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Abstract

Categorization is a fundamental problem of many computer vision applications, e.g., image
classification, pedestrian detection and face recognition. The robustness of a categorization
system heavily relies on the quality of features, by which data are represented. The prior
arts of feature extraction can be concluded in different levels, which, in a bottom up order,
are low level features (e.g., pixels and gradients) and middle/high-level features (e.g., the
BoW model and sparse coding). Low level features can be directly extracted from images
or videos, while middle/high-level features are constructed upon low-level features, and are
designed to enhance the capability of categorization systems based on different consider-
ations (e.g., guaranteeing the domain-invariance and improving the discriminative power).
This thesis focuses on the study of visual feature learning. Challenges that remain in de-
signing visual features lie in intra-class variation, occlusions, illumination and view-point
changes and insufficient prior knowledge. To address these challenges, I present several
visual feature learning methods, where these methods cover the following sub-topics: (1)
I start by introducing a segmentation-based object recognition system. (ii) When training
data are insufficient, I seek data from other resources, which include images or videos in a
different domain, actions captured from a different viewpoint and information in a different
media form. In order to appropriately transfer such resources into the target categorization
system, four transfer learning-based feature learning methods are presented in this section,
where both cross-view, cross-domain and cross-modality scenarios are addressed accord-
ingly. (iii) Finally, I present a random-forest based feature fusion method for multi-view

action recognition.
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Chapter 1

Introduction and Literature Review!

1.1 Visual Categorization

In the past few years, along with the explosion of online image and video data (Flickr 2,
YouTube *), the computer vision community has witnessed a significant amount of applica-
tions in content-based image/video search and retrieval, human-computer interaction, sport
events analysis, etc. These applications are built upon the development of several aspects
of classical computer vision tasks, such as human action recognition, object localization
and image classification, which, however, remain challenging in real-world scenarios due
to cluttered backgrounds, view point changes, occlusions, and geometric and photometric
variations of the target [145], [172], [157], [63], [70], [156], [31], [102]. The existence of
these issues can break the data smoothness*, so that general representations (e.g., the Bag-
of-Words (BoW) model) become less discriminative. Many previous methods that manage
to deal with these issues are proposed. Zhang et al. [180] proposed the construction of
a continuous virtual path between different views to solve the view point changing prob-
lem. Carreira et al. [16] formulated object recognition as a segmentation-based regression
problem, so that cluttered background areas can be removed from foreground objects. Both

stated frameworks output proper high level features for specific categorization tasks, where

IPart of this chapter will be published at:
L. Shao, F. Zhu and X. Li, Transfer Learning for Visual Categorization: A Survey, accepted by IEEE Trans-
actions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2014.2330900.

Zhttp://www.flickr.com/

3http://www.yoututbe.com/

“In this report, data smoothness denotes the property that data points, which are close to each other in the
feature space, are likely to share the same label.



2 Introduction and Literature Review

these features contain either view-invariant information or less background noise. In fact,
the study of features is an important topic in computer vision. In a bottom up order, the
types of features include low-level features (e.g., pixels and gradients) and middle/high-
level features (e.g., the BoW model and sparse coding). Features can also be classified as
hand-crafted features and deep learning features. Recent advanced deep learning techniques
(e.g., Convolutional Neural Network (CNN) [74]) are proved to be effective on many tasks.
For dealing with image classification tasks, the majority deep learning approaches take raw
pixels of resized images as inputs, and output high level features or the posterior probability
of each class, where parameters of each hidden layer are learned as in a black box. Though
learning high level features through such a abrupt manner, deep learning models achieve
leading performance in many fields. Instead of abruptly learning on the pixel level, hand-
crafted features are well-designed for specific purposes. In this report, only middle/high

level hand-crafted features are discussed.

1.2 Transfer Learning

Regular machine learning approaches [126], [146], [124], [125], [124], [135], [133], [185]
have achieved promising results under the major assumption that the training and testing
data are in the same feature space. However, in real-world applications, due to the high
price of human manual labeling and environmental restrictions, obtaining the training data
which satisfy the above requirement is not always possible. Typical examples are [15],
[111], [162], where only one action template is provided for each action class for training,
and [88], where training samples are captured from a different viewpoint. In such situations,
regular machine learning techniques are very likely to fail. This reminds us of the capability
of the human vision system. Given the gigantic geometric and intra-class variabilities of
objects, humans are able to learn tens of thousands of visual categories in their life, which
leads to the hypothesis that humans achieve such a capability by accumulated information
and knowledge [36]. It is estimated that there are about 10 ~ 30 thousands object classes
in the world [7] and children can learn 4 ~ 5 object classes per day [36]. Due to the
limitation of objects that a child can see within a day, learning new object classes from
large amounts of corresponding object data is not possible. Thus, it is believed that the
existing knowledge gained from previous known objects assists the new learning process
through their connections with the new object categories. For example, assuming we did

not know what a water melon is, we would only need one training sample of water melons
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together with our previous knowledge on melons-circular shapes, the green color, etc., to
remember the new object category water melon. The motivation behind transfer learning is
that data in other related domains can be utilized for learning a new subject when data that
directly describe such a subject are insufficient. Normally, two types of domains are defined
in transfer learning tasks, the target domain and the source domain. The target domain is
also the domain of interest, and it normally contains very few or even no labeled data, while
the source domain contains a large amount of labeled data. A typical example of transfer
learning can be found in [13], where Cao et al. built the target domain with the combination
of Microsoft Research Action dataset® and the TRECVID surveillance dataset [25], which
contain very few annotations and large amounts of noise, and the source domain with the

KTH dataset [129], which has a clean background and limited viewpoint and scale changes.

Transfer learning can be considered as a special learning paradigm where partial/all
training data used are under a different distribution than the testing data. To understand
the significance of knowledge transfer in terms of visual learning problems, the literature
(e.g., [113], [46], [21]) has concluded three general issues regarding the transfer process: 1)
when to transfer; 2) what to transfer; 3) how to transfer. Firstly, “when to transfer” includes
the issues whether transfer learning is necessary for specific learning tasks and whether the
source domain data are related to the target domain data. In the scenarios of [156], [171],
where training samples are sufficient and impressive performance can be achieved while
being constrained in the target domains, including another domain as the source domain
becomes superfluous. The divergence across different pairs of source domain and target
domain data can be significantly different. For example, when the difference between the
target domain and the source domain is only caused by the existence of a small amount of
noise, a low divergence level holds; on the other hand, the domain data can be large if the
two domains are completely irrelevant (e.g., text data vs. image data). Thus, a brute force
transfer of knowledge form from the source domain into the target domain irrespective of
their divergence would certainly cause performance degeneration, or, in even worse cases,
it would break the original data consistency in the target domain. Secondly, the answer to
“what to transfer” can be concluded in three aspects: 1) inductive transfer learning, where all
the source domain instances and their corresponding labels are used for knowledge transfer;
2) instance transfer learning, where only the source domain instances are used; 3) parameter
transfer learning: in addition to the source domain instances and labels, some parameters of

pre-learned models from the source domain are utilized to help improve the performance in

>http://research.microsoft.com/~zliu/ActionRecoRsrc
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Testing sample

»| Learning system

Regular machine learning approach

Transfer learning approach

Knowledge
transfer

p| Learning system

Shared patterns.
Relevent features

Fig. 1.1 Basic frameworks of traditional machine learning approaches and knowledge trans-
fer approaches. For regular machine learning approaches, the learning system can only
handle the situation that testing samples and training samples are sampled from the same
distribution. On the other hand, transfer learning approaches have to deal with the data dis-
tribution mismatch problem through specific knowledge transfer methods, e.g., mining the
shared patterns from data across different domains.

the target domain. Thirdly, “how to transfer” includes all the specific transfer learning tech-
niques, and it’s also the most important part that has been studied in the transfer learning
literature. Many transfer learning techniques have been proposed, e.g., in [154], [83], [26],
where knowledge transfer is based on the Nonnegative Matrix Tri-factorization (NMTF)
framework, and in [112], where the transfer learning phase is via dimension reduction. We
illustrate the basic frameworks of traditional machine learning approaches and knowledge
transfer approaches in Fig. 1.1. For traditional machine learning approaches, the ideal
choice of the training set to predict a testing instance ‘car’ should contain ‘cars’. However,
in the case of knowledge transfer, the training set can just contain some relevant categories
rather than ‘cars’, e.g., ‘wheels’, which are similar to the ‘wheels’ of ‘cars’; ‘bicycles’,
which share the knowledge of ‘wheels’ with the ‘car wheels’, or even some irrelevant ob-
jects, e.g., ‘laptops’ and ‘birds’, which seem to have no connections with ‘cars’ but actually
share certain edges or geometrical layouts with local parts of a ‘car’ image.

As the age of “Big Data” has come, transfer learning can provide more benefits to solve
the target problem with more relevant data. Thus, it is believed that more applications on
transfer learning will emerge in future research. In this report, transfer learning problems
are addressed with several dictionary learning approaches. Along with introducing these

approaches, I review existing transfer learning techniques, and discuss how they can be ap-
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plied to visual categorization tasks. Some visual characteristics (e.g., appearance, shape,
local symmetries and structural information) are considered when designing transfer learn-

ing models.

1.3 Dictionary Learning

Dictionary learning for sparse representation has attracted much attention. It has been suc-
cessfully applied to a variety of computer vision tasks, e.g., face recognition [161] and
image denoising [183]. Using an over-complete dictionary, sparse modeling of signals can
approximate the input signal by a sparse linear combination of items from the dictionary.
Many algorithms [79], [68], [161] have been proposed to learn such a dictionary accord-
ing to different criteria. The K-Singular Value Decomposition (K-SVD) algorithm [1] is a
classical dictionary learning algorithm that generalizes the K-means clustering process for
adapting dictionaries to efficiently learn an over-complete dictionary from a set of training
signals. The K-SVD method focuses on the reconstructive ability, however, since the learn-
ing process is unsupervised, the discriminative capability is not taken into consideration.
Consequently, methods that incorporate the discriminative criteria into dictionary learning
were proposed in [177], [169], [101], [97], [101], [10]. In addition to the discriminative ca-
pability of the learned dictionary, other criteria designed on top of the prototype dictionary
learning objective function include multiple dictionary learning [178], category-specific dic-
tionary learning [170], etc. Different from most dictionary learning methods, which learn
the dictionary and the classifier separately, the authors of [177] and [66] unified these two
learning procedures into a single supervised optimization problem and learned a discrim-
inative dictionary and the corresponding classifier simultaneously. Taking a step further,
Qiu et al. [117] and Zheng et al. [179] designed dictionaries for situations in which the
present training instances are different from the testing instances. The former presented a
general joint optimization function that transforms a dictionary learned from one domain to
the other, and applied such a framework to applications such as pose alignment, pose and
illumination estimation and face recognition. The latter achieved promising results on the
cross-view action recognition problem with pairwise dictionaries constructed using corre-
spondences between the target view and the source view. To make use of some data that
may not be relevant to the target domain data, Raina et al. [120] proposed a method that ap-
plies sparse coding to unlabeled data to break the large amount of data in the source domain

into basic patterns (e.g., edges in the task of image classification) so that knowledge can be
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transferred from the bottom level to a high level representation.

In the following part of this subsection, we give more detailed introduction of dictionary
learning. Consider a data sample y € R”, the coefficient vector x € RY and a projection

matrix D € RPN

, and suppose that the sample can be reconstructed by the linear transfor-
mation of the coefficient vector through the projection matrix plus the reconstruction error
as:

y = Dx + reconstruction error. (1.1)

If we define an objective function
7 (x) = |ly— D5, (1.2)

the vector x can be estimated by minimizing .% (x) subject to appropriate constraints. If
N > n, the solution to the unconstrained optimization problem in Equation (1.2) is not
unique, thus it leads to the over-fitting problem. In order to give more discriminative so-
lutions when estimating x, additional constraints on x are necessary. The commonly used
constraints include regularizing with /p-norm, /{-norm and /;-norm, where the first two are
also known as Sparsity-inducing norms and the last one is also known as the Euclidean or
Hilbertian norm. In general, /,-norm has well developed theory and algorithms, and it has
been applied to non-linear predictors, non-parametric supervised learning and kernel meth-
ods. On the other hand, the developing Sparsity-inducing norms attract more attention re-
cently. Applications that can benefit from the sparsity-inducing compression, regularization
in inverse problems, etc. The /p-norm, which indicates the solution with fewest non-zero

entries, is applied in our case. Thus Equation (1.2) can be formulated as:
F(x) = |ly—Dx||3,s.t.¥i,||x|]jo < T, (1.3)

T is a sparsity constraint factor that limits the number of non-zero elements in the sparse
codes, so that the number of non-zero components of x is less than 7'. In the case that 7 =1,
i.e., each instance is represented by a single basis in the codebook, Equation (1.3) is equiva-
lent to Vector Quantization (VQ). The construction of the dictionary D is achieved through
the K-SVD [1] algorithm, which iteratively minimizes the reconstruction error and learns
a reconstructive dictionary for sparse representations. Given D, the computation of sparse
code x is generally NP-hard under the sparsity constraint, thus one has to seek alternative

methods to approximate the solution, e.g., the greedy algorithms Matching Pursuit (MP)
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[99] and Orthogonal Matching Pursuit (OMP) [114], which sequentially select the dictio-
nary atoms, and the Basis Pursuit (BP) [19], which suggests a convexisation by relaxing the
lp-norm to the /;-norm. More details on optimizing the objective function under the /y-norm
constraint are given in Section 3.3. Since /1-norm also leads to sparse solutions, an alterna-
tive formulation for our problem in Equation (1.3) is to replace /y-norm regularization with

[1-norm regularization to enforce sparsity:
F(x) = lly = Dx|l3,s.t.||x|1 < T, (1.4)

where the optimization problem is convex in D with x fixed, and convex in x with D fixed,
but not in both simultaneously. Again, F(x) can be minimized iteratively by alternatingly
optimizing D or sparse code x while fixing the other. When dictionary D is fixed, the op-
timization problem is equivalent to a linear regression problem with /;-norm regularization
on the coefficients, which can be solved with the feature-sign search algorithm [79]. When
sparse code x is fixed, the problem reduces to a least square problem with quadratic con-

straints, so that it can be solved by the Lagrange dual as in [79].

1.4 Optimization

In practise, many optimization problems are solved under the assumption that these prob-
lems can be modeled by continuous convex or concave functions, however, not all problems
are of this type. On the other hand, submodularity offers another option for solving the
optimization problem in a discrete manner. In mathematics, a submodular function is a set
function which has the diminishing returns property (i.e., a set function whose value has the
property that the difference a single element makes when included in an input set decreases
as the size of the input set increases). Submodularity has many applications in economics,
game theory, etc. Andreas and Daniel [73] summarized its usage and applications partic-
ularly on maximization problems. It is worth noting that different from the relationship
between convex and concave functions, minimizing and maximizing a submodular set func-
tion require completely different methods.

Submodularity has recently been applied to many computer vision tasks, including clus-
tering [91] and segmentation [65]. Liu et al. [91] presented a method that uses the entropy
rate of a random walk on a graph for compact and homogeneous clustering. Jiang and Davis

[65] solved a facility location problem [47, 78] for salient region detection. The saliency
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of a region is modeled in terms of its appearance and spatial location, and salient region

detection is achieved by maximizing a submodular objective function.

1.5 Datasets

1.5.1 Multi-View IXMAS

INRIA Xmas Motion Acquisition Sequences (IXMAS) [159] is a multi-view dataset for
view-invariant human action recognition. 13 daily-live motions (in practise, only 11 actions,
including ‘check watch’, ‘cross arms’, ‘scratch head’, ‘sit down’,* get up’, ‘turn around’,
‘walk’, ‘wave’, ‘kick’ and ‘pick up’, are used for evaluation for state-of-the-art works) per-
formed each 3 times by 9 actors in 5 camera positions. In this report, the IXMAS dataset is
used for evaluating the multi-view camera fusion action recognition and cross-view action
recognition algorithms. These two tasks induce two experimental settings, where the former
utilizes actions captured by a combination set of cameras for training and the same set of
cameras for testing, while the latter utilizes training and testing actions which are captured

from different cameras.

1.5.2 UCF YouTube

The UCF YouTube dataset [86] (shown in Fig. 1.2) is a realistic dataset that contains cam-
era shaking, cluttered background, variations in actors’ scale, variations in illumination and
view point changes. There are 11 actions including cycling, diving, golf swinging, soc-
cer juggling, jumping, horse-back riding, basketball shooting, volleyball spiking, swinging,

tennis swinging and walking with a dog. These actions are performed by 25 actors.

1.5.3 HMDBS31

The HMDBS5]1 dataset (shown in Fig. 1.3) contains video sequences which are extracted
from commercial movies as well as YouTube. It represents a fine multifariousness of light
conditions, situations and surroundings in which actions can appear, different recording

camera types and viewpoint changes.
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Soccer juggling
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Fig. 1.2 Example images from video sequences in the UCF YouTube dataset.
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Ride bike Dive
{

Fig. 1.3 Example images from video sequences in the selected body movements of the
HMDBS51 dataset.

1.5.4 Caltech101/256

The Caltech101 image dataset (shown in Fig. 1.4) consists of 101 categories (e.g., accor-
dion, cannon, and chair), and each category contains 30 to 800 images. The Caltech 256
dataset (shown in Fig. 1.5) contains 30,607 images of 256 categories. Due to the exis-
tence of large variations on object location, pose, and size, and also the increased number
of categories, the Caltech256 dataset is considered as a more challenging dataset than the
Caltech101 dataset.

1.5.5 PASCAL VOC

The PASCAL VOC dataset is created along with the PASCAL VOC Challenge [34]. The
VOC challenge ran between 2005-2012, since there are in total 8 releases of the PASCAL
VOC dataset. We choose to evaluate on PASCAL VOC 2007, as this is the latest release
that provides the ground-truth of the testing data.
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Fig. 1.4 Example images from classes from the Caltech101 dataset.

(a) car-side, acc=100%
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(b) faces -easy, acc=100%

(c) motorbikes, acc=96.48%

(d) alrplanes acc=97.78%

(e) ketch, acc=97. 78% »

Fig. 1.5 Example images of the categories from the Caltech256 dataset.
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1.5.6 ETHZ-Shape

The ETHZ-Shape dataset [41] contains 255 test images and features five diverse shape-
based classes, including ‘apple’ ‘logos’, ‘bottles’, ‘giraffes’, ‘mugs’, and ‘swans’. The

ground-truth of both training and testing data are provided.



Chapter 2

Segmentation-based image feature

learning'

2.1 Preliminaries

Submodularity: Let 7 be a finite set, o/ C S C ¥ anda € #'\S. A set function F : 27 3R
is submodular if F(</ Ua) —F(</) > F(SUa) — F(S). This property is referred to as
diminishing returns, stating that adding an element to a smaller set produces a greater change
than a larger set[107].

Monotone submodular functions: A submodular function f is monotone if we have
f() < f(S) for any o7 C S.

Facility location problem: The facility location problem is an optimal facility place-
ment problem. The optimal solution should maximize the benefits that placed facilities bring
to an area while considering issues like hazardous materials, price of opening a facility, etc.
An simple example is given in Fig. 2.1. Suppose we wish to place “facilities” 1 and 2 at
some locations within the rectangular, and both “facilities” provide services to customers
1 —4. Let w;; (value given in Fig. 2.1) denote the benefit that a facility at location j brings
to customer i, and w;; is inversely proportional to the customer-facility distance. Let ¢ de-
note the cost of placing each facility and S denote the set of placed facilities. Assuming

each customer only chooses the facility with highest benefit (i.e., lowest distance in the ex-

I'The original content of this chapter is published at:
F. Zhu, Z. Jiang and L. Shao, Submodular Object Recognition, IEEE Conference on Computer Vision and
Pattern Recognition, Columbus, OH, Jun. 2014.
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-
- (
-

. facility 1 ‘ facility 2 "w customer

Fig. 2.1 Illustration of the facility location problem. Two facilities 1 and 2 are placed within
a rectangle area to provide services to customer 1 —4. Each customer is considered to
choose the facility with highest benefit, and the choice of each customer is denoted with a
solid line.

ample), the total benefits of building such two facilities within the area is modeled by the

set function

4
S) = max w; ;i —2
fS) ,»:Zu‘e{l,z} im0 @.1)

= w1 +w21 +w3 +war —20.

If all benefit values are non-negative (w;; > 0), f (S) is monotone submodular[44]. In
our work below, instead of a benefit value, w;; refers to the pairwise relationship between a

“customers” segment and a “facility” segment.

