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Abstract

Magnetic CoFe nanoparticles have been produced by gas-aggregation and
incorporated into sputtered MgO tunnel junction structures. Scanning tun-
nelling microscopy (STM) has been developed as a technique for examining
spin accumulation and transport in these nanoscale junctions.

The particles were initially characterised for their magnetic properties;
x-ray magnetic circular dichroism on 11-14 nm diameter clusters was per-
formed. The orbital-to-spin moment ratio was found to be enhanced over
the bulk value and to decrease with increasing average diameter, which
complements previous studies on smaller particles. The size dependence of
the combined data is found not to follow predicted trends based on reduced
orbital moment quenching in the outer shell. In particular for these large
particles, the quenching is far more rapid than expected. Magnetometry
studies on random arrays of nanoparticles at percolation show interesting
effects attributed to complex magnetic dipolar interactions. This includes
very broad range anisotropy and large blocking temperatures.

For transport measurements, cryogenic STM is used to address indi-
vidual islands and forms the top electrode of a double magnetic tunnel
junction. Single electron charging effects are observed in these confined
structures and the charging energy correlates to the size of the particle. New
theory was developed to simulate these structures, giving an analytical solu-
tion to the current numerical orthodox theory. These solutions showed that
TMR measurements, a current major barrier to studying nanospintronics
using STM, were unnecessary. We are able characterise the tunnel junction
parameters, including spin polarisation and accumulation, in a single I-V
sweep of high information density. The spin polarisations of the opposing
electrodes are found to be aligned anti-parallel despite a parallel magnetisa-
tion axis. Finally the spin lifetime on the island was calculated and found

to exceed 1 us, longer than measured in previous studies.
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CHAPTER 1

Introduction



1.1 Spintronics

Employing nearly a quarter of the international physics community [1; 2], condensed
matter research is a vibrant and active discipline, investigating the complex and often
unpredictable properties of solid state materials. Much of this research takes place at
the borderline between industrial applications and novel physics; a prime example of
this is the field of spintronics. The work in this thesis is concerned with spintronics
- the manipulation of the spin and charge of electrons - but is attempting to bring it
down to a technologically relevant nanoscale. At this level very small quantities of spin
accumulation must be considered and transport is constricted to the flow of a single
electron at a time.

The work revolves around magnetic nanoparticles (NPs) in the 4-14 nm diameter
range. This size range is too large for the particles to be considered quantum dots at
the temperatures used in this study. They are, however, at the cross-over point between
classical and quantum dominated physics. This produces effects that are surprisingly
different from either regime. While there has been a lot of effort to understand trans-
port through these devices theoretically [3-5], experimentally they have been difficult
to work with due to problems with accessing the nanoscales needed for measurements
[6; 7). Very few methods exist to study individual nanoparticles and there are still
many questions to be answered. One of the major efforts of this work was to con-
duct transport studies through particles individually addressed by scanning tunnelling
microscopy (STM). STM turns out to have a lot of advantages for this type of study
but faces significant difficulty with certain relevant measurements, particularly tunnel
magnetoresistance (TMR). Theoretical advances that are presented here go some way
towards mitigating this problem.

This work is in an active area of research which is collectively often referred to as
nanospintronics. It is born out of work in single electron transistors (SETs) combined
with classic spintronics. To give some context to the project I will now give some
history of these two disciplines and the beginnings of nanospintronics. I will end the

introduction with a more specific guide to the work presented in this thesis.

1.1 Spintronics

Spintronics began with the introduction in 1988 of the giant magnetoresistive (GMR)
effect [8; 9]. It has since generated a huge area of active research. Albert Fert and Peter

Griinberg were awarded the 2007 Nobel prize in physics for their part in the discovery.



1.1 Spintronics

As opposed to the charge manipulation of conventional electronics, spintronic devices
attempt to manipulate both the charge and the spin degrees of freedom. Spintronic
devices are now heavily employed in the data storage and magnetic sensing industry
[10].

The GMR effect was first observed in high quality thin film multilayer stacks com-
posed of alternating ferromagnetic (FM) and non-magnetic (NM) layers [9]. The FM
layers act like a valve: when the FM moments are aligned the electrical resistance of
the film is low, when they are anti-parallel the resistance is high. This extra resist-
ance is caused by spin dependent scattering effects at the interfaces [11] (and references
therein). By controlling the relevant layer alignment through an externally applied
field, this can act as a sensor, converting external magnetic field into an electronic
switch. For 10 years this was the standard technology used in hard drive read heads
to detect memory bit states. By the end of the cycle, GMR had allowed an increase in
areal data density of 1000 fold over previous inductive technologies [10].

More recent applications have been geared towards trying to realise magnetic ran-
dom access memory (MRAM), permanent state random access memory based on spin
devices such as spin valves or magnetic tunnel junctions [12]. MRAM is now commer-
cially available though not yet widely adopted [13]. New fascinating physics is con-
stantly emerging from spintronic systems, with modern studies looking at spin transfer
torque [14; 15], spin Hall effect [16-18], spin orbit torques [19-22], spin caloritronics
[23] and topological materials [24-27] to name a few [28; 29].

1.1.1 The magnetic tunnel junction

In the end the success of the GMR device was limited by the small signal ratio between
its on and off state (otherwise known as its magnetoresistance (MR) ratio). The device
that replaced GMR in commercial hard drives in 2005 is the magnetic tunnel junction
(MTJ) [10]. This is a sandwich stack similar to the GMR device in structure, however
the non-magnetic spacer layer of the GMR is replaced by an insulating tunnel barrier.
By directing the current perpendicular to the plane of the film through the tunnel
barrier, MR ratios upwards of 600% have been achieved.

Julliére reported the first MTJ structure in 1975 [30], though this work went rel-
atively unnoticed for some years after its initial publication. The MTJ was an Fe/Ge-
oxide/Co stack which showed a tunnelling MR (TMR) ratio at 4.2 K of 15%. Julliere
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also developed theory that linked the TMR ratio to polarizations of electron spins in
the electrodes; in this theory the tunnelling current is proportional to the junction
joint density of states. Work on MTJs gained significance when in 1995 Moodera et al.
and Miyazaki et al. [31; 32] found room temperature TMR ratios of 10-20% in MTJs
using alumina AlOy tunnel barriers. These TMR ratios, comparable to the best GMR
devices, were achieved by careful control of growth conditions to form amorphous, de-
fect and pinhole free barriers. Eventually alumina based tunnel junctions reached a
peak TMR ratio of ~80% [33; 34].

In 2001 two theoretical publications were released [35; 36], using wavefunction sym-
metry arguments, they predicted that epitaxial Fe/MgO /Fe junctions would show TMR
ratios greater than 1000%. This goes beyond Julliere’s theory in that it introduces spin
dependent elements into the tunnelling matrix. Because tunnelling current exponen-
tially drops with barrier thickness, the tunnelling rate for one spin species can be orders
of magnitude greater than the other. The structure is difficult to realise because it re-
quires good crystalline matching between the electrodes and the insulator in order to
ensure a coherent tunnelling process. The effect was first demonstrated by Yuasa et
al. using molecular beam epitaxy (MBE) and by Parkin et al. using the commercially
viable sputtering process [37; 38]. They both showed a TMR ratios of more than 200%
at room temperature. It was later found that MgO grew better on amorphous CoFeB
surfaces [39]; using these materials room temperature TMR ratios of up to 600% [40]
and beyond have been demonstrated. These are more than enough for practical applic-
ations in memory read-out [41]. In all of these studies post-growth annealing is essential
to get the correct crystalline orientation and the high TMR ratios. Temperatures in the
range 200-400°C have been found to be optimal [42]. The design of the tunnel junction

stacks grown in this thesis comes directly from these studies.

1.2 Single electron physics

This field concerns itself with the control of individual electrons on nanometre sized
conducting islands. This section will introduce the single electron transistor device and
highlight some of the nearly five decades of research done into non-magnetic devices.
Magnetic devices will be covered in the next section and will be the major subject of this
thesis; this section will show the potential for what could be achieved with magnetic

materials.



1.2 Single electron physics

Figure 1.1: The basic set-up of a single electron transistor (SET). Source (S) and drain (D)
leads are coupled to the nanoparticle through thin tunnel barriers. The backgate is capacitively

coupled.

The basic unit for single electron experiments is the single electron transistor (SET),
a circuit diagram of this device is shown Fig. 1.1. In the centre a nanoparticle or ‘island’
is linked to source (S) and drain (D) external electrodes by thin tunnel barriers and
a further gate potential by a fully insulated layer. Conduction of current through the
source and drain electrodes is governed by the classical charging energy Ec = e?/2C
of the island. Here C is the capacitance between island and leads. Finite SD bias
Vsp > Ec/e is required to charge the island with a single electron, this is known as
Coulomb blockade (CB), below this voltage no current will flow. For greater applied
bias, the current is governed by the charge state of the island and will increase step-
wise as electrons are added, this is known as the Coulomb staircase. A gate potential
will offset the charging state, giving further control over the conduction. CB and the
Coulomb staircase are the hallmarks of single electron physics. The main physical
criterion for their manifestation is that the thermal energy kg7, be much less than the
charging energy E¢. This criterion is satisfied at room temperature for particles less
than a few nanometres in diameter, although it depends on the exact geometry of the
setup.

The manipulation of single electrons in solid state devices has its origins in studies
of granular tunnelling barriers pre 1980 [43-47]. These results were somewhat ignored
until developments in nano-patterning technology allowed controllable devices with
individual islands and multiple gates to be created. Fulton and Dolan [48; 49] created
the first true SET using multi-angled deposition through undercut resist, it showed the
expected Coulomb staircase with Coulomb blockade modified by a gate potential. The
theory, known as the orthodox model, used to describe these devices was also developed

at this time with major contributions by Likharev [50] and Averin [51]. Motivation
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for further experiments remained high, it was thought that by building transistors
specifically to work with individual electrons, logic could be done at the smallest scale,
negating some of the problems faced with scaling down Si based CMOS technology
[52]. SETs continued to decrease in size and operate at higher temperatures [53-56],
eventually reaching room temperature operation [57-59]. For an excellent review of
this period see Likharev (1999) [52].

It was recognised early on that scanning tunnelling microscopy (STM) would also
be useful tool for single electron devices, acting as a drain electrode above a nano-
particle connected to a base electrode below. Initial measurements were often made by
simply scanning self-assembled particles on an oxide surface [60-70], the results mostly
confirmed the simple theoretical predictions made for these devices. Using STM it
was much easier to create smaller devices and room temperature SETs were developed
early on. A limitation of the STM was that it was difficult to combine it with a third
gate electrode. One group was able to overcome this by combining STM with e-beam
lithography (EBL) [71] to create a small probe/gate combination tip.

It gradually became evident that there were significant physical limits to using these
devices in logic circuits [52; 72; 73], mostly due to their high sensitivity to environmental
charges causing high bit error rates. In the new millennium the pace of development
in SETs has slowed but more niche applications have been developed. SETSs produce
very abrupt signals and they are highly sensitive to local charge. This can make them
useful as measurement standards and thus have been used for charge [74; 75], current
[76] and spatial displacement [77] metrology. New materials have been used including
carbon nanotubes [78], and smaller islands have naturally lead on to the study and
spectroscopy of quantum dots, which are small enough that their kinetic energy levels
are discretised [79]. The conducting requirement of the island is not very stringent
and both doped semiconductors [80; 81] and superconducting islands [82; 83] show CB
effects. Superconducting islands with energy gap A were used to interesting effect,
showing odd and even electrons adding with energy 2V + A/e [82]. Novel thermody-
namic applications as electronic refrigerators have been suggested [84]. Finally, further
development of spintronics has focussed interest onto magnetic SET devices, research

now classified as nanospintronics.
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1.3 Nanospintronics

One obvious extension to single electron physics, was to study the effects of building
SETs out of magnetic electrodes and islands. This tied in well with spintronics studies
into magnetic tunnel junctions: much of the research into barrier quality and magnetic
materials could be applied directly to the new field. The combination of these disciplines
became known as nanospintronics.

Research into nanospintronics began in earnest in the 1990’s as single-electron phys-
ics matured and spintronics became industrially relevant. Groups began to study the
effect of discontinuous layers inserted into GMR stacks: Fujimori et al. [85] reported
MR in thick Co-Al-O granular material. Schelp [86] and Dieny [87] and co-workers grew
MTJs with discontinuous Co layer inserts, known as double magnetic tunnel junctions
(DMTJs). DMTJs in general consist of two tunnel barriers in series with a discon-
tinuous or single particle central electrode. Two out of the three electrodes will be a
ferromagnetic material, in any combination, the third maybe ferromagnetic or normal
metal. Both the Schelp and Dieny groups showed MR and tunnelling like transport,
however the single electron characteristic of the junctions was all but washed out due
to averaging over a large distribution of particles.

The first spin dependent SET type devices with a single island were developed by the
Ootuka group from the university of Tokyo [88-90]. They measured Ni/NiO/Co(island)/
NiOy /Ni structures defined by double-angle deposition through a silicon nitride mem-
brane mask. The MR was enhanced within the Coulomb blockade region (7' < 20 mK,
V < 100 peV) by a factor of 10, achieving a maximum of 40%. This was attributed to
the second order tunnelling process known as cotunnelling, which dominates transport
within the CB region. Cotunnelling processes generate very small currents, but depend
on the square of the tunnelling conductance, so are expected to be more sensitive to
spin dependence than first order processes. Cotunnelling was put on sound theoretical
footing by Iwabuchi et al. and Takahashi et al. [91; 92]. Research into cotunnelling
enhancement of MR has continued into recent times [93-96].

The devices of the Ootuka group were also the first to exhibit another effect known
as the magneto-Coulomb interaction. These experiments show Coulomb oscillations vs.
applied magnetic field [89; 90]. In a standard SET with a small bias applied between
source and drain electrodes, scanning the gate voltage leads to Coulomb oscillations

as the island charging energy levels are adjusted. With a magnetic field applied, the
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Zeeman effect will shift the electrochemical potential by Ay = —%Pg,u BB where P is
the spin polarisation at the Fermi energy, g the electron g-factor and B the applied
field. This is effectively the same operation as the gate voltage, and the comparison
of this with the charging energy can yield the spin polarisation of the material. These
experiments were done in magnetic fields up to 8 tesla.

This thesis will primarily be concerned with spin accumulation in nanoparticles,
though many other experimental paths have been investigated, for a review see [7] or
[97]. These include Kondo physics [98—-100], the generation of electromotive forces [101]

and spin suppression of superconductivity [102].

1.3.1 Single particle DMTJs

Despite the extensive developments in the theory of DMTJs (covered in more detail in
chapter 5) and the growing body of experimental work, very few groups have achieved
CB measurements on a DMTJ including a single isolated metal nanoparticle. A major
aim of this PhD was to investigate a single particle DMTJ using scanning tunnelling
microscopy.

Isolated particle setups are difficult to manufacture: growing and contacting to
nanoparticles with less than 10 nm diameter is stretching the resolution of most nan-
ofabrication methods to the limit. There are big advantages to working with single
particle systems however: they are physically simpler than multigrain systems, and
can be modelled and analysed more accurately. Despite the experimental difficulties a
few groups have characterised individual particle systems.

In Cornell University a team headed by Ralph uses reactive ion etching (RIE)
to create point contacts above self assembled nano-islands. The RIE process uses a
CHF3/02 gas mix to etch a bowl shaped point contact into a 50 nm thick SizNy
membrane. By slightly overtuning the etch, a small 5-10 nm hole is left in the bottom.
A metal electrode is grown into the point contact, while the bottom of the membrane
is coated with nanoparticles. The nanoparticles are created by standard self assembly
methods. A thin (< 1 nm) layer of metal is deposited onto an oxide such as AlOg, the
surface energy mismatch means the metal agglomerates into particles on the surface,
2-4 nm in diameter. If the conditions are right a single particle is left in the point
contact [53; 103; 104]. Using this method the group measured the Coulomb staircase

on ferromagnetic nanoparticles [104; 105]. Detailed spectroscopy of these excited levels
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under applied magnetic field have yielded information about the spin wave excitations,
spin filtering and spin orbit effects in these particles [106-108].

A team at Tohoku University have spent several years working on single electron
transport. Their samples are generally made with self assembled nanoparticles inside
double tunnel junctions, they rely on the roughness of the barrier to have the transport
through one or a few particles. Yakushiji et al. have investigated spin accumulation in
Co particles and shown spin lifetimes 10° times longer than bulk Co [109]. They attrib-
uted this to discrete energy levels in the particle causing reduced spin flip scattering.
Other studies have looked further at CB effects, cotunnelling and spin accumulation in
Fe or Co particles with various barrier and electrode materials [6; 110-112].

At the Université de Paris-Sud, Bernand-Mantel et al. have used individual gold
nanoparticles contacted by Co electrodes to investigate the anisotropic magneto Cou-
lomb (AMC) effect [113]. They show that AMC and spin accumulation can be com-
parable in size difficult to distinguish [114]. To contact to a single particle they use
a cantilever to make a nano-indentation into resist above a particle. The indentation
process is monitored in real time by tunnelling current [115]. The AMC effect continues
to be investigated for potential logic or memory applications [116; 117].

Other groups have had some success with shadow masking combined with multi-
angled deposition. Masks can be bridges patterned using EBL [33; 90; 118-120], un-
dercut resist [54] or patterned strips [121; 122]. All have shown single electron effects,
though the results tend to be ill defined or inconsistent. More recently Liu et al. have
used cutting edge EBL and ion milling fabrication to make a 40 nm diameter nanop-
illar with a continuous CoFe layer inserted into a tunnel junction [123]. This shows
clear TMR oscillations with a period of 2 mV. This technique has potential for future
detailed experiments.

There have been surprisingly few studies using STM on magnetic particles. It is
a very flexible technique for addressing single particles with a variable tunnel barrier
size, and there have been a large range of studies on non-magnetic particles [60-70;
124; 125]. There have, however, been a small number of experiments on magnetic
particles. Mitani, Takanashi et al. have used STM to investigate granular films of Co
particles [126-128]. They compared these to non-magnetic particles and showed some
evidence of spin accumulation. Graf et al. (2002) measured CB on Co particles at room

temperature [129], showing CB effects but no spin accumulation. Finally Wulfhekel et
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al. (2005) [130] measured self assembled Fe islands on 1.5ML MgO barriers. They
investigated the effect of the Fe band structure on the CB gap width.

1.4 Thesis overview

We have seen there is significant room for STM based work in the field of nanospin-
tronics. The main aim for this PhD was to investigate tightly controlled DMTJs using
STM, and along the way the formation and magnetic properties of the nanoparticles
were studied.

This thesis is divided into three fairly distinct lines of investigation covered in
chapters 4-6.

Chapter 4 is concerned with characterisation of the magnetic properties of the
nanoparticles. The gas aggregation source is an ideal tool for investigating magnetism
in size controlled, high purity NPs. XMCD data shows that the orbital to spin ratio
of the particles is correlated with the size, though it does not correspond to a simple
surface/bulk model. Complementary SQUID-VSM and TEM studies combine to give
information on the particle anisotropy and shape. Crowded particles yield unexpected
interaction trends.

Chapter 5 covers theory we have developed to model the spin accumulation effects
seen in transport studies. An analytical solution to an existing model is calculated.
The solution shows CB staircase I-V profiles can give information on several barrier
properties, including spin polarisation. The model shows that magnetic fields are un-
necassary for spin accumulation studies, a significant difficulty to overcome in STM
measurements.

Finally chapter 6 will describe the results obtained from STM experiments. Building
up from the single barrier to double barrier to full DMTJ studies, the full system is
experimentally examined. For the DMTJ measurements CB staircase is observed and
Coulomb step widths are correlated with particle size as expected. The steps show
negative differential and fit to a CB model with spin accumulation and variable barrier
modifications.

Preceding the results, chapter 2 will give background information on some of the
necessary existing theory for understanding these systems. Chapter 3 will cover the
detailed experiment techniques, focussing where appropriate on equipment development

necessary for these investigations.

10
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2.1 Tunnelling

Here we will go through some of the principal theoretical physics underpinning the
experiments in this thesis. Analysis of the main experiment, spectroscopy on nan-
oparticles using STM, requires a good understanding of the solutions for quantum
tunnelling and single electron physics. The studies of the magnetic properties of the
nanoparticles rely on superparamagnetism, understanding how several different meas-
urements can combine to form a complete picture. I will also cover some of the theory

behind the x-ray magnetic circular dichroism experiments.

2.1 Tunnelling

One of the principle findings of quantum mechanics was that particles should be rep-
resented by wave packets ¥(r,t) and, in an undisturbed system, evolve as a continuous
function of time. This evolution is governed by the differential equation of Schrédinger
[131]. The 1D form of this can be written

m

2
( : V2+U(x,t)> \p(g;,t):mgt\p(x,t) (2.1)

with m the mass of the particle and U(z,t) its potential energy. This is not dissimilar
to the classical diffusion equation and particles/wave packets exhibit some familiar
properties, including diffraction, barrier penetration and evanescence. This is the origin
of quantum tunnelling. Quantum tunnelling theory was first developed in the 1920s
by Fowler and Nordheim. It was initially applied to solving the problem of electric
field emission of electrons from cold metals [132]. Later in the 1950s, new experimental
techniques allowed Esaki [133], Giaever [134] to advance the field. They were able to
study controllable solid state tunnel barriers and use them for tunnelling spectroscopy,
a key technique for investigating QM states in condensed matter. They were awarded
the Nobel prize in physics for their work along with Josephson [135] for theoretical
advances. Tunnelling spectroscopy was taken further in the development of the STM,
the invention of which generated another tunnelling Nobel prize for its inventors Binnig
and Rohrer [136]. This added a microscopy element to the technique, allowing real space
images of samples down to a sub-A resolution. The tunnelling barriers important in
this thesis will be the STM-sample barrier, which is simply a vacuum barrier based on

work function potential, and the MgO solid state barrier which is more complicated.
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2.1 Tunnelling

2.1.1 WKB approximation

In practice, solving Schrodinger’s equation analytically for anything other than a con-
stant U (x), is rarely possible. Even square potential barriers will obtain a linear distor-
tion under an applied bias. If U(x) varies slowly with « however, a useful approximate
solution that can be employed is known as the WKB or Wentzel-Kramers-Brillouin
approximation. Following the success of treating electrons in a constant potential as
a plane wave U(z) = exp(ik,x), the wave function is approximated to a similar form
as exp(i®(z)) where ®(z) is an arbitrary function of x that we expand in powers of A.
This will be a good approximation in a potential that varies slowly compared with the
electron wavelength. The expansion can be written [137]

hQ
hd(z) = Po(x) + hdq(x) + E(I)Q(ZL') +... (2.2)
Substituting 2.2 into the Schrédinger equation 2.1 and solving in successive powers
of h yields solutions of ®(z) of which we take the first two terms as significant. The

wavefunction then becomes

W)~ Cyexp ([ du /22 (U(z) — B)) + C_exp (— [ do\/23 (U(x) - E)) -

V38 (U(z) - E)

)

with constants C'; and C_ to be determined. This function describes exponential decay
in the energetically forbidden barrier region (U(x) — E > 0) and a wave elsewhere.
Finally, after some necessary analytical work to deal with the abrupt changes at the

barrier turning points, we obtain the transmission probability for the barrier as

T(E) ~ exp (—2 /: \/M(U(;)_E) dm) , (2.4)

where x1 and xo are the positions either edge of the barrier. Taking the simplest case of a
constant U(z) and E = 0, we see that the WKB approximation predicts an expontential

/2

decay of probability: T o exp(—2xAz), with inverse decay length x = (2mU/h?) K

is proportional to the square root of barrier height and Az = x9 — 1 the barrier width.
This is a classic result in tunnelling theory.

