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Abstract 

 

A new family of methionine-sulfoxide reductase (Msr) was recently discovered, 
and was named free methionine sulfoxide reductase (fRMsr). This family includes 
enzymes with a reductase activity toward the free R isomer of a methionine 
sulfoxide substrate. The fRMsrs have a GAF domain topology, a domain, which 
was previously identified as having in some cases a cyclic nucleotide 
phosphodiesterase activity. The classification of fRMsrs as GAF domains revealed 
a new function can be added to the GAF domain family. Interestingly the four 
members identified in the fRMsr family share the GAF domain structure and the 
presence of three conserved cysteines in the active site with free R methionine 
sulfoxide substrate specificity. This thesis presents the crystal structures of 
reduced, free Met-SO substrate-bound and MES-bound forms of a new fRMsr from 
Burkholderia pseudomallei (BPSL2418). BPSL2418 was cloned, overexpressed 
and purified to enable protein crystallization. The crystallization trials for reduced, 
Met-SO-bound and MES-bound forms of BPSL2418 were prepared and reasonable 
crystals of each form were produced. The crystal structures of BPSL2418MES, 
BPSL2418Met-SO and BPSL2418Reduced were solved at 1.18, 1.4 and 2.0Å, 
respectively by molecular replacement. The BPSL2418MES crystal belongs to space 
group P 21 21 21 while BPSL2418Met-SO and BPSL2418Reduced crystals belong to 
space group P 1 21 1. All three forms share the GAF domain structure of six 
antiparallel β-strands and four α-helices with connecting loops. The antiparallel β-
strands (β1, β2, β5 and β6) are located in the center of the BPSL2418 structure 
flanked on one side by a three α-helices (α1, α2 and α4) and on the other side by a 
(loop1, β3, loop2, α3, β4 loop4) unit where loop4 forms a capping flap and covers 
the active site. The structural comparison of the three forms of BPSL2418 indicates 
that the catalytically important cysteine is CYS109, where the resolving cysteine is 
CYS75, which forms a disulfide bond with CYS109. They also suggest that the 
third conserved cysteine in the active site, CYS85, which is located in α3, is a non-
essential cysteine for the catalytic function but it may play a role in the binding of 
the substrate. The structural comparison of the three forms reveals that 
conformational changes appear in the active site particularly involving loop4 and 
CYS109 during catalysis. The 3D structure of BPSL2418 shows strong structure 
similarity to fRMsrs enzymes, which further suggests that BPSL2418 acts as a free 
Met-R-SO reductase and shares the catalytic mechanism of fRMsr family.   
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Chapter 1:  Introduction 

This thesis consists of two projects. The first and most important part in terms of 

achieved results is BPSL2418 the hypothetical protein from Burkholderia 

pseudomallei. The second project is the C-terminal domains of Polycystin 1 (CT1) 

and Polycystin 2 (CT2).  

 

First project: BPSL2418 from Burkholderia 

pseudomallei       
 

This chapter gives a general introduction of the hypothetical protein from 

Burkholderia pseudomallei (BPSL2418). It starts with a general view of the 

bacterial pathogen Burkholderia pseudomallei and its biological relevance as the 

causative agent of the human disease melioidosis. Then it focuses on the family of 

proteins to which BPSL2418 belongs. Finally it states the aims of this project.  

 

1.1  Burkholderia pseudomallei is the causative agent 

of melioidosis 
 

1.1.1  Background and history 

Melioidosis, is an infection caused by the Gram-negative bacterium Burkholderia 

pseudomallei, first identified by the British pathologist Captain Alfred Whitmore 

and his assistant C S Krishnaswami in Rangoon, Burma in 1911 (White, 2003b). 

They described melioidosis as a glanders-like disease among the ill residents of 

Rangoon. Glanders is an abscess-forming infection caused by Burkholderia mallei 

which affects horses, mules and donkeys although it can be contracted by other 

animals such as dogs, cats and goats and it occasionally affects humans (Bondi & 

Goldberg, 2008). Whitmore and Krishnaswami isolated the causative agent of 
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melioidosis from autopsy specimens on peptone agar and potato slopes, they 

identified a new organism that corresponding to Koch’s postulates (Cheng & 

Currie, 2005b). This organism is distinguished from the organism causing glanders 

by its comparatively rapid growth, its motility and the lack of the Strauss reaction 

when it was injected into guinea pigs (Cheng & Currie, 2005b). In 1932 Stanton 

and Fletcher (from the Institute of Medical Research in Kuala Lumpur, Malaya) 

documented sufficient cases in man and animals of Whitmore’s disease to publish a 

definitive monograph on a disease they named as melioidosis (White, 2003b).  The 

name melioidosis was derived from two Greek words [melis]: which means a 

distemper of asses and  [eidos]: resemblance (Dance, 1991a). After the Second 

World War many more cases were reported in American and western soldiers 

fighting in Vietnam, who had been exposed to environmental Burkholderia 

pseudomallei through contaminated wounds and burns or by inhalation (Dance, 

1991a). The organism causing melioidosis has been known as Bacillus 

pseudomallei, Bacillus whitmorii (or Bacille de whitmore), Malleomyces 

pseudomallei and Pseudomonas pseudomallei but since 1992 it has been termed 

Burkholderia pseudomallei (Cheng & Currie, 2005b). However, melioidosis 

appeared as an infectious disease of major public health importance in Southeast 

Asia and northern Australia in the latter half of the 20th century (Chaowagul et al, 

1989).  

 

1.1.2  Epidemiology 

Melioidosis is considered as endemic to the tropical area of Southeast Asia and 

Northern Australia; multiple case series have been reported and described in 

Northern Australia, Thailand, Singapore, Malaysia, Burma and Vietnam (Dance, 

2000b) (Cheng & Currie, 2005b). Significant numbers of exported cases have 

occurred in countries classified as possibly endemic regions such as Southern 

China, Hong Kong, Brunei, Laos, Cambodia and Taiwan (Figure 1.1) (Cheng & 

Currie, 2005). Also a limited outbreak of the disease was reported in Europe. The 

most remarkable occurrence of melioidosis was in France in the mid-1970s: this 

outbreak started in Paris zoo when a panda infected with the bacteria was donated  
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Figure 1.1: Global distribution of the occurrence of melioidosis, linked to regions of 

Burkholderia pseudomallei endemicity. Adapted from (Cheng & Currie, 2005b) 
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from China, and subsequently the infection distributed to other zoos in and outside 

France, probably by transport of affected animals or contaminated muck. An 

unknown number of slaughtered animals and at least two fatal human cases 

resulted from this infection (Dance, 1991a). In Spain an isolation of Burkholderia 

pseudomallei from horses was reported. Also some human melioidosis cases have 

been announced in Berlin in 1947 (Dance, 1991a).        

Sporadic cases have appeared in Central and South America, the Middle East, the 

Pacific and several African countries, and at least five cases in the United Kingdom 

imported to the country from Bangladesh and two from India and Pakistan (Cheng 

& Currie, 2005).  However, the worldwide epidemiology of melioidosis shows 

that, Northeast Thailand has the highest incidence of melioidosis where the first 

case wasn’t reported until 1955, but since 1986 the MORU lab (Mahidol-Oxford 

Tropical Medicine Research Unit) in Bangkok has documented more than 3000 

cases (Stone, 2007) and Sappasitprasong Hospital in Ubon Ratchathani in north-

east Thailand admits around 200 patients annually that are positive for 

Burkholderia pseudomallei infection, of which nearly half die (Aldhous, 2005). 

Burkholderia pseudomallei is found in the environment of the endemic countries 

where the highest isolation rate was in wet rice fields in Malaysia and Thailand, but 

in Australia the highest rate was in dry soil. However, this bacterium exists in soil 

and water in all endemic countries (Dance, 2000a; Dance, 2000b). Although 

several studies have spotted melioidosis, it is thought that the extent of the disease 

in the endemic area as well as worldwide is misrepresented, with many unreported 

cases due to lack of awareness and diagnostic facilities in infected regions, 

especially in rural communities. Melioidosis is categorized as an emerging 

infection, because it has been recognized increasingly during the past two decades 

(Aldhous, 2005; Dance, 2000b).    

 

1.1.3  Burkholderia pseudomallei  
 

1.1.3.1  Bacterial strain and genomics  

The genus Burkholderia includes more than 30 species where the most pathogenic 
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types are B. pseudomallei, B. mallei and B. thailandensis, which exists with 

Burkholderia pseudomallei in the soil in Thailand but is less virulent (Cheng & 

Currie, 2005b). The Burkholderia pseudomallei strain K96243 was isolated in 1996 

from a 34-year-old female diabetic patient in Khon Kaen hospital in Thailand, and 

then the DNA was isolated from this strain (Holden et al, 2004). The B. 

pseudomallei genome possesses two chromosomes, of which BPSL (Burkholderia 

pseudomallei Large) is 4.07 megabase pairs and BPSS (Burkholderia pseudomallei 

Small) is 3.17 megabase pairs. The large chromosome regulates metabolism and 

growth, whereas the small chromosome has more accessory functions relating to 

adaptation and survival in various circumstances (Holden et al, 2004). A further 

astonishing aspect of the B. pseudomallei genomic structure is the presence of 16 

genomic islands that compose 6.1% of the genome, but are completely missing in 

the paraphyletic non-human pathogenic B. mallei and B. thailandensis, or in the 

plant pathogenic B. cenocepacia. This suggests a significant role for this genomic 

island in the pathogenicity of B. pseudomallei to humans and animals  ADDIN 

EN.CITE .  

 

1.1.3.2  Bacteriology 

Burkholderia pseudomallei is characterized as a Gram-negative aerobic bacillus 

with bipolar staining and has a slender, rounded end shape. It has been described as 

safety-pin like (Cheng & Currie, 2005b; White, 2003a). B. pseudomallei is a soil 

saprophyte, lives in water and wet soils in rice paddy fields in endemic regions, and 

it can be cultured from more than 50% of rice paddies (Cheng & Currie, 2005b; 

Dance, 2000a; White, 2003a). The bacterium is motile where Whitmore 

distinguished it from B. mallei by its ability to move on a hanging drop (Cheng & 

Currie, 2005b). The optimum growth condition of B. pseudomallei is in paddy soil, 

in crop-covered and dormant fields. It flourishes in neutral to acidic medium (pH 

6.5 or 7.5) but not in salty water or soil (Chen et al, 2003). 37 °C or 42 °C are the 

optimum temperatures for growth although this bacterium can still grow at 4 °C 

which explains the existence of melioidosis in some cold areas. Also the water 

content of the medium is a critical element influencing the degree of growth (Chen 

et al, 2003).  However the organism is highly resistant to difficult environmental 
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conditions and it is able to survive in a wide range of harsh circumstances in both 

soil or liquid media (Cheng & Currie, 2005b). The bacteria remain active and 

continue to grow under a diverse range of temperature, pH and dehydration 

conditions (Chen et al, 2003), they also conserve vitality after at least 16 years in 

distilled water (Pumpuang et al, 2011). Moreover they can survive even if exposed 

to disinfectant and antiseptic solutions (Gal et al, 2004) and they show a resistance 

to chlorinated water with levels used in water supplies proving only bacteriostatic, 

although use of high levels are sufficient for killing the bacteria (Howard & Inglis, 

2003). The organism is oxidase positive, where the enzyme is able to assimilate 

arabinose or glucose in the oxidative pathway, this also allows the distinction of B. 

pseudomallei from the closely related but less pathogenic B. thailandensis (Cheng 

& Currie, 2005b; White, 2003a). In the laboratory, B. pseudomallei can be cultured 

on most agar media, and colonies can be obviously seen within 24 h at 37 °C, 

although usually Ashdown’s selective medium is used for growing the organism 

where the B. pseudomallei colonies have a cornflower head appearance and they 

are stained with the crystal-violet dye from the Ashdown’s media (White, 2003b) 

(Figure 1.2). Isolates of the bacteria from environmental sources or from infected 

patients show various morphologies with seven colony types (Figure 1.3) where 

Type I is the most commonly isolated morphotype of the seven types (Chantratita 

et al, 2007). A wide range of morphologies further obscures identification of 

melioidosis upon culturing from infected patients (Stone, 2007).  

 

1.1.4  Melioidosis features  
 

1.1.4.1  Melioidosis acquisition  

B. pseudomallei is a soil saprophyte and can be cultured from soil and surface 

water in endemic regions, with postulated routes of infection being via 

contamination of broken skin and wounds, aspiration, inhalation of aerosolized 

bacteria, ingestion and possibly sexual transmission (Currie et al, 2001). Mother-

to-child transmission of B. pseudomallei may also possibly have occurred as a 

result of placental infection (Abbink et al, 2001). 
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Figure 1.2: The B. pseudomallei colonies.  (A) B. pseudomallei growing on Ashdown’s 

selective medium.  

(B) The organism forming a surface pellicle in selective broth.  Adapted from (White, 

2003b) 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.3: The seven morphotypes of B. pseudomallei. Colonies were morphotyped 

based on appearance, size and pigmentation. The percentages indicate the proportion of 

each form in a collection of 212 clinical isolates after growth for four days on Ashdown’s 

agar. Adapted from (Chantratita et al, 2007; Stone, 2007). 
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1.1.4.2  Melioidosis symptoms 

Melioidosis is known as “the great mimicker” because of its similar symptoms to 

other infections and the difficulty with its diagnosis (Yee et al, 1988). This disease 

can be classified into two categories, an acute septicaemia infection and a chronic 

localized infection (Dance, 1991a). It can affect any organ or tissue but the 

common positions of infection include lungs, genito-urinary system, skin, liver, 

spleen, bones, soft tissues and skeletal muscle (Yee et al, 1988). Symptoms may 

include pain in chest, bones, joints, coughing, skin infections, lung nodules and 

pneumonia, the most common manifestation of melioidosis (Suputtamongkol et al, 

1999). Melioidosis occurs as an acute bloodstream infection, disseminated 

infection and most frequently as an acute pulmonary infection. Chronic melioidosis 

may present as a localized infection in the skin, liver, spleen, kidneys or prostate, 

but also it occurs as chronic pneumonia, visceral abscesses and osteomyelitis (Lim 

et al, 2001). The incubation period is generally 1-21 days, but may extend to 

months or years, symptoms appear 2-4 weeks after exposure. Without appropriate 

treatment, the case-fatality ratio may reach 90% within 48 hours of developing 

symptoms (Cheng & Currie, 2005a). 

 

1.1.4.3  Environmental exposure 

Melioidosis affects humans and animals that have been exposed to environments 

including B. pseudomallei. The mode of infection is considered to be either through 

cutaneous inoculation, inhalation, ingestion or aspiration (Pumpuang et al, 2011). 

The connection between the disease prevalence and the degree of environmental 

contamination with B. pseudomallei is a direct relation where the highest disease 

incidence is in the environments of the endemic regions that contain a very high 

level of the bacteria (Cheng & Currie, 2005b).  

 

1.1.4.4  Climate conditions  

The weather is another factor associated with the disease acquisition, where heavy 

rain, monsoon and winds trigger the highest number of cases (Dance, 2000a). This 

can be illustrated by rising opportunities for contamination with B. pseudomallei 
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where the bacteria is widely spread in pooled surface water such as in rice paddies 

(Cheng & Currie, 2005b). The rice farmers in endemic areas plant at the start of the 

monsoon and work in flooded rice paddies until harvest in very low conditions of 

safety, they are always barefoot in rice fields, which explains the high risk of 

infection distribution in this kind of agricultural activity (Stone, 2007).            

 

1.1.4.5  The host immunity status 

One fifth of all melioidosis patients in northeast Thailand (80% of the population 

belong to rice-farming families) are children under 14 years of age, while the 

disease extent peak includes individuals between the fourth and sixth decade 

(Wiersinga et al, 2007). Most of them have other diseases, commonly diabetes 

mellitus, renal failure and thalassemia (Cheng & Currie, 2005b). There is a 

possibility that the development of these diseases causes immune dysfunction, 

which increases the chance of melioidosis infection to take place (Cheng & Currie, 

2005b; Wiersinga et al, 2007). Also it is uncertain whether the afflicted children 

with melioidosis have a major genetic tendency for disease. It also likely that 

melioidosis in childhood occurs due to the high bacterial distribution which 

increases the pathogenic capability (Wiersinga et al, 2007).  

  

1.1.4.6  Treatment of melioidosis 

The current therapy for melioidosis is similar to that of any Gram-negative 

septicaemia. The treatment consists of two stages, primary high intensity 

intravenous injections and oral treatment (White, 2003b). The primary treatment 

includes a high dose of ceftazidime for at least ten days or until progress appears, 

followed by oral treatment of a cocktail of four conventional antibiotics including 

chloramphenicol, doxycycline, trimethoprim and co-trimoxazole for 20 weeks. 

With the four-drug combination, chloramphenicol is given only for the first 8 

weeks (White et al, 1989). Without treatment the fatality rate of acute melioidosis 

is over 80%, the primary intravenous stage itself decreases overall mortality more 

than 50% (White et al, 1989). Reversion into melioidosis occurs in approximately 

10% of patients due to the reactivation of the original infection (White, 2003b). 
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1.1.4.7  New therapies and vaccines are needed 

Burkholderia infections are inherently difficult to treat due to their resistance to 

multiple antibiotics, biofilm formation, and the establishment of intracellular and 

chronic infection in the host (Wiersinga et al, 2006). Until recently, the four-drug 

combination of antibiotics has been the only available treatment for melioidosis but 

it is an imperfect remedy due to the extended time and cost of an antibiotics course 

with the fatality rate remaining high (Aldhous, 2005; Behera et al, 2012), and there 

is also the rise of a number of ceftazidime resistant strains (Behera et al, 2012). 

Preventive factors such as active immunization might significantly decrease the 

risk of disease incidence, but to date there is no commercially available effective 

vaccine that prevents B. pseudomallei infection, although several approaches have 

been taken to develop effective vaccines for use against melioidosis (Peacock et al, 

2012). Different live attenuated mutants have been used as vaccines in mouse 

models providing high levels of infection resistance (Nieves et al, 2011). The use 

of B. pseudomallei as a potential vaccine has been tested showing successful 

protection in mice but was found to be ineffective in human trials (AuCoin et al, 

2012). Also the use of monoclonal antibodies specific to the bacteria 

lipopolysaccharides and capsular polysaccharide for passive immunization has 

been shown to offer protection from infection in mice (AuCoin et al, 2012). But 

unfortunately these vaccines are unlikely to be developed for human use due to the 

high chance of reversion and the ability of the B. pseudomallei to start a persistent 

latent infection, which can remain dormant for extended periods of time (Nieves et 

al, 2011).     

 

1.1.4.8 Melioidosis as a potential bioweapon 

The United States Center for Disease Control considers B. pseudomallei as a class 

B potential biological threat which categorizes the organism in the second highest 

priority level among other potential bioweapons (Rotz et al, 2002). The disease is 

placed in this critical position due to the high mortality rate, the simplicity of 

disease acquisition and spreading, the ability of the bacteria to survive in a wide 

range of conditions, the lack of vaccine and the multi antibiotic resistance of B. 

pseudomallei (Cheng & Currie, 2005a).        
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1.1.5  Molecular pathogenicity factors 
 

1.1.5.1  Quorum sensing 

Quorum sensing is a cell-density-dependent communication system observed in 

Gram-negative bacteria that permits bacteria to regulate gene expression using the 

small signaling molecules N-acyl-homoserine lactones (AHLs) (Gamage et al, 

2011). The B. pseudomallei genome contains three LuxI and five LuxR genes 

responsible for producing eight quourum sensing homologous LuxI and LuxR 

proteins. The LuxI proteins play role in AHLs biosynthesis, and the LuxR proteins 

act as transcriptional regulators (Gamage et al, 2011). This system regulates the 

expression of a number of genes involving metalloproteases and phospholipase C, 

and also it is responsible for biofilm formation (Gamage et al, 2011; Wiersinga et 

al, 2007). Interruption of the LuxI or LuxR genes requires a significant increase in 

the LD50, increases the lifetime and decreases bacterial colonization and virulence 

in Syrian hamsters, which suggests that the synthesis of N-acyl-homoserine 

lactones (AHLs) is critical for full virulence in this rodent model (Ulrich et al, 

2004). Also there is proof for the requirement of the Bpe-OprB multidrug efflux 

pump for AHLs to be released from inside the cell (Chan & Chua, 2005a). The 

Bpe-OprB multidrug efflux pump in B. pseudomallei also is implicated in the 

antimicrobial resistance to aminoglycosides and macrolides (Wiersinga et al, 

2007). 

 

1.1.5.2  Capsular polysaccharides 

 Pathogenic bacteria commonly produce a thick and mucous-like layer of 

polysaccharide that forms a capsule outside the cell wall. The capsule covers 

antigenic proteins on the bacterial surface that stimulate an immune response. It 

protects the cell from phagocytosis where a capsule-specific antibody may be 

required for phagocytosis to take place. However it is known that bacterial capsules 

are available in several different types and immunity to one type does not result in 

immunity to the other types. Also this layer assists the cell to adhere to surfaces. 

The bacterial capsule regularly consists of polysaccharides although it can be 
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composed of polypeptides (O'Riordan & Lee, 2004). Burkholderia pseudomallei is 

morphologically distinguished into three types based on its polysaccharide capsule 

(Puthucheary et al, 1996). One type has no capsule while the other two types have 

various capsule thicknesses. The B. pseudomallei possesses a capsule with a 

homopolymer of structure -3)-2-O-acetyl-6-deoxy-β-D-manno-heptopyranose-(1- 

(Reckseidler et al, 2001). The presence of polysaccharide capsule is significant for 

B. pseudomallei virulence in experimental animal models. The addition of purified 

B. pseudomallei capsule to a serum bactericidal test boosts the survival of B. 

pseudomallei SLR5 (Reckseidler et al, 2001). Also an increase in the numbers of 

wild-type B. pseudomallei cells in the blood was shown after 48 h while the 

number of capsule-deficient mutant cells in the blood decreased after 48 h 

(Reckseidler-Zenteno et al, 2005). 

 

1.1.5.3  Lipopolysaccharide 

Lipopolysaccharides (LPS) are macromolecules composed of lipid and 

polysaccharide bound by a covalent bond. It is a major component of the outer 

membrane of Gram-negative bacteria, functions as an endotoxin and plays a role in 

immune responses in animals (Nikaido & Vaara, 1985). Burkholderia 

pseudomallei owns an individual LPS structure with an unbranched repeating unit 

of alternating glucose and talose residues in the form -3)-β-D-glucopyranose-(1–3)-

6-deoxy-α-L-talopyranose-(1- with the talose subunits acetylated on the 2’ and 3’ 

positions (Perry et al, 1995). B. pseudomallei is highly resistant to the bacterial 

activity of normal human serum (NHS) where the bacteria multiplies in 10-30% 

NHS. But it was found that B. pseudomallei mutants in the LPS synthetic pathway 

are debilitated in rodent models with the bacteria becoming susceptible to be killed 

by the alternative complement pathway and to be less virulent (Deshazer et al, 

1998).  

 

1.1.5.4  Flagella 

 B. pseudomallei has a polar tuft of two to four flagellae that supply motility but the 

flagella’s role in virulence is still obscure due to conflicting data. Flagella-deficient 
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B. pseudomallei mutants are show a reduction in numbers in lung and spleen of 

mice as compared with the wild type (Wiersinga et al, 2007). But in another study 

there was no difference between the wild type and the mutant when invading and 

replicating in human lung cell in vitro (Chua et al, 2003). 

 

1.1.5.5  Pili 

Adherence is a critical virulence factor in many Gram-negative bacteria, mediated 

by carbohydrate molecules, pilus and non-pilus adhesion. The Burkholderia 

pseudomallei K96243 genome includes multiple type IV pilin-associated loci, 

including the pilA gene, which is responsible for producing a putative pilus 

structural protein (Essex-Lopresti et al, 2005). Mutations (deletion) in the pilA 

gene reduce the bacterial adherence to human epithelial cells in vitro and they also 

decrease bacterial virulence in nematode models, indicating a role for type IV pili 

in Burkholderia pseudomallei virulence (Essex-Lopresti et al, 2005; Wiersinga et 

al, 2007).        

 

1.1.5.6  Biofilm formation 

A biofilm is a group of microorganism in which cells adhere to each other on a 

surface. These sticking cells are encased in an extracellular polymeric substance 

(EPS) of microbial origin. Biofilm (EPS) is described as slime consisting of 

extracellular DNA, proteins and polysaccharides (Costerton et al, 1999). 

Burkholderia pseudomallei is capable of forming biofilms (Vorachit et al, 1995). 

Biofilm formation increases the cells’ antibiotic resistance (Sawasdidoln et al, 

2010), but mutants lacking biofilms are not attenuated in mouse models, suggesting 

it is not essential for virulence (Taweechaisupapong et al, 2005). However the 

embedding of bacteria in biofilms in infected lung tissue indicates a function in 

bacteria survival, vitality and antibiotic resistance inside the host (Sawasdidoln et 

al, 2010).  

 

1.1.5.7  Antibiotic resistance 
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Burkholderia pseudomallei is resistant to a wide range of antibiotics such as β-

lactams, aminoglycosides, macrolides and polymyxins (White, 2003b). The 

genome contains genes encoding seven β-lactamases providing resistance against a 

series of β-lactam based antibiotics which includes penicillin derivatives (penams), 

cephalosporins (cephems), monobactams, and carbapenems. Most β-lactam 

antibiotics work by inhibiting cell wall biosynthesis in the bacterial organism. 

Bacteria usually develop resistance to β-lactam antibiotics by producing β-

lactamases (White, 2003b). Also the B. pseudomallei genome encodes a putative 

aminoglycoside acetyltransferase, which is responsible for some of the bacteria’s 

resistance to aminoglycosides alongside other systems (White, 2003b).  

In addition to the antibiotic resistance enzymes, B. pseudomallei produces a 

number of multi-drug efflux pumps, seven putative systems of unknown function 

and three that are fully characterized, AmrAB-OprA (BPSL1802 – BPSL1805), 

BpeAB-OprB (BPSL0813 – BPSL0816) and BpeEF-OprC (BPSS0290 – 

BPSS0294) (Kumar et al, 2008). The AmrAB-OprA efflux pump is a 

distinguishing system for the extraction of aminoglycosides and macrolides (Moore 

et al, 1999). The BpeAB-OprB multi-drug efflux pump also provides antimicrobial 

resistance by the extrusion of aminoglycosides and macrolides (Chan & Chua, 

2005b). Most Burkholderia pseudomallei strains are intrinsically aminoglycoside 

resistant, mainly due to AmrABOprA and BpeAB-OprB multi-drug efflux pumps, 

but in a single separate study the data show that BpeAB-OprB from 1026b strain 

does not mediate efflux of aminoglycosides, but is a multidrug efflux system which 

extrudes macrolides, fluoroquinolones, tetracyclines, acriflavine, and, to a lesser 

extent, chloramphenicol (Mima & Schweizer, 2010). The BpeEF-OprC efflux 

pump is responsible for the extrusion of chloramphenicol and trimethoprim (Kumar 

et al, 2008). 

 
1.1.5.8  Secretion systems   

Clinical isolates of Burkholderia pseudomallei from humans were tested for their 

ability to produce extracellular, biologically active substances, which are thought to 

contribute to the virulence of bacteria. B. pseudomallei is able to produce lipases, 

proteases, haemolysins and siderophores (Ashdown & Koehler, 1990). Different 
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strains of B. pseudomallei show various levels of proteolytic activity in cell free 

supernatants, but nevertheless there is no correlation between protease activity and 

virulence in mouse models of infection (Gauthier et al, 2000). The protease 

enzymes are capable of huge damage to cell lines, localized tissue harm and 

necrosis if injected into guinea pig or rabbit models (Ling et al, 2001). Also B. 

pseudomallei produces phospholipase C enzymes, which are found to contribute to 

cytotoxicity of HeLa cells (Korbsrisate et al, 2007). It is also able to produce 

siderophores high-affinity iron chelating compounds, which increase iron uptake 

into the cell (Yang et al, 1991).   

 

1.1.5.8.1  Type II secretion system 

It has been demonstrated in several studies that B. pseudomallei secretes protease, 

lipase and phospholipase C into the extracellular environment. The bacteria possess 

a type II general secretory system (T2SS) that is able to secrete the above-

mentioned proteins (DeShazer et al, 1999). However T2SS mutants are not 

significantly debilitated in hamster models, indicating a minor role for these 

proteins in pathogenicity (Gauthier et al, 2000).      

 

1.1.5.8.2  Type III secretion system 

The B. pseudomallei contains three type III secretion system T3SS (T3SS1, T3SS2 

and T3SS3). T3SS1 and T3SS2 are homologous to the T3SS of the plant pathogen 

Ralstonia solanacearum, while T3SS3 shows homology to the T3SS of pathogenic 

Salmonella species. The T3SS secretion apparatus functions like a molecular 

syringe. A subset of type III proteins (translocators) interact with the eukaryotic 

cell membrane and inject other type III proteins (effectors) into the target-cell 

cytosol, where they destroy host-cell processes (Wiersinga et al, 2006). T3SS3 has 

been shown to have a role in survival and persistence inside macrophages, escape 

from endocytic vesicles, multinucleated giant cell formation and induction of host 

cell apoptosis (Stevens et al, 2002) (Suparak et al, 2005). An initial study using 

deletion mutants of the SctU subunit, a major component of the inner membrane 

assembly for the three systems found only T3SS3 to be an important pathogenicity 

determinant in mouse and hamster models (Warawa & Woods, 2005).        



 40 

1.1.5.8.3  Type VI secretion system   

One of the factors that offer B. pseudomallei the ability to survive and multiply 

 within a variety of eukaryotic cells, including macrophages, is the presence of six 

type VI secretion systems (T6SS I, T6SS II, T6SS III, T6SS IV, T6SS V, T6SS VI) 

(Shalom et al, 2007). Mutations in T6SS I destroy the ability of the bacteria to 

form multinucleated giant cells, to escape from phagosomes, to survive and 

multiply inside macrophage cell lines and to remove the cytotoxicity of 

macrophages. The T6SS I mutants are attenuated in hamster models, which 

indicates that the T6SS I is essential for virulence and plays an important role in 

the intracellular lifestyle of B. pseudomallei (Burtnick et al, 2011).  

 

1.1.5.9 The intracellular lifestyle of B. pseudomallei  

B. pseudomallei has several mechanisms to escape macrophage killing and evade 

host immunity. It is able to survive and multiply within neutrophils and monocytes 

in vitro (Jones et al, 1996). These mechanisms include resistance to human 

defensin proteins (small cysteine-rich cationic proteins found in immune system 

cells to assist in killing phagocytosed bacteria) when exposed in vitro and the 

abolition of DNA and protein synthesis in host cells by secreting at least one 

uncategorized exotoxin (Jones et al, 1996). Moreover, B. pseudomallei is able to 

generate intracellular motility where the bacteria spread from one eukaryotic cell 

(host cell) to another by inducing continuous actin polymerization at one pole of 

the bacterial cell. Actin polymerization mobility allows cell to cell bacterial spread 

(Wiersinga et al, 2006). Also it is essential in the formation of multinucleated giant 

cells, although the mechanism by which this is produced is still obscure. However 

it has been observed in infected tissues from melioidosis patients, that B. 

pseudomallei is able to form multinucleated giant cells in both phagocytic and no-

phagocytic cell (Kespichayawattana et al, 2000).  
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1.2 Methionine sulfoxide reductases, members of 

GAF domain family 
 

1.2.1 The GAF family   

The GAF domain family is one of the largest families of small-molecule binding 

domains that exists in nature and is widespread in all kingdoms of life (Martinez et 

al, 2002b). In mammals GAF domains are mostly present in cyclic nucleotide 

phosphodiesterases (PDEs), which are critical cellular enzymes controlling cGMP 

and cAMP second-messenger levels (Martinez et al, 2005). There are about 2000 

GAF domain-containing proteins in which GAF domains have been shown to play 

several roles including the binding of small-molecules, protein-protein interactions 

(including dimerization) (Heikaus et al, 2009). The name GAF was given after the 

first three GAF domain-containing protein families were identified: the mammalian 

cyclic GMP-dependent phosphodiesterases (PDEs), Anabaena Adenylyl cyclase 

and E.coli transcription factor FhIA (Aravind & Ponting, 1997). However, the vast 

majority of GAF domains have not been studied, so their functions and ligand 

binding properties remain unclear (Heikaus et al, 2009). 

 
1.2.1.1 GAF family history 

The GAF domain was initially described by Aravind and Ponting in 1997 using the 

position-specific iterative BLAST method (Aravind & Ponting, 1997). The GAF 

domain has been described as one of the largest and most widely distributed 

families of small-ligand binding regulatory domains, although confirmed proofs of 

ligand binding remain insufficient, as few examples of GAF binding ligand are 

available (Zoraghi et al, 2004). The first demonstration GAF binding ligand was 

the binding of cGMP to mammalian PDE5 (Francis et al, 1980). Progressively 

more evidence has emerged. About 2000 proteins have been predicted to contain 

GAF domains but in humans they are found only in cyclic nucleotide 

phosphodiesterases (PDEs). Eleven different PDEs have been determined in 

mammalia. The PDEs are distinguished by a C-terminal conserved catalytic 

domain and one or more N-terminal regulatory domains, some of which bind 
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cGMP (Martinez et al, 2002b). Five PDE families have two regulatory domains in 

the N-terminus. Later on, by using bioinformatics techniques, it was shown that 

this regulatory domain exists in many other proteins, many of which do not bind 

cGMP; this regulatory domain was then renamed as a GAF domain (Aravind & 

Ponting, 1997). The first crystal structure of a GAF domain was identified by Ho 

and his colleagues in 2000. This GAF domain was seen in the structure of yeast 

YKG9 but no ligand for YKG9 has been reported (Ho et al, 2000). Then the first 

X-ray crystal structure of PDE GAF domains, with bound cGMP was determined 

in 2002; this structure revealed the dimerization role of the GAF domain where two 

GAF domains were found in PDE structure, and both have very similar folds to 

those seen in the single GAF domain of YKG9 (Martinez et al, 2002b).  

