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ABSTRACT 

The problem of predicting outcomes over time and expressing uncertainty about the future is one 

common to many scientific disciplines. For cost-effectiveness analysis used to aid resource allocation 

decisions in healthcare, this problem presents itself in the form of a disparity between the evidence time 

horizon (which is typically short-term) and the appropriate analysis time horizon (which is often long-

term). To date, this problem has been primarily characterised as one of a need to extrapolate, i.e. an 

imperative to interpret the available short-term evidence and project this into the long-term in order to 

plug the evidence gap. Furthermore, the issue has been strongly associated with estimations of survival, 

but less so with other measures of disease progression, with estimates of cost, or with estimates of 

health-related quality of life. 

This thesis strives to take a broad and thoughtful approach to examining the general problem of a dearth 

of evidence pertaining to the long-term. It is argued that this problem is most accurately and most 

usefully thought of as one of uncertainty. As such, in this thesis, the term ‘temporal uncertainty’ is 

employed. Consideration is given to the nature of temporal uncertainty and when it is of significance in 

the context of decision making with evidence development. Where a full expression of temporal 

uncertainty is necessary in order to make an informed decision, a number of approaches are described 

and appraised. Caution is advised in relation to extrapolating evidence over time due to the implicit 

assumption that outcomes in the short-term are good predictors of outcomes in the long-term. It is 

recommended that temporal uncertainty be characterised by a single uncertain ‘temporal’ parameter 

and incorporated into a probabilistic analysis in order to provide a true estimate of expected cost-

effectiveness and to estimate the value of obtaining information that would lessen temporal uncertainty. 

In the context of these principles, a review of the health technology assessment (HTA) literature reveals 

that approaches to addressing temporal uncertainty to date have been inconsistent and largely 

inadequate. The review also makes apparent the full range of model parameters that are regularly 

exposed to temporal uncertainty and the specific analytical challenges that must be overcome. A 

motivating example (the RITA-3 decision model) is employed in order to develop and apply methods that 

appropriately quantify temporal uncertainty for a range of model parameters given the available 

evidence. The motivating example also facilitates an examination of the effects of expressing temporal 

uncertainty throughout a decision model. It is found that the replacement of ‘conservative’ temporal 

assumptions with expressions of temporal uncertainty alters the adoption recommendation for several of 

the risk groups under examination, that overall uncertainty around costs and health benefits is greatly 

inflated, that there is likely to be value in obtaining further information specifically in relation to the long-

term temporal nature of certain model parameters and that there may also be value in ‘waiting’ for 

further evidence to be revealed if there is the potential for significant irrecoverable costs to be incurred.  

In summary, this thesis represents a contribution to the development of methods to aid decision making 

in healthcare. In particular, the significant issue of temporal uncertainty is expounded and methods to 

appropriately address temporal uncertainty are developed and demonstrated. 
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1. CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

 

“I think it’s much more interesting to live with uncertainty than to have answers which might 

be wrong” 

  Richard Feynman 

 

This introductory chapter lays the foundations to the thesis by describing the decision-making 

context in which the issue of temporal uncertainty arises, namely, the role of cost-effectiveness 

analysis (CEA) in healthcare and the use of decision analytic modelling to aid CEA.  There follows an 

outline of the objectives and the structure of this thesis. 

 

1.2 Context: Decision-making for Resource Allocation in Healthcare 

 

1.2.1 Resource Allocation in Healthcare 

 

In healthcare, as in every other sector of the economy, we find the basic economic problem: 

resources are scarce but human wants and needs are vast, so how to optimally allocate these 

resources? It is argued that health as an economic good exhibits particular characteristics that make 

it quite distinct from other economic goods (Culyer, 1971);  issues such as equity, consumer 

rationality and externalities result in a disparity of opinion regarding how the healthcare sector 

ought to be structured and administrated. Consequently, a variety of healthcare regimes (in terms of 

financing and provision) exist around the world. In Germany, France and the Netherlands, an 

approach comprising a private insurance market with a state subsidy is taken. In Canada, Norway 

and Spain, there exist national-level health insurance systems. In many countries, such as Denmark, 

Italy, New Zealand and the United Kingdom, national health services provide universal healthcare on 

behalf of the state (Folland et al., 2004). In England and Wales, to aid resource allocation decisions 

of the National Health Service (NHS), the National Institute for Health and Care Excellence (NICE) 

was established in 1999. NICE is tasked with (among other things) ensuring the best use of resources 

so that patients receive the greatest benefit (Great Britain. Dept. of Health, 1998). Although the 

research and analysis in this thesis is relevant for many healthcare regimes and advisory bodies, 
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there is particular focus on the decision-making setting of England and Wales and the advisory role 

of NICE.  

 

1.2.2 Efficient Allocation 

 

One matter that each kind of regime must consider is that of efficiency (or value for money)1. For 

many publicly funded health systems, including the NHS, it is the ‘Extra-Welfarist’, societal decision-

making approach that lays the economic foundation to the resource allocation process, and thus 

informs the definition of efficiency. In short, this approach takes an exogenously defined societal 

objective and views the health system’s objective as maximising population health given an 

exogenous budget constraint for healthcare (Sculpher, 2005).  In order to allocate healthcare 

resources ‘efficiently’ in this framework, it must be that the population health benefits of any health 

intervention are greater than their opportunity cost, where we think of the opportunity cost as the 

health benefits attributed to those interventions that are displaced when new interventions that 

impose costs on the system are imposed (Walker et al., 2007). ‘Efficiency’ therefore, is a product of a 

health intervention’s benefits and costs, those of its relevant comparators, and the budget allocated 

to healthcare in the state. Demonstrating the efficiency of health interventions has become a central 

tenet in the management of modern public health systems.  

 

1.2.3 Cost-effectiveness Analysis to Demonstrate Efficiency  

 

This process of evaluating alterative health interventions in terms of their health benefits and costs 

is often referred to as ‘economic evaluation’. It is important that economic evaluations are 

consistent, transparent and evidence-based (Drummond et al., 2005) (NICE, 2013). There is debate 

as to what form of analysis constitutes an appropriate economic evaluation. Such debate relates to 

the alternative theoretical approaches that may underpin an economic evaluation. The ‘extra-

welfarist’ theoretical approach outlined above is reflected through the use of cost-effectiveness 

analysis.  

Cost-effectiveness analysis (CEA) is the form of economic evaluation specifically recommended by 

NICE (NICE, 2013). In CEA, the benefits and costs of a health intervention are considered 

                                                           
1
 In economic terms, it is allocative efficiency in particular that is being referred to here, as opposed to 

technical efficiency (Palmer and Torgerson, 1999) 
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simultaneously against relative comparators. The cost-effectiveness of any one intervention can 

then be recorded as x amount of money per y amount of health benefit.  

Further (though related) to the question of which theoretical approach should underpin economic 

evaluation is the question of exactly which costs and which benefits should be included in economic 

evaluation. It is intuitive that costs falling directly on the healthcare sector ought to be included (e.g. 

cost of a healthcare programme, cost of equipment, physician visit, etc.). It could be argued that 

other costs such as those falling on other economic sectors and certain less tangible costs should be 

included also (e.g. productivity losses and burden on patient and family). These two types of costs 

could broadly be categorised into ‘direct’ and ‘indirect’ costs. Similarly, regarding 

benefits/disbenefits, the changing health state of the patient(s) would intuitively be accounted for. 

However, other benefits (that mirror the other costs outlined above) could be accounted for also, 

e.g. productivity gains, benefits to family, benefits to other sectors. As well as categorising using the 

direct/indirect dichotomy, a distinction between perspectives is often drawn. For example, a 

‘healthcare system’s perspective’ would include only direct costs and benefits, whereas a ‘societal 

perspective’ would include costs and benefits that fall outside of the healthcare sector. NICE 

advocates a ‘healthcare system perspective’ where only direct health effects are accounted for and 

only costs relevant for the NHS & PSS (personal social services). 

 

1.2.4 Measures of Health Benefit and Cost 

 

To make consistent resource allocation decisions across clinical areas and kinds of intervention in 

CEA, there is a need for a generic measure of health outcome. There exist several such measures, 

e.g. the disability-adjusted-life-year (DALY) (Tan-Torres Edejer and World Health Organization, 2003), 

the healthy-years-equivalent (HYE) (Mehrez and Gafni, 1989) and the saved-young-life-equivalent 

(Nord, 1995). However, it is the Quality-Adjusted-Life-Year (QALY), that is the most typically 

employed measure in CEA (Briggs et al., 2006) and the measure explicitly recommended by NICE 

(NICE, 2013). The QALY accounts for both survival (life-years) and the health-related quality of life 

(quality adjusted) and is calculated as the product of these two components (Drummond et al., 

2005). The costs should relate to resources under the control of the relevant health bodies (for the 

England and Wales: the NHS and Personal Social Services (PSS)) and be valued in monetary terms 

(Walker et al., 2007). 

 

1.2.5 A Decision Criterion for Adoption 
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With consistent measures of health outcome (the QALY) and costs, competing health interventions 

can be directly compared in terms of cost-effectiveness. But when can an intervention be said to be 

cost-effective? Given two alternative treatments A and B, A is said to strictly dominate B (and 

therefore be deemed cost-effective) if A is less costly and more effective than B, and vice versa2. If 

however, A is more effective than B but also more costly (a more common scenario), what must be 

considered is the whether the additional (incremental) cost is worth paying for the additional 

benefits (Walker et al., 2007). In CEA, an incremental cost-effectiveness ratio is calculated according 

to the following formula: 

𝐼𝐶𝐸𝑅𝐴𝐵 =
𝐶𝑜𝑠𝑡𝑠 𝑜𝑓 𝐴 − 𝐶𝑜𝑠𝑡𝑠 𝑜𝑓 𝐵 

𝑄𝐴𝐿𝑌𝑠 𝑜𝑓 𝐴 − 𝑄𝐴𝐿𝑌𝑠 𝑜𝑓 𝐵
 

 

The use of treatment A in the health system will be deemed a cost-effective use of resources if the 

ICER is found to be below a particular threshold (the ICER threshold).  

The ICER threshold, in effect, expresses the monetary value of health outcome. More specifically, 

the threshold represents the maximum acceptable additional cost that can be incurred by the 

healthcare system in order to fund a healthcare intervention that will result in a health gain of 1 

QALY, given that disinvestment from other interventions and services is implicit. The threshold 

should then, in principle, be determined by the health benefits estimated to be foregone elsewhere 

in the health system when a new intervention is funded. NICE has employed an ICER threshold range 

of between £20,000 and £30,000 per QALY (NICE, 2013). NICE has not, to date, provided any 

empirical evidence for this threshold range. How exactly this threshold should or could be calculated 

in reality is the subject of much discussion (Culyer et al., 2007) (McCabe et al., 2008). Recent 

research has endeavoured to estimate the ‘true’ NICE ICER threshold by estimating the relationship 

between changes in overall NHS spending and changes in mortality and quality of life (Claxton et al., 

2013). This research provided a central estimate for the threshold pf £12,936 per QALY.  

Analogous to the calculation of the ICER in comparison with the threshold is the calculation of ‘net 

benefit’, the positive or negative calculation of which indicates a positive or negative decision 

recommendation respectively. The expression for net health or net monetary benefit can be easily 

                                                           
2
 A treatment B can also be ‘extendedly dominated’ if there is a combination of treatments A and C that would 

be less costly and more efficacious. When there are more than two competing interventions, an algorithm that 
removes the dominated treatments and calculates ICERs between the remaining treatments ought to be 
undertaken. For the remainder of this thesis, for simplicity, only a two-treatment decision problem will be 
discussed. 
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derived from the expression for the ICER along with the threshold. For instance, the net health 

benefit of investing in treatment A instead of treatment B can be expressed as: 

𝑁𝑒𝑡 𝐻𝑒𝑎𝑙𝑡ℎ 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐴𝐵 = (𝑄𝐴𝐿𝑌𝑠 𝑜𝑓 𝐴 − 𝑄𝐴𝐿𝑌𝑠 𝑜𝑓 𝐵) − (𝐶𝑜𝑠𝑡𝑠 𝑜𝑓 𝐴 − 𝐶𝑜𝑠𝑡𝑠 𝑜𝑓 𝐵)/𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 

1.2.6 CEA is Informing Two Decisions 

 

When considering the adoption of new health technologies, the choices available to decision makers 

are not limited to: adopt or do not adopt. There will inevitably be uncertainty surrounding the cost-

effectiveness results, and therefore a certain probability that the subsequent adoption decision will 

not be the correct one, leading to an overall loss of health benefits. As part of its recommendation, 

advisory bodies may want to request that further evidence be collected3. The CEA then should 

inform two distinct but related decisions (Claxton et al., 2002): 

(i) Is a health technology cost-effective given the currently available evidence? 

(ii) Should further evidence be sought? 4 

  

1.2.7 The Development of a Decision Analytic Framework 

 

The key source of evidence employed to inform a CEA often comes in the form of one or more 

randomised controlled trials (RCTs). While there are many advantages to using RCTs (e.g. 

randomisation which minimises selection bias), there are numerous limitations to using RCT and 

other typically available evidence (see Figure 1) as the basis for a CEA (Claxton et al., 2002).  

Given the two key questions posed above, a number of requirements arise regarding the 

appropriate execution of CEA which are at odds with the characteristics typical of RCTs. These 

requirements have been well articulated elsewhere and include: a consistent perspective, use of all 

relevant evidence, use of an appropriate time horizon and characterisation of uncertainty (Sculpher 

et al., 2006, Philips et al., 2006). As a result of these requirements, purely trial-based analyses (that 

is, analyses that only employ data from a clinical trial and are predicated within the time horizon of 

that trial) often do not suffice. Additional methods are required in order to provide a complete 

                                                           
3
 The full range of decision options available, in principle, under conditions of uncertainty is discussed in 

Chapter 2. 
4
 At present, addressing the question of the pursuit of further evidence is not a formal requirement for 

submissions made to NICE.  
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picture of cost-effectiveness. A decision analytic framework has been developed in recent years that 

makes use of evidence synthesis and decision modelling in order to bridge the gap between the 

nature of the available evidence and the requirements for an appropriate CEA, thus facilitating 

appropriate decision making (Briggs et al., 2006). Analyses that employ decision modelling and/or 

evidence synthesis can be referred to as cost-effectiveness decision models (CEDMs). Analytic 

methods that improve CEDMs are continually being developed. Figure 1 illustrates the role of 

decision modelling and evidence synthesis in CEA. Highlighted are the particular evidence limitation 

and the particular CEA requirements that give rise to the focus of this research. 

Figure 1: Decision modelling and evidence synthesis bridge the gap between the requirements for 
CEA and the limitation of the available evidence 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The items listed are examples, i.e. the lists are not exhaustive. Highlighted are the limitations and requirements 

that relate to the focus of this research. 

 

1.3 Objectives and Structure of this Thesis 

 

The ultimate goal of this Ph.D. research is to improve the decision making process relating to the 

allocation of resources in healthcare. It is envisioned that the dissemination of this thesis will lead to 

the further development of guidance regarding how health interventions are economically assessed 

and how the results are communicated to decision makers. 

This thesis focuses on one important function of decision modelling: addressing the disparity 

between the time horizon of the primary evidence available and the time horizon deemed 

appropriate for the analysis. This time horizon mismatch results in an evidence gap for the analysis, 
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where there is no direct means of estimating long-term values for a range of CEDM input 

parameters, thus preventing the estimation of the full range of costs and health outcomes pertinent 

to the decision problem. The thesis will offer a considered examination of the uncertainties that 

arise when the analysis time horizon exceeds the evidence time horizon, and will endeavour to 

develop methods that address these uncertainties, thereby facilitating appropriate and efficient 

decision making. The uncertainties in question will be referred to collectively as ‘temporal 

uncertainty’.  

The three core objectives of this thesis are: 

Objective 1: Understanding Temporal Uncertainty  

The first objective is to establish the nature and significance of temporal uncertainty in CEA and to 

determine, at a conceptual level, what would constitute an appropriate approaches for addressing 

temporal uncertainty in a CEDM. This objective is addressed in Chapter 2 where firstly, it is discussed 

how temporal uncertainty arises due to a time horizon mismatch and how this may affect a number 

of model input parameters. Secondly, the importance of quantifying temporal uncertainty is 

outlined, highlighting circumstances where temporal uncertainty is and is not likely to influence the 

decisions that CEA is employed to inform. Thirdly, the implications of alternative assumptions 

regarding knowledge of the unobserved period and the relevance of short-term evidence are 

examined. Lastly, conceptual methods of accounting for temporal uncertainty in CEDMs are 

described and appraised.  

Objective 2: Examining the Analytic Issues and the Current Methodologies 

Moving from the conceptual to the practical, the second objective is to understand the key analytical 

issues relevant to tackling temporal uncertainty and to identify the areas where specific 

methodological development is warranted given the methods currently employed in Health 

Technology Assessment (HTA). This objective is addressed in Chapter 3. Firstly, an overview of 

current guidance across jurisdictions is given, as well as a summary of recent relevant reviews and 

studies. Secondly, an outline of key analytical issues is given, with particular focus on the challenge 

of expressing temporal uncertainty for different types of model parameter. This discussion is 

accompanied by a thorough review of HTAs conducted in the UK over a six year period in order to 

surmise and appraise the methods employed to-date. Finally, some thoughts and criticisms are 

offered regarding the adequacy of current methodology and the requirement for improved 

methodology and updated guidance.  

Objective 3: Developing and Applying Appropriate Methodology and Observing the Consequences 
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The third objective is to develop and apply methods that appropriately address temporal 

uncertainty, for a range of model parameters, using the best available evidence. To this end, Chapter 

4 comprises a systematic empirical exercise, carried out using an existing cost-effectiveness decision 

model (RITA-3). This substantial chapter breaks down into several sub-chapters. The first sub-

chapter introduces the RITA-3 model and outlines the issues of temporal uncertainty. The second, 

third, fourth and fifth sub-chapters each focus on different key model parameters. In these sub-

chapters, the use and limitations of the available evidence is analysed and means of expressing 

temporal uncertainty for the particular parameter are developed and applied. In the final sub-

chapter, the results of the updated decision model for all risk groups are presented and analysed in 

comparison to those of the original model. The consequences of addressing temporal uncertainty 

are then observed and discussed. 

The final chapter of this thesis summarises the contribution of this research to the methodological 

literature in this area, offers some recommendations for future analyses and methods guidance and 

outlines areas where further research would be fruitful. 

 

 

Part of this PhD research (in particular, some of the review work outlined in Chapter 3) was carried 

out in tandem with research conducted as part of an MRC funded cross-institutional project on the 

subject of extrapolation in cost-effectiveness analysis. The remit of the MRC funded project was to 

examine and make recommendations on the use of techniques to extrapolate short-term evidence 

over time to estimate the values of various cost-effectiveness model parameters. The research is 

ongoing. In contrast, this PhD research takes a broader view and considers extrapolation as one 

approach to address an evidence gap that may or may not be problematic for the analysis, while 

considering the problem of a temporal evidence gap as one primarily of uncertainty.  
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2. CHAPTER 2: TEMPORAL UNCERTAINTY IN COST-EFFECTIVENESS DECISION 

MODELS 

 

 

This chapter seeks to introduce, describe and explore the issue of temporal uncertainty in cost-

effectiveness analysis (CEA). Firstly, it is discussed how temporal uncertainty arises due to a 

mismatch between the evidence time horizon and the appropriate analysis time horizon. Secondly, 

the importance of quantifying temporal uncertainty is outlined, highlighting circumstances where 

temporal uncertainty is and is not likely to influence the decisions CEA is employed to inform. 

Thirdly, using a simple stylised example, the implications of alternative assumptions regarding our 

knowledge of the unobserved period and the relevance of short-term evidence are discussed. Lastly, 

methods of appropriately expressing temporal uncertainty are explored.  

 

2.1 How Temporal Uncertainty Arises in CEA 

 

In essence, this research concerns itself with one particular limitation of typically available evidence 

and two particular requirements for CEA. The limitation in question is that of a truncated time 

horizon given the available evidence, and the requirements in question are those of an appropriate 

analysis time horizon and the characterisation of uncertainty. This section seeks to describe the 

nature of the problem for decision making that arises due to the tension between this evidence 

limitation and these CEA requirements. We can then begin to consider what the role of decision 

analysis ought to be in addressing this problem and what methods would be best employed and 

developed. 

 

2.1.1 Appropriate Time Horizon vs. Evidence Time Horizon 

 

The time horizon in a CEA is the time period over which costs and benefits are calculated. To obtain 

an appropriate  estimate of cost-effectiveness, the total differences in costs and health benefits 

between interventions should be accounted for. Therefore, the appropriate time horizon to use in 

CEA is the time period over which costs and benefits are expected to differ between the competing 

interventions. When there are mortality impacts associated with the illness and/or interventions, the 

appropriate time horizon is likely to be a lifetime time horizon. Generally, the appropriate time 

horizon is relatively long-term, the notable exceptions being some palliative treatments or certain 
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acute conditions (Sculpher et al., 2006). It is important to note that it is not the duration of the 

disease/intervention but the duration of the effects owing to the disease/intervention that must be 

accounted for. For example the duration of a disease such as acute meningitis is short-term, but 

because there are risks of mortality and long-term disabilities, a long-term time horizon would be 

required for any CEA related to this disease. It may be argued that considering very distal costs and 

effects in healthcare decision-making is futile, as the clinical and decision making contexts are bound 

to alter significantly over time. However, any shortening of the time horizon could bias the cost-

effectiveness decision that needs to be made today. For example, an analysis that does not take into 

account the distal QALYs gained in young patients who are given life-saving therapy today will 

underestimate the cost-effectiveness of that therapy. Even if there is major uncertainty regarding 

conditions in the long-term, it is still necessary to express today’s expectation regarding the costs 

and QALYs that will accrue up to the full time horizon.  

In contrast to the typical appropriate analysis time horizon, the time horizon of the key source(s) of 

evidence is usually short-term. Phase III randomised controlled trials (RCTs), which are often the 

basis for ‘trial plus model’ analysis, are typically commissioned primarily to demonstrate efficacy 

and/or safety and so do not include substantial follow-up data. Although some RCTs are designed to 

capture long-term effectiveness, the collection of such data is naturally a slow process. The 

opportunity costs associated with delaying an adoption recommendation mean that analysts often 

must work with a truncated evidence time horizon.  

 

2.1.2 Consequences for CEA 

 

When the appropriate time horizon exceeds the evidence time horizon, the full range of costs and 

health effects pertinent to the decision problem cannot be (directly) estimated. As described in 

Chapter 1, decision modelling can be employed to overcome this, and other, limitations of the 

available evidence. There are several components of a cost-effectiveness decision model (CEDM) 

where values over an ‘unobserved period’ may have to be estimated. Estimates of long-term survival 

typically receive most attention; however, a range of model input parameters as well as other model 

components are likely to be affected. Namely: 

(i) Measures of disease progression 

 Both time-to-event and longitudinal 

 Both baseline and relative effect 
 

(ii) Health-related quality of life 
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(iii) Costs and resource use 
 

(iv) Structural assumptions 

 

The nature of these parameter-types is discussed in detail in Chapter 3. For now, it is important to 

simply note that all parameter-types and other affected model components are borne in mind as 

methods to address the temporal evidence gap are developed. 

 

2.1.3 Extrapolation? 

 

Since short-term trial data are often the best (if not the only) relevant evidence available (Charlton, 

1991), a temporal evidence gap is commonly overcome by using decision modelling to ‘extrapolate’ 

the short-term trial data over time. Extrapolation is clearly a useful procedure, as it exploits the best 

available evidence and facilitates an estimation of cost-effectiveness over the entirety of the 

appropriate analysis period. In fact, it is often claimed that extrapolation of evidence is a 

requirement in CEA when a time horizon mismatch arises (Drummond et al., 2005) (Latimer, 2011) 

(Sculpher et al., 2006). While extrapolation may play a crucial role in tackling this problem, talking 

only of a ‘need to extrapolate’ oversimplifies and may even misrepresent the problem at hand.  

Firstly, extrapolating short-term evidence over time may be decidedly inappropriate as there may be 

little or no relationship between the outcomes over the short-term and outcomes over the long-

term. As such, it may be unhelpful to advise analysts that extrapolating evidence over time is the 

necessary course of action. Extrapolation often involves fitting a parametric function to short-term 

data and stretching that function over a longer-term period. As a result, the focus of extrapolation 

modelling is often the optimisation of the functional fit to the data. This element, while not 

unimportant, distracts from the overriding assumption being imposed, the assumption that 

extrapolating evidence into another temporal period is in any way appropriate.  

Secondly, plugging the evidence gap between the evidence time horizon and the required time 

horizon need not involve extrapolation over time per se. While extrapolation in CEA can refer to the 

modelling of surrogate to final outcomes, transferability between sub-groups and other forms of 

generalisation of evidence, the term extrapolation in CEA is generally associated with the 

extrapolation of evidence over time in order to infer long-term outcomes from short-term evidence. 

However, the estimation of long-term outcomes given a dearth of long-term evidence need not 

literally involve extrapolation of evidence over time. For example, imposing a simple assumption 
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regarding long-term costs or effects, or using expert elicitation may facilitate the completion of a 

parameter’s ‘temporal curve’ but it would be inaccurate to think of this as extrapolating evidence 

over time, as the short-term evidence itself may not have been exploited. The term extrapolation 

therefore is an unhelpful one, as it may cause analysts to automatically rely on short-term evidence 

to estimate long-term values instead of considering the appropriateness of such an action. 

Thirdly, it must be considered whether simply plugging the evidence gap, either by literally 

extrapolating evidence over time or by some other means, is all that is required. If there is a dearth 

of direct long-term evidence, there will be significant uncertainty associated with any long-term 

estimates and as a result, that uncertainty ought to be expressed in the model. It is contended here 

that a broader characterisation of this problem is required, with a view to developing methods that 

convey the lack of pertinent evidence available whilst still constructing a useful decision model. 

 

2.1.4 What is the Nature of the Problem? 

 

When the appropriate analysis time horizon exceeds the evidence time horizon, the values for a 

number of inputs into the analysis (e.g. measure of disease progression, quality of life, costs) must 

be estimated over an ‘unobserved period’, i.e. a time period beyond that where evidence exists to 

directly inform input parameter values (the ‘observed period’). This is clearly problematic for the 

analysis, but the nature of the problem could be thought of in a number of different ways.  

 

Figure 2: Evidence gap resulting from time horizon mismatch. 
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Note: Values for input parameters can be estimated up to the evidence time horizon (there may even be ‘trend’ as some 

parameters evolve over time) but there is no, or very little, evidence pertaining to the ‘unobserved period’.  

 

 

The problem could perhaps most accurately be described as a missing data problem as there is 

simply an absence of evidence pertaining to a particular time period (between the evidence time 

horizon and the required time horizon). The literature on missing data in CEA however, generally 

refers to instances of data missing amongst datasets that cover the period of interest (Briggs et al., 

2003, Burton and Altman, 2004), i.e. random censoring, which is not truly the concern here. The 

issue here is more akin to type I censoring, where after a fixed time point, no data are recorded.  

 

It is asserted here that this problem is most aptly (and most usefully) thought of as one of 

uncertainty. That is, it may be possible to estimate the values of various model input parameters (as 

well as the related parameter uncertainty) up to the evidence time horizon, but there is uncertainty 

regarding their values beyond the evidence time horizon (or regarding their ‘temporal behaviour’ 

over this period). It is undoubtedly crucial to somehow plug this evidence gap if some estimate of 

cost-effectiveness is to be generated. However to generate an accurate estimate of cost-

effectiveness given current evidence, it is equally crucial to convey in the CEDM the lack of evidence 

pertaining to the unobserved period. In essence, our current state of knowledge and uncertainty 

must be reflected as accurately as possible. 

 

Uncertainty, as found in CEA, has been sub-categorised in a number of ways in the economic 

evaluation literature (Briggs, 2000, Claxton, 2008, Bilcke et al., 2011). Taking Bilcke et al.’s outline of 

types of uncertainty, we can begin to consider what type of uncertainty arises when there exists a 

dearth of long-term evidence in CEA. 

 

Methodological uncertainty refers to the normative views about what approach constitutes 

optimum decision making (Bilcke et al., 2011). For example, the uncertainty regarding which 

perspective is appropriate, which costs should be included, which discount rates should be 

used. In CEA carried out for NICE this form of uncertainty is expected to be small given the 

existence of clear guidance documents indicating the preferred methods that should be 

used (NICE, 2013). Although considering a long-term time horizon poses questions regarding 

long-term discount rates and the inclusion of future costs, questions which could be 

considered as types of methodological uncertainty, we shall consider these uncertainties to 
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be negligible as there is clear guidance (in the case of CEAs carried out for NICE) regarding 

the preferred methodology. 

 

Parameter uncertainty is the uncertainty surrounding the true value of an input parameter 

(e.g. transition probability, cost, utility value). Given a short-term evidence time horizon, it 

could be said that there is parameter uncertainty; as for the unobserved period, there is 

uncertainty in relation to parameter values. However, unlike how parameter uncertainty is 

usually addressed, this problem does not simply require distributions to be assigned to 

known point estimates, as even the point estimates are not known for the unobserved 

period. Moreover, it may not be a single value required for a parameter, but a range of 

values as time moves forward, i.e. what is effectively required is a separate parameter value 

per temporal period as illustrated in Figure 3. In other words the uncertainty specifically 

pertains to the parameter’s relationship with time. In this sense, perhaps it is more useful to 

consider the uncertainty regarding the temporal trajectory of a parameter, rather than the 

expected values and parameter uncertainties in successive temporal periods. It is important 

to note that parameter uncertainty extrapolated over time does not equate to uncertainty 

regarding the behaviour of a parameter over an unobserved period. 

 

Figure 3: A Problem of Parameter uncertainty? Where we must estimate expected values and 
related distributions for successive temporal periods over the unobserved period 
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Structural uncertainty refers to the appropriateness of what is imposed by the model 

framework (Bojke et al., 2009). Recent research has offered methods to address structural 

uncertainties in CEDMs (Jackson et al., 2011, Russell, 2005). For example Jackson et al. 

outline a framework whereby single structure analysis, scenario analysis and model 

averaging are employed depending on the circumstance. The uncertainty arising from a 

short-term evidence time horizon could be characterised as one of structural uncertainty, as 

an assumption is required in the model concerning the temporal behaviour of one or more 

parameters (e.g. the parameter remains fixed at a certain value over the observed period, or 

the parameter value increases at a certain rate over the unobserved period, etc.). As such, 

techniques to quantify structural uncertainty may be useful in quantifying the uncertainty 

under investigation here. To a large extent, the structural uncertainty approach is what is 

currently used in CEDMs to address this issue. It is common in a CEDM to impose one 

assumption regarding the long-term behaviour of a parameter in the base-case analysis and 

then to explore the related uncertainty by applying alternative assumptions in a 

deterministic sensitivity analysis. However the uncertainty in question may not be well 

characterised by discrete competing assumptions, rather a continuous measure of the 

uncertainty may be required. Moreover, the uncertainty arising from a short-term evidence 

time horizon relates specifically to time, which suggests that a specific methodology related 

to time may be warranted. 
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Figure 4:  A problem of structural uncertainty? Where we must consider which assumption 
regarding how the parameter changes over time is most appropriate. 

 

 

 

Although all are relevant, the uncertainty arising from a mismatch between the evidence time 

horizon and the appropriate analysis time horizon does not fit neatly into any of the above 

categories.  

 

The unique aspect to this source of uncertainty is the role of time. There have been recent calls for a 

greater focus on the modelling of time and on parameters’ relationships with time in CEA (van de 

Wetering et al., 2012). Those calls are echoed in this thesis. When the appropriate analysis time 

horizon exceeds the evidence time horizon, the challenge that arises is to convey current 

expectations and uncertainties regarding the unobserved period. Of course, characterising 

expectations and uncertainties regarding prospective time periods is inherently difficult. The 

economist J.M Keynes invoked the concept of ‘irreducible uncertainty’ to describe the innate 

difficultly in characterising future outcomes (Keynes and Feinstein, 1921). Yet estimating future 

outcomes is a requirement for many disciplines. For example, in finance and meteorology, 

techniques exist that endeavour to characterise expectations regarding future time periods based on 

historical evidence (Makridakis et al., 1982). While some of these techniques may be applicable to 

healthcare, it is important to note a key contextual difference between CEA for healthcare and other 

disciplines which appear to encounter the same problem of uncertainty over time. Elsewhere (in 

finance and meteorology), time is considered to be cyclical and past trends can be used to estimate 
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future outcomes (e.g. a certain weather pattern at t has been observed to lead to a certain weather 

outcome at t+1 with probability p, p can be constantly updated as new observations emerge). For 

the economic evaluation of a healthcare intervention however, time is linear, i.e. it has a beginning 

(treatment) and an end (end of differential effect of treatment). As such, there is no precedent for 

measuring the extent to which outcomes (especially clinical outcomes) in one period are related to, 

or can be used to estimate, outcomes in another period. For example a drug may deliver a reduction 

in mortality for 3 years but may be ineffectual or even detrimental after 3 years, a characteristic that 

would not be captured by short-term evidence.  

 

 

2.1.5 Temporal Uncertainty 

 

Given that this issue relates to a number of well-established areas of cost-effectiveness decision 

modelling, but is not well captured by any one, it seems desirable to employ a term that represents 

this unique set of problems so that we may begin to develop methods that address them in a 

coherent and appropriate way. 

 

Let us define this issue generally as Temporal Uncertainty. That is, let temporal uncertainty relate, in 

general, to the uncertainties that arise when there is a disparity between the required time horizon 

and time horizon of the primary source(s) of evidence in CEA. This will primarily, though not 

exclusively, refer to the uncertainties regarding the behaviour/trajectory over time of model input 

parameters. Addressing temporal uncertainty, therefore, pertains to both estimating expected 

parameter values over the long-term, as well as quantifying the related uncertainty. 

 

 

2.2 Why/When It Is Important to Characterise Temporal Uncertainty in CEA 

 

Having established the existence of temporal uncertainty in CEA, what is considered next is the 

importance of addressing it and whether it may sometimes be less problematic than other times. 

  

 

2.2.1 Why Quantify Uncertainty (in General)? 
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The reasons for addressing uncertainty in CEA in general are well established. Addressing and 

characterising all sources of uncertainty5 inherent in a CEA is now a central aspect of CEA. The 

reasons for this can be summarised as follows. 

 

(i) To calculate the true expected values of overall costs and effects in a CEA, it is necessary 

to consider the distributions of the input parameters rather than their point estimates 

(Claxton, 2008). The reason for this that decision models are typically non-linear (i.e. the 

output of the model is often a multiplicative function of the input(s)). This is problematic 

because of  the statistical rule that says the expectation of a non-linear transformation 

does not equal the non-linear transformation of an expectation (Rice, 1995).  

 

(ii) For certain sources of uncertainty (and this will often be true for temporal uncertainty), 

the point estimate itself can only be generated by considering the associated uncertainty 

(e.g. by incorporating and weighting alternative plausible assumptions, we convey what 

our true expectation is regarding the nature/value of an input parameter). When there is 

a number of alternative scenarios (e.g. with a structural uncertainty), it will not matter 

for the adoption decision what the implied expectation is, as long as we have weighted 

these scenarios appropriately in the analysis in order to produce an estimate of 

expected cost-effectiveness. 

 

(iii) Considering uncertainty in a CEA reveals that a technology is expected to be cost-

effective only with a particular probability (and therefore with a related error 

probability)6. In other words, there is a probability that after a decision is made, on 

receipt of further evidence, it transpires that the decision option chosen was in fact not 

cost-effective. There is thus an expected value associated with collecting further 

evidence now that would serve to lessen the uncertainty around costs and effects. The 

value associated with collecting further evidence becomes manifest at times when the 

acquisition of additional evidence compels the decision maker to change his/her mind, 

thereby avoiding the incurrence of opportunity costs. The value of collecting further 

                                                           
5
 By uncertainty here, we do not mean variability (natural variation between patients which is irreducible, also 

known as first-order uncertainty), nor do we mean heterogeneity (differences between patients with similar 
characteristics which are explainable), we mean the fact that we cannot know for certain what the costs and 
outcomes would be if a treatment were to be provided in reality for a particular population of patients 
(Claxton, 2008). 
6
 This fact, it is important to note, should not imply that the decision maker should concern his/herself with the 

“statistical significance” of the expected cost-effectiveness but rather with the value of obtaining further 
evidence (Claxton, 1999) 
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evidence (i.e. the expected additional net benefits) can be calculated and compared to 

the cost of obtaining further evidence so as to indicate the worthiness of such an 

undertaking. This analysis is termed Value of Information (VoI) Analysis.  

 

(iv) On the completion of a decision model and VoI analysis, some decision must be taken 

there and then. There are potential opportunity costs associated with whatever decision 

is made, e.g. if a technology is adopted but is then seen to be cost-ineffective at a later 

date, there may be irrecoverable costs associated with reversing the initial decision. 

Therefore it is prudent to address the uncertainty around whether the irrecoverable 

costs expected to be forgone are greater than the additional net benefits of immediate 

use of the technology, since it may be cost-effective to wait until more evidence is 

available before endorsing the technology (Claxton, 2008, Eckermann and Willan, 2007). 

 

(v) A formal requirement to quantify uncertainty can also incentivise manufacturers to 

lower prices and/or to provide further information. If the characterisation of uncertainty 

reveals that it is more prudent to obtain further evidence before making an adoption 

recommendation, a decision maker could then demand that the manufacturer either 

generates the required further evidence or simply reduces the price of their health 

technology to the point that the pursuit of further evidence is no longer valuable (Griffin 

et al., 2011). 

 

It can be concluded from these points that it is always desirable to characterise uncertainty in CEA. 

However, as temporal uncertainty pertains only to the long-term (unobserved period) we may 

consider the circumstances under which temporal uncertainty will truly ‘matter’ in the analysis; or 

more accurately, what level of modelling might be needed to characterise temporal uncertainty in 

order to satisfy the remit of the analysis? 

 

2.2.2 Addressing Temporal Uncertainty: When Does It Truly Matter? 

 

Although ideally, all uncertainties in CEA are fully characterised, the consequences of not addressing 

particular sources of uncertainty can vary by circumstance. It is argued here that the characterisation 

of temporal uncertainty is crucial under some circumstances, but in other circumstances the impact 

of temporal uncertainty is negligible and as a result, less complex modelling is required. 
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In many instances, the costs and effects pertaining to the unobserved period contribute little to total 

costs and effects, in which case temporal uncertainty may be of little cause for concern. There are 

several potential reasons for this: 

 

(i) If the length of the unobserved period relative to the observed period is small, then 

intuitively fewer unobserved costs and effects are expected. The uncertainty regarding the 

values of these costs and effects therefore has less of an impact of the CEA results. 

Relatedly, the ‘maturity’ of the evidence can dictate the extent to which temporal 

uncertainty will have an impact. For example, if 90% of patients have died within the 

observed period, then the health outcomes over the unobserved period (even if lengthy) will 

have relatively little effect. 

 

(ii) Another consequence of a relatively short unobserved period is that there is likely to be less 

uncertainty regarding the values of costs and effects as we approach the analysis time 

horizon. Generally, there is greater uncertainty the more distal an outcome is. Therefore, if 

the evidence time horizon is relatively close to the required time horizon, there is likely to be 

relatively little uncertainty regarding the values of outcomes over the unobserved period.  

 

(iii) Commonly, a CEDM will chart a progressive disease where the cohort, on average, move to 

progressively ‘worse’ health states as time advances. As a result, there are fewer health 

effects (i.e. QALYs) at stake over longer-term periods. 

 

(iv) To compound the above point, the existence of discounting (of both health effects and 

costs) renders outcomes over distal periods less valuable7. Often, very distal outcomes (after 

circa 50 years) have negligible impact on the ICER. To put it another way, one could say that 

it is common in CEA to observe diminishing temporal returns. (This concept is illustrated in 

Figures 5, 6 & 7).  

 

Research has shown that the assumptions imposed regarding the behaviour of parameters over the 

unobserved period (let us call these temporal assumptions) can have a marked impact on the key 

CEA output, i.e. the mean ICER. For instance, Kim and Thompson considered three plausible models 

                                                           
7
 Both future costs and future effects are discounted in CEA. The use of discounting is based on the 

assumptions that (i) health is tradable with monetary assets, (ii) health is tradable over time and (iii) there 
exists a positive time preference. There is debate surrounding whether both costs and health benefits should 
be discounted at the same rate or whether differential discounting should take place. (Claxton et al., 2006, 
Brouwer et al., 2005) 
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for measuring the cost-effectiveness of screening for abdominal aortic aneurysm. These models 

when extrapolated to a lifetime horizon produced cost-effectiveness estimates ranging from £1600 

to £4200 per life-year gained (Kim LG and Thompson S, 2010). Another analysis by Connock et al. 

demonstrated that the choice of function to represent and extrapolate the short-term data had a 

significant effect on overall survival gain, and consequently expected cost-effectiveness, in two cost-

effectiveness models for cancer drugs (Connock et al., 2011).  

 

Regardless of the impact that alternative temporal assumptions can have on the mean ICER, what 

ultimately is of consequence is the impact that these assumptions can have on the decisions that the 

CEA is designed to inform. Recall that the goal of CEA is to address two questions: Should a health 

technology be adopted given the current evidence? And, should further evidence be sought? It is 

sometimes the case however, that only an adoption recommendation is required. For example, NICE 

does not currently require value-of-information analysis as part of its health technology assessment 

programme.  

 

2.2.2.1 The Adoption Decision 

 

If our sole concern is producing an adoption recommendation, the uncertainty regarding the value 

of parameters after the observed period is of consequence only if there is reason to believe that the 

addition of costs and effects over the unobserved period could possibly alter the adoption 

recommendation. For instance, if the analysis up to the evidence time horizon returns an adoption 

recommendation, we must consider whether an analysis spanning the full required time horizon 

could plausibly return a different recommendation. It would arguably be adequate to provide a 

within-trial estimate of cost-effectiveness if it could be demonstrated that longer follow-up would 

certainly only confirm the adoption recommendation (Sculpher et al., 2006). It may be that relatively 

simple analysis can be employed in order to demonstrate that no plausible set of assumptions 

regarding costs and effects over the unobserved period would be expected to change the adoption 

recommendation.  

 

It is common in HTA for cost-effectiveness results to be presented for alternative time horizons as a 

scenario analysis (as we will see in Chapter 3). This may be helpful in conveying the sensitivity of the 

adoption recommendation to the time horizon imposed. However, such a scenario analysis paints an 

incomplete picture of how cost-effectiveness evolves over time and of the importance of costs and 

health benefits accrued over the unobserved period. 



33 
 

 

To analyse, more thoroughly, the impact of long-term costs and benefits and to assess what rigour of 

modelling is required to address temporal uncertainty, cumulative incremental net health benefit 

(CINHB) over time can be calculated. CINHB at time t is calculated as:  

 

𝐶𝐼𝑁𝐻𝐵𝑡 =∑(𝑄𝐵𝑘 − 𝑄𝐴𝑘) − (𝐶𝐵𝑘 − 𝐶𝐴𝑘)/𝜆

𝑡

𝑘=1

 

 

Or alternatively, cumulative incremental net monetary benefit (CINMB) which can be calculated as:  

 

𝐶𝐼𝑁𝑀𝐵𝑡 =∑(𝑄𝐵𝑘 − 𝑄𝐴𝑘) ∗ 𝜆 − (𝐶𝐵𝑘 − 𝐶𝐴𝑘)

𝑡

𝑘=1

 

 

 

where A and B are two competing health interventions, C and Q are costs and QALYs respectively 

and λ is the willingness to pay threshold for an additional unit of health benefit. 

 

This measure, taking into account costs and health benefits and the cost per effect threshold, 

portrays how the adoption recommendation evolves over time (as we account for more distal costs 

and health benefits). When 𝐶𝐼𝑁𝐻𝐵𝑡 > 0, intervention 𝐵 is in the cost-effective ‘zone’. Applying the 

standard adoption decision rule, we get: 

 

𝐼𝑓      𝐶𝐼𝑁𝐻𝐵𝑇  > 0 

 

𝑇ℎ𝑒𝑛     A𝑑𝑜𝑝𝑡 𝐵 

 

Where 𝑇 is the appropriate analysis tome horizon. 

 

Let us explore the characteristics and usefulness of CINHB by examining three stylised examples. For 

simplicity, let us say that we are comparing two technologies; the ‘new technology’ is both more 

expensive and more effective than the ‘old technology’. A CINHB above zero represents a 

recommendation of adopting the new technology. 
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Example 1: In this example, all costs are assumed to be captured over the trial period (for example 

the technology may be a one-off operation or a short course of drug treatment). It is also assumed 

that there will be no rebound effect or any other future event that may impact future health 

benefits. Finally it is assumed that the ‘new technology’ is observed to be cost-ineffective at the 

evidence time horizon. In this example we expect CINHB to be upward sloping where the more 

effective technology accrues more net health benefits over time relative to its comparator. Even if 

the treatment effect is assumed to cease after the trial period, the slope of the CINHB curve ought to 

be ≥ 0 as the cohort treated with the ‘new technology’ will have experienced less mortality and less 

morbidity and therefore will accrue more health benefits for the remainder of their lives. The CINHB 

that represents Example 1 is depicted in Figure 5.  

 

Figure 5: Cumulative Incremental Net Health Benefit Over Time for Example 1 

 

Note: the new technology depends on the net health benefits accrued over the unobserved period in order to be 

deemed cost-effective and as a result the CEA is highly sensitive to the temporal assumptions imposed. Also the curve of 

the CINHB illustrates the concept of diminishing temporal returns. 

 

 

The characteristics described in example 1 are common in health technology assessment. The 

incremental net health benefits accrue over the observed period but do not reach the point where 

the new technology is deemed to be cost-effective (i.e. where the CINHB > 0). Although we expect 

incremental net health benefits to continue to accrue over the unobserved period, it is not certain 

whether these additional net health benefits will be enough for the new technology to be deemed 

CINHB = 0 
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cost-effective (as can be seen from three hypothetical realisations depicted in the graph). In other 

words, since the new technology relies on the net health benefits accrued over the unobserved 

period in order to be deemed cost-effective, it is possible that the adoption recommendation 

resulting from the model will depend on the ‘temporal assumptions’ imposed, i.e. the assumptions 

that dictate the behaviour of the model parameters as we move into long-term periods. As such, in 

this scenario, it would be vital to address and fully quantify the temporal uncertainty present. 

