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Abstract 

Real-time systems are subject to stringent deadlines which make their temporal 

behaviour just as important as their functional behaviour. In multi-tasking real-

time systems, the execution time of each task must be determined, and then 

combined together with information about the scheduling policy to ensure that 

there are enough resources to schedule all of the tasks. This is usually achieved 

by performing timing analysis on the individual tasks, and then schedulability 

analysis on the system as a whole. 

In systems with cache, multiple tasks can share this common resource which 

can lead to cache-related pre-emption delays (CRPD) being introduced. CRPD is 

the additional cost incurred from resuming a pre-empted task that no longer 

has the instructions or data it was using in cache, because the pre-empting 

task(s) evicted them from cache. It is therefore important to be able to account 

for CRPD when performing schedulability analysis. 

This thesis focuses on the effects of CRPD on a single processor system, further 

expanding our understanding of CRPD and ability to analyse and optimise for 

it. We present new CRPD analysis for Earliest Deadline First (EDF) scheduling 

that significantly outperforms existing analysis, and then perform the first 

comparison between Fixed Priority (FP) and EDF accounting for CRPD. In this 

comparison, we explore the effects of CRPD across a wide range of system and 

taskset parameters. We introduce a new task layout optimisation technique that 

maximises system schedulability via reduced CRPD. Finally, we extend CRPD 

analysis to hierarchical systems, allowing the effects of cache when scheduling 

multiple independent applications on a single processor to be analysed. 
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CHAPTER 1.  INTRODUCTION 

 

 

We are surrounded by embedded systems contained within larger devices, from 

medical pacemakers to the engine and control systems in large commercial 

aircraft. Many of these embedded systems are also real-time systems that have 

specific deadlines that they must meet, and are often required to interact with 

an outside environment. It is therefore important that these real-time systems 

meet their temporal requirements, as well as being functionally correct. Real-

time systems can be categorised as soft and hard real-time. A soft real-time 

system can tolerate a moderate number of deadline misses, at the expense of 

reduced quality of service, such as in a live video streaming system. In contrast, 

a deadline miss in a hard real-time system would constitute a failure of the 

system. Some hard real-time systems are also safety critical systems such that a 

deadline miss, and thus a system failure, could cause someone physical harm. 

Most real-time systems are multi-tasking systems built up of a number of 

individual tasks. To verify the temporal behaviour of a multi-tasking system, 

the execution time of each task must be determined, and then combined 

together with information about the scheduling policy to ensure that there are 

enough resources to run all of the tasks that make up the system. This is usually 

achieved by performing timing analysis on the individual tasks, and then 

schedulability analysis on the system as a whole. 

Timing Analysis 

Timing analysis is used to determine the execution time of a task in isolation, 

specifically excluding any effects due to scheduling.  In most cases, a task’s 

execution time will vary depending on factors such as the input data, but also 

on the state of hardware features such as processor caches. At a high level the 

analysis must calculate how long each block of code takes to execute, and then 

combine the blocks together so as to maximise the execution time. Static 
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analysis does this by determining the execution time using a detailed model of 

the hardware without executing the software. Measurement-based techniques 

measure the execution time of the software running on the target hardware. In 

systems with cache the analysis must also consider the potential variation in 

access times to fetch instructions and data depending on the state of the cache. 

Real-time systems have to respond to inputs from outside of the system and 

have specific deadlines that they must meet. Therefore, one of the most 

important aspects of a task’s execution time is what is known as the worst case 

execution time (WCET). The WCET of a task describes the amount of time that a 

task will spend executing under the worst case scenario, such as the worst case 

data input, and is obtained using WCET analysis. The goal of WCET analysis is 

to calculate a sound, greater than or equal to the actual WCET, and tight, close to 

the actual WCET, WCET estimate [99].  

Schedulability Analysis 

In real applications a system is usually built up of a number of tasks, 

collectively called a taskset. In addition to calculating the WCET of every task in 

isolation it is just as important to ensure that all the tasks, when running on the 

same platform and sharing resources, will meet their deadlines. A scheduling 

policy is used to determine which task in the taskset should run at any given 

point in time. Schedulability analysis uses the scheduling policy along with 

information about the tasks and their WCET, obtained through timing analysis, 

to determine whether or not the system as a whole is schedulable given the 

hardware resources available. Tasks can either be scheduled pre-emptively or 

non-pre-emptively in a multi-tasking system. In a pre-emptive multi-tasking 

system, tasks can be pre-empted so that a higher priority task can run, which 

must also be taken into account when performing schedulability analysis. 

Schedulability analysis can also take into account access to any shared resources 

that introduce blocking when a task is unable to execute because another task 

has a lock on a resource which it needs. 

Cache Related Pre-emption Delays 
In a pre-emptive multi-tasking system with cache, when a task is pre-empted, 

cache-related pre-emption delays (CRPD) can be introduced. CRPD is the 

additional cost incurred from resuming a pre-empted task that no longer has 

the instructions or data it was using in cache, because the pre-empting task(s) 

evicted them from cache. CRPD will be incurred as the task uses data and 

invokes instructions during the remainder of its execution that were evicted by 
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the pre-empting task(s).  CRPD is not a fixed cost per pre-emption, as is usually 

the case for traditional context switch costs, so simply subsuming an upper 

bound on the CRPD into the execution time of the pre-empting task could be 

very pessimistic.  It is therefore important to accurately account for CRPD when 

performing schedulability analysis on a real-time system. There are techniques 

that can be used to reduce or completely eliminate CRPD, usually at the 

expense of increased task WCETs. For example, the cache can be partitioning so 

that each task has its own space in cache. However, Altmeyer et al. [8] recently 

noted that the increased predictability of a partitioned cache, in terms of 

eliminating CRPD, does not compensate for the performance degradation in the 

WCETs due to the smaller cache space per task. 

1.1 Contribution 

The main hypothesis of this thesis is: 

Accurate analysis of cache related pre-emption delays (CRPD) is essential for 

resource efficient scheduling of complex embedded real-time systems. 

This thesis focuses on the effects of CRPD on a single processor system and 

further expands our understanding of CRPD and puts its impact into context 

through the following: 

CRPD Analysis for EDF 
Up until now, research into CRPD analysis has mostly focused on Fixed Priority 

(FP) scheduling [37] [77] [115] [6] [7], and while there exists some analysis for 

Earliest Deadline First (EDF) scheduling [71], we have identified the potential for 

significant pessimism in the analysis. We therefore present a number of new 

methods for analysing CRPD under EDF scheduling that significantly 

outperform the existing analysis. 

Task Layout Optimisation 
CRPD is dependent on how tasks are positioned in cache, which is controlled 

by their layout in memory. We present a technique for optimising task layout in 

memory so as to increase system schedulability via reduced CRPD.  

Detailed Comparison between FP and EDF 
We perform a detailed comparison between FP and EDF scheduling when 

accounting for CRPD. We explore the relative impact of CRPD on these two 
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popular scheduling algorithms across a large range of taskset and system 

parameters in order to gain a better understanding of how CRPD affects system 

schedulability. 

CRPD Analysis for Hierarchical scheduling 
Hierarchical scheduling [56] [60] provides a means of running multiple 

applications or components on a single processor as found in a partitioned 

architecture. It is motivated by the need to run multiple components 

independently of each other without allowing them to impact the functional or 

temporal behaviour of each other. However, as caches are shared there is the 

potential for component CRPD to significantly impact schedulability.  We 

present new analysis for bounding CRPD in hierarchical systems.  

1.2 Structure 

This thesis is structured as follows. Chapter 2 covers key background material 

on caches, timing analysis, and schedulability analysis. Chapter 3 discusses 

CRPD and reviews existing analysis techniques for calculating an upper bound 

on CRPD when performing schedulability analysis. Chapter 3 also discusses 

techniques that can be used to reduce or eliminate CRPD through reduced pre-

emptions and greater cache predictability. The new research contributions of 

this thesis are contained in Chapters 4 to 7. Chapter 4 introduces our new CRPD 

analysis for bounding CRPD under EDF scheduling. Chapter 5 details how the 

task layout can be optimised in order to increase system schedulability via 

reduced CRPD.  Chapter 6 presents a detailed comparison between FP and EDF 

scheduling accounting for CRPD in order to better put the effects of CRPD into 

context. Chapter 7 extends CRPD analysis to systems using hierarchical 

scheduling. Finally, Chapter 8 concludes and outlines future work. 
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CHAPTER 2.  BACKGROUND 

In this chapter, we review key background research that forms the basis of the 

work presented later in this thesis. Section 2.1 covers the basics of real-time 

scheduling and schedulability analysis. Section 2.2  introduces core terminology 

relating to caches. Finally, Section 2.3 reviews timing analysis techniques for 

calculating a bound on the execution time of individual tasks.  

2.1 Real-Time Scheduling 

In real applications a system is usually built up of a number of tasks, 

collectively called a taskset. In addition to calculating the WCET of every task in 

isolation it is just as important to ensure that all the tasks, when running on the 

same platform and sharing resources, will meet their deadlines. 

A scheduling policy is used to determine which task in the taskset should run at 

any given point in time. Scheduling policies can be classified as either offline or 

online. Offline scheduling, often referred to as static cyclic scheduling, uses a 

pre-computed schedule with very low runtime overhead. Online scheduling 

does not generate a schedule in advance, and instead determines which task 

should run at runtime. Under offline scheduling, the pre-determined schedule 

ensures that the schedulability of the system is known in advance. Sporadic jobs 

are more difficult to accommodate, but can be served using spare capacity. The 

Slot Shifting method by Fohler [65] makes use of available capacity after 

determining a valid schedule for periodic jobs to schedule sporadic jobs online. 

However, despite the benefits of offline scheduling, it lacks flexibility and may 

lead to an underutilisation of the processor compared to an online scheduling 

policy. Due to these limitations, many systems use an online scheduling policy, 

which is the focus of this thesis. Some classical online scheduling policies 

include: 
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 Fixed Priority (FP) [80] [85] - Fixed priority policy where tasks are 

allocated priorities offline and then scheduled according to those 

priorities at runtime 

 Earliest Deadline First (EDF) [85] - Dynamic priority policy where jobs 

with earlier absolute deadlines are given higher priorities. As the 

priorities are based on absolute deadlines of the individual jobs, task 

priorities change dynamically over the course of the schedule. 

Tasks can either be scheduled pre-emptively or non-pre-emptively in a multi-

tasking embedded system. In a non-pre-emptive system, tasks cannot interrupt 

each other and run one after the other. Non pre-emptive scheduling is more 

predictable than using pre-emption because tasks will be allowed to run to 

completion. However, it is only possible to schedule some types of tasks pre-

emptively. In a pre-emptive multi-tasking system, pre-emption is the act of 

temporarily interrupting a task in order to share CPU time between all the tasks 

running on the system. This switching from one task to another is known as a 

context switch and can introduce context switch costs due to the overhead 

involved with saving and restoring task state. A task may be pre-empted 

because a task with a higher priority needs to run, because the task is waiting 

on access to a locked resource, or because the task has used up its allotted time, 

otherwise known as a time slice.  

There are both non-pre-emptive and pre-emptive variants of FP and EDF 

scheduling. In this thesis we focus on the pre-emptive variants as the non-pre-

emptive variants can perform very poorly for tasksets containing tasks with a 

range of task periods and execution times [47]. 

Schedulability Tests 
Schedulability tests are used to determine if a taskset is schedulable, such that 

all the tasks will meet their deadlines given the worst-case pattern of arrivals 

and execution. For a given taskset and scheduling algorithm, the response time 

for each task can be calculated and compared against the tasks’ deadline. A 

taskset is schedulable if all valid sequences of jobs that may be generated by the 

taskset can be scheduled without deadline misses. A taskset is feasible if there 

exists a scheduling algorithm that can schedule all possible sequences of jobs 

that may be generated by the taskset without any deadline misses. A 

scheduling algorithm is optimal with respect to a task model if it can schedule all 

feasible tasksets that comply with the task model. 

For a given schedulability test, it can be categorised as one of the following: 
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 Sufficient - every taskset deemed to be schedulable by the test is actually 

schedulable. 

 Necessary - every taskset deemed to be unschedulable by the test is 

actually unschedulable. 

 Exact - if a test is sufficient and necessary. 

When comparing two schedulability tests, test A and test B the following terms 

are used: 

 Dominates - test A dominates test B if all the tasksets deemed schedulable 

by test B are also deemed schedulable by test A, and test A deems 

additional tasksets schedulable. 

 Incomparable - tests A and B are incomparable if they each deem a different 

set of tasksets schedulable. 

Schedulability tests are interested in the schedulability of a taskset under the 

worst-case system load, for which they can use the synchronous busy period. 

From [107] [112], a synchronous busy period is a processor busy period in 

which all tasks are released simultaneously at the beginning of the processor 

busy period, and then, at their maximum rate, and ended by the first processor 

idle period (the length of such a period can be zero). Note that once pre-

emption costs are considered the synchronous busy period may not represent 

the worst-case. 

2.1.1 System Model 

For a complete list of notation used throughout, see the “List of Notations” on 

page 183. 

 

Our system model comprises a single core processor running a taskset Г made 

up of a fixed number of tasks (τ1..τn) where n is a positive integer. We assume a 

discrete time model. The taskset is scheduled using either pre-emptive FP or 

pre-emptive EDF. In the case of FP scheduling, each task has a unique fixed 

priority and the priority of task τi, is i, where a priority of 1 is the highest and n 

is the lowest. In the case of EDF, each task has a unique task index ordered by 

relative deadline from smallest to largest. In the case of a tie when assigning the 

unique task indices, an arbitrary choice is made.  

Each task τi has the following properties: 
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 
iC  - worst case execution time (determined for non-pre-emptive 

execution) 

 iT - minimum inter-arrival time or period 

 iD  - relative deadline 

 iJ - release jitter 

 iU - utilisation ( iii TCU / ) 

 iR  - response time 

Each task, τi may produce a potentially infinite stream of jobs that are separated 

by a minimum inter-arrival time or period Ti. Each job of a task has an absolute 

deadline di which is Di after it is released. We define Tmax as the largest period of 

any task in the taskset, and similarly Dmax as the largest relative deadline of any 

task in the taskset.  

In this thesis we consider tasks with either constrained deadlines, Di ≤ Ti or 

implicit deadlines, Di = Ti. 

The system model could also contain an additional term, Bi, used to represent 

blocking due to access to shared resources other than the processor that require 

mutual exclusion. Blocking can be accounted for via approaches such as the 

Stack Resource Policy (SRP) introduced by Baker [16] which we note introduces 

no additional context switches. However, this thesis uses a simpler system 

model that does not contain Bi. 

2.1.2 Schedulability Analysis 

We now briefly cover existing schedulability analysis for FP and EDF 

scheduling assuming context switch costs are constant and subsumed into the 

tasks’ execution times. 

FP Scheduling 
FP scheduling assigns each task a fixed priority which is then used as the 

priorities of the tasks’ jobs. Under FP scheduling the sets of tasks that can pre-

empt each other are based on the statically assigned fixed task priorities. Using 

the fixed priorities, we can define the following sets of tasks for determining 

which tasks can pre-empt each other: hp(i) and lp(i) are the sets of tasks with 

higher and lower priorities than task τi, and hep(i) and lep(i) are the sets 

containing tasks with higher or equal and lower or equal priorities to task τi.  
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The exact schedulability test for FP scheduling assuming constrained deadlines 

calculates the worst case response time for each task and then compares it to its 

deadline. The equation used to calculate Ri is [15] [70]: 
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Equation (2.1) can be solved using fixed point iteration. Iteration starts with the 

minimum possible response time, ii CR 0
, and continues until either ii DR 1  

in which case the task is unschedulable, or until 
ii RR 1  in which case the 

task is schedulable and has a worst-case response time of 
iR . Note the 

convergence of equation (2.1) may be speeded up using the techniques 

described in [55].  