 

1.2.1.2 GAF domain structure  

All recorded structures of cyclic nucleotide-binding GAF domains indicate that the 

GAF domain consists of a core of a six-stranded antiparallel β sheets with the 

strand order 3-2-1-6-5-4. The N-and C-terminal portions of the sequence form one 

outer layer of the structure, composing of three helices: α1, α2 and α4 where the 

opposite outer layer of the structure is a mixture of loops and a short α-helix, α3, 

which is often packed against the domain and may take part in domain 

dimerization  (Figure 1.4) (Heikaus et al, 2009; Ho et al, 2000). The first reported 

atomic resolution structure of the GAF domain was the crystal structure of the 

dimeric YKG9 (PDB code), a yeast protein of unknown function. Although no 

bound ligand was found in this structure, the overall topology of the domain 

suggests a cGMP binding role (Ho et al, 2000). In YKG9 the N-terminus extends 

41 residues before the N-terminal end of the GAF domain as described by Aravind 

and Ponting (Aravind & Ponting, 1997). These 41 residues involve the first two 

helices, α1 (residues 8-14) and α2 (residues 20-38) where these helices form an 

integral portion of the α-helical layer, indicating that the stable folding unit for 

GAF domain corresponds to residues 8-179 of YKG9 (Ho et al, 2000). YKG9 

dimerizes and most of the dimer interface is made up of residues of the N-terminal 

tail, α3, β2, β3 and the β2- β3 loop (Figure 1.4). CYS91 and CYS125 form a 

disulfide bond in YKG9, this disulfide bond reduces the conformational freedom of 

the β2- β3  
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Figure 1.4: The structure of the GAF domain of yeast protein PDB code YKG9. (A) 

Overall structure of YKG9 dimer. (B) YKG9 monomer in two different views related by a 

90° rotation about the y-axis. Adapted from (Ho et al, 2000).        
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loop and β3- β4 loop containing CYS91 and CYS125. It has been suggested that 

the disulfide linkage provides stability to the YKG9 crystal, since crystals grown in 

high concentration of reducing agent (dithiothreitol DTT) are small and diffract 

poorly (Ho et al, 2000). The first structure of any PDE GAF domain was the 2.9 Å 

resolution crystal structure of PDE2A tandem GAF domain. The structure shows a 

parallel homodimer in which GAF A contains no ligand but forms a dimerization 

link with a second GAF A, while GAF B does not contribute to the dimerization 

interface but binds cGMP in a deeply buried pocket (Figure 1.5) (Martinez et al, 

2002a). 

 
1.2.1.3 GAF domain functions  

A subfamily of GAF domains has emerged as cyclic nucleotide (cNMP)-binding 

domains that allosterically control the catalytic activity of cyclic nucleotide 

phosphodiesterases (PDEs). Five PDEs (PDE2, 5, 6, 10 and 11) contain two N-

terminal GAF domains, the first N-terminal domain is labeled as GAF A and the 

second C-terminal as GAF B (Heikaus et al, 2009). So far, only one GAF domain 

in each PDE monomer has been shown to bind cyclic nucleotide. It has been found 

that the GAF A domain of PDE5, 6, and 11 and the GAF B domain of PDE2 bind 

cGMP, while cAMP binds to the GAF B of PDE10 (Heikaus et al, 2009). PDEs 

regulate the cellular concentration level of the cyclic nucleotides cGMP and cAMP, 

both of which are essential second messengers in many signal transduction 

pathways (Martinez et al, 2002b). Cyclic GMP binds immediately to ion channels, 

activates protein kinase G (PKG), and controls the activity of phosphodiesterases. 

Cyclic AMP activates protein kinase A (PKA), which like PKG, phosphorylates a 

number of protein substrates. Adenylyl and guanylyl cyclases catalyze the 

synthesis of cyclic nucleotides, where 3,5-cyclic nucleotide phosphodiesterases 

(PDEs) hydrolyze these second messengers to the inactive 5-monophosphates 

(Martinez et al, 2002b). Because of their critical role in many disease-related 

pathways, PDEs are valuable drug targets. For example Vigra, Cialis and Levitra 

target PDE5 as it plays role in the male erectile pathway (Heikaus et al, 2009). 

However, in 2007 a new GAF domain function appeared when Lin and colleagues 

found that the E. coli free methionine-(R)-sulfoxide reductase (fRMsr) was the first 

GAF domain family member that shows enzymatic activity, where the other GAF  
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Figure 1.5: The structure of PDE2A the regulatory segment of mouse (PDB code 

1MCO). Each PDE2A subunit contains a GAF A and a GAF B domain. The GAF A domain 

and seven turns of the connecting helices form a dimer interface. The two GAF B domains 

are far apart and contain the cGMP-binding sites.  Adapted from (Martinez et al, 2002b)  
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domains bind cyclic nucleotides, chromophores and many other ligands for signal 

potentiation (Lin et al, 2007). 

 

1.2.2 Methionine sulfoxide reductases  
 

1.2.2.1 Reactive oxygen species (ROS) and oxidative stress 

Reactive oxygen species (ROS) or free radicals are chemically reactive molecules 

containing oxygen, such as the superoxide anion and hydrogen peroxide. ROS are 

generated as part of the normal aerobic cellular existence and have essential roles 

in cell signaling and homeostasis but during times of environmental stress, ROS 

levels can increase dramatically, and this stimulates the formation of many other 

molecules able to cause oxidative stress in cells (Hoshi & Heinemann, 2001). 

Several non-enzymatic and enzymatic procedures are used to maintain the overall 

balance between ROS production and elimination (Finkel, 2000). ROS, specifically 

in the presence of cofactors such as certain metal ions (Fe2+, Cu2+, Co2+ and  Mn2+), 

are able to oxidatively damage and modify many cellular components such as 

DNA, proteins and lipids. This damage is likely to contribute to ageing, age-

associated changes and age-related degenerative diseases like Alzheimer’s and 

Parkinson’s diseases (Hoshi & Heinemann, 2001; Stadtman, 1992). The oxidative 

stress induced by these reactive oxygen agents might cause DNA damage which 

may lead to cell death, abnormal cell growth and mutations, which in turn may 

result in cancer (Lee et al, 2009). It can lead also to lipid peroxidation which 

results from oxidation of cholesterol and fatty acids and may change membrane 

rigidity, and permeability, and may disrupt membrane networks and generate toxic 

products such as malondialdehyde (Nair et al, 2007). Oxidized proteins may 

become dysfunctional due to structural modification and catalytic failure (Lee et al, 

2009). Amino acids in proteins have a high tendency to be oxidized by the ROS 

and this oxidative change affects the backbone as well as the amino acid side 

chains. Side chain oxidation can modify the overall chemistry of the amino acids 

which spontaneously changes protein function (Stadtman & Berlett, 1998). The 

sulfur-containing amino acids, cysteine and methionine, are the most sensitive 

residues to ROS-mediated oxidation, but also the side chains of lysine, histidine, 
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arginine, proline, tryptophan and tyrosine are prone to be oxidized (Stadtman & 

Berlett, 1998). Moreover the thiol-containing cysteine oxidation is regularly 

stimulated by the presence of small amounts of metal ions such as Fe2+, Cu2+, Co2+ 

and  Mn2+ producing several products like sulfenic ions, disulfides and sulfonic 

ions. Disulfide formation is the most common result of cysteine oxidation, but this 

reaction can be easily reversed to thiol by using reducing agents such as 

glutathione in vivo or dithiothreitol (DTT) in vitro (Finkel, 2000).  

 

1.2.2.2 Oxidation of methionine 

Methionine is a sulfur-containing amino acid susceptible to oxidization by a range 

of different ROS, such as O2-., H2O2, peroxynitrite (ONOO-) or .OH to methionine 

sulfoxide (Met-SO). The formation of methionine sulfoxide has been recorded in 

native proteins and reveals that methionine side chain oxidation is a 

physiologically consistent phenomenon. Methionine oxidation to methionine 

sulfoxide (Met-SO) or even further oxidation to methionine sulfone (Met-SO2) is 

expected to induce significant changes in the methionine side chains physical 

properties, leading to protein function alteration (Hoshi & Heinemann, 2001). A 

change in hydrophobicity is one aspect of these changes where the side chain of the 

normal methionine is long, flexible, and non-polar but the side chain of methionine 

sulfoxide with the additional oxygen atom is stiffer and more polar than the 

methionine side chain. The specific oxidation and reduction of methionine residues 

in proteins may cause serious effects in protein function and cell physiology. 

Methionine oxidation is considered as one of the essential factors that contribute in 

physiological dysfunctions to the long-term age-associated changes and 

degenerative diseases. Moreover methionine oxidation is expected to play a role in 

physiological dysfunctions if there is acute local generation of excess ROS (Hoshi 

& Heinemann, 2001). Several examples of protein damage by methionine 

oxidation leading to critical clinical issues have been described, like reperfusion 

injury resulting from ischaemic episodes, which can take place in almost all organs 

but notably in brain and cardiac tissues. Reperfusion occurs in the condition of 

amble production of ROS and cell damage (Chan, 1996). The proteins damaged by 

oxidation play a significant role in inflammatory processes (Winrow et al, 1993). 
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The level of methionine oxidized protein increases with age (Stadtman, 1992) in 

different systems especially the human brain, human eye lens and human 

erythrocytes. Various degenerative diseases have been linked to methionine 

oxidation proteins such as Parkinson’s disease, Alzheimer’s disease and eye lens 

cataracts (Hoshi & Heinemann, 2001). Also animal models show that old animals 

are more sensitive to oxidative stress and the life period of animals corresponds to 

the amount of oxidized protein (Yu et al, 1998). However, there are many proteins 

that have methionine side chains and oxidation of these residues does not seem to 

damage function. Accordingly, it has been suggested that the cyclic 

oxidation/reduction of these methionine residues is regulated by an anti oxidative 

system (Lee et al, 2009). 

 

1.2.2.3 Methionine sulfoxide reductase (Msr) family 

Oxidation of methionine produces a diastereomeric mixture of methionine S-

sulfoxide (Met-S-SO) and methionine R-sulfoxide (Met-R-SO) (Weissbach et al, 

2005):  

 

 

 

Methionine sulfoxide (Met-SO) has been involved in a variety of diseases and in 

the aging process. Several types of methionine sulfoxide reductase (Msr) mediate 

the reduction of Met-SO. The first Msr enzyme called MsrA was identified in 

1978, and it was found that this enzyme is able to rescue the function of oxidized 

ribosomal protein L21 in E. coli by reducing the oxidized state of the protein 

(Caldwell et al, 1978). After the discovery of the first Msr enzyme, many Msrs 

have been found in a wide range of organisms, and currently these enzymes can be 

classified into three types (Lee et al, 2009): 

1. MsrA: 

MsrA catalyzes the reduction of free and protein-based methionine-S-sulfoxide 

Met-S-SO Met-R-SO 
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 (Met-S-SO) (Lee et al, 2009). It is a small cytosolic enzyme that exists in a wide 

range of organisms from bacteria to plants and mammals, including humans. The 

amino acid sequence is well conserved among various species (Hoshi & 

Heinemann, 2001). In mammals MsrA is the only recognized enzyme able to 

reduce methionine-S-sulfoxide (Moskovitz et al, 2000). It has been found that 

MsrA is expressed in different tissues in rat such as liver, kidney, heart and brain 

(Moskovitz et al, 1996). In adult humans it is highly expressed in liver and kidney 

and this corresponds with the theory that MsrA plays a role as an anti-oxidant 

enzyme. In addition MsrA has been found in human heart and brain, and the brain 

also has a high level of overall MsrA expression (Kuschel et al, 1999) but it is 

highest in the cerebellum which suggests that methionine oxidation may play a role 

in neural function (Hoshi & Heinemann, 2001). At the subcellular level MsrA is 

found in the cytosol, mitochondria and nucleus, however the molecular mechanism 

and regulation remains unclear (Kim & Gladyshev, 2005b).      

 

2. MsrB: 

The second Msr named MsrB is responsible for the reduction of protein-based 

methionine-R-sulfoxide (Met-R-SO) and also it may catalyze the reduction of free 

methionine-R-sulfoxide, but with low efficiency (Lee et al, 2009). For example, the 

reduction capability of E.coli MsrB on the free methionine-R-sulfoxide is 1000 fold 

lower then the catalytic ability of E.coli MsrA for the reduction of free methionine-

S-sulfoxide (Grimaud et al, 2001). Moreover in humans MsrB is not efficient at 

reversing the free methionine-R-sulfoxide to free methionine (Lee et al, 2009). In 

mammals, MsrBs have been classified into three types: MsrB1, MsrB2 and MsrB3   

according to their catalytic mechanism. All three types have Zinc (Zn), coordinated 

by two CxxC motifs (two cysteines separated by two residues) which stabilizes the 

MsrB structure (Kryukov et al, 2002). Among three mammalian methionine-R-

sulfoxide reductases (MsrBs), MsrB1 is a Selenocysteine-containing protein, 

whereas MsrB2 and MsrB3 contain CYS in the active site (Kim & Gladyshev, 

2005a). Mammalian MsrB1 occurs in the cytosol and nucleus, MsrB2 in the 

mitochondria and MsrB3 in endoplasmic reticulum and mitochondria (Lee et al, 

2009).      
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3. fRMsr: 

The third type of Msr is the free methionine-R-sulfoxide reductase (fRMsr). This 

type was discovered in 2007 when Lin and his colleagues purified the enzyme from 

the MsrA and MsrB strain and determined the identity of (fRMsr) through 

proteomic analysis. The fRMsr domain was identified as a member of the large 

GAF domain family, which were initially known as cGMP-binding 

phosphodiesterases. Sequence analysis of fRMsr shows that the domain is 

conserved among unicellular organisms, like bacteria and yeast, but it is absent in 

multicellular organisms including mammals (Lin et al, 2007).     

The three Msr types maintain proteins function by catalyzing the reduction of free 

methionine sulfoxide and methionine sulfoxide-containing proteins. Methionine 

sulfoxides and Msrs may also contribute in sensing changed redox (reduction-

oxidation reactions) status and regulating certain proteins (Lee et al, 2009). 

However, the three types of Msr have different catalytic features: The mammalian 

MsrA and fRMsr have three conserved cysteines involved in the reaction as 

catalytic and resolving cysteines. The catalytic cysteine attacks the sulfur of 

methionine sulfoxide generating a cysteine sulfenic acid intermediate (CYS-SOH) 

with release of methionine. The generated thiol (catalytic cysteine bonded sulfenic 

acid) forms a disulfide bond with the resolving cysteine, which is finally reduced 

by thioredoxin (Figure 1.7). The difference between MsrA and fRMsr includes the 

binding site volume, where the fRMsr has a narrow binding pocket, which restricts 

access to bulky substrates. This difference corresponds to the substrate specificity 

of both types (Boschi-Muller et al, 2008; Lin et al, 2007; Lowther et al, 2000). 

MsrB enzymes have various mechanisms. MsrB1 possesses one conserved cysteine 

in the N-terminal part and the catalytic selenocysteine in the C-terminal part. A 

selenic acid intermediate at the catalytic selenocysteine is produced when this 

catalytic residue attacks the sulfur of methionine-S-sulfoxide and then this 

intermediate rearranges into selenenylsulfide with the assistance of the resolving 

cysteine and it is finally reduced by thioredoxin (Kim & Gladyshev, 2005a). In 

comparison MsrB2 and MsrB3 have only one conserved cysteine, which suggests a 

different catalytic mechanism where the sulfur of methionine-S-sulfoxide is 

attacked, by the catalytic cysteine and the sulfenic acid intermediate produced and 
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directly reduced by thioredoxin without disulfide formation between catalytic and 

resolving cysteines (Kim & Gladyshev, 2005a). 

 

1.2.2.4 Role of methionine sulfoxide reductases in bacterial 

pathogenicity 

The methionine sulfoxide reductases (Msr) may be a determinant agent for 

bacterial pathogenicity. Several recorded studies show that these enzymes may play 

significant roles in bacterial virulence and they assume that these roles are related 

to the function of the methionine sulfoxide reductases as antioxidant systems 

(Ezraty et al, 2005). In one of these studies for example, they found that Erwinia 

chrysanthemi, which is a plant pathogen, attacks plants by producing a massive 

amount of plant cell degradation, can prevent the infection of the whole plant by 

destroying the MsrA in this bacterium. They found a significant difference in 

virulence of the wild type Erwinia chrysanthemi and the MsrA mutant Erwinia 

chrysanthemi (El Hassouni et al, 1999). Another example of restricting bacterial 

virulence by generating Msr mutants is in Staphylococcos aureus, a leading cause 

of hospital and community-acquired infection (Singh & Moskovitz, 2003). Also it 

has been shown that MsrA and MsrB mutants in Neisseria gonorrhoeae and 

Neisseria meningitidis are not able to cause the sexually transmitted infection 

Gonorrhoea and the meningitis respectively, while wild types of both pathogens are 

capable of producing the diseases (Shafer & Rest, 1989). 

 
1.2.3 Examples of methionine sulfoxide reductases 

containing GAF domain 

All the known methionine sulfoxide reductases containing GAF domains are of the 

free methionine-R-sulfoxide reductase fRMsr type (Lee et al, 2009). The genomic 

analysis of fRMsr showed that its existence is restricted to unicellular organisms, 

where multicellular organisms, including mammals lack this enzyme (Lee et al, 

2009). So far, four crystal structures of fRMsr are available and they are deposited 

in the Protein Data Bank with the following codes: 1VHM, 3KSF, 3MMH and 

3RFB (3RFB has been identified as an fRMsr in PDB but is still not published). 
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These enzymes are from Escherichia coli, Staphyloccus aureus, Neisseria 

meningitidis and Streptococcus pneumonia, respectively.   

 

1. Free methionine-R-sulfoxide reductase from Escherichia coli  (1VHM):    

The crystal structure of E. coli fRMsr in complex with a MES buffer molecule has 

been solved by Badger and his colleagues (Badger et al, 2005) but no known 

function was recorded, this structure has the code 1VHM in Protein Data Bank 

(PDB). Two years later, the type three Msr, fRMsr was first named and identified 

by Lin and his colleagues (Lin et al, 2007). In this study they determined and 

characterized the Escherichia coli fRMsr by its extraction and purification from the 

MsrA-B- strain and proteomic analysis. The fRMsr sequence is highly conserved 

across bacteria and yeast but is absent in multicellular organism including humans. 

The sequence database shows many homologous sequences including many 

hypothetical proteins of unknown function (Lin et al, 2007). The recombinant 

fRMsr DNA was created and the histidine tagged fRMsr protein was expressed 

with a molecular weight of ~24 kDa. The reducing system and substrate specificity 

of E. coli fRMsr were examined by evaluating the reductase activity using different 

test conditions, containing substrates of different sizes and isomers of Met-SO, and 

the reductase activity was estimated by monitoring the decrease in NADPH 

absorbance at 340 nm. fRMsr exhibited the highest Met-SO reductase activity 

when all components of the NADPH-TrxR-Trx system were present in the 

reaction. The enzyme shows precise substrate specificity to free Met-R-SO, and it 

was not able to catalyze the reduction of Met-S-SO, Met sulfone, dimethyl 

sulfoxide or the Met-SO when binding the synthetic peptide NH2-Pro-Thr-Ser-Met-

(RS)-O-Glu-His-Val-NH2. In contrast they found that the control proteins, bovine 

MsrA and Neisseria gonorrhoeae MsrB are able to reduce both free and peptide 

bound forms of Met-S-SO and Met-R-SO, respectively (Lin et al, 2007). The 2.1 Å 

resolution crystal structure of E. coli fRMsr in complex with a MES buffer 

molecule consists of six antiparallel β-strands, four α-helices and two loops. The 

structure shows that the MES sulfonic acid group is close to CYS94 and the 

disulfide bond between CYS84 and CYS118 and this is similar to the arrangement 

of the active site residues in MsrA (Figure 1.6) (Lin et al, 2007). Lin et al’s search  
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Figure 1.6: E. coli fRMsr structure (PDB code 1VHM). (A) Overall structure shows the 

MES molecule in stick rendering and located in the active site. (B) Close up in cartoon 

represention view of the active site shows the MES molecule close to the three conserved 

CYS residues: CYS 84, CYS 94 and CYS118. The disulfide bond is shown between CYS 

84 and CYS 118 linking loop1 and loop2 together. Adapted from (Lin et al, 2007)         
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of the DALI database with the E. coli fRMsr structure showed a high homology to 

the GAF domain family suggesting that the fRMsrs use three cysteine residues for 

catalysis and formation of a disulfide bond to enclose a small active site cavity. 

The E. coli fRMsr has been considered as the first a GAF domain family member 

to exhibit enzymatic activity, as the previous only known function of GAF domain 

was binding cyclic nucleotides for signal potentiation. This suggests that the free 

Met-R-SO may act as signaling molecule in response to oxidative stress (Lin et al, 

2007).  

 

2. Free methionine-R-sulfoxide reductase from Staphylococcus aureus (3KSF)   

Crystal structures of the reduced, substrate-bound and oxidized forms of fRMsr 

from Staphylococcus aureus have been obtained by Bong and his colleagues (Bong 

et al, 2010). Staphylococcus aureus is a leading cause of hospital-and community-

acquired infections (Singh & Moskovitz, 2003). The S. aureus fRMsr sequence 

reveals that the enzyme like the E. coli fRMsr, contains three conserved cysteine 

residues (CYS68, CYS78 and CYS102) for catalyzing the free methionine-R- 

sulfoxide reduction. Also the S. aureus fRMsr has a narrow and small active site 

and these enclosed cavities in all fRMsr enzymes confirm the obvious substrate 

specificity for free methionine-R- sulfoxide in comparison with the peptide based 

methionine sulfoxide which requires a wider active site. It had been suggested in 

previous studies that the catalytic cysteine in Staphylococcus aureus fRMsr is CYS 

78 and the disulfide bond between CYS68 and CYS102 (Lin et al, 2007). But in 

the Bong study the biochemical analysis suggests CYS102 as a catalytic cysteine 

but also it forms a disulfide bond with CYS68 while, the CYS78 that was 

previously thought to be a catalytic cysteine, is not essential for catalytic function 

(Bong et al, 2010). In this study the biochemical analysis was achieved by using 

the wild type Staphylococcus aureus fRMsr and single and double mutants where 

the three conserved cysteines were replaced with serine residues. To decide what 

the function of each cysteine residues  (CYS68, CYS78 and CYS102) was, the 

following single and double mutants were created: (C68S, C78S, C102S, 

C68S/C78S and C68S/C102S) and they compared the Trx-dependent activities of 

these mutants with the wild type. Interestingly, they found that the C78S mutant 
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retains 75% of enzyme activity in comparison with the wild type, although the 

CYS78 is thought to be the catalytic residue in Escherichia coli fRMsr. The mutant 

C68S/C78S kept 22% of enzyme activity but in contrast, C102S had no catalytic 

activity and C68S/C102S had no activity either. The catalytic activity of C68S was 

32% of the wild type. Accordingly, Bong et al suggested CYS102 is the catalytic 

cysteine, CYS68 may act as the resolving cysteine that forms a disulfide bond with 

CYS102, and CYS78 is not critical for catalytic activity. So the suggested catalytic 

mechanism of Staphylococcus aureus fRMsr is: CYS102 attacks free methionine-

R-sulfoxide leading to the formation of the thiol (Cys-sulfonic acid intermediate) 

and releasing of methionine. CYS68 interacts with the Cys-sulfonic acid to form a 

disulfide bond. Finally the disulfide bond is reduced by a reductant (Trx in vivo or 

DTT in vitro) (Figure 1.7) (Bong et al, 2010). Structural comparisons between the 

reduced substrate-bound and oxidized forms of Staphylococcus aureus fRMsr 

suggests that conformational changes appear in the active site during catalysis 

(Figure 1.8) (Bong et al, 2010). 

 

3. Free methionine-R-sulfoxide reductase from Neisseria meningitides 

(3MMH) 

Interestingly, another fRMsr structure from Neisseria meningitides presents 

conflicting results. The crystal structure of oxidized Neisseria meningitides fRMsr 

was solved at 1.25 Å resolution in complex with free methionine-R-sulfoxide 

(Gruez et al, 2010). Like all the fRMsrs, Neisseria meningitidis fRMsr contains 

three conserved cysteines (CYS118, CYS94 and CYS84) but also had an additional 

cysteine residue in position 136. Biochemical and kinetic data from the wild type 

and mutants in which the cysteines were replaced by alanine was performed to 

determine the catalytic mechanism. Single, double and triple mutants were made 

and the Trx-dependent activities of these mutants were compared with the wild 

type. They found that all mutants remained active except the mutant C118A which 

indicates that the catalytic cysteine is CYS118. This result is consistent with 

Staphylococcus aureus fRMsr where the CYS118 corresponds to CYS102 in 

Staphylococcus aureus (Gruez et al, 2010). But a significant difference was noticed 

between the crystal structure of the substrate-bound form of Staphylococcus aureus 

fRMsr and the structure of oxidized Neisseria meningitidis fRMsr when binding  
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Figure 1.7: Staphylococcus aureus fRMsr (PDB code 3KSF) reduction activity. (A) 

Suggested catalytic mechanism of Staphylococcus aureus fRMsr. (B) Structural 

comparison shows conformational changes in the active site. Reduced fRMsr exhibits an 

open conformation in the active site and after binding of substrate the enzyme changes to 

closed conformation. Oxidized fRMsr displays a more closed conformation by the 

formation of the disulfide bond. Adapted from (Bong et al, 2010).        
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Figure 1.8: Conformational changes of fRMsrred, fRMsrsub, and fRMsrox forms of 

Staphylococcus aureus fRMsr (PDB code 3KSF). The active site is shown with 

electrostatic surface models. Adapted from (Bong et al, 2010).        
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substrate. The difference is in the orientation of the position of substrate binding 

where the sulfoxide moiety in the Staphylococcus aureus fRMsr replaces the 

position of the carboxylate group in Neisseria meningitides fRMsr and vice versa 

(Bong et al, 2010; Gruez et al, 2010). However the Staphylococcus aureus fRMsr 

substrate bound structure was obtained using a mutant of CYS68 (corresponding to 

CYS84 in Neisseria meningitides fRMsr), which is the resolving cysteine that 

forms the disulfide bond with the catalytic cysteine CYS102 (CYS118 in Neisseria 

meningitidis fRMsr) (Bong et al, 2010). While the oxidized- substrate bound 

complex of Neisseria meningitidis fRMsr form a disulfide bond between CYS118 

and CYS84 (Gruez et al, 2010). The structure of Neisseria meningitides fRMsr 

(Figure 1.9) shares the overall topology of GAF domains. The structure of a 

subunit is arranged around a central twisted antiparallel β-sheet composed of six 

strands (β3-β2-β1-β6-β5-β4) bounded on one side by a three-α-helix bundle 

comprising the helices α1, α2 and α4, and on the opposite side by a unit consists of 

loop- β3- α3-loop (Gruez et al, 2010). Loop- β3- α3-loop motif links the overall β-

sheet and the loop between β4 and β5 strands functions as a capping flap that shield 

the active site.    

 
1.2.4 A new free methionine-(R)-sulfoxide reductase from 

Burkholderia pseudomallei (BPSL2418) belongs to the 

GAF domain family 

The rise of drug resistance in pathogenic microorganisms represents a major 

challenge to human health and life. Burkholderia pseudomallei is one of the high 

resistance organism to antibiotics including the currently used drug, ceftazidime 

(Thibault et al, 2004). The growing number of microbial genome sequencing 

projects and the improvement of bioinformatics tools faciliate in silico analysis of 

gene sequence information (Kaminski, 2000). This computer-aided facility is 

useful in the identification, validation, and selection of the potential genes leading 

to further experimental analysis and characterization, which could also be potential 

drug candidates. Recently in silico analysis of the Burkholderia pseudomallei 

genome sequence has identified 312 essential genes, which might be drug targets 

for melioidosis. These genes encode essential proteins that play roles in the  
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Figure 1.9: Cartoon ribbon of oxidized- binding substrate complex of Neisseria 

meningitides fRMsr (PDB code 3MMH). The two subunits are in white and yellow. The 

flap of the gray subunit is in red. The Met-R-SO is represented in a stick representation 

with the carbon atoms in purple, the oxygen atoms in red, the nitrogen in blue and sulfur 

atoms in yellow.   Adapted from (Gruez et al, 2010).     

 

 

 

 

 

 

 

 



 60 

survival of B. pseudomallei including outer and inner membrane proteins, 

regulators, proteins involved in pathogenenicity, adaptation, chaperones as well  as 

proteins involved in degradation of small molecules and macromolecules, energy 

metabolism, information transfer, central/ intermediate/ miscellaneous metabolism 

pathways and some conserved hypothetical proteins of unknown function (Chong 

et al, 2006). Also a proteomic analysis between pathogenic strains of Burkholderia 

determined a list of possible candidates that might play roles in B. pseudomallei 

pathogency. BPSL2418 is one of these putative targets in B. pseudomallei and it 

has been identified as a conserved hypothetical protein of unknown function 

(Chong et al, 2006; Wongtrakoongate et al, 2007). Sequence analysis shows that 

BPSL2418 gene encodes a protein containing a GAF conserved domain (Figure 

1.10). A blast search was conducted to find potential homologs in other organisms 

of known function or structure, and shows that BPSL2418 shares high homology 

with the GAF domain fRMsr enzymes. High sequence identity has been found 

between BPSL2418 and the fRMsrs of known structure, 1VHM, 3KSF, 3MMH 

and 3RFB, which suggest that BPSL2418 might act as methionine sulfoxide 

reductase (Figure 1.11). Amino acid sequence alignment between the fRMsrs 

including BPSL2418 shows that the three cysteines that are thought to catalyze the 

reduction are fully conserved. BPSL 2418 contains the three conserved cysteines 

(CYS75, CYS85 and CYS109) in the active site and an additional cysteine residue 

in position 154 (Figure 1.12).  

In the Protein Data Bank a crystal structure of peptide methionine-R-sulfoxide 

reductase in Burkholderia pseudomallei (PDB code 3CEZ) is available, but up to 

date this work is not published. This protein was represented as an MsrB family 

member and it has similar structure features of the MsrBs, which are composed of 

8 β strands and two N-terminal α helices (Figure 1.13). The 3CEZ protein structure 

consists of one monomer and has an acetic acid binding ligand. 
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Figure 1.10: BPSL2418 is a GAF domain-containing protein. Available from the 

National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov). 

 

 

  

 
 

Figure 1.11: The percentages of sequence identity and similarity between the 

hypothetical protein from Burkholderia pseudomallei BPSL2418 and the GAF 

domain fRMsrs enzymes: Escherichia coli fRMsr, Staphyloccus aureus fRMsr, Neisseria 

meningitidis fRMsr and Streptococcus pneumonia fRMsr which have the Protein Data 

Bank codes 1VHM, 3KSF, 3MMH and 3RFB, respectively.  
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3MMH          MH-ALHFSASDKAALYREVLPQIESVVADETDWVANLANTAAVLKEAF-GWFWVGFYLVD 

BPSL2418      MFALSEALPSSKPALYETLAAQARALVETETDIVANAANFASLVYHSLDGLNWAGFYFFD 

1VHM          ---------MNKTEFYADLNRDFNALMAGETSFLATLANTSALLYERLTDINWAGFYLLE 

3KSF          -------MTTINPTNYTLLKKQAASLIEDEHHMIAILSNMSALLNDNLDQINWVGFYLLE 

                         :   *  :  :  :::  *   :*  :* :::: . :    *.***:.: 

 

3MMH          TRSDELVLAPFQGPLACTRIPFGRGVCGQAWAKGGTVVVGDVDAHPDHIACSSLSRSEIV 

BPSL2418      G--RELVVGPFQGKPACVRIPLGKGVCGTAAQTRGTQVVHDVHAFAGHIACDSASQSEIV 

1VHM          D--DTLVLGPFQGKIACVRIPVGRGVCGTAVARNQVQRIEDVHVFDGHIACDAASNSEIV 

3KSF          Q--NELILGPFQGHPACVHIPIGKGVCGTAVSERRTQVVADVHQFKGHIACDANSKSEIV 

                   *::.****  **.:**.*:**** *     .  : **. .  ****.: *.**** 

 

3MMH          VPLFSD-GRCIGVLDADSEHLAQFDETDALYLGELAKILEKRFEASRQAV------- 

BPSL2418      VPLVARDGALIGVWDVDSPLVGRFDAEDAIGMEALCRVFVEVAWENATRRGE----- 

1VHM          LPLVVK-NQIIGVLDIDSTVFGRFTDEDEQGLRQLVAQLEKVLATTDYKKFFASVAG 

3KSF          VPIFKD-DKIIGVLDIDAPITDRFDDNDKEHLEAIVKIIEKQLA------------- 

              :*:.      *** * *:    :*   *   :  :   : :                 

 
Figure 1.12: Amino acid Alignment of BPSL2418, E. coli fRMsr (1VHM), 

Staphyloccus aureus fRMsr (3KSF) and Neisseria meningitidis fRMsr (3MMH) 

proteins. (*) indicates a fully conserved residue. (:) indicates conservation between 

groups of strongly similar properties. (.) indicates conservation between groups of weakly 

similar properties. The three fully conserved cysteines are in red. Cysteines in green are 

non-conserved residue. The amino acid alignment was achieved using Clustal omega 

(www.ebi.ac.uk/Tools/msa/).          
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Figure 1.13:  Cartoon representation of peptide methionine-R-sulfoxide reductase in 

Burkholderia pseudomallei (3CEZ) protein. The structure is composed of 8 β strands 

and two N-terminal α helices with an acetic acid binding ligand. Adapted from the Protein 

Data Bank.  
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1.3 Aims of the projects 

Melioidosis has emerged as a lethal disease threat in the endemic areas and 

potentially all over the world. Unfortunately, the molecular mechanisms of 

virulence and pathogenicity of Burkholderia pseudomallei remain unknown. But 

genomics and proteomics research have selected putative targets in Burkholderia 

pseudomallei that might play roles in the virulence and pathogenicity of the 

organism. This project aims to determine the structure of one of the hypothetical 

unknown function target proteins in Burkholderia pseudomallei, BPSL2418. It has 

been predicted from the sequence analysis that BPSL2418 might function as a free 

methionine sulfoxide reductase and interestingly there is a link between the level of 

the methionine sulfoxide in pathogen tissues and its virulence (Ezraty et al, 2005). 

Currently few structures of free methionine sulfoxide reductase are known, and the 

more structures of this domain to be solved will help in understanding their role 

and the mechanism of these enzymes.  