2.1.2 Simmons model

Starting from the 1D WKB approximation to a single tunnelling event, Simmons [138;

139] developed the model to predict the current through a planar solid state tunnel
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2.1 Tunnelling

junction for a given applied bias. This model is still commonly used in experiments to
fit IV curves and extract barrier parameters like height and width.
The calculation starts with current density passing through the junction from the

left as
T —e / ven(ve)T(Ey) dv, (2.5)
0

where v, is the electron velocity and n(v;) is the electron density of states (DOS) of the
left junction. Calculating the right flowing current in a similar manner and balancing
the two rates gives a total output current. Assuming an isotropic DOS and a barrier

of uniform height ¢ = (1/Az) [? ¢(z) dz, the total current density J can be written

= 1/2
J =~ Jy |pexp(—2kAz) — (¢ + V) exp ( - 2((’0—';;2)/1A:p>] (2.6)
where
Jo ° and & = (2m@/h%)"/2.

~ Anh(Ax)?
Eq. 2.6 has two terms describing the left and right going currents. In the low voltage
regime (V < ¢) this general expression for the current can be approximated as

2 -\1/2
J = MV exp(—2kAx). (2.7)
The current is approximately linear with applied bias in this regime. Unsurprisingly
given its origins, we retain the Az@!/? exponential dependence seen in the WKB ap-
proximation. Eq 2.6 does not take into to account image potential induced in the
system. The image potential has the effect of rounding the edges of the potential bar-
rier and reducing the effective height, these changes are shown as dashed line in Fig.
2.1 (b).

2.1.3 BDR

Simmons model deals quite well with symmetric junctions but cannot fit systems with
an asymmetric bias dependence [141]. Figure 2.1 demonstrates this concept. We start
from two disconnected materials with work functions ¢; and ¢y in (a). As they are
brought into tunnelling range the materials will equilibrate to a trapezoidal shaped
tunnel barrier, with height difference Ay = 2 — ¢1. The BDR or Brinkman-Dynes-

Rowell model deals with this issue, at the expense of losing the analytical solution of
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2.1 Tunnelling
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(d)

Figure 2.1: Diagrams illustrating tunnelling in solids.
asymetric workfunctions equilibrating in contact to form a trapezoidal tunnel barrier. At high

(a) and (b) show electrodes with

applied bias eventually a triangular barrier shape is generated shown in (c¢). For tunnelling in
an STM type geometry the Bardeen approach is employed, the model is given in (d). In (e)

this model is used to simulate an STM image of Pd oxide, the real image is above and the

simulation compared below, image taken from [140]



2.1 Tunnelling

Simmons [142]. Starting from WKB and following similar methods, the BDR solution

is expanded in powers of V and typically quoted to the cubic term:

V2me AzAp 5 2me? Az? 4
J(V) =J(0) (V— an R Vot AR G Vv

where the zero bias conductance is

(2.8)

1/2

J(0) = 7.9 x 10° (&) exp(—2kAz) Q@ 'm 2.

BDR includes the effects of image forces and has been used for reliable fitting up to
~0.5 V [143]. Inaccuracies in the fitting parameters can be introduced by an inevitable

distribution of barrier widths in a real junction.

2.1.4 Fowler Nordheim tunnelling

The Simmons model also covers the high voltage regime where eV > . In this region
the barrier is a triangular potential and its effective width changes as a function of
applied bias. This situation is shown in Fig. 2.1 (c¢). Field induced electron emission
from cold metals, first studied by Fowler and Nordheim in the 1920s [132; 144], is a

classic example of this type of barrier. In this region equation 2.6 reduces to

2m>1/2 Axgog/z]

2 —_—
(eV)“exp [0.68 ( 2 v

N 2.2e
T 16m2hgAx?

(2.9)

In this case the current depends exponentially on both barrier width and applied bias.

This will be an useful model in this thesis because of the large applied bias used.

2.1.5 Bardeen tunnelling

While the Simmons and BDR models have been successful for fitting planar tunnel
junctions they struggle to work with the inherently more 3D system of an STM [145;
146]. The basic picture of this is shown in Fig 2.1 (d). The end of the tip is typically
modelled as a sphere of radius R a distance d above the surface of interest. It is no
longer appropriate to start with plane wavefronts on the barrier so instead we model
the wave function in the tip to have spherical symmetry.

As proposed by Bardeen (1961) [147] the current is determined from first order time
dependent perturbation theory. Starting with Fermi’s golden rule, we write

- 2me

1
h

ST F(EL)[L — f(Er +eV)] |Mir|* 6(EyL — ER) (2.10)
LR
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2.1 Tunnelling

where f(FE) is the Fermi function and Myr = (V| H' |¥R) is the perturbing matrix
element linking the left L and right R electrode’s states. This can be solved according
to Bardeen as

h2
Mg =5 /dS (VTR — YR VL) (2.11)

where the integral is over a surface in space between the two electrodes. Tersoff and
Hamann (1983) [148] applied this technique to the STM geometry, putting planar and

spherical wavefunctions in to ¥y, and Wg respectively. These are written

_ 2

Wy, =0 122 Za(; exp [—(HQ + ‘k” + G‘ )1/22'} exp [z’(k” +G)- x]
¢ (2.12)

71/2 A e—H|I‘—I'0‘
Vg =Qx YR G e ——y - PN

K|r — ro|
where Qr, g is the sample and tip volume respectively, G are the 2D reciprocal lattice
vectors at the sample surface, k| is the surface wavevector, ro points to the centre of the
tip sphere and R is the tip radius. Using these forms of the wavefunctions to calculate

Mjir and putting it all into eq. 2.10 we have for small applied biases
I =321%2h ' @? R* 4" Dy (g, E) DR (Ep)Ve 2+ (2.13)

where Dr,, Dr are the densities of states for sample and tip respectively. Like the
Simmons result this is ohmic for small voltages. Importantly it contains information
about the lateral resolution of the STM, predicting a resolution for Au(110)-2x1 of
<5 A, later experimentally confirmed [149]. Tersoff-Hamman is used for simulating
STM images [150], an example fit of a real STM image of a PdO surface pattern is
compared in Fig. 2.1 (e) [140]. Both Simmons and Tersoff-Hamman give similar results
for z dependence, finding an inverse decay length of 2k [151]. The more important
approximations made in the Bardeen approach, are that the coupling is weak so that
first order perturbation theory applies, e-e interaction is ignored and that tip and

sample are at electrochemical equilibrium.

2.1.6 Tunnelling in single electron systems

In Coulomb blockade we will see later there is a free energy change AU associated
with tunnelling that must be taken into account. To deal with this we again start with

Fermi’s golden rule eq. 2.10, but modify it to account for the energy change

DY) = 25 [Min Y (B~ f(B)S(EL ~ Br— AU).  (2.14)
LR
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2.2 Magnetic tunnel junctions

Here we may use the occupation function at the Fermi level on both sides, there is
little change in the Fermi level on tunnelling. We use the densities of states to change
the sum over momentum states into integrals over energy. We also approximate that
in the small range of energies available, the density of states and tunnelling matrix are

constant with respect to energy. This allows
27 >
D(AU) = 5 IMinl? Du(Br)Dr(Br) [ H(E)1 - (E-AV)AE  (2.15)

Solving the integral with standard methods yields finally

—AU
e?R[1 — exp(AU/kpT)]

T(AU) = (2.16)

with R = h(2me?|Mpr|>Dy(Er)Dr(EFr))~! as an effective tunnelling resistance.

2.2 Magnetic tunnel junctions

All MTJs comprise three important layers: a bottom and top electrode of a mater-
ial with a permanent magnetic moment and an insulating barrier between the two -
typically an oxide such as MgO or AlOy. This barrier must be thin enough that sig-
nificant tunnelling current may pass through; a suitable width is generally less than 3
nm. When a potential difference is applied across the junction, a current will traverse
the barrier. If the magnetizations of the electrodes are parallel, the resistance (Rp) is
lower than the resistance if they are antiparallel (Rap). The percentage difference is

the tunnelling magnetoresistance (TMR) of the junction and is given by [152]:

MR = AP = FP (2.17)
Rp

The resistance difference occurs when the electrons tunnel across the barrier while
retaining their spin state. Due to exchange splitting in a ferromagnet, the density
of states on either side of the barrier will be different for the two different spins. If
the magnets are aligned parallel, the probability of the majority spins tunnelling is
high, with large densities of states available for them to tunnel into. If the magnets
are aligned antiparallel, the probability of either spin tunnelling is low, because the
majority spin on one side is the minority spin on the other side. This leads to the
characteristic magnetoresistance signal shown in Fig. 2.2.

Julliere [30] developed a simple model to calculate the TMR based on this two

channel idea. In the parallel arrangement the conductance is proportional to aa’ +
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2.2 Magnetic tunnel junctions
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Figure 2.2: An example of an early measurement of TMR. Figure adapted from [32]

(1 —a)(1—ad'). a and a are the fractions of tunnelling electrons, in the left and right
electrodes respectively, whose spin is parallel to the magnetisation. In the antiparallel
alignment the conductance should go as a(l —d’) + a/(1 — a). Arranging this gives a

final TMR as the Julliere equation:

2P, P
TMR = ——— % 2.1
R=1"57p (2.18)

where P; and P, are the spin polarisations for the left and right electrodes respectively!.

Tunnelling in solid state junctions can be considerably more complicated than the
simple picture presented above. Crystallinity, interfaces, barrier defects, disorder and
band structure all come into play. Partly due to the possibilities for using MTJs in
industry, a lot of work has gone into perfecting the production of MTJs and developing
fuller theory to explain their properties. For a high quality review of MTJs up to 2003
see that by Tsymbal [153].

In particular epitaxial (001) Fe/MgO/Fe MTJs are found to have TMR values far
exceeding those predicted by the Julliere model. Prior to measurement this effect
was predicted through tight binding calculations by Mathon and Umerski [36] and
through first principals DFT theory by Butler et al. [35]. It was shown that the
system Bloch state with A; symmetry (spd hybridised state) coupled most effectively
from the Fe into the MgO. Majority states with A; symmetry therefore coupled very

! P is the usual symbol for the spin polarisation of a material (D+ — D,)/(Ds 4+ D,). Unfortunately
it is also used in the orthodox single electron theory to describe the spin resistance ratio across a tunnel

barrier Ry+/R,. In general the latter of these is used throughout this thesis unless otherwise stated.
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2.3 Electron transport in nanoparticles

effectively across the barrier, while minority states with Ay symmetry had a resistance
that would be orders of magnitude higher. This gave predictions of TMR in excess of
1000%. Experiments are now approaching this value [40]. For a review of theoretical
and experimental advances using these materials see Nagahama and Moodera (2006)
[154].

2.3 Electron transport in nanoparticles

In solid state physics, electron-electron (e-e) interactions in metals can generally neg-
lected, or be treated as a perturbation energy. This seemingly unlikely case is possible
due to electrons filling coherent states up to the Fermi energy. These states already
take into account the periodic potential of the lattice. This allows electrons around
the Fermi energy to be treated as quasi particles which will scatter off only impurities
or interruptions in the periodic lattice potential. In single electron physics, electrons
are confined to a small conductor so their interactions must be taken into account.
Taking e-e interactions into account is usually extremely challenging and is rarely fully
solved. In single electron physics however, it is simply a case of calculating the clas-
sical Coulomb charging energy of the island, given its capacitance to the surrounding
electrodes.

In section 1.2 we introduced the single electron transistor, the simplest device that
can show all of the single electron effects, Coulomb blockade, Coulomb staircase and
Coulomb oscillations. The theory developed to explain this system by Likharev, Averin
and Nazarov and others [50; 51] is known as the ‘orthodox theory’ [155; 156]. Since some
of the major results of this thesis are a development of this model centred on attempting
a deeper understanding of its consequences, I will cover the relevant aspects in some
detail. The devices experimentally investigated in this thesis do not have a controllable
gate potential, so we simplify the SET to the double tunnel junction model shown in

Fig. 2.3 (a).

2.3.1 Orthodox theory of Coulomb blockade

The model is given according to Fig. 2.3 (a). The system comprises two electrodes
linked by tunnel barriers to a central island. The left and right tunnel barriers are each

effectively a resistance R; and a capacitance C; in parallel (i = 1,2), they surround
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2.3 Electron transport in nanoparticles

the island containing IV excess electrons. Potential V' is applied to the right electrode
so that positive applied bias causes electrons to flow left to right (1 to 2). The rate
of electrons tunnelling onto (off) the island are given by I'" (I'"). As derived in the

section 2.1.6 these rates are given by

1 ~AUF

) _
A0 R (1 (AU k)

(2.19)

with AUZ-jE the change in the system free energy due to the tunnelling process. This
function for I' is plotted in Fig. 2.3 (b), it asymptotes to 0 for AU > kpT and to
—~AUF/(e?R;) for —AU > kpT.

The energy change AUijE is given by the difference in free energy from before and
after the tunnelling process. The relevant free energy is the stored electrostatic energy
in the barrier electric fields, minus the work done (w.d.) by the voltage source to match

the island charge. This is given by

@ a3
v=4 . & L4 2.20
50, Tac, W (2.20)

where C' = Cy + C and w.d. to charge a single electron from the left is eV Cy/C and
similar for right. By restricting the sum of the charges on the island to be integral

g2 — q1 = Ne, we can find the free energy changes as

2 /1 LV
AUE = e(i(—Q N ))
Ui C \2 e + Qo
2
+ _ (L GV o ))
AUF = C<2j:( —+N-Q) ), (2.21)

where Qg allows for some fixed static charge present in the environment close to the
cluster. This static charge is often found in SETs based on dielectric tunnel barriers,
and is caused by charge defects in the barrier [61]. Qo induces an offset to the Coulomb
staircase and an adjustment of the Coulomb blockade shape, these effects are shown
on the grey set of curves in Fig 2.3 (c).

These mathematical expressions for free energy changes can be simply visualised in
a similar fashion to quantum dot diagrams, as pictured in Fig. 2.3 (d). This allows
quick determination of favourable tunnelling conditions. The potential changes are not
to be confused with the dense kinetic energy states present in any conductor however.

The Fermi energy effectively sits at the potential level of the island and the density of
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Figure 2.3: The orthodox model of the Coulomb blockade. The model circuit diagram is shown

in (a).

(b) the tunnelling rate I" as a function of the tunnelling free energy, this asymptotes

at large values of AU, shown as a dashed line. (¢) numerical simulations using the model, the

result of tuning the barrier parameters. The black arrows indicate the direction of the labelled

variable increasing. Curves are offset vertically from (0,0) for clarity. The parameters for the
basic staircase in each case are T =0, Qo =0, C; = 0.1aF, Cy =1aF, Ry =1 MQ, Ry =1 GQ.
The Cy/C5 ratios are 0.1, 0.5 and 3, the Qg values are 0 to 0.5 in increments of 0.1 and the

Ri/Ry ratios are 1073, 1072 and 107L. (d) an energy diagram representation used to determine

whether whether transitions on to and off the island will be favoured in a given situation.
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2.3 Electron transport in nanoparticles

states is simply translated up and down, with little modification when electrons tunnel
in and out.

To calculate the current, we need to make the assumption that the electron wave
function is well located on the island, and does not spread out onto the electrodes.
This allows us to treat the problem in a Fock-space approach, with island states having
exactly N excess electrons (i.e. [N — (N)|* < 1 with (N) the expectation value of N).
This assumption will hold if the resistance to the leads is sufficiently great R > h/e? =
Rg. 2

In the case N is a good quantum number, we may incoherently sum the rate con-
tribution from each state N, weighted by o(NN) the probability of the island being in
that state. -

I(V)=e > o(N)T3(N)-T3(N)) (2.22)
N=—o0

The classical requirement for rate equilibrium in the steady state allows us to calculate

the o(N) using a master equation
o(N)T{(N)+TF(N)) =o(N+1)(I](N+1)+T5 (N +1)), (2.23)
with the normalisation condition

> o(N)=1. (2.24)

N=—00

Solving these equations numerically and fitting to experimental CB data often gives
an excellent fit to the various features [54; 61; 122]. I numerically solve these equations
and show some simulations of the various parameter families in Fig. 2.3 (c¢). The
clearest CB staircase are given when the competing requirements Ry > Ry and C7 >
C5 are realised. The details for solving the equations will be given in more detail in
chapter 5.

One final important assumption that we made in this theory was that the electron

kinetic energy states are continuous at the Fermi energy Er(NV), so that Ep(N + 1) —

2A qualitative argument for this inequality can be made by comparing the time ¢ which the electron
resides on the island to At the quantum uncertainty in this time. For the island to be a well defined
state N, we require ¢ > At. From the uncertainty principle we also have At > h/AE. At low bias the
current is approximately the turnstile value I = e/t and the energy uncertainty is at least less than
the applied bias AE < eV. Combining these gives us the desired inequality R = V/I > h/e?. A full

quantum treatment of the system yields the same result [51]
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2.4 Magnetism of nanoparticles

Er(N) < E.. For metals with free electron carrier concentration n:

h2
Ep = 2—m*(37r2n)2/3. (2.25)

Putting in typical numbers for an Al particle of 3 nm diameter (small for work in this
thesis) the change in Er on adding one electron is approximately 1 meV, well below
the thermal energy range considered in these experiments. This may not be the case

when considering semiconducting particles.

2.4 Magnetism of nanoparticles

2.4.1 Anisotropy

The internal energy of a bulk ferromagnet (FM) is anisotropically dependent on the
direction of the magnetisation. In FM nanoparticles there are generally three major
contributors to the magnetic anisotropy: the crystal structure of the material, the

surface magnetism and the shape of the sample.

Magnetocrystalline (MC) anisotropy causes alignment in certain crystallographic
directions, it has a microscopic origin based on the spin-orbit coupling, though it is still
not fully understood [157]. The anisotropy is proportional to the sample volume and
its density is generally given as K in units of Jm™3. Common examples are the uniaxial
hexagonal system (bulk Co) or the cubic anisotropy in cubic crystals (bce Fe, fcc Ni).
In the magnetic media industry a particular interest is shown in very high (> 1 MJm™3)

uniaxial anisotropy systems such as tetragonal FePt or hexagonal Co [158].

Surface anisotropy is important for low dimensional magnets and is caused by the
breaking of the crystal symmetry at the surface. Reconstructed surfaces have been
found to enhance the total anisotropy of nanoparticles [159]. Surface contributions to
nanoparticle anisotropy are proportional to (surface area)/(volume) = 6/d for d the
diameter of a spherical particle. Surface effects can in general be isolated from bulk

effects by size dependent studies [160; 161].

Shape anisotropy is seen in non-spherical particles and is due to long range dipole

forces generating a demagnetizing field. Mathematically the shape anisotropy in a
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2.4 Magnetism of nanoparticles

uniform magnetised ellipsoid can be written
1
Edhape = §M0V(N$M§ + Ny M + N.M?2) (2.26)

where NN; are the demagnetisation components. Oblate spheroids will have an easy
plane sitting in the -y plane, prolate spheroids have a easy direction along the z-axis.

Nanoparticles with a diameter smaller than the domain wall width \/A/K, will be
single domain. Kittel [162] has roughly calculated the critical diameter of 20 nm for a
typical ferromagnetic nanoparticle below which it will be single domain, though this is
strongly dependent on shape and material and can vary by orders of magnitude. All
particles in this thesis are considered single domain.

With 6 the angle between magnetisation and the easy axis as shown in Fig. 2.4 (a),

uniaxial anisotropy can be represented in general as series of even powers of sin(6):
Euni = K1V sin?(0) + KoVsin(0) + ... (2.27)

Happily in most FM materials K5 and higher order terms are negligible and can be
ignored, considerably simplifying calculations. In the next section on superparamag-

netism a uniaxial anisotropy with negligible K5 will be used.

2.4.2 Superparamagnetism

Nanoparticles exhibit rich magnetic behaviour. Above a critical blocking temperature
Tp they will go into a superparamagnetic (SP) state. Superparamagnetism is analog-
ous to the paramagnetic state, but with nanoparticles forming large ‘super’ moments.
Standard SP measurement protocols are used in this thesis to characterise the particle
ensemble magnetic properties, anisotropy, size distribution and dipolar interaction. In
these experiments it is often possible to corroborate evidence using different measure-
ment protocols on the same sample [163].