Under FP there are a number of techniques that can be used to assign the fixed 

priorities. Deadline Monotonic [80] assigns higher priorities to tasks with shorter 

deadlines. Rate Monotonic [85] assigns higher priorities to tasks with shorter 

periods. Audsley’s Optimal Priority Assignment (OPA) algorithm [14] takes a 

different approach. Using a greedy algorithm it evaluates the schedulability of 

each task, from lowest to highest priority, to devise an optimal priority for each 

task. It can be applied assuming the schedulability of a task meets certain 

conditions, such as not being dependent on the relative priority ordering of 

higher priority tasks. A drawback of OPA is that it selects the first schedulable 

priority assignment that it finds, which may result in a taskset that is only just 

schedulable. The Robust Priority Assignment (RPA) algorithm [52] improves on 

OPA by avoiding this drawback. 

Assuming negligible pre-emption costs, Leung and Whitehead [80] showed that 

Deadline Monotonic priority ordering is an optimal priority ordering for 

constrained deadline tasks which can have synchronous releases. Rate 

Monotonic is an optimal assignment for tasks with implicit deadlines [85], and 

OPA can generate an optimal assignment for tasks with arbitrary deadlines and 

periodic tasksets with offset release times [14].  

EDF Scheduling 
In 1973, Liu and Layland [85] gave an exact schedulability test that indicates 

whether a taskset is schedulable under EDF if and only if (iff) 1U , under the 

assumption that all tasks have implicit deadlines (Di = Ti). In the case where      

Di ≠ Ti this test is still necessary, but is no longer sufficient. 
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Assuming negligible pre-emption costs, in 1974 Dertouzos [57] proved EDF to 

be optimal among all scheduling algorithms on a uniprocessor. In 1980, Leung 

and Merrill [79] showed that a set of periodic tasks is schedulable under EDF iff 

all absolute deadlines in the period [0,max{si}+ 2H] are met, where si is the start 

time of task τi, min{si}=0, and H is the hyperperiod (least common multiple) of 

all tasks periods. 

In 1990 Baruah et al. [19], [20] extended Leung and Merrill’s work [79] to 

sporadic tasksets. They introduced h(t), the processor demand function, which 

denotes the maximum execution time requirement of all tasks’ jobs which have 

both their arrival times and their deadlines in a contiguous interval of length t. 

Using this they showed that a taskset is schedulable iff ttht  )(,0  where h(t) 

is defined as: 
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Examining equation (2.2), it can be seen that h(t) can only change when t is 

equal to an absolute deadline, which restricts the number of values of t that 

need to be checked. In order to place an upper bound on t, and therefore the 

number of calculations of h(t), the minimum interval in which it can be 

guaranteed that an unschedulable taskset will be shown to be unschedulable 

must be found. For a general taskset with arbitrary deadlines t can be bounded 

by La [67]: 
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Spuri [112] and Ripoll et al. [107] showed that an alternative bound Lb, given by 

the length of the synchronous busy period can be used. Lb is computed by 

solving the following equation using fixed point iteration:  
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There is no direct relationship between La and Lb which enables t to be bounded 

by L = min(La, Lb). Combined with the knowledge that h(t) can only change at 

an absolute deadline, a taskset is therefore schedulable under EDF iff 1U  

and: 
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 tthQt  )( ,  
(2.5) 

Where Q is defined as:  

   NkLLdDkTddQ bakiikk  ,,min|  (2.6) 

In 2009, Zhang and Burns [129] presented their Quick convergence Processor-

demand Analysis (QPA) algorithm which exploits the monotonicity of h(t) to 

determine schedulability by checking a significantly smaller number of values 

of t. Let di be any absolute deadline of a job from task τi, NkDkTd iii  ,  and 

define dmin = min{Di}. When a system is unschedulable, they define d ∆ as: 

   iiii ddhLddd  0|max  (2.7) 

QPA starts with a value of t that is close to L and then iterates back towards 0. 

For a schedulable system this sequence converges to 0, but can be stopped once 

h(t) ≤ dmin.  For an unschedulable system it converges to d∆. On each iteration t is 

set to the output of h(t) and h(t) is re-evaluated with the new value of t. If       

h(t) = t, then t is set to the largest absolute deadline that is less than h(t). Figure 

2.1 shows an illustration of how the QPA algorithm works. 

 

Figure 2.1 - Illustration of how the QPA algorithm works from [129] 

2.2 Real-Time Systems and Cache 

There are a number of features in modern processors that improve the average 

case performance, but make analysis of systems difficult due to the uncertainty 

that they introduce. These performance enhancing features include caches, 

pipelines, branch predication and out-of-order execution. When performing timing 

analysis they must be accounted for as they can affect the execution time of the 

basic blocks of code depending on what has been executed previously. 

Furthermore, in a pre-emptive multi-tasking system a pre-empting task can 
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affect the execution time of a pre-empted task by altering the state of these 

hardware features, for example by evicting the contents of the cache. In this 

thesis we focus on analysing the effects caused by caches in real-time systems 

using pre-emptive multi-tasking, which we discuss in detail in Chapter 3. First 

we give a brief summary about caches, and then review the techniques that can 

be used to analyse them when performing timing analysis, in Section 2.3. 

Caches are small fast memories which are used to speed up access to frequently 

used blocks that reside in main memory, either RAM or permanent storage 

such as EPROM. CPU caches are either split into instruction and data caches, or 

combined into a unified cache. Figure 2.2 shows a simplified representation of a 

CPU, 4KB of cache and 4MB of EPROM that could be found in an embedded 

system. Only a small percentage of the data or instructions from memory can be 

stored in the cache at any point in time, but accesses to the cache require 

significantly fewer cycles. If the instruction or data resides in cache, then 

accessing it will result in a cache hit, if not, it will result in a cache miss and the 

instruction or data must be fetched from memory first.  

 

 

Figure 2.2 - Layout of the CPU, Cache and EPROM Memory showing relative size and 
access times 

In this thesis we focus on instruction only caches. In the case of data caches, the 

existing analysis in Chapter 3 and the analysis that forms the contribution of 

this thesis (Chapters 4-7) would either require a write-through cache or further 

extension in order to be applied to write-back caches.  

Caches provide a predictable, but almost chaotic performance boost. Provided 

the current state of the cache is known, whether the next access will result in a 

hit or a miss can be calculated. However, it can be very difficult to keep track of 

the contents of the cache. Accessing data which is in the cache will always be 

faster than accessing data from memory. However, under some scenarios the 

time taken to execute a set of instructions that are in cache can even be slower 

CPU 
Cache   

4KB           
5 cycles 

EPROM                   

4MB                            

100 cycles 
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than when the instructions are not in cache. This is referred to as a timing 

anomaly and is caused when other hardware features interact and result in 

additional blocks having to be loaded from the cache. This makes the ability to 

classify if a fetch will result in a hit or a miss even more important [88]. One 

solution is to simply disable the cache. However, as the demands of embedded 

systems increase it becomes increasingly cost ineffective to keep caches disabled 

as they can provide such a significant performance increase [44]. It is therefore 

important to be able to analyse systems with cache in order to verify todays’ 

embedded systems. 

Many aerospace systems partition different software systems so that they 

cannot interfere with each other. As caches are shared amongst everything 

running on a processor this is a cause for concern. CAST-20 [43] investigated 

caches in aerospace systems. In particular, it noted that “cache memory should 

receive special scrutiny in a partitioned system because the cache mechanism is 

not aware of the address partitioning architecture” [43]. This is a concern as the 

partitions are supposed to ensure that tasks in one partition do not affect 

another. However, as caches are not aware of the partitioning tasks in one 

partition can evict instructions and data belonging to a task in a different 

partition. This in turn can then affect the execution time of the other task, 

despite them being separated.  

Another problem with cache and predicting its behaviour is that an empty 

cache is not always the worst case. For example, when the write back policy is 

being used on a data cache, blocks have to be written back to memory before 

they can be evicted.  

An additional case where an empty cache is not the worst case is the domino 

effect [24]. The domino effect describes a situation where a repeating pattern of 

instructions cause the cache to transition through a number of states without 

converging. This could occur when a loop repeatedly calls a number of 

functions/instructions that are laid out in memory in a specific way.  Due to the 

initial state and replacement policy, the cache does not end up in a consistent 

state, which means a different number of cache misses can occur on each loop 

iteration. Due to this effect, it must be assumed that the worst case number of 

cache misses occur on every iteration of the loop.  

These factors combine together to make our ability to accurately analyse caches 

very important when verifying the temporal behaviour of real-time systems. 
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2.2.1 Cache Structure 

In order to maximise the useful contents in the limited cache space, caches work 

on the principles of locality.  At any given time, a task is likely to access 

instructions or data that it has accessed recently, which exploits temporal 

locality. A task is also likely to access instructions or data that are located close 

to those that it has recently accessed, exploiting spatial locality. 

Caches are partitioned into a number of cache sets, S, such that each memory 

block m maps to a single cache set. Each block can contain L lines, and by 

loading a memory block with multiple lines caches are able to exploit spatial 

locality. For example, a memory block may hold 4 lines each containing an 

instruction which can be loaded into the cache in one go.  

Each cache set may contain up to K memory blocks, where K is equal to the 

associativity of the cache, and in the general case, a cache is called a set-associative 

cache with K associativity. A direct mapped cache is a special case where K=1, 

resulting in each memory block being able to reside in a single cache set. 

Conversely, a fully associative cache is the other special case where K=S, 

resulting in each memory block being able to reside in any cache set. 

2.2.2 Replacement Policies 

Except for direct mapped caches, cache sets can store multiple memory blocks 

and once they become full they must choose what to evict. This is achieved 

through a cache replacement policy, where the goal is to replace the least useful 

memory block which can be done by exploiting the concepts of locality. Some of 

the commonly used replacement policies are listed below [104].  

Least-Recently-Used (LRU) 
LRU replaces the element in cache that was used least recently. It effectively 

maintains a queue of length equal to the length of the associativity of the set. 

Every time an element is accessed from cache it is moved to the front of the 

queue, whether it was in the cache or not. When a cache miss occurs the 

element at the back of the queue is evicted.  LRU does a good job at keeping 

useful elements in cache. 
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First-In First-Out (FIFO or Round-Robin) 
FIFIO, which is also known as Round-Robin, uses a FIFO queue to choose what 

is evicted from cache. It simply replaces the element which has been in cache for 

the longest time. Unlike LRU, if an element is accessed while it is in cache, it is 

not moved to the front of the queue. It is however, much simpler to implement 

than LRU. A downside is that it causes domino effects. 

Most Recently Used (MRU)  
MRU keeps track of elements that have been used recently and when a cache 

miss occurs, replaces an element that has not been used recently. MRU uses a 

status bit for each cache line. On each access, this status bit is set to 1 and once 

the last status bit is set to 1, all other status bits are reset to 0. Once a cache miss 

occurs, one of the elements with a status bit that is equal to 0 is replaced. 

Pseudo-LRU (PLRU)  
LRU can become prohibitively expensive to implement in caches with large 

associativity, such as 4-way or greater. Pseudo-LRU is an alternative that almost 

always discards the least recently used element by using a tree-based 

approximation of LRU. Each node in the tree records which leaf is older/newer. 

Each time an element is accessed, the nodes are updated. When a cache miss 

occurs, the tree is followed to find the element to be evicted. Pseudo-LRU 

caches can also cause the domino effect. 

Random/Pseudo-Random 
Random or Pseudo-Random replacement polices make no attempt to keep 

important elements in cache; instead they replace elements at random. It does 

not require storing any information to decide what to evict and is simple to 

implement as it only requires a random or pseudo-random number generator. 

A benefit of random replacement policies is that probabilistic analysis [54] [5] can 

be performed on caches that use it. Additionally, random/pseudo-random 

replacement policies reduce the possibility of performance anomalies due to 

access history [102]. 

2.3 Timing Analysis 

In order to determine if a taskset is schedulable when running on a multi-

tasking system, it is essential to know how long each of the tasks could take to 

execute. This is achieved by performing timing analysis on the tasks. Timing 
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analysis methods can be classified into three types of analysis; static, 

measurement-based, and a combination of the two hybrid measurement-based 

analysis. Static analysis calculates the execution time for blocks using a model 

of the hardware. Measurement-based analysis executes the software on the 

target hardware and records execution time measurements. Hybrid 

measurement-based analysis combines the two. It determines the execution 

times by measuring small sections of code, and then calculates a bound on 

execution time based on the program structure obtained using static analysis 

and the collected measurements. While this thesis does not focus on timing 

analysis, we present a brief review of the literature as it forms the basis for later 

work on the cache analysis required by CRPD analysis. 

2.3.1 Static Analysis 

Static WCET analysis aims to calculate an upper bound on the WCET by 

statically calculating what the execution time for each block of code will be, and 

then combining them together to find the worst-case path (WC path) through the 

code. 

Initial Work 
Early work on static WCET analysis was driven by the seminal paper by 

Puschner and Koza in 1989 [100]. In [100], Puschner and Koza used source code 

to try to calculate an upper bound on the maximum execution time of tasks. 

Calculating an estimate for the WCET of an arbitrary program reduces to the 

Halting problem [74]. It was therefore apparent from the onset that a number of 

restrictions would have to be placed on the code in order to facilitate estimation 

by bounding the execution time. Some of those restrictions such as not using 

GOTOs and not having unbounded loops and recursive procedures are still 

present in today’s techniques. In order to add additional information to the 

source code a number of high level path description constructs were defined. 

These were based on C like syntax and include things such as the ability to 

specify the maximum number of iterations for loops using bounds, and markers 

for dealing with multiple paths through loops. They proposed a set of formula, 

or timing schema, that could be used to combine together execution times for 

simple language constructions, assuming the execution time for them could be 

obtained. For example the execution time for a sequence of statements is the 

sum of the execution times for each statement. A downside of this approach is 

that it requires modifying the source code in ways such as replacing standard 

loops with their modified bounded versions. 
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Later in 1991, Park and Shaw [95] took an alternative approach of using external 

annotations which has the benefit of not requiring a new programming 

language or language subset. Additionally, they focused more on the mapping 

between source code and the resulting object code. They used two levels of 

granularity in their analysis, small atomic blocks, and large atomic blocks.  A small 

atomic block is as small as possible and could be an assignment, or an addition, 

for example, cba   contains two atomic blocks. However, this is complicated 

by simple compiler optimisations. 

An example from [95] is that the sequence addcba  ;  can be compiled 

as follows: 

a = b + c; ==> mov @b, d0 

               add @c, d0 

               mov d0, @a 

d = d + a; ==> add d0, @d 

 

Figure 2.3 - Optimised assembly code generated from two simple statements [95] 

In this example, @a is the memory address of variable a, and d0 is data register 

0. As variable a was already in a register after the first statement, the second 

statement can be achieved in one machine instruction. This then makes it 

difficult to predict the execution time of a source code statement when 

considering it in isolation. Compiler optimisations can also cause multiple 

atomic blocks to be merged into one machine instruction. In the example, = and 

+ are achieved using one add for the second statement. Most problems like this 

can be eliminated by using their second level of granularity, large atomic 

blocks, which are as large as possible and represent an entire basic block. Where 

a basic block is a sequence of instructions without any decisions or branches so 

that the control flow enters at the beginning and leaves at the end. Regardless of 

which level of granularity used, Park and Shaw combined together the atomic 

blocks using a simple timing schema in the same way used by Puschner and 

Koza in [100]. In their work they also considered system interferences in their 

calculations due clock interrupts and dynamic RAM refreshes. However, they 

did not consider the effect of advanced hardware features such as pipelines or 

caches. In order to examine the effectiveness of their tool, Park and Shaw 

collected measurements of the code and compared it against the predicted 

bounds. For simple procedures, they were able to successfully calculate tight 

bounds. For complex procedures such as those with nested loops, where the 

number of iterations for the inner loop is dependent on the iteration number of 

the outer loop, such as sorting algorithms resulted in much looser bounds. This 
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was refined by introducing more user annotations that enabled infeasible paths 

to be eliminated which helped to produce tighter bounds. 