Therefore in this thesis I describe the cloning expression, purification and 

crystallization of BPSL2418 and the solution of its 3D structure using X-ray 

crystallography. Also we aimed to identify the substrate bound, MES bound, 

unbound and reduced forms of the enzyme in order to increase the understanding 

of the catalytic mechanism of free methionine sulfoxide reductase.          
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Second project: The C-terminal domains of 

Polycystin 1 (CT1) and Polycystin 2 (CT2) 

 

1.4 Polycystin 1 and Polycystin 2  

Polycystin 1 and polycystin 2 are human members of a conserved family of 

proteins that includes homologues in the mouse, the Fugu fish, the sea urchin and 

the worm Caenorhabditis elegans (Wilson, 2001). They are highly expressed on 

renal tubular epithelia (Wilson, 2004). Mutations in genes encoding polycystin 1 

and polycystin 2 are associated with autosomal dominant polycystic kidney 

disease, the most common human genetic disease, with a prevalence of 1 in 800 of 

the world’s population (Wilson, 2001). Although the function of these proteins is 

still unknown, many studies suggest that polycystin 1 is involved in cell-cell or 

cell-matrix interactions whereas polycystin 2 is thought to be a channel protein 

(Wilson, 2001). Polycystin 1 is a large membrane protein with a long extracellular 

N-terminal portion, 11 transmembrane domains and a 200 amino acid intracellular 

C-terminal portion, whereas polycystin 2 is predicted to be a membrane protein 

with six transmembrane-spanning domains and both the N- and the C-terminis are 

predicted to be intracellular. A cytoplasmic interaction has been suggested between 

PC1 and PC2, but no structural study has proved the PC1-PC2 interaction (Wilson, 

2001). 

 
1.4.1 Autosomal Dominant Polycystic Kidney Disease 

(ADPKD): 

Autosomal Dominant Polycystic Kidney Disease is the most common lethal 

inherited disorder that affects the kidneys. It occurs in 1 in 800 live births (Fogazzi, 

1998). Two types of ADPKD are classified: 

Type I is caused by mutations in the Polycystic Kidney Disease1 (PKD1) gene, 

which encodes the polycystin 1 protein. ADPKD type I accounts for 85 to 90 

percent of patients. 
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Type II is caused by mutations in the Polycystic Kidney Disease 2 (PKD2) gene, 

which encodes Polycystin 2 protein, and accounts for 10-15% of all ADPKD cases 

(Reeders et al, 1988). ADPKD is a very widespread genetic disease, and parents 

with ADPKD have a 50 percent chance of passing the disease on to each of their 

children (Wilson, 2001). In addition to the autosomal dominant inherited disorder, 

there is also a recessive form called Autosomal Recessive Polycystic Kidney 

Disease (ARPKD). However ARPKD is much less frequent than ADPKD 

(Stawicki & Lombardo, 2008). One of the significant reasons of renal failure is the 

formation of fluid-filled cysts due to ADPKD. The fluid-filled cysts are formed by 

dysfunction in renal epithelial cells, and they cause a massive enlargement of both 

kidneys (Figure 1.14) (Chapin & Caplan, 2010). Polycystic kidney disease may be 

acquired in adult life as a consequence of aging, drugs and hormones, but most 

forms of PKD are hereditary (Wilson, 2004). 

 

1.4.2 Polycystin 1  

Polycystin 1 is a large membrane protein, which is subdivided into three parts or 

domains (extracellular, transmembrane and intracellular domains) (Figure 1.15). 

 
1.4.2.1 Domain structure of Polycystin 1 

Analysis of the amino acid sequence produced from the cloned full-length PKD1 

gene using UniProt (Universal Protein Resource) predicted that polycystin 1 is a 

massive membrane protein of 4303 amino acids and molecular weight ≥ 462 kDa 

with a long extracellular N-terminal portion, 11 transmembrane helices and short 

intracellular C-terminal portion of ≥ 200 amino acids (Hughes et al, 1995) (Figure 

1.15). 

Extracellular Domain: The first > 3000 amino acids form the long extracellular 

portion that consists of multiple domains of various types such as: Leucine-rich, C-

type lectin motif, Low-density lipoprotein A (LDL-A) domain, Immunoglobulin 

like Polycystic Kidney Disease (Ig-like PKD) domains and Receptor for Egg Jelly 

(REJ) domain (Wilson, 2001). 

Transmembrane Domain: Hydropathy analysis of polycystin 1 shows that 
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Figure 1.14: Kidneys affected by Polycystic Kidney Disease. 

Adapted from http://pathologyproject.files.wordpress.com  
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Figure 1.15: Domain structure of polycystin1. The Extracellular domain: cysteine- 

rich       leucin-rich repeats     C-type lectin motif       LDL-A               Ig-like PKD  

 

REJ   . Transmembrane region    . Intracellular domain: PLAT domain        . 
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The Polycystin 1 transmembrane domain consists of 11 transmembrane regions 

with intervening intracellular and extracellular loops (Hughes et al, 1995). 

Intracellular Domain: The C-terminal of polycystin 1, (CT1) consists of 

approximately 200 amino acids. The sequence alignment of CT1 suggests 

homologs domains from different species that involve in protein-protein interaction 

and phosphorylation signaling (Wilson, 2004). The structure prediction of CT1 was 

obtained using Phyre2 (www.sbg.bio.ic.ac.uk/phyre2/), the predicted structure 

consists of three α helices with connecting loops (Figure 1.16).  

 

1.4.2.2 Cellular and subcellular localization of Polycystin 1  

Several studies have used anti-polycystin 1 antibodies and cDNA to investigate the 

tissue, cellular and subcellular distribution of polycystin 1. Polycystin 1 is highly 

expressed in various tissues including brain, liver, pancreas, heart and intestine, 

and it is also highly produced in the renal tubular epithelial cell of the kidneys 

(Adelsberg et al, 1997; Geng et al, 1996; Ward C et al, 1996). The cellular and 

subcellular patterns of polycystin 1 expression in the human and mouse kidney 

suggest that polycystin 1 is fairly concentrated in the epithelia of the ureteric bud 

(develops to adult kidney) during embryogenesis (Wilson, 2001).  

 

1.4.2.3 Function of Polycystin 1 

Although the polycystin 1 function in the kidney is not fully understood, there is 

strong evidence of a developmental regulation role for it in the kidney. This has 

been shown by mutations of the PKD1 gene in mice leading to cystic kidneys and 

embryonic or perinatal death (Lu et al, 1997) It has been deduced from a wide 

range of studies that polycystin 1 functions as a membrane receptor, capable of 

binding and acting with proteins by forming multiprotein complexes at focal 

adhesion, cell-cell junctions and cilia. Also it is able to bind and interact with 

carbohydrates and lipids. These interactions with the extracellular matrix or with 

other cell lead to intracellular signaling via a phosphorylation cascade and 

transcriptional regulation of proteins that regulate renal morphogenesis and 

differentiation (Wilson, 2001; Wilson, 2004). 
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 Figure 1.16: The structure prediction of the C-terminal domain of Polycystin1 (26 

kDa). The structure consists of three α helices with connecting loops. The structure 

obtained by using Phyre2 (www.sbg.bio.ic.ac.uk/phyre2/).    
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1.4.3 Polycystin 2  
 

1.4.3.1 Domain structure of Polycystin 2 

The PKD2-encoded protein polycystin 2 is a 110 KD membrane protein. 

Sequential analysis using UniProt Predict shows that polycystin 2 consists of six 

transmembrane domains and that both N-terminal and C-terminal of polycystin 2 

are intracellular domains (Figure 1.17). Polycystin 2 belongs to the Transient 

Receptor Potential (TRP) channel superfamily which is distinguished by six 

transmembrane domains and an ion pore between the fifth and sixth 

transmembrane domains (Luo et al, 2003). 

Transmembrane Domain: 

The Polycystin 2 transmembrane domain (Figure 1.17) contains six helices with 

connecting loops homologous to the last six transmembrane helices of polycystin1 

(Mochizuki et al, 1996) As it shares homology with the Transient receptor 

potential TRP superfamily the cation channel is located between the fifth and sixth 

transmembrane helices. 

The C-terminal domain of polycystin 2 CT2: 

The C-terminal portion of polycystin 2, CT2, consists of approximately 289 amino 

acids. Sequence analysis suggests three interesting regions in CT2: an EF-hand 

domain in the N-terminal of CT2 (residues 720 to 796), a linker region (797-825) 

and an oligomeric coiled coil region (833-893) (Mochizuki et al, 1996). Structures 

of two domains from CT2 have been solved recently: the CT2EF-hand by NMR 

(Petri et al, 2010), and the CT2 coiled coil by X-ray crystallography (Yu et al, 

2009). The study by Petri et al has described the NMR structure and the dynamics 

of Ca2+ -bound CT2-EF. They found that human CT2-EF contains a divergent non-

Ca2+ -binding helix-loop-helix (α1-loop- α2) motif packed against a canonical Ca2+ 

-binding helix-loop-helix (α 3-Ca2+ -binding loop- α4) motif (Figure 1.18) (Petri et 

al, 2010). The X-ray study of Yua et al (2009) on the C-terminal region of 

polycystin 2 solved the structure of a fragment from amino acids G833 to G895 at 

1.9 Å resolution. It shows that this fragment forms a continuous α helix and 

assembles into a trimer (Figure 1.19). Also the study found that the C-terminal  
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Figure 1.17: Domain structure of Polycystin 2. Six transmembrane helices and an ion 

pore between the fifth and sixth transmembrane domains. The intracellular domain 

contains the N-and the C- terminus. CT2EF-hand domain      ,Linker domain      

           , CT2 coiled coil domain or oligomerization domain                . 
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Figure 1.18: Human CT2-EF domain: This domain consists of two HLH (alpha helix-loop-

alpha helix) motifs. The (α 1-loop- α 2) on the N-terminal is a non-Ca2+ -binding loop, and 

the (α 3-loop- α 4) at the Cterminal is a Ca2+ -binding loop. Adopted from (Petri et al, 2010). 

  

 

 

 

 

 

 

 

 

Figure 1.19: Human CT2 coiled coil domain: The CT2 coiled coil domain forms a trimer 

and also the C-terminal portion of α helices (A873 to G895) splays open to form an 

interaction region with another trimer (colored green). Adopted from (Yu et al, 2009). 
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portion of the α helices from A873 to G895, splays open and in the crystal lattice 

this region interacts with the same region of another trimer, forming a hexameric 

assembly (Yu et al, 2009). The structure prediction of CT2 was obtained using 

Phyre2 (www.sbg.bio.ic.ac.uk/phyre2/), the predicted structure consists of the EF-

hand domain and two helices may be representing the coiled coil domain, and they 

connected by link loop  (Figure 1.20).  

 

1.4.3.2 Cellular and subcellular localization of Polycystin 2 

Polycystin 2 is widespread in many tissues and it regulates the development and 

differentiation of the kidneys with the highest level in the renal tubular epithelium 

(Ong et al, 1999). Although there are some overlapping expression areas of 

polycystin 1 and polycystin 2, which suggests the possibility of interaction between 

them, there are some tissues in which polycystin 2 is expressed but polycystin 1 is 

not, indicating independent functions (Foggensteiner et al, 2000). Also at the 

subcellular level some similar tubular cell types are able to produce both proteins 

but their locations do not overlap with each other (Foggensteiner et al, 2000). 

 

1.4.3.3 Function of Polycystin 2 

In comparison with polycystin 1, polycystin 2 function is less well defined and 

studied. However some current results suggest that polycystin 2 can form 

heterodimers with polycystin 1 (Qian et al, 1997). The sequence homology 

between polycystin 2 and the transient receptor potential (TRP) has led to the 

prediction that polycystin 2 functions as a Ca2+ permeable nonselective cation 

channel (Luo et al, 2003). 

 

1.4.4 Polycystin 1 and polycystin 2 interaction 

Many studies have suggested that the presence of coiled coil motifs in the C-

terminal tails of both polycystin 1 and polycystin 2 may allow protein-protein 

cytoplasmic interaction (Wilson, 2001). The coiled-coil domain of polycystin 1  
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Figure 1.20: The structure prediction of the C-terminal domain of Polycystin 2 (35 

kDa). CT2 is composed of the EF-hand domain on the right side and the coil-coiled 

domain on the left. The 3D structure was predicted from the protein amino acid sequence 

by using Phyre2 server http://www.sbg.bio.ic.ac.uk/phyre2/. 
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has been shown to bind polycystin 2 in vitro in experimental analyses using yeast 

two-hybrid and overexpression techniques (TSIOKAS et al, 1997). 

Immunolocalization studies have been used to investigate the polycystin 1- 

polycystin 2 interaction in vivo, suggesting that polycystin 1 and polycystin 2 

occasionally co-localize but they often do not (Foggensteiner et al, 2000). 
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1.5 Aims of the project 

Given that the autosomal dominant polycystic kidney disease is the most common 

human genetic disease, with a prevalence of 1 in 800 of the world’s population, the 

Polycystin 1 and Polycystin 2 proteins became important targets for many 

laboratories. The determination of the 3D structures of these proteins may be a 

significant target for researchers to increase the understanding of their functions. 

However, from the point of view of the E. coli protein overexpression system, 

which is the easiest, quickest, and most commonly used procedure, the 

overexpression of a large transmembrane protein such as Polycystin 1 or 

Polycystin 2 would be impractical. Thus many structural studies focus on the 

domains that made up the full protein, and together these studies can create an 

image of the whole protein. It has been thought that the C-terminal domains of 

Polycystin 1 and Polycystin 2 play a role in protein-protein interactions but the 3D 

structures of these domains remain undefined. In order to investigate the roles of 

the C-terminal domains of Polycystin 1 (CT1) and Polycystin 2 (CT2), this project 

aims to obtain the 3D crystal structure of each C-terminal domain. The primary aim 

of this project was to overexpress, purify, crystallize and determine the 3D 

structures of CT1 and CT2. The interaction between CT1 and CT2 has shown in 

vitro, several studies suggest that the interaction between Polycystin 1 and 

Polycystin 2 may be regulated through the coiled-coil domains (Wilson, 2001). 

Therefore a secondary goal of this project was to achieve the 3D crystal structure 

of CT1 in complex with CT2.  
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Chapter 2:  Materials and Methods 

 

This chapter includes a general description of the methods and techniques used 

during the work in these two projects. Also this chapter describes the reagents and 

equipments used in this thesis. The work in all two projects in general is aimed at 

the crystallization of these proteins and obtaining the 3D structures using X-ray 

crystallography. X-ray structural studies demand large quantities of soluble, 

properly folded pure protein. But it has become clear that obtaining these proteins 

from their natural sources is often impractical, due to low of expression yields. 

Therefore use of recombinant DNA technologies is an alternative feasible 

application that is able to produce large amounts of a desired protein. The 

technique involves extraction of the DNA from the organism being studied, 

followed by amplification of the gene of interest by use of PCR. The gene is then 

inserted into an expression plasmid and transformed into a host that can be 

manipulated into producing large amounts of the protein of interest. 

 

2.1 Bacterial strains, DNA, plasmids and 

oligonucleotides 

- Bacterial strains: The following E. coli strains were all purchased from 

Novagen; E. coli BL21(DE3), E. coli BL21(DE3)-RIPL,  E. coli Novablue and E. 

coli Tuner DE3 pLacl.  

- Genomic DNA: Burkholderia pseudomallei strain D286 genomic DNA, 
taken from a melioidosis patient at Kuala Lumpur Hospital. 

- Plasmids: The following plasmids were used in this thesis: 

1. The recombinant C-terminal polycystin2 plasmid His-CT2 pET-28a(+)        

Dr Yaoxian Xu from Prof Albert Ong’s team (Academic Unit of Nephrology, 

Department of Infection and Immunity The University of Sheffield Medical 

School) has supplied this plasmid.  
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4. The recombinant C-terminal polycystin1 plasmid GB1-CT1 GEV-S2  

Also provided by prof Albert Ong team.  

5. pETBlue-1 vector 

The vector was purchased from Novagen  

- Oligonucleotides: The oligonucleotides used during the course of this thesis were 

synthesized by Eurofins MWG Opera. 

1. BPSL2418 forward primer  

BPSL2418-F: 5’ ATGTTCGCGCTTTCCGAAGC 3’ 

2. BPSL2418 reverse primer  

BPSLl2418-R: 5’ GATGCCGATTTACTCGCCGC 3’ 

3. pETBlue-1 up: 5’ TCACGACGTTGTAAAACGAC 3’   

4. pETBlue-1 down: 5’ GTTAAATTGCTAACGCAGTCA 3’ 

 

2.2 Materials 

Most of the chemicals, reagents and apparatus used in this thesis were common 

materials and are extensively offered by a wide range of producers. Chemicals 

were purchased from BDH Laboratory Supplies, Poole, England; Fisher Scientific 

UK Ltd., Leicestershire, UK; Bio-Rad Laboratories, Inc., CA, USA; Sigma-

Aldrich, St. Louis, MO, USA; Invitrogen Corporation, CA, USA; Qiagen, Hilden, 

Germany; and GE Healthcare, Freiburg, Germany.  

Substrates:  Free Met-SO (L-Met-R-sulfoxide) from Sigma-Aldrich, St. Louis, 

MO, USA  

 

2.3 Microbiological Methods 
2.3.1 Growth media 

1. Luria-Bertani (LB)  
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Bacterial strains were grown in sterilized Luria-Bertani (LB) medium (Sambrook 

& Russell, 2006). 

The table below describes the composition of media used for E. coli culture. 

                                               LB medium LB-agar 

Tryptone 10 g/l 10 g/l 

Yeast extract 5 g/l 5 g/l 

NaCl 10 g/l 10 g/l 

Bacteriological agar - 15 g/l 

 

2. The SOC medium    

This growth medium was used in the transformation of competent cells with 

recombinant plasmid in the BPSL2418 project (Sambrook & Russell, 2006).   

The table below describes the composition of media used for E. coli culture. 

                                               Amount for 1L 

Tryptone 20 g 

Yeast extract 5 g 

NaCl 0.5 g 

1M KCl 2.5 ml 

1M MgCl2 10 ml 

1 M MgSO4 10 ml 

ddH2O  To 1000 

 

All media were sterilized by autoclaving, and desired antibiotics were added. 

The table below describes the antibiotics used and their working concentrations 
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Antibiotic Final antibiotic concentration 

Ampicillin (Amp) 100 µg/ml 

Chloramphenicol (Cam) 75 µg/ml 

Kanamycin (Kan) 50 µg/ml 

Carbenicillin (Car) 50 µg/ml 

Tetracycline (Tet) 15 µg/ml 

 

 

2.4 Polymerase chain reaction (PCR) 

PCR (Bartlett & Stirling, 2003) was used for two different applications during this 

work: (1) amplification of inserts for cloning and (2) colony PCR to confirm the 

insert’s presence in the purified plasmid post-cloning. In both applications the 

following reaction mixture was used. Occasionally the PCR mixture was varied by 

the addition of 10% DMSO to reduce primer secondary structure formation: 

Genomic template (~ 2 µM) 1 µl 

Sense primer (10 pM) 1 µl 

Antisense primer (10 pM) 1 µl 

BioMix 25 µl 

Sterile, deionized water 22 µl 

Total volume                                                                            50 µl 

BioMix is a premixed PCR cocktail containing Taq DNA polymerase, reaction 

buffer and free dNTPs available from Bioline.  

The PCR reaction mixture was set in thermal cycling using the protocol below: 
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Initial denaturation 94 ºC 4 mins 

Denaturation 

Annealing       

Extension 

94 ºC 

55 ºC 

72 ºC 

1 min 

1 min                  30 cycles     

1 min 

Final extension 

Final hold 

72 ºC 

4 ºC 

10 mins 

In order to carry out colony PCR the genomic template was changed by boiled cell-

lysate from colonies picked from an agar plate resuspended in 30 µl sterile water.   

 

2.5 Agarose gel electrophoresis 

Agarose gel electrophoresis was used for the separation of DNA fragments to 

either analyze the PCR products or to confirm the presence of inserted genes in 

recombinant constructs. This procedure was accomplished by running samples on 

1% agarose gels and visualizing their migration through the gel matrix. Gel 

formation was carried out by melting 0.5 g agarose into 50 ml of TAE buffer (40 

mM Tris pH 8.0, 20 mM glacial acetic acid, 1 mM EDTA) into a 200 ml Duran 

using a microwave. When the melted agarose cooled down enough to be easily 

touched by hand, a 5 µl of x10,000 GelRed or ethidium bromide was added to 

permit fluorescent visualization of DNA migration under UV light. The gel was 

poured into BioRad Mini-Sub Cell gel-bed (gel rack) with a comb stuck in to form 

the wells. The gel was allowed to set for approximately 20 minutes. Once it had 

solidified the gel was submerged in TAE buffer and the samples, combined with 

loading buffer (0.25% bromophenol blue, 30% glycerol) were loaded into the 

formed well. In order to determine the molecular weight of DNA fragments, a 

molecular weight marker (Hyperladder I from Bioline) was loaded. Electrophoretic 

fractionation was carried out by connecting the gel-tank to its correctly oriented 

electrodes and was run at 100 V. Times ranged between 40-70 minutes depending 

on DNA size, where smaller PCR products were run for 40 minutes and larger 
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fragments such as digested plasmids were run for 60-70 minutes. The gel was 

visualized using a UV lamp and photographs were taken using a digital camera.    

 

2.6 Purification of PCR products by gel extraction:    

 The following protocol was used to extract and purify the DNA of PCR products 

from an agarose gel using a QIAquick Gel Extraction kit and a microcentrifuge: 

The DNA fragments were cut from the agarose gel with a clean sharp scalpel and 

placed in 1.5 ml tubes. Gel slices were weighed, and for gel solubilisation and 

DNA binding to the column’s membrane, 3 volumes of buffer QG (from Qiagen 

Gel Extraction Kit which contains Guanidium Thiochloride), were added to 1 

volume of gel. Gel tubes were incubated at 50 ºC for 10 minutes or until the gel 

slices had totally dissolved. The mixture was placed in a QIAquick spin column. 

To bind DNA, 1 gel volume of isopropanol was added and centrifuged for 1 minute 

at 13000 rpm. 0.5 ml of QG buffer was added and centrifuged for 1 minute. 0.75 

ml of ethanol-containing PE washing buffer was added and centrifuged for 1 

minute. The flow-through was discarded and an additional 1 minute of 

centrifugation was run to remove the remaining buffer. The QIAquick spin column 

was replaced into a clean 1.5 ml tube. To elute the DNA, 30 µl of EB buffer (10 

mM Tris-Hcl, pH 8.5) was added to the center of QIAquick membrane, the column 

was allowed to stand for 2-5 minutes, and then centrifuged for 1 minute.   

 

2.7 Plasmid purification  

All plasmids used in this thesis were extracted from their E. coli hosts by applying 

the standard protocol of Plasmid DNA Purification using the QIAprep Spin 

Miniprep Kit from (QIAGEN) and a microcentrifuge. A colony of E. coli cells, 

containing a particular plasmid vector growing on LB agar containing 100 µg/ml 

carbenicillin, was picked into 3 ml of LB media containing the appropriate 

antibiotics and grown overnight at 37 ºC at 200 rpm. Cells were then harvested by 

centrifugation at 5,000 g for 20 minutes before the plasmids were extracted. Cell 

pellets were resuspended in 250 µl buffer P1, this buffer contains RNase to degrade 
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any RNA, preventing it contaminating the purified plasmid. The cells were then 

subjected to alkaline lysis by the addition of 250 µl buffer P2 and mixing by gentle 

inversion. The solution was neutralised and the salt concentration adjusted to allow 

binding to a QIAprep spin column by the addition of 350 µl buffer N3. DNA 

adsorbs to the silica membrane of the spin column in the presence of high 

concentrations of chaotropic salts at a pH below 7.5. The lysate is then cleared of 

cell debris by centrifugation at 17,000 g for 10 minutes in a benchtop centrifuge. 

All subsequent centrifugation was done at 17,000 g for 60 seconds. The 

supernatant was applied to a QIAprep spin column, centrifuged and the flow-

through discarded. A wash was carried out using 750 µl buffer PE, which contains 

ethanol to precipitate the DNA on the column while removing the salts. The 

column was centrifuged, the flow-through discarded and the column was again 

centrifuged to ensure all ethanol had been removed from the column. The column 

was then transferred to a clean microcentrifuge tube and the DNA was eluted by 

adding 65 µl of water, incubating at room temperature for 2 minutes and finally 

centrifuging to collect the pure plasmid DNA. Yields from minipreps typically vary 

between 10 and 100 ng/µl.         

 
2.8 Cloning of expression construct  

The BPSL2418 expression construct (bpsl2418 pETBlue-1) was cloned during this 

thesis. The general methods and materials used in cloning this construct will be 

described below, but more details are given in chapter 4. 

 

2.8.1 Cloning with pETBlue-1 vector  

The plasmid pETBlue-1 vector (Figure 2.1) facilitates the expression of native 

unfused proteins and allows convenient subcloning of target genes already fused to 

existing detection and purification tags. The EcoRV cloning site is appropriately 

spaced down stream of an E. coli ribosome-binding site. The insert must encode an 

ATG start codon at its 5’ end if expression is desired. The pETBlue-1 vector    

allows insertion of the target gene through blunt ended cloning into an EcoRV 

restriction site present in a copy of the α-peptide fragment of the lacZ gene. The  
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Figure 2.1: pETBlue1plasmid map.  

Adaptedfrom Novagen (http://www.merckmillipore.co.uk)  
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produced plasmid can then be transformed into a bacterial strain deficient in the T7 

polymerase gene to restrict any background expression and with a copy of the ω-

peptide gene of LacZ in its genome. Blue/white screening on agar containing IPTG 

and X-gal can be used to select colonies containing a plasmid with an insertion. 

The lacZ gene fragments are responsible for β-galactosidase expression, which 

allows the break down of X-gal, generating a blue pigment. If the LacZ α-peptide 

gene does not contain an insertion, it is expressed and can combine with the ω-

peptide of LacZ, produced by expression from the genome, giving a functional 

copy of β-galactosidase and a blue colony. Plasmids with an insertion give white 

colonies because they are able to prevent the expression of the α-peptide and 

therefore β-galactosidase activity. In protein expression, expression strains that 

contain a copy of lacI gene such as the pLacI strains should be used in combination 

with the plasmid (pETBlue-1), because it is lacking a copy of this gene. The pLacI 

strains can be selected by a chloramphenicol resistance marker.  

 

2.8.2 Ligation and transformation for pETBlue-1 cloning 

Ligation reactions were set up containing 2 µl purified PCR product 

(approximately 50 ng) and 50 ng AccepTor vector in ClonablesTM ligation premix 

buffer (Novagen) and were incubated at 16 ºC for 30 minutes. Ligation reactions 

were then used to transform Novablue E. coli cells. Eppendorf tubes containing 50 

µl aliquots of cells were removed from the -80 ºC freezer and incubated on ice for 5 

minutes. Once defrosted 1 µl of the ligation reaction was added before being left to 

incubate on ice for 5 minutes. The cells were subjected to a heat shock at 42 ºC for 

30 seconds before being returned to ice for 2 minutes. 250 µl of SOC media was 

then added and the cells were then incubated at 37 ºC at 200 rpm for 60 minutes 

before plating on LB agar containing 100 µg/ml carbenicillin, 15 µg/ml 

tetracycline, 70 µg/ml X-gal and 80 µM IPTG for selection and blue-white 

screening of colonies to select for transformants, that had white colonies containing 

an insert in the vector.  

  

2.8.3 Confirmation of cloning results 
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White colonies were selected and transferred into 100 µl water and boiled at 100 ºC 

for 10 minutes. The mixture was centrifuged at 17,000 g for 5 minutes to remove 

cell debris. PCR conditions were set up as mentioned earlier in (2.4). Results from 

pETBlue-1 cloning were confirmed using two reactions for each colony using 

pETBlueDOWN or pETBlueUP. PCR products were analyzed by electrophoresis 

on a 1% TAE agarose. Desired colonies with correctly sized band(s) were selected 

and transferred into 3 ml LB including 100 µg/ml ampicillin and grown overnight 

at 37 ºC at 200 rpm. The cells were harvested and plasmids were purified using a 

QIAprep Spin MiniPrep Kit (QIAGEN) and the same protocol as before in (2.7). 

Purified plasmids were sent for sequencing using T7F and T7R primers 

(SourceBioscience or Geneservice).    

 

2.9 Transformation   

Recombinant plasmids were transformed into overexpression hosts such as E. coli 

BL21(DE3), E. coli BL21(DE3)-RIPL and E. coli Tuner DE3 pLacl (Tu et al, 

2005). Eppendorf tubes containing 20 µl aliquots of cells at -80 ºC were defrosted 

by incubating the tubes on ice for 5 minutes. 1 µl of plasmid DNA (approximately 

10 ng/µl) was added to the defrosted cell and the reaction was incubated on ice for 

5-30 minutes. The cells were exposed to a heat shock at 42 ºC for 30-60 seconds 

before incubating again on ice for 2 minutes. 250 µl of SOC media was then added 

in case of transformed plasmid into Tuner DE3 pLacl while LB media was added 

in case of E. coli BL21(DE3) and E. coli BL21(DE3)-RIPL. The cells were 

incubated at 37 ºC at 200 rpm for 30 minutes but the Tuner DE3 pLacl was 

incubated at 37 ºC at 250 rpm for 60 minutes before plating on LB agar containing 

the desired antibiotics to select for successful transformants. 

 

2.10 Protein expression  

The E. coli expression system was used to express BPSL2418, CT1 and CT2. 

Optimization work was performed to produce soluble protein. Most of the proteins 

in this thesis were successfully produced as a large amount of soluble proteins but 
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in a single case the protein expressed as inclusion bodies. Several attempts at 

protein refolding were made in order to achieving soluble proteins.  

 

2.10.1 Regulation of protein expression in the pET 

expression system  

The expression hosts used in this thesis are all DE3 lysogen strains containing a 

copy of T7 prophage DNA that includes the T7 polymerase gene downstream to a 

lac promoter site and lac operator-binding site. These strains also have a copy of 

the lacI gene that produces lac repressor protein. The lack of lactose (under normal 

conditions) permits the binding of the lac repressor to the lac operator sequence 

restricting the T7 polymerase expression. Inducing the culture by IPTG (a non-

hydrolysable lactose analog), the IPTG binds to the lac repressor preventing it from 

binding to the operator sequence and permitting the T7 polymerase gene 

transcription. Desired genes are cloned into pET vectors downstream of a T7 

promoter and lac operator site. When T7 polymerase is produced, it transcribes a 

gene within a pET vector resulting in expression of the target gene. The plasmids 

pET-28a(+) and GEV-S2 (vector backbone pET21a) have an extra copy of the lac 

repressor gene to prevent basal expression without the induction of IPTG. The 

absence of the lac repressor gene in pETBlue-1 imposes the use of strains, which 

possess an additional copy of the gene encoded on a plasmid, such as the pLacI 

strains. 

 

2.10.2 Protein overexpression protocol 

In general a similar procedure has been used to express all proteins involved in this 

thesis, where changes have been done to optimize expression yield, there will be 

mentioned in the following chapters.   

 

2.10.2.1 Small-scale overexpression trials 

An initial overnight 5 ml culture grown in LB containing suitable selectable 

antibiotics was used to inoculate 500 ml LB (1% culture dilution) containing the 
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same antibiotics in primary culture. In some cases 1% glucose was added to LB 

culture to increase growth. The culture was grown at 37 °C and 200-250 rpm until 

the optical density at 600 nm reached 0.5-0.8 at which point the culture was 

divided into 50 ml aliquots in 250 ml flasks. Each individual culture was induced 

by the addition of IPTG and treated with various post-induction conditions. 

Different conditions were prepared by changing in temperature, induction time and 

IPTG concentration in order to produce a soluble overexpressed protein, e.g. 

temperature (18 – 37 ºC), time (3 – 20 hours) and IPTG concentration (0.3 – 1 

mM). Samples were taken before and after 1, 2, 3, 4, 18 and 20 hours of induction 

to determine the optimum condition for each protein. Samples where centrifuged at 

17,000 g for 5 minutes in a bench top centrifuge. Samples then stored at -20 ºC 

before cell lysis using bugbuster (Novagen) and PAGE analysis. A mixture of 100 

µl bugbuster A with 1 µl bugbuster B (Novagen) was used to resuspend the cell 

pellets and then the resuspended cell were incubated at room temperature for 15 

minutes. Cell debris and insoluble protein were discarded by centrifugation at 

17,000 g for 10 minutes and the supernatant (the soluble fraction) was collected. 

The pellet, which includes the inclusion bodies, was resuspended in 100 µl 4% 

SDS and incubated at room temperature for 15 minutes. The resuspended pellet 

was centrifuged at 17,000 g for 10 minutes and the supernatant was collected as the 

insoluble fraction. The different overexpression conditions were then judged by 

running fractions of each condition on polyacrylamide gels to identify the optimum 

conditions.     

 

2.10.2.2 Large-scale overexpression trials 

Once optimum conditions were determined for each protein the overexpression 

culture was scaled up to between 2 and 4 l of media in 500 ml aliquots in 2 l 

conical flasks. Cells resulting from overexpression were harvested by 

centrifugation at 5,000 g for 45 minutes and then resuspended in approximately 70 

ml LB. The cells were aliquoted in 50 ml falcon tubes and centrifuged again at 

5,000 g for 30 minutes to remove any excess media. The supernatant was removed 

and the cell pellets were stored at -20 ºC until required. 

 



 90 

2.11 Sodium dodecyl sulfate Polyacrylamide gel 

electrophoresis (SDS-PAGE) 

SDS-PAGE was used routinely throughout this thesis for analysis of proteins and 

to evaluate the quality of protein expression and purity. SDS-PAGE was carried 

out according to the protocol mentioned in Laemmli’s study (Laemmli, 1970). All 

PAGE equipment was purchased from BioRed and all gels were stained with 

coomassie Brilliant Blue. Gel and buffers ingredients used in this thesis were taken 

from ‘Manual of Molecular Cloning’ (Sambrook & Russell, 2006). All SDS-PAGE 

gels reported in this thesis were 12% (acrylamide concentration). 