To understand this property we consider nanoparticles with uniaxial anisotropy
and a single domain as described in the previous section. The energy diagram for this
system is shown in Fig. 2.4. In order to flip, the particle must overcome an energy
barrier AF = KV. In fact the average rate at which it flips is given by an Arrhenious

law

KV
TN =75 exp <—kBT> , (2.28)
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2.4 Magnetism of nanoparticles

where 75 ! is the so called attempt frequency and is generally found to be of the order 1-
10 GHz [164]. Above the blocking temperature Tz the magnetization direction will flip
faster than the characteristic timescale of the measurement 7,,. In this case (7, > 7n),
the cluster will appear to be a paramagnet with a large susceptibility, it will follow the
Langevin function L(x) = coth(x) — 1/z where © = ugHM,V,./kgT and MV, is the
moment m of the cluster [165; 166]. In practise there will usually be a distribution
of particle sizes measured, so that this Langevin must be fitted using a probability

distribution of particle sizes p(V.)dV,. The magnetisation is given by
o0
M(H) = /0 p(Ve) M L(z)dV, (2.29)

As the particle gets larger the blocking temperature will tend to increase because the
magnetocrystalline anisotropy is proportional to volume.

The full energy landscape for an individual particle is described by
E = AEsin?(f) — yom - H (2.30)

Below the blocking temperature the particle is described approximately by the zero
temperature Stoner-Wohlfarth model [167]. Minimising the energy as a function of
magnetic field yields the hysteresis loops shown in Fig 2.4 (b). A field applied parallel
to the easy axis yields a square loop with a coercive field Hy = 2K /M, (also known
as anisotropy field). Stoner and Wohlfarth also calculated the hysteresis loop for an
assembly of randomly oriented clusters and a found that the coercivity is reduced to
0.48Hy.

Upon warming the energy barrier is easier to cross and this coercivity decreases. A
simple calculation shows the barrier height goes as AE ~ KV — ugMV.H. Using this

in combination with eq 2.28 a coercive field dependence of [168]
H.=2KV[1— (T/Tg)"?/m. (2.31)

Due to the exponential sensitivities however, this formula is usually used as an approx-
imate fit [169; 170].

Measurement protocols

Superparamagnetic paricles in this thesis are characterised by SQUID-VSM. This sens-

itive technique allows various measurement protocols.
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Figure 2.4: (a) The potential energy stored in a single domain uniaxial magnetic nanoparticle

as a function of magnetization direction. An applied magnetic field adds a linear modification

to the distribution shown by the dashed line. (b) predicted hysteresis loops as a function of

applied field angle ¢, figure adapted from [167]

o Zero field cooling and field cooling (ZFC-FC): The sample is warmed to above

T then cooled under zero applied magnetic field to well below the blocking tem-
perature. A small probe field is applied and the moment is measured during
warming. The particles align with the applied field only when they reach their
blocking temperature. The FC part is simply measuring while cooling the sample
in that same field, the particles will cool into an aligned state so the magnet-
isation will deviate from the ZFC. This protocol gives information on blocking

temperature and size distribution.

Hysteresis vs temperature: Simply measuring a full hysteresis loop at different
temperatures gives the change in coercivity as a function of temperature. This
can give information on cluster anisotropy and blocking temperature. Above T
there is no hysteresis and the zero field susceptibility gives the average particle

moment.

AC-susceptibility: In this technique a small magnetic field is oscillated at varying
frequencies and the magnetic response is determined. The ac-susceptibility x is
broken into an in-phase x’ and out-of-phase x” components. Looking at the x’ vs

temperature gives a peak responsiveness at the blocking temperature. By varying
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the frequency and measuring the blocking temperature the attempt frequency 7, !
can be determined [171]. x” gives information on the energy dissipation in the
system due to irreversible processes. This can be caused by interactions between

clusters, conformational changes or other irreversible mechanisms.

2.5 X-ray Spectroscopy

Part of the characterisation of the magnetic nanoparticles undertaken in this thesis
has been through soft x-ray absorption spectroscopy undertaken at the Brookhaven
National laboratory NSLS synchrotron source. There is a lot of complexity to photon
interaction with matter and this section will cover very briefly some relevant aspects.

For a comprehensive text see Stohr and Siegmann (2006) [157].

2.5.1 X-ray absorption spectroscopy (XAS)

XAS essentially involves a photon impinging onto a material, being absorbed and in that
process exciting a core electron. Fig. 2.5 (a) shows this process, the core electron leaves
a hole indicated by an empty circle. Electrons drop to fill the core gap and in that
process release secondary Auger electrons (in the soft x-ray regime Auger processes
dominate over fluorescence). The experiments in this thesis were measured in the
electron yield geometry, so that the signal was detected simply by counting the number
of electrons leaving the sample using a picoammeter. These released electrons must
necessarily come from the surface of the metal since the escape depth A, of electrons
from Co and Fe is approximately 2 nm [172]. Each core absorption process sets off a
cascade of Auger electrons and several are released from the surface for each captured
photon. Importantly the total yield is proportional to the x-ray absorption cross-
section for the x-ray-electron interaction, hence this method determines the absorption
cross-section of the material for a given input energy photon.

Materials exhibit an absorption resonance when the incoming photon is the same
energy as an energy transition in the atom. In the soft x-ray regime the L edges of Co
and Fe are probed, this equates to the atomic 2p — 3d transition. In fact the resonance
is split into two parts due to spin-orbit splitting of the p electrons, these are the Lg
peak from 2p3 /5 — 3d and the Lo from 2p; 5 — 3d. These resonances are also relatively

broad, the core p electrons are in a well defined atomic-like state, while the d electrons
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Figure 2.5: (a) atomic energy level diagram of the Auger process. The empty circle shows
the gap left at the core L state that is filled by electrons dropping from above. (b) Electron
cascade process caused by impinging photons. The photon penetration depth A\, and electron

escape distance A, are indicated. Figure adapted from [172].

are better described as a band structure with a broader width. An example XAS of
Fe is shown in Fig. 2.6. The underlying (non-resonant) step-like feature is drawn as
a dashed line, this is known to be in a 2/3 to 1/3 ratio for Ls, L respectively [173].
Additional peaks or shoulders in the XAS spectrum give information on the chemical
environment of the atoms. In a clean unoxidised metal the peaks are featureless. In
transition metal oxides the 3d states are strongly correlated, which leads to clear fine
structure. The multiplet splitting depends on the orbital quenching due to ligand field
symmetry, and exchange and spin-orbit interactions. The total integrated intensity
of the XAS spectrum for the L edge after subtracting the atomic step background is
proportional to the number of holes Ny in the d band

I=CN, (2.32)

with C a constant dependent only on the p orbital characteristic.

2.5.2 X-ray magnetic circular dichroism (XMCD)

XMCD is based on the XAS method but specifically uses circularly polarised photons.
Photons of opposite helicity interact with different electron orbital and spin moments,
revealing some of the magnetic properties of the sample. Theoretical analysis has pro-

duced sum rules which allow a quantitative determination of the individual orbital
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Figure 2.6: An XAS spectrum at the Fe L edge of partially oxidised CoFe nanoparticles. Fine
structure from Fe-O chemical bonds is highlighted.

and spin moments in sample. This makes XMCD a powerful technique, element spe-
cific, chemically sensitive, quantitative and able to separate orbital and spin moment
contributions.

A photon with a circular polarization has an angular momentum along or against
the direction of the beam Ly,. When interacting with the atom this angular momentum
is transferred to the photoemission electron. Due to the spin-orbit mixing this angular
momentum has a spin and an orbital component. If the sample is magnetised the d
band will be spin split; the difference in available valence states will act as a detector
selecting for the majority state. This process is shown in Fig. 2.7 (a). The XMCD
intensity is given as the difference between the absorption intensity for left I+ and right
I~ polarised photons Ixycp = I~ — I, an example spectrum is shown in Fig. 2.7
(b). The spin detection process relies on the magnet quantisation axis m, aligning with
the photon angular moment. It is also proportionally affected by the degree of beam
polarisation F.., the XMCD signal is therefore scaled by a factor F..Lp, - m. The
incoming beam must have a direction component aligned with the magnetisation.

By adding up all the different allowed p — d transitions Carra et al. [175] developed
a simple sum rule to calculate the average spin moment per atom based on the XMCD
spectrum

ms/up = (—A+2B)/C (2.33)

where A and B are the integrated areas under the Lg and Lo difference peaks re-
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Figure 2.7: The XMCD at the Fe L edge. (a) is a representation of the energy levels involved
(diagram adapted from [174]). (b) an example XMCD spectrum. The top panel shows the total
electron yield signal as a function of beam energy, the bottom panel shows the difference plot.

The integral areas A, B and C used for the sum rules are labelled.
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spectively. C is an integral over the intensity signal after subtracting the non-resonant
background signal (background subtraction shown in Fig. 2.7 (b)). By instead doing
the sum of the L3 and Ly edges we cancel any spin component and only the orbital
moment remains [176]:

my/us = —2(A+ B)/3. (2.34)

These sum rules have been demonstrated to give moments within a few percent of those

found using gyromagnetic ratio measurements [173].
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3.1 Introduction

This chapter will describe the various experimental techniques used in this thesis. The
samples were fabricated in-house using magnetron sputtering and a gas-aggregation
nanoparticle source. Characterisation can be broadly categorised into structural charac-
terisation (AFM, TEM), magnetometry (XMCD, SQUID-VSM) and current perpendicular-
to-plane (CPP) transport measurements (STM), though these techniques are all com-
plementary to some extent. Upgrades to apparatus, particularly probe improvements
for STM, will be detailed here.

3.2 Sample fabrication

The samples used in this project were thin film metallic/insulator stacks sputtered onto
thermally oxidised Si wafer substrates. Metallic nanoparticles were then deposited onto
the films within the same vacuum chamber using a gas aggregation nanoparticle source.

The individual samples grown for each project will be described in more detail later.

3.2.1 High vacuum system

Sputtering requires a high vacuum environment to prevent interstitial impurities and
chemical reaction during growth. The samples were grown in Leeds in a custom de-
signed Kurt J. Lesker sputter system locally referred to as ‘SLIM’. SLIM contains
several pumping mechanisms. It is first roughed by a scroll pump to 5 Pa. After this
the pumping is switched to a cryopump which condenses gas molecules onto a 10 K
cold stage, cooled by a closed cycle *He refrigerator. During operation a liquid nitrogen
cooled Meissner trap in the chamber is used to reduce the water partial pressure by the
same mechanism. Pressures are detected from vacuum to atmosphere by an Ionivac
ITRI0 combination wide range gauge, working gas pressures are given more accurately
by an MKS Baratron capacitance gauge and individual gaseous partial pressures below
1072 Pa are detected by a KJL accuquad quadrupole residual gas analyser. All pumps
and motors on SLIM are computer controlled and can be automated through a recipe
system. SLIM is run on a 24 hr pump-vent cycle allowing fast change around of tar-
get materials and substrates. The base pressure averages around 8x107°% Pa, typical

molecular partial pressures at this point are listed in table 3.1.
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Molecule | Partial pressure (Pa)
H, 3 x1076
H,0 6 x10~6
Ny 2 x1076
0, 1 x1077
CO, 3 x1076

Table 3.1: Residual partial base pressures

3.2.2 Sputter deposition

Magnetron sputtering is a technique used to deposit tightly controlled, high purity,
thin films onto surfaces. It was first introduced by Penning [177] in 1936 and is now
widely employed in industry due to its speed, scalability and reliability [178]. The
process of sputtering involves the bombardment of a high purity target by energetic
ions. Energetic collisions cause the target to eject atoms and ions of the desired species,
which then go on to coat any surface in the vicinity. To provide the ions which bombard
the target, a small pressure of working gas is introduced into the growth chamber. The
working gas must be chemically inert so that it does not react with the growing film,
in our case Ar is used. When a negative electric potential is applied to the target
an Ar plasma will form, providing a continuous source of Ar™ ions which accelerate
and collide with the target. The plasma is maintained by secondary electrons, which
are ejected from the target during collisions and go onto ionise further Ar atoms. The
plasma is confined via the electric field and a static magnetic field generated by opposing
permanent magnets in the magnetron.

A diagram of the sputtering facility SLIM is shown in Fig. 3.1 (a). It is configured
with ten target/magnet magnetron assemblies also known as sputtering guns (only two
of which are shown for clarity). Four guns are specialised for magnetic targets, five for
non-ferromagnetic materials and one source is used exclusively for rf sputtering. Up to
two dc sources can be lit at one time and each gun has its own pneumatically controlled
shutter, computer controlled for timed growths. A secondary rotatable plate shutter
protects the samples and contains a magnetic array that produces a 15 mT growth field
at the sample.

The design of the magnetron is shown in Fig. 3.1 (b). Central and ring permanent
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Figure 3.1: (a) A schematic diagram of the sputtering system. A rotatable shutter allows
multiple guns to be lit at once while just sputtering one material at a time. (b) shows a

cross-section of one of the magnetron sputtering sources

magnets produce a magnetic field which confines the Ar plasma to a toroidal space
above the target. An earthed shield around the assembly is separated from the 2 inch
diameter target by approximately 0.5 mm. dc bias is applied to conducting targets to
generate the plasma. The assembly is water cooled to dissipate heat produced by the
sputtering process. The substrate to target distance is approximately 70 mm.

For insulating materials, such as the MgO used in this study, a dc¢ bias would cause
charge to build up on the surface of target, preventing a sustained plasma forming. To
counter this a 13.56 MHz rf bias is applied. Charge built up on the surface is rejected
during the positive half of the cycle and sputtering continues in the negative half. The
particular frequency chosen causes electrons to circle in the plasma efficiently ionising
further Ar atoms. In rf sputtering the plasma is not well contained near to the target
due to the oscillating bias, growth rates are typically of the order 10 times slower than

in dc sputtering at an equivalent power [179].
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3.2.3 Tunnel junction deposition

Substrate Substrates were cut to size from a 4 inch Si (100) wafer. Si is chosen
as a reasonably robust and cheap substrate. The wafer is 0.3 mm thick and cut by
hand with a diamond tipped scribe. A 100 nm surface layer of oxidised Si ensures the
substrate is more resistive than the electrode material, preventing current shunting.

The substrate roughness was checked with AFM as less than 0.5 A rms.

Conducting electrode layers The metallic underlayers are grown using dc sput-
tering. Typical deposition conditions are: base pressure < 9 x 1076 Pa, Ar working gas
pressure of 0.27 Pa (atom mean free path ~10 mm), power controlled sputtering 25-
50 W, deposition rates 1-4 As~!. Sample wheel rotation speeds meant an approximate

20-30 s delay between layers. All growths were done at room temperature.

Tunnel barrier The MgO tunnel barrier was grown by rf sputtering, controlled by
a Hiittinger power source. Prior to deposition the source was pre-sputtered for 45 min
at 150 W, the barrier growth was done at 75 W and a working gas pressure of 1 Pa.
Growth rates for MgO were around 0.1 As™' meaning a 5-10 A barrier growth time
of 50-100 s. A thin Mg layer (25 W dc, 0.5 s sputter time, nominal thickness 5 A)
is grown below the MgO to absorb excess oxygen and improve the barrier interface.
This method is in keeping with previous studies at Leeds and other institutions into

epitaxial MgO tunnel barrier growth [180].

3.2.4 Nanoparticle fabrication

There are few methods available to produce the pure, disperse nanoparticles necessary
for this type of study. Some of these were discussed in section 1.3.1, they include
surface self-assembly, e-beam lithography processing combined with shadow masking
and co-sputtering with an insulating material to produce a granular matrix. There
are limitations attached to each of these techniques, self-assembly can produce only a
limited size range of densely packed particles, it also has constraints on materials that
balance the surface mobility and surface energy tensions. EBL produces much larger
particles and does not make 3D structures well. Co-sputtering produces a particle mat-
rix without a well defined single particle current path. In Leeds we are lucky to have

a gas-aggregation nanoparticle source integrated with our sputterer, this counteracts
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many of the problems with other single particle techniques. In gas aggregation, the
particles are pre-formed in-vacuum prior to deposition. This allows natural crystal-
line particle shapes to form and maintains purity of the particles. It also allows for

downstream selection of size and deposition density.

Cluster growth by gas aggregation

The gas aggregation technique for producing clusters was initially developed at the
University of Leicester CM group [181]. The process starts with a standard dc sput-
tering source, a self perpetuating Ar plasma is created next to a target of high purity
material to be grown. The metal vapour sputtered from the target passes up through
the chamber of the gas aggregation source. The chamber is kept at a relatively high
pressure of 80 Pa and cooled through water cooling pipes surrounding the sides. The
pressure and temperature are such that the metal vapour saturates the atmosphere and
nucleates to form nanoparticles. The gas is Ar with a small addition of He (approxim-
ately 2.5% by volume), it acts as both a working gas for the sputtering process and to
create the correct conditions for particle nucleation.

The thermodynamics of particle formation in the chamber have been studied in
detail by Quesnel et al. [182]. This is based on classical nucleation theory [183], which
finds that saturation occurs when the chemical potential gain of particle formation
exceeds the energy cost of forming the particle surface. The high pressure of the working
gas in the chamber works as a thermal exchange, creating a decreasing temperature
profile away from the sputter target. Metal vapour thermalisation occurs with a few mm
of the target surface; particle formation occurs in a region further up the chamber where
temperature is low enough for formation but high enough to accumulate collisions. The
particle size distribution produced depends on the thermodynamic conditions, we are
therefore able to alter it by changing the gas pressure, chamber length or growth power.

In Leeds we use a commercially available Oxford Applied Research gas aggregation
nanoparticle source, this is pictured in Fig. 3.2 integrated into the SLIM sputtering
system. A diagram of the device is shown in Fig. 3.3. The magnetron is at the
bottom, with a manually adjustable chamber length from 300-450 mm. The aggregation
chamber is pumped by a dedicated Pfeiffer turbo pump, necessary to protect the main
chamber from the high pressures used for nanoparticle formation. A 10 mm aperture

allows fully formed nanoparticles to pass through into the main sputtering chamber.
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Figure 3.2: Photo of the gas aggregation source connected below SLIM. Major parts are
labelled.
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Figure 3.3: Diagram showing the operation of the gas aggregation source. Figure adapted
from [184].
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Figure 3.4: Black squares show a quadrupole particle mass scan for CospFe7y nanoparticles.
The blue line shows a conversion factor between mass and equivalent radius assuming a spherical

particle. The red line fit to the scan is a log-normal distribution.

Particle beam control and deposition

Nanoparticles are size selected, post-formation, by an electric quadrupole field. The
quadrupole selector consists of four parallel steel rods 22 cm long, aligned along the path
of the NP beam. An ac voltage of variable frequency f with a dc offset is applied to the
rods U + Vcos(2m ft). This is applied in anti-phase in opposing rod pairs as shown in
the bottom of Fig. 3.3. This field is designed such that only charged particles within a
certain range of masses will have a stable trajectory through the quadrupole rods. The
motion is governed by the Mathieu equations, these have stable solutions for a cluster
mass (amu) of M = 7 x 10"V/f2d? and for a resolution of masses surrounding this
of AM/M = 7.9(0.17 — U/V) (d the diameter of the rods) [181; 185]. An electrically
isolated plate at the end of the quadrupole collects a portion of the particles and
measures the flux at this point as a current.

After the quadrupole a dc electric field is applied by = and y oriented deflection
plates (see diagram). These guide the charged selected particles onto the sample. The
sample is purposefully offset from the quadrupole axis to eliminate the neutral particle
beam which has not been size selected. To detect the charged particles at the sample
position, a home built Cu electrode fitted into a standard sample holder can be rotated
into position. The electrode current is fed out to a Keithley picoammeter. = and y

voltages are scanned between -100 and 100 V to detect the maximum flux point.
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Because the particles are formed in thermodynamic equilibrium they have low kin-
etic energies (< 0.1 €V). Calculations show at this energy they gently deposit onto the
sample surface with no damage to surface or particle [186], we will later confirm this
with cross-sectional TEM. The density of particles on the surface is determined simply
by the time the substrate is exposed to the particle beam. The flux rate is variable
depending on the conditions but of the order 1 particle um=2s~!, it is fine tuned before
growth by the electrode current.

By varying V the quadrupole allows a scan over all of the masses produced by the
nanoparticle source. An example scan on CosggFerg nanoparticles is shown in Fig. 3.4
plotting detected current vs. particle mass, also plotted is the conversion from mass
to particle diameter assuming a spherical shape. The resolution is set at 20%. As is
common with this type of growth method, the mass probability fits to a log-normal

distribution [187]. This has the formula

n\r/x 2
Plz) = —— exp (-“(/)]) , (3.1)

2w 2uw?

with a width represented by w and peak centre z.. The fit to the example scan is shown
in red with parameters listed on the plot. Below approximately 1 x 10° amu a small
secondary peak is seen. This is caused by high kinetic energy particles coming through
at low applied voltages. This region is avoided when selecting a mass window because
of the indefinite size. w and z. are varied by controlling the deposition parameters
(power, gas pressure, chamber length). Depending on the material x. is generally
between 4-8 nm equivalent diameter.

Typical growth conditions for particles were 80 Pa aggregation chamber pressure,
4 Pa main chamber pressure, 50:1 Ar:He ratio, 20 W power controlled target sputtering
(300 V), ~4 min growth time for a particle density of a few hundred pm=2. The particle
sizes were checked after growth using atomic force microscopy (AFM), an example scan
is shown in Fig. 3.5. In general the non-magnetic particles were accurately size selected.
Magnetic particles were much more difficult to grow, the target magnetic field affects
the plasma formation and ignition is difficult, this limits possible variation on the
growth conditions. Size selection was also more difficult for the magnetic particles, the
quadrupole selector is less accurate with magnetic material. Magnetic nanoparticles

were always checked for size and density after growth using AFM.
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Figure 3.5: AFM 1 x 1 um image of CozpFeyy nanoparticles, used for calibration. The
histogram below is of height of the nanoparticles. This gives the distribution of diameters

centred about 12 nm.
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3.3 Growth characterisation

3.3.1 X-ray reflectivity

X-ray reflectivity (XRR) was used to calibrate sputtered film thicknesses. A source of
collimated x-rays is shone onto a film in the reflection or specular geometry. Interference
between top and bottom film interface reflections produces a pattern known as Kiessig
fringes. The angular separation of the fringes determines the thickness of the film. For

small angles the angle 6, of the n'! fringe peak is given by
n\ = 2t(62 — 6%)'/2 (3.2)

where A is the x-ray wavelength, ¢ is the film thickness and 6. is the angle for total
internal reflection [188]. For optimum fringe density and accurate thickness determin-
ation an approximately 350 A thick film is grown directly onto a substrate, an example
reflectivity pattern from an MgO film is shown in Fig. 3.6. For films with poor electron
density contrast with the substrate, a thin layer of a heavy metal such as Tungsten
at the interface adds the required contrast while introducing little error into the film
thickness. Film roughness can be determined from full reflectivity fitting to the Parrat
formalism [189]. The system used in Leeds is a Bruker D8 discover, the x-ray beam is
produced from a Cu anode and then collimated via slits and passed through a mono-
chromator tuned to the Cu Ko 1.54 A wavelength. The filtered beam passes finally to

a scintillator detector and data logger.

