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Abstract

This thesis concerns how attempting to measure certain fundamental properties

of a physical theory can lead us to new insights. The idea of general probabilistic

models is introduced and developed, in order to provide a way to be able to

consider and compare di�erent theories. A measure of incompatibility of two

observables is de�ned, through the amount of smearing needed to make them

jointly measureable. This measure is then used to characterise the degree of

incompatibility that exists in a given theory. Quantum theory is then shown

to be as incompatible as any other theory, but only in a very course grained

sense. A related way of measuring the strength of incompatibility of a pair

of observables is then shown to put a bound on a measure of the strength of

non-local correlations. The notion of steering, or remote ensemble preparation,

is then shown to be a su�cient condition for the saturation of that bound.

Examples are considered that demonstrate that the given su�cient ntion of

steering is not necessary, and it is proposed how the measures can be modi�ed

in cases where the link does not hold. The idea of formulating measures of

error and disturbance asscociated with a measurement device is discussed. The

notion of a direct test of error or disturbance is used to analyse current proposed

measures, and show their shortcomings.
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Chapter 1

Introduction

The purpose of the sciences has always been to advance the knowlege of mankind,

by seeking to o�er a description of the processes that are obwerved to happen

in the natural world. Such descriptions are usually arrived at by the process

of experimentation and data collection, follwed by analysis in order to form

or update hypotheses, which are then subjected to further experimentation.

This process leads to re�ned hypotheses that �t data to a high degree of accu-

racy. This allows future behaviours of systems to be predicted in a precise way,

and is the main reason the scienti�c method has been so successful throughout

history. However such descriptions do not answer one of the most basic and

fundamental questions: why?

Many ponderings on the question of why the world behaves the way it does,

can end up leading down the road of philosophy, and on to questions about the

nature of existance. Such questions tend to stray a long way from the empirical,

and so science can rarely o�er any guidance into such matters. However many

scientists have pondered the question of why, in a more tangible and concrete

way. One popular way to do so has been to consider whether the full set of

rules usually used to describe systems, can be reduced to a smaller set of more

reasonable ones. This usually takes the form of starting with a small set of

postulates which it seems reasonable that reality should conform to, and then

showing that the theory used is the only, or one of very few theories that conform

to such postulates. Another related approach is not to consider a theory as a

whole, but rather just certain properties of that theory; often ones that are
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Chapter 1 Introduction

considered useful in some way. Then it is possible to ask which, if any, intuitive

postulates lead to which properties. Such considerations naturally lead to the

need to develop ways of talking about other alternative, potential theories, that

do not necessarily describe reality but potentiall could. Otherwise, statements

of the form `these postualtes entail our current model of reality' are merely

tautologies when the only model of reality that exists is the current one.

Once the possibility of considering other, alternative models of reality is opened

up, a whole new area of consideration is opened up with it. If there are many

models of how things could work, it is possible, if not natural, to start to

compare and contrast such models. The purpose of this thesis is to explore some

of these comparisons that can be drawn. We will look at direct comparisons

of quantities that de�ne properties of a theory, which properties a theory must

have in order to exhibit certain behaviours, and the exact form of relationships

between speci�c quantities within a theory.

The thesis is concerned with three main topics to do with certain properties

of theories, all of which are related, to a greater or lesser extent, to the notion

of incompatibility. Incompatibility, or the converse notion joint measurability,

pertains to a property of observables being able to be realised at the same time.

The �rst of these topics is to provide a method for determining how far from

being jointly measurable a pair of observables is, and in a certain sense assigning

a measure of incompatibility to that pair. This measure is then extended to

a way to characterise and comapre theories themselves, by considering how

`badly' incompatible pairs of observables can get in that theory.

The second topic seeks to tie together two fundamental, stereotypically non-

classical, properties of quantum mechanics, namely incompatibility and non-

local correlations. The result that a certain measure of incompatibility gives a

limit on the strength of any bipartite correlations, regardless of the theory they

are in, is reviewed. It is then shown that under an additional assumption, this

limit can always be saturated. This idea is explored by giving examples of where

the results do, and do not, hold, as well as possibilities for generalisiations.

The �nal topic moves away from the perspective of comparing di�erent theories,

and looks at the long standing problem of uncertainty relations. Speci�cally

the problem of formulating error-disturbance uncertainty relations pertaining to
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Chapter 1 Introduction

measurements is discussed. The idea of a direct test of a relation is formalised,

and the suitability and universality of currently proposed measures of error and

disturbance is analysed.

Chapter 2 seeks to lay the foundations and provide an introduction to the

laguage for the rest of the thesis. Chapters 3, 4 and 5 comprise the contents of

three research papers submitted for publication, and are largely self contained.

However the material contained in chapter 2 should serve as an introduction ot

the topic for a non-expert. First to be addressed is the question of what should,

and should not, be considered as a candidate of a physical model worthy of

analysis. There is an introduction to the framework that will be used to propose

candidate theories, namely the framework of general probabilistic models. The

notions of what constitutes physical systems that we wish to model, and the

idea of the state of those systems is discussed, along with the restrictions we

may place in order to build up an at least potentially viable physical model.

This reasoning is then extended to considerations about what knowlege we can

gain about a system, leading to the ideas of e�ects and then observables. This

leads the being able to formalise the de�nition of joint measurability. The

concepts of how to model composition of systems and of correlations between

the parties are introduced.

The paper that comprises Chapter 3 sets out to provide a way to compare the

levels of incompatibility in di�erent theories. First the concept of taking convex

combinations of observables to form a further observable that can be considered

a mixture of the originals is introduced, as is the notion of a trivial observable

as one which does not depend on the state on which the observable measured.

Then a smeared, or fuzzy, version of an observable is de�ned by taking a cer-

tain convex combination with a trivial observable, where the convex weightings

are determined by the smearing parameter. The concept of a measure of in-

compatibility is then introduced by considering smeared versions of a pair of

observables: if the smearings are taken to be large enough, then the resulting

observables will be jointly measurable, even if they were incompatible to start

with. The joint measurability region, which represents the smearing values

which result in two observables becoming jointly measureable, is intorduced as

a way of characterising the incompatibility in a theory. It is then shown that if

all observables are considered that quantum theory is, in this sense, as incom-
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Chapter 1 Introduction

patible as it can be. However if the more �ne grained approach of looking at

joint measurability regions for observables with a given number of outcomes is

taken, this no longer holds. An example is given, for the case of a pair of two

outcome observables, of a probabilistic theory that is more incompatible than

quantum theory.

In Chapter 4 the paper analyses the relationship between a certain measure of

incompatibility, and the idea of Bell non-locality. The measure of incompat-

ibility of an observable used here is again based o� of the idea of how much

smearing is needed to make a pair of observables incomaptible. This time only

two-outcome observables are considered, and the smearing parameters are taken

to be the same on both observables, along with the trivial observables being

�xed as being unbiased. This measure is then rewritten as the solution to a

conic optimisation problem, where the cone is dependent on the theory being

considered. The dual of this problem is then shown to be directly linked to

the Bell-CHSH quantity, often taken to be a measure of the strength of non-

local correlations. This provides a limit on the strength of such correlations,

formulated here as a generalised Tsirelson bound, and also provides a possible

constructive method for saturating the limit. The concept of steering is then

introduced as the ability to prepare any ensemble that forms a convex decom-

position of one half of a bipartite state, by measuring an observable on the other

half. A theory possessing this concept of steering is shown to be a su�cient

condition for the saturation of the generalised Tsirelson bound. The case of a

theory whose state spaces are polygons is then considered. It is shown that the

general results hold in the cose of the polygon having an even number of sides,

whereas they generally do not for an odd number. The pentagon is examined

in more detail, and although the main results of the paper do not hold there, a

slightly di�erent measure is proposed that may be useful in such a scenario.

The paper making up chapter 6 lives purely in the domain of quantum me-

chanics, and delves into the world of uncertainty relations. The notion of

uncertainty relations is somethinig that most physicists have a basic under-

standing of. However when the concept is usually discussed it is with relation

to preparation uncertainties. Recently there has been a fair amount of activity

attempting to formalise the thoughts of Heisenberg regarding measurement, or

error-disturbance relations. There have beeen two approaches to this problem,
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Chapter 1 Introduction

one looking at state dependent measures, and one looking at state independant.

The paper focuses mainly on the state dependent case, and speci�cally on the

proposal to have garnered the most attention so far. It is suggested that in

order to be considered a valid error-disturbance relation, that the quantities

involved should admit a direct test, a concept that is formalised here. An ex-

perimental suggestion is given to carry out such a direct test of the measures

in question, in a given setup. However it is also pointed out that such a test is

not always possible to do, which is in line with previous work which has shown

the interpretations of the measures as being of error and disturbance as being

only con�ned to a limited scenario.
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Chapter 2

General Probabilistic Models

The idea of looking to theories more general than quantum theory is not new,

having reared it's head with names such as convex operational theories, convex

state approach, and general probabilistic models amongst others. The literature

is reasonably extensive, if not so well known in the wider physics community,

see for example [1, 2, 3, 4, 5, 6]. The recent rise in popularity of quantum

information has brought about something of a change in perspective about

the non-classical features of quantum mechanics. Rather than being viewed

as something that needs to be explained away, quantum e�ects are seen as

something that can be exploited. This has lead somewhat of a renewed interest

in the topic of more generalised models. For a sampling of more recent work in

the area see [7, 8, 9, 10], and for an up to date review see [11]. This introductory

chapter gives an original take on the topic of general probabilistic models for

the purposes of the thesis, but is based on the work in the references given, as

well as others.

2.1 Where to start

It is important to consider �rst what we have in mind, and why we would ever

choose to look at general probabilistic models (GPMs). What is the motivation

for such considerations? What new insights could they give? How general is

general? Why probabilistic? What are we modelling?
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Chapter 2 General Probabilistic Models

2.1.1 What are we trying to model?

The fundamentals of what a GPM aims to achieve is to describe the state

of some (possibly hypothetical) physical system, and what information it is

possible to extract about the system through a process of experimentation. Of

course this immediately begs the question of what counts as a physical system.

In brief, the idea behind the notion of a system is simply anything which can

be subjected to a set of one or more experiments. There are many examples of

occasions where systems occur, such as balls on a billiard table, a tossed coin

or rolled die, an electron shot towards a Stern-Gerlach magnet, or a photon

passing through a polarising beam splitter. Here however it is important to

note that it is not the objects themselves that comprise the system. Rather the

context in which we �nd the objects is important, since the system depends on

which experiments are considered, and it is those which determine the actual

system in question.

Instead of imagining individual particles or objects when thinking of a system

that we are trying to model, it is more accurate to consider what degrees of

freedom that object has. In the example of the tossed coin, one could consider

attempting to write down a model that completely described every aspect of

the coin. This would include, the exact shape and size, the precise distribution

of mass, and of temperature of the material, and potentially many more vari-

ables. However, in a situation where a coin has indeed been tossed, it is highly

impractical (if not impossible) to give such a precise description, and one is

in fact very often not interested in such �nery; rather one is merely interested

only in the degree of freedom that determines the propensity of the coin to land

on one side or another, since that is the only measurement that is likely to be

available to any potential observers. Likewise, since we will only seek to observe

the de�ection of the electron throught the Stern-Gerlach apparatus, the system

we would seek to model would only involve its spin degree of freedom.

Any type of model that is to be considered from now on must not be thought of

as attempting to describe any given object in the abstract: the context in which

the particle resides is also important since it determines which properties of the

object we may be able to gain knowlege of, and thus it is only those properties

that should be considered to be modelled.
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Chapter 2 General Probabilistic Models

2.1.2 Why a probabilistic model?

The next question that must be adressed is why consider probabilistic models?

And what exactly does that mean?

Intuitively one might wonder where probability would ever come into an at-

tempt to model a physical system. Indeed, if there is some set of experiments

that may be performed, that de�ne the system in question, then it would be de-

sirable for the model to simply tell us what the outcome of performing any such

measurements would be. However this idealised scenario is in practice rather

idyllic. As was alluded to in the considerations above, even in a simple scenario

of tossing a coin, it may be impossible, even in theory, to be able to ascertain

all the information necessary to determine which side the coin will land on for

certain. Indeed, whether due to a lack of knowlege, or some more fundamental

limitation, any model which is at all realistic could not claim to universally

describe with certainty the results of any observations made. Instead the best

possible description of the system is one that only gives propensities, for exam-

ple that an electron is equally likely to be de�ected up or down, or that a coin

has a small bias and thus will land heads up 55% of the time.

2.1.3 Exactly how general?

Within any given model, there are often scenarios where certain `features' of

that model appear to play a signi�cant role in allowing special tasks to be per-

formed, or behaviour demonstrated, that would di�erentiate it from another

model. However when a model has been established, it can become di�cult

to determine whether the suspect features that the model possesses are truly

responsible for any given behaviour, whether it is some other less obvious fea-

ture, or whether it is purely down to the the speci�cs of the model. In order

to make sense of this scenario, it is therefore useful to consider the behavioiur

of other models that share certain features, but not necessarily others. This is

where the idea of generalised models comes into play.
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Chapter 2 General Probabilistic Models

2.2 States

As described above, the idea of a GPM is to provide a framework for theoretical

considerations involving candidate models for (possibly hypothetical) systems.

In order to discern what may be considered as a suitable candidate, we must

enforce some stipulations; however in the interests of generality it shall be

attempted to keep these as unrestrictive as possible.

In order to begin to see the e�ects of any stipulations, we �rst must begin to

build up a model, and for that we need to start somewhere. Here we choose to

take as our starting point the state of a system, which we de�ne as follows:

De�nition 1. The state of a system is any mathematical object that determines

the propensities of outcomes of all measurements de�ning the system.

The idea here is that the state contains all the information about the system

it is possible to know. It may not be possible to access all of that information

through any amount of observation, but the state determines any information

you can gather.

For any given system, be it a coin's faces, a billiard ball, the spin of an electron

etc., we shall denote the class of all possible states 
, which we shall take to be

a set.

2.2.1 Preparation and mixing

To put our �rst restriction on what will be considered a valid candidate for a

physical model of a system, we need to introduce the concept of a preparation

procedure. Simply put, for a given system (with states in 
), a preparation

procedure for ! 2 
 is any process or in�uence that acts upon the constituent

parts of the system, that leave the system in the state !.

Di�erent processes can be preparation procedures for the same state, indeed

there are many, many ways to �ip a coin and only two states that the coin

will end up in. Therefore the multitude of �ips that result in heads are all

di�erent preparations procedures for the same state. This insight leads us to

an alternative characterisation of states. Since two processes are considered

preparation procedures for the same state if and only if the propensities of any

16



Chapter 2 General Probabilistic Models

observations on the system are equivalent, the relation of being preparation

procedures for the same state is an equivalence relation. Since if it is possible

for a system to be found in a state, it must be have been possible to prepare it

in that state, there is also clearly a one-to-one mapping between states and the

equivalence classes, so we can without loss of generality identify the state with

its ascociated equivalence class.

Since we adopted such a broad de�nition of preparation procedure, we see that a

probabilistic mixture of preparation procedures is also a preparation procedure.

Suppose we have two preparation procedures for the same system P and Q,

then we can de�ne a process of preparing the system by randomly choosing

between the two, with a given weight. Indeed it is true that for any � 2 [0; 1],

a procedure whereby with probability � we carry out P, and with probability

1� � we carry out Q, will be another preparation procedure.

The randomisation procedure used in de�ning a mixture of preparations could

in principle later be read o�, and thus the `actual' procedure used could be

determined. We would also expect the system to behave the same whether, in

a given mixing of preparations, the readout is taken or not, and that when we

do know the result of the randomisation, the propensities of outcomes of ob-

servations will be given by the statistical mixing of the propensities of the two

original procedures. Thus under these circumstances the details of the prepa-

ration procedures and mixing would determine the propensities of outcomes of

all measurements, and thus de�ne a state.

Thus we have that for each pair of states !1; !2 2 
 and weight � 2 [0; 1] we

get another state, and due to the way the states were de�ned via probabilistic

mixing of propensities, we have that the set of states 
 takes on a convex

structure.