 

Example 2: Example 2 is identical to Example 1 except that the new technology is observed to be 

cost-effective at the evidence time horizon. Example 2 is depicted in Figure 6. 

 

 

Figure 6: Cumulative Incremental Net Health Benefit over Time for Example 2 

 

Note: the new technology is shown to be cost-effective at the evidence time horizon and the CINHB is expected to 

continue to increase over time 

 

 

In this example, the new technology is cost-effective at the evidence time horizon. Given the 

characteristics of the competing technologies, we can be confident that the new technology will 

remain cost-effective over the unobserved period as it is expected to continue to accrue more net 

health benefits relative to its comparator over the unobserved period, i.e. we have no reason to 

believe that CINHB could begin to monotonically decrease at any point. In general therefore, when a 

CINHB = 0 
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more costly and more effective technology is observed to be cost-effective at the evidence time 

horizon, it may be possible, by considering whether it is feasible for the CINHB curve to move below 

zero, to provide an adoption recommendation without estimating parameter values over the 

unobserved period.  

 

i.e. where E = Evidence time horizon, B/A = new/old technology, K is a point in time 

 

If    𝐶𝐼𝑁𝐻𝐵𝐸 > 0, 𝐶𝐵𝐾 ≅ 0,𝑄𝐵𝐾 > 𝑄𝐴𝐾  𝑓𝑜𝑟 𝑎𝑙𝑙 𝐾 > 𝐸 

 

Then     𝐶𝐼𝑁𝐻𝐵𝑇 > 0, Adopt B  

 

 

Making these assumptions could only be done under particular circumstances however. 

Consideration must be given to the following possibilities: 

 

(i) A rebound effect. When a health technology shows clear clinical superiority to its 

comparator during say an RCT, it is typically expected to continue to perform at least as well 

as its comparator over the unobserved period. Occasionally however, there may be reason 

to believe that there will be a reversal in relative clinical effectiveness sometime in the 

future. This could, for example, be due to an initially effective treatment simply delaying 

death or disease progression and when treatment ceases (or the effects wear off), patients 

die or progress at a faster rate than those receiving competing treatments (Drummond et 

al., 2005). In the event of a rebound effect, it is possible for the relative negative health 

effects in the long-term to negate the overall cost-effectiveness of a treatment. The concept 

of a rebound effect is discussed in depth in Section 4.3.1.2. 

 

(ii) Significant future costs. Often there will be minimal long-term costs directly associated with 

a health technology (e.g. the intervention may be a ‘one-off’ with high upfront costs, or a 

drug may be administered for a fixed amount of time recorded within the trial). If however, 

the future costs associated with a technology are expected to be significant over the long-

term, these may negate the relative health gains accrued over this time (especially if costs 

remain fixed but the relative health gains decrease). 
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(iii) Other future event. There are a number of other possible future contextual changes (for 

example a price shock, or the entry of a new comparator) that may affect the adoption 

recommendation when a long-term analysis time horizon is considered. The impact that 

such an event has on expected cost-effectiveness depends on a number of factors such as: 

the extent to which costs paid before the change are irrecoverable, whether sequencing 

between treatments is possible and whether there are mortality impacts. For example if 

there is a significant reduction in the price of a treatment but patients may sequence from 

one treatment to another without loss of health benefit, it ought to be possible to simply 

change the adoption recommendation without incurring irrecoverable costs. Such a 

possibility would still affect the optimality of the initial decision, but perhaps not drastically. 

 

Notwithstanding the above possibilities, a steadily increasing CINHB that has crossed the threshold 

(the point of being deemed cost-effective) during the observed period often implies cost-

effectiveness at the long-term analysis time horizon. In Example 2, the new technology is the more 

expensive technology and so cost-effectiveness at the evidence time horizon implies significant 

health gains over the observed period. If we do not expect any rebound effect, nor any significant 

future costs, nor any other significant future event, the new technology would be expected to 

continue to accrue at least as many net health benefits compared to the old technology over the 

unobserved period, therefore remaining cost-effective. Although it may be sometimes reasonable to 

make adoption recommendations based on truncated time horizons, in practice, it may be unwise to 

recommend that analysts take this approach as it is still desirable to quantify temporal uncertainty 

under all circumstances. 

 

Example 3: This final example simply describes the expected behaviour of CINHB when one or more 

of the possibilities discussed above (future costs, rebound effect, other future events) affects CINHB 

over the unobserved period. The existence of one or more of these characteristics renders the 

assumption that the CINHB curve will remain monotonic invalid. Example 3 is illustrated in Figure 7. 
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Figure 7: Incremental Net Health Benefit over Time for Example 3 

 

Note: certain model characteristics give rise to the possibility of a non-monotonic CINHB and thus a requirement to 

characterise temporal uncertainty for the purposes of making an adoption recommendation 

 

Essentially if it is possible for the CINHB curve to be non-monotonic with respect to time, it will be 

necessary to characterise (to at least some extent) the temporal uncertainty existent in the model. 

 

Given either (a) uncertainty regarding the monotonicity of CINHB over unobserved period, or (b) a 

monotonically increasing CINHB where the more expensive and more effective technology is not 

cost-effective at evidence time horizon, some characterisation of temporal uncertainty will be 

required. However, for the purposes of appropriately producing an adoption recommendation, 

complex quantification of temporal uncertainty may not be necessary. To test whether full 

quantification of temporal uncertainty is truly necessary to make an informed adoption 

recommendation, a range of extreme temporal assumptions could be imposed in order to observe 

the effect on the mean ICER and the resulting adoption recommendation. Such assumptions ought 

to include scenarios that represent the bounds of plausibility regarding the temporal behaviour of 

model parameters. Of course, what is extreme but plausible is a subjective concept and some 

validation would be necessary for this task.8 If it transpired that no plausible assumption resulted in 

a different adoption recommendation, then one could argue that there is no need to fully 

characterise the temporal uncertainty. All that would be necessary would be to demonstrate with 

                                                           
8
 For example, a clinical expert might be consulted to inform what can be deemed plausible. 

CINHB = 0 
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these extreme assumptions (or perhaps with a single ‘conservative’ assumption) that there is 

negligible chance of the recommendation being incorrect. The imposition of one or more 

conservative assumptions is a means of conveying confidence that the resultant adoption 

recommendation can be given with confidence. For example, a new technology could conservatively 

be assumed to have minimal clinical effectiveness over the long-term and if still observed to be cost-

effective, a positive recommendation can be made with confidence. However, there is a danger that 

conservative assumptions, when used in a base-case analysis, can lead to an inappropriate 

calculation of expected relative cost-effectiveness (e.g. the mean ICER). It is important to note that 

when conservative assumptions are employed (i.e. assumptions that knowingly underestimate or 

overestimate the value of input parameters), the resultant mean ICER will not be a true reflection of 

expected relative cost-effectiveness. Furthermore, it is not appropriate to carry out value of 

information analysis when conservative assumptions are used. 

 

If alternative plausible assumptions do represent different adoption recommendations, it is 

necessary to investigate further and characterise more thoroughly the existent temporal uncertainty 

in order to compute expected cost-effectiveness.  

 

 

2.2.2.2 The Decision to Obtain Further Evidence 

 

Broadly, there are two aspects to how temporal uncertainty can impact decisions related to 

evidence acquisition. Firstly, temporal uncertainty represents one of several sources of uncertainty 

that will directly influence the value of obtaining further information given today’s available 

evidence when considering adoption recommendations for present and future incident populations. 

It may also be a source of uncertainty for which it is desirable to specifically calculate the value of 

reducing or eliminating. Secondly, the issue of temporal uncertainty is highly pertinent to the 

broader relationship between decision-making and time. In this sense, we can examine the impact 

that temporal uncertainty has on the attempt to strike a balance between the value of obtaining 

evidence and the value of access to a new technology. 

 

2.2.2.2.1 Temporal Uncertainty and the Value of Further Information 

 

The quantification of uncertainty in general allows an analysis to express the usefulness of current 

evidence with regard to decision making and to calculate the value of obtaining supplementary 
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evidence. Even if it is possible to appropriately calculate expected cost-effectiveness (and therefore 

produce an adoption recommendation) with current evidence, it may be the case that the 

opportunity costs associated with a possible ‘wrong’ adoption decision are so substantial that it is 

more prudent (and indeed cost-effective) to obtain further evidence before a final recommendation 

is made. The full quantification of temporal uncertainty therefore may cause the analysis to suggest 

that obtaining some supplementary evidence on the temporal nature of one or more parameters 

before making an adoption recommendation is the optimal course of action.  

 

A requirement to quantify the value of obtaining further evidence should thus imply a requirement 

to fully quantify every source of uncertainty including temporal uncertainty. It is possible that the 

expected ICER with current evidence is so high or so low (i.e. that we are so certain what is the 

correct adoption recommendation) that there would be negligible value in collecting further 

information, in which case one could argue that it is again reasonable to simply employ conservative 

assumptions to aid the adoption decision. In general however, it should be assumed that a 

requirement to examine the value of information leads to a requirement to fully quantify temporal 

uncertainty.  

 

 

2.2.2.2.2 Irrecoverable Costs, Further Decision Options and the Value of Waiting 

 

Temporal uncertainty represents more than just a further source of uncertainty to be quantified in 

order to carry out value of information analysis. The issue of uncertainty regarding the value of costs 

and health benefits over time is inherently linked to the broader issue of decision uncertainty over 

time. In effect, separate adoption decisions are required for present and future incident populations. 

What links these separate decisions and makes each relevant for decision-making in the present is 

the potential for irrecoverable costs, i.e. a coverage decision can always be reversed if it transpires 

after further evidence collection that the decision was ‘wrong’ in terms of cost-effectiveness, but it is 

possible that in implementing such a ‘wrong’ decision, investments which cannot be recovered (e.g. 

equipment, facilities, staff training) are incurred9. Irrecoverable costs can be avoided by simply 

waiting until sufficient further evidence is available. However, this approach implies a decision of 

‘reject’ for present and near future incident populations. In order to strike a balance between the 

                                                           
9
 In making a decision regarding access to a new technology therefore, there are, in fact, three pertinent 

notions of value: the value of the technology given current evidence; the value of reducing uncertainty about 
the technology’s cost-effectiveness; and the value of any investment (or reversal of that investment) were the 
new technology to be adopted. 
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value of evidence regarding the cost-effectiveness of a technology and the value of access to that 

technology, further decision options (beyond adopt and reject) are, at least in principle, available to 

decision-makers. 

 

(i) Approve only in research (OIR), where a technology is approved, but only in the context of 

further research, e.g. clinical trials (Claxton et al., 2011a). 

 

(ii) Approve with research (AWR): where a technology is given broad approval, but it is 

stipulated that further information is collected as patients receive treatment. Long-term 

approval may be contingent on this information being positive for the technology (Claxton et 

al., 2011a). 

 

A framework has recently been developed which guides decision-making in the context of evidence 

development (Walker et al., 2012). The framework outlines circumstances where the use of OIR and 

AWR type decision are likely to be appropriate, in particular: when more evidence is worthwhile, the 

required evidence can be generated following an approval decision and there would be a cost 

associated with reversing the decision at a later date. 

 

It may be possible to address temporal uncertainty through evidence generated from further 

research making an OIR/AWR decision potentially appropriate. However, it may also be the case that 

the evidence required cannot be resolved by research but only over time (e.g. waiting for further 

trial follow-up to estimate long-term treatment effect). In the latter circumstance, an OIR/AWR 

decision would not be appropriate as the evidence generated would not be able to address the 

pertinent uncertainties (unless further trial follow-up is considered as OIR). Rather, a judgment will 

be required regarding whether in the period of time between the point at which the technology is 

first available and the point at which the uncertainty regarding the cost-effectiveness of the 

technology will sufficiently resolve itself, the expected benefits of allowing immediate access to a 

technology outweighs the potential irrecoverable costs incurred, i.e. there may be value in ‘waiting’ 

until further evidence naturally becomes available before making an adoption recommendation. In 

this sense again, it is apparent that temporal uncertainty is a special case of uncertainty. If we can 

identify the point at which the uncertainty regarding long-term costs and health benefits ought to 

sufficiently resolve itself in order to make an adoption recommendation without the need for further 

evidence, then a calculation can be made comparing the expected benefit in allowing access to the 
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technology to the expected irrecoverable costs incurred were the positive recommendation to be 

reversed.  

 

In describing the role temporal uncertainty plays in decision-making, it is helpful to make distinctions 

between time horizons. Temporal uncertainty on the one hand pertains to the uncertainty regarding 

costs and health benefits associated with the patients that might be treated today and so one 

relevant time horizon is that over which those costs and effects are expected to differ (5. in Figure 8 

below). On the other hand, as described above, temporal uncertainty can also play a part in 

determining whether the pursuit of further evidence is worthwhile. In this context, the relevant time 

horizon is that over which the decision problem is expected to remain relevant or, in a sense, 

problematic (4. in Figure 8 below). The value of this latter time horizon is itself subject to 

uncertainty. What must be taken into account is the extent to which future incident populations can 

benefit from research commissioned in the present day. In reality, evidence generated over the 

short-term is likely to gradually lose its relevance over the long-term. Thus, a finite time horizon 

typically acts as a proxy for future changes in technologies, prices and information. Such future 

changes can be explicitly modelled though this approach presents numerous technical and 

methodological challenges (Philips Z et al., 2008).  

 

These distinctions between time horizons and the relevance of temporal uncertainty to the value of 

access/irrecoverable costs trade-off can be illustrated by extending how CINHB is employed. 
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Figure 8: Cumulative Incremental Net Health Benefit over Time showing the various time points 
and time horizons that relate to decision-making and the relevance of temporal uncertainty 

 

 

 

2.2.2.3 Brief Summary 

 

The flow chart in Figure 9 summarises much of the discussion in this section and represents a 

possible framework regarding the complexity of modelling required to characterise temporal 

uncertainty depending on the circumstance. To reiterate, it is always desirable to quantify as fully as 

possible all sources of uncertainty (just the incentive for manufacturers to lower prices and/or 

provide more evidence is motivation enough to quantify all uncertainty to the greatest extent 

possible). However, in relation to the decision making a CEA is designed to aid, relatively simple 

characterisation of temporal uncertainty may, on occasion, be sufficient. Note that the flow chart is 

designed to illustrate the potential impact of temporal uncertainty in CEA and is not meant as a 

definite guide to modelling – the scenarios described in the chart will themselves be subject to 

uncertainty and so the appropriate complexity of temporal uncertainty modelling may be more than 

indicated. 
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Figure 9: Framework indicating the likely required complexity of temporal uncertainty modelling 
under different circumstances (for simplicity, the framework assumes a two comparator decision 
problem). Note that ‘non-negligible’ here can be taken to mean: a value of collecting further 
information that is so much smaller than the cost of collecting further information, the pursuit of 
further information would not be considered. 

 

 

 

 

 

2.3 Expressing Temporal Uncertainty in a Cost-effectiveness Decision Model 

 

This section explores how the temporal uncertainty of a model parameter in a CEDM might be 

expressed, assuming that there is a requirement to fully characterise parameter behaviour over the 

unobserved period10. The implications of various approaches are discussed with a view to 

determining what constitutes an appropriate method of expressing temporal uncertainty. 

 

2.3.1 Quantifying Uncertainty in General 
 

                                                           
10

 For now, we simply refer some generic model parameter. The particular challenges posed by different 
parameter ‘types’ are addressed in Chapter 3. 
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Given the reasons outlined in Section 2.2.1 for quantifying uncertainty in CEA, an appropriate 

method to do so must be employed. Although there exist the options of scenario analyses and 

parametric approaches to characterising posterior (decision) uncertainty (e.g. assuming net benefit 

is normally distributed), probabilistic sensitivity analysis has been shown to appropriately convey the 

combined impact on decision uncertainty of the uncertainty surrounding model input parameters in 

a way that allows the estimation of the expected cost-effectiveness and the value of obtaining 

further information  (Claxton et al., 2005). 

 

Probabilistic sensitivity analysis (PSA) is a non-parametric means of appraising the impact on 

decision making of uncertainty pertaining to a range of input parameters. PSA involves 

characterising model input parameters as probability distributions rather than point estimates in 

order to express the uncertainty around their ‘true’ value. Typically, monte carlo simulation is then 

employed to propagate the uncertainty around the parameter inputs through a decision model to 

express uncertainty through the distribution of cost-effectiveness results. This can be illustrated 

using a cost-effectiveness plane and/or a cost-effectiveness acceptability curve (CEAC) (Briggs, 

2000). A PSA can also neatly facilitate the estimation of the value of further information as the 

components needed to estimate, for instance, the expected value of perfect information (i.e. the 

expected payoff with current information and the expected payoff with perfect information) can 

naturally be calculated using the output of a PSA. The use of PSA is recommended by NICE and by 

ISPOR guidance (Briggs et al., 2012, NICE, 2013) 

 

To facilitate the discussion around how temporal uncertainty in particular might be addressed, a 

simple hypothetical example is constructed. Let us assume that through perfect short-term 

evidence, we know the value of a model parameter p between t=0 and t=e (the evidence time 

horizon). Let us assume, initially, that there is no further evidence and therefore the value of p 

between t=e and t=a (the appropriate analysis time horizon) is unknown. 
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Figure 10: The stylised example that will be used throughout Section 3 to explore how temporal 
uncertainty might be expressed in CEDMs 

 

 

2.3.2 Scenario Analysis 

 

It is possible to explore alternative temporal assumptions in a deterministic sensitivity (i.e. simple 

scenario) analysis. This is akin to considering temporal uncertainty strictly as a problem of structural 

uncertainty. It has been recommended that structural uncertainties can be suitably characterised by 

presenting a number of alternative scenarios, with their related cost-effectiveness results, to the 

decision maker (Weinstein et al., 2003). In relation to long-term treatment effect for example, the 

current NICE guidelines suggest the consideration and presentation of scenarios where (i) the 

treatment effect over the unobserved period is nil; (ii) the treatment effect continues at the same 

level as during the observed period; and (iii) the treatment effect diminishes over time (NICE, 2013). 

Such a scenario analysis is illustrated in Figure 11. 
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Figure 11: Scenario analysis. Three alternative scenarios (in particular the scenarios that NICE 
suggest should be explored regarding long-term treatment effect) are implemented in the CEDM 

 

 

 

Although a scenario analysis could convey to decision makers the temporal uncertainty existent in a 

model, there are some notable problems with this approach. 

 

(i) There will be uncertainty regarding whether the scenarios chosen represent the truly 

plausible outcomes and thus convey the temporal uncertainty 

 

(ii) Its use in CEA implies that the decision maker must carry out some informal weighting of the 

alternative scenarios in order to make a decision based on expected cost-effectiveness 

 

(iii) Scenario analysis precludes any estimation of the value of obtaining further information 

 

The crucial limitation, in essence, is that scenario analysis does not truly quantify temporal 

uncertainty. It has been well documented that uncertainties ought to be quantified in a probabilistic 

sensitivity analysis (PSA) where possible (Claxton et al., 2005). Scenario analysis is useful for 

determining the impact of temporal uncertainty on decision-making (as outlined in the previous 

section), but if the adoption recommendation is found to be sensitive to temporal assumptions, it is 
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imperative to quantify temporal uncertainty within the a PSA in order to (i) estimate our true 

expectation regarding cost-effectiveness and (ii) estimate the value of obtaining further evidence 

before making an adoption recommendation. Given the existence of alternative temporal scenarios, 

this can be done using model averaging if there exists a means to weight alternative scenarios 

(discussed further in Section 2.3.4). Where there is no evidence with which to weight scenarios (like 

in this stylised example) it is not clear how to incorporate the scenarios into the PSA. Jackson et al. 

suggest (in relation to structural uncertainty) that it is reasonable to employ simple scenario analysis 

where there are no data available to weight alternative scenarios (Jackson et al., 2011). 

 

Instead of positing alternative temporal scenarios, an alternative approach would be to consider 

alternative interpretations of the short-term evidence in order to extrapolate and obtain the 

inferred parameter behaviour over the long-term. 

 

2.3.3 Extrapolation from Short-term Evidence 

 

Often in CEDMs, parametric functions are fit to short-term evidence. There may be several reasons 

for this: to facilitate sub-group analysis, to estimate a ‘true’ set of values for the parameter 

(assuming that the sample short-term evidence is a partial reflection of the true parameter), and to 

extrapolate the parameter over time (i.e. assume the ‘trend’ observed in the short-term continues 

into the long-term). Here, we have assumed that our short-term evidence is perfect. Let us also 

assume that there is no need for sub-group analysis (in fact let us assume that the cohort is 

homogenous). We can fit a parametric function to the short-term evidence purely for the purposes 

of characterising the unobserved period by extrapolating. We can choose the parametric function 

based on the best ‘statistical fit’ to the short-term evidence (e.g. AIC, BIC11). Extrapolation using a 

parametric function fitted to the short-term evidence is illustrated in Figure 12. 

 

                                                           
11

 The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are measures of the 
relative quality of a statistical model for a given dateset. 
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Figure 12: The ‘best fitting’ parametric function is extrapolated over the unobserved period 

 

 

 

The values for p over the unobserved period are generated as follows: 

 

𝐹𝑜𝑟 𝑒 < 𝑡 ≤ 𝑎, 𝑝𝑡 = 𝑓(𝑡) 

 

i.e. the value of p (a parameter) over the unobserved period is some function of t (=time), that 

function having been generated from analysis of the short-term evidence. ‘a’ is the appropriate time 

horizon and ‘e’ is the evidence time horizon. 

 

It may seem reasonable to consider the extrapolated curve as the expected temporal trajectory of 

the parameter as this function best represents the short-term evidence. Just using this extrapolation 

however, would imply in the CEDM that we know with certainty that the parameter will take these 

values over the unobserved period. Uncertainty regarding the extrapolation could be expressed in 

this situation by considering multiple functional fits to the short-term evidence (again, based on the 

‘best’ statistical fits to the data). These functions would represent alternative interpretations of the 

short-term evidence and its implied trajectory over the long-term. The validity of extrapolated 

curves could be considered; for example, those curves that imply illogical or implausible values over 

the long-term might be dismissed, leaving the ‘valid’ curves. It is possible to incorporate multiple 
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‘valid’ extrapolations into the main analysis by using model averaging, where the weights associated 

with each alternative extrapolation would be derived from measures of statistical fit to the short-

term evidence (i.e. AIC, BIC) (Jackson C et al., 2009). The approach of using multiple extrapolations 

and model averaging is illustrated in Figure 13.  

 

Figure 13: Two alternative ‘fits’ to the short-term data are extrapolated over the unobserved 
period 

 

 

 

The values for p over the unobserved period would (through model averaging), be generated as 

follows (as part of a Monte Carlo Simulation): 

 

𝐹𝑜𝑟 𝑒 < 𝑡 ≤ 𝑎, 𝑝𝑡 = { 
𝑓(𝑡), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞
𝑔(𝑡), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑞)

 

 

This approach produces an expected temporal trajectory and would seem to characterise the related 

uncertainty. But are the assumptions being imposed appropriate? And is the uncertainty quantified 

truly a representation of temporal uncertainty?  

 

Crucially, the assumption implicitly imposed when extrapolating evidence over time is that the short-

term evidence tells us everything about the long-term. Effectively, the uncertainty quantified by 
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incorporating multiple parametric functions represents the uncertainty regarding how the short-

term evidence should be interpreted, rather than the uncertainty regarding how the parameter 

evolves after the observed period. There are further questions associated with this approach, such 

as: What about the space in between or around the extrapolated curves? How many functions 

should be included? What does this imply about expected values? 

 

The key concern with this approach is that it does not acknowledge the dearth of evidence 

pertaining to the long-term. What ought to be expressed is the possibility that something ‘different’ 

(not captured by the short-term evidence) might happen over the unobserved period. If we do not 

possess evidence to suggest otherwise, is it most appropriate (or indeed possible) to convey total 

uncertainty regarding values over the unobserved period? 

 

 

2.3.4 Assuming No Knowledge of The Unobserved Period 

 

Let us take our assumptions to the other extreme (to those implied by extrapolation); we do not 

possess any evidence pertaining to the unobserved period, therefore we ought not to make any 

assumptions regarding parameter values over that period. Is it possible and/or desirable to express 

this in a CEDM? 

 

A uniform distribution could be applied, where the parameter can take any logical value (assuming 

the parameter in question cannot by definition fall below a certain value and above another). This 

approach is illustrated in Figure 14, where the shaded (pink) area represents where on the graph p 

may take a value over the unobserved period. 
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Figure 14: A uniform distribution is applied in an attempt to convey total uncertainty over the 
unobserved period 

 

 

 

The values for p over the unobserved period would be generated as follows: 

 

𝐹𝑜𝑟 𝑒 < 𝑡 ≤ 𝑎, 𝑝𝑡  ~ 𝑈(0, 𝑏)  

 

 𝑤ℎ𝑒𝑟𝑒 0 = 𝑡ℎ𝑒 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑, 𝑏 = 𝑡ℎ𝑒 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑎𝑛𝑑 𝑈() = Uniform Distribution  

 

Although this approach manages to express a great amount of uncertainty (that arguably reflects our 

true ignorance regarding the unobserved period), it has some problems.  

 

(i) A Uniform Distribution does not truly convey total uncertainty; instead of expressing no 

expected value, this approach implies that we expect p to be equal to exactly 𝑏 2⁄ .  

 

(ii) It is not clear whether we ought to impose linear trajectories or completely random 

trajectories (i.e. for every t, we could redraw from the Uniform Distribution).  

 

(iii) A Uniform Distribution clearly becomes more problematic when the logical range is infinite 

or semi-infinite. 
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In short, it does not appear feasible to produce an appropriate analysis given absolutely no 

knowledge of the long-term. 

 

Sections 2.3.2 and 2.3.3 represent the alternative extreme assumptions we could take regarding 

how to treat the unobserved period. Problems have been highlighted with both approaches. It is 

suggested, at this point, that two realistic assumptions can be made that allow for a more pragmatic 

‘third way’. 

 

(i) The long-term trend is partially explained by the short-term trend 

Extrapolation and assuming no knowledge of unobserved period represent the extreme 

assumptions that could be made regarding the relationship between the temporal trend 

of the short-term and that of the long-term. In reality, neither assumption is likely to be 

appropriate (i.e. the short-term evidence neither tells us everything, nor tells us 

nothing). In most cases, the short-term trend of a model parameter could be assumed to 

partially relate to the long-term trend. Therefore, given the absence of any direct 

evidence pertaining to the long-term, it is reasonable to assume that the short-term 

evidence can to some extent predict long-term values. However, it will still be necessary 

to convey temporal uncertainty in order to account for what the short-term evidence 

does not predict. In some cases, it may be reasonable to allow the expected long-term 

temporal trajectory of a parameter to follow the extrapolated short-term trajectory. 

Although again, uncertainty ought to be expressed.  

 

(ii) There is some knowledge relating to the long-term 

It has been so far assumed that we have no information pertaining to the long-term. In 

practice, even without trial data there will often be some knowledge of what is plausible 

regarding parameter values or parameter behaviour over the long-term12. At this stage, 

therefore, we will relax the assumption of having absolutely no knowledge of the 

unobserved period.  

 

The following two sections (2.3.4 & 2.3.5) explore possible methods of expressing temporal 

uncertainty assuming there exists some information regarding what is plausible over the long-term. 

                                                           
12

 It is important to note the difference between ‘logical’ and ‘plausible’ in this context. Logical refers to the 
values that a parameter could possibly (by definition) take, whereas plausible refers to the values that a 
parameter could take according to some empirical information. 
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Essentially, these methods aim to acknowledge the ‘plausible space’ over the unobserved period, 

whilst conveying a reasonable expected temporal trajectory (possibly based on the extrapolated 

short-term evidence). The appropriate method will depend on the nature of any supplementary 

information. 

 

2.3.5 Discrete Scenarios & Model Averaging 

 

It is possible that the available information regarding plausible parameter behaviour over the long-

term is such that there is a discrete number of temporal trajectories that the parameter could be 

expected to take. In this circumstance, it is suitable to characterise temporal uncertainty by 

incorporating each temporal scenario into the probabilistic sensitivity analysis (PSA).  

 

It was stated in Section 2.3.1 that were temporal uncertainty to exist in this form (discrete 

alternative scenarios), then model averaging could be used to incorporate the scenarios into the 

PSA. Bayesian model averaging, in short, involves deciding upon a set of valid alternative models, 

ascribing relative weights to each model, and averaging across each model to produce a posterior 

predictive distribution that represents the expected model outcome (plus the related uncertainty if 

implemented probabilistically) (Leamer, 1978). To quantify the uncertainty, model averaging must 

be undertaken for each Monte Carlo Simulation carried out as part of the PSA. The key challenge in 

this process in terms of its application to temporal uncertainty is the generation of the model (or 

scenario) weights. The use of Bayesian model averaging in cost-effectiveness decision models as a 

means of characterising structural uncertainties has been outlined by Jackson et al. (Jackson C et al., 

2009). They describe how model weights can be derived from measures of ‘goodness of fit’ to the 

available data (e.g. AIC or BIC). Although temporal uncertainty could be thought of as a type of 

structural uncertainty (and is often treated as such), the problem for the use of model averaging for 

addressing temporal uncertainty is clearly the dearth of long-term data with which to ascribe 

weights to temporal scenarios. Possible methods of ascribing weights to alternative temporal 

scenarios include: 

 

(i) Employing external data. If relevant external data are available, these can be employed to 

validate and judge the likelihood of alternative temporal scenarios. 
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(ii) Using measures of statistical fit to short-term data. This would be akin to taking the 

approach described in Section 2.3.2 where it is assumed the short-term data perfectly 

inform the long-term trend. 

 

(iii) Using expert elicitation to directly ascribe weights to the scenarios. This would be an 

attractive option in the absence of any other means to generate weights. Expert elicitation is 

discussed further in Sections 3.3.6.3 and 4.3.3.4 . 

 

(iv) Considering the alternative scenarios as equally likely. This approach is befitting only if there 

is no other obvious way of weighting scenarios. 

 

The weights generated would then need to be transformed into probabilities such that the sum of 

probabilities equals 1.  

 

Let us assume that in our stylised example, it is known that the after the observed period the 

parameter could: (i) remain at the same value, (ii) immediately drop to zero, or (iii) continue to 

decline over time as per the extrapolated curve. This is illustrated in Figure 15. 
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Figure 15: Three possible scenarios incorporated in the probabilistic sensitivity analysis using 
model averaging 

 

 

The values for p over the unobserved period (in the example depicted in Figure 15) using this model 

averaging approach would be generated as follows: 

 

𝐹𝑜𝑟 𝑒 < 𝑡 ≤ 𝑟, 𝑝𝑡 = {

𝑝𝑒 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑞
0, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟

               𝑓(𝑡), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑞 − 𝑟)
 

 

Where 𝑝𝑒  = the value of the parameter at the evidence time horizon and 𝑓(𝑡) = the extrapolated 

function that best characterised the short-term evidence. 

 

 

2.3.6 Continuous Parameterisation  

 

Section 2.3.4 described a means of expressing temporal uncertainty when there exists a discrete 

number of broad competing scenarios. However, the temporal uncertainty in question might be 

better characterised by a continuous distribution around some expectation, implying an arbitrarily 

large number of temporal possibilities, i.e. it is deemed that there is an area of plausibility over the 
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unobserved period, rather than a number of plausible scenarios. For example, in the absence of any 

further direct evidence, we may wish to use an extrapolated function as our expected curve but we 

may want to augment this function to allow a range of curves to be possible in the PSA, thereby 

reflecting what is plausible over the unobserved period as well as what is currently expected.  

 

It has been suggested that all model uncertainties can potentially be expressed as parameters 

(Jackson et al., 2011). We can apply this principle to temporal uncertainty. Model averaging as 

described above effectively parameterises the temporal uncertainty, but we could go further by 

explicitly introducing a ‘temporal parameter’ that dictates how the underlying parameter behaves 

over time. This temporal parameter can then be made probabilistic to convey temporal uncertainty 

in order to cover the plausible space over the unobserved period. The temporal uncertainty can then 

be treated essentially as another source of input parameter uncertainty (Claxton, 2008). This 

approach is illustrated in Figure 16. 

 

 

Figure 16: Temporal uncertainty is fully parameterised so that the long-term curve may take a 
range of plausible trajectories 
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The values for p over the unobserved period using the parameterisation approach would be 

generated from some function of 𝑡 as follows: 

 

𝐹𝑜𝑟 𝑒 < 𝑡 ≤ 𝑟, 𝑝𝑡 = 𝑓(𝑡) 

 

𝑓(𝑡) here is an augmented version of the function that represents the expected temporal trajectory 

(for example an extrapolated curve). To convey temporal uncertainty, the coefficient and/or power 

of 𝑡 is made probabilistic. This ‘temporal parameter’ is drawn from a suitable distribution where its 

expected value is such that the function 𝑓(𝑡) collapses to that of the expected trajectory and its 

confidence interval is such that the sampled curves cover the plausible area.  

 

 

2.4 The Value of Reducing Temporal Uncertainty 

 

Expressing temporal uncertainty in the CEDM (as well as all other sources of uncertainty), facilitates 

calculating an estimate of the value of obtaining further information. In particular, the expected 

value of perfect information (EVPI) can be calculated easily once all sources of uncertainty are 

expressed in a probabilistic sensitivity analysis (PSA) by making use of the net benefit (NB) metric 

(Sculpher and Claxton, 2005). The non-parametric approach to calculating EVPI can be expressed in 

the following equation. 

 

𝐸𝑉𝑃𝐼 = 𝐸𝜃𝑚𝑎𝑥𝑗𝑁𝐵(𝑗, 𝜃) − 𝑚𝑎𝑥𝑗𝐸𝜃𝑁𝐵(𝑗, 𝜃) 

 

For 𝑗 alternative interventions with unknown parameters 𝜃. 

 

EVPI, as expressed in the equation above, represents the difference between net benefit (averaged 

over the numerous alternative realisations of costs and effect) were perfect information to be 

available and net benefit given currently available information (i.e. maximum of the net benefits 

associated with the alternative interventions.   

 

This concept can be extended to calculate the expected value of perfect information for particular 

parameters (EVPPI), as expressed in the following equation. 

 

𝐸𝑉𝑃𝑃𝐼𝜑 = 𝐸𝜑𝑚𝑎𝑥𝑗𝐸𝜓|𝜑𝑁𝐵(𝑗, 𝜑, 𝜓) − 𝑚𝑎𝑥𝑗𝐸𝜃𝑁𝐵(𝑗, 𝜃) 
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Where 𝜑 is the uncertain parameter of interest and 𝜓 are the remaining uncertain parameters, i.e. 

𝜑 ⋃ 𝜓 = 𝜃. 

 

When temporal uncertainty is expressed in a CEDM using the methods outlined in Sections 2.3.4 and 

2.3.5 (i.e. model averaging or parameterisation), an uncertain parameter is effectively generated 

that represents the temporal trajectory of the underlying parameter of interest. When this 

‘temporal parameter’ is incorporated into the PSA, it can be analysed just like any other uncertain 

parameter. Thus, the non-parametric method of calculating EVPPI can be employed to estimate the 

value of reducing the uncertainty surrounding the temporal trajectory, over the unobserved period, 

of a particular parameter of interest. 

 

If, after a value of information (and specifically EVPPI) analysis, it is deemed that more evidence is 

required regarding the temporal nature of parameters over the unobserved period, then 

consideration must be given to the type of evidence that could feasibly be obtained to aid the 

adoption recommendation. To estimate the degree of evidence required, the expected value of 

sample information (EVSI) could be calculated. EVSI expresses the additional net benefits to be 

gained by obtaining further evidence of a specified sample size, targeting a particular uncertainty. In 

doing so, EVSI can help evaluate alternative research designs (Briggs et al., 2006) (McKenna, 2011). 

Acquiring further evidence related to the long-term temporal behaviour of a model parameter is 

likely to be naturally difficult. Commissioning a further RCT is unlikely to be helpful as it would 

involve a long wait to obtain any long-term evidence. A search for further observational evidence 

may prove fruitful, but may still be limited in terms of long-term outcomes. In these circumstances, 

eliciting the opinions of experts and quantifying them for use in the CEDM may be the most efficient 

course of action.  

 

However, as discussed in Section 2.2.2.2, the evidence required to address temporal uncertainty 

might only be obtainable through waiting. Typically, EVPI is measured against the cost of obtaining 

further evidence as this is a necessary condition for further research. For circumstances where the 

necessary evidence can only be generated by waiting and where there are irrecoverable costs 

associated with a positive adoption decision, how to calculate whether the expected net benefit of 

approving a new technology immediately will be worth the risk of having to reverse that decision 

when further information is revealed? 
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Let’s say there are the following two options: (i) immediate approval and (ii) waiting for further 

information. If it is assumed that sufficient further evidence will be revealed after 3 years of trial 

follow-up, then the expected total net benefit associated with these two scenarios are as follows: 

 

 

 

 

 

𝐸(𝑁𝐵(𝑖)) =  ∑{𝑚𝑎𝑥𝑗𝑁𝐵(𝑗, 𝜃). (1 + 𝑑)
−𝑡

𝐹

𝑡=0

} + ∑ {𝐸𝜑𝑚𝑎𝑥𝑗𝐸𝜓|𝜑𝑁𝐵(𝑗, 𝜑, 𝜓). (1 + 𝑑)
−𝑡}

𝑇

𝑡=𝐹+1

− 𝐼𝐶  

 

 

 

 

 

 

 

𝐸(𝑁𝐵(𝑖𝑖)) =  ∑{𝑁𝐵(𝐶𝑇𝑃, 𝜃). (1 + 𝑑)−𝑡
𝐹

𝑡=0

} + ∑ {𝐸𝜑𝑚𝑎𝑥𝑗𝐸𝜓|𝜑𝑁𝐵(𝑗, 𝜑, 𝜓). (1 + 𝑑)
−𝑡}

𝑇

𝑡=𝐹+1

− 𝐼𝐶. 𝜆. (1 + 𝑑)−𝐹  

 

Where: 

T = time after which evidence is no longer relevant 

F = time at which further evidence is revealed 

d = discount rate 

CTP = current treatment practice 

IC = (irrecoverable) investment costs 

λ = the probability that the addition of further evidence will lead to an adoption recommendation = 

the proportion of times that 𝐸𝜓|𝜑𝑁𝐵(𝑗, 𝜑, 𝜓) is greater for the new technology 

 

The two equations above represent the net benefit expected to be gained for each scenario over the 

relevant lifespan of this decision problem/evidence. It is assumed that after further evidence is 

revealed at point 𝐹, the ‘correct’ decision will then be implemented. Thus the second terms in each 

equation above are identical and can be assumed to offset each other. What is being assessed is 

whether the higher net benefit being gained by immediately approving the new technology plus the 

investment costs incurred, outweigh the lower net benefit associated with the current treatment 

Expected net benefit up 

to point that further 

evidence is revealed 

Expected net benefit after 

the point that further 

evidence is revealed 

Expected 

investment 

costs incurred 
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plus the expected investment costs incurred (given that no investment costs may ultimately be 

incurred).  

 

The ‘value of waiting’ could thus be expressed as: 𝐸(𝑁𝐵(𝑖𝑖)) − 𝐸(𝑁𝐵(𝑖)). 

 

 

2.5 Conclusions  

 

The discussions and arguments in this chapter can be summarised as follows: 

 

The problem arising when the required time horizon for CEA exceeds the evidence time horizon 

could and should be thought of as a problem of uncertainty. 

 

The complexity of the modelling necessary to characterise this temporal uncertainty varies by 

circumstance, but in many cases, fully quantifying temporal uncertainty will be crucial if the CEA is to 

appropriately produce recommendations regarding technology adoption and obtaining further 

evidence. 

 

Given short-term evidence, it could be assumed that (a) the short-term evidence fully explains long-

term behaviour (in which extrapolation is appropriate), or (b) the short-term evidence conveys 

nothing of long-term behaviour (in which case a model parameter could take any logical value over 

the long-term).  However: 

 

(i) It may be reasonable and realistic to assume that the short-term evidence partly explains 

the long-term, implying that extrapolation may be reasonable in order to act as an expected 

temporal trajectory over the long-term, but a degree of temporal uncertainty is necessary to 

convey the lack of direct evidence pertaining to the long-term. 

 

(ii) Something of what is plausible regarding long-term values is typically known: model 

averaging or parameterisation of temporal uncertainty may be useful tools to express 

expectations while allowing for other plausible temporal behaviour. 

 

It is useful to incorporate temporal uncertainty into the value of information framework. By 

calculating EVPPI on one or more uncertain temporal parameters, the value of obtaining further 
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information specifically on the temporal behaviour of model parameters can be calculated. For the 

circumstance where irrecoverable costs are potentially incurred with the approval of a new 

technology, the framework can be extended to ascertain whether waiting for evidence that would 

address temporal uncertainty to be revealed through, for example, further trial follow-up would be 

worthwhile.  

 

This chapter has considered the meaning and significance of temporal uncertainty and the 

appropriateness of alternative assumptions regarding model parameters that could be made in the 

face of temporal uncertainty. It also outlined hypothetical methods of expressing temporal 

uncertainty in CEDMs. However, the stylised examples employed pertain to a simplified world. In 

reality, there are numerous factors to take into account when considering how to address temporal 

uncertainty. The following chapter outlines the various practical issues that require consideration 

when addressing temporal uncertainty in cost-effectiveness decision models. 
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3. CHAPTER 3: KEY ANALYTICAL ISSUES IN TEMPOAL UNCERTAINTY AND 

REVIEW OF METHODS EMPLOYED TO DATE 

 

3.1 Introduction 

 

The previous chapter described the meaning and impact of temporal uncertainty in cost-

effectiveness analysis (CEA). In order to move from the conceptual to the practical, this chapter 

outlines and discusses the key analytical issues relevant to addressing temporal uncertainty through 

decision modelling, with a view to highlighting the specific areas where further thought and 

methodological development would be most valuable. In particular, this chapter will firstly provide 

an overview of current methodological guidance relating to temporal uncertainty across regions, as 

well as a summary of recent relevant reviews and analyses. Secondly, a discussion of key analytical 

issues is undertaken, with particular focus on the challenge of expressing temporal uncertainty for 

different types of model parameter. This discussion is accompanied by a thorough review of health 

technology assessments (HTAs) conducted in the UK over a six year period in order to surmise and 

appraise the methods employed to-date. Finally, some thoughts and criticisms are offered regarding 

the adequacy of current methodology and the requirement for improved methodology and updated 

guidance.  

 

 

3.2 Current Guidance and Other Relevant Reviews 

 

3.2.1 Summary of Current Methodological Guidance 

 

It is desirable to optimise and standardise the methods by which expected cost-effectiveness and 

the value of further information are calculated and the results communicated to decision makers. To 

these ends, guidelines are issued in a number of countries/regions. Specific guidance on the 

quantification of temporal uncertainty in CEA has to date been limited. Table 1 below summarises 

the guidance relating to temporal uncertainty in 12 countries whose HTA processes are well 

developed. The selection of countries is based on a comparison of guidelines conducted by 

Mauskopf et al. (Mauskopf et al., 2011). 
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Table 1: Summary of guidance relating to temporal uncertainty in 12 countries whose HTA 
processes are well developed 

 

Country Type of Guidance Guidance Regarding Temporal Uncertainty 

Australia Formal national 

guidelines 

“The length of follow-up of participants in the trial might be 

less than the expected duration of treatment or expected 

duration of health impacts overall. Results generated in this 

way need to be extrapolated to the proposed duration of 

treatment or expected health impacts.” (Pharmaceutical 

Benefits Advisory Committee, 2008) 

Canada Formal national 

guidelines 

“Describe the strength of the evidence for extrapolating data 

and assess uncertainty through a sensitivity analysis … explain 

the causal relationships that are used to extrapolate” … 

“Unless such an analysis is based on high quality evidence, 

identify it as speculative, and give appropriate caveats in the 

report” (Canadian Agency for Drugs and Technologies in 

Health, 2006) 

France Informal 

guidelines/expert 

consensus 

“It is recommended that the time frame chosen should be 

long enough that all outcomes, both positive and negative, of 

the treatments used and evaluated be included in the study” 

… “Modelling makes it possible to extrapolate clinical and 

economic results beyond the time horizon of the clinical Trial” 

(College des Economistes de la Sante, 2004) 

Germany Formal national 

guidelines 

“In principle, the health economic evaluation should cover the 

duration of the randomized controlled trials and, as a 

secondary scenario, be extended beyond this time period if 

this is relevant for the decision maker”  … ”Modelling can be 

carried out for the time period for which evidence on benefit 

and harm from clinical studies exist. In a second step, health 

technologies can be modelled over longer periods of  

time” (Institute for Quality and Efficiency in Health Care 

(IQWiG), 2009) 

Ireland Formal national 

guidelines 

“When extrapolating beyond the period of clinical trials… 

inherent assumptions regarding future treatment effects and 
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disease progression should be clearly outlined and tested as 

part of the sensitivity analysis” (Health Information and 

Quality Authority, 2010). 

Italy Informal 

guidelines/expert 

consensus 

There was no guidance related to temporal uncertainty 

found. (The Members of the Italian Group for 

Pharmacoeconomic Studies, 2001) 

The 

Netherlands 

Formal national 

guidelines 

“Use of modelling… to study and analyse effects and costs 

during a longer time horizon than that of the clinical 

studies.”… “Parameter values for extrapolation are obtained 

from clinical studies.” (College voor zorgverzekeringen 

Diemen, 2006) 

Scotland Formal national 

guidelines 

“All structural assumptions and data inputs should be clearly 

documented and justified. This is particularly important in the 

case of modelling to extrapolate costs and health benefits 

over an extended time horizon. In such circumstances the 

results of using alternative time horizon scenarios should  

be reported in order to compare the implications of different 

assumptions for the results.” … “Use sensitivity analysis… 

where there is uncertainty about the most appropriate 

assumption to use for extrapolation of costs and outcomes 

beyond trial follow-up.
“ (Scottish Medicines Consortium, 

2007) 

Spain Informal 

guidelines/expert 

consensus 

“Modelling techniques should be developed in different 

situations to extrapolate progression of the clinical outcome 

(i.e., survival) beyond that observed in a trial.” (Lo´pez-

Bastida, 2013) 

Sweden Formal national 

guidelines 

“Extrapolation must be carried out for the period outside the 

accessed data from clinical trials. This is then done via 

modelling.” (The Pharmaceutical Benefits Board, 2003) 

UK (England 

and Wales) 

Formal national 

guidelines 

“When the impact of treatment beyond the results of the 

clinical trials is uncertain, analyses that compare several 

alternative scenarios reflecting different assumptions about 

future treatment effects should be presented. Such 

assumptions should include the limiting assumption of no 
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further benefit as well as more optimistic assumptions... 