2.2 Motivation and Introduction

In recent years, the bag-of-features (BoF) model and its extension, spatial pyramid match-
ing (SPM) [77], have been popular for object recognition. When working with densely
sampled pyramid grids and powerful classifiers, BoF and SPM have achieved impressive
performance on several object recognition benchmarks including PASCAL VOC 2007 [34]
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and Caltech-101 [37]. While these densely sampled grids can retain context information,
such as spatial layout, for a specific object category, irrelevant background information is
also included. To solve this problem, a lot of efforts have been spent on utilizing image
segmentation results for improved recognition performance. Examples of image segmenta-
tion results are given in Fig. 2.3 and the difference between our proposed object recognition
framework and regular object recognition framework is illustrated in Fig. 2.2. The bene-
fits are two fold: (1) accurate segmentation can enhance the contrast of object boundaries,
so that features along the boundaries are more shape-informative; (2) computing features
on homogeneous segments improves the signal-to-noise ratio. However, little progress has
been achieved due to a lack of reliable segmentation techniques. For example, Nilsback
and Zisserman [109] employed segmented images for flower classification. Since only a
single segment is considered for an image, and clean segmentations can only be guaranteed
for images with simple backgrounds, the performance improvement is not significant when
comparing with results from non-segmented images. Unlike approaches that consider only
one segment in an image [109], our approach considers multiple segments simultaneously
via submodularity. Our approach is based on the recently proposed Constrained Parametric
Min Cuts (CPMC) [17] algorithm, which has demonstrated a significant improvement in
segmentation. We present a submodular objective function for efficiently selecting salient
segments from the set of figure-ground hypotheses for object recognition, and another ob-
jective function that additionally considers the discriminative information of segments for
the selection. We learn a scoring (regression) function for each object category with the
overlapping observations of each pair of the figure-ground hypothesis and the ground-truth
segment. The benefit of regression is exploited for discriminating segments’ categories and
qualities. Our objective function contains a facility-location term and a discriminative term,
where the facility-location term measures the similarities between the selected segments and
their group elements and the “facility” costs for the selected elements, and the discrimina-
tive term is measured by the consistency of categories that obtain the maximum regression

values on selected segments. Our main contributions are three-fold:

* Object recognition is modeled as a facility location problem with the constraint of
segments’ class consistency of selected segments (facility locations), which can be
solved by maximizing a submodular function. We provide a new perspective by ap-

plying submodularity to the object recognition problem.

* By adding an extra discriminative term to the objective function, though the solution

is ad hoc, we further improve the recognition performance.
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Classifier trained on whole image regions

Our object recognition framework

Fig. 2.2 Illustration of the difference between our proposed object recognition framework
(right) and the regular object recognition framework (left). The foreground region selection
part (within the gray region) is the focus of this work.

* Our submodular recognition approach achieves state-of-the-art performance on three

popular object recognition benchmarks.

2.3 Related Work

Many recent bottom-up object recognition approaches attempt to use the spatial layouts of
objects for better performance. He et al. [57] constructed a Conditional Random Field
(CRF) framework on image pixels, where each pixel is assigned to one of a finite set of
labels. Both image features and image labels are incorporated into the probabilistic frame-
work. Shotton et al. [141] proposed Textonboost, which incorporates texture, layout and
context information for unary classification. By incorporating the unary classifier into a
CREF, the spatial interactions between class labels of neighboring pixels are captured to guar-
antee the smoothness. A major limitation of pixel-level methods is their weak capability for
segmenting nearby objects of the same category. Gould et al. [53] and Ladicky et al. [76]

addressed such a limitation using rectangular bounding box detection constraints. Rather
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Fig. 2.3 The pool of image segments.

than using bounding boxes, segment-based or superpixel-based approaches are closer to the
ground-truth spatial support. Fulkerson et al. [45] used superpixels as basic units in the
recognition framework. To this end, the histogram of local features within each superpixel
is used to construct a classifier, which is regularized by aggregating histograms of neigh-
boring superpixels. For segment-level recognition methods, Rabinovich et al. [119] applied
a stability heuristic to select a reduced list of segmentations obtained from normalized cuts
[140]. For an image I, each segment in the list is regarded as a stand-alone image, and
labels from all segments are used to vote for the category of image /. By using a collection
of segments for recognition rather than a single segment, more object boundary information
can be captured. However, they do not provide a reliable segment selection mechanism for
filtering out erroneous segments, and treating the whole collection of segments as a new set
of images is too computationally expensive. Li et al. [81] presented an object recognition
framework based on multiple figure-ground segmentations generated by CPMC, which is

the most similar approach to our work.
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2.4 Segmentation-based object recognition

Our method solves the object recognition problem through the selection of a subset of seg-
ments so as to best discover the target object in a query image. Firstly, we apply the CPMC
segmentation [17] on each image to produce a set of figure-ground hypotheses in an un-
supervised manner. Then we construct a graph G based on the generated figure-ground
hypotheses. Since using all segment hypotheses is too computationally expensive and prob-
ably produces misleading predictions, we aim to discover the representative and visually
salient segment subset .« of S by iteratively adding elements of S into .«7. Object masks
are obtained by overlaying selected segments for extracting foreground objects. Finally, a

linear classifier is applied for recognizing objects.

2.4.1 Graph-Construction

For an image I (in gray-scale), N segments ¥ = {v{,v,,---,vy}> are generated by CPMC
and the ground-truth segment G’[‘ of object category k is provided for the training data.
Note that each segment v; here is in the form of a regular gray-scale image, which has the
same size as the image /. Only a region within v; has identical pixel values as I, while the
remaining pixels have the value 0. A subset of segments is shown in Fig. 2.1(b)~(f). We
construct a graph G = (¥, E) on the segment hypotheses in image I, where the vertices
v € ¥V are segments while e € E are edges between segments. The weight w;; assigned to

the edge ¢;; is computed using Equation 2.3.

2.4.2 Salient Segment Selection based on Submodularity

Objective Function

In order to select visually salient image regions from backgrounds, we model the segment
selection and recognition as a facility location problem [47, 78]. We consider that a fore-
ground region consists a set of image segments, which are computed by the CMPC seg-
mentation technique, so that our task becomes that of selecting the set of visually salient
segments. We consider each selection task to be equivalent to placing a “facility” in an area,
and we define the number of selected segments as no more than K. Let N, denote the num-

ber of selected segments (i.e., placed “facilities”) and H (<) denote the benefit value when

2N is constrained within 100 to limit the computational cost in our work.
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the segment set &7 € ¥ is selected, the combinatorial formulation of the segment selection

problem can be applied:

maxH Zmaxw,] Z o

ey’ jed (2.2)
st. A CV,Ny<K

where w;; denotes the weight between a unselected segment (“customer”) v; and a selected
segment (“facility”) v; (considered as facilities), and the cost ¢; of selecting a segment into

7 is fixed to 6. Submodularity of the objective function H has been proved in [47, 78].

The first term in (2.2) encourages the “customer” segment v; has the largest weight with
its assigned “facility” segment (i.e., v;). It favors the selected segment v; (“facility”) to well
represent or be similar to the “customer” segments it associates to, so that the final selected
set .o/ can cover a visually salient region [65]. Let x; denote the Spatial Pyramid Matching

(SPM) [168] feature computed from v;, then the weight w;; is computed as:

wij = K(x;,x;) +O0(vi,vj), (2.3)

where K (x;,x;) denotes the chi-squared distance on histogram features of any pair of seg-
ments:
n)Z

K(x,',xj) = Z Z x +x ) (2.4)

i€y, je¥ n=1

where N, is the dimension of x;, and O(v;,v;) denotes the ‘intersection-over-union’ overlap

measurement of the same pair of segments:

(2.5)

If w;; is computed only based on the overlap measurement, the facility location term will
pursue segments that have highest overlap values with neighbouring segments, so that seg-
ments with large background coverage are preferably selected. Including the chi-squared
distance on segments’ histogram features can effectively avoid such a problem. The second
term in (2.2) penalizes on extraneous facilities. When the gain obtained by introducing a
new segment to the o7 is offset by the cost of selecting a new segment (i.e., “placing a new

facility”), o7 will stop growing. Hence this selected .o/ is representative and visually salient.
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Algorithm 1 Submodular Salient Segment Selection
1: Input: ¥, N, and K.
2: Output: <7, Q, L.
3: Initialization: ¥ = 0, L = a zero matrix, N, = 0.

4: loop
5: if N,y > K then
6: break;
7: end if
vi =argmaxH(«/ U{v;}) —H (<)
vieV\o
8: if H(o@7 U{vi}) <H()
: break;
10: end if
11: of = U{vi}
12: L=L+v;
13: Ny =Ngy+1
14: end loop

15: Obtain the final mask Q

Optimization

Direct maximization of H(.2/) is an NP-hard problem [47]. The monotonicity and sub-
modularity of (2.2) has been proved in [47, 78]. Utilizing this property, (2.2) can be ef-
ficiently solved with a greedy-based approximate solution [47] [107]. The segment set
&/ is initialized with 0, and a segment v; € <7 \ S that leads to the largest marginal gain
H(</\Jvi) —H(4/) at each iteration is iteratively added to <7. &/ stops absorbing new
segments when the desired number of segments is reached or the gain decreases. Given
a finite segment set S and its subset .o/ C §, a simple uniform matroid is induced towards
the number of selected segments N, which is less than K. Maximization of a submodular
function with a uniform matroid constraint yields a (1 — 1/e)-approximation [107], Hence
our approach provides a performance-guarantee solution. The pseudocode of submodular
salient segment selection framework is given in Algorithm 1, where K denotes the limit of

segment number and N, denotes the number of selected segments in <7

The optimization process can be accelerated by using the submodularity property of the
objective function. Instead of recomputing the gain for adding every segment v; € ¥\ .7,
which requires || — | 7| evaluations for the gain H(.2/), we use the lazy evaluation form
from [80].
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2.4.3 Salient and Discriminative Segment Selection

While the salient segment selection method introduced in Section 2.4.2 is an unsupervised
selection method, we include a discriminative term which can discriminate segments’ cate-
gory information into the objective function for selecting both representative and discrimi-
native segments. Based on the regressor trained for each category, the category label of each
segment can be estimated. Our intention is to force the majority of selected segments of a

query image are assigned the same category label.

Discriminative Term

We enforce a consistency of segments’ labels to boost the discriminative power of the se-
lected set 7. The discriminative term is based on the learned segment regressor for each
category (e.g., cars or planes). More descriptions on how these regressors are trained are
give below.

These segments V = {vy,v,,--- vy} are represented by the spatial pyramid descriptors
[168] x = {x1,x2,--- ,xy}. The object category contained in image [ is k € {1,2,--- ,m},
and we need to learn m scoring functions fj(x), f2(x),---, fm(x) for each object category.
Each function is defined on the score set O, which is computed by the overlaps between
a segment v; and the ground-truth segment (a matrix which has binary scores, where the
values 1 correspond to the foreground regions of image / and the values 0 correspond to
the background region) GII‘ of category k in an image / using the ‘intersection-over-union’

measurement. Specifically, each O; is computed as:

Navels
0;(vi,GY) = % (2.6)
Vi 1

Thus, each segment v; is associated with its regression score Oi(vi,G’;). Since a segment
usually overlaps with more than one ground-truth segments when training each f;(x), it can
have different regression values for different categories when training the scoring function
of different categories. If category k does not appear in image /, all the segments in image
I are considered as having no overlap with category k. A simple linear Support Vector
Regression is applied to learn each scoring function fi(x) by regressing on the score set

{0} against S for all images in the training set’. During testing, the scoring function which

3The regressors are first trained only using the ground-truth segments, after which all candidate segments
are fed into the regressors for classification. The miss-classified segments are then added to the training
segments for re-training the regressors. Considering the high computational cost caused by large numbers of
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results in the highest regression value determines the category of a query segment v;, i.e.,
the category of v; is computed by y; = argmaxy f(x;).

The entropy is governed by the probability distribution of category labels that exist in o7,
and it measures the consistency of the labels of selected segments. Note that the probability
p(j) is not calculated by counting the number of segments that contribute to each category,
but by directly using the category label of each selected segment. The definition of the

entropy term is given by:

O(«)=—Y. p(j)logp(j), (2.7)
jeoA
with
p(j) = —remaxk/ ) 2.8)

 Yieo argmaxg fi(x;)’
where the numerator denotes the object category of segment j, and the denominator sums all
values on numerators to guarantee that the sum of p(j) is one. To each candidate segment,
its category is assigned by the scoring function that achieves the highest regression value.
By maximizing Q(<), we encourage the selected segment set .27 to possess homogeneous
category labels, which reduce negative effects from erroneous regressors. We can obtain a
maximum Q(.</) when all segments within <7 are assigned the same category. Note that
different ways for including the entropy term into the objective function are used for the
multi-category classification task (i.e., the Caltech-101 dataset) and the presence/absence
classification® task (i.e., the PASCAL 2007 and the ETHZ-shape dataset dataset). For multi-
category classification, regressors of all categories are used during the segment selection
process, and a segment’s category is allocated by the regressor that possesses the highest
regression value. For the presence/absence classification task, only a single regressor of the
query category is considered, and a segment’s category is allocated as ‘1’ if the regression
value is above 0.5, and ‘2’ otherwise. When the query category changes, different segments
are selected with respect to a different regressor. Thus, our method can well handle the
presence/absence classification problem, where images contain more than one object.

Fig. 2.5 show the segment selection example on the presence/absence classification
task. Specifically, a small subset of segment hypothesis generated by CPMC is given in
Fig. 2.5(b)~(f). Aggregated confidence of selected segments are shown in Fig. 2.5(g)~(i),
where Fig. 2.5(g) is based on the facility location term only, Fig. 2.5(h) and Fig. 2.5(1) are

based on both the facility location term and the entropy term. Without the entropy term as in

segments, we adopt the hard negative example mining strategy to refine the training as in [16].
4Following [6, 18, 28, 56, 115, 168], the presence/absence classification is to predict presence/absence of
an example of that class in the test image.
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@ Categoryl @ Category2 O Existing segment Selected segment

Marginal gain = 0.75 Marginal gain = 2.1

(a) (b)

Fig. 2.4 Points with different colors denote vertices from different categories. The black
circle denotes an existing segment which is selected in the first round selection. The orange
circle denotes a selected segment at the second round selection. (a) shows the selection
result based on the facility location term. According to Equation 2.3 and 2.5, if we assume
¢; = 1, a maximum marginal gain H(%/ +a) — H(</) of 0.75 is reached when the black
point is selected. (b) shows the selection result when integrating the entropy term together
with the facility location term. According to Equation 2.2, 2.7 2.8 and 2.9, if we assume the
tradeoff parameter A = 2, the top red point is selected instead with a maximum marginal
gain of 2.1.

Fig. 2.5(j), the facility location term only favors representative segments. When the entropy
term is included, category-specific segments are selected. When detecting object category
‘car’ segments with high regression scores of the “car” regressor are prefered (shown in Fig.
2.5(k)). We can combine the facility-location term and the discriminative term into a unified

objective function:
m;xC(;zf) :mQ?xH(d) +A0()

=max Z maxw,j Z (of

A ey Ied jeot (2.9)
—A Z p(j)logp(j

jeo

where C(«7) is the overall benefit value of selecting segment set <. Fig. 2.4 illustrates how
the facility location term and the entropy term contribute to a selection. A brief explanation

of Fig. 2.4 is given in the following paragraph.



24 Segmentation-based image feature learning

® (h) ) o) G 0

Fig. 2.5 An example of submodular segment selection for the presence/absence classifica-
tion task. (a): Image I; (b)~(f): A small subset of segment hypothesis generated by CPMC;
(g)~(1): Aggregated confidence of selected segments. (j)~(1): Illustrations of masked im-
ages L.

For subfigure 2.4(a), we consider the candidate facilities in the left to right order:

« H(o/ +a)—H(a) = (2+2+034+0.55-2x &) — (2+0.25+0.3+0.55 — §) =
1.75—48, (the black point at the left side in Fig. 2.4)

e H@/+a)—H(a) = (2+2+0254055-2%x38)—(2+0.25+0.34+0.55—-9) =
1.7—46, (the red point at the top side in Fig. 2.4)

e H@ +a)—H(a) = (24+240254+03—-2x38)—(240.25+0.3+0.55—-90) =
1.45—0, (the red point at the right side in Fig. 2.4)

If we set 6 = 1, the largest marginal gain equals to 0.75. For subfigure 2.4(b), we use
a balancing parameter between the facility location term and the entropy term of A = 2.
When only one facility is selected, Q(A) = 0, then:

« O(o +a)=—(3log +3log%) ~ 0.6365, (the black point at the left side in Fig.
2.4)

* (o +a) = —(%log% + %log%) ~ 0.6931, (the red point at the top side in Fig.
2.4)
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« O(/ +a) = —(4logs+ tlog3) ~ 0.6931, (the red point at the right side in Fig.
2.4)

The largest marginal gain is when the red point at the top side is selected, where H(A +a) —
H(a)+A xE(A+a)=1.7—-1+2x0.6931 ~ 2.1, thus the case (b) is preferred.

Optimization

The optimization of the objective function defined in (2.9) follows the same greedy solution,
however, the entropy term is neither monotonic nor submodular, which means the above so-
lution is ad-hoc and it does not hold any theoretical performance guarantee based on the
objective function given in (2.9). We claim that including the discriminative term still im-
proves the overall recognition performance over the unsupervised segment selection method
even though the solution may not be a global optimum. At the initialization stage when the
algorithm selects the first segment into .o/, the segment with the highest regression score
is selected. For example, if we are detecting the presence/absence of a car within a query
image, the segment that has the largest regression score, which is returned by the ‘“car”
regressor, is selected.

2.4.4 Segmentation Mask Construction

The final mask M is obtained by overlaying all segments in .2 while taking account of the
confidence score fi(a;) of each segment a; € .o7. An adaptive threshold T = 0.6 X N,y is

applied to M to filter out pixels with low confidence scores.

2.4.5 Image Representation and Classification

Each mask M is in the form of a binary matrix, which has an identical size to the original
image /. By performing element-wise multiplication on each mask M and the image /, a
new matrix L can be obtained. In L, entries that correspond to non-zero elements in M are
identical to pixel values of /, while the remaining entries equal to zero. Illustrations of L are
given in Fig. 2.5(j)~(1). The SPM feature x; € X is computed from L, and is used as the
representation of image I, where X denotes the features for the whole training set. We can

obtain the classifier parameters W of a linear classifier [52] through:

W = argmax |[H — WX |3+ o||W |3, (2.10)
w
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Algorithm 2 Submodular Object Recognition based on Segment Selection Results

Input: Q, W, Iand 7.
Output: M and k™.
Initialization:M <« 0.
for each pixel Q(i, j) do
if O(i, j) > 7 then
M(i,j)=1
else
M(i,j)=0
end if
end for
: Integrate the final mask with the SPM framework by computing a global representation
x7 based on M - I instead of I, where - means dot product.
12: Obtain the category k* = argmaxy k| — (Wxp)x.

e RN AR

—_—
— O

where H 1s the class label matrix of X, and W denotes classifier parameters. This yields the
solution W = HXT (XXT + ¢2°)~!, with 2 being an identity matrix. For a test image 1,
we first compute its representation x; and then estimate its class label vector [ = Wx;, where
[ € R™. Its label is the index i corresponding to the largest element in /. The pseudocode
of how object recognition can be achieved based on segment selection result is given in
Algorithm 2.

2.5 Experiments

We evaluate our submodular object recognition approach on three popular benchmarks, in-
cluding Caltech-101 [37], PASCAL VOC 2007 [Everingham et al.] and ETHZ-shape [41].
For all three datasets, we compute the dense SIFT features on each image. Regressors are
trained based the ground-truth segmentations provided with the training data. For all the
experiments, we evaluate our approach by either using the facility location term (“FL”) only

or using both the facility location term and the entropy term (“FL”+“EN").

2.5.1 PASCAL VOC 2007

We extensively evaluate the effectiveness of our approach on the PASCAL VOC 2007
dataset, as the ground-truth of the testing data is released. The PASCAL VOC 2007 dataset

contains 9,963 images from 20 visual object categories, and the dataset is evenly split to
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Table 2.1 Average precisions (APS) of each object category achieved by the baseline method
and our proposed methods on the PASCAL VOC 2007 dataset.

Methods plane bicyclbird boat bottle bus car cat chair cow table dog horse mbikepersonplant sheep sofa train tv Avg
Yang [168] 748 652 50.7 70.9 28.7 68.8 785 61.7 543 48.6 51.8 44.1 76.6 669 83.5 30.8 44.6 534 782 535 59.3
Florent [115] 7577 64.8 528 70.6 30.0 64.1 77.5 555 55.6 41.8 563 41.7 763 644 827 283 39.7 56.6 79.7 51.5 583
Harzallah [56] | 77.2 693 56.2 66.6 45.5 68.1 83.4 536 583 51.1 622 452 784 69.7 86.1 524 544 543 758 62.1 635
Qiang [18] 76.7 74.7 53.8 72.1 404 71.7 83.6 66.5 525 575 62.8 51.1 8l.4 715 86.5 364 553 60.6 80.6 57.8 64.7
Dong [28] 822 83.0 584 76.1 564 775 88.8 69.1 622 61.8 642 513 854 802 91.1 48.1 61.7 67.7 863 709 71.1
FL 812 822 56.7 73.5 562 765 885 67.8 58.0 60.1 61.7 48.1 85.1 77.8 89.3 455 60.6 64.4 843 69.2 69.3
FL+EN 83.7 825 633 77.3 58.0 80.2 894 68.8 63.1 63.7 67.4 53.5 86.4 82.7 90.5 484 62.0 67.9 872 71.5 724

“trainval” and “test” parts. Following typical settings in [18, 28, 56, 115, 168], we con-
duct experiments on the “trainval” and “test” splits. In our algorithm, we train the regres-
sors according to the overlap observations between each figure-ground hypothesis and the
ground-truth segmentation of an object category. Since the ground-truth segmentations are
only available for those images provided in the segmentations challenge, we train the re-
gressors only based on images with provided ground-truth segmentation in the “trainval”
split. We show the results achieved by both “FL” and “FL+EN” in Table 2.1. We calculate
the average precisions (APs) for each object category using both approaches, and compare
with state-of-the-art approaches [18, 28, 56, 115, 168]. As can be observed, the “FL+EN”
approach outperforms all other approaches.