In 1993 Park [94] started work on defining and refining which user annotations 

are needed for calculating a tight bound on the WCET.  These user annotations 

provide execution information about the program which has since been known 

as flow facts. These flow facts describe information such as loop bounds, 

dependencies on conditions or statements and frequency relationships for sub 

paths through loops. Using this information Park performed dynamic path 

analysis to eliminate infeasible paths which leads to reduced pessimism while 

keeping the estimate sound. Park concluded that at a minimum loop bounds 

must be provided with additional information helping to make further 

improvements. In some cases complete information is not necessary as partial 

information can often be sufficient. Therefore, it is worth providing the broad 

and general information first, then refining it with more specific localised 

information. 

Early static analysis found the WC path by using a tree based approach backed 

by a timing schema. Provided the execution times of each basic block are 

known, they can be added to the tree which can then be traversed from the 

bottom up to find the WC path. This only works when the execution times of 

procedures and blocks are independent, which is not the case in modern 

processors with caches and other hardware features. In 1997, Puschner and 

Schedl [101] proposed using a graph based approach for finding the WC path, 

otherwise known as path based approaches. The approach used timing graphs 

which are similar to flow graphs to represent the structure and timing 

behaviour of the code. Flow facts are used to constrain the graph and the 

problem is then solved by finding the path through the graph with the 

maximum cost using integer linear programming (ILP). 

The initial path based static analysis techniques used explicit path enumeration 

to find the WC path. After all infeasible paths had been evaluated every 

possible path was explicitly examined. The following example from [81] 

illustrates the problem. 
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 for (i=0; i<100; i++) { 

  if (rand() > 0.5) 

    j++; 

  else 

    k++; 

} 

 

 

Figure 2.4 - Example of exponential blowup of paths if every path is explicitly 
enumerated from [81] 

The loop in Figure 2.4 above has 2100 different paths and yet if incrementing j 

and k have the same cost then all of the 2100 paths are WC paths. Li and Malik in 

1997 [81] proposed that by implicitly considering each path in the solution, the 

computational effort can be significantly reduced.  This is known as implicit path 

enumeration technique (IPET), and forms the basis of the modern static analysis 

process. 

WCET Analysis Processes 
Modern static WCET analysis uses IPET to express the analysis problem as an 

ILP that is solved by maximising an objective function to find the path with 

maximal length. The execution times of basic blocks are determined using very 

detailed and accurate hardware. There are different approaches that can be 

used to find and combine all the required information, but it is usually broken 

down into the following phases [61] [126]. Reconstruction of the call graph (CG) 

and control flow graph (CFG), architecture modelling broken down into pipeline 

analysis and cache analysis, and value analysis. Finally, path analysis, which is the 

process of generating and solving an ILP, to compute the path through the 

program that maximises the execution time.  
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Figure 2.5 - WCET analysis process for a typical static analysis tool 

While these are different phases, most techniques solved all phases together in 

order to calculate as tight an estimate as possible. This is because the outcomes 

affect each other: the value of inputs affects which paths are taken which affects 

the execution time of blocks due of hardware features. This then affects which 

blocks are on the WC path. The result of this combined analysis is a potentially 

very large ILP problem that must be solved using ILP solvers. Today value 

analysis can be used to determine a large number of flow facts automatically. 

Architecture Modelling 

Regardless of how the blocks are combined the execution times for the basic 

blocks need to be found.  This analysis needs to determine how long a basic 

block will take to execute which is dependent on the type of instructions in the 

block, the input data, and any hardware features that effect the execution time. 

Architecture modelling accounts for hardware features such as pipelines and 

caches and along with value analysis is usually solved using abstract 

interpretation. Using abstract interpretation to perform cache analysis is 

discussed in Section 2.3.2.  Abstract interpretation is semantics based, meaning 

it computes approximate properties of the semantics of programs. The key 

concept is it hides some of the details, while still remaining correct, so that a 
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simplified representation can be used. This increases the feasibility of the 

analysis by making it easier to obtain a result in a finite time. This enables the 

problem to be solved as an ILP system. In 1977, Cousot [45] applied abstract 

interpretation to static analysis of programs, forming the basis for much of the 

research that has been conducted since. 

Value Analysis 

Ferdinand and Wilhelm [62] explain that abstract interpretation is used to 

perform a program’s computation using value descriptions or abstract values in 

place of concrete values. This allows one to work with a set of inputs, ideally all 

inputs, rather than just one input. This also helps to ensure the computation 

completes in finite time. The results obtained from abstract analysis while often 

less precise, can still be proved to be larger than the real WCET; they never 

underestimate it. An example given from [62] is that if a boolean variable is 

sometimes true, then its value is correctly described by “I don’t know”, but not 

by “false”. To guide the results, an objective function is defined and constraints 

are placed on it. In static WCET analysis, the objective would be to maximise 

the execution time. The constraints placed aim to prevent the WCET estimate 

from becoming too pessimistic by, for example, excluding infeasible paths. 

Path Analysis 

The last part of the problem is the path analysis which comes down to solving a 

potentially very large ILP problem. Once the overall structure of the software 

has been obtained from the object code the path analysis must identify the WC 

path.  There will often be a number of possible WC paths that depend, directly 

or indirectly, on the input data. The path analysis aims to eliminate as many of 

the infeasible paths as possible. This helps to increase the accuracy of the 

overall WCET estimate, as the estimated execution time for those paths do not 

need to be included. Using flow facts, either provided by the user or found 

using value analysis, infeasible paths can be eliminated. This is achieved by 

bounding loops and specifying dependencies between blocks of code, especially 

inside conditional statements. When this is combined together along with the 

architectural modelling, an ILP problem representing the system with a number 

of constraints must then be solved.  

Limitations 
Increased complexity of modern processors has made analysis more difficult 

and computationally more intensive due to the higher number of factors that 
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must be taken into account. There are some techniques which can help to make 

the cache easier to analyse, but they do not cover all cases. This has led to an 

alternative approach where the architectural model is separated and then used 

as direct input to the ILP, rather than forming part of an overall larger ILP. 

Examples include the separation of the cache analysis [116] by Theiling et al., 

the idea being that the problem can be broken down into smaller less complex 

problems which are then composed together. However, as previously noted 

this results in a more pessimistic WCET estimate because of the lack of feedback 

between the different parts of the analysis. 

The described analysis is achieved by analysing the program without executing 

it. However, additional information is almost always required in the form of 

annotations provided by the developers to better describe the system. These 

annotations help to fill in the missing information from the analysis. For 

example, Section 4 of AbsInt’s white paper on their static analysis tool aiT [1], 

details the required annotations that are needed in order to obtain a WCET 

estimate. At a minimum, aiT requires the maximum number of iterations for 

loops and the targets of computed calls and branches. If recursion is used, then 

upper bounds on the recursion depth must also be specified. Any function 

pointers will also require annotations. Information about memory mapping is 

also required if accesses to different memory locations have different access 

times. 

Once the required annotations are provided they must be maintained along 

with any changes to the system which can be a non-trivial challenge. Moreover, 

if the developers’ understanding of the system or their model of the inputs is 

incorrect, the WCET estimate will be inaccurate. Applying the static WCET 

analysis tool aiT to automotive communication software is discussed by Byhlin 

et al. [40]. The authors noted that detailed system and code knowledge is often 

required and a number of annotations must be supplied. They also had to use 

relative addressing in their annotations and the analysis often required them to 

make changes and then recompile the software, which altered the code layouts.  

As static WCET analysis tools rely on an accurate and complete model of the 

hardware, a new model must be developed for every new configuration of 

hardware. However, these models are inherently costly to develop because of 

the complexity of modern hardware which limits the availability of them to the 

most commonly used hardware.  
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2.3.2 Static Analysis for Systems with Cache 

Static analysis techniques can produce very pessimistic WCET estimates when 

cache is used because of the difficulty of knowing what will be in cache at any 

point in time. Being able to accurately model the state of the cache is therefore 

essential in calculating a tight WCET estimate. 

Cache analysis in WCET analysis was originally proposed in 1994 in Mueller’s 

PhD thesis [90] via static cache simulation. Static cache simulation simulates the 

state of the cache at each program point using dataflow analysis. From this 

abstract cache states which describe the possible states of the cache can be found. 

These abstract cache states describe what may be in cache and take a sound but 

often pessimistic view of the cache.  Using the abstract cache states, Mueller 

proposed four ways to categorise each instruction using instruction 

categorisations; always-hit, always-miss, first-miss and conflict.  Always-hit is for 

instructions that are always in cache when fetched while always-miss is for 

instructions which are never in cache when fetched. First-miss is common for 

instructions that form part of a loop. On the first iteration they are not in cache, 

but in subsequent iterations they hit as they have now been loaded. Finally 

conflict is for any remaining instructions which were not categorised using the 

first three options. In more recent literature instruction categorisations are 

known as cache categorisations, conflict is often referred to as unknown and an 

additional first-hit has been introduced. Mueller’s approach was only applied to 

direct mapped caches and used a simple union to merge abstract cache states at 

control flow merges. In the case where the abstract caches states were different 

at a control flow merge, any non-matching entries are marked as conflict.  

Set-Associative Caches 
In 2000 Mueller [91] extended his approach to work with set associative caches 

using the LRU replacement policy. Set associative caches introduce additional 

challenges into the analysis because multiple blocks can be in the same cache set 

simultaneously. As new ones are added the blocks age and depending on the 

replacement policy, the oldest block is evicted. The analysis must therefore 

track which blocks are in cache and how old they are as that then determines 

when they will be evicted. Additional pessimism can be introduced at control 

flow merges when the abstract cache states are combined using a union because 

of the extra potential for uncertainty. In order to limit this, additional data flow 

analysis was introduced. This included linear cache states to determine whether a 

block will be in cache before the first iteration of a loop, the difference between 



2.3  Timing Analysis 
 

40 

always-hit and first-miss. Secondly the dominator cache states were used for 

determining what must be cached at a specific program point, used for 

determining which blocks will be always-hit. Finally post-dominator sets were 

introduced to determine what will be cached at a specific program point in the 

future, regardless of the path taken to reach that point. Despite this additional 

analysis, pessimism is still introduced if the abstract cache states are very 

different. 

Cache State Merging 

Alt et al. in 1996 [2] introduced must and may analysis, described below to deal 

with merging abstract cache states at control flow merges for set associative 

caches. This is an alternative method which builds on the concept of cache 

categorisations introduced by Mueller [90]. As the analysis is dependent on the 

replacement policy, the following explanation of must and may analysis is just 

for the LRU replacement policy, and is for a fully associative cache.  

Must analysis determines what must be in cache and aims to find as many 

blocks that are definitely in the cache as possible. This uses the maximum age of 

each block to determine if it must be in the cache. Using Figure 2.6 as an 

example, d is known to definitely be in the same place in cache in both paths, so 

it is kept in the same place. Block a has two different ages, as does c, so the 

maximum age is taken. Blocks e and f are not presented in both abstract cache 

state so it cannot be determined if they are still in the cache after the merge. 

 

{a}  {c} Young 

{}  {e}  

{c,f}  {a}  

{d}  {d} Old 

    

    

    

 {}   

 {}   

 {a,c}   

 {d}   

Figure 2.6 - Merging cache states using must analysis example from [61] 

 May analysis aims to eliminate blocks that definitely are not in the cache 

anymore. Any blocks which cannot be determined to not be in cache may be left 

in cache. In order to achieve this, the minimum age of a block is used. In the 

case where the block is present in one abstract cache state and not the other, it 
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must still be considered. Figure 2.7 shows the same example as Figure 2.6 but 

with may analysis. As none of the blocks are evicted the resulting abstract cache 

state contains all the original blocks in their youngest place in the cache.  

 

{a}  {c} Young 

{}  {e}  

{c,f}  {a}  

{d}  {d} Old 

    

    

    

 {a,c}   

 {e}   

 {f}   

 {d}   

Figure 2.7 - Merging cache states using may analysis example from [61] 

In addition to must and may analysis, virtual inlining virtual unrolling (VIVU) is 

used to determine which blocks will miss when first accessed, but hit on a 

subsequence access. These blocks are the same as first-miss using Muller’s 

cache categorisations. This is important for analysing loops and recursive 

procedures. This virtually1 inlines non-recursive procedures and virtually 

unrolls the first iteration of all recursive procedures and loops. The benefit of 

this approach is that it accounts for blocks being loaded in cache and reused 

during loops and small recursive procedures. Otherwise they would have to be 

categorised as always miss or unknown using earlier analysis techniques. 

Further work such as in 2000 by Theiling et al. [116] defined a separate 

persistence analysis which uses VIVU combined with a slightly modified 

abstract cache state update function. 

The must, may, and persistence analysis is solved by starting with empty 

abstract cache states at each program point and then iteratively updates them 

until all abstract cache states become stable. Once the must, may and 

persistence analysis has been performed, a cache categorisation can then be 

assigned to every block. Any block found to be in the abstract cache state after 

must analysis is categorised as always-hit.  Any block not found in the abstract 

cache state after the may analysis is categorised as always-miss.  In Mueller’s 

work [91], he effectively just had may analysis and inferred the results of the 

must analysis from the may analysis and the additional data flow information.  

                                                 

1 Virtually in this context means that the source or object code is not modified. Instead the 
representation that is used for analysis is. 
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As with Mueller’s work, this approach still suffers from the same problem of 

introducing pessimism at control flow merges.  

The aim of the must, may and persistence analysis is to determine which blocks 

are in cache at any given program point. However, during the analysis 

uncertainty about the state of the cache is often introduced due to the 

abstractions. This is especially so when the cache analysis is performed 

separately. This leads to the analysis being unable to determine the state of a 

block. In this case the sound approach is to calculate the execution time for 

both, and use the worst of the two. Additional uncertainty is also introduced 

when function pointers are used unless the user annotates them sufficiently. 

It is also important to note that the analysis is specific to the replacement policy 

and the configuration of the cache, for example, its associativity. Replacement 

policies and configurations are applied using additional constraints and are 

specific for each instance. LRU is the easiest to model because it is the most 

predictable [105]. However, many modern processors have the more cost 

effective to implement policies that are less predictable, such as the Pseudo-

LRU policy. Reineke et al. [105] presented an analysis of the predictability of 

different replacements policies for the purpose of static WCET analysis. In the 

case of Pseudo-LRU, the must analysis will find fewer blocks that must be in 

cache and the may analysis will find more.  This is because Pseudo-LRU will 

not always evict the least recently used block and because of this, extra 

pessimism is introduced in the result. FIFO is similar to LRU in that it maintains 

a queue based on the age of blocks. The difference is that blocks are not moved 

to the front of the queue when accessed. This makes analysis of FIFO in the case 

of a miss the same as for LRU but in the case of a hit, it can only be guaranteed 

that the block is in the cache, and could be evicted on the next access. MRU is 

even more problematic because it tracks accesses by setting a status bit to 1, 

however, once every cache line’s status bit is set to 1, it resets them all to 0. This 

leads to the cache never being in a state where its entire contents can be 

determined.  

In the case of random replacement policies, it is not possible to deterministically 

analyse the contents of the cache. Instead, probabilistic analysis, which uses the 

probability of an access resulting in a cache hit to generate a probabilistic 

distribution of the execution time, can be utilised. Examples of this include 

probabilistic analysis developed under the PROARTIS project [42]. Altmeyer et 

al. provided a review of static probabilistic timing analysis in [5]. In [54] Davis 

et al. extended the analysis to deal with the effects of cache in multi-tasking 
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systems. However, the focus of this thesis is on analysis for deterministic 

replacement policies. 

Integration with WCET Analysis 
The cache analysis is of little use on its own and must be combined with WCET 

analysis. While it can be applied to an overall ILP problem such as in Alt et al. 

[2], Theiling et al. in 2000 [116] presented a method that performs the cache 

analysis separately.  The results can then be used as constraints for the overall 

ILP problem and allow the ILP problem to be simpler. This makes the overall 

computation effort smaller, but it does increase the pessimism in the final 

estimate as valuable information is not fed into the cache analysis about which 

paths have been taken. 

