the result predicted 

is farther from the smooth surface model than for the remaining two cases (see the 
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shape of the distributions given figs. 5.37, 5.41, 5.43 and 5.47). This means that the 

underlying basis function of the metamodel has a poorer fit to the DoE data in this 

region and is therefore more likely to be less accurate between the DoE locations. 

 

6.3 Optimisation of Topography 

 Using the metamodels built and validated as described in section 6.2, 

optimisation of topography was performed by the bracketing procedure outlined in 

section 4.9. The response and optimisation of the coefficient of friction (μ) with 

longitudinal/transverse ratio (ψ) is presented in fig. 6.7, with the corresponding 

minimum film thickness (gb) and mass flow rate (q) given in figs. 6.8 and 6.9 

respectively.  

 

 

Fig. 6.7 – Response and optimisation of the coefficient of friction with the 

longitudinal/transverse ratio 
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Fig. 6.8 – Response of the minimum film thickness with the longitudinal/transverse 

ratio 

 

 

Fig. 6.9 – Response of the mass flow rate with the longitudinal/transverse ratio 
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factors approach to include the effects of roughness in an EHL simulation. The response 

of μ with ψ is non-linear, as ψ increases from 0 to 0.65 there is a decrease in μ from 

0.023 to 0.08, between ψ = 0.65 and ψ = 0.85 μ remains between a value of 0.08 and 

0.09, and as ψ increases from 0.85 to 1 μ increases from 0.08 to 0.095. The 

corresponding minimum film thickness (gb) and mass flow rate (q) given in figs. 6.8 

and 6.9 respectively show that across the range of ψ an increase or decrease in μ directly 

leads to a decrease or increase in gb and q. The optimisation procedure took a total of 

~7.5 hours to converge, this accounted for 30 separate assessments of the coefficient of 

friction over the determined values of ψ. This implies an average of 15 minutes per 

large scale simulation using the BVP method which is an improvement of 

approximately 5 minutes compared to the IVP method used in chapter 5. 

Two local minima were identified by the optimisation procedure at ψ = 0.6579 

and ψ = 0.8421 at which μ = 8.104 x 10-3 and 8.028 x 10-3 respectively. The minimum at 

ψ = 0.8421 is therefore identified as the global minimum of μ for the conditions 

imposed, this also corresponded to global maxima in the responses of gb and q. 

Refinement in the step size of ψ can be seen near the location of these minima, this 

corresponds to the iterative process undertaken by the bracketing optimisation process. 

Figs. 6.10 and 6.11 illustrate the topography at the two minima identified. 

 

 

Fig. 6.10 – Contour plot of topography in μm at ψ = 0.6579 (local minimum) 
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Fig. 6.11 – Contour plot of topography in μm at ψ = 0.8421 (global minimum) 
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(without topography or fluid flow phenomena) respectively. Table 6.4 provides the 

mass flow rates corresponding to the results presented in figs. 6.12 – 6.16. 

 

Fig. 6.12 – Pressure distributions for ψ = 0.6579, 0.8421 and the smooth surface 

model 

 

 

Fig. 6.13 – Pressure gradient distributions for ψ = 0.6579, 0.8421 and the smooth 

surface model 
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Fig. 6.14 – Load per unit area distributions for ψ = 0.6579, 0.8421 and the smooth 

surface model 

 

 

Fig. 6.15 – Film thickness distributions for ψ = 0.6579, 0.8421 and the smooth surface 

model 
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Fig. 6.16 – Shear stress distributions for ψ = 0.6579, 0.8421 and the smooth surface 

model 

 

Case Mass flow rate, q 

Reynolds 0.01555 kg/s 

ψ = 0.8421 0.01524 kg/s 

ψ = 0.6579 0.01496 kg/s 

 

Table 6.4 – Mass flow rates for ψ = 0.6579,0.8421 and the smooth surface model 
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unit area for the 3 cases presented, these distributions are almost identical to the 

pressure distributions shown in fig. 6.12 where the difference between these parameters 

is orders of magnitude smaller than the magnitude of either the load per unit area or 

pressure. 