3.3.2 Transmission electron microscopy

In transmission electron microscopy (TEM), a high energy (100-200 keV) electron beam
is used to image materials in atomic level detail. TEM is an invaluable tool for con-
densed matter physics, used for studying sample composition, interface quality and
epitaxial crystal alignment to name a few [190]. The basic geometry of the TEM is
shown in Fig. 3.7. Much like the optical microscope it consists of a series of lenses
and apertures used to focus and magnify the electron beam through the sample and
onto an image plane. In order to be transparent to electrons the samples need to be
< 100 nm thick. The lenses used are not glass but electromagnets of various designs.
The lens focal length is easily adjustable through the electromagnet currents.

At the top, the electron beam is produced from a field emission gun. The beam

is then focussed with a system of lenses known as the condenser, to form a collimated
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Figure 3.6: Example x-ray reflectivity scan on an MgO sample.
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Figure 3.7: Ray diagrams for two TEM setups. Left the lenses are set such that the image

plane is given, right the diffraction pattern is collected. Diagram adapted from [190]
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beam illuminating the sample. Some electrons pass straight through while others are
scattered by the sample atoms. The transmitted and scattered electrons are all collected
by the objective lens and passed through a diffraction and projection lens to form a final
image. The image is collected by a fluorescence screen or CCD camera. By adjusting
the lens strength, the final image can be either real space or a diffraction pattern.

The resolution of an ideal microscope is limited to roughly the wavelength of the
radiation. 100 keV electrons have a de Broglie wavelength A ~ 0.01 A, far smaller than
an atom. The resolution of the TEM microscope used was approximately 1 A however,
it is ultimately limited by the aberrations caused by imperfect lenses.

The high resolution planar TEM images and data for this thesis were taken using a
FEI Tecnai system operating at 200 keV with the assistance of Dr. Michael Ward. For
TEM the samples are required to be just a few nm thick to allow transmission; films
and nanoparticles were grown on to commercially produced holey carbon membranes,
30 nm thick. The carbon is amorphous so does not interfere with diffraction effects.

For the cross-sectional TEM images the films/nanoparticles were grown onto a
standard Si substrate. This then underwent a standard cross-sectioning procedure
undertaken by Mr. Mathew Mclaren, this is illustrated in Fig. 3.8. The sample is first
cut up and glued back-to-back using an organic resin and hardening agent. The stack
is bored with a disk punch to form a cylinder, with the interface of interest down the
axis. A thin slice of this is taken and a dimple grinder is used to thin the middle of the
sample to approximately 10 um thick. The final thinning to form a small hole in the
middle is undertaken by precision ion milling. The smooth edges of the hole are thin
enough to be suitable for TEM studies. Example in-plane and cross-sectional TEM

images are shown in Fig. 3.9 (a) and (b) respectively.

3.4 Magnetometry

3.4.1 XAS and XMCD

The physical basis for the XAS and XMCD experiments are detailed in section 2.5. The
experiments were carried out on the U4B beamline at the NSLS source, Brookhaven
National Laboratory (synchrotron now decommissioned). The x-rays are generated
from a bending magnet source with an energy range 20-1200 eV. All measurements

were done in the total electron yield geometry, the pA drain current from the sample
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Figure 3.8: Diagram illustrating the cross-sectioning process for TEM. Substrates are cut to
form a substrate/interface sandwich, glued with a resin and hardening agent. A dimple grinder
and ion miller is then used to bore a small central hole. The edges of the hole are thin enough

that TEM can be used to look at the interface, see cross-section of disk on the right.

(b)

Figure 3.9: TEM images of nanoparticles in relief (a) and cross-section (b).
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Figure 3.10: Geometry used for XMCD measurements at U4B. Sample is perpendicular to
the beam and electrically connected through the sample stick to a current-to-voltage amplifier.
Electromagnetic pole pieces front and back of the sample have a central hole bored to allow

beam through.

is measured via a current to voltage amplifier. Current is drained from the sample
via a small daub of silver paste out of the beam area. The incoming beam energy is
scanned via a monochromator and resulting electron emission intensity plotted. The
TEY signal is continuously normalised to a Au grid beam monitor to account for beam
intensity variation. A known magnetite reference sample is continuously scanned with
portion of the beam intensity, allowing later adjustment for systematic monochromator
errors. The beam width at the sample is approximately 1 mm.

For the XAS measurement linearly polarised light is used, with an energy resolution
of better than 0.1 eV at the Fe L3 edge. For the XMCD measurements 70% circularly
polarised radiation was used. The sample was perpendicular to the beam in the geo-
metry shown in Fig. 3.10, electromagnetic pole pieces front and back have a hole bored
through them to allow beam through. At each energy the sample magnetisation was
set anti-parallel /parallel with the beam direction using a field of £0.5 T, TEY signal

measured in both directions.

3.4.2 SQUID Vibrating Sample Magnetometer (VSM)

The SQUID VSM is an extremely sensitive instrument, able to measure the total mag-
netic moment of a sample down to 1 x 1071 Am?. Commonly the instrument allows

investigation of the sample magnetism over a range of temperatures and applied fields.
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3.5 Scanning probe microscopy

The VSM principle was first developed by Foner 1955 [191]. The sample to be measured
is placed within a counter-wound wire coil and vibrated along the axis sinusoidally. The
motion causes the small magnetic field from the sample moment to generate an emf in
the wire coils. The emf can be measured and is proportional to the sample moment,
it is not affected by external time-independent fields. Extremely high levels of noise
reduction are achieved by using a lock-in amplifier tuned to the frequency of the sample
vibration. The lock-in accepts signal only within a very narrow frequency band around
the motion, eliminating noise sources at all other frequencies.

The SQUID VSM uses a superconducting quantum interference device (SQUID)
to measure the generated signal even more accurately. A diagram of the operation
is shown in Fig. 3.11. A SQUID uses the properties of superconductors to measure
magnetic flux down to accuracies greater than a single magnetic flux quantum. The
current generated in the VSM coils is inductively coupled to the SQUID which acts as
an extremely high gain and low noise current to voltage converter. At Leeds we used a
Quantum Design MPMS SQUID VSM system, this has a standard temperature range
of 2-400 K and can apply fields up to +4 T, it also has an oven mode which extends
the temperature range from 400 up to 900 K. The samples were 3 x 3 mm substrates,
which are mounted on low susceptibility quartz rods and lowered into a *He cryostat.
The sample space sits in a bath of liquid He, surrounded by an insulating jacket of
liquid nitrogen at 77 K. A roughing pump is used to pull He through a vent into the
sample space at a controlled rate, this is combined with a resistive heater to control
the sample temperature to within 30 mK. Pumped “He is recycled at Leeds through an
onsite liquefier. The applied magnetic field is created by a He cooled superconducting
magnet. For lock-in the sample is vibrated at 13 Hz with an amplitude of &~ 5 mm.
Amplitude and averaging time combine to affect the sensitivity of the measurement,
these parameters were adjusted as needed. The sample total moment was calibrated

with a 3 x 3 mm NiFe fim of known thickness and density.

3.5 Scanning probe microscopy

Scanning probe microscopy (SPM) is a group of very powerful techniques for obtain-
ing real space high resolution images of surfaces. In general a sharp probe is raster
scanned very close to a surface. Sensitive feedback of the surface physical properties

is achieved through force, tunnelling current or other interaction mechanism. SPM
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Figure 3.11: Simplified diagram showing the operation of the SQUID VSM. The signal gener-
ated in the coils is inductively coupled to a SQUID device designed as a highly sensitive current

to voltage converter. Diagram adapted from [192].

requires atomically precise positioning, piezo actuators allow this control. The quality
of measurement is generally determined by the limiting factors of environmental noise

and the quality of the probes [193].

3.5.1 Atomic force microscopy (AFM)

In AFM the feedback mechanism is simply the interaction force between the surface
and the tip. Close to the surface this is an attractive van der Waals force, this slowly
increases towards the surface and is followed by a sharp Coulomb repulsion. AFM
was first attempted in the 1980s using STM to detect cantilever deflection [194]. There
have since been huge developments in accuracy, reliability and ease of use. High quality
images can now be obtained in minutes in atmospheric conditions or even in liquids,
it is used as a standard tool in many disciplines of science [195; 196]. There are many
different types of AFM, all designed to measure particular physical properties or deal
with particular types of materials. In this research we use ‘tapping mode’ AFM, a
common mode with a reduced contact with surface and therefore less chance of surface
damage. The AFM is used for calibrating particle sizes and densities, also for examining
film roughness and morphology.

The basic geometry of the tapping mode AFM measurement is shown in Fig. 3.12.

The scanning probe is a sharp tip attached to a perpendicular cantilever. This cantilever
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Figure 3.12: Diagram showing the major components of the AFM system.

undergoes forced oscillations close to its resonance frequency, driven by a piezo actuator
at its base. The interaction with the surface is detected sensitively through alterations
to the amplitude of vibrations. The additional, height dependent, attractive force on
the tip will change the effective resonance frequency and introduce damping effects,
both of which modify the cantilever rms amplitude [197]. To detect tip deflections a
laser reflected off the tip end is detected in a four quadrant photodiode. Differences
between the segment signals are used to detect the relative cantilever deflection.

The deflection signal is immediately fed back to a computer which continuously
adjusts the tip height to maintain a constant distance from the surface, i.e. a constant
RMS amplitude. A key parameter to control for a quality image is the sensitivity of the
feedback loop, particularly for nanoparticle samples with abrupt large height changes.
The loop is managed by a proportional integral derivative (PID) gain controller. PID
measures as an error e(t), the difference between the current and the desired RMS

amplitude, and adjusts tip height at a rate according to:

() = cpelt) + ¢ /0 Ce(rydr + cd%e(t) (3.3)

where ¢, ¢; and cq are constants set by the user to control the feedback rate. ¢; tends
to be the most responsive of these constants and was set at a relatively high value for
these samples.

AFM scans between 0-10 um were done in atmospheric conditions on a Bruker mul-
timode 8 with electronics controlled by Nanoscope 5 technology. The tips were silicon
Bruker TESP probes or similar: resonant frequency ~ 300 kHz and force constant 42

Nm~!, nominal tip radius 8 nm.
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3.5.2 Scanning tunnelling microscopy (STM)

In STM, a conducting probe interacts with a surface via a tunnelling current. This was
the original SPM technique developed by Binnig and Rohrer in the early 1980s, work
for which they were shortly awarded the Nobel prize [136; 198]. Due to the exponential
sensitivity of the tunnelling current, the STM remains one of highest resolution SPM
techniques, atomic resolution is regularly achieved on conducting surfaces. Laterally
0.1 A and vertically 0.01 A resolution is possible [193].

The tunnelling process was explained in detail in section 2.1. The resulting current

profile was found as (2.13)
I(V) o« Dy(ro, E)Ds(Ep)Ve 2, (3.4)

This shows the tunnelling current as proportional to the tip and sample density of
states, Dt and Dg respectively. The current decays exponentially with tip surface-
distance z on a length scale k 4,51/ 2 with @ the average barrier height. An STM image
is inherently more complicated than an AFM image to interpret, an image convolutes
both the topology of a sample and the surface electron density, simulation and theory
is often needed to extract quantitative information.

An Omicron variable temperature STM (VITSTM) was used for STM measurements.
This is an ion pumped UHV system with a base pressure ~ 10~ Pa. Using a liquid ‘He
circulation system, sample temperature can be controlled to a base temperature of 20 K.
A diagram of the measurement set-up is shown in Fig. 3.13. The sample is clamped into
a molybdenum sample holder which rests on a grounded contact finger. A brass thermal
contact plate is clamped to the sample plate in situ to stabilise the sample temperature.
Flexible Cu braiding provides thermal conduction from the cooling circulation to the
brass plate. During scanning the sample is grounded and bias voltage applied through
the tip.

The tip is a snipped or etched wire pointing up to the sample, it is mechanically
clamped into standard 3 pin holder. The tip position is controlled on a coarse scale with
a 3-axes linear piezo motor and with a single tube piezo for fine approach and scanning.
Positive voltage is applied to the tip, gap voltages range from £0-10 V. Current signal is
amplified with preamplifier, signals in the pA to nA range are measured. Tip feedback
is managed by a proportional integral (PI) gain system, the software allows user control

over the sensitivity with a single parameter (selectable from 0-100%).
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Figure 3.13: Diagram of the tip-sample assembly within the VI'STM vacuum chamber.

Several systems are used for vibration and electrical noise reduction. The entire
sample-tip assembly is mounted on free floating soft springs with a resonance frequency
approximately 2 Hz, this stage is eddy current damped. The STM vacuum chamber
and pump are all mounted on an air cushioned optical table, only flexible connections
are allowed between table and ground. All electrical connections in the room, and the

chamber body, are earthed through a single ground point to prevent grounding circuits.

Sample transfer STM is a surface science technique requiring high quality surfaces.
To protect the exposed oxide and nanoparticles from oxidation and other atmospheric
contamination, the samples were transferred between sputterer and STM using a small
portable vacuum chamber. This is pictured in Fig. 3.14. The portable ‘vacuum suit-
case’ has a small dedicated ion pump run by two 12 V dc batteries, it maintains a
vacuum of ~ 1 x 107% Pa throughout travel and transfer. Connection is through a CF
standard flange with Cu gasket, pumping is done via the fast entry lock turbo pump
on the STM.

Scanning tunneling spectroscopy (STS) I-V STS measurements were done with
the feedback loop off and the tip nominally stationary (unless otherwise stated). Each
point required 50 us stablisation time and 160 us for data aquisition. The average time

for a single spectra then was ~ 60 ms.
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Figure 3.14: Photos showing the operation of the vacuum suitcase. (a) transfer out of SLIM.
(b) transfer through the fast entry port of the STM.

3.5.3 Probe developments

In any SPM experiment, the feedback mechanism is a convolution of the sample prop-
erties and the probe itself. It is therefore very important to choose the correct tip
material and shape. In STM there is the topographical convolution of the tip shape
with the surface features and there is also the electronic convolution, the tunnelling
is proportional to the joint density of states. The STM tip then should be chemically
stable, have a small reliable end shape and a relatively featureless density of states
about the Fermi energy. There are two main classes of tip preparation used: mechan-
ical cutting of an inert metal or chemical etching of an appropriate material. Cutting
is easier and can produce sharp tips, however the end shape is unreliable in nature, the
tip quality is generally inconsistent and unsuitable for spectroscopy. Investigations at
the beginning of the project showed that cut tips often produced image artefacts, the
convolution of the shape with the relatively large nanoparticles is severe. We therefore
decided to develop the more difficult chemical etching method which produces much

more reliable, and quantifiable, tip shapes.

Mechanical cutting

Tips were cut from Ptgglrog 0.25 mm wire using standard wire cutters. The cut was
made at a steep angle to the wire and with a concurrent pulling motion, this is a very
standard method of tip production [199]. Ptlr is chemically inert so that the wire

is simply cut in air, clamped into the tip holder and loaded into the STM vacuum
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chamber. The tips were quality controlled by scanning terraces on freshly cleaved
HOPG (highly oriented pyrolytic graphite), this is a standard control material in STM
that is relatively easy to scan for atomic scale detail [193]. Cutting produced atomically
sharp tips approximately ~20% of the time.

Fig. 3.15(a) shows examples of two different tips cut and then imaged with scanning
electron microscopy (SEM), clearly the shape of the end of the tip can be seen to vary
hugely from tip to tip. The sensitivity of the tunnelling means that 90% of the current
goes to the first 1 A of the tip material, so for flat surfaces like HOPG the unreliable
shape is not usually a problem. For relatively large nanoparticles ideally the last few
nm of the tip would be smooth. A rough tip also means that it is difficult to measure
a single particle in spectroscopy scans, the capacitive effects of nearby clusters reduces

as 1/R and can be quite long range.

Chemical etching

Etching of tungsten probes was done in a two stage process. First a sharp tip was
produced ex situ using a chemical etching process, this forms an oxide layer which
must be removed once in vacuum. In the STM chamber the oxide layer was removed
by electron bombardment and field emission. An SEM image of a W tip produced in
this way is shown in Fig. 3.15(b), the end is smooth and conical with a radius generally
around 30 nm. Tungsten is chosen as a well characterised common tip material. The
DOS is relatively smooth about the Fermi energy [200; 201].

Chemical etching was done using standard production method for tungsten tips
[199; 202]. Briefly 0.25 mm diameter tungsten wire is cut to length and then dipped
2 mm into 4 M NaOH solution. Using a stainless steel ring as a second electrode,
an electrochemical cell is formed with etching taking place preferentially at the liquid
surface. After approximately 5 mins etching, the wire at the surface will be too thin
to support the length below it and will stretch and drop leaving a sharp point to use
as a tip. The voltage is immediately cut off at this point to prevent further etching of
the tip. This process had already been established at Leeds during the doctorates of
Dr. C. Allen and Dr A. Walton [203] and required no further development.

For the second stage a new adjustable sample holder was installed through a port
into the STM. The new sample stage is electrically isolated from the chamber and

connected to an electronic feedthrough capable of supplying a voltage to the tip. A
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Figure 3.15: (a) and (b) show an SEM comparison between a PtIr tip and W tip. (c) is a

diagram showing the electron bombardment stage of tip treatment and (d) a diagram showing
the field emission stage. (e) shows the completed tip tool in situ, the bright glow comes from
the heated W filament.
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looped tungsten filament of diameter ~1 mm is placed close to the tip, see Fig. 3.15(c).
A current of approximately 4 A is forced to flow through the filament causing it to
heat up and thermionically emit electrons, at the same time 4100 V is applied to the
tip causing it to attract the emitted electrons which bombard the tip and etch away
the oxide layer. To characterise the tip the filament is grounded and the tip voltage
is scanned between 0 and -1 kV (while limiting the current to 1 pA), a diagram of
this is shown in Fig. 3.15(d). The current-voltage curve produced by the electron field
emission is characteristic of the tip shape and can be used to find a tip radius. Tip
radii of 10-40 nm were considered acceptable for use.

A picture of the tip tool inside the STM is shown in Fig. 3.15(e) the filament is
removable, wire bonded to a standard Omicron sample plate and the voltage across it
is controlled by the inbuilt Omicron sample heating power supply. The tip holder is
designed to accommodate standard omicron sample plates and moves back and forth
on a z manipulator to allow room in the chamber. It is isolated electrically by ceramic
beads and connected to a Keithley 237 power supply capable of supplying up to +1.1
kV and measuring currents down to 100 pA. The Keithley 237 is controlled via a GPIB
connection by a computer; a program with a graphical user interface has been designed

and implemented for this purpose.
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4.1 Introduction

4.1 Introduction

This chapter describes an investigation into the ensemble magnetic properties of CospFerq
nanoparticles. As discussed in chapter 2, nanoscale ferromagnets display a rich array
of magnetic behaviour not seen in bulk material, the basic physics behind these phe-
nomena are well explained but there are still open questions, particularly regarding
densely packed interacting particles. One of the methods that has been most successful
to investigate these properties in recent years, has been to use a gas aggregation nan-
oparticle source, or similar, to deposit clean, size-controlled nanoparticles in a known
concentration [187]. As this is what we used for deposition anyway this put us in a
good position to conduct these studies.

Here we will mainly focus on a set of samples grown with relatively high density
of clusters per unit area. These were characterised first using X-ray magnetic circular
dichroism (XMCD) at the National Synchrotron Light Source (NSLS) at Brookhaven
National Laboratory, and then underwent further investigation in Leeds using magneto-
metry (SQUID-VSM) and atomic force microscopy (AFM). In part, the high cluster
density (several 1000 um~?) was necessary in order to generate enough signal for the
XMCD. In fact, as we will see, studying clusters at percolation ended up producing
interesting effects related to nanoparticle magnetic dipole interaction forces. XMCD is
element specific and can separate out orbital and spin angular momentum contributions
to magnetism. We show the orbital component in nanoparticles is enhanced over the

quenched bulk value and further, that it is correlated with the size of the particle.

4.2 Samples

The samples were grown on a thermally oxidised silicon wafer. In each sample, the
stack grown was substrate/Ta(4 nm)/MgO(1.1 nm)/CozoFeyo NPs/Al(3.7 nm). This
stack was chosen to be similar to the samples to be measured with STM, as described
later in chapter 6. In particular, the MgO layer next to the particles will later be used
as a tunnel barrier and for now it was important to see if it would affect the magnetic or
chemical properties of the particles. The Al layer is a necessary cap for these samples
which are removed from vacuum for transport: the surface atoms absorb atmospheric
oxygen forming AlO, but this process passivates at a depth of about 2 nm [204], well

clear of the nanoparticles (NPs). Due to its low atomic number Al also has a low
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photon absorption in the VUV range, (an electron sampling depth of approximately 8
nm [205]) thus the XAS signal is not attenuated significantly by the capping layer.
The NPs were grown by gas-aggregation technique as described in chapter 3. Vari-
ous sizes and densities were deposited according to the quadrupole mass filter settings
and deposition times. However, in practise these size selections were not reliable for
magnetic particles at this time. In the end the size distributions are taken from the
more direct magnetometry and AFM characterisation post-growth. These data are
presented below. In this study the samples grown were labelled according to the date
grown and the sample within that run e.g. 1.010812. Since we do not know the expec-
ted properties of the sample until direct characterisation, we will use sample codes as

effective indices until that point.

4.3 XAS characterisation

After growth and capping in vacuum, the samples were removed and taken to the NSLS
facility for further characterisation. On the beamline the samples were mounted per-
pendicularly to the beam and electrically connected to the drain current pico-ammeter
using silver paint. They were measured exclusively in total electron yield (TEY) mode
as described in the methods chapter.