2.5.2 Caltech-101 Dataset

The Caltech-101 dataset [37] contains 9, 144 images from 102 classes (101 object classes
and a ‘background’ class). The ground-truth segmentations are provided in this dataset.
We train a codebook with 2048 bases, and choose 4 x 4, 2 x 2 and 1 x 1 sub-regions for
SPM. Following the common experimental protocol, randomly selected 5, 10, 15, 20, 25,
30 samples per category are used for training, and remaining samples are for testing. We
repeat the experiments 10 times and the final results are reported as the average of each
run. We compare our results with state-of-the-art approaches [16, 67, 131, 168] in Table
2.2. We also show the results of “BS” and “GT”, which denote results produced by using
only the best segments’ and ground-truth segments, respectively. The high performance of
“BS” and “GT” proves our motivation that recognition performance can be improved by
segmentation.

We randomly select 30 images as training data, and evaluate our approach when different

values of the entropy term weight A and the penalty cost & are selected. As shown in

SFor an image I, the best segment is a segment that has the largest overlap with the ground-truth segment
Gy.
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Fig. 2.6 Effects of parameter selection of A and é on the recognition performance on the
Caltech-101 dataset when using 30 training examples per category. The horizontal axis
denotes different values of 0, while lines with different colors denote different A values.

Fig. 2.6, the best performance is achieved when A = 1.5 and 6 = 2. If A is set to 0, the
performance degrades since segments’ label consistency is not considered. On the other
hand, if A is too large, pursuing segments’label consistency while considering less their
visual saliency is harmful to the performance. The performance is more sensitive to the
penalty cost 0. If 0 is large, the cost of selecting a new segment can easily exceed the gain
that the selected segment can contribute to the objective function. Consequently, only one or
a few facilities can be selected. In general, there does not exist a single correct segmentation
for an image, so that the performance is weakened when recognition is performed on too
few segments within an image (as shown in Fig. 2.7(c) and Fig. 2.7(d)). A small § can
lead to a large collection of segments being selected. Thus, the intersection of selected
segments is concentrated on a small image region (as shown in Fig. 2.7(f)), and much object
information is discarded. As a result, recognition performance significantly degrades. Fig.
2.8 demonstrates results of aggregated confidence maps of selected segments and resulting
foreground objects, and Fig. 2.9 shows example images from classes with high classification

accuracy of the Caltech-101 dataset.
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(d) (e) ()

Fig. 2.7 Effects of parameter selection of 8 on the aggregated confidence of selected seg-
ments .Z . (a): Input image; (b): Ground truth segment; (c)~(f): The aggregated confidence
of selected segments when the penalty cost 6 = 3,2.5,2,0.5, respectively. The color denotes
different confidence values (red: high, blue: low). In case of too few segments are selected
as in (c), the aggregated confidence does not have accurate coverage of the object. The
coverage of the aggregated confidence is improved in (d) when more segments are selected.
(e) has the most accurate coverage. o/ can “over-select” segments if we reduce the penalty
term. In (f), the aggregated confidence focuses on a small central region of the object as too
many segments are selected.

@ O

2.5.3 ETHZ Shape Classes

The ETHZ Shape Classes dataset [118] contains 255 images from 5 shape categories, in-
cluding “Applelogo”, “Bottles”, “Giraffes”, “Mugs”, “Swans”, and object ground-truth out-
lines are provided for all images. Following the PASCAL classification criterion, for each of
the 5 categories, we predict presence/absence of an example of that class in the test image.
The dataset is evenly split into training and testing sets and performance is averaged over 5
random splits. Performance comparisons between our approaches (“FL” and “FL” +“EN”)
and approaches in [67, 168] are given in Table 2.3. It can be observed that the proposed
“FL”+“EN” significantly outperforms other methods. The ROC curves of our approaches
and approaches in [67, 168] for the all five categories are shown in Fig. 2.10.

2.6 Conclusions

We have proposed a segmentation-based object recognition approach based on submodular-
ity. Segment selection methods based on both saliency and discriminativity are proposed
to suppress background information in images through selecting representative and dis-
criminative segments from image segmentation results. Salient segments are selected by

maximizing a submodular function, which can be viewed as a facility location problem, and



30 Segmentation-based image feature learning

Fig. 2.8 Examples of aggregated confidence maps of selected segments on images from
Caltech-101 dataset. (a): Input images; (b): Ground truth object segmentations; (c): Aggre-
gated confidence of selected segments using “FL” method only; (d): Aggregated confidence
of selected segments using “FL”+“EN” method; (e): Foreground objects based on masks
generated by the results of (d) through adaptive thresholds.

ROC curve of "Applelogo” ROC curve of "Bottles” ROC curve of "Giraffe" ROC curve of "Mugs" ROC curve of "Swans"
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Fig. 2.9 ROC curves of our approaches (“FL” and “FL” +“ EN”) and state-of-the-art ap-
proaches on the all five categories of the ETHZ Shape Classes dataset.

discriminative segments are selected by applying pre-learned category-specific regressors to
segments in the query image. The discriminative term is also governed by entropy, which
favors the consistency of assigned labels of selected segments.Experimental results on three
public benchmarks indicate that our method outperforms state-of-the-art recognition tech-

niques.
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(c) gerenuk, acc:100%

_ Y F,

(d) metronome, acc:100%

(f) accordion, acc:100%

Fig. 2.10 Example images from classes with high classification accuracy of the Caltech-101
dataset.
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Table 2.2 Recognition accuracies using spatial pyramid features on the Caltech-101 dataset.
“BS” and “GT” denote results produced by using only the best ranked segments and ground-
truth segments, respectively.

Method ‘ 5 10 15 20 25 30
Yang [168] | 49.84% 57.26% 62.75% 68.78% 7T1.12% 73.72%
Jiang [67] 54.00% 63.10% 67.70% 70.50% 72.30% 73.60%
Shaban [131] | 54.01% 63.86% 68.70% 71.58% 73.73% 75.07%

Carreira [16] | 60.90% — 74.710% — — 81.90%
GT 68.71% 77.67% 81.33% 84.49% 86.73% 88.34%
BS 63.95% 72.03% 77.66% 79.69% 82.24% 83.27%
FL 59.81% 68.45% 73.90% 76.98% 78.96% 80.28%

FL+EN 63.29% 71.47% 76.43% 78.26% 81.03% 83.18%

Table 2.3 Average precisions (APS) of each object category on the ETHZ shape classes
dataset.

Methods ‘Apple Bottles Gira Mugs Swans | Avg

Yang [168] | 83.79 83.13 92.77 89.16 85.75 | 86.92
Jiang [67] | 84.11 88.71 94.74 89.64 8891 | 89.22
FL 86.40 89.50 95.04 89.72 89.16 | 89.96
FL+EN 93.18 91.71 97.43 93.61 92.96 | 93.78




Chapter 3

Transfer Feature Learning

3.1 Cross-Domain Dictionary Learning'

3.1.1 Motivation and Introduction

In the past few years, along with the explosion of online image and video data (Flickr 2,
YouTube 3), the computer vision community has witnessed a significant amount of applica-
tions in content-based image/video search and retrieval, human-computer interaction, sport
events analysis, etc. These applications are built upon the development of several aspects
of classical computer vision tasks, such as human action recognition, object localization
and image classification, which, however, remain challenging in real-world scenarios due to
cluttered background, view point changes, occlusion, and geometric and photometric varia-
tions of the target [145], [172], [157], [63], [70], [156], [31], [102]. These issues result in ei-
ther imposing irrelevant information to the target introduced by, e.g., cluttered background,
or producing very different representations for the same target caused by, e.g., geometric
and photometric changes. Many previous methods that manage to deal with these issues are
proposed and some state-of-the-art approaches include semantic attributes [145], estimated

pose features [172], and mined hierarchical features [50]. The conventional framework ap-

IThe content of this section is published at:
F. Zhu and L. Shao, Weakly-Supervised Cross-Domain Dictionary Learning for Visual Recognition, Interna-
tional Journal of Computer Vision, vol. 109, no. 1-2, pp.42-59, Aug. 2014
F. Zhu and L. Shao, Enhancing Action Recognition by Cross-Domain Dictionary Learning, British Machine
Vision Conference, Bristol, UK, Sep. 2013.

Zhttp://www.flickr.com/

3http://www.yoututbe.com/
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plies a robust classifier using human annotated training data, and makes the assumption
that the testing data stay in the same feature space or share the same distribution with the
training data. However, in real-world applications, due to the high price of human man-
ual annotation and environmental restrictions, sufficient training data that stay in the same
feature space or share the same distribution with the testing data cannot always be guaran-
teed, in which case insufficient training data can limit the potential discriminability of the
trained model. Typical examples are [15], [48], [111], where only one action template is
provided for each action class for training, and [88], where training samples are captured
from a different viewpoint. In these situations, obtaining more labeled data is either impos-
sible or expensive, while seeking for an alternative way of using data from other domains

as compensation can be seen as a possible and economic solution.

We introduce a new visual categorization framework that utilizes weakly labeled data
obtained from online resources as the source data to span the intra-class diversity of the
original learning system. In addition to the manually labeled training data in the target
domain, the source domain data are utilized as extensions of category prototypes in the
target domain. Fig 3.1 illustrates a simple example of how auxiliary data can help with the
classification tasks. We let purple triangles, the orange circles and the red squares denote the
training samples from Classes 1, 2 and 3 respectively, and the corresponding hollow shapes
denote the auxiliary training samples from Classes 1, 2 and 3. Original decision boundaries
are drawn according to the target domain data and are represented by the solid lines, and the
new decision boundaries are drawn according to the updated data and are represented by the
dashed lines. The testing sample, which is denoted as a red square with black borders, is
misclassified as Class 1 according to the original decision boundaries because the original
target domain training data are insufficient and cannot provide a wide enough coverage.
Thus, the aim of including auxiliary domain data is to span the intra-class diversity of the

original training data, and thus help with the classification task.

Based on the recent success of dictionary learning methods in solving computer vision
problems, we present a weakly-supervised cross-domain dictionary learning method to learn
a reconstructive*, discriminative and domain-adaptive dictionary pair and an optimal linear
classifier simultaneously. In order to demonstrate the effectiveness of our method, we gather
supportive evidence by evaluating our method on action recognition, image classification
and event recognition tasks. The UCF YouTube dataset [86], the Caltech101 dataset [38],
the Caltech 256 dataset [54] and the Kodak consumer video dataset [93] are used as the

4 A reconstructive dictionary means that the error between the original signals and the reconstructed signals,
which are obtained based on corresponding dictionary atoms and sparse codes, is small.
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A = training sample (Class 1) = auxiliary sample (Class 1)

auxiliary sample (Class 2)

A
@® = training sample (Class 2) O
M = training sample (Class 3) O = auxiliary sample (Class 3)

B = testing sample (Class 3)

Original decision boundaries:

New decision boundaries | —— - - -

Fig. 3.1 Illustration of how the auxiliary data help with the classification task. Original
decision boundaries are represented by the solid lines and the new decision boundaries are
represented by the dashed lines. By adding the auxiliary data, the new decision boundaries
are drawn according to the updated data, which provide a better coverage.

target domain data in our experiments, while selected actions in the HMDBS51 dataset [55]
and some indexed Web images or YouTube videos are used as the source domain data in our

experiments.

The dictionary learning framework of the proposed method is illustrated in Fig. 3.1 and
it offers the following two main contributions. Firstly, it attempts to make use of as much as
possible existing knowledge by a novel weakly-supervised visual categorization framework.
An efficient manifold ranking method is applied to the source domain for the selection of a
pre-defined number of most relevant instances per category according to the target domain
training data, following which correspondences connecting the source domain and the target
domain are established based on the selected source domain data and the target domain train-
ing data. Secondly, we propose a new cross-domain dictionary learning method to cope with
the feature distribution mismatch problem across the source domain and the target domain.
Specifically, we perform dictionary learning upon the correspondences built from both do-
mains so that the projections of data from different domains can obey the same distribution
when limited by the learning function. In addition to the dictionary, classifier parameters
are learned jointly during the discriminative dictionary function learning process. Thus,
knowledge transfer of the proposed framework is accomplished through both the feature
level and the classifier level. As the samples from the source domains are weakly labeled
rather than being manually (correctly) labeled, we call our algorithm “Weakly-Supervised
Cross-Domain Dictionary Learning”(WSCDDL).
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Fig. 3.2 Illustration of the cross-domain dictionary learning framework. By applying mani-
fold ranking to the source domain data, pruned and virtually labeled source domain data are
obtained. The cross-domain dictionary learning method is applied to both the target domain
data and the pruned source domain data, then the learned target domain dictionary, source
domain dictionary and parameters of the linear classifier are obtained for the testing stage.

3.1.2 Related Work

A considerable number of methods have been proposed to address visual categorization
problems [98], [64], [126], [124], [125], [90]. Reasonable results are achieved using tra-
ditional machine learning approaches without considering the data distribution mismatch
among the training data and the testing data when training data are abundant. Transfer
learning (a.k.a., cross-domain learning, domain transfer, domain adaptation) approaches be-
gin to attract increasing interests in the computer vision community in recent years due
to the data explosion on the Internet and the growing demands for visual computational
tasks. In [13], action detection is conducted across datasets from different visual domains,
where the KTH dataset [129], which has a clean background and limited viewpoint and
scale changes, is set as the source domain, and the Microsoft Research Action Dataset 5
and the TRECVID surveillance data [25], which are captured from realistic scenarios, are
used as the target domain. [167] and [29] addressed the problem of video concept detection
using domain transfer approaches. The former one utilized the Adaptive Support Vector
Machine (A-SVM) to adapt one or more existing classifiers of any type to a new dataset,
and the latter proposed a Domain Transfer Multiple Kernel Learning (DTMKL) method to
simultaneously learn a kernel function and a robust SVM classifier by minimizing both the

structural risk function of SVM and the distribution mismatch of labeled and unlabeled data

>http://research.microsoft.com/~zliu/ActionRecoRsrc
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in different domains. Authors of [88] and [82] constructed cross-domain representations to
cope with the cross-view action recognition problem, where the divergences across domains
are caused by view-point changes. Liu et al. [88] built a bipartite graph via unsupervised co-
clustering to measure the visual-word to visual-word relationship across the target view and
the source view so that a high-level semantic feature that bridges the semantic gap between
the two vocabularies can be filled. Similarly, Li et al. [82] captured the conceptual idea
of “virtual views”to represent an action descriptor continuously from an observer’s view-
point to another. Duan et al. [75] considered to leverage large amounts of loosely labeled
web videos for visual event recognition using the Adaptive Multiple Kernel Learning (A-
MKL) to fuse the information from multiple pyramid levels and features and cope with the

considerable variation in feature distributions between videos across two domains.

Recently, dictionary learning for sparse representation has attracted much attention. It
has been successfully applied to a variety of computer vision tasks, e.g., face recognition
[161] and image denoising [183]. Using an over-complete dictionary, sparse modeling of
signals can approximate the input signal by a sparse linear combination of items from the
dictionary. Many algorithms [79], [68], [161] have been proposed to learn such a dictionary
according to different criteria. The K-Singular Value Decomposition (K-SVD) algorithm
[1] is a classical dictionary learning algorithm that generalizes the K-means clustering pro-
cess for adapting dictionaries to efficiently learn an over-complete dictionary from a set of
training signals. The K-SVD method focuses on the reconstructive ability, however, since
the learning process is unsupervised, the discriminative capability is not taken into consid-
eration. Consequently, methods that incorporate the discriminative criteria into dictionary
learning were proposed in [177], [169], [101], [97], [101], [10]. In addition to the discrim-
inative capability of the learned dictionary, other criteria designed on top of the prototype
dictionary learning objective function include multiple dictionary learning [178], category-
specific dictionary learning [170], etc. Different from most dictionary learning methods,
which learned the dictionary and the classifier separately, the authors of [177] and [66]
unified these two learning procedures into a single supervised optimization problem and
learned a discriminative dictionary and the corresponding classifier simultaneously. Taking
a step further, Qiu et al. [117] and Zheng et al. [62] designed dictionaries for the situations
that the present training instances are different from the testing instances. The former pre-
sented a general joint optimization function that transforms a dictionary learned from one
domain to the other, and applied such a framework to applications such as pose alignment,
pose and illumination estimation and face recognition. The latter achieved promising results

on the cross-view action recognition problem with pairwise dictionaries constructed using
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correspondences between the target view and the source view. To make use of some data
that may not be relevant to the target domain data, Raina et al. [120] proposed a method
that applies sparse coding to unlabeled data to break the huge amount of data in the source
domain into basic patterns (e.g., edges in the task of image classification) so that knowledge
can be transferred through the bottom level to a high level representation.

Our approach differs from the above approaches in such aspects that it more compre-
hensively learns pairwise dictionaries and a classifier while considering the capacity of the
dictionaries in terms of reconstructability, discriminability and domain adaptability. Addi-
tionally, corresponding observations across the domains are not required in our framework.
While most previous knowledge transfer algorithms focus on the situations where the tar-
get domain is incomplete, but have not attempted to utilize other domain data as an aid
for enhancing present categorization systems, in our approach, the learned classifier in the
target domain becomes more discriminative against intra-class variations as a result of the
learning process that integrates with source domain data. Our work makes the following
contributions:

* We present a novel cross-domain action recognition framework that attempts to en-
hance the performance of the original recognition system by spanning the intra-class diver-
sities of the target domain training actions using actions from the source domain.

* The proposed discriminative cross-domain dictionary learning technique copes with
the feature distribution mismatch problem across different domains by learning a domain-
adaptive dictionary pair that transfers data under different distributions into the same feature
space.

* Our approach does not require correspondence annotations across different domains,

so that it can be adapted to solve many real-world transfer learning problems.

3.1.3 Knowledge Transfer via Discriminative Dictionary Learning

3.1.4 Problem Formulation

Given a collection of partially labeled images/videos, our goal is to learn a classifier that
automatically specifies different classes for the unlabeled instances using the labeled ones.
The source domain datasets are constructed according to the given image/video categories.
Specifically, when treating the UCF YouTube dataset as the target domain data, the source
domain data are composed of corresponding or similar action categories (ride bike, dive,
golf, jump, kick ball, ride horse, shoot ball) in the HMDBS51 dataset. Compared to the UCF
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YouTube dataset, the HMDBS1 dataset contains more severe camera motions, viewpoint
changes, video quality variations and occlusions, and is thus more realistic (a detailed com-
parison between the UCF YouTube dataset and the HMDBS51 dataset is given in [55]). On
the other hand, when setting the Caltech101/Caltech256 dataset as the target domain data,
we choose the N; image categories (chosen according to the ascending alphabetic order)
and use the first N, results returned from Google Image Search for each chosen category
as the source domain data, where the indexing procedure is performed by simply searching
the category names. Following the terminology from prior literature, we denote Z; as the
target domain, and %, = 9! U 2!, where 2! and 2} denote labeled target domain data and

unlabeled target domain data respectively. Z; denotes the source domain data.

Manifold Ranking

The manifold ranking [181], [182] algorithm is applied as a pre-processing stage of knowl-
edge transfer by filtering out irrelevant data in the source domain data X; and assigning
virtual labels to unlabeled source domain data. An illustration of the manifold ranking pro-
cedure is given in Fig. 3.3. For each category in X;, 5 samples are manually labeled so that
the ranking is conducted in a semi-supervised manner. We define the labeled data points
in X; as positive samples, and the remaining points as negative. Assume the initial number
of auxiliary samples (i.e., source domain samples) is M, a vector y* = [y},y3,- -+ ,yy] is de-
fined, where y; = 1 if the i-th data point X! is a positive sample, otherwise y; =0. We also
]T

define a weight vector r = [ry,r2,---,ry]" which indicates the overall importance of each

data point. Similar as in[182], the ranking procedure can be described as follows:

* Construct a connected graph based on X;. Sort the pairwise distance between any
pair of data points within X, and connect the data pairs in a ascending order until
a connected graph is obtained. If two points are connected, assign the weight w?‘j =

exp[—d?(xi,x;) /207 to the weight matrix W*, otherwise wi;=0.

* The affinity matrix W* is then symmetrically normalized by S* = D 1Pwrpr=1/2,
where D* is a diagonal matrix and D*(i,i) equals to the sum of the elements in i-th

row of W¥*.