Assumptions used to extrapolate treatment effects should 

have clinical validity, be reported transparently and be clearly 

justified” (NICE, 2013) 

United 

States 

Formal national 

guidelines 

“Modelling may be required (a) to extrapolate the 

progression of clinical outcomes (such as survival) beyond 

that observed in a trial.” … “Modelling may be required (a) to 

extrapolate the progression of clinical outcomes (such as 

survival) beyond that observed in a trial.” (Academy of 

Managed Care Pharmacy, 2012) 

 

 

As Table 1 shows, most guidance documents provide some, if brief, direction regarding how to 

handle temporal uncertainty. Those that do, give their focus to the extrapolation of clinical trial 

evidence over time and where the related uncertainty is considered, a scenario analysis is typically 

recommended. Although this guidance is not unreasonable at a high-level, its brevity and vagueness 

may lead to inconsistencies in how temporal uncertainty is characterised in CEA. In this sense, 

supplementary guidance would be valuable regarding the modelling specifics of this issue (e.g. 

methods to incorporate competing long-term scenarios into the analysis and how this may differ for 

different parameters and different clinical contexts). All guidance documents acknowledge the 

inherent difficulty characterising long-term costs and effects, advocating scenario analysis as the 

best way to convey temporal uncertainty. Ideally however, all sources of uncertainty would be 

incorporated into a probabilistic sensitivity analysis. These guidelines therefore highlight the need 

for methods that allow temporal uncertainties to be expressed in a fully probabilistic model. 

 

 

3.2.2 Recent Relevant Reviews and Analysis 

 

A number of studies exploring and reviewing issues related to temporal uncertainty have been 

published in recent years.  

 

Latimer 

Latimer recently offered a guide to extrapolating patient-level data in economic evaluation using 

survival analysis (Latimer, 2013). His review of NICE HTAs dealing with advanced/metastatic cancer 
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revealed that parametric modelling was the most frequent means of extrapolation of survival 

outcomes (72% of studies), most analyses using ‘standard’ distributions and many not sufficiently 

justifying the chosen method of extrapolation. A model selection algorithm was recommended for 

future HTAs.  

 

Bagust and Beale 

In response to Latimer, Bagust and Beale offered a number of criticisms of the proposed model 

selection algorithm (Bagust and Beale, 2014). In particular, they cited a lack of access to patient-level 

data for many HTA researchers and questioned the appropriateness of proportional hazards13 

modelling and the use of AIC/BIC scores. Most interestingly with regard to temporal uncertainty, 

they expressed concern with the method of “fitting” a statistical function to short-term data and 

projecting this into the long-term, outlining a number of reasons why extrapolated RCT data may 

badly predict long-term outcomes and ultimately arguing against the “primacy accorded to a small 

set of theoretical distributions” . 

 

Guyot et al. 

Guyot et al. also carried out a review of analyses within the UK HTA programme (Guyot et al., 2011). 

The authors asserted that estimates of efficacy and cost-effectiveness ought to be based on the 

same statistical analysis of the available RCT data, but found in their review that in no case was the 

statistical model for efficacy and CEA the same14. The authors also found that the proportional 

hazards assumptions was frequently employed but seldom formally justified. Finally (and importantly 

for this research) they found that the uncertainty in survival model choice was rarely addressed and 

never propagated through the cost-effectiveness model.  

 

Davies et al. 

Davies et al. compared the extrapolated survival curves of 8 year trial data to the empirical survival 

curves of 16 year trial data (Davies et al., 2013). They found a marked disparity between the 

predicted and actual curves. The hazards were approximately proportional over the first 8 years but 

crossed over the next 8 years, casting serious doubt on the suitability of assuming proportional 

hazards over the long-term.  

 

                                                           
13

 The concept of ‘proportional hazards’ is discussed further in Section 3.4.2. In short, ‘proportional hazards’ 
means that the hazards of multiple groups are multiplicative for any time point t and so for example treatment 
groups can be characterised by hazard ratios representing treatment effects. 
14

 Note that in Chapter 4 of this thesis, it will be asserted that using different models to estimate baseline 
hazards and hazard ratios is not problematic and is in fact very useful. 
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Connock et al. 

Connock et al. reanalysed two NICE single technology appraisals (STAs) and demonstrated that the 

choice of survival model to represent and extrapolate the short-term data had a significant effect on 

overall survival gain, and consequently expected cost-effectiveness (Connock et al., 2011). The 

authors highlight that without a strict and consistent process for model justification, manufacturer 

submissions can potentially significantly over (or under) estimate the cost-effectiveness of a health 

intervention.  

 

Manca et al. 

Manca et al. developed a ‘wish-list’ of desirable features for survival regression models when used 

within cost-effectiveness analysis (Manca et al., 2009). They found that flexible models like the 

Royston-Parmar outperform ‘standard’ models but concluded that beyond trial validation and 

uncertainty must be addressed15.  

 

Kim and Thompson 

Kim and Thompson used the example of evaluating the long-term cost-effectiveness of screening for 

abdominal aortic aneurysm to demonstrate the importance of validation and quantifying uncertainty 

in relation to extrapolation beyond the trial time horizon (Kim LG and Thompson S, 2010). They 

found that three alternative models when extrapolated to a lifetime horizon produced cost-

effectiveness estimates ranging from £1600 to £4200 per life-year gained. 

 

 

Each of these reviews/studies represents an important and useful addition to the literature 

regarding extrapolation/temporal uncertainty. The focus to date however, appears to have been on 

methods of interpreting the short-term data so as to extrapolate with justification. The focus has 

also been very much on survival outcomes. While efficiently exploiting the available trial data is 

indeed paramount and survival outcomes are frequently the key parameters, the review and 

discussion that takes place in this thesis chapter endeavours to give attention to the full range of 

model parameters that are subject to temporal uncertainty and also to methods of expressing that 

uncertainty as part of the analysis (as opposed to simply extrapolating).  

                                                           
15

 ‘Standard models’ here broadly refers to parametric survival models that are most commonly employed in 
health technology assessment. Standard models are usually those that belong to the ‘Generalised F’ family of 
models, plus the Gompertz model. Royston-Parmar differs from these ‘standard models’ primarily in that the 
construct of the model is based directly on the observed data. Thus it can be flexible regarding how it fits to 
the nature of the empirical hazards, unlike other models which may have to be, for example, monotonically 
increasing/decreasing. 
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3.3 Key Issues When Modelling Temporal Uncertainty 

 

Before describing the challenges of addressing temporal uncertainty for a range of model 

parameters, this chapter first describes a number of other key modelling issues that are pertinent to 

the characterisation of temporal uncertainty. From this point on, each section is supported by a 

review of health technology assessments (HTAs) carried out in the UK. As such, a short description of 

this review is first given.  

 

As part of a project on extrapolation funded by the Medical Research Council (MRC), all health 

technology assessments (HTAs) from the UK HTA programme from January 2004 to October 2010 

were reviewed. The reviewed HTAs included both NICE-commissioned and ‘non-NICE’ HTAs. The 

motivation for this review was the desire to understand, at a high level, the prominence and role of 

extrapolation in HTA. Further to this project, a more detailed review was undertaken for the benefit 

of this Ph.D. research. In particular, a subset of HTAs from the MRC review were selected and 

studied in more detail so as to document the methods employed for estimating long-term values for 

a range of parameter-types and the methods employed to express the related uncertainty. The title, 

authors and link to publication of the subset of HTAs reviewed in detail is given in Appendix 1. 

 

 

3.3.1 Prevalence of Temporal Uncertainty 

 

The MRC review analysed all NICE technology assessments (TAs) and all non-NICE reports from the 

UK HTA programme, with a de-novo cost-effectiveness element, published between January 2004 

and October 2010. Of the 313 studies with a cost-effectiveness element, 180 (58%) were identified 

as featuring temporal uncertainty. A study was deemed to ‘feature’ temporal uncertainty if the 

noted time horizon of the analysis exceeded the time horizon of the primary source(s) of evidence 

and/or an attempt was made for any reason to extrapolate evidence over time16. A data extraction 

                                                           
16

 To identify pertinent studies, key search terms were first used, in particular: “extrap” and “time horizon”. 
Typically, when applied to the HTA document, these search terms quickly returned a positive or negative 
outcome.  Where the outcome of the key term search was unclear, a ‘scan read’ was carried out. Seldom was a 
lengthy read required to ascertain the presence of temporal uncertainty. 
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process was then applied to each of these 180 studies where information regarding the study-

specific context was recorded as well as a broad summary of the modelling approaches employed to 

estimate long-term parameters values. More detailed analysis (pertaining to the characterisation of 

temporal uncertainty) was carried out on a random sample of 64 studies (from the 180 featuring 

temporal uncertainty) 17.  

 

Looking at the time periods involved in the studies where there was exposure to temporal 

uncertainty, it was found that analysis time horizons ranged from a number of months to 100 years. 

In 70% of cases, the time horizon deemed appropriate was lifetime or effective lifetime. In the 

majority of studies, the strongest evidence used came in the form of one or more randomised 

controlled trials covering periods of two weeks to several years with an average of about six months. 

It can be assumed therefore, that very often studies are attempting to model events in an 

“unobserved” period many times the size of an “observed” period. 

 

 

3.3.2 Clinical Context 

 

3.3.2.1 Nature of the disease 

 

Temporal uncertainty is likely to be pertinent to any CEA where the costs or effects attributable to 

alternative treatment cohorts are expected to differ over the long-term. It is tempting to think that 

analyses of chronic diseases are more likely to require long-term time horizons compared to acute 

diseases. While this may be so, it is not due to the long-term nature of the disease but the long-term 

differential impacts of treatment. For instance, it is perfectly feasible that alternative treatments for 

chronic diseases will result in different levels of health benefit for a time, before the treatment 

groups can be assumed to once again have the same characteristics. Conversely, it is also feasible 

that alternative treatments for an acute disease will result in different health benefits for the 

remainder of the patients’ lifetimes (certainly if there are mortality impacts). Nonetheless, the 

chronic/acute characteristic of a disease may aid with the quantification of temporal uncertainty. For 

example, if a disease is acute and any surviving patient can be assumed to revert to having the 

characteristics of the general population, then it will be relatively straight forward to estimate 

                                                           
17

 A total of 64 studies for the detailed review was arrived at by employing a stopping rule broadly defined as: 
Carry out detailed reviews of randomly selected HTAs (from the 180 HTAs featuring temporal uncertainty) until 
no further useful information is being, or is likely to be, obtained. At 64 studies, it was deemed that a sufficient 
number of HTAs had been examined in detail in order to understand what approaches are being used to deal 
with temporal uncertainty in HTA and the proportion of time different approaches are being used. 
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his/her long-term survival/health benefits. Similarly, the disease area (e.g. cancer, cardiac, STD, etc.) 

could give an indication of how the disease could be modelled over the long-term. Recalling that a 

CEDM seeks to reflect long-term prognosis with and without treatment, it is clear that this must 

relate to an underlying biological/clinical process. The nature of the disease process then is likely to 

guide the development of the CEDM. For example,  Tappenden et al. have documented the specific 

methodological issues at play when modelling cancer treatments (Tappenden et al., 2006). The 

disease area in question may also indicate where external sources of data could be found, how in 

the past such diseases have been modelled over a long-term time horizon, where to find experts 

that could be consulted and perhaps the extent to which data could be elicited from those experts.  

 

 

 

Table 2: Nature of the Disease in HTAs using some form of extrapolation 

Chronic/Acute 
Chronic Acute 

89% 11% 

 

Disease Area 
Cancer Heart/Vascular Bone/Joint ENG Skin ENT Other 

32% 13% 10% 11% 6% 6% 22% 

Note: ENT = ear nose and throat, ENG = endocrine, nutritional and gastrointestinal diseases 

 

3.3.2.2 Nature of the intervention 

 

The expected clinical effects of a health intervention ought to give an indication as to how the 

related costs and QALYs could be quantified over the long-term. Factors such as whether an 

intervention is carried out continuously or is a once-off, whether treatment switchover or 

withdrawal is possible and how the intervention is carried out (e.g. drug, operation/procedure, 

screening) may inform the reasonableness of assumptions regarding the duration and nature of 

treatment effect, i.e. continued effect, ‘once-off benefit’, or a ‘rebound effect’. 

 

The clinical characteristics of the HTAs that included some form of extrapolation are conveyed in 

Table 3. 
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Table 3: Clinical characteristics of HTAs using some form of extrapolation 

Nature of 

Intervention 

Drug Procedure/Operation Screening Other 

60% 18% 10% 12% 

 

 

3.3.3 Temporal Uncertainty relating to communicable diseases 

 

Analyses of communicable diseases when model parameters interact dynamically (e.g. influenza, 

HIV/AIDS) pose a somewhat different set of challenges for appropriate cost-effectiveness modelling 

(Walker et al., 2010). In this setting, the principle sources of temporal uncertainty tend not to 

pertain to the trajectory over time of input parameters, but rather the temporal nature of the 

epidemic (i.e. the incidence and prevalence) (Pitman et al., 2012). For instance, when evaluating an 

influenza epidemic, evidence representing the full lifespan of the disease (a number of days) is likely 

to exist. However, uncertainty relating to the input parameter estimates (e.g. infection rate, 

recovery rate, contact rates), coupled with the non-linear feedback owing to the dynamic nature of 

the disease leads to temporal uncertainty regarding the predicted ‘epidemic regime’, i.e. a small 

shift in a parameter may cause a prediction of steady equilibrium to change to a prediction of 

widespread epidemic, with marked implications for QALYs lost and the optimal choice of 

intervention. Although communicable diseases present an interesting and broad array of challenges 

with regard to characterising temporal uncertainty, the study of communicable diseases is not within 

the scope of this thesis and did not feature in the HTA review. 

 

 

3.3.4 Heterogeneity 

 

Where it is required that decisions be made for a number of population ‘sub-groups’, it must be 

considered whether it is reasonable to assume that temporal assumptions or quantification of 

temporal uncertainty is homogeneous across sub-groups. If not, separate quantification of temporal 

uncertainty will have to be carried out for each sub-group and each parameter. For non-trivial 

models, the modelling of temporal uncertainty clearly has the potential to become cumbersome and 

time consuming. An initial examination of the impact of temporal uncertainty on decision making 

(e.g. the CINB plots outlined in Section 2.2.2) may indicate that temporal uncertainty is only of 

consequence for particular sub-groups.  
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3.3.5 Modelling Vehicles  

 

Although the same judgements and assumptions have to be made in relation to temporal 

uncertainty regardless of the model structure used, the practicalities of quantifying temporal 

uncertainty inevitably vary by model type. The choice of model structure may well be influenced by 

the ability to model time. The typical model structures used in CEA are (Briggs et al., 2006): 

 

 

3.3.5.1 Decision Tree 

 

Using a decision tree involves multiplying propagating values through pathways of probabilities in 

order to calculate expected values for alternative options. Decision trees are simple to use and quick 

to construct. They have several limitations however, notably, the difficulty of incorporating a time 

element. They also have the potential to become complex and cumbersome if there are a lot of 

parameters to include. Decision trees are often used in conjunction with Markov models. 

 

3.3.5.2 State-Transition Cohort Modelling (e.g. Markov Modelling) 

 

The Markov model is a very common modelling approach taken in CEA. In a Markov model, complex 

processes are represented as sets of possible transitions (with associated transition probabilities) 

between health/disease states over a series of discrete time periods (although Continuous Time 

Markov Models can also be used). Costs and health outcomes are usually incorporated into the 

model as mean values ascribed to states per time period. Costs and effects are calculated by 

multiplying (over the full time horizon) the cost/utility values associated with each state by the time 

patients have spent in them and then summing across states. Markov models are frequently used for 

the sole purpose of extrapolation, where a treatment effect is estimated from a short-term trial and 

the long-term implications are estimated in the Markov model (Sculpher, 2012).  

 

3.3.5.3 Individual Patient-level Simulation 

 

The above types of model are generally regarded as cohort models as it is simply proportions of the 

patient population that they are concerned with. However, rather than ‘the cohort level’, It is 

possible and often desirable to create a model that simulates outcomes at the ‘individual patient 
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level’. Individual patient-level simulations model the progress of individual simulated patients with 

heterogeneous characteristics that affect their disease progression. In discrete event simulations, 

each event/progression alters an individual’s attributes allowing each patient a potentially unique 

history and set of risks (Brennan et al., 2006). 

 

 

 

Some model structures are patently more amenable to quantifying temporal uncertainty than 

others, but there are difficulties associated with every model structure. For example, it is difficult to 

incorporate a time element into decision tree models; applying extrapolation to patient-level 

simulations requires strong and plentiful data; and a Markov model with many states will have many 

time-dependent transitions to estimate. In any model type, there are likely to be several parameters 

and other model components whose temporal behaviour will be uncertain. 

 

In the HTA review, long-term outcomes were, in every case, estimated by using some form of 

decision modelling. The most common modelling vehicle used to account for long-term outcomes 

was found to be the Markov state-transition model. A Markov model was employed in 80% of HTAs 

that involved some extrapolation. 5% used a decision tree, 5% used a patient-level simulation and 

10% used other model-types. The state-transition model structure (and Markov models in particular) 

will be the principal model structure in mind as temporal uncertainty relating to different model 

parameter-types is explored in Chapter 4. 

 

Table 4: Modelling vehicles employed in HTA 

Modelling 

Vehicle 

Decision Tree Markov Model Patient-level Simulation Other 

5% 80% 5% 10% 

 

 

3.3.6 Nature of Available evidence 

 

3.3.6.1 Trial Evidence  

 

A typical economic evaluation is trial-based, whether a pure ‘within-trial’ analysis, or a ‘trial plus 

model’ analysis. The nature of the available trial data therefore can have a considerable bearing on 

the reliability of predicted long-term outcomes as short-term data are extrapolated into the long-
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term. As the core source of evidence in an analysis, randomised controlled trial (RCT) evidence is 

preferable over non-randomised observational data for several reasons including the possibility of 

selection bias, confounding and regression to the mean associated with observational data 

(Torgerson, 2004). RCT data may also be at the individual patient-level, or at the aggregate level, or a 

combination of both. If inferences are to be made regarding outcomes in an unobserved period 

based on evidence in the observed trial period, then it is desirable that the data be at the patient 

level. The maturity of RCT data is also important. Even given a significant unobserved period, if most 

‘events’ are captured in the observed trial period (in the case of a time-to-event variable), then there 

is likely to be less temporal uncertainty. Study design is a further important factor in how RCT data 

can be examined and potentially used to infer long-term outcomes. For example Bagust and Beale 

describe the influence of ‘clinical protocols’ on RCT outcomes both in terms of the within trial period 

and extrapolating beyond (Bagust and Beale, 2014). 

 

3.3.6.2 External evidence 

 

Often, some relevant evidence supplementary to RCT evidence is available. Although such ‘external’ 

evidence typically falls short of RCT evidence in terms of quality, it may exceed the available RCT 

evidence in terms of the time span it covers. Incorporating external evidence into a CEDM alongside 

RCT evidence can thus be a vital tool in addressing temporal uncertainty, though caution must be 

taken when incorporating some of these data into a CEA due to possible biases (Polsky and Basu, 

2006). External evidence can come from a variety of sources, including: 

 

(i) Observational evidence (e.g. hospital registry data) which is often available to help 

inform baseline disease progression and/or long-term costs (Black, 1996). 

 

(ii) Patient reported outcome measures (PROMs) which are increasingly being employed to 

aid various types of health related research (Smith and Street, 2012). PROMs could 

potentially be used to inform long-term disease progression, costs and utilities. 

 

(iii) Mortality tables might be used to directly inform or to act as a bound on the long-term 

morality pertaining to a specific disease. 

 

How any external evidence might be incorporated depends on what exactly the evidence is 

informing, i.e. it could be a single data point at or near the analysis time horizon, or a series of data 
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points over the long-term, or an indication of the temporal trajectory of the parameter after the 

observed period. There may be several options available regarding how the external evidence is 

incorporated to help in the estimation of a parameter value. For example, parameter values could be 

interpolated between what was observed in the trial period and what is indicated by observational 

data at a distal time point. Alternatively, parameter values extrapolated from the short-term RCT 

evidence could be combined, or averaged, with values indicated by longer-term external evidence. 

Furthermore, external evidence could be used not only to estimate the expected values of long-term 

parameters, but also, or instead:  

 

(i) To validate or reject extrapolated curves 

 

(ii) To give weight to alternative plausible assumptions 

 

(iii) To define a plausible region over the unobserved period, i.e. to generate bounds 

 

 

3.3.6.3 Expert Elicitation 

 

One type of external evidence that warrants particular attention in the context of addressing 

temporal uncertainty is expert elicitation. The opinion of clinicians and other experts can be 

quantified and utilised in CEA as a supplementary source of evidence (Bojke et al., 2010, Garthwaite 

PH, 2005). The input of experts often features in some way as a CEDM is developed. In addressing 

temporal uncertainty in particular, expert elicitation has the potential to play a very useful and very 

prominent role, ranging from simple advice regarding clinical pathways, to validation of data-based 

long-term estimates, to a more formal elicitation exercise in order to generate data where none 

existed.  

 

How expert elicitation can be used in each of these roles to address temporal uncertainty for 

different parameters will be explored in further detail in Section 4.3.3.4. 

 

In the HTA review, it was found that in most (70%) cases, some form of trial evidence was available 

to analysts, usually covering the time period immediately after intervention. This was often 

supplemented by other sources of evidence informing or validating longer-term trends. It was found 

that only in a minority of studies (32%) did analysts have access to individual patient-level data (IPD). 
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3.4 Addressing Temporal Uncertainty by Parameter-type 

 

It was stated in the previous chapter that temporal uncertainty can potentially arise for any model 

input parameter. This section explores in detail the challenges of addressing temporal uncertainty 

for different types of model parameter. First, a brief taxonomy of the typical types of model 

parameter is offered. 

 

3.4.1 A Brief Taxonomy of Parameter-types 

 

The required outputs from a cost-effectiveness decision model (CEDM) are total costs and total 

health effects (e.g. QALYs) for each comparator. In most model structures, total health effects are 

calculated by accounting for disease progression and the health-related quality of life (HRQoL) 

associated with different disease conditions. Costs and HRQoL that relate to specific health states or 

clinical events can be considered as two parameter-types. However the characterisation of disease 

progression may be comprised of a number of different parameter-types. In state-transition models, 

disease progression is usually conveyed by the rate at which patients transition from one health 

state to another. Transitions between states are often determined by discrete-time transition 

probabilities which typically pertain to ‘time-to-event’ (TTE) variables. However, disease progression 

may also be determined by a longitudinal variable (e.g. cholesterol levels, tumour size), where either 

the transition to another health state is determined by the value of the longitudinal variable, or 

patients are assumed to stay within the same state but the health benefit associated with that state 

is assumed to evolve over time.  

 

As well as the distinction between TTE variables and longitudinal variables, there is also the 

distinction between baseline measures and relative measures (or treatment effects). For every 

parameter representing disease progression, there must be a series of measures representing each 

competing health intervention. These are typically computed by considering a baseline and one or 

more treatment effects. A baseline measure of disease progression normally represents natural 

history or basic standard care. As a result, data are often available to inform long-term behaviour of 

baseline measures. CEAs may differ in their approach to comparing the clinical effectiveness of 

interventions. While some calculate absolute measures for each intervention and don’t use any 

relative measure, most calculate a baseline measure and then apply treatment effects to represent 

the impact alternative interventions have in relation to the baseline measure. A treatment effect 
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therefore is a relative measure (e.g. hazard ratio, odds ratio, relative risk). Treatment effects are 

often the key drivers of cost-effectiveness results as they represent the comparative clinical 

effectiveness of treatments.  

 

To summarise, the parameter-types that will be discussed are: 

 

(i) Time-to-event disease progression (baseline, treatment effect) 

 

(ii) Longitudinal disease progression (baseline, treatment effect) 

 

(iii) Health-related quality of life (HRQoL) 

 

(iv) Costs/resource use 

 

 

3.4.2 Time-to-event Parameters 

 

Although emphasis is given in this chapter to being mindful of the full range of parameter-types that 

can be exposed to temporal uncertainty in a CEDM, time-to-event parameters are examined in 

particular detail as they play a central role in the characterisation of disease processes. Given the 

prevalence of event-based models in health technology assessment (e.g. Markov models, discrete 

event simulation), methods to characterise long-term event rates are often paramount. Overall 

survival, in particular, plays a key role in the calculation of health benefit. QALYs, for example, are 

calculated as the product of life-years and quality of life. However, other time-to-event parameters 

also play a prominent role in HTA; progression-free survival (e.g. time to AIDS from HIV infection, 

time to cardiac event) or device failure rates (e.g. for a hip prosthesis) often represent central 

components of a decision model.  

 

3.4.2.1 Overview of survival analysis 

 

The analysis of time-to-event (TTE) data and of how TTE parameters evolve over time is referred to 

as survival analysis. Survival analysis thus plays a key role in the characterisation of disease processes 

and has featured heavily in much research to date regarding extrapolation in CEA. It is also a central 
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aspect of this thesis and is examined thoroughly in one of the empirical sub-chapters (Chapter 4.2). 

As such, an overview of the principles of survival analysis and its use in CEA is given here.  

 

Survival analysis relates to the analysis of data in the form of times from a well-defined time origin 

(e.g. randomisation in a trial) until the occurrence of some particular event or end-point (e.g. death 

or some clinical event) (Collett, 2003). Survival analysis has been extensively employed in the 

medical field for some time, its key attribute being its ability to handle noninformative censoring 

that frequently occurs in follow-up studies (Briggs et al., 2006).  

 

A central concept in survival analysis is that of the survivor function which expresses the probability 

of observing the event at or beyond time t. The survivor function can be defined as follows where T 

is a random variable and t is actual survival time of an individual: 

 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) 

 

Closely related to the survivor function is the hazard function which expresses the risk (or hazard) of 

the event at time t and is formally defined as follows (where f(t) is the probability density function of 

T): 

 

ℎ(𝑡) =  lim
𝛿𝑡→0

 
𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡 | 𝑇 ≥ 𝑡)

𝛿𝑡
=  
𝑓(𝑡)

𝑆(𝑡)
 

 

h(t) is also referred to as the hazard rate as it conveys the instantaneous rate at which events take 

place at time t. If the nature of the hazard function can be deduced, the related transition 

probabilities for use in a decision model can be calculated thusly: 

 

𝐻(𝑡) =  ∫ ℎ(𝑢)
𝑡

𝑜

𝑑𝑢 = −ln [𝑆(𝑡)] 

 

From the cumulative hazard function H(t), we compute transition probabilities for chosen time 

intervals : 

 

𝑡𝑝(𝑡𝑢) = 1 − exp {𝐻(𝑡 − 𝑢) −  𝐻(𝑡)} 
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Survival analysis can be used to directly interpret the available survival data as transition 

probabilities. However, in order to extrapolate short-term survival data beyond the evidence time 

horizon, a parametric distribution can be fitted to the survival data. This facilitates an estimation of 

the hazard function for any positive t from which the related survivor function and/or transition 

probabilities can be calculated up to the required time horizon. This approach is commonly taken in 

health technology assessment (Sculpher et al., 2006, NICE, 2013). A parametric function fit to 

empirical survival data (Kaplan-Meier data) is illustrated in Figure 17. 

 

Figure 17: Illustration of a parametric function being fit to survival data in order to extrapolate 
beyond the data 

 

 

There are a number of parametric distributions that can be used to this end (Collett, 2003). A short 

explanation of some of the most common distributions along with their survivor distributions is 

given below. 

 

The exponential distribution is a single parameter distribution and assumes a constant hazard over 

time. The exponential distribution also assumes ‘proportional hazards’ which means the hazards of 

multiple groups are assumed to be multiplicative for any t and so for example treatment groups can 

be characterised by hazard ratios representing treatment effects. 

 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙: 𝑆(𝑡) =  𝑒−𝜆𝑡 
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Where 𝜆 = a ‘scale’ parameter 

 

The Weibull and Gompertz distributions are two parameters distributions which allow hazard rates 

to vary monotonically with time and also employ the proportional hazards assumption for multiple 

groups.  

 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙: 𝑆(𝑡) =  exp (−𝜆𝑡𝛾) 

𝐺𝑜𝑚𝑝𝑒𝑟𝑡𝑧: 𝑆(𝑡) =  exp {
𝜆

𝜃
(1 − 𝑒𝜃𝑡)} 

 

Where 𝜆 = a ‘scale’ parameter 

 𝛾, 𝜃 = ’shape’ parameters 

 

The log-Normal and Log-logistic distributions allow non-monotonic hazards but are accelerated time 

failure (AFT) distributions as opposed to proportional hazards distributions18. Where the 

proportional hazards assumption is not appropriate, these distributions may be useful, although 

since much evidence on treatment comes in the form of hazard/odds ratios, it is often more 

desirable to employ a distribution with a proportional hazards metric. 

 

𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙: 𝑆(𝑡) = 1 − 𝛷(
𝑙𝑜𝑔𝑡 − 𝜇

𝜎
) 

 

𝐿𝑜𝑔𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐: 𝑆(𝑡) = (1 + 𝑒𝜃𝑡𝑘)−1 

 

Where 𝛷(𝑥) = the probability density function of the Normal distribution 

 𝜇 = a location parameter 

 𝜎 = a scale parameter 

 k = a scale parameter 

 𝜃 = a shape paramater 

 

The generalised gamma distribution is a three parameter model using the AFT metric which allows 

hazards to vary non-monotonically with time. It may reduce to the Exponential, Weibull and Log-

Normal distributions in special cases and so may be used as either a proportional hazards model or 

an accelerated failure time model.  

                                                           
18

 Note that the Weibull distribution can also be used as an AFT distribution  
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𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝐺𝑎𝑚𝑚𝑎: 𝑆(𝑡) = 1 − 𝛤𝜆𝑡(𝑝) 

 

Where 𝛤𝜆𝑡(𝑝) is the ‘incomplete gamma function’given by 
1

𝛤(𝑝)
∫ 𝑢𝑝−1𝑒−𝑢
𝜆𝑡

0
𝑑𝑢 

 p = a shape parameter 

 𝜆 = a scale parameter 

 

Other very flexible models exist such as that developed by Royston and Parmar (Royston and 

Parmar, 2002). The Royston-Parmar model uses cubic splines to accurately represent the observed 

survival data while allowing for both a proportional hazards and proportional odds metric. 

 

In terms of the suitability of parametric distributions, there are a number of factors to consider 

(Latimer, 2011, Manca et al., 2009). The validity of the proportional hazards (PH) assumption is 

central (Guyot et al., 2011). Often there is supplementary aggregate data in the form of hazard or 

odds ratios in which case the PH assumption attractive. If the PH assumption is not suitable, an AFT 

model could be employed or separate distributions could be fit to the different arms of the trial 

data. The validity of the PH assumption can be checked through visual inspection (log-log plots), 

goodness of fit tests and the use of time-dependent variables (Cleves, 2010). The chosen distribution 

must also be sufficiently flexible to characterise the nature of the observed survival data while 

avoiding over-specification (Jackson et al., 2010). Model fit can be judged by visual inspection 

(comparing the Kaplan-Meier curves to the parametric survival curves), assessing log-cumulative 

hazard plots, or conducting Akaike Information Criterion or Bayesian Information Criterion (AIC/BIC) 

tests. AIC/BIC tests in particular have been widely used in HTA to assess the relative goodness-of-fit 

of parametric survival distributions. These tests quantify how well parametric distributions fit the 

empirical data relative to other candidate distributions (i.e. an AIC/BIC score is meaningless in 

isolation) (Burnham and Anderson, 2004). 

 

Of course, what is of most relevance in terms of temporal uncertainty is the validity of what the 

parametric function implies about parameter values after the observed period. While fitting a 

parametric function is a useful tool for a number of reasons, it is commonly used in order to 

extrapolate the survival data beyond the observed period19. Caution is warranted in this endeavour, 

as whatever distribution is chosen, the implicit assumption is that long-term parameter values are 

                                                           
19

 A parametric function might also be fit in order to facilitate sub-group analysis, or to characterise parameter 
uncertainty, or to estimate the ‘true’ survival curve, i.e. to smooth out the sampling variation in the raw 
survival data 
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fully informed by short-term observations and that the ‘best fitting’ distribution will best predict 

parameter values over the unobserved period. Such an assumption may or may not reflect the 

clinical reality. It is nonetheless desirable to exploit the available short-term evidence when 

estimating long-term parameter values.  

 

 

3.4.2.2  Output from HTA Review 

 

In the HTA review, studies that featured one or more TTE parameters were flagged and examined. 

From these studies, data were extracted relating to the type of evidence available, the use of formal 

evidence synthesis and the methods employed to estimate TTE parameter values beyond the 

observed period. These characteristics were chosen for extraction in order to appraise the options 

available and the challenges existent when TTE variables require long-term characterisation, but also 

to observe what methods are most commonly employed. 

 

From the randomly selected 64 HTAs, it was found that 42 (66%) included at least one time-to-event 

(TTE) parameter that was exposed to temporal uncertainty. Information extracted from these HTAs 

relating to how the parameters were modelled is summarised in Table 5.  

 

Table 5: Details of long-term estimation of time-to-event parameters 

 Number % (Note 1) 

Evidence available   

RCT (aggregate) 8 19% 

RCT (individual patient-level) 6 14% 

Observational (aggregate) 6 14% 

Observational (individual patient-level) 3 7% 

Expert opinion 0 0% 

Reference to previous work but unclear what level of data 2 5% 

Combination of the above 11 26% 

Unclear 6 14% 

   

Use of formal evidence synthesis 11 26% 

   

Method to estimate long-term values (Note 2)   
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Parametric model: Exponential 5 12% 

Parametric model: Weibull 7 17% 

Parametric model: Other, multiple or unclear 10 24% 

Assumption of constant rate for unobserved period (Note 3) 15 36% 

Other assumption (Note 3) 5 12% 

Mortality tables / other long-term dataset 2 5% 

 

Note 1: Percentage of the 42 HTAs where at least one time to event parameter was exposed to temporal uncertainty 

Note 2: More than one TTE extrapolation was carried out for some studies 

Note 3: An assumption was applied without use of parametric model fit to short-term evidence. This pertains to the 

base-case assumption. Alternative assumptions were sometimes explored in scenario analyses. 

 

Significant from the results in Table 5 is that analysts do not have access to individual patient-level 

data (IPD) and randomised controlled trial (RCT) data to the extent that would be desirable (or that 

might be assumed). Working with data that are not derived from randomised trials and/or not at the 

patient level creates further problems of uncertainty and bias when attempting to estimate beyond 

the evidence period. Analysts also must frequently contend with multiple sources of relevant 

evidence and so must judge what evidence can be given most weight when estimating values past 

the evidence period. Parametric survival analysis was employed in 52% of cases, suggesting this is a 

significant, but not dominant, tool in estimating long-term values for time-to-event parameters. 

Ensuring the appropriate use of parametric models for the purposes of extrapolation is nonetheless 

clearly an important issue. Where parametric models were employed, the use of the proportional 

hazards assumption was common and an assumption of no further treatment effect was most 

commonly imposed. It was noted that in a few cases an assumption of limited further treatment was 

made. A final notable result is the frequency with which a simple assumption of a constant rate over 

the unobserved period was made. This, in many cases, is characterised as a conservative 

assumption20.  

 

How such parametric survival models are validated is the subject of much scrutiny in the methods 

literature (as evidenced by some of the studies described in Section 3.2.2). The fundamental concern 

regarding the choice of parametric function is that it may not appropriately reflect survival outcomes 

over the long-term (or beyond the evidence time horizon), yet extrapolating from the short-term is 

often understood as making best use of the available evidence. A key distinction that emerges is that 

                                                           
20

 Recall that the appropriateness and usefulness of ‘conservative assumptions’ in the context of temporal 
uncertainty was discussed in Section 2.2.2.1 
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between internal validity and external validity. Although goodness-of-fit analysis may demonstrate 

that a method of extrapolation is internally valid, the implied long-term estimates ought to be tested 

against external data (where available) to show clinical plausibility. Of course, this is arguably the 

crux of the issue as such data often are not available. The expression of uncertainty surrounding 

long-term survival estimates is thus a crucial task.  

 

 

3.4.3 Longitudinal Parameters 

 

Disease progression may also be described by non-TTE parameters. Longitudinal clinical measures 

are those that track continual change over time (as opposed to estimating ‘when’ some event will 

occur), e.g. cholesterol levels, tumour size. Although non-TTE parameter does not equate to 

longitudinal parameter, longitudinal is a useful category that broadly contrasts with TTE21. As with 

TTE parameters, we would expect a wider range of modelling tools to be available to analysts when 

data are at the patient level and/or derived from randomised trials.  

 

From the randomly selected 64 HTAs, it was found that 13 (20%) included at least one longitudinal 

parameter that was exposed to temporal uncertainty Information extracted from these HTAs 

relating to how the parameters were modelled is summarised in Table 6. 

 

Table 6: Details of long-term estimation of longitudinal parameters 

 Number % (Note 4) 

Evidence available   

RCT (aggregate) 2 15% 

RCT (individual patient-level) 2 15% 

Observational (aggregate) 2 15% 

Observational (individual patient-level) 1 8% 

Expert opinion 1 8% 

Reference to previous work but unclear what level of data 1 8% 

Combination of the above 4 31% 

   

                                                           
21 Note that although, a relative effect applied to a TTE parameter could be considered to be a non-TTE 

parameter, it was assumed that such a parameter belonged in the TTE category 
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Use of formal evidence synthesis 5 31% 

   

Method to estimate long-term values   

Long-term observational dataset 1 8% 

Assumption of constant value for unobserved period (Note 5) 9 69% 

Other assumption (Note 5) 3 23% 

 

 

Note 4: Percentage of the 20 HTAs where extrapolation of at least one longitudinal parameter was carried out 

Note 5: This pertains to the base-case assumption. Alternative assumptions were sometimes explored in scenario 

analyses. 

 

The primary point of note here is that the prevalence of longitudinal parameters (that are exposed 

to temporal uncertainty) is greater than is reflected in the methodological literature on temporal 

uncertainty/extrapolation. To compound this point, there were no examples found of a parametric 

function being used to formally extrapolate short-term data. In many cases however, there were RCT 

and/or patient-level data available, though it is not clear whether the data available could be used to 

inform the longitudinal parameter in question. As with TTE parameters, it was found that in a 

significant number of cases, long-term parameter values were ultimately generated through a simple 

assumption (usually of constant values). Such an assumption amounts to an ‘informal judgement’. 

These judgements were rarely validated and (as with TTE parameters) often described as 

‘conservative assumptions’, made for the purposes of producing a result which would emphasise the 

cost-effectiveness or cost-ineffectiveness of a health technology. 

 

 

3.4.4 Costs/Resource Use Parameters 

 

Measures of cost/resource use are fundamental to CEDMs (Brouwer et al., 2001). Along with any 

‘upfront’ costs that relate to alterative health interventions, costs are typically calculated in a CEDM 

by attributing a single cost per cycle to health states and health events. The method by which these 

state and event-specific costs are computed varies by disease/decision context. Typically, estimates 

of resource use are obtained from RCT data and the unit costs associated with each item of resource 

use are obtained from an external source such as hospital records (Drummond et al., 2005). 

Therefore, to a large extent, the accumulation over time of costs is determined by the likelihood of 

experiencing health events and moving between different health states. However, these state and 
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event-specific estimates (both resource use and unit costs) are themselves subject to temporal 

uncertainty. The costs attributed to a health state or health event are often assumed to not alter 

over the entire period of analysis. Such an assumption may or may not be appropriate, but 

considering and testing its validity ought to form part of any robust analysis.  

 

As distal time points are considered, the question of what future costs are and are not relevant 

becomes pertinent (van Baal et al., 2011, Meltzer, 1997). The debates surrounding related/unrelated 

future costs will not be added to here. However an awareness of this issue is warranted as the 

associated issue of temporal uncertainty is addressed.  

 

Another ‘methodological uncertainty’ that relates to long-term costs (and indeed health benefits) is 

that of inflation. Typically, inflation is not directly tackled in HTA and is assumed to be accounted for 

in the ‘real’ discount rate employed.  

 

In the HTA review, it was found that 58 out of 64 HTAs (91%) involved the estimation of long-term 

costs, i.e. in 6 HTAs, it was assumed that there were no significant costs over the long-term to 

estimate. The overwhelming majority of these HTAs modelled long-term costs using a state-

transition model structure, i.e. the costs incurred per unit time were a product of how the patient 

cohort was distributed among health states, and the costs ascribed to each health state. In all HTAs 

that employed a state-transition structure, the costs per health state were considered not time 

dependant, i.e. costs per event or per time in health state were constant over time. In some cases, it 

was not clear how the costs per health state were populated. In one HTA (NICE TA125), a 

microsimulation model was employed and the costs were directly linked to measures of disease 

severity, namely the HAQ and PASI indexes. In no case was it assumed that costs per health state are 

time-dependant; that they, for example, decrease over time according to some function.  The results 

are summarised in Table 7. 
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Table 7: Details of long-term estimation of cost/resource use parameters 

 Number % (Note 6) 

Estimated long-term costs 58  

   

Method of estimating long-term costs   

State-transition Model (constant costs) 55 91% 

Micro-simulation (constant costs) 1 2% 

Unclear 3 5% 

 

Note 6: % of HTAs that estimated long-term costs (58) 

 

In terms of resource use, assuming no change over the time may be a strong assumption, as there 

may be factors (such as ageing) that cause significant shifts in resource use over the long-term (this 

issue is explored in Section 4.4.3.2.1. Any long-term uncertainty regarding unit costs is likely to relate 

to sudden shifts in drug prices or hospital costs. These ‘uncertain future events’ therefore are a 

crucial issue regarding temporal uncertainty of costs. 

 

Uncertain future events are not model parameters themselves per se, but another consequence of a 

long-term time horizon; namely, the possibility of a future event that can impact the value of 

parameters (and in particular costs), e.g. a price shock, or a new relevant comparator emerging. 

Uncertain future events ought to be accounted for when conducting value of information analyses 

but may only be of consequence for estimating expected cost-effectiveness under specific and 

relatively uncommon circumstances.   

 

The handling of uncertain future events was also investigated in the HTA review. All 180 HTAs were 

reviewed, as the instances of uncertain future events being accounted for were particularly sparse. 

Only in two HTAs was there an attempt to formally model uncertain future events (Robinson et al., 

2005, Rogowski et al., 2009). These two studies formally considered the potential impact of a new 

comparator and the arrival of a generic version of an existing technology respectively. Robinson et 

al. included a further comparator as part of a sensitivity analysis justified on the grounds that the 

results of a major RCT for this new intervention were published during the course of undertaking the 

base-case analysis and the results of this RCT were already beginning to be incorporated into clinical 

guidelines. Rogowski et al noted that a future change was anticipated over the unobserved period, 
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namely the coming off patent of one of the comparators. This future event was incorporated into a 

value-of-information analysis. 

 

Importantly, both studies considered events that were anticipated to occur close to the time of the 

evaluation and in each case the results were presented as part of a separate sensitivity analysis. 

Since both studies included these future events as part of a separate sensitivity analysis there was 

very limited information provided on the methods used and justification for these.  

 

 

3.4.5  Health-related Quality of Life 

 

Parameters representing health-related quality of life (HRQoL) are also fundamental components of 

CEDMs and are typically incorporated in a similar manner to costs, i.e. a value is ascribed to each 

health state and is generally assumed to not alter with time. In a manner that is also similar to costs, 

HRQoL (typically) is essentially an amalgam of two quantities. Health status is commonly recorded 

using an instrument such as EQ-5D or SF-36 where patients state their health status as part of a 

clinical trial. In order to convert these into HRQoL ‘weights’ for use in an economic analysis, each 

health status is weighted according to general population preferences (a time-trade-off based 

algorithm developed by Dolan et al. in the case of EQ-5D) (Dolan and Gudex, 1995, Dolan, 1997). 

And as with costs, both of these quantities are, in principle, subject to variation over time. It may be 

the case that changes in HRQoL over time are wholly captured by transitions between health states. 

However, the natural decline in HRQoL associated with age and/or with chronic diseases is not 

typically captured in transitions between health states, which calls into question the assumption of 

constant (HRQoL) values. If temporal decrements are to be applied to HRQoL, there is a question of 

what method is most appropriate (e.g. additive, multiplicative, minimum) (Ara and Wailoo, 2011). 

HRQoL is sometimes derived from longitudinal variables and rather than being employed to ascribe 

value to health states, HRQoL acts as the sole indicator of health gain/loss. HRQoL data are usually 

included in RCTs but may be synthesised with HRQoL data from elsewhere. For NICE HTAs, HRQoL is 

measured using the EQ5D instrument (Ara and Wailoo, 2012). Where HRQoL is measured by another 

instrument, mapping to EQ5D may be necessary (Longworth and Rowen, 2011). 

 

In the HTA review, it was found that 61 out of the 64 HTAs (95%) included an estimation of long-

term HRQoL. Three HTAs did not include estimation of long-term HRQoL due to a lack of sufficient 

evidence or because it was assumed life-years were a sufficient measure of health benefit. HRQoL 
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parameters were generally treated in the same manner as costs/resource use, where long-term 

HRQoL were modelled by ascribing HRQoL values to health states in a long-term state-transition 

model. As with costs, the vast majority assumed constant HRQoL values per health state. The results 

are summarised in Table 8. 