The effect of topography on film thickness shown in fig. 6.15 demonstrates that 

at ψ = 0.8421 a lower film thickness was produced than compared with the result 

obtained from the smooth surface model. This is also true for the ψ = 0.6579 result, 

however the magnitude of this film thickness distribution was even less than at the 

global minimum (ψ = 0.8421). The shape of the ψ = 0.6579 film thickness 

distribution does not directly resemble that produced by the smooth surface model, 

whereas at the global minimum the shapes of the film thickness distributions are more 

similar. 

 The shear stress distributions given in fig. 6.16 indicate that for both the local 

and global minimum found the magnitudes are greater than that produced by the smooth 

surface model. The shapes of the distributions for the two minima are similar to each 

other but both different from the corresponding smooth surface model result. Given that 

the simulations are conducted at the same load capacity, these observations provide the 

evidence as to why the optimisation result produces coefficients of friction which are 

greater than that given by the smooth surface model and that the two minima identified 

inclusive of topography are close together.  

 Table 6.4 shows that for both of the minima identified the mass flow rates 

produced are less than that given by the smooth surface model. It is also shown that the 

local minimum produced a lower mass flow rate than that provided at the global 

minimum, this observation indicates that there is no obvious link between the mass flow 

rate and coefficient of friction produced with and without topography. 

 

6.4.2 MLS Constants 

 Plots of the MLS constants generated from the metamodels representing the 

pressure gradient – mass flow rate relationship (Eq. (4.32)), load per unit area – mass 

flow rate relationship (Eq. (4.33)), and shear stress – mass flow rate relationship (Eq. 

(4.34)) over the bearing length are given in figs. 6.17 – 6.24 for the distributions at the 

local and global minima presented in figs. 6.12 – 6.16. 
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Fig. 6.17 – MLS constant C1 distributions for ψ = 0.6579, and 0.8421 

 

 

Fig. 6.18 – MLS constant C2 distributions for ψ = 0.6579, and 0.8421 
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Fig. 6.19 – MLS constant C3 distributions for ψ = 0.6579, and 0.8421 

 

 

Fig. 6.20 – MLS constant C4 distributions for ψ = 0.6579, and 0.8421 
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Fig. 6.21 – MLS constant C5 distributions for ψ = 0.6579, and 0.8421 

 

 

Fig. 6.22 – MLS constant C6 distributions for ψ = 0.6579, and 0.8421 
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Fig. 6.23 – MLS constant C7 distributions for ψ = 0.6579, and 0.8421 

 

 

Fig. 6.24 – MLS constant C8 distributions for ψ = 0.6579, and 0.8421 
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respectively with C1-8 equal to unity). From figs. 6.17 – 6.24 it is observed that for each 

MLS constant plotted the responses are smooth but undulate as functions of x. The 

magnitudes of the constants are not unity throughout most of the response indicating 

that the pressure gradient – mass flow rate, load per unit area – mass flow rate, and 

shear stress – mass flow rate relationships as described by the metamodels are non-

linear due to the influence of topography and fluid flow phenomena in the small scale 

simulations. This causes each of the relationships to be very different to those predicted 

by the smooth surface model.  

Although the coefficients of friction produced by the simulations examined in 

figs. 6.17 – 6.24 are similar the responses they generate in terms of the pressure gradient 

– mass flow rate, load per unit area – mass flow rate, and shear stress – mass flow rate 

relationships are clearly very different. This indicates how the small scale simulations 

inclusive of topography and fluid flow phenomena introduce non-linearity which causes 

deviation from the smooth surface model which is captured by the metamodels and 

leads to the possibility of determining similar bearing performance characteristics with 

significant variations in the metamodel responses. 

The distributions of C2 and C7 given in figs. 6.18 and 6.23 respectively indicate 

similarities to the corresponding pressure distribution shown in fig. 6.12. This implies 

that the terms each of these constants represents in the smooth surface model (Eqs. 

(4.32) and (4.34) respectively) are directly linked to pressure in the presence of 

topography and fluid flow phenomena.  