2.3 E�ects and observations

The �rst part in our de�nition of GPM gives us information about the structure

of a set of states in the model, namely that of convexity. Whilst the state of

a system, by de�nition, in principle contains all the information that can be

accessible, there is no reason to expect in general that it is possible to gain a

17



Chapter 2 General Probabilistic Models

full description of the state of any given system through observation. Thus we

need to consider exactly what observations it is possible to make on the system

in question. For this we will need the concept of e�ects.

De�nition 2. An e�ect on a system with state space 
 is a function that

assigns to each state ! 2 
 a real number between 0 and 1.

Each observation on the system must have some set of de�ned outcomes that

could be `observed'. Each e�ect then corresponds to some outcome in a possible

observation, and tells us for any given state the probability of achieving that

outcome. For a system with state space 
, we shall deonte the set of all e�ects

on that system as E (
).

Each e�ect e 2 E (
) is then clearly represented by a function e : 
 ! [0; 1],

but we must ask if indeed every such function should be classed as an e�ect, or

if there is some restriction that should be required in order for the probability

assignments of the e�ect to make physical sense. The answer to this comes from

the sole restriction that we have so far established on the structure of the state

space, that of convexity. We have noted that some states can be viewed as a

convex mixture of other states, in the sense that the propensities of outcomes of

observations on the mixed state are given as a �xed convex combination of the

propensitites of the same outcomes on the states that constitute the mixture.

Since each e�ect gives the probabilities of a given outcome on all states, this

condition is exactly that each e�ect, considered as a map, should preserve the

convex structure of the state space. Therefore we have that each e�ect e 2 E (
)

in fact lives in the set of a�ne maps from 
 to [0; 1], i.e. E (
) � A(
; [0; 1]).

In an analogous way to that considered above of de�ning a new preparation

procedure by randomly choosing between old ones, we can consider making an

observation on a system by randomly choosing between two observations that

share the same outcomes. As we want this random choise to preserve all prob-

abilities, similarly to the situation with states, we would expect the probability

of any given outcome to be a well-de�ned mixture of the probabilities of the

two original observations. This means that since e�ects give the probabilities

of the outcomes, that we also wish the set of e�ects E (
) to have a convex

structure.
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Chapter 2 General Probabilistic Models

2.4 Double dual embedding

We have now established that e�ects are a�ne maps taking values in the interval

[0; 1] � R, and therefore the set of e�ects indeed lives in the linear space of real

valued a�ne functionals on 
, A(
;R). This useful fact not only allows us to

talk about e�ects as elements of a vector space, but also gives us a way to do

likewise about the set of states.

For each state ! 2 
 we can de�ne a related function on e�ects !̂, that acts by

evaluating the e�ect on !:

!̂(e) = e(!); 8e 2 E (
):

Since e�ects act in an a�ne way, it can easily be seen that the functions !̂ are

also a�ne:

!̂(�e1 + (1� �)e2) = (�e1 + (1� �)e2)(!)
= �e1(!) + (1� �)e2(!)
= �!̂(e1) + (1� �)!̂(e2):

Here we observe a useful duality: whilst e�ects are a�ne functions on states

taking values in [0; 1], states can be viewed as a�ne functions on e�ects with

values in [0; 1]. Again, since we can consider having 
 � A(E (
); [0; 1]), we can

also view the set of states as living in the linear space of real valued functionals

A(E (
);R).

Now consider an arbitrary element s 2 A(E (
); [0; 1]). By de�nition s will

ascribe to each e�ect e 2 E (
) a number between 0 and 1, s(e). Since each

outcome of any observation that can be made on the system corresponds to an

e�ect, which determines the probability of the outcome, and s gives a proba-

bility to each e�ect, it seems that s has much in common with a state. Indeed

here we make the simplifying assumption that indeed s is ascociated with a

state. When we attempt to theoretically model a possibly hypothetical sys-

tem, we may well want to consider all theoretically possible `states', and any

s 2 A(E (
); [0; 1]) �ts the criterion of being theoretically possible. Even though

the exact characteristics of s may not represent anything physically realisable,
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in the sense of there existing a known preparation procedure that prepares a

state that matches all the statistics of s, is it not wholly unreasonable to con-

sider such a state as, at least theoretically, possible since we have no way of

knowing beforehand which states can be prepared by known means, nor if there

could be an unknown procedure that would prepare such a state.

Now we have a one-to-one correspondence between 
 and A(E (
); [0; 1]). View-

ing the latter as a subset of A(E (
);R), it will form the base of the positive cone

A(E (
);R+) � R+
. The cone in turn de�nes a partial ordering on A(E (
);R),

namely that inherited from the pointwise partial order of functions on E (
).

In order to simplify notation at this point, from here on the vector space

A(E (
);R) will be referred to as V , and 
 will be used to refer to both the state

space itself and its identi�cation as a convex subset of V . At this point two

more small assumptions will be made. Firstly, since it applies to all cases that

will be considered in the following, it will be assumed that the vector space V

is �nite dimensional. The second assumption is that the convex set 
 � V is

closed. This assumption can be justi�ed by considering that, similarly to the

assumption that 
 � A(E (
); [0; 1]), any boundary point of 
 can be approxi-

mated arbitrarily well by actual states, and so it is reasonable to consider such

a `state' to theoretically be possible.

To complete the structure of the dual nature of states and e�ects we note that

e�ects are a�ne functionals on the set 
, which is now considered as a convex

subset of V . This means that we can now extend each e 2 E (
) to a linear

functional ~e on V that agrees with e on 
. Through such a correspondence we

can consider E (
) as a subset of the dual vector space V �. Similarly to the case

with states, it is not unreasonable to consider any a�ne funcional on 
 that

takes values in [0; 1] to be a theoretically possible e�ect, since it assigns what

could be considered a probability value to each state. Because of this from now

on we will consider the whole of A(
; [0; 1]) to constitute the set of e�ects, and

use E (
) to deonte both the actual set of e�ects and it's identi�cation with the

set of linear functionals agreeing on 
 which live in V �. Here we can also note

that if we have two elements e; f 2 V � which both take values in [0; 1] on 
,

the the functional �a+ (1� �)f will also take values in [0; 1].

This leaves us with e�ects in a dual position to states, with E (
) a convex
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subset of V �. Indeed the set R+E (
) will form a positive cone in V �, which

de�nes a partial ordering that comes from the pointwise partial ordering of

functions on 
. In fact the two cones V+ = R+
 and V �+ = R+E (
) are dual to

each other.

2.5 Examples

We have now established what mathematical structures we mean when we talk

about a basic GPM for a system, namely

� An ordered linear space V , with positive cone V+

� A convex subset 
 � V - the state space - such that V+ = R+


� The dual space V �, with positive cone V �+

� The convex subset E (
) - the e�ect space - of functionals taking values

in [0; 1] on 
, with V �+ = R+E (
)

In order to understand how this abstract framework �ts into the way we cur-

rently model physical systems, and to see how it contains even more possibili-

ties, it is useful to look at some examples. Some of the examples, namely those

from quantum theory and classical probability theory, are well established as

ways of modelling systems, whereas some other models have no known realisa-

tion in nature.

2.5.1 Classical

Probably the simplest examples of GPMs come from classical probability theory,

which can be used to model events involving macroscopic objects with a degree

of randomness. Such situations may not involve `true' randomness, indeed

classical physics is usually considered to be completely deterministic. However

the system we are seeking to model may only involve a certain few of the

degrees of freedom of the macroscopic objects, and thus behave in a random

way, notably like a �ipped coin or tossed die.
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In a classical probability model there are a �xed number of points, or outcomes,

that are used to de�ne a system (e.g. the sides of a die), and the state of the

system is then determined simply by the weighting of how relatively likely each

outcome is. So if a given system is determined by n outcomes then the state of

that system is determined by a list of numbers p1; : : : ; pn taking values in [0; 1],

each representing the propensity of the related outcome.

Now �tting this in to the framework of GPMs we have

� V = R
n

� 
 = fv 2 R
n j 0 � vi;

P
i vi = 1g

where vi is the ith component of the vector v = (v1; : : : ; vn).

There is also another characterisation of the set 
, that is often useful, coming

from the fact that it is, by de�nition, a closed and bounded convex subset of

a real vector space. Indeed such a set is always equal to the convex hull of its

extreme points, i.e. in this case we can also write


 = conv f(1; : : : ; 0; : : : ; 0); : : : ; (0; : : : ; 1; : : : ; 0); : : : ; (0; : : : ; 0; : : : ; 1)g

The positive cone on V (here Rn) that is generated by 
 is then also determined

to be the cone generated by the extreme points of 
. For the case of classical

probability theory then we have that an element v 2 R
n is positive i� each of

it's entries is positive, i.e. V+ = R
n
+.

Characterising the state space 
 by extreme points gives us a useful way of

determining the structure of the space of e�ects. First assume that a linear

functional e 2 V � satis�es 0 � e(!i) � 1, where the !i are the extreme points

of 
. Now consider an abitrary point ! 2 
. Since we know that 
 is the

convex hull of the !i, there exist �i � 0, with
P
i �i = 1 and ! =

P
i �i!i.

However now we have

e(!) = e

0
@X

i

�i!i

1
A =

X
i

�ie(!i) �
X
i

�i inf
i
[e(!i)] = inf

i
[e(!i)] � 0;

and

e(!) = e

0
@X

i

�i!i

1
A =

X
i

�ie(!i) �
X
i

�i sup
i
[e(!i)] = sup

i
[e(!i)] � 1:
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Here we clearly see that a functional is an e�ect (i.e. taking values in [0; 1] on


) i� it takes values in [0; 1] on the extreme points of 
.

In this case then the e�ects are precisely those vectors whose canonical inner

product with all vectors of the form (0; : : : ; 0; 1; 0; : : : ; 0) lies between 0 and 1,

and we have

� V � = R
n

� E (
) = fe 2 R
n j 0 � ei � 1; 8 1 � i � ng

Here we see that the positive cone generated by the set of e�ects is the same as

that generated by the set of states, namely V �+ = R
n
+.

2.5.2 Quantum

The next example to look at comes from quantum theory. When dealing with

many microscopic objects the laws of classical physics that apply to much larger

objects may no longer apply. Instead, the main method of modelling systems

such as electrons passing through Stern-Gerlach magnets or photons in optical

circuits, is to use quantum mechanics.

The state of a quantum mechanical system is given by a density operator, that

is, a positive operator on some complex Hilbert space H , whose trace is equal

to 1. Which Hilbert space exactly is used to model any given system will

depend upon the system itself and the number of it's degrees of freedom. As

mentioned above, we shall only be considering systems which we are modelling

with �nite dimensional state spaces. This means that, for example we shall not

be attempting to model the position of an electron, but we shall be attempting

to model its spin, since the former has `in�nite' degrees of freedom, whereas

the latter does not.

The set of density operators naturally sits inside the real vector space of self-

adjoint trace class operators T (H )s, which in the case of H being �nite di-

mensional is just equal to the space of all self-adjoint nxn matrices, where n is

the dimension of H . So we have quantum mechanically

� V =Mn(C)s
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� 
 = fM 2Mn(C) jTr[M ] = 1; M � 0g = T 1
+(C

n)

For the case of qubits, where the Hilbert space has dimension 2, there is an

especially nice parameterisation of the state space. To see this we need to

introduce a basis for the space of 2x2 self-adjoint matrices, often referred to as

the Pauli matrices:

�x =

0
B@0 1

1 0

1
CA ; �y =

0
B@0 �i
i 0

1
CA ; �z =

0
B@1 0

0 �1

1
CA :

These three matrices, along with the Identity matrix, form a linearly indepen-

dent set, and thus a basis for the space of self-adjoint matrices, meaning that

each state can be written as a linear combination of them. Note here that the

Pauli matrices are all traceless, and since states have trace equal to 1, it means

that all states must have the same coe�cient for the identity, namely 1
2 . So any

state � 2 T (C2)1+ can be written as

� =
1

2
(I+ r:�);

with � = (�x; �y; �z), parameterising the state space by a single 3-dimensional

vector r. The trace condition of being a state here is guaranteed, however a

further restriction is needed in order to ensure positivity. Since the eigenvalues

of � are 1
2(1 � jrj), we see that we must have jrj � 1 for these to be positive.

This gives us the the Block sphere representation of the state space.

The vector space dual to the space of trace class operators, where the state

space lives, consists of the bounded operators, with the action given by taking

the trace of the product of the operators. In the case of �nite dimensional

Hilbert spaces all operators are bounded, as they are trace class, and so the real

linear space containing the set of e�ects is again just Mn(C)s. The convex set

of e�ects itself is then given by all operators lying between 0 and I, which in

the case of qubits, using the Pauli basis any E 2 E can be written as

E =
1

2
(e0I+ e:�);

where the inequality 0 � E � I is satis�ed when jej � e0; 2� e0 � 1.

Fitting this back into the framework of GPMs we get
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� V � =Mn(C)s

� E (
) = fM 2Mn(C) j 0 �M � Ig.

2.5.3 Polygons

Not all examples of GPMs come from what has actually been observed in nature,

and it would not be a great tool if that were the case. Here we look at an

example of a simple and yet interesting class of state spaces for which there is

not necessarily any way to physically realise them.

As mentioned above, a state space can be de�ned as the convex hull of its

extreme points, and here we give a class of state spaces with n extreme points

for all n � 3. To do this we de�ne the points, in R
3

!
(n)
i =

0
BBBB@
rn cos(

2�i
n )

rn sin(
2�i
n )

1

1
CCCCA ; i = 1; :::; n

with rn =
q
sec(�n). The n points all lie in the same plane and form a regular

polygon with n sides. As a GPM this then looks like

� V = R
3

� 
n = conv
�
!
(n)
1 ; : : : ; !

(n)
n

�

One example that will turn out to be useful later on is the case when n = 4

and the state space has the shape of a square, also known as a squit.

For the polygon state spaces it is also useful to give the e�ect spaces as a convex

hull living in R
3 as well. Although for all n the e�ect space will always contain

the 0 and 1 e�ects, (0; 0; 0) and (0; 0; 1), it turns out, rather interestingly, that

the structures di�er depending on whether n is odd or even.

For the case where n is even we de�ne

e
(n)
i =

1

2

0
BBBB@
rn cos(

(2i�1)�
n )

rn sin(
(2i�1)�

n )

1

1
CCCCA ; i = 1; :::; n
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And then the e�ect space E (
n) is then given by the convex hull of these points

along with the 0 and 1 e�ects. In the case where n is odd however we make the

de�nitions

e
(n)
i =

1

1 + r2n

0
BBBB@
rn cos(

2�i
n )

rn sin(
2�i
n )

1

1
CCCCA ; i = 1; :::; n

which, although seemingly similar to the even case, are not enough to de�ne

the whole e�ect space. For odd n the e�ect space is the convex hull of the 0

and 1 e�ects, the e
(n)
i , and their complement e�ects

e
`(n)
i = 1� e(n)i =

1

1 + r2n

0
BBBB@
�rn cos( (2i�1)�

n )

�rn sin( (2i�1)�
n )

r2n

1
CCCCA ; i = 1; :::; n

This fact seems less surprising when noting that for even n we have the identity

ej = e0i = 1�ei, when j = i+ n
2 modn, and we have a more consistent de�nition

for both even and odd n:

� V � = R
3

� E (
n) = conv
�
0; 1; e

(n)
1 ; : : : ; e

(n)
n ; e

0(n)
1 ; : : : ; e

0(n)
n

�

2.6 Observables

So far we have covered the set of states of a GPM and how e�ects can tell us

the probability of a given outcome. In this sense e�ects can be considered as

representing the result of a two outcome measurement; they signify the answer

to a yes-no question about whether the system in question is seen to have the

property asscociated with that e�ect. In practice however, if we wish to consider

any possible observation on a system, then we should be able to have a model

for situations that cannot be expressed by one, or a series of, yes-no questions.

The most simple example of this would be when throwing a die. In general we

are not just interested in whether it came up 6, or if the number was odd, both

of which are describable just with e�ects. More commonly we wish to consider

it as an observation with 6 possible outcomes, corresponding to the sides of the

die.
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The most natural way of being able to consistently describe the set of outcomes,

is for them to form a measure space. Since we will not be considering continuous

outcome measurements, for simplicity we shall assume all our measure spaces

to be discrete.