 

12% SDS-PAGE separating gel: 

Acrylamide/ Bis solution 5 ml 30% (w/v) 

1 M Tris-HCl, pH 8.8 4.69 ml 

10% SDS (w/v) 125 µl 

Milli-Q water 2.56 ml 

Ammonium persulphate 125 µl 10% (w/v) 

N,N,N',N'-tetramethyl-ethane-
1,2-diamine (TEMED) 

12.5 µl 

 

6% SDS-PAGE stacking gel: 

Acrylamide/ Bis solution 1.5 ml 30% (w/v) 

1 M Tris-HCl, pH 6.8 0.94 ml 

10% SDS (w/v) 75 µl 

Milli-Q water 2.6 ml 

Ammonium persulphate 75 µl 10% (w/v) 

N,N,N',N'-tetramethyl-ethane-
1,2-diamine (TEMED) 

7.5 µl 
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1x SDS-running buffer: 

Glycine 14.4g /l 

Tris-HCl 3g /l 

SDS 1g /l 

*Adjust to pH 8.8 2.56 ml 

 

2x SDS-loading buffer: 

Glycerol 20% (v/v) 

Tris-HCl 100 mM 

SDS 4% (v/v) 

Bromophenol blue 0.02% (v/v) 

β-mercaptoethanol 200 mM 

 

1x Coomassie blue stain: 

Methanol 20% (v/v) 

Acetic acid 7.5% (v/v) 

Coomassie Blue 4% (v/v) 

Bromophenol blue 0.1% (w/v) 

 

Destain: 

Methanol 20% (v/v) 

Acetic acid 7.5% (v/v) 
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2.12 Solubilisation and refolding of proteins 

As mentioned above, CT1 was overexpressed as insoluble inclusion bodies in E. 

coli. The inclusion bodies were isolated and attempts at protein solubilisation and 

refolding were performed. 

 

2.12.1 Inclusion bodies preparation   

The following method illustrates the treatment of CT1 inclusion bodies from 5 l of 

E. coli culture. The pelleted cultures were dissolved on ice and resuspended in lysis 

buffer (10 mM Tris, 1 mM EDTA, 10 mM DTT, pH 8.0 + protease inhibitor 

cocktail tablet in a 1:5 w/v ratio). In order to inhibit proteolysis a 1 mM PMSF 

protease inhibitor was added, and to break the bacterial cell walls 500 µg/ml 

lysozyme was added. This suspension then was kept on ice for 30 minutes, with 

shaking by inversion every few minutes. The suspension was divided into 3-4 

Sorval centrifuge tubes (each tube contained ~10 ml). Cell disruption was carried 

out using the sonication method, where each tube of all suspension was sonnicated 

on ice for 60 seconds, five times, with 4 minutes rest on ice between each 60 

seconds sonication. Sonication was run at the maximum attainable amplitude. The 

suspension was centrifuged at 40,000 g for 30 minutes and the supernatant was 

removed. Each pellet was resuspended in 25 ml of ice-cold wash buffer (50 mM 

Tris, 1 mM EDTA, 10 mM DTT, 2% w/v sodium deoxcholate, pH 8.0). To enhance 

the pellet homogeneity, an additional 2 x 60 seconds of sonication was applied to 

the resuspended pellet (as mentioned above). The suspension was centrifuged at 

40,000 g for 30 minutes and the supernatant was removed. The last step (washing 

and centrifugation) was rerun for four times, saving the pellet each time. To discard 

residual detergent, an additional washing was done using distilled water instead of 

wash buffer, a centrifugation step (40,000 g) for 60 minutes was needed to 

completely extract the inclusion bodies from buffer and detergent. A final wash 

step using distilled water and sonication step (30 sec) were accomplished to 

sufficiently disperse the pellet. Inclusion bodies were saved at 4 ºC for 

solubilisation the next day or at -80 ºC for long-term storage.   
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2.12.2 Solubilisation and refolding of inclusion bodies 

CT1 was refolded using a general protocol mentioned in the literature (Sandowski 

et al, 2002).  

 

2.12.2.1 Refolding CT1 

This protocol explains the refolding of CT1 inclusion bodies produced from 2.5 l of 

E. coli culture. The CT1 inclusion bodies were denatured using a solubilisation 

buffer (100 mM Tris, 8 M urea, 500 mM L-arginine, 10 mM cysteine, pH 8.0), 

which was prepared on the day of use. 2 g of TMB mixed bed resin 

(Sigma-Aldrich) was added to deionise the solubilisation buffer, this step was 

performed at 4 ºC in the dark for 2 hours. The buffer was filtered before the 

solubilisation step. CT1 inclusion bodies were added to 500 ml of ice-cold 

solubilisation buffer, and the pH adjusted to 11.3, the mixture was stirred at 4 ºC in 

the dark for 2 hour. The mixture was transferred to dialysis tubing and dialysed 

against 10 l of ice-coled refolding buffer (10 mM Tris, pH 8.0 at 4 ºC). CT1 

refolding was accomplished for a course of 48 hours with 6 external buffer changes 

(4 hours between each change). After 48 hours the solution was centrifuged (13000 

rpm for 10 mins) to pellet the refolded protein and to discard the buffers. The 

protein pellet was diluted with 50 mM Tris pH 8.8. The refolded protein was 

immediately used for purification.  

 

2.13 Protein purification 

Protein crystallization procedures demand pure, homogeneous and concentrated 

(regularly between 5 and 30 mg/ml) protein. In order to achieve pure concentrated 

proteins, several types of column chromatography were used throughout this thesis. 

The first step in the purification of all desired proteins was the lysising of the cells 

that contain the target protein. This was achieved by the procedure of sonication, 

which utilizes high frequency of sonic pulses to destroy the membranes and cell 

walls of bacteria. Cell pellets frozen at -20 ºC were defrosted and resuspended in a 

suitable buffer before homogenization by sonication. Sonication was run on ice for 
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20 seconds 3 times with 20 seconds rest on ice between each sonication, using the 

maximum attainable amplitude. Insoluble proteins and cell debris was separated by 

centrifuging the crude cell extract at 70,000 g for 15 minutes or 60,000 g for 20 

minutes before purification. The following purification methods were used in this 

thesis:  

 

2.13.1 Ion exchange chromatography 

Proteins are separated using ion exchange chromatography on the basis of their 

overall net surface charge. The net surface charge of a protein is determined by the 

amino acids located on its surface and it also dependent on its pH (Hames & 

Hooper, 2005). If the isoelectric point (pI) of a protein is equal to the pH of its 

environment there is no overall charge on its surface. The protein has positive net 

surface charge if the pH is below the pI and it has negative charge if the pH above. 

According to this, ion exchange chromatography can be divided into two types: in 

cation exchange chromatography, the column includes negatively charged beads to 

bind a protein that has a positive charge. The second type is anion exchange 

chromatography, where the column contains positively charged beads to bind a 

negatively charged protein. Protein with a net surface charge opposite to the 

charged column bind, and then these proteins can be eluted by washing the column 

with increasing concentrations of a solution of sodium chloride. Na+ and Cl- ions 

compete for the charged groups on the column leading proteins to elute from the 

column. In this thesis, columns including positively charged diethylaminoethyl 

(DEAE) were used such as DEAE Hi Trap 108 (anion exchange column DEAE-

sepharose Fast Flow weak anion exchanger) from GE Helthcare and Resource Q 

(HPLC) (strong anion exchanger) from GE Healthcare.       

 

2.13.2 Hydrophobic interaction chromatography 

Proteins separate in this type of purification according to diversity in their 

hydrophobic groups on their surface such as phenyl, hexyl, butyl or ethyl groups. 

The existence of an anti-chaotropic salt such as ammonium sulphate increases the 

interaction between the hydrophobic groups on the protein surface and the 
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hydrophobic groups linked to the matrix by competing for dissolution. Protein 

solutions are loaded onto a hydrophobic column in a high concentration buffer, 

permitting hydrophobic patches on the surface of a protein to interact with 

hydrophobic groups of the beads leading to the binding of the protein to the 

column. To elute proteins from the column, the concentration of the buffer is 

reduced, the protein with highest hydrophobicity eluting last. In this work, the 

hydrophobic column used was a 5 ml Hi Trap Phenyl HP cartridge from GE 

Healthcare. A reverse gradient of ammonium sulphate concentration was used to 

elute proteins.   

 

2.13.3 Gel filtration  

Gel filtration is a technique that separates a mixture of proteins based on their size 

and shapeby passing them through a column filled with porous beads. The volume 

inside the column isin two parts, the excluded volume outside the beads, and 

included volume inside the beads. Molecules larger than the pores are unable to 

enter the beads and can therefore only occupy the excluded volume whereas 

molecules that are small enough to enter the beads are able to occupy both the 

included and excluded volumes. Therefore larger molecules will elute first from the 

column, and as the size of a molecule decreases it can enter a larger proportion of 

the beads, retarding its progress down the column and causing it to elute later, until 

finally proteins that can enter all beads elute last. Assuming a protein is globular 

there is a linear relationship between the elution volume of a particular molecule 

from a given column and the logarithmic value of its molecular weight based on its 

partition coefficient: 

Kav = Eluted volume – Void volume 

        Total Volume _ Void volume 
 

Therefore gel filtration can also be used to estimate the molecular weight of a 

protein by comparing its partition coefficient, Kav, to a calibration curve of partition 

coefficient plotted against the log of molecular weight for a particular gel filtration 

column determining its oligomeric state. Gel filtration was used in this thesis as  
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  Figure 2.2: Calibration curve for gel filtration superdex 200 column.  
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purification step for all proteins, it was also used to determine the oligomiric state 

of CT2 (details given in chapter 7).  A Hi-Load Superdex 200 1.6x60 cm column 

from GE Healthcare, was the gel filtration column in this work. 

 

2.13.4 Nickel Nitrilotriacetic acid (Ni-NTA) Sepharose  

The Ni-NTA is an affinity chromatography method for purifying recombinant, 

histidine tagged proteins. In this type of column, histidine residues in a tagged 

protein bind to the immobilized nickel ions in sepharose porous bead of the 

column. The histidine tag binds to the column with high specificity and affinity, 

and the non his-tagged proteins pass through the sepharose matrix. The bound 

protein is eluted from the column by adding increasing gradient of imidazole, 

which has a higher affinity for the metal more than the histidine affinity to the 

metal.           

 

2.14 Protein concentration    

Protein concentration is a critical factor for crystallization. Concentration was 

achieved using centrifugal ultrafiltration concentrators (Vivascience). This device 

contains two chambers and a polyethersulfone membrane between them. The 

membrane has pores of controlled size; proteins smaller than the pore size will pass 

from the first chamber to the second one. This device was available in different 

sizes such as 10, 30 or 100 kDa. Protein concentration was determined using a Bio-

Rad protein assay protocol of the Bradford method (Bradford, 1976). Reagents 

used in this protocol were purchased from BioRad. In this protocol, protein 

molecules bind Coomassie Brilliant Blue G-250 dye causing a change in the 

solution colour. The changing in colour was measured by using a 

spectrophotometer. The absorbance maximum for the dye changes from 465 nm to 

595 nm when binding to a protein. Protein concentration was determined from the 

absorbance at 595 nm. 
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2.15 Protein crystallization to structure 

identification  

The procedures for producing crystals, crystal mounting, data collection and 

solving a protein structure will be explained in chapter 3. This section describes the 

laboratory techniques employed to produce crystals and solve the structures for the 

target proteins.  

 
2.15.1 Producing crystals  

Initial crystallization screening trials for proteins were set up using a Matrix Hydra 

II Plus One crystallization robot (Figure 2.3). In event of the robot not functionary, 

the initial crystallization screens were set manually. Screens were performed in 96-

well plates where each plate consumes a total of 20 µl of protein, with 200 nl for 

each condition well. Different crystallization screens were used (JCSG suite, PACT 

suite, Classics suite, PEG suite, (NH3)SO4 suite and pH clear suite) from QIAGEN 

and (Crystal screen 1, crystal screen 2) from Jena Bioscience. Conditions produce 

promising crystals were optimized to generate desired size and quality of crystals. 

Optimization of conditions was determined manually in 24-well Linbro plates 

(Hampton Research) using the hanging drop vapour diffusion method. 1-2 µl of 

protein were used in each of the 24-wells, where 500-1000 µl of crystallization 

buffer used in each well. Conditions for optimization were obtained by varying the 

proteins concentration, the precipitant concentration, the pH and the temperature.     

 

2.15.2 Cryoprotection of crystals  

Good-looking crystals were picked and soaked in a cryoprotectant buffer, which 

was used to protect crystals from freezing and from X-ray radiation damage. The 

cyprotectant solution was composed of a cryprotactant agent such as ethelenglycol, 

glycerol, sugar or low molecular weight PEG, mixied with precipitant. In this 

thesis cryoprotected crystals were frozen in a nitrogen stream at 100k. Different 

concentration of ethylene glycol were used as the cryoprotectant agent. The quality 

of diffraction from crystals frozen in each cryoprotectant condition was judged on  
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Figure 2.3: The Matrix Hydra II Plus One crystallization robot. 
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an in-house X-ray source at 100 K using the Rigaku Micromax 007 copper rotating 

anode generator that produces X-rays at a wavelength of 1.542 Å to chose the 

optimum cryoprotactant condition. The best cryoprotectant solution is the one that 

offer a clear appearance and maximizes protein diffraction. 

 

2.15.3 Data collection and processing  

The collection of X-ray diffraction data was achieved by mounting crystals 

between an X-ray source and an X-ray detector. Diffraction images were collected 

by rotating the crystals in the X-ray path. Initial crystal testing was done using a 

Rigaku MM007 copper rotating anode generator and a Mar Research image plate 

detector at the Molecular Biology and Biotechnology department, the University of 

Sheffield. For generating high quality diffraction data, synchrotron X-ray beams at 

the Diamond Light Source in Oxford, United Kingdom were used. The collected 

data were integrated using IMosflm program (Leslie, 1994) at home (Sheffield X-

ray generator) or XDS and xia2 (Kabsch, 2010b) at the Diamond Light Source. The 

XSCALE program (Kabsch, 2010a) was used to scale the integrated data. Data 

collection for this thesis was carried out at the Diamond light source in Oxford on 

the I02 and I04 beamlines.    

 

2.15.4 Structure determination  

Molecular replacement (with a known structure of high identity) using the program 

PHASER (McCoy et al, 2007) from the CCP4 suite was run to solve the structure. 

Water and un-modeled molecules of electron density were defined using the 

program COOT (Emsley & Cowtan, 2004). Refinement of the model against the 

electron density map was accomplished using the program REFMAC (Murshudov 

et al, 1997). The electron density map was improved and the model was rebuilt 

between the rounds of refinement using the program COOT. In this work we were 

able to determine three forms of the BPSL2418 protein structure (BPSL2418-

bound MES, BPSL2418-bound Met-SO and reduced BPSL2418), more details on 

solving these structures are in chapter 5.    
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2.16 Electron Microscopy    

Electron Microscopy was used to investigate the CT2 oligomeric state. Diluted 

samples of His-CT2 (0.1 mg/ml) were negatively stained using 2% Ammonium 

Molybdate Stain, pH 7.  Negatively stained electron images were record on a 

Philips CM100 transmission electron microscope, by a Gatan MultiScan 794 

charge-coupled device camera (Ohi et al, 2004). 
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Chapter 3: Theory of X-Ray Crystallography 

 

Several molecules, including proteins are able to solidify, forming crystals under 

certain conditions (Rhodes, 2006). X-ray crystallography is an approach that is 

used to identify the three dimensional structures of biological molecules. In 

additional to the X-ray technique, the three-dimensional structures can be 

determined using nuclear magnetic resonance (NMR) and cryo-electron 

microscopy (Brändén & Tooze, 2009). It is clear that X-ray crystallography is most 

used procedure as thousands of X-ray structures are saved in the Protein Data Bank 

(Barman et al, 2013).  

This chapter gives a brief demonstration of the methods and theory of X-ray 

crystallography, as it is the main used technique in this thesis. The information in 

this chapter was manly provided from these bibliographic sources: 

‘Crystallography Made Crystal Clear’ (Rhodes, 2006), ‘Biomolecular 

Crystallography: Principles, Practice, and Application to Structural Biology’ 

(Rupp, 2010) and ‘Protein Crystallography’ (Blundell & Johnson, 1976).   

 

3.1  The use of X-rays to produce images of protein 

molecules 

In order for a specimen to diffract light and be observed under magnification, the 

shortest distance between two separate points must be larger a half of the light 

wavelength. However, the wavelength of visible light is limited between 400-700 

nm, therefore light microscopes cannot obtain an image of molecules smaller a 200 

nm. To obtain an image of individual atoms in macromolecules, for example 

proteins, in which distance between atoms are only about 0.15 nm, electromagnetic 

waves with shorter wavelength (about 0.1 nm) such as X-rays must be used. X-rays 

waves are diffracted by individual atoms but cannot be focused by lenses (as 

visible light waves are in light microscopes) thus an image cannot be viewed 

directly. Alternatively the X-ray diffraction of the object can be recorded by 

measuring the directions and strengths (intensities) of the diffracted X-ray beams 
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using a detector. The measurements are transferred to a computer, takes the place 

of the action of a lens, to obtain a graphics image of the object. To associate the 

diffraction pattern to the structure of the object, a mathematical construct called 

Fourier Transform can be used. However X-ray diffraction from a single molecule 

is too weak to be detected, but the ability of many molecules including proteins to 

form crystals can solve this problem, where a crystal is composed of individual 

molecules arranged in an ordered lattice so that the contribution from individual 

molecules are added together to give detectable X-ray diffraction.   

 

3.2  The features of crystals 

Under certain conditions many macromolecules including proteins are able to 

solidify forming crystals. In state of protein crystallization, each molecule of the 

protein appropriate one or a few identical orientations, is produces a crystal in an 

orderly three-dimensional array of molecules. The molecules in protein crystals are 

packed together, forming a repeating lattice, by non-covalent interactions and a 

mixture of protein-protein and water-mediated hydrogen bonds. A crystalline 

lattice consists of an identical repeating unit, which can include multiple copies of 

the protein and is called a unit cell; this is the smallest component that is totally 

representative of the whole crystal (Figure 3.1). The unit cell has three dimensions 

defined by three lengths a, b and c and three angles α, β and γ. There are seven 

various crystal systems, which are determined by dimensions and angles of the unit 

cell: triclinic (a≠b≠c, α≠β≠γ≠90°) the simple crystal system, monoclinic (a≠b≠c, 

α=γ=90° β≠90°), hexagonal (a=b=c, α=β=90° γ=120°), cubic (a=b=c, α=β=γ=90°), 

tetragonal (a=b≠c, α=β=γ=90°), orthorhombic (a≠b≠c, α=β=γ=90°) and 

rhombohedral (a=b=c, α=β=γ≠90°). The lattice types can be sub-divided into five 

types depending on the position of the molecules inside the unit cell: primitive, 

body-centered, face centered and base centered. Within the unit cell the biggest 

aggregate of molecules, which has no internal crystallography symmetry, but can 

be superimposed on other exact adjacent aggregates of molecules by applying 

crystal symmetry operations is defined as the asymmetric unit. The symmetry 

operations that used to represent unit cell symmetry are rotation, translation, 

inversion and reflection. According on the crystal system, lattice type and the 
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asymmetric unit the crystal can be assigned to a space-group. The space-group 

provides a description of the symmetry of the crystal, where a total of 230 space-

groups, can be formed for the non-chiral molecules by applying combinations of 

symmetry operations, but only 65 space-groups are possible for chiral protein 

molecules because mirror symmetry cannot be applied. The unit cell dimensions 

and symmetry of the space-group can be derived from the diffraction image.          

 

3.3  Producing protein crystals        

 Producing crystals can be a complicated and time consuming step in the X-ray 

structural analysis of a protein (Drenth, 1999). Crystal formation demands 

dissolving purified protein in an aqueous buffer including a precipitant. These 

chemical precipitants are sufficient to control the precipitation of proteins without 

causing protein denaturation. Several chemical precipitants are able to drive this 

process, including salts such as ammonium sulfate, high molecular weight straight 

chain polymers, such as PEGs and organic solvents (Rhodes, 2006). The procedure 

of protein crystallization driven by a precipitant is a phase development 

phenomenon (Figure 3.1). Protein crystallization is basically set up with a protein 

in an aqueous buffer containing precipitant molecules at concentrations that allow 

protein precipitation. As the procedure progresses, the water in the solution 

evaporates leading to an increase in the protein and precipitant concentrations. This 

moves the protein molecules from the bulk of the solution, and the molecules start 

either to integrate in ordered layers forming crystals, or form amorphous 

precipitant (Rhodes, 2006). There are three stages of protein crystallization (Figure 

3.1), the first stage is the unsaturated phase at which the solution is not saturated 

with protein. Crystal production appears in the other two stages the nucleation and 

growth and the growth phases, where the solution is supersaturated with protein. 

The nucleation is the primary production of molecular clusters from where crystals 

grow, this phase occurs once the concentration of the protein and/or precipitant is 

higher then the optimal condition for slow precipitation. When the concentration of 

protein and precipitant is reduced permitting slow precipitation the crystal growth 

phase occurs.  
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Figure 3.1: Protein crystallization phases. (a) A diagram showing the crystallization 

phases. The red area represents the unsaturated stage when the solution is not saturated 

with protein. The blue area represents the conditions that allow both nucleation and 

growth. The green area represents the conditions that support growth only. (b) An ideal 

approach for achieving large crystals is the crystallization process moves from the 

unsaturated phase to the nucleation and growth phase, then move quickly to the growth 

phase until crystal growth quits. Adapted from (Rhodes, 2006).          
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The decreased supersaturated level allows individual protein molecules to 

incorporate in an orderly manner. The rapid precipitation in nucleation stage is 

more likely to generate a large number of small crystals or amorphous solid but the 

slow precipitation is more likely to produce a small number of large crystals. Thus 

in the ideal approach the nucleation phase occur first, then quickly the growth stage 

start preventing more nucleation and supporting a few larger crystals to be 

produced.   

 
3.3.1  Crystallization techniques 

The initial crystallization hit was obtained using a Matrix Hydra II PlusOne robot 

as mentioned before in section 2.15.1. In order to produce larger and higher quality 

crystals the initial conditions can be optimized by changing protein concentration, 

precipitant concentration, ratio of protein to precipitant in drops, volume of drops, 

pH and temperature etc. The vapour diffusion method is a manual technique 

commonly used to optimize the initial screens and to produce desirable crystals. 

The method requires blending the protein and crystallization solution in a suitable 

ratio. Then the mixture and a reservoir of a precipitant are placed separately and 

close to each other in a sealed container and diffusion of volatile solvents occurs 

between them through the vapour phase. The concentration of the crystallization 

mixture is less than the concentration of the reservoir that induces the solvent/water 

to transport from the crystallization mixture to the reservoir. Consequently the 

concentration of protein and precipitant increase and this pushes the protein out of 

the solution. There are two types of vapour diffusion method: The hanging drop 

vapour diffusion and the sitting drop vapour diffusion.   

 
3.3.1.1  Hanging drop technique        

In hanging drop technique (Figure 3.2), usually 1 to 2 µl of purified protein at high 

concentration are combined with crystallization solution (precipitant), often in a 

1:1 ratio. The protein/precipitant drop is pipetted onto a clean pre-siliconised glass 

coverslip, which is inverted and suspended over a well of 500-1000 µl precipitant 

solution. The coverslip is sealed to the well using immersion oil to ensure an 

airtight seal.           
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Figure 3.2: The hanging drop vapour diffusion.    

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3: The sitting drop vapour diffusion.    
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3.3.1.2  Sitting drop technique 

 In a sitting drop method the protein/precipitant drop pipetted in a well of a micro-

bridge, which placed above a reservoir of precipitant solution (Figure 3.3). As in 

the hanging drop the well is sealed using a coverslip and sticky oil. In hanging drop 

and sitting drop vapour diffusion, usually a 1:1 ratio of protein to precipitant is 

applied, but changing this ratio can improve crystal size.  

 

3.4  Crystal mounting 

In order to collect diffraction data, the protein crystal should be mounted onto a 

goniometer head, which is a device to control the orientation of the crystal while it 

is exposed to an X-ray beam. The protein crystal is typically mounted in a loop 

composed of a twist of nylon or plastic material connected to metal pin ending with 

magnetic base. The magnetic base facilitates the binding of the loop onto the 

goniometer head (Figure 3.4). Crystals were mounted with a droplet of the mother 

liquor plus cryoprotectant agent, to keeps the crystal hydrated and to prevent 

crystals damage. The crystals are held in the loop by surface tension in a droplet of 

liquid and permits for crystal transferring without drying them. The good quality 

crystals produce sharp diffraction patterns at large angles emerging from the X-ray 

beam.     

 

3.4.1  Cryo-cooling protein crystals   

In the early stage of protein crystallography, crystals were mounted at room 

temperature, but this was associated with crystal radiation damage, which 

consequently affects the diffracting quality of the crystal. Exposure of protein 

crystal to X-rays produces free radicals by ionizing X-ray photons, which cause 

either a localized damage, such as destruction of disulfide bonds or a general 

damage to the whole crystal. However, the less quality of crystal diffraction means 

that several crystals will used to collect sufficient data for structure identification. 

To prevent this trouble, the crystal needs to be soaked in  
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Figure 3.4: This photo shows the loop that holds the crystal. The loop consists of a 

nylon twist, metal pin and magnetic base. The loop is then mounted on a goniometer head.  
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cryoprotectants and X-ray data have to be collected at very low temperature. By 

cooling the crystal to liquid nitrogen temperature, molecular order in the crystal 

will raise and automatically develop crystal diffraction. Using this advantage 

enables the collection of complete data sets from single crystals. 

 

3.4.2  The requirement for a cryo-protectant  

The technique of mounting crystals in a cryoprotected mother liquor is necessary to 

maintain the crystal hydrated and to reduce radiation damage to the crystals. This 

method includes transferring crystal from the drop of mother liquor from where it 

has grown to a solution that contains mother liquor and convenient cryo-

protecctant like ethylene glycol, glycerol or low molecular weight polyethylene 

(PEGs). The presence of cryo-protectant prevents the water inside and surrounding 

crystal from freezing and forming ice crystals that will also diffract. It is important 

to optimize the length of soak in cryoprotectant, type of cryprotectant and 

cryoprotrctant concentration depending on the size of the crystal and a number of 

experiments that need to be applied.    

 

3.5  Collecting X-ray data 

The cryoloop including a crystal is mounted onto a goniometer head between an X-

ray source and X-ray detector. The mounted crystal is kept cold by a cold nitrogen 

gas stream generated from a liquid nitrogen source. The goniometer rotates the 

crystal in the X-ray beam while a series of diffraction images are collected, from 

the different degrees of rotation. Usually each image is collected by rotating the 

crystal through a small angle of about 0.1-1.0°, and this will produce a dataset 

which can be used to determine the protein structure. The spacegroup of the crystal 

and the degree of mosaicity can determine the whole dataset size and the number of 

degrees of rotation for each diffraction image. For example a smaller dataset is 

required when the crystal belongs to a higher symmetry space group, as the 

equivalent reflections will appear more often. Also a small degree of rotation per 

diffraction image is recommended to use with crystal having a large cell  
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dimension or a crystal with a high mosaicity to separate the reflections while 

diffraction images are collected.                 

 

3.6  X-ray sources 

In X-ray crystallography three sources are used to generate X-rays: Rotating anode 

tubes (Figure 3.5) and synchrotron radiation source (Figure 3.6), which produce 

more intense X-rays.  

 

3.6.1  Rotating copper anode tubes    

The rotating anode X-ray source is an evacuated tube with a rotating copper anode 

at one end and a cathode (usually a tungsten filament) on the other end. The X-rays 

are produced by bombarding a metal target (the rotating anode) with electrons that 

have been generated from the heated filament. The cathode is heated, which allows 

the electrons to be released and accelerated towards the rotating copper anode 

through an electronic field. These high-energy electrons collide with, and displace, 

low-energy electrons in the target metal. When a high-energy electron hits an 

electron from a low energy orbital, the electron from higher energy orbital will 

drop down, emitting an X-ray photon. The wavelength of the produced X-ray 

radiation is determined by the metal that X-rays emits from. For protein 

crystallography, the anode is usually made of copper due to its high heat 

conductivity. The cooper anode is able to emit two high-energy X-rays: Kα has a 

wavelength of 1.54 Å while Kβ has a wavelength of 1.39 Å. The produced X-ray 

radiation emerges from the rotating copper anode tube through windows of 

beryllium. Initial crystal data collection for this thesis, was performed at the 

crystallography lab, in the University Of Sheffield, using a Rigaku Micromax 007 

copper rotating anode generator (Figure 3.5).      
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Figure 3.5: A Rigaku Micromax 007 copper rotating anode generator. 
used in X-ray crystallography lab in MBB/ The University of Sheffield. X-rays are generated 

from a rotating copper anode source (not shown), and come through a metal collimator (1). 

A cryoloop containing the crystal is mounted on the goniometer to be struck by the X-ray 

beam (2). An image plate detector captures the X-ray reflections (3). A nitrogen gas source 

to keep the crystal at cryogenic temperature.          
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3.6.2  Synchrotron   

A synchotron X-ray source (Figure 3.6) is a big particle accelerator that is able to 

generate electrons and accelerate them nearly to the speed of light to produce 

higher intensity X-rays with wavelengths in the range from 0.5 Å to 1.8 Å. A 

synchrotron contains a particle accelerator and a circular path around a central 

storage ring and a series of bending magnets. Electrons are injected by a particle 

accelerator inside the ring and accelerated close to the speed of light controlled by 

radio transmitters and kept in a circular motion due to the powerful magnets 

(Figure 3.7). The obligatory curved path leads the electrons to lose energy and to 

change velocity, which cause the emission of X-ray radiation at tangents to the 

circle (beamlines) (Figure 3.7). The synchrotron has also two accessory devices; 

wigglers and undulators, which can increase the intensity of the radiation by 

changing the direction of the electrons several times during a short distance. A 

series of beamlines are located tangentially around the storage ring supplying X-

ray beams to where crystals are mounted for data collection. The synchrotron has 

many distinct features, such as the high intensity of radiation that permits 

collecting X-ray data in shorter exposure times before the protein crystals are 

damaged, and also allows data collection from very small crystals. Further, the 

capability of selecting the wavelength of the X-ray beam is a very useful feature of 

the synchrotron for phase determination using Single Wavelength Anomalous 

Dispersion (SAD) or Multi Wavelength Anomalous Dispersion (MAD).     

 

3.7  X-ray Detectors         

X-ray detectors are able to record the intensity and direction of the crystal 

diffracted X-rays. A pattern of crystal X-ray diffraction is obtained through the use 

of detectors.  

 

3.7.1  Image plate detectors 

The image plate detector is made up of a plate of plastic coated in thin sheet of 
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Figure 3.6: An aerial view of Diamond Light Source, the UK’s national synchrotron 

science facility, at the Harwell Science and Innovation Campus near Didcot, Oxfordshire. 

Adapted from the DLS website. 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.7: Schematic drawing of Diamond Light Source. Adapted from the DLS 

website. 
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phosphorescent material, usually crystalline BaFEu. Once X-ray photons hit the 

plate they interact with the Eu2+ leading to excitation of the phosphorescent 

material. In order to record the X-ray, a He-Ne laser scans the plate leading to 

emission of a blue light at a wavelength of 390 nm that is captured by a 

photomultiplier and transformed to a digital signal. A high intensity tungsten light 

is used to erase the detector and return the phosphorescent material into a ground 

state. The image plate detector takes a long time to collect a data set, which can be 

a disadvantage of using this type of detector. Initial crystal testing for this thesis 

was run at Sheffield in the crystallography lab using MarResearch MAR345 image 

plate detector.         

 

3.7.2  Charged-coupled device (CCD) detectors  

In a charged-coupled device detector the image is immediately appeared to the user 

in a fluorescent screen linked to a charged-coupled device by fiber optical strands. 

Crystal diffracted X-rays hit the phosphor screen and are transformed into photons 

of visible light, which are conducted towards the CCD chips over the fiber optical 

strands. The total of signal that knock the CCD chips corresponds to the total X-ray 

photons hitting the detector. The detector systems on the diamond synchrotron 

lightsource are the charged-coupled device detector. The advantage of the CCD 

detectors is the reduction of data collection time, which consequently reduces the 

amount of radiation damage, can affect the crystal.    

 

3.7.3  Pilatus Detectors  

The Pilatus system is a single photon counting pixel array where the incoming 

photons are directly measured allowing data to be collected continuously. The 

principle advantage of the Pilatus system over CCD detectors, and CCD detectors 

over image plate detectors, is the reduced read-out time, reducing the data 

collection experiment time and therefore the amount of radiation damage sustained 

by the sample. The Pilatus detector can also produce a greater signal to noise ratio 

by applying an energy threshold to the photons that are counted. 
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3.8 The principles of X-ray diffraction 
 

3.8.1 Diffraction from crystals 

During the procedure of shooting X-rays through crystals to generate diffraction, 

most of the X-rays do not clash with the crystal and directly pass through, colliding 

with the backstop. Occasionally an X-ray hits an electron surrounding an atom 

inside the crystal, leading to electron oscillation. The electron oscillates at the same 

frequency as the incident X-ray generating a secondary wave, which is recognized 

by the detector as a reflection. These reflections are representative of the crystal on 

a particular set of lattice planes, which slice into the crystal, determined by Miller 

Indices, but only if Bragg’s law is satisfied. 

 

3.8.2 Bragg’s Law       

A crystalline state is composed of atoms arranged in repeated ordered arrays 

forming a lattice. The crystal unit cell contains planes that divide up and cut across 

the axes of the unit cell, which determined by Miller index h k l. Bragg’s law 

revealed that a set of parallel planes with Miller index h k l and different interplanar 

spacing dh k l generates a reflected beam when X-rays of wavelength λ strike upon 

the planes at an angle θ and reflected at the same angle, when θ reaches the 

condition. Bragg’s law describes the conditions necessary for a set of lattice planes 

to generate a reflection. 

If n is an integer and λ is the wavelength of the X-ray that hit the planes (incoming 

X-rays); d is the distance between planes with indices h k l; θ is the angle of the 

incidence of the incoming X-rays, which strike the planes. The diffracted waves are 

in phase and will contribute to a reflection spot if the difference in X-rays path 

length (the distance 2dsin θ) is equal to an integral number of the wavelength of the 

incoming X-rays (Figure 3.8) and so:             

n λ = 2dsin θ 

If Bragg’s law is not satisfied, the X-ray diffraction will not be observed and not 

produce a reflection and this will give a diffraction image of mainly blank space.   
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Figure 3.8: Bragg’s law describes the needed condition for a set of lattice planes to 

generate a reflection. X0 is the incoming X-ray beam and X1 is the diffracted beam 

(outgoing beam) which hits the detector. d is the distance in angstroms (Å) between the 

lattice planes.  The diffracted waves X1 will be observed only if the distance 2dsin θ is 

equal to an integral number of the wavelength of the incoming X-rays. 
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3.9 From diffraction to electron density 

The collected data is made up of a list of intensities of reflections each with an 

index h k l representing a position in reciprocal space and that refer to atoms on a 

set of lattice planes in real space. Each reflection in a diffraction image includes 

contribution from all atoms in the unit cell and it can be described by a structure 

factor (Fhkl). 