Figs. 6.17, 6.18, 6.19, 6.22, and 6.23 indicate that C1, C2, C3, C6, and C7 are 

subject to a significant decrease in the outlet region of the bearing, figs. 6.20, 6.21, and 

6.24 show the inverse such that C4, C5, and C8 significantly increase in the outlet region 

of the bearing. These observations can be linked to the corresponding pressure gradient 

distribution presented in fig. 6.13 where a sharp decrease in the pressure gradient is seen 

in the outlet of the bearing. It can therefore be concluded that in the presence of 

topography and fluid flow phenomena that each of the terms in the smooth surface 

model have some dependency on the pressure gradient, especially when a large negative 

gradient is experienced in the outlet region of the bearing.  
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6.5 Summary 

 A two-scale method for the analysis of EHL in tilted-pad bearings with 

parameterised 3D topography was presented and expanded to optimise 

longitudinal/transverse topography for bearing performance (coefficient of friction). In 

this study the global optimal longitudinal/transverse ratio was found to be ψ = 0.8421 

for the conditions investigated, which produced a coefficient of friction μ = 8.028 x 10-

3. This minima was very close to another local minimum found at ψ = 0.6579 for which 

the coefficient of friction was μ = 8.104 x 10-3. Both of these values were higher than 

that found by the smooth surface model (without topography and fluid flow 

phenomena) μ = 7.175 x 10-3 but this does not mean that certain topographies or bearing 

operating parameters can lead to lower coefficients of friction than their corresponding 

smooth surface counterparts. The topographies produced by the two minima are very 

different highlighting the non-linearity in the response and the capabilities of 

metamodelling to couple the scales investigated and perform design optimisation.  

Inspecting the pressure distributions generated at the local and global minima 

indicated that in the presence of topography and under constant load that there was a 

change in shape of the pressure distribution from the smooth surface model. It was also 

found that the film thickness and mass flow rate were generally reduced and the shear 

stress increased from the smooth surface model. Linking the minima found to changes 

in the response indicated that topography has a non-linear effect and that this is 

accurately captured by the metamodels created. It was also observed that a longitudinal 

roughness tended to change the shape and magnitude of the pressure and film thickness 

distributions when compared to a transverse or longitudinal/transverse roughness. This 

change in shape and magnitude is directly linked to the increase in the coefficient of 

friction seen as the transverse/longitudinal ratio tends toward zero. The choice of a BVP 

solver over the IVP solver used for obtaining the pressure distributions was validated as 

a computational time saving of approximately 33% was observed over the range of 

simulations investigated. 

Investigating how the MLS constants varied over the length of the bearing 

quantified the deviation from the smooth surface model in the presence of topography 

and fluid flow phenomena. It was shown for the two minima identified that the 

responses generated were non-linear and significantly different to the smooth surface 

model, inspecting each MLS constant individually allowed the influence of each term in 
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the smooth surface model equations to be seen. Dependency of some of the MLS 

constants with pressure was observed due to similarities in the distributions, it was also 

portrayed that where there is a large negative pressure gradient (toward the outlet region 

of the bearing) there is a corresponding increase or decrease for all of the MLS 

constants.  
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Chapter 7 – Conclusions and Future Developments 

 

7.1 Introduction 

 This chapter discusses the significance of the research presented in this thesis 

and the important conclusions which can be drawn from the development of the two-

scale method for EHL. Future developments for the method are outlined as an extension 

to the studies presented in this thesis. 

 

7.2 Conclusions 

 The aims and objectives of this thesis are to develop a two-scale method for 

modelling EHL based on the HMM. This method allows the effects of three-

dimensional topography in bearings to be investigated and subsequently to conduct 

optimisation of topography for bearing performance. Conclusions which can be drawn 

from this work are highlighted in the following subsections. 

 

7.2.1 Numerical Modelling 

 Numerical modelling of the two-scale method was the focus of much of the 

work undertaken, developing simulations at two scales and coupling them via the use of 

metamodelling techniques. The main conclusions which are made from this modelling 

are: 

 Mesh independence of simulations undertaken at both scales proves that the 

levels of discretisation chosen are of a good accuracy and traded-off well with 

computational expense. 

 Flow fields from the small scale simulations show that velocity is approximately 

equal from each side of the coupled boundaries. This means that the near-

periodic requirements of the multiscale method are met and the effects of 

including three-dimensional topography and fluid flow phenomena modelled at 

this scale are, through homogenisation, accurately described at the large scale. 