The first scans were used for x-ray absorption spectroscopy (XAS), these are quick
scans of the monochromator using unpolarised photons and with no magnetic field
applied to the sample. Fig. 4.1 (a) shows the signal obtained at the Fe L edge for
sample 2_.010812. The peaks are smooth with little visible fine structure, this indicates
the clusters have been fully protected by the Al cap and have not oxidised. Fe-O bonds
would cause secondary peak structure, an example XAS scan on an oxidised sample is
shown in Fig. 2.6. This also means the MgO layer below has not intermixed with the
clusters. The samples measured in this study all had the same Al cap and all showed
the same lack of fine structure in their XAS spectra.

Fig. 4.1 (b) shows a scan of a sample at the Co edge. This has a considerably lower
signal-to-noise ratio. The small signal is partly due to the 3:7 ratio of Co to Fe in the
sample but also because this technique is generally less sensitive to the Co edge than
the Fe edge [206]. The XAS spectrum shows no fine structure within the limits of the
measurement however, again demonstrating the effectiveness of the cap. The signal is

too low to be useful for the much less sensitive XMCD measurements, requiring too
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Figure 4.1: (a) XAS spectrum at the Fe edge from sample 2.010812 (in TEY mode). The
peaks are smooth with no fine structure, this indicates that the iron is in a chemically pure
unoxidised state (see text). (b) an example Co XAS spectrum, the signal is significantly noisier

than at the Fe edge, though again no fine structure is visible.

long of a count time to obtain enough signal. XMCD measurements were all done at

the Fe edge for these samples.

4.4 Size dependence of spin and orbital moments using

XMCD

4.4.1 XMCD analysis

The samples were next measured for x-ray magnetic circular dichroism (XMCD) effects.
In this geometry, the polarisation of the beam was fixed at 70% left circularly polarised,
and the sample magnetisation was aligned parallel to the beam using a 0.5 T field
generated with an electromagnet (this is close to the saturation field, see SQUID data
later). At each monochromator setting, the TEY signal was measured with the sample
magnetisation saturated along and against the beam. An example XMCD spectrum
taken from sample 2_.010812 is shown in Fig. 4.2, the top graph shows the intensity
TEY signal. The signal is good: clear differences can be seen at the L3 and Ly edges
and the polarised measurements switch in the opposite directions (I is greater at the
L3 edge by convention).

The TEY data shown in Fig. 4.2 has been normalised to the post-edge background

60



4.4 Size dependence of spin and orbital moments using XMCD

6 4
5 ]
4 1
3]
2]
14

TEY (normalised)

0.0
05
1.0
15!
2,01
-2.51 \ p ./

3,01 o= 2 010812

MCD

700 710 720 730
Energy (eV)

Figure 4.2: Showing a sample intensity and difference XMCD spectrum from sample 2_010812.
The large MCD signal from the densely packed clusters enables an accurate determination of
the Mopy/Mopin ratio. p and ¢ as used in the sum rules are labelled on the integrated MCD
data (dashed line). As with XAS data, a linear background is subtracted and then normalised
to the post-edge signal.

signal, which is necessary in order to apply the sum rules. First a linear background is
subtracted to bring the pre-edge background to zero, then the total signal is multiplied
by a factor to bring the post-edge background signal to 1. The difference (MCD) signal
is shown in the lower panel, this is smooth and low noise after approximately 45 min
of count time. Previous measurements had shown that this density of nanoparticles
was required in order to obtain a signal good enough to apply the sum rules within a
reasonable count time. The dashed line shows the integration of the MCD signal with
p and ¢ marked as used in the sum rules. For error analysis purposes, the error in p
was taken as the variation in the integration signal over the ~ 3 eV around the end of
the L3 edge. The error in g was taken as the noise in the final background signal (the
end background has been cropped out of the graph but did level to below the noise
threshold by 750 eV).

The most accurate information that can be obtained from XMCD spectra is gen-

erally the ratio of the orbit to spin moment per atom (m;/mgs = r;s) for the element
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Figure 4.3: m;/mg values determined for each sample. The blue dashed line marks the bulk

value for iron.

in question. Recalling the sum rule equations (2.33) and (2.34) in chapter 2 both my
and mg contain a factor 1/C where C' = (I1,41,)/Np, i.e it is the integration over the
intensity TEY signal (after the non-resonant background signal is subtracted) divided
by the number of hole states in the 3d band. C tends to be the least accurately de-
termined quantity because of the generally unknown Ny, it is cancelled out in rj5. In
the p and ¢ notation we can write
2q

3(3p—2q)
The spin to orbit moment ratio is shown for each of the samples in Fig. 4.3. A blue

dashed line at the bottom indicates the well established ;s ratio for bulk Fe of 0.042

Tis = my/mg = (4.1)

[173]. These measured ratios are enhanced over the bulk value, though not close to
the single atom limit, indicated by Hund’s rules to be close to 1 [207]. There is no
correlation between the nominal size of each sample, as set by the quadrupole during
growth, and the level of enhancement in r;;. Unfortunately at this time (and in general
with magnetic targets), the quadrupole was quite inaccurate in producing a well defined
size of clusters (this is discussed further in the experimental techniques chapter). It
was desirable therefore to get an accurate measurement of the size from an alternative

physical measurement, each sample was therefore later scanned using AFM.
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4.4.2 Size determination by AFM

Atomic force microscopy (AFM) used in tapping mode (low tip-sample interaction)
was done on each of the samples. The tips used were nanosensors PPP-NCLRs, Al
coated Si with a nominal tip radius <10 nm. The scans were taken on the same place
on the sample as the beam placement for the x-ray spectroscopy data (the x-ray beam
was approx 500 pm width). A 1.5 um image taken on sample 1.050712 is shown in
Fig. 4.4 (a) with a zoomed portion shown in (b). The clusters are densely packed,

970 are countable giving a cluster density of 130 um™2.

In fact as we will see later
using magnetometry measurements the clusters are far denser than this, measuring a
few 1000 pm ™!, not all of the particles are visible.

On first glance it is not trivial to determine the size of the particles. Scanning
probe microscopy in general does not give accurate lateral sizes of objects due to the
convolution of the object with the tip shape. Since the particles are relatively large
this convolution can be correspondingly large, the average radius of particle in this
image is 21 nm, far larger than the expected 5-7 nm from TEM images of similarly
deposited NPs. The ideal way to use the AFM image is to have isolated clusters and to
measure their maximum height relative to the substrate level, this avoids convolution
effects. Isolated NPs grown uncapped in the same run under similar conditions showed
diameters between 10 and 15 nm. For these densely packed samples no clear substrate
minima exist so we can only measure the cluster areas, this gives us a relative NP size
between samples within the limitations discussed below.

To do detailed statistics on the image it is first necessary to create a binary mask
that demarks the areas of visible particles. To process the images, the open source
software Gwyddion [208] was employed. Gwyddion contains a ‘watershed’ algorithm
that finds local minima in the image, analogously to the process of dropping water
and noting the location of puddles formed. Five parameters including droplet size and
puddle threshold are used to determine the final binary mask. Fig. 4.4 (c) shows the
same image as (b) with the binary mask overlaid in red. Visual inspection shows that
the algorithm marks the majority of clusters accurately. It does have two fault types:
the first can be seen at point (1) where noise levels swamp a small particle, this particle
then breaks up into several small particles each a few nm in diameter. The second fault
type can be seen at (2) where the definition between two particles is low and human

judgement would rely on shape (which the algorithm disregards). The first fault type
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Figure 4.4: AFM data for sample 1.050712. (a) shows the large scan taken over 1.5 pm with
the scale bar marking 500 nm. The indicated section of the image is cropped and zoomed for
detail in (b). The nanoparticles are densely packed and larger than the expected nominal size.
They can be masked with reasonable accuracy using the watershed algorithm, shown in red in
(¢). Two fault types are highlighted. A histogram plot of the NP effective radii is plotted in

(d).
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Figure 4.5: (a) m;/m; ratio plotted against particle radius as found by AFM. the negative
correlation is expected. The bulk Fe m;/m; ratio is shown as a blue dashed line [173; 209].
In (b) the data is combined with data from previous studies [210-213]. The diameter for my
particles has been scaled, see text for details. A grey dashed line is a fit to the two species

model described.

leads to an inflated count rate of particles below 5 nm radius, these small particles are
simply rejected. The second fault type cannot be easily taken into account, but occurs
in less than 1% of NPs so should not affect our statistics greatly.

The size of the clusters is represented by an effective radius r* which is given in
terms of the measured area of the particles A as \/A/m. The histogram of particle sizes
for the image shown is plotted in Fig. 4.4 (d), this has the aforementioned cut off at
r* = 5 nm. This process was done for all of the samples. For each sample the same
AFM tip was used and the same five parameters from the watershed algorithm. In Fig.
4.5 (a) the mean r* for each sample is plotted against the measured ;3 = m;/ms, there
is a negative correlation (Pearson’s r = —0.83) between the quantities. Despite the
broad size distribution within an image, the standard error in the mean for the radii
is small enough to differentiate the samples. Some of the samples have been left out
from the plot, it was only possible to measure a certain number of samples with one tip
before it was damaged, this was the maximum number achieved. The radius error bars
are calculated as the standard error in the mean for the size distributions measured.

This AFM analysis presents a few questions. We cannot necessarily see all of the
clusters, perhaps the density of clusters per unit area would affect the measured size?

Also the measured size distribution of the particles is surprisingly wide, a standard
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Figure 4.6: (a) diagrammatically represents the scaling model described in the text. (b)
plots the average cluster radius as a function of the number of particles seen in the image,

demonstrating the expected N oc 1/ (r*)? relationship.

deviation in the diameter of ~16 nm. This does not seem consistent with simply a
scaling factor due to tip convolution.

We can make an argument based on scaling that satisfies both of these observations.
This is presented in a cross-section diagram of the AFM measurement Fig. 4.6 (a). The
diagram represents scanning over two different samples. In the blue scale sample the
average nanoparticle radius is 10 nm, in the red scale sample the average nanoparticle
size is 20% bigger at 12 nm. The pattern of deposited particles obviously would not
be identical between samples, but on average should produce the same results. The
tip is kept the same between samples by scaling as drawn. Scanning the represented
tip over the particles generates the dashed pattern shown in blue and red. Each dash
shows the lateral size of the particle below that is measured. You can see that emergent
particles appear far bigger than those below, completely distorting the real particle size
distribution. This accounts for the wide distribution of particle sizes observed. The
average measured size of the particles, however, has simply scaled by 20%. Thus we
should not trust the measured size distribution, but we may rely on the scaling of the
average size.

We have one important check on this argument. Looking again at Fig. 4.6 (a), a
100x100 nm image should contain 20% x 20% more clusters if the clusters are 20%
smaller, i.e. we should have number of particles in image N scale with average particle

radius (r*) as N oc 1/ (r*)?. This is plotted for the measured samples in Fig. 4.6 (b)
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4.4 Size dependence of spin and orbital moments using XMCD

and shows good agreement.

4.4.3 Enhanced orbital moments

We have determined the relative average size of the nanoparticles using AFM and found
it negatively correlated to the r;s ratio in Fig. 4.5 (a). This correlation has been seen
several times in the last decade or so by various groups [210-213]. The qualitative
explanation generally given, is that atoms on the surface of the particle with reduced
coordination number have more atomic-like enhanced orbital moments, while those in
the centre retain the bulk-like quenched orbital moment. The spin moment is not found
to be significantly different to bulk. This theory was developed more fully by Guirado-
Lopez et al. (2003) [214] using band structure calculations. They identified three key

mechanisms for the orbital moment enhancement at the edge:

¢ The reduction of the local coordination number causes an increase in the local

spin polarisation which enhances m; by means of the spin-orbit (SO) interaction.
e The Coulomb interaction favours the occupation of high m states.

o Degeneracies in the single-particle spectrum allow enhanced SO mixing, increas-

ing m; even when mg is saturated.

If this is the case, then it suggests our data should follow a two species mechanism.
Atoms in the centre of the nanoparticle should have the quenched bulk m;/ms ratio of
rf’;”k = 0.042. Those within a small distance d of the particle surface should have an
averaged enhanced orbital moment rfg /. For a spherical cluster of diameter D, the

signal measured in this model would be
2d 3 2d 3
bulk sur
my/ms = 1]. <1—) + 7y f [1— (1—) ] . (4.2)

In the large particle limit (D > d)this reduces to

6d
mifmg = ot 4 (2 =) 5 (4.3)

The result is the same if the cluster is considered a cubic shape. For large cluster

bulk

diameters we recover the ry;

value as expected.
In Fig. 4.5 (b) the data from previous reports has been combined with the data

from the current study. Since we do not know the absolute size of the particles we have
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4.5 SQUID-VSM magnetometry

measured, I have taken the minimum particle average on sample 1020412 as 10 nm,
and scaled the rest according to their measured average r*. The 11 nm minimum was
taken from measured sparse particle samples deposited in the same conditions and
should give a systematic error of less than 1 nm. The data here measured agrees with
the general trend of decreasing rs, particularly with the larger particles. It provides
a study on a size range of particles larger than have been done before and the final
ones are getting close to the bulk value of r;s. A fit of the data using eq. 4.2 is shown.
The trend of decreasing r;s is correct but the data does not fit well to the 1/D rule,
in particular the gradient of our samples with larger radius is too steep. The model
must neglect some of the physics involved, perhaps for the larger particles the core
wavefunctions spread further into the surface atoms making them more bulk-like. The
TEY signal can saturate in bigger particles due to the diameter exceeding the electron
escape depth; this is thought to increase measured r;5; by approximately 10-15% [187],
it should not significantly affect the relative trend in D however. Kleibert et al. [215]
suggest another cause may be size dependent surface strain. Edmonds et al. [216]
measured densely deposited nanoparticles and see m; dropping to bulk Fe values as
particle density increases, this is attributed to touching particles having higher than
average atomic coordination at their surface. We will consider this further after seeing

the magnetometry data.

4.5 SQUID-VSM magnetometry

The same set of samples all subsequently underwent SQUID-VSM magnetometry stud-
ies. The samples were all cut to the size required for this instrument of 3x3 mm?
(1.020412 was damaged in this process and was not measured). The same area of
sample that had been measured in XMCD and AFM was saved for magnetometry. Ex-
cept where stated the samples were measured with applied field H in the plane of the

film.

4.5.1 Anisotropy direction

Magnetisation vs. applied field measurements were made in the in-plane (IP) z — y
directions and out-of-plane (OOP) z. The results are shown in Fig. 4.7 (a). The IP

orthogonal directions give the same result and show that the easy axis of the particles
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Figure 4.7: (a) hysteresis loops for nanoparticles taken at 300K. Applied field is in three

perpendicular directions as indicated. The easy axes are randomly oriented in-plane. (b)
high resolution TEM of a CozgFeyy nanoparticle. The same image is shown on the right with
guidelines indicating the Wulff reconstruction. >95% of the particles measured had the (100)

face up.

must be in-plane, but randomly oriented within that plane. The OOP loop is the hard
axis of the particle film, though there is a small hysteresis remaining, probably due to
a few misoriented particles.

Fig. 4.7 (b) shows a TEM image of a nanoparticle grown in similar conditions. The
particles are clearly seen to be bcc crystalline with energetically favourable surfaces
(100) and (110) forming the Wulff reconstructed shape drawn. The measured lattice
parameter 0.29+0.01 nm matches with the 0.289 nm expected for bee Fe. On the same
sample >95% of the NPs had the same orientation, with the (100) plane sitting on the
substrate (one particle was found in the (111) orientation). It is likely that the easy
direction is along the (100) vectors due to magneto-crystalline anisotropy and in-plane

due to the dipole-dipole interactions between the particles, this will be discussed further
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4.5 SQUID-VSM magnetometry

later. Shape anisotropy could also play a part, if the particles are squashed slightly in

the z direction, a height to width ratio of 0.9 can induce an extra 3 peV /atom anisotropy

energy [161], adding to the bulk Fe magneto-crystalline anisotropy of 3.3 peV/atom
[217] in the (100) directions.

4.5.2 ZFC-FC

Zero field cooled - field cooled (ZFC-FC) measurements were done, up to the maximum

temperature of the normal SQUID-VSM operating mode of 395 K. These are shown for

a representative four samples in Fig. 4.8. The protocol is the same in each case (and

described more generally in section 2.4.2):

1.

The sample is heated to 395 K and a saturating negative field of -1 T is applied
then released. It was hoped this would be above the blocking temperature so
that particles would be randomly oriented. Any blocked particles are negatively

saturated by the field.

. The NPs are then cooled in zero magnetic field to 10 K, in theory this would cre-

ate a randomly oriented distribution with zero average magnetisation. In these
samples any particles still blocked at 395K will remain magnetised, giving a neg-

ative contribution to the sample moment.

. A field of 10 mT is applied and the sample is warmed again to 395 K. As particles

unblock the small field orients them, generating an average magnetic signal. The

magnetization measured is shown in the blue ZFC curve.

. In the same field the sample is cooled, the signal diverges from the ZFC as the

particles freeze into a state oriented with the magnetic field. The magnetic signal

measured is the red FC curve.

. The applied field is dropped to zero. The sample is then warmed again, this is

the green field warming (FW) curve. As the particles unblock they randomise in

the field, lowering the signal.

Looking at the ZFC-FC measurements it is clear that the NPs have not fully un-
blocked by 395 K. The ZFC does not peak and immediately diverges from FC on
cooling, this effect is particularly strong for 1.050712. In the fully SP state the FC
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Figure 4.8: ZFC-FC measurements taken for four samples labled in each panel. These show
that the particles have an unusually high blocking temperature (Tg). In each case the differ-
ential of the field warming (FW) curve is plotted in the lower panel, this gives the distribution

of the particle Tgs. The distribution is very broad considering the size range of the particles.
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4.5 SQUID-VSM magnetometry

and ZFC would align and fall as 1/7. This is a surprising result, the blocking tem-
perature Tp is expected to be much lower than room temperature. Using a crude
estimate of Tp ~ KV/25kp with bulk magneto-crystalline anisotropy for bce Fe of
Ky = 4 peV/atom [157], gives Tp ~ 120 K for a 12 nm diameter particle. Previous
experiments on similar particles [218] have given blocking temperatures in the range
50-150 K. We will discuss this anomaly further in section 4.5.4.

By differentiating the mpw(7") curve we may get an idea of the distribution of NP
blocking temperatures on a sample [219]. At each temperature the moment drops by an
amount proportional to the number of particles that transition to the SP state at that
temperature, therefore —d(mpw)/dT should be proportional to the number of particles
with Tp = T. By similar arguments —d(mpc —myzpc)/dT should be a similar measure.
The differentials are plotted below the respective m-T' curves in Fig. 4.8. These two
quantities agree for the most part and indicate a very broad distribution of blocking
temperatures, starting from 10-100 K and increasing up to the 395 K limit. Again this
is not what we expect. The particle volumes range from roughly 1300-2700 nm? so if
bulk MC anisotropy is dominant then we might expect the largest blocking temperature
to be a factor of ~ 2 greater than the smallest.

Since we cannot reach even the average blocking temperature of these particles using
this instrument, we might find out the fraction that are SP at 395K. Assuming all of
the particles are blocked at 10 K we may take the difference ZFC(395K)-ZFC(10K) as
the sum magnetic moment of those particles with blocking temperatures below 395 K.
Dividing this by the saturated moment for the sample (measured at 0.9 T) we may find
the fraction fo3g5 of SP particles at 395 K as f.395 = (ZFC(395K) — ZFC(10K)) /ms.
These values are given in table 4.1 and range from 17-34%, this again indicates most
of the particles are still to transition.

Further measurements on sample 3.010812 using the ‘oven’ mode on the SQUID-
VSM extend the temperature range of the ZFC to 650 K but show qualitatively similar
results. This is shown in Fig. 4.9.

4.5.3 m-H hysteresis

Hysteresis loops were measured on all samples at a range of temperatures. This tech-
nique is more consistent than ZFC-FC measurements. Since the sample starts at a

0.9 T saturation field, hysteresis loops are not magnetic history dependent. Fig. 4.10
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Sample  f<395
1.010812 0.24

2010812 0.26
3.010812 0.26
4010812 0.21
5010812 0.17
1.050712 0.21
2.050712 0.34

Table 4.1: Fraction of particles with blocking temperatures below 395 K for each sample, as
found from f.395 = (ZFC(395K) — ZFC(10K))/m
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Figure 4.9: ZFC-FC measurements at elevated temperatures on sample 3.010812. Again the
blocking temperature is not reached up to 650 K.

(a) shows hysteresis loops for sample 1010812 from 50 to 395 K. The 50 K m-H loop
has opened out, consistent with blocked ferromagnetic particles arranged with easy
axes randomly oriented in the plane. As the temperature increases the coercive field
H, decreases, eventually with all of the particles in the SP state, we would expect the
paramagnetic behaviour H. = 0, we do not quite reach this state with this sample.
Fig. 4.10 (b) shows a one parameter fit of the 395 K hystersis loop to the Langevin

function
m = mg(coth(z) — 1/x) (4.4)

where © = poHmpust/kpT and mpys is the individual moment of a cluster. This fit

gives Meust = 3.5 x 10% 1, roughly equivalent to a particle diameter of 7.2 nm assuming
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Figure 4.10: Magnetic hysteresis data for sample 1.010812. (a) shows m-H for temperatures
ranging from 50-395 K| the inset shows the complete loops, saturating fully at 0.9 T. In (b) the
395 K loop is fitted with a Langevin function, this predicts a particle size of ~ 7 nm. (c) plots
the determined NP diameter for each temperature, it has clearly not saturated at 9.2 nm. This
is again seen in M, /M; calculated in plot (d). The sample has not yet reached the SP state at
395 K.

74
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a moment per atom of 2.4up [220]. The function does not fit perfectly, the gradient
at H = 0 is too small, this is to compensate the medium field fit where the Langevin
function is too large. The poor fit is probably due to a combination of the particles not
all being in the SP state, and the fact that we have not used a distribution of particle
volumes in x.

Melust can be found more simply by using the small field approximation to (4.4):

L (dﬂ)
V\dH ) o _ Meclust

= ) 4.5
mg 3kBT ( )

The resulting m,s: and equivalent particle diameter is calculated for each temperature
and plotted in Fig. 4.10 (¢). The calculated particle diameter increases linearly with
temperature. Above the SP transition temperature we would expect the diameter to
flatten out to a constant value. If the linear trend continued we would expect the
diameter to reach the expected value of approximately 12 nm at T=580 K, again
evincing a surprisingly high blocking temperature. Remenance moment normalised to
the saturated moment plotted in Fig. 4.10 (d) shows the same picture, decreasing
linearly with temperature but not flattening out.