 

 

 

 

The structure factor (Fhkl) is a Fourier sum of the contributions of each atom (j) 

within the unit cell containing (n) atoms, to the reflection with indices h,k,l in the 

reciprocal lattice. ( fj ) is the scattering factor of each atom (j) and it provides the 

amplitude of the wave contribution of atom (j) to the Fourier sum. The contribution 

of each atom to the Fourier sum is treated as a sphere of electron density dependent 

on the number of electrons present in the atom. The exponential term represents a 

simple three-dimensional periodic function with both sine and cosine components. 

It represents the position of the atom (j) within the unit cell as (xj, yj, zj) and h,k,l 

are the indices of the specific reflection in reciprocal space. Alternatively (Fhkl) can 

be defined by the electron density volume element (ρ) of each atom:     

 

 

 ρ(x,y,z) is the electron density at position (x,y,z) and (V) is the volume of the unit 

cell and the integral over V reveals that the integration includes all values of x,y,z . 
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3.10 Processing data from diffraction images 
 
3.10.1 Data indexing and integration  

When a dataset is collected, the measurement of the intensity of each reflection will 

be needed. A dataset was automatically indexed and integrated using programs 

such as MOSFLM and XDS. For data indexing these programs are able to measure 

the distance between reflections to determine the dimension of the unit cell and the 

space group that the crystal belongs to. They can measure the intensity of each 

reflection (spot) in pixels in contrast to the background level of the detector and 

combine this value with the information of the spot position (hkl). The data are 

then integrated where all collected images containing all reflections are converted 

into a single file (the mtz file).  

 
3.10.2 Data merging and scaling      

The program SCALA was used to merge and scale symmetry related reflections 

across all images so that they have a consistent intensity scale. Scaling images must 

be from the start to the end of the dataset and from low to high resolution on each 

image. The quality of the dataset can be gauged by the R-factor and Rmerge, which 

estimate the agreement of related reflections and the correlation within the dataset. 

The repetition of the same reflection or the degree of multiplicity can be measured 

through the series of dataset by the Rpim and CC1/2, which also can be used with 

Rmerge to evaluate the quality of dataset. Rpim is an alternative measure that also 

takes account of multiplicity. CC1/2 has superior properties compared with Rmerge.        

Its properties in the presence of systematic error are documented.  

 
3.11 structural determination 
 

3.11.1 initial phasing  

During the diffraction experiment the intensity of each reflection is only measured 

while the phase cannot be directly recorded, this known as the phase problem. 

Therefore the initial phase needs to be obtained by other methods such as the 
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multiple-wavelength anomalous diffraction (MAD), single-wavelength anomalous 

diffraction (SAD) and molecular replacement (MR) experiments. In the BPSL2418 

project the method used to estimate the phases is the molecular replacement (MR).     

 
3.11.1.1 Molecular replacement (MR) 

In this method protein homolog with high sequence identity to the target protein 

can be used as a search model to determine the orientation and position of the 

molecules inside the unit cell. The obtained phases can be used to produce electron 

density maps. The existence of high sequence identity homologs to BPSL2418 

allows the use of molecular replacement method in this project. MR can be run 

using a program called PHASER (McCoy et al, 2007). The presence of a 

homologue protein permits for applying a calculated set of phases to the 

experimental intensities to find a solution for the phase problem. In order to do this 

we must know the rotational and translational position of the protein molecules 

within the unit cell, which can be obtained by comparing the Patterson Function of 

the search model and the trial model.  

A Patterson Function is a vector map that shows the atomic distances, which are 

correlated with the crystallized molecule. Molecular replacement demands first that 

the search model to be rotated in all possible orientation as the unknown protein in 

the unit cell. This can be done by comparing Patterson map of the search model 

and the unknown protein. The next step is the translation function, which is 

required to determine the correct position within the unit cell.  

The rotation function includes comparisons between the search model (Known 

protein) Patterson map and the unknown protein Patterson map in different 

orientations. The Patterson maps are aligned and oriented in steps through three 

dimensions. In each orientation step the structure factor amplitudes of the trial 

model were calculated and compared with the known model structure factor 

amplitudes. The rotation function solution is obtained when the maximum overlap 

or similar orientation is found. Then this solution is applied to the search model’s 

coordinates and new rotated model is put out and used in the translation function 

step. The translation function is a positioning process of the protein to be placed in 

the correct orientation and position in the asymmetric unit. The rotated model 
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demands be translated into the correct coordinates, x,y,z axis in order to be placed 

correctly within the unit cell. A similar comparison is made between the rotated 

model Patterson map and the unknown model Patterson map to find the best 

solution. The electron density map can be produced by calculating the phases from 

the search model by Fourier Transform and are combined with the experimentally 

derived intensities.       

                 

3.12 Structure re-building and refinement  

 Once the molecular replacement obtains the suitable model, this model needs to be 

refined and improved. The program COOT was used to visualize the electron 

density map to re-build the model. The REFMAC5 program in the CCP4 suite was 

used to refine the model by running several cycles of refinement and re-building to 

boost the agreement between the model and the electron density.  The refinement 

includes repositioning side-chains, mutating residues, defines density aspect and 

modeling ligand, adding water molecules. The refinement progressing can be 

evaluated by comparing the value of the R-factor and the free R-factor. The R-

factor (reliability factor) is a measure of the agreement between the obtained model 

and the collected data.   

 

3.13 Structure validation  

During the refinement cycles it is important to monitor the difference between the 

structure factors amplitudes of the observed data (the experimental data) Fobs and 

the calculated search model Fcalc.  The quality of the refined model is associated 

with the lower value of R-factor. The R-factor measures the different between Fobs 

and Fcalc and it is described as:       
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During scaling a test set of the observed data usually 5% is excluded from the 

refinement process (R-free), which described as: 

  

        

 

If R-factor and R-free reduce during the refinement and rebuilding of the model 

this indicates correct changes have been made to the model.  

After refinement the final atomic coordinates should be validated by checking that 

the model represents the targeted protein very well. This includes the analysis of a 

Ramachandran plot, the geometry of main and side chains, clashes between atoms. 

This can be made by using the PROCHECK (Laskowski, 1993) and the Molprobity 

(Chen et al, 2010) server.  
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Chapter 4:  BPSL2418 Cloning, Expression, 

Purification and Crystallization 
 

This chapter represents the cloning, overexpression, purification and crystallization 

for Burkholderia pseudomallei BPSL2418 the MES-bound, substrate-bound, 

unbound and reduced forms.       

 

4.1  Cloning of BPSL2418  
 

4.1.1  Amplification of the bpsl2418 gene  

The bpsl2418 gene was amplified from Burkholderia pseudomallei strain D286 

genomic DNA by PCR as described in section 2.4., using the BPSL2418 forward 

and reverse primers and BioMix Red reaction mixture. To analyze the PCR 

products, they were run on a 1% agarose gel (see section 2.5). The agarose gel 

shows a band of the expected size of approximately 513 bp (Figure 4.1), and the 

Gel Extraction Kit was used to purify the PCR products (see section 2.6).  

 

4.1.2  Ligation of bpsl2418 gene into pETBlue-1 vector and 

transformation into Novablue competent E. coli cells    

The insert was ligated into the E. coli linearized expression vector pETBlue-1 and 

then the recombinant plasmid was transformed into Novablue cells (see section 

2.8.2), which have blue/white screening capability. The ligation with the insert 

should produce white colonies while the ligation without the insert should produce 

blue colonies. 4:1 was the ratio of the white colonies to the blue colonies (Figure 

4.2). A number of the desired white colonies were picked to inoculate 5 ml LB 

media each, and grown overnight. Plasmids were extracted from each cell pellet as 

described in the protocol (see section 2.7).  
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Figure 4.1: 1% DNA agarose gel of bpsl2418 gene amplification: Lane M is DNA hyper 

ladder 1 molecular weight marker; Lanes 1,2,3,4,5 and 6 are BPSL2418 PCR products.      

 

 

 

 

 

 

 

 

 

 
Figure 4.2: Blue/white screening of Transformation of ligation products into 

competent E.coli cells: Black arrow indicates white colonies (ligation with insert). Red 

arrows indicate blue colonies (ligation without insert).    
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4.1.3  Confirmation of the presence and orientation of the 

insert gene in the pETBlue-1 plasmid  

The presence and orientation of the bpsl2418 insert gene in the pETBlue-1 plasmid 

was confirmed by DNA sequence analysis (Figure 4.3) and by using PCR to 

amplify bpsl2418 DNA sequence (513 bp) from the recombinant pETBlue-1 (see 

section 2.8.3). The PCR reaction produced a band of approximately 523 bp, where 

the additional 20 bp is the size of pETBlue up primer. The PCR product was 

visualised on a DNA agarose gel (Figure 4.4). 

 

4.2 Transformation of Tuner (DE3)pLacl competent 

cells with pETBlue-1 bpsl2418 recombinants   

Cloning in pETBlue vectors regularly requires the use of NovaBlue and Tuner 

(DE3)pLacl competent cells. NovaBlue allows the blue/white-screening technique 

that detects the recombinant colonies but contains no source of T7 RNA 

polymerase. The Tuner (DE3)pLacI is an expression host that provides inducible 

expression of T7 RNA polymerase. Eppendorf tubes containing 20 µl aliquots of 

Tuner (DE3)pLacI cells were removed from the -80 ºC freezer and incubated on ice 

for 5 minutes. Once defrosted 1 µl of plasmid DNA (approximately 10 ng/µl) was 

added and the reaction was left to incubate on ice for 5 minutes. The cells were 

subjected to a heat shock at 42 ºC for 30 seconds before being returned to ice for 2 

minutes, and then an 80 µl of SOC media was added to the mixture. The cells were 

incubated at 37 ºC at 250 rpm for 60 minutes before plating 50 µl on LB agar 

containing 1% glucose, 50 µg/ml carbenicillin and 34 µg/ml chloramphenicol.  

 

4.3  BPSL2418 overxpression 

Different small-scale overexpression trials were accomplished for BPSL2418 to 

obtain the best overexpression condition, and finally the following protocol was 

used: One colony from transformation plate of Tuner (DE3)pLacI with pETBlue-1 

bpsl2418 recombinant inoculates 3 ml of LB media containing 1% glucose,  
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Figure 4.3: The bpsl2418 insert gene was sequenced and then analyzed by BLAST, 
http://blast.ncbi.nlm.nih.gov/Blast.cgi. BLAST shows that the bpsl2418 insert gene 

sequence is 99% identical to hypothetical protein BPSL2418 [Burkholderia pseudomallei 

K96243], with accession number YP_109010. N: nil    
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Figure 4.4: Confirmation of the presence and orientation of the insert gene in the 

pETBlue-1 plasmid: Lane M: hyper ladder 1 molecular weight marker; Lane 1: the PCR 

product band at the expected size of 523 bp. 
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50 µg/ml carbenicillin and 34 µg/ml chloramphenicol. The 3 ml primary culture 

was incubated at 37 ºC with shaking at 250 rmp until the OD600 reached 

approximately 0.6-1, then it was stored overnight at 4 ºC. The cells were collected 

the following morning by centrifiugation and resuspended in 3 ml fresh media 

containing the desired antibiotics and 1% glucose. A 100 ml (x10) culture of LB 

containing all required antibiotics and 1% glucose was inoculated with the 3 ml 

(x10) starter culture and incubated at 37 ºC with shaking at 250 rmp until the OD600 

reached 0.5-1. Expression was induced by addition of 300 µM IPTG for 4 hours at 

37 ºC, 250 rpm. BPSL2418 was overexpressed and an SDS-PAGE gel (Figure 4.5) 

reveals a strong expression band in the soluble fraction. The molecular weight of 

expressed protein is the same as expected, about 18 kDa.     

 

4.4 Purification of BPSL2418 

About 4 g cells were defrosted and suspended in about 35 ml of (50 mM tris-HCl 

pH 8.0) buffer. Cells were disrupted by sonication and cell debris was removed by 

centrifugation at 70000 g for 10 min. The protein concentration was estimated in 

the supernatant fraction (Cell Free Extract) CFE  as 7.5 mg/ml. Total protein in the 

cell free extract was 260 mg. This sample was applied on a 10 ml column with 

DEAE fast flow Sepharose (2 x 5 ml Hi Trap DEAE Fast Flow cartridges, GE 

Healthcare) which is a weak anion exchanger. Proteins were eluted with 100 ml 

gradient of NaCl concentration from 0 to 0.5 M in 50 mM tris-HCl pH 8.0 buffer at 

flow rate 5 ml/min (Figure 4.6). Four ml fractions were collected and analysed  on 

12% SDS-PAGE (Figure 4.7). The most pure fractions, 17 and 18, were combined, 

V=8 ml, C=6 mg/ml, total 48 mg (Peak). Fractions 16, 19 and 20 were also 

combined, V=12 ml, C=4 mg/ml, total 48 mg (sides).  

The peak fractions were diluted 3 fold with ultra pure water and applied to a 6 ml 

Resource Q column (GE Healthcare), a strong anion exchanger. Proteins were 

eluted from the column by 90 ml gradient of NaCl from 50 mM to 150 mM in 50 

mM MES-NaOH buffer pH 6.3 at flow rate of 4 ml/min (Figure 4.8). 2.5 ml 

fractions were collected and fractions across the peak were analyzed on a 12% 

SDS-PAGE (Figure 4.9).        
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Figure 4.5: 12% SDS-PAGE gel showing the overxpression of BPSL2418. Lane M: 

molecular weight marker; Lane 1: pre-induction fraction; Lane 2: insoluble fraction; Lane 3: 

soluble fraction shows a strong overexpression band around 18 kDa.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M 1 2 3 

6.0 

14.4 

21.5 

36 

200 
116.3 

97 

66 

55 

KDa 



 130 

 

 

 

 

 

 

 
Figure 4.6: A DEAE purification step showing column loading and elution of 

BPSL2418. This Figure represents the elution of protein with 100ml gradient of NaCl 

concentration from 0 to 0.5 M in 50 mM tris-HCl pH 8.0 buffer at flow rate 5 ml/min.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7: 12% SDS-PAGE analysis of DEAE fast flow Sepharose of BPSL2418. 
Visualised by staining with coomassie blue stain. Lane M: molecular weight marker; Lane 

1: CFE; Lane 2: unbound proteins; Lanes 3,4,5,6,7,8,9,10,11,12,13 and 14 are fractions 

12,14,15,16,17,18,19,20,21,22,23 and 25 respectively. Fractions 16,17,18,19 and 20 were 

collected.     
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Figure 4.8: A Resource Q column purification step showing column loading and 
elution of BPSL2418. Proteins were eluted from the column by 90 ml gradient of NaCl 

from 50 mM to 150 mM in 50 mM MES-NaOH buffer pH 6.3 at flow rate 4 ml/min. 

 

 

 

 

 

 

 

 

 

 
Figure 4.9: 12% SDS-PAGE analysis of Resource Q column purification of 

BPSL2418. Visualised by staining with coomassie blue stain. Lane M: molecular weight 

marker; Lane 1: peak fraction DEAE FF; lanes 2,3,4,5,6,7,8,9 and 10 are fractions 

18,19,20,21,22,23,24,25 and 35 respectively. Fractions 21,22,23,24 and 25 were 

collected.      
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The most pure fractions, 21-25, were combined, V=12.5 ml, C=0.95 mg/ml, total 

12 mg. To prepare a sample for gel filtration, the volume was reduced to 1 ml using 

a VivaSpin 20 MWCO 10000 concentrator (Sartorius). Fractions 18-20 with less 

pure protein were also combined, V=7.5 ml, C=1.4 mg/ml, total 8.2 mg. 7.5 ml of  

4 M ammonium sulphate was added to this sample to precipitate it for storage.  

The concentrated sample of the most pure BPSL2418 was applied to a 16x60 

HiLoad Superdex200 gel filtration column (GE Healthcare). Gel filtration was 

performed in a buffer containing 0.5 M NaCl 50 mM tris-HCl pH 8.0 at flow rate 

of 1.5 ml/min. 2 ml fractions were collected starting from 0.5 column volume 

(Figure 4.10). BPSL2418 was eluted from the column at 84 ml, corresponding to 

an apparent MW of 38 kDa, indicating its dimeric state in solution. Peak fractions 

11 and 12 were combined, V=4 ml, C=1.1 mg/ml, total 4.4 mg. This sample was 

concentrated as above and the buffer was changed to 10 mM tris-HCl pH 8.0 using 

a diafiltration cup. V=0.2 ml, C=20 mg/ml, total 4 mg. The purification progress of 

BPSL2418 preparation 1 was analyzed by using SDS-PAGE (Figure 4.11). This 

preparation 1 was used to screen for crystallisation conditions. 

In preparation 2 of BPSL2418 the suspension of precipitated protein from fractions 

16,19 and 20 from the DEAE column and fractions 18-20 from the Resource Q 

column were combined and the pellete collected by centrifugation at 70000 g for 5 

min. These stored fractions from preparation 1 are less pure, which suggests the 

need for an additional purification step to be applied. A hydrophobic 

chromatography column was also used in preparation 2 of BPSL2418. The pellet 

was dissolved in 10 ml of 50 mM tris-HCl buffer pH 8.0. V=10 ml, C=2 mg/ml, 20 

mg. The ammonium sulphate concentration in the solution was checked by 

refraction and was about 0.8 M. The sample was applied to a 5 ml Hi Trap Phenyl-

HP cartridge and eluted with an optimised gradient of ammonium sulphate   

concentration from 0.7 M to 0 M in 50 ml (Figure 4.12). Peak fractions 15-19 were 

combined , V=12.5 ml, C=0.55 mg/ml, 6.8 mg. Proteins were precipitated with 2 M 

ammonium sulphate. The  pellet was spun down as above and dissolved in 1.5 ml 

of 50 mM tris-HCl buffer pH 8.0. The resulting sample, V=1.9 ml, C=5 mg/ml, 9.5 

mg was applied on a gel filtration column. Gel filtration was performed as 

described above. 12% SDS-PAGE was used to analyse the progress of BPSL2418 

preparation 2 (Figure 4.13). Fractions 11-13 from the gel filtration column were 
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Figure 4.10: Gel filtration purification of BPSL2418. (A) a 16x60 HiLoad Superdex200 

gel filtration column loading and elution of BPSL2418. (B) the calibration plot for Hi-Load 

superdex 200 column chart shows that the BPSL2418 corresponding to apparent MW     

38 kDa, indicating its dimeric state in solution.        

Use the calibration plot 
for Hi-Load superdex 
200 column chart to 
calculate the protein 
MW: 
 
Ve/Vo=  84/45= 1.8 
logMW= 4.51 
MW= 38 KDa 
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Figure 4.11: 12% SDS-PAGE analysis of purification progress of BPSL2418 

preparation 1. Lane M: molecular weight marker; Lane 1: cell debris; Lane 3: CFE; Lane 

4: after Resource Q column; Lane 5: after gel filtration.  
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Figure 4.12: A 5ml Hi Trap Phenyl-HP cartridge loading and elution of BPSL2418. 

The protein was eluted with optimised gradient of ammonium sulphate concentration from 

0.7 M to 0 M in 50 ml.   

 

 

 

 

 

 

 

 

 

 
 

Figure 4.13: 12% SDS-PAGE analysis of purification progress of BPSL2418 

preparation 2. Lane M: molecular weight marker; Lane 1: sample applied on Phenyl-HP; 

Lane 2: after Phenyl-HP; Lane 3: after gel filtration.  
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combined , V=6 ml, C=0.9 mg/ml, 5.4 mg/ml. The sample was concentrated to 30 

mg/ml and buffer exchanged as discribed above. This sample, preparation 2, was 

used for optimisation of the crystallisation conditions. 

 

4.5 Crystallization trials of BPSL2418 

In the first initial trials of BPSL2418 crystallization I found that most of the 

successful trials contained 2-(N-morpholine) etathanesullfonic acid (MES) buffer. 

However, as BPSL2418 is predicted to function as a methionine sulfoxide 

reductase and a MES molecule contains a sulfonic acid group. The formation of 

crystals of BPSL2418 in complex with MES buffer was encouraging.  

 

4.5.1 Crystallization of the BPSL2418 MES-bound form 

(BPSL2418MES)  

Six initial 96 condition robot screens, the PACT, JCSG, Classics, PEG, AmSO4, 

and pH clear suites were performed as described in section 2.15.1, using the sample 

of BPSL2418 preparation 1, with 20 mg/ml concentration. The initial screens were 

accomplished then were incubated at 17 ºC. Initial hits (microcrystals) were 

observed in five conditions: B7 in PACT (0.2 M NaCl, 0.1 M MES at pH 6 and 

20% w/v PEG 6000), B8 in PACT (0.2 M NH4Cl, 0.1 M MES at pH 6 and 20% 

w/v PEG 6000), B9 in PACT (0.2 M LiCl, 0.1 M MES at pH 6 and 20% w/v PEG 

6000) and B10 in PACT (0.2 M MgCl2, 0.1M MES at pH 6 and 20% w/v PEG 

6000) (Figure 4.14). Optimization of these conditions was made to produce large 

crystals, using the sample of BPSL2418 preparation 2, with 30 mg/ml 

concentration. Attempts of optimization were carried out by altering the PEG 6000 

concentration (10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30 % w/v) and pH (5.0, 6.0 

and 7.0) for small crystals that were found in B7, B8, B9 and B10 in PACT. For 

the initial hit that appeared in B7 JCSG, the optimization was done by altering the 

PEG 4000 concentration (1, 2, 4, 6, 8, 10, 12, 14 and 16%) and pH (3.6, 4.6 and 

5.6).  
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Figure 4.14: photographs of initial crystallization hits of BPSL2418MES in five 

different conditions. Scale bar: 100 µm.  
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The hanging-drop method (see sections 3.3.1.1) was utilized to optimize the initial 

hits and yield large crystals that were suitable for X-ray data collection. The droplet 

in the hanging-drop technique was made by combining 2 µl protein and 2 µl 

crystallization buffer and then hanging over a well of 1 ml of reservoir solution at 

17 ºC. Fortunately attempts to optimize crystallization conditions for BPSL2418 

produced crystals in many different conditions. The best crystals of BPSL2418MES 

were obtained with a rod shape in three concentrations of PEG 6000 conditions 

(18-20%), 0.2 M NaCl at pH 6 and 0.1 MES (Figure 4.15). Desirable, rod shaped 

crystals were also seen in these two conditions (0.2 M NH4Cl, 0.1 M MES at pH 6 

and 20% w/v PEG 6000) and (0.2 M LiCl, 0.1 M MES at pH 6 and 18% w/v PEG 

6000) (Figure 4.15).  

 

4.6 Crystallization of BPSL2418 unbound, reduced 

and substrate-bound forms           
 

4.6.1 Crystallization of BPSL2418 unbound form 

(BPSL2418unbound)  

It has been predicted from the sequence analysis that BPSL2418 may act as a free 

methionine-R-sulfoxide reductase. Therefore the crystallization buffers should 

contain no sulfoxide or sulfonic acid in order to produce an unbound form of 

BPSL2418. As mentioned above, most of the successful trials contained MES 

buffer and thus the only suitable condition that could produce unbound BPSL2418 

is B7 in the JCSG screen (0.1 M sodium acetate at pH 4.6 and 8% PEG 4000) 

(Figure 4.16). Optimization of this condition was run in order to obtain large 

crystals. Unfortunately, no crystals were grown in the optimization screens. 
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Figure 4.15: Photographs of BPSL2418MES crystals. (A) and (B) Most crystals had a rod 

shape; (C) cluster of rod shaped crystals was seen in a few wells. Scale bar: 100 µm.   
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Figure 4.16: Small crystals of BPSL2418unbound form produced from 0.1 M sodium 

acetate at pH 4.6 and 8% PEG 4000. Scale bar: 100 µm.     
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4.6.2 Crystallization of BPSL2418 substrate-bound form 

(BPSL2418Met-SO)  

The structure analyses of BPSL2418 homologous proteins suggest that 

conformational changes occur in the active site (see Figure 1.7 and 1.8), where free 

methionine sulfoxide (Met-R-SO) is proposed to bind. In order to understand the 

role of BPSL2418, attempts to crystallize the BPSL2418 in complex with the free 

Met-R-SO substrate were performed. A mixture containing 20 mg/ml pure 

BPSL2418, 9 mM, free Met-R-SO was set up and incubated for 3 h at room 

temperature. Initial trials were carried out using this mixture, and hits were seen in 

0.2 M ammonium chloride 0.1 M sodium acetate pH 5 and 20% PEG 6000 (Figure 

4.17a). Crystals of the complex with free Met-R-SO were obtained from 0.2 M 

ammonium chloride, 0.1 M sodium acetate pH 6 and 18% PEG 6000 (Figure 

4.17b). One crystal was soaked in cryoprotectant solution containing 30% 

ethyleneglycol and 0.2 M ammonium chloride, 0.1 M sodium acetate pH 6 and 

18% PEG 6000. The crystal diffracted in-house to better then 2.5 Å resolution, and 

then it was frozen in liquid nitrogen to be sent to the Diamond Light Source.          

 

4.6.3 Crystallization of BPSL2418 reduced form 

(BPSL2418Reduced)       

Obtaining the structure of the reduced form of BPSL2418 can be valuable in 

understanding the role of BPSL2418. 10mM DTT (reducing agent) was added to a 

pure 20mg/ml BPSL2418 and the mixture was used to set up initial crystallization 

trials. Small crystals were found in 0.1M MIB buffer (this buffer is produced by 

mixing sodium malonate, imidazole and boric acid in the molar ratios 2:3:3- 

sodium malonate:imidazole:boric acid) pH 4, 25% PEG 1500 (Figure 4.18a), and 

then optimization trials were performed as previously described to achieve large 

crystals (Figure 4.18b). Crystals with a reasonable size were selected and soaked in 

a cryoprotectant of 30% ethyleneglycol and 0.1 M MIB buffer pH 4, 23% PEG 

1500. Crystal diffraction was initially tested in-house, where the best crystal 

diffracted to 3.1 Å. Best crystals were stored in liquid nitrogen and sent to the 

Diamond Light Source.    
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Figure 4.17: Photographs of BPSL2418Met-SO complex crystals. A: Initial hits; B: 

Crystals.  Scale bar: 100 µm.        
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Figure 4.18: Photograph of crystals from BPSL2418Reduced form. A: Initial small 

crystals. B: clusters of crystals. Scale bar: 100 µm.        
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4.7 Cryo-protection for BPSL2418 forms  

Cryoprotection as mentioned in section 3.4.2 is a very significant step that helps to 

reduce radiation damage. The exposure of the crystal to the X-ray radiation can 

produce free radicals, which distribute inside the crystal and damage the protein. 

Therefore, a cryoprotectant solution should be selected very carefully and different 

conditions need to be tested as described in section 2.15.2 to choose the optimum    

cryoprotectant condition. It was found that the best cryprotectant solution for the 

harvested crystals of the BPSL2418 forms is 30% ethylene glycol mixing with 

precipitant. The initial data collection for the BPSL2418 crystals were carried out 

on the in-house source utilizing the Rigaku Micromax 007 copper rotating anode 

generator with a Mar345 detector. In order to achieve higher resolution, the crystals 

were stored in liquid nitrogen at 100 k to send it to the Diamond Light Source in 

Oxford for data collection. 
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Chapter 5: Structure determination of 

BPSL2418  

 

In this chapter a description of the structure solutions of BPSL2418MES, 

BPSL2418Met-SO and BPSL2418Reduced by molecular replacement will be provided. 

BPSL2418 shows a very high sequence similarity, 68% to the Staphyloccus aureus 

fRMsr, which allowed the use of this protein as a model in initial phasing by 

molecular replacement.      

 

5.1 Experimental structure determination of 

BPSL2418MES by molecular replacement using PDB 

entry: 3ksf.  
 

5.1.1 Space group determination and indexing 

Initial diffraction analysis of BPSL2418MES crystals was carried out in Sheffield 

using the Rigaku Micromax 007 copper rotating anode generator with MAR 345 

image plate, in order to evaluate the diffraction quality. 1.542 Å wavelength X-rays 

were used and the crystal diffracted to 2.0 Å. Two images were collected of 1° 

oscillations separated by 90° with 20 minutes exposure each. These initial test 

images were used to find out the lattice type by auto-indexing using MOSFLM 

(Leslie, 1994). This was confirmed by collecting three test images 45° apart with 

1° oscillation at the Diamond Light Source in Oxford using the auto-indexing and 

collection strategy components of MOSFLM. BPSL2418MES belongs to the 

primitive orthorhombic crystal system, which is distinguished by unequal length of 

the three axes a, b and c and the three interaxial angles equal to 90°, (a≠b≠c, 

α=β=γ=90°). The Laue group is P 2 2 2 and the crystal had a cell dimensions 

a=53.48 Å, b=60.54 Å, c=42.24 Å, α=90°, β= 90° and γ= 90°.   
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5.1.2 Data collection and processing 

The BPSL2418MES crystals, were saved in liquid nitrogen and data were collected 

at 100 k on the I04 beamline of the Diamond Light Source, Oxford. Three test 

images 45° apart with 1° oscillation were collected as described in section 5.1.1 to 

confirm crystal centering and to obtain a collection strategy using MOSFLM 

(Leslie, 1994). A total of 360 images were collected with 0.5° rotation per image at 

a crystal-to-detector distance of 250 mm at a wavelength 0.9795 Å. The exposure 

time was 0.5 second per image at 40% beam-transmission. Data extending to 1.18 

Å were collected (Figure 5.1), and the data were processed using xia2 (Winter, 

2010), indexed and integrated by XDS (Kabsch, 2010a) and scaled by XSCALE 

(Kabsch, 1988). The processing data collection statistics of BPSL2418MES at 1.18 Å 

resolution are shown in table 5.1. The result of data collection and processing gave 

the overall Rmerge 0.072 (0.566 for the outer shell), the I/σI was overall 16.3 (2.6 for 

the outer shell) and the completeness was overall 97.3%. Also the data do not 

appear to be twinned and there was no sign of significant radiation damage.           

 

5.1.3 Matthews Coefficient (Vm) calculation 

Matthews Coefficient calculations allow an estimation of the number of molecules 

in the asymmetric unit (Matthews, 1968). The Matthews Coefficient was estimated 

using Mattprob (http://www.ruppweb.org/Mattprob/) (Kantardjieff & Rupp, 2003). 

This calculated value depends on the unit cell volume and the molecular weight of 

BPSL2418MES. Mattprob showed one possible solution of one protein molecule in 

the asymmetric unit with a solvent content of 35.2% and a Vm of 1.9 Å3/Da (Figure 

5.2).        

 

5.1.4 Structure determination of BPSL2418MES  

As described in section 1.2.4 BPSL2418MES shows high homology with the GAF 

domain fRMsr enzymes, which made phase determination by molecular 

replacement with a search model of one of these enzymes the first option. 
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Figure 5.1: X-ray diffraction image of BPSL2418MES crystal to 1.18 Å resolution using 

the I04 beamline of the Diamond Light Source.  
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Data collection statistics  

Beamline at DLS,Oxford, UK I04 

Detector ADSC Q315r detector 

The crystal-to-detector distance 250 mm 

Space group P 21 21 21 

Crystal system orthorhombic 

The unit cell parameters: 

a (Å) 

b (Å) 

c (Å) 

α (°) 

β (°) 

γ (°) 

 

42.240 

53.480 

60.540 

90.000 

90.000 

90.000 

Wavelength (Å) 0.97950 

Resolution range (Å) 60.5-1.18 (1.21-1.18) 

No. of unique reflections 40778 (1566) 

Rmerge 0.07 (0.57) 

Rpim 0.03 (0.29) 

Mean (I)/σ(I) 16.3 (2.6) 

Completeness (%) 97.3 (89.3) 

Multiplicity 7.0 (5.4) 

Mosaicity (°) 0.1 

Number of molecules in the 

asymmetric unit 
1 

 

Table 5.1: Data collection statistics for the BPSL2418MES number in parentheses 

shows the highest resolution shell.   
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Figure 5.2: Matthews coefficient calculations and probabilities for BPSL2418MES 

using Mattprob http://www.ruppweb.org/Mattprob/. (A) This indicates the possibility of 

one protein molecule in the asymmetric unit with a Vm of 1.9 Å/Da (B) and a solvent 

content of 35.2% (C).   
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The Phyre2 server (Kelley & Sternberg, 2009) was used to obtain a search model. 

A Staphyloccus aureus fRMsr structure (PDB 3KSF) with 49% identity and 68% 

similarity was selected and use for an automated search in Phaser (McCoy et al, 

2007). No modification was done before using the template structure. The 1.18 Å 

dataset (the scaled mtz file) was input and Phaser was run in     P 2 2 2 with the all 

alternative space groups, searching for one molecule in the asymmetric unit. A 

single solution was obtained in space group P 21 21 21 with one molecule in the 

asymmetric unit, which correlated to the single model predicted by the Matthews 

probability calculations. This molecular replacement solution produced the rotation 

and translation function Z-scores of 8.1 and 13.1, respectively, which suggested the 

model was correct.       

 

5.1.5 Model building and refinement    

The model of BPSL2418MES obtained by molecular replacement was viewed in 

COOT (Emsley & Cowtan, 2004) and immediately it was clear that the majority of 

the BPSL2418MES sequence fitted well to the electron density. The molecular 

replacement solution produced R-factor and Rfree of 0.409 and 0.428, respectively 

and after one round of refinement using REFMAC5 (Murshudov et al, 1997) the R-

factor and Rfree showed an improvement to 0.352 and 0.402, respectively. The 

refinement statistics exhibit a reduction in R-factor and Rfree over 29 rounds of 

refinement and the model was rebuilt, refined and assessed using REFMAC5 and 

COOT (Figure 5.3). The refinement was carried on until there was no improvement 

could be seen. The final model composed of 162 residues, 180 water molecules and 

one MES molecule. The final refinement statistics for BPSL2418MES structure are 

shown in table 5.2.        