Data and Unified Caches 
The methods described so far all focused on analysing instruction caches, which 

is the focus of this thesis. There has been work towards analysing data and 

unified caches [63]. Cache analysis can be used if the addresses of referenced 

data can be statically computed. This means that global variables are usually 

easy to determine. As local variables and parameters are placed on the stack 

and are addressed relatively based on the stack pointer, if recursion is not in use 

then data flow analysis [72] can be used along with stack analysis. However, 

some addresses cannot be statically determined, such as those referenced by 

pointers or arrays. In this case the analysis must consider a set of possible 

memory locations, rather than a specific memory location, when performing 

must and may analysis. This inevitably results in increased pessimism. 

Data caches introduce additional challenges because they can be written to as 

well as read from. Some of the write policies are easier to analyse than others. 

Write through caches are simpler because they write the contents back to 

memory straight away. Write back caches are more complicated because they 

only write a modified block back to memory when it is evicted. This is 

implemented in the hardware using a dirty bit to indicated blocks which have 

been modified. In order to analyse these caches, the analysis is extended in the 

same way to also include a dirty bit, and the must and may analysis are 

adjusted to account for it. 

Multi-level Caches 
While the focus of this thesis is on single level instruction caches, it is becoming 

ever more common in embedded systems to see multiple levels of cache, either 
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two (L1 and L2) or even three levels (L1, L2 and L3) in multi-core systems. 

These extra caches sit between the top level cache, L1 cache, and main memory. 

They will be larger than the L1 cache, but with higher access times. They will 

still be faster than main memory. 

The following example is based around fetching an instruction in a system with 

an L1 and L2 instruction and L1 and L2 data cache. When loading the 

instruction, the L1 instruction cache will be checked first. If the instruction is 

not there then the L2 instruction cache will be checked next.  If the instruction 

was not in any of the cache levels, then the instruction will be fetched from 

main memory. For each level of cache that must be searched there is an 

additional, ever increasing, delay. Therefore, the analysis needs to track which 

cache level each block is in in order to calculate an accurate WCET estimate.  

In 2011, Hardy and Puaut [69] extended the cache analysis developed by 

Theiling et al. [116] to work with multi-level caches by introducing the concept 

of cache access classification (CAC). For every memory reference r, and cache level 

l, a CAC is determined that captures whether r will result in an access to cache 

level l. A CAC can be one of the following; always, never, uncertain-never or 

uncertain. Where uncertain-never describes an access that could or could not 

occur the first time, the next access will never occur at cache level l. The CAC 

combined with the cache hit/miss configuration is then used for analysing the next 

cache level. They described their analysis for non-inclusive, inclusive and 

exclusive cache hierarchies using the LRU replacement policy. They have also 

adapted it for non LRU replacement policies. They noted that a current 

challenge is that pessimism in the cache analysis of the previous cache level 

effects the results of the next level. Extending this to three levels of cache as 

found in some multi-core systems and the need for increased precision in cache 

analysis becomes even more important.  

2.3.3 Measurement-based Analysis 

Measurement-based WCET analysis is an alternative to static analysis. It is also 

sometimes known as dynamic analysis and is commonly used in industry. 

Rather than analysing the executable the software is run on the target system. 

The simplest form works by recording the time at the start of a system or tasks’ 

execution and at the end of it as it executes on the target. This could be achieved 

for example, by setting an external pin high at the beginning and setting it low 

at the end of a task. A probe could be attached to the pin and it would record 

the length of time that the pin was high. 
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One problem with measurement-based analysis is that measuring the end to 

end timing of a system will not reveal the WCET unless the WC path is 

exercised by the test case. Due to system complexity, and dependence on input 

data, it can be very difficult to find a test that exercises the WC path. It is 

possible to design systems so that a WCET estimate that is close to the real 

WCET. This can be achieved by making the code very simple or having a single 

path through the code. However, this may not be feasible for complex software, 

making it practically impossible to execute every possible path. Furthermore, 

good functional test cases may be very poor at exerting the worst case temporal 

behaviour, further increasing the number of tests need. This limited testing then 

introduces the problem of working out which tests to run and when sufficient 

testing has been performed. Because of this problem, simple measurement-

based analysis are unsuitable for determining WCET estimate that is 

guaranteed to be at least as high as the real WCET, unless the software has a 

very small number of paths. 

One solution to the problem was proposed in 1997 when Mueller and Wegener 

[92] used a genetic algorithm to try to find good test cases. They start with an 

initial population of test cases which they evaluated. Test cases that resulted in 

a high WCET were regarded as strong individuals and were brought forward 

through the generations. The end result was test cases that gave the highest 

WCET estimate. This allows good test cases to be found that are better than 

randomly trying different ones. However, the discovered test cases resulted in a 

lower WCET estimate that the actual WCET. This highlights the fact that good 

test cases, especially end-to-end ones, are difficult to find. 

A benefit of measurement-based analysis is that while the computational cost 

for static WCET analysis increases with the complexity of the system, 

measurement-based WCET analysis scales linearly with the number and size of 

tests. Additionally, it does not require an often expensive and complex to 

develop hardware model. It is therefore easy to adapt techniques when moving 

to newly released hardware as there is no need for a new hardware model to be 

developed. 

2.3.4 Hybrid Measurement-based Analysis 

Hybrid measurement-based WCET analysis combines statically obtained control 

flow information with measurements collected from the software running on 

the target. These measurements often replace the value analysis and 

architectural modelling that are used in static analysis, although flow facts can 
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still be gained using static analysis. As with pure measurement-based analysis, 

the quality of the results are dependent on the coverage of the test cases. 

However, because blocks can be combined together from a number of runs, 

there is less of a need to find a test cases that exercises the complete WC path 

through the code. Hybrid measurement-based analysis requires fewer 

annotations for use in determining flow facts than static analysis, but may 

require annotations to control/optimise to computed WCET bound. These 

points combine together to make hybrid measurement-based analysis a very 

attractive alternative for industry. A potential for optimism in the computed 

WCET bound is that blocks are combined to build the WC path under the 

assumption that they are independent and that the architecture is timing 

compositional. In practice, performance enhancing features such as caches can 

cause the execution time of a block of code to be dependent on what has 

previously been executed. While this could be solved by testing all possible 

paths and obtaining full path coverage, this is often unfeasible. 

An example implementation of the hybrid measurement-based approach is 

pWCET [25] where the background was first described in [26]. pWCET uses 

probabilistic WCET analysis to calculate execution time profiles (ETPs) for each 

basic block of code. Note that this is not the same as applying extreme value 

statistics to the measurements to account for missing tests. Instead 

measurements are recorded for every run of each block and combined together 

to create the ETPs.  

Non-probabilistic analysis would only records the maximum, and in some cases 

the minimum values. Either form of analysis must combines these blocks 

together, usually using some form of timing schema. The following is an 

example simple schema based on a syntax tree representation that allows 

timing information to be combined. 

• W(X) = integer, when X is a basic block 

• W(X; Y) = W(X) + W(Y) - combines together two blocks, X and Y 

• W(if Z then X else Y) = W(Z) + max{W(X), W(Y)} 

• W(for Z loop X ) = (n + 1)W(Z) + nW(X) - where n is the maximum 

number of iterations 

In the case of pWCET, rather than using integers, ETPs are used when 

combining the values for each block. In order to function correctly with the 

ETPs the additions must be replaced with join operators. In the case where the 

ETPs are independent the join is simply a convolution. However, in the case of 

dependent ETPs there are effects that are (possibly highly) correlated that are 
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not accounted for. When precise information about dependencies is known, 

alternative operators can be used. In this case the two ETPs can be joined to give 

an ETPs equal to P(A = t ∧  B = s ). In other words, the join gives the probability 

that block A runs for t time units and block B runs for s time units.  

pWCET has since been turned into a commercial tool, Rapita Systems’ 

RapiTime [103]. While obtaining a probabilistic WCET estimate is useful for 

some real-time systems such as communications which need to achieve a 

certain QoS, many hard real-time systems need absolutes. In that case the 

highest values from the ETP can be taken which is the approach used by 

RapiTime, although it can display the full ETP for use in appropriate scenarios. 

An example for presenting ETPs is when attempting to optimise the code. 

Having a distribution of the measured execution times enables insight into the 

variation in execution times necessary to make improvements. 

The full approach used in RapiTime is as follows. First, the structural analysis is 

applied to the source code and then pre-processed. During the analysis, the CG 

and CFG are obtained so that the measurements can be matched and combined 

with the correct blocks of code. The pre-processed code is then turned into 

instrumented code by inserting instrumentation points (Ipoints). These Ipoints 

are usually macros or small procedures that output an ID and timestamp which 

can then be recorded. The instrumented code can then be compiled in the 

normal way to produce an instrumented executable. When executed on the 

target, the Ipoints that were inserted into the code write data to memory or to 

an output port. The IDs in the data are then used to match the timing 

information from the timestamps with the CFG obtained during the initial 

analysis. Execution times for each procedure can then be composed together 

using a tree based approach from the bottom up to calculate the WCET 

estimate. However, as noted before, this does not account for dependencies 

between the execution times of procedures caused by caches and other 

hardware features unless full path coverage has been obtained.  

As with pure measurement-based approaches, blocks must be tested in order to 

collect timing information for them. Ernst and Ye [58] proposed an approach 

where they reverted to standard static analysis for blocks without timing 

information that were not successfully tested. This enables relatively fast 

calculation for the ideally small number of blocks. However an accurate 

hardware model is then required which is one of the major points that hybrid 

measurement-based analysis is supposed to address.  
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The above mentioned techniques used tree based approach to calculate the WC 

path based on the source code.  Betts and Bernat [30] proposed a method to 

transform graphs based on object code into a tree so that a timing schema can 

be used as if it was based on the source code. This is an interesting take on the 

problem, although this has not been fully implemented in a tool. The benefit of 

starting with object code is that it eliminates any uncertainty introduced by 

compiler optimisations. 

It can be difficult to collect measurements from some systems for a number of 

reasons, including: 

 If there are no free I/O ports to connect a logic analyser to the target 

 If there are free I/O ports, but using them significantly limits 

performance and under-utilises the CPU due to the slow speed of the 

I/O ports 

 If the above two scenarios hold, the only way to extract data may be to 

store it in memory, and then download it later. However, if the on board 

memory is limited in capacity, this could result in only being able to test 

a small portion of the system. 

Due to this, the method of extracting data must be tailored to the specific 

hardware. Hybrid measurement-based analysis will often require a large 

amount of data to be extracted from the target system. Depending on the detail 

required, the source code can have different levels of instrumentation, which 

will generate more or less data to be extracted. It is therefore important in large 

systems with limited I/O port bandwidth or available memory to pick suitable 

levels of instrumentation. This could range from recording timing information 

for each procedure, down to instrumenting each basic block of code. Initially, 

everything could be instrumented at procedure level. On a second run, the 

procedures that contribute to the WCET could have more instrumentation 

added in order to obtain extra information about which parts of the code are 

contributing the most to the execution time. Even greater detail can be obtained 

if necessary. This may be useful when evaluating the performance of one 

statement over another where, for example, one uses specific hardware features 

of the processor. However, it would generally not be used in the final code as 

the overheads may become prohibitive if every other statement is an Ipoint that 

requires a memory or I/O port access. 

Measurement-based techniques also suffer from the probe effect due to 

modifying the source code in order to generate the data required to measure the 

execution time. In doing so the behaviour of the code is altered which can affect 
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the execution time. In systems with cache, the additional code can alter the 

layout of code in memory, potentially affecting the number of cache hits/misses 

across the whole software. 

An alternative is to use industry standard hardware debuggers such as ARM’s 

ETM [12] or Nexus [93] which are built into some chips. These allow a 

consistent way to extract execution information from targets in the form of 

branch traces. These traces record every branch that is taken [29] and therefore 

branches that are not taken must be inferred.  They however produce less 

accurate measurements as records are grouped together and time stamped, 

rather than individually time stamped. Additionally, information could be 

missed if there is a high number of branch instruction grouped closely together 

due to bandwidth limitations of the JTAG port that is used for communication. 

2.3.5 Measurement-based Analysis for Systems with 

Cache 

The execution time of a basic block in a system with cache is history dependent: 

execution time of a block can vary depending on the path that was taken to get 

to it. Therefore, measuring all of the individual paths and combining them is 

only valid for the specific path through the program. To produce a sound 

WCET estimation when cache is used, full path coverage is technically needed. 

Figure 2.8 shows an example demonstrating why full path coverage is required. 

The WC path after executing the two solid line tests was calculated to result in a 

WCET of 150, as shown by the dashed line path. If in this example loading B 

into cache evicts F from cache, when it would otherwise have been in cache 

after executing C and D, then the WCET would increase to 190. 
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Figure 2.8 – Example showing why full path coverage may be needed in a system with 
cache. Executing the solid line tests results in a calculated WC path (dashed line) of A-
>B->D->F->G with an estimated WCET of 150 (left). If B evicts F, which would 
otherwise still be in cache when it is called after D, the WC path would remain the 
same, but the WCET would increase to 190 (right) 

There are some potential solutions to this problem. In 2000 Petters [96] flushed 

the cache before each measurement block in order to obtain a WCET estimate 

that was not affected by the cache. However, this clearly introduces a large 

amount of pessimism and will remove most of the benefits of using the cache. 

In 2003, Colin and Petters [44] investigated how much of an effect different 

hardware features had on the WCET. They found that for the SimpleScaler 

simulator, the level of overestimation was much smaller than the performance 

loss due to disabling the cache. This emphasises the importance of cache and 

our ability to account for it when performing WCET analysis. 

In 2005 Kirner et al. [75] took a similar approach to Petters [96] by partitioning 

the CFG into program segments. While they did use basic blocks, they also used 

larger multi-path program segments which had a number of paths through 

them. This allowed for a less pessimism via considering larger blocks in 

isolation, at the expense of requiring a higher number of measurements. In 

order to ensure that all the paths were tested, the authors used a model checker 

to generate suitable test cases, rather than relying on manually defined test 

cases. An extension to this could be to consider procedures in isolation and try 

to obtain full path coverage for each procedure.  
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A slightly different way to tackle the problem was taken by Betts et al. [31] in 

2006 with their concept of WCET coverage. Although this was designed for 

pipelines, the ideas are still relevant for caches. It is based on the fact that 

traditional functional coverage metrics, such as branch coverage or MC/DC 

coverage, will often result in poor temporal coverage when advanced processor 

features such as caches are used. Because of this, and despite the benefits of 

hybrid measurement-based analysis, there is no way to prove that sufficient 

testing has been performed. They therefore setup a number of WCET coverage 

metrics which reflect different levels of temporal coverage when pipelines are 

used. A basic form of WCET coverage for caches can be achieved by applying 

the technique used in Petters [96] to flush the cache at the start of each basic 

block. Kirner et al. [75] presented an approach where the CFG is split into multi-

path program segments, in which case WCET coverage would be obtained by 

ensuring that every path through each program segment had been tested.  

2.4 Summary 

This chapter has introduced the key background research that forms the 

grounding for the work presented in this thesis. When analysing tasks in 

isolation a sound WCET for each task can be calculated and can be done in such 

a way that the effects of caches are also accounted for. Schedulability analysis 

can then be used to determine if all of the tasks when running on the system 

will meet their deadlines. However, the schedulability analysis assumes that the 

tasks’ WCET obtained in isolation will not be affected when scheduling 

multiple tasks pre-emptively. While this assumption is valid for simple 

architectures, it is not for more complex ones that contain performance 

enhancing features such as cache. In the next chapter, we look at existing work 

that uses information from static analysis and scheduling information to 

determine the schedulability of a system, accounting for the effects of cache 

when scheduling multiple tasks pre-emptively. 
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CHAPTER 3.  CACHE RELATED 

PRE-EMPTION DELAYS 

In this chapter, we describe cache related pre-emption delays (CRPD), and review 

the current state-of-the art analysis for accounting for CRPD when performing 

schedulability analysis. We also discuss a number of techniques that can be 

used to minimise these delays either by reducing the number of pre-emptions, 

or reducing/eliminating intra-task cache conflicts. From this point we assume 

that an accurate model of the processor being used is available, and that the 

static analysis techniques discussed in Chapter 2 can be applied to our system. 