The coercive field as a function of temperature for blocked particles can be modelled,
in a one particle approximation, as [168]:

ot~ 2V [ () s

Mclust TB

In Fig. 4.11 H, vs. T is plotted for all seven samples. A linear fit is a reasonable
approximation in most cases. For samples 2_.050712 and 3_010812, H, tails off to zero
indicating they have passed their average blocking temperature, the point is marked
with a dashed line and only points before that temperature are used for fitting. The
fitting parameters are given in table 4.2 (a moment of 2.4 up/atom is assumed). The
blocking temperatures range from 320-500 K, lower than the ZFC-FC data shows but
still much higher than expected for this type of particle. The KV /atom values on the
other hand are similar to the few peV/atom measured in other studies [187; 217].

On some of the samples, for example 2_.010812, the H. vs. T' data appears to drop
non-linearly. The model used does not take into account a distribution of particle
sizes and therefore blocking temperatures, this is known to cause significant non-linear
deviations from the model [221]. This could also be the reason the anisotropy fields do

not correlate well with the blocking temperatures.
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Figure 4.11: H, plotted against T'/? for each sample. The linear fits are modelled after the

standard Stoner-Wohlfarth energy diagram. Two of the samples appear to have unblocked by

the last point, these are indicated with dashed grey lines.
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Sample Tp (K) K (peV/atom)
1.010812 420 4 20 2.8+0.1
2010812 320+ 30 29+04
3.010812 330 £ 30 1.3+£0.1
4010812 499+ 2 1.3+£0.1
5.010812 475+4 5.6 +£0.04
1.050712 400 % 40 5.0£0.3
2050712 330 £ 40 1.4+0.1

Table 4.2: Extracted fitting parameters from the H.-T°® data. Blocking temperatures and

anisotropies do not correlate.
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Figure 4.12: Blocking temperature plotted as a function of diameter as found from AFM. If
the particles experience only volume anisotropy these would be expected to correlate. They do

not.

We may expect for these large particles that the total anisotropy, and therefore
blocking temperature, should be correlated to the particle volume. Plotting T vs.
average particle diameter from AFM in Fig. 4.12 however, shows that there is no

correlation between these measured quantities within the limited data available.

4.5.4 Origin of high Tj

In summary, for these magnetometry measurements we have found from ZFC-FC pro-
tocols that the particle blocking temperatures appear to exceed 650 K, far higher than
expected from both theoretical considerations and previous experiments. They are also
shown to have a very broad distribution of Tz values, far higher than expected for the

given diameter distribution. They suggest a wide distribution of particle anisotropy en-
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ergies ranging from < 1 peV/atom to more than 10 peV/atom (bulk a-Fe cubic MC is
3.3ueV /atom [217]). H. vs. T measurements show the samples fitting reasonably well
to a T2 law. Contrary to the ZFC measurements, some of the samples have already
dropped to H. = 0, indicating that their average Tz is below 400 K. The extracted Ts
values do not correlate with the size of the particle as measured by AFM. The extracted
anisotropy of the particles tallies well with the order of magnitude expected from the
literature, but does not tally well with the extracted blocking temperatures. Samples
with the extracted KV values would be expected to have Tp ~ 120K (as shown in
section 4.5.2).

The answer may lie in the magnetic interactions between particles. Fig. 4.13 (a)
plots the areal cluster density vs. the blocking temperature extracted from the H,. vs.
T fits. While there was no correlation between Tz and average particle size, here we
see a weak negative correlation (of r = —0.72) between Tz and the density of particles
on the sample. Plotting M, /M, at 395 K as a function of cluster density in (b) also
yields a negative correlation, again indicating the particle anisotropy is tied up with
the density of particles on the sample. Cluster density in these cases is determined by
using the total magnetic moment of the sample divided by its area and dividing that
by the calculated magnetic moment of a 12 nm particle. We can do the same using
the particle diameters determined by Langevin fits: the correlation is the same but the
cluster density is high because the fits gave small diameters.

Fig. 4.13 (c) shows a representation of 12 nm particles randomly dispersed over a
surface at a density of 3000 um™2, it is clear the particles are relatively close and touch
in some places. The probability distribution of the nearest neighbour radius r for a

given particle, follows Poisson’s distribution as [222]
P(r) = 277N exp(—nr?Na) (4.7)

where Ny is the areal particle density. This function is plotted in 4.13 (d) for Ny =
3000 um~2. Integrating, approximately 75% of the particles are overlapping, assuming
a diameter of 12 nm.

Long range dipole interaction forces between particles are likely to be significant
due to the particles being at percolation. Naively one would guess that the dipole
interactions would create a glass-like structure, with randomly oriented moments fixed

in place by the dipole fields from the nearest neighbours. The mutual magnetic dipole

2

potential energy between two particles is proportional to pomZ,q

/r3 where 7 is the
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Figure 4.13: (a) and (b) show NP density plotted against Tz and M, /M ratio respectively.
Both are a measure of the effective anisotropy of the sample and show a negative correlation with
particle density. This indicates that dipole-dipole interactions are causing the unusual blocking
temperature ranges. (c) shows a simulated random deposition of particles onto a surface at
a density of 3000 um~2. Nearest neighbour calculations shown in (d) indicate approximately

three quarters of the particles are touching their neighbour.
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centre-to-centre distance. This energy equates to a temperature of between 300-3000 K
for adjacent 12 nm particles (the high sensitivity of the calculation to r and mejys gives
a high variation in the approximate calculation). This energy scale is much greater
than the anisotropy energy scale at ~ 120 K and is likely to be the origin of the large
mean and standard deviation of blocking temperatures observed. This effect has been
seen in high density samples before by Fauth et al. [223], in this case the particles were
deposited on a Cu(111) surface. In the paper the broad anisotropy range was attributed
both to agglomerated interacting particles and substrate mediated interactions. In our
case with an insulating substrate we rule out this latter effect. Ebbing et al. [224] also
see blocking temperatures enhanced by a factor of 5 fold, in their case due to induced
magnetisation of a Pt cap. In our samples with an Al cap of low spin-orbit coupling
this is unlikely to be the case.

This interaction picture fits the large blocking temperatures but does not however
agree with the relative densities between samples. These were seen to be negatively
correlated with the blocking temperatures. This is an interesting effect and difficult to
explain, it requires further theoretical investigation. The complex network of interac-

tions could be highly dependent on the particle density.

4.6 Conclusions

In conclusion we have studied the magnetic properties of densely packed CozpFerq
nanoparticles in the size regime 11-14 nm. XMCD spectroscopy combined with AFM
size determination reveal the Fe orbital to spin moment ratio m;/my is correlated with
particle size. This is an established phenomenon but has not been carried out with
such large particles before. At this large size it is found the m; values decrease very
rapidly compared to the trend expected from a simple two species model. This could
be attributed to problems with the current theory for large radius particles, or could
be caused by size dependent strain effects.

While the particles are not exchange coupled (else the orbital moments would be
quenched), magnetometry studies indicate that they are interacting through the mag-
netic dipole force. The sensitivity of the dipole interaction to the moment and nearest
neighbour distance, gives extremely wide distributions of effective particle anisotrop-
ies and therefore blocking temperatures. From a physics point of view, interactions

between particles is a very interesting effect that yields unpredictable results. Contrary
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to expectations, we find the average blocking temperatures to be negatively correlated

with the particle density.
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CHAPTER 5

Theoretical solutions of spin accumulation in
DMTJs
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5.1 Introduction

5.1 Introduction

In section 2.3.1 I introduced the so-called orthodox theory, used to calculate the elec-
tronic behaviour of single electron transistors and double tunnel junctions. This chapter
will focus on incorporating spin effects into the orthodox theory, especially focussing
on spin accumulation in the nanoisland. Our contribution to this theory has been to
find an analytical solution (under an asymmetric junction approximation) to the ex-
isting theory which is currently solved with numerical methods; this gives us insight
into the complex solutions of these equations, necessary for fitting to measurements
from real systems. We show that the magnetic properties of the junction can be de-
termined simply from studying the I-V profiles of the junction and therefore that a
single magnetic electrode could be used for simultaneously injecting and detecting spin
polarised current in a individual nano device. This body of work has been published
in the journal Physical Review B [225].

Introducing magnetic components into a double tunnel junction means that tun-
nelling rates onto the island will differ for up and down spin species. Unequal spin
tunnelling rates can cause a spin accumulation on the island, this modifies (by AF) the
chemical potential, which then affects the overall state current contribution. Barnag
and Fert (1998) [3; 226] were the first to adapt the orthodox theory to account for spin
accumulation. Using a simple two channel model the orthodox equations were changed,
the tunnel rates are made spin dependent by simply using spin dependent tunnelling
resistances R?L»L and Rj. The total current is found from summing the current from both
spin channels. The difficulty is to find the appropriate spin accumulation for a given
configuration, this must be done in a self-consistent calculation explained in more detail
below.

The solutions to the theory of Barnas and Fert showed that spin accumulation
modified the Coulomb staircase in a periodic fashion. Going further and predicting
TMR-V curves, the solutions predicted oscillating MR with bias. This prediction has
been verified experimentally by independent groups [109; 123; 227], an example fit to
experimental data is shown in Fig. 5.1. The theory solutions have since been developed
[4] and used to study frequency dependent effects [228; 229], gate polarisation effects
[230], strong coupling and co-tunnelling regimes [92; 231] and island arrays [232]. For
a review of theoretical developments see Barna$ and Weymann (2008) [5].

To summarise the orthodox theory described in section 2.3.1: we treated the excess
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Figure 5.1: Theoretical fit of the TMR to experimental data in a Co-Co-Al DMTJ structure.
Figure adapted from [109].

electron number N on the island as a good quantum number. This allowed us to
incoherently sum the current contributions from each state N to obtain the total current
I at a given bias V' (eq. 2.22). The state probabilities o(N) were found from detailed
balancing of the rates for each state (eq. 2.23). The tunnelling rates Fli were found
from Fermi’s golden rule (eq. 2.19), if the free energy change is favorable the rate is
proportional to the energy difference AU /e?R; (at T=0 K). R; is an effective junction
resistance proportional to the joint density of states and the transfer matrix (assumed

bias independent).

5.2 Model

The model is set up as a double tunnel junction shown in Fig. 5.2(a), with N excess
electrons on the central island and I‘i the spin-dependent electron tunnelling rates
onto (+) and off (-) the island (the electrode label ¢ € 1,2 and the spin label o € 1, ).

A Fermi golden rule type calculation is used to find the tunnelling rates which are given

as
AU;{; +
e _ 1 ~AUZL(N,V) | ars AU, <0 (5.1)
ic — 2. + ~ :
TRy ep(BUENV)y g AUE >0

where the approximation on the right, which we make for our analytical solution,

is that the temperature energy scale is much smaller than the charging energy scale
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(kT' <« Ec). Finite temperature leads to a broadening of the step ‘riser’ of width
kT /e. Effective resistance R;, is dependent on the junction’s mutual density of states
and tunnelling matrix, which in general are spin dependent but over a range of energy
small compared to the bandstructure variations will be approximately independent of
applied bias [3].

For convenience we also define each barrier’s total conductance as the sum of the two
parallel spin channels 1/R;t = 1/R;| + 1/R;4 and the spin dependent tunnelling rate
ratio as P; = Ryt /R AUZ%(N , V') is the electrostatic energy change on transferring an
electron through a tunnel barrier onto or off the island on the relevant side, enacting

the change N — N + 1. Using electrostatic considerations it is calculated as

2 /1 %
AUE = €<i<—2 N — ))iAEO
Ui C \2 e * Qo
21 W
AUE = e<i<1 N — >)iAEU 2
Us = (5 TN - Qo , (5.2)

with C = C7 + (3, Qpe the constant offset charge on the island caused by stray
capacitances in the environment, and AF, the additional spin dependent chemical
potential on the island which adjusts as spin builds up on the island.

The total current through the device, the sum of the two spin channels I(V) =
I (V) + I+(V), is given by coherently summing the appropriate rates for the ensemble
of possible island states:

o0

L(V)=e Y oN)(T5(N)—TL(N)) (5:3)
N=—00

where o(N) is the probability of finding the island in state N. The probabilities o (V)
can be calculated by using the fact that in the steady state the net probability of

making a transition between adjacent states is zero

o(N)(I{ (N) + T3 (N))

(5.4)
=o(N+1)IT7(N+1)+T5(N+1)
and that the ensemble probabilities must sum to unity
Y a(N)=1, (5.5)
N=—o00

where I'}(N) = T} (N) + T%(N).
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Figure 5.2: Schematics of the model. (a) A circuit diagram indicating rates and parameters

for Coulomb staircase theory. (b) An energy profile of the system for positive applied bias.
On the left is the Fermi energy in electrode 1 and right is the Fermi energy for electrode 2,
in the centre the island energy levels are split by the spin accumulation chemical potential.
Level Ny is shown for the given applied bias. The system is in region A with increasing spin
accumulation. (c¢) shows the system in region B with an extra | channel acting to decrease the
spin accumulation. (d) the system is in region C with the smallest spin accumulation, note that

Ny has jumped to the new level.
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Finally the spin accumulation AF4 is determined by the spin conservation equation

GDTQ

T

Iy — Iyp = AE, (5.6)

where () is the particle volume, D, is the island density of states at the Fermi energy
for electrons of spin o and 7,~! the spin relaxation rate on the island. We also impose
the charge conserving restriction DyAFEy = —D | AE).

Equations (5.1-5.6) together give a complete solution to I(V) when solved self-
consistently for AF4[4; 226]. The solution, however, is numerical and it is therefore
difficult to interpret the relationship between the resulting predictions and the barrier
parameters. To proceed with our analytical solution we make the asymmetric junction
approximation Rop > Rip. Because of this imbalance in rates, the island will pref-
erentially sit in the state Ny, just below the left electrode Fermi energy and we may
make the approximation o(Ny) ~ 1 > o(Np — 1). State Ny is highlighted in red in
Fig. 5.2(b). Mathematically No is the lowest integer that satisfies AU (No +1) <0

(i.e. the level below that which will reverse the current direction), which solves to give

1 OV
N0:§+27+Q0—5 (5.7)

where § varies over the Coulomb step between 0 and 1 maintaining Ny as an integer as
V varies. ¢ will serve as a useful parameter to define the position within any step of
the Coulomb staircase, independent of the step number, later on.

Solving (5.3) using these approximations gives a Coulomb blockade I = 0 region
when Ny = 0 and AUE(0,V) > 0 are all satisfied, and an I(V) function

1
) = Ryt C (szo + GV + g[l - sgn(V)]) +

AE: 1— P,D,
eRor 14+ P '

(5.8)

Vo = C%(No — Qo — %) is the bias at the start of the No'™ step, D, = D;/D, and
sgn(V') is a function that returns 1 for V' > 0 and -1 for V' < 0. The first term in this
expression for I(V') is simply the orthodox expression [61] with Ry taking the place
of the conventional tunnel resistance, it describes a discontinuous staircase with step
width AV = e/Cy, offset QoAV and step gradient (dI/dV), = Ci/RarC. The second
term is the additional effect that is encountered when a spin accumulation is allowed

to occur and is central to interpreting the effects of spin asymmetry in this structure.
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5.3 Spin accumulation

5.3 Spin accumulation

To understand the spin accumulation term in (5.8) we use the spin conservation equa-
tion (5.6) to calculate AE;. In fact in each step there are three sections to solve for,
they are defined by the position of the left electrode Fermi level relative to the 1T/ |
Fermi levels of the island electrons. In Fig. 5.2(b) they are highlighted and labelled as
regions A, B, and C. For simplicity we will here follow the solution through for positive
applied bias, a similar solution exists for negative bias and can be found by the same
methods.

Starting in region A, of the terms in the spin conservation equation (5.6) Iy is
immediately available from a calculation similar to that used to find I(V) (5.8). I3
presents more problems since at Ny for 1T = 0 there is zero current to first order.
To solve we go to the second order term in the current sum and find o(Ny — 1) =~
I'5 (No)/T'{ (Ng — 1). This leads to the following expression for spin conservation:

I‘2 (NO) FgT(NO) _ DTQAET )

I (N — 1) 2
(Mo )Ff(No—l) rr

(5.9)

The tunnelling rates I' all depend linearly on AE; and therefore (5.9) represents a
quadratic in AFy. When fully expanded this quadratic can be written

aAE} +bAE; +c=0 (5.10)

where

62R1TR2¢ 1-— PlDr DTQ

= (1-— D
@ ( Q) et Rir % 1+ P % Tr’

b = —2E¢[(Di+ Q)6+ (1+QD,)(CV/e—d)] —
9 2
(& R1¢32¢E0(5 % DTQ’ and
Ryt Tr

c = 4E4(1—-Q)5(CV/e—4).

This quadratic can be solved with the quadratic formula to give a complex expression

for AE}, from which the non-divergent solution is chosen.

More informatively, we can examine the steps further up the staircase where AE} /eVy <

1 (achieved on the 27 or 3" step for typical junction parameters). If we also approx-
imate that the spin relaxation time is long then in this case we find the useful result

1-@Q

AF; ~ 2Bc— %
T 1Y oD,

(5.11)
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with @ = P1 /P, the spin resistance asymmetry (P; = R;4/R;)). In this solution, the
spin accumulation begins a new step at zero and linearly increases or decreases with
increasing V.

Regions B and C start at the point at which the left electrode Fermi level moves
above the island Ny + 1 | (or 1 if @ > 1) level. The potential at this transition point

can be calculated as a fraction of the step width as

1+QD,
v _ Vmax - Vb _ Q(l"‘Dr)7 Q > 1 (5 12)
"TUAV ) hep |
90 Q<.

In B and C, where a new channel has opened up exclusive to | electrons, the spin
accumulation is expected to decrease as the | spins drain from the island. In fact, owing
to the extra tunnelling channel available to the electrons, the solution is a cubic with
complex dependence on the parameters. The behaviour turns out to be as expected,
but the complexity of the analytical form adds little insight to our understanding. To
briefly outline the current calculation in regions B and C: we choose for specificity
@ < 1 so that 1 spins have accumulated, a similar solution can be found for @ > 1.
The method proceeds similarly to the solution given for region A except that here we
must allow for both second order terms o(Np—1) and o(Np+1). Using equations (5.3)
and (5.4) we find

I'; (No)

't (N — 1) —=—2——— — T (N,
1o >1“T(No -1) 21(No) 5.13
LI (No)Ty:(No+1)  D1QAE, (5.13)
Ty (No+1) + T (No + 1) o

Again the tunnelling rates I' are linear in AF; and so in this case the result expands
to a cubic in AF;. The full expansion is over fifty terms. This can be solved either
numerically or analytically and the non-divergent solution taken to complete the ex-
pression for AE; in B. C has the same AF; solution but in this case Ny has changed

so we must use the transformation Nyo — Np — 1 in (5.13) and (5.8).

5.4 Results

The results of these calculations are shown in Fig. 5.3(a) and compared to the full

numerical solution for two cases Ror/RiT = 500 and 50. The analytical solution to
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Figure 5.3: Results of the model. (a) A comparison of the analytical solution to numerical

Q
N

simulation for two different ratios of Ror/RyT. Current (curves offset for clarity) above and
differential resistance below, the inset shows the spin accumulation varying as a function of bias.
(b) An expanded view is given, with I(V') features used for parameter determination labelled.
The parameters used were Ror = 1 GQ, P, = 1/8, P, = 1/4, C; = 0.1 aF, Cy = 0.8 aF,
Qo =0, D, = 3/4, 7./7s = 103.

I(V) shows excellent agreement with the numerical calculation for 500, but starts to
deviate for 50 as the Ror > Ry assumption begins to break down and levels below Ny
start to populate. The differential conductance shown below the I(V) demonstrates the
expected sign change within the step as the system passes from region A to B, and the
gradient is positive in A as expected for our parameter choice. The spin accumulation
on the island shown in the inset of Fig. 5.3(a) oscillates, increasing in A and decreasing
in B/C.

There are two major deviations to the analytical solution that increase as Ror/RiT
decreases. The first is a lower than expected current near the beginning of the step,
this tends to smear out the Coulomb staircase and reduce the dI/dV signal. It occurs

at the beginning of the step where the tunnelling rate into the new Ny level is relatively
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slow and the Ny — 1 level can still hold a significant population. The second effect is
that the island spin accumulation is not completely eliminated before the start of the
next step, the system is therefore in region C for a small period after the orthodox step
start point and a slight expansion of the step is seen, becoming more pronounced at
higher bias. While the first effect is generally undesirable, the latter shift, if different
for anti-parallel and parallel magnetic configurations, can give rise to the TMR sign
change switching seen in previous work [3]. In general however, the cleanest and most
detailed results will come from devices that satisfy the Rom > Ri7 criterion whilst still
maintaining Cy < Cs.

Looking again at the final solution for (V') in region A given by (5.8) and (5.11)
combined, we find that the modification due to spin accumulation is an additional
maximum or minimum in each step in the Coulomb staircase. The position of the
stationary point is given by (5.12) and the gradient of the step in region A is given by
(df> _ G N C; (1-Q)(1—D:P,)

dV /A RorC  RopC (14 QDy)(1+ P2)’

From this we see that inner step maxima indicates that (1—Q)(1— D, P) > 1 and vice

(5.14)

versa for step minima. This dependence on @ is physically reasonable as P; essentially
determines the rate that spin accumulation builds through the left junction and P;
the rate that the spin accumulation drains through the right. Importantly we see an
imbalance in P; /P, is required, a symmetric ferromagnetic junction will not accumulate
spin. The spin effects on the I(V) curve are of greatest magnitude for @, P, < 1 or
Q, P> > 1, and are suppressed as (Q or P, — 1.

The relative complexity of the I(V') shape means that many parameters can be fitted
independently, the different features are highlighted in Fig. 5.3(b). From step width
AV, bias offset, dI/dV, and dI/dV,ye we find Rop, Qo, Co and C1. Vipax and dI/dVy
given in (5.12) and (5.14) combine to give any two of the three spin parameters P,
P, and D, the third must be determined by bandstructure calculations or alternative
experimentation. The assumption that Rop > Rir means that our model can give no
information about Rjr, it must be a free parameter in the final numerical fit but is
guided by the step curvature at the beginning of the step as discussed previously.