 

Table 8: Details of long-term estimation of HRQoL parameters 

 Number % (Note 7) 

Estimated long-term HRQoL 61  

   

Method of estimating long-term HRQoL   

State-transition Model with constant HRQoL 52 91% 

Increment/decrement applied to HRQoL over time 7 2% 

Unclear 2 5% 

 

Note 7: % of HTAs that estimated long-term HRQoL (61) 

 

In contrast to costs/resource use, there were some cases of applying a decrement to HRQoL per 

health state to account for change over time in health benefit not represented by progression 

through health states. The most common reason for this was to account for ageing within the cohort 

whereby a mean baseline HRQoL decrement was applied in one or more health states. There were 

also instances of increments/decrements being applied to HRQoL for reasons other than accounting 

for ageing. For example, Stevenson et al, in a study of the use of vitamin K to prevent fractures in 

older women, in order to model recovery, a HRQoL multiplier effect was assumed whereby a HRQoL 

decrement was combined multiplicatively with the general population HRQoL to provide an estimate 

of the HRQoL for patients in a particular health state, resulting in the absolute HRQoL increasing for 

a period of time (Stevenson et al., 2009). Another example can be found in a study on the cost-

effectiveness of treatment for severe sepsis, where a regression analysis was used to infer the 

reduction of HRQoL over time and to model HRQoL beyond the last observation of the trial. It is not 

clear if any uncertainty in the estimated coefficients was incorporated into the model or if other 

functional forms were tested (Green et al., 2005). 

 

It is clear that computing HRQoL that can be ascribed to a health state and assuming this does not 

vary over time is the most common method of characterising long-term HRQoL. Although there are 

sometimes particular reasons to model HRQoL differently, it is striking that so few studies model the 
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natural continuous change in HRQoL owing to ageing as this effect surely ought to be explicitly 

accounted for quite often in HTA. 

 

3.5 Characterisation of Uncertainty Over Time 

 

Recall that temporal uncertainty has been defined as relating to both estimating parameter values 

over the unobserved period and quantifying the related uncertainty. The above discussions primarily 

pertained to estimating parameter values over the observed period. This last section pertains 

exclusively to the quantification of uncertainty surrounding long-term estimates of parameter 

values. 

 

What was sought first and foremost in this portion of the HTA review was any acknowledgement of 

this uncertainty (which may pertain to any of the parameter-types discussed in Section 3.4 above). It 

was found that in only 32 of the 64 HTAs (50%) was there any acknowledgement of, or any attempt 

to characterise, this uncertainty. The details are summarised in Table 9. 

 

Table 9: Details of How Long-term Uncertainty was Characterised 

 Number  % (Note 8) 

Addressed Long-term Uncertainty 32 50% 

   

Method of Addressing Uncertainty   

Scenario Analysis: Alternative Time Horizons 15 23% 

Scenario Analysis: Alternative extrapolations 19 30% 

Scenario Analysis: Alternative Duration of Treatment Effect 4 6% 

Scenario Analysis: Alternative Long-term Costs/HRQoL 3 5% 

 

Note 8: This is the percentage of the 64 HTAs that were reviewed. 

Note 9: Some HTAs considered more than one of the aspects of temporal uncertainty listed in the table above. 

 

Every HTA reviewed that attempted to address this uncertainty in some way did so through one-way 

sensitivity/scenario analyses.  

 

In many cases (23%), the only sensitivity analysis carried out was the application of alternative time 

horizons. The chief reasons given for this was:  
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(i) To report the cost-effectiveness results based on the trial time horizon (Main et al., 

2004) 

 

(ii) To compare results with previous studies (Wright et al., 2006) 

 

(iii) To demonstrate the sensitivity of the ICER to the length of the time horizon inclusion of 

long-term health benefits (and possibly costs) (Robinson et al., 2005, Shyangdan et al., 

2011, Wilson et al., 2005, Paulden et al., 2010) 

 

Examining the sensitivity of the ICER to the length of the time horizon was the most common reason 

given to conduct this particular sensitivity analysis. Many HTAs showed significant sensitivity to the 

time horizon applied. This ought to have firstly, confirmed the importance of including long-term 

health benefits and costs, but secondly, demonstrated the importance of estimating long-term 

outcomes with care and characterising the uncertainty surrounding the long-term values of model 

input parameters. However, in the majority (60%) of cases where a time horizon sensitivity analysis 

was carried out, no uncertainty analysis was conducted regarding the estimated long-term values of 

parameters.  

 

In a relatively large proportion of HTAs (30%), there was some attempt to express uncertainty 

regarding how evidence was extrapolated from the short-term in order to infer long-term parameter 

values. There was much inconsistency in how this was done. For example, Morgan et al constructed 

two models, one that assumed that the costs and effects seen up to 6 months would continue into 

the future, and one that assumed that costs and effect would exhibit an exponential decay (Morgan 

et al., 2004). Another example is the HTA carried out by Black et al who explored the impact of 

uncertainty regarding long-term disease progression by varying a transition probability by +/-50% 

(Black et al., 2009). A number of HTAs attempted to characterise the uncertainty around 

extrapolating TTE outcomes by producing cost-effectiveness results for alternative parametric fits to 

the short-term TTE data (Dundar et al., 2009, Fox et al., 2007, Bond et al., 2009). For example, the 

manufacturer’s submission in TA137 showed results for both Weibull and Log-logistic survival 

models. These models were chosen based on their ‘goodness-of-fit’ to the short-term data. 

However, as the evidence review group in this case point out, both functions imply generous life 

expectancy and it may be that neither is appropriate to characterise long-term survival. This example 

suggests that applying alternative parametric functions is unlikely to be a sufficient means of 
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expressing uncertainty with regard to the estimation of the long-term values of a parameter (Boland 

et al., 2009).   

 

Uncertainty regarding the relative effect of treatment was most commonly characterised by altering 

the treatment effect duration after the observed period. If a treatment effect is shown to exist (and 

not alter over time) up to the evidence time horizon, then clearly, a difficult judgement must be 

made regarding the nature of treatment effect over the long-term. Representing this uncertainty by 

assuming the treatment effect continues at a constant magnitude for a period of time is perhaps is 

an oversimplification, as the effect is more likely to dissipate over time, or there could even be a 

rebound effect (a possibility not incorporated into any of the analyses reviewed). However, like 

other scenario analyses, the purpose of applying alternative treatment effect durations was simply 

to test the sensitivity of the adoption decision (or the mean ICER) to the nature of long-term 

treatment effect.  

 

In three cases, there was uncertainty expressed regarding the estimates of long-term costs/utilities 

(Clar et al., 2005, Main et al., 2010, Morgan et al., 2004). For example, Main et al simulated a 50% 

increase and decrease in supportive care and drug administration costs in order to show that the 

ICER does not change significantly (Main et al., 2010).  

 

Although a scenario analysis goes some way to expressing the (impact of) uncertainty over the long-

term and avoids imposing assumptions regarding the relative likelihood of alternative scenarios, it 

carries significant limitations. In presenting a base-case and a number of alternative scenarios, 

decision-makers are effectively left to weight all scenarios, which may lead to (i) too much weight 

given to the base-case and (ii) inappropriate calculation of an overall expected cost-effectiveness. 

 

For example, in the case of Sorafenib for advanced hepatocellular carcinoma, the manufacturer’s 

submission examined a range of survival distributions to extrapolate overall survival but ultimately 

employed a single distribution (Log-Normal) based on superior AIC (Connock et al., 2010). However, 

as Connock et al. illustrate in the ERG report, the extrapolated Log-Normal function implied very 

optimistic survival relating to Sorafenib which may not be clinically valid. The Log-Normal 

distribution alone did not provide a fair estimate of overall survival, whereas multiple distributions 

weighted according to their clinical validity may have provided a more suitable estimate. Sorafenib 

was ultimately not recommended for use by NICE. 
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Another (perhaps more worrying) example is that of Trastuzumab for the adjuvant treatment of 

early-stage HER2-positive breast cancer. As part of an appeal against NICE’s approval of 

Trastuzumab, analysts representing Newbury and Community Primary Care Trust highlighted that 

optimistic assumptions regarding primary efficacy are extrapolated beyond the trial period but that 

adverse events observed in the trial are not extrapolated into the long-term. Whereas the significant 

effects of alternative temporal assumptions were demonstrated in a sensitivity analysis, it was the 

base-case analysis (with temporal assumptions favouring Trastuzumab) that was used as the basis 

for reimbursement decision. This point was ultimately left out of the appeal for reasons of 

“simplicity and efficiency”. The appeal was ultimately rejected and the decision upheld (Ward et al., 

2009, Trust, 2006, NICE, 2006).  

 

These examples highlight the need to firstly validate temporal assumptions in health technology 

assessments but also the need to make every effort to incorporate those alternative valid 

assumptions into the base-case analysis in order to provide a fair estimate of expected cost-

effectiveness. 

 

 

3.6 Conclusions & Discussion 

 

Through the above examination of the key analytical issues in addressing uncertainty, the existent 

methods guidance and the methods employed in HTA to date, a number of points of note emerge. 

 

Temporal uncertainty is undoubtedly an issue common in HTA, as evidenced by its prevalence in the 

HTAs reviewed. How often temporal uncertainty is a pivotal issue (i.e. could impact decision making) 

is less clear. A number of HTAs produced results for a range of time horizons, seemingly to 

demonstrate the importance (or otherwise) of long-term outcomes. A means of demonstrating the 

significance of temporal uncertainty is to be welcomed and perhaps ought to be required. However, 

a more sophisticated and reliable method is warranted (such as calculating cumulative net benefit 

over time as outlined in Section 2.2.2.1). A revelation that temporal uncertainty impacts decision-

making should be followed by a thoughtful and thorough modelling of temporal uncertainty. 

 

The endeavour made regarding extrapolation/temporal uncertainty in HTA would appear to be 

generally deficient. The many instances of temporal uncertainty being so diverse, coupled with the 

dearth of clear guidance often leads those developing CEDMs to either not fully confront temporal 
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uncertainty problems, or to employ very simple assumptions to estimate long-term outcomes. There 

seems to be a disparity between the relative consideration given to how best to tackle temporal 

uncertainty and the impact that temporal uncertainty can potentially have on the cost-effectiveness 

results. Even when data are lacking or weak, as it often is, it was found that there is often scope for a 

more thoughtful consideration of modelling options. 

 

Relatedly, the presentation of how temporal uncertainty is addressed is often poor and the 

techniques used less than transparent. Therefore, a requirement for an explicit consideration of how 

temporal uncertainty was approached in an analysis may be productive.  

 

There is a disproportionate focus in methods guidance and in the methods literature on 

extrapolating survival outcomes and treatment effect (in the methods literature there is particular 

focus on using parametric survival analysis to extrapolate survival outcomes). Although survival (and 

other time-to-event) outcomes are of obvious importance in HTA, there are limitations to the 

benefits of fitting parametric functions to the short-term data and directly extrapolating over time 

into the unobserved period. In particular, there are issues of: justification of distribution choice, 

clinical validity and expression of uncertainty. Moreover, there are other parameter-types that are 

deserving of attention when it comes to estimation beyond the evidence period (e.g. the assumption 

of constant HRQoL over time is often not suitable). There is a need to analyse the broader problem 

of a lack of long-term evidence and to develop techniques for sensibly plugging the evidence gap 

and quantifying the related uncertainty.  

 

The ‘base-case’ assumptions regarding the post-trial behaviour of model parameters are typically 

(and perhaps sometimes not unreasonably) very simple assumptions, often of no change over time. 

While some assumptions must be imposed in order to produce an estimate of cost-effectiveness, 

there is often worryingly little attention paid to the (un)suitability of these assumptions. 

 

Crucially, the uncertainty regarding the temporal assumptions imposed or the suitability of the 

modelling approach used is not sufficiently captured in HTAs. There is a danger that varying time 

horizons is seen as ‘ticking the box’ of exploring uncertainty pertaining to the long-term. Scenario 

analyses (which can potentially go some way to expressing temporal uncertainty) are sometimes 

employed. However, to allow the decision-maker to make a fully informed decision regarding 

technology adoption and/or to deduce that further evidence relating to long-term outcomes is 

required, temporal uncertainty must be incorporated into a single probabilistic model.  
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It is hoped this review will strengthen the argument for giving temporal uncertainty greater 

attention in the assessment of health technologies and will help build towards more robust guidance 

on temporal uncertainty in future methods guides. 

 

This chapter has endeavoured to outline the array of analytical issues relevant to the 

characterisation of temporal uncertainty and to express the ‘state of play’ in how temporal 

uncertainty is being addressed. In the following chapter (Chapter 4), many of the issues raised are 

explored and tackled further through the thorough re-analysis of a CEDM.  
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4. THESIS CHAPTER 4: METHODS TO ADDRESS TEMPORAL UNCERTAINTY  

 

4.1 Chapter 4.1: Overview 

 

 

4.1.1 Introduction  

 

The purpose of Chapter 4 is to address, using a motivating example, a range of analytic challenges 

that arise when there exists a dearth of long-term data in a cost-effectiveness decision model 

(CEDM).  

 

This overview sub-chapter sets the scene by explaining the overall structure of Chapter 4, 

introducing the motivating example that will be used throughout, outlining the issues of temporal 

uncertainty that will be addressed in the remaining sub-chapters and finally focusing on an 

important parameter relationship and how this can be dealt with.  

 

4.1.2 Rationale Behind Structure of Chapter 4 

 

For the sake of clarity and narrative, the empirical section of the thesis comprises one overarching 

chapter. As discussed in Chapter 3, there is a range of parameter-types that are typically exposed to 

temporal uncertainty. Because methods are required to appropriately address temporal uncertainty 

regarding each of these parameter-types and because the interactions and cumulative effects of 

these parameters are also crucial factors, a chapter structure where inter-related sub-chapters build 

towards a comprehensive methodology would best facilitate a thorough analysis. Thus, there are six 

‘sub-chapters’ within this chapter, with four of these sub-chapters focusing on one particular 

parameter-type (or group of parameter types) where there is an issue of temporal uncertainty. 

These are (i) baseline risk, (ii) treatment effect and (iii) costs/resource use and (iv) HRQoL. As well as 

this overview sub-chapter, there is also an overall results and discussion sub-chapter that compares 

the original CEDM to the ‘updated’ CEDM and discusses some key outcomes and findings. 

 

Each of central four sub-chapters broadly follows the same structure (introduction, available 

evidence, methods, results) and employs the same motivating example (RITA-3). Parameter 

interactions can then be explored and overall conclusions can be drawn in the final sub-chapter. The 

efforts at characterising temporal uncertainty in the RITA-3 model are not exhaustive. All issues of 
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temporal uncertainty in the RITA-3 model are outlined in this overview section, but not all are 

analysed in detail in the following sub-chapters. It is envisioned however, that the issues of temporal 

uncertainty that are addressed in detail broadly represent the key issues of temporal uncertainty 

facing analysts in health technology assessment (HTA). In short, the RITA-3 model is used as a vehicle 

for exploring and developing methods for addressing temporal uncertainty, the need for which has 

been articulated in the previous two chapters. 

 

 

4.1.3 Introduction to the Motivating Example: The RITA-3 Model 

 

The RITA-3 cost-effectiveness decision model (CEDM) represents a useful vehicle through which to 

explore issues of temporal uncertainty. This case study comprises an event-based model structure, 

individual patient-level data from a randomised controlled trial, a long-term analysis time horizon 

and a narrowly defined patient population. These features present challenges for estimating long-

term outcomes which are typical of those arising in HTA. 

 

It should be noted at this point that the RITA-3 model is employed in this Ph.D. research solely for 

the purposes of developing the methods employed in healthcare decision modelling. Some of the 

assumptions and analyses in this chapter are stylised (though the final ‘updated model’ is based only 

on real evidence). Furthermore it is likely that the RITA-3 trial itself is largely obsolete as relevant 

clinical procedures (e.g. the insertion of stents) have advanced somewhat since the RITA-3 trial took 

place (Vardi et al., 2005). Therefore, the results of this re-analysis are not intended for use in clinical 

decision making. 

 

4.1.4 Background to Disease and Decision Problem 

 

Patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) face a significant risk of 

mortality and cardiovascular events. It is expected that an early interventional strategy (routine 

angiography followed by revascularisation if clinically indicated) will represent a lower risk of 

death/a cardiovascular event compared to a conservative strategy (ischaemia or symptom-driven 

angiography), but also a higher cost to the health system. There is uncertainty regarding whether 

implementing the early interventional strategy represents good value for money from a health 

system’s point of view. A decision problem arises therefore, concerning whether the early 
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interventional strategy or the conservative strategy should be recommended for patients presenting 

with NSTE-ACS.  

 

It is assumed that the ICER threshold for this decision problem is £20,000 per QALY. 

 

4.1.4.1 The RITA-3 trial 

 

The Randomised Intervention Treatment of Angina (RITA-3) trial was a prospective, randomized 

multicentre trial with parallel groups, enrolling 1810 patients from 45 hospitals in England and 

Scotland (Fox et al., 2005). Patients were said to be eligible if they presented with cardiac pain 

associated with electrocardiographic or previous arteriographic evidence of coronary artery disease, 

or an elevated serum cardiac marker (Fox et al., 2002).  

 

4.1.4.2 A Decision Model 

 

A cost-effectiveness decision model (CEDM) was developed by Henriksson et al. in 2008 based 

predominantly on the individual patient-level data (IPD) from the RITA-3 trial (Henriksson et al., 

2008). The CEDM is composed of a short-term tree structure (assumed to be instantaneous in time) 

and a long-term Markov structure. A series of regression equations are used to estimate the 

transition probabilities between Markov states. Costs and QALYs per Markov state (and for the index 

hospitalisation period) are estimated using standard OLS regressions. The CEDM is probabilistic and 

is written in Stata and Excel. The model structure is depicted in Figure 18 below. 
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Figure 18: Structure of RITA-3 CEDM 

 

 

 

4.1.5 Original Model Results 

 

4.1.5.1 Cost-effectiveness 

 

Patients were divided into quartiles of risk. Because of the much higher event rate in the fourth 

(uppermost) quartile, this quartile was further divided in two (risk groups 4a and 4b). Each risk group 

was represented by a particular risk profile (See Appendix 2). Table 10 below outlines the cost-

effectiveness results for 5 risk groups. 

 

Table 10: Cost-effectiveness Results from Original CEDM 

Risk group Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Adopt/reject early 

interventional (EI) 

Risk group 1 4,885 0.091 53,760 Reject 

Risk group 2 4,898 0.213 22,949 Reject 

Risk group 3 6,029 0.285 21,186 Reject 

Risk group 4a 6,538 0.547 11,957 Adopt 

Risk group 4b 6,530 0.512 12,750 Adopt 
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With an ICER threshold of £20,000, the results in Table 10 suggest that for risk groups 4a and 4b, the 

early interventional treatment should be adopted based on cost-effectiveness, whereas for risk 

groups 1, 2 and 3, the conservative treatment should be retained. Risk group 3 is associated with a 

mean ICER very close to that of the willingness to pay threshold (£20,000). It is expected therefore, 

that uncertainty around the model inputs will have the greatest impact on the decision uncertainty 

associated with risk group 3. 

 

4.1.5.2 Uncertainty 

 

Table 11 below summarises the impact of uncertainty on the outputs of the CEDM for each of the 5 

risk groups, showing the probability of cost-effectiveness at a threshold of £20,000/QALY and the 

expected value of perfect information (EVPI) at both the patient and population level. For the 

calculation of EVPI/population, an annual UK incidence rate for NSTE-ACS of 59,756 was obtained 

from the Office for National statistics (Office for National Statistics, 2012). It was assumed that 

evidence pertinent to this decision problem would remain relevant for 10 years and that the value of 

this evidence could be discounted at a rate of 3.5% per anum. It was further assumed that the 

incident population could be divided proportionally among the risk groups, i.e. 25%, 25%, 25%, 

12.5%, 12.5% for risk groups 1, 2, 3, 4a, 4b respectively. 

 

Table 11: Summary of Effect of Uncertainty on for each Risk Group 

Risk group Prob(EI cost-effective) 

at £20,000/QALY 

EVPI/patient (£) EVPI/population (£) 

Risk group 1 0.009 1.92 349,068 

Risk group 2 0.328 367.70 66,850,066 

Risk group 3 0.420 475.15 86,385,121 

Risk group 4a 0.945 61.13 5,556,900 

Risk group 4b 0.924 107.96 9,813,888 

 

 

For the results outlined above, the original temporal assumptions (described in detail in Table 12 

below) were applied. It is important to note that some of these temporal assumptions were 

explicitly ‘conservative’, i.e. they openly underestimate the effectiveness of the early interventional 

strategy in order to be confident in its cost-effectiveness for higher risk groups. As temporal 

uncertainty is more carefully modelled in subsequent sub-chapters, both the level of uncertainty 
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surrounding the model inputs and the expected ICER are likely to shift, both of these impacting 

decision uncertainty. 

 

These same results will be presented at the close of every sub-chapter, i.e. after each issue of 

temporal uncertainty has been addressed, the impact of incorporating this temporal uncertainty is 

conveyed for each risk group. However, for simplicity, some analysis carried out within sub-chapters 

will be illustrated for just one risk group (risk group 3).22 

 

 

4.1.6 Temporal uncertainty in the RITA-3 model 

 

4.1.6.1 Time horizon mismatch 

 

The primary sources of data (data from RITA-3 and other relevant clinical trials) pertain to a 5 year 

time horizon or less. The appropriate analysis time horizon (the time over which costs and effects 

are expected to differ between the two strategies) however is circa 60 years. Since there are 

mortality effects related to the competing treatment strategies, it is necessary to impose a lifetime 

time horizon. 60 years is assumed to be the time horizon after which effectively all patients are 

deceased. 

 

 It is this time horizon mismatch that gives rise to temporal uncertainty within the CEDM. 

 

4.1.6.2 Will this matter? 

 

In this section, it will be considered whether the temporal uncertainties that arise due to this time 

horizon mismatch could affect the recommendations that the decision model exists to inform. 

 

4.1.6.2.1 Observed Period vs. Unobserved Period 

 

To initially gauge the expected impact of temporal uncertainty on the cost-effectiveness results, we 

can simply consider the disparity between the duration of the observed period (5 years) and the 

duration of the unobserved period (55 years).  We would expect the existence of such a long 

unobserved period relative to the observed period to potentially lead to substantial temporal 

                                                           
22

 To be clear, temporal uncertainty is incorporated into the model results cumulatively. Thus the updated 
results for one sub-chapter will act as the base-case results for the subsequent sub-chapter. 
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uncertainty. Also important is the number of events of interest that have occurred within the 

observed period (i.e. the ‘maturity’ of the data). Consider, for example, the survival curves in Figure 

19 that pertain to patients experiencing a first composite event (myocardial infarction or 

cardiovascular related death). 

 

 

Figure 19: Available survival data (Kaplan-Meier curves) against full model time horizon 

 

 

 

 Not only does this convey the extent of the survival ‘space’ yet to be filled, it also shows that just 

11% of patients have experienced an event within the observed period. As such, these data could be 

described as immature. However, it must also be noted that outcomes attributable to earlier periods 

are of more value. In this model, approximately 31% of all costs and QALYs are attributable to the 

observed period (using, for now, the temporal assumptions applied in the original model). The 

reason for this is that there are more patients alive or in better health states over earlier periods and 

costs and QALYs accrued are discounted to a lesser degree. 

 

Although this information is an indicator of the extent of the temporal uncertainty that may exist, 

what ultimately is of consequence is the impact that temporal uncertainty has on the decisions the 

analysis is designed to inform, i.e. whether or not to adopt a new health intervention, and whether 
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or not to seek further evidence. We can appraise the role that temporal assumptions may play in 

generating decision recommendations by considering how cost-effectiveness evolves over time. 

 

4.1.6.2.2 Cost-effectiveness Over Time 

 

If it was the case that the early interventional strategy was found to be cost-effective at the evidence 

time horizon, we could be confident that this strategy would also be cost-effective at the full time 

horizon (as per the discussion in Section 2.2.2.1). The reason for this is that the early interventional 

strategy is the more expensive strategy (with high up-front costs). Cost-effectiveness at the evidence 

time horizon therefore implies significant health gains over the observed period. Since most of the 

health gains are survival related and since we don’t expect any rebound effect or significant future 

costs, the early interventional strategy would be expected to continue to accrue more QALYs relative 

to its comparator over the unobserved period and at no significant extra cost, therefore remaining 

cost-effective. This in turn would imply that any set of plausible temporal assumptions would not be 

expected to affect the adoption recommendation. Conversely, if the early interventional strategy 

was found to be cost-ineffective at the evidence time horizon, then there would be scope for the 

temporal assumptions to determine the cost-effectiveness at the full time horizon and therefore the 

adoption recommendation. To observe this, we can calculate the cumulative incremental net health 

benefit over time (assuming a cost-effectiveness threshold of £20,000). 
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Figure 20: Cumulative Incremental Net Health Benefit over time for risk group 3 showing mean 
CINB over time and 5th and 95th percentiles 

 

 

 

It can be seen in Figure 20 that net health benefits (for the early interventional strategy) accrue over 

the observed period but do not reach the point where the early interventional strategy is deemed to 

be cost-effective (i.e. where cumulative incremental net health benefit > 0). Although, we expect net 

health benefits to continue to accrue over the unobserved period, it is not certain whether these 

additional net health benefits will be sufficient for the strategy to be deemed cost-effective (as can 

be seen from three hypothetical realisations depicted in the graph). In other words, since the early 

interventional strategy relies on the net health benefits accrued over the unobserved period in order 

to be deemed cost-effective, it is possible that the adoption decision recommended by the CEDM 

will depend on the temporal assumptions that are imposed. In short, temporal uncertainty directly 

impacts the adoption recommendation.  

 

4.1.6.3 What are the issues of temporal uncertainty in RITA-3? 

 

Having established that temporal uncertainty may be a crucial element in this analysis, it is now 

considered where exactly there exists temporal uncertainty in the CEDM. Essentially all of the key 

components of the long-term Markov structure (see Figure 18) are subject to some kind of temporal 

uncertainty, i.e. the transition probabilities between health states, the costs and HRQoL attributed 

to those states and the assumptions implicit in the overall model structure. Details about each 
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pertinent model component and the temporal assumptions made in the original analysis are 

provided in the table below (Table 12).  
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Table 12: Issues of Temporal Uncertainty in RITA-3 CEDM 

 

Model Component Where in Model? Specific Parameter  Variable type Data availability Temporal assumption 

Transition 

Probabilities 

Transitions between 
the ‘no event’ state 
and the ‘MI/CVD’ 

state 

Baseline measure 
(conservative arm of 
trial) 

Time-to-event (TTE) 
variable. Hazard rates are 
calculated and 
transformed into 
transition probabilities 

IPD from RCT (RITA 
3) for 5 years 

Hazard rates were assumed to stay constant over the 
unobserved period except for a 10 yearly increase to 
represent increasing risk with age 

Treatment effect (in 
order to characterise 
the ‘intervention’ arm of 
the trial from the 
conservative arm) 

Relative effect in the form 
of a hazard ratio 

IPD from RCT (RITA 
3) for 5 years and 
aggregate data 
from 7 other trials 

Pooled treatment effect was applied over trial period. 
Hazard ratio was then assumed to be 1 after the trial 
period, i.e. no difference in hazards was assumed 

Transitions between 
the ‘Post MI state’ 
and the ‘MI/CVD’ 

state 

Baseline measure 
(conservative arm of 
trial) 

TTE variable. Hazard rates 
are calculated and 
transformed into 
transition probabilities 

IPD from RCT (RITA 
3) for 5 years 

It was assumed that the probability of suffering a 
second event in the model was the same as the 
probability of suffering a first (but with the covariate 
for ‘previous event’ switched to 1) for 5 years then (if 
no further event) the hazard reverts to the same as 
those in the ‘no event’ state 

Treatment effect (in 
order to characterise 
the ‘intervention’ arm of 
the trial from the 
conservative arm) 

Relative  effect  in the 
form of a hazard ratio 

IPD from RCT (RITA 
3) for 5 years and 
aggregate data 
from 7 other trials 

It was assumed that there is no difference between 
arms in terms of the probability of suffering another 
event 

Transitions between 
the ‘MI/CVD’ state 
and the ‘Dead CV’ 

and ‘Post MI’ states 

Event type (logistic 
regression). Same for 
both comparators (i.e. 
no treatment effect) 

Odds ratio. Transition 
probabilities are then 
calculated from this.  

IPD from RCT (RITA 
3) for 5 years 

Odds ratio was assumed to stay constant over 
unobserved period 

HRQoL  
Composite event & 
‘No Event’ and ‘Post 
MI’ health states 

Health-related quality of 
life weight 

Factor between 0 and 1 IPD from RCT (RITA 
3) for 5 years 

HRQoL weights per health state and health event were 
assumed to stay constant over unobserved period and 
were assumed equal for both cohorts 

Costs  
Composite event & 
‘No Event’ and ‘Post 
MI’ health states 

Resource use and unit 
costs 

Pound Sterling IPD from RCT (RITA 
3) for 1 year 

Costs per health state and health event were assumed 
to stay constant over the unobserved period  and 
were assumed equal for both cohorts 

Structure 
Entirety of Markov 
model 

n/a n/a IPD from RCT (RITA 
3) for 5 years 

It was assumed that the model structure reflected 
reality over the long-term sufficiently well for the 
purposes of the analysis 
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What Table 12 demonstrates is that when temporal uncertainty is explicitly taken into account, it 

becomes apparent that there are a number of parameters and model components whose long-term 

behaviour ought to be examined. In other words, temporal uncertainty pertains to far more than 

survival curves. 

 

Transition Probabilities 

Transition probabilities are the drivers of disease progression in this event-based model. Any analysis 

of survival curves, treatment effects, multiple cardiovascular events etc. must ultimately be 

translated into transition probabilities. As Table 12 illustrates, transition probabilities can be broken 

down in to more specific model parameters. In the RITA-3 model, the transitions between each of 

the key health states merit consideration, with a baseline measure (which represents the 

conservative treatment strategy) and treatment effect (which when applied to the baseline measure 

represents the early interventional strategy) for each transition23. Although there are significant 

temporal uncertainties relating to each transition, the key transition in this CEDM is the transition 

from the ‘No Event’ health state to the ‘MI/CVD’ health state; that is, the post-intervention risk of 

experiencing a first composite event (myocardial infarction of cardiovascular related death). The 

effect of alternative treatment strategies on this risk is the principle outcome of the RITA-3 trial and 

determines the subsequent pathways in the CEDM. Hence the ‘No Event’ to ‘MI/CVD’ component of 

the model will form the focus of much of this re-analysis.  

 

Costs and Resource Use 

There are costs associated with two health states in the long-term portion of the model – there are 

no costs associated with death, and the ‘MI/CVD’ health state is assumed to be instantaneous. For 

both the ‘No Event’ health state and the ‘Post MI’ health state, there are constant costs assumed 

(the same amount for both treatments) for the second and subsequent years. There is also a cost 

associated with experiencing an MI. The temporal uncertainty relating to costs pertains to the 

reasonableness of these assumptions. It is plausible that other factors could come into play that may 

influence the cost of patients inhabiting these health states.  

 

Health-related Quality of Life 

As with costs, there are HRQoL ‘weights’ associated with both the ‘No Event’ health state and the 

‘Post MI’ health state in the second year after intervention and subsequent years. These weights are 

assumed to be constant over time and the same for both treatments in the base-case. Again, there is 

                                                           
23

 In Section 4.1.7 the possibility of using absolute measure for both the conservative and early interventional 
treatments is discussed. 
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temporal uncertainty relating to these assumptions. It is likely that there is a reduction in HRQoL 

associated with aging and there could be other factors to consider over the long-term.  

 

Structure 

The structure of the Markov portion of the CEDM implies further assumptions about progression 

over the long-term. The Markov assumption plays only a minor role in this model as there is only one 

path to the key ‘No Event’ health state and transitions from this health state can easily be made 

dependant on the time spent in the health state. The ‘Post MI’ state is effectively 5 states (with each 

state representing an additional year alive after a myocardial infarction associated with decreasing 

risk of another composite event) and so the Markov assumption is circumvented in this part of the 

model also (for 5 cycles/ years)24. The appropriateness and sufficiency of this time dependency could 

be questioned. More generally, perhaps more health states are required to reflect the complexity of 

long-term disease progression and perhaps other long-term clinical events need to be explicitly 

taken into account. 

 

Although all the potential areas of temporal uncertainty in the RITA-3 model have been outlined 

above, the scope for this case study is to analyse in detail the temporal uncertainty pertaining to key 

parameters. In doing so, this chapter will seek to cover the central analytic issues regarding temporal 

uncertainty. The subsequent sub-chapters will thus focus on: 

 

(i) Baseline risk of a first composite event (Chapter 4.2) 

 

(ii) Treatment effect pertaining to a first composite event (Chapter 4.3) 

 

(iii) Costs and resource use (Chapter 4.4) 

 

(iv) Health-related Quality of Life (Chapter 4.5) 

 

 

 

 

 

                                                           
24

 Recall that the ’Markov assumption’ means that each model state is memoryless, i.e. when patients are in a 
health state, it is of no consequence how long those patients have been in that state nor what health states 
they were previously in. 
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4.1.7 Parameter Relationships 

 

An issue that ought to be addressed before focus is given to individual parameters is the relationship 

between some of these parameters. It is inevitable that some parameters will be inextricably linked 

to others. Certainly in terms of conveying the impact of temporal uncertainty, the effect of a 

temporal assumption regarding one parameter may be very sensitive to the temporal assumption 

regarding another. The full picture of (and impact on decision-making of) temporal uncertainty will 

only become clear after temporal uncertainty has been expressed for each of the key parameters. It 

will be necessary therefore, in the subsequent sub-chapters of this chapter, to explore how the 

parameter under discussion relates to other key parameters. It could be argued that some 

parameters ought to be modelled in tandem. However, it is suggested here that it is more beneficial 

to focus on one parameter-type at a time, while referring intermittently to the relationship with 

other parameters, so as to develop methodology specific to that parameter-type. 

 

There is one parameter relationship that warrants particular consideration from the outset; that is 

the relationship between baseline risk and treatment effect (in terms of a first composite event) and 

how these two parameters ultimately generate transition probabilities for each of the treatment 

strategies. The estimation of these parameters is central to the analysis (indeed they both have 

substantial sub-chapters dedicated to them) and are obviously closely related. It is important 

therefore that the approach taken to modelling these closely related parameters is explained and 

justified.  

 

 

4.1.7.1 Modelling baseline risk and treatment effect 

 

In the Markov (long-term) portion of the model, it is the transition probabilities that (almost solely) 

differentiate the two treatment strategies (the higher costs for the early interventional strategy 

occur in the index hospitalisation period which is assumed instantaneous in time). As outlined 

earlier, the key transition is that from the ‘No Event’ state to the ‘MI/CVD’ state. It must be 

considered what approach to take in order to estimate transition probabilities for both the 

conservative and early interventional arms of the model given the nature of the evidence available 

and given the need to characterise temporal uncertainty. This task of estimating transition 

probabilities for multiple comparators is a common scenario in HTA and is an especially important 

issue in the context of a need to model beyond the evidence period.  
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The primary evidence available to inform these parameters comes in the form of 5 year individual 

patient-level data (IPD) from the RITA3 trial. Additional information on treatment effect in the form 

of aggregate trial data (specifically odds ratios) is also available. In Section 3.4.2.1, it was outlined 

how transition probabilities can be derived from the hazard functions calculated from analysis of the 

survival data. There are a number of alternative modelling approaches that can be employed to 

produce these hazard functions form the available data for both comparators. It is suggested here 

that there are five key criteria to consider when choosing a modelling approach. 

 

 

(i) Flexibility regarding treatment effect. As we characterise treatment effect over the observed 

period, it is desirable to allow our estimates to vary with time. Calculating a single estimate 

for treatment effect (and consequently assuming no change over the unobserved period) 

may not be appropriate, but importantly, it also makes it difficult to judge how the 

treatment effect parameter might behave over the unobserved period. 

 

(ii) Flexibility regarding baseline risk. It is similarly desirable to ensure that baseline risk is 

modelled with sufficient flexibility to reflect the complexity of the disease. Simple 

assumptions such as a constant or monotonically decreasing baseline risk may be sufficient, 

but there ought to be scope to assume a more complex baseline risk.  

 

(iii) Explicitness regarding treatment effect. It is desirable to be explicit regarding what is being 

assumed about the treatment effect, for the sake of clarity about the relative effectiveness 

of an intervention, but also as it is scenarios regarding future treatment effect that are 

highlighted in the current NICE guidance on extrapolation (NICE, 2013). 

 

(iv) Consideration/incorporation of all relevant evidence. The consideration of all relevant 

evidence is a key principle of economic evaluation (Sculpher et al., 2006, Philips et al., 2006). 

As a result, any modelling approach ought not to preclude the use of any relevant evidence. 

Although it is debatable as to what can be defined as relevant evidence, in this case study, 

the immediately relevant evidence comprises the individual patient-level data from the 

RITA-3 trial and the estimates of treatment effect from other published trials. 
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(v) Quantification of correlation between parameters. When employing a survival regression to 

compute transition probabilities, the availability of individual patient-level data (IPD) allows 

us to incorporate the correlations between statistical parameters by constructing a Cholesky 

decomposition25 (Briggs et al., 2006). Correlation between parameters is relevant for 

running a probabilistic sensitivity analysis. It should be incorporated where possible 

although it may have negligible impact on the model results. The 5-year IPD available makes 

it possible to incorporate the correlation between baseline risk and treatment effect. It may 

be more difficult however to legislate for correlation as temporal changes beyond the 

observed period are modelled.  

 

Three approaches to using the RITA-3 data in order to produce hazard functions (and ultimately 

transition probabilities) for both comparators are outlined below. The merits of each are discussed 

in terms of the criteria listed above.  

 

Approach 1: 

A common modelling approach in this situation is to assume proportional hazards. This assumes that 

the effect of treatment is multiplicative with respect to baseline risk and that this effect is 

independent of time. For the RITA-3 case study, a proportional hazards (PH) survival function can be 

fit to the survival data in order to simultaneously produce: (i) a baseline hazard function which 

represents the conservative arm and (ii) a single hazard ratio representing treatment effect which 

when multiplied by the baseline hazard function produces the hazard function pertaining to the 

early interventional arm. Separate judgements can then be made regarding the behaviour of both 

the baseline hazard and the treatment effect over the unobserved period. This is what was done in 

the original version of this CEDM where a Weibull PH model was fit to the RITA-3 data. The 

treatment effect applied to the observed period was the hazard ratio from the Weibull PH model, 

although a pooled treatment effect comprised of the hazard ratio from the Weibull model and the 

odds ratios from the external data was applied in a sensitivity analysis. Although this approach is 

straightforward, simply assuming proportional hazards and estimating both parameters in one 

regression equation is restrictive with regard to extrapolating in order to estimate temporal 

behaviour over the unobserved period. Though maybe not unreasonable, we are constrained to 

                                                           
25

 Note the distinction between model input parameters (parameters that are input directly into the decision 
model, e.g. transition probabilities, costs, utilities) and statistical parameters (parameters that contribute to a 
regression equation that may help generate a model input parameter, e.g. age, sex, smoker). Parameters like 
treatment effect and baseline risk could be placed into either category. In this instance, we are concerned 
about the correlation between these two when thought of as statistical parameters, but generally in this 
chapter and elsewhere they are discussed as model input parameters. 



113 
 

assuming that both hazard functions follow a Weibull distribution, while the PH model produces a 

single estimate of treatment effect for the observed period without estimating how treatment effect 

might evolve with time. This approach does incorporate estimates of correlation between baseline 

and treatment effect. It is also reasonably flexible with regard to baseline risk as not only can 

standard PH model be employed, but also more flexible models like the Royston-Parmar flexible 

parametric model. Approach 1 is depicted in the Figure 21 below. (Note that the extrapolated hazard 

curves depicted are hypothetical. In fact, the original model assumed constant post-trial hazards and 

no further treatment effect.) 

 

Figure 21: The ‘proportional hazards’ approach to modelling this component of the observed 
period 

 

Note: In the original model, assumptions of constant hazards and no further treatment were made when extrapolating. 

Note that this graph does not account for the change in hazards when the age covariate is updated 

 

 

Approach 2 

An alternative approach that might be less restrictive and more conducive to extrapolating evidence 

over time would be to fit separate survival distributions to each arm of the trial data (for example 

Weibull and Log-Normal). No relationship would then be assumed between the arms. Each arm 

could be independently extrapolated over the unobserved period, either assuming a continuation of 

the survival distributions, or making alternative assumptions regarding the behaviour of the hazards. 

Since this approach does not consider a relative effect, but separate absolute risks for each arm, it is 

Single HR from Weibull PH 

Evidence 

TH 



114 
 

not necessary to only select survival distributions that use a PH metric. This approach could arguably 

be thought of as very flexible in terms of both baseline risk (as distributions using non-PH metrics 

can be used) and treatment effect (as treatment is allowed implicitly to change over time). However 

this approach also implies that we will not use the supplementary aggregate data available as they 

pertain to treatment effect specifically. It also involves making an implicit, rather than explicit, 

judgement regarding the magnitude of treatment effect and how this evolves over time. 

Furthermore, this approach makes it more difficult to incorporate correlation between (in this case) 

the absolute hazards (assuming that distributions are fit separately to the trial arms). This 

‘independent arms’ approach is depicted in Figure 22. 

 

Figure 22: The ‘independent arms’ approach to modelling this component of the decision model 

 

 

 

Approach 3 

A third approach would be to focus on baseline risk and treatment effect separately, essentially 

analysing the IPD twice in order to estimate these two parameters. The baseline risk (i.e. the 

conservative arm of the trial) would be modelled in relation to the observed period from which 

alternative long-term scenarios would be generated based on the temporal trend observed in the 

trial period, or on external evidence relating to natural history, or on other clinically plausible 

scenarios. The treatment effect over the observed period would be analysed and modelled while 

ignoring the nature of the baseline. This would allow for a time-dependent hazard ratio and the 
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inclusion of hazard ratios from other evidence sources if appropriate. Future temporal behaviour can 

then, to the greatest extent possible, be based on the temporal trends observed. Even if the function 

used to represent baseline risk implies a different treatment effect to the one used in the decision 

model, I do not consider this contradiction as problematic as of course a model is ‘correct’ in so far 

as it is useful. This approach, like Approach 1, is restricted to using only PH distributions to 

characterise baseline risk. However, with the availability of an array of PH distributions including 

very flexible models like the Royton-Parmar model, this approach would appear to ensure sufficient 

flexibility. Also, like Approach 1, this approach could incorporate the correlation between baseline 

risk and treatment effect (it would seem reasonable to use the correlation estimate from a PH model 

including treatment effect even if a different estimate of treatment effect is ultimately used). Note 

that an extension to the Royston-Parmar model has been developed which allows both a flexible 

baseline hazard and a time-dependent treatment effect, and jointly estimates both. Although, this 

precludes the use of other estimates of treatment effect, it may be a useful model to employ under 

some circumstances. The approach of considering baseline risk and treatment effect separately is 

depicted in the Figure 23 below.  

 

 

Figure 23: Approach of modelling baseline risk and treatment effect separately 

 

 

 

Choosing the most appropriate approach clearly requires judgment and there may be more criteria 

to consider than those outlined above. It is also not a case of choosing the approach that satisfies 

Modelling of treatment effect, which when 

applied to baseline risk, produces hazard 

function for early interventional treatment 

arm 

Modelling of baseline risk (i,e, 

conservative treatment) 
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the most criteria as some ought to carry more weight than others. However, judging these 

alternative approaches by the criteria described above is a useful process. 

 

 

Table 13: How the alternative approaches fare in terms of the three criteria 

Criterion Approach 1 Approach 2 Approach 3 

Flexibility re treatment effect     

Explicit re treatment effect    

Incorporate all relevant evidence     

Flexibility re baseline risk   

Quantification of correlation ~  ~

 

 

For this analysis, Approach 3 incorporates, and best exploits, the relevant evidence available while 

also allowing explicit and flexible modelling regarding both baseline risk and treatment effect. It is 

suggested here that modelling baseline risk and treatment effect separately best facilitates 

extrapolation and ultimately appropriate characterisation of temporal uncertainty in this 

circumstance. Furthermore, in terms of addressing temporal uncertainty, baseline risk and 

treatment effect pose quite different challenges and so it is useful, for the purposes of this re-

analysis, to dedicate separate sub-chapters to them.  

 

The remaining sub-chapters in Chapter 4 will now explore in detail the key issues of temporal 

uncertainty in RITA-3 and seek to appraise and develop methodology with a view to constructing a 

comprehensive methodology for appropriately addressing temporal uncertainty in CEA. 
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4.2 Chapter 4.2: Baseline Risk 

 

4.2.1 Introduction  

 

Following the overview given in Chapter 4.1, the purpose of this chapter is to address, in detail, the 

temporal uncertainty relating to the first of the key parameters in the RITA-3 model: baseline risk of 

a first composite event (myocardial infarction or cardiovascular-related death). 

 

In particular, this chapter endeavours to explore: the usefulness and limitations of employing 

survival analysis to extrapolate a time-to-event variable; the issue of accounting for the effects aging 

when estimating baseline risk over the long-term; and crucially, methods that appropriately express 

uncertainty for estimates of baseline risk beyond the observed period. 

 

4.2.1.1 The parameter 

 

The model parameter under analysis is the baseline risk of experiencing a first composite event after 

intervention. Baseline, in this instance, refers to patients subject to the conservative treatment 

strategy. Baseline risk therefore will be converted into annual transition probabilities that determine 

the proportion of the ‘conservative cohort’ that transition from the ‘No Event’ health state to the 

‘MI/CVD’ health state as illustrated in Figure 24 below. A treatment effect (the derivation of which is 

the subject of Chapter 4.3) will then be applied to this baseline risk in order to determine the risk, 

and ultimately the transition probabilities, for patients subject to the early interventional treatment 

strategy. 

 

Figure 24: Baseline risk refers to the transition between the ‘No Event’ health state and the 
‘MI/CVD’ health state for patients receiving the conservative treatment strategy 
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4.2.1.2 Challenges regarding estimating baseline risk over the long-term 

 

The condition in question, non-ST-elevation acute coronary syndrome (NSTE-ACS), is a collective 

term for unstable angina and non-ST elevated acute myocardial infarction and relates to a spectrum 

of diseases that involves an imbalance of supply and demand of oxygen available to the myocardium 

(Anderson et al., 2007). Patients presenting with these symptoms represent a heterogeneous group 

with a wide variety of clinical outcomes (Grech and Ramsdale, 2003). As such, it is not 

straightforward to model the long-term prognosis for a patient presenting with NSTE-ACS.  