We can then assume that we are able to obtain the following properties: 

 A sound WCET estimate for each task in isolation 

 Correct information about what ‘must’ and ‘may’ be in cache at each 

program point 

3.1 Cache Related Pre-emption Delays 

When a pre-emption occurs there is a mandatory delay introduced by the need 

to save the state of the current task, decide which task to switch to, and then 

setup the new task. This delay is known as the context switch cost (CSC). As this 

is a fairly constant cost, it can usually be upper bounded and then subsumed into 

the execution time of the pre-empting task. In other words, in order to perform 

schedulability analysis on a taskset, the execution time of each task in the 

system is inflated by a bound on the time taken by the scheduler/operating 

system to switch to and then back from a task. 

In a system with cache after a pre-emption occurs there can be additional costs 

due to interferences on the cache which affect the pre-empted task(s). This is 

known as cache-related pre-emption delay (CRPD) and it cannot simply be 

subsumed into the execution time of the pre-empting task without potentially 
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introducing significant pessimism. This is because CRPD is dependent on the 

pre-empting and pre-empted tasks and the point of pre-emption. Specifically, it 

is incurred when a pre-empted task resumes and no longer has the instructions 

or data that the task was using in cache, because the pre-empting task(s) evicted 

them from cache. It is therefore difficult to determine the exact CRPD because 

the delay will not be incurred at once. Instead, CRPD will be incurred as the 

task uses data and invokes instructions that were evicted by the pre-empting 

task(s) during the remainder of its execution. In addition to being highly 

variable, CRPD can be significantly larger than CSC. In a study of a large 

multicore platform, Bastoni et al. [22] found the CSC to be around 5-10µs in the 

worst case, with variation being down to the number of tasks and scheduling 

policy which would not be changed at runtime. In comparison, they found the 

worst-case pre-emption costs to be much greater and more varied than the CSC, 

specifically they varied between 1-10000µs depending on the cache usage and 

system load. Figure 3.1 shows an example pre-emption with a small amount of 

CSC occurring when switching tasks and a large amount of CRPD spread out 

during the execution of a task after being pre-empted. 

 

Figure 3.1 - Illustration of the effects of a pre-emption. CSC are incurred when 
switching tasks, and pre-emption delays are incurred during the remainder of a tasks 
execution after pre-emption as it accesses blocks that were evicted from cache during the 
pre-emption 

As noted, the CSC is fairly constant and can be upper bounded and is therefore 

usually subsumed into the execution time of the pre-empting task. Figure 3.2 

shows a revised version of Figure 3.1 with the CSC replaced by an increase to 

the execution time of task τ1. 
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Figure 3.2 - Illustration of how the CSC can be subsumed into the execution time of the 
pre-empting task when compared to Figure 3.1 

CRPD depends on the point at which a task is pre-empted. For example, pre-

empting a task when it has not loaded anything into cache, or when it no longer 

requires anything it has in cache will have minimal effects. Figure 3.3 is taken 

from [28] and is based on Matlab automotive code that models an automatic 

transmission controller. Pre-emption points were placed at fixed points and a 

high priority task which evicts all cache lines was used. The plotted CRPD at 

each point in the figure below was calculated by taking the difference in the 

execution time with and without pre-emption.  

 

Figure 3.3 - Example showing CRPD can vary throughout the execution of a task as the 
maximum amount of CRPD is related to the amount of useful information that has to be 
re-loaded back into cache. Example taken from [28] 

Furthermore, if a task is pre-empted shortly after resuming from a pre-emption, 

it may not have yet re-loaded all of the evicted blocks and will therefore not be 

able to incure the maximum CRPD from the first pre-emption. However, 

without knowing the exact point at which a task is pre-empted, we must make 

the pessimistic assumption that the pre-emption will result in the maximum 

CRPD being incured directly after the pre-emption. This results in a simplified 



3.1  Cache Related Pre-emption Delays 
 

56 

representation of the CRPD whereby it is combined into a single cost pre-

emption as shown in Figure 3.4. 

 

Figure 3.4 - Simplified and potentially pessimistic representation of CRPD, assuming it 
is incurred at once after a task resumes 

The analysis presented in this thesis does not consider blocking due to shared 

resources. However, we note that the effect of CRPD when using shared 

resources via SRP [16] can be accounted for as shown in [6] [7]. 

In order to determine an upper bound on the CRPD, we must calculate how 

many blocks may be evict from cache that then need to be reloaded, and then 

multiply that by the additional time incurred when reloading a block from 

memory. 

3.1.1 Block Reload Time 

The additional time taken to reload a block from memory into cache after a pre-

emption is dependent on the hardware and is known as the block reload time 

(BRT). There are three possible cases of processor architecture [127]. For 

processors than employ a simple architecture that does not suffer from timing 

anomalies such as the ARM7, this is simply the difference in the number of 

cycles to load a block from cache verses from memory. If timing anomalies are 

possible but not domino effects, for example TriCore, then the BRT can be 

increased to include any additional time that may be incurred as a result of a 

cache miss. If timing anomalies and domino effects are possible in the 

architecture, for example PPC 755, then the effects of a cache miss cannot be 

constant bounded. Therefore the effects of CRPD cannot be calculated 

separately [109]. In this work we assume that the BRT can be determined and 

that there are no domino effects. 
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3.1.2 UCBs and ECBs 

To calculate the number of blocks that must be reloaded, CRPD analysis uses 

the concept of useful cache blocks (UCBs) and evicting cache blocks (ECBs) based on 

the work by Lee et al. [77]. Any memory block that is accessed by a task while 

executing is classified as an ECB, as accessing that block may evict a cache block 

of a pre-empted task. Out of the set of ECBs, some of them may also be UCBs. A 

memory block m is classified as a UCB at program point ρ, if (i) m may be 

cached at ρ and (ii) m may be reused at program point ϥ that may be reached 

from ρ without eviction of m on this path. In the case of a pre-emption at 

program point ρ, only the memory blocks that are (i) in cache and (ii) will be 

reused, may cause additional reloads. The maximum possible pre-emption cost 

for a task is determined by the program point with the highest number of 

UCBs. For each subsequent pre-emption, the program point with the next 

smallest number of UCBs could be considered. In this thesis, we assume that 

the set of UCBs and ECBs can be obtained via static analysis.  

We represent the set of UCBs and ECBs as a set of integers with the following 

meanings: 

iis UCB  has a useful cache block in cache set s 

jjs ECB  may evict a cache block in cache set s 

Depending on the approach used, CRPD analysis combines the UCBs belonging 

to the pre-empted task(s) with the ECBs of the pre-empting task(s). Using this 

information the total number of blocks that are evicted, which must then be 

reloaded after the pre-emption, can be calculated and combined with the cost of 

reloading a block, the BRT, to then give the CRPD. We could therefore calculate 

an upper bound on the cost of task τj directly pre-empting τi as 

ji ECBUCB BRT  . However, note that it could be optimistic in the case of 

nested pre-emptions and thus cannot be used directly.  

As an example, let UCB2 = {2,3,4,5}, ECB1 = {3,4,5,6,7,8,9} and BRT=1. An upper 

bound on the CRPD due to a job of task τ1 directly pre-empting a job of task τ2 

once is then given by: 
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We use the term cache utilisation to describe the ratio of the total size of the tasks 

to the size of the cache. A cache utilisation of 1 means that the tasks fit exactly in 

the cache, whereas a cache utilisation of 5 means the total size of the tasks is 5 

times the size of the cache.  

We focus on instruction only caches. In the case of data caches, the analysis 

would either require a write-through cache or further extension in order to be 

applied to write-back caches. We also assume that tasks do not share any code. 

Set-Associative Caches 

In the case of set-associative LRU1 caches, a single cache set may contain several 

UCBs. For example, UCB1 = {2,2,4} means that task τ1 has two UCBs in cache set 

2 and one UCB in cache set 4.  As one ECB suffices to evict all UCBs of the same 

cache set, multiple accesses to the same set by the pre-empting task do not 

appear in the set of ECBs. A bound on the CRPD in the case of LRU caches due 

to task τj directly pre-empting τi is thus given by substituting the intersection 

between a set of UCBs and ECBs, ji ECBUCB  , with a modified version, 

ji ECBUCB  . Where  jiji mmm ECB:UCB|ECBUCB   and the result is 

a multiset that contains each element from UCBi if it is also in ECBj. A precise 

computation of CRPD in the case of LRU caches is given in Altmeyer et al. [9]. 

The equations provided in this thesis can be applied to set-associative LRU 

caches with the above adaptation to the set-intersection.  

Definitely-Cached UCBs 

During timing analysis, a memory blocks may not be classified as a cache hit or 

a cache miss and is contained within the set of cache blocks derived through 

may analysis. In this case the block could be categorised as a UCB, but would 

also be counted as a cache miss by the timing analysis for the purpose of 

                                                 

1 The concept of UCBs and ECBs cannot be applied to the FIFO or PLRU replacement policies as 
shown by Burguière et al. [35] 
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calculating the task’s WCET. This could lead to additional pessimism when 

performing CRPD analysis. Altmeyer et al. [3] introduced the concept of 

definitely-cached UCBs, or DC-UCBs, to solve this problem. They extend the 

original UCBs definition with a third requirement to give: 

A memory block m is classified as a DC-UCB at program point ρ, if (i) m may be 

cached at ρ and (ii) m may be reused at program point ϥ that may be reached 

from ρ without eviction of m on this path, and (iii) m is considered a hit at 

program point ϥ by the timing analysis. 

By restricting the set of UCBs to just those considered as a hit by the timing 

analysis, the number of UCBs can be reduced which leads to a tighter bound on 

the CRPD. In practice using DC-UCBs could lead to an under estimation in the 

CRPD analysis however it would always be accompanied by an equal or greater 

overestimation in the WCET estimate from the timing analysis. This occurs 

when a memory block that could not be categorised by the static analysis is 

actually a UCB and would actually result in a cache hit without pre-emption. 

However, the static analysis will assume the worst case, a cache miss, in the 

event that it cannot categorise an access to a block. Therefore, any unaccounted 

CRPD that may be introduced by a pre-emption would have already been 

accounted for, as an assumed cache miss, during the WCET analysis.  

In this thesis, we use the more precise DC-UCB definition when referring to 

UCBs. Additionally, the UCB data presented in later chapters for comparing 

approaches was collected using DC-UCB analysis. 

3.2 CRPD Analysis for FP Scheduling 

In this section, we review existing approaches for calculating CRPD when 

performing schedulability analysis for FP scheduling. To account for the CRPD 

when determining the schedulability of a taskset, a component ji ,  is 

introduced into the response time analysis equation for FP, equation (2.1) , 

where ji ,  represents the cost of a single pre-emption of task τi by task τj. This 

gives a revised equation for Ri as: 
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Note that the analysis effectively determines the response time via a busy 

period calculated based on a synchronous release of tasks. However, it also 
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assumes that the maximum number of pre-emptions could occur. This is not 

possible with a synchronous release of tasks and is thus a slightly pessimistic 

assumption. 

Note that once we include CRPD in the schedulability analysis, the effectiveness 

of priority assignments used under FP are changed.  For example Audsley’s 

OPA algorithm has a number of conditions [14] such as requiring the 

schedulability of a task to not be dependent on the relative priority ordering of 

higher priority tasks. When considering CRPD, this condition no longer holds. 

Deadline Monotonic and Rate Monotonic are optimal assignments assuming 

negligible pre-emption costs under constrained and implicit deadline tasks 

respectively. However, once CRPD is considered, they are no longer optimal in 

the general case [53], as shown in Figure 3.5. 

 

Figure 3.5 - Example schedule demonstrating that Deadline Monotonic is not optimal 
when CRPD is considered. a) Shows three tasks scheduled under FP with priorities 
assigned using Deadline Monotonic priority order. Due to the pre-emption and 
resulting pre-emption delay, task τ3 misses its deadline. b) Shows the same tasks with 
the priorities of task τ1 and τ2 swapped. In this case the pre-emptions that resulted in 
pre-emption delays are avoided, and all tasks meet their deadlines  

We define aff(i,j) = hep(i) ∩ lp(j) (based on the notation presented in Section 

2.1.2) to mean all tasks that can have CRPD caused by task τj pre-empting them, 

which affects the response time of task τi. In other words, it is the set of tasks 

that may be pre-empted by task τj and have at least the priority of task τi.  

There are then a number of approaches that have been developed in order to 

calculate ji ,  which we will now briefly summarise. 
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ECB-Only 

Busquets et al. [37] in 1996 presented their ECB-Only approach which considers 

just the pre-empting task. It captures the worst case effect of task τj pre-empting 

any task regardless of that task’s UCBs, by assuming that every block evicted by 

task τj will have to be reloaded. 

 
j

ecb
ji ECB   BRT,   (3.2) 

UCB-Only 

In 1998, Lee et al. [77] presented the UCB-Only approach, which considers just 

the pre-empted task(s). The UCB-Only approach accounts for nested pre-

emptions by calculating the maximum number of UCBs that may need to be 

reloaded by any task that may be directly pre-empted by task τj. 

   UCB max BRT
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The disadvantage of the ECB-Only and UCB-Only approaches is that they only 

consider either the pre-empting tasks or the pre-empted tasks. The following 

approaches aim to solve this problem by combining UCBs and ECBs from the 

pre-empted and pre-empting tasks. However, as previously noted we cannot 

simply take the intersection of the pre-empting task’s ECBs with the pre-

empted task’s UCBs as this would be optimistic in the case of nested pre-

emptions. 

UCB-Union 

In 2007 Tan and Mooney [115] considered both the pre-empted and pre-

empting task(s) in their UCB-Union approach. UCB-Union accounts for the 

effects of nested pre-emptions by assuming that the UCBs of any tasks that 

could be pre-empted, including nested pre-emptions, by task τj are evicted by 

the ECBs of task τj. 
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ECB-Union 

Altmeyer et al. [6] presented their ECB-Union approach in 2011 which 

compliments Tan and Mooney’s UCB-Union approach. It accounts for nested 

pre-emptions by computing the union of all ECBs that may affect a pre-empted 
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task. The reasoning behind the approach being that a direct pre-emption by task 

τj is represented by the pessimistic assumption that task τj has itself already 

been pre-empted by all of the tasks with a higher priority. Hence, a pre-emption 

by task τj may result in the eviction of  }{)(hp
ECB

jjh
h


. The maximum number 

of blocks that may be evicted as a result of an already nested pre-emption by 

task τj is then obtained by considering the maximum number of UCBs that may 

need to be reloaded by any task that may be directly pre-empted by task τj, as in 

the UCB-Only case. 
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3.2.1 Multiset Approaches 

The approaches presented thus far all calculate the CRPD due to a single pre-

emption of task τi by task τj. However, calculating the pre-emption costs this 

way can introduce additional pessimism when there are nested pre-emptions. 

The approaches effectively assume that task τj can pre-empt each intermediate 

task τk the same number of times that it pre-empts task τi. While this is 

potentially true if Dk = Di, it can be a pessimistic assumption when Dk < Di and 

particularly when Dk << Di .  

The remainder of the approaches take a different approach by calculating the 

CRPD due to all jobs of task τj executing within the response time of task τi. 

They do so by using multisets which are unordered collections of elements 

which can contain the same element multiple times. For example, a multiset can 

be used to represent the costs of all possible pre-emptions. The total CRPD 

could then be bounded by calculating how many pre-emptions could occur as q, 

and then taking the sum of the q largest values from the multiset.  