» The weight vector is iteratively updated by "V = o*S*r + (1 — o*)y* until conver-

gence, where a* is a parameter in [0, 1).
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Orlgllnal auxiliary data Ranked data Pruned da'fa based on
obtained from Google the ranking result

Fig. 3.3 Illustration of how the online data are preprocessed with the manifold ranking
method. Manifold ranking assigns weights to all the auxiliary data, where the marker size
of each data point is proportional to its overall importance (shown in the middle window).
Finally, data with low weights are pruned (shown in the right window).

* When the ranking scores r* are obtained, we keep 80% data points with the highest
ranking scores for each category in the image classification and event recognition

tasks.

This particular weight updating method is chosen because the aim of this ranking al-
gorithm is to spread the ranking scores of all points to their nearby neighbors. When the
weight W* is normalized to S*, the ranking scores can be updated with respect to the net-
work connections. The vector y* indicates confidence of each instance within the network.
By assigning ‘1’s in y* to query instances, strong confidences are given to the queries. Rig-
orous convergence proof of this weight updating algorithm is given in [182]. By conducting
the manifold ranking procedure, the weakly-labeled source domain data are assigned virtual

labels, and noisy data are pruned for image classification and event recognition tasks.

3.1.5 Dictionary Learning

We denote Y, as the target domain n-dimensional low level image/video data with N training
instances and Y; as the corresponding source domain n-dimensional data with M training
instances, i.e., ¥; = [y}, ...,yV] € RN and Yy = [y, ...,y¥] € R"M_ Learning a reconstruc-
tive dictionary for obtaining the sparse representation of ¥; and ¥ can be accomplished by

solving the following optimization problems:

<D X, >= arg min||Y, —DiX|5  stVi|xi|o<T, (3.1)
14
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< D, Xy >= arg min ¥, —DyX|5 st Vi, |xio < T, (3.2)

5928

where D; = [d], d,K '] € R™Ki is the learned dictionary in the target domain, X; =[x/, ...x] €
RX:*N is the target domain sparse signal, D; = [d], ...dSK‘] € R™Ks is the learned dictionary

in the source domain and Xy = [x!

1M € REXM ig the source domain sparse signal, re-

spectively. The numbers of dictionary items K; and Kj are set to be greater than both N and

M to ensure that the dictionaries are over-complete.

By minimizing the terms ||Y; — D,X;||3 and ||Y; — DsX;|3 in both error functions while
satisfying the sparsity constraint, two optimized reconstructive dictionaries D; and D/, along
with the sparse representations X/ and X are obtained. As the two energy minimization
procedures in Equation (3.1) and Equation (3.2) are performed separately, the encoded data
still obey to different distributions. In order to minimize the cross-domain divergence, we
propose to build correspondences across both domains and minimize the distances between
each corresponded pair. As stated in Section 3.1.4, the source domain samples are assigned
virtual labels, however, the correspondence information is not available in the stated sce-
nario. We build approximate correspondences by connecting each target domain training
instance to its most similar source domain instance, which shares the same label with the
target domain instance, based on Euclidean distance. Note that even Euclidean distance is
not a precise estimation for cross-domain data, each correspondence is at least established
between instances of the same category. The correspondences of category c are stored in the
transformation matrix A, in which A.(i, j) = 1 if the source domain training instance i is
corresponded to the target domain instance j, otherwise A, (i, j) = 0. Since each target do-
main training instance is connected to a single source domain instance, each column of A,
allows only one non-zero entry. Specifically, for each column j, A.(i, j) can be computed

as:

L if " =arg max (Ge(i, /)
Ac(i, j) = (3.3)
0, otherwise,
where G, is a M x N dimensional matrix, in which each G.(i, j) is the Euclidean distance

between the ith source domain instance and the jth target domain instance. Consequently,

the global transformation matrix A for all categories can be obtained by filling each A, into
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a single matrix:

A= _ , (3.4)

Ac

So far, the cross-domain dictionary learning function can be written as:

<D.DLX. X/ >=arg min ¥~ DX,[3+ [%AT ~ DXAT3 + 1K~ X,AT|3

15 s A8y AL

s.t.Vi, ||xi]jo < T,
(3.5)

where || X; — X;AT ||3 estimates the cross-domain divergence. We add an additional constraint
to the learning function to allow corresponded cross-domain instances possess identical
representations in the projected feature space, i.e., X; = X;A”. Thus, the objective function

can be formulated as:

< D;,D;,X’ X/ > = argDnll)inX HYI —Dl‘Xl“%+ ||YSAT _DSXfH%
t

12478
sy

. (3.6)
st Vi, x5l < T,

Since the learned sparse representation can be directly fed into the classifier, separating
the dictionary learning stage from the classification procedure might lead suboptimal D;
and D;. Thus we attempt to jointly learn the dictionaries and the classifier by including
the discriminative term in dictionary learning. Let the model parameters W of the classifier
F (x) satisfy Equation (3.7):

14 :argn%an{hiﬁ(xﬁ,W)}—HLlHWH%, (3.7)

where . is the classification loss function (we use the logistic loss function .#(z) =log(1+
e~ %) as in [97]), h; indicates the target domain labels of x!, .7 (x!,W) is a positive value for
any signal in the positive class and a negative value otherwise, W denotes the classifier

parameters and A; is a regularization parameter. Intuitively, the original objective function
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for dictionary learning can then be updated as:

<D;.Dy.X] > =arg min [[Y;—DX;|3+ | Y,A" —D:Xi 5

1578y

+ Y LT ()} + MW (3.8)

s.t.Vi, ||xi]jo < T.

As in previous work [97], [169], [66], [177], the classification error of a linear predictive
classifier is included in the objective function:

<Dy DXL AW > =arg - min ||V —DiXi|3+ [AT —DiXi|3

o0 0X|* + B||H - WX,|3 (39)

st.Vi, ||xl]jo < T,

where ¥ is a linear transformation matrix that maps the original sparse codes to be in cor-
respondence with the target discriminative sparse codes Q = [q1,q2, -+ ,qn] € RE*N of the
input signal ¥;. Specifically, ¢; = [¢},¢?,---,¢X] = [0,---,1,1,---,0] € RX, and the non-
zeros occur at those indices where y! € ¥, and X* € X, share the same class label. Given
X; = [x1,x2,+ ,x6] and ¥; = [y, ¥2,- -+, V6], and assuming xi, x2, y; and y, are from class 1,
X3, X4, y3 and y4 are from class 2, xs, xg, y5 and yg are from class 3, Q is then defined with

the following form:

1 1 0 0 0 0

0 0 1 1 0 0
, (3.10)

0 0 1 1 0 0

0 0 0 0 1 1

0 0 0 0 1 1
and H = [h1,hy,--- ,hy] € ROV are the class labels of Y;, where the non-zero element indi-
cates the class of an input signal within each column 4; = [0,--- , 1, - 7O]T e RC. Following

the same example in (3.10), H can be defined as:

0 0 1 1 0 0 |. (3.11)
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Scalars o and 3 are set to control the relative contribution of the terms ||Q — ©X;||*> and
|H —WX;||3. By solving the optimization problem in Equation (3.8), the reconstructive,
discriminative and domain-adaptive dictionary pair D; and Dy as well as an optimal classifier

Z (x) can be obtained.

3.1.6 Optimization

Solving WSCDD with the K-SVD algorithm

We rewrite Equation (3.9) as:

<D, D.X AW >=
Y; D,
Y, AT D, ) . (3.12)
min — Xell5, st Vi ||xgllo < T,
Dr-,DSaXt7A7W H \/&Q \/&19' [HZ H [||0

VBH VBW

We further define ¥ = (Y, (,AT)T,\/aQ ,/BH")",X =X, and D= (D!, D!, \/(a)dT,\/(B)WT)T,
where column-wise /, normalization is applied to D, so that optimizing Equation (3.12) is

arg

equivalent to optimizing Equation (3.13):
<D X' >= argmin Y —DX|%, s.tVi, ||xi|lo<T. (3.13)

The optimization problem in Equation (3.13) is NP-hard. We apply an approximate solu-
tion, K-SVD, [1], which solves exactly the same problem, to Equation (3.13). The dic-
tionary learning problem is solved by iteratively conducting the following two steps until

convergence:

* Computing sparse codes: by fixing each dictionary D, each sparse code x; can be
computed by
x; = argmax ||y; — Dx;||3, s.t.Vi,||xifo < T. (3.14)
Xi

Exact determination of x; is also NP-hard, thus the greedy-based OMP is applied to

approximate the solution.

» Updating dictionary: the dictionary D is updated column by column. Define each
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row of X as x’; (this is to be distinguished from the kth column of X, x;), a vector
wg, which indicates whether the dictionary atom dj is used for representing the signal
yi, can then be represented as wy = {i|l <i<N,x.(i) #0}. When updating the
dictionary atom dj, only dictionary atoms, which are from the remaining dictionary

Dj4(:,k) and with non-zero entries of wy, are considered®. For each column k =

1,2,---,K in D, a overall reconstruction error matrix Ej can be computed as:
Ex=Y— Y dgx; (3.15)
j#kw{#0

By applying SVD decomposition to E, = UY V7, the dictionary column dj can be
updated by the first column of U and the coefficient vector %; can be updated by the
first column of V multiplied by }(1, 1). The dictionary updating step is finished when

all columns of the dictionary D are updated.

Convergence Analysis

The convergence proof of the proposed WSCDD method can be given similarly as the K-
SVD algorithm [1]. In the dictionary updating stage, each dictionary atom and its corre-
sponding coefficients are updated by minimizing quadratic functions, and the remaining
dictionary atoms are updated upon the previous updates. Consequently, the MSE of the
overall reconstruction error is monotonically decreasing with respect to the dictionary up-
dating iterations. In the sparse coding stage, computation of the “best matched” coefficients
under the /p-norm constraint also leads to a reduction in MSE conditioned on the success
of the OMP algorithm. Finally, since MSE is non-negative, the optimization procedure is
monotonically decreasing and bounded by zero from below, thus the convergence of the
proposed dictionary learning method is guaranteed. The typical strategy to avoid the opti-
mization procedure getting stuck in a local minimum is to initialize the dictionary with a

few different random matrices in several runs. Such a strategy is applied in our approach.

®If all remaining dictionary atoms are considered, i.e., all entries of w; equal to 1, the corresponding new
vector x’} is very likely to be filled, so that the sparsity constraint does not hold.
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3.1.7 Classification

Since Dy, Dy, ¥ and W are jointly normalized in the optimization procedure, they cannot be

directly applied to the testing phase. Utilizing the same strategy as in [177], the desired Dy,

Dy, ® and W can be computed as:

1 2 K
D, ={ dlf , dzl o d[l( }
i 112" Nldf |2 i |2
CoMat aA K
| (3.16)
~ ) B2 vk
19:{ AT eI K }
i 112" lldF |2 i |l2
1 2 K
- w w w
W={ TR }
H t H2 ||dt ”2 || t ||2

Given a target domain query sample y', its sparse representation x' can be computed by
applying OMP to the original signal y' and the target domain dictionary D, via Equation
3.14. Then, a simply linear classifier / = W,x! is applied to x! for classification, where the

label I is the index that corresponds to the largest element in /.

3.1.8 Experiments

Action recognition

The UCF YouTube dataset and the HMDBS51 dataset are used for the action recognition
task, where the UCF YouTube dataset is used as the target domain and the HMDBS51 dataset
is used as the source domain. The UCF YouTube dataset is a realistic dataset that contains
camera shaking, cluttered background, variations in actors’ scale, variations in illumination
and view point changes. There are 11 actions including cycling, diving, golf swinging, soc-
cer juggling, jumping, horse-back riding, basketball shooting, volleyball spiking, swinging,
tennis swinging and walking with a dog, and these actions are performed by 25 actors. The
HMDBS51 dataset contains video sequences which are extracted from commercial movies
as well as YouTube, and it represents a fine multifariousness of light conditions, situations
and surroundings in which actions can appear, different recording camera types and view-
point changes. Since the HMDBS51 dataset is a more challenging dataset, our case closely
resembles real-world scenarios, where the source domain data can contain a wide range of

noise levels. In correspondence with the target domain action categories, we choose 7 body
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movements from the HMDBS51 dataset, including ride bike, dive, golf, jump, kick ball, ride
horse and shoot ball. Both scenarios of the proposed WSCDDL method when manifold
ranking is utilized or not utilized are compared in all the experiments, and are denoted as
WSCDDL-MR and WSCDDL-EU respectively.

We adopt the dense trajectories [153], which is extended from the motion coding scheme
based on motion boundaries, as the low-level action video representation to distinguish the
motion of interest. To leverage the motion information in the dense trajectories, a set of
local descriptors are computed within space-time volumes around the trajectories at multi-
ple spatial and temporal scales, and these features include the HOGHOF [60], the optical
flow [61] and the Motion Boundary Histogram (MBH) [105]. Specifically, the HOGHOF
feature is a combination of appearance information (captured by HOG [22]) and local mo-
tion probabilities (captured by Histogram of Optical Flow (HOF)). Since motion is the most
important cue for analyzing actions, the optical flow works effectively by computing the rel-
ative motion between the observer and the scene. MBH represents the gradient of the optical
flow by separately computing the derivatives for the horizontal and vertical components of
the optical flow, so that relative motion between pixels is encoded. Changes in the optical
flow field being preserved and constant motion information being suppressed, the MBH de-
scriptor can effectively eliminate noise caused by background motion compared with video
stabilization [61] and motion compensation [151] approaches [153]. Despite its powerful
capability for describing action motions, the dense trajectories come with two weaknesses:
1) trajectories tend to drift from their initial locations during motion tracking, which is a
common problem in tracking; 2) the large quantity of local trajectory descriptors leads to
high computational and memory complexity for the coding methods, such as VQ and SC.
To cope with the first issue, the length of a trajectory is limited to a pre-defined number of
frames. Taking the second issue into account, a Locality-constrained Linear Coding (LLC)
[68] scheme is adopted instead of VQ and SC. LLC represents the low-level dense trajecto-
ries by multiple bases. In addition to achieving less quantization error, the explicit locality

adaptor in LLC guarantees the local smooth sparsity.

Dense trajectories are extracted from raw action video sequences with 8 spatial scales
spaced by a factor of 1/1/2, and feature points are sampled on a grid spaced by 5 pixels
and tracked in each scale, separately. Each point at frame 7 is tracked to the next frame
t 4+ 1 by median filtering in a dense optical flow field. To avoid the drifting problem, the
length of a trajectory is limited to 15 frames. HOGHOF and MBH are computed within a
32 %x 32 x 15 volume along the dense trajectories, where each volume is sub-divided into a

spatio-temporal grid of size 2 x 2 x 3 to impose more structural information in the represen-
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tation. Considering both efficiency and the construction error, LLC coding scheme is ap-
plied to the low-level local dense trajectories features with 30 local bases, and the codebook
size is set to be 4000 for all training-testing partitions. To limit the complexity, only 200
local dense trajectories features are randomly selected from each video sequence when con-
structing the codebook. We run our method on five different partitions of the UCF YouTube
dataset, where we randomly choosing all action categories performed by the number of
5/9/16/20/24 actors as the training actions while using the remaining actions as the testing
actions for each partition. The 30 most relevant actions are chosen from each of the 7 source
domain categories using manifold ranking, and they are represented in the same manner as
the target domain actions and coded with the same codebook. The weight o on the label
constraint term and the weight 8 on the classification error term are set as 4 and 2 respec-
tively, and 50 iterations of SVD decomposition are executed during optimization. To avoid
over-fitting, the dictionary size is set to be larger when more training data are available at
the training stage. The results are demonstrated in Table 3.1 for all five partitions, where we
use the size of 200, 300, 500, 700 and 900 for each partition. We compare the performance
of the baseline LLC, sparse coding methods K-SVD [1] and LC-SVD [66], and transfer
learning methods FR [24] and A-SVM [167] with the proposed WSCDDL method. Results
are reported on both scenarios where the source domain data are included or excluded in Ta-
ble 3.1 and Table 3.2 respectively. By comparing Table 3.1 and Table 3.2, we can discover
that for many cases, brute-forcing the knowledge from the source domain into the target
domain irrespective of their divergence can cause certain performance degeneration. On
the other hand, the proposed WSCDDL method consistently leads to the best performance
over all the partitions. Fig. 3.5 shows the convergence analysis and performance of varying
dictionary size of the WSCDDL-MR method. Fig. 3.6 shows the confusion matrix compar-
isons between the LLC method and the WSCDDL method for all five partitions. In order
to compare the WSCDDL method with state-of-the-art methods, we further demonstrate its

performance under the leave-one-actor-out setting in Table 3.3.

Image Classification

We utilize the Caltech101 dataset as the target domain and some collected Web images as
the source domain for the image classification task. The Caltech101 image dataset (shown
in Fig. 3.4) consists of 101 categories (e.g., accordion, cannon, chair), and each category
contains 30 to 800 images. The source domain data of the Caltech101 dataset are con-

structed by a set of images returned by Google Image Search (shown in Fig. 3.4). For each
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(f) accordion, acc:100%

(b) garfield, acc:100%

Fig. 3.4 Example images from classes with high classification accuracy from the Caltech101
dataset.
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Fig. 3.5 Performance analysis on the UCF YouTube dataset when actions performed by 24
actors are used in the training data. (a) The optimization process of the objective function
for WSCDDL-MR with 50 iterations. (b) Performance when varying the dictionary size.
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Fig. 3.6 Comparison of the confusion matrixes between the baseline ScSPM and the
WSCDDL on five different data partitions of the UCF YouTube dataset.
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Table 3.1 Performance comparison between the WSCDDL and other methods on the UCF
YouTube dataset when the source domain data are only used by the WSCDDL.

Algorithm LLC [68] K-SVD [1] LC-KSVD [66] WSCDDL-EU WSCDDL-MR
Dictionary N/A Unsupervised Supervised Supervised Supervised
Learning

Source data No No No Yes Yes

24 actors 86.67% 82.22% 86.67% 88.89% 91.11%

20 actors 75.42% 68.75% 75.42% 77.50% 78.30%

16 actors 70.88% 63.96% 72.08% 73.03% 73.03%

09 actors 61.41% 55.70% 65.25% 66.31% 66.05%

05 actors 54.10% 50.05% 56.55% 56.66% 57.19%

Table 3.2 Recognition results on the UCF YouTube dataset when using the HMDB dataset
as the source domain.

Algorithm LLC [68] K-SVD [1] LC-KSVD [66] FR [24] A-SVM [167] WSCDDL-EU  WSCDDL-MR
Dictionary N/A Unsupervised Supervised Supervised Supervised Supervised Supervised
Learning

Source data Yes Yes Yes Yes Yes Yes Yes

24 actors 86.67% 77.78% 82.22% 83.74% 82.51% 88.89% 91.11%

20 actors 70.21% 72.08% 75.42% 74.88% 79.05% 77.50% 78.30%

16 actors 70.17% 67.54% 72.08% 71.56% 72.46% 73.03% 73.03%

09 actors 61.80% 59.15% 64.72% 62.77% 61.65% 66.31% 66.05%

05 actors 53.35% 48.88% 54.10% 54.09% 51.54% 56.66% 57.19%

Table 3.3 Performance comparison of the WSCDDL with state-of-the-art methods under the
leave-one-actor-out setting on the UCF YouTube dataset.

Methods [86] [61] BoF WSCDDL-EU  WSCDDL-MR

Results  71.2%  75.21%  80.02% 81.13% 82.32%
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of the 20 selected categories, we retrieve a set of images by querying the category name
into Google Image Search, and randomly choose 20-30 images from the first 100 retrieved
images. Such a procedure is done manually, and only 5 retrieved images are considered as

labeled for each category.

The combination of local features and the Bag-of-Words (BoW) model has demonstrated
its effectiveness in previous art and is a major component of many state-of-the-art systems.
To overcome the shortcoming that structural relationships among local descriptors are dis-
carded by the BoW model, the Spatial Pyramid Matching (SPM) method was proposed for
image representations in [77]. However, in order to obtain good performance, both BoW and
SPM must be applied along with a particular type of nonlinear Mercer kernels, which lead
to high computational complexity O(n*) and memory usage O(n?). We represent images in
both the target domain and the source domain with the sparse coding based spatial-pyramid
image representation [168], which can be seen as an extension of the SPM. The SIFT de-
scriptors [94] extracted from different spatial scales of an image are first encoded according
to an overcomplete codebook. With a unit /2-norm constraint on the cluster centers, the re-
strictive cardinality constraint of K-means Vector Quantization (VQ) in the traditional SPM
is relaxed. Instead of performing spatial pooling by computing histograms in the original
SPM, the max spatial pooling method, which is more biologically meaningful and more ro-
bust in representing local spatial relationships, is applied. Such a sparse coding based SPM
(ScSPM) image representation captures more salient properties of visual patterns and leads
to promising results when working with linear SVMs, so that the training complexity can
be reduced to O(n).