 

To compound this difficulty, the risk that requires characterisation is that of a ‘composite event’, 

which is defined in this study as a cardiovascular death or myocardial infarction (Henriksson et al., 

2008). Even if it were feasible to obtain long-term mortality data for this particular patient 

population, it is unlikely that long-term data on the prevalence of such composite events could be 

obtained (to say nothing of heterogeneous risk between risk groups). It may be possible however, to 

assess the validity of the implied mortality from the model. If nothing else, the implied long-term 

mortality can be compared to that of the general population. 

 

Age is recorded in the RITA-3 trial by categorizing patients into ‘age groups’ (group 0=50’s, group 

1=60’s, group 2=70’s, group 3=80’s, group 4=90+). Although it is possible to assess the impact of the 

‘age group’ covariate on the hazard rate over the observed period, it is more difficult to assess the 

effect of continuous aging as patients remain in their age groups for the duration of the trial (5 

years). There are essentially two factors to contend with as we consider the behaviour of hazard 

rates over time: (i) the change in risk associated with event-free survival and (ii) the change in risk 

associated with ageing. This combined effect of ageing and event-free survival is not adequately 

captured in the RITA-3 data. This shortcoming is indicative of the fact that RCTs are seldom designed 

with estimation beyond the trial period in mind. In the original CEDM developed by Henriksson et al. 

(Henriksson et al., 2008), the change in risk associated with age over the unobserved period was 

modelled by updating the age covariate in the Weibull PH model every ten years (as patients are 

assumed to transfer into the next age group), while there was assumed to be no further change in 

hazard rates (after five years) associated with time since hospitalisation. The appropriateness of 

these assumptions will be central as we characterise temporal uncertainty regarding baseline risk. 
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4.2.2 Available evidence 

 

4.2.2.1 Evidence from RITA-3 

 

The key data available to inform baseline risk come in the form of 5 year individual patient-level data 

(IPD) from the RITA-3 trial. These data are time-to-event or survival data which means that 

parametric survival analysis may be employed to characterise risk over the observed period and 

potentially extrapolate beyond, as described in Section 3.4.2.1. 

 

4.2.2.2 Further evidence 

 

As part of this re-analysis, a search for further relevant evidence was carried out. 

 

Firstly, data were collected pertaining to UK population cardiovascular-related mortality (British 

Heart Foundation Health Promotion Research Group, 2010, Office of National Statistics, 2011). These 

data was collected to serve two purposes: (i) to act as a lower-bound to the cardiovascular mortality 

rate implied by the model and (ii) to give an indication of the change in risk of a cardiovascular death 

with age. 

 

Secondly, a search of UK health technology assessments (HTAs) was carried out to take into account 

previous assumptions made regarding long-term event risk for patients that presented with NSTE-

ACS . Six full HTAs containing the term “non-ST” in the text were found. The content of these studies 

is discussed in Section 4.2.3.4.5. Some other studies outside of the HTA literature are also included in 

the discussion of long-term prognosis of patients with NSTE-ACS. 

 

4.2.3 Analysis 

 

4.2.3.1 Analysing and interpreting the survival data 

 

It is first necessary to compute hazard rates (and then transition probabilities) for the observed 

period, not only because these inputs are required in the CEDM, but also because characterisation of 

baseline risk over the observed period may partially inform our characterisation of baseline risk over 

the unobserved period. To these ends, the available individual patient-level data (IPD) from the 

RITA-3 trial which pertain to the first 5 years after intervention can be analysed. 
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Figure 25 shows the survival data, as a Kaplan-Meier curve, from the RITA-3 trial for those given the 

‘conservative’ treatment (i.e. baseline risk).  

 

Figure 25: The baseline survival data from RITA-3 

 

 

 

This graph indicates that the decrease in survival is quite rapid over the first year and then relatively 

stable for the remaining years. The nature of baseline risk in relation to time can be further 

investigated by constructing “-log-log” plots, where the negative log of the cumulative hazard 

function is plotted against the log of time (Cleves, 2008). 
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Figure 26: “-Log-Log” plots of the baseline survival data 

 

 

 

Like the Kaplan-Meier curve, this plot indicates that the behaviour of the hazard rate alters at a 

particular point over the observed period. An approximately straight line on the –log-log plot would 

indicate that the survival data would be well represented by a Weibull distribution. A slope of 

approximately -1 would indicate that the data would be well represented by an exponential 

distribution (Kleinbaum and Klein, 2005)26. 

 

This above plot therefore suggests that: 

 

(i) The data may be adequately represented by a Weibull distribution, although hazard 

behaviour seems only to become stable after an initial period of higher hazards, or 

 

(ii) The latter portion of the data may be well represented by a Weibull or even 

Exponential distribution where the hazard rate appears to monotonically decrease 

at a steady rate. But to also capture the initial less stable behaviour of hazards, a 

more flexible modelling approach may be desirable. 

 

                                                           
26

 Note that similar plots can be constructed to test for the suitability of other common distributions. 
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4.2.3.2 Fitting parametric functions to the survival data 

 

It is desirable to compute hazard rates by fitting a parametric function to the available survival data. 

Recall from Section 3.4.2.1 that there may be a number of reasons to do this, of which extrapolation 

beyond the observed period is just one. 

 

As part of this re-analysis, the following parametric distributions (each of which were discussed in 

Section 3.4.2.1) were fit to the survival data:  

 

(i)  Exponential (PH)  

 

(ii)  Weibull (PH/AFT) 

 

(iii)  Gompertz (PH) 

 

(iv)  Royston-Parmar (PH)  

 

(v)  Log-Normal (AFT) 

 

(vi)  Log-Logistic (AFT)  

 

(vii)  Generalised Gamma (AFT)  

 

With the exception of the Royston-Parmar and Gompertz models, each of these distributions is a 

special case of the Generalised F distribution (Cox, 2008). Four of the distributions (Exponential, 

Weibull, Gompertz and Royston-Parmar) use the proportional hazards metric while three (Log-

Normal, Log-Logistic and Generalised Gamma) use the accelerated failure time metric27.  

 

The survival regressions were carried out in Stata version 11 (StataCorp. 2009. Stata Statistical 

Software: Release 11. College Station, TX: StataCorp LP.). Table 14 shows the statistical fit (AIC and 

BIC) to the data for each distribution. In terms of the ‘best’ statistical fit, the Royston-Parmar model 

achieves the best AIC score, while the Weibull distribution achieves the best BIC score. The reason 

                                                           
27

 Note that the Weibull model can also use the accelerated failure time metric and the Log-Logistic model can 
also use a proportional odds metric (Collett, 2003). 
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that the Weibull outperforms the Royton-Parmar in terms of BIC is that the Royston-Parmar has 

several more parameters than the Weibull and BIC penalises complexity more than AIC (Cox et al., 

2006). It has been suggested that AIC is a preferable adequacy measure in these circumstances as it 

has superior predictive validity (Jackson C et al., 2009). 

 

Table 14: AIC/BIC scores for each parametric distribution 

Parametric distribution AIC BIC 

Weibull (PH) 1739.422 1805.071* 

Exponential (PH) 1812.143 1872.322 

Gompertz (PH) 1786.519 1852.168 

Royston-Parmar (PH) 1736.351* 1812.942 

Log-logistic (AFT) 1743.217 1808.066 

Log-Normal (AFT) 1755.757 1821.406 

Generalised Gamma (AFT) 1739.966 1811.086 

 

Note: A lower AIC/BIC score indicates a better statistical fit. * indicates the ‘best fit’ for each measure 

 

 

Let us also consider each distribution’s visual fit to the empirical survival data and the implied yearly 

transition probabilities over the observed period28.  Note the immaturity of the survival data at the 

evidence time horizon. 

 

 

 

                                                           
28

 Transition probabilities were calculated from the hazard rates as per the formulae shown in Section 3.4.2.1. 
These calculations were more cumbersome for some distributions (Generalised Gamma, Royston-Parmar, Log-
Logistic) than for others (Exponential, Weibull). 
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Figure 27: Empirical survival data (Kaplan-Meier curves) against the survivor functions of the 
parametric distributions 
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Figure 28: The resultant yearly transition probabilities over the observed period (5 years) for each 
distribution 
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There are four notable features of these plots.  

 

First is the unsuitability of the exponential distribution for characterising the observed period. The 

single parameter characteristic of the exponential distribution would seem to render it too 

restrictive for these survival data. As well as the exponential survival curve not fitting well to the 

Kaplan-Meier curve, the results of the Weibull regression (mirrored in the results of other 

regressions) demonstrated that a declining hazard with time over the full observed period was highly 

probable (i.e. the shape parameter of the Weibull function was less than 1 with statistical 

significance indicating a decline in hazard rate over time), thus it would seem that an assumption of 

constant hazards over the observed period (as imposed by the Exponential distribution) would be 

inappropriate.  

 

Second is that most of the distributions (all but the Exponential and the Royston-Parmar) indicate a 

monotonically decreasing hazard. Each of these distributions is tending towards constant hazards as 

time elapses (i.e. each is represented by a convex hazard curve). A plausible clinical explanation for 

declining hazards is that as time elapses from time of hospitalisation without experiencing an 

adverse clinical event, the probably of a patient experiencing such an event decreases. 

 

Third is the flexibility of the Royston-Parmar model and the suggestion from fitting this model that 

hazards are high for the first year and then drop to a steady level for the remainder of the observed 

period. It seems clinically credible that there may be an initial ‘hazardous period’ of one year after 

hospitalisation/intervention, after which the hazard rate levels off and becomes approximately 

constant. Such a feature would not be captured by the other less flexible models. A clinical 

explanation for the slight increase in hazards during the fourth year as indicated by the Royston-

Parmar model is not immediately apparent. In this instance, the Royston-Parmar model may be 

guilty of ‘overfitting’ (Harrell et al., 1985). 

 

Fourth is that arguably none of these functions fit the data particularly well. It is highly likely that 

were we to attempt to fit a multi-part Weibull, or a Royston-Parmar with more carefully chosen 

splines29, a better fit would be achieved. However, it is unlikely that an improved fit would impact 

the cost-effectiveness results significantly. The difference in mean ICER between the two “well-

fitting models” (Weibull and Royston-Parmar) is relatively minor as we shall we below. 

 

                                                           
29

 For example, two or three splines to represent the first year plus a single spline to represent the subsequent 
four years would likely represent a well-fitting Royston-Parmar model 
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It can be concluded from exploring this range of distributions that there are three broad competing 

assumptions that could be made regarding the nature of baseline risk over the observed period. 

 

(i) The hazard rate stays constant over the entire period (as represented by the exponential 

distribution), though this can be all but ruled out. 

 

(ii) The hazard rate steadily decreases over the observed period (best represented by the 

Weibull distribution). 

 

(iii) The hazard rate is high for the first year but then decreases and remains approximately 

constant over the next four years (as represented by the Royston-Parmar distribution). 

 

 

4.2.3.3  Model averaging over parametric functions 

 

Instead of attempting to fit increasingly complex parametric models, let’s assume one of the above 

functions appropriately characterises baseline risk over the observed period. Because none of the 

AFT distributions has the best statistical fit and we have a strong preference for distributions that 

use the proportional hazards metric (so hazard ratios from other trials may be incorporated when it 

comes to estimating treatment effect), it is assumed that uncertainty regarding baseline risk in the 

observed period (over and above the parameter uncertainty) pertains only to which PH distribution 

is “correct”. This kind of structural uncertainty can be expressed through model averaging. 

 

Bayesian model averaging involves ascribing relative weights to a number of alternative models or 

model assumptions and averaging across each model to produce a posterior predictive distribution 

that represents the expected model outcome as well as the related uncertainty (Leamer, 1978). 

 

To incorporate the Weibull, Royston-Parmar, Gompertz and the Exponential distributions into the 

base-case decision model, a distribution can be selected for each Monte Carlo simulation according 

to a vector of probabilities 𝑝 = (𝑝𝑊,𝑝𝑅𝑃,𝑝𝐸 , 𝑝𝐺) where ∑𝑝𝑖 = 1. 

 

 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = {

𝑊𝑒𝑖𝑏𝑢𝑙𝑙, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑊 
𝑅𝑜𝑦𝑠𝑡𝑜𝑛 − 𝑃𝑎𝑟𝑚𝑎𝑟, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑅𝑃

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝐸
𝐺𝑜𝑚𝑝𝑒𝑟𝑡𝑧, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝐺
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To generate these probabilities, an adequacy measure is required. Jackson et al. describe how 

posterior model probabilities can be derived from an adequacy measure such as AIC by using the 

following formula (Jackson C et al., 2009): 

 

𝑝(𝑀𝑘|𝑥) =
1

1 + ∑ exp {−
𝑎𝑟 − 𝑎𝑘
2

}𝑟≠𝑘

 

 

where 𝑝(𝑀𝑘|𝑥)is the probability assigned to model 𝑘 given data 𝑥 and 𝑎𝑟 is the adequacy measure 

associated with model 𝑟. 

 

Applying this formula to the AIC results in Table 14, the following probabilities are obtained: 

 

𝑝𝑊 = 0.1772 

𝑝𝑅𝑃 = 0.8228 

𝑝𝐸 ≅ 0.0 

𝑝𝐺 ≅ 0.0 

 

As expected, the ill-fitting Exponential and Gompertz distributions are given a weight of 

approximately zero, so they are effectively excluded. The Royston-Parmar characterisation of the 

survival data is given the highest probability, suggesting that the hazard rate is high for the first year 

after hospitalisation and then constant for the remaining four years of the observed period. The 

parameter ‘𝑝’ can now be incorporated into the probabilistic sensitivity analysis and treated like any 

other probabilistic parameter, i.e. for each simulation, the Weibull distribution (and therefore its 

associated transition probabilities) is selected with probability 0.1772 and the Royston-Parmar with 

probability 0.8228.30 

 

By incorporating alternative characterisations of the short-term survival data, the uncertainty 

around how these data should be interpreted is characterised and the expected nature of baseline 

risk over the observed period is appropriately expressed. However, as these alternative functions are 

‘extrapolated’, to what extent is temporal uncertainty (uncertainty regarding what happens beyond 

                                                           
30

 These probabilities represent a discrete distribution that expressed the uncertainty around which functional 
fit ought to be used. It is not suggested that there is any need for further uncertainty to be expressed around 
these probabilities (or the underlying adequacy measure). 
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the observed period) being captured? Note that in characterising baseline risk over time, there are 3 

sources of uncertainty being quantified: (i) the parameter uncertainty surrounding the values of the 

statistical parameters that make up a parametric function representing baseline risk over the 

observed period, (ii) the structural uncertainty surrounding which parametric function best 

represents baseline risk over the observed period31 and (iii) the uncertainty surrounding how 

baseline risk will evolve over the unobserved period (temporal uncertainty).  

 

 

4.2.3.4 Moving beyond the Observed Period 

 

4.2.3.4.1 Extrapolating the parametric functions 

 

Frequently in HTAs, survival curves are extrapolated directly from parametric functions fit to the 

short-term trial data. Some process of validation may then be undertaken to choose the most 

‘plausible’ long-term curve. Figure 29 below illustrates the long-term survival curves that result from 

extrapolating each of the parametric distributions discussed in Section 4.2.3.2. Note that the 

Gompertz and Exponential distributions represent the most disparate outcomes, while the AFT 

distributions offer similar outcomes to the Weibull but with slightly poorer statistical fit to the short-

term data 

 

                                                           
31

 To be clear, there is a discrete distribution representing the uncertainty surrounding which parametric 
survival function should be used, i.e. an array of probabilities that sum to one. There is not uncertainty 
expressed regarding any of these probabilities, i.e. for every (Monte Carlo) simulation, each survival function is 
given the same probability value, based on the AIC score calculated for that survival function.  
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Figure 29: The long-term survival curves extrapolated directly from the parametric functions 
described in section 7.1.2 

 

 

 

Figure 29 depicts disparate and in some cases manifestly implausible survival curves. The Gompertz 

survival curve, for example, implies cardiovascular mortality that is less than that of the general 

population which would not be expected for this cohort of patients that have presented with NSTE-

ACS. In fact, all of these curves appear overly optimistic. This is because in every case (except the 

Exponential), hazard rates continue to decline over time leading to optimistic long-term survival. 

However it is likely that ageing will result in increased risk over the long-term. This fact renders 

direct extrapolation from the short-term data inherently unreliable. 

 

Extrapolating directly from short-term data (usually through parametric modelling) is a common 

technique in health technology assessment. Such a technique may be manifestly inappropriate as is 

the case here. However, the primary issue in this example is the very long (in absolute calendar time) 

unobserved period. Age effects and other long-term factors are often the main drivers of change in 

parameter values over a period of this length, but these factors are not (directly) captured by the 

short-term data. Simple extrapolation from the short-term data therefore, is likely to be useful when 
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the unobserved period is short enough so that the effects of ageing and other long-term factors are 

negligible, but of limited use when the unobserved period is of significant length.  

 

In order to characterise the change in baseline risk over the long-term, there are three factors that 

ought to be accounted for. 

 

(i) Event-free survival 

(ii) Period risk 

(iii) Ageing 

 

 

4.2.3.4.2 Event-free survival 

 

Event-free survival here means time having passed without a patient experiencing the event of 

interest assuming the patient does not age, i.e. it relates to (the dissipation of) the effect of 

intervention rather than the effect of ageing or any other effect relating to the passage of time. 

Event-free survival would be expected to influence the risk of a patient experiencing a composite 

event in the future. It is not clear whether this would be a positive or negative effect. For example, 

an event-free passing of time could indicate the good health of a patient, or it is possible that the 

benefits of intervention are dissipating and baseline risk is thus increasing. This effect can be 

assumed to be captured (to at least some extent) by the trial follow-up. In the RITA-3 example, 

baseline risk was observed to decline as time since intervention increased (assuming the 5 year time 

frame was too short for the effects of ageing to be captured). Indications from the analysis of the 

survival data were that baseline hazards were tending towards constant as time since intervention 

increased. In the case of the Royston-Parmar model (which had the best statistical fit), hazards were 

approximately constant from year 2 onwards.  

 

Based on this available evidence, an expectation of no further change in risk due to event-free 

survival would appear reasonable (though such an assumption ought to be validated by a clinical 

expert). Without the means to posit an alternative assumption (with current evidence), it is not clear 

how uncertainty might be expressed regarding this assumption. Yet uncertainty is undoubtedly 

present at this stage. In this case it may be prudent to incorporate general stochasticity to express 

such uncertainty. Such a step is common in fields such as macroeconomic forecasting, but has not, 

to date, been employed for economic evaluation of healthcare. The incorporation of stochasticity 
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could be effected by modelling the parameter’s development over the unobserved period as a 

simple Weiner process of the form: 

 

𝑊𝑡+1 = 𝑊𝑡 +𝑊𝑠 

 

where the increment 𝑊𝑠 is Gaussian with mean zero and variance 𝑠 (Horrocks and Thompson, 2004). 

 

Such a modelling approach may not aptly represent the nature of this uncertainty however. A more 

sophisticated modelling approach that incorporates a stochastic drift, such as a variation of the Lee-

Carter method might be more suitable (Lee, 2000). It is unlikely however, that employing such 

(relatively) complex methods would be a worthwhile endeavour (in this case at least), as this is not 

even the principal source of temporal uncertainty for this parameter. This matter will be revisited in 

Section 4.2.3.5 (expressing uncertainty). 

 

4.2.3.4.3 Period risk 

 

Period risk refers to the potential change over the long-term of medical care and population 

lifestyles, leading to changes (most likely improvements) in health outcomes.  

 

In the RITA-3 example, the analysis time horizon is 60 years. It is unlikely that the risk of experiencing 

a composite event will be the same for patients today and patients 50 years from today, even if their 

characteristics are identical (including age and time since intervention). It is important to recall 

however, that these most distal parameter values are likely to be relatively insignificant for the 

reasons given in Section 4.1.6.2.1. 

 

Period risk is similar to the well-documented issue of longevity risk which is typically the concern of 

actuaries. Longevity risk refers specifically to changes over the long-term in life expectancy and the 

related impact on pensions, life assurance, etc. (Antolin, 2007). Longevity risk, in fact, is what the 

Lee-Carter method (mentioned above) was designed to address. Such extrapolative stochastic 

models, or variants thereof, may be useful in quantifying period risk in health economic decision 

making. 
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4.2.3.4.4  Adjusting for age 

 

Both of the effects described above will be relatively insignificant in terms of modelling the long-

term change in baseline risk in comparison to the effect of ageing.  

 

Consideration of the effect of ageing is often required in analyses where the time horizon is long-

term. This effect is something that can rarely be inferred from trial data. Typically, patients will not 

age sufficiently during trial follow-up for the effects of aging to be captured in the analysis. Indeed, 

in the RITA-3 example, only an ‘age group’ encompassing ten years was used to record the effect of 

age and so patients did not advance in ‘age-group’ during trial follow-up. 

 

Impact of age would be expected to have to greatest impact of baseline risk over the long-term and 

therefore is the greatest source of temporal uncertainty 

 

As patients age, they are expected to become more at risk of adverse clinical events. Generally this 

increase in risk becomes apparent only over the long-term, i.e. much longer than the follow up of a 

typical trial. For example, the age of patients in risk group 3 in the RITA-3 trial is assumed to be 5232. 

So as the cohort moves into old age (e.g. 20-30 years after intervention), it can be assumed that 

their risk of experiencing a composite event has increased. Often in health technology assessments 

(as was observed in Chapter 3), increases in baseline risk owing to age effects are not considered and 

assumptions of constant hazards (or constant transition probabilities) are imposed.  

 

4.2.3.4.5 Alternative Temporal Scenarios 

 

Event-free survival and period risk pertain to change over calendar time, as opposed change with 

age. The issue of simultaneously modelling age effects and other effects owing to the passage of 

calendar time can be helpfully illustrated using a Lexis diagram where event rates are displayed by 

age and by calendar time (Carstensen, 2007). For the RITA-3 example, it is useful to consider 

calendar time starting at the end of trial follow-up (5 years after intervention) and age starting at the 

age (52) of the cohort at the end of trial follow-up. 

 

                                                           
32

 For the purposes of clarity and simplicity, only risk group 3 will be used to illustrate the analysis for the 
remainder of this sub-chapter 
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Figure 30: Simple Lexis diagram pertaining to the RITA-3 example 

 

Note: The shaded cells (A1, B2, C3, D4, E5) represent where hazard rates are required to be estimated 

 

 

There are a number of assumptions that could be made regarding the behaviour of hazard rates over 

the unobserved period. 

 

Assumption 1: 

The assumption made in the original CEDM regarding age was that age could be modelled by 

updating the ‘age group’ covariate in the survival regression equation every 10 years. This, in many 

respects, appears a reasonable assumption, especially if we accept that hazards were tending 

towards being constant at the end of the observed period. This approach implies that we expect the 

impact of age not to alter over the long-term. For example, the risk associated with an 82 year old 

patient 30 years after intervention is assumed to be the same as the risk associated with an 82 year 

old patient 5 years after intervention. In this scenario the hazard rates over the unobserved period 

would be determined by (i) the hazard rate at 5 years (end of trial follow-up) and (ii) the age co-

efficient in the survival regression model (recall that we are model averaging over both the Weibull 
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and Royston-Parmar models). The hazard rates we would use are conveyed in the Lexis diagram in 

Figure 31. In effect, we are assuming B2 = B1, C3 = C1, D4 = D1, E5 = E1.  

 

Figure 31: Lexis diagram conveying rates used under assumption that age can be modelled by 
applying the within trial age effect 

 

 

 

The resultant transition probabilities are illustrated in Figure 32 where the transition probability 

increases in ‘steps’ over time, as the age-group covariate is updated33. 

 

                                                           
33

 Note that because the transition probabilities in question are quite small, they closely resemble the related 
hazard rates. Transition probabilities (calculated as per the equations shown in section 5) as opposed to hazard 
rates will be shown in most of the illustrations as it is transition probabilities that are ultimately required for 
use in the CEDM. 
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Figure 32: Transition probabilities resulting from Assumption 1 (for risk group 3) 

 

 

 

Assumption 2: 

There is uncertainty regarding whether the age effect observed during trial follow-up (i.e. the effect 

on baseline risk of the age of a patient during the period following intervention) can be used to 

represent the effect of aging over the long-term. A second possible assumption was obtained from 

searching previous health technology assessments in this disease area (NSTE-ACS). 

 

In order to find alternative plausible assumptions regarding the long-term effect of aging, a brief 

review of health technology assessments relating to NSTE-ACS was undertaken. A search of 

documents including the term “non-ST” was carried out on the UK health technology assessment 

database (www.hta.ac.uk)34. Six full HTA documents were returned . Of these, one only assessed the 

short-term impacts of interventions to NSTE-ACS (Robinson et al., 2005), one pertained to a 

somewhat different disease area (occlusive vascular events) (Jones et al., 2004), one pertained 

specifically to non-ST-elevation acute myocardial infarction and contained long-term estimates on 

survival alone using extrapolation from short-term trial evidence (Simpson et al., 2011) and one was 

a systematic review which documented efforts at predicting long-term risk of a composite outcome, 

                                                           
34

 A Google Scholar search was also carried out using the search term “non-ST elevation long-term”. The 
results contained reports of clinical trials which considered outcomes 5 to 7 years after intervention, no 
further. 

http://www.hta.ac.uk/
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though these again were primarily based on extrapolation from the short-term without any explicit 

accounting for age, or incorporation of any external evidence that would applicable to the RITA-3 

example.  

 

Two HTAs however pertained specifically to NSTE-ACS and attempted to estimate the long-term risk 

of a composite event similar to that defined in the RITA-3 decision model by incorporating some 

external evidence. These studies were related and based the long-term transition probabilities form 

a ‘no event’ health state to a ‘composite event’ health state in a model constructed for NICE in 2002 

which compared alternative management strategies for the use of glycoprotein IIb/IIIa antagonists in 

NSTE-ACS (Palmer et al., 2002). This model incorporated evidence from the Nottingham Heart Attack 

Registry (NHAR) to ascertain the change in baseline risk over time35. An Exponential distribution was 

found to be the best fit to these data and so an assumption of constant hazards over time was 

imposed. The data were not particularly long-term (5 to 7 years) and arguably did not account for 

the effect of aging. However it was judged by the modellers that the assumption of constant 

transition probabilities was reasonable based on this best available evidence. Effectively, this 

approach assumes that longer survival time (time without experiencing a composite event) is 

associated with decreasing risk and that this effect approximately offsets the increasing risk over 

time associated with age. 

 

This assumption, in light of the reasoning in outlined earlier would seem to generate an optimistic 

scenario. Assuming constant hazards/transition probabilities (i.e. no increase in risk with age) would 

seem to be a lower-bound to the behaviour of baseline risk over the long-term, i.e. this scenario is 

just about plausible, but we would certainly not expect anything more extreme (lower) than this. In 

terms of the Lexis diagram, the implications of this assumption are illustrated in Figure 33. 

 

                                                           
35

 These data also served to validate the transition probabilities imposed over the short-term, i.e. when the 
parameters of the survival regression equation were changed to reflect the characteristics of the mean patient 
in the NHAR data, the resultant short-term transition probabilities were similar. The key difference between 
the RITA-3 data and the NHAR data is the apparent decline in hazards over time. This may be explained by the 
NHAR data not capturing the initial ‘hazardous period’ immediately after hospitalisation. 
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Figure 33: Lexis diagram illustrating Assumption 2 where the hazard rates used over the long-term 
are the same as those used at the end of trial follow-up, i.e. the effects of aging and time without 
experiencing an event are assumed to cancel each other out 

 

 

 

The resultant transition probabilities are illustrated in Figure 34 alongside the transition probabilities 

representing Assumption 1. 
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Figure 34: Transition probabilities resulting from Assumptions 1 and 2 (for risk group 3) 

 

 

 

Assumption 3: 

What is essentially required is an estimate of the effect of age on baseline risk that is not influenced 

by proximity to hospitalisation/intervention, i.e. an age effect for those having once presented with 

NSTE-ACS, were given a treatment similar to the conservative treatment in RITA-3, have not 

experienced an event and can be assumed to no longer benefit from the initial treatment. 

 

Obtaining data to inform such an estimate is difficult as the data need to be relatively long-term and 

the nature of standard treatment may have changed over time. But because an age effect is 

essentially what is required, it may be informative to analyse population mortality data and observe 

the effect of age on disease-specific mortality. From this the likely change in risk of experiencing a 

composite event related specifically to age could be inferred. Table 15 shows male death rates from 

coronary heart disease per age group. The data are taken from UK coronary heart disease statistics 

2010 edition (British Heart Foundation Health Promotion Research Group, 2010). 
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Table 15: Death rates from coronary heart disease for males in 2008 

Age Group 
Number of deaths in 2008 

per 100,000 population 

45 – 54 67 

55 – 64 175 

65 – 74 443 

 

The risk in one age group is approximately 2.6 that of the previous age group. This can be 

interpreted as a hazard ratio and applied to the ‘age group’ covariate in the survival regression. This 

represents an age effect somewhat stronger than that calculated from the RITA-3 data. The 

transition probabilities produced by Assumption 3 are arguably too pessimistic. These could be 

thought of as representing the upper-bound of what is plausible regarding baseline risk over the 

unobserved period. The transition probabilities representing Assumption 3 are illustrated in Figure 

35 alongside the transition probabilities representing Assumption 1 and Assumption 2. 

 

Figure 35: Transition probabilities resulting from Assumptions 1, 2 and 3 (for risk group 3) 
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Note that although the alternative curves in Figure 35 become quite disparate as we approach the 

full (60 year) time horizon, the values ascribed to transition probabilities over the final 20 years have 

relatively little impact due to discounting and fewer patients being event-free at distal time points. 

 

Let us observe the impact of these alternative assumptions regarding baseline risk on the cost-

effectiveness results (mean ICER), assuming all other temporal assumptions are as per the original 

CEDM and contrast this with the impact of alternative survival distributions.  

 

Table 16: Cost-effectiveness results (mean ICER) for alternative assumptions regarding baseline 
risk and alternative parametric survival functions 

 Assumption 1 

(risk changes with age 

as per RITA-3 trial 

Assumption 2 

(no change with age) 

Assumption 3 

(risk changes with age as 

per general population 

disease-related mortality) 

Model averaged (as 

per Section 4.2.3.3) 

22,238 20,160 24,052 

Weibull 21,186 18,982 22,930 

Exponential 22,672 20,098 24,607 

Royston-Parmar 22,106 20,352 24,139 

Gompertz 23,678 21,401 25,462 

Log-logistic 21,266 19,360 22,771 

Log-Normal 22,722 20,946 24,650 

Generalised Gamma 21,275 19,385 22,843 

 

 

Note that the choice of parametric function used to interpret the short-term has only a small, 

though not insignificant, impact on the mean ICER. At this point, the assumption imposed regarding 

long-term change in baseline risk also has a relatively minor impact (though it is somewhat more 

significant than the choice of parametric function) on the mean ICER. Recall that a conservative 

assumption of no treatment effect over the unobserved period is being applied. When less 

conservative assumptions regarding long-term treatment effect are imposed, the impact of the long-

term assumption regarding baseline risk will have greater impact, as will be shown in Section 4.3. 
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4.2.3.5 Expressing uncertainty 

 

In Section 4.3.2.4.5 above, three alternative scenarios are posited regarding the behaviour of 

baseline risk over the unobserved period. It is assumed that these alternative scenarios, though 

heavily focusing on the effect of age, account for the three relevant sources of temporal uncertainty 

outlined in section 4.2.3.4.2, 4.2.3.4.3 and 4.2.3.4.4 (event-free survival, period risk, age risk). These 

scenarios, represent alternative cost-effectiveness results (mean ICERs). At this point (before other 

sources of temporal uncertainty are characterised), the uncertainty surrounding long-term baseline 

risk does not impact the adoption recommendation for any of the risk groups. This is demonstrated 

in Table 17, where the shaded cells highlight ICERs which effect a positive adoption decision. 

 

Table 17: Mean ICER for each risk group for each assumption regarding long-term baseline risk 

 Assumption 1 

(risk changes with 

age as per RITA-3 

trial 

Assumption 2 

(no change with age) 

Assumption 3 

(risk changes with age as 

per general population 

disease-related mortality) 

Risk Group 1 53,272 51,711 55,486 

Risk Group 2 23,698 21,622 25,904 

Risk Group 3 22,238 20,160 24,052 

Risk Group 4a 12,540 11,566 13,764 

Risk Group 4b 13,462 11,671 16,258 

 

 

As things stand, therefore, temporal uncertainty relating to baseline risk alone does not directly lead 

to changes in adoption recommendation. However, because this source of temporal uncertainty 

may combine with other sources to effect decision uncertainty and because like all sources of 

uncertainty, it is desirable, where possible, to fully characterise the uncertainty in a probabilistic 

sensitivity analysis (PSA), we now endeavour to express temporal uncertainty as a single uncertain 

parameter. 

 

When a parametric function with uncertain statistical parameters is extrapolated beyond the 

evidence time horizon, increasing uncertainty over time is naturally expressed. Figure 36 below 

illustrates the baseline transition probabilities as well as the 5th and 95th percentiles from the PSA, 
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resulting from a Weibull extrapolation of the RITA-3 data, assuming the change over time with age is 

equal to the change with age observed in the RITA-3 trial. 

 

Figure 36: Baseline transition probabilities and percentiles from Weibull extrapolation of the RITA-
3 data 

 

 

 

Although extrapolating the uncertainty associated with a parametric function into the unobserved 

period could conceivably be used as a proxy for expressing uncertainty over the long-term, it is not a 

true representation of temporal uncertainty, i.e. this does not reflect our lack of knowledge 

pertaining to the unobserved period, only the uncertainty pertaining to how well the parametric 

function fits the short-term data. Such an approach is, in fact, likely to underestimate temporal 

uncertainty. A more appropriate approach is to characterise, using reasonable upper and lower 

bounds, the plausible space around the expected trajectory from extrapolated short-term evidence. 

 

The optimistic and pessimistic scenarios outlined in Section 4.2.3.4.5 are well suited to act as such 

bounds. Although all 3 scenarios could be incorporated into the PSA using model averaging, the 

resultant characterisation of temporal uncertainty (effectively a discrete distribution) would not well 

represent the nature of the uncertainty. This uncertainty is such that there is a plausible range over 

the unobserved period, i.e. baseline risk could take an arbitrarily large number of temporal 

trajectories over the unobserved period within certain bounds. As such, a continuous distribution 

would seem a more suitable means to express the uncertainty. 
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Each of the assumptions discussed in Section 4.2.3.4.5 were executed by augmenting the co-efficient 

for age in the survival regression equation. This parameter is thus the vehicle through which 

temporal uncertainty can be expressed.  

 

The equation for hazards over the unobserved period is effectively of the form:  

 

ℎ(𝑡) = 𝑐 ∗ exp(𝛽𝐴𝑔𝑒  ∗  𝑥𝐴𝑔𝑒) 

 

where: 

 

ℎ(𝑡) = 𝑡ℎ𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

 

𝑐 =  𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 < 0.02 

 

𝛽𝐴𝑔𝑒 = 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑎𝑔𝑒 

 

𝑥𝐴𝑔𝑒 = 

{
 
 

 
 
0, 𝑖𝑓 50 ≤ 52 + 𝑡 < 60
1, 𝑖𝑓 60 ≤ 52 + 𝑡 < 70
2, 𝑖𝑓 70 ≤ 52 + 𝑡 < 80
3, 𝑖𝑓 80 ≤ 52 + 𝑡 < 90
4, 𝑖𝑓 90 ≤ 52 + 𝑡

 

 

 

Of course, there is already a distribution around 𝛽𝐴𝑔𝑒 generated from the probabilistic parametric fit 

to the short-term data. Hence there is a degree of uncertainty already expressed regarding the 

trajectory of baseline risk over the unobserved period. As stated above however, what this 

distribution represents is uncertainty pertaining to the observed period, rather than uncertainty 

regarding the nature of baseline risk over the unobserved period. Thus a distribution around 𝛽𝐴𝑔𝑒 

from the evidence time horizon (5 years) onwards that conveys what can be believed with current 

information to be the plausible space over the unobserved period as well as a reasonable expected 

trajectory. 

 

Let us characterise 𝛽𝐴𝑔𝑒 such that the expected value corresponds to Assumption 1 where the effect 

of aging over time is assumed to correspond to the effect of age within the observed period. This 

assumption represents current rational beliefs based on the best available evidence. Let upper and 

lower extreme values of 𝛽𝐴𝑔𝑒 correspond to Assumptions 2 and 3 (the optimistic and pessimistic 
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assumptions respectively) so that the long-term transition probabilities fall within the plausible 

region represented by these assumptions.  

 

In particular, let the expected value for 𝛽𝐴𝑔𝑒 equal 0.575 as generated from the Weibull 

distribution36. The values for 𝛽𝐴𝑔𝑒 that correspond to Assumptions 2 and 3 are 0 and 0.95 

respectively. In order to allow 0 and 0.95 to broadly represent confidence intervals, a slightly left-

skewed distribution to be fitted around 𝛽𝐴𝑔𝑒 is required as Figure 37 illustrates. 

 

Figure 37: Desired distribution for β_Age 

 

 

 

This distribution ought to have three characteristics pertaining to the mean and the cumulative 

distribution function: 

 

𝜇 = 0.575 

𝐹(0.005) ≅ 0 

𝐹(0.995) ≅ 0.95 

 

A distribution with more parameters may perform better in terms of exactly meeting these criteria, 

but a simpler Beta distribution does well to approximate. By using the method of moments, a 

suitable α and β can be obtained for the Beta distribution. 

 

                                                           
36

 The same process is undertaken in relation to the Royston-Parmar distribution. The particular distribution 
for 𝛽𝐴𝑔𝑒 used corresponds to the survival distribution (Weibull or Royston-Parmar) used in the simulation, 

though both (versions of the distribution for 𝛽𝐴𝑔𝑒) are very similar. 
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𝛼 = 𝜇 ∗ (
𝜇(1 − 𝜇)

𝜎2
− 1) 

 

𝛽 = 𝛼 ∗
(1 − 𝜇)

𝜇
 

 

Values of σ are sampled until 𝐹(0.005) and 𝐹(0.995) approximate the desired values. The values 

generated for α and β are: 

 

𝛼 = 2.235 

𝛽 = 1.652 

 

By applying this distribution to 𝛽𝐴𝑔𝑒 in the probabilistic sensitivity analysis, temporal uncertainty 

around long-term baseline risk (transition probabilities) is expressed as illustrated in Figure 38. The 

dark blue line represents the expected temporal trajectory of baseline risk, while the shaded area 

represents the plausible region. 

 

 

Figure 38: Yearly transition probabilities when temporal uncertainty is expressed regarding 
baseline risk 

 

 

 

Trial TH 
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The temporal uncertainty relating to baseline risk can now be considered to be appropriately 

expressed in the CEDM given current information.  

 

A relevant issue to this characterisation of temporal uncertainty is that of the potential role of expert 

elicitation. Formal expert elicitation might have acted as an alternative means of characterising the 

uncertainty around the expected progression of baseline risk over the unobserved period. Given that 

a data-driven approach was employed, an appropriate role for expert opinion would be to validate 

this characterisation of the temporal uncertainty. 

 

4.2.4 Results  

 

The CEDM results are now shown below given the following two updates. 

 

(i) Uncertainty surrounding appropriate parametric fit to the short-term data now 

characterised through model averaging 

(ii) Temporal uncertainty around baseline over unobserved period now characterised through 

Beta distribution applied to age parameter. 

 

4.2.4.1 Cost-effectiveness 

 

Table 18: Cost-effectiveness Results after temporal uncertainty has been addressed for baseline 
risk. Compare with Table 10 to observe the change in the results. 

Risk group Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Adopt/reject early 

interventional (EI) 

Risk group 1 4892 0.0877 55,782 Reject 

Risk group 2 4841 0.1841 26,302 Reject 

Risk group 3 5874 0.2537 23,149 Reject 

Risk group 4a 6259 0.4702 13,311 Adopt 

Risk group 4b 6183 0.4288 14,419 Adopt 

 

 

The mean ICER has increased slightly for each risk group. This is for two reasons. First, baseline risk 

over the observed period is now characterised by a model averaging of the Weibull and Royston-
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Parmar parametric functions instead of the Weibull function alone. Since the Royston-Parmar fit 

implies a higher ICER, the model averaged fit does also. Second, the CEDM still assumes that there is 

no treatment effect after the observed period, but for the patients who make to beyond 5 years 

without experiencing a composite event (of whom there are more in the early interventional cohort) 

their long-term baseline risk is more uncertain (though the expected trajectory is still the same). The 

non-linearity of the model means that the greater uncertainty impacts the mean ICER, increasing it 

by a small degree. 

  

4.2.4.2 Uncertainty 

 

Table 19 below summarises the current impact of uncertainty on the outputs of the CEDM for each 

of the 5 risk groups. 

 

Table 19: Summary of Effect of Uncertainty for each Risk Group after temporal uncertainty has 
been addressed for baseline risk. Compare with Table 11 to observe the change in the results. 

Risk group Prob(EI cost-effective) 

at £20,000/QALY 

EVPI/patient (£) EVPI/population (£) 

Risk group 1 0.001 0.38 86,358 

Risk group 2 0.181 133.54 30,348,046 

Risk group 3 0.270 266.10 60,473,379 

Risk group 4a 0.907 110.62 12,569,645 

Risk group 4b 0.872 133.53 15,172,887 

 

 

In the original CEDM results, both risk groups 2 and 3 has significant error probabilities. With the 

modifications to the CEDM, the error probabilities for these risk groups are smaller, i.e. there can be 

more confidence in the decisions being recommended. Thus there is less value in obtaining further 

information to inform these decisions. However, the error probabilities for the higher risk groups (4a 

and 4b) have risen slightly leading to higher estimates of value of information.  
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4.3 Chapter 4.3: Treatment Effect 

 

4.3.1 Introduction  

 

The purpose of this sub-chapter is to address temporal uncertainty relating to another key 

parameter in the RITA-3 model: the treatment effect pertaining to a first composite event 

(myocardial infarction or cardiovascular-related death), i.e. the measure representing the effect of 

the early interventional treatment that when applied to baseline risk expresses the risk of a first 

composite event for patients receiving the early interventional treatment. In doing so, this chapter 

will address, more generally, the characterisation of temporal uncertainty pertaining to treatment 

effects. 

 

In particular, this chapter endeavours to explore: (i) methods to interpret short-term trial data in 

order to observe trends in treatment effect parameters that can potentially be extrapolated beyond 

the observed period; (ii) the sensitivity of the mean ICER to alternative assumptions regarding long-

term treatment effect and how this relates to uncertainty regarding long-term baseline risk; (iii) the 

expression of uncertainty when there are essentially no data pertaining to long-term treatment 

effect; and (iv) the use of expert elicitation to inform long-term treatment effect. 

 

4.3.1.1 The parameter 

 

The model input parameter under analysis is the relative measure representing the effect of the 

early interventional treatment, which when applied to baseline risk expresses the risk of a first 

composite event for patients receiving the early interventional treatment. Like the previous sub-

chapter (4.2), the ultimate aim is to compute transition probabilities pertaining to the transition 

from the ‘No Event’ health state to the ‘MI/CVD’ health state, in this case, transition probabilities 

representing the early interventional treatment. 
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Figure 39: Treatment effect is applied to baseline risk in order to compute the risk of transitioning 
from the ‘No Event’ health state to the ‘MI/CVD’ health state for patients receiving the early 
interventional treatment strategy 

 

 

 

 

 

 

 

 

 

 

It will be desirable to compute a hazard ratio to represent the treatment effect - as this is a time-to-

event analysis and the measure ought to be compatible with the hazard rate calculated to represent 

baseline risk. The data for the full patient population in RITA-3 are used to calculate the hazard ratio, 

which is then applied to each of the risk groups. Note that it is common in cost-effectiveness studies 

in the cardiac field to assume the same treatment effect for patients with different risk profiles 

(Briggs et al., 2007, Mihaylova et al., 2006) and indeed this was the approach taken in the original 

Henriksson analysis. 

 

The question of sustained health benefit owing to the early interventional treatment is fundamental 

to the decision problem at hand. The early interventional treatment strategy had already been 

shown to improve health outcomes at 1 year, but at a higher cost than a conservative treatment 

strategy (Kim et al., 2005). The RITA-3 CEDM exists to account for all relevant health outcomes and 

costs in order to make a judgement regarding costs-effectiveness. This of course depends on a 

number of components in the CEDM, as outlined in Chapter 4.1. However, the long-term effect of 

treatment on the risk of a first composite event is undoubtedly a core element of the analysis. 

 

4.3.1.2 What do we mean by treatment effect as we move further from randomisation? 

 

An interesting aspect of analysing the evolution of treatment effect over time is that thought must 

be given to what is meant by treatment effect as more distal time periods are considered. Treatment 

effect in health technology assessment is usually defined as the effect attributable only to a certain 

No event 

MI/CVD 

For the early interventional 

treatment cohort 
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treatment (Facey, 2006). It can also be taken to refer to the mean difference between two 

treatment cohorts of interest. At the point of randomisation, these definitions can be assumed to 

mean the same thing, as the only difference between the two cohorts is assumed to be the 

treatments they are receiving. However, at any time point after randomisation, the two cohorts 

have been exposed to different risks and now have different characteristics. Any difference in 

outcomes cannot now be attributable purely to the different treatments. In other words, a kind of 

temporal selection bias creeps into the analysis as time moves forward. Bagust and Beale have 

referred to this phenomenon as “progressive survivor bias” (Bagust and Beale, 2014). In RITA-3 for 

example, a group of more susceptible patients in the conservative cohort will have experienced a 

composite event by the end of the observed period. If we assume that there is an equivalent 

susceptible group among the early interventional cohort that would have experienced a composite 

event had they been subject to the conservative treatment, then it is clear that the early 

interventional cohort is now more ‘susceptible’ on average. It is possible that these susceptible 

patients may simply experience composite events later than they would have, and so it may be that 

the early interventional treatment simply delays the adverse event. In other words, there may be a 

rebound effect (Drummond et al., 2005).  

 

Such difficulties regarding the interpretation of treatment effects (and in particular hazard ratios) 

over time have been reported and discussed elsewhere (Hernan, 2010, van Walraven et al., 2004). 

However, for cost-effectiveness analysis, our concern pertains simply to being clear about what we 

want to quantify as we look to the long-term. At any time point after randomisation, it is not the 

effect attributable only to a treatment that is of interest, but the mean difference between the two 

cohorts as they stand. This is important not just for clarity, but for characterising the trajectory of 

treatment effect after the observed period, especially if the nature of the treatment effect 

parameter requires explanation for the purposes of employing expert opinion. 