 

5.1.6 3D structure of BPSL2418MES   

The crystal structure of BPSL2418MES shows that the protein has one molecule in 

the asymmetric unit as predicted by the Matthews coefficient calculations. This 

molecule was named chain A and the electron density of this molecule is well 

determined except for the first five residues at the N-terminus and the last three  
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Figure 5.3: Sample regions of electron density for BPSL2418MES at 1.18 Å show the 
structure improvement over 29 refinement cycles. (A) Shows three regions of electron 

density around residues 16,45 and 58 after one refinement. (B) Shows the same three 

regions after 29 cycles of rebuilding and refinement. Blue map calculated using coefficients     

2mFo-dFc and contoured at 0.5 σ.   
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Refinement statistics   

Resolution 1.18 Å 

Protein molecules in asymmetric 
unit 

1 

Number of residues 162 

Number of waters 180 

Number of atoms 1383 

Average B values (Å2): 

Whole chain A 

Main chain 

Side chain                   

Water 

MES molecule 

 

8.52 

7.64 

9.57 

28.35 

6.78 

R.m.s deviation: 

Bond lengths 

Bond angles 

 

0.0100 Å 

1.463° 

Ramachandran plot: 

 
Most favored regions 
 
 
MolProbity score:  

 

98.75% 

                    

      1.23/93rd percentile 

 

R-factor 
0.12 

Rfree 0.17 

 

Table 5.2: Refinement statistics for BPSL2418MES after 29 cycles of rebuilding in 

COOT and refinement in REFMAC5. The Ramachandran scores were produced using 

MolProbity.    
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residues at the C-terminus. The refined electron density map shows a MES 

molecule binding the BPSL2418 close to CYS75 and CYS109 where a disulfide 

bond is formed between these two cysteines (Figure 5.4). BPSL2418MES structure 

description and analysis will be discussed in chapter 6. The final model was 

validated using PROCHECK (Laskowski, 1993), and MOLPROBITY program 

(http://molprobity.biochem.duke.edu) (Chen et al, 2010). This shows that all 

residues fell within allowed regions of Ramachandran plot (Figure 5.5) and all 

main chain and side chain parameters were better or within the expected range for 

the resolution of data (Figure 5.6). These results reveal that the overall structure is 

of very good quality.                                  

The PISA webserver http://pdbe.org/PISA (Krissinel & Henrick, 2007) was used to 

investigate the assemblies and interface between monomers in BPSL2418MES.  

PISA was run using a model containing the BPSL2418 protein chain binding MES 

molecule and symmetry-related molecules generated by the three 2-fold screw 

symmetry axes in space group P 21 21 21. The PISA analysis shows that 

BPSL2418MES monomers interact to form dimers (Figure 5.7) (this discussed in 

more details in chapter 6). The BPSL2418MES crystal belongs to space group          

P 21 21 21 and the unit cell therefore contains four identical monomers, which 

suggests that the unit cell consist of 4 asymmetric units (Figure 5.8). 
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Figure 5.4: Electron density map of BPSL2418MES at 1.18 Å shows a MES molecule 
binding the BPSL2418 close to CYS75 and CYS109 where a disulfide bond is formed 

between these two cysteines. Blue map calculated using coefficients 2mFo-dFc and contoured at 0.5 σ. 

Green map calculated using coefficients mFo-dFc and contoured at 2.5 σ.    
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Figure 5.5: Result of MOLPROBITY and Ramachandran plot of BPSL2418MES 

structure. (A) The Ramachandran plot shows that all residues are within the favored 

region. (B) Overall the MOLPROBITY score is in the 93rd percentile (100% being the best 

amongst structures of comparable resolution). MOLPROBITY (Chen et al, 2010).    
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Figure 5.6: Main chain and side chain parameters of BPSL2418MES. (A) Showing all the 

main chain parameters values are within the average for a structure at this resolution.     

 

A 
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(B) Showing all the side chain parameters values are better than the average for a 

structure at this resolution. Produced by the programme PROCHECK (Laskowski et al, 

1993).       
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Figure 5.7: Dimeric BPSL2418MES. (A) Cartoon model. (B) space-filling model. The Figure 

was produced using PISA webserver http://pdbe.org/PISA.   
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Figure 5.8: Four BPSL2418MES molecules in a unit cell (space group P 21 21 21) of the 

crystal. (A) Spacefil model. (B) Cartoon model. The unit cell has two biological dimers and 

interaction between them is crystallographic interaction.  The Figure was produced using 

PISA webserver http://pdbe.org/PISA.   
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5.2 Experimental structure determination of 

BPSL2418Met-SO by molecular replacement using 

BPSL2418MES  

 

The best crystals of BPSL2418 in complex with the Met-SO substrate were 

selected from the optimization trial for data collection (section 4.6.2).  

 

5.2.1 Space group determination and indexing 

The initial data collection was carried out in Sheffield to estimate the diffraction 

quality. The best in-house diffraction of BPSL2418Met-SO was 2.5 Å and to obtain 

better diffraction the crystal was sent to the Diamond Light Source at the I02 

beamline. To obtain a collection strategy, three initial test images were collected 

45° apart with 0.2° oscillation and analyzed using MOSFLM. BPSL2418Met-SO 

belongs to the primitive monoclinic crystal system, which is distinguished by 

unequal length of the edges of the unit cell (a≠b≠c) and the equal α and γ angles of 

90° and β unequal to 90° (α = γ=90°, β≠90°). BPSL2418Met-SO data was indexed in 

P 1 2 1 space group with unit cell dimensions; a= 35.90 Å, b= 92.27 Å, c= 42.65 Å, 

α= 90°, β=102.42° and γ=90°.          

 

5.2.2 Data collection and processing 

The BPSL2418Met-SO data were collected at the I02 beamline of the Diamond Light 

Source, Oxford. 900 images were collected for the data set with 0.2° oscillation per 

image using X-ray of wavelength 0.97949 Å and using an Pitatus 6M detector with 

a crystal-to-detector distance of 246.4 mm. The crystal diffracted to 1.4 Å 

resolution (Figure 5.9). The collected images were processed using xia2 system 

and were indexed and integrated by XDS and scaled by XSCALE. All statistics of 

processed data collection of BPSL2418Met-SO at 1.4 Å resolution are described in 

table 5.3. The overall Rmerge was 0.079, (0.902 for the outer shell) 
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Figure 5.9: X-ray diffraction image of BPSL2418Met-SO crystal to 1.4 Å using the I02 

beamline of the Diamond Light Source.  
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Data collection statistics  

Beamline at DLS,Oxford, UK I02 

Detectore Pitatus 6M 

The crystal-to-detector distance 246.40  mm 

Space group P21  

Crystal system monoclinic 

The unit cell parameters: 

a (Å) 

b (Å) 

c (Å) 

α (°) 

β (°) 

γ (°) 

 

35.900 

92.270 

42.650 

90.000 

102.420 

90.000 

Wavelength (Å) 0.97949 

Resolution range (Å) 32.8-1.42 (1.46-1.42) 

No. of unique reflections 49084 (3603) 

Rmerge 0.08 (0.9) 

Rpim 0.06 (0.63) 

Mean (I)/σ(I) 9.7 (2.0) 

Completeness (%) 96.2 (95.6) 

Multiplicity 3.3 (3.4) 

Mosaicity (°) 0.4 

Number of molecules in the 

asymmetric unit 
2 

 

Table 5.3: Data collection statistics for the BPSL2418Met-SO. Number in 

parentheses shows the highest resolution shell.   
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the I/σI was overall 9.7 (2 for the outer shell) and the completeness was overall 

96.3%. Also the data do not appear to be twinned and there was no sign of 

radiation damage.     

 

5.2.3 Matthews Coefficient (Vm) calculation 

The Matthews Coefficient number Vm for BPSL2418Met-SO was calculated using 

Mattprob webserver. The Matthews Coefficient calculation shows the asymmetric 

unit was estimated to include one or two protein molecules, with two being the 

most likely solution, producing a Matthews coefficient of 1.92 Å3/Da and a solvent 

content of 35.8% (Figure 5.10). 

 

5.2.4 Structure determination of BPSL2418Met-SO   

The structure of BPSL2418MES solved as part of this thesis was used as a search 

model for molecular replacement utilizing the diffraction data of BPSL2418Met-SO. 

The 1.4Å dataset was input and Phaser was run in P2 with all alternative space 

groups, searching for two molecules in the asymmetric unit. A single solution was 

found in space group P21. This molecular replacement solution produced rotation 

and translation function Z-scores of 8.8 and 40.2 respectively, which suggested the 

model was correct.       

 

5.2.5 Model building and refinement   

The electron density map of BPSL2418Met-SO produced by molecular replacement 

was viewed in COOT. The molecular replacement gave a model with an initial R-

factor of 0.290 and Rfree of 0.323. Reductions in R-factor and Rfree to 0.18 and 0.20 

respectively were achieved using 38 cycles of rebuilding and refinement and 

showed an improvement in the fit of the model to the map (Figures 5.11 & 5.12). 

The refinement was carried on until there was no possible structure improvement. 

The final model was composed of two molecules chain A and chain B, which 

consist of 155 residues and 156 residues, respectively The final refinement 

statistics for the BPSL2418Met-SO structure are shown in table 5.4.  
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Figure 5.10: Matthews coefficient calculations and probabilities for BPSL2418Met-SO 

using Mattprob http://www.ruppweb.org/Mattprob/. This indicates the possibility of two 

protein molecules in the asymmetric unit (A) with a Vm of 1.92 Å3/Da (B) and a solvent 

content of 35.8% (C) 
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Figure 5.11: Sample regions of electron density for BPSL2418Met-SO chain A at 1.4 Å 

show the structure improvement over 38 refinement cycles. On the left side three 
regions of electron density around residues 17,90 and 98 after one cycle of refinement. On 
the right side the same three regions after 38 cycles of rebuilding in COOT and refinement 
in REFMAC5. Blue map calculated using coefficients 2mFo-dFc and contoured at 0.4 σ. Green map 
calculated using coefficients mFo-dFc and contoured at 2.4 σ.    
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Figure 5.12: Sample regions of electron density for BPSL2418Met-SO chain B at 1.4 Å 

show the structure improvement over 38 refinement cycles. (A),(B) and (C) Three 
regions of electron density around residues 12,24 and 31 after one cycle refinement. 
(D),(E) and (F) The same three regions after 38 cycles of rebuilding in COOT and 
refinement in REFMAC5. Blue map calculated using coefficients 2mFo-dFc and contoured at 0.4 σ. Green 
map calculated using coefficients mFo-dFc and contoured at 2.4 σ      
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5.2.6 3D structure of BPSL2418Met-SO   

The crystal structure of BPSL2418Met-SO shows that the protein has two molecules 

in the asymmetric unit as predicted by the Matthews coefficient calculations. The 

electron density of these molecules is well determined except for ten residues in the 

N-terminus for both molecules and the last four or five residues in the C-terminus 

for chain A and chain B, respectively. The electron density map shows a Met-SO 

molecule binding the BPSL2418 in the active site close to CYS75 and CYS109 in 

both chain A and chain B. A disulfide bond is formed between these two cysteines 

in both molecules A and B (Figure 5.13). BPSL2418Met-SO structure description and 

analysis will be discussed in chapter 6. The final model was validated using 

PROCHECK (Laskowski, 1993), and MOLPROBITY program (Chen et al, 2010). 

This shows that all residues fell within allowed regions of Ramachandran plot 

(Figure 5.14) and all main chain and side chain parameters were better or within 

the expected range for the resolution of data (Figure 5.15). These results reveal that 

the overall structure is of very good quality.                                  

To identify the assemblies and interface between monomers in BPSL2418Met-SO the 

PISA webserver was used. PISA was run using a model involving the BPSL2418 

chain binding Met-SO substrate and it indicates the presence of a dimer interface 

between the two monomers of BPSL2418Met-SO A and B (this is discussed in more 

chapter 6) (Figure 5.16). The BPSL2418Met-SO crystal belongs to space group         

P21 which has one 2-fold screw axis and thus the unit cell contains two dimers of 

BPSL2418Met-SO (Figure 5.17).                               

 

        

 

 

 

 

 

 



 168 

Refinement statistics   

Resolution 1.4 Å 

Protein molecules in asymmetric 
unit 

2 

Number of atoms 2542 

Number of residues 311 

Number of waters 390 

Average B values (Å2): 

Whole chain A 

Main chain A 

Side chain A 

Met-SO molecule 

Whole chain B 

Main chain B 

Side chain B 

Met-SO molecule 

Water 

 

14.6  

13.5  

15.9 

12.9  

15.6  

14.6  

16.8 

13.2  

30.9  

R.m.s deviation: 

Bond lengths 

Bond angles 

 

0.0136 Å 

1.631° 

Ramachandran plot: 

 
Most favored regions 
 
 
MolProbity score:  

 

98.75% 

                    

      1.44/78rd percentile 

 

R-factor 
0.17 

Rfree 0.19 

 

Table 5.4: Refinement statistics for BPSL2418Met-SO after 38 cycles of rebuilding 

in COOT and refinement in REFMAC5. The Ramachandran scores were 

produced using MolProbity.    
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Figure 5.13: Electron density map of BPSL2418Met-SO at 1.4 Å shows a Met-SO 
molecule binding the BPSL2418 close to CYS-75 and CYS-109 where a disulfide 

bond is formed between these two cysteines. Blue map calculated using coefficients 2mFo-dFc 

and contoured at 0.4 σ. Green map calculated using coefficients mFo-dFc and contoured at 2.4 σ.    
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Figure 5.14: Result of MOLPROBITY and Romachandran plot of BPSL2418Met-SO 
structure. (A) The Romachandran plot shows that all residues are within the favored 
region. (B) Overall the MOLPROBITY score is in the 78th percentile (100% being the best 
amongst structures of comparable resolution). MOLPROBITY (Chen et al, 2010).    
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Figure 5.15: Main chain and side chain parameters of BPSL2418Met-SO. (A) Showing all 

the main chain parameters values are better or within the average for a structure at this 

resolution.     

 

A 
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(B) Showing all the side chain parameters values are better than the average for a 

structure at this resolution. Produced by the programme PROCHECK (Laskowski et al, 

1993)       
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Figure 5.16: Dimeric BPSL2418Met-SO. (A) Cartoon model. (B) Space-filling model. The 

Figure was produced using PISA webserver http://pdbe.org/PISA.   
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Figure 5.17: Two BPSL2418Met-SO dimers in a unit cell (space group P21) of the 

crystal. (A) Spacefil model. (B) Cartoon model.  The Figure was produced using PISA 

webserver http://pdbe.org/PISA.   
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5.3 Experimental structure determination of 

BPSL2418Reduced by molecular replacement using 

BPSL2418MES  

 

The best crystals of reduced BPSL2418 were selected from the optimization trial 

for data collection (section 4.6.3).  

 

5.3.1 Space group determination and indexing 

The X-ray source in Sheffield was used for initial X-ray diffraction determination. 

The best diffraction of BPSL2418Reduced was 3.1Å and in order to achieve higher 

resolution diffraction the crystal was sent to the Diamond Light Source at the I02 

beamline. To obtain a collection strategy, three initial test images 45° apart, 0.2° 

oscillation were collected using MOSFLM. BPSL2418Reduced was indexed to the 

primitive monoclinic crystal system P2, with unit cell parameters: a= 35.99 Å, b= 

92.28 Å, c= 42.75 Å, α= 90°, β= 102.72° and γ=90°; i.e. essentially isomorphous 

with BPSL2418Met-SO.           

 

5.3.2 Data collection and processing 

The data from BPSL2418Reduced crystal were collected using the I02 beamline of the 

Diamond Light Source. For the data set 900 images were collected with 0.2 

oscillation per image using X-ray of wavelength 0.97949Å and using a Pitatus 6M 

detector with a crystal-to-detector distance of 395.28 mm. Data were collected to 

2.0 Å resolution (Figure 5.18). The images were processed using xia2 system and 

were indexed and integrated by XDS and scaled by XSCALE. All statistics of the 

processed data of BPSL2418Reduced at 2.0 Å resolution are described in table 5.5. 

The processing gave overall Rmerge   0.129 (0.522 for the outer shell) and the I/σI 

was 6.3 overall (2.3 for the outer shell).  
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Figure 5.18: X-ray diffraction image of BPSL2418Reduced crystal to 2.0 Å using the I02 

beamline of the Diamond Light Source. 
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Data collection statistics  

Beamline at DLS,Oxford, UK I02 

Detectore Pitatus 6M 

The crystal-to-detector distance 395.28 mm 

Space group P21  

Crystal system monoclinic 

The unit cell parameters: 

a (Å) 

b (Å) 

c (Å) 

α (°) 

β (°) 

γ (°) 

 

35.99 

92.28 

42.75 

90.00 

102.72 

90.00 

Wavelength (Å) 0.97949 

Resolution range (Å) 38-2.21 (2.27-2.21) 

No. of unique reflections 13602 (998) 

Rmerge 0.13 (0.52) 

Rpim 0.1 (0.41) 

Mean (I)/σ(I) 6.3 (2.3) 

Completeness (%) 99.4 (98.7) 

Multiplicity 3.3 (3.1) 

Mosaicity (°) 0.2 

Number of molecules in the 

asymmetric unit 
2 

 

Table 5.5: Data collection statistics for the BPSL2418Reduced. Number in 

parentheses shows the highest resolution shell.   
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5.3.3 Matthews Coefficient (Vm) calculation 

The Matthews calculation for BPSL2418Reduced using Mattprob webserver shows 

the possibility of one or two molecules in the asymmetric unit, with two as the 

most likely solution. The Matthews coefficient of the protein is 1.92 and estimated 

solvent content is 36.1% (Figure 5.19). 

 

5.3.4 Structure determination of BPSL2418Reduced 

BPSL2418Reduced structure was solved by molecular replacement using the model of 

BPSL2418MES in PHASER. The 2.0 Å dataset of BPSL2418Reduced were input and 

Phaser searched for two molecules in the asymmetric unit. A single solution was 

found using space group P21 giving rotation and translation function Z-scores of 

10.1 and 32.7 respectively, which suggested the model was correct.       

 

5.3.5 Model building and refinement   

The obtained electron density map of BPSL2418Reduced generated by molecular 

replacement was viewed in COOT. The initial model produced has an R-factor of 

0.271 and Rfree of 0.328. An improved model with a reduction in R-factor and Rfree 

to 0.19 and 0.214, respectively was obtained by using repetitive cycles of model 

building and refinement (Figures 5.20 & 5.21). The refinement was carried on until 

there was no possible structure improvement. The final model consists of two 

molecules chain, A which consist of 156 residues, chain B with 155 residues and 

116 water molecules.  

 

5.3.6 3D structure of BPSL2418Reduced   

The crystal structure exhibits two molecules in the asymmetric unit of 

BPSL2418Reduced, which agrees with the Matthews coefficient prediction. The 

electron density of these two molecules is well determined except 11 and 9 

residues from the N termini and 3 and 6 residues from the C termini of chain A and 

chain B, respectively. The electron density map reveals the reduced state  
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Figure 5.19: Matthews coefficient calculations and probabilities for    

BPSL2418Reduced using Mattprob http://www.ruppweb.org/Mattprob/. This indicates the 

possibility of two protein molecules in the asymmetric unit (A) with a Vm of 1.92 Å3/Da (B) 

and a solvent content of 36.1 % (C).   
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Figure 5.20: Sample regions of electron density for BPSL2418Reduced chain A at 2.0 Å 

show the structure improvement over 18 refinement cycles. On the left three regions 

of electron density around residues 24, 40 and 49 after one cycle of refinement. On the 

right the same three regions after 18 refinement cycles. Blue map calculated using coefficients 

2mFo-dFc and contoured at 0.69 σ. Green map calculated using coefficients mFo-dFc and contoured at 2.63 σ.      
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Figure 5.21: Sample regions of electron density for BPSL2418Reduced chain B at 2.0 Å 

show the structure improvement over 18 refinement cycles. On the left side three 

regions of electron density around residues 46,60 and 159 after one cycle of refinement. 

On the right side the same three regions after 18 refinement cycles. Blue map calculated using 

coefficients 2mFo-dFc and contoured at 0.69 σ. Green map calculated using coefficients mFo-dFc and contoured 

at 2.63 σ.      
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of the active site of  BPSL2418, where no disulfide bridge (S-S) is formed between 

CYS75 and CYS109 and the two cysteines are maintained in the sulphydryl (-SH) 

form (Figure 5.22). BPSL2418Reduced structure description and analysis will be 

discussed in chapter 6. The final model was validated using PROCHECK 

(Laskowski, 1993), and MOLPROBITY program (Chen et al, 2010). This shows 

that all residues fell within allowed regions of Ramachandran plot (Figure 5.23) 

and all main chain and side chain parameters were better or within the expected 

range for the resolution of data (Figure 5.24). These results reveal that the overall 

structure is of very good quality.                                    

To determine the assemblies and interface between monomers in BPSL2418Reduced 

the PISA webserver was applied. PISA was run using the reduced model of 

BPSL2418 which indicates a dimer interfaces between the two BPSL2418Reduced 

monomers A and B (this is discussed in more details in chapter 6) (Figure 5.25). 

The BPSL2418Reduced crystal belongs to space group P21 which has one 2-fold 

screw axis and this suggests that the unit cell contains two dimers of 

BPSL2418Reduced (Figure 5.26). 
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Figure 5.22: Electron density map of BPSL2418Reduced at 2.0 Å shows no disulfide 

bond is formed between CYS75 and CYS109. Blue map calculated using coefficients 2mFo-dFc 

and contoured at 0.69 σ. Green map calculated using coefficients mFo-dFc and contoured at 2.63 σ      
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Refinement statistics   

Resolution 2.0 Å 

Protein molecules in asymmetric 
unit 

2 

Number of atoms 2403 

Number of residues 311 

Number of waters 116 

Average B values (Å2): 

Whole chain A 

Main chain A 

Side chain A 

Whole chain B 

Main chain B 

Side chain B 

Water 

 

27.2  

26.7  

27.8  

26.8  

26.4  

27.2  

44.3  

R.m.s deviation: 

Bond lengths 

Bond angles 

 

0.0132 Å 

1.7413° 

Ramachandran plot: 

 
Most favored regions 

 

MolProbity score: 

 

98.0% 

 

1.7/79th percentile 

 

R-factor 
0.19 

Rfree 0.20 

 

Table 5.6: Refinement statistics for BPSL2418Reduced after 18 cycles of rebuilding 

in COOT and refinement in REFMAC5. The Ramachandran scores were 

produced using MolProbity.    
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Figure 5.23: Result of MOLPROBITY and Romachandran plot of BPSL2418Reduced 
structure. (A) The Romachandran plot shows that all residues are within the favored 
region. (B) Overall the MOLPROBITY score is in the 79th percentile (100% being the best 
amongst structures of comparable resolution). MOLPROBITY (Chen et al, 2010).    
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Figure 5.24: Main chain and side chain parameters of BPSL2418Reduced. (A) Showing 

all the main chain parameters values are within the average for a structure at this 

resolution.     
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(B) Showing all the side chain parameters values are within the average for a structure at 

this resolution. Produced by the programme PROCHECK (Laskowski et al, 1993)  
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Figure 5.25: Dimeric BPSL2418Reduced. (A) Cartoon model. (B) Space-filling model. The 

Figure was produced using PISA webserver http://pdbe.org/PISA.   
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Figure 5.26: Two BPSL2418Reduced dimers in a unit cell (space group P21) of the 

crystal. (A) Spacefil model. (B) Cartoon model.  The Figure was produced using PISA 

webserver http://pdbe.org/PISA.   
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Chapter 6: BPSL2418 structure analysis 

 

This chapter represents the analyses of the structures of MES-bound, Met-SO 

bound and reduced forms of BPSL2418, which were produced in this project. Also 

the chapter describes the putative active site and BPSL2418 is possible role in 

Burkholderia pseudomallei. 

 

6.1 BPSL2418 structure description  

This section describes in detail the structure analysis of BPSL2418MES, 

BPSL2418Met-SO and BPSL2418Reduced.    

 

6.1.1 Features of BPSL2418 structure 
 
6.1.1.1 BPSL2418MES 

The structure of BPSL2418MES was determined from crystals grown in 

orthorhombic spacegroup the P 21 21 21 and it comprises one subunit in the 

asymmetric unit. A Dali search suggests that the BPSL2418MES subunit structure 

shares the overall topology of the GAF domain and it consists of six antiparallel β-

strands (β1- β6) and four α-helices (α1- α4) with connecting loops (Figure 6.1). 

The antiparallel β-strands (β1, β2, β5 and β6) are located in the center of the 

BPSL2418MES structure flanked on one side by three α-helices (α1,α2 and α4). On 

the other side a construct of loop1(β2β3 loop), β3, loop2(β3α3 loop), α3, 

loop3(α3β4 loop), β4 and loop4(β4β5 loop) unit, where loop 4 forms a capping 

flap, which covers the active site (Figure 6.2 a).  

The Active Site: The active site consists of residues from the four β-strands (β1, 

β2, β5, β6) and the loop1- β3- loop2- α3- loop3- β4- loop4 unit that surrounds the 

active site forming a small cavity (Figure 6.2b). It contains TRP53 and TYR57 

from β1, ALA74 and CYS75 from loop1, ILE 78 from β3, GLY83 from loop2, 

VAL84 and CYS85 from α3 and ILE107, ALA108, CYS109, SER 111, SER113 

from loop4 (Figure 6.3b).   
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Figure 6.1: Cartoon representation of the overall fold structure of BPSL2418MES. The 

structure consists of six β-strands and four α-helices with connecting loops. The disulfide 

S-S bond between CYS75 and CYS109 is shown in orange color and MES molecule in 

blue color. The Figure was created by PyMol (DeLano & Lam, 2005).          
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Figure 6.2: Cartoon representation of the BPSL2418MES showing the active site. (A) 

The β-strands (β1, β2, β5 and β6) of BPSL2418MES are located in the center of the 

structure flanked on one side by three α-helices (α1, α2 and α4), and on the other side by 

loop1, β3, loop2, α3, loop3, β4 and loop4 construct. (B) loop4 forms a capping flap, which 

covers the active site. The Figures were created by PyMol (DeLano & Lam, 2005). 
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Figure 6.3: (A) Electron density map of 2-(N-morpholino)ethanesulfonic acid [MES] 

structure at 1.18 Å. (oxygen atom in red, nitrogen in blue and sulfur in green) (B) The 

binding site of BPSL2418MES molecule with the MES bound. Residues involved in 

BPSL2418-MES binding are shown as sticks. The Figures were created by PyMol 

(DeLano & Lam, 2005). Blue map calculated using coefficients 2mFo-dFc and contoured at 0.5 σ.  
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BPSL2418MES structure is an oxidized form where a disulfide bond is formed 

between CYS75-CYS109, binding loop1 and loop4 together and tightening the 

active site cavity (Figure 6.3b). The MES molecule (Figure 6.3a) lies inside the 

cavity with a MES sulfonic acid group being close to CYS85 in α3 (Figure 6.3b). 

To analyze the interaction between MES and the active site of BPSL2418 protein, 

LigPlot (Wallace et al, 1995) was used. Hydrogen bonds are formed between O1 of 

the sulfonic acid group and the peptide nitrogen atoms of ALA108 and CYS109 

residues, which are both located in loop4. Further hydrogen bonds are formed 

between O2 and O3 of the sulfonic acid group and the NH of VAL84 and CYS85 

respectively, where VAL84 and CYS85 are both situated at α3. TYR57 and TRP53 

were thought to provide the hydrophobic contact to the morpholine ring of MES, 

where both residues are situated in β1. CYS85 and VAL84 in α3 and ALA108 in 

loop4 were proposed to form hydrophobic interactions with the sulfonic acid group 

of MES. In addition to ILE78, GLY83, ILE107 and SER111 residues, which 

predicted to form a hydrophobic pocket in the active site seems important in ligand 

binding (Figure 6.4).   

Similar 3D structures: A search of the Dali database (Holm & Rosenstrom, 2010) 

with the BPSL2418MES structure indicates several homologs with high Z-scores 

and high sequence identity. It shows that BPSL2418MES belongs to a GAF domain 

family that acts as free methionine sulfoxide reductase, as also has been predicted 

before from protein sequence (see section 1.2.4). Dali suggests several homologs to 

BPSL2418MES (table 6.1), but the top of the list is the E. coli fRMsr structure (PDB 

code 1VHM) (Badger et al, 2005) (Figure 6.5). Dali superimposed the 

BPSL2418MES and the E. coli fRMsr over 151 α-carbon atom pairs with a Z-score 

of 26.8, sequence identity 49% and a root mean-square deviation (RMSD) of 1.1 

Å. The E. coli fRMsr structure consists of two chains A and B, both have high 

identity to BPSL2418MES. Similar to BPSL2418MES, the E. coli fRMsr subunits have 

a GAF domain topology composing of four six antiparallel β-strands and four α-

helices with connecting loops. BPSL2418MES and the E. coli fRMsr each have three 

cysteines and a disulfide bond in the active site pocket, which are conserved in all 

of the fRMsr family (see section 1.2.2.3 and Figure 1.12). Also the E. coli fRMsr 

structure has a MES ligand bound in the active site with a similar set of residues  

 



 195 

N
um

be
r 

PD
B

-C
ha

in
 

Z
-s

co
re

 

R
.M

.S
.D

 

A
lig

ne
d 

re
si

du
es

 

L
en

gt
h 

of
 

PD
B

 m
od

el
 

Se
qu

en
ce

 
id

en
tit

y 
(%

)  

Molecule description 

1 1vhm-A 26.8 1.1 151 159 49 Structure of fRMsr of E. coli  (Badger et 

al, 2005) 

Method: X-ray diffraction 

Resolution: 2.1 Å 

Ligand: MES  

2 1vhm-B 26.6 1.3 152 160 49 Structure of fRMsr of E. coli  (Badger et 

al, 2005) 

Method: X-ray diffraction 

Resolution: 2.1 Å 

Ligand: MES 

3 3 ksf-G 25.7 2.1 151 152 44 Structure of fRMsr of Staphylococcus 

aureus (Bong et al, 2010) 

Method: X-ray diffraction 

Resolution: 1.9 Å 

Ligand: PEG  

4 3 rfb-A 25.6 1.2 151 161 40 Structure of fRMsr of Streptococcus 

pneumonia (To be published) 

 Method: X-ray diffraction 

Resolution: 2.3 Å 

Ligand: Met-R-SO 

5 3 ksh-A 25.6 1.8 151 152 48 Structure of fRMsr of Staphylococcus 

aureus (Bong et al, 2010) 

Method: X-ray diffraction 

Resolution: 1.5 Å 

Ligand: SO4 

 

Table 6.1: Dali server results for the model of BPSL2418MES. The top five hits 

are listed alongside their related Zscores, RMSD scores, alignment statistics and a 

brief description of each protein. 
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Figure 6.4: The binding site interaction of BPSL2418MES with the MES buffer. The 

Figure shows the residues, are involved in hydrogen bonds and hydrophobic interactions. 

Hydrogen bonds are shown as green dashed lines between atoms. Hydrophobic 

interactions are indicated by a red lashes-like symbol pointing towards the ligand atom 

they contact. The MES atoms that are involved in hydrophobic interaction are represented 

by a red spokes pointing back. (oxygen atom in red, nitrogen in blue, carbon in black, 

sulfur in yellow). This Figure was produced by LigPlot (Wallace et al, 1995).   
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Figure 6.5: Superimposition of BPSL2418MES (green) and E. coli fRMsr  

(gray). (A) Overall fold of BPSL2418MES and E. coli fRMsr. (B) The active sites of the two 

structures showing the binding residues and MES ligand as sticks. It is clear that the 

overall structures and the active sites of both structures are almost identical. The Figure 

produced by PyMol (DeLano & Lam, 2005).      
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providing hydrogen bonds and hydrophobic surface (Figure 6.6). Similar to 

BPSL2418MES, the sulfonic acid group of the MES ligand in E. coli fRMsr active 

site is situated close to CYS94, the corresponding residue to CYS85 in 

BPSL2418MES. The proximity of the MES sulfonic acid group to the third cysteine, 

which does not participate in the disulfide bond, is constant in the arrangement of 

the active site residues in the MsrA family and in the E. coli fRMsr the only known 

structure from the fRMsr family that has a MES molecule in the active site (Lin et 

al, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 199 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 
 

 

 

 

 

Figure 6.6: LigPlot diagrams of the binding site interaction of E.coli fRMsr and 

BPSL2418MES. Hydrogen bonds are shown as green dashed lines between atoms. 

Hydrophobic interactions are indicated by a red lashes-like symbol pointing towards the 

ligand atom they contact. The MES atoms that are involved in hydrophobic interaction are 

represented by red spokes pointing back. (oxygen atom in red, nitrogen in blue, carbon in 

black, sulfur in yellow). This Figure was produced by LigPlot (Wallace et al, 1995).   
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6.1.1.2 BPSL2418Met-SO 

The crystal structure of BPSL2418 in complex with the substrate free Met-R-SO 

was solved at 1.4 Å. This structure belongs to the space group P21 and it consists of 

a dimer in the asymmetric unit with the substrate in bound to subunit. The overall 

structure and the active site of each BPSL2418Met-SO subunit (Figure 6.7) is almost 

identical to BPSL2418MES except for a slight change in loop 4 in the active site; the 

comparison between the two structures will be discussed later on in this chapter.   

The Active Site: Each active site of the BPSL2418Met-SO dimer is composed of the 

same BPSL2418MES active site structure of four β-strands (β1, β2, β5 and β6) that 

are located in the center of the subunit and the (loop1- β3- loop2- α3- loop3- β4- 

loop4) construct that shields the binding ligand forming a small cavity. This cavity 

is made more tightened by the formation of the disulfide bond (CYS75-CYS109) 

that binds loop1 with loop4. The formation of this cavity in BPSL2418MES and   

BPSL2418Met-SO might ensure tight binding for the ligand. One molecule of free 

Met-R-SO substrate (Figure 6.8a) is bound within each active sites of the 

BPSL2418Met-SO dimer identically. The substrate lies along the full-length of the 

central β-strands and the carboxylate group is located close to CYS85 in α3 (Figure 

6.8b). The orientation of the free Met-R-SO carboxylate toward the free cysteine in 

α3 is also seen in the N. meningitides fRMsr (PDB code 3MMH) (Gruez et al, 

2010) and the S. pneumoniae fRMsr (PDB code 3RFB) (Bong & Chi, 2011) 

structures. LigPlot (Figure 6.9) was used to investigate the interaction of the 

BPSL2418 protein and the free Met-R-SO substrate. These analyses indicate the 

residues in the active site that interact with the ligand: CYS109, ILE107 and 

HIS106 in loop4, VAL84 and CYS85 in α3, ILE78 and CYS75 in loop1, TRP53 

and TYR57 in β1, ASP133 and ASP135 in β5, GLU116 in β4 and GLY83 in 

loop2. Hydrogen bonds occur between the amino nitrogen atom of Met-R-SO 

substrate and the OE1 and O atoms of GLU116 and ILE107 respectively (Figure 

6.9). Also between the peptide nitrogens of ILE107 and VAL84 and the oxygen 

atom O of the Met-R-SO carboxylate group (Figure 6.9). Another hydrogen bond 

was predicted between the OXT of the Met-R-SO carboxylate and the peptide 

nitrogen of CYS85 in α3 (Figure 6.9). Other residues in the active site provide 

hydrophobic interactions with the free Met-R-SO, which ensures the  
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Figure 6.7: Cartoon representation of the overall fold structure of BPSL2418Met-SO. 