Following the settings in [168], the SIFT descriptors are extracted from 16 x 16 pixel
patches and densely sampled from each image on a grid with the step size of 8 pixels.
The codebook is trained using sparse coding with the codebook size of 1024. Through the
ranking procedure, 10 most relevant images are chosen to build the source domain of each
image category. The same values of the weights a, 8 and K-SVD iterations are adopted
as in the action recognition task. Similarly, we compare the performance of the baseline
ScSPM [168], K-SVD [1] and LC-SVD [66] with the proposed WSCDDL method in Table
3.4 and Table 3.5. Fig. 3.4 shows samples of 6 categories with high classification accuracies
when using 30 training images per category. Results on six different numbers of training
data are reported, and all the results are obtained from 5 iterations of different randomly
selected training and testing images to guarantee the reliability. As shown in Fig. 3.7, the
proposed WSCDDL method results in larger improvements over others when fewer samples

are used for training, which demonstrates its effectiveness in terms of utilizing the source
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Fig. 3.7 Performance analysis on the Caltech101 dataset. (a) The optimization process of the
objective function for WSCDDL-MR with 50 iterations. (b) Means and standard deviations
of different methods when the number of training samples per class varies from 5 to 30.

domain data. Fig. 3.8 demonstrates the performance of all the 101 image categories. We
further compare our approach with state-of-the-art methods in Table 3.6. For all scenarios,
our approach consistently yields the best performance.

We additionally evaluate our methods on the more challenging Caltech 256 dataset [54],
which contains 30,607 images of 256 categories. Compared to the Caltech101 dataet, it is
much more difficult due to the large variations on object location, pose, and size. Similar
to the strategy we adopt in constructing the source domain for the Caltech101 dataset, 400
images from 20 categories indexed by Google Images are used as the source domain. We
evaluate our approach on both 15 and 30 training images per class and compare with K-SVD
[1], SRC [161], LLC [68] and state-of-the-art approaches [54], [168]. As shown in Table
3.7, our approach consistently leads the best performance. Fig. 3.9 shows samples from 5

categories with high classification accuracies when using 30 images per category.

Event Recognition

We compare our proposed method WSCDDL with state-of-the-art transfer learning meth-
ods on the event recognition task using the Kodak Consumer Videos and a set of additional
videos. The Kodak consumer video benchmark dataset was collected by Kodak from about

100 real users over the period of one year, and it includes two video subsets from two dif-
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Table 3.4 Performance comparison between different dictionary learning methods on the
Caltech101 dataset.

Table 3.5 Classification results on the Caltech101 dataset when using web images as the

Algorithm ScSPM [168] K-SVD [1] LC-KSVD [66] WSCDDL-EU  WSCDDL-MR
Dictionary N/A Unsupervised Supervised Supervised Supervised
Learning

Source data No No No Yes Yes

05 training 49.84+1.13%  39.63+2.81%  46.25+1.63% 60.33+0.58% 61.01+:0.94%

10 training
15 training
20 training
25 training

30 training

57.26 £0.63%
62.72+0.93%
68.78 £2.00%
71.12+1.29%

73.72+£0.26%

50.3a+2.54%
58.82 +0.54%
64.73 £0.38%
67.92+1.31%

71.04£0.79%

57.73£0.77%
68.45+£0.53%
70.79 +0.58%
72.83£0.80%

73.75+0.55%

67.79£1.07%
69.954+0.97%
72.88£1.76%
76.03£0.34%

77.23£0.67%

68.69 +£0.32%
71.44+0.18%
74.24£0.50%
76.27+0.31%
78.04 £0.26%

source domain.

Algorithm ScSPM [168] K-SVD [1] LC-KSVD [66] WSCDDL-EU  WSCDDL-MR
Dictionary N/A Unsupervised Supervised Supervised Supervised
Learning

Source data Yes Yes Yes Yes Yes

05 training 11.33+£1.37% 20424+1.40%  48.95+1.45%  60.33+0.58% 61.01+:0.94%
10 training 3431+093% 35.64+0.82%  62.71+£020% 67.79+1.07%  68.69 +£0.32%

15 training 49.08+1.06% 44.93+0.86% 67.14+0.59% 69.95+097% 71.44+0.18%
20 training 59.80+0.73%  53.69+0.77%  70.17+0.50%  72.88+1.76% 74.24+0.50%
25 training 66.68+0.28%  60.07+0.70%  73.39+0.27%  76.03+0.34%  76.27+0.31%
30 training 71.46+0.78%  66.07+£0.50%  75.05+047%  77.23+0.67% 78.04+0.26%

Table 3.6 Comparison with the state-of-the-art methods on the Caltech101 dataset.

Number of training samples 5 10 15 20 25 30
Malik [176] 46.6% 55.8% 59.1% 62.0% - 66.2%
Griffin [54] 44.2% 54.5% 59.0% 63.3% 65.8% 67.6%
SRC [161] 48.8% 60.1% 64.9% 67.7% 69.2% 70.7%
Wang [68] 51.15%  59.77%  65.43%  67.74%  70.16%  73.44%
WSCDDL-EU 60.33 67.79% 69.95% 72.88% 76.03% 77.23%
WSCDDL-MR 61.01 68.69% 71.44% 174.24% 176.27% 78.04%
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Table 3.7 Recognition results on the Caltech256 dataset.

Number of training samples 15 30

Griffin [54] 28.3% 34.10%
Yang [168] 27.73% 34.02%
K-SVD [1] 25.33% 30.62%
SRC [161] 27.86% 33.33%
LLC [68] 25.61% 30.43%
LC-KSVD [66] 28.9% 34.32%
WSCDDL-EU 29.68% 35.78%
WSCDDL-MR 30.14% 36.07%

ferent sources, where the first part contains Kodak’s video data which includes 1,358 video
clips contributed by involved users and the second part contains 1,873 clips downloaded
from the YouTube website after removing TV commercial videos and low-quality videos.
Similarly, the additional videos collected by Duan et al. in [75] also contain two parts,
which are the self-collected consumer videos and downloaded YouTube videos. To resem-
ble the real-world scenario, the downloaded YouTube videos are not additionally annotated
so that they can remain in a loosely labeled setting. Thus, only the self-collected consumer
videos from the dataset used in [75] possess precise labels. The total numbers of consumer
videos and YouTube videos are 195 and 906, respectively, and each video belongs to only

99 <<

one event category. Following the settings in [75], six events, namely “birthday”, “picnic”,
“parade”, “show”, “sports” and “wedding” are chosen for experiments. The target domain
is constructed using both the consumer videos from the Kodak dataset and additional self-
collected consumer videos in [75]. On the other hand, the second part of the Kodak dataset
and the loosely labeled YouTube videos used in [75] constitute the source domain. In the
target domain, three consumer videos from each event (18 videos in total) are randomly
chosen as the labeled training videos and the remaining videos are used as the test data. In

order to set up a fair comparison in correspondence with the experimental results in [75], we
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(a) car-side, acc=100%
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(b) faces—easy acc=100%

(c) motorbikes, acc=96.48% :
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(d) airplanes, acc=97.78%

(¢) ketch, acc=97.78%

Fig. 3.9 Example images of the categories with high classification accuracy from the Cal-
tech256 dataset.

use the same low-level features, which are SIFT features and ST features. For each sampled
frame, which is sampled at the sampling rate of 2 frames per second, the 128-dimensional
SIFT features are extracted from the salient regions, which are detected by the Difference-
of-Gaussians (DoG) interest point detector [94]. The 162-dimensional local ST feature is
the concatenation of the 72-dimensional HOG feature and the 90-dimensional HOF feature.
We also conduct experiments in the same three cases as in [75]: a) dictionaries and clas-
sifiers are learned based on SIFT features, b) dictionaries and classifiers are learned based
on ST features and c¢) dictionaries and classifiers are learned on both SIFT and ST features.
Based on the same experimental settings as in [75], we compare our method WSCDDL
with SVM-AT, SVM-T, FR [24], A-SVM [167], MKL [30], DTSVM [30] and A-MKL
[75], where SVM-AT denotes the case that labeled training samples are obtained from both
the target domain and the source domain, and correspondingly SVM-T denotes the case that
labeled training samples are only obtained from the target domain. Table 3.8 demonstrates
the recognition results of the proposed WSCDDL method and other cross-domain methods.
We can observe that SVM-T consistently outperforms SVM-AT in both scenarios of (b)
and (c), which indicates that abruptly including the ST features of source domain videos

may degrade the recognition performance. The proposed WSCDDL method consistently
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Table 3.8 Comparison with the state-of-the-art methods on the Kodak and YouTube dataset.

SVM-T SVM-AT FR [24] A-SVM [167] MKL [30] DTSVM [30] A-MKL[75] WSCDDL-Eu
(a) 4232£550 53.93+5.58 49.98+5.63 3842+£793  47.19£2.59  52.36+1.88 47.14+2.34 57.18£0.84

(b) 32.56+2.08 24.73+£222 28.44+2.61 2495+£1.25 3534£1.55 31.07£2.60 37.24+1.58 37.80£1.77

(c) 42.00£4.94 36.23+3.37 44.11£3.57 3240£499 46.92+2.53  53.78+2.99  58.20+1.87 61.92+2.89

WSCDDL-MR
58.42+£2.25

39.11+£2.76

62.60+1.76

outperforms other cross-domain methods in all three cases.

3.1.9 Conclusion

In this work, we have presented a novel visual categorization framework using the weakly-
supervised cross-domain dictionary learning algorithm. Auxiliary domain knowledge is
utilized to span the intra-class diversities, so that the overall performance of the original
system can be improved. The proposed framework only requires a small set of labeled
samples in the source domain. Through a transformation matrix, dictionary learning is per-
formed on both the source domain data and the target domain data while no correspondence
annotations between the two domains are required. Promising results are achieved on action
recognition, image classification and event recognition tasks, where knowledge from either
the Web or a related dataset is transferred to standard benchmark datasets. The proposed
framework leads to an interesting topic for future investigation when large scale source and

target domain data are available.

3.2 Boosted Cross-Domain Dictionary Learning’

3.2.1 Motivation

Based on the recent success of dictionary learning methods in solving computer vision prob-
lems, we present a cross-domain discriminative dictionary learning technique to learn a re-
constructive, discriminative and domain-adaptive dictionary pair for data under different
distributions. In addition, a boosted classification framework is introduced to work in con-
junction with the proposed dictionary learning method. Through iteratively updating both

the source domain data representations and their distribution, the source domain training

"The content of this section is published at:
F. Zhu, L. Shao and J. Tang, Boosted Cross-Domain Categorization, British Machine Vision Conference,
Nottingham, UK, Sep. 2014.
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instances can be optimized, and thus can help improve the visual categorization tasks in
the target domain. A weakly-supervised cross-domain visual categorization framework that
unifies the discriminative cross-domain dictionary learning method and the boosting-based
classification method is proposed in this work. Our goals are two folds: 1) we aim to learn
robust domain-adaptive representations for cross-domain image and video data; 2) we aim

to learn powerful classifiers for accurate classification.

3.2.2 Related Work

Adaptive Boosting (AdaBoost) [42] is a popular boosting algorithm, which has been used
in conjunction with a wide range of other machine learning algorithms to enhance their per-
formance, e.g., Shen et al. [139] applied AdaBoost to Gabor wavelet features and Fathi et
al. [35] used AdaBoost to construct mid-level shape features from low-level gradient fea-
tures. The Transfer Learnning AdaBoost (TrAdaBoost) was introduced in [21] to extend
AdaBoost for transfer learning by weighting less on the different-distribution data which
are considered as “dissimilar” to the same-distribution data in each boosting iteration. Fig.
3.10 illustrates how TrAdaBoost deals with cross-domain data. Given a set of 2-class target
domain data and source domain data, the left sub-figure shows the decision boundary of
a traditional linear classifier, and the right sub-figure shows both the updated weights allo-
cated to incorrectly labeled samples and the new decision boundary according to the updated
weights. In each iteration of TrAdaBoost optimization process, more weights are allocated
to those incorrectly labeled (according to the classifier in the previous iteration) target do-
main samples, so that the updated classifier is tuned to pay more attentions to the target
domain “hard” samples, while on the other hand, the source domain incorrectly labeled
samples are allocated less weights or simply removed (for clearer illustration, we use black
crosses to denote that these samples are removed) to avoid “bad” source domain samples.In
comparison with TrAdaBoost, our basic motivation is that rather than removing those un-
smooth data, we prefer moving them to more appropriate positions. Thus, we aim to utilize
the above data correctness information to learn better representations that are closer to the
intrinsic data partition. Moreover, different from the majority transfer learning frameworks,

our model also does not assumes that the target domain data are perfectly smooth.
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source domain negative data ry
eled source domain data

=== decision boundary

Fig. 3.10 Illustration of how TrAdaBoost deals with cross-domain data. Given a set of
2-class target domain data and source domain data, the left sub-figure shows the decision
boundary of a traditional linear classifier, and the right sub-figure shows both the updated
weights allocated to incorrectly labeled samples and the new decision boundary according
to the updated weights, where the increased marker size denotes increased weight assigned
to a target domain sample, and the black cross denotes that an incorrectly labeled source
domain sample is removed.

3.2.3 Boosted Cross-Domain Dictionary Learning

We firstly define some notations according to the problems we dealing with. Given raw
input image and video data, SIFT and dense trajectories features are extracted from im-
ages and videos, respectively, followed by which the SPM model and the BoW model are
applied to the extracted low-level features for global representations. Without loss of gener-
ality, we denote such global representations for both images and videos as Y. Specifically,
we denote ¥, = [y},y?,...,yN] € R"™*N as n-dimensional target domain training data, Y; =

[yl y2,...,yM] € R™M as n-dimensional source domain data, X; = [x/,...xN] € RE*N as the
1

R

cients, D; = [d], ...dX] € R"X as the target domain dictionary and D = [d], ...dX] € R"™*Ks
as the source domain dictionary, where K is the number of dictionary atoms for dictionaries

target domain sparse coefficients, Xy = [x!, ... x¥] € RK*N as the source domain sparse coeffi-

in both domains. Since the dictionary learning problem in this work is essentially the same

as the dictionary learning problem in Section 3.1.5, we use the same objective function as
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in Equation 3.9 to describe the learning problem:

<D, DX/ A" P'>=arg min ||Y,—DX|3+|Y,AT —DX;|3

+al|Q—9X|>+ Bl H — PX:|3 (3.17)

s.t.Vi, ||xl]jo < T,

where both A and ¥ are the transformation matrices and P contains the parameters of
a linear classifier. More detailed explanations of these notations can be found in Sec-
tion 3.1.5. Q is the target discriminative sparse codes, where g; = [ql-l,ql-z,--~ ,qlK]T =
[0,-- ,wi,w;,---,0]T € RK, and the non-zeros occur at those indices where yi € ¥; and

th € X; share the same class label. The definition of O can be written as:

w1 wo 0 0 0 0

wi wo 0 O O O

0O O 0O O
HERS , (3.18)

0 0 w3 W4 0 0

0 0 0 0 w5 Wg

0 0 0 0 w5 Weg
and H = [hy,hy,--- ,hy] € RE*N are the class labels of ¥;, where the non-zero element
indicates the class of an input signal within each column #; = [0,---, 1,---,0]” € RC. Since

predictions are made with respect to the data distribution of X;, w; is included in each item

of H. Thus H can be defined as follows according to the same example in Equation (3.18)

w1 wo 0 0 0 0
0O 0 w3 wa O O ]. (3.19)
0 0 0 0 w5 Wg

The definitions of W = [wy,wy,--- ,wy|T are given in the following subsection. Since the
optimization problem of Equation 3.17 can be solved using the method as in Equation 3.9,

we do not repeat here. Please refer to Section 3.1.6 for details of the optimization stage.
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3.2.4 Boosted Classification

Boosting Algorithms

AdaBoost [42] is a classical machine learning algorithm which aims at boosting the perfor-
mance of weak classifiers by carefully adjusting the weights of training instances. AdaBoost
can be easily generalized to a wide range of applications by jointly working with other
learning algorithms to achieve improved performance. Specifically, AdaBoost constructs a

“strong" classifier as a linear combination of weak classifiers:

T
F(x) =) vnfilx), (3.20)
=1

where each f;(-) represents a weak classifier. Any f;(-) is considered to be helpful as long as
it results in an error rate lower than 0.5 for binary classification. In each iteration, previous
predictions are used to update the weights of training instances so that the weights of the
incorrectly-classified instances in the previous iteration are increased while the weights of
the correctly-classified instances are decreased. Leveraging such weight updating mecha-
nism, Zhang et al. [178] attempted to capture more discriminative information by learning
a set of codebooks in sequence. As an extension to AdaBoost, Dai et al. [21] proposed
TrAdaBoost to utilize the mismatched data in an auxiliary feature domain for the classi-
fication task in the target feature domain. In each boosting iteration of TrAdaBoost, the
weights of those wrongly predicted training instances in the auxiliary domain are decreased
so that their impacts towards the global data distribution are weakened. However, while
TrAdaBoost stays at the classifier level, it fails to update the data towards more robust and
discriminative representations through the learning process.

We propose a cross-domain learning framework to effectively utilize data under a dif-
ferent feature distribution for the classification task in the target domain. In comparison, the
proposed learning framework shares the same basic principle of sequentially updating the
impacts of training instances; yet our learning framework attempts to sequentially update

the data representations of those “dis-similar” samples in addition to updating their weights.

Boosted Classification

Similar as TrAdaBoost [21], we consider the similarities between the source domain train-

ing instances Y; and the target domain training instances Y; according to the present distri-
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Algorithm 3 Boosted Cross-Domain Dictionary Learning

Input the labeled target domain data Y; and the source domain data Y; , the maximum number of
iterations M, and the Weak Learner.
Output a “strong” classifier .% () and updated representations of the source domain instances.
Initialize the data distribution as uniform, i.e., the initial weights w!' = (w},wé, e 7W11v ) have
an identical value. Cross-domain discriminative dictionary learning is applied to both target do-
main and source domain data under the initialized uniform distribution, so that ¥; and Y can be
represented by X; and X, respectively.
for j=1toM, do

1. Set data distribution p/ = #ﬂgw/

2. Update X; as the new representation of ¥; under data distribution p/ with cross-domain

discriminative dictionary learning.

3. Compute the hypothesis h,j : X, — 1(X;) and nx) 1 (Xy), providing that p/ is over both
2, and 7°.

4. Calculate the error &/ of i

Nowl x| (x) = 1(x)|

el=Y

i )
i=1 Zf'v W{

where &/ is required to be less than 0.5.

j j 1
5. Setp = 155 and By = e

6. Update the new weight vector:
wip/ |1y (xi) (X)‘, 1<i<N

j+1
wit! =

i ol (x)—1(xi .
w! s‘x(x') (x‘)‘, otherwise.

end for

bution. When a set of source domain instances are incorrectly predicted due to distribution
changes by the present learner, these instances are considered to be most “dissimilar” to the
target domain instances. Thus, the weights of these source domain training instances are de-
creased correspondingly by multiplying the factor ﬁs‘hi () =l)l (0, 1], where I(x;) returns
the binary label (either O or 1) of instance x; and hi (x;) is the binary output (either O or 1)
of the weak classifier at iteration j, so that these instances will affect the learning process
less in the next iteration. In addition to updating the weights, cross-domain discriminative
dictionary learning is applied to lead those “dissimilar” instances towards more appropri-
ate representations. The confidence of the discriminative term is measured by allocating

weights to different training instances, so that those correctly predicted instances can make
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more impacts when learning the dictionary pair. Consequently, when the stop criterion is
reached, some “dissimilar” training instances can be represented in a “similar”’ form, and the
source domain training instances in which lead positive impacts to the learning system will
process larger training weights than those “dissimilar” ones. The weight updating mech-
anism in the target domain is consistent with the original AdaBoost [42] by multiplying
the factor ﬁ,j _‘ht](xi)_l(xi)l, so that the weights of those incorrectly classified target domain
instances in are increased in order to make the new classifier focus on those instances in
the next iteration. The base of source domain exponent weight factor, S, is a constant, and
is determined by the number of source domain instances M and the maximum number of
iterations M. Since the aim is only to guarantee the instances in the target domain being
correctly classified, the two cross purpose weighting mechanisms within the same learning
system do not conflict. The pseudo code of the proposed boosted learning technique is given
in Algorithm 1.

The Classification and Regression Trees (CART) [12] is used as the weak classifier in
this work. The CART classification is a process of tree traverse, where a tree node represents
a predicate and the value associated with a tree leaf is the class of the presented instance. For
the construction of a node in CART, we first find a threshold for each of the n dimensions
that separates the training instances with the least error. When the dimension i with the
least error is chosen, the node can be constructed as either a predicate or branches that are
connected with tree leafs. Let the “error of leaf” be the probability of a instance being

misclassified at a leaf, the construction of the whole tree follows the following steps:

1. Construct a root node.
2. Choose the leaf with the largest error.

3. Construct a node using only those training instances associated with the chosen leaf.

N

. Replace the chosen leaf with the constructed node.

W

. Repeat steps 2-4 until the total error is zero, or the maximum iteration is reached.

All the errors are evaluated according to the updated weights, so that the training in-

stances can be learned with respect to their present distribution.
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3.2.5 Experiments

3.2.6 Parameter settings

The experiments are conducted on both image classification (Caltech 101 dataset) and action
recognition (UCF YouTube dataset) tasks. For the image classification task, the SIFT+SPM
model is utilized as the initial image presentation, with the codebook size 1024 and 3 pyra-
mid scales, which results in a (4 x4 42 x 2+ 1) x 1024 = 21504 dimensional feature for
each image, i.e., N = 21504. For the action recognition task, local dense trajectories fea-
tures are projected to a learned codebook (using K-means clustering) using LLC, so that the
global feature length equals to the codebook size, which is 1024, i.e., N = 1024. For both
tasks, the dictionary size K; and Kj are fixed to 300, and the sparsity 7 is fixed to 10.