 

 

4.3.2 Available evidence 

 

4.3.2.1 Evidence from RITA-3 

 

The key data available to inform treatment effect come in the form of 5 year individual patient-level 

data (IPD) from the RITA-3 trial. These data are time-to-event (or survival) data which means that 

parametric survival analysis may be employed to characterise treatment effect over the observed 
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period and potentially extrapolate beyond, as described in Section 3.4.2.1. The patients participating 

in the RITA-3 trial were randomised into conservative and early interventional cohorts so that the 

total differences in outcomes could be attributed to the different treatment strategies.  

 

4.3.2.2 Further evidence 

 

There exist a number of other trials that compare conservative and early interventional strategies 

for the treatment of patients with NSTE-ACS (Spacek et al., 2002, Anderson et al., 1995, Lagerqvist et 

al., 2006, de Winter et al., 2005, Boden et al., 1998, McCullough et al., 1998, Cannon et al., 2001). 

From these, alternative estimates of treatment effect (in the form of odds ratios) can be obtained. 

Each of the trials had follow-up no longer than that of RITA-3.  

 

4.3.3 Analysis 

 

4.3.3.1 Analysing and interpreting the survival data 

 

4.3.3.1.1 The proportional hazards assumption 

 

As discussed in Section 3.4.2.1, it is common (and to a large extent desirable) to assume proportional 

hazards when analysing survival data. To recap, ‘proportional hazards’ means that the hazards of 

multiple groups are assumed to be multiplicative for any time-point t and so for example, treatment 

groups can be characterised by single hazard ratios representing treatment effects. A useful first 

step in estimating treatment effect is to test the validity of a proportional hazards assumption. Two 

methods of testing for proportional hazards are outlined below and applied to the RITA-3 example. 

 

Schoenfeld residuals can be used to test for proportional hazards. A smooth function of time is fit to 

residuals to test for a relationship. They do not involve an estimated hazard function and so are 

useful is examining only the relative hazards between treatment groups (Schoenfeld, 1982). A slope 

of approximately zero in the resultant graph would indicate that proportional hazards could 

reasonably be assumed. This test was carried out in the RITA-3 example using the estat phtest 

command in Stata (Cleves, 2010). The graphical result of the test is shown in Figure 40 below 
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Figure 40: Schoenfeld Residuals for alternative treatment strategies in RITA-3 

 

 

The graph shows a function with slope of approximately zero, supporting an assumption of 

proportional hazards. 

 

Another useful test is to generate -Log-Log curves and look for approximate parallelism (Kay, 1977). 

Under proportional hazards, the plot of –Ln(-Ln(S(t))) against ln(t) for each treatment group should 

be roughly parallel. This test was carried out in the RITA-3 example using the stphplot command 

in Stata (Cleves, 2010). The graphical result of the test is shown in Figure 41 below. 
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Figure 41: -Log-Log curves for alternative treatment strategies in RITA-3 

 

 

Although the curves cross at the left-hand side of the graph, this refers to approximately the first 

week of the 5 years under analysis and so should not be considered consequential37. The –Log-Log 

curves are approximately parallel, thus further supporting an assumption of proportional hazards. 

 

These tests simply seek to demonstrate approximate proportionality of hazards in order to justify a 

PH assumption. For the purposes of characterising the observed period, it is rational in this case to 

assume proportional hazards. For the purposes of extrapolation however, there may still be some 

use in analysing more closely the hazard ratio over the observed period in order to look for evidence 

of any temporal trend.  Graphical estimates of the empirical hazard functions for both arms of the 

trial are shown in Figure 42 below. These plots were generated for the RITA-3 example using the 

stcurve, hazard  command in Stata (Cleves, 2010).  

 

 

                                                           
37

 This may be indicative of higher mortality experienced by patients in the early interventional cohort 
immediately after treatment. 
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Figure 42: Empirical hazard curves showing treatment effect over the observed period 

 

 

 

Although because of right-censoring, the curves representing the latter stages of the observed 

period are less reliable, there is a suggestion of a non-constant hazard ratio over this period. 

 

A change in hazard ratio over time can be further investigated by creating a piecewise Cox model 

with time-dependant covariates added to the ‘treatment’ covariate in order to produce a hazard 

ratio for each year in the observed period38. The model was implemented in Stata using the 

stsplit command (Cleves, 2010). 

 

Table 20: Results of Piecewise Cox Regression 

Time Period (Year) Estimated Hazard Ratio 

1 0.647 

2 0.671 

3 0.96 

4 0.444 

5 0.604 

 

The hazard ratio seems to become somewhat unstable over the third and fourth years as depicted in 

Figure 4 and supported by the results of the piecewise Cox model. However, it must be noted that 

                                                           
38

 Note that such a model can be problematic in terms of fewer data pertaining to later time periods. 
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the time-dependant covariates that give rise to the period-specific hazard ratios are not statistically 

significant. As such, it would be inappropriate to extrapolate based on these estimates. Nonetheless, 

this analysis suggests that we ought not preclude scenarios where the treatment effect rises, falls, or 

stays constant over the unobserved period. 

 

4.3.3.1.2 Estimating treatment effect for the observed period 

 

Assuming proportional hazards, a hazard ratio is required to characterise treatment effect over the 

observed period (and to use as a starting point for treatment effect over the unobserved period). In 

the original model, a Weibull proportional hazards model was fit to the survival data and from this a 

hazard ratio was calculated: 

 

Model Hazard Ratio 95% CI 

Weibull PH 0.620 0.464 0.830 

 

Recall from Section 4.1.7.1 that it is advantageous to calculate the hazard ratio independent of the 

calculation for baseline hazards. The Cox proportional hazards model allows estimation of a hazard 

ratio without specifying a baseline hazard (Cox, 1972). This produces a slightly greater treatment 

effect than that of the Weibull PH model. 

 

Model Hazard Ratio 95% CI 

Cox PH 0.618 0.462 0.826 

 

However, there are treatment effects available from multiple trials. A meta-analysis can be 

conducted on all relevant estimates of treatment effect to produce a pooled estimate. The results of 

this meta-analysis are shown in Figure 43. 
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Figure 43: Forest Plot of meta-analysis of treatment effect carried out by Henriksson et al. 

 

Note: The analysis includes the estimated treatment effect from RITA3 and treatment effects from 7 other trials (Spacek 

et al., 2002, Anderson et al., 1995, Lagerqvist et al., 2006, de Winter et al., 2005, Boden et al., 1998, McCullough et al., 

1998, Cannon et al., 2001) 

 

 

This pooled odds ratio which we will interpret as a hazard ratio reflects all of the relevant evidence 

regarding treatment effect in the short-term period after intervention39.  

 

Model Hazard Ratio 95% CI 

Pooled  0.69 0.54 0.88 

 

The pooled estimate would seem to best represent the use of ‘all relevant evidence’, although there 

may be questions regarding the applicability of some of the other trials to this analysis. A quick 

sensitivity analysis (using only risk group 3) demonstrates that, all else being equal, the inclusion of 

estimates from other trials has a not insignificant impact on the estimate of cost-effectiveness. 

 

 

 

                                                           
39

 In this case study, an odds ratio can be used to approximate a hazard ratio because the risk of the event in 
question is very low and a hazard ratio tends towards an odds ratio as the underlying probability tends 
towards zero (Symons and Moore, 2002).  
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Model Mean ICER 

Weibull PH 23,149 

Cox PH 22,690 

Pooled 26,846 

 

It is not within the scope of this reanalysis to assess the suitability of the other trials. Thus, as per the 

original analysis, it will be assumed here that the Weibull fit from the RITA-3 trial produces an 

appropriate estimate of the hazard ratio for the observed period, though it is important to note that 

applying the pooled estimate continues to represent a useful sensitivity analysis. The remaining 

sections of this sub-chapter focus on the nature of treatment effect after the observed period. 

 

 

4.3.3.2 Moving beyond the observed period. 

 

From the analysis of the short-term survival data, there is little indication of how the hazard ratio 

might evolve over the unobserved period. The IPD from RITA-3 did not suggest a temporal trend and 

only in one of the reports from the other trials was there a suggestion of how treatment effect might 

alter with time. This was the report of the FRISC-II trial where there was a suggestion that treatment 

effect over the first two years of follow-up was noticeably greater than that of the following three 

years, though questions of generalisability regarding this study should be taken into account 

(Lagerqvist et al., 2006). Since the proportional hazards assumption was valid for the observed 

period, it could be assumed that this holds for the unobserved period, though Davies et al. have 

warned of the dangers of such as assumption (Davies et al., 2013). What is advocated by many 

methods guidelines (including the NICE methods guidance) in this situation is to carry out analyses 

that compare alternative scenarios reflecting different assumptions about future treatment effects 

and that such assumptions should include the limiting assumption of no further benefit as well as 

more optimistic assumptions. In the original cost-effectiveness analysis by Henriksson at al. a 

‘conservative assumption’ of no further treatment effect was made in the base-case. Let us compare 

this assumption with alternative assumptions that could be made regarding the nature of treatment 

over the unobserved period. Addressing the temporal uncertainty of treatment effect can begin by 

observing the impact of these alternative assumptions.  
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4.3.3.2.1 Scenario analysis and model averaging 

 

What the NICE methods guidance suggests, in particular, is to compare scenarios where (i) the 

treatment effect over the unobserved period is nil; (ii) the treatment effect continues at the same 

level as during the observed period; and (iii) the treatment effect diminishes over time (NICE, 2013). 

Applying this principle to the RITA-3 model, the following alternative scenarios can be posited. 

 

Scenario 1: The treatment effect is nil after the observed period. This scenario is 

represented by assuming the hazard ratio equals 1 throughout the unobserved period (this 

was the assumption used in the original analysis). 

 

Scenario 2: The treatment effect continues as observed in the trial. This scenario is 

represented by assuming the hazard ratio calculated for the observed period (mean = 0.62) 

holds for the duration of the unobserved period. 

 

Scenario 3: The treatment effect slowly dissipates over the unobserved period. This scenario 

is represented by assuming the hazard ratio increases linearly (tends towards 1 and does not 

exceed 1) from the beginning of the unobserved period. The rate of increase reflects that 

suggested by the FRISC-II report: 1.05/year. 

 

The three scenarios are illustrated in Figure 44. 
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Figure 44: Illustration of the alternative temporal trajectories of the hazard ratio according to the 
three scenarios posited 

 

 

 

Applying each of these scenarios to the RITA-3 model, the following cost-effectiveness results are 

obtained (for risk group 3). 

 

Table 21: Results (for risk group 3) of sensitivity analysis regarding behaviour of treatment effect 
(hazard ratio) over unobserved period 

Scenario Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER 

(£) 

Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

1 5874 0.2537 23,149 0.270 Reject 

2 8735 0.7915 11,037 0.999 Adopt 

3 6663 0.4075 16,353 0.806 Adopt 

 

 

It is clear that the adoption recommendation is dependent on the assumption made regarding the 

long-term behaviour of treatment effect. An assumption of no further treatment returns a mean 

ICER just above the threshold of £20,000 per QALY. It is likely therefore that a scenario where even a 

relatively small amount of treatment effect is assumed over the unobserved period would return a 

mean ICER below £20,000, and therefore a positive cost-effectiveness result for the early 

interventional treatment strategy. In fact, it can be deduced from the decision model that it would 
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take a scenario of less than 2 years of further treatment effect (assuming treatment effect stays at 

the same level) for the early interventional strategy to be deemed cost-effective (as things stand)40. 

 

It is interesting at this point to note the joint impact of the assumptions made regarding treatment 

effect and baseline risk by conducting a two-way sensitivity analysis. Applying each of the three 

scenarios for treatment effect described above along with the three scenarios described for baseline 

risk described in Section 4.2.3.4.5, the results in Table 22 are obtained. A shaded cell implies an 

adoption recommendation for the early interventional treatment strategy. 

 

Table 22: Results (for risk group 3) in terms of mean ICERs (£) for two-way sensitivity analysis 
regarding behaviour of treatment effect and baseline risk over unobserved period 

 

  Treatment effect over unobserved period 

Effect of age 

on baseline 

risk 

 None Declines over 

time 

Continues as 

per trial 

No effect 20,160 15,621 11,621 

As per RITA-3 trial 22,238 16,411 10,934 

As per population 24,052 17,008 11,112 

 

 

It is clear that the assumption regarding treatment effect has greater influence on the mean ICER, 

again with either assumption involving continued treatment effect over the unobserved period 

returning a recommendation to adopt the early interventional treatment strategy. The extent of that 

influence however, is largely dictated by the assumption made regarding baseline risk, with greater 

long-term baseline risk leading to a greater impact for treatment effect. It is notable also that the 

impact of baseline risk alters as greater treatment effect over the unobserved period is assumed. 

This is because there are two forces at work. First, the smaller the baseline risk over unobserved 

period, the greater the benefits from within trial treatment effect. But second, the smaller the 

baseline risk over the unobserved period, the smaller the impact of any post-trial treatment effect. 

Therefore, as greater treatment effect over the unobserved period is assumed, the influence of the 

latter force comes to the fore. Evidently however, if substantial baseline risk is assumed, the 

negation of the benefit from treatment over the observed period is enough to surpass the benefit of 

                                                           
40

 Note that the temporal uncertainty pertaining to other input parameters is yet to be addressed. 
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greater benefit gained over the unobserved period, even under an assumption of continued 

treatment effect. 

 

If the scenarios for treatment effect, when applied in the model, had resulted in the same decision 

recommendation, then this scenario analysis would simply act to further endorse the 

recommendation. However, this is not the case in the RITA-3 example (for risk group 3 at least). 

Although, the scenario analysis demonstrates the importance of the treatment effect assumption 

and to some extent conveys the uncertainty that currently surrounds long-term treatment effect, 

the CEDM is not producing a decision recommendation, thus leaving the decision-maker to implicitly 

weight these scenarios in order to make a judgement.  

 

Like the uncertainty relating to the choice of parametric distribution (in Section 4.2.3.3), this issue 

could be considered as one of structural uncertainty, and addressed through model averaging. As 

described previously, model averaging must occur for each individual simulation, effectively 

parameterising the structural uncertainty. Without any directly relevant evidence with which to 

weight the alternative scenarios, the scenarios could, in the first instance, be given equal weighting. 

The vector of probabilities that characterises the uncertainty relating to treatment effect behaviour 

over the unobserved period would be: 

 

𝑝 = (
1

3
,   
1

3
,   
1

3
) 

 

This produces the following cost-effectiveness results for risk group 3. 

 

Model averaged 

with equal 

weighting 

Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

7,098 0.4851 14,632 0.6993 Adopt 

 

 

The mean ICER is now well below the threshold of £20,000 per QALY and adoption of the early 

interventional strategy is recommended. As an alternative, the ‘middle’ scenario of gradual decline 

in treatment could be given most weight, with the more optimistic/pessimistic scenarios given equal 

lesser weight. 

 

𝑝 = (
1

4
,   
1

4
,   
1

2
) 
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This produces the following cost-effectiveness results for risk group 3. 

 

Model averaged: 

25%, 25%, 50% 

Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

7,002 0.4685 14,944 0.731341 Adopt 

 

 

These weights also result in a mean ICER below the threshold of £20,000 per QALY and a 

recommendation to adopt the early interventional strategy. 

 

However, model averaging over alternative posted scenarios is a deficient course of action under 

these circumstances for a number of reasons: 

 

(i) With the currently available evidence, there is no adequacy measure available with which to 

weight the alternative scenarios. The weightings employed therefore are necessarily 

arbitrary. 

 

(ii) The scenarios broadly represent optimistic, pessimistic and ‘middle-ground’ assumptions. 

However, there is no cause to believe that any are plausible scenarios, or that together they 

represent the range of plausible parameter values. They were generated simply to test the 

sensitivity of the ICER to the assumption regarding long-term treatment effect. It may in fact 

be more meaningful to discuss this uncertainty in terms of the duration of the treatment 

effect (as observed in the trial period) over the unobserved period. 

 

(iii) There is no reason to believe that the nature of the uncertainty is discrete, i.e. there could 

be an arbitrarily large number of plausible scenarios, effectively rendering the uncertainty 

continuous in nature. 

 

 

 

 

 

                                                           
41

 Note that since there is ‘less’ uncertainty with these weightings, the probability of cost-effectiveness is 
greater even though the mean ICER is slightly closer to the threshold. 



164 
 

4.3.3.3 The need for further evidence 

 

It is apparent from the scenario analysis that the evidence currently available is not sufficient to 

characterise treatment effect over the long-term considering its impact on the cost-effectiveness 

results. This can be shown more formally by conducting a value of information analysis; in particular 

by calculating the expected value of perfect information for a parameter (EVPPI) where the 

parameter in question is the vector of probabilities that determines the temporal trajectory of 

treatment effect over the unobserved period. However, as explained in the section above, it is 

difficult given current evidence, even to accurately quantify the uncertainty surrounding treatment 

effect over the unobserved period. Nonetheless, calculating EVPPI with the current, ‘naïve’ 

characterisation of temporal uncertainty ought to convey the difficulty in making an informed 

judgement based on cost-effectiveness and the appropriateness of obtaining further evidence. The 

results of an EVPPI analysis are given below assuming uncertainty can be appropriately characterised 

by ascribing equal weight to each of the 3 scenarios described above, i.e. each have equal probability 

of being ‘correct’. The vector of probabilities 𝑝 therefore can be written: 

 

𝑝 = (
1

3
,   
1

3
,   
1

3
) 

 

The non-parametric computation methods for EVPPI is employed, i.e. 

 

𝐸𝑉𝑃𝑃𝐼 =  𝐸𝑝𝑚𝑎𝑥𝑗𝐸𝜓|𝑝𝑁𝐵(𝑗, 𝑝, 𝜓) − 𝑚𝑎𝑥𝑗𝐸𝜃𝑁𝐵(𝑗, 𝜃)42 

 

Where:  

𝜃 = all uncertain parameters 

𝑝 = uncertain parameter of interest (nature of long-term treatment effect) 

𝜓 = all uncertain parameters besides parameter of interest 

𝑗 = alternative interventions 

 

 

 

                                                           
42

 The uncertainty around p is described by a discrete distribution (the three alternatives scenarios with equal 
probability of 1/3). The ‘temporal parameter’ p is then treated like any other uncertain parameter in an EVPPI. 
Thus, for the lest-hand side of the EVPPI equation, a value of p is drawn randomly from the distribution given, 
a PSA is run, and the greatest net benefit (of the two interventions is recorded). This is done a number of times 
and then an average is taken. 
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Executing this calculation for the 5 risk groups produces the following results: 

 

Table 23: EVPPI for temporal uncertainty relating to treatment effect, given current model settings 

 Risk group  

1 

Risk group 

2 

Risk group 

3 

Risk group 

4a 

Risk group 

4b 

𝐸𝑝𝑚𝑎𝑥𝑗𝐸𝜓|𝑝𝑁𝐵(𝑗, 𝑝, 𝜓) 227,062 242,329 132,227 122,005 90,828 

𝑚𝑎𝑥𝑗𝐸𝜃𝑁𝐵(𝑗, 𝜃) 225,297 241,891 130,151 122,005 90,828 

EVPPI/patient 734 438 315 0 0 

EVPPI/population 166,807,440 99,539,045 71,586,299 0 0 

 

 

The EVPPI calculations show that, given the current characterisation of this temporal uncertainty, 

there is likely to be value in obtaining further evidence in order to inform the adoption 

recommendations for risk groups 1, 2 and 3. Incorporating more optimistic scenarios of long-term 

treatment effect has meant there is now a not insignificant probability that it would be cost-effective 

for the lower risk groups to receive the early interventional treatment strategy. Although allowing 

for the possibility of continued treatment effect over the long-term is potentially too optimistic, 

explicitly imposing only a conservative assumption of no continued treatment is likely to be too 

pessimistic. What this analysis demonstrates is that the scale of the uncertainty existent in the CEDM 

with the currently available evidence is too vast to make a well-informed decision based on cost-

effectiveness and that obtaining further evidence at a reasonable cost is likely to be worthwhile. 

 

However, by the nature of the parameter, there exists no direct relevant evidence pertaining to the 

treatment effect of a new health intervention beyond the follow-up of a relevant trial. It is 

sometimes possible to infer long-term behaviour of treatment effect from long-term evidence of 

comparable health interventions, or from observational cases carried out before the trial43. In the 

circumstance where there are no existent data with which to characterise the long-term nature of a 

parameter, the uncertainty around which (as naively characterised) is shown to impact the adoption 

                                                           
43

 A search for such evidence did not return any useful results in the RITA-3 example. 
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decision, it is desirable to incorporate into the model information that best expresses current clinical 

belief. 

 

In previous sub-chapter, the potential role of expert elicitation was discussed. In particular, it was 

suggested that the opinion of clinical experts could be usefully employed to validate estimates of 

long-term baseline risk or perhaps to characterise the uncertainty around long-term estimates. In 

the situation presented in this sub-chapter however, a more prominent role for expert elicitation 

may be warranted due to the absence of relevant data and the demonstrable importance of the 

parameter. Although expert elicitation increasingly features as a source of evidence in economic 

evaluation, there does not, at present, exist a methodology to employ expert elicitation specifically 

to inform the (post-trial) temporal trajectory of model parameters. Such a methodology is thus 

posited and developed here. 

 

 

4.3.3.4 Employing expert elicitation to characterise long-term behaviour of treatment 

effect 

 

4.3.3.4.1 Expert elicitation in health technology assessment 

 

Formal elicitation is the process of interpreting, as a probability distribution, a person’s knowledge 

and beliefs about an uncertain quantity (Garthwaite PH, 2005). A person whose knowledge is to be 

elicited is typically referred to as an ‘expert’, which can be assumed to simply mean that this 

person’s knowledge and judgement is, on some level, worth having (O'Hagan et al., 2006). Expert 

elicitation has been employed in a number of fields including HTA. Its use in HTA has been sporadic 

to date (as found in the HTA review in Chapter 3). Although, preference should typically be given 

first to the ‘gold standard’ of randomised controlled trials (Charlton, 1991) as sources of evidence for 

relative effects, then to forms of observational evidence, formal expert elicitation is likely to be a 

useful and appropriate endeavour in HTA under a number of circumstances. 

 

(i) When there are no data to inform the value of an input parameter. Expert opinion is a 

legitimate source of information where there exist no data to inform particular parameters, 

or where the data existent are not suitable (Philips et al., 2006) 
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(ii) When there is no means to ascribe weights to alternative plausible scenarios; or more 

generally, no way to quantify the uncertainty surrounding a parameter value of model 

assumption in order to appropriately estimate the value of obtaining further evidence 

  

(iii) When it is desirable to use informative priors as part of a Bayesian process (Bojke et al., 

2010) 

 

(iv) When there is a need to evaluate the cost-effectiveness of healthcare interventions that 

have not used randomised studies of efficacy to inform the licensing process, e.g. medical 

diagnostics (Sullivan and Payne, 2011) 

 

4.3.3.4.2 Why formal elicitation is a suitable means to inform post-trial treatment 

effect 

 

The problem to be addressed in the RITA-3 example is a common one. There does not exist direct 

evidence to inform treatment effect beyond the time horizon of the relevant trial(s). This problem is 

an example of the first circumstance outlined above where expert elicitation may be useful and 

appropriate. In particular, the parameter for which there are no data available to inform can be 

considered to be the underlying temporal parameter that dictates the temporal trajectory of 

treatment effect over the unobserved period. It can be assumed that there are no data to inform 

this temporal parameter if the short-term evidence is deemed unable or unsuitable to inform the 

temporal behaviour of treatment effect over the long-term, which is true for the RITA-3 example. 

Moreover, it has been demonstrated that the adoption decision is dependent on how treatment 

effect is characterised over the unobserved period. As formal expert elicitation is generally relatively 

parsimonious with both time and money and can be designed to obtain the specific data required, it 

represents an efficient means of generating the required data so as to produce an informed 

adoption recommendation (for the immediate future) and the characterisation of uncertainty for the 

purposes of value of information analysis and future decisions. 

 

4.3.3.4.3 Appropriate execution of expert elicitation 

 

Before positing methods to employ expert elicitation for the purposes of characterising post-trial 

treatment effect in particular, it is first important to consider the appropriate use of expert 
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elicitation more generally. There are four key steps to the elicitation process, as outlined by 

Garthwaite et al. and illustrated in Figure 45. 

 

 

 

 

Figure 45: The elicitation process – based on a diagram from Garthwaite et al. (Garthwaite PH, 
2005) 

 

 

 

 

 

 

 

 

(i) Set-up 

Once it has been established that expert elicitation is an appropriate means of obtaining 

further data, a suitable preparation for the elicitation must take place. This, in short, 

involves: selecting and training the experts; creating a timeline for the exercise; and 

importantly, identifying what exactly is to be elicited. 

 

It is important to aim from the outset to elicit probability distributions rather than point 

estimates (O'Hagan et al., 2006). The key reason for this, as Sculpher et al. outline is that 

there will inevitably be uncertainty between and within expert opinions. This uncertainty 

ought to be reflected in the analysis, rather than forcing a consensus (Sculpher et al., 

2000).  

 

There are, of course, potential biases associated with eliciting the opinions of individuals 

(Garthwaite PH, 2005, Kahneman and Slovic, 1982). As well as a careful selection of 

experts, an obvious tool to reduce bias and to better quantify the uncertainty among 

experts, is to elicit from as many experts as is feasible (though this must be balanced 

with the timeliness and expense of the exercise as well as ensuring the experts have the 

relevant expertise). 

 

No 

Adequate? Fit Elicit Set-up 
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(ii) The elicitation process 

The crux of the exercise is the elicitation process itself. There have been several 

methods proposed to elicit data from experts (Jenkinson, 2005, Chaloner and Duncan, 

1983, Gavasakar, 1988). There are two aspects for which there is broad consensus: first, 

group or discussion based elicitation have been deemed inappropriate due to the 

potential bias toward dominant individuals and group pressure for conformity (Fischer, 

1978); second, it is paramount that the expert understands the nature of the parameter 

he/she is being asked to estimate and also has some understanding of basic statistical 

concepts like mean and variance.  

 

Among the types of judgement that can be asked of experts are the fixed interval and 

variable interval, where experts are asked for probabilities and quantiles respectively 

(Oakley, 2010). A commonly used method in HTA is the histogram approach where 

individual experts place a number of crosses on a frequency chart with each cross 

representing a percentage of the distribution of the uncertainty quantity (Van Noortwijk 

et al., 1992). The visual aspect of this method allows easy understanding and expression 

of quantitative judgements (for perhaps non-quantitative-minded experts), while output 

can be quantified with relative ease and with minimal scope for misinterpretation. 

 

(iii) Fitting a distribution 

The output from the elicitation exercise must be quantified and synthesised for use in 

the decision model. Assuming it is reasonably straightforward to quantify the output 

from individual elicitations, as with the histogram approach, there are a number of 

synthesising techniques that could be employed to produce a single distribution that 

may then represent the uncertain parameter for use in a decision model. 

 

Bojke et al. outline and apply four alternative approaches (Bojke et al., 2010): linear 

pooling without weighting; linear pooling with weighting; random effects meta-analysis 

without weighting; random effects meta-analysis with weighting.  

 

‘Weighting’ here refers to the notion of applying differential weights to the estimates of 

individual experts. If deemed appropriate, differential weights can be generated through 

calibration, i.e. by taking a parameter for which RCT evidence is available and comparing 

the estimates of the experts with the RCT data so as to obtain a sense of the reliability of 
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the different experts. Differential weighting is a contentious issue among elicitation 

advocates as it is not clear whether the relative suitability of an expert to estimate an 

unknown parameter can be reliably inferred through calibration (Cooke, 1991).44 

 

Linear pooling involves aggregating experts’ estimates using simple linear combinations 

of the form 𝜃 = 𝛴𝑖𝑤𝑖 ∗ 𝑖(𝜃) where θ is the unknown parameter and 𝑤𝑖 is the weight of 

expert 𝑖 in order to produce a ‘super distribution’ expressing all estimates (Bojke et al., 

2010). As an alternative to linear pooling (which assumes no relationship between 

experts’ distributions), a random effects meta-analysis can be carried out whereby the 

expert judgements are treated like data which are combined with non-informative priors 

to produce a posterior estimate of the unknown parameter. This approach incorporates 

both the within and between expert variation (Bojke et al., 2010). 

 

It is also possible, and arguably desirable, to fit a smooth parametric function rather 

than directly inputting the discrete distribution formed when the experts’ estimates are 

combined (Leal et al., 2007).   

 

(iv) Assessing adequacy 

The final step is to validate, or to in some way, assess the adequacy of the elicitation. 

This requirement pertains to (a) an elicitation exercise capturing an expert’s ‘true’ 

beliefs and (b) elicitation output representing an accurate estimate of the unknown 

parameter. 

 

There are theoretical and psychological issues relating to the idea of obtaining a 

representation of an expert’s ‘true’ beliefs (O'Hagan, 1988, Winkler, 1967). However, to 

ensure the output of an elicitation accurately expresses an expert’s judgement, 

Garthwaite recommends that the internal consistency of the expert’s statements are 

tested by running ‘tests of coherence’ and allowing the expert to revise some of his/her 

statements (Garthwaite PH, 2005). 

 

Assessing the adequacy of output from an elicitation exercise is also clearly problematic. 

If there existed data pertaining to the unknown parameter with which to validate the 

judgements of experts, these data would almost certainly be better used from the 

                                                           
44

 Note that in the application carried out by Bojke et al., no discernible difference was recorded between 
using equal weights and using differential weights. 
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outset, possibly in conjunction with elicitation, or possibly negating the need for 

elicitation. As data become available over time, then the estimates from elicitation can 

be calibrated and refined. O’Hagan outlines these calibration methods in some detail 

(O'Hagan et al., 2006). For a decision that must be made in the immediate future 

however, the reliability of elicited evidence can be, to some extent, assessed by 

including a ‘seed question’, i.e. by comparing elicited output for a known parameter with 

(ideally) RCT evidence for that parameter (Bojke et al., 2010). Of course, this approach 

has its limitations, primarily that the ’known’ parameter may be relatively easy to 

estimate compared to the ‘unknown’ parameter. 

 

If the elicitation is deemed to be invalid, the elicitation process must be repeated, or 

possibly abandoned, as Figure 45 suggests. 

 

4.3.3.4.4 Methods to employ elicitation specifically to inform post-trial treatment 

effect 

In developing methods for the use of formal elicitation specifically in order to estimate post-trial 

treatment effect, it is steps (ii) and (iv) from the list above that come into focus. While step (i) (set-

up) and step (iii) (fitting a distribution) are crucial elements in the elicitation process, they are issues 

that must be addressed in any formal elicitation. It is in step (ii) (the elicitation process) and step (iv) 

(assessing adequacy) where questions arise as to what is the appropriate approach when seeking to 

estimate post-trial treatment effect in particular.  

 

4.3.3.4.5 The Elicitation Process 

 

Much of what has been recommended in the literature and described under ‘step (ii)’ above will still 

hold true for the use of formal elicitation to estimate post-trial treatment effect, e.g. the 

inappropriateness of group-based elicitation exercises and the merits of the histogram method for 

the elicitation exercise itself. However, a number of more specific issues arise. 

 

Defining and explaining the problem 

The problem of how treatment effect evolves over time could be characterised in a number of 

different ways. Since clinical experts have found it challenging to express beliefs on some 

mathematical quantities such as coefficients (Kadane and Wolfson, 1998), careful consideration 

must be given to how to frame the question posed to experts, both for the purposes of 
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appropriately filling the gap in the decision model and for the purposes of ensuring the responses 

from the experts best reflect their understanding of the treatment and disease. Furthermore, the 

clinical nature of the patient cohorts must be carefully explained to the experts45. This is especially 

important for garnering the insights of experts regarding how one cohort is expected to change over 

time with respect to another.  

 

Quantifying predicted changes over time 

A typical task of elicitation is to quantify an unknown parameter. However the specific task of 

quantifying the change in a parameter over time presents particular challenges. As per the 

discussion of temporal uncertainty in general (see Chapter 2), change over time in health economic 

models can be characterised in a number of different ways and when employing elicitation, care 

must be taken to ensure there can be a good understanding of the quantity being expressed (indeed 

the use of expert elicitation is a further factor to consider as we choose which modelling approach is 

most appropriate). Graphical techniques can be used to allow experts to express change over time, 

including non-linear change. For survival data in particular, elicitation methods outcomes have been 

developed in the field of engineering (Jager and Bertsche, 2004, Campodónico and Singpurwalla, 

1994), but such techniques have not been employed in health economic modelling to date. 

 

Relative or absolute measures? 

With regard to treatment effect in particular, there is the option to quantify not the relative measure 

(i.e. treatment effect itself), but the absolute measure (in the case of RITA-3, the 

hazards/probabilities of the early interventional treatment cohort). The latter may be a more 

intuitive measure for the experts to quantify. However, it is arguably more relevant to estimate the 

measure for treatment group relative to baseline, i.e. the most useful input from experts may relate 

to how one cohort ‘differs’ from another as time elapses. 

 

Weight scenarios or generate scenarios? 

In some cases, elicitation has been carried out by asking experts to weight (or ascribe probabilities 

to) pre-determined alternative scenarios (Bojke et al., 2010). If it is indeed appropriate to 

characterise the uncertainty as discrete scenarios (as was done in the initial characterisation in 3.2.1) 

then at the very least these scenarios ought to be validated by the experts. It would seem more 

appropriate however, for the scenarios themselves to be generated by the experts – even if they 

                                                           
45

 A detailed breakdown of the clinical nature of the cohorts and the nature of the uncertain quantity is given 
in Appendix 3 where a stylised elicitation exercise for the RITA-3 example is outlined. 
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were to take the general form of ‘optimistic’, ‘pessimistic’ and ‘middle-ground’ scenarios. In any 

case, weighting discrete scenarios may not be an appropriate characterisation of the uncertainty. 

 

Expressing the trial evidence 

There is a general question of how to incorporate the short-term trial evidence. Assuming for now, 

that it is desirable for the experts’ judgements to be partly based upon the observed outcomes in 

the short-term data, a mechanism that usefully and clearly expresses the outcome of the trial 

analysis is warranted. 

 

With these issues in mind, a number of alternative approaches could be considered.  

 

(i) Eliciting the temporal trend of treatment effect directly 

 

One option would be to elicit directly on the temporal trend of the treatment effect. This could be 

done explicitly by estimating treatment effect as a single relative effect, or implicitly by estimating 

the absolute risk associated with the treatment cohort. 

 

The relative effect approach would effectively involve eliciting on an unknown ‘temporal parameter’ 

that dictates the change in value over time of treatment effect after the observed period. In other 

words, treatment effect would be some function of the temporal parameter. Framing the problem 

this way is attractive as the missing information (how treatment effect evolves over time) is 

represented by a single unknown parameter, which is also useful for value of information analysis. 

However, this temporal parameter may be difficult for clinical experts to correctly interpret and then 

quantify; it would be especially complicated to allow for anything other than a linear change over 

time.  

 

Instead of quantifying a treatment effect (i.e. a relative effect), the absolute risk for the treatment 

cohort could be quantified. For the RITA-3 example, it was argued in Section 4.1.7.1 that it would be 

preferable to characterise baseline risk and then treatment effect as opposed to absolute risks. 

However, given that the available supplementary evidence in the form of hazard/odds ratios was not 

useful for characterising long-term treatment effect, the option to consider the absolute risk for 

patients in the early interventional cohort may once again become valid. A common elicitation 

technique that would be suitable for this approach is to mark a number of time-points over the 

unobserved period and simply ask the experts, what proportion of the cohort they would expect to 
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have experienced the event by each time point (Soares et al., 2011). From this, hazard rates or 

transition probabilities can be computed, albeit forming a piecewise linear curve. Estimating event 

occurrence for a single cohort of patients would arguably be easier for clinicians (as opposed 

estimating treatment effect which could be a difficult concept to understand especially where two or 

more cohorts are evolving over time). However, it may be more important to elicit the judgments of 

experts regarding the treatment group in light of what has been observed (and assumed) regarding 

the control/baseline group. If this approach is to be considered therefore, thought must be given to 

how the information and assumptions regarding baseline risk can be conveyed clearly. 

 

(ii) Eliciting on the duration of treatment effect 

 

Thinking again in terms of a relative effect, a simpler approach would be to elicit the experts’ 

judgements regarding the duration of the treatment effect from the trial time horizon onwards. This 

approach would involve an assumption that the magnitude of treatment effect remains as it was in 

the observed period and it is simply the longevity of this effect that is uncertain. The elicitation could 

be carried out by asking the experts to estimate a distribution for a parameter (for the RITA-3 

example, this parameter would be bounded by 0 and 55, representing the timespan in years over 

the unobserved period). This approach was developed and employed successfully in a health 

technology evaluating enhanced external counterpulsation for the treatment of stable angina and 

heart failure (McKenna et al., 2009). This approach would be relatively intuitive for the clinical 

experts (as long as the meaning of treatment effect in this context is clearly explained). The 

approach would however, simplify the issue somewhat, in effect trading accuracy for clarity. 

Nonetheless, this characterisation of the uncertainty ought to be sufficient to fill the evidence gap. 

 

(iii) Eliciting weights for alternative pre-defined scenarios 

 

A further option would be to discretise the uncertainty and ask the experts to simply ascribe weights 

to alternative scenarios. The temporal uncertainty in question may not be accurately represented by 

discrete alternative scenarios but nonetheless this may be a useful simplification. As stated above, 

the choice of scenarios would need to be validated by, if not generated by, the experts. The most 

straightforward execution of this approach would be to weight the scenarios that have already been 

generated (based on the guideline of considering optimistic, pessimistic and middle-ground 

scenarios). This is arguably the simplest approach for the elicitation process (both for the modellers 

and the experts) but it may be too restrictive. 
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4.3.3.4.6 Assessing Adequacy 

 

Assessing adequacy in terms of obtaining an expert’s ‘true’ belief does not propose a substantially 

different challenge for treatment effect over time than for any other parameter. It is simply 

imperative that the experts understand the concepts of treatment effect and change in cohorts over 

time. It would be sensible to apply the internal consistency tests recommended by Garthwaite. 

 

Assessing adequacy in terms of the reliability and accuracy of the elicited evidence is clearly 

challenging. The use of one or more seed questions is desirable and plausible bounds on the 

magnitude on treatment effect (something the judgements of clinical experts would be expected to 

be well within) ought to be applied. After these checks however, the elicited evidence must simply 

be considered to be the ‘best’ currently available evidence. 

 

It was not within the scope of this thesis to carry out a real life elicitation exercise. However, a 

stylised elicitation exercise was constructed and applied to the RITA-3 example. This exercise and 

results are outlined in Appendix 3. 

 

4.3.4 Results 

 

It is preferable to carry out the re-analysis of the RITA-3 CEDM based on existent evidence. 

Therefore, rather than employing the stylised elicitation, the results given in this section are based 

on the ‘naïve’ characterisation of temporal uncertainty outlined in section 4.3.3.2.1, i.e. three broad 

alternative scenarios given equal weighting. Given the available evidence, this characterisation best 

reflects current knowledge and expresses considerable uncertainty as is appropriate. However, were 

a decision to be based on this analysis, it ought to be strongly conveyed to the decision maker that 

the characterisation of temporal uncertainty regarding treatment effect over the long-term is naïve 

and as such this uncertainty may be under (or over) estimated. In practice, in such a scenario (where 

the mean ICER is close to the threshold and as a result there is significant decision uncertainty), 

there would certainly be a need for some expert input to better characterise this particular source of 

uncertainty that plainly has such sway over the adoption decision. 
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4.3.4.1 Cost-effectiveness 

 

Table 24: Cost-effectiveness Results after temporal uncertainty has been addressed for treatment 
effect. Compare with Table 18 to observe the change in the results. 

Risk group Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Adopt/reject early 

interventional (EI) 

Risk group 1 5197 0.2141 24,227 Reject 

Risk group 2 5132 0.3718 13,804 Adopt 

Risk group 3 7,098 0.4851 14,632 Adopt 

Risk group 4a 7080 0.7043 10,052 Adopt 

Risk group 4b 6989 0.6481 10,784 Adopt 

 

 

The characterisation of temporal uncertainty which incorporates alternative scenarios regarding the 

nature of treatment effect over the unobserved period has replaced the ‘conservative’ assumption 

that had been in place where no further treatment effect was assumed. As a result, the relatively 

pessimistic mean ICERs have been replaced with mean ICERs which, as far as possible given the 

evidence immediately available, reflect current expectations. All but one risk group (risk group 1) 

now returns a positive adoption decision46.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
46 Note that the risk groups are ordered by risk of experiencing a first composite event. This does not 

necessarily equate to order of resultant costs, QALYs, or cost-effectiveness. For instance, costs vary by risk 
group characteristics and higher age leads to fewer expected life years. 
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4.3.4.2 Uncertainty and Value of Information 

 

Table 25 below summarises the current impact of uncertainty on the outputs of the CEDM for each 

of the 5 risk groups. 

 

Table 25: Summary of Effect of Uncertainty for each Risk Group after temporal uncertainty has 
been addressed for treatment effect. Compare with Table 19 to observe the change in the results. 

Risk group Prob(EI cost-effective) 

at £20,000/QALY 

EVPI/patient (£) EVPI/population (£) 

Risk group 1 0.31 848.16 192,714,863 

Risk group 2 0.64 476.62 108,174,852 

Risk group 3 0.69 423.19 96,130,173 

Risk group 4a 0.96 47.25 5,340,565 

Risk group 4b 0.96 44.85 4,999,678 

 

 

The early interventional treatment for both risk groups 2 and 3 is now likely to be cost-effective, 

though there would considerable value in obtaining further evidence. The shift downwards of all 

mean ICERs has meant that there is now a significant probability that the early interventional 

strategy may also be cost-effective for risk group 1 (the lowest risk group). It is also in relation to risk 

group 1 that there would be most value in obtaining further information.  
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4.4 Chapter 4.4: Costs 

 

4.4.1 Introduction  

 

The purpose of this sub-chapter is to address temporal uncertainty relating to costs in the RITA-3 

cost-effectiveness decision model (CEDM).  In doing so, this chapter endeavours to address, more 

generally, the characterisation of temporal uncertainty pertaining to costs in CEDMs. First, a series of 

sensitivity analyses are carried out in order to test the robustness of the cost-effectiveness results to 

alternative assumptions regarding how costs evolve over time. Second, a number of factors that may 

impact long-term costs are discussed and temporal uncertainty is expressed. These factors are: the 

impact of age when estimating long-term costs, accounting for inflation when estimating long-term 

costs and accounting for uncertain future events when estimating long-term costs. The latter two 

issues will be for illustration and discussion only and re-analysis will not be incorporated into the 

updated CEDM. 

 

4.4.1.1 The parameters 

 

Recall that the long-term portion of the RITA-3 CEDM is represented by a state transition structure, 

where ‘events’ cause proportions of the patient cohort(s) to migrate to and from health states. Both 

experiencing an event and spending a cycle in a health state has an associated cost. Such a cost is 

calculated as a product of unit costs and resource use. In Chapter 3, it was discussed how, in an 

event-based model, costs accumulate via patients moving between and residing in health states over 

time. In this sense, cumulative costs are driven, to a large extent, by the event rates assumed in the 

model. The uncertainty regarding future costs therefore has, to some degree, been addressed 

through the analysis of event rates carried out in Chapters 4.1, 4.2 and 4.3. However, there will 

inevitably also be uncertainty relating to the evolution over time of the resource use and unit costs 

associated with health states and health events. It is these parameters that are the focus of this sub-

chapter. In particular, the parameters under analysis are: 

 

 The costs associated with a composite health event, i.e. transitioning to the ‘MI/CVD’ health 

state 

 

 The costs associated with residing in the ‘No event’ health state and the ‘Post MI’ health 

state 
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Figure 46: Costs are associated with each health state in the long-term Markov portion of the 
CEDM 

 

 

Note: Costs are assumed to be zero for the death states and the MI/CVD state is assumed to be instantaneous in time 

and thus also has zero costs. 

 

 

4.4.2 Available evidence 

 

4.4.2.1 Evidence from RITA-3 

 

Detailed resource use data were collected as part of RITA-3 over the 5 years of trial follow-up. The 

details of the items of resource use were outlined and analysed in detail in a study examining the 

costs of an early intervention versus conservative strategy in NSTE-ACS (Epstein et al., 2008).  Briefly, 

the items of resource use are categorised into: angiogram, percutaneous coronary interventions, 

coronary bypass surgery, myocardial infarction, key cardiac medications and other costs.  Items 

variously pertain to: intervention (conservative and early interventional), the no event state in the 

first year after intervention (conservative and early interventional), the no event health state for 

second and subsequent years, the post MI state in the first year and the post MI  state for the 

second and subsequent years.  
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4.4.2.2 Other evidence 

 

Unit cost data can be derived from RITA-3’s predecessor, RITA-2 (1997). The unit costs of pertinent 

consumables were recorded in a survey of five centres carried out as part of RITA-2. These unit costs 

were updated to current price levels as part of the RITA-3 cost analysis (Epstein et al., 2008). Further 

unit costs were derived from reference costs, PSSRU and the British National Formulary (BNF) 

(Sculpher et al., 2002, Health, 2004). 

 

4.4.3 Analysis 

 

4.4.3.1 One-way Sensitivity Analyses 

 

4.4.3.1.1 Costs associated with a composite health event, i.e. transitioning from 

the ‘No event’ health state to the ‘MI/CVD’ health state 

 

In the original analysis, standard OLS regressions were employed to determine each required mean 

cost, for each risk group, based on the unit cost and resource use data available. Table 26 shows the 

estimated mean cost per relevant co-variate. 

 

Table 26: Estimated mean cost per relevant co-variate 

Covariate Coefficient 95 % CI 

First year after non-fatal MI  5,467 3,890 to 7,044 

Treat -1,106 -1,562 to -650 

Male     586 111 to 1,061 

Angina  1,034 550 to 1,518 

Previous MI     724 210 to 1,239 

Constant  2,735 2,249 to 3,220 

 

 

The mean cost associated with a non-fatal MI, i.e. the cost incurred for the first year after a non-fatal 

MI for risk group 3 was calculated as £9,440. No difference was assumed between the interventions 

and this cost was assumed to not change over time.  
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With this simple assumption of a constant mean cost, the following cost-effectiveness results are 

obtained for risk group 3. 