Given a state space of a GPM, 
 and some set O, the outcome space, the idea

of an observable is to provide a description of the propensities of experimental

outcomes. In order to achieve this an obervable M should be able to assign to

each state ! a probability distribution p
(M)
! on O. Then for each o 2 O, we

have M(!)[o] = p
(M)
! [o] as being the probability of achieving outcome o when

observable M is measured in the state !.

Another perspective on observables is to �x an outcome o, and consider the

expression M(!)[o] as a function of !. As discussed in the previous section, in

order to preserve the probabilities upon blindly and randomly choosing between

two observations to perform, we can assume that the observable must act in

an a�ne way. This leaves us with M [o] : 
! [0; 1], with (M [o])(!) = p
(M)
! [o],

as an a�ne functional on 
 taking values in [0; 1], hence it exactly �ts the

de�nition of an e�ect from earlier.

Then we can make the following de�nition

De�nition 3. An observable M on a system with state space 
, taking values

in O, is an (
-)e�ect valued measure on O. That is, M is a �-additive function

O ! E (
).

2.6.1 Joint Measurability

One of the main initial reasons people were motivated to look at GPMs in

the �rst place, was to understand certain experimentally observed phenomena.

Speci�cally there were many seemingly strange and novel ideas and e�ects that

were coming out of quantum mechanics. The framework of GPMs gives a way

to talk about these non-classical phenomena from a more objective, external

perspeective. One new feature that this opened up was the idea of joint mea-

surability.

The idea of observables being jointly measurable, as is strongly suggested by the

terminology, is that they can both be measured, and give de�nite values at the
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same time. When viewing the world with a purely classical mindset, the notion

of joint measurability does not arise, since it is taken as implicit. Indeed in

everyday language we talk about objects having values for di�erent observables

at the same time, a prime example being the position and momentum of a body.

As we will see however this is a very classical notion.

De�nition 4. Two observables M (1) and M (2) on 
, taking values in O(1)

and O(2) respectively, are jointly measurable if there exists an observable M

on 
, taking values in O(1) � O(2), such that M (1)[o(1)] = M [o(1); O(2)] and

M (2)[o(2)] =M [O(1); o(2)] for all o(1) 2 O(1); o(2) 2 O(2).

Such an M is often referred to as a joint obervable for M (1) and M (2).

This concept can be illustrated by looking �rst at the situation of a pair of

observables in classical probability theory. Suppose we have a classical system

with state space 
 = convf!1; : : : ; !ng � R
n, where each !i is the ith standard

unit vector in R
n. Also suppose that we have two observables on 
 given by

sets of e�ects fe1; : : : ; ekg and ff1; : : : ; flg. In order to satisfy the de�nition

of observables we must have
P
i ei =

P
j fj = 1, the identity e�ect on 
, and

also ei; fj � 0 where we remember that the positivity is determined by being

positive on all the extremal points !i.

Now we can de�ne another observable on 
 with e�ects gij , where 1 � i � k,

1 � j � l, whose mth component (equivalently the value on !m) is given as

g
(m)
ij = e

(m)
i f

(m)
j . Clearly then we have g

(m)
ij � 0;8m, and hence gij � 0, but

also
P
i;j g

(m)
ij = 1, so

P
i;j gij = 1, and we �nd that we have a joint observable.

It is worth noting here the relationship between the notion of incompatibil-

ity as introduced here when applied to quantum observables, and the non-

commutativity of operators which would commonly be referred to as incompat-

ible. Any self adjoin operator on a Hilbert space, has an ascociated projection

vaued measure (PVM), namely it's spectral measure. This PVM �ts the con-

ditions of de�nition 3, and so to each self adjoint operator we can assign an

observable. If two self adjoint operators are commutative, then so will be the

PVMs de�ning the observables. Such observables will always be jointly measur-

able, with the elements of the joint observable simply being the products of the

corresponding projections in the PVMs. From this it follows that for any two

28



Chapter 2 General Probabilistic Models

PVMs that are not jointly measurable, the corresponding self adjoint operators

will be non-comutative. However, because there are more quantum e�ects than

just projections that can be used to form observables, commutativity is not a

necessary condition for joint measurability.

2.7 Composition of Systems

Very often, considering systems as individual entities, completely isolated, it is

necessary to consider multiple systems that are described by your theory, at the

same time. It may be that there are two systems which can undergo mutual

interaction, there could be many separated systems that may have interacted

(or not) in the past, or possibly there are just two systems which exist side

by side at the same time. Whatever the setup, it would be expected that a

physical theory should be able to account for such scenarios.

Since any multipartite system can be built up by adding one system at a time,

we shall only need to consider how to describe the composition of two systems.

So we are in a situation where we have two state spaces 
1 and 
2, in vector

spaces V1 and V2, and wish to �nd a third vector space V with convex subset


, which will represent the state space of the composition of the systems.

In order to determine exactly what form the description of the composite sys-

tem should take, it is useful to consider the problem of what the dimension

of the linear space V should be. For this we will need two fairly reasonable

assumptions. The �rst assumption is that of tomographic locality ([7]). This

postulates that the state of a compound system is completely determined by

the probabilities of outcomes of obervations made on the constituent systems

individually. Such observations may be carried out simultaneously, to account

for possible correlations between the two systems, but observations that require

the systems to be observed together are not necessary. Such an assumption is

not unreasonable since it is hard to justify talking about such an object as be-

ing a compound system with constituents, if it must be treated as if they were

just one single entity. The second assumption is one of the most fundamental

principles in modern physics, namely that of no-signalling. In this context the

no-signalling principle implies that the statistics of outcomes of measurements
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on one of the constituent parts should not di�er depending on any measure-

ments carried out on the other constituent, or indeed if no measurement is

performed at all. It can be shown ([7]) that under these assumptions, if V1 and

V2 have dimensions n1 and n2 respectively, the dimension of V must be n1n2.

The previous result tells us that, in e�ect, the state space of a composite system

must lie in the tensor product of the underlying vector spaces of the constituent

systems, V ' V1 
 V2. This fact does not determine the exact convex set that

should represent the state space, however there are considerations that we can

use to narrow down the choice. For this it is useful to consider the positive

cones that are generated by 
1 and 
2, (V
+)1 and (V +)2, and their relation

to the corresponding cone V +. Given that the notion of compound systems

should include the ability to model completely independent systems, formally

considered as one, it seems logical that any state, and by extension any positive

element, that is prepared by simply preparing states separately on the two

systems should be considered part of the state space, and positive cone, of the

compound system. Along with the previously stated condition that any state

space must be convex, this leads us to de�ne the minimal tensor product of

two ordered linear spaces with positive cones (V1)+ and (V2)+

(V1 
min V2)+ = conv fv1 
 v2 j 8 v1 2 (V1)+; v2 2 (V2)+g

One can also look at the state space from the dual perspective of the space of

e�ects. Each positive cone ascociated with a state space can in fact be seen as

the dual to the positive cone generated by the e�ect space. However reasoning

similarly to above we can stipulate that such a cone should contain all elements

that represent yes-no observations performed on the constituents individually.

From this we can give the maximal tensor product of two ordered linear spaces

with cones

(V1 
max V2)+ = (V �1 
min V
�
2 )
�
+

= fv 2 V1 
 V2 j (e1 
 e2)(v) � 0;8 e1 2 (V �1 )+; e2 2 (V �2 )+g

Indeed these two conditions both put constraints on what we should consider

as the state space in V but they are, in general, not equivalent. This leaves us

in a situation where we have restrictions on what may, or may not, constitute
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a compound state space, but there is still some ambiguity and choice available

to be speci�ed by any given theory. To this end we will consider a valid tensor

product to be any convex set that lies between the maximum and minimum,

including these extremes.

2.8 Correlations

Along with the notion of joint measurability, one of the big new conceptual con-

siderations to come out of the study of quantummechanics was that of, so called,

`non-local' correlations. Such considerations originated with the thoughts or,

among others, Einstein, Podolsky and Rosen, when they considered quantum

behaviours similar to those exhibited by a maximally entangled two qubit state

j	i = 1p
2
(j0ij1i � j1ij0i):

Their reasoning phrased here in terms of qubit experiments, went as follows.

If a sharp j0i; j1i measurement is made on the �rst system, and the outcome

obtained is, say j1i, then this would change the state of the second system into

one of being certain of obtaining j0i in a similar measurement, whereas before

both outcomes would be equally likely. The `non-local' part comes from the fact

that these considerations do not involve the relationship between the systems

in any way. Indeed the two systems could be separated by a great distance, so

with no way to in�uence each other, and yet the change in state would seem to

happen instantly.

Initially some found this troubling, and thought that it meant that the formu-

lation of quantum mechanics was inaccurate or incomplete. However, starting

with the work of Bell, this has become to be seen as a non-classical feature

inherent in quantum mechanics. The argument is based on looking at certain

types of bipartite correlations, represented by the functional

B = hA1B1 + A1B2 + A2B1 � A2B2i;

where A1 is the �1 valued observable de�ned by e�ect e etc. on system 1. It can

be easily shown that for classical models B � 2, whereas in quantum mechanics

we can get as high as B = 2
p
2. However considering the case of two squits,
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joined by the maximal tensor product, gives a PR box that gives B = 4, its

maximum possible value. In fact for each GPM there will be a bound on that

set of correlations, that will generally be di�erent. One example of a di�erent

value comes from taking the maximal tensor product of two pentagons, where

we get a bound of 4
p
5�6 putting it between the quantum and maximal cases.

2.9 Transformations

It can also be useful to consider the possibilty of some kind of operation on a

system other than a preparation or a measurement. These operations that act

by modifying a system, but do not lead to any speci�c outcomes are referred to

as transformations. These can come in two types, namely those which transform

one type of system into another, and those which leave the type of system

unchanged, just in a di�erent con�guration.

Since we want transformations to map one convex set into another, the nat-

ural type of map to consider to represent them is an a�ne map. This can

be con�rmed as being necessary by demanding that convex mixtures of states

be preserved under transformations, in a similar manner to obervables. A�ne

maps between state spaces naturally lift to positive linear maps between the

asscociated ordered vector spaces, A+((V1)+; (V2)+).
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Comparing the degrees of

incompatibility inherent in

probabilistic physical theories

3.1 Abstract

We introduce a new way of quantifying the degrees of incompatibility of two ob-

servables in a probabilistic physical theory and, based on this, a global measure

of the degree of incompatibility inherent in such theories, across all observable

pairs. This opens up a novel and �exible way of comparing probabilistic the-

ories with respect to the nonclassical feature of incompatibility, raising many

interesting questions, some of which will be answered here. We show that quan-

tum theory contains observables that are as incompatible as any probabilistic

physical theory can have if arbitrary pairs of observables are considered. If one

adopts a more re�ned measure of the degree of incompatibility, for instance,

by restricting the comparison to binary observables, it turns out that there are

probabilistic theories whose inherent degree of incompatibility is greater than

that of quantum mechanics.
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3.2 Introduction

Quantum theory has a number of important features not known in classi-

cal physics, ranging from the superposition and indeterminacy principles for-

mulated by the pioneers to the more recently discovered no-cloning and no-

broadcasting theorems. It is an old problem to identify operationally signi�cant

properties of quantum theory that distinguish it from other probabilistic theo-

ries. In recent years many features have been under intensive investigation from

this perspective, including information processing [12], optimal state discrimi-

nation [13], entropy [14], puri�cation [15] and discord [16]. It has been found

that some properties are quite generally valid in any non-classical (no-signaling)

probabilistic theories while others are speci�cally quantum.

The existence of pairs of incompatible observables marks one of the most strik-

ing distinctions between quantum theory and classical physical theories. There

are many manifestations of incompatibility, perhaps the most famous being the

Heisenberg uncertainty principle [17]. However, there are many nonclassical

probabilistic theories which also possess incompatible observables, and it will

be of interest to compare quantum theory with alternative theories with respect

to the feature of incompatibility.

To this end, we de�ne the joint measurability region of any given pair of ob-

servables in a probabilistic theory. The joint measurability region describes the

amount of added noise needed to make the observables jointly measurable. The

global joint measurability feature of a probabilistic theory can then be charac-

terized as the intersection of all the joint measurability regions associated with

the theory.

We demonstrate that quantum theory contains observables that are as incom-

patible as observables in any probabilistic theory can be. Hence, we can say

that, in a global sense, quantum theory has as great a degree of incompatibility

as any other probabilistic theory. But if only binary observables are considered,

the degree of incompatibility inherent in quantum theory is limited and we give

an example of a probabilistic theory that contains maximally incompatible bi-

nary observables.

Our aim is thus to compare the incompatibility of pairs of observables in dif-
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ferent probabilistic physical theories. We �rst need to set some minimal con-

straints.

3.3 Probabilistic Theories

A probabilistic theory is a framework that provides a description of physical

systems in terms of states and observables with the following general properties:

(i) The states of a system are represented by the elements of a convex sub-

set of a real vector space.

(ii) An observable is represented as an a�ne mapping from the set of states

into the set of probability distributions on some outcome space. For simplicity,

we restrict ourselves here to observables with a �nite or countable number of

outcomes.

(iii) Any a�ne mapping from the set of states into the set of probability distri-

butions is a valid observable.

We consider a particular probabilistic theory (PT) as given by a family of convex

sets of states with associated sets of observables that share some properties

speci�c to that PT. One may think of each pair consisting of a set of states with

associated set of observables as an instance of a PT representing a particular

type of physical system.

Given a PT, we denote by M(jj%) the probability of obtaining a measurement

outcome j when an observableM is measured in a state %. Hence, 0 �M(jj%) �
1 and

P
j M(jj%) = 1. We will typically label the measurement outcomes by

integers.

In quantum theory the states are described by density operators and observables

correspond to POVMs [18]. Their duality is given by the trace formula (with %

a density operator and M a POVM)

M(jj%) = tr [%M(j)] : (3.1)

Another example of a probabilistic theory is a classical theory, where the states

are probability measures on a phase space 
 and observables are traditionally
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represented as functions m : 
 ! R; the associated a�ne maps from states %

to probability distributions are then given by the formula

M(jj%) = %(fx 2 m�1(j)g) : (3.2)

Continuing our discussion on general probabilistic theories, we note that it fol-

lows from the required properties (i)-(iii) that the set of observables is a convex

set; a mixture of two observables is an observable. Physical mixing corresponds

to an experiment where we switch between two measurement apparatuses with

a random probability. We can directly write a mixture of two observables with

the same set of measurement outcomes. If the sets of measurement outcomes

di�er, we can still write a mixture by �rst adding enough outcomes and then

embedding both sets into Z.

Another consequence of the basic requirements is that every constant mapping

% 7! p, where p is a �xed probability distribution, is an observable and we call

it a trivial observable. A trivial observable T corresponds to a dice rolling

experiment, where we randomly pick the measurement outcome according to a

given �xed probability distribution, without manipulating the state at all. In

quantum theory, trivial observables are described by POVMs T such that each

operator T(j) is a multiple of the identity operator, i.e., T(j) = tj id for some

0 � tj � 1 with
P
j tj = 1.

3.4 Joint Measurability

The concept of joint measurement can be de�ned in any probabilistic the-

ory. Two observables M1 and M2 are jointly measurable if there exists an

observable M such that

X
k

M(j; kj%) = M1(jj%) ; (3.3)

X
j

M(j; kj%) = M2(kj%) : (3.4)

In this case M is called a joint observable of M1 and M2. If M1 and M2 are

not jointly measurable, then we say that they are incompatible.
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Any probabilistic theory contains jointly measurable pairs of observables. Namely,

a trivial observable % 7! p is jointly measurable with any other observable; we

can write a joint observable

M(j; kj%) = M1(jj%)p(k) (3.5)

for the trivial observable and any other observableM1. This simply corresponds

to an experiment where we measure M1 and simultaneously roll a dice. It

is a well known fact that, in quantum theory, an observable which is jointly

measurable with all other observables is necessarily a trivial observable. Indeed,

any POVM element of such an observable commutes with all projections and

must therefore be a scalar multiple of the identity (e.g. [19, Theorem IV.1.3.1]).