The final parameter to determine is the spin relaxation time on the island. Compar-
ing the spin relaxation rate in (5.9) to the island throughput rate I'y(No), we see that
the system time scale 7, = e2R2TDTQ defines whether the spin lifetime is long or short.

This is similar to expressions surmised in earlier works through physical considerations
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5.5 Gate effects

[228]. For 7, < 7y there is no spin accumulation, for 7, > 74 the spin accumulation
saturates. If a system is designed to find 7, the parameters must be setup such that
Ty ~ Ts. In the majority of the cases, measurements like these will simply indicate

whether 7, is shorter or longer than 7.

5.5 Gate effects

For the experiments in this thesis, which are in the double tunnel junction geometry,
varying the junction bias is more convenient. For a set-up in the single electron tran-
sistor configuration often varying the gate bias can be easier. The theory developed
above readily translates to the single electron transistor case. Rewriting the energies

to take into account a back-gate induced charge CyVj, we find [156]:

2
AU = e<1i<—(02+Cg)V—Cng+N—QO>>iAEU
C \2 e e
2
= _ (1 (GV_ GVe o ))
AUF = C<2i< RN - Qo) ) £ AE,. (5.15)

Since Ror > Ry7 junction 2 is the current limiting rate. For this energy change we see
that changing C,V; is equivalent to changing the background charge ()y of the double
tunnel junction formula. Outside of the Coulomb blockade regime this is simply a
translation of the steps. A full numerical simulation in the V-V, plane is shown in Fig.
5.4 (a), this has no spin polarisation (P> = 1). Conductance is given a colourmap in
units of Q~!, the white diamonds indicate the Coulomb blockade where conductance
is zero. Comparing this to Fig. 5.4 (b), with the same parameters but a high spin
polarisation (P, = 0.1) the difference is clear. The blue and red areas come from the A
and B regions respectively. The position of the minimum in each bias step is linearly

translated by the gate voltage.

5.6 Tunnel magnetoresistance and spin polarization

In the model given, we considered a double tunnel barrier structure with an arbitrary
magnetic configuration. If two or three of the conducting components are ferromagnetic
then a magnetoresistance signal will be measured as each component passes through
its coercive field. The oscillating TMR,(V') has been examined in previous papers by

numerical and experimental study, in general the TMR was found to have a constant

92



5.6 Tunnel magnetoresistance and spin polarization

x10°Q""
' '1.0
0.4/ 08
‘0.6
0.2} ] 0.4
> 0.0} 1t ] 0.0
vV pry
0.2} 1 0 -0.4
’-0.6
0.4} -0.8
- o,

2.0 -1.0 0.0 1.0 2.0 -2.0 -1.0 0.0 1.0 2.0

V,Cle V,Cyle

(@) (b)

Figure 5.4: Numerical simulation of conductance in the SET geometry. (a) has no spin
accumulation with P, = 1, the Coulomb blockade diamonds are highlighted in white. (b) has
P, = 0.1, the spin accumulation is clear, red and turquoise regions highlighting the system in A
and B/C regions respectively. All parameters other than P, are held, these were Ror = 1 GQ,
Ror/RyT =500, C; =0.1 aF, Cy =08 aF, P, =1, T =0, 7 > 75

offset and an oscillating component [123; 226]. Using the model developed in this
chapter we can now derive the shape and origin these two components.

The constant offset part (TMR.) is caused by a difference in the average gradient
of the Coulomb staircase for the parallel and antiparallel state, the average gradient
was shown earlier to be dI/dVaye = (Ror)~! (see Fig. 5.3(b)). This offset TMR will
be reached at step edges when spin modifications to the Coulomb staircase are at a
minimum, it can be calculated as TMR, = (R5f — RY;)/RYp. Thus the baseline TMR,
is governed by the TMR of the most resistive junction. If the spin dependence in
the tunnel matrix element comes purely from the spin dependence of the densities of
states, this can be derived in terms of D, and Dpg, the ratios of densities of states in

nanoparticle and electrode 2 respectively, as
TMR. = ———— — 1. (5.16)

This equation is essentially the well-known Julliere formula expressed in a different
form [30].
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The oscillating component TMR,, is caused by the different spin accumulation in-
duced changes to the steps in the parallel and anti-parallel states. We found earlier the
steps were approximately triangular in shape with the peak at position vy, and initial
gradient dI/dVy. The TMR correspondingly will have the approximate function of the
subtraction of two triangles, see Fig 5.5. The two abrupt changes in gradients will be
at vE and vAP. Using these values and rearranging (5.12) the Q® (o = P, AP) can be
calculated in terms of D, as

o (v (1+D)—Dy) ', Q>1 (517
(vp(1+Dr) = 1) /Dy, Q<1
giving quick experimental access to the spin asymmetries in the two states. Fig. 5.5
gives an example showing the calculation of these various factors using data simulated
by a full numerical calculation.

Previous literature has focussed on TMR measurements in junction configurations
containing more than one magnetic element. Nevertheless, it has been long known that
spin accumulation effects can take place when only one magnetic element is present
[233]. We will now concentrate on spin-injection through a non-magnetic nanoparticle,
in a system with a single ferromagnetic electrode (electrode 2). This automatically
simplifies the measurement in two ways. First, since the only FM in the system is elec-
trode 2 we already have that P, = D, = 1, so that P» = 1/@Q is the only spin parameter
to determine. The second advantage of non-magnetic particles is the naturally long
spin lifetime they possess and the flexibility for material choice for production of the
particles. Making the arbitrary axis choice P» < 1 and rearranging (5.12) gives P in

terms of the measurable quantity vy, as
Py = 2y — 1. (5.18)

This is true for all steps so an average of the v,’s measured would be used to calculate
P, in practise. All of the quantities in dI/dV, (5.14) are now known, so this quantity
can serve as a check or accuracy improvement on any of the barrier parameters. Using
equations (5.1-5.7) combined with the spin accumulation in region A (5.11), the spin
polarization injected into electrode 1 in region A is calculated as
I —1,

L +1,

1—P " A-B

1+P A—B((1-P)/(1+ P))?

SP =

(5.19)
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Figure 5.5: Voltage bias dependence of current I(V) (top) and TMR(V) (bottom) for a
NM/FM/FM junction. The TMR oscillates within the step returning to the TMR, value
given by R2AIF«’ / RET —1=0.27. TMR gradient changes are observed at the marked vy, positions.
Parameters used Rbp = 1 GQ, PF =4, PY =8, D,=0.7, PF = 1/PY = D,, RE. /Ryt = 500,
C1 =0.2 aF, Cy = 3.2 aF. The inset in the TMR data shows the magnetic configuration of the

system.

where

A = (RyrC)7! <C2Vo +C1V + g(l - sgn(V)> , and

2Ed

B = .
eRar

At the beginning of the step when § is small the spin polarization simplifies to SP =
(1 = P»)/(1 + P,), which is dependent on just one well-known parameter and equal to
the spin polarization of the most resistive junction. At other points in the step the
spin polarization oscillates away from this quantity towards zero, though less so for
Py <« 1. A numerical calculation of the spin polarization is shown in Fig. 5.6 along

with a dashed line indicating the predicted maximum spin polarization. This result
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Figure 5.6: Voltage bias dependence of current (top) and spin polarization (bottom) for a
NM/NM/FM junction with a single ferromagnetic electrode. The spin polarization oscillates,
returning to the predicted baseline (1 — Py)/(1 + P;) = 0.78 at the beginning of each step.
The v, positions as predicted by v, = 1/2(1 + P») are marked and agree with the actual
positions of the inner step peaks. Parameters used Ror = 1 G, Ror/R1T = 500, C; = 0.2 aF,
Cy=32aF, P,=1/8.

suggests that a non-magnetic island and electrode can be used as a method to measure
the tunnel spin polarization of a ferromagnetic material by contacting a specimen of
that material through a high resistance tunnel barrier and analyzing the measured
I(V) curve. This relaxes the low temperature constraint of the well-known Meservey-
Tedrow method [234], which has to be carried out well below the critical temperature
of an Al superconducting counter-electrode, .e. at temperatures no greater then a few
hundred mK. Here the measurement can be performed up to any temperature where
the features of the spin-modified Coulomb blockade staircase can still be discerned.
Coulomb blockade phenomena can be observed up to room temperature [235].

The spin polarization and the TMR share similarities, both consist of a constant
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offset level determined by the most resistive junction, along with oscillations caused by

the spin accumulation step modification.

5.7 Conclusion

We have found an approximate analytical solution to the magnetic single-electron
double tunnel junction. Using this we showed that the system parameters Qqg, R;T,
C; and that two of the three polarisation parameters P, and D, could be determined
from a single I(V') sweep with no applied magnetic field. This was shown for the case
of bias modulation and also gate modulation in the case of a single electron transistor
geometry.

The solution was further used to predict and interpret the TMR and spin polariz-
ation curves as V' varies, in systems with multiple magnetic elements and with just a
single magnetic electrode. It was found that they follow a baseline, governed by the
most resistive junction, with oscillations within the step caused by the build up of spin
accumulation in the nanoparticle. It is also clear from the analysis that the parameters
of the barriers, including spin polarizations, are in general better modelled through
I(V') than TMR(V') type measurements.
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CHAPTER 6

STM investigation of DMTJs
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Figure 6.1: Diagram of the STM setup with the probe able to make topographical and

electrical characterisation. Equivalent circuit diagram shown on right.

One of the ultimate aims of this research was that we would be able to create and
study a double tunnel junction structure incorporating just a single nanoparticle. This
chapter will describe the progress we have made in this aim using scanning tunnelling
microscopy (STM) and spectroscopy (STS).

Fig. 6.1 shows the basic set up of the DMTJ measurement structure, including
the equivalent circuit diagram. The magnetic nanoparticle is initially separated from a
bottom magnetic electrode by an MgO tunnel barrier. The STM tip plays an integral
part in the structure, acting as a second (non-magnetic) electrode. In STS the tip is
held still, the tip bias varied and the transport current through to the bottom electrode
recorded. The tip/particle barrier width can be adjusted by manipulating the scanning
feedback settings.

The system is quite complex with a number of physical components to take account
of. This chapter will describe the samples and basic characterisation; it will then build
up from STS results obtained with just a vacuum barrier between tip and CoFeB, then

a double barrier and finally the full system including a nanoparticle.
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6.1 Sample and measurement set up

Similarly to the samples fabricated in chapter 4, the bottom electrode was grown as a
standard half tunnel junction stack: SiOz(substrate)/Ta(7nm)/Ru(28nm)/ Ta(7nm)/
CogoFeqoBag(4nm)/MgO(1.1nm). CogpFerg nanoparticles were then deposited onto
this stack using the gas aggregation source in the sputter chamber (base pressure of
1075 Pa). A nominal particle density of ~100 um~2 was grown, allowing for clear
individual particle imaging. The distribution of particle diameters was extended to
maximum using the quadrupole, this was to maximise the variety of particles available
for study by STM on a single sample. AFM scans showed the particle diameters to
range over 2-11 nm.

The transfer process to the STM was enacted by a small portable vacuum chamber
with a pressure ~107% Pa. The substrates were initially cut to a 2x8 mm size and
screwed firmly into a standard Omicron STM cooling plate, this was then attached to
an adaptor making it compatible with the sputterer substrate holders. The greatest
base pressure that the particles are subjected to throughout the transfer process is
that of the growth chamber (=1 hr exposure). XAS measurements shown in chapter
4 demonstrated that particles exposed to this vacuum pressure were not oxidised, the

chemical purity is further confirmed by STS measurements.

6.1.1 TEM characterisation

Transmission electron microscopy was performed in relief and in cross-section. For plan
view the nanoparticles were grown on an amorphous holey carbon membrane, a 2 nm
Ta cap was necessary in order to prevent particle oxidation during the atmospheric
transfer.

Fig. 6.2 (a) shows a plan view image of a nanoparticle in such a stack. The
particles have undergone Wulff reconstruction during the deposition process, leaving
twelve hexagonal (110) and four square (100) type faces. This is a typical shape for
this type and size of particle [215; 236]. The (110) face sizes vary, the width can be up
to 20% of the full particle diameter, the example shown is a particularly cubic particle
with mainly (100) faces. The FFT image inset confirms the particle is bee crystalline,
as expected for CoFe with a Co atomic fraction below 70% [220]. The particle has a
lattice parameter of 2.9 4+ 0.1 A, which agrees with the accepted value of 2.87 A.

Cross-section imaging was performed on a full stack that had been ion milled as
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Figure 6.2: Plan view (a) and cross-section (b),(c) TEM micrographs of nanoparticles. Insert

on (a) shows FFT of region highlighted in pink.
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described in section 3.3.2. An example resulting image is shown in Fig. 6.2 (b), the
stack layers are labelled on the right. The Ta cap oxidation has passivated, protecting
the sample. The nanoparticle is clearly visible though appears larger than it actually is
due to the Ta cap. The ruthenium is seen to have columnar growth, with approximately
10 nm diameter grains. High resolution images of the Ru show the expected hexagonal
lattice structure with lattice parameter within 0.5% of accepted values. Within the
limits of the technique the particle is not seen to have flattened or distorted on depos-
ition.

Initially there was a worry that the particles might destroy the thin MgO barrier
as they are deposited. Molecular-dynamics simulations have shown that particles with
kinetic energy greater than 1 eV per atom are likely to undergo significant distortion
on impact and to damage the surface [186]. Our particles are expected to thermally
equalise with the approximately room temperature inert gas mix before deposition.
The dynamics are complex but the nanoparticles are expected to have kinetic energies
less than kT = 26 meV [237], well below the limit for damage. The cross-section
shown in Fig. 6.2 (b) shows the MgO barrier as complete and with uniform thick-
ness below the particle. This was variable, Fig. 6.2 (c) shows an example where the
barrier has completely erupted below the particle. Of a sampling of twenty deposited
particles, 60% had a complete undamaged MgO barrier below. Within the statistics
available this was not correlated to the size of the particle. This is not thought to
be a problem for transport measurements, only the complete structures should show
single electron effects. The MgO barrier thickness confirmed expectations from x-ray
reflectivity calibrations.

It is perhaps worth noting that a crystalline CoFe/MgO/CoFe tunnel junction is ex-
pected to show the large spin polarisation and TMR that has previously been famously
predicted [35]. This is expected to be weak in our structures because the amorph-
ous CoFeB electrode has not been annealed, any MgO texture within the nanoparticle

region will make a difference however [238].

6.1.2 SPM characterisation of CoFeB electrode

A topographic STM scan taken on CogoFeqoB2g (CFB) is shown in Fig. 6.3(a). The
sample is produced and transferred in the same manner as the other samples in this

chapter, the nanoparticles and MgO layer are left out. The image shows a granular

102



6.2 Scanning tunnelling spectroscopy on MgO

structure with an average grain size of 8.6 nm and an average rms roughness of 0.540.1
nm. Atomic force microscopy images of the same structure are shown in Fig. 6.3(b),
the grains cannot be seen and the surface is much smoother with an rms roughness
of 0.12 nm. The origin of the grain structure in the STM topography is unknown
but since it is not seen in AFM is likely to be as a result of changes in the electronic
structure rather than topography. This particular alloy of CoFeB should be amorphous
and smooth due to the addition of the boron, the grain structure is likely to be caused
by the underlying layers, this accords with the average Ru grain size seen in the cross-
sectional TEM images of the layers. The CFB is of a similar quality to that used in
STM studies from other groups producing high quality MgO tunnel junctions [238].
The spectroscopy scan shown in Fig. 6.3(c) is typical for metal: linear and featureless
[239]. The MOKE loop data in (d) shows a very square loop with a coercive field of
0.35 mT.

6.2 Scanning tunnelling spectroscopy on MgO

STM on oxides is much more difficult, electrons have to tunnel further and the tip is
much more sensitive to defects in the oxide. Topographic and spectroscopic scans over
the MgO are shown in Fig. 6.4. The topographic scan in (a), taken at feedback settings
of 4 V and 0.1 nA, shows an rms roughness of 0.7 nm, a little rougher than the CFB
below as expected. The images show what look like grains with a diameter of 2.6 nm
and a standard deviation of 0.4 nm. Fig. 6.4 (b) shows a TEM micrograph of a similar
sample grown onto an amorphous carbon window, the MgQO is polycrystalline: pink
circles highlight areas of continuous crystal and these are seen to be a similar size to
the grain feature seen in STM. The defects at crystal boundaries are likely to be the
cause of grains seen in STM.

The feedback settings here have been kept at a high voltage and low current because
the electrons must tunnel further through the barrier. The voltage in particular is
important for oxides, whether it is set above or below the band gap of MgO should
make an important difference. Fig. 6.4(c) and (d) show an energy diagram of the
situation. The red arrow indicates the tunnelling path of electrons from the tip Fermi
energy, the conduction band (CB) and valence band (VB) in the MgO are indicated.
The barrier heights of the vacuum and MgO are labelled as ¢vac and ¢nigo respectively.

Good quality images cannot be easily obtained for eV < ¢ng0. The resistance is so
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Figure 6.3: (a) and (b) show STM and AFM topography scans respectively on CoFeB. Cross-

sections along the lines marked are given above. Feedback settings for the STM were 1.2V
0.5nA. (c) an STS spectra on the metal surface, showing the expected linear I-V. (d) a MOKE
loop on the CFB showing a square hysteresis with a coercive field of 0.35 mT
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6.2 Scanning tunnelling spectroscopy on MgO

high that the tip has a tendency to move into the physical oxide layer itself to obtain the
required tunnelling current. This destroys the tip and produces poor images. Above
this value we see a triangular barrier and the tunnelling is in the Fowler-Nordheim (FN)
regime.

The bandgap of MgO then is important, but the question is where does it occur
when doing STM measurements? The width will in general be lower than the bulk value
of 7.8 eV for a thin film [240], and will also tend to be smeared out due to band bending
effects at the edge of the oxide [241]. The inset graph of Fig. 6.4(e) shows 20 averaged
spectroscopy scans taken successively at the same point, the main figure left axis shows
the same plot but with absolute values taken of current. The data is fitted with the high
V Simmon’s model (i.e. Fowler-Nordheim type tunnelling), the fit overlaid in red. The
fitting parameters used were barrier width d = 1.4 nm, ¢\go = 1.1 eV. These fit well
on both negative and positive bias regions, indicating the bandgap to be reasonably
symmetric about the MgO Fermi energy. Pink dashed lines indicate where this barrier
position would be. For applied bias less than this value, the current is below the noise
level of the measurement.

As explained in section 2.1.4, the Fowler-Nordheim theory assumes a square barrier
with an average height distorted to a trapezium by the applied bias. As the barrier
width varies the current I follows the exponential relationship I o< VZexp(A/V), with
A a constant dependent on barrier height and width. In the case of the double barrier
the situation is more complicated. The relative dielectric constant for bulk MgO is
9.8, so that the majority of the potential is dropped across the vacuum portion of
the barrier. The reduced electric field in the dielectric material means that the fitted
barrier parameter could be up to a factor of ten too small. The actual value is difficult
to determine because the dielectric constant in such a thin film of MgO is likely to be
reduced compared to bulk [242]. Also these barriers will not be square as pictured, they
will be lowered and rounded by image charge effects [138; 243]. A value intermediate
between 1 and 10 eV is expected and this roughly concurs with z-V spectroscopy scans
shown in Fig. 6.4(f). These are taken with the feedback on and a constant current
maintained. An average of 20 scans is shown, a distinct change in gradient is observed
at approximately 3 V. The discontinuous change in the second differential indicates a
distinct change in the bandstructure, like a bandgap. The bandwidths observed concur

with values seen in similar studies using STM [243], though in the case of very high
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Figure 6.4: Results from scans on a 1.4 nm MgO barrier. (a) shows a topography scan, the
rms roughness is 0.7 nm and the grain size is 2.6 nm. (b) is a TEM micrograph of a similar
structure, the inset scale bar is 5nm and the pink circles outline areas of continuous crystal,
these are the same size as the STM grains indicating a defect origin. (c) and (d) are energy
diagrams of the situation, abrupt change in conductivity should be seen at the band edge. (e) is
an I-V spectroscopic scan on MgO. The Simmons fit in red indicates a barrier height of 1.1 eV.

(f) showing z-V spectroscopy, indicates a band edge at 3 V.
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6.3 STM and STS characterisation of nanoparticles: single electron
characteristics

quality monolayer MgO, much higher bandgaps can be observed [125; 244; 245].

In general the best images of clusters on MgO were taken with high feedback settings
greater than 2.5 V. In order to do spectroscopic measurements however, the tip has
to be close to the cluster for reasons that will be described further in later sections,

therefore a balance is required.

6.3 STM and STS characterisation of nanoparticles: single

electron characteristics

6.3.1 Particle imaging

In the following sections we will discuss scans and spectroscopy taken over the full half
tunnel junction stack with deposited nanoparticles. An image of particles is shown in
Fig. 6.5 taken at 4 V, 1 nA feedback. As explained in the previous section, the high
voltage is above the MgO bandgap, which prevents the tip from interacting with the
surface when scanning around nanoparticles. While imaging over the nanoparticles,
this barrier is not such an issue. The island provides a hopping point for the electrons,
splitting the vacuum and MgO barriers into two smaller barriers in series. Images can
be taken at lower feedback settings but tend to be noisier and damage the tip relatively
quickly.

The cross-section shown in the lower portion of Fig. 6.5 (a) shows particle heights
6-7 nm as expected from growth conditions and AFM calibration. The width of the
nanoparticles is approximately 20 nm, this lateral size extension is due to convolution
with the tip end shape. The relatively large particles (for STM) mean that a large
part of the tip is imaged. The tip size concurs with the approximate values found from
fitting field emission curves during tip etching (~20 nm radius, see section 3.5.3). This
is the reason a low density of particles is grown, for higher densities the tip may interact
with several particles at once, though the particles remain electrically separated. It is
also the reason that a tip tool was built to anneal W tips in vacuum. The reliable
conical end shape of the etched W tip was necessary in order to be sure of imaging
a single particle at a time. The multiple shards at the end of a mechanically cut Pt
tip (any within 5 nm of the surface) are all imaged by the same particle confusing the

image.
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Figure 6.5: STM topography of nanoparticles shown mapped in (a) and as a contour plot
in (b). The cross-section in (a) is marked in pink. Tip convolution effects mean the particles

appear larger than would be expected given their heights.