 

Table 27: Cost-effectiveness results for assumption of constant costs 

Constant costs 

for first year 

after MI 

Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

7,098 0.4851 14,632 0.6913 Adopt 

 

 

The robustness of the simple temporal assumption of constant costs can be assessed by applying 

alternative assumptions of increasing costs over time and decreasing costs over time. 

 

Table 28: Cost-effectiveness results for alternative assumptions regarding costs associated with a 
composite event 

∆ Costs Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

Constant costs 7,098 0.4851 14,632 0.6913 Adopt 

↑ 2%/annum  7,113 0.4851 14,662 0.6820 Adopt 

↑ 5%/annum 7,320 0.4851 15,089 0.6741 Adopt 

↓ 2%/annum 7,082 0.4851 14,599 0.7010 Adopt 

↓ 5%/annum 7,072 0.4851 14,578 0.7087 Adopt 

 

 

While it is clear that the temporal assumption regarding costs incurred during the first year after a 

non-fatal MI does have an effect on the ICER, all else being equal, the effect is not significant. The 

adoption decision could therefore be said to be robust against this particular uncertainty.  

 

 

4.4.3.1.2 Costs associated with residing in the ‘No event’ health state and the ‘Post 

MI’ health state 

 

The costs associated with the ‘No event’ health state and the ‘Post MI’ health state were also 

derived, in the original analysis, from the simple OLS regression depicted in Table 26. The cost 

associated with the ‘Post MI’ health state (for the second and subsequent years) was assumed to 
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equal to the cost associated with the ‘No event’ health state (for the second and subsequent years). 

This is because it was assumed the cost of revascularisation – the biggest contributor to mean 

annual costs - would be the same in the two strategies from this point onwards. Again a temporal 

assumption of constant costs over time was employed. The mean cost associated with both the ‘No 

event’ and ‘Post MI’ health states for risk group 3 was £3973. 

 

The robustness of the simple temporal assumption of constant costs over time can again be assessed 

by applying alternative assumptions of increasing costs over time and decreasing costs over time. 

Table 29 below shows the cost-effectiveness results for alternative assumptions relating to costs for 

risk group 3. 

 

Table 29: Cost-effectiveness results for alternative assumptions regarding the change over time of 
costs per health state for risk group 3 

∆ Costs Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

Constant costs 7,098 0.4851 14,632 0.6913 Adopt 

↑ 2%/annum  9,509 0.4851 19,602 0.4762 Adopt 

↑ 5%/annum 15,852 0.4851 32,678 0.0104 Reject 

↓ 2%/annum 5,305 0.4851 10,935 0.8210 Adopt 

↓ 5%/annum 3,645 0.4851 7,513 0.9056 Adopt 

 

 

It is plain that the mean ICER is far more sensitive to the temporal assumption made regarding the 

long-term costs per health state compared to the temporal assumption regarding the cost of 

experiencing a non-fatal MI. This is because higher costs associated with health states over the long-

term would imply more expensive medical management of surviving patients, of whom there are 

more in the early interventional cohort. Although these rates of increase/decrease are extreme, the 

potential impact on the ICER ought to prompt a consideration of what factors may cause these costs 

to in practice either increase or decrease over time. There is, in fact likely to be upward pressure on 

resource use and downward pressure on unit costs over time as will be discussed in sections 3.4 and 

3.6 respectively. The trajectory over time of these health state costs are illustrated in Figure 47 

below. 
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Figure 47: The trajectory over time of costs for risk group 3 according to 5 alternative assumptions 

 

 

 

4.4.3.2 Expressing Temporal Uncertainty 

 

In the previous section, one-way sensitivity analyses were carried out on the key temporal 

assumptions related to costs in order to appraise their impact on the mean ICER and ultimately the 

adoption recommendation. A number of factors that may cause costs to alter over the long-term are 

now investigated. Where appropriate, temporal uncertainty is quantified and incorporated into the 

updated model. 

 

4.4.3.2.1 Accounting for age when estimating long-term costs  

 

Similar to HRQoL, long-term costs per health state are likely to be affected by ageing. Specifically, it 

is likely that resource use will increase with age. In the original RITA-3 CEDM, constant costs (for 

both the ‘No event’ and ‘Post MI’ health states) were assumed for second and subsequent years 

(following intervention and MI respectively). However, detailed analysis by Epstein et al. on the cost 

outcomes of the RITA-3 trial reveals that age is a predictor of increased mean costs (Epstein et al., 

2008). In particular, it was found, through a multivariate analysis, that mean costs increase by £737 
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for every 10 years for patients over 60 years of age. 95% confidence intervals were also given (£342, 

£1147). This age-related increase can be incorporated into the model and the uncertainty 

surrounding the magnitude of the increase can be expressed through a gamma distribution based on 

the confidence intervals given. 

 

10 𝑦𝑒𝑎𝑟𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑐𝑜𝑠𝑡𝑠 𝑝𝑒𝑟 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 ~ 𝐺𝑎𝑚𝑚𝑎(12.92, 57.02) 

 

The application of this uncertain age-related increase in costs yields the cost-effectiveness results 

shown in Table 30. 

 

Table 30: Cost-effectiveness results for risk group 3 when no age-related increase in costs is 
assumed versus when an uncertain 10 yearly increase in costs is assumed 

Age-related 

increase in costs 

Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

No increase 7,098 0.4851 14,632 0.6913 Adopt 

Uncertain 10 

yearly increase 
7,582 0.4851 15,630 0.6890 Adopt 

 

 

The results show a slight upward shift in the ICER leading to a decreased probability of cost-

effectiveness. This is explained by the increased costs of medical management of those surviving 

patients over the long-term (of whom there are more in the early interventional cohort). 

  

 

4.4.3.2.2 Accounting for inflation when estimating long-term costs and health 

effects 

 

It has been observed (in Chapter 3) that assuming constant costs per health state over time is a 

common practice in HTA and indeed that is the case in the original RITA-3 CEDM. However, leaving 

aside resource use for now, it is almost certain that unit costs – the prices of various clinical 

equipment and procedures – will alter over time. It may be that some items become relatively cheap 

due to improvements in technology or clinical practice, but costs will almost certainly come under 

upward pressure due to inflation. 
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There are two options regarding handling inflation in CEA, given that discounting must also being 

accounted for due to time preference (Drummond et al., 2005, Kumaranayake, 2000): 

 

(i) Inflate all future costs by predicted inflation rate and apply a larger discount rate that 

accounts for general inflation (an ‘inflation-adjusted’ discount rate) 

 

(ii) Do not inflate future costs and use smaller discount rate, i.e. ‘real’ discount rate. This was 

assumed to be the case in the original RITA-3 analysis and indeed most CEAs, as it is the 

approach recommended by NICE 

 

NICE recommends a ‘real’ discount rate of 3.5% for both costs and health effects (i.e. taking account 

of inflation). The ‘real’ discount rate used in health economic evaluations in the UK is taken from the 

Green Book of the UK Treasury, which is in principle based on the social time preference of the 

general population (Treasury, 2003). Although a wealth of literature and debate exists on how to 

estimate a suitable discount rate, or whether differential discounting (between costs and QALYs) is 

suitable (Gravelle and Smith, 2001, Claxton et al., 2011b, Claxton et al., 2006, Brouwer et al., 2005), 

it suffices to state in this research, that both the absolute social discount rate and future rates of 

inflation (and thus the ‘real’ discount rate) are subject to considerable uncertainty. Generally, this 

‘methodological uncertainty’ is set to one side in HTA. However, the NICE guidance suggests that for 

assessments with long-term time horizons, a sensitivity analysis using discount rates of 1.5% for both 

costs and health effects may be presented alongside the base-case analysis (NICE, 2013). It has been 

suggested that this may not even be appropriate as a sensitivity analysis (HEDS, 2011). 

 

It is, at the very least, interesting to note the sensitivity of the mean ICER and decision 

recommendations to the discount rate(s) – and implicit inflation rates - used. Let us first perform the 

sensitivity analysis suggested by NICE47. 

 

 

 

 

 

                                                           
47

 Note that the assumption made here is that it is inappropriate to apply differential discount rates to costs 
and health effects. Therefore whatever rate we apply to costs, we will also apply to health effects. 
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Table 31: Cost-effectiveness results for alternative assumptions regarding discount rates 

Discount rate for 

costs & benefits 

Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

3.5%* 7,582 0.4851 15,630 0.6890 Adopt 

1.5%* 8,865 0.6697 13,237 0.8130 Adopt 

*incorporating the temporal uncertainty quantified thus far in chapter 4.4 

 

 

The effect of this change in discount rate is not insignificant but not dramatic. The more favourable 

result for the early interventional strategy is a consequence of the long-term health gains associated 

with this strategy ‘mattering more’ when a lower discount rate is applied (recall that the majority of 

costs are incurred upfront when intervention takes place).  

 

Instead of applying a ‘real’ social discount rate (i.e. the latter of the two approaches for addressing 

outlined above), let us employ the former option, applying an ‘inflation-adjusted’ discount rate of 

5%, coupled with an uncertain inflation rate. An outcome 𝑥 in year 𝑦 therefore is subject to the 

following adjustment where 𝑑 is the discount rate and 𝑖 is the inflation rate: 

 

𝑥 →
𝑥(1 + 𝑖)𝑦

(1 + 𝑑)𝑦
 

 

Estimating long-term inflation is, unsurprisingly, highly difficult. The graph in Figure 48, taken from a 

recent Bank of England inflation report, depicts consumer price index (CPI) inflation projection based 

on market rate expectations and ongoing central bank asset purchases (Bank of England, 2013). The 

confidence intervals shown demonstrate the vast uncertainty inherent in predicting inflation rates 

even 3 years into the future. It is separate matter again as to whether the CPI index would be an 

appropriate inflation benchmark for health costs and effects, but what this estimation conveys is the 

scale of the uncertainty present when valuing health costs and health effects so far into the future.  
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Figure 48: CPI inflation projection: percentage increase in prices on a year earlier (Bank of England, 
2013) 

 

 

Let us take the latest long-term inflation estimates from PricewaterhouseCoopers (which gives 

expected inflation until the year 2020) (PricewaterhouseCoopers, 2014). Let us then apply normal 

distributions to the predicted rates with 90% confidence intervals of +/- 2.5% for years 1 to 3. Let us 

further assume that these confidence intervals rise to +/- 4% for the subsequent years48.  It is 

assumed that, after 5 years, there is a change in the inflation rate every 5 years. Figure 49 below 

depicts the assumed mean inflation rate, the 90% confidence intervals and an example of a 

simulated inflation rate curve. 

 

                                                           
48

 Note that this analysis is purely for illustrative purposes. The base year for the original CEA is in fact 2008, 
but it was felt it would be more interesting and informative to use the latest inflation data 



188 
 

Figure 49: Simulated long-term inflation rate 

 

 

 

Table 32 below shows the CE results when this ‘inflation adjusted’ discount rates along uncertain 

inflation approach is taken, versus the standard ‘real’ discount rates approach. 

 

Table 32: Cost-effectiveness results when this ‘inflation adjusted’ discount rates along uncertain 
inflation approach is taken, versus the standard ‘real’ discount rates approach 

Discount rate for 

costs & benefits 

Incremental 

Cost (£) 

Incremental 

QALY 

Mean 

ICER 

Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

‘real’ discount rates 

3.5%* 
7,582 0.4851 15,630 0.6890 Adopt 

‘inflation adjusted’ 

discount rates + 

uncertain inflation* 

7,980 0.5386 14,649 0.7656 Adopt 

*incorporating the temporal uncertainty quantified thus far in chapter 4.4 

 

 

The effect on the mean ICER (and ultimately the adoption recommendation) is small. And although, 

further parameter uncertainty has been incorporated, the effect on overall decision uncertainty is 

also small.  
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Whatever the inflation curve assumed, the same rates will be applied to both costs and health 

effects for both treatment strategies. Only therefore, if there are significantly greater health benefits 

for over the long-term (or indeed significantly greater costs) for one treatment would there 

expected to be a notable impact on an ICER. It may be cautiously concluded therefore, that in many 

CEAs, the choice of approach to accounting for inflation will not meaningfully impact the outcome of 

the analysis, unless the estimated inflation rate differs wildly from that implied by the ‘real’ discount 

rate and there is significant temporal disparity between costs and health effects.  

 

Certain ‘methodological uncertainties’ such as discount rates, growth over time of CE threshold, etc. 

are generally thought of as a value judgements that are made by the relevant decision-making 

authority and outlined in local methodological guidance. For the purposes of producing an updated 

RITA-3 CEDM in this research, the principle of taking methodological guidance at face value and not 

incorporating methodological uncertainty into the CE analysis will be adhered to. Thus the 

uncertainty surrounding inflation is not included in the overall results. 

 

4.4.3.2.3 Accounting for uncertain future events when estimating long-term costs 

 

Although the task of accounting for inflation, to a large extent, is married to the task of employing 

sound and appropriate economic theory, there are often more tangible reasons to consider changes 

in unit costs in future time periods. Possible sudden future changes in unit costs forms the subject 

matter of this final investigation. Uncertain future events (UFE) can have a significant bearing on 

adoption decision, but only under particular circumstances, while their effect on future decisions, 

and consequently the value of further evidence is to be expected. The extent of these impacts is 

tested for RITA-3 using two simulated UFEs. 

 

4.4.3.2.3.1 An Uncertain Reduction in Unit Cost of Cardiac Medication 

 

Let us assume that there is an anticipated reduction in the unit cost of a key long-term cardiac 

medication and that as a result the annual cost associated with both the ‘No Event’ health state and 

the ‘Post MI’ health state is expected to reduce some time in the future. There are potentially three 

uncertainties at play: 
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(i) Uncertainty regarding the occurrence of the cost reduction (there may also be second-order 

uncertainty, i.e. uncertainty regarding the value of the probability of a cost reduction, but it 

is assumed here that there is none) 

 

(ii) Uncertainty regarding the magnitude of the cost reduction 

 

(iii) Uncertainty regarding the timing of the cost reduction 

 

Let us assume that the uncertainty regarding the occurrence of the cost reduction can be expressed 

by a single probability 0.7, that the uncertainty regarding the magnitude of any reduction can be 

expressed as follows: 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟 ~ 𝐺𝑎𝑚𝑚𝑎(10, 100) and that the uncertainty regarding the 

timing of any cost reduction can be expressed as follows: 𝑡𝑖𝑚𝑖𝑛𝑔 𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(20, 2). It may, in 

some circumstances, make more sense to express a single distribution for the magnitude of the 

reduction with a mass point at zero rather than separate estimates for the probability of a reduction 

and the magnitude of a reduction, but for this example it is assumed that having separate estimates 

is suitable. It is also assumed that these distributions are independent. The graph in Figure 50 

illustrates this temporal uncertainty. 

 

Figure 50: Temporal uncertainty relating to uncertain future cost reduction 

 

 

The CE results in Table 33 show the contrasting results for the model with the above simulated UFE 

and without. 



191 
 

 

Table 33: Cost-effectiveness results with and without UFE 

Discount rate for 

costs & benefits 

Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

No UFE* 7,582 0.4851 15,630 0.6890 Adopt 

UFE regarding 

annual costs* 
6,793 0.4851 14,003 0.7126 Adopt 

*incorporating the temporal uncertainty quantified thus far in chapter 4 

 

There is a notable impact on the mean ICER, though not significant. The change in assumption is a 

positive one for the early interventional strategy as there is a greater proportion of patients in the 

‘No event’ health state, leading to reduced overall costs when a reduction in annual costs is applied. 

 

For this UFE example, the future change, though only becoming manifest over the long-term, affects 

the patients treated today and for whom an adoption recommendation is being made today. 

However, a UFE may also affect a parameter that will not be relevant to the population of patients 

treated today, but to future incident populations. 

 

4.4.3.2.3.2 An Uncertain Increase in the Cost of Angiography 

 

Putting to one side the fact that such a future event is unlikely in reality, let us simulate an 

anticipated increase in the cost of an early invasive angiography. Assume again that probability of 

the price shift is 0.7, that the magnitude of the increase can be expressed as 

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖 ~ 𝐺𝑎𝑚𝑚𝑎(50, 100) and that the timing of the price shift, if it occurs, is certain to be 10 

years from the present year.  

 

The UFE will not affect today’s incident population as it is assumed that all relevant (early 

interventional) angiographies will have taken place by the time the price change occurs. The impact 

of such an event relates solely to future decisions. The adoption recommendation for these future 

incident populations can be made at the relevant future date, i.e. a new decision can be made (albeit 

with some caveats), as discussed in Chapter 2. What is relevant today however, is the impact of the 

value of obtaining further information (VoI). 
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The calculation of VoI will be carried out in detail in the final sub-chapter (Chapter 4.6), but for now 

let us make some observations in relation to this UFE. The expected value of perfect information per 

patient (EVPI/patient) for risk group 3 given the current model specifications is £357.58 EVPI/patient 

given the UFE regarding the cost of angiography is £402.29, implying the estimates for 

EVPI/population as given below. 

 

 EVPI/total population 

Without UFE re cost of angiography £81,262,949 

With UFE re cost of angiography £91,423,658 

 

This distinction between the two types of UFE simulated in this section is important. Anticipated 

future changes ought to be accounted for in cost-effectiveness decision modelling, but such changes 

may not always be relevant for today’s adoption recommendation. They will however, always be 

relevant for value of information analysis (assuming the change occurs within the timeframe when 

evidence is deemed still relevant). More generally this distinction illustrates the explanation given in 

Chapter 2 that different time horizons and different decisions are at play as uncertainty over time is 

accounted for.  
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4.4.4 Results 

 

The results after temporal uncertainty has been expressed for costs are outlined below. Only the 

update regarding age-related cost increase is included. 

 

4.4.4.1 Cost-effectiveness 

 

Table 34: Cost-effectiveness Results after temporal uncertainty has been addressed for costs. 
Compare with Table 24 to observe the change in the results. 

Risk group Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Adopt/reject early 

interventional (EI) 

Risk group 1 5,435 0.2055 26,455 Reject 

Risk group 2 5,370 0.3783 14,197 Adopt 

Risk group 3 7,582 0.4851 15,630 Adopt 

Risk group 4a 7,438 0.7099 10,478 Adopt 

Risk group 4b 7,251 0.6463 11,220 Adopt 

 

 

All ICERs have increased slightly after this update for the reason outlined in Section 4.4.3.2.1. This 

expression of temporal uncertainty has, like in the previous sub-chapter, replaced a ‘conservative’ 

assumption. This assumption however, unlike other conservative assumptions, was conservative 

regarding the magnitude of long-term costs, not conservative regarding the effectiveness of a health 

intervention. Thus, this update has caused a pessimistic shift in results in relation to the cost-

effectiveness of the early interventional strategy.  

 

 

4.4.4.2 Uncertainty and Value of Information 

 

Table 35 below summarises the current impact of uncertainty on the outputs of the CEDM for each 

of the 5 risk groups. 
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Table 35: Summary of Effect of Uncertainty for each Risk Group after temporal uncertainty has 
been addressed for costs. Compare with Table 25 to observe the change in the results. 

Risk group Prob(EI cost-effective) 

at £20,000/QALY 

EVPI/patient (£) EVPI/population (£) 

Risk group 1 0.274 624.35 141,888,590 

Risk group 2 0.638 510.87 116,099,342 

Risk group 3 0.689 398.24 90,503,263 

Risk group 4a 0.974 28.81 3,273,653 

Risk group 4b 0.948 58.94 6,697,296 
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4.5 Chapter 4.5: Health-related Quality of Life  

 

 

4.5.1 Introduction  

 

The purpose of this sub-chapter is to address temporal uncertainty relating to health-related quality 

of life (HRQoL) in the RITA-3 cost-effectiveness decision model (CEDM).  In doing so, this chapter 

endeavours to address, more generally, the characterisation of temporal uncertainty pertaining to 

HRQoL in CEDMs. First, a series of sensitivity analyses are carried out in order to test the robustness 

of the cost-effectiveness results to alternative assumptions regarding how HRQoL evolves over time. 

Second, two factors that may impact long-term HRQoL are discussed and temporal uncertainty is 

expressed and incorporated into the updated CEDM. These factors are: a possible treatment effect 

regarding HRQoL and the impact of age when estimating long-term HRQoL.  

 

4.5.1.1 The parameters 

 

Recall that the long-term portion of the RITA-3 CEDM is represented by a state transition structure, 

where ‘events’ cause proportions of the patient cohort(s) to migrate to and from health states. Time 

spent in a health state is associated with the accrual of HRQoL. The occurrence of an event may also 

be associated with a ‘one-off’ hike or a drop in HRQoL. As with costs therefore, cumulative HRQoL is, 

to a large, extent, driven by the event rates assumed in the model. However, there is also 

uncertainty related to how the state-related and event-related HRQoL might evolve over time.  It is 

these parameters that are the focus of this sub-chapter. In particular, the parameters under analysis 

are: 

 

(i) The HRQoL associated with a composite health event, i.e. transitioning to the ‘MI/CVD’ 

health state 

 

(ii) The HRQoL associated with residing in the ‘No event’ health state and the ‘Post MI’ health 

state 
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Figure 51: Unit costs and utilities are associated with each health state in the long-term Markov 
portion of the CEDM 

 

Note: HRQoL weights are assumed to be zero for the death states and the MI/CVD state is assumed to be instantaneous 

in time and thus also has zero costs and HRQoL. 

 

 

4.5.2 Available evidence 

 

4.5.2.1 Evidence from RITA-3 

 

HRQoL data were collected as part of RITA-3 at randomisation, at 4 months, at one year and yearly 

thereafter. The data were recorded using EQ-5D. HRQoL weights were calculated through employing 

preferences from the UK population (Brooks, 1996, Dolan, 1997). 

 

4.5.3 Analysis 

 

4.5.3.1 One-way Sensitivity Analyses 

 

4.5.3.1.1 The HRQoL associated with a composite health event, i.e. transitioning to 

the ‘MI/CVD’ health state 
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In the original analysis, a standard OLS regression was employed to determine mean HRQoL at 

randomisation (baseline), for each risk group, based on the EQ-5D data collected as part of RITA-3. 

Baseline was calculated to be 0.58097 for patients in risk group 3. Changes after randomisation were 

then determined using a panel data approach. In particular, a GLS random-effects model was fitted 

where a covariate for experiencing a ‘recent’ (within one year to the time of the follow-up interview) 

MI was generated, along with binary covariates representing whether the HRQoL measure was taken 

at 4 months or 12 months. The resulting coefficents are shown in Table 36. 

 

Table 36: Estimated gain in health-related quality of life (Henriksson et al., 2008) 

Covariate Coefficient Standard 

error 

95 % CI 

D4* 0.0441 0.0133  

D4t* 0.0384 0.0168 0.0054 to 0.0714 

D12* 0.0383 0.0076 0.0234 to 0.0533 

D12t* 0.0177 0.0154 -0.0126 to 0.0480 

Previous MI -0.0097 0.0156 -0.0404 to 0.0209 

Current MI -0.0353 0.0220 -0.0784 to 0.0078 

Constant 0.0442 0.0126  0.0195 to 0.0689 

Between patient standard error (σu)  0.295  

Within patient standard error (σe)  0.183  

Fraction of variance due to ui (ρ)  0.722  

*These covariates represent the change in utility (from baseline) at follow-up of 4 months or 12 months as indicated. 

Those indicated with a ‘t’  represent the gain in HRQoL in the early interventional strategy over and above that of the 

conservative strategy 

 

The temporal assumption regarding the impact of a non-fatal MI was that HRQoL for the first year 

following a non-fatal MI would equal baseline (0.58097) plus the ‘current MI’ decrement (-0.0353) 

and this figure would not change over time. It was also assumed that this would be the same for 

both treatment cohorts. 

 

Let us appraise the robustness of the temporal assumption by applying linear increments and 

decrements. 
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Table 37: Cost-effectiveness results for alternative assumptions regarding the change over time of 
HRQoL associated with a composite event for risk group 3 

∆ HRQoL Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

Constant HRQoL 7,582 0.4851 15,630 0.6890 Adopt 

↑ 2%/annum 

(upperbound 0.9) 
7,582 0.4771 15,892 0.6802 Adopt 

↓ 2%/annum 

(lowerbound 0) 
7,582 0.4965 15,270 0.7214 Adopt 

 

 

As with the temporal assumption regarding costs incurred during the first year after a non-fatal MI, 

the impact of alternative temporal assumptions regarding HRQoL during the first year after a non-

fatal MI is relatively minor. 

 

4.5.3.1.2 The HRQoL associated with residing in the ‘No event’ health state and the 

‘Post MI’ health state 

 

For the HRQoL associated with residing in the ‘No event’ and ‘Post MI’ health states (every year 

except the first year after a non-fatal MI), the original model assumed, based on a separate detailed 

analysis carried out by Kim et al., that for patients in the ‘No event’ health state, the overall change 

in HRQoL from baseline observed at one year (i.e. ignoring intermediary recordings) is maintained 

for the remainder of their lives and that this change is the same for both conservative and early 

interventional cohorts (Kim et al., 2005). Similarly, for the Post MI state, the HRQoL was assumed to 

remain the same from the second year onwards (and that the same HRQoL weight exists for both 

treatment strategies). Thus, as with costs, assumptions of constant HRQoL per health states were 

applied. 

 

Let us test the sensitivity of the cost-effectiveness results to the temporal assumption relating 

HRQoL per health state by applying alternative temporal assumptions of increasing and decreasing 

HRQoL over time.  
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Table 38: Cost-effectiveness results for alternative assumptions regarding the change over time of 
HRQoL per health state for risk group 3 

∆ HRQoL Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

Constant HRQoL 7,582 0.4851 15,630 0.6890 Adopt 

↑ 2%/annum 

(upperbound 0.9) 
7,582 0.5944 12,756 0.8231 Adopt 

↓ 2%/annum 

(lowerbound 0) 
7,582 0.3668 20,671 0.5334 Reject 

 

As one would expect, the early interventional treatment becomes more favourable with rising 

HRQoL over time, as patients who survive for longer (of whom there are more in the early 

interventional cohort) accrue more health benefits. Given the sensitivity of the mean ICER (and 

indeed the adoption decision) to this temporal assumption, we are prompted to consider what 

factors may cause HRQoL to change over time. 

 

The trajectories over time of HRQoL of the alternative assumptions are illustrated in Figure 52 

below. 

 

Figure 52: The trajectory over time of HRQoL per health state for risk group 3 according to 3 
alternative assumptions 
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Let us also address the assumption that there is no difference in HRQoL between the two treatment 

cohorts in the ‘No event’ health state after the first year. The assumption of parity in HRQoL 

between the two treatment strategies in the ‘No event’ health state in the second and subsequent 

years was deemed conservative in the original model report (M Henriksson et al., 2007). This was a 

similar approach to that taken in the analysis of long-term composite event rates (see Chapter 4.3). 

The assumption is arguably reasonable (i.e. not conservative), as the early interventional treatment 

strategy is designed to benefit patients through the prevention of composite cardiac events, and 

thus the HRQoL associated with patients in the ‘No event’ health state could be expected to be the 

same for both treatment groups after sufficient time since intervention has elapsed. Nonetheless, 

some alternative scenarios could reasonably be assumed. In particular: 

 

(i) Instead of assuming equal long-term HRQoL, a ‘treatment effect’ could be assumed for 

the second and subsequent years in the ‘No event’ health state. This can be done by 

including the treatment interaction term at 12 months (12t in Table 36 above) for the 

calculation of HRQoL for the early interventional strategy.  

 

(ii) An assumption of differential HRQoL could be assumed, but for a limited amount of time 

(5 years). The implication of this scenario is that it takes somewhat longer after 

intervention for patients in the ‘No event’ health state to experience the same HRQoL. 

 

As with other issues of temporal uncertainty, these scenarios broadly represent optimistic, 

pessimistic and ‘middle’ assumptions. The results of these scenarios are shown in Table 39. 

 

Table 39: Cost-effectiveness results for risk group 3 for alternative assumptions regarding 
differential long-term HRQoL in the ‘No event’ health state 

∆ HRQoL Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

Equal HRQoL 7,582 0.4851 15,630 0.6890 Adopt 

Differential 

HRQoL for 

remaining years 

7,582 0.6908 10,976 0.8965 Adopt 

Differential 

HRQoL for 5 years 
7,582 0.5703 13,295 0.8413 Adopt 
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The results in Table 39 demonstrate that assuming differential HRQoL in the ‘No event’ health state 

up to the model time horizon has a notable effect on the mean ICER, though it does not alter the 

adoption recommendation for risk group 3. This suggests that the relative HRQoL for patients 

remaining in the ‘No event’ health state over the long-term is an important element of the model, 

even though the majority of both cohorts leave the ‘No event’ health state over the short to medium 

term (there is roughly a third of the conservative cohort in the ‘No event’ health state by year 20). 

 

 

4.5.3.2 Expressing Temporal Uncertainty 

 

In the previous section, one-way sensitivity analyses were carried out on the key temporal 

assumptions related to HRQoL in order to appraise their impact on the mean ICER and ultimately the 

adoption recommendation. Two factors that may impact the temporal nature of HRQoL are now 

investigated. Where appropriate, temporal uncertainty is quantified and incorporated into the 

updated model. 

 

4.5.3.2.1 Differential long-term HRQoL in the ‘No event’ health state 

 

Rather than applying an assumption of no difference (with the knowledge that it is perhaps 

conservative), it is desirable to express temporal uncertainty by averaging across the scenarios 

outlined in Table 39. Assuming that each of the scenarios described in Table 39 is equally likely 

(though these scenarios, in practice, ought to be informed and validated by expert opinion), 

temporal uncertainty by model averaging for this assumption can be expressed as: 

 

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  

{
 

 𝑒𝑞𝑢𝑎𝑙 𝐻𝑅𝑄𝑜𝐿 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 3⁄

𝑑𝑖𝑓𝑓𝑒𝑟𝑛𝑡𝑖𝑎𝑙 𝐻𝑅𝑄𝑜𝐿 𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑦𝑒𝑎𝑟𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 3⁄

𝑑𝑖𝑓𝑓𝑒𝑟𝑛𝑡𝑖𝑎𝑙 𝐻𝑅𝑄𝑜𝐿 𝑓𝑜𝑟 5 𝑦𝑒𝑎𝑟𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 3⁄

 

 

 

The results of this model averaged assumption are shown in Table 40. 
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Table 40: Cost-effectiveness results for model-averaged characterisation of long-term relative 
HRQoL in ‘No event’ health state 

∆ HRQoL Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

Temporal 

uncertainty - 

Model averaged 

(1 3⁄  , 1 3⁄  , 1 3⁄ ) 

7,582 0.5705 13,290 0.8035 Adopt 

 

 

 

4.5.3.2.2 Accounting for age and event-free survival when estimating long-term 

HRQoL 

 

In estimating long-term HRQoL, a similar problem to the one that arose in Chapter 4.2 is found, 

where the impact of age at baseline (i.e. at the point of randomisation following NSTE-ACS) may not 

equate to the effect of age over the long-term. Indeed in RITA-3, a counterintuitive result is 

produced by the regression analysis where age has a positive effect on HRQoL rather than negative. 

This is shown in Table 41 where ‘agegroup’ is included as a covariate in the regression to calculate 

HRQoL. 

 

Table 41: Co-variates in calculation of HRQoL including age 

eq5d0 Coef. Std. Err. [95% Conf. Interval] 

agegrp0 0.021178 .0084933     0.00452 0.037836 

diabmell -0.05241 .0208927     -0.09339 -0.01144 

prevmi -0.04932 .0163219     -0.08133 -0.01731 

stdepres -0.07118 .0149127    -0.10042 -0.04193 

agrade -0.07457 .0150338    -0.10406 -0.04509 

sex 0.074819 .0148092    0.045774 0.103864 

_cons 0.675985 .0160855    0.644437 0.707533 
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This may relate to the unreliability of self-reported HRQoL so close to a traumatic medical event, i.e. 

those in lower age groups in times of stress may report lower HRQoL than those in higher age groups 

experiencing the same stress.  

 

Even if the trial data are deemed to be uninformative or unreliable, it is prudent to consider the 

long-term effect of ageing on HRQoL per health state, rather than assuming constant HRQoL over 

time. A number of studies have examined the natural evolution of HRQoL that comes with the 

ageing process (Busschbach et al., 1993, Pliskin, 1980), but consideration of the impact of ageing on 

disease specific health states is rare. One enlightening study by Ara and Brazier examined pooled 

health survey data in order to assess its appropriateness for use as baseline HRQoL data (Ara and 

Brazier, 2011). Among their findings was that HRQoL declines (with statistical significance) with age 

and that data from the general population can be used, in many but not all, circumstances  to 

approximate baseline utility.  

 

Another useful output of this study was an estimate of the trajectory with age of HRQoL (in 

particular, EQ-5D). This was estimated for cohorts with no health condition, with at least one health 

condition and for the general population irrespective of health status. These estimations are 

depicted in Figure 53. 

 

Figure 53: Trajectory of HRQoL with age from Ara and Brazier 

 

 

Looking at these trajectories (and concentrating in particular on those with at least one health 

condition), it is clear that there exists a decrement in HRQoL with age and it follows that some 

estimate of that decrement ought to be incorporated into any analysis with a long-term time horizon 
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involving HRQoL. It is also notable however, that from age group 50 to ≤ 55 to age group 70 to ≤ 75, 

HRQoL is relatively stable (note that the ages of patients representing risk groups 1 to 5 are 45, 52, 

52, 62 and 65 respectively). It may be therefore that the decline in HRQoL that is apparent in old age 

does not meaningfully impact the cost-effectiveness results in RITA-3. Let us test this hypothesis by 

comparing an assumption of constant HRQoL over time with an assumption of a decline in HRQoL at 

the rate suggested by Ara and Brazier, only from age 75 onwards, for the proportion of the cohort 

residing in the ‘No event’ health state. It is assumed that this cohort can be represented by 

‘respondents with at least one health condition’ in the Ara and Brazier paper. This description would 

seem to fit the RITA-3 cohort. For example, HRQoL at age 52 for these respondents (0.5975) is 

similar to that estimated in RITA-3 for risk group 3 (0.5712).  

 

Table 42: Cost-effectiveness results for an assumption of constant HRQoL vs. the inclusion of an 
end-of-life decrement 

∆ HRQoL Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

Constant HRQoL* 7,582 0.5705 13,290 0.8035 Adopt 

End of life 

decrement* 
7,582 0.5682 13,343 0.7833 Adopt 

*TU has been expressed for HRQoL differential 

 

The difference is moderate (as expected since more extreme alternative scenarios were applied in 

Table 38, with little impact). Nonetheless, it would seem more appropriate to apply decrement 

associated with age than to not. 

 

More challenging is estimating the change over time in HRQoL for patients in the ‘Post MI’ health 

state specifically. These patients have a significantly lower HRQoL in light of having experienced a 

myocardial infarction. The model assumes that this lower HRQoL is sustained irrespective of 

subsequent event-free survival. However, it may be more reasonable to assume that for patients 

who have survived a prolonged period of time without experiencing a further MI, a recovery of in 

terms of HRQoL has occurred. In other words, there is an upward pressure on this initial estimate of 

HRQoL associated with event-free survival, as well as a longer-term downward pressure associated 

with ageing. It is desirable therefore, to express uncertainty regarding the possible recovery in 

HRQoL after a period of event-free survival as well as uncertainty regarding the impact of ageing for 

patients in the ‘Post MI’ health state. 
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It is important to note at this point, that the ‘Post MI’ health state is in fact made up of 4 tunnel 

states representing the first 4 years after a non-fatal MI and a fifth state which represents patients 5 

years or more after a non-fatal MI. Let us first appraise the impact of alternative assumptions 

regarding change in HRQoL over time in the ‘Post MI’ health state. It is assumed that a recovery in 

HRQoL can be represented by a return to the ‘No event’ HRQoL (for the conservative treatment) 

once a patient reaches the ‘5 years since MI’ health state and it is assumed that an end-of-life 

decline in HRQoL can be represented by the percentage decrement in HRQoL shown in Table 43 for 

respondents with at least one health condition. Note that the decrement is applied to both the ‘No 

event’ health state and the ‘Post MI’ health state. 

 

Table 43: Mean ICERs for risk group 3 for alternative assumptions regarding change in HRQoL in 
the ‘Post MI’ health state 

 Recovery in HRQoL at 

5 years 

No recovery in 

HRQoL at 5 years 

No end of life decrement in HRQoL 13,677 13,290 

End-of-life decrement in HRQoL 13,759 13,343 

 

 

Again, the impact of the end-of-life decrement is minimal as is the impact of the recovery 

assumption. Nonetheless, it is appropriate to incorporate both sources of temporal uncertainty. An 

example of both sources of temporal uncertainty being expressed in combination is illustrated in 

Figure 54. Here a patient on the conservative treatment experiences an MI at age 60. 
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Figure 54: Expression of temporal uncertainty in HRQoL for patient (in risk group 3) who 
experiences an MI aged 60 

 

 

 

Again assuming that each point of uncertainty is represented by equally weighted alternative 

scenarios, temporal uncertainty can be expressed, through model averaging, for HRQoL in place of a 

conservative temporal assumption. The results (as compared to assumptions of no recovery and no 

end-of-life decrement) are shown in Table 44. 

 

Table 44: Cost-effectiveness results for an assumption of constant HRQoL vs. the inclusion of an 
end-of-life decrement and post MI recovery 

∆ HRQoL Incremental 

Cost (£) 

Incremental 

QALY 

Mean 

ICER 

Prob(EI cost-effective) 

at £20,000/QALY 

Adopt/reject early 

interventional (EI) 

Constant HRQoL (no 

recovery, no EOL 

decrement)* 

7,582 0.5705 13,290 0.8035 Adopt 

Temporal Uncertainty 

for Post MI recovery 

and EOL decrement* 

7,582 0.5622 13,486 0.7935 Adopt 

*incorporating the temporal uncertainty quantified thus far in chapter 4.5 
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4.5.4 Results 

 

4.5.4.1 Cost-effectiveness 

 

Table 45: Cost-effectiveness Results after temporal uncertainty has been addressed for HRQoL. 
Compare with Table 34 to observe the change in the results. 

Risk group Incremental 

Cost (£) 

Incremental 

QALY 

Mean ICER Adopt/reject early 

interventional (EI) 

Risk group 1 5,435 0.3286 16,539 Adopt 

Risk group 2 5,370 0.4613 11,641 Adopt 

Risk group 3 7,582 0.5622 13,486 Adopt 

Risk group 4a 7,438 0.7564 9,833 Adopt 

Risk group 4b 7,251 0.6812 10,644 Adopt 

 

 

All ICERs have decreased somewhat after these updates to the CEDM. Most notably, a positive 

adoption recommendation is now being given for risk group 1. This is primarily explained by the ICER 

of risk group 1 being especially sensitive to the assumption regarding differential long-term HRQoL in 

the ‘No event’ health state, as a larger proportion of risk group 1 patients reside in this health state 

over the long-term. Under an assumption of equal HRQoL in the ‘No event’ health state, a mean 

ICER of £26,529 is returned. As with the previous sub-chapters, here a characterisation of temporal 

uncertainty replaces a ‘conservative’ assumption with regard to the cost-effectiveness of the early 

interventional treatment, leading to a more optimistic mean ICER. 

 

4.5.4.2 Uncertainty and Value of Information 

 

Table 46 summarises the current impact of uncertainty on the outputs of the CEDM for each of the 5 

risk groups. 
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Table 46: Summary of Effect of Uncertainty for each Risk Group after temporal uncertainty has 
been addressed for HRQoL. Compare with Table 35 to observe the change in the results. 

Risk group Prob(EI cost-effective) 

at £20,000/QALY 

EVPI/patient (£) EVPI/population (£) 

Risk group 1 0.505 1,119.22 254,301,806 

Risk group 2 0.764 400.79 90,903,237 

Risk group 3 0.793 357.58 81,131,139 

Risk group 4a 0.970 40.70 4,545,162 

Risk group 4b 0.969 31.56 3,522,500 

 

Given the decrease in ICERs for all risk groups, it is not surprising to see that the probability of cost-

effectiveness for all risk groups has increased. Risk groups 4a and 4b are now almost certain to be 

cost-effective and risk group 1 is now more likely than not to be cost effective. Again this is 

explained by a ‘conservative’ assumption regarding the change in HRQoL over time being replaced 

by a ‘neutral’ expression of temporal uncertainty. EVPI for group 1 has naturally increased as the 

distribution of ICERs now centres closer to the cost-effectiveness threshold. EVPI for risk groups 2, 3 

and 4b has decreased as their ICERs have moved further from the threshold making the adoption 

decision less ‘uncertain’. However, interestingly, EVPI for risk group 4a has increased despite the 

associated distribution of ICERs being centred further from the threshold. This is due to the greater 

dispersion of ICERs (due to further temporal uncertainty being expressed) outweighing the shift in 

where the ICERs are centred in terms of the impact on EVPI.  
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4.6 Chapter 4.6: Overall Results and Discussion 

 

4.6.1 Introduction 

 

In this last sub-chapter, the original CEDM is compared to the ‘updated’ version. The overall impact 

of accounting for temporal uncertainty is observed as well as the impact of individual temporal 

parameters and their interactions. Key outcomes and aspects of the methodology are then 

discussed. 

 

4.6.2 Original CEDM vs. CEDM Updated for Temporal Uncertainty 

 

4.6.2.1 Summary of Model Updates 
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Table 47: Summary of model updates 

Model 

Component 

Temporal 

parameter 

Chapter 

where 

analysed 

Original 

Assumption 

Method of expressing 

temporal uncertainty 

Evidence used to 

inform temporal 

trajectory 

Transition 

Probabilities 

Baseline risk 

regarding 1st 

composite event 

after 5 years 

4.2 

Constant 

baseline risk with 

10 yearly update 

of age parameter 

Parameterisation 

using continuous 

(beta) distribution 

RITA-3 IPD, related 

HTAs, population 

mortality tables 

Treatment effect 

regarding 1st 

composite event 

after 5 years 

4.3 

No further 

treatment effect 

Model averaging over 

alternative 

assumptions  

RITA-3 IPD, 

alternative scenarios 

in NICE guidance 

HRQoL 

Long-term 

treatment effect re 

HRQoL in ‘No Event’ 

state 

4.5 

No treatment 

effect 

Model averaging over 

alternative 

assumptions 

RITA-3 IPD, 

alternative 

assumptions 

Recovery in HRQoL 

for patients in ‘Post 

MI’ state 

4.5 

No recovery in 

HRQoL 

Model averaging over 

alternative 

assumptions 

RITA-3 IPD, 

alternative 

assumptions 

Age-related (end of 

life) decrement 
4.5 

No age-related 

end of life 

decrement 

Model averaging over 

alternative 

assumptions  

RITA-3 IPD, 

Aggregate data on 

HRQoL decrement 

with age 

Costs 

Age-related 

increase in costs 

4.4 

No age-related 

increase in costs 

Parameterisation 

using continuous 

(gamma) distribution 

RITA-3 IPD, RITA-2 

resource use 

information, PSSRU, 

BNF, analysis by 

Epstein et al. 
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4.6.2.2 Cost-effectiveness Results 

 

Table 48: Cost-effectiveness results for original CEDM vs. updated CEDM 

Risk Group 
Mean ICER (adoption decision) 

Original CEDM Updated CEDM 

1 53,760 (reject) 16,539 (adopt) 

2 22,949 (reject) 11,641 (adopt) 

3 21,186 (reject) 13,486 (adopt) 

4a 11,957 (adopt) 9,833 (adopt) 

4b 12,750 (adopt) 10,644 (adopt) 

Note: a shaded cell indicates a positive adoption recommendation 

 

 

The results in the Table 48 show that the re-analysis where temporal uncertainty is more closely 

examined and quantified leads to significantly altered mean ICERs and adoption recommendations. 

The principle reason for this is that the re-analysis did not simply consist of fitting distributions 

around point estimates to express uncertainty; rather it incorporated and weighted alternative 

temporal scenarios which expressed expectations and uncertainty given the currently available 

evidence, replacing the single, often ‘conservative’ assumptions of the original CEDM. The main 

cause of the shift is the change in the modelling of treatment effect over the long-term. 

 

Figure 55 below illustrates how the mean ICERs for each risk group evolved with each model update, 

i.e. each new characterisation of temporal uncertainty (the updates relating to HRQoL have been 

grouped into one). It is clear that characterisation of temporal uncertainty regarding treatment 

effect has the greatest impact, especially on the mean ICER of risk group 1. 
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Figure 55: Evolution of Mean ICER for each characterisation of temporal uncertainty for each risk 
group 

 

 

 

4.6.2.3 Uncertainty 

 

The cost-effectiveness planes for original and updated CEDMs for each risk group are illustrated in 

Figure 56. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56: Cost-effectiveness planes for original and updated CEDMs 
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Risk 
Group 

CE Plane for Original CEDM CE Plane for Updated CEDM 

1 

  

2 

  

3 

  

4a 

  

4b 
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The cost-effectiveness planes in Figure 56 representing the original and updated CEDMs show the vast 

increase in uncertainty in costs and health effects associated with the updated CEDM. The result is 

unsurprising as more uncertainty regarding the inputs into the CEDM is being expressed. The change in 

decision uncertainty however owes more to how the ICERs for each risk group have shifted in relation to 

the ICER threshold (assumed to be £20,000/QALY). Table 49 below gives the probabilities of cost-

effectiveness for each risk group for the original and updated CEDMs. 

Table 49: Probability that the early interventional strategy is cost-effective for the original and 
updated CEDM for each risk group 

Risk group 
Prob(EI cost-effective) at £20,000/QALY 

Original CEDM Updated CEDM 

Risk group 1 0.009 0.505 

Risk group 2 0.328 0.764 

Risk group 3 0.420 0.793 

Risk group 4a 0.945 0.970 

Risk group 4b 0.924 0.969 

 

For risk groups 4a and 4b, there is far less decision uncertainty as it is now highly likely that the early 

interventional strategy is cost-effective for these risk groups. For risk groups 1, 2 and 3, the early 

interventional strategy is now also likely to be cost-effective, but for these risk groups there is a significant 

error probability, in particular for risk group 1. It is therefore expected that there may be value in 

obtaining further information for these lower risk groups. 