Image classification

We adopt the dense SIFT descriptors plus the sparse coding approach [168] for low-level and
mid-level image representations. The weight o on the label constraint term and the weight 3
on the classification error term are set as 4 and 2 respectively. We run our method on five dif-
ferent partitions of the Caltech-101 dataset, where the number of 10/15/20/25/30 images are
randomly chosen as the training images while the remaining images are used for testing for
each partition. In order to demonstrate the effectiveness of our proposed approach, we com-
pare with the baseline Sparse-coding Spatial Pyramid Matching (ScSPM) [168], K-Singular
Value Decomposition (K-SVD) [1], Label Consistent-Singular Value Decomposition (LC-
KSVD) [67], AdaBoost [42], and Weakly Supervised Cross-Domain Dictionary Learning
(WSCDDL) [184] ® and Transfer AdaBoost (TrAdaBoost) [21]. Experimental results are
reported in Table 3.9 and Table 3.10 when source domain data are applied or not applied
respectively. Results on the first 20 selected image categories of the Caltech-101 dataset
using five different numbers of training data are reported, and all the results are obtained
by averaging 5 runs of randomly selected training and testing images to guarantee the reli-
ability. The proposed BCDC method consistently leads to the best performance over other
methods. The reported results of ScCSPM, K-SVD and LC-KSVD in Table 3.9 are obtained
by simply treating the source domain data as extra training data without knowledge transfer.
Note that the performance of ScSPM, K-SVD and LC-KSVD is even decreased when source

8Since BCDC requires the target domain images share identical image categories as the source domain
images, results are reported for the first 20 categories on the Caltech-101 dataset in this report. On the other
hand, results are reported for all image categories in [184].
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domain data are used, which further validates the importance of our boosted cross-domain
categorization method. Fig. 3.11 shows the error rate comparison of the proposed method
and TrAdaBoost according to the boosting iterations on the Caltech-101 dataset when using

30 training samples per category.

Action recognition

We extract the dense trajectories [153] as local features from raw action videos and project
local features on a codebook using Locality Constrained Linear Coding (LLC) [68]. We run
our method on three different partitions of the UCF YouTube dataset, where we randomly
choose all action categories performed by the number of 5/9/16 actors as the training actions
while using the remaining actions as the testing actions for each partition. 30 most relevant
actions are chosen from each of the 7 source domain categories, and they are represented in
the same manner as the target domain actions and coded with the same codebook. The same
values of the weights o, B and K-SVD iterations are adopted as in the image classification
task. Similarly, we compare the performance of BCDC with LLC, K-SVD, LC-KSVD,
AdaBoost, TrAdaBoost and WSCDDL? in Table 3.11 and Table 3.12 when source domain
data are included or not respectively. The reported results of LLC, K-SVD and LC-KSVD
in Table 3.11 are obtained by treating the source domain data as extra training data without
knowledge transfer. Again, the proposed BCDC method consistently outperforms the other
methods. As expected, simply including source domain data without considering the data
divergence degrades the performance of LLC, K-SVD and LC-KSVD in Table 3.12.

According to the obtained results on both image classification and action recognition
tasks, the proposed BCDC method can effectively deal with the data distribution mismatch
problem. It outperforms ScSPM and LLC by 22.07% and 6.41% in average respectively,
and outperforms TrAdaBoost by 3.27% and 3.17% in average, on the Caltech-101 and the
UCF YouTube datasets respectively when using the source domain data. Additionally, when
using the transferred source domain data as auxiliary training samples, the BCDC method
can improve the performance of the original ScCSPM and LLC, which are free of the data
mismatch problem, by 2.41% and 3.53% in average, which are significant improvements

over the leading results.

9For the same reason as stated in the above footnote, results are reported for the 7 selected action categories
in this work, while results are reported for all action categories in [184].
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Fig. 3.11 Error rate comparison of the proposed method with TrAdBoost and ScSPM on the
Caltech 101 dataset.

Table 3.9 Performance comparison between the BCDC and state-of-the-art methods on the
Caltech-101 dataset with source domain data.

Algorithm ScSPM [168] K-SVD[1] LC-KSVD [67] TrAdaBoost[21] WSCDDL [184] BCDC

Source data Yes Yes Yes Yes Yes Yes
30 79.11% 79.98% 81.32% 84.37% 86.52% 87.34%
25 75.05% 75.06% 79.68% 81.46% 84.31% 85.90%
20 65.44% 67.40% 73.04% 79.72% 80.02% 82.32%
15 49.66% 54.12% 69.23% 75.53% 77.59% 78.69%

10 30.65% 46.28% 64.89% 72.87% 74.98% 76.04%
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Table 3.10 Performance comparison between the BCDC and state-of-the-art methods on the
Caltech-101 dataset when the source domain data are only used by the BCDC.

Algorithm ScSPM [168] K-SVD[1] LC-KSVD [67] AdaBoost [42] BCDC

Source data No No No No Yes
30 85.36% 84.69% 85.60% 79.46% 87.34%
25 83.23% 82.16% 83.47% 74.83% 85.90%
20 80.11% 80.07% 80.59% 74.22% 82.32%
15 76.66% 74.82% 76.96% 71.91% 78.69%
10 72.87% 72.55% 72.37% 68.35% 76.04%

Table 3.11 Performance comparison between the BCDC and state-of-the-art methods on the
UCF YouTube dataset with source domain data.

Algorithm LLC[68] KSVD[1] LC-KSVD [67] TrAdaBoost[21] WSCDDL [184] BCDC

Source data Yes Yes Yes Yes Yes Yes
16 79.78% 75.43% 82.87% 82.40% 83.26% 84.64%
09 68.38% 64.54% 67.14% 69.20% 72.01% 73.05%
05 63.35% 59.35% 63.68% 65.46% 67.37% 68.89%

Table 3.12 Performance comparison between the BCDC and state-of-the-art methods on the
UCF YouTube dataset when the source domain data are only used by the BCDC.

Algorithm  LLC[68] KSVD[1] LC-KSVD [67] AdaBoost [42] BCDC

Source data No No No No No
16 82.77% 74.57% 83.15% 79.40% 84.64%
09 68.38% 62.63% 69.82% 69.61% 73.05%

05 64.84% 59.37% 65.17% 65.52% 68.89%
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3.2.7 Conclusion

In this work we have presented a novel cross-domain learning framework for visual cat-
egorization tasks. A cross-domain discriminative dictionary learning method is proposed
to work in conjunction with a boosted cross-domain classification algorithm, so that the
source domain data are adapted to the target categorization tasks through both their feature
representation and distribution update. Promising results are achieved on both image clas-
sification and action recognition, where knowledge from either the Web or a related dataset

is transferred to standard benchmark datasets.

3.3 Cross-Modality Neural Network

3.3.1 Motivation and Introduction

Over the last decade, social networking services (e.g., Facebook, YouTube and Flickr) are
getting wildly popularized. As a consequence, we have witnessed the explosion of multi-
media data on the Internet. Information retrieval techniques are applied to multimedia data
to collect information in response to people’s interests. While classical approaches [134],
[147], [149], [92], [148] , which only utilize a unimodal representation, e.g., text, image, au-
dio, etc., are considered somewhat outdated, multimodal systems [142], [23], [165] become
popular for information retrieval. The majority of these works only consider the scenario
where multimodal data are available for both training and testing, which, however, cannot
well address the problem when training and query instances come from different media
forms. Thus, as a sub-topic of transfer learning [136], the cross-modality scenario is pro-
posed to fill such a gap, where the database contains data in one modality and the query
instances are expressed in the other modality/modalities. The cross-modality scenario can
find many real-world applications, including enabling the machine to allocate a description
of a few sentences to a query image, or to search over an image repository for a set of rele-
vant matches in response to the query text description. From another research perspective,
we may mine useful knowledge from relevant data in a different media form. Thus, by uti-
lizing the mined information, which can be presented in a more discriminative manner, we
look forward to improved capability for understanding the target queries. To this end, either
labeled or unlabeled data from a relevant media domain can be utilized for enhancing an
existing learning system.

In order to provide readers a straightforward understanding of how the data that we are
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dealing with is presented in different media forms, examples are given in the following part.
We show three examples with one-to-one image/text correspondence from the Wikipedia
dataset [20] in Fig. 3.12. All these three examples are obtained from the “sport” cate-
gory. (a) the first image describes that the famous NBA basketball player Michael Jordan
attempts dunking in a game, and the text paragraph attached at the side of the image intro-
duces Michael Jordan’s career achievements; (b) the middle image contains the head and
shoulders of the professional cricket player Chris Morris, and similar as (a), the text para-
graph attached beside the image introduces Chris Morris’s career achievements; (c) the last
image contains the upper body part of the American football player Merio Danelo, and the
attached text paragraph introduces stories of the USC Trojans team. It can be observed that
the three image examples are distributed with high intra-class variations, in particular the
latter two images can hardly be categorized as “sports”, if the observer have never watched
games played by these athletes. However, on the other hand, when the same data present in
the text domain, more representative characteristics can be extracted based on shared pivot
words, e.g., “championship”, “season”, “won”, which have relatively higher probabilities of
belonging to sports-related descriptions. The majority of existing approaches that deal with
image-text retrieval tasks treat such a cross-modality task in a rough manner by associating
a whole image and a whole paragraph of text descriptions as a cross-modality data pair, so
that retrieval is achieved at such a global level. In this work, our approach also follows such
determinations of how image and text data are associated.

In this work, we propose a neural network-based approach to address the cross-modality
problem. Specifically, we train two cross-modality autoencoders (CMAE) to map im-
age representations and text representations to a unified feature space, and conduct cross-
modality retrieval within the new feature space. By setting identical random vectors for
data of the class as the outputs of the neural network, when data pass through the learned
network, insignificant intra-class distances can be obtained. Though the training of these
neural networks are simple, experimental suggest that the proposed method can achieve

state-of-the-art performance on the Wikipedia dataset.

3.3.2 Related Work

Content-based information retrieval has been an important subject in multimedia, and it has
received much attention in the last decade. Many previous content-based retrieval tech-
niques are based on single-modality data, which can be images [40], [173], texts [128],

or other media forms. In the task of single-modality information retrieval, the query data
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Freshly motivated by the playoff defeat, Jordan trained aggressively for the 1995\96 season. Strengthened by the addition of rebound
specialist Dennis Rodman, the Bulls dominated the league, starting the season 41\3 and eventually finishing with the best regular
season record in NBA history: 72\10. Jordan led the league in scoring with 30.4 points-per-game, and won the league's regular season
and All-Star Game MVP awards. In the playoffs, the Bulls lost only three games in four series, defeating the Seattle SuperSonics in the
NBAFinals to win the championship. Jordan was named Finals MVP for a record fourth time, surpassing Magic Johnson's three Finals
MVP awards. He also achieved only the second sweep of the MVP Awards in the All-Star Game, regular season and NBA Finals,
duplicating Willis Reed's feat during the 1969\70 season. Because this was Jordan's first championship since his father's death, and it
was won on Father's Day, Jordan reacted very emotionally upon winning the title, including a memorable scene of him sobbing on the
locker room floor with the game ball. Jordan and the Bulls compiled a 62\20 record in the 1997\98 season. Jordan led the league with
28.7 points-per-game, securing his fifth regular-season MVP award, plus honors for All-NBA First Team, First Defensive Team and the
All-Star Game MVP. The Bulls captured the Eastern Conference Championship for a third straight season. including surviving a
grueling seven-game series with Reggie Miller's Indiana Pacers in the Eastern Conference Finals;

The 1952\53 season started poorly for Morris. He was replaced by Keith Miller as state captain, despite having scored almost 700 runs at a fast |
rate in the previous Shield season at an average above 50, and leading his state to another title. As was the norm for the era, Morris was not
informed personally and learned of his demotion second-hand. No official reason was given by the New South Wales Cricket Association, but it
was speculated among the media that his penchant for wearing brightly coloured rubber-soled shoes could have upset the conservative =
administrators, and that Morris was too genial to be captain. The media made Morris a scapegoat for dwindling public attendances following
the retirement of Bradman and lobbied for Miller, who they deemed to be more appealing to the public. Morris had led his state to two Shield
triumphs, but remained national vice-captain ahead of Miller. Richie Benaud said that Morris "led the side just as well as Miller but in a less
flamboyant manner". In spite of this, Morris started the new season consistently, scoring four fifties in his first five innings, including 55 and 39 in
his state's victory over the touring South Africans ahead of the Tests. The on-field action against the South Africans brought no immediate
upturn in Morris's Test fortunes. He made only one half-century and a total of 149 runs in the first three Tests as Australia took the series lead
2:1. Inthe Second Test, he had progressed to 42 when he drove Hugh Tayfield into a close fielder. The ball ballooned to mid-off and Tayfield ran -
back and dived parallel to the ball's trajectory and caughtit.

% On January 6, 2007, shortly after the Trojans ended their 2006 season with a win at the 2007 Rose Bowl, two-year starting
== placekicker Mario Danelo was found dead at the bottom of a cliffin San Pedro, California. Danelo had been expected to start during
the 2007 season. Forthe 2007 season, USC players wore a 19 sticker on their helmets in honor of Danelo; in addition the Kennedy-
' Jones practice field had the number “19" sprayed onto its end zones and the Coliseum hung a banner above the player's tunnel with
y ,j Danelo's name and also paid tribute to him on the goal-post pads. The Trojans lost their offensive coordinator, Lane Kiffin, on
January 23,2007, when he was hired to be the new head coach of the Oakland Raiders; the 31-year-old Kiffin became the youngest
head coach in Raiders history, and the youngest head coach since the formation of the modern NFL. The following week, Pete
Carroll named Steve Sarkisian as his team's new offensive coordinator. Sarkisian had interviewed with the Raiders for their vacant
head coach position but withdrew from the process to stay at USC, where he had been the assistant head coach and quarterbacks
coach. Intra-conference controversy arose in March 2007, when Stanford coach Jim Harbaugh was quoted as saying's only got one
more year, though. He'll be there one more year. That's what I've heard. | heard it inside the staff. “Upon further questions, Harbaugh
claimed he had heard it from staff at USC. At the Pac-10 Confestory of college football”;

Fig. 3.12 Examples of image-text pairs from the “sport” category: (a) the NBA basket-
ball player Michael Jordan and his career achievements (b) the cricket player Chris Morris
and his achievements. (c¢) American football player Mario Danelo and stories of the USC
Trojans team.

and the training data are matched, thus single-modality information retrieval systems are
constructed upon low-level features, e.g., gradients for images and ‘pivot’ words for texts.
However, some real-world scenarios require that the training and query data come from
different modalities.

The study of neural networks can be traced back to 1969 in Marvin Minsky and Sey-
mour Papert’s work [104]. Due to the significant increase of computational power in recent
years, neural network-based deep learning has demonstrated its superiority over other ma-
chine learning algorithms, and has been widely applied in both academic researches and
industrial projects. Autoencoder [58] is an unsupervised neural network-based learning
method, and is typically used for dimension reduction. The previous work, correspondence
autoencoder for cross-modality information retrieval [39], is close to our work, where a
correspondence antoencoder is learned based on image-text pairs for extracting modality-

invariant representations at the output layers of the autoencoder. On the other hand, our
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proposed cross-modality autoencoder method does not require the expensive cross-modality
correspondence information, and extracts features from the hidden layer.

In this work, we consider the supervised cross-modality retrieval problem. The neural
networks are trained on the training data, where training labels are used to allocate identi-
cal random vectors at the output layers for data of the same class. Rasiwasia et al. [122]
addressed the cross-modality retrieval problem by investigating the correlations between
two modalities and the effectiveness of abstraction, where the canonical correlation analy-
sis (CCA) and the use of abstraction are all proved to be effective. In order to validate the
contributions of each separate component, three approaches correlation matching (CM), se-
mantic matching (SM) and semantic correlations matching are proposed for the correlation
modeling, the abstraction method and the joint working mode of both approaches respec-
tively. Sharma et al. [137] proposed Generalized Multiview Analysis (GMA) to extract
features from different views. GMA solves a joint, relaxed quadratic constrained quadratic
program (QCQP) over different feature spaces to obtain a single linear/non-linear subspace,
thus it affords an efficient eigenvalue based solution, and it is applicable to be extended to
the cross-modality scenario. Sharma et al. [137] built the working environment for GMA
with both Linear Discriminant Analysis (LDA) [4] and Marginal Fisher Analysis (MFA)
[166], which result in approaches GMLDA and GMMFA respectively. A similar scenario to
the supervised cross-modality problem was proposed in [184], where the ‘same-distribution’
annotated training data are utilized along with the annotated auxiliary domain training data.
In order to train a learning system on two parts of data with different distributions, trans-
forming original representations from different sources into a smooth feature space is neces-
sary. Zhu and Shao [184] achieved such a transformation through a cross-domain dictionary
learning, where the ‘matched instances’, which are associated through a fuzzy search proce-
dure, are assumed to possess the same representations after being projected onto the learned
dictionary pair. In the works of both [122] and [137], modality adaptation techniques aim
at finding the linear combinations of the data from both the source modality and the target

modality that possess maximum correlation with each other through CCA.

3.3.3 Cross-Modality Autoencoder

Problem Definition

Though the cross-modality information retrieval framework can be easily generalized to

any mismatched pair of media forms, we restrict our discussions to the information retrieval
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problem across text documents and image documents in this report. We consider the image
training features as ¥; = {¥;!,Y7,--- , YE}R4*P where d; is the dimension of each original
image feature (obtained by the SIFT+Bag-of-Words model) and P is the number of training
images, and the text training features as Y7 = {YTI,YTZ, e ,Yf }]RdT %P where dr is the di-
mension of each original text feature (obtained by the Latent Dirichlet Allocation model).
Note that we consider the training numbers of data from both modalities are equal. We
train two neural networks based on the training data of two modalities, where we allocate
identical random vectors at the output layers for data of the same class. When data pass
through the trained networks, features in the middle hidden layers are extracted as cross-
modality representations. Let d be the feature dimension of the middle layers in both neural
networks, then the two trained neural networks can in general be seen as two non-linear
mappings, Fy : R4*P — R¥*P and Fr : R7*P — R¥*P  When the testing data from both
modalities are input to the image network F7 and the text network Fr respectively, pairwise

distances are computed for the evaluation of retrieval performance.

Single-Modality Neural Networks

We begin by introducing a basic neuron of the neural network [108]. An example of the sim-
plest neuron is shown in Fig. 3.13. We consider {x;,x3,--- ,xg} as the input K-dimensional
feature, 41 as an intercept term and {wj,w,,--- ,wg} and b as neuron parameters. The

output of such a neuron /Ay ;(x) can be computed as:

K
hwp(x) = f(Y wixi+b), (3.21)
i=1

where the function f is chosen as the sigmoid function:

1

e (3.22)

f(z)
which scales the output f(z) to in the range [0, 1].

Many-to-One Autoencoder

An autoencoder neural network can be constructed by putting many simple neurons together.
An example of an autoencoder neural network is shown in Fig. 3.13. The autoencoder neural

network is normally used as an unsupervised learning method, and its target values at the
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Fig. 3.13 An example of the simplest neuron.

output layer should set equal to the input values. Let X = {x!,x?,--- ,xF'} € REX” be the
K-dimensional input feature and X = {)21 &2, %P } € RXXP pe the K-dimensional target
values at the output layer, where P is the number of instances. The hidden layer values

Y = {y!,y?, .- ,yF'} € RV*F are extracted as the N-dimensional feature of the input sample.

In this work, we design a supervised autoencoder learning algorithm, Many-to-One Au-
toencoder (MOAE). By setting identical target values at the output layer for training data
that share the same class labels, the learned network can guarantee a low intraclass distance,
so that encoded data become more discriminative. Experimental results suggest that these
targets X can be set as random vectors. By enforcing the sparsity constraint to MOAE, the
objective function can by formulated by the square-loss function with sparsity constraint on
the weights:

1 ¢ oi |12 - !
argmax—ZHx —hwjb(x)||2+lZ||W |1, (3.23)
wp P =1
where W = {W! W2 ... WEIRK*L is the neuron parameters of MOAE and L is the number

of layers, A is the balancing parameter and W' is the weight vector at layer [.
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Fig. 3.14 An example of the Single-Modality Autoencoder.