The following simple observation is a key ingredient for our discussion.

Proposition 1. Let M1 and M2 be two observables and 0 � � � 1. Then

�M1+(1��)T1 and (1��)M2+�T2 are jointly measurable for any choice

of trivial observables T1 and T2.

This proposition can be proved with the following construction. First, let p1

and p2 be the probability distributions related to T1 and T2. We de�ne an

observable M by the formula

M(j; kj%) = �p2(k) M1(jj%) + (1� �)p1(j) M2(kj%) : (3.6)

For a �xed %, the right hand side is clearly a probability distribution. Moreover,

the right hand side is an a�ne mapping on %; therefore M is an observable.

The marginal observables are

X
k

M(j; kj%) = �M1(jj%) + (1� �)p1(j);
X
j

M(j; kj%) = (1� �)M2(kj%) + �p2(k):

This proves Prop. 1.

The physical idea behind this construction is the following. In each measure-

ment run we �ip a biased coin and, depending on the result, we measure either

M1 or M2 in the input state %. In this way we get a measurement outcome for
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either M1 or M2. In addition to this, we roll a dice and pretend that this is a

measurement outcome for the other observable. In this way we get an outcome

for both observables simultaneously. The overall observable is the one given in

formula (3.6).

3.5 Joint Measurability Region

For two observables M1 and M2, we denote by J(M1;M2) the set of all points

(�; �) 2 [0; 1] � [0; 1] for which there exist trivial observables T1;T2 such that

�M1 + (1 � �)T1 and �M2 + (1 � �)T2 are jointly measurable, and we call

J(M1;M2) the joint measurability region of M1 and M2. The joint measur-

ability region thus characterizes how much noise (in terms of trivial observables)

we need to add to obtain jointly measurable approximations of M1 and M2.

Clearly, M1 and M2 are jointly measurable if and only if (1; 1) 2 J(M1;M2).

The joint measurability region J(M1;M2) is a convex region which can be

plotted in the plane. To see this, let (�0; �0) 2 J(M1;M2) and (�00; �00) 2
J(M1;M2), then we have to show that (�; �) 2 J(M1;M2) for (�; �) =

t(�0; �0)+ (1� t)(�00; �00). Thus let M0
1 = �0M1+(1��0)T01 and M0

2 = �0M0
2+

(1��0)T02 be jointly measurable, and similarly forM00
1 = �00M1+(1��00)T001 and

M00
2 = �00M0

2 + (1 � �00)T002, with suitable choices of trivial observables. Then

the observables tM0
1 + (1� t)M00

1 and tM
0
2 + (1� t)M00

2 are jointly measurable

[62, Prop. 2].

Note that according to Prop. 1 the line
n
(�; (1��)) : 0 � � � 1

o
� J(M1;M2).

Moreover, it is trivially the case that (0; 0) 2 J(M1;M2). The convexity of

J(M1;M2) then entails that the convex hull of the three points (1; 0), (0; 1)

and (0; 0) is in J(M1;M2), hence we have:

4 � f(�; �) 2 [0; 1]� [0; 1] : �+ � � 1g � J(M1;M2) :

As an example, suppose that we are within quantum theory and M1 and M2

correspond to spin-12 measurements in two orthogonal directions, say x and y

-axes. We then describe them with two POVMs Mx and My, where

Mx(�1) = 1
2(id� �x) ; My(�1) = 1

2(id� �y) ; (3.7)
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Figure 3.1: (Color online) The region J(Mx;My) for two orthogonal spin-12

measurements is a quadrant of the unit disk. The region 4 (light) is a subset

of J(M1;M2) for any pair M1;M2, while the surplus region (dark) depends

on the speci�c pair under consideration.

and �x; �y are the usual Pauli matrices in C
2. It has been shown in [21] that

for the uniformly distributed trivial observable �1 7! 1
2 id (hence describing an

unbiased coin), the two observables �Mx + (1� �)121 and �My + (1� �)121 are

jointly measurable if and only if �2 + �2 � 1. It is also known [62, Prop. 3]

that this inequality is a necessary condition for the joint measurability of any

pair �Mx + (1� �)T1 and �My + (1� �)T2, where T1;T2 are arbitrary trivial

observables. Therefore, we conclude that

J(Mx;My) = f(�; �) 2 [0; 1]� [0; 1] : �2 + �2 � 1g : (3.8)

This region is depicted in Fig. 3.1.

In addition to describing the incompatibility of pairs of observables, the concept

of a joint measurability region also provides a means to compare the degrees of

incompatibility inherent in entire theories. A global joint measurability feature

of a probabilistic theory PT is characterized by the intersection of all the sets

J(M1;M2) across all instances of PT, and we denote

JPT =f(�; �) 2 [0; 1]� [0; 1] : (�; �) 2 J(M1;M2)

for all pairs of observables M1 and M2

in all instances of PTg:

We call JPT the joint measurability region for PT . We always have 4 � JPT ,

but JPT can be larger than 4. The larger the surplus region is, the more

jointly measurable the theory is globally; see Fig. 3.2. If (�; �) =2 JPT , this
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Figure 3.2: (Color online) The region 4 (light) is a subset of the joint measur-

ability region JPT (colored) for any probabilistic theory. The larger the surplus

region (dark) is, the more jointly measurable the theory globally is. If (a) and

(b) are joint measurability regions for two di�erent probabilistic theories, then

we can conclude that (b) represents a greater degree of incompatibility than

(a).

means that there is a pair of observables M1 and M2 such that the mixtures

�M1 + (1 � �)T1 and �M2 + (1 � �)T2 are incompatible with any choice of

trivial observables T1 and T2.

3.6 Quantum is Maximal

Since JPT can be de�ned in any probabilistic theory, we can compare the

joint measurability regions for di�erent theories. We obviously have JPT =

[0; 1] � [0; 1] in any probabilistic theory where all measurements are jointly

measurable, such as the classical probability theory. In the case of the greatest

degree of incompatibility we would have JPT = 4. We will next show that

quantum theory incorporates, globally, as much incompatibility between pairs

of observables as a probabilistic theory can do.

Theorem 1. In quantum theory JQT = 4. In particular, JQT � JPT for

any probabilistic theory PT.

In quantum theory every observable M corresponds to a unique POVM M by

equation (3.1). We will prove that for any pair (�; �) =2 4, there are quantum

observables M1 and M2 such that the mixtures �M1 + (1 � �)T1 and �M2 +

(1 � �)T2 are incompatible with any choice of trivial observables T1;T2. Our

proof is based on a recent result [22] on the joint measurability region for two
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complementary observables, which is a generalization of the result illustrated

in Fig. 3.1.

Proof of Theorem 1. We have earlier seen that 4 � JPT , so we need to show

that JQT � 4. Let (�; �) =2 4, i.e., �+� > 1. Fix � > 0 such that �+� > 1+�.

We then choose d to be a positive integer satisfying

p
d� 1

d� 1
� � : (3.9)

(This can be done since the left hand side! 0 when d!1.) We will consider

a quantum system that is described by a d-dimensional Hilbert space Hd. Let

f'jgd�1
j=0 be an orthonormal basis for Hd. We de�ne another orthonormal basis

f kgd�1
k=0 for Hd by

 k = 1=
p
d
X
j

e�2�i jk
d 'j : (3.10)

The orthonormal bases f'jgd�1
j=0 and f kgd�1

k=0 are mutually unbiased, i.e.,

jh'j j k ij = constant 8j; k. We de�ne two POVMs M1 and M2 by

M1(j) = j'jih'j j ; M2(k) = j kih kj : (3.11)

We thus obtain a pair of d-outcome observables on Hd. Since M1 and M2

consist of projections and M1(j)M2(k) 6= M2(k)M1(j), it follows that they are

incompatible.

As proved in [22], the observables �0M1 + (1� �0)T1 and �
0M2 + (1��0)T2 are

incompatible for any choice of trivial observables T1;T2 whenever

�0 + �0 > 1 +

p
d� 1

d� 1
: (3.12)

Since

�+ � > 1 + � � 1 +

p
d� 1

d� 1
; (3.13)

we conclude that (�; �) =2 JQT .

Using the ideas of the proof of Theorem 1, we can also show that the conclusion

JQT = 4 can be reached by using a single pair of incompatible observables if

we consider an in�nite dimensional system and observables with a countably

in�nite number of outcomes.
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Let H be an in�nite dimensional Hilbert space and write it as a direct sum

of �nite d-dimensional Hilbert spaces Hd, H =
L1

d=2Hd. In each Hd consider

a pair of mutually unbiased orthonormal bases f'djgd�1
j=0 and f dkgd�1

k=0, where

the latter is obtained from the �rst one by the formula (3.10). We de�ne two

POVMs N1 and N2 via

N1(d; j) = j'dj ih'dj j ; N2(d; k) = j dkih dkj : (3.14)

These observables act in the in�nite dimensional Hilbert spaceH and d in (3.14)

is an index labeling the di�erent outcomes. The outcome space of N1 and N2

is 
1 � f(d; j) : d = 2; 3; : : : ; j = 0; : : : ; d� 1g.

Theorem 2. The observables N1 and N2 de�ned in (3.14) satisfy J(N1;N2) =

4.

Proof of Theorem 2. Let p1 and p2 be two probability distributions de�ned

on 
1. Assume that �+ � > 1 and de�ne two observables N1;�;N2;� via

N1;�(d; j) = � j'dj ih'dj j+ (1� �) p1(d; j)I;
N2;�(d; k) = � j dkih dkj+ (1� �) p2(d; k)I :

(3.15)

We need to show that N1;� and N2;� are incompatible. To prove this, we make

the counter assumption that N1;�;N2;� are jointly measurable. This implies

that for any projection P on H, the projected observables PN1;�P and PN2;�P

acting on a subspace PH are jointly measurable. (If G is a joint observable

of two observables M1;M2, then PGP is a joint observable of PM1P; PM2P in

PH.) Especially, the projections of N1;� and N2;� to any subspace Hd should

be jointly measurable. But from the result cited in the proof of Theorem 1 we

know that for d large enough, the projections to Hd are incompatible. Hence,

N1;� and N2;� are incompatible.

We note that the observables N1 and N2 de�ned in (3.14) are not the only pair

satisfying J(N1;N2) = 4. Namely, we can modify N1 and N2 in any chosen

subspace Hd but the conclusion J(N1;N2) = 4 is still true since it depends

on the fact that N1 and N2 contain mutually unbiased bases in arbitrarily high

dimension.
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An interesting problem within quantum theory would be to try to �nd a charac-

terization of all pairs of quantum observables M1;M2 that satisfy J(M1;M2) =

4. In particular, we may ask if maximally incompatible observables can exist

in a �nite dimensional Hilbert space, or if they can have a �nite number of

outcomes. Since two mutually unbiased bases are expected to be among the

most incompatible observable pairs in a �xed dimension d, our construction in

the proof of Theorem 1 suggests that the answer to the �rst question would be

negative. A proof of this claim is, however, lacking.

3.7 The Binary Case

As for the second question, we can present a partial answer by investigating the

joint measurability region in the case of pairs of binary quantum observables.

Our aim is to show that

f(�; �) 2 [0; 1]� [0; 1] : �2 + �2 � 1g � J(M1;M2)

for any binary observables M1 and M2, regardless of the dimension of the Hilbert

space. In other words, we will show that two orthogonal spin observables are

as incompatible as any binary observables can be.

To this end, let us note that two binary quantum observables are incompatible

if and only if they enable a violation of the Bell-CHSH inequality [35]. We must

therefore look at the Bell expression

B = jhM1N1i+ hM1N2i+ hM2N1i � hM2N2ij :

Let us denote � = hM1N1i + hM1N2i and � = hM2N1i � hM2N2i. By [23,

Theorem 1], there exist unit vectors x1;x2;y1;y2 2 R
4 such that hMjNki =

xj � yk for j; k = 1; 2; and conversely, given any quadruple of unit vectors

there exist a corresponding set of binary observables and a bipartite state such

that this equality holds. In particular, we have � = x1 � (y1 + y2) and � =

x2 � (y1 � y2) so that an application of the Cauchy-Schwarz inequality along

with the parallelogram law yields

�2 + �2 � kx1k2ky1 + y2k2 + kx2k2ky1 � y2k2

= 2ky1k2 + 2ky2k2 = 4:
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(a) (b)

Figure 3.3: In (a) the grey area represents the possible values that � and �

can obtain by varying the observables and the state in the Bell expression

B = j� + �j. The solid lines represent the Tsirelson bound B = 2
p
2 and the

dashed lines represent the bound B = 2. By considering only observables which

are mixtures with the uniformly distributed trivial observable with �xed � and

�, the area becomes smaller as depicted in (b), and a suitable choice of weights

makes the violation of the Bell-CHSH inequality impossible.

By choosing the unit vectors appropriately we also see that any pair (�; �)

satisfying this condition can be obtained.

If we now mix the observables Mj with the trivial observable T(�1) = 1
2I

with some weights � and � we see that the pair (�; �) turns into (��; ��),

thus changing the Bell expression from j�+�j to j��+��j. We must therefore

determine those (�; �) for which j��+��j � 2 for all (�; �) satisfying �2+�2 � 4

(see Fig. 3.3). But the boundary curve for this region is obtained when the

equations (�=�)2 + (�=�)2 = 4 and � + � = 2 have at most one common

solution. By inserting � = 2�� into the �rst equation the problem reduces to

determining when the discriminant is negative or zero, and one readily veri�es

that this is the case exactly when �2 + �2 � 1.

In conclusion, given any pair of binary observables M1 and M2, and weights �

and � with �2 +�2 � 1, the mixtures �M1 + (1� �)T and �M2 + (1��)T can

not be used to violate the Bell-CSHS inequality and must therefore be jointly

measurable. We note that in the case � = � the same result using a di�erent

technique has been obtained by Banik et al. [36].

Although Theorem 2 shows that quantum theory contains pairs of observables

that are maximally incompatible, the strictly larger joint measurability region
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when restricting to binary observables suggests that more �ne grained quanti�-

cations of the global degree of incompatibility between observables might not

rank quantum theory among the most extreme theories in this respect. The

example below will show that when restricting to just binary observables, it is

indeed possible for a theory to have the smallest possible joint measurability

region. In that sense such a theory must be considered to embody a strictly

greater degree of incompatibility than quantum theory.

Consider any probabilistic theory, which contains a state space isomorphic to a

square, by which we mean the convex hull of four di�erent points s1; s2; s3; s4

in R
2 satisfying s1+ s4 = s2+ s3, for instance s1 = (0; 0); s2 = (0; 1); s3 = (1; 0)

and s4 = (1; 1). We will show that there is a pair of binary observables which

are maximally incompatible. Let M1 and M2 be binary observables that pick

out the right and top sides of the square respectively, i.e.

M1(+js1) = M1(+js2) = 0;

M1(+js3) = M1(+js4) = 1;

M2(+js1) = M2(+js3) = 0;

M2(+js2) = M2(+js4) = 1:

(3.16)

Proposition 2. For the binary observables M1 and M2 de�ned in (3.16),

J(M1;M2) = 4.

Proof. Suppose that there exists a joint observable M for �M1+(1��)T1 and

�M2+(1��)T2 where T1 and T2 are trivial observables. Let p1 and p2 be the

probability distributions associated to T1 and T2 so that we have for any state

�

M(+;+j%) +M(+;�j%) = �M1(+j%) + (1� �)p1(+)

M(�;+j%) +M(�;�j%) = �M1(�j%) + (1� �)p1(�)
M(+;+j%) +M(�;+j%) = �M2(+j%) + (1� �)p2(+)

M(�;�j%) +M(+;�j%) = �M2(�j%) + (1� �)p2(�)

Any M satisfying such marginal properies will be correctly normalised, but to

be a valid observable, all the components of M must take positive values on
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the points si. In particular, we must have

M(+;�js2) =(1� �)p1(+)�M(+;+js2) � 0;

M(�;+js3) =(1� �)p2(+)�M(+;+js3) � 0;

M(�;�js4) =1 +M(+;+js4)� �� (1� �)p1(+)

� �� (1� �)p2(+) � 0:

Rewriting the last of these inequalities and invoking the de�ning property on

the si gives

�+ � �1� (1� �)p1(+)� (1� �)p2(+) +M(+;+js4)
�� (1� �)p1(+) +M(+;+js2)
� (1� �)p2(+) +M(+;+js3)
+ 1�M(+;+js1) � 1;

where the �nal step comes about from invoking the positivity of M on s1.