 

4.6.2.4 Value of Information 

 

The principal motivations for expressing and incorporating temporal uncertainty into the CEDM were 

to calculate the true expected cost-effectiveness given currently available evidence and to assess the 

need for further evidence given the current decision uncertainty. Because each source of temporal 

uncertainty has been expressed in the CEDM through an uncertain temporal parameter, it is also 

possible to estimate the value of obtaining further information specifically in relation to the 

temporal trajectory of key model parameters. Table 50 below outlines the expected value of perfect 

information (EVPI) per patient and per population for both the original and updated CEDMs for each 

risk group. 
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Table 50: EVPI per patient and per population for each risk group 

Risk Group 
EVPI/patient (£) EVPI/population (£) 

Original CEDM Updated CEDM Original CEDM Updated CEDM 

1 1.92 1,119.22 349,068 254,301,806 

2 367.70 400.79 66,850,066 90,903,237 

3 475.15 357.58 86,385,121 81,131,139 

4a 61.13 40.70 5,556,900 4,545,162 

4b 107.96 31.56 9,813,888 3,522,500 

 

The change in EVPI as temporal uncertainty is characterised for more parameters is illustrated in 

Figure 57 below.  

 

Figure 57: Change in EVPI as each source of temporal uncertainty was addressed 

 

 

Again the biggest impact is that of the characterisation of treatment effect and the risk group most 

affected by this is risk group 1. What is of particular interest however, is the value of obtaining 

further evidence pertaining to the specific uncertain temporal parameters. The calculation of 

EVPPI/patient for each temporal parameter ought to (i) express the relative significance of each 

source of temporal uncertainty and (ii) demonstrate the usefulness of parameterising temporal 
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uncertainty as the resultant temporal parameter can be examined and it can be determined whether 

obtaining further information specific to the temporal trajectory of the underlying model parameter 

would be worthwhile. Because of the replacement of conservative assumptions with distributions 

that incorporate all plausible scenarios and that reflect our uncertainty, the mean ICER has moved 

far enough from the cost-effectiveness threshold to render EVPPI negligible or zero for many 

temporal parameters for many risk groups. 

Table 51 below shows the expected value of perfect information for a specific temporal parameter 

(EVPPI) per patient for each characterised source of temporal uncertainty and for each risk group. 

 

Table 51: EVPPI/patient (£) for all uncertain temporal parameters and for each individual 
uncertain temporal parameter for each risk group 

Risk 

Group 

All temporal 

parameters 

Baseline risk 

regarding 1
st

 

composite 

event after 5 

years 

Treatment effect 

regarding 1
st

 

composite event 

after 5 years 

Long-term 

treatment 

effect re 

HRQoL in ‘No 

Event’ state 

Recovery in 

HRQoL for 

patients in 

‘Post MI’ 

state 

Age-related 

(end of life) 

decrement 

Age-

related 

increase 

in costs 

1 977.42 ~0 127.97 515.71 ~0 ~0 ~0 

2 180.04 ~0 ~0 ~0 ~0 ~0 ~0 

3 133.05 ~0 ~0 ~0 ~0 ~0 ~0 

4a ~0 ~0 ~0 ~0 ~0 ~0 ~0 

4b ~0 ~0 ~0 ~0 ~0 ~0 ~0 

 

The results in Table 51 suggest that there is meaningful value in obtaining further information with 

regards to the temporal behaviour of parameters only for risk groups 1, 2 and 3. For risk group 1 in 

particular, further information on the nature of treatment effect pertaining to a first composite 

event and pertaining to HRQoL in the ‘No event’ health state would be of value.  

The analysis in Chapter 4.3 suggested that the uncertainty around treatment effect regarding a first 

composite event would impact decision making for risk groups 2 and 3, thus we would expect there 

to be value in obtaining further information regarding this temporal parameter. However, the results 

in Table 51 show that, when all sources of temporal uncertainty are accounted for, there is in fact 

negligible value in obtaining further information solely on this temporal parameter as all 

assumptions regarding the temporal behaviour of treatment effect return a positive adoption 

decision for risk groups 2 and 3. In other words, it was only when a number of conservative 
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assumptions were together applied (as in the original CEDM) that a negative adoption decision could 

be returned for risk groups 2 and 3. Thus a ‘different’ adoption decision is returned in a proportion 

of scenarios where ‘all temporal parameters’ are varied in risk groups 2 and 3 leading to the positive 

EVPI.In terms of obtaining further information on temporal parameters, the results in Table 51 show 

that in many cases, further information on individual temporal parameters will not be sufficient, it 

will likely be necessary to obtain information on a number of temporal parameters, as well as other 

model parameters. 

 

4.6.2.5 Cost-effectiveness Over Time 

 

In the context of understanding the effects of uncertainty over time in CEDMs, it is useful to observe 

the impact of the model updates on the cumulative incremental net benefit (CINB) curves for each 

risk group.  

The CINB curves in Figure 58 illustrate both how expected cost-effectiveness over time has shifted 

for each risk group and how increasing uncertainty over time has been expressed with the model 

updates. The solid curves represent mean cumulative incremental net monetary benefit and the 

dashed lines represent 5th and 95th percentiles. 

 

 

 

 

 

 

 

 

 

 

Figure 58: CINB for original and updated CEDMs 
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Risk 
Group 

CINB for Original CEDM CINB for Updated CEDM 

1 

  

2 

  

3 

  

4a 

  

4b 
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4.6.3 The value of waiting 

 

Given current evidence and assumptions, the early interventional treatment strategy should be 

adopted for all risk groups. For risk group 1 however, there is considerable decision uncertainty. Let 

us assume that there would be an irrecoverable investment cost of £2,000,000 associated with 

implementing the early interventional treatment strategy. Let us further assume that after 3 years of 

further trial follow-up, the extent of long-term treatment effect regarding HRQoL in the ‘no event’ 

health state can be known with certainty.  

Using the formulae derived in Section 2.4, we can calculate whether it would be worthwhile 

implementing the early interventional strategy immediately given the risk that the decision may 

have to be reversed when further evidence reveals that the early interventional treatment strategy 

is in fact not cost-effective and the investment costs will be lost. Say that E(NB(IA)) = the expected 

net benefit (up to the point of further evidence revelation) associated with immediate approval and 

E(NB(W)) = the expected net benefit (up to the point of further evidence revelation) associated with 

waiting until further evidence is revealed to make an adoption decision. 

𝐸(𝑁𝐵(𝐼𝐴)) =  ∑{𝑚𝑎𝑥𝑗𝑁𝐵(𝑗, 𝜃). (1.035)
−𝑡

2

𝑡=0

} − 2.106 

𝐸(𝑁𝐵(𝑊)) =  ∑{𝑁𝐵(𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝜃). (1.035)−𝑡
2

𝑡=0

} − 𝜆. 2.106. (1.035)−2 

 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 =  𝐸(𝑁𝐵(𝑊)) − 𝐸(𝑁𝐵(𝐼𝐴)) = £3,663,673 – £3,016,791 = £646,882 

 

Because the value of waiting is positive, it is better to wait for the further evidence rather than 

adopt the early interventional strategy immediately and risk the possibility of incurring irrecoverable 

costs.  

It can also be calculated that, under the given assumptions, the amount that the investments costs 

would have to be under in order for immediate adoption to be the better option is £287,141 

In practice, the investment costs should be relatively small for risk group 1, as given the results 

above, it would be expected that the early interventional treatment strategy is immediately 
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approved for all other risk groups and hence the bulk of the investment costs would already be 

incurred. 

 

4.6.4 Findings and Discussion 

 

This sub-chapter concludes with an overview of the purpose and findings of the preceding sub-

chapters, followed by a discussion of some key issues that have emerged over the course of the 

empirical analysis in Chapter 4. More general issues relating to temporal uncertainty which may also 

have stemmed from this empirical chapter are discussed in the Chapter 5. 

This principle purpose of Chapter 4.1 was to set the scene for the empirical portion of this thesis 

(Chapter 4) by introducing and undertaking some initial analysis on the RITA-3 model. It was found 

that: 

(i) Temporal uncertainty had the potential to significantly influence recommendations 

regarding adoption and obtaining further evidence. 

(ii) There was a range of issues of temporal uncertainty pertaining to the RITA-3 CEDM, 

principally relating to the temporal trajectories of model input parameters. 

(iii) While there was a number of factors to consider when using TTE data to compute 

transition probabilities for multiple comparators, it is advantageous (in this instance, if 

not generally) to consider the temporal trajectories of baseline risk and treatment 

effect(s) separately. 

The focus of Chapter 4.2 was long-term baseline risk associated with a first composite event. It was 

found that: 

(i) Survival analysis can be used to characterise and potentially extrapolate short-term 

survival data, but its usefulness can be limited, e.g. the long-term effect of age may not 

be captured, extrapolating a short-term trend may be a strong assumption. 

(ii) A key issue in the characterisation of long-term outcomes is simultaneous modelling of 

effects of age, event-free survival and period risk. 

(iii) It is possible and often appropriate to express temporal uncertainty by fitting a suitable 

continuous distribution around the term that determines parameter’s relationship with 

time. 
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The focus of chapter 4.3 was long-term treatment effect regarding a first composite event. It was 

found that: 

(i) The assumption regarding long-term treatment is central to the RITA-3 CEDM and most 

likely many CEDMs. The magnitude of the impact can be influenced by other 

uncertainties. The requirement for more evidence regarding long-term treatment can be 

ascertained by incorporating temporal uncertainty into the EVPI framework and 

calculating EVPPI for the temporal parameter in question. 

(ii) There is still much use in conducting a simple scenario analysis. It is advantageous to 

demonstrate, at an early stage of the modelling process, that the evidence available 

regarding long-term treatment effect is not sufficient to make a confident adoption 

decision or even to characterise the uncertainty surrounding that decision. In this sense, 

a simple scenario analysis may adequately convey this information to the decision maker 

and set in motion the process of obtaining further information. 

(iii) Though a number of factors must be taken into account and there exist a series of 

challenges associated with eliciting evidence on how a parameter will evolve over time, 

there a number of valid approaches. The most appropriate will depend on the 

particulars of the analysis but the approach of quantifying the duration of treatment 

effect is likely to represent a good balance of comprehensibility and accuracy. 

The focus of Chapters 4.4 and 4.5 was the potential change over time of costs and health-related 

quality of life. It was found that: 

(i) As with other types of temporal uncertainty, there were many instances of temporal 

uncertainty regarding costs and HRQoL that did not have a significant bearing on 

decision-making (in particular on the mean ICER).  

(ii) Similar to transition probabilities, the uncertainty regarding whether a treatment effect 

existed over the long-term had a notable impact on the mean ICER. 

(iii) Though costs and HRQoL per health state are often assumed to stay constant over the 

long-term, there are a number of factors that would likely cause these state-specific 

values to increase or decrease over time (ageing, price drop, etc.). These factors ought 

to be considered routinely in HTA, as they can (as demonstrated in this sub-chapter) 

impact decision-making for some risk groups. 
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The re-analysis in Chapter 4 has negated the need for a number of ‘conservative’ assumptions. As a 

result, the mean ICER is less pessimistic and can be said to more faithfully represent expectations 

and uncertainties regarding cost-effectiveness given the evidence currently available. Expressing 

decision uncertainty is a key element of this approach. The expected cost-effectiveness may be a 

‘neutral’ estimation but if it is partially based on weak or scant evidence then it is paramount that 

decision uncertainty is expressed so as to allow for decisions beyond those of adopt or don’t adopt. 

It is important to note however that decisions that involve delaying the adoption recommendation 

are only relevant if there are irrecoverable costs associated with implementing a new strategy or if it 

would be difficult or contentious to reverse a decision in the future. 

This re-analysis has made the adoption decision less uncertain for most risk groups. Where there 

would be most value in obtaining further evidence however is regarding treatment effect for a 

composite event and treatment effect for long-term HRQoL. As was discussed in Chapter 4.3, good 

quality data regarding treatment effect may be difficult to obtain. However, eliciting the opinion of 

experts would be a very useful early avenue to reduce decision uncertainty. 

The interactions and relationships between key parameters can be central as uncertainty over time 

is quantified. Quantifying one source of temporal uncertainty may not seem significant in terms of 

the effect on ICER but in conjunction with the quantification of another related source of temporal 

uncertainty it may become significant. This was seen in the relationship between baseline risk and 

treatment effect (for a first composite event), as demonstrated in the two-way sensitivity analysis in 

Chapter 4.3. As a consequence of these relationships, the calculation of EVPI and EVPPI only 

becomes meaningful once all key sources of uncertainty are quantified. 

Relatedly, it was notable that even though the impact of uncertainty regarding long-term baseline 

risk and long-term differential HRQoL had a sizeable impact on the mean ICER, there was zero EVPPI 

associated with the temporal parameters at a threshold of £20,000 for all risk groups except risk 

group 1. This is because each of the scenarios posited returned a positive adoption recommendation 

for the early interventional strategy. The same was true for recovery in HRQoL in the ‘Post MI’ health 

state and end-of-life HRQoL decrement, though these results are less surprising. 

Note that simple equal weighting of scenarios was employed a number of times when implementing 

model averaging. This is an estimate of uncertainty and should be used primarily to ascertain 

whether this uncertainty meaningfully impacts the adoption decision and whether there is value in 

obtaining further information regarding temporal trajectory of parameters. For adoption decisions, 
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where more information is necessary the scenarios should be weighted by further evidence or input 

from relevant experts. 

For the risk of experiencing a first composite event, it is important to note that three sources of 

uncertainty (all related to how this risk changes over time) are simultaneously quantified: the 

parameter uncertainty, the uncertainty regarding which survival distribution best represents the 

short-term evidence, and the temporal uncertainty regarding how this risk might further evolve as it 

moves beyond the observed period. 

The CINB curves in figure 58 demonstrate that outcomes over the very long-term, in fact, have little 

influence over the decision-making. In particular, it seems that uncertainty regarding only outcomes 

up to approximately the 30 year time point held sway over the adoption decision. What the CINB 

curves also demonstrate is the relationship between uncertainty over outcomes (i.e. costs and 

health benefits) and uncertainty over the adoption decision. It can be seen with regard to risk groups 

2 and 3, for example, that uncertainty around outcomes is greatly increased due to the expression of 

temporal uncertainty, but because these changes have also caused the mean ICER to shift further 

from the ICER threshold, the amount of decision uncertainty associated with these risk groups has 

greatly reduced.  
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5. THESIS CHAPTER 5: CONCLUSIONS, LIMITATIONS AND 

RECOMMENDATIONS 

 

This final chapter comprises: a number of conclusions and discussion points given the research, 

analysis and results in the previous chapters, an outline of the limitations of this thesis and a number 

of recommendations for Health Technology Assessment. 

5.1 Conclusions 

 

5.1.1 The Significance of Temporal Uncertainty 

 

The issue that arises due to a disparity between the evidence time horizon and the appropriate 

analysis time horizon in cost-effectiveness analysis (CEA) is most accurately and most usefully 

thought of as an issue of uncertainty. This ‘temporal uncertainty’ pertains predominantly to 

estimating expectations and uncertainties regarding the long-term temporal trajectories of input 

parameters in cost-effectiveness decision models (CEDMs). Whatever the scale of temporal 

uncertainty, it is of importance in CEA only in so far as it influences the related decisions that CEA is 

employed to inform: whether or not to adopt a health technology and whether or not to obtain 

further evidence. The relationship between temporal uncertainty and decision making can be 

helpfully illustrated by calculating and illustrating cumulative incremental net benefit over time 

(CINB). While temporal uncertainty can be a significant contributor to the uncertainty around 

whether the adoption of a new health technology is cost-effective for the present incident 

population, it also relates to the value of the (at least partial) resolution over time of uncertainty in 

order to make coverage decisions regarding both present and future incident populations. 

 

5.1.2 State-of-play in Health Technology Assessment 

 

Temporal uncertainty is a prevalent issue in Health Technology Assessment (HTA). However, the 

steps taken to ascertain the significance of temporal uncertainty for decision making and to address 

temporal uncertainty within decision models have been inconsistent and inadequate to date. 

Temporal uncertainty both in the HTA literature and in the published methods literature appears to 

be most strongly associated with survival parameters and the use of extrapolation techniques to 

utilise the short-term evidence. Temporal uncertainty is however pertinent to a range of model 
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parameters including survival parameters, longitudinal parameters, cost parameters and health-

related quality of life parameters. In general, relatively simple approaches have been taken to plug 

the gap between the evidence time horizon and analysis time horizon when estimating model input 

parameters, e.g. no change over time. Such simple approaches may or may not be reasonable as 

base-case assumptions. There is however, a striking lack of analysis pertaining to the suitability of 

these assumptions and the uncertainty surrounding them.   

 

5.1.3 Short-term Evidence and Extrapolation 

 

CEAs are often comprised of short-term RCT evidence and a decision model where the available RCT 

evidence is utilised, to at least some degree, to inform the model assumptions. For some long-term 

parameter estimations, the trend observed in the short-term RCT evidence is explicitly ‘extrapolated’ 

over time. The extrapolation of short-term evidence over time to inform what happens over the 

long-term (in particular long-term parameter values) is, though a useful tool, a somewhat dangerous 

one. Although a modicum of uncertainty over time can be expressed through uncertain parametric 

distributions or the fitting of alternative distributions, true temporal uncertainty is not captured, i.e. 

the uncertainties expressed relate to the interpretation of the short-term evidence and not the 

‘unknowns’ of the unobserved period. Any method of extrapolation contains an overarching 

assumption that the values or outcomes of the short-term can in some way inform those of the long-

term.  Extrapolation is likely to be most appropriate when data are mature or the unobserved period 

is short. In other circumstances, the extrapolated short-term evidence may be taken into account, 

but so too must a number of uncertainties relating to the long-term, such as the effect of age, period 

risk and the effect of long-term event-free survival.  

Whether or not extrapolating evidence into the long-term is appropriate, it is often difficult to know 

how to sensibly interpret the available short-term evidence. If there is not a clear temporal trend 

that could logically be extended beyond the evidence time horizon, the usefulness of short-term 

evidence for the purposes of extrapolation is limited. For example, it was found regarding treatment 

effect in the RITA-3 CEDM that although proportional hazards could be assumed to hold over the 

observed period, there was little indication of if, or how long, a treatment effect could be assumed 

to continue.  
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5.1.4 Expressing Temporal Uncertainty 

 

The approach of expressing temporal uncertainty through scenario analyses is not sufficient, 

primarily because it is implicit that decision makers must ascribe the necessary relative weights in 

order to estimate the expected cost-effectiveness of a new technology. Where an expression of 

temporal uncertainty for model input parameters is warranted, it is desirable to characterise the 

temporal uncertainty as an uncertain ‘temporal parameter’. This temporal parameter can then be 

incorporated into a probabilistic analysis in order to express an unbiased estimate of expected cost-

effectiveness, to calculate the value of obtaining further information specifically on the temporal 

nature of one or more model input parameters and to calculate the value of waiting for sources of 

temporal uncertainty to resolve over time before making an adoption decision given the existence of 

irrecoverable costs. Depending on the nature of the temporal uncertainty, this can be achieved 

through model averaging or continuous parameterisation.  

The challenge of appropriately expressing temporal uncertainty varies by context and by parameter-

type. For baseline disease progression, there is likely to be some form of external evidence available 

with which to inform, validate or bound long-term estimates. It may be reasonable to base the 

expected temporal trajectory of a parameter on what was observed over the short-term, however 

supplementary evidence along with other valid scenarios ought to form part of the expression of 

uncertainty over time. Where short-term estimates (which are themselves uncertain) are 

extrapolated to inform long-term estimates, there are in fact three sources of uncertainty that ought 

to be accounted for: the parameter uncertainty associated with the statistical parameters of the 

distributional fit to the short-term data, the uncertainty regarding which distributional fit best 

represents the short-term data and the temporal uncertainty associated with moving beyond the 

observed period.  For treatment effect parameters, long-term evidence is much less likely to be 

available. The implications of the short-term evidence can again play a role. However, broad 

alternative scenarios (such as: optimistic, pessimistic and intermediate) can form an expression of 

temporal uncertainty. Suitable relative weights should be ascribed to these scenarios, but where 

that is not possible, a disinterested equal weighting can be applied in the first instance. Temporal 

uncertainty related to costs and health-related quality of life (HRQoL) is typically overlooked in HTA. 

However, a number of long-term factors such as the impact of aging and uncertain future events 

have the potential to significantly alter expected cost-effectiveness and ought to be considered 

explicitly in decision modelling.  
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For a range of contexts and parameter-types, incorporating the elicited opinion of experts is likely to 

be a very useful resource in the characterisation of temporal uncertainty. For many situations, 

especially where there exists some external evidence with which to characterise temporal 

uncertainty, expert opinion can be employed to validate the expression of temporal uncertainty and 

the implications for health outcomes. For other, even more uncertain situations, and in particular 

the expression of temporal uncertainty for treatment effects, a more formal role for expert 

elicitation is appropriate. There is value in extending methods of expert elicitation for use in HTA for 

the specific purposes of expressing temporal uncertainty relating to treatment effects. 

Often in HTA, in place of expressing temporal uncertainty, assumptions are imposed that are 

explicitly ‘conservative’, generally meaning that they knowingly underestimate the cost-

effectiveness of a new health technology. This can be a useful approach; in particular it can convey 

that a new technology is cost-effective even when conservative assumptions are imposed. However 

this approach implies that (i) expected cost-effectiveness is an underestimation (e.g. mean ICER is 

higher than true expectation) and (ii) analysis of uncertainty and value of information is all but 

meaningless since decision uncertainty is not faithfully expressed. Therefore in cases where a 

technology is rejected based on an analysis containing conservative assumptions, it is imperative 

that those assumptions be replaced with an unbiased expression of temporal uncertainty.   

 

5.1.5 Effect of Expressing Temporal Uncertainty  

 

The replacement of conservative assumptions with expressions of temporal uncertainty can cause a 

downward shift in the mean ICER and potentially a change in decision from one of rejection to one 

of adoption. There is also likely to be an inflation of the uncertainty around costs and health effects. 

The change in decision uncertainty however, will be a product of both the shift in expected cost-

effectiveness and the inflation in uncertainty around costs and health effects.  

The successful expression of temporal uncertainty should lead to a fair estimate, given current 

knowledge, of decision uncertainty. As a result, the value of obtaining further information can be 

estimated as well as the value of obtaining further information on the temporal nature of one or 

more model parameters. The impact of specific instances of temporal uncertainty can only be 

appraised once all temporal uncertainty (and uncertainty in general) has been characterised. It may 

transpire that only one source of temporal uncertainty ultimately influences the adoption decision. 

The calculation of CINB over time (post expression of temporal uncertainty) will also give an 



228 
 

indication as to the time it is expected to take in order for uncertainty to be resolved with further 

follow-up, as opposed to procuring supplementary evidence. 

 

5.2 Limitations 

 

This RITA-3 re-analysis was not exhaustive. There were other sources of temporal uncertainty in the 

RITA-3 case study that were not addressed such as: the uncertainty surrounding the long-term 

suitability of the logistic regression determining whether a patient who experienced a composite 

event moved to the death state or the ‘Post MI’ state, the structural uncertainty relating to the 

composition of the state-based model and its suitability to the long-term clinical pathways in this 

decision problem. 

Moreover, there were many issues of temporal uncertainty that could did not arise in the RITA-3 

motivating example, in particular, temporal uncertainty relating to longitudinal parameters, an area 

which has been overlooked to date.  

A key issue that also did not arise in the RITA-3 example was that of the availability of long-term 

observational data which can be directly employed to address temporal uncertainty. There would be 

much value in exploring how best to utilise such evidence where it is available. For instance, it may 

be desirable to execute a kind of temporal evidence synthesis of the long-term observational 

evidence with the short-term RCT evidence.   

The RITA-3 example represents a particular, though common, model structure. Although the 

methodological challenges of quantifying temporal uncertainty will be similar, there may be 

different challenges to implementing these methods using other model structures, such as patient-

level simulations. More generally, there are other issues in CEA that relate to the disparity between 

the evidence and analysis time horizons that were not explored in this thesis. These include 

normative issues such as long-term discount rates and end-of-life QALYs, the broader role of time in 

CEA, e.g. optimal cycle lengths, the impact of uncertain future events which was touched upon but 

whose impact in CEA were not fully appraised.  

For parameters where there existed a number of broad alternative temporal trajectories, 

an ‘equal weighting’ approach was used in order to incorporate each scenario into the 

probabilistic analysis and express temporal uncertainty. Although it is argued that this 

approach is legitimate in the face of a paucity of long-term evidence, its requirement ought 

to be rare. The weighting of alternative scenarios should be informed by evidence where 
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possible. If observational evidence is not available then expert elicitation ought to be 

employed. The choice of scenarios was, for the most part, based upon current NICE 

guidance which recommends applying optimistic, pessimistic and intermediate scenarios in 

cases of structural uncertainty.  

5.3 Recommendations 

 

From the considerations and analysis in this thesis, it is recommended that the issue of temporal 

uncertainty be explicitly and systematically considered in future HTAs. In particular, it is 

recommended to: 

(i) Appraise and demonstrate the significance of temporal uncertainty on decision making 

through the calculation of cumulative incremental net benefit and through scenario 

analyses. 

 

(ii) Identify the particular model parameters where there is exposure to temporal uncertainty. 

 

(iii) Characterise temporal uncertainty for each pertinent model parameter by obtaining all 

relevant evidence (including extrapolated short-term evidence) and expressing uncertainty 

through a single uncertain parameter – either using a discrete or continuous distribution. All 

assumptions relating to behaviour of parameters over long-term should be externally 

validated (by external data if possible, or by clinical experts if necessary). 

(iv) Define a standard set of alternative scenarios that should be used in cases where there are 

no data to inform long-term values of parameters 

 

(v) Calculate expected cost-effectiveness for all relevant risk or sub groups and determine 

whether there is value in obtaining further information related to the temporal trajectory of 

one of more model parameters   

5.4 Related Issues and Potential Further Research 

 

This thesis included an analysis of the value of waiting for further evidence on the assumption that 

sufficient further evidence would become available at a specific time point. A valuable extension of 

this would be incorporate the uncertainty regarding ‘when’ that time point would be, taking account 
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of the alternative implications of further evidence. Such a framework ought to work by combining 

the concepts of the value of waiting and the value of sample information.  

 

A pertinent issue in the study of temporal uncertainty is how to best incorporate relevant long-term 

external data when it is available. For instance, if there exists a single data point to inform a 

parameter’s temporal trajectory over the unobserved period, how exactly ought this data point to 

be incorporated? The external data point could be used to validate long-term parameter values 

extrapolated from short-term evidence, or it could be synthesised with the short-term evidence in 

order to generate the expected parameter values in between. In the latter case, is it reasonable to 

use a simple linear interpolation? Or some should some relative weighting be employed to strike a 

balance between the long-term parameter value implied by the external data point and the trend 

apparent in the short-term evidence? 

 

An important step in the process of addressing temporal uncertainty in order to inform appropriate 

decision-making in healthcare resource allocation is identifying pertinent further evidence when the 

need for which is indicated by the analysis recommend above. Evidence that is likely to help reduce 

any temporal uncertainty existent in a CEDM is unlikely to come in the form of the typical ‘new 

primary research’ that might be commissioned in circumstances of uncertainty, e.g. a new 

randomised control trial. Thus there has been an emphasis in this thesis on alternative modes of 

obtaining further evidence such as ‘the value of waiting’ and expert elicitation. More research would 

be useful on what types of obtainable evidence would be most relevant for a variety of model 

parameters that might be exposed to temporal uncertainty. For instance, it may be the case, that for 

some parameters, certain (carefully designed) retrospective observational studies could be valuable. 

 

The issue of period risk, as discussed in chapter 4.2 is pertinent when discussing future decisions. 

There is often the assumption that evidence can only remain relevant for so long, but even within 

that timeframe the change in medical care and patient characteristics may significantly alter the 

decision problem. For example, if standard medical care improved to the extent that the early 

interventional treatment strategy was no longer a cost-effective approach in 10 years’ time, could 

the positive adoption decision made today be reversed? Would this be ethical? Is this something 

that should be taken into account as today’s adoption decision is considered? 
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A number of alternative approaches to eliciting evidence to inform temporal trajectories were 

discussed and one approach was implemented using a stylised elicitation output. It would be 

interesting and worthwhile if these alternative approaches were implemented in a real elicitation 

setting so as to note any difficulties with any of the approaches and any differences in the outcomes. 

 

Temporal uncertainty in the context of communicable diseases poses a range of challenges beyond 

those addressed in this thesis which were in a context of non-communicable diseases. In general, 

research to marry the methodologies of infectious disease modelling and the economic evaluation of 

healthcare interventions is warranted. A notable expected feature of temporal uncertainty related 

to communicable diseases is the multi-modality of the distribution of ICERs. This is because the 

uncertainty around an input parameter in an infectious disease model can be the difference 

between a steady-state equilibrium and an epidemic.  

 

The parameters analysed in the RITA-3 example that conveyed effectiveness were of a time-to-event 

nature. Although the issues associated with temporal change in a parameter and the relevance of 

extrapolated evidence are equally pertinent, there would be much value in conducting similar 

research on extrapolation in relation to longitudinal parameters and expressing the related temporal 

uncertainty.  

 

Finally, research comparing the predicted long-term parameter values from extrapolated short-term 

evidence with the empirical parameters values eventually revealed would be of value. Such an 

investigation has already been carried out by Davies et al. where it was found that continued 

proportional hazards predicted from the short-term evidence did not become manifest after further 

evidence was revealed (Davies et al., 2013). Further research like this is warranted in order to better 

understand when and why extrapolated evidence is likely to be misleading. 
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APPENDICES 
 

Appendix 1: Details of HTAs Reviewed 
 
The title, authors and link to publication of the 64 HTAs reviewed in detail. 
 

Report title Author Publication URL 

Psychological treatment 
for insomnia in the 
regulation of long-term 
hypnotic drug use 

K Morgan, S Dixon, N 
Mathers, J Thompson 
and M Tomeny 

http://www.hta.ac.uk/fullmono/mon808.pdf 

Cost-effectiveness of 
alternative strategies for 
the initial medical 
management of non-ST 
elevation acute coronary 
syndrome: systematic 
review and decision-
analytical modelling 

M Robinson, S Palmer, 
M Sculpher, Z Philips,L 
Ginnelly, A Bowens, S 
Golder, K Alfakih,A 
Bakhai, C Packham, N 
Cooper, K Abrams,A 
Eastwood, A Pearman, 
M Flather, D Gray and 
A Hall 

http://www.hta.ac.uk/fullmono/mon927.pdf 

Outcomes of electrically 
stimulated gracilis 
neosphincter surgery 

T Tillin, M Chambers 
and R Feldman 

http://www.hta.ac.uk/fullmono/mon928.pdf 

Surveillance of Barrett's 
oesophagus: exploring 
the uncertainty through 
systematic review, expert 
workshop and economic 
modelling 

R Garside, M Pitt, M 
Somerville, K Stein,  
A Price and N Gilbert 

http://www.hta.ac.uk/fullmono/mon1008.pdf  

Health benefits of 
antiviral therapy for mild 
chronic hepatitis C: 
randomised control trial 
and economic evaluation 

M Wright, R Grieve, J 
Roberts, J Main and  
HC Thomas 

http://www.hta.ac.uk/fullmono/mon1021.pdf  

The clinical effectiveness 
and cost-effectiveness of 
enzyme replacement 
therapy for Gaucher's 
disease: a systematic 
review  

M Connock, A Burls, E 
Frew, A Fry-Smith,  
A Juarez-Garcia, C 
McCabe, A Wailoo,  
K Abrams, N Cooper, A 
Sutton, A O’Hagan  
and D Moore 

http://www.hta.ac.uk/fullmono/mon1024.pdf  

Epidemiological, social, 
diagnostic, and economic 
evaluation of population 
screening for genital 
chlamydial infection 

N Low, A McCarthy, J 
Macleod, C Salisbury,  
R Campbell, TE 
Roberts, P Horner, S 
Skidmore,  
JAC Sterne, E Sanford, 
F Ibrahim, A Holloway,  
R Patel, PM Barton, SM 
Robinson, N Mills,  

http://www.hta.ac.uk/fullmono/mon1108.pdf  

http://www.hta.ac.uk/fullmono/mon808.pdf
http://www.hta.ac.uk/fullmono/mon927.pdf
http://www.hta.ac.uk/fullmono/mon928.pdf
http://www.hta.ac.uk/fullmono/mon1008.pdf
http://www.hta.ac.uk/fullmono/mon1021.pdf
http://www.hta.ac.uk/fullmono/mon1024.pdf
http://www.hta.ac.uk/fullmono/mon1108.pdf
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A Graham, A Herring, 
EO Caul, G Davey 
Smith,  
FDR Hobbs, JDC Ross 
and M Egger 

'Cut down to quit' with 
nicotine replacement 
therapies in smoking 
cessation: a systematic 
review of effectiveness 
and economic analysis 

 
D Wang, M Connock, P 
Barton, A Fry-Smith,  
P Aveyard and D 
Moore  

http://www.hta.ac.uk/project/1542.asp 

 Blood glucose self-
monitoring in type 2 
diabetes: a randomised 
controlled trial  

AJ Farmer, AN Wade, 
DP French, J Simon, P 
Yudkin, A Gray, A 
Craven, L Goyder, RR 
Holman, D Mant, A-L 
Kinmonth and HAW 
Neil 

http://www.hta.ac.uk/fullmono/mon1315.pdf 

 The effect of different 
treatment durations of 
clopidogrel in patients 
with non-ST-segment 
elevation acute coronary 
syndromes: a systematic 
review and value of 
information analysis  

W Rogowski, J Burch, S 
Palmer, C Craigs, S 
Golder and N 
Woolacott 

http://www.hta.ac.uk/fullmono/mon1331.pdf  

The clinical effectiveness 
of glucosamine and 
chondroitin supplements 
in slowing or arresting 
progression of 
osteoarthritis of the knee: 
a systematic review and 
economic evaluation 

Black C, Clar C, 
Henderson R, 
MacEachern C, 
McNamee P, Quayyum 
Z, et al. 

http://www.hta.ac.uk/fullmono/mon1352.pdf  

The clinical and cost 
effectiveness of testing 
for cytochrome P450 
polymorphisms in 
patients treated with 
antipsychotics: a 
systematic review and 
economic evaluation 

Fleeman N, McLeod C, 
Bagust A, Beale S, 
Boland A, Dundar Y, et 
al. 

http://www.hta.ac.uk/fullmono/mon1403.pdf  

Antenatal screening for 
haemoglobinopathies in 
primary care: a cohort 
study and cluster 
randomised trial to 
inform a simulation 
model. The Screening for 
Haemoglobinopathies in 
First Trimester (SHIFT) 

Dormandy E, Bryan S, 
Gulliford MC, Roberts 
TE, Ades AE, Calnan M, 
et al. 

http://www.hta.ac.uk/fullmono/mon1420.pdf  

http://www.hta.ac.uk/project/1542.asp
http://www.hta.ac.uk/fullmono/mon1315.pdf
http://www.hta.ac.uk/fullmono/mon1331.pdf
http://www.hta.ac.uk/fullmono/mon1352.pdf
http://www.hta.ac.uk/fullmono/mon1403.pdf
http://www.hta.ac.uk/fullmono/mon1420.pdf
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trial 

The safety and 
effectiveness of different 
methods of ear wax 
removal: a systematic 
review and economic 
evaluation  

Clegg A, Loveman E, 
Gospodarevskaya E, 
Harris P, Bird A, et al 

http://www.hta.ac.uk/fullmono/mon1428.pdf  

Sugammadex for the 
reversal of muscle 
relaxation in general 
anaesthesia: a systematic 
review 

Chambers D, Paulden 
M, Paton F, Heirs M, 
Duffy S, et al 

http://www.hta.ac.uk/fullmono/mon1439.pdf  

Clopidogrel used in 
combination with aspirin 
compared with aspirin 
alone in the treatment of 
non-ST-segment-
elevation acute coronary 
syndromes: a systematic 
review and economic 
evaluation 

C Main, S Palmer, S 
Griffin, L Jones, V 
Orton, M Sculpher, R 
Henderson, C Sudlow, 
N Hawkins and R 
Riemsma 

http://www.hta.ac.uk/fullmono/mon840.pdf 

The effectiveness and 
cost-effectiveness of 
pimecrolimus and 
tacrolimus for atopic 
eczema: a systematic 
review and economic 
evaluation 

R Garside, K Stein, E 
Castelnuovo, M Pitt, D 
Ashcroft, P Dimmock 
and L Payne 

http://www.hta.ac.uk/fullmono/mon929.pdf 

Clinical and cost-
effectiveness of 
autologous chondrocyte 
implantation for cartilage 
defects in knee joints: 
systematic review and 
economic evaluation  

C Clar, E Cummins, L 
McIntyre, S Thomas, J 
Lamb, L Bain, P 
Jobanputra and N 
Waugh 

http://www.hta.ac.uk/fullmono/mon947.pdf 

Topotecan, pegylated 
liposomal doxorubicin 
hydrochloride and 
paclitaxel for second-line 
or subsequent treatment 
of advanced ovarian 
cancer: a systematic 
review and economic 
evaluation 

C Main, L Bojke, S 
Griffin, G Norman, M 
Barbieri, L Mather, D 
Stark, S Palmer and R 
Riemsma 

http://www.hta.ac.uk/fullmono/mon1009.pdf  

http://www.hta.ac.uk/fullmono/mon1428.pdf
http://www.hta.ac.uk/fullmono/mon1439.pdf
http://www.hta.ac.uk/fullmono/mon840.pdf
http://www.hta.ac.uk/fullmono/mon929.pdf
http://www.hta.ac.uk/fullmono/mon947.pdf
http://www.hta.ac.uk/fullmono/mon1009.pdf
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Adefovir dipivoxil and 
pegylated interferon alfa-
2a for the treatment of 
chronic hepatitis B: a 
systematic review and 
economic evaluation 

J Shepherd, J Jones, A 
Takeda, P Davidson 
and A Price 

http://www.hta.ac.uk/fullmono/mon1028.pdf  

A systematic review and 
economic model of the 
clinical effectiveness and 
cost-effectiveness of 
docetaxel in combination 
with prednisone or 
prednisolone for the 
treatment of hormone-
refractory metastatic 
prostate cancer 

R Collins, E Fenwick, R 
Trowman, R Perard, G 
Norman, K Light, A 
Birtle, S Palmer and R 
Riemsma 

http://www.hta.ac.uk/fullmono/mon1102.pdf  

Etanercept and infliximab 
for the treatment of 
psoriatic arthritis: a 
systematic review and 
economic evaluation  

N Woolacott, Y Bravo 
Vergel, N Hawkins, A 
Kainth, Z Khadjesari, K 
Misso, K Light, C 
Asseburg, S Palmer, K 
Claxton, I Bruce, M 
Sculpher and R 
Riemsma 

http://www.hta.ac.uk/fullmono/mon1031.pdf  

The clinical and cost-
effectiveness of 
donepezil, rivastigmine, 
galantamine and 
memantine for 
Alzheimer's disease  

E Loveman, C Green, J 
Kirby, A Takeda, J Picot, 
E Payne and A Clegg 

http://www.hta.ac.uk/fullmono/mon1001.pdf  

The clinical effectiveness 
and cost-effectiveness of 
cardiac resynchronisation 
(biventricular pacing) for 
heart failure: systematic 
review and economic 
model  

M Fox, S Mealing, R 
Anderson, J Dean, K 
Stein, A Price and RS 
Taylor 

http://www.hta.ac.uk/fullmono/mon1147.pdf  

Natalizumab for multiple 
sclerosis  

Pentag  http://www.hta.ac.uk/erg/reports/1647.pdf 

Stapled 
haemorrhoidectomy 
(haemorrhoidopexy) for 
the treatment of 
haemorrhoids: a 
systematic review and 
economic evaluation  

J Burch, D Epstein, A 
Baba-Akbari, 
H Weatherly, D Fox, S 
Golder, D Jayne, 
M Drummond and N 
Woolacott 

http://www.hta.ac.uk/fullmono/mon1208.pdf  

Omalizumab for severe 
persistent allergic 
asthma  

Jones J, Shepherd J, 
Hartwell D et al 

http://www.hta.ac.uk/erg/reports/1649.pdf 

http://www.hta.ac.uk/fullmono/mon1028.pdf
http://www.hta.ac.uk/fullmono/mon1102.pdf
http://www.hta.ac.uk/fullmono/mon1031.pdf
http://www.hta.ac.uk/fullmono/mon1001.pdf
http://www.hta.ac.uk/fullmono/mon1147.pdf
http://www.hta.ac.uk/erg/reports/1647.pdf
http://www.hta.ac.uk/fullmono/mon1208.pdf
http://www.hta.ac.uk/erg/reports/1649.pdf
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Rituximab for the 
treatment of relapsed or 
refractory stage III or IV 
follicular non-Hodgkin's 
lymphoma 

LRiG http://www.hta.ac.uk/erg/reports/1654.pdf 

Continuous positive 
airway pressure devices 
for the treatment of 
obstructive sleep apnoea-
hypopnoea syndrome: a 
systematic review and 
economic analysis  

C McDaid, S Griffin, H 
Weatherly, K Durée, M 
van der Burgt, S van 
Hout, J Akers, RJO 
Davies, M Sculpher and 
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Appendix 2: RITA-3 Cohort by Risk Profile 
 
 

 Risk group 1 Risk group 2 Risk group 3 Risk group 4 Risk group 5 

Age 45 52 52 61 66 

Diabetes No No No No Yes 

Previous myocardial infarction No No Yes Yes Yes 

Smoker No Yes No Yes No 

Pulse (beats per minute) 72 82 82 87 97 

ST depression No No Yes Yes Yes 

Angina Yes No Yes No No 

Sex Female Male Male Male Male 

Left bundle branch block No No No No No 
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Appendix 3: Application of Expert Elicitation Methodology to RITA-3 example (stylised 
elicitation) 

 

It was not within the scope of this thesis to carry out an elicitation exercise. However, it will be 
instructive to apply some of the concepts discussed above by carrying out a stylised elicitation. 
Therefore, let us say we want to employ formal elicitation to characterise the temporal uncertainty 
regarding treatment effect in the RITA-3 example. 
 
From the four options outlined above for conducting the elicitation process, Option 2 (eliciting 
judgements regarding the duration of treatment effect) represents a good balance of modelling 
simplicity, comprehensibility (for the clinical experts) and reasonable accuracy. 
 
To carry out the elicitation, a thorough explanation of the decision problem, the RITA-3 trial and the 
precise clinical nature of the patients cohorts must be given to the clinical experts. Following this, 
the elicitation exercise itself can be presented.  
 

(i) Clinical Explanation of Uncertain Quantity 
 
For the sake of clarity as we endeavour to elicit information from clinical experts, it is valuable to 
consider more carefully the clinical nature of the patients in each of the cohorts in RITA-3 and 
communicate this to the experts.  
 
In the RITA-3 decision problem, the early interventional cohort consists of those who were, following 
NSTE-ACS, given a routine angiography followed by revascularisation if clinically indicated, whereas 
patients in the conservative cohort were given ischaemia or symptom-driven angiography. It can be 
assumed that a number of the more ‘at risk’ patients in the conservative cohort were given an 
angiography and if necessary, revascularisation at some stage during the observed period (although 
this information was not itself observed in the RITA-3 trial). Also it can be assumed that a proportion 
of the conservative cohort will have experienced a composite event where they would not have 
done under the early interventional treatment strategy.  
 
Ultimately, what is required is simply the difference in risk between the average patient in the 
conservative cohort and the average patient in the early interventional cohort. The clinical factors 
that inform this risk differential include: 
 

1. The proportion of the conservative cohort (that didn’t experience a composite event) that 
had a revascularisation and the extent to which this differs from that same proportion in the 
early interventional cohort  
 

2. The longevity of the benefit of revascularisation, i.e. when, or in what sense, the benefit of 
revascularisation ‘wears off’ 

 
3. When the ‘hazardous period’ after first presenting with NSTE-ACS be said to have passed, i.e. 

whether there will be a rebound effect when revascularisation ‘wears off’ or whether the 
hazardous period having passed allows us to consider the event-free survivors from the early 
interventional cohort as equivalent to those in the conservative cohort.  

 
4. Other elements such as possible different post-treatment clinical pathways (pertaining to 

hospital care and self-care) that may not be captured in the trial data 
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(ii) Elicitation Exercise 

 
 
A question such as the following could be posed to the experts: 
 

“The RITA-3 trial has shown that for 5 years after presenting with NSTE-ACS, an early 
interventional strategy results in a lower risk of a first composite event to patients compared 
to a conservative treatment strategy. For how long would you expect this ‘treatment effect’ 
to continue?” 

 
As per the histogram method, the experts would be asked to answer this question by placing 20 
crosses on a chart such as the one in Figure 59. 
 
Figure 59: Frequency chart to be filled in by experts 

 
 
Let us assume that there were 10 experts who responded and that there was a seed question that 
demonstrated every expert was reliable. If equal weighting is given to the experts and their 
responses are combined through linear pooling, the result is a ‘super distribution’ such as the one 
illustrated in Figure 60. 
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Figure 60: Resultant ‘super-distribution’ from elicitation 

 
  
 
Commonly at this stage, a smooth parametric distribution is fit to the experts’ ‘super-distribution’. 
For the distribution in Figure 60 above, a beta or possibly a gamma distribution may be suitable. It is 
also possible however, to directly input the discrete ‘super distribution’ into the decision model. 
Since the decision model is constructed in terms of yearly transition probabilities, it is more 
straightforward to employ this direct approach rather than modelling precise treatment effect 
durations. Using the direct approach, the stylised elicitation output as depicted in Figure 60 can be 
parameterised as follows. 
 
For a random variable 𝑋 ~ 𝑈(0,1), the parameter 𝐷, which represents the duration of treatment 
effect from the 5 year time-point, is distributed as: 
 

𝐷 =

{
 
 
 
 

 
 
 
 

0 𝑖𝑓 0 ≤ 𝑋 < 0.35

1 𝑖𝑓 0.35 ≤ 𝑋 < 0.75

2 𝑖𝑓 0.75 ≤ 𝑋 < 0.9

3 𝑖𝑓 0.9 ≤ 𝑋 < 0.95

4 𝑖𝑓 0.95 ≤ 𝑋 < 0.975

5 𝑖𝑓 0.975 ≤ 𝑋 < 1

 

 
Temporal uncertainty can therefore be neatly represented by the uncertain parameter𝐷. Therefore, 
as with baseline risk in chapter 4.2, EVPPI analysis can be easily employed to ascertain how much 
value there would be in knowing for certain the duration of treatment effect. 
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