The structure consists of a dimer with the free Met-SO (blue) substrate bound in each 

subunit of the asymmetric unit (on the right side chain A of BPSL2418Met-SO dimer and on 

the left side chain B). Each subunit is composed of six β-strands and four α-helices with 

connecting loops. The disulfide S-S bond between CYS75 and CYS109 is shown in yellow 

color and free Met-SO molecules in blue color. The Figure was created by PyMol (DeLano 

& Lam, 2005).          
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  Figure 6.8: (A) Electron density map of free L-Methionine sulfoxide [free Met-R-SO] 

structure at 1.4 Å. (oxygen atom in red, nitrogen in blue and sulfur in green) (B) The 

binding site of BPSL2418Met-SO with free Met-SO substrate bound. Residues that are 

involved in BPSL2418-Met-SO binding are shown as sticks, the Figures were created by 

PyMol (DeLano & Lam, 2005). Blue map calculated using coefficients 2mFo-dFc and contoured at 0.4 σ.          
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Figure 6.9: The binding site interaction of BPSL2418Met-SO with the free Met-SO 

substrate. The Figure shows the residues, which involved in hydrogen bonds and 

hydrophobic interactions. Hydrogen bonds are shown as green dashed lines between 

atoms. Hydrophobic interactions are indicated by a red lashes-like symbol pointing towards 

the ligand atom they contact. The Met-SO atoms that involved in hydrophobic interaction 

are represented by a red spokes pointing back. (oxygen atom in red, nitrogen in blue, 

carbon in black, sulfur in yellow). This Figure was produced by LigPlot (Wallace et al, 

1995).   
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tight binding of the substrate (Figure 6.9).  

 

Similar 3D structures: Several homologs with high Z-scores and sequence 

identity have been predicted using the Dali server. As expected the Dali search 

revealed that BPSL2418Met-SO belongs to the GAF domain fRMsr family (table 

6.2). The first two hits are the S. pneumonia fRMsr (PDB code 3RFB) (Bong & 

Chi, 2011) and the N. meningitides fRMsr (PDB code 3MMH) (Gruez et al, 2010). 

The search gave a superposition of BPSL2418Met-SO with S. pneumonia fRMsr with 

a Z-score of 27.3, sequence identity 42% and a root mean-square deviation 

(RMSD) of 1.2 Å between 153 α-carbon atom pairs (Figure 6.10). The 

superposition of  BPSL2418Met-SO was with N.  meningitides fRMsr and gave a Z-

score of 27.2, sequence identity 46% and a root mean-square deviation (RMSD) of 

0.9 Å between 152 α-carbon atom pairs (Figure 6.11). The overall structure of 

BPSL2418Met-SO, S. pneumonia fRMsr and N. meningitides fRMsr subunits are 

almost identical and share the GAF domain topology of four six antiparallel β-

strands and four α-helices with connecting loops. An additional small alpha helix 

(ASP99, VAL100, ASP101, ALA102 and HIS103) in loop4 in N. meningitides 

fRMsr was the only difference between the three overall structures (Figure 6.10). 

The three structures have the three cysteines, which are conserved in all fRMsr 

family and a disulfide bond in the active site pocket. Like BPSL2418Met-SO, each of 

the two homologs’ structures consists of a dimer with the Met-SO substrate in each 

subunit of the asymmetric unit. The active sites of S. pneumonia fRMsr and N. 

meningitides fRMsr have a similar set of residues to the BPSL2418Met-SO active site 

residues that provides hydrogen bonds and hydrophobic surface (Figure 6.10 & 

6.12). The Met-R-SO lies inside the active sites of BPSL2418Met-SO, S. pneumonia 

fRMsr and N. meningitides fRMsr identically, where the carboxylate of the 

substrate is close to the free cysteine in α3 (Figure 6.11). It has been mentioned in 

section 1.2.3 (2)&(3) the difference of the orientation of the position of Met-R-SO 

between the substrate bound form of Staphylococcus aureus fRMsr and the 

Neisseria meningitides fRMsr, where the sulfoxide moiety in the Staphylococcus 

aureus fRMsr replaces the position of the carboxylate group in Neisseria 

meningitides fRMsr and vice versa. This thesis shows that BPSL2418Met-SO has the 

same orientation of the position of Met-R-SO of the Neisseria meningitides fRMsr, 
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Molecule description 

1 3 rfb-A 27.3 1.2 153 161 42 Structure of fRMsr of Streptococcus 

pneumonia (To be published) 

 Method: X-ray diffraction 

Resolution: 2.3 Å 

Ligand: Met-R-SO 

2 3 mmh-B 27.2 0.9 152 168 46 Structure of fRMsr of neisseria 

meningitides (Gruez et al, 2010). 

Method: X-ray diffraction 

Resolution: 1.25 Å 

Ligand: Met-R-SO 

3 3 mmh-A 27.1 1.0 152 168 46 Structure of fRMsr of neisseria 

meningitides (Gruez et al, 2010). 

Method: X-ray diffraction 

Resolution: 1.25 Å 

Ligand: Met-R-SO 

4 1vhm-A 26.8 1.1 152 159 46 Structure of fRMsr of E. coli  (Badger et 

al, 2005) 

Method: X-ray diffraction 

Resolution: 2.1 Å 

Ligand: MES  

4 3 rfb-B 26.7 1.3 153 164 42 Structure of fRMsr of Streptococcus 

pneumonia (To be published) 

 Method: X-ray diffraction 

Resolution: 2.3 Å 

Ligand: - 

 

Table 6.2: Dali server results for the model of BPSL2418Met-SO. The top five hits 

are listed alongside their related Zscores, RMSD scores, alignment statistics and a 

brief description of each protein. 
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Figure 6.10: Superimposition of BPSL2418Met-SO (gold), N. meningitides fRMsr (PDB 

code 3MMH) (green) and S. pneumonia fRMsr (PDB code 3RFB) (blue). (A) Overall 

fold of BPSL2418Met-SO, 3MMH and 3RFB dimers. (B) The active sites of the three 

structures showing the binding residues and Met-SO ligand as sticks. The names of the 

corresponding residues are ordered as BPSL2418Met-SO then 3MMH then 3RFB.   Met-SO 

substrates are shown in red, grey and navy respectively.  It is clear that the overall 

structures and the active sites of the three structures are almost identical except the small 

alpha helix in N. meningitides fRMsr pointed by black arrow. The Figure produced by 

PyMol (DeLano & Lam, 2005).          
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Figure 6.11: Close view of the Met-SO substrate that lies inside the active sites of 

BPSL2418Met-SO (gold), N. meningitides fRMsr (PDB code 3MMH) (green) and S. 
pneumonia fRMsr (PDB code 3RFB) (blue). The Figure shows that the carboxylate 

groups of the substrate inside the three active sites are located close to the free cysteine in 

α3. The Figure produced by PyMol (DeLano & Lam, 2005).            
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Figure 6.12: LigPlot diagrams of the binding site interaction of BPSL2418Met-SO, N. 
meningitides fRMsr and S. pneumonia fRMsr. Hydrogen bonds are shown as green 

dashed lines between atoms. Hydrophobic interactions are indicated by a red lashes-like 

symbol pointing towards the ligand atom they contact. The Met-SO atoms that involved in 

hydrophobic interaction are represented by a red spokes pointing back. (oxygen atom in 

red, nitrogen in blue, carbon in black, sulfur in yellow). This Figure was produced by 

LigPlot (Wallace et al, 1995).   
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S. pneumonia fRMsr and N. meningitides fRMsr and only the Staphylococcus 

aureus fRMsr has different orientation. It’s not clear why the Staphylococcus 

aureus fRMsr structure binds the substrate in different orientation, but this might 

be because it was obtained using C68S mutant (CYS68 corresponding to CYS75 in 

BPSL2418). This feature is different from the other fRMsr-substrate complex are 

oxidized forms with a disulfide bond between two cysteines in the active site.             

 

6.1.1.3 BPSL2418Reduced 

In order to investigate changes in the active site of the BPSL2418 protein that 

predicted to act as free methionine sulfoxide reductase, a reduced form of 

BPSL2418 was produced. The BPSL2418Reduced crystal, which diffracted to 2.0 Å, 

comprised two subunits in the asymmetric unit. The structure of the BPSL2418 

protein has changed in the active site of the different forms. A comparison between 

the reduced BPSL2418 and the other two oxidized forms BPSL2418MES and 

BPSL2418Met-SO will be illustrated in the following sections.  

The Active Site: The overall structure of one subunit involved six β strands and 

four α helices (Figure 6.13). The active site as in the other forms of BPSL2418 is 

composed of the four β-strands (β1, β2, β5 and β6) bounded by (α1, α2 and α4) 

helices from one side and the (loop1- β3- loop2- α3- loop3- β4- loop4) unit from 

the other side. The reduced form has no bound ligand in either active sites, and has 

no disulfide bond between CYS75-CYS109 due to the addition of the DTT 

reductant in the crystallization solution (Figures 5.22 & 6.14).  

Similar 3D Structures: Like the other two forms of BPSL2418, a search with Dali 

server with BPSL2418Reduced shows several homologs belonging to fRMsr family 

(table 6.3) with a GAF domain topology. The search gave a best superimposition of 

BPSL2418Reduced with the reduced form of S. aureus fRMsr (PDB code 3KSG) 

(Bong et al, 2010) with a Z-score of 26.5, sequence identity 44% and a root mean-

square deviation (RMSD) of 1.0 Å between 151 α-carbon atom pairs (Figure 6.15). 

The superimposition reveals that the BPSL2418Reduced and S. aureus fRMsr share a 

similar fold except the present of an extra small helix between β4 and β5 in S. 

aureus fRMsr.  
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Molecule description 

1 3 mmh-B 26.5 1.0 151 168 44 Structure of fRMsr of neisseria 

meningitides (Gruez et al, 2010). 

Method: X-ray diffraction 

Resolution: 1.25 Å 

Ligand: Met-R-SO 

2 3 mmh-A 26.4 1.0 151 168 44 Structure of fRMsr of neisseria 

meningitides (Gruez et al, 2010). 

Method: X-ray diffraction 

Resolution: 1.25 Å 

Ligand: Met-R-SO 

3 3 rfb-A 26.3 1.5 151 161 40 Structure of fRMsr of Streptococcus 

pneumonia (To be published) 

 Method: X-ray diffraction 

Resolution: 2.3 Å 

Ligand: Met-R-SO 

4 1vhm-A 26.3 1.1 151 159 48 Structure of fRMsr of E. coli  (Badger et 

al, 2005) 

Method: X-ray diffraction 

Resolution: 2.1 Å 

Ligand: MES  

5 1vhm-B 26.0 1.2 151 160 48 Structure of fRMsr of E. coli  (Badger et 

al, 2005) 

Method: X-ray diffraction 

Resolution: 2.1 Å 

Ligand: MES  

 

Table 6.3: Dali server results for the model of BPSL2418Reduced. The top five 

hits are listed alongside their related Zscores, RMSD scores, alignment statistics 

and a brief description of each protein. 
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Figure 6.13: Cartoon representation of the overall fold structure of   BPSL2418Reduced. 

The structure consists of a dimer with no disulfide bond formed in any of each subunit (on 

the right side chain A of BPSL2418Reduced dimer and on the left side chain B). Each subunit 

is composed of six β-strands and four α-helices with connecting loops. The Figure was 

created by PyMol (DeLano & Lam, 2005).          
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Figure 6.14: Cartoon representation of BPSL2418Reduced structure showing the active 

site. The active site contains the three conserved cysteines of the fRMsr family as sticks. 

No disulfide bond was formed and no bound ligand is in the active site.    
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Figure 6.15: Superimposition of BPSL2418Reduced (green) chain A and S. aureus 

fRMsr (PDB code 3KSG)  (light blue) chain A. (A) Side view, (B) active site of the 

BPSL2418Reduced and S. aureus fRMsr. The superimposition shows that the overall 

structures and the active sites of the two structures are matching well except the extra 

alpha helix between β4 and β5 in S. aureus fRMsr (pointed by a black arrow). The three 

cysteines residues in the active site of the two proteins are shown as sticks. The Figure 

produced by PyMol (DeLano & Lam, 2005).          
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6.1.2 Comparison and conformational changes of MES-

bound, Met-SO-bound and reduced forms of BPSL2418 

In this section a comparison between the BPSL2418MES, BPSL2418Met-SO and 

BPSL2418Reduced  structures, which are expected to represent the catalytic steps of 

the BPSL2418 reaction will be described. 

 
6.1.2.1 Comparison of the overall structures of BPSL2418 forms 

The overall structural alignment of BPSL2418MES, BPSL2418Met-SO and 

BPSL2418Reduced was produced using PyMol to compare the three forms of 

BPSL2418 (Figure 6.16). The alignment shows significant conformational changes 

between the three forms in the active site. No change was observed in loop1 of 

BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced and the position of CYS75 

residues of the three forms was unchanged (Figure 6.17). A conformational change 

was shown in loop4, which is composed of residues 98-113 including CYS109 

(Figure 6.17). It is clear that the CYS109 residue of each loop4 of the three 

structures is located at a different position. The Cα of the CYS109 residue of 

BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced  resides at a distance of 6.0 Å, 

5.7 Å and 10.0 Å, respectively from the Cα of the CYS75 residue in loop1 of each 

form. This indicates that the loop4 of BPSL2418Met-SO moves toward the entrance 

of the active site, where a disulfide bond is produced between CYS109 and 

CYS75, leading to closure of the active site pocket. The BPSL2418MES structure is 

an oxidized form and the distance between the Cα of CYS109 and CYS75 is 

slightly longer compared with the Cα- Cα distance between the two cysteines in 

BPSL2418Met-SO. Also the CYS109 residue in BPSL2418MES pulls loop4 to the 

entrance of the active site producing a cavity, but it seems to be less tight then the 

BPSL2418Met-SO pocket (Figure 6.17). A large movement far from the entrance of 

the cavity occurs in loop4 of the reduced form. The Cα of CYS109 in loop4 of 

BPSL2418Met-SO and BPSL2418Reduced reside at a distance of 4.6 Å from each other 

(Figure 6.18). Also the sulfur atom of CYS109 in the reduced form points toward 

the opposite side of the active site cavity (Figure 6.17). The volume of the active 

site pocket of the three forms was calculated using CASTp http://sts-

fw.bioengr.uic.edu/castp/ BPSL2418Reduced has the largest pocket volume of  
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Structure Resolution RMSD 
BPSL2418MES 

Chain A 
Chain B 

1.18 Å  
0 
0 

BPSL2418Met-SO 
Chain A 
Chain B 

1.4 Å   
0.37 Å 
0.35 Å 

BPSL2418Reduced 
Chain A 
Chain B 

 2.0 Å  
0.39 Å 
0.37 Å 

 
Figure 6.16: Different views of the superimposition of BPSL2418MES (gold), 
BPSL2418Met-SO chain A (blue) and BPSL2418Reduced chain A (green) with disulfide 

bonds in yellow. (A) The alignment shows an overall very good superimposition but with 

a significant change in loop4 (defined by black circle). (B) RMSD between subunits after 

superimposition. The Figure produced by PyMol (DeLano & Lam, 2005).                 
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Figure 6.17: Superimposition of the three forms of BPSL2418 shows the change in 

the active site, BPSL2418MES (gold), BPSL2418Met-SO (blue) and BPSL2418Reduced 

(green). The Figure shows the positions of the three conserved cysteines CYS75, CYS85 

and CYS109 in the active sites. The cysteines side chains are shown as sticks. The Figure 

produced by PyMol (DeLano & Lam, 2005).                      
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Figure 6.18: Calpha-Calpha distance (Y-axis) of residues of loop4 between 

BPSL2418Met-SO and BPSL2418Reduced (blue line) and between BPSL2418MES and 

BPSL2418Reduced plotted against residues number of loop4 (X-axis).    
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445.5 Å3, the BPSL2418MES has a pocket volume of 204.2 Å3 and the   

BPSL2418Met-SO has the smallest pocket volume of 167.3 Å3.  The B-value 

(temperature-factor) for the atoms of the loop4 compared to the rest of the structure 

in each form was calculated. Atoms with low B-factors indicate a well-ordered part 

of the structure. Atoms with high B-factors belong to a part of the structure that has 

a higher degree of mobility and flexibility. The B-factors of loop4 of subunit A of 

BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced are (14.27, 19.5 and 32.8 Å2 

respectively), which are significantly higher then the overall B-factors of the 

subunit A of each form (8.52, 14.6 and 27.2 Å2 respectively). It has been shown 

also that the B-factor of the main chain residues of BPSL2418Reduced is higher than 

the main chain residues of BPSL2418MES and BPSL2418Met-SO (Figure 6.19).  In 

sum the movement of the loop4, particularly CYS109, determines the 

conformational changes of the reduced form and the oxidized form (BPSL2418Met-

SO and BPSL2418MES) by creating a closed conformation in BPSL2418Met-SO and 

BPSL2418MES and an open conformation in BPSL2418Reduced. This result is 

consistant with the comparison between the reduced and oxidized forms of fRMsr 

from S. aureus (Bong et al, 2010). The conformational changes can also be 

observed by comparing the molecular surface of the three forms.    

 

6.1.2.2 Comparison of the molecular surface of the different forms 

of BPSL2418  

The electrostatic surfaces of the three different BPSL2418 forms were calculated 

using Pymol (DeLano & Lam, 2005). The two subunits for each BPSL2418Met-SO 

and BPSL2418Reduced dimers are identical, therefore only one subunit of each form 

will be used in the comparison. The models show the charge distribution on the 

surface of BPSL2418 forms (Figure 6.20). A fairly negatively charged depression 

appears in the entrance of the active site clearly shown in the reduced form (Figure 

6.20 c). The negative potential in the active site possibly indicates the substrate-

binding site. It is formed by the side chains of residues (ASP60, GLU63, ASP99, 

ASP110, GLU116, ASP125, ASP133, ASP135 and ASP143) in the active site. The 

negatively charged pocket might be significant in terms of the substrate binding,   

To investigate the role of these negatively charged residues, this can be examined  
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Figure 6.19: B-factors (Å2) of main chain residues of BPSL2418 different forms 

plotted against residues numbers (X-axis). The blue, red and green lines represent 

B-factors of main chain of BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced 

respectively. 
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by site-directed mutagenesis, kinetic characterization and crystallographic analysis.  

In these Positive charge is distributed randomly on the surface of BPSL2418, 

provided by the side chains of LYS and ARG residues. The comparison of the 

molecular surface of BPSL2418 forms reveals that the reduced form creates an 

opened conformation (Figure 6.20 c) while the MES and the Met-SO complex 

forms produce a closed conformation of the active site cavity (Figure 6.20 b). 

However the molecular surface model shows that the BPSL2418Met-SO form 

generates a more closed conformation and this might indicate that the free Met-R-

SO is the most preferable ligand. The closed conformation status of the two 

oxidized forms (BPSL2418Met-SO and BPSL2418MES) supports the role of the 

disulfide bond in providing tight binding for the ligand in a small cavity that is 

covered by the flap (loop1- β3- loop2- α3- loop3- β4- loop4 unit). In addition to 

offering tight binding to the substrate, this covered small cavity protects the active 

site from the solvent. The active site of many enzymes must protect their substrate 

from water because the reactions cannot proceed rapidly or even at all in an 

aqueous environment. The ability of some enzymes to shield their substrate from 

aqueous solvent by taking advantage of conformational changes that close off the 

active site from contact with bulk solvent is important in enabling them to 

accelerate the rates of the reactions they catalyze (Bernstein et al 1995).   
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Figure 6.20: Comparison of electrostatic surface potential of BPSL2418 forms 
showing the conformational changes in the active site. (A) BPSL2418MES creates a closed 
conformation. (B) BPSL2418Met-SO creates a more closed conformation. (C) BPSL2418Reduced creates 
an open conformation; the model shows the putative binding site inside the cavity. On the left side 
the subunits of the three forms are shown as solid electrostatic surface model, on the right side the 
subunit are shown as semi-transparent electrostatic surface and ribbon models. The Figures 
produced by PyMol (DeLano & Lam, 2005).                          
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6.2 BPSL2418 interfaces, surfaces and assemblies 

In protein crystallization, the molecules pack together in a regular array (Rhodes, 

2006). In crystals, the interactions between protein molecules and their binding 

energy, interface area, hydrogen bonds, hydrophobic interactions, solvation energy 

and salt bridges across the various interfaces can be examined using PDBePISA 

webserver http://pdbe.org/PISA (Krissinel & Henrick, 2007). This is a web service 

for analyzing the macromolecular surfaces, interfaces, interactions and assemblies. 

The crystal packing analysis of the three forms of BPSL2418 using PDBePISA 

webserver shows that the subunits form dimers. This result corresponds with the 

apparent dimeric state indicated from the gel filtration profile of BPSL2418 (Figure 

4.10).  

 

6.2.1 BPSL2418MES analysis   

The BPSL2418MES crystal contacts and molecular interactions, which maintain the 

molecules together in the crystal, were investigated using PDBePISA with a model 

containing the protein chain and the MES molecule. 

 

6.2.1.1 BPSL2418MES monomers 

Chain A, binding MES ligand which represents the BPSL2418MES protein structure 

was calculated using PISA to has a total of 162 residues, 146 of them are surface 

exposed residues. The solvent accessible area for chain A is 8000 Å2 approximately 

and the solvation free energy gain from interface formation  (ΔG) is estimated as -

149.5 Kcal/mol.   

6.2.1.2 Monomer-monomer interface forming dimeric 

BPSL2418MES  

The PISA analysis indicates that the most extensive crystal packing appears 

between BPSL2418MES molecules related to each other by a 2-fold axis symmetry 

(Figure 6.21). PISA estimates a dimeric state for BPSL2418MES where the 

complexation significance score CSS is equal 1. The CSS score shows how  
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Figure 6.21: The dimeric structure model of BPSL2418MES. On the left side the space-

filling model and on the right side the cartoon model, each has three images taken 90°	
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significant is the interface for assembly formation and it ranges from 0 to 1 as 

interface relevance to complex formation increases. The monomer-monomer 

interface forming dimeric BPSL2418MES has a buried surface area of 

approximately 800 Å2 including 27 residues from each molecule (table 6.4). The 

dimer interface involves 7 hydrogen bonds, 4 salt bridges (table 6.5) (Figures 6.22) 

and no disulfide bonds or covalent bonds. The estimated interface area represents 

9.9% of the total surface area and lies in the normal buried surface area range of 

protein-protein interactions (5-25%) (Jones & Thornton, 1995). The PISA analysis 

is in a good agreement with the result from gel filtration (Figure 4.10) thus, it is 

most likely that BPSL2418MES occurs as a dimer. The dimer interface is made up of 

residues in α2, α1- α2 loop, β2 and β2- β3 loop interact with residues in α2, α1- α2 

loop, β2 and β2- β3 loop of the symmetry related molecule.  
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Residue 

 

Accessible 

surface area 

(Å2) 

 

 

Buried 

surface area 

(Å2) 

 

1 LEU 26 67.16 16.77 

2 GLU 30 77.83 58.61 

3 THR 31 59.31 3.68 

4 ASP 32 43.94 21.45 

5 VAL 34 92.70 57.89 

6 ALA 35 39.77 39.77 

7 ASN 36 2.38 1.84 

8 ALA 38 42.51 40.18 

9 ASN 39 71.65 70.77 

10 SER 42 33.04 33.04 

11 LEU 43 38.53 11.34 

12 TYR 45 52.32 0.89 

13 HIS 46 134.07 36.99 

14 PHE 58 42.60 0.63 

15 VAL 65 30.97 20.92 

16 VAL 66 29.86 28.02 

17 GLY 67 17.87 17.03 

18 PRO 68 27.72 26.55 

19 PHE 69 60.96 56.89 

20 GLN 70 45.19 27.74 

21 GLY 71 36.60 14.17 

22 LYS 72 160.16 36.19 

23 PRO 73 128.65 70.64 

24 ALA 74 30.41 11.54 

25 VAL 76 74.75 53.69 

26 ARG 77 128.82 36.84 

27 THR 166 69.20 1.35 

 

Table 6.4: Accessibility and buried surface areas of 27 residues involved in the 

BPSL2418MES monomer-monomer interface calculated by PISA 

http://pdbe.org/PISA (Krissinel & Henrick, 2007).    
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                                                   Hydrogen bonds 

  

Monomer I 

 

Distance 

(Å) 

 

Monomer II 

1 ARG 77 [ NE ] 2.81 GLU 30 [ OE1 ] 

2 ARG 77 [ NH2 ] 2.93 GLU 30 [ OE2 ]  

3 ALA 74 [ N ] 2.94 ASN 39 [ OD1 ] 

4 GLN 70 [ NE2 ] 3.15 PHE 69 [ O ] 

5 SER 42 [ OG ] 2.65 GLY 71 [ O ] 

6 GLN 70 [ NE2 ] 3.44 GLY 71 [ O ] 

7 ASN 39 [ ND2 ] 3.02 ALA 74 [ O ] 

                                               

                                                                         Salt bridges 

  

Monomer I 

 

Distance 

(Å) 

 

Monomer II 

1 ARG 77 [ NE ] 2.81 GLU 30 [ OE1 ] 

2 ARG 77 [ NH2 ] 3.72 GLU 30 [ OE1 ]  

3 ARG 77 [ N ] 3.55 GLU 30 [ OE2 ] 

4 ARG 77 [ NE2 ] 2.93 GLU 30 [ OE2 ] 

   

Table 6.5: The hydrogen bonds and salt bridges formed in BPSL2418MES 

monomer-monomer interface calculated by PISA http://pdbe.org/PISA 

(Krissinel & Henrick, 2007).    
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Figure 6.22: Residues positioned in BPSL2418MES monomer-monomer interface. The 

residues highlighted by the PISA analysis are shown in stick form. (A) Hydrogen bonds 

and salt bridges involved in the interface shown as dashed lines. (B) Close view of the 

dimer interface. The two MES molecules of the two monomers are shown in light pink 

color. The images were created by PyMol (DeLano & Lam, 2005).    
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6.2.2 BPSL2418Met-SO analysis   

The PISA webserver was used with a model containing two molecules of    

BPSL2418Met-SO each binding a substrate Met-SO molecule in the asymmetric unit.  

 

6.2.2.1 BPSL2418Met-SO monomers 

The two molecules of BPSL2418Met-SO were labeled as chain A and chain B. Chain 

A contains 152 residues, 132 of them are surface exposed residues as defined by 

PISA. It has a solvent accessible area of approximately 7100 Å2 and estimated 

solvation free energy gain upon formation of the interface (ΔG) of -144.8 

Kcal/mol. Chain B has 133 residues and there are surface exposed residues. The 

solvent accessible area for chain B is approximately 7000 Å2 and the solvation free 

energy gain (ΔG) is estimated as -146.4 Kcal/mol.   

 

6.2.2.2 Monomer-monomer interface forming dimeric 

BPSL2418Met-SO  

PISA analysis for BPSL2418Met-SO predicts an interaction between the two 

molecules (A and B) in the asymmetric unit forming a dimeric state with CSS =1. 

It shows that the crystal packing appears between BPSL2418Met-SO molecules 

related by a 2-fold axis (Figure 6.23). PISA analysis does not suggest any 

interaction between the asymmetric unit dimers to form tetramers. The dimer 

interface has a total of 25 residues from each molecule (table 6.6) and a buried 

surface area of 850 Å2 and it contains 15 hydrogen bonds and 8 salt bridges (table 

6.7). The interface area approximately includes 12% of the total surface area of 

BPSL2418Met-SO molecule, and this percentage confirms the dimeric state of the 

protein (Jones & Thornton, 1995). Also the gel filtration analysis (Figure 4.10) 

agrees with the PISA prediction. BPSL2418Met-SO dimeric interface (Figure 6.24) is 

very similar to the interface of BPSL2418MES dimer except a HIS46[NE2]-

GLY71[O] hydrogen bond occurs in BPSL2418Met-SO dimer, where BPSL2418MES 

dimer has PHE69[O]-GLN70[NE2] hydrogen bond instead. PHE69and GLN70 

have no changes in BPSL2418Met-SO which may be suggested the formation of a  
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Figure 6.23: The dimeric structure model of BPSL2418Met-SO. On the left side the space-

filling model and on the right side the cartoon model, each has three images taken 90°	
  

apart	
  about	
  the	
  X-­‐axis.	
  The	
  two	
  molecules	
  forming	
  the	
  dimer	
  are	
  in	
  blue	
  	
  	
  	
  	
  	
  and	
  tiffany	
  	
  	
  	
  	
  	
  colors	
  

and	
  the	
  interface	
  area	
  in	
  green	
  	
  	
      and red     colors. The Figure was produced using PISA 

webserver http://pdbe.org/PISA.   
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Residue 

 

Accessible 

surface area 

(Å2) 

Monomer I 

 

Buried 

surface area 

(Å2) 

Monomer I 

 

Accessible 

surface area 

(Å2) 

Monomer II 

 

Buried 

surface area 

(Å2) 

Monomer II 

 

1 LEU 26 63.88 19.43 70.64 15.96 

2 GLU 30 65.12 49.60 76.10 63.97 

3 THR 31 87.61 5.64 81.79 7.24 

4 ASP 32 74.33 21.41 72.20 20.94 

5 VAL 34 91.96 56.24 86.28 56.56 

6 ALA 35 41.67 41.67 40.91 40.91 

7 ASN 36 3.06 1.60 1.72 1.35 

8 ALA 38 43.27 41.44 44.60 41.56 

9 ASN 39 77.40 75.87 75.00 73.96 

10 SER 42 37.00 37.00 34.15 34.15 

11 LEU 43 38.80 14.97 39.88 13.82 

12 HIS 46 130.72 46.89 131.40 49.62 

13 PHE 58 42.30 0.47 39.34 1.72 

14 VAL 65 36.79 28.95 33.37 25.59 

15 VAL 66 32.68 30.44 34.64 32.19 

16 GLY 67 17.52 16.39 16.94 16.13 

17 PRO 68 29.03 27.69 26.45 25.77 

18 PHE 69 59.61 55.35 63.76 59.15 

19 GLN 70 54.28 48.15 44.26 40.18 

20 GLY 71 36.06 31.02 41.49 36.67 

21 LYS 72 148.40 28.78 150.48 30.90 

22 PRO 73 123.35 77.27 117.53 74.766 

23 ALA 74 23.22 10.23 22.81 8.30 

24 VAL 76 90.21 51.55 84.79 54.58 

25 ARG 77 127.05 38.36 132.00 36.16 

 

Table 6.6: Accessibility and buried surface areas of 25 residues involved in the 

BPSL2418Met-SO monomer-monomer interface calculated by PISA 

http://pdbe.org/PISA (Krissinel & Henrick, 2007).    
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                                                 Hydrogen bonds 

  

Monomer I 

 

Distance 

(Å) 

 

Monomer II 

1 ARG 77 [ NE ] 2.94 GLU 30 [ OE1 ] 

2 ARG 77 [ NH2 ] 2.85 GLU 30 [ OE2 ]  

3 ALA 74 [ N ] 2.87 ASN 39 [ OD1 ] 

4 GLY 71 [ N ] 3.81 GLN 70 [ OE1 ] 

5 HIS 46 [ NE2 ] 3.16 GLY 71 [ O ] 

6 SER 42 [ OG ] 2.68 GLY 71 [ O ] 

7 GLN 70 [ NE2 ] 3.36 GLY 71 [ O ] 

8 ASN 39 [ ND2 ] 3.34 ALA 74 [ O ] 

9 GLU 30 [ OE1 ] 2.87 ARG 77 [ NE ] 

10 GLU 30 [ OE2 ] 2.82 ARG 77 [ NH2 ] 

12 ASN 39 [ OD1 ] 3.12 ALA 74 [ N ] 

13 GLY 71 [ O ] 2.65 SER 42 [ OG ] 

14 GLY 71 [ O ] 3.44 GLN 70 [ NE2 ] 

15 ALA 74 [ O ] 3.02 ASN 39 [ ND2 ] 

                                                      

                                                     Salt bridges 

  

Monomer I 

 

Distance 

(Å) 

 

Monomer II 

1 ARG 77 [ NE ] 3.93 GLU 30 [ OE1 ] 

2 ARG 77 [ NH ] 2.94 GLU 30 [ OE1 ]  

3 ARG 77 [ NH2 ] 2.85 GLU 30 [ OE2 ] 

4 ARG 77 [ NE ] 3.40 GLU 30 [ OE2 ] 

5 GLU 30 [ OE1 ] 2.87 ARG 77 [ NE ] 

6 GLU 30 [ OE1 ] 3.71 ARG 77 [ NH2 ] 

7 GLU 30 [ OE2 ] 3.53 ARG 77 [ NE ] 

8 GLU 30 [ OE2 ] 2.82 ARG 77 [ NH2 ] 

 

Table 6.7: The hydrogen bonds and salt bridges formed in BPSL2418Met-SO 

monomer-monomer interface calculated by PISA http://pdbe.org/PISA 

(Krissinel & Henrick, 2007).    
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Figure 6.24: Residues positioned in BPSL2418Met-SO monomer-monomer interface. 

The residues highlighted by the PISA analysis are shown in stick form (A) Hydrogen bonds 

and salt bridges involved in the interface shown as dashed lines. (B) Close view of the 

dimer interface. The two Met-SO molecules of the two monomers are shown in pink color 

and the CYS75-CYS109 disulfide is shown in yellow. The images were created by PyMol 

(DeLano & Lam, 2005).      
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hydrogen bond between these two residues occasionally. Similar to BPSL2418MES, 

the dimer interface of BPSL2418Met-SO consists of residues in α2, α1- α2 loop, β2 

and β2- β3 loop interact with residues in α2, α1- α2 loop, β2 and β2- β3 loop of the 

symmetry related molecule. 