The result of Proposition 2 does not come as a surprise in light of the fact that

the barrier to maximal incompatibility of binary quantum observables comes

from the connection with a Bell-CHSH inequality. Indeed, square shaped state

spaces have been used in a model of a probabilistic theory containing the PR

boxes which violate such an inequality to its maximal possible value.

We note that the conclusion of Proposition 2 is not restricted to the square

state space. Consider any state space containing a square whose vertices si

are extreme points of the state space and whose boundary lines lie on the

boundary of the state space; assume further that opposite sides of the square

are contained in parallel hyperplanes that do not intersect with the interior

of the state space. These two pairs of hyperplanes de�ne e�ects whose values

on the si satisfy Eq. (3.16). It follows that the proof of Proposition 2 can

be adopted in such cases. Examples are given by state space of the following

shapes: pyramid, double pyramid, cube, cylinder.

The fact that the restriction to just binary observables allows one to di�eren-

tiate between probabilistic theories that both contain maximally incompatible

observables suggests that a more �ne grained global measure of the degree of
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incompatibility is needed if the aim is to pick out a single theory as the one

containing overall the most incompatible pairs of observables. For instance,

for a given probabilistic theory PT we may de�ne J
(d)
PT to be the joint mea-

surability region for all possible d-outcome observables in PT. Since increasing

the number of outcomes of observables by simply adding outcomes that never

occur does not change the properties of incompatibility, we immediately have

J
(d+1)
PT � J

(d)
PT . By comparing the regions in di�erent theories for di�erent values

of d we obtain a more �ne grained way of comparing the degrees of incompat-

ibility within the theories. It may even turn out that in this sense quantum

theory embodies globally the least amount of incompatibility among the the-

ories containing maximally incompatible observables. However, this is still an

open question and a topic for future investigations.
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Chapter 4

Steering, incompatibility, and Bell

inequality violations in a class of

probabilistic theories

4.1 Abstract

We show that connections between a degree of incompatibility of pairs of ob-

servables and the strength of violations of Bell's inequality found in recent

investigations can be extended to a general class of probabilistic physical mod-

els. It turns out that the property of universal uniform steering is su�cient

for the saturation of a generalised Tsirelson bound, corresponding to maximal

violations of Bell's inequality. It is also found that a limited form of steering is

still available and su�cient for such saturation in some state spaces where uni-

versal uniform steering is not given. The techniques developed here are applied

to the class of regular polygon state spaces, strengthening known results. We

also �nd indications that the link between incompatibility and Bell inequality

violation may be more complex than originally envisaged.
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4.2 Introduction

The Bell inequalities [24] provide constraints that certain families of joint prob-

ability distributions must satisfy to admit a common joint distribution. It is

known that the satisfaction of a full set of Bell inequalities in a probabilistic

system is equivalent to the existence of such a joint probability[25, 26].1 It was

observed subsequently that joint measurability (in the sense that there exist

joint probabilities of the usual quantum mechanical form for every state) en-

tails an operator form of Bell inequalities; therefore, the Bell inequalities are

satis�ed whenever the observables involved in an EPR-Bell type experiment are

mutually commutative [30]. In the case of unsharp observables, commutativity

is not required for joint measurability and the degree of unsharpness of the ob-

servables required for joint measurability can be determined; this value is more

restrictive than is needed for violations of the Bell inequalities to be eliminated

in the case of the singlet state [31, 21, 32, 33].

The connection between joint measurability and Bell inequalities � in the spe-

ci�c form of the CHSH inequalities [34], which apply to experiments involving

runs of measurements of two pairs of dichotomic observables on a bipartite

system � has been further elucidated in two interesting recent publications by

Wolf et al [35] and Banik et al [36]. The former have shown that for any pair of

incompatible dichotomic observables in a �nite dimensional quantum system a

violation of a CHSH inequality will be obtained. Hence, incompatibility is not

only necessary but also su�cient for obtaining Bell inequality violations. Wolf

et al [35] conclude that �if a hypothetical no-signaling theory is a re�nement of

quantum mechanics (but otherwise consistent with it), it cannot render possible

the joint measurability of observables which are incompatible within quantum

mechanics". With this result a tight link has been established between the

availability of incompatible observables and the possibility of violating a CHSH

inequality. It is natural to ask whether a quantitative connection can be found

between a degree of incompatibility and the strength of these violations, and

whether such a connection is speci�c to quantum mechanics or holds in a wider

1As observed by Pitowsky [27], Bell-type inequalities had already been formulated

as early as 1854 by George Boole, who deduced them as conditions for the possibility

of objective experience [28, 29].
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class of probabilistic physical theories.

It is a well known fact that two incompatible quantum observables can be ap-

proximately measured together if some unsharpness in the measurement is al-

lowed. A measure of the incompatibility of two observables can then be obtained

by quantifying the degree of unsharpness required to obtain an approximate

joint measurement. In the case of dichotomic observables this can be achieved

by mixing each observable with a trivial observable (a POVM whose positive

operators are multiples of the identity)2, with relative weights �, 1 � �. The

mixing weight determines the degree of unsharpness of the resulting smeared

observable.

Banik et al have shown that the degree of incompatibility (they use the term

complementarity) of two dichotomic observables, quanti�ed by the largest smear-

ing parameter, �, for which the smeared versions are compatible, puts limita-

tions on the maximum strength of CHSH inequality violations available in such

a theory [36]. The Bell functional, B, a generalisation of what is known as

the Bell operator in the quantum case, then is bounded by the parameter �opt

associated with the �most incompatible� pair of observables, so that B � 2=�opt.

Here we study the connection between degrees of incompatibility and CHSH

inequality violation in the context of general probabilistic physical theories by

way of unifying the approaches of [35] and [36]. We will see that the degree

of incompatibility used by Banik et al is closely linked with an unnamed pa-

rameter used in [35] to characterise the joint measurability of two dichotomic

observables. Under an additional assumption on the physical theory, namely

that it supports a su�cient degree of steering, the construction used to violate

the CHSH inequality generalises. This gives a su�cient condition under which

the maximal violation can be saturated. This result can be rephrased by saying

that probabilistic theories can be classi�ed according to the value of the gener-

alised Tsirelson bound, de�ned as the maximum value of the Bell functional,

and this bound can (under said assumptions) be realised by suitable maximally

incompatible observables (see Theorem 1).

Finally we illustrate the link between incompatibility and Bell violation in the

2Such mixing procedures and their connection with goal of achieving joint measur-

ability are investigated systematically in [62]).
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class of regular polygon state spaces. It turns out that this connection appears

to hold generally in the case of even-sided polygons but not, at least in the

same form, for odd-sided cases.

4.3 General Probabilistic Models

We begin by presenting the basic elements of the standard framework of prob-

abilistic models. The framework was introduced in the 1960s by researchers

in quantum foundations who used it to investigate axiomatic derivations of

the Hilbert space formalism of quantum mechanics from operational postu-

lates. Due to the emphasis on the convex structure of the set of states and

the use of operations to model state transformations, the approach was called

convex state approach or operational approach. Some pioneering references

are [1, 2, 3, 4, 5]. An overview of the literature and of relevant monographs

can be obtained from [6] and [18]. Recently the approach has gained renewed

interest from researchers in quantum information exploring the information the-

oretic foundations of quantum mechanics. Accessible recent introductions can

be found in e.g. [8, 9, 38].

The set of states 
 of a general probabilistic model is taken to be a compact

convex subset of a �nite dimensional vector space V , where the convexity corre-

sponds to the ability to de�ne a preparation procedure as a probabilistic mixture

of preparation procedures corresponding to other states. We write A(
) for the

ordered linear space of a�ne functionals on 
, with the (partial) ordering given

pointwise: f � 0 if f(!) � 0 for all ! 2 
. A(
) is also canonically an order

unit space, with order unit u de�ned by u(!) = 1 for all states ! 2 
. The

(convex) set of e�ects on 
 is then taken to be the unit interval [0; u] inside

A(
), i.e.

E (
) = fe 2 A(
)j0 � e(!) � 1; 8! 2 
g: (4.1)

A discrete observable O is then a function from an outcome set X into E (
),

that satis�es the normalisation condition
P
x2X O[x] = u. The value (lying

between 0 and 1) of O[x](!) denotes the probability of getting outcome x for a

measurement of the observable O in state !.

Under the assumption of tomographic locality [10], the state space of a compos-
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ite system with local state spaces 
1 and 
2 naturally lives in the vector space

V1 
 V2. We then write 
 = 
1 
 
2 = (V1 
 V2)1+, where the normalisation is

given by the order unit u1 
 u2 2 V �1 
 V �2 , but in general the positive cone is

not unique [39].

Although there is much choice in general for the ordering on V1 
 V2, there are
two canonical choices, the maximal and minimal. As a minimal demand it is

reasonable to expect v1 
 v2 � 0 whenever v1; v2 � 0, therefore we make the

de�nition

(V1 
min V2)+ =

8<
:
X
i;j

�ijv
(i)
1 
 v(j)2

�����ij 2 R+; v
(i)
k 2 (Vk)+

9=
; : (4.2)

We can similarly make such demands on the order structure on V �1 
V �2 leading

to the converse de�nition

(V1 
max V2)+ = (V �1 
min V
�
2 )
�
+: (4.3)

Any cone on V1
V2 which lies between the maximal and minimal cones is then

admissible as a viable order structure. In general the tensor product chosen is an

important part in de�ning a theory; the only time when there is no choice (since

maximal and minimal are the same) is when the local state spaces are simplexes

[39]. The case where both 
1 and 
2 are quantum state spaces provides a prime

example of a nonminimal, nonmaximal order structure, namely the standard

quantum mechanical tensor product. By de�nition 
1 
min 
2 contains only

separable states, which form a proper subset of all bipartite states; by contrast,


1
max
2 contains not only the usual quantum states, but also all normalised

entanglement witnesses.

A bipartite state ! 2 
1 

2 can also be viewed as a way to prepare states in


1, via the measurement of an observable on 
2. In this way, for each state !,

we can de�ne the corresponding linear map !̂ : V �2 ! V1 by

a(!̂(b)) = !(a; b); a 2 V �1 ; b 2 V �2 :

4.4 Fuzziness and joint measurability

Consider a system represented by a probabilistic model, whose state space is

given by the convex set 
. Any dichotomic (or two-outcome) observable O on
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 is determined by an e�ect e =: O[+1] 2 E (
), where for any ! 2 
, the

probability of getting the outcome labelled by `+1' in the state ! is given by

e(!), and similarly for the outcome `-1' associated with the complement e�ect

e0 := u� e = O[�1].

Two e�ects e and f are said to be jointly measurable if there exists g 2 A(
)
satisfying

0 � g;

g � e;

g � f;

e+ f � g + u;

(4.4)

where u is the order unit on 
. The existence of such a g is equivalent to the

existence of a joint observable for the dichotomic observables corresponding to

e and f . In fact, if the system of inequalities (4.4) is satis�ed for some e�ect g

then the set of e�ects g++ := g; g+� := e�g; g�+ := f�g; g�� := u�e�f+g
de�nes an observable that comprises e; e0 and f; f 0 as marginals, in the sense

that e = g++ + g+�, f = g++ + g�+, etc.
3

Given a two-outcome observable A determined by e�ect e, one can introduce

a corresponding fuzzy observable A(�) as a smearing (or fuzzy version) of A,
whose de�ning e�ect is given by

e(�) =
1 + �

2
e+

1� �
2

e0 = �e+
1� �
2

u; (4.5)

with smearing parameter � 2 [0; 1], and complement e�ect e(�)0 = e0(�).

Given any pair of two-outcome observables A1;A2, with corresponding e�ects

e; f , we can use the parameter � to give a measure of how incompatible they

are. First we note that for � = 1
2 , the choice of e�ect g =

1
4(e+ f) generates a

joint observable for e and f since it satis�es (4.4), as is readily veri�ed. Thus

the set of values of � which make e(�) and f (�) jointly measurable contains 1
2 .

Further, if e(�) and f (�) are jointly measurable, then for any �0 � � so are e(�
0)

and f (�
0). Hence the set lies inside the interval [0; �e;f ], where we de�ne �e;f to

3For more detail on the notion of joint observable in probabilistic theories we refer

the reader to [40], where further relevant references can be found.
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be the solution to the cone-linear program

maximise: �

subject to: g � e(�)

g � f (�) (4.6)

0 � g

e(�) + f (�) � u � g:

This measure of incompatibility of a pair of e�ects in turn leads to a mea-

sure of the degree of incompatibility of a given model by looking for the most

incompatible pair:

�opt = inf
e;f2E (
)

�e;f : (4.7)

Following a path similar to [35], we can de�ne a di�erent parameter te:f , which

we will see is closely linked with �e;f . For a given pair of e�ects e and f , we

de�ne te;f to be the solution to the cone-linear program:

minimise: t

subject to: g � e+ tu

g � f + tu (4.8)

0 � g

e+ f � u � g:

As shown in [44], the optimal set for (4.8) is nonempty, so the minimum can

be achieved, hence e and f are incompatible if and only if te;f > 0. Here we

notice that the pair (�; g) being feasible for the problem (4.6) is equivalent to

the pair
�
1��
2� ;

g
�

�
being feasible for the problem (4.8). Combining this with the

fact that the function 1��
2� is monotonically decreasing for � 2 [0; 1] brings us

to the promised link

te;f =
1� �e;f
2�e;f

: (4.9)

54



Chapter 4 Steering, incompatibility and Bell

Examples

In a model of discrete classical probability theory we take the state space to be

the set of all probability measures on some countable set X, i.e.


 =

(
(!x)x2X

���!x � 0 8x 2 X; X
x

!x = 1

)
: (4.10)

A functional e on 
 with action e(!) =
P
x ex!x is easily seen to be positive i�

ex � 0 for all x 2 X, and the order unit satis�es ux = 1 for all x 2 X.

Suppose we now have two e�ects e; f 2 E (
). Taking g to have components

gx = minfex; fxg, then since positivity is determined componentwise the in-

equalities (4.4) are immediately satis�ed, and hence e and f are jointly mea-

surable. Since this holds for arbitrary e and f in this case we have �opt = 1.

As shown in [36], in any �nite dimensional Hilbert space the value of the joint

measurability parameter for a pair of dichotomic observables is �opt = 1=
p
2.

A simple non-classical, non-quantum example is that of the squit. The two

dimensional state space is given by a square, denoted �; it contains all points

(x; y; 1) with �1 � x+ y � 1, �1 � x� y � 1, and takes the shape of a square.

As we will see, the squit leads to maximally incompatible e�ects in the sense

that it leads to the smallest possible value of �opt.

Firstly we note that for any probabilistic model � = 1
2 provides a lower bound

for �opt, since e
( 1
2
) = 1

2e+
1
4u and f (

1

2
) = 1

2f+
1
4u are always jointly measurable.

This can be seen explicitly by setting g = 1
4e +

1
4f , then the corresponding

equations (4.4) are satis�ed.

As a convenient parametrisation we can write a generic a�ne functional g 2
A(�) as a vector g = (a; b; c), with action given by the canonical inner product

scaled by a factor of 1
2 . In this case the order unit is given by u = (0; 0; 2).

Since the positivity of a functional g on a compact convex set is equivalent to

positivity on its extreme points, we can determine the structure of the set of

e�ects by demanding that its elements g take values between 0 and 1 on the

extreme points of the set of states. In the case of the squit, E (�) is a convex

polytope with de�ning inequalities given by

u � g � 0 ()
8><
>:

2 � c+ a � 0; 2 � c+ b � 0;

2 � c� a � 0; 2 � c� b � 0:
(4.11)
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We note the extreme points: (0; 0; 2) = u, (0; 0; 0), (1; 1; 1), (1;�1; 1), (�1; 1; 1),
(�1;�1; 1).