Staschulat 

Staschulat et al. [113] in 2005 took a different approach towards combining pre-

empted and pre-empting task(s). The analysis accounts for the fact that each 

additional pre-emption of task τi may result in a smaller pre-emption cost than 

the last. In order to integrate their approach into the response time analysis we 

use ji,   to represent the total cost of all pre-emptions due to jobs of task τj 

executing within the response time of task τi. The approach is integrated into 

the response time analysis equation for FP, equation (2.1), to give: 
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In order to present Staschulat et al. approach, we define the maximum number 

of jobs of task τk that can execute during the response time of task τi, Ek(Ri) as: 
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The first step of Staschulat et al. approach is to form a multiset, M, containing 

the cost of each possible pre-emption of task τj pre-empting jobs of any lower 

priority task ),(aff jik   that can execute during the response time of task τi. M 

is given by: 
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where  njk ECBUCB   gives the n-th highest pre-emption cost for task τj pre-

empting task τk. As M is a multiset, the union over Ek(Ri) means that the set of 

values for task τk are repeated Ek(Ri) times in M. 

The next step is to calculate the maximum number of pre-emptions q, including 

nested-pre-emptions, from the set of tasks ),(aff jik   that can execute during 

the response time of task τi: 
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The total CRPD due to all pre-emptions due to jobs of task τj executing within 

the response time of task τi is then given by the sum of the q largest pre-

emptions. 
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where Ml is the l-th largest element from the multiset M. 

However, as shown in [7], this approach can significantly over-estimate the 

number of pre-emptions that can affect the response time of the pre-empted 

task, especially when there are a large number of tasks. 
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UCB-Union Multiset 

In 2012, Altmeyer et al. [7]  presented their UCB-Union Multiset approach 

which combines the UCB-Union approach with Staschulat et al. [113] method of 

counting the maximum number of pre-emptions incurred by intermediate 

tasks. The first step is to form a multiset 
ucb

jiM ,  containing Ej(Rk)Ek(Ri) copies of 

the UCBk of each task τkaff(i, j). This multiset reflects the fact that jobs of task τj 

cannot evict the UCBs of jobs of task τk more than Ej(Rk)Ek(Ri) times during the 

response time Ri of task τi. Hence: 
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To represent the pre-empting tasks, Altmeyer et al. form a multiset 
ecb

jiM ,  

containing Ej(Ri) copies of the ECBj of task τj. This multiset reflects the fact that 

during the response time Ri of task τi, task τj can evict cache blocks in the set 

ECBj at most Ej(Rk)Ek(Ri) times.  
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, is then given by the size of the multiset intersection between 
ucb

jiM , and 
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ECB-Union Multiset 

Altmeyer et al. [7] also presented the ECB-Union Multiset approach which 

builds upon the ECB-Union approach. It computes the union of all ECBs that 

may affect a pre-empted task during a pre-emption by task τj. Specifically, it 

accounts for nested pre-emptions by assuming that task τj has already been pre-

empted by all tasks of a higher priority.  

The first step is to calculate the number of UCBs that task τj could evict when 

pre-empting an intermediate task, τk. This is given by calculating the 

intersection of the UCBs of the pre-empted task, task τk, with the set of ECBs 

belonging to the pre-empting tasks  }{)(hp
ECB

jjh
h
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to give: 
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Note    jjh hp  is used to account for the case when tasks can share 

priorities. 

The ECB-Union multiset approach recognises that task τj cannot pre-empt each 

intermediate task τk more than Ej(Rk)Ek(Ri) times during the response time of 

task τi. Therefore, the next step is to form a multiset jiM , that contains the cost of 

task τj pre-empting task τk , equation (3.14), repeated Ej(Rk)Ek(Ri) times, for each 

task τkaff(i, j), hence:  
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As only Ej(Ri) jobs of task τj can execute during the response time of task τi, the 

maximum CRPD is obtained by summing the Ej(Ri) largest pre-emptions, the 

Ej(Ri) largest values in jiM , .  
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Combined Multiset 

Altmeyer et al. [7]  presented a further improvement to their multiset 

approaches by recognising that the UCB-Union Multiset and ECB-Union 

Multiset approaches are incomparable. Because of this, they can be combined to 

deliver a more precise bound that by construction dominates the use of either 

approach alone. Note that some tasksets can be deemed schedulable by the 

combined approach that would not be deemed by either approach individually. 

This is because the response time for each task can be individually determined 

using either approach. 

  mecb
i

mucb
ii RRR  ,min  (3.17) 

3.3 CRPD Analysis for EDF Scheduling 

In this section, we review an existing approach for calculating CRPD when 

performing schedulability analysis for EDF scheduling. The EDF scheduling 

always schedules the job with the earliest absolute deadline first. Assuming 

negligible pre-emption costs, it is an optimal scheduling algorithm for a single 

processor. Any time a job arrives with an earlier absolute deadline than the 

current running job, it will pre-empt the current job. When a job completes its 
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execution, the EDF scheduler chooses the pending job with the earliest absolute 

deadline to execute next. In the case where two or more jobs have the same 

absolute deadline, we assume the scheduler always picks the job belonging to 

the task with the lowest unique task index, see Figure 3.6. This has the benefit of 

minimising the number of pre-emptions. In the case where two task jobs have 

the same absolute and relative deadlines, it ensures that they cannot pre-empt 

each other. Furthermore, it ensures that after a pre-emption, the task that was 

pre-empted last is resumed first.  

 

 

Figure 3.6 - Example schedule showing how the scheduler chooses which task should 
execute. Task τ3 is released at t = 0. At t = 5, task τ2 is released, pre-empting τ3 as 
although it has the same absolute deadline, it has a lower task index. At t = 6, task τ1 is 
released, pre-empting task τ2. At t = 7, τ1 completes, the scheduler then chooses to 
resume task τ2 as although it has the same absolute deadline as task τ3, it has the lower 
task index 

We note that when CRPD is taken into account, EDF is no longer optimal in the 

general case. Consider the following example with two tasks shown in Figure 

3.7. The first schedule a) shows three tasks scheduled under EDF. Due to the 

pre-emption and resulting pre-emption delay, task τ3 misses its deadline. The 

second schedule b) shows the same tasks scheduled under FP with priorities 

assigned τ2, τ1, τ3, highest to lowest. In this case the pre-emptions that resulted in 

pre-emption delays are avoided, and all tasks meet their deadlines. 
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Figure 3.7 - Example schedule showing that EDF is not optimal when CRPD is 
considered. a) Shows three tasks scheduled under EDF. Due to the pre-emption and 
resulting pre-emption delay, task τ3 misses its deadline. b) Shows the same tasks 
scheduled under FP with priorities assigned τ2, τ1, τ3. In this case the pre-emptions that 
resulted in pre-emption delays are avoided, and all tasks meet their deadlines  

 

We assume that any task τj with a relative deadline Dj < Di can pre-empt task τi. 

Therefore, we define the set of tasks that may have a higher priority, and can 

pre-empt task τi, as: 

 }|{)(hp ijj DDi    (3.18) 

We use Pj(Di) to denote the maximum number of times that jobs of task τj can 

pre-empt a single job of task τi which we calculate as follows: 
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We use Ej(t) to denote the maximum number of jobs of task τj that can have 

both their release times and their deadlines in an interval of length t, which we 

calculate as follows: 
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JCR Approach 

There has been little work towards integrating CRPD analysis into 

schedulability tests for EDF. To the best of our knowledge, the only existing 

work on integrating CRPD analysis with EDF schedulability tests was 
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developed by Ju et al. [71] in 2007. We refer to this approach as the JCR 

approach after the initials of the authors’ names. The JCR approach calculates 

the number of blocks evicted due to task τj directly pre-empting task τi 

multiplied by the number of times that pre-emption could occur, Pj(Di). This is 

repeated for each task that could pre-empt task τi and summed up. Using our 

notation, this gives the CRPD associated with task τi being pre-empted as 

follows: 
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i can then be integrated into the processor demand bound function, equation 

(2.2), to give: 
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One source of pessimism in this approach is how it deals with nested, or 

indirect, pre-emptions. It always defines the CRPD between a pair of tasks and 

adds them together. For example, if during the pre-emption of task τi by task τj, 

task τj was itself pre-empted by task τk the JCR approach calculates i  to be the 

sum of the pre-emptions. However, unless ØECBECB  kj , the analysis could 

pessimistically calculate that some UCBs are evicted multiple times. In Chapter 

4, we present a number of approaches for calculating CRPD under EDF 

scheduling and compare them to the JCR approach. 

3.4 Limiting Pre-emptions 

Recent work towards analysing CRPD has improved yet the fact that tasks can 

be pre-empted at any point in their execution leads to increased pessimism 

when considering the worst case pre-emptions. In this section, we briefly 

review a number of methods that aim to limit pre-emptions. In 2011 Bertogna 

[28] described an approach which extends previous work which he proposed in 

2010 [27] with a goal to calculate the CRPD by ensuring that tasks can only be 

pre-empted at known points. This builds on work into co-operative scheduling 

from 1994 by Burns [36]. In Bertogna’s work, he defined these known points as 

fixed pre-emption points (FPP) which allow for the pre-emption cost to be 

calculated while not significantly blocking the pre-empting task. It requires the 

programmer to define a set of potential pre-emption points during design time. 

The algorithm then selects pre-emption points to minimise the overall pre-
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emption cost. A notable improvement of [28] over [27] is that the new approach 

can deal with the fact that the pre-emption cost varies at different points in the 

task.  

Buttazzo et al. [39] in 2012 presented a survey of techniques that limit pre-

emption. In addition to FPP from Bertogna [28], it also included pre-emption 

thresholds scheduling (PTS) [118], and deferred pre-emptions scheduling (DPS) [17] 

[48]. DPS allows a task to run for a period of time without being pre-empted up 

to a certain limit. Alternatively, PTS introduces an additional parameter to 

control the balance between fully pre-emptive scheduling, and non-pre-emptive 

scheduling. The pre-emption threshold allows a task to disable pre-emption by 

higher priority tasks, up to a certain priority. Out of these techniques, using FPP 

resulted in the most predictable system and seems most promising. However, 

as previously discussed, this approach requires determining and adding these 

points to the code. The problem becomes even less trivial when loops with large 

number of iterations, or branches with large variations in the number of 

instructions are involved. If the pre-emption points are not placed carefully, the 

time between possible pre-emptions could be either too long or too short 

depending on the path taken through the code. Recent work by Bo et al. [33] 

aimed to address these limitations and support branches, conditional 

statements and loops. They proposed a pseudo-polynomial-time algorithm for 

determining the optimal set of pre-emption points by operating on the CFG. 

However, the analysis became prohibitively expensive in terms of memory 

requirements and runtime, so the authors also proposed a near-optimal 

heuristic. Nevertheless, accurate CRPD analysis is still crucial as there will 

always be some pre-emptions. 

3.5 Improving Cache Predictability 

We now discuss a number of techniques that can be used to improve the 

predictability of cache, which in turn increases our ability to analyse it. The key 

challenge with improving cache predictability effectively is to maximise the 

useful information in cache. Some of the key techniques include cache 

partitioning, cache locking, static code positioning, or a very different approach of 

using a scratchpad instead of a traditional cache. 

Cache Partitioning 

Cache partitioning [89] [98] [73] is a technique that can be used to reduce or 

eliminate intra-task interference by splitting the cache into a number of 
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partitions and allocating tasks to the partitions. For example, each task can be 

allocated its own partition in the cache so that it cannot interfere with the cache 

contents belonging to other tasks in the system. However, the reduced cache 

size per task can result in increased WCET through increased inter-task 

interference. Ideally, this is implemented using either a cache that can be locked 

on a way-by-way basis. However, if that is not possible then it can be achieved 

by using a compiler with specific support. Recent work by Altmeyer et al. [8] 

has investigated the performance of a partitioning architecture with no CRPD 

versus a traditional cache analysed using state-of-the-art CRPD analysis. They 

found that the increased predictability of a partitioned cache, in terms of 

eliminating CRPD, does not compensate for the performance degradation in the 

WCETs due to the smaller cache space per task. Cache partitioning can be 

implemented in hardware in some systems however, in most caches it requires 

specific compiler support in order to ensure each task is confined to its 

partition.  

Cache Locking 

Cache locking is an alternative technique where a part, or the whole of the 

cache, is locked in order to fix the cache contents using specific hardware 

support in the cache. Accesses that result in a cache hit will be served as 

normal, while accesses that result in a cache miss will be served from memory 

but will not result in the cache being updated.  Cache locking was first tackled 

in [41] by Campoy et al. in 2001. They used a genetic algorithm to find which 

blocks should be locked in cache. One of the key challenges with cache locking 

is that if a block is not on the WC path, then locking it into cache will not reduce 

the WCET. However, just selecting blocks that are on the WC path initially is 

not enough, because the WC path can change as the execution times of those 

blocks decreases. As with cache partitioning, cached locking also reduces or 

eliminates CRPD at the expense of a potentially increased WCET. In addition to 

the effort required to determine what should be locked into cache and when to 

do so, additional code must be added to the system in order to lock and unlock 

the cache. 

Static Code Positioning 

Static code positioning uses a shared cache, but positions procedures/functions 

and/or tasks in memory such that the layout in cache results in reduced inter or 

intra-task interference, depending on the target of the optimisation. Unlike 

cache partitioning, static code positioning does not restrict the available cache 
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size that each task can make use of. Positioning tasks can usually be 

implemented by controlling how object files are combined at the linker/locator 

stage of compilation. However, positioning procedures or functions often 

requires specific compiler support unless each procedure or function can be 

compiled into a separate object file.  

Out the above techniques, this thesis focuses on concepts behind static code 

positioning, which are discussed in detail in Section 3.5.1. 

Scratchpads 

Scratchpads are small fast memories like cache, but are directly addressable and 

occupy a distinct part of the memory address space. Scratchpads must be 

managed directly though the software, either by the programmer or by a 

compiler with specific support. The contents of the scratchpad are assigned 

prior to runtime and can remain constant as described by Suhendra et al. [114]. 

Alternatively, the contents can also be dynamically modified during runtime as 

in Wehmeyer and Marwedel [120]. Scratchpads are also suited to storing 

temporary results that do not reside in main memory.  

Scratchpads are especially beneficial in multi-core systems as using them avoids 

contention for access to the slower main memory. Because there is no 

uncertainty over whether instructions or data will reside in the scratchpad, 

there is no uncertainty about the access time. This makes calculating a tight 

WCET estimate much easier. In 2009, Whitham first described a scratchpad 

memory management unit (SMMU) in [122], [123] and [121] that “combines the 

address transparency of a cache with the time-predictability property of a 

scratchpad” [122]. An OPEN operation can be issued to the SMMU which will 

cause it to map an area in the logical address space to the scratchpad. The 

SMMU will then copy the contents from external memory to the scratchpad. 

Any accesses to memory in that area will be transparently translated to use the 

scratchpad. A CLOSE operation can then be issued to reverse to process. 

Recent work by Whitham et al. [125] [124] has introduced the concept of 

explicitly reservation whereby when a task is pre-empted, the state of the cache is 

saved, and is later restored when the task resumes. 

3.5.1 Static Code Positioning 

Static code positioning, also known as code layout techniques, can be used to 

reduce the task execution times by statically ensuring that the code is laid out in 
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its optimum configuration. This is achieved at the linker/locator stage of the 

code compilation and uses information about the cache, its associativity and the 

memory to position the code for optimum performance. An example from [86] 

is shown in Figure 3.8 that demonstrates the conflicts between procedures and 

the resultant evictions if they are not positioned optimally. 

Static code positioning techniques were originally investigated to help decrease 

the average-case execution time (ACET). While ACET centric optimisations do not 

usually help improve the WCET, they formed the base for much of the WCET 

orientated code positioning work. In 2004/2005, Zhao et al. [131] [130] were first 

to apply code positioning techniques in order to try to reduce the WCET. 

However, their processor did not have a cache and they focused on reducing 

pipeline stalls. This work focused on reordering basic blocks in order to reduce 

branch penalties along the WC path. They used static WCET analysis to drive 

their optimisation. They also re-ran the WCET analysis after every modification 

to the block positions to account for the fact that the WC path can switch. 