 

6.2.3 BPSL2418Reduced analysis 

A model of BPSL2418Reduced structure containing 2 molecules in the asymmetric 

unit was used to run PISA analysis.  

 

6.2.3.1 BPSL2418Reduced monomers 

Chain A and chain B of BPSL2418Reduced dimer have 154 and 152 residues 

respectively. There are 136 and 133 surface exposed residues are 136 residues from 

chain A and 133 from chain B, with solvent accessible area of 7300 Å2 and      

7100 Å2 and estimated solvation free energy gain upon formation of the interface 

(ΔG) -140.6 Kcal/mol and -143.4 Kcal/mol respectively.   

 

6.2.3.2 Monomer-monomer interface forming dimeric 

BPSL2418Reduced  

PISA analysis indicates a dimeric state with CSS equal to 0.75, which also agreed 

with gel filtration (Figure 4.10). The dimeric interface includes 25 residues from 

chain A and 24 residues from chain B (table 6.8), a buried surface area of 830 Å2, 

and it contains 15 hydrogen bonds and 8 salt bridges (table 6.9). The interface area 

presents 12% of the total surface area of the protein molecule. This interface has 

PHE69[O]-GLN70[NE2] similar to BPSL2418MES dimer.  Similar to BPSL2418MES 

and BPSL2418Met-SO the dimer interface of BPSL2418Reduced consists of residues in 

α2, α1- α2 loop, β2 and β2- β3 loop interact with residues in α2, α1- α2 loop, β2 

and β2- β3 loop of the symmetry related molecule. The images of BPSL2418Reduced 

dimer produced using PISA are identical to the images of BPSL2418Met-SO dimer 

(Figure 6.25). 
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Residue 

 

Accessible 

surface area 

(Å2) 

Monomer I 

 

Buried 

surface area 

(Å2) 

Monomer I 

 

Accessible 

surface area 

(Å2) 

Monomer II 

 

Buried 

surface area 

(Å2) 

Monomer II 

 

1 LEU 26 73 19.00 75.24 14.34 

2 GLU 30 66.62 52.32 73.91 57.59 

3 THR 31 83.95 5.30 80.69 10.55 

4 ASP 32 71.66 21.59 71.82 19.78 

5 VAL 34 90.96 59.26 88.43 56.05 

6 ALA 35 39.90 39.58 39.72 39.72 

7 ASN 36 3.22 0.74 3.64 1.56 

8 ALA 38 37.99 37.15 42.34 39.42 

9 ASN 39 82.92 70.72 81.93 77.84 

10 SER 42 34.50 34.50 31.49 31.49 

11 LEU 43 38.70 13.10 37.31 14.63 

12 HIS 46 131.48 26.77 138.53 56.16 

13 PHE 58 43.39 0.63 40.95 2.34 

14 VAL 65 35.13 25.60 35.15 25.73 

15 VAL 66 27.62 26.11 31.68 30.57 

16 GLY 67 21.27 19.46 16.80 15.98 

17 PRO 68 29.03 27.70 27.25 26.42 

18 PHE 69 63.12 58.48 60.53 57.69 

19 GLN 70 46.89 43.56 51.67 45.59 

20 GLY 71 45.45 40.90 54.12 40.05 

21 LYS 72 163.59 32.77 - - 

22 PRO 73 127.49 71.70 137.04 67.76 

23 ALA 74 27.84 8.50 25.41 8.95 

24 VAL 76 78.89 52.59 87.71 53.89 

25 ARG 77 133.31 36.84 129.81 35.99 

 

Table 6.8: Accessibility and buried surface areas residues involved in the 

BPSL2418Reduced monomer-monomer interface calculated by PISA 

http://pdbe.org/PISA (Krissinel & Henrick, 2007).  
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                                                     Hydrogen bonds 

  

Monomer I 

 

Distance 

(Å) 

 

Monomer II 

1 ARG 77 [ NE ] 2.96 GLU 30 [ OE1 ] 

2 ARG 77 [ NH2 ] 3.12 GLU 30 [ OE2 ]  

3 ARG 77 [ NH2 ] 3.74 THR 31 [ OG1 ] 

4 ALA 74 [ N ] 2.94 ASN 39 [ OD1 ] 

5 GLN 70 [ NE2 ] 2.90 PHE 69 [ O ] 

6 GLY 71 [ N ] 3.29 GLN 70 [ OE1 ] 

7 SER 42 [ OG ] 2.69 GLY 71 [ O ] 

8 ASN 39 [ ND2 ] 3.19 ALA 74 [ O ] 

9 GLU 30 [ OE1 ] 2.83 ARG 77 [ NE ] 

10 GLU 30 [ OE2 ] 2.70 ARG 77 [ NH2 ] 

11 ASN 39 [ OD1 ] 3.15 ALA 74 [ N ] 

12 PHE 69 [ O ] 3.03 GLN 70 [ NE2 ] 

13 GLN 70 [ OE1 ] 3.22 GLY 71 [ N ] 

14 GLY 71 [ O ] 2.54 SER 42 [ OG ] 

15 ALA 74 [ O ] 3.02 ASN 39 [ ND2 ] 

 

                                                          Salt bridges 

  

Monomer I 

 

Distance 

(Å) 

 

Monomer II 

1 ARG 77 [ NE ] 3.94 GLU 30 [ OE1 ] 

2 ARG 77 [ NE ] 2.96 GLU 30 [ OE1 ]  

3 ARG 77 [ NH2 ] 3.12 GLU 30 [ OE2 ] 

4 ARG 77 [ NE ] 3.59 GLU 30 [ OE2 ] 

5 GLU 30 [ OE1 ] 2.83 ARG 77 [ NE ] 

6 GLU 30 [ OE1 ] 3.75 ARG 77 [ NH2 ] 

7 GLU 30 [ OE2 ] 3.36 ARG 77 [ NE ] 

8 GLU 30 [ OE2 ] 2.70 ARG 77 [ NH2 ] 

Table 6.9: The hydrogen bonds and salt bridges formed in BPSL2418Reduced 

monomer-monomer interface calculated by PISA http://pdbe.org/PISA 

(Krissinel & Henrick, 2007).    
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Figure 6.25: Residues positioned in BPSL2418Reduced monomer-monomer interface. 

The residues highlighted by the PISA analysis are shown in stick form (A) Hydrogen bonds 

and salt bridges involved in the interface shown as dashed lines. (B) Close view of the 

dimer interface. The images were created by PyMol (DeLano & Lam, 2005).      
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6.3 Functional prediction  

The structures of the BPSL2418 forms can be used to predict the function of the 

BPSL2418 protein. The determination of the protein family that BPSL2418 

belongs to and the high identity of BPSL2418 with known function homologs can 

provide useful information for understanding the protein.  

 

6.3.1 Structure comparisons 

All the final refined structures of BPSL2418 forms were analyzed with the Dali 

server as described in section 6.1. The Dali search shows that BPSL2418 belongs 

to the GAF domain free methionine sulfoxide reductase (fRMsr) family. In the 

database only four structures of fRMsr are known so far: Escherichia coli fRMsr 

(PDB code 1VHM), Staphyloccus aureus fRMsr (PDB code 3KSF), Neisseria 

meningitidis fRMsr (PDB code 3MMH) and Streptococcus pneumoniae fRMsr 

(PDB code 3RFB). As demonstrated in section 6.1, each structure of the 

BPSL2418 forms superimposed very well with structures from the fRMsr family. 

However in order to obtain the sequence similarity and conserved residues between 

BPSL2418 and fRMsr proteins, they were also aligned using PROMALS3D (Pei et 

al, 2008). The alignment was run using the 3D models of these proteins (Figure 

6.26). 12 residues of 13 residues composing the active site are conserved among 

the aligned proteins. The three cystienes in loop1, α3 and loop4 are conserved 

where a disulfide bond is formed between the cysteine in loop1 and the cysteine in 

loop4. The third cysteine located in α3 provides a hydrogen bond via its main chain 

amide nitrogen in the ligand interaction (see section 6.2). Like all GAF domains, 

BPSL2418 and the fRMsr known structures are dimeric that also superimposed 

very well (Figure 6.27). 
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6.26: Structure based alignment of BPSL2418 (s001), N. meningitidis fRMsr (S004), S. 

pneumoniae  fRMsr (S005), E. coli fRMsr (S006) and S. aureus fRMsr (S007). The β-

strands and α-helices are represented as blue and red residues, respectively. The active 

site consisting of (β1, β2,loop1, β3,loop2,α3,loop3, β4  and loop4) is defined by black 

rectangles and the three conserved cysteines are indicated by black arrows.    
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6.27: structural alignment of BPSL2418 structure and fRMsr structures (N. 

meningitidis fRMsr S. pneumoniae  fRMsr, E. coli fRMsr and S. aureus fRMsr). The 

Figure shows an alignment of dimeric structures of BPSL2418 with fRMsr proteins. The 

images were created by PyMol (DeLano & Lam, 2005).      
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6.3.2 Catalytic Mechanism of BPSL2418 

All the structural analyses of BPSL2418 indicate that this protein is most likely a 

new member in the GAF domain fRMsr family. The crystal structures of 

BPSL2418MES, BPSL2418Met-SO and BPSL2418Reduced help in describing the role of 

BPSL2418 in reversing the oxidation of the free methionine residue, in 

understanding the binding method of Met-SO substrate to the active site, and the 

conformational changes that occur during the reduction. The crystal structures of 

the BPSL2418 forms indicate significant conformational changes in the active site 

in each catalytic step. The changes in the active site occur particularly in loop4 

including the catalytic CYS109. The reduced form (BPSL2418Reduced) creates an 

opened conformation (Figure 6.28) mostly to permit admission to the substrate. In 

the Met-SO substrate binding form, BPSL2418Met-SO has a closed conformation 

after access of the substrate (Figure 6.28). The comparison between the BPSL2418 

forms revealed that the cysteine located in loop4 CYS109 was the most mobile 

while the CYS75 position in loop1 and CYS85 in α3 remain unchanged (Figure 

6.17), but CYS85 may plays a role in substrate binding. This is in agreement with 

the Staphyloccus aureus fRMsr (Bong et al, 2010) and the Neisseria meningitidis 

fRMsr (Gruez et al, 2010) where the structural and biochemical analyses of these 

proteins suggest that their catalytic cysteines are CYS102 and CYS118, 

respectively which correspond to CYS109 in BPSL2418. CYS102 and CYS118 are 

the mobile cysteines, which forms a disulfide bond with CYS68 and CYS84, 

respectively leading to conformational changes in the active site (see section 1.2.3 

(2) and (3)). The corresponding residues to CYS75 in Staphyloccus aureus fRMsr 

and the Neisseria meningitidis fRMsr are CYS68 and CYS84 respectively and they 

are immobile cysteines as CYS75 in BPSL2418. The third conserved cysteine 

CYS78 and CYS94 located in α3 of Staphyloccus aureus fRMsr and the Neisseria 

meningitidis fRMsr respectively are also immobile cysteines as BPSL2418. The 

crystal structure of BPSL2418 in complex with Met-R-SO illuminates not only the 

catalysis of the reductase step but also how BPSL2418 binds Met-R-SO with a 

strong preference for the Met-R-SO isomer. The structure of the reduced form has 

an open conformation to allow access to the substrate. Another complex structure 

BPSL2418MES was determined in this project with a MES molecule in the binding 

site. BPSL2418MES is an oxidized form with a disulfide bond between CYS75 and 
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CYS109. This suggests that MES molecule can act as competitive inhibitor of 

BPSL2418 enzyme. Our structural analysis suggests that CYS109 is the catalytic 

residue of BPSL2418. The hydrophobic region in the active site could 

accommodate the ε-methyl group of the substrate via van der Waals interactions, 

where the hydrophilic region with the nitrogen of the substrate. Also, this 

hydrophilic region may play a role in stabilizing the protonated oxygen atom of the 

sulfoxide moiety during catalysis. Thus, the hydrophobic affinity to substrate, 

whereas the hydrophilic region seems important for binding specificity.  

Taken together, it can be suggested that the catalytic mechanism of BPSL2418 

includes three steps (Figure 6.29):  

(1) The BPSL2418 is reduced by a reductant (usually Trx in vivo or DTT in 

vitro) generating an opened pocket to permit access to the free Met-SO 

substrate. CYS109 in BPSL2418 loop4 attacks the sulfoxide group of Met-

SO and is then oxidized forming CYS sulfenic acid (CYS-SOH). This 

reverses the Met-SO into a free methionine residue.  

(2) CYS75 in BPSL2418 loop1 interacts with the CYS109 sulfenic acid 

intermediate forming a disulfide bond (generating a close conformation) 

and releasing a water molecule.  

(3) The BPSL2418 enzyme activity is regenerated by reducing the CYS75-

CYS109 disulfide.  

The crystals of the different forms of BPSL2418 comprise dimer in the asymmetric 

unit and the two active sites within the dimer are separated from each other by 

approximately 23.8 Å, which suggests no communication between the two active 

sites. Also the interfaces have no significant change seen between the structures. In 

thermophilic enzymes, a decrease in flexibility cause low enzyme activity while in 

less stable proteins an increase in flexibility is associated with enhanced enzyme 

activity. In this study the role of active site rigidity in enzyme activity is misleading 

because the disulfide bond forms after Met-SO reduction. Thioredoxin reductase is 

is the only enzyme known to catalyze the reduction of thioredoxin and hence is a 

central component in the thioredoxin system. Together with thioredoxin (Trx) and 

NADPH this system's most general description is as a method of forming reduced 

disulfide bonds in cells. Electrons are taken from NADPH via TrxR and are  
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Figure 6.28:  Structural representation of proposed catalytic mechanism of 
BPSL2418. Reduced BPSL2418 exhibits an opened conformation permitting the access of 

Met-SO into the active site. After substrate binding, the BPSL2418 enzyme forms a 

disulfide bond and is converted to a closed conformation.     
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Figure 6.29: Schematic representation of proposed catalytic mechanism of 

BPSL2418. (A) The substrate binds to the active site with its sulfoxide function largely 

polarized, leading to a transition state compatible with a sulfurane of bipyramidal geometry. 

The rearrangement of the transition state leads to the formation of a sulfenic acid 

intermediate on the catalytic Cys109 residue. In this scenario, Asp133 and Cys85 , stabilize the 

sulfurane transition state via interaction with the OH group. (B) The reductase step (the 

first one) leads to the formation of a sulfenic acid intermediate on the catalytic Cys109  and 

of Met. In the second step, attack of Cys75 on the sulfur atom of the sulfenic acid 

intermediate leads to the formation of a disulfide bond between Cys109 and Cys75 and the 

release of a water molecule. Return of the active site to a fully reduced state can proceed 

via reduction of the Cys109–Cys75 disulfide bond formed by Trx. 
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transferred to the active site of Trx, which goes on to reduce protein disulfides or 

other substrates. The Trx system exists in all living cells and has an evolutionary 

history tied to DNA as a genetic material, defense against oxidative damage due to 

oxygen metabolism, and redox signaling using molecules like hydrogen peroxide 

and nitric oxide (Meyer et al, 2009). However, other GAF domain proteins 

basically play role in ligand binding specifically cyclic nucleotide for signal 

potentiation. This may suggest that Met-SO plays role as a signaling ligand in 

response to oxidative stress in some organism. This might be in a signaling cascade 

which is a series of chemical reactions that are initiated by a first messenger acting 

on a receptor that is transduced to the cell interior through second messengers 

(which amplify the initial signal) and ultimately to effector molecules, resulting in 

a cell response to the initial stimulus.  

 

6.4 Conclusion and future work 

The methionine sulfoxide reductase (Msr) is the responsible protein family of the 

reduction of methionine sulfoxide (Met-SO). The Msr family includes three types: 

MsrA, MsrB and fRMsr. MsrA and MsrB capable of reducing free Met-SO and 

Met-SO in peptides. This mechanism is stereospecific with the S- and R forms of 

Met-SO reduced by MsrA and MsrB, respectively. The third type of Msr is the free 

methionine-R-sulfoxide reductase (fRMsr), which catalyzes the reduction of the R-

form of free methionine sulfoxide back to free methionine. The fRMsr subfamily 

discovered in 2007 and interestingly only four structures of this type are known so 

far. The fRMsr type belongs to the GAF domain family and it is the only member 

that shows enzymatic activity. Other GAF domain proteins basically play role in 

ligand binding specifically cyclic nucleotide for signal potentiation. This may 

suggest that Met-SO plays role as a signaling ligand in response to oxidative stress 

in some organism. This thesis presents the BPSL2418 protein from Burkholderia 

pseudomallei as a novel member of fRMsr family. The crystal structures of the 

reduced (BPSL2418Reduced), Met-SO-bound (BPSL2418Met-SO) and MES-bound 

(BPSL2418MES) forms of free methionine-R-sulfoxide reductase from Burkholderia 

pseudomallei were determined in this work. This is the first project provides the 

structural analysis of MES-bound form with the reduced and substrate-bound forms 
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of a free methionine-R-sulfoxide reductase protein. The structural analysis and 

comparison of the BPSL2418 forms indicate conformational changes in the active 

site particularly in loop4 (residues 98-113). The project suggests the catalytic 

mechanism of BPSL2418 in which CYS109 (located in loop4) is a mobile residue 

functions as the catalytic cysteine and CYS75 functions as the resolving cysteine, 

which forms a disulfide bond with CYS109. The position of CYS85 is like CYS75 

remains unchanged during the catalytic activity; CYS85 involves in the interaction 

of BPSL2418 with Met-SO substrate and MES molecule.  

In this project future work should focus on produce the crystal structure of the 

unbound oxidized form to complete the comparison image of the reduction 

mechanism. Also obtain a crystal structure of CYS109, CYS102 and CYS85 

mutant forms either as a single or double mutations can confirm the catalytic 

residues and the function of each cysteine. In this project no experiment have done 

to test the substrate specificity of BPSL2418 enzyme which suggest performing an 

enzyme assay to monitor the reduction activity against different substrates such as 

free and peptide bound forms of S- isomer Met-SO and the peptide bound form of 

R- isomer Met-SO. Also enzyme assays can be used to examine the activity of 

BPSL2418 mutants comparing with the wild type. This can be achieved by using 

steady-state kinetics of wild type and mutants with Trx-regeneration system and 

with Met-R-SO as a substrate and Trx as a reductant.        
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Chapter 7: CT1 and CT2 Expression, 

Purification and crystallization attempts 
 

This chapter presents all the efforts to express, purify and crystalize the C-terminal 

domains of Polycystin1 (CT1) (26 kDa) and of Polycystin2 (CT2) (35 kDa) in 

order to use the crystals of these proteins for experimental X-ray diffraction.  

 

7.1  Preparation of CT1 protein 
 

7.1.1 Recombinant plasmid of CT1  

The insert gene including a GB1 domain at the N-terminus was ligated into the     

E. coli expression vector pET-21a(+) which contains an ampicillin resistance gene. 

The GB1 domain is an immunoglobulin-binding fusion protein (8 kDa) often used 

to increase the solubility of other proteins (Cheng & Patel, 2004). The GB1-CT1 

pET-21a(+) plasmid was provided by Prof. Albert Ong. 

 

7.1.2  CT1 overexpression in E. coli   

An E. coli expression method was used to express GB1-CT1. To achieve large-

scale 4 l expression the following protocol was applied: competent cells (BL21-

DE3-RIPL) were transformed with the GB1-CT1pET-21a(+) construct. Cells were 

plated on LB-agar plates provided with 75 µg/ml Chloramphenicol to select BL21-

DE3-RIPL, 50 µg/ml ampicillin to select the plasmid and 1% glucose to inhibit 

expression. LB-agar plates were incubated at 37 °C overnight. A starter culture of 

LB (5 ml) supplemented with 50 µg/ml ampicillin and 1% glucose was inoculated 

with a single colony and incubated at 37 °C, 200 rpm overnight. The secondary 

culture of LB (500 ml) supplemented with 50 µg/ml ampicillin, 75 µg/ml 

Chloramphenicol and 1% glucose was inoculated at 1:100 dilution of the starter 

culture and incubated at 37 °C, 200 rpm until the OD600 nm reached 0.6-0.9 
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(approximately 4-5 hours). CT1 expression was induced by adding 1 mM IPTG to 

the culture. The main cultures were incubated at 37 °C, 200 rpm for 3 hours. Cells 

were harvested by centrifugation at 6000 g for 10 minutes. Pellets were stored at       

-80 °C. GB1-CT1 was expressed as insoluble inclusion bodies (Figure 7.1). 

Expression conditions were optimized to try to achieve soluble yield, but no 

soluble protein was expressed. The optimization included changing induction time, 

induction temperature and IPTG concentration. None of the optimization attempts 

produced soluble protein.    

 
7.1.3  CT1 protein refolding    

The mentioned protocol in section 2.12 was used to refold the inclusion bodies of 

CT1, this attempt did not improve the protein folding.  

 
7.2 Preparation of CT2 protein 
 
7.2.1 Recombinant plasmid of CT2 

The human polycystin-2 C-terminal domain (CT2) was amplified by the PCR 

technique in a His-CT2 construct. The insert gene included a His tag at the N-

terminus. The PCR product was ligated into the E. coli expression vector          

pET-28a(+) which contains a kanamycin resistance gene (Figure 7.2). This 

recombinant plasmid was provided by Prof. Albert Ong. 

 
7.2.2 CT2 overexpression in E. coli   

An E. coli expression method was used to express His-CT2 protein. To achieve 

large-scale 4 l expression the following protocol was applied: competent cells 

(BL21-DE3-RIPL) were transformed with the His-CT2 pET-28a(+) construct. 

Cells were plated on LB-agar plates provided with 75 µg/ml chloramphenicol to 

select BL21-DE3-RIPL, 50 µg/ml kanamycin to select the plasmid and 1% 

glucose. LB-agar plates were incubated at 37 °C overnight. A starter culture of LB 

(5 ml) 
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Figure 7.1:  12% SDS- PAGE gel showing GB1-CT1 (34 kDa) expression. Lane M: 

Molecular weight marker, lane 1: Pre-induction, lane 2: Band in the insoluble fraction and 

lane 3: No bands in the soluble fraction.  
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Figure 7.2: His-CT2 construct (35 kDa). Green color indicates the histidine tag, red color 

indicates linker amino acids including thrombin site in blue (rgs). CT2 residues colored in 

black. Another thrombin site in the middle of CT2 sequence(rgs).     
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supplemented with 50 µg/ml kanamycin and 1% glucose was inoculated with a 

single colony and incubated at 37 °C, 200 rpm for overnight. The secondary culture 

of LB (500 ml) supplemented with 50 µg/ml kanamycin, 75 µg/ml 

chloramphenicol and 1% glucose was inoculated at 1:100 dilution of the starter 

culture and incubated at 37 °C, 200 rpm until the OD600 nm reached 0.6-0.9. 

(approximately 2-5 hours). CT2 expression was induced by adding 1 mM IPTG to 

the culture. The main cultures were incubated at 37 °C, 200 rpm for 3 hours. Cells 

were harvested by centrifugation at 6000 g for 10 minutes. Pellets were stored at -

80 °C. CT2 was expressed by the methods described above and the SDS-PAGE gel 

reveals a strong expression band in the soluble fraction in the expected size  

(Figure 7.3). 

 

7.2.3 CT2 purification 

The cell pellet from the large-scale E. coli expression was defrosted on ice, and 

was resuspended in lysis buffer (50 mM Tris pH8, 500 mM NaCl) using a 1:5 w/v 

ratio. The suspension was incubated on ice for 30 minutes then it was aliquoted 

into 2 centrifuge tubes (10 ml in each tube). The suspension in each tube was 

sonicated for 3x20 seconds (on ice) and centrifuged at 40,000 g at 4 °C for 30 

minutes. The supernatant was taken for the purification step. Soluble fractions of 

His-CT2 were purified by Nickel column affinity chromatography. The purity of 

eluted His-CT2 protein was checked by 12% SDS-PAGE. The His-CT2 

purification using the Nickel column was run successfully and bands were seen on 

the gel at the expected size (Figure 7.4). The SDS-PAGE showed many impurities, 

which suggested another purification step was needed. Gel filtration 

chromatography was used as a second purification step. Gel filtration was 

performed on a Hi load Superdex200, 16x60 cm (GE healthcare life science) 

column. The column flow rate was 1.5 ml/min. Gel filtration was performed in gel 

filtration buffer (25 mM Tris, 150 mM NaCl, pH 8.0 at 4 °C) and the purity of 

eluted protein was checked by12% SDS-PAGE (Figure 7.5 a). The gel filtration 

elution profile shows that CT2 tends to form oligomers (Figure 7.5 b). The 

calibration plot for the Hi-load Superdex 200 column was used to calculate the 

protein molecular weight and this gave a value of  approximately 350 kDa, which  



 251 

 

 

 

 

 

 

 

 

                                

 

 

 

 

 

 

 
Figure 7.3: 12% SDS- PAGE gel showing His-CT2 (35 KDa) overexpression. Lane M: 

Molecular weight marker. LaneP: Insoluble fraction. Lane S: Soluble fraction 
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Figure 7.4: 12% SDS-PAGE of His-CT2 (35 KDa) nickel affinity chromatography. Lane 

M: Molecular weight marker . Lane 1-7 nickel column fractions.  
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 Figure 7.5:  Gel filtration of His-CT2 (35 KDa). A: 12% SDS-PAGE of samples 2-8 gel 

filtration chromatography. B: Gel filtration elution profile (peak 57.14 ml).   
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would correspond roughly to an octamers (Figure 7.6). The protein concentration 

was determined by spectrophotometer at 280 nm. Concentration of the protein was 

performed using the Centricon centrifugal ultrafiltration device (Vivascience). The 

final concentration of His-CT2 was 50 mg/ml in 100 µl. 

 

7.2.4 Initial crystallization trials  

The protein concentrations used for the initial crystal screens were 7, 15, 21, 34 

and 50 mg/ml. Initial screens were set up using the sitting drop vapour diffusion 

method. The PACT, JCSG, PEG and Classics screen suites were used. Initial 

crystal screens were incubated in a temperature-controlled environment at 17 ºC. 

Plates were checked after a few days and then every week after that. In all the 

crystallization attempts using different concentrations, the same unsatisfactory 

stage of crystal formation was achieved. Quasi crystals were produced in all of 

these trials (Figure 7.7). They were seen in the JCSG suite wells A11, B6, E9 and 

also in the Classic suite wells E11, F7, H9. Attempts were made to optimize the 

initial hits by reproducing the condition in 24-well plate format using the hanging 

drop vapour diffusion method, but better crystals were not grown. 

 

7.2.5 Investigation of the CT2 oligomeric state by Electron 

Microscopy  

To examine the CT2 oligomeric state by Electron Microscopy, diluted sample of 

His-CT2 (0.1 mg/ml) was negatively stained using 2% ammonium molybdate 

Stain, pH 7. Negatively stained electron images were record on a Philips CM100 

transmission electron microscope, by a Gatan MultiScan 794 charge-coupled 

device camera (Ohi et al, 2004). The His-CT2 electron microscope image shows a 

variety of protein particle sizes. Particles of 65-75, 100 and 150-165 Å diameters 

were found suggesting dimers, trimers and tetramers, respectively (Figure 7.8).  

The heterogeneous state of His-CT2 may inhibit crystal growth. Pure, 

homogeneous protein is the most critical prerequisite for successful protein 

crystallization (Kundrot, 2004) and so further purification steps were required. 
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Figure 7.6: The calibration plot for Hi-Load superdex 200 column chart to calculate 

CT2 molecular weight: Ve (elution volume)/Vo (column void volume)= 1.2, from the chart 

this gives a log MW of 5.5, therefore the estimated MW is ~ 350 KDa. 
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Figure 7.7: Quasi crystals of CT2 grew in 0.2 M ammonium phosphate, 0.1 M Tris pH 

8.5 and 50% MPD.  
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Figure 7.8: EM image for the oligomeric state of His-CT2. The red circle surround 

particles 100 Å diameter size which may be tetramers. The blue circles show particles of 

65-80 Å diameter size suggesting trimers. The smallest particles are 50-60 Å diameter size 

and are surrounded by yellow rings, and suggest dimers. 
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7.2.6 Obtaining separated homogeneous fractions by using 

gel filtration  

The previous gel filtration purification of His-CT2 and the Electron microscopy 

investigation show that CT2 tends to form oligomeric molecules, which might be 

the reason crystals do not grow. To change the heterogeneous state of CT2, two 

approaches have been taken: the first one was using gel filtration chromatography 

to obtain separated homogeneous fractions and the second was the introduction of a 

mutation in the predicted site of oligomerization. The gel filtration protocol was 

done as described before and the elution profile used to separate fractions (Figure 

7.9). Two separated fractions were collected and reloaded on the gel filtration 

column. Initial crystallization trials have been prepared for each protein fraction. 

The two separated fractions behaved the same in gel filtration: two similar elution 

peaks were produced in the elution profiles. Also they produced quasi crystals, like 

those seen before.  

 

7.2.7 Mutation in CT2 coiled-coil  

CT2 has four hydrophobic residues in the CT2 predicted coiled coil (VAL846, 

ILE853, ILE860 and LEU867) which can be replaced with alanine to disrupt the 

coiled coil and prevent oligomerization. The mutant CT2 (CT2,4M) (the four 

hydrophobic residues in the coiled coil domain were replaced with alanine)  was 

provided by the Sheffield University Medical School. The His-CT24M plasmid 

was transformed into competent cells (BL21-DE3-RIPL), and expressed using the 

same protocol as for the wild-type CT2 expression. The SDS gel shows that His-

CT24M expressed as well as the wild-type. The soluble fraction was purified by 

Nickel affinity chromatography and gel filtration and then the pure protein was 

used to set down the initial crystallization trials, but once again no crystals were 

found (Figure 7.10). The oligomeric state of His-CT24M was also examined by 

Electron Microscopy. The EM image shows particles of 25-35 Å diameters 

(possibly monomers), but dimers also have been seen. 
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Figure 7.9:  using gel filtration to achieve homogenous fractions of His-CT2. A: 

Elution profile divided into two peaks. B: Elution profiles of the reloaded separated peaks 

on gel filtration column. C: 12% SDS PAGE of fraction 1 and fraction 2 of 35 KDa each. 
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Figure 7.10: Mutation in CT2 coiled-coil. A: His-CT24M overexpression. B: His-CT24M 

Nickel column and gel filtration C: No crystals were found in crystallization trials 
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7.2.8 Removing the His-tag 

 The His-CT2 plasmid has a thrombin cleavage site between the His-tag and the 

CT2 protein (Figure 7.2). In attempts to improve the crystal formation, the 6 

histidine tag was removed in the following way: wild type His-CT2 was expressed 

and purified on a Nickel column. The pure protein was dialyzed in thrombin 

digestion buffer (50% Hepes pH 7.4, 2.5 mg/ml CaCl2, 250 mg NaCl) for 3 hours. 

The protein was then incubated with 50 units of thrombin overnight. The incubated 

mixture was loaded on a gel filtration column to elute the cleaved protein. The His-

CT2 construct has by chance, in addition to the thrombin-cutting site (RGS) at the 

N-terminus, another cutting site in the following residues (ARG827, GLY828, 

SER829). Therefore thrombin cut at both cleavage sites and consequently CT2 was 

divided into two portions in addition to the His-tag removal. The N-terminal part is 

146 residues (ILE680-ARG826) with a mass of 16.6 kDa and the C-terminal 

portion is 144 residues (ARG826-VAL970) with a molecular weight of 16.3 kDa. 

Although the two parts have approximately equal molecular weights, the gel 

filtration elution profile shows two different peaks (peak1 59.95 ml, peak2 44 ml) 

(Figure 7.11). The molecular weights of both portions were measured by using the 

gel filtration chart: the molecular weight of peak1 portion is ~ 35 kDa which 

suggests a dimer and the molecular weight of the peak2 portion is ~ 17 kDa 

suggesting a monomer. By applying both fragments to a SDS-PAGE gel, peak1 

appeared at size ~ 35 kDa and peak2 at ~ 17 kDa (Figure 7.11). According to what 

is known about the CT2 domains, the monomer portion might be the N-terminal 

domain, which includes the EF-hand domain and the portion that ran as an 

oligomer might be the C-terminus, which contains the coiled-coil oligomerization 

domain. Although it might be expected that the dimer would run as a monomer in 

the denaturing SDS/PAGE condition, it has been observed that coiled coil proteins 

can remain as dimer on SDS/PAGE.  However, these two separated proteins are 

not exciting targets as they have already been characterized structurally. 
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Figure 7.11: Removing the His-tag experiment. A: The N-terminal portion sequence 

represented as black letters and the C-terminal portion sequence as blue letters. The 

elution profile of the N-terminal portion (peak 44 ml) was indicated by a black arrow and 

the C-terminal portion (peak 59.95 ml) was indicated by a blue arrow. B: 12% SDS gel 

after gel filtration, where B1 represents the C-terminal portion (peak 59.95 ml) and B2 

represents the N-terminal portion (peak 44 ml).  
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7.3 Conclusion and future work 

During the course of this thesis we have successfully CT2 protein.. The C-terminal 

domain of Polycystin2 (CT2), which is predicted to consist of two domains, the 

EF-hand domain and the coil-coiled domain, is highly overexpressed in the E. coli 

and it can be purified successfully, producing a highly concentrated protein. 

Unfortunately this project has not reach the desired goal yet, although progress has 

been made, the protein was not able to generate crystals due to the heterogeneous 

status of the sample. The oligomeric state of CT2 was investigated using the gel 

filtration and electron microscopy. The chemical and physical characteristics of a 

protein are very important in its ability to crystallise. It might be useful to try the 

Fab mediated crystallization, which is a powerful technique to crystallise difficult 

proteins, particulary when one has access to a panel of monoclonal antibodies.  

The CT1 the C-terminal domain of Polycystin 1 is a small protein, which might be 

explain the production of this protein as inclusion bodies even it has a binding 

fusion to increase the solubility. Several efforts have been done to refold CT1 using 

the protein refolding procedure that mentioned in thesis. Unfortunately we did not 

produce a significant amount of soluble protein. Future progress with this project 

may be achieved through the use of alterative vectors or another expression system, 

such as baculovirus, that may yield soluble CT1 protein.          
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