In an attempt to �nd the lowest possible value of �e;f we consider the case of

the two orthogonal extremal e�ects e = (1; 1; 1) and f = (1;�1; 1). In order

for e(�) and f (�) to be jointly measurable we need to be able to �nd a g that

satis�es all the inequalities in (4.4). This entails, in particular:

g � e(�) � f (�) + u = (a� 2�; b; c) � 0;

giving 2� � a+ c;

e(�) � g = (�� a; �� b; 1� c) � 0;

giving � � 1 + a� c;
f (�) � g = (�� a;��� b; 1� c) � 0;

giving � � 1� a� c;
g = (a; b; c) � 0;

giving a � c:

Combining these inequalities leads to 4� � 2 + a � c � 2, so for this choice of

e and f we must have �e;f � 1
2 . Given that 1

2 is the lowest possible value, we

conclude that in the case of the squit �opt =
1
2 .

4.5 Steering and saturation of the generalised

Tsirelson bound

In order to give conditions on a generalised probabilistic model under which the

bound on CHSH violations given in [36] can be achieved we need to introduce

the notion of steering, as given in [41].

Given two systems A and B, with state spaces 
A and 
B respectively, for any

bipartite state ! 2 
A 
 
B we can de�ne its A marginal, living in 
A in an

analogue to the quantum mechanical partial trace:

!A = !̂(uB); (4.12)

where uB is the order unit on B, with a similar de�nition for !B.
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Following this we say that a state ! 2 
A 
 
B is steering for its A marginal

if for any collection of sub-normalised states that form a decomposition of that

marginal, i.e., f�1; :::; �njPi �i = !A; 0 � uA(�i) � 1g, there exists an observ-

able fe1; :::; eng � E (
B) with �i = !̂(ei).

It was observed by Schrödinger that this property holds in quantum mechanics

for all pure bipartite states [42], originally coining the term steering, which we

generalise now, following [41]: A general probabilistic model of a system A with

state space 
A supports uniform universal steering if there is another system

B with state space 
B, such that for any � 2 
A, there is a state !� 2 
A

B,

with !A� = � that is steering for its A marginal, and supports universal self-

steering if the above is satis�ed with B = A. The existence of steering in this

manner is similar to the idea of puri�cation to be found, for example, in [43].

Indeed any puri�cation of a state will be steering for its marginals; however

steering states being pure is not required here.

The magnitude of maximal CHSH violations is quanti�ed in quantum mechanics

by the norm of the Bell operator. We take A1;A2;B1 and B2 to be �1-valued
observables, and de�ne following [36]

B := hA1B1 + A1B2 + A2B1 � A2B2i!;

where A1 := A1[+1]�A1[�1], etc., and hXi! := X(!) for any a�ne functional

X. We will call the map ! 7! B the Bell functional and refer to sup! B as the

(generalised) Tsirelson bound.

In order to see where steering enters the picture, we follow [36] to get a simple

bound on the norm of B. In order to do this we consider what e�ect smearing

the observables of one party has by de�ning

B
(�) = hA(�)

1 B1 + A
(�)
1 B2 + A

(�)
2 B1 � A(�)

2 B2i; (4.13)

where A
(�)
1 = A(�)

1 [+1]�A(�)
1 [�1]etc., with the smearing of the e�ects as de�ned

as in (4.5). Due to the fact that the choice of observable that is mixed to form

the smearing is an unbiased trivial observable, the resulting expectation scales

with the smearing parameter:

A
(�)
1 = �A1[+1] +

1� �
2

u� �A1[�1]� 1� �
2

u = �A1: (4.14)
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Now since the Bell functional is bilinear, and the same smearing parameter is

being used on all functionals on the �rst system, the linear scaling carries over

and we get B(�) = �B.

As shown in the previous chapter, there always exist jointly measurable fuzzy

versions of any pair of observables, so long as the value of the smearing param-

eter is small enough. Now if we take any � such that A
(�)
1 and A

(�)
2 are jointly

measurable, then we know that the corresponding Bell functional satis�es the

usual Bell inequality, and thus its value is bounded by B(�) � 2. Consequently,

each such value of � gives a bound on on the Bell functional of B � 2
� , and

in order to obtain the lowest such upper bound we take the largest smearing

parameter which still results in joint measurability, to get

B � 2

�A1[+1];A2[+1]
: (4.15)

Since every probabilistic model contains observables which are jointly measur-

able with no smearing, and thus satisfying the usual Bell inequality, knowing

the above bound for a single pair of observables will not necessarily yield infor-

mation about the structure of the system itself. A more general bound however

can be written down by simply taking the most incompatible pair of observ-

ables:

B � 2

�opt
: (4.16)

Theorem 3. In any probabilistic model of a systen A that supports uniform

universal steering, the Tsirelson bound is given by the tight inequality that

can be saturated:

B � 2

�opt
; (4.17)

with �opt de�ned in Eq. (4.7).

Proof. Suppose we have a model of a system A that supports uniform universal

steering, and that we have two e�ects e; f 2 E (
A). The parameter introduced

earlier, te;f can now also be calculated from the program dual to (4.8), which
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can be given as [44]

maximise: �3(e+ f � uA)� �1(e)� �2(f)
subject to: (�1 + �2)(uA) = 1

�1 + �2 = �3 + �4 (4.18)

0 � �1; �2; �3; �4

with the �i 2 A(
A)
�.

Writing �1+�2 = �, for the �i that achieve the optimal value for (4.18), we �nd

that � � 0 and uA(�) = 1, so � 2 
A. By the assumption of uniform universal

steering therefore we can �nd a state ! 2 
A 
 
B with !A = !̂(uB) = �;

moreover, in f�1; �2g and f�3; �4g we have two di�erent decompositions of �,

and we can thus �nd e�ects ~e; ~f 2 E (
B) satisfying

!̂(~e) = �1; !̂( ~f) = �3: (4.19)

To achieve the maximum CHSH violations we take A1;A2;B1 and B2 to be

�1-valued observables de�ned by e�ects f 0; e; ~e0 and ~f 0 respectively; we then

have

A1 = uA � 2f; B1 = uB � 2~e;

A2 = 2e� uA; B2 = uB � 2 ~f:
(4.20)

The value of the Bell functional can now be evaluated:

B = !(uA � 2f; 2uB � 2~e� 2 ~f) + !(2e� uA; 2 ~f � 2~e)

= 2!̂(uB)(uA � 2f)

+ 4!̂(~e)(f � e) + 4!̂( ~f)(f + e� uA)
= 2 + 4[(�1 + �2)(�f)

+ �1(f)� �1(e) + �3(f + e� uA)]
= 2 + 4[�3(e+ f � uA)� �1(e)� �2(f)]

= 2(2te;f + 1) =
2

�e;f
;

thus saturating the generalised Tsirelson bound as claimed.

Not every probabilistic model may possess the property of supporting uniform

universal steering, and although it is a su�cient condition to obtain the con-

clusion of the above theorem, as the following example will show, it is not a
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necessary one. Indeed a model of `boxworld', which contains Popescu-Rohrlich

(PR) box states exhibiting the maximum possible CHSH violations, uses local

state spaces that are the squits introduced earlier, and composition is given by

the maximal tensor product. Despite the saturation of the generalised Tsirelson

bound, such a state space does not admit uniform universal steering.

To see this, we consider a bipartite state ! 2 �
max� with the corresponding

map !̂. Note that from the de�nition of ! being a state, !̂ will automatically be

a positive map sending V �+ into V+. Now suppose ! is steering for its marginal

�, i.e. !̂(u) = �, and choose a decomposition of � into pure states: � =
P
i �i.

Since the subnormalised states in the decomposition are pure, and !̂ is positive,

the inverse images !̂�1(�i) must lie on extremal rays of the cone V �+. Consider

the extremal ray e�ect e = (1; 1; 1) with its complement e0 = (�1;�1; 1) (which
is again extremal). With appropriate labelling of the �i we can then write

�1 = !̂(e) and �2 = !̂(e0); however since we have e+ e0 = u,

�1 + �2 = !̂(e+ e0) = !̂(u) = �;

and hence � can be written as a mixture of just two pure states. Since there are

many points in a square that can only be written as a convex combination of a

minimum of three extreme points, we conclude that such a model of `boxworld'

does not support universal uniform steering.

Remark 1. It is interesting to note that there is another set of conditions suf-

�cient to obtain the conclusion of the above theorem. We say that a positive

cone V+ is homogeneous if the space of order automorphisms of V acts transi-

tively on the interior of V+, and (weakly) self dual if there exists a linear map

� : V ! V � that is an isomorphism of ordered linear spaces i.e. �(V+) = V �+.

It is known that homogeneity follows from uniform universal steering. Con-

versely, if the positive cone V+ generated by the state space 
 of the proba-

bilistic model of a system A is homogeneous and weakly self-dual, then uniform

universal self-steering follows if the maximal tensor product is adopted. Hence

the conditions of Theorem 1 are ful�lled [41] and the Tsirelson bound in the

inequality B � 2=�opt can be saturated.

In the quantum probabilistic model, the tensor product is not maximal but

still uniform universal steering holds. The classical model (trivially) satis�es
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the conditions of weak self-duality and homogeneity, and the tensor product is

maximal. The squit is weakly self-dual but does not satisfy uniform universal

steering, so that homogeneity fails; but it allows enough self-steering so that

the maximal Bell-Tsirelson bound of 4 can be realised.

4.6 Generalised Tsirelson bounds for polygon state

spaces

Work in [45] suggests that there is a spectrum of values for the generalised

Tsirelson bound in the case of 2-dimensional polygon state spaces (given as

the convex hulls of regular polygons). It is shown there that for a system

composed of two identical polygon state spaces with an odd number of vertices,

the maximally entangled state does not lead to a violation of the standard

Tsirelson bound of 2
p
2, whereas in the case of an even number of vertices this

bound can be exceeded. This suggests that among the class of polygon state

spaces, the generalised Tsirelson bound can be either smaller or greater than

the standard Tsirelson bound.

Remark 2. We note that of the polygon state spaces, the only cases in

which homogeneity holds are the n = 3 triangle, and the n ! 1 circle.

Hence in general uniform universal steering is not available, however it

may still be possible to saturate the generalised Tsirelson bound in some

cases, but in others this may not be possible.

As shown in [45], in the case of `boxworld', where each local state space is

a square, the maximally entangled state is a PR box; it takes the maximum

possible value for the Bell functional of 4. This agrees with the result that the

squit does indeed lead to the maximum amount of incompatibility, and shows

that in this case the generalised Tsirelson bound can be saturated. We have

been able to show that this conclusion holds also in regular polygon state spaces

where the number of vertices is a multiple of 8. We expect this result to extend

to all even-sided cases. This strengthens the expectation, expressed in [45], that

in these cases the Tsirelson bound is saturated with the maximally entangled

state.
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Moving to the n = 5 case makes things a lot more interesting however. To see

this we follow the notation in [45] and de�ne the family of state spaces 
n to

be the convex hull of the points

!i =

0
BBBB@
rn cos(

2�i
n )

rn sin(
2�i
n )

1

1
CCCCA ; i = 1; :::; n

with rn =
q
sec(�n).

The qualitative di�erence between the state spaces of odd and even sided poly-

gons �rst appears in the structure of the set of e�ects. For the case of even n,

along with 0 and u, there are n extremal e�ects:

ei =
1

2

0
BBBB@
rn cos(

(2i�1)�
n )

rn sin(
(2i�1)�

n )

1

1
CCCCA ; i = 1; :::; n

and in this case all the ei lie on extremal rays of the cone V �+. This important

fact occurs since for each of the ei we can �nd another e�ect ej , also extremal,

which is its complement, i.e. ej = e0i = u� ei, namely for j = i+ n
2 modn. For

the case of odd n, a seemingly similar expression arises for the ray extremal

e�ects:

ei =
1

1 + r2n

0
BBBB@
rn cos(

2�i
n )

rn sin(
2�i
n )

1

1
CCCCA ; i = 1; :::; n

On this occasion however, the complements of the ei are given by

e0i = u� ei = 1

1 + r2n

0
BBBB@
�rn cos(2�in )

�rn sin(2�in )

r2n

1
CCCCA ; i = 1; :::; n

which do not coincide with the ei, and thus there are 2n non-trivial extreme

points of E (
n).

Now we can pose the question of what the value is for �opt when the state

space is 
5, and whether is it possible to achieve the corresponding Bell value

B = 2=�opt. Since each extreme two valued observable is determined by a ray
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e�ect, the largest value of incompatibility will come from one of the possible

pairs of the ei. However due to the symmetry of the state space, the a�ne

transformation of rotating by �=5 serves only to cyclically permute the indices

of the ei modulo 5. This means that there are only two possible values of �ei;ej ,

those for nearest neighbors, and those for next-nearest neighbors. Calculation

shows that these values are, for example

�e1;e2 =
3 + 2

p
5

11
� 0:67928;

�e1;e3 =
8 + 3

p
5

19
� 0:77416:

hence the value of �opt for the pentagon is 3+2
p
5

11 . From (4.16) this gives the

bound on the Bell functional as B � 4
p
5� 6, however unlike in the case of the

tensor product of two squits, the maximally entangled state between two pen-

tagonal state spaces does not saturate the corresponding bound; instead we get

a value of B = 6p
5
, strictly below that coming from the level of incompatibility

on one state space. This fact suggests that either the chosen way of evaluat-

ing the level of incompatibility in a system used does not capture everything,

or that there is some structural obstruction that prevents such a link holding,

that does not exist in other cases. Here we present some evidence towards the

former.

In order to improve the measure of incompatibility used, we wish to modify the

program used in eqn. (4.6). To do this we relax the method of smearing used,

still mixing in multiples of the order unit, corresponding to trivial observables;

but we now allow them to be possibly biased as follows:

e(�;p) = �e+ p(1� �)u: (4.21)

This de�nition encompasses the old, with e(�) = e(�;
1

2
).

The updated measure of incompatibility of a pair of e�ects e and f , which we
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denote ��e;f , is now given by the optimal value of the optimisation program

maximise: �

subject to: g � e(�;p)

g � f (�;q) (4.22)

0 � g

e(�;p) + f (�;q) � u � g

0 � p; q � 1:

Solving this updated problem in the case of the pentagon again gives the optimal

value on e.g. e1 and e2, with

��opt =
5 +

p
5

10
� 0:72361;

which occurs for the values p = q = 1.

This is indeed a di�erent value from earlier, but still we have that 2
��opt

6= 6p
5
,

however in this case, the unbiased nature of the observables mixed in means

such a simple link is no longer expected, and indeed we can see that there is

a link to the Bell value on the maximally entangled state as follows. As in

the previous, we can de�ne a smeared version of the Bell functional, where the

smearing is all done on the functionals of one party:

B
(�;1) = hA(�;1)

1 B1 + A
(�;1)
1 B2 + A

(�;1)
2 B1 � A(�;1)

2 B2i; (4.23)

but now instead of having the linear scaling in �, we gain an extra expectation

term B
(�;1) = �B+2(1��)hB1i, and again under the assumption that � is small

enough to ensure joint measurability, and then taking the largest such value we

can write the inequality

B �
2
h
1� (1� ��opt)hB1i

i
��opt

: (4.24)

The link to the maximally entangled state on two pentagons now comes from

noting that the expectation of any observable B1 de�ned by an extreme e�ect

on the maximally entangled state is hB1i = 5�2
p
5

5 . This means that if evaluated

in the maximally entangled state, the inequality in (4.24), for the value of ��opt

given above, is indeed saturated.
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4.7 Conclusion

By combining and developing ideas from the works of Wolf et al [35] and Banik

et al [36], we have shown that probabilistic models can be classi�ed according

to their associated value of the generalised Tsirelson bound, which speci�es the

maximum possible violation of CHSH inequalities. We have given conditions

(de�ned and studied in [41]), that probabilistic models may or may not sat-

isfy, under which the maximal CHSH violations are attained for appropriate

choices of maximally incompatible dichotomic observables. Here the degree of

the incompatibility of two observables is de�ned by the minimum amount of

smearing of these observables necessary to turn them into jointly measurable

observables.