Cross-Modality Autoencoder

In order to deal with data from two modalities, we learn a Cross-Modality Autoencoder
(CMAE) by separately learning two MOAE:s, while forcing identical target vectors at both
output layers of the two MOAEs. The structure of CMAE is illustrated in Fig. 3.15. We
further define X; = {x},x7,--- ,xF'} € RK*P a5 the K;-dimensional image input features, and
Xr = {xk,x%, - xB} € RKT*P a5 the K7-dimensional text input features. Correspondingly,
Xy ={&" 52, fPY e REXP and Xy = {#7p!, 472, -, xpF} € REXP are the outputs of the
two MOAE networks. Note that the number of neurons at the output layer (i.e., L3) can be
defined by the user, and we simply set an identical number K for both networks. As shown
in Fig. 3.15, the two MOAESs can be driven towards learning a unified representations for
both image and text data by linking both MOAE networks at the output layer, i.e., X; = X7.
Thus, we can use the random vectors X to denote the outputs by setting X = X; = Xr. Based

on 3.23, the objective function for learning the CMAE network can be formulated as:

1& , L
argmax — Z |2 — hw, b, EAERR Z W/,
Wi.by i=1 =1 (3.24)

1 & N P2 L
argmax - YU = hwy o, DI+ A Y (W1
Wr,br i=1 =1
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Fig. 3.15 An example of the Cross-Modality Autoencoder.

where, Wy, by, Wr and by are parameters of the image MOAE and the text MOAE respec-
tively. The optimization of the CMAE neural network can be seen as separately optimizing
two MOAE neural networks. The backpropagation algorithm [58], [5] is applied for opti-
mizing above equations. Once we obtain the optimum W;, by, Wr and by, testing image and
text data can be encoded by the CMAE. When inputing new features at two input layers of
CMAE, neuron values in both L, layers are extracted as the image feature and text feature

respectively.

3.3.4 Experiments

Dataset and Experimental Settings

Popular cross-modality datasets include the TVGraz dataset [72] and the Wikipedia dataset
[122], however, the former is no longer maintained. We evaluate the propose CMAE ap-
proach on the Wikipedia dataset, which is a challenging image-text dataset with large intra-
class variations and small inter-class discrepancies. The Wikipedia dataset consists of 2866
image-text pairs. The context of each text article describes people, places or some events,
which are closely relevant to the content of the corresponding image document. There are

10 semantic categories in the Wikipedia dataset, including art & architecture, geography &
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places, history, literature & theatre, biology, media, music, sports & recreation, royalty &
nobility, warfare. We follow the data partition adopted in [122] to split the dataset into a
training set of 2173 pairs and a testing set of 693 pairs. The text representation Y7 is derived
from the latent Dirichlet allocation (LDA) model [8] (implemented with the Python Natural
Language Toolkit'?), which summarizes the semantic content or “gist” of a text document
as a mixture of topics. The image representation is based on the scale invariant feature trans-
formation (SIFT) [94] and the Bag-of-Words (BoW) representation using 128 codewords.
We consider ground-truth labeling are provided in the training data, but the correspondence
between each image-text pair as unavailable. For each MOAE neural network, 3 layers are
used, which are the input layer Ly, the hidden layer L, and the output layer L3. The numbers
of neurons in the input layer is equal to the input image feature dimension or the text feature
dimension. The number of neurons in the hidden layers and the output layers are set as 300

and 10, respectively.

Results on the Wikipedia Dataset

Table 3.13 Cross-Modality Retrieval Performance Comparison (MAP scores).

Methods ‘ Image query Text query Average
PCA [69] 0.112 0.173 0.143
BLM [150] 0.202 0.256 0.229
CM [122] 0.193 0.245 0.219
SM [122] 0.218 0.226 0.222
GMMFA [137] 0.214 0.275 0.245
GMLDA [137] 0.210 0.275 0.243
LCEFS [155] 0.214 0.279 0.247
SCM [122] 0.277 0.226 0.252
CMAE 0.270 0.226 0.248

Results on the Wikipedia Dataset

We compare the proposed CMAE approach with state-of-the-art approaches'!. For the
supervised cross-modality scenario, CMAE is compared with the non-knowledge transfer
method (PCA), correlation matching (CM) [122], semantic matching (SM) [122], semantic

10www.nltk.org

UNote that the results reported in the extended version [20] are better than the results reported in the original version [122] using the
same techniques. The improved performance is due to the merging of relevant classes, which reduces the total class number from 10 to 4.
In this work, we follow the strategy in [122].
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Fig. 3.16 Precision recall curves for different cross-modality retrieval methods.

correlation matching (SCM) [20], a bilinear model (BLM) [150], generalized multiview
linear discriminant analysis (GMLDA) [137] and generalized multiview marginal fisher
analysis (GMMFA) [137]. The non-knowledge transfer approach is achieved by directly
applying PCA to the image modality in order to unify the feature dimension across both
modalities. CMAE is compared with classical methods based on a single-modality (UNI)
and an exhaustive search of mixing data from both media forms for training. The abrupt ap-
proach is realized through enforcing dimensionality reduction (PCA) on the image represen-
tations. We compare the performance of different approaches through 11-point interpolated
precision-recall (PR) curves [100]. The PR curves for different cross-modalities methods
are given in Fig. 3.16. MAP scores, which are calculated based on the under curve area of
PR curves, are given in Table 3.13. The proposed CMAE can achieve state-of-the-art perfor-
mance for either image queries or text queries. Also, from the results, we can conclude that
abruptly introducing miss-matched data to a target domain can break the data smoothness

in the original domain, and thus lead to weak performance.

3.3.5 Conclusion

In this work, we have proposed a supervised many-to-one autoencoder neural network ap-
proach, and extend this approach to address the cross-modality image/text retrieval problem.
Specifically, two many-to-one autoencoders are trained for both image and text data. When
data pass through the trained networks, intra-class distances can be guaranteed at a low

level in the new feature spaces. By forcing the output layers of these two many-to-one
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autoencoders to be equal to each other, cross-modality data can be associated, so that miss-
matched image and text data can be mapped to an isomorphic feature space when encoded
by the cross-modality autoencoder. The proposed method is evaluated on the Wikipedia
dataset, and experimental results suggest that the cross-modality autoencoder can achieve

state-of-the-arts performance.

3.4 Cross-View Action Recognition'?

3.4.1 Motivation and Introduction

In the past few years, along with the explosion of online image and video data, computer vi-
sion based applications in image/video retrieval, human-computer interaction, sports events
analysis, .etc are receiving significant attention. Also, as can be anticipated, future products,
such as the Google Glasses, which can essentially revolutionize traditional human-computer
interaction , will bring more requirements and challenges to computer vision algorithms. As
an important topic in computer vision, human action recognition plays a key role in a wide
range of applications. Many approaches [143], [185], [172], [50], [157], [70], [180], [138]
are proposed, however, some challenges still remain in real-world scenarios due to cluttered
background, view point changes, occlusion and geometric variations of the target.
Recently, novel strategies have been proposed to represent human actions more discrim-
inatively. These representations include optical flow patterns [32],[3], 2D shape matching
[95], [164], [85], spatio-temporal interest points [27], [89], trajectory-based representation
[121], .etc. Many state-of-the-art action recognition systems [130], [153], [84] are based on
the bag-of-features (BoF) model, which represents an action video as a histogram of its local
features. When cooperating with informative low-level features on detected spatio-temporal
interest points or densely sampled 3D blocks, the BoF model and its variants yield encour-
aging performance in many challenging and realistic scenarios [153]. However, such results
are achieved under a fixed viewpoint or within limited view point variations, i.e., the dis-
criminative capability of such representations tends to significantly degrade when the view
point variations are increased. Thus, we aim to seek a high-level feature representation that
brings action videos captured from different view points to the same feature space, while

keeping its discriminative power and allowing the data to satisfy the smoothness assump-

12The content of this section is published at:
F. Zhu and L. Shao, Correspondence-Free Dictionary Learning for Cross-View Action Recognition, Interna-
tional Conference on Pattern Recognition, Stockholm, Sweden, Aug. 2014.
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Fig. 3.17 The flowchart of our framework. Low-level dense trajectories are first coded with
LLC to derive a set of coding descriptors. By pooling the peak values of each dimension
of all local coding descriptors, a histogram that captures the local structure of each action
is obtained. Dictionary learning is conducted utilizing randomly selected actions from both
views, then source view training actions and target view testing actions are coded with the
learned dictionary pair to obtain the cross-view sparse representations.

tion (which implies that data points which are close to each other are more likely to share
the same label.) in supervised learning. Many recent efforts have been paid towards this
direction. One typical line of attack is to infer the three-dimensional scene structure based
on the given cross-view actions, where the derived features can be adapted from one view
to another utilizing geometric reasoning [49]. Junejo et al. [70] applied a temporal Self-
Similarity Matrix to store distances between different pairs of actions for a view-invariant
representation. In [88], a bipartite graph is built via unsupervised co-clustering to measure
visual-word to visual word relationship across different views so that a high-level semantic
feature that bridges the semantic gap between the two Bag-of-Visual-Words (BoVW) vo-
cabularies can be generated. Li ef al. [82] adopted the conceptual idea of ‘virtual views’
to represent an action sequence continuously from one observer’s viewpoint to another, and
similarly, Zhang et al. [180] utilized a kernel-based method to capture all the virtual views
on the virtual path instead of sampled views to keep all the visual information on the virtual
path and eliminate the parameter tuning procedure. Zheng et al. [62] adopted the K-SVD
algorithm [1] to construct an over-complete transferable dictionary pair, which encourages
actions taken from different viewpoints to possess the same representation. These meth-
ods require either labeled samples in the target view or correspondence annotations, which,

however, are expensive or impossible to obtain in many scenarios. Our approach is most
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similar to [62], however, there is one significant difference in terms of the training data
requirement between our approach and the one adopted in [62] that we learn the cross-
view action representation in an unsupervised manner and action correspondences across
the source view and the target view are not required in our learning phase. Such elimination
of the strict training data requirement is very useful and can be seen as a significant progress
in cross-view action recognition since neither the labeled training data in the target view nor
the correspondences across the source view and the target view are handy to obtain in most
real-world applications.

As an attempt towards real-world applications, our approach addresses the cross-view
action recognition problem utilizing only labeled source view actions and unlabeled target
view actions. In order to capture the local structure of actions from each view individually,
the dense trajectories features [153] are first coded by the Locality-constrained Linear Cod-
ing (LLC) [68] layer. The view knowledge transfer is performed by an efficient dictionary
learning method [96], which brings the query action in the target view into the same feature
space of actions in the source view. The construction flowchart of the cross-view sparse
representation is shown in Fig. 3.17 This work makes the following contributions:

* By captureing both local action structures and the cross-view knowledge, the proposed
representation guarantees its discriminative capability over different action categories as
well as different observation viewpoints.

* In accordance with the initial intention of transfer learning, the proposed approach is un-
supervised, and only requires action labels from the source view.

* We give an in-depth review of dictionary learning and coding methods under different
constraints.

* The experimental results are promising, and they lead to a new setting towards real-world

applications.

3.4.2 Cross-View Dictionary Learning

Problem Statement

We define ¥; = [y!,---,y"] € R¥" as n d-dimensional features extracted from source view
actions and ¥, = [y!,y?,...,y"] € R¥™ as m d-dimensional features extracted from target
view actions, where Y; are unlabeled and Y, are labeled. Based on the fact that action videos
from two different viewpoints must contain the same action, we assume there exists a high-

level action representation shared between the two videos captured from different view-
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points. Given any Y;, we can always find corresponding actions in Y. The aim is to discover
the connections between Y; and Y, and find a projection that can map Y¥; and Y into a unified

feature space based on such connections.

Locality-Constrained Linear Coding

In aforementioned image classification tasks of this report, local image patches are always
encoded with sparse coding. In this work, local action descriptors are encoded with LLC
instead of sparse coding. Comparisons between sparse coding (SC) and vector quantization
(VQ) are given in Section 1.3, and SC has demonstrated its effectiveness and superiority
over VQ in many tasks [168], [184]. Here, we quote the discussion in [68] regarding the
advantage of LLC over SC. While keeping the sparsity, LLC also favors each of the set of
dictionary atoms that a signal associates to be close to the input signal respectively. Given
the low-level action representation V = [vy,vy,...,vy] € R4 *N) and the codebook B with
M atoms, the objective function of LLC is given as:

N
Frc(yi) = Z ||vi —Byi||2+7t||q,-®y,~||2, s.t. lTy,' =1,Vi (3.25)
i=1

where the notation ® denotes element-wise multiplication, and

4= exp (dist(vl-,B) — mcax(dist(vi,B))) (3.26)

measures the normalised distances between each input signal v; to all dictionary atoms
B = [by,by,--- ,by] with dist(v;,B) = [dist(v;,by),- - ,dist(v;, bar)]” and dist(v;,b;) is the
Euclidean distance between the input signal v; and dictionary atom b;. © is the parameter
that controls the weight decay speed for each v;. After being encoded according to Equation
3.25, the set of local descriptors that locate within the same region are unified to a single
vector using max pooling. Specifically, Z local descriptors within the same region are put
into a single Z x M matrix, followed by which only the maximum value at each of the M
bins is kept as the value for the global feature at such a bin. Fig. 3.18 shows the overall

structure of how the global feature vector for a action sequence is generated.
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Fig. 3.18 Illustration of how the global feature vector for a action sequence is generated.

Dictionary Learning

In order to eliminate or minimize the data discrepancy between cross-view action sequences
that describe the same action category, we simultaneously learn a dictionary pair, based
on which actions from different views can be projected into a unified feature space and
regular learning methods can be performed on the projected data. Let X; and X, be the target
domain and source domain projection codes respective, we formulate the objective function
for learning such a dictionary pair as:

A

1
F(Dy,D;) min 5HYSAT—DSXSATH%

X,eR X eR

1
+ 5% = DX |3+ (1% — X:AT | (3.27)

st I, Iz llo < 7

where A is a transformation matrix that formulates the source domain data in correspon-
dence with the target domain data. Specifically, for each column j, A(i, j) can be computed
as:

I, if " =argmax(G(i,J))

i=l:n

A", j) = (3.28)

0, otherwise,
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where G.(i, j) is the Euclidean distance between the ith source domain instance and the
jth target domain instance. Note that the computation of A is similar to Equation. 3.3,
while the only difference is that since the target domain label information are not available
in this work, the computation of A is not conducted within each category. By applying the
constraint that each pair of correspondence cross-view actions share identical representation
after the projection to Equation. 3.27, i.e., X; = X,AT, the new learning function can be
rewritten as:

5 min MnAT - DXATIE+ LY - D3
X,€R X, €R 2 2

st 11 I lllo < 7

F(Dys,Dy)
(3.29)

The optimization and convergence analysis of Equation. 3.29 is the same as Section.
3.1.6 and Section. 3.1.6 respectively. Once the cross-view dictionary pair D and D; are
obtained, view-invariant cross-view action representations can be computed by projecting
original action LLC features to the dictionary pair. Finally, classification can be achieved

by applying a linear SVM classifier to the projected data.

3.4.3 Experiments and Results

Table 3.14 Performance comparison of action recognition with and without knowledge
transfer.

Y0 Camera 0 Camera 1 Camera 2 Camera 3 Camera 4
woTran wTran woTran wTran woTran wTran woTran wTran woTran wTran
Camera 0 - - 23.03 92.42 23.94 89.09 26.67 91.52 30.61 90.00
Camera 1 25.76 92.42 - - 35.15 90.61 33.33 92.42 30.30 90.30
Camera 2 16.06 92.73 7.27 92.42 - - 29.39 92.12 34.55 90.91
Camera 3 12.42 94.24 9.39 93.33 26.36 90.91 - - 30.91 90.30
Camera 4 12.42 93.94 10.91 93.03 10.3 92.12 17.27 95.15 - -

We evaluate our approach on the IXMAS multi-view action dataset [158] (exemplar
actions are shown in Fig. 3.19, which contains eleven action categories, e.g., walk, kick,
wave, etc. Each action is performed three times by ten actors taken from five different
views. We follow the leave-one-action-class-out scheme [82] to separate the data, where we
consider one action class (called an ‘orphan action’) in the target view, and exclude all the
videos of that class when learning the dictionary pair. Samples used for dictionary learning

are randomly selected from the non-orphan actions. In accordance with previous work [82],



84 Transfer Feature Learning

check watch cross arms scratch head sit down wave

Camera 0

Camera 1

Camera 2

Camera 3

Camera 4

Fig. 3.19 Exemplar frames from the IXMAS multi-view action recognition dataset. The
columns show 5 action categories, including check watch, cross arms, scratch head, sit
down, wave, and the rows show all the 5 camera views for each action category.
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Fig. 3.20 Performance comparison with state-of-the-art methods.

30% of the non-orphan actions are chosen from each view separately. The experiments are
conducted on any possible combinations of view pairs, i.e., twenty combinations in total are

considered.

We use the dense trajectories [153] as the primary feature to represent raw action video
sequences. Dense trajectories are extracted with 8 spatial scales spaced by a factor of 1/ V2,
and feature points are sampled on a grid spaced by 5 pixels and tracked in each scale,
separately. Each point at frame ¢ is tracked to the next frame ¢t + 1 by median filtering
in a dense optical flow field. To avoid the drifting problem, the length of trajectory is
limited to 15 frames. Additionally, HOGHOF [60] and Motion Boundary Histogram (MBH)
[105] are computed within a 32 x 32 x 15 volume along the dense trajectories, where each
volume is sub-divided into a spatio-temporal grid of size 2 X 2 X 3 to impose more structural

information in the representation.

The experimental results are shown in Table 3.14, where rows correspond to the source
views and columns correspond to the target views. For each view pair, we show both re-
sults for ‘woTran’ and ‘wTran’ settings, which denote action recognition with and without
knowledge transfer respectively. In both settings, low-level dense-trajectories are first coded
with LLC in each individual view. The ‘woTran’ setting is treated as a normal supervised
classification task in the same feature domain, so that the LLC codes are directly fed into
classification. On the other hand, in the ‘wTran’ setting, the LL.C codes are further decom-
posed to sparse linear combinations of basis dictionary elements, which are learned utilizing
samples from both views. We construct a codebook with 1,000 visual words for the LLC

codes, and the learned dictionary pair for cross-view knowledge transfer is set to be size
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90. The average accuracies are 22.52% and 92.00% for ‘woTran’ and ‘wTran’ respectively.
In all the cases, the proposed method outperforms those that directly use classifiers trained
on the source view to predict action labels in the target view, where the most significant
improvement is 85.15%. We also compare the average performance for each camera view
of the proposed approach with state-of-the-arts methods in Fig. 3.20. Clearly, our approach

significantly outperforms others even though with a stricter setting.

3.4.4 Conclusion

In this work, we have presented an unsupervised dictionary learning method to address the
cross-view action recognition problem. By setting up virtual connections across the source
and target view samples, dictionary learning is performed on these samples. Being coded by
the learned dictionary pair, the discriminative power of action representations from different
views can be guaranteed in the new feature space, so that the cross-view action recognition
problem can be solved as a traditional supervised learning problem. The proposed approach
achieves state-of-the-arts results on the IXMAS action dataset using only labeled source
view samples, and even outperforms some methods which utilize correspondence annota-
tions of action samples across different views. This work leads to a novel cross-view action

recognition setting towards real-world applications with little information provided.



Chapter 4

Multi-View Camera Fusion'

4.1 Motivation and Overview

Many previous human action recognition works have considered challenging problems,
such as illumination or background variations, occlusions and viewpoint changes [144].
Among them, data with viewpoint changes are very common and basically inevitable in real-
world applications due to human or camera movements. The apparent deficiency of single-
camera systems prompts the advancement of recent approaches using multiple-cameras to
deal with such viewpoint change problems. Algorithms based on multi-view cameras have
recently received considerable attentions. Many approaches have been proposed and tested
on the multi-view IXMAS dataset. Fig 2.1 illustrates examples of actions and their asso-
ciated silhouettes from this dataset. In [135], Shao et al. adopted body pose silhouettes
as feature descriptors to build the Correlogram of Body Poses (CBP) global representation
for each video sequence beyond its baseline Histogram of Body Poses (HBP) [133] rep-
resentation, and achieved satisfying results on the IXMAS dataset. In [71], Junejo et al.
explored the self-similarities of action sequences overtime as a measurement to overcome
view-changes. However, recognition in all these methods is done on individual cameras and
the fusion of different camera views is neglected.

The idea of decision trees and its extension, decision forests, have been previously stud-
ied for both action localization and recognition, e.g., in [123], [174], [85], [106]. In [85],

I'The content of this chapter is published at:
F. Zhu, L. Shao and M. Lin, Multi-View Action Recognition Using Local Similarity Random Forests and
Sensor Fusion, Pattern Recognition Letters, vol. 34, no. 1, pp. 20-24, Jan. 2013.
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4
s
Fig. 4.1 Body poses from (a) check watch, (b) sit down, and (c) kick. Each action is per-

(b) (C)
formed by the same person Amel and captured from cameras 0—4.

an action prototype tree is learned in both shape and motion spaces using the hierarchical
k-means clustering. Then they take a prototype-prototype distance from the codebook as a
measurement, upon which they calculate the joint likelihood with both action location and
prototype. In [103], in contrast to most previous recognition works that utilize small and
flat codebooks, they apply a large number of features represented in many vocabulary trees
instead. In addition to action recognition, their approach also accomplishes action localiza-
tion simultaneously. An image-feature vocabulary using a novel quantization method with
randomized trees as an alternative of kmeans clustering was proposed in [116]. The advan-
tage of choosing randomized trees for vocabulary generation has also been demonstrated
in [85] that the randomized trees can dramatically outperform k-means in terms of both ef-
ficiency and accuracy, especially when dealing with large scale data. In contrast to [135],
[133], [85], in which the random forests is employed as a vocabulary generating or indexing
tool, [171] applied the randomized trees to learn the 3D local video patches to acquire their
corresponding votes in the 4D Hough-transformed space. The same as in [133], both action

label and location are obtained from their voting framework.