 An effective large scale solver is developed which incorporates the numerical 

function describing the pressure gradient – mass flow rate relationship derived 

from homogenised results of small scale simulations. 
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 Two different approaches are introduced for solving the large scale pressure 

field using MATLAB (The Math Works Inc., USA). It is determined that the 

BVP solver is approximately 33% faster than the IVP method but requires a 

good initial solution for the pressure and mass flow rate to be provided. 

 The use of an inverse spring at the large scale allows for any definition of the 

local stiffness which is used to determine the solid thickness in the small scale 

simulations. This means any level of discretisation could be used at the large 

scale, such that the two-scale method presented here is more generic than that of 

Gao and Hewson [30]. 

 The error in mass flow rate between large scale simulations inclusive of 

topography and their exact corresponding small scale simulations are small. This 

indicates that the MLS metamodels used to couple the scales are an accurate 

approximation of the non-linear effects introduced at the small scale. 

 Both k-fold CV and LOOCV are determined to be capable of predicting the 

closeness of fit tuning parameter needed by the MLS metamodels. The LOOCV 

is shown to be a more favourable approach because the same result can be 

generated with less computational effort. This conclusion is different to that of 

Loweth, et al. [90], indicating the right choice of CV is problem specific. 

 An OLHC DoE is implemented to distribute the necessary small scale 

simulations effectively over the design space. This reduces the total number 

needed to describe the effects of topography and fluid flow phenomena at the 

large scale and allows a range of load capacities to be investigated. 

 It is shown that parameterisation of topography can be accurately included 

through the pressure gradient – mass flow rate relationship. This highlights the 

adaptability of the MLS approach to include extra dimensions and the potential 

to conduct optimisation of these features. 

 

7.2.2 Effect of Topography 

 In chapter 5 the two-scale method is applied to a tilted-pad bearing under load, 

the effects of topography are studied and the following conclusions made: 

 Simulations conducted without topography and fluid flow phenomena show that 

the two-scale method accurately reproduced the predictions of the smooth 
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surface model. This provides a benchmark for the two-scale method and solution 

procedure. 

 When compared with incompressible, isoviscous flow simulations inclusive of 

compressibility and piezoviscosity proved to have a more significant effect than 

that of non-Newtonian (shear-thinning) behaviour on the minimum film 

thickness and coefficient of friction.  

 Two-scale simulations inclusive of topography show a lower maximum pressure 

than the smooth surface model which occurs closer toward the inlet of the 

bearing. Also film thickness is reduced over the length of the bearing. 

 It is shown over a range of tilt angles and pad lengths that at constant load 

increasing the topography amplitude leads to an increase in the coefficient of 

friction (shear stress) and reduction in the minimum film thickness for the 

bearing. Increasing the topography amplitude tends to plateau the responses 

generated over the range of parameters investigated. 

 The two-scale method facilitates the measurement of the micro-EHL effect on 

minimum film thickness. The response is shown to be non-linear over the length 

of the bearing due to the homogenised effects of small scale simulations and 

increases with the topography amplitude. This effect is observed to be an order 

of magnitude or more less than that dictated by column deformation, meaning 

that topography is not flattened out under the range of loads modelled. 

 

7.2.3 Optimisation of Topography 

 In chapter 6 it is seen that by parameterisation it is possible to optimise the 

topography for the minimum coefficient of friction of the bearing. From this study the 

following conclusions can be made: 

 Longitudinal topographies are shown to produce larger coefficients of friction 

than topographies with either transverse or a mixture of longitudinal and 

transverse components. This evidence agrees with the observations made by a 

number of researchers who conducted practical and computational experiments 

(Patir and Cheng [23], Jeng [53], Akamatsu, et al. [54], Greenwood and Johnson 

[55], Greenwood and Morales-Espejel [56], Venner and ten Napel [57]). 

 Longitudinal topography causes a larger deviation from the smooth surface 

model than transverse topography as observed through the pressure and film 
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thickness distributions. The maximum pressure is reduced and the film thickness 

increased over the length of the bearing. 

 For all topographies investigated none produces a coefficient of friction less than 

that provided by the smooth surface model. Under different configurations of 

topography or operating conditions, coefficients of friction less than their 

smooth surface counterparts could be found. 