 

Figure 3.8 – Illustration of how controlling procedure positions can reduce cache 
conflicts. Reproduced from [86] 

Lokuciejewski et al. in 2008 [86] were the first to try to reduce the WCET with 

respect to cache. They presented two different approaches that perform 

procedure positioning, a greedy algorithm and a fast heuristic. Both approaches 

use a call graph where the edges contain the call frequencies between 

procedures derived from static WCET analysis. The principles are similar to 

those of Pettis and Hanson [97] as described above. The two nodes that have the 

heaviest edge connecting them are selected. These nodes are then merged and 

their edges are coalesced.  Again if a node is merged into an already merged 

node, the original call graph is used to determine the new ordering. Upon 

making a change, the WCET analysis is performed on the new graph, if the 
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change results in an increase in the WCET then it is rejected, otherwise it is 

accepted. The full WCET analysis is performed, to ensure that any changes to 

the WC path due to it switching are taken into account for the next round of 

optimisation. This process terminates when only disjointed nodes remain. The 

authors note that their greedy approach may become stuck in a local minimum 

as this is a common problem with greedy algorithms. However, this was not the 

case for their selected benchmarks. They reported up to a 22% reduction in 

WCET for their benchmarks. 

Their fast heuristic is very similar to the greedy algorithm, however the WCET 

analysis is not re-run after every modification. While this is faster, it can lead to 

an overall worse WCET as they found in one of their benchmarks, a GSM 

encoder. 

They also presented an approach based on procedure cloning which duplicates 

procedures in memory. This is based on their earlier work in [87]. However, 

this is more beneficial when static WCET analysis is being performed and it 

might not have the same benefits if driven by hybrid measurement-based 

WCET analysis.  This is because it enables the overestimation incurred during 

static WCET analysis, due to being unable to annotate procedures with context 

dependent information, to be reduced. Examples include loops in procedures 

that are only iterated 10 times in one context and 100 times in another context. 

Static analysis has to assume that the loop is always iterated 100 times. Their 

procedure cloning approach was very successfully, with up to a 65% reduction. 

However that could be largely down to the less pessimistic WCET analysis. An 

interesting comparison would be to perform hybrid measurement-based 

analysis with full path coverage obtained using cache flushing to determine 

what the actual effect would be. An optimising compiler could take advantage 

of the procedure cloning to remove unused code from the call context specific 

procedures, which would then result in improved cache pre-fetching, and less 

pipeline stalls from branch miss-predictions. 

In 2011, Falk et al. [59] took into account the cache configuration with the aim of 

reducing the WCET by minimising cache conflicts. While previous works such 

as Lokuciejewski et al [86] positioned procedures in order to improve cache 

performance, they did not consider the cache configuration. Factors such as the 

caches associativity and size were not taken into account. Falk et al. used a 

conflict graph with edges based on cache misses. The information was obtained 

using static WCET analysis. The aim is to place them contiguously in memory 

to reduce conflicts. As with previous work, a greedy algorithm was used to 
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select the nodes that were connected with the heaviest edge. These nodes were 

then merged and the change was evaluated and only accepted if it resulted in a 

reduction in the WCET. Additionally, they also rebuilt the conflict graph to 

ensure they were always optimising the current WC path. First they applied the 

processes to the basic blocks. Once the process terminates, they applied it to the 

procedures. Again, their greedy algorithm could be susceptible to becoming 

stuck in a local minimum, but this did not occur during their tests. One 

restriction of their work was that it focused on caches with a LRU replacement 

policy. This was due to the fact that static WCET analysis performs best when 

analysing LRU caches [105] compared to other less predictable policies, rather 

than a limitation of their approach. 

Gebhard and Altmeyer [66] took an alternative approach in 2007 by using 

schedulability analysis to evaluate different layouts.  They performed their 

analysis on a pre-emptive multi-tasking system with a goal to prevent pre-

empting tasks from evicting the pre-empted tasks blocks from cache by 

positioning whole tasks contiguously in memory. First they collect performance 

influencing metrics such as tasks periods, sizes, interdependencies and timing 

constraints. The layouts are evaluated using a cost function that estimates the 

number of conflicts caused by a pre-emption. This uses information about the 

tasks’ position in memory and the cache configuration to determine where the 

tasks are placed in the cache. The cost is proportional to the number of blocks 

belonging to the pre-empted task that reside in the same location as the pre-

empting tasks’ blocks. It also takes into account the lifespan of blocks due to the 

replacement policy. They then found an improved layout using both ILP and a 

simulated annealing (SA). While the ILP found an optimum solution, it suffered 

from increased complexity. They added an additional constraint that prevented 

any gaps in the memory in order to reduce the search space. They used a SA to 

find a non-optimal solution, but in reduced time. The new layouts resulted in 

up to a 50% decrease in the number of cache misses. However, the number of 

cache misses did not correlate directly with the values return by the cost 

function. This was because no consideration was taken for the actual code 

inside the tasks. If blocks containing loops were positioned so that they were 

safe from eviction, the overall number of misses is reduced significantly more 

than for straight line code which is not reused. 
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3.6 Summary 

In this chapter we have discussed CRPD and the importance of being able to 

correctly account for it when determining the schedulability of a system. 

Specifically, we note that CRPD is dependent on the pre-empting and pre-

empted task(s) and cannot simply be subsumed into the execution time of the 

pre-empting task as is done for traditional context switch costs. Therefore in 

order to ensure that a system can be scheduled, without simply 

overprovisioning the hardware, schedulability analysis must account for CRPD. 

We reviewed the current state-of-the art techniques for calculating CRPD under 

FP and EDF scheduling. These techniques work by bounding the maximum 

number of useful blocks that could be evicted from cache during a pre-emption 

that may need to be reloaded afterwards. We identified a potential source of 

pessimism in the existing analysis for calculating CRPD under EDF scheduling. 

In Chapter 4, we present new analysis for calculating CRPD under EDF and 

compare it to the existing approach. 

We also reviewed a number of techniques that can be used to either minimise 

the number of pre-emptions, or to increase the predictability of the cache. We 

note that even if the number of pre-emptions is reduced, accurate CRPD 

analysis is still required. The predictability of caches can be increased by either 

locking content into cache, or positioning content to minimise interference. 

However, many of the techniques either require specific hardware or compiler 

support, which may make them less suitable for industry. Statically positioning 

tasks can be achieved by controlling the linker which could be applied with 

relative ease to existing systems. However, it has not yet been used to try to 

minimise CRPD. In Chapter 5, we present a new technique for positioning tasks 

so as to increase system schedulability via reduced CRPD. 

In the existing work, the focus has been on comparing CRPD analysis under the 

same scheduling algorithm which makes it difficult to put the effects of CRPD 

into context. In Chapter 6, we perform a detailed comparison of FP vs EDF 

when accounting and optimising for CRPD. 

Finally, we note that the existing CRPD analysis is designed for systems that 

have a single FP or EDF scheduler, and are not applicable to systems that use 

hierarchical scheduling, such as those that employ a partitioned architecture. In 

Chapter 7 we present new analysis for calculating CRPD when using 

hierarchical scheduling. 
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CHAPTER 4.  CRPD ANLAYSIS 

FOR EDF SCHEDULING 

In this chapter we present new CRPD analysis for EDF and compare it to the 

existing CRPD analysis for EDF. These new analysis methods are based on a 

number of approaches originally developed for FP, discussed in Section 3.2. 

Through a series of evaluations, we show that our new approaches can 

significantly outperform the existing approach for EDF.  

For background material on the system model and EDF scheduling see Section 

2.1, and for some initial assumptions and definitions required for integrating 

CRPD analysis into EDF see Section 3.3. 

While there has been significant progress towards bounding the effects of 

CRPD under FP scheduling, as discussed in Section 3.2, there has been little 

prior work for EDF. This is despite EDF offering improved schedulability over 

FP scheduling. There is an existing approach for calculating CRPD under EDF 

by Ju et al. [71]. This approach is discussed in Section 3.3 where we note that a 

source of pessimism in this approach is how it deals with nested, or indirect, 

pre-emptions. It always defines the CRPD between a pair of tasks and adds 

them together. As such, if the pre-empting tasks share the same ECBs, then the 

analysis could pessimistically calculate that some UCBs are evicted multiple 

times. 

EDF is a dynamic scheduling algorithm that always schedules the job of the 

task with the earliest absolute deadline first. In 1974, Dertouzos [57] proved 

EDF to be optimal among all scheduling algorithms on a uniprocessor. 

However, this only applies when there are negligible context switch costs. 

When CRPD is taken into account, EDF is no longer optimal in the general case 

as shown in Section 3.3. 
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4.1 Integrating CRPD Analysis into EDF 

Scheduling 

In order to account for CRPD using EDF scheduling, we use a component jt ,  

which represents the CRPD associated with a pre-emption by a single job of 

task τj on jobs of other tasks that are both released and have their deadlines in 

an interval of length t. This component jt , is then included into the processor 

demand bound function, equation (2.2), so as to calculate the demand on the 

processor within an interval of length t due to task execution and CRPD. Note, 

unlike its counterpart in CRPD analysis for FP scheduling, jt ,  refers to the pre-

empting task τj and t, rather than the pre-empting and pre-empted tasks. 

Including jt ,  in equation (2.2) we get our revised equation for h(t): 
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Equation (4.1) is evaluated for a bounded number of values of t to ensure that 

the demand on the processor in an interval of length t, h(t), is always ≤ t.  The 

exact method for determining which values of t need to be checked is described 

in Section 2.1.2. 

In equation (4.1), we are effectively including the CRPD caused by task τj as if it 

were part of the execution time of task τj. Figure 4.1 and Figure 4.2 illustrate the 

CRPD increasing the execution time of the pre-empted task and modelling it as 

an increase in the execution time of the pre-empting task respectively. 

 

Figure 4.1 - Including the CRPD caused by τ1 pre-empting τ2 in the execution time of τ2 

 

Figure 4.2 - Representing the taskset in Figure 4.3 by including the CRPD caused by τ1 

pre-empting τ2 in the execution time of τ1 which is the approach used in equation (4.1) 
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We make use of the approach used to prove theorem 4 in Baruah and Burns [18] 

to show that if a taskset is deemed schedulable by equation (4.1), Figure 4.2, 

then the equivalent taskset which it represents, Figure 4.1, is also schedulable. 

Theorem 4.1: Let J = {(rv, cv dv)} denote a collection of independent jobs 

represented by a release time rv execution time cv and absolute deadline dv. Let 

S be an EDF schedule of J. Let w and x be jobs of J, such that rw ≤  rx and dw ≥  dx, 

i.e. job x is a job that pre-empts job w. Let J ′ be obtained from J by modifying 

jobs w and x to obtain jobs y and z such that  cz = cx - a and cy = cw + a where a ≤ 

cx. (The release times and absolute deadlines of the jobs in J ′ are identical to 

their counterpart jobs in J ). If J is schedulable by EDF, then so is   J ′. 

Proof: J is equivalent to K where K is a set of sub-jobs containing cv sub-jobs of 

unit length for each job v in J. Each sub-job qv q is described by (r vq = rv, c vq = 1, d 

vq = dv). Let K ′ be a transformation of K such that a sub-jobs qxq have their 

deadline increased from dxq = dx to dz. Hence, K ′ is equivalent to J ′. As S is a 

valid schedule for J, it is also a valid schedule for K. It follows that S is also a 

valid schedule for K ′ and hence J ′. Therefore, the EDF schedule S of J proves the 

feasibility of J ′. Since EDF is optimal on pre-emptive uniprocessors, it is 

therefore guaranteed to successfully schedule J ′ to meet all deadlines □ 

We need to define the set of tasks that can be pre-empted by jobs of task τj in an 

interval of length t, aff(t, j). For EDF, this set is based on the relative deadlines 

of the tasks. We therefore want to capture all of the tasks whose relative 

deadlines are greater than the relative deadline of task τj giving our initial 

definition of aff(t, j) as: 

    jii DDjt  |,ffa   (4.2) 

However, we can refine this by excluding tasks whose deadlines are larger than 

t as they do not need to be included when calculating h(t): 

    jii DDtjt  |,ffa   (4.3) 

as shown by Theorem 4.2. 

Theorem 4.2: When evaluating the processor demand h(t), equation (4.1), for 

taskset Г, the execution requirement of any task τk, where Dk > t, is not 

considered. Therefore, we may exclude any contribution to jt ,  due to the 

CRPD incurred by any task τk (where Dk > t) as a result of its pre-emption 

without impacting the soundness of the result. 
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Proof: We use the proof by Baruah et al. [20] that was used to prove that 

equation (2.2) is necessary. Assume that taskset Г satisfies equation (4.1) and yet 

τ is not feasible. Let S be an EDF schedule of Г where there is a missed deadline. 

Let t2 be the time of the first missed deadline and let t1 be the last time prior to t2 

such that there is no task with a deadline ≤ t2 scheduled at t1 - 1 in S. Since the 

deadline t2 is not met, there is an active task at t2 - 1, so some task must be 

scheduled at t2 - 1. By definition of t1 it follows that there is a task scheduled at 

every time in [t1, t2]. By the choice of t1 and t2, only jobs with deadlines ≤ t2 

execute during [t1, t2] and all jobs released by tasks with relative deadlines < t2 - 

t1 = t prior to t1 will have completed by t1. Therefore, as there is a task scheduled 

at every time in [t1, t2] and the deadline t2 is missed, h(t2 - t1) > t2 - t1, which 

contradicts our original assumption that Г satisfies equation (4.1). Note in the 

case of a missed deadline, no job of a task τk with Dk > t2 - t1 executes in the 

interval [t1, t2], hence it is not necessary to include any CRPD arising in such a 

task □ 

We now show how a number of existing approaches for calculating CRPD for 

FP scheduling, discussed in Section 3.2, can be adapted to work with EDF 

scheduling.  

ECB-Only 
We start with the ECB-Only approach by Busquets et al. [37], see equation (3.2) 

in Section 3.2. It captures the worst case effect of task τj pre-empting any task 

regardless of that task’s UCBs, by assuming that every block evicted by task τj 

will have to be reloaded. For EDF, ECB-Only is simply: 

 
j

ecb
jt ECB   BRT,   (4.4) 

UCB-Only 
The alternative UCB-Only approach by Lee et al. [77], see equation (3.3) in 

Section 3.2, considers just the UCBs of the pre-empted task(s). The UCB-only 

approach accounts for nested pre-emptions by calculating the maximum 

number of UCBs that may need to be reloaded by any task that may be directly 

pre-empted by task τj. For EDF, this equates to the maximum number of UCBs 

belonging to any task that can be pre-empted by task τj and can also have a job 

with a release time and absolute deadline within an interval of length t. This set 

of tasks is given by aff(t, j). Hence we can define the UCB-Only approach for 

EDF as: 
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   UCB max BRT
),aff(

, k
jtk

ucb
jt


  (4.5) 

UCB-Union 
The UCB-Union approach of Tan and  Mooney [115], see equation (3.4) in 

Section 3.2, accounts for the effects of nested pre-emptions by assuming that the 

UCBs of any tasks that could be pre-empted, including nested pre-emptions, by 

task τj are evicted by the ECBs of task τj. When adapting this approach for EDF, 

we are interested in the UCBs of any tasks that may be pre-empted by task τj 

and can also have a job with a release time and absolute deadline within an 

interval of length t. This set of tasks is again given by aff(t, j), hence, we can 

define the UCB-Union approach for EDF as: 
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jt ECBUCB  BRT
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, 
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




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
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   (4.6) 

ECB-Union 
The ECB-Union approach by Altmeyer et al. [6], see equation (3.5) in Section 3.2, 

accounts for nested pre-emptions by making the pessimistic assumption that in 

any pre-emption by task τj, task τj may itself have already been pre-empted by 

all of the other tasks that may pre-empt it. For EDF, this set of tasks is given by 

}{)( jjhp  . Note in general this is different to the set of tasks with relative 

deadlines less than or equal to that of task τj, as tasks with the same deadline as 

task τj cannot pre-empt it. Pre-emption by task τj is therefore assumed to 

potentially evict blocks in the set hjjh ECB}{)(hp  . The maximum number of 

blocks that may be evicted as a result of an already nested pre-emption by task 

τj is then obtained by considering the maximum number of UCBs that may need 

to be reloaded by any task that may be directly pre-empted by task τj, as in the 

UCB-Only case. Hence we can define the ECB-Union approach for EDF as: 
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4.1.1 Effect on Task Utilisation and h(t) Calculation 

We have shown how ECB-only, UCB-Only, UCB-Union, and ECB-Union CRPD 

analysis can be integrated into the calculation of the processor demand h(t). 
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However, to obtain a schedulability test for EDF incorporating these CRPD 

analyses, we also have to adjust how we calculate task utilisation and the upper 

bound on the values of t that must be checked. Effectively, we are increasing jC

by jt , . To account for this we introduce a modified utilisation *
jU  for task τj that 

includes the CRPD: 

 

j

jtj
j

T

C
U

,* 
  (4.8) 

We then adjust the two upper bounds for t by substituting *
jU  for jU  in 

equation (2.3) and substituting jtjj CC ,
*   for jC in equation (2.4). (Note, 

when calculating jt ,  to include in *
jC  and *

jU , we use t = Dmax, the largest 

relative deadline, as it gives the maximum value for jt , ). This gives our revised 

bounds as: 
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and 
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Finally, we note that jt , is monotonically non-decreasing in t and hence using 

the above bounds, equation (4.1) can be used with the QPA method to obtain an 

efficient schedulability test for EDF scheduling accounting for CRPD. We note 

that this test is no longer exact as the CRPD analysis is only sufficient. 