Some existing techniques explored the fusion results from multi-cameras on the IXMAS
dataset. Among them, a very common strategy for camera fusion is to concatenate the fea-
ture descriptors from different cameras, e.g., [163], Such a fusion method would benefit the
recognition accuracy by describing the actions with more features. However, it will conse-
quently lead to two new problems. Firstly, concatenating the feature descriptors will result
in a much longer feature descriptor, which can be five times long for five cameras. There-

fore, this will naturally increase the computational complexity for clustering and dimension
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reduction. The second shortcoming, which is more critical, is the likelihood that the fused
recognition accuracy would deteriorate due to the unequal performance of each camera with
respect to different actions. Correspondingly, the first problem can be solved with the ran-
domized forests classifier and the second can be tackled by our new voting strategy.

In this report, we propose a simple approach that employs local segments of binary
silhouettes on the random forests classifier, and then apply a novel voting strategy to label
the testing actions. The random forests was introduced in [11], and it has the advantages
over other learning algorithms in efficiency and effectiveness, and it can avoid the over-
fitting problem by setting more decision trees. Although the action representation is simple
and not robust against viewpoint changes, we can still get impressive results due to the
effectiveness of the random forests as a classifier and the voting strategy. We also extend
our approach from single camera view to multi-camera fusion and evaluate the performance

of different camera fusion scenarios on the IXMAS dataset.

4.2 Local Segment Representation and Randomized Tree

Training

4.2.1 Segment of 2D Silhouettes

Silhouette extraction is a popular technique for action recognition. With the silhouette data,
intra-class variations, such as background changes and clothing, that may affect the recog-
nition performance are easily overcome. Obviously, the quality of the silhouettes is closely
related to the recognition performance. Since silhouette extraction is not the focus of this
report and the 2D silhouette per frame for each action sequence is provided by the IXMAS
dataset, we simply use those silhouettes to represent body poses without discussing how the
silhouettes are extracted. A bounding box is placed around each silhouette and normalized
to the size of 20 x 30, which is then converted into a 600 dimensional descriptor containing
only binary values. As shown in Fig. 4.2, the two sequences at the right side of the graph
illustrate two sets of 2D binary bounding boxes of camera 0 and camera 4.

In order to consider the temporal order of poses, we use temporally densely sampled
segments, which have overlaps with neighboring segments. Each segment is set to be the
size of 20 x 30 x T, where T refers to the segment’s length in frame number. With this

setting, each segment has the full spatial size of the input silhouette sequence and only
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Fig. 4.2 Silhouettes extracted from different camera views.

varies temporally. A segment is then represented by further concatenating each row of its
2D silhouettes, which results in a 600 x T dimensional segment descriptor. It is claimed in
[14] that the very densely sampled segments can help boost the recognition performance,
thus we place the segments as densely as possible in the temporal axis. Specifically, the
overlap between consecutive segments is 7 x 1 frame, i.e., the step for the sliding segment
is one frame. Assuming the total frame number of a silhouettes sequence is N, N — T + 1

segments can be generated from a video sequence.

4.2.2 Randomized tree training

The training process is constructed according to the standard random forests structure in [9].
Local segments from the training sets are trained with the random forests classifier, which is
assembled by a set of randomized decision trees. In each decision tree, M segment features
are randomly selected from the training sets and placed at a root node, which is mapped to
a set of termination leaf nodes through the interior binary splitting joints.

Let V"' = {v’f,vg’, e 7v2100><T} be the 600 x T-dimensional feature vector of segment
m € M, K be the total number of leaf nodes generated within a decision tree, #; be the
threshold at leaf node k € K and f;(V) be the splitting function that takes all the segments

at note k as inputs, then the splitting decision at note k can be defined as:

right, if VY > g,
splitting decision = s Fli) 2 i “4.1)
left, otherwise.
Fig. 4.3 illustrates of the structure a decision tree. The posterior probability p7’ that segment

m belongs to class ¢ can be computed by the proportion of segments of each action class at
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Fig. 4.3 The structure of a decision tree.

the leaf node k. The quality of split at each leaf node can be measured by the information

gain:

AE = E(I}) +E(I}),
NF N¥

E(IN=——1L 1o L,

() =~y e ey ) (42)
NFK Nk

E(IN=——"—"1o ),

(7) N4 NF g(le—i—Nf)

where Il" and I* denote the left splitting features and the right splitting features at leaf node k,
and correspondingly, N, lk and N¥ denote the number of the left splitting features and the right
splitting features respectively. In the training phase, the training set is equally partitioned
into a number of subsets, which are then fed to different decision trees. In order to boost the

general performance, the subsets are set to have overlaps with each other.

4.2.3 Random forest classification

We assume there are Ny decision trees in the random forest, then in the testing phase,
each segment within the testing video is fed to each of the Ny decision trees, and finally
terminates at a leaf node of a decision tree.

The overall prediction P™ that describes the probabilities of the segment m belonging
to each of the C classes can be computed by summing over all the leaf node histograms

P]T = [p’invp?7 7pnc1}:

No
P"=Y P (4.3)
n=1

The discriminative capacity varies over different segments. For example, segments that
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contain key frames of an action can be most discriminative, while segments that mainly
contain transition frames (i.e., frames between two actions) are meaningless. In order to
take the respective contribution of each segment into account, we assign a weight to the
prediction of each segment when deciding the action class of the input video sequence.

Thus, the weight assigned to segment m at a leaf is defined as:

C*
_ Nm

Wm = )
N

4.4)

where ¢* denotes the action class that possesses the maximum number of segments, N,
denotes the total number of segments and N,f: denotes the corresponding segment number
of class ¢ = ¢* in the training. To be consistent with the definition in section 4.2.1, we
assume the number of segments within a query video sequence is N — T + 1. Consequently,
the video-level prediction histogram can be computed as:

N-T+1
P=Y wnPy
m=1

N—=T+1 prc* No (45)

— Z m Z p".
m=1 Nm n=1 "
Each bin P¢ within P denotes the posterior probability that the input action belongs to class
c={1,2,---,C}, and the predicted action class can be found at the bin with the largest
value:
* = argmax P°. (4.6)

C

4.2.4 Multi-Camera Voting Strategy

The multi-camera fusion strategy is designed by further assigning a weight onto the pre-
diction histogram of each camera view. Similar to the local voting strategy, the weight is
computed by the proportion of the segments that have the same maximum voting class label
in their prediction histograms to the total number of segments within the video sequence,
where the segments with this class label are more than those with other class labels. Such a
weighting strategy is based on the fact that cameras from different observation views would

have fluctuating performance against different specific actions, as shown in Fig. 4.4. The
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Fig. 4.4 Individual camera performance of all the five cameras.

weight assigned to the prediction histogram of each view can be described as:

c*
N;,

WENCTIL

v=0,1,2,3,4, 4.7)

where v denotes each camera view and N denotes the maximum number of segments
that are predicted as the action class ¢ = ¢*. Since each camera has the same number of
segments for the same testing video sequence and the same number of decision trees to
classify each local segment, normalization is not required. Thus, the multi-camera fusion
prediction histogram can be obtained by accumulating each camera’s weighted prediction

histogram:

Prulti-view = Z wyP,. (4.8)
v={0,1,2,3,4}

Finally, the multi-view camera-based prediction can be made by finding the largest bin of

I multi-view-

* _ C
multi-view — g Mmax P multi-view (4'9)
c
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4.3 Evaluations

For evaluation, we choose the leave-one-out cross-validation method, i.e., in each iteration
action sequences performed by one out of ten subjects are selected as the testing set and the
remaining sequences as training set, and the final recognition rate is the average of the ten
iterations. To optimize the performance, we vary the segment length t from 8 to 18, and
the best result is achieved when 7 = 18. In the case of T = 18, a segment feature has the
dimension d = 20 x 30 x 18 = 10800. Then we reduce the dimensionality of such a binary
representation using PCA and set the reduced dimension to be k = 30. For the random
forests classifier, we set the number of decision trees to be 600 and the number of predictors

sampled at each splitting node to be equal to the square of the feature dimension.

To demonstrate the effectiveness of our method, we first compare the results of our
method with those of the baseline BoW [110] and the NBNN [9] methods, which both em-
ploy the same segment representation as in the proposed algorithm for fair comparison. Fig.
4.5 depicts recognition results of these three techniques when individual camera views are
used. For most views, the results of the BoW method and the proposed method are anal-
ogous, while both significantly outperform the NBNN method. Table 4.1 shows results on
different combinations of camera views with different methods. The highest classification
accuracy we achieve is 88%, which outperforms most of the methods in comparison. The
analogous performance between the proposed method and the BoW method of each single
view (shown in Fig. 4.5) also proves the effectiveness of the proposed camera fusion strat-
egy as it outperforms the BoW concatenation fusion method by almost 10%. As shown in
Table 4.1, the AFMKL method achieves the best results. Note that the learning process of
the AFMKL method is much more complicated than our method (where we only take the
concatenations of binary silhouettes in different frame segments as inputs of the random
forests classifier) that the performance of the AFMKL method for each single camera view
is consequently much better, i.e., 5% better in average for CamerasO-2. However, for the fu-
sion performance comparison, the result of our method is only 0.2% lower than the AFMKL

method, which, therefore, proves the effectiveness of our fusion strategy.

Table 4.2 shows the comparison between the early concatenation fusion method and
the fusion strategy we propose. Our approach outperforms the early concatenation fusion
method in most scenarios. For Cameras 0&2, the reason that the early concatenation fu-
sion method is slightly better than our method might be that the individual performance of
Camera 0 and Camera 1 over different action classes has similar distribution, which conse-

quently leads to mediocre performance of our fusion strategy. The confusion matrix for 11
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Fig. 4.5 Comparison between our method and the BoW and the NBNN methods on each
camera view.

Table 4.1 Classification accuracies of different methods for both single and multiple camera
views on the IXMAS dataset.

Method CameraO0 Cameral Camera2 CamerasOand2 Cameras0-2 Cameras 0—4
Ours 71.5% 78.7% 73.9% 85.7% 86.6% 88.0%
BoW [110] 71.6% 72.3% 72.7% 74.2% 79.1% 78.7%
NBNN [9] 59.5% 61.3% 64.8% 62.4% 63.1% 61.1%
AFMKL [163] 81.9% 80.1% 77.1% 86.6% 87.7% 88.2%
GMKL [152] 76.4% 74.5% 73.6% 76.2% 81.3% 81.3%

Liu and Shah [87] 73.3% 72.1% - - - 82.8%
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Fig. 4.6 The confusion matrix of Cameras 0—4.

Table 4.2 Classification accuracy comparison between early concatenation fusion strategy
and our fusion strategy under different scenarios.

Early concatenation fusion Our method

Segment temporal scale Camera 0&1 Camera 0-4 Camera 0&1 Cameras 0-4

8 Frames 72.9% 77.0% 74.0% 80.7%
10 Frames [110] 75.3% 78.5% 78.3% 83.9%
18 Frames [9] 80.5% 85.4% 80.1% 88.0%

actions, when fusing five camera views, is shown in Fig. 4.6. The reason why the action
“punch” has the lowest recognition rate may be that most “punch” actions are performed
by the actors’ arms which move in front of the actors’ upper bodies so that the variations
cannot be reflected on the 2D silhouettes. And the reason why the “turn around” actions are
always miss-classified with the “walk™ actions may be due to the high similarity between

these two actions.
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4.4 Conclusion

In this part of work, we propose a novel method for action recognition based on the random
forests and a multi-sensor fusion strategy. Since the focus is on classification and multi-
sensor fusion, we directly use the silhouettes available in the IXMAS dataset to represent
local segments. Our multi-sensor fusion strategy is built to overcome the unequal classi-
fication capabilities that would happen due to the high disparity in different observation
views. To achieve this, we weight on each camera prediction histogram, inside which each
voting segment is first weighted with respect to classification results of all decision trees
in the entire random forests. We demonstrate both the multi-sensor fusion results and the
single-sensor results using different segment scales, and compare them with the baseline
BoW and the NBNN methods. Extensive experimental results show that the proposed algo-
rithm outperforms the above two methods and our 5 camera fused result is comparable with

state-of-the-art solutions even though we only use a primitive feature representation.






Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis mainly focuses on the study of visual feature learning for visual categorization
or retrieval tasks. In this section, I conclude my work with some discussions of the main
finds through above demonstrated experiments. The following issues have been raised in
this thesis.

Segmentation-based image feature learning

Effective segmentation-based image representations are proposed for object recognition
tasks. Based on our experiments, the performance of object recognition can be signifi-
cantly improved if the foreground object regions can be extracted from the original images.
Based on recent advanced CPMC image segmentation techniques, it is possible to generate
image parts which are close enough to the ground-truth object segments. Two criteria, a
facility location term and an entropy term, are proposed to select such image parts among
all candidates, where the former can effectively select salient regions and the later can select

discriminative regions.

Transfer feature learning

Four feature learning methods are proposed to address the transfer learning scenario.We
consider all cross-domain, cross-modality and cross-view transfer learning scenarios. In or-

der to deal with challenges in different transfer learning scenarios, the learning objectives are
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formulated based on a cross-domain mapping function or the correspondence information
across both domains respectively. The common objective for transfer feature learning is to
build appropriate representations that can map cross-view, cross-domain or cross-modality
data to a unified feature space. The demonstrated experimental results state that abruptly
using data in a different domain can break the smoothness of the original target data, and
consequently degrade the categorization performance. By transferring the original data rep-
resentations in each separate view/domain/modality through the proposed feature learning
techniques, the reconstruction error and the overall smoothness over both domains can be

preserved.

Multi-View Camera Fusion

We propose a simple though effective action recognition approach based on random forests
and a multi-sensor fusion strategy. We aim to effectively fuse actions captured from different
viewpoints, and thus build a more powerful recognition system than can be obtained using
each single camera sensor. Extensive experimental results suggest the best performance is

achieved when fusing actions from all five viewpoints.

5.2 Future Work

5.2.1 Pedestrian Detection

Motivation

The study of pedestrian detection can be traced back 50 years. Recent pedestrian detec-
tion techniques are either based on the Hough transform, or sliding windows. The Hough
transform [59] is one classical detection technique, and it was first introduced to deal with
line or circle detection problems. Hough transform proceeds by converting the input im-
age into a new space, which is known as the Hough space. Each point in the Hough space
corresponds to a hypothesis which indicates the presence of the target object in the input
image at a particular location and other configurations (e.g., scale). If we take the simplest
line detection case as an example, the straight line can be described as y = kx + b in the
input image, where k and b denote the slope and the intercept of the line respectively. The
two parameters (k,b) can be located in a new 2-dimensional space, i.e., the Hough space.

Thus, as long as we can confirm the location of (k,b) in the Hough space, we can precisely
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locate the straight line the in original image. We understand that each point in the Hough
space can represent a line in the original image, vice versa, each point in the original image
corresponds to two parameters of a line in the Hough space. Utilizing this property, we
can choose any two points on a line in the original image, so that the intersection point of
corresponding two lines in the Hough space corresponds to the line in the original image.
Recent Hough transform-based object detection techniques are variants of the above case.
In the case mentioned above, each pixel in the input image is regarded as a voting element,
which can cast votes to hypotheses in the Hough space. While in the extended formulations,

voting elements can be pixels, image patches, segments, etc.

Fig. 5.1 Examples of some preliminary pedestrian detection results. The color around the
pedestrian area denotes different confidence values (red: high, blue: low). The majority of
body areas are covered by colored masks in the first five sub-figures, while the last figure
shows some inaccurate detections. One false positive and one false negative detections can
be found in the left and the right part of this sub-figure respectively.

On the other hand, sliding windows-based approaches proceed by predicting the pres-
ence/absence of the target object in a particular window, which can either be densely sam-
pled or detected in the input image. In the training phase, image patches of pyramid scales
are fed to a classifier to train the detector for a particular object. Then, in the testing phase,
each sliding window sequentially passes through the detector to obtain a prediction. Finally,
decisions are made according to the confidence returned for each window.

Either the Hough transform-based approaches or the sliding windows-based approaches
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have their flaws. For the former, it lacks consistent probabilistic model, which lead to
both theoretical and practical problems. As analysed in [2], the Hough-transform-based
approaches are based on a crude independence assumption that distributions over hypothe-
ses generating voting elements are independent. However, in many applications, there are
obvious connections between the hypotheses’ origins, e.g., if two voting elements are close,
there exists strong correlations between the hypotheses that they associate to. On the other
hand, the sliding window-based approaches lead too high computational cost, which pre-
vents their generalization to many applications.

We plan to propose a fundamentally different pedestrian detection approach which replies
on figure-ground image segmentations. In principle, such a strategy is superior to either the
Hough transform-based approaches or sliding window-based approaches. Thinking in the
Hough transform manner, the hypotheses are voting elements themselves in our approach.
Due to the reduced number of segments compared to the number of densely sampled slid-
ing windows, the computational complexity and cost can be significantly reduced. We also
provide a greedy-based solution based on submodularity, so that the computation time can
be further constrained. Specifically, similar as our submodular object recognition work, the
basis of our framework constructed by the set of figure-ground segmentations, which are
generated by the Constrained Parametric Min-Cuts (CPMC) [17] algorithm. We iteratively
select a optimum segment sets from all figure-ground hypotheses according to the criteria
defined in the objective function. By proving the submodularity of the objective function,
this step can proceed in a greedy manner. Some preliminary detection results are shown in
Fig. 5.1.

5.2.2 Cross-Modality Hashing

Introduction and Motivation

Data plays an important role in modern computer and internet industry. On one side, with the
emergence of ever growing data, researchers and engineers can turn past impossibility into
feasibility to allow people to benefit from new features of technology. The benefits cover
many aspects of our daily life. For example, users can get better experience of using search
engines with more accurate search results that match their desires; a patient can receive more
helpful treatment by referencing more relevant patients with similar symptoms. On the other
side, the growing data brings a potentially larger database, from which we retrieve relevant

information, thus consequently slows down the query time for each sample. Hashing-based
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retrieval models construct a bridge to balance the effectiveness and efficiency. In general,
hashing-based methods speed up the querying process by mapping high dimensional data
into compact binary hash codes, and consequently conduct approximate nearest neighbor
search between query instances and the training database. While sacrificing minimal accu-
racy, efficiency can be significantly improved (from a few hundreds of images per second to
millions of images per second on a standard computer). The main efficiency improvement
of applying such hash codes comes from the bit XOR operation when conducting searches
in the Hamming space [175]. In order to restrict the accuracy loss within a minimal range,
the smoothness property of the resulting hash codes should be guaranteed (i.e., the mapping
should generate identical or similar hash codes for data that come from the same category).
Four types of methods of generating hash codes are listed as follows.

Random Projection: the Locality Search Hashing (LSH) [51] is one of the most popular
hashing models. The basic idea is to use several hash functions to ensure that the probabil-
ity of collision for the given data applies to a smooth distribution [51]. By utilizing random
projections to construct such hash functions, LSH is proven to be effective and embarrass-
ingly simple to implement.

Manifold Learning: Spectral Hashing (SH) [160] is the most popular hashing methods that
capture the manifold structure of data. SH computes the hash codes by thresholding a subset
of eigenvectors of the Laplacian of the similarity graph [160]. Improved performance are
demonstrated by SH over LSH.

Deep Learning: Multiple hidden layer deep architectures have also been considered for
generating hash codes. Salakhutdinov and Hinton [127] used multiple stacked Restricted
Boltzmann Machines (RBMs) to learn a non-linear mapping between input data and hash
codes.

Boosting: Shakhnarovich et al. [132] extended AdaBoost [43] to hashing. Such a proposed
Boosting SSC method integrates multiple weak learners, where each weak learner gives a
binary prediction (similar or non-similar) of the pair of an input query and a candidate in-
stance in the database, and finally outputs predictions of all weak learners as the resulting
hash code.

Comparing to traditional single-modality retrieval tasks, cross-modality retrieval tasks
are taking up a growing proportions of users’ demands in information retrieval. For ex-
ample, in order to retrieve a set of desired images, users are likely to query with text de-
scriptions (either a few sentences or a combination of several keywords). In comparison to
retrieving with a single word, the increased information that accompanies with the text can

refine the returned results so that more desired images can be retrieved to the user. Moreover,
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using an image as a query to obtain relevant text descriptions can be considered as a helpful
tool to help people understand what the image describes. While the demands of effective
cross-modality hashing techniques are increasing fast, research efforts paying on such an
area are still at a startup point. In this work, we propose a cross-modality hashing frame-
work, which constructs a cross-modality dictionary pair by selecting modality-invariant dic-
tionary bases, and consequently generates compact and discriminative hash codes upon the
modality-invariant sparse image/text representations. By exploiting the monotonicity and
submodularity properties of the objective function within the matroid constraint, a highly
efficient greedy-based optimization algorithm is adopted to obtain dictionary bases with

performance guarantee.
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