The authors of [35] concluded that observables which are incompatible in quan-

tum mechanics remain incompatible in any probabilistic model that serves as

an extension of quantum mechanics. Here we have shown that this conclu-

sion applies to extensions of any probabilistic model which allows for su�cient

steering.

As an illustration of the general results we have considered the squit system

which underlies the PR box model, and have identi�ed the pair of maximally

incompatible extremal e�ects of the squit that give rise to the saturation of

the largest possible value (i.e., 4) of the Tsirelson bound. In addition, we

have obtained partial con�rmation of the conjectured maximality of the Bell

functional if evaluated on the maximally entangled state in the class of regular

polygon state spaces considered in [45].

In the case of the pentagon state space we discovered that the connection be-

tween incompatibility and Bell violation is not always of the simple form en-

visaged originally and used through most of this paper; this suggests that the

de�nitive universal expression of this connection remains yet to be found.

The methods used here are taken from amongst some of the standard tools of

quantum measurement and information theory used in [35] and [36], and we

have shown that they apply equally well in a wide class of probabilistic models.

This insight may prove valuable in future investigations into the characterisa-

tion of quantum mechanics among all probabilistic models.
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Direct tests of measurement

uncertainty relations: what it takes

5.1 Background

Recently there have been claims of experimental violations of Heisenberg's

error-disturbance relation [Rozema et al, PRL 109, 200404 (2012), Erhard et

al, Nature Phys. 8, 185 (2012)]. These experiments may well be considered

the �rst tests of measurement uncertainty relations ever attempted; they do

con�rm inequalities due to Ozawa and Branciard, which constitute a trade-o�

for certain state-dependent measures of error and disturbance. However, the

reliability of these measures was shown to be limited to a restricted class of

measurements, which casts doubts on the universality of the Ozawa-Branciard

inequalities. This raises the general question of what it takes for an experimen-

tal investigation to constitute a direct test of measurement uncertainty rela-

tions. Here we argue that the state-dependent error and disturbance quantities

in question are not in general amenable to direct testing as their values can-

not always be compared with an appropriate experimental error analysis. Such

direct comparisons are shown to be possible, but only for the said restricted

class of measurements. The existing qubit experiments are found to be best

understood as tests of state-independent measurement uncertainty relations.

We conclude that directly testable and universal state-speci�c measurement

uncertainty relations must be based on alternative state-dependent error and
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disturbance measures.

5.2 Introduction

Heisenberg's uncertainty principle is a cornerstone in our understanding of

quantum mechanics. It is therefore remarkable that the important quest for

tests of measurement uncertainty relations has only been addressed very re-

cently, when theoretical and experimental work surprisingly led to claims of a

violation of Heisenberg's error-disturbance relation (e.g. [46, 47, 48, 49, 50, 51,

52]). The experiments con�rm an inequality due to Ozawa and a strengthened

form of it due to Branciard, which are trade-o�s between quantities "(A) and

�(B), taken to quantify the state-speci�c error of an approximate measurement

of an observable A and the ensuing state speci�c disturbance imparted on an

observable B.

These violation claims have been contrasted with proofs of Heisenberg-type

error-disturbance relations for position and momentum [53] and for qubit ob-

servables [54], which are based on alternative, state-independent �worst-case�

measures �(A);�(B). A comparison and reconciliation of both approaches

were given in [55].

A detailed analysis of the quantities "; � carried out in [55] has shown that these

quantities can be unreliable as indicators of error and disturbance if applied

outside a limited range of applicability (which will be speci�ed below) [56].

This casts doubts on the universality of Ozawa's and Branciard's inequalities

as error-disturbance trade-o�s. In addition, it was noted in this study that the

experimental procedures proposed and used so far to determine the values of "; �

are rather indirect; these are the so-called three-state and weak measurement

methods. This raises the general question of what constitutes a direct test of

a universal measurement uncertainty relation. A necessary requirement for a

direct test is that the values of the measures of error and disturbance used can

be estimated by way of an error analysis based on the data of the experiment

at hand. We argue that this condition is not met unconditionally by the existing

experiments, and propose alternative procedures that do meet this requirement,

demonstrating that they can be ful�lled in principle.
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However, these procedures are feasible only within the speci�c class of measure-

ments in which the quantities "; � are in fact reliable as error and disturbance

measures. Consequently, universal, directly testable, state-dependent error-

disturbance relations must be formulated in terms of measures other than "; �

(for an interesting recent proposal, see [57]). We �nd that the existing experi-

ments are appropriately interpreted as direct con�rmations of Heisenberg-type

measurement uncertainty relations for state-independent, worst-case error and

disturbance measures.

5.3 Error and disturbance and their determina-

tion

We consider the following generic scenario. An observable, represented by a

selfadjoint operator A, is to be measured approximately by a scheme actually

measuring some general observable, described by the positive operator valued

measure (POVM) C. The measurement will generally disturb any other observ-

able, represented by operator B, and distort it into some observable (POVM)

D. It is known that a measurement of C followed by an accurate measurement

of B constitutes a joint measurement of C and the �distorted� observable D.

An error analysis based on state-speci�c measures would reveal the error of

the A measurement in the di�erence between the A and C distributions, for ex-

ample in a measure of root-mean-square (rms) deviation of the measured values

of these quantities; likewise the disturbance of B is manifest in the di�erence be-

tween the B and D distributions or values. This shows that disturbance is itself

a form of approximation error in a joint measurement, and error-disturbance

relations are a special form of joint measurement error relations [46, 55].

Alternatively, one may be interested in specifying errors as �gures of merit for

the devices used, that is, applicable to all states. In this case, an error analysis

simply consists of using the relevant statistics to assess the distance between

the approximating and target observables.

The di�erent ways of measuring "; � suggest themselves from the di�erent ex-

pressions of these quantities. First, "; � can be written in terms of the �rst and
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second moment operators of C;D (where, say, C[xn] = R
xnC(dx)):

"(A)2 = tr
h
�A2

i
+ tr

h
�C[x2]

i
� 2Re tr [�AC[x]] ; (5.1)

�(B)2 = tr
h
�B2

i
+ tr

h
�D[x2]

i
� 2Re tr [�BD[x]] : (5.2)

Here � is a general density operator of the object. This formulation leads to

the three-state method [46], based on the following rewriting of, say, "(A):

"no(A;M; �)2 = tr
h
�A2

i
+ tr

h
�C[x2]

i
+ tr [�C[x]] + tr [�1C[x]]� tr [�2C[x]] ; (5.3)

here the (non-normalized) states �1; �2 are given by �1 = A�A, �2 = (A +

1)�(A + 1). While now the quantity "(A) is manifestly determined by the

statistics of A and C, one can no longer claim it to be state-speci�c. This is be-

cause "(A)2 is a combination of numbers that are obtained from measurements

performed on three distinct states �; �1; �2. This method has been applied in

the Vienna experiment [48].

Interestingly, "(A) and �(B) happen to become entirely state-independent for

optimal approximate joint measurements of qubit observables as they are in-

vestigated in the experiments cited above, and it has been shown in [54] that

they then relate closely to the alternative measures �(A);�(B) of worst-case

error and disturbance used in [54]. In this case a probing of three states turns

out su�cient to obtain the values of "(A); �(B) maximized over all states. This

explains why qubit experiments utilizing the three-state method can serve as

direct test of any trade-o� for these maximized error and disturbance quanti-

ties: the error analysis consists here of determining the distance between the

observables A and C, or B and D, rather than facing the generally impossible

task of determining the rms deviation of values of incompatible observables in

any particular state.

Another rewriting of (5.1), (5.2) is as follows:

"(A)2 =
ZZ

(x� y)2Re tr [A(dx)C(dy)] ; (5.4)

�(B)2 =
ZZ

(x� y)2Re tr [B(dx)D(dy)] ; (5.5)

where A;B denote the spectral measures of A;B.
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For an observable B with discrete values bk and spectral projections Bk and a

distorted B observable D with the same values and positive operators D` (such

that
P
kDk = 1), the second equation becomes

�(B)2 =
X
k`

(bk � b`)2Re tr [�BkD`] : (5.6)

The map (bk; b`) 7! Re tr [�BkD`] is a probability distribution if the operators

Bk and D` commute [58]. But this will not be the case in general, and then the

�rms" interpretation of � becomes problematical [55].

To overcome this problem, Lund and Wiseman [59] proposed an indirect deter-

mination of "(A); �(B) via reconstruction formulas that render them as weak

values. Implementations of this method were realized for � in the case of qubit

observables in [47, 51, 52]. The following detailed discussion will lead us to

envisage our alternative, direct method for obtaining error and disturbance via

error analysis.

5.4 Weak measurement vs strong measurement

method

Lund and Wiseman proposed to consider the quantities

Re tr [�BkD`] � PWV (bk; b`) as �weak valued probabilities", which led them to

rewrite (5.6) formally as

�(B)2 =
X
�b

(�b)2PWV (�b); (5.7)

with PWV (�b) =
P
k;`:b`=bk+�b PWV (bk; b`).

This equation is then taken at face value in [59] and also [47], as if it had

an immediate operational meaning. Yet, however suggestive the form of the

above expression for �(B) may be, since in general the so-called weak-valued

probabilities are not probabilities at all, there is in general no justi�cation for

calling (5.7) a rms deviation.

As will be seen below, the example proposed by Lund and Wiseman, a model

experimental determination of �(B) for qubit observables, does fall into the class

of schemes where the commutativity of B with the distorted observable D is

70



Chapter 5 Measurement uncertainty relations

given. In this model (Fig. 5.1) an initial approximate (or weak) measurement

of the qubit observable B = X [60] is done, with strength 2
2 � 1. This is

then followed by an approximate measurement of Z on the resulting state, with

strength cos 2�. Finally there is an accurate X measurement (denoted Xf ). The

initial and �nal X measurements are intended to provide information about

the disturbance of X by the approximate Z measurement. The probe and

measurement system performing the �rst X measurement and the approximate

Z measurement are again qubit observables, and their readout observables are

Zp and Zm, respectively.

The scheme thus realises a joint (sequential) measurement of three �1 valued

observables, with probabilities

Pk;`;n := P (Zp = k;Xf = `; Zm = n); k; `; n 2 f+;�g;

which are determined together the associated POVMs in the Supplemental Ma-

terial [?] (see also [61]).

It is important to note that the weak-valued probabilities PWV (bk; b`) required

for PWV (�b) do not coincide with the operational joint probabilities P (Zp =

k;Xf = `) of the proposed experiment. Indeed, the reconstruction of the value

of �(B) from these operational joint probabilities is rather indirect in the pro-

posed setup and does not suggest any relation with the rms value deviation

interpretation.


j0i+ 
0j1i Zp

�j0i+ �j1i H � H � Xf

cos �j0i+ sin �j1i Zm

Figure 5.1: Model implementation of a determination of �(X). The top and

bottom wires represent the probe and measuring system while the middle wire

corresponds to the observed qubit. As shown in the text, the value of �(X) can

be extracted from the joint distribution of the initial and �nal X measurements,

obtained by reading the outputs Zp and Xf .

As observed in [59], the �weak-valued" probabilities PWV (�b) = PWV (�2) can
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be expressed in terms of the operational joint probabilities
P
n Pk;`;n = P (Zp =

k;Xf = `) in a rather involved (see the Supplement).

Using the explicit expressions for these joint probabilities and inserting the

resulting values of PWV (�X = �2) into (5.7) yields the same result for all

values of the strength parameter, 2
2 � 1:

�(X) =
p
2j cos � � sin �j;

There is no need to perform the limit to vanishing strength, 
 ! 1=
p
2 for the

determination of �(X).

Curiously, not much was made of the fact that the coupling strength parameter

for the weak measurement applied dropped out of the calculations before the

weak limit was taken. We are thus led to consider a change of perspective �

away from the focus on weak values to considering the strong-measurement

limit of the scheme (
 = 1). We will see that this yields at once both a much

simpler way of evaluating � and a more direct operational interpretation of

this quantity. We also show that this alternative method is applicable beyond

the qubit case, to joint measurement schemes where the measured approximat-

ing observables commute with their sharp target observables. To be sure, the

weak-value method remains applicable also in the case of noncommuting ap-

proximators where the strong-measurement method is not available; but, as we

noted above, the measures "; � become unreliable if used beyond the realm of

commuting approximators.

We can thus use the freedom of choice of initial interaction strength to explore

what happens if we set 
 to maximum strength, 
 = 1, so that we are in fact

performing a sharp (or strong) X measurement. Thus we are led to taking

seriously the fact that here the numbers tr [�BkD`] are bona �de probabilities:

they are simply the operational joint probabilities of the outcomes of the initial

and �nal X measurements, and directly yield the probabilities for these values

di�ering by �X = �2:

PWV (�X = �2) = P (Zp = �1; Xf = �1):

Correspondingly, the value of the disturbance quantity �(X) is given by the
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actual squared deviation of the values of the two measurements:

4P (Zp = +1; Xf = �1)+4P (Zp = �1; Xf = +1)

� �(X)2:

This surprising result becomes understandable when one considers that the Xf

measurement can be viewed as an approximate repetition of the initial sharp

measurement of X; the measurement of Xf is distorted into a measurement of a

POVM D that is also compatible with approximate Z measurement performed

between the X measurements. In this case Xf , or rather D, acts as a smeared

version of X on the initial state, and thus commutes with the initial sharp X

measurement. When the observable D commutes with X, the interpretation of

�(X) as disturbance is unproblematic [54].

It is therefore the strong measurement limit that provides a direct operational

scheme for determining �(X) directly as the rms deviation of the values of

two X measurements performed on the same system before and after the Z

measurement. It is important to note that this interpretation works under

the assumption that the initial X measurement is of the Lüders type, which

projects into X eigenstates. In this case, the quantities tr [�BkD`] appearing

in (5.6) represent exactly the joint probabilities for the initial and �nal X

measurements. In particular, the �nal marginal of the scheme of Fig. (5.1) is

not a�ected by the presence of the inital X measurement.

5.5 Generalization

The alternative, �strong measurement", perspective on the disturbance measure

� presented in the above model can be generalized to a rather wider class of se-

quential joint measurement scenarios. Let B be a sharp observable with values

bk and spectral projections Bk. Suppose an approximate measurement of A rep-

resented by POVM C is followed by a sharp measurement of observable B. This

sequential scheme de�nes a joint measurement of C and some POVM D, which

is an approximation of B. Assume that the disturbance is benign, in the sense

that the D` commute with the Bk, which occurs typically when D is a smearing

of B by means of a stochastic matrix (�`m), i.e., D` =
P
m �`mBm. Now assume
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that the measurement of C is preceded by a projective measurement of B. It

follows that the operational joint probabilities are

P (Bi = bk; Bf = b`;C = cn) = tr
h
IC
n(Bk�Bk)B`

i
= tr

h
Bk�Bk(IC

n)
�
(B`)

i
:

Here n 7! IC
n denotes the instrument associated with C, giving the state

change conditional on the outcome n, and (IC
n)
�
is the dual of the opera-

tion IC
n . Disregarding the outcomes of the C measurement and noting that

D` =
P
n (IC

n)
�
(B`), we obtain the marginal probability

P (Bi = bk; Bf = b`) = tr [Bk�BkD`]

= tr [�BkD`] � PWV (bk; b`);

since Bk commutes with D`. Therefore,

�(B)2 =
X
k;`

(bk � b`)2PWV (bk; b`)

=
X
k;`

(bk � b`)2P (Bi = bk; Bf = b`):

A similar, even simpler consideration leads to a strong-measurement procedure

for the error analysis required for a comparison of the measured observable C
and the target observable A. In fact, assume A to have discrete values ak with

associated spectral projections Ak, and let C be discrete with values c`, where

the associated positive operators C` are assumed to commute with the Ak. If

the measurement of C is preceded by a Lüders measurement of A, the joint

probability for an outcome pair (ak; c`) is

P (A = ak;C = c`) = tr [�AkC`] � PWV (ak; c`):

Thus, in analogy to (5.6) one can write "(A) as a true value-comparison error,

testable by preceding the C measurement with a strong (Lüders) measurement

of A:

"(A)2 =
X
k`

(ak � c`)2tr [�AkC`] : (5.8)
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5.6 Discussion

Considering the strong coupling limit of the measurement scheme designed

originally for a weak-value determination of the disturbance �, we discovered

a procedure for a direct determination of � via error analysis, that is, as

the rms deviation of the values of the disturbed observable and the values of an

accurate control measurement of the same observable. We showed that this error

analysis method applies to joint measurements of compatible observables C;D
as approximations to two discrete observables A;B, provided C;D commute

with A;B, respectively.