 The bracketing optimisation procedure is a successful means of finding the 

global minimum. The coefficient of friction versus longitudinal/transverse ratio 

response generated is non-linear due to the inclusion of topography and fluid 

flow phenomena in the small scale simulations. The two-scale method 

accurately captures this, which highlights the necessity of the method for 

modelling this behaviour. 

 Two local minima in the coefficient of friction are identified through the 

process, with one being determined as the global minimum. Corresponding 

maxima in the mass flow rate and minimum film thickness are found at the two 

minima identified. 

 The coefficients of friction at the two minima identified are similar but the 

design variables very different, highlighting the non-linear response and need of 

the two-scale method to capture this effect. 

 Plots of the MLS constants over the length of the bearing quantified deviation 

from the smooth surface model for the different topographies investigated. It is 

shown that the MLS constants responses are non-linear over the length of the 

bearing due to the effects described by small scale simulations, some 

dependency of the response on the pressure and pressure gradient is observed. 

This indicates the advantage of the metamodel approach where direct 

comparison between smooth and rough surfaces can be made. 

 

7.3 Future Developments 

 The two-scale method for EHL is a very new approach and this study is one of 

the first to be concerned with it, because of this there are many avenues for future 

research. The following subsections indicate potential routes which will expand the 

two-scale method for the effective analysis of any EHL contact. 
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7.3.1 Cross-Flow and Side-Leakage 

 Expanding the two-scale method to investigate two-dimensional large scale 

problems is feasible as discussed in the theoretical formulation presented in chapter 4. 

By expanding the method to the general large scale case more complex geometries such 

as point contacts could be investigated. The small scale model would remain 

unchanged, pressure gradients required to determine cross-flow or side-leakage could 

easily be imposed with another pressure jump condition normal to the direction of 

motion of the moving wall. It is recommended that a code be developed specifically for 

the small scale simulation. Considerable amount of effort was made to develop this 

stage of the method and subsequently correctly implementing the near-periodic 

boundary conditions with FSI. Conventional CFD solvers do not have this type of 

boundary condition available and there are not many architectures which allow generic 

boundary conditions to be created, for those which do this type of constraint is difficult 

to implement because it has similarities with periodic type conditions but is 

fundamentally very different. 

The large scale formulation would differ as two separate pressure gradient 

equations would be required, each with four terms to account for the film thickness, 

pressure, and mass flow rates in both the x and y directions (qx and qy respectively). 

Conservation of mass would then be needed along with the two partial differential 

equations described in order to solve the large scale problem. Mathematically this is 

given by Eqs. (7.1) – (7.3) and can be solved with Dirichlet boundary conditions for 

zero (ambient) pressure at the surrounding boundaries, cavitation is discussed in section 

7.3.3. 

 

∂p

∂x
= f(p, qx, qy, g) (7.1) 

∂p

∂y
= f(p, qx, qy, g) (7.2) 

∂qx

∂x
+

∂qy

∂y
= 0 (7.3) 
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 Because the two-dimensional large scale problem requires two separate four-

dimensional equations a significant increase in metamodelling complexity is inherent. A 

different solver for the method would also be needed than either the IVP or BVP 

methods used in the current two-scale architecture. This method would need to account 

for the divergence of the mass flow rates and couple this into a solution for each of the 

pressure gradient equations. A significant increase in difficulty and computational 

expense therefore exists for the two-dimensional large scale problem. 

 

7.3.2 Highly-Loaded Contacts 

 Investigation of highly-loaded EHL simulations such as those found in 

converging-diverging geometries such as line or point contacts is entirely feasible using 

the two-scale method. No changes to the small scale model are needed other than 

adjusting the parameters representing the change in material properties. In order to 

maintain the separation in scales between the equivalent thickness and the size (plus 

deformation of) topography the local stiffness must be carefully chosen to incorporate 

the difference in Young’s modulus described by the highly- loaded simulation. 

 The choice of large scale solver becomes fundamental to the accuracy and 

convergence of the resulting simulation. The response of highly-loaded EHL 

simulations is far more sensitive to the input parameters than in soft-EHL, for example 

the dependency of viscosity is exponential with pressure. Neither the IVP nor BVP 

methods introduced here are able to cope with large changes in the output response due 

to small changes in the input with much accuracy. Suggested solutions would be to 

reduce the separation in scales by non-dimensionalising the pressure gradient – mass 

flow rate relationships or concentrate on creating metamodels which are highly accurate 

in regions of steep gradients.  