6.3.2 Single electron effects

Fig. 6.6 (a) shows a STS scan taken over a nanoparticle. The I-V is clearly nonlinear, it
is in the field emission regime for any appreciable current. Though subtle a periodically
stepped gradient is convoluted with the field emission shape, this is seen more clearly
in the differential plotted in blue. This is attributed to a Coulomb staircase since it
is only seen when scanning over particles. Taking advantage of the STM’s ability to
scan several different particles on the same sample, Fig. 6.6 (b) shows a plot of the
staircase reciprocal step widths 1/AV against cluster diameter determined by an STM
topographic scan. On the right side of the graph the step width scale is translated
into a capacitance for the MgO barrier as Co = ¢/AV (the choice of MgO barrier over
vacuum barrier capacitance will be discussed later). There is a clear positive correlation
between diameter and capacitance. Roughly speaking this is to be expected if we model
the junction as a parallel plate capacitor with area D? (D = 7 nm the particle diameter)
and width dyigo = 1.4 nm. Using €,=5, the capacitance Cy = eoerD2/dMgo ~ 1.5 aF.
This shows good agreement to the measured values, given the approximate nature of the
calculation. The change in capacitance is not as high as would be expected using this
model however, the capacitance does not quite double for the range of sizes examined.
This could be due to a combination of the simplicity of the model and inaccuracies in

measuring the size of the smallest particles relative to the STM noise base.
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Figure 6.6: (a) a I-V spectrum measured over a nanoparticle showing weak Coulomb staircase.
The differential is plotted in blue and shows clearer periodicity. The positions of step tops are
marked in pink. (b) STS step widths correlated to particle size. The reciprocal step width is

converted to capacitance on the right hand axis.

6.4 Spin accumulation and field emission modelling of nan-

oparticle spectroscopy

6.4.1 Field emission modelling

In order to characterise the junction beyond the capacitance Cs, a full fit to the orthodox
single electron theory is required (see section 2.3.1 and chapter 5 for full theoretical
details. Notation and symbols in this section follow those defined in previous chapters).
A basic Coulomb staircase with no spin accumulation and with Ry > R follows the
form [61]:

% CoVo + C1V + (1 - sgn(V)) (6.1)

g
This staircase function is washed out for the case of C; > (5. The MgO dielectric
means that in our system Cy > C;. Since the staircase is observed we must have that
Ry > R;. The MgO barrier is therefore the rate controller in this setup, the step width
is given by e/Cs.

An example staircase with Co = 1 aF is shown plotted in black in Fig. 6.7 (a).
The staircase overlies a linearly increasing background and clearly will not fit the type
of non-linear I-V curve measured, an example of which is shown in Fig. 6.7 (b). The
error in the assumption we have made in the orthodox theory is that the resistance Ry

is constant with applied bias. In fact, due to the field emission effect at these relatively
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high voltages, the resistance is changing exponentially with V.

The naive way to fix this problem would be to simply replace Ry — Ra(V) =
Ry [V exp(—0.68k@dyig0/V)] " according to the Fowler-Nordheim (FN) equation (2.9),
with Rg an arbitrary constant to be fixed by fitting. The background current would
then be given by I(V) = V/Ra(V) o V2exp(A/V) as required. This model is shown
in blue in Fig. 6.7 (a). The non-linear background is now clearly fitting far better to
what the data displays. However because of the rapidly increasing gradient, the steps
have been washed out nearly completely. This is not consistent with the data in (b)
which displays relatively flat step tops.

To understand this problem in more detail we must consider the energy diagram
shown in Fig. 6.7 (c). Here the bottleneck of resistance is the MgO barrier (Ra).
Electrons therefore build up on the nanoparticle, until the chemical potential on the
island is just below the tip Fermi energy, at this point there are N excess electron
charges on the island. Current proceeds to flow when electrons tunnel out of the island
into the CFB (right) electrode, leaving the island in state N — 1. The island is then
quickly topped up by the tip (left) electrode to state N again. Examining this diagram
we see now that the largest electric field is across the MgO barrier, contrary to the
double barrier situation depicted in Fig. 6.4 (b), where the dielectric forced a large
electric field in the vacuum barrier. We see further that the electric field will not be
continuous with increasing V' but in fact increase stepwise according to the state of
the island N. We therefore replace Re — R2(N) = R(V32) in our model equations.
The simulation using this final model is plotted in red in Fig. 6.7 (a). The step tops
are now flattened, since while the island is in state IV, the electric field across the
barrier does not change as a function of V. This approach broadly follows the theory
of Raichev [246]. The theory has been experimentally confirmed by a few groups [247—
249], however the data presented here is probably the clearest example of this type of
tunnelling in a single metallic particle to date. More complicated effects predicted due
to electric charge distribution in the nanoparticle are not observed here.

Finally Fig. 6.7 (d) shows a fit to the data following the R(V') and R(N) models.
The R(N) clearly fits the shape of the steps better. In the differential it matches the
dips in gradient because of the flatter step tops. The width of the riser is also better
fitted though still narrower than the data peak widths, this will be discussed later.
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Figure 6.7: (a) various simulations according to models described in text.
showing both field emission and Coulomb blockade effects, a Simmons fit is overlaid in red. (c)
energy diagram of the DMTJ junction, the majority of the potential is dropped across the MgO

barrier. (d) simulations of the data in (b) using the models shown in (a).
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Figure 6.8: (a) I-V scans repeated over the same point marked with an x topography scan
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(b). Inset in (a) is a detailed portion of the same plot with step top variations indicated. The

z-profile in (b) is along the dashed line drawn on the topography image.

6.4.2 Spin accumulation and barrier polarisations

First we start with a note about the reliability of the spectroscopy on these particles.
Because of the mobility of the STM tip and the sensitivity of the tunnelling to the
barrier width, the I-V spectra can vary from scan to scan, even when they are taken
nominally in the same place. Fig. 6.8 (a) shows three spectra taken sequentially in the
same place marked by an X in the image in (b) (~ 3 s between spectra). There are
variations in the tunnelling background profile, the step shape and the phase (offset)
of the scans. The period remains constant. This means that the capacitance Cy was
relatively stable from scan to scan (Cs is not tip dependent so that makes sense), but
that the background charge @) is varying by up to 0.2e. The random variations in
Qo are very commonly seen in single electron experiments [62; 64; 68] and remain one
of the major engineering challenges to adopting them for computer logic architectures
[52]. Possible sources of variation are local charging, tip reformation or mobile defects
such as oxygen vacancies in the MgO [68].

This unrepeatability makes STM unsuitable for TMR type measurements on these
particles. Changes in the spectra are not necessarily going to be due to the magnetic
field change; subtraction of the spectra will introduce many artefacts. This is prob-
ably the reason why no experiment done so far has fully demonstrated single electron

effects and spin accumulation using STM. Part of the reason for developing the model
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and theory, presented in the previous chapter, was to circumvent this problem. The
theory shows that the important factor that indicates the spin accumulation is the step
shape on a single Coulomb staircase. Spin accumulation induced either a dip or peak
shape into the step tread. TMR style subtraction of staircases actually loses informa-
tion. Proceeding with this idea we will now demonstrate fitting of spectra to a theory
including spin accumulation effects.

While the R(N) field emission model was able to fit spectra with at most a flat step
top, it was observed that many of the spectra recorded on the full DMTJ structure
showed further reduced or negative gradient within the steps. Furthermore increasing
the ratio of Ry/ Ry to greater than 103 necessary to cause a flat step makes an extremely
vertical step ‘riser’. Coulomb staircase spectra displayed a relatively broad transition
indicating multiple occupied island levels and a reduced Ry/R; ratio. Negative gradient
and peak step structures can be modelled by a spin accumulation model. Figure 6.9
(a) and (b) show two such example fits, I-V above, differential below. The overall
spectrum shape is seen to be replicated well and the dip (or peak on the negative
V side) within each step is comparable. The differentials show the specific shape of
the gradient changes in the step and the magnitudes and widths are particularly well
replicated in the region indicated by purple arrows.

The fit depends on a number of free parameters. The period and offset of the steps
are governed by C5 and @)g. These are determined the most accurately and take the
values Cy = (1.09 £ 0.01) aF, (1.1840.01) aF and Qo = (0.1 £ 0.05)e, (0.0 = 0.05)e for
(a) and (b) respectively.

Ry(V3) is a FN profile governed by the barrier height ¢ngo and width dygo. dmgo
was fixed at the nominal MgO thickness of 1.4 nm, ¢\go was slightly different for
positive and negative bias (asymmetric barrier). It was taken at 2.0/3.6 eV for the
negative/positive side of (a) and 0.67/2.1 eV for the negative/positive side of (b).

Ry and C contain some level of mutual dependence. 'y governs the internal gradi-
ent of the step (along with the spin params). R; governs the initial step gradient and
the steepness of the step riser. For (a) the cases could be distinguished and C; was
pinned to (0.3+0.1) aF (C2/Cy = 3.6). For (b) the step was found to be flat within the
measured gradient so that we can say that Cy/Cy > 10. For both cases Ry was taken
as bias independent. It proved the most difficult parameter to fit. As can be seen,

peaks in the gradient of the simulation are narrower than the peaks in the data, this is
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Figure 6.9: (a) and (b) show two example fits to STS spectra using a spin accumulation
model. See text for details of simulation. The simulation in red is offset from the I-V profile
by -50 pA. Insets on the I-V data show detailed portions of the same curves. Numerically

differentiated data is plotted in the bottom panel. The experimental conditions for each curve

were nominally the same (1.5 V and 0.5 nA feedback).
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particularly noticeable in (b). However to increase R; in the simulation broadens these
peaks but also washes out the dips in gradient on the step tops. A balance was struck
but there is some mechanism of broadening here that is not taken into account.

The temperature 1" was fixed at the experimentally measured value of 25 K. Though
the step broadening of 2 meV expected for this temperature, is unlikely to make a
significant difference to the fit. There are further temperatures in the system that may
account for the broadening however, the STM tip is not cooled and likely to be close
to 300 K.

The spin parameters P, = Ri;/R;, (barrier polarisation ratio) and Dy/D| = D,
(island density of states ratio) are fixed purely by the internal step gradient and
peak/trough position. Since the tip is non-magnetic, P; is driven purely by the dens-
ity of states ratio on the island and is held at P, = 1/D,. This leaves two free spin
parameters. The initial staircase gradient is governed by equation (5.14):
(d[) _ Cq n Co 1-Q)(1—DP)

dV)a RorC  RorC (14+QDy)(1+ P)’

Within the constraint given, this has significant negative solutions only for P, > 10 and

(6.2)

Py < 1. In fact the staircase troughs are significant enough that in both cases (a) and (b)
P> > 10 but due to the insensitivity of the shape beyond this point, further accuracy
cannot be given. For (a) P; was found to lie between 0.5 < P; < 0.8, and for (b)
0.5 < P; < 1. P, > 10 can be roughly translated into the traditional magnetic tunnel
junction (MTJ) electrode spin polarisation: assuming symmetric spin polarisation on
either side of the MgO barrier, P, = Rg/Ra; ~ (D4+/D})?. This implies a material
spin polarisation of (Dy — Dy)/(D+ + D)) = (/P> —1)/(\/P2 +1) > 0.5. This spin
polarisation fits well with previous studies on unannealed MgO MTJs [39; 42].

It is perhaps surprising that P; and P» are aligned in opposing directions. The
vacuum barrier is the simpler of the two junctions, and probably follows the Julliere
type model most closely. The MgO junction is more complicated due to the materials
present, the polarisation is much more heavily dependent on the barrier and interface
electronic states. The polarisation aligned in the opposite direction to the density of
states is likely to be caused by the particular arrangement of interface states [250].

Finally we come to the spin relaxation time on the island. Since significant spin
accumulation effects have been seen in the DMTJ, the spin relaxation time on the
island 7, must far exceed the system timescale 75 = e*RorD+Q (£ is particle volume)

[225]. Using a particle radius of 7 nm, a density of states of Dy ~0.25 eV~ latom™!
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[157] and the resistance at the larger applied biases Ry = 10 G, we find 75 = 2 us.
This compares with a bulk spin relaxation time of ~ 30 fs [251] and previous studies
on metallic nanoparticles of 150 ns in Co particles [109] and 1 ps at low voltages in
Al particles [33]. This massively extended spin lifetime is due to reduced spin-flip
scattering. Mechanisms suggested previously for this have included quantised energy
levels suppressing spin-orbit induced spin-flip scattering rates, and reduced magnon
scattering due to quantised magnon energy [105; 109; 227]. Both of these effects have
comparable energy scales in these particles [105] and are likely to contribute to the
lifetime enhancement.

Interestingly we see the spin accumulation effects on the Coulomb staircase are
reduced below a bias of 1 V. At this point, due to the increased barrier resistance, the
system timescale is 75 &~ 20 pus. This then is potentially the point at which the system
transitions from 7, > 75 to 77 < 7. Previous studies have been unable to pin down
the spin lifetime accurately due to saturation effects when the system relaxation time
is far from the spin lifetime. Here, by dint of the large resistance variation due to field
emission effects, we have varied 7,5 over several orders of magnitude and found the spin

lifetime to be within an order of magnitude of 10 us.

6.5 Discussion and summary

In this chapter we have built up a full picture of a DMTJ structure as characterised by
scanning tunnelling microscopy. Starting from the bottom electrode CoyoFe 9By was
shown to have metallic linear spectroscopy and to have a granular topography. TEM
indicated that the grains were due to the underlying ruthenium conducting layer.

STM studies on MgO explored the possibilities and difficulties of performing STM
on oxide layers. Scanning with feedback settings above the bandgap, granular topo-
graphy was found, with polycrystalline grains of 2.6 nm average diameter. STS spectra
fitted a Simmon’s field emission model. It was demonstrated that the fitted barrier
height of 1.1 eV was not a good measure of the MgO bandgap due to the electric field
structure in the double barrier. Further z-V spectroscopy hinted at a bandgap of 6 eV,
closer to the bulk value of 7.8 eV.

Finally STM and STS data were presented on a full stack with deposited CoggFerq
nanoparticles. Cross-sectional TEM confirmed the integrity of the MgO barrier un-

der the majority of deposited particles. STS spectra were found to exhibit Coulomb
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staircase like effects. The step widths were correlated with the measured size of the
nanoparticle and agreed with a reasonable capacitance predictions.

To simulate the Coulomb staircase STS data, the field emission theory of Raichev
[246] was employed, carefully noting that the junction potential was mainly dropped
over the MgO barrier. This fit of the data was much improved and is one of the first
experimental confirmations of the theory in metallic nanoparticles.

It was found that while reliability of spectra in STM is an issue, it is possible to
detect spin effects in a single spectrum. To fully fit the Coulomb staircase a spin accu-
mulation model was employed. This was seen to give a far better fit of the internal step
structure. Using results found from the analytical model developed in chapter 5 it was
possible to determine or bound many of the barrier parameters including capacitances,
resistances and spin polarisations. As predicted, the most detailed information was
available for the most resistive barrier (the MgO). The spin polarisation through the
vacuum barrier was found to be aligned anti-parallel to that through the MgO barrier,
this was attributed to interface effects.

Finally the spin lifetime was discussed and found to be of the order of 10 ps. The
field emission profile of the junction uniquely meant that the system spin life time could
be varied over several orders of magnitude, pinning down the spin relaxation time in
a way that has not been possible in previous studies. Further investigation in this line

theoretically and experimentally could prove fruitful.
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Conclusions
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7.1 Summary

This thesis has described a series of wide ranging experiments characterising magnetic
nanoparticles in the 4-14 nm diameter range. These particles are in the fascinating size
regime between the quantum and macroscopic world. We have seen that they exhibit
novel physical phenomena such as superparamagnetism, partially quenched orbital mo-
ments, spin glass like textures, Coulomb blockade, spin accumulation and long spin
lifetimes.

Nanospintronics examines the transport and manipulation of spins at the nanoscale,
it is a fast growing field of interest [7]. Ever improving nanofabrication technology is
opening new doors into contacting isolated nanostructures. Emerging techniques have
allowed experiments that have shown unexpected physics, and have often gone hand-
in-hand with new theoretical developments. A major theme of this thesis has been
to realise the possibility of using scanning tunnelling microscopy to address individual
magnetic nanoparticles for electrical transport investigation. Both experimental and
theoretical development have been used to address well known problems in spectroscopy
of nanoparticles, and have led to discoveries regarding the spin characterisation of

barriers and spin relaxation properties of these magnetic particles.

7.1 Summary

Magnetic CospFerg nanoparticles were grown in vacuum using a gas-aggregation cluster
source. They were deposited onto sputtered thin films and thoroughly characterised
for their structural, magnetic and electronic transport properties.

The particles were deposited as a bcce crystal with a truncated rhombic dodeca-
hedron shape given by Wulff reconstruction, with the (001) axis oriented out-of-plane.
They are ferromagnetic showing both magnetocrystalline and shape anisotropy; the
easy axis orients randomly in plane along a (100) axis. Orbital to spin moment ratio
was measured for particles 11-14 nm in diameter. For larger particles the orbital mo-
ment was found to be close to the quenched bulk value, though the moment quickly
increased with decreasing diameter. This NP size range is larger than used in the lit-
erature before. Combining all previous data together, the general trend of decreasing
orbital moment with size was obeyed, but detailed fitting to a simple two species mo-
ment was in bad agreement. For my data this was attributed to the simplicity of the
low coordination shell model. Complementary magnetometry studies on these densely

packed nanopaticles showed a very wide distribution of anisotropies and a superpara-
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7.1 Summary

magnetic blocking temperature unexpectedly extended well above room temperature.
Complex magnetic dipole interactions between the percolated nanoparticles was shown
to be the cause, though further study is required to understand the negative correlation
between blocking temperature and packing density.

To make use of transport data through double magnetic tunnel junction (DMTJ)
stacks, the I-V curve must be simulated using orthodox single electron theory combined
with spin accumulation effects. A new analytical solution to existing numerical theory
was derived [225]. This was valid under the approximation of highly asymmetric bar-
rier resistance, exactly that which gives the largest single electron effects and also is
the most common experimentally. Using this theory, barrier resistances, capacitances
and spin polarisations were shown to be independently obtainable by fitting to a single
detailed I-V sweep. Further, it was shown that spin accumulation occurred, and could
be measured, on the nanoparticle with a single ferromagnetic electrode. Oscillatory
TMR type measurements were seen to be unnecessary for measuring spin effects; by
subtracting parallel and anti-parallel I-V curves information is lost. This is an import-
ant development for the use of STM based nanospintronics, where repeatability can be
an issue due to local charging effects varying over time.

Finally STM results were presented on a full DMTJ structure, with asymmetric
MgO and vacuum tunnel barriers. Scanning tunnelling spectroscopy showed Coulomb
staircase effects, with step widths that scaled with the size of the particle. To fully
simulate the data it was necessary to take into account the resistance variation due to
field emission effects. Discrete changes in effective barrier width at integral multiples
of charging energy, gave a more pronounced Coulomb staircase and were necessary to
fit to the spectra. Finally spin accumulation effects were included to fully simulate
the data. The fits were found to match well, though certain broadening effects of the
experiment have not yet been taken into account. Analytical theory developed earlier
allowed all of the barrier parameters to be determined or bounded. Unexpectedly
the spin polarisations were found to be oriented anti-parallel. This was attributed to
complex interface effects over the MgO barrier. As an added bonus, due to resistance
variation caused by field emission effects, the spin relaxation time on the island could
be recorded more accurately than previously possible in such a structure. The spin
lifetime was found to be greater than 1 us and within an order of magnitude of 10 s,

far longer than determined previously [109].
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7.2 Outlook

7.2 Outlook

The most important work here has been the establishment of the STM as a tool for
study of DMTJs. The theory that has been developed, showing that the spin accu-
mulation parameters can be determined simply by simulating the I-V spectra with no
external magnetic fields present, is very important. This allows focus on the basic
transport data provided by the STM which is the STS spectra. It also negates one
of the most difficult barriers to nanospintronic investigation using STM, which is the
reliability of comparing spectra over time or while varying applied external fields.

Moving forward the priority will be to increase the quality and quantity of data
taken on the STM. There are practical barriers still to be overcome, related to the
stability and reliability of the STS spectra. The resistance mismatch between tunnelling
directly through MgO and through particles means that images tend to be relatively
noisy. STM probes can be rapidly damaged by collisions with particles or the insulating
barrier. Growing a thinner MgO barrier may be one way to overcome this. Another
solution may be to only take images with feedback above the bandgap, well clear of
both particle and MgO. For STS in this case, the tip would need to be dropped a finite
distance to decrease the vacuum resistance relative to the insulating barrier.

Perhaps some of the most interesting questions still open in nanospintronics are re-
lated to the mechanisms of spin relaxation on these nanoislands. In fact, spin lifetime
measurements on quantum dots are well established [33; 252; 253], but are more chal-
lenging in these larger particles. I think the idea of quantifying the lifetime by studying
the Coulomb blockade over a range of resistances, generated by field emission, is very
promising for future studies. Being able to accurately determine the spin lifetime in
particles of a variety of sizes, materials and at a range of temperatures would provide
vital information towards solving these questions.

So far there have been few real world practical applications suggested for these
DMTJ devices. Current applications for non-magnetic single electron devices focus on
metrology techniques, taking advantage of the sensitive dependence of the Coulomb
staircase shape on environmental background charge. In chapter five, I proposed a
further metrology method to determine spin polarisation from an FM/tunnel barrier
combination. This was experimentally demonstrated in chapter six but could be taken
much further using non-magnetic particles. In order for this to be a standard method it

cannot rely on a gas-aggregation nanoparticle source being available. A discontinuous
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7.2 Outlook

layer of metal grown on oxide is potential route; STM measurements of CB on these
types of systems have been particularly reliable in the past [63]. The ability to use
non-magnetic, inert materials would also conveniently negate the need for a vacuum
transfer system. If this experiment were realised it could prove a valuable new route

into the measurement of one of the most fundamental quantities in spintronics.
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