We have thus obtained a demonstration of the possibility of determining "; �

via direct error analysis, together with a model realization arising from a mod-

i�cation of the Lund-Wiseman scheme, which can be implemented by adapting

the Toronto experiment.

However, the restriction of the error analysis method to approximators that

commute with the taget observables underlines the limitation of the measures

"; � pointed out in [55], namely, that they become unreliable where this com-

mutativity is not given. This means that the Ozawa-Branciard inequalities lack

universality as they cannot be interpreted safely as error-disturbance relations

for noncommuting approximator and target observables. We conclude that the

formulation of universal and directly testable state-dependent error-disturbance

relations is to be based on alternative, generally applicable, measures of error

and disturbance.

This leaves us with the question about the status of the existing tests of the

Ozawa-Branciard inequalities for qubit observables. As was shown in [55], these

experiments realize approximating observables C;D of the form C� = 1
2(1�c�σ)

and D� = 1
2(1 � d � σ), where the target observables are A = a � σ and

B = b �σ, respectively. Observables C;D of this kind are known to give optimal

approximations, in the sense that for any general approximating observable one

can always �nd a better approximator from this class [62]. Here the quality

of approximations is judged not by state-dependent errors but by a distance

of observables. This is the state-independent error, �(A), referred to in the

Introduction, which is really a distance, �(A;C), between the spectral measure

A of A and the approximating POVM C. In [54], this distance was de�ned and
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evaluated as

�(A;C)2 = 2ka� ck:

Moreover, it was shown that the quantity "(A) is state-independent and directly

related to this distance:

"(A)2 = 1� kck2 + 1
4�(A;C)4 � �(A;C)2:

In the Vienna experiment [48], the approximators are misaligned sharp observ-

ables (kck = 1), giving "(A) = 1
2�(A;C)2. In the Toronto experiment [47],

they are smearings of the target with c = �a, hence commuting, and one has

"(A) = �(A;C).

�(A;C) is directly obtained from the statistics of the A and C measurements

for su�ciently many states [62, 54]; this is con�rmed by the fact that "(A)

can be determined by the three-state method. It follows that the experiments

are appropriately interpreted as direct tests of a universal error-disturbance

relation for worst-case errors and disturbances, namely Branciard's inequality

in the form [49, Eq. (12)], evaluated for the observables A = Z;B = X and a Y

eigenstate. Using the scaling "(Z)2 = 2dZ , �(X)2 = 2dX , this inequality reads

simply

(dZ � 1)2 + (dX � 1)2 � 1;

with values of interest being dZ ; dX � 1. In the case of commuting approxi-

mators this strengthens the inequality dZ + dX � 2 �p2 obtained in [62, 54],

with dZ ; dX now equal to ka � ck; kb � dk. Rather than being violations of

Heisenberg's principle, the experiments thus con�rm inequalities that are very

much in the spirit of Heisenberg's uncertainty ideas.

To conclude, it remains an interesting open problem whether state-speci�c

error measures and associated universal and directly testable error-disturbance

relations with nontrivial trade-o� bounds can be found.

Supplemental Material

The experimental setup displayed in Figure 1 in the main text (reproduced

below) consists of a three-qubit system, the object in initial state �j0i+�j1i, a
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�weak measurement probe (p)" initially in state 
j0i+
0j1i, and the apparatusm
with initial state cos �j0i+sin �j1i, all in their respective 2-dimensional Hilbert

spaces H , Hp andHm, respectively.

In the scenario when the disturbance measure for the observable X is to be

determined, the initial approximate X measurement is enacted by �rst applying

a Hadamard gate on the object system H , followed by a CNOT gate acting on

Hp, controlled on H , and �nally with another Hadamard gate performed on

H . This is followed by the device whose disturbance is being measured, wherein

a CNOT gate acts on Hm, again controlled on H . Sharp Z measurements are

then performed on Hp and Hm, (denoted Zp and Zm respectively), along with

a sharp X measurement (Xf ) on H :


j0i+ 
0j1i Zp

�j0i+ �j1i H � H � Xf

cos �j0i+ sin �j1i Zm

The state of the object and weak probe combined j 1i, after the the initial

interaction is then given by:

j 1i =(I
H)CNOT (I
H)(
j0i+ 
0j1i)
 (�j0i+ �j1i)

=
1p
2
(I
H)CNOT (
j0i+ 
0j1i)
 ((�+ �)j0i+ (�� �)j1i)

=
1p
2
(I
H)

h
(
j0i+ 
0j1i)
 (�+ �)j0i+ (
0j0i+ 
j1i)
 (�� �)j1i

i

=
1

2
[(
(�+ �) + 
0(�� �))j0i 
 j0i+ (
0(�+ �) + 
(�� �))j1i 
 j0i

+ (
(�+ �)� 
0(�� �))j0i 
 j1i+ (
0(�+ �)� 
(�� �))j1i 
 j1i]
= jp0i 
 j0i+ jp1i 
 j1i;

where

jp0i = 1

2
(
(�+ �) + 
0(�� �))j0i+ (
0(�+ �) + 
(�� �))j1i

jp1i = 1

2
(
(�+ �)� 
0(�� �))j0i+ (
0(�+ �)� 
(�� �))j1i:
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The state of the whole system after the measuring device, j f i is then

j f i =(I
 CNOT )(jp0i 
 j0i+ jp1ij1i)
 (cos �j0i+ sin �j1i)
= jp0i 
 j0i 
 (cos �j0i+ sin �j1i) + jp1i 
 j1i 
 (sin �j0i+ cos �j1i)
= jp0i 
 j0i 
 jm0i+ jp1i 
 j1i 
 jm1i;

with

jm0i = cos �j0i+ sin �j1i
jm1i = sin �j0i+ cos �j1i:

Now writing j+i = 1p
2
(j0i+ j1i) and j�i = 1p

2
(j0i � j1i), the eigenstates of X,

we have

j f i = 1p
2
[jp0i 
 j+i 
 jm0i+ jp1i 
 j+i 
 jm1i

+ jp0i 
 j�i 
 jm0i � jp1i 
 j�i 
 jm1i]

=
1

2
p
2
[([
(�+ �) + 
0(�� �)] cos �

+ [
(�+ �)� 
0(�� �)] sin �)j0i 
 j+i 
 j0i
+ ([
(�+ �) + 
0(�� �)] sin �

+ [
(�+ �)� 
0(�� �)] cos �)j0i 
 j+i 
 j1i
+ ([
0(�+ �) + 
(�� �)] cos �

+ [
0(�+ �)� 
(�� �)] sin �)j1i 
 j+i 
 j0i
+ ([
0(�+ �) + 
(�� �)] sin �

+ [
0(�+ �)� 
(�� �)] cos �)j1i 
 j+i 
 j1i
+ ([
(�+ �) + 
0(�� �)] cos �

� [
(�+ �)� 
0(�� �)] sin �)j0i 
 j�i 
 j0i
+ ([
(�+ �) + 
0(�� �)] sin �

� [
(�+ �)� 
0(�� �)] cos �)j0i 
 j�i 
 j1i
+ ([
0(�+ �) + 
(�� �)] cos �

� [
0(�+ �)� 
(�� �)] sin �)j1i 
 j�i 
 j0i
+ ([
0(�+ �) + 
(�� �)] sin �

� [
0(�+ �)� 
(�� �)] cos �)j1i 
 j�i 
 j1i]:
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From here the probabilities of the various outcomes can be read o�; writing,

say P+�+ for the probability P (Zp = +1; Xf = �1; Zm = +1), we have:

8P+++ =1 + (2
2 � 1)(� �� + ���) + sin(2�)[(2
2 � 1)

+ (� �� + ���)] + 2

0(j�j2 � j�j2) cos(2�)
8P++� =1 + (2
2 � 1)(� �� + ���) + sin(2�)[(2
2 � 1)

+ (� �� + ���)]� 2

0(j�j2 � j�j2) cos(2�)
8P�++ =1 + (1� 2
2)(� �� + ���) + sin(2�)[(1� 2
2)

+ (� �� + ���)] + 2

0(j�j2 � j�j2) cos(2�)
8P�+� =1 + (1� 2
2)(� �� + ���) + sin(2�)[(1� 2
2)

+ (� �� + ���)]� 2

0(j�j2 � j�j2) cos(2�)
8P+�+ =1 + (2
2 � 1)(� �� + ���)� sin(2�)[(2
2 � 1)

+ (� �� + ���)] + 2

0(j�j2 � j�j2) cos(2�)
8P+�� =1 + (2
2 � 1)(� �� + ���)� sin(2�)[(2
2 � 1)

+ (� �� + ���)]� 2

0(j�j2 � j�j2) cos(2�)
8P��+ =1 + (1� 2
2)(� �� + ���)� sin(2�)[(1� 2
2)

+ (� �� + ���)] + 2

0(j�j2 � j�j2) cos(2�)
8P��� =1 + (1� 2
2)(� �� + ���)� sin(2�)[(1� 2
2)

+ (� �� + ���)]� 2

0(j�j2 � j�j2) cos(2�):

This gives the respective 8-outcome POVM with positive operators Ek`m on

the target system:

8E+++ =(1 + sin(2�)(2
2 � 1))I+ (2
2 � 1 + sin(2�))X + 2

0 cos(2�)Z

8E++� =(1 + sin(2�)(2
2 � 1))I+ (2
2 � 1 + sin(2�))X � 2

0 cos(2�)Z

8E�++ =(1 + sin(2�)(1� 2
2))I+ (1� 2
2 + sin(2�))X + 2

0 cos(2�)Z

8E�+� =(1 + sin(2�)(1� 2
2))I+ (1� 2
2 + sin(2�))X � 2

0 cos(2�)Z

8E+�+ =(1� sin(2�)(2
2 � 1))I+ (2
2 � 1� sin(2�))X + 2

0 cos(2�)Z

8E+�� =(1� sin(2�)(2
2 � 1))I+ (2
2 � 1� sin(2�))X � 2

0 cos(2�)Z

8E��+ =(1� sin(2�)(1� 2
2))I+ (1� 2
2 � sin(2�))X + 2

0 cos(2�)Z

8E��� =(1� sin(2�)(1� 2
2))I+ (1� 2
2 � sin(2�))X � 2

0 cos(2�)Z:

From here we can read o� the actual (marginal) 2-outcome POVMs that are

being measured on the system at the three stages. Firstly the Zp measurement
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de�nes the positive operators Bk =
P
`mEk`m representing the initial weak X

measurement:

B+ = 1
2

h
I+ (2
2 � 1)X

i
B� = 1

2

h
I� (2
2 � 1)X

i
;

the �nal sharp Xf corresponds to measuring the POVM D` =
P
kmEk`m:

D+ = 1
2

h
I+ sin(2�)X

i
D� = 1

2

h
I� sin(2�)X

i
;

and the observable actually being measured by the measurement device whose

disturbance power is being assessed is Cm =
P
k`Ek`m:

C+ = 1
2

h
I+ 2

0 cos(2�)Z

i
C� = 1

2

h
I� 2

0 cos(2�)Z

i

We also note down the POVM, Fk` =
P
mEk`m, representing the joint measure-

ment of the initial weak X observable and the �nal Xf measurement, which is

used to calculate the disturbance quantity:

F++ = 1
4

h
(1 + sin(2�)(2
2 � 1))I+ (2
2 � 1 + sin(2�))X

i
F�+ = 1

4

h
(1� sin(2�)(2
2 � 1))I� (2
2 � 1� sin(2�))X

i
F+� = 1

4

h
(1� sin(2�)(2
2 � 1))I+ (2
2 � 1� sin(2�))X

i
F�� = 1

4

h
(1 + sin(2�)(2
2 � 1))I� (2
2 � 1 + sin(2�))X

i
:

The associated operational joint probabilities in the state �j0i+�j1i are (putting
hXi = � �� + ���):

P (Zp = +1; Xf = +1) = 1
4

h
(1 + sin(2�)(2
2 � 1)) + (2
2 � 1 + sin(2�))hXi

i
P (Zp = �1; Xf = +1) = 1

4

h
(1� sin(2�)(2
2 � 1))� (2
2 � 1� sin(2�))hXi

i
P (Zp = +1; Xf = �1) = 1

4

h
(1� sin(2�)(2
2 � 1)) + (2
2 � 1� sin(2�))hXi

i
P (Zp = �1; Xf = �1) = 1

4

h
(1 + sin(2�)(2
2 � 1))� (2
2 � 1 + sin(2�))hXi

i
:
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With these expressions it is straightforward to verify Eq. (3) of the main text,

2PWV (�X = �2) = 2PWV (Xi = �1jXf = �1)P (Xf = �1)
= P (Zp = 1; Xf = �1) + P (Zp = �1; Xf = �1)

� P (Zp = 1; Xf = �1)� P (Zp = �1; Xf = �1)
2
2 � 1

:

The last expression, which can be directly evaluated using the above proba-

bilities, is to be compared with the weak-valued probability on the left hand

side:

PWV (�X = �2) = PWV (Xi = �1; Xf = �1) =
�
1

2
(I�X)

1

2

�
I� sin(2�)X

��

= 1
2

�
1� sin(2�)

�
1
2

�
1� hXi

�
:

We observe that these weak-valued joint probabilities do not coincide with

the operational probabilities, P (Zp = �1; Xf = �1), except in the strong

measurement case, 
 = 1.

Finally we verify the strong measurement realization of �(X).

4P (Zp = +1; Xf = �1) + 4P (Zp = �1; Xf = +1) = 2� 2 sin(2�)(2
2 � 1):

Note that this is already state-independent. On putting 
 = 1, we �nally obtain

4P (Zp = +1; Xf = �1) + 4P (Zp = �1; Xf = +1) = 2� 2 sin(2�) = �(X)2:
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Summary

It is worth summarising brie�y some of the main results of the thesis here.

The �rst part of the thesis had a lot to do with general probabilistic models.

The idea of `smearing' two observables, by mixing them with trivial observables

enough to make them jointly measurable was introduced. This led to the idea

of the joint measurability region for a pair of obervables, all observables, and all

n-outcome observables. These concepts gave us the tools to compare theories

based on the degrees on incompatibility inherent in them. We saw that for the

measure that considers all observables in a given theory, quantum theory comes

out as containing the most incompatibility that a theory theoretically can. This

in this sense quantum theory is maximally incompatible. Howver we also saw

that when the joint measurability regions for n-outcome observables are used,

quantum theory is a long way o� containing the maximum amount of incom-

patibility, with an example given of a theory that is maximally incompatible at

only the 2-outcome level.

Furthering the investigation into GPMs, a single numerical measure of the de-

gree of incompatibility of a pair of observables was then given. This measure

is also derived from the idea of mixing the observables with trivial observables,

this time unbiased ones. This measure was then phrased as a conic optimisa-

tion problem, whose dual problem is directly related to the notion of non-local

correlations. This led to the notion of a generalised Tsirelson bound for a given

theory, which limits the strength of certain correlations based on the degree of

incompatibility in the theory. The condition of a theory supporting the con-
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cept of steering was shown to be a su�cient condition for this bound to be

saturated. Examples were given where the general results do and do not apply,

and discussion was given about possible modi�cations to the used measure of

incompatibility.

Finally the topic of measurement uncertainty relations in quantum theory was

visited. Analysis was presented of certain proposed state-dependent measures

of error and disturbance. The concept of a direct test of error or disturbance was

formalised, and a potential experimental test was given for such a direct test.

It was pointed out that such tests can only happen under certain conditions,

which is consistent with other results about these measures. It was concluded

that the measures presented so far do not meet the demands that would be

necessary to be used in universally valid relations.
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