 

7.3.3 Cavitation 

 Cavitation can be modelled at both scales where needed using the two-scale 

method. Modelling cavitation in the large scale simulation only would require an 

additional constraint in order to meet the Reynolds exit condition, such that pressure 

and the pressure gradient are zero at an undefined outlet location. This can be 

implemented using a moving mesh or shooting type approach to solve for the outlet 
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location and pressure field. The BVP solver for pressure could also be implemented at 

the same time reducing the complexity of needing to change solver completely.  

 Small scale cavitation would require a change of phase in the lubricant 

properties to be modelled. This can be achieved in a number of ways as various models 

for cavitation exist. A simple approach would be to model the change of phase from 

liquid to vapour as pressure reaches the ambient value by a sudden drop in viscosity and 

density. Small scale simulations inclusive of cavitation would also need the Reynolds 

exit condition to be met in the large scale solution process. Because the pressure 

gradient – mass flow rate relationship now incorporates the cavitation effect as pressure 

tends toward zero, the outlet region will be a more accurate representation of this effect 

than by only considering the boundary condition on its own. 

 

7.3.4 Representation of Topography 

 Any description of topography can be modelled at the small scale using the two-

scale method so long as the function describing it is smooth and remains periodic over 

the domain in both the x and y directions. Examples of this kind of function can be 

generated by spectral methods or Fourier analysis. Further parameterisation of 

topography is possible and would allow a larger range of designs to be investigated and 

potentially optimised. The difficulty would come with adding further dimensions to the 

pressure gradient – mass flow rate relationship and subsequently providing an accurate 

metamodel without needing thousands of small scale simulations. 

Increasing the complexity of topography will increase the computational 

requirements necessary in order to solve the small scale problem, which is already an 

issue with the current method. Fourier analysis of real surfaces could provide a 

representative periodic roughness for two-scale method. This would open up the 

potential to compare computational results of the two-scale method with experimental 

results with the same topography. If this was achieved then it would give solid evidence 

that the observations and inferences made from the two-scale method are an accurate 

model of the real EHL system. 
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7.3.5 Design of Experiments 

 Conventionally, and as implemented in the current two-scale method, the DoE 

spans a hypercube which is bounded by predetermined limits. In the solution to the two-

scale method parts of this design space are populated by small scale simulations but are 

never used by the large scale solver. For example at high pressure the pressure gradient 

tends toward zero (at the maximum pressure) and so the large scale solver is not 

concerned with high pressure and either highly positive or negative pressure gradients.  

One solution to this problem would be to populate an orthogonal space about a 

curve representing the solution to the smooth surface problem. The curve can be 

generated by solving Reynolds equation, the pressure gradient, pressure and film 

thickness are then known. Placing a curvilinear coordinate system along the length of 

this curve and setting arbitrary limits then provides an orthogonal space which can be 

populated by the DoE and mapped back to the Cartesian system. The DoE now 

encompasses the Reynolds solution and so long as the two-scale solver does not deviate 

far from this the metamodel approximation will be accurate and not be populated by 

small scale simulations that will never be used.  

 

7.3.6 Response Surface Methodology 

 Other metamodelling techniques than MLS such as Kriging, RBF, SVR, MARS, 

ANN, etc. may lead to a more efficient means of creating an approximation which can 

be used to couple the scales of the method. Any of the aforementioned techniques may 

require fewer small scale simulations to provide the same level of accuracy at the large 

scale as that observed in the current study. This is because these methods may possibly 

inherently fit the response data more effectively than the MLS method or may maintain 

accuracy with more dimensions (as would be very important for tackling the issues of 

sections 7.3.1 and 7.3.4). An investigation of the number of DoE points would provide 

useful information for selecting the least number of designs which maintains the 

required accuracy in the metamodel prediction. MLS is favourable in this sense because 

it is capable of smoothing numerical noise in the response. Whether the other 

metamodelling techniques can be used to indicate how far from the smooth surface 

model simulations inclusive of topography deviate or how well numerical noise maybe 

be handled, as achieved with MLS, is a another question which would require further 

investigation. 
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