We observe that for implicit deadline tasksets, a sufficient schedulability test is 

simply:  

 1* U  (4.11) 

4.2 Improved CRPD Analysis for EDF 

In this section, we present improved CRPD analysis for EDF based on the 

multiset approaches to CRPD analysis for FP scheduling by Altmeyer et al. [7], 

discussed in Section 3.2.1. 

In the following analysis, we use jt ,   to represent the cost of the maximum 

number Ej(t) of pre-emptions by jobs of task τj that have their release times and 
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absolute deadlines in an interval of length t. It is therefore included in the 

processor demand bound function, equation (2.2), as follows: 
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ECB-Union Multiset Approach 
We now present the ECB-Union Multiset approach for EDF which is derived 

from the ECB-Union Multiset approach for FP scheduling by Altmeyer et al. [7], 

equations (3.14), (3.15) and (3.16) in Section 3.2. 

 

Figure 4.4 - Illustration of possible pessimism with the ECB-Union approach. The pre-
emption cost of task τ1 pre-empting task τ2 contributes three times to the total pre-
emption cost of task τ1 pre-empting other tasks in an interval of length 10; despite it 
only really contributing at most once 

The ECB-Union approach is pessimistic in that it assumes that task τj can pre-

empt any task τkaff(t, j) up to Ej(t) times in an interval of length t. While this is 

potentially true if Dk = t, it can be a pessimistic assumption when Dk < t and 

particularly when Dk << Tk < t. We can calculate a tighter bound on the number 

of times that jobs of task τk can be pre-empted by jobs of task τj in an interval of 

length t. This can be found by multiplying the maximum number of times task 

τj can pre-empt a single job of task τk, given by Pj(Dk), by the number of jobs of 

task τk that are released and have their deadlines in an interval of length t, given 

by Ek(t). 

First we form a multiset jtM , that contains the cost: 
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of task τj pre-empting task τk repeated Pj(Dk)Ek(t) times, for each task τkaff(t, j), 

hence: 
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As there are only Ej(t) jobs of task τj with release times and deadlines in an 

interval of length t, the maximum CRPD is obtained by summing the Ej(t) 

largest values in jtM , .  
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UCB-Union Multiset Approach 
The UCB-Union approach is also pessimistic in that it assumes that task τj can 

pre-empt any task τkaff(t, j) up to Ej(t) times. The UCB-Union Multiset 

approach for EDF removes this source of pessimism. It is based on the UCB-

Union Multiset approach for FP scheduling by Altmeyer et al. [7], see equation 

(3.11), (3.12) and (3.13) in Section 3.2 

First we form a multiset ucb
jtM ,  containing Pj(Dk)Ek(t) copies of the UCBk of each 

task τkaff(t, j). This multiset reflects the fact that jobs of task τj cannot evict the 

UCBs of jobs of task τk that have both their release times and deadlines in an 

interval of length t more than Pj(Dk)Ek(t) times. Hence: 
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Next we form a multiset ecb
jtM ,  containing Ej(t) copies of the ECBj of task τj. This 

multiset reflects the fact that there are at most Ej(t) jobs of task τj that have their 

release times and deadlines in an interval of length t, each of which can evict 

ECBs in the set ECBj. 

  
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mucb
jt

,  is then given by the size of the multiset intersection between ucb
jtM ,  and 

ecb
jtM , : 

 ecb
jt

ucb
jt

mucb
jt MM ,,,   BRT    (4.18) 
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Combined Multiset Approach 
The ECB-Union Multiset and UCB-Union Multiset approaches are 

incomparable, we can therefore calculate h(t) at each stage of the QPA 

algorithm using both approaches and take the minimum to form a combined 

approach:  

  mecbmucb ththth  )(,)(min)(  (4.19) 

4.2.1 Effect on Task Utilisation and h(t) Calculation 

The multiset approaches calculate the CRPD for all of the tasks in one go. 

Therefore, inflating the upper bounds on t used in the schedulability test, 

equation (2.3) and (2.4), by substituting in *
jU  and *

jC  to give equation (4.9) and 

(4.10) as described in Section 4.1.1 is not possible. This is because the test that 

1* U  may pass even though one or more tasks may have utilisations > 1, 

causing them to miss a deadline. Therefore, we need a new upper bound. 

The method we use to determine a suitable upper bound is based on using an 

upper bound on the utilisation due to CRPD that is valid for all intervals of 

length greater than some value Lc. We then use this CRPD utilisation value to 

inflate the taskset utilisation and thus compute an upper bound Ld on the 

maximum length of the synchronous busy period. This upper bound is valid 

provided that it is greater than Lc, otherwise the actual maximum length of the 

busy period may lie somewhere in the interval [Ld, Lc], hence we can use  

max(Lc, Ld) as a bound. 

We choose a value of t = Lc = 100 Tmax which limits the overestimation of the 

CRPD utilisation U = γ′t /t to at most 1%. We then calculate γ′t  using equation 

(4.15) for ECB-Union Multiset and equation (4.18) for UCB-Union Multiset. 

However, in equation (4.14), (4.16) and (4.17), we substitute )(tEmax
x  for )(tE x  to 

ensure that the computed value of U is a valid upper bound for all intervals of 

length t ≥ Lc. 
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We then check that 1 UU , if not then we deem the taskset unschedulable, 

otherwise we compute an upper bound on the length of the busy period via a 

modified version of equation (2.4): 
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rearranged to give:  
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Then, substituting in Tmax for each value of Tj we get our upper bound: 
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We then use L = max(Lc, Ld) as the maximum value of t to check in the EDF 

schedulability test. 

4.3 Comparability and Dominance 

The CRPD analyses for EDF scheduling have similar comparability 

relationships to their counterparts presented in [7] for FP scheduling. The UCB-

Union approach dominates the ECB-Only approach, and the ECB-Union 

approach dominates the UCB-Only approach. The JCR approach by Ju et al. 

[71], discussed in Section 3.3, is incomparable with all of the non-multiset 

approaches. However, if we re-write the JCR approach, equation (2.27), so that 

it calculates the cost of all Ej(t) pre-emptions at once, then it can be seen that the 

UCB-Union Multiset approach dominates it. 

 
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Furthermore, the UCB-Union Multiset approach dominates the UCB-Union 

approach and the ECB-Union Multiset approach dominates the ECB-Union 

approach. This is because the sum of the Ej(t) largest pre-emption costs will 

always be less than or equal to Ej(t) multiplied by the largest pre-emption cost. 

The combined multiset approach dominates all other approaches as shown in 

Error! Reference source not found.. Furthermore, because the combined 

approach uses the two multiset approaches at each stage of the QPA algorithm, 
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the number of tasksets that it deems schedulable can is greater than a simple 

union of the two multiset approaches. 

 

Figure 4.5 - Venn diagram illustrating the relationship between the different approaches 
used to calculate CRPD. The larger the area, the more tasksets deemed schedulable by 
the approach 

We note that including the CRPD as if it were additional execution time of the 

pre-empting task, as we have done in all of the non-multiset approaches, has 

the potential for significant pessimism if the execution time of a task τi is close 

to its deadline such that: 

 
jtjjj CDC ,  (4.25) 

In this case task τi would be deemed unschedulable when it may not be. This 

problem is avoided by the multiset approaches. 

4.4 Case Study 

In this section we evaluate the schedulability tests for EDF including integrated 

CRPD analysis using the approaches introduced in this chapter: ECB-Only, 

UCB-Only, UCB-Union, ECB-Union, ECB-Union Multiset, UCB-Union Multiset 

and the combined multiset approaches, as well as the JCR approach of Ju et al. 

[71] on a case study. For comparison purposes, we also used the EDF 

schedulability test assuming no pre-emption costs.  
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The case study is the same one used in Altmeyer et al. [6] to evaluate CRPD 

analysis for systems using FP scheduling.  The case study comprises a number 

of tasks from the Mälardalen benchmark suite1 [68]. While these tasks do not 

represent a real taskset, they do represent typical code found in real-time 

systems. For each task, the WCET and number of ECBs and UCBs are taken 

from [4], details for each task can be found in Table 4.1. The system was setup 

to model an ARM processor clocked at 100MHz with a 2KB direct-mapped 

instruction cache. The cache was setup with a line size of 8 Bytes, giving 256 

cache sets, 4 Byte instructions, and a BRT of 8μs. This configuration was chosen 

so as to give representative results when using the relatively small benchmarks 

that were available to us. 

 WCET #UCBs #ECBs 

bs 445 5 35 

minmax 504 9 79 

fac 1252 4 24 

fibcall 1351 5 24 

insertsort 6573 10 41 

loop3 13449 4 817 

select 17088 15 151 

qsort-exam    22146 15 170 

fir 29160 9 105 

sqrt 39962 14 477 

ns 43319 13 64 

qurt 214076 14 484 

crc 290782 14 144 

matmult 742585 23 100 

bsort100 1567222 35 62 

Table 4.1 - WCET and number of UCBs and ECBs for a selection of tasks from the 
Mälardalen benchmark suite 

The taskset was created by assigning periods and implicit deadlines such that 

all 15 tasks had equal utilisation. The periods were generated by multiplying 

the execution times by a constant c such that Ti = c Ci for all tasks. We varied c 

from 15 upwards in steps of 0.25, which varied the utilisation from 1.0 

downwards. In order to evaluate different approaches, we found the breakdown 

utilisation [78] of the tasksets. By scaling the deadlines and periods of the tasks, 

we simulated scaling the speed of the CPU and memory. Using this technique 

                                                 

1 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html 
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the breakdown utilisation, the point at which the taskset is deemed 

unschedulable, can be found. 

 

 
Breakdown 

utilisation 

No pre-emption cost 1 

Combined Multiset 0.659 

ECB-Union Multiset 0.659 

UCB-Union Multiset 0.594 

ECB-Union 0.612 

UCB-Union 0.583 

UCB-Only 0.462 

ECB-Only 0.364 

JCR 0.488 

Table 4.2 - Breakdown utilisation for the case study taskset for the different approaches 
used to calculate the CRPD 

The breakdown utilisation for each approach is shown in Table 4.2. The ECB-

Union Multiset, and hence the Combined Multiset, approach performed the 

best with a breakdown utilisation of 0.659. The JCR approach outperformed the 

ECB-Only and UCB-Only approaches with a breakdown utilisation of 0.488, but 

did worse than the other approaches that we have presented.   

4.5 Evaluation 

In addition to the case study, we evaluated the schedulability tests for EDF with 

integrated CRPD analysis using synthetically generated tasksets. This enabled 

us to investigate the behaviour of the different approaches as we varied a 

number of key parameters. We did so by generating a large number of tasksets 

with representative but varied timings and cache usage so that we could get an 

overall picture for how the different approaches performed. To determine the 

margin of error we re-ran a typical evaluation 100 times for each of the different 

number of tasksets used, using different random seeds for each run, and then 

computed the margin of error in each case. We note that the maximum margin 

of error is observed when approximately half of the tasksets are schedulable, as 

this is where there is the maximum variation. For a typical evaluation depicting 

the number of schedulable tasksets, the margin of error based on a 95% 

confidence interval is around ±0.1% for 10,000 tasksets per utilisation level and 

hence per data point and ±0.3% for 1,000 tasksets. For the weighted 

schedulability evaluations introduced in Section 4.5.2 the margin of error based 

on a 95% confidence interval is around ±0.1% for 1,000 tasksets per utilisation 
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level with 40 utilisation levels per data point, and ±0.25% for 100 tasksets per 

utilisation level again with 40 utilisation levels per data point.  

The UUnifast algorithm [32] was used to calculate the utilisation, iU of each task 

so that the utilisations add up to the desired utilisation level for the taskset. 

Task periods Ti, were generated at random between 5ms and 500ms according 

to a log-uniform distribution. From this, Ci was calculated via iii TUC  . 

We generated two sets of tasksets, one with implicit deadlines and one with 

constrained deadlines. We used Di = min(Ti, 2Ci + x(Ti - 2Ci)) to generate the 

constrained deadlines, where x is a random number between 0 and 1. In the 

following sections we assume implicit deadline tasksets unless stated 

otherwise. In general, using constrained deadlines resulted in an overall 

reduction in schedulable tasksets compared to implicit deadline tasksets.  

The UCB percentage for each task was based on a random number between 0 

and a maximum UCB percentage specified for the experiment. UCBs were 

placed in a continuous group at the start of the tasks’ ECBs. 

4.5.1 Baseline Evaluation 

We investigated the effects of the following parameters: 

 Cache utilisation (default of 10) 

 Maximum UCB percentage (default of 30%) 

 Number of tasks  (default of 10) 

 Number of cache sets (default of 256) 

 Block Reload Time (BRT) (default of 8μs) 

First we evaluated how the integrated CRPD and EDF schedulability analysis 

performed under the default configuration for implicit deadline tasksets. We 

generated 10,000 tasksets and then varied the utilisation, excluding any pre-

emption cost, from 0.025 to 1 in steps of 0.025 and recorded how many tasksets 

were deemed schedulable by the EDF schedulability test. The results for 

implicit deadline tasksets are shown in Figure 4.6 and in Table 4.3 in the form of 

weighted schedulability measures, see the next sub-section, Section 4.5.2  for a 

definition of weighted schedulability. 

The results follow a similar pattern to the equivalent CRPD analyses for FP 

scheduling, see Figure 9 in [7]. Furthermore, the results confirm the dominance 

relationships between approaches with the Combined Multiset approach 

performing the best. Additionally, with the exception of ECB-Only, all of the 
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approaches presented outperformed JCR with the Combined Multiset approach 

achieving a weighted schedulability measure of 0.528 compared to 0.333 for 

JCR. 

 

Figure 4.6 - Schedulable tasksets vs Utilisation for the baseline parameters under 
implicit deadlines 

We then repeated the first evaluation with constrained deadlines. The results 

showed an overall reduction in the number of schedulable tasksets due to the 

tighter deadlines. However, the JCR approach performs better than with 

implicit deadlines, outperforming ECB-Only and UCB-Only. This is because the 

number of times task 𝜏𝑗 pre-empts task τk, given by Pj(Dk), is reduced. (As Dk is 

now smaller than Tk, and smaller in relation to Tj, there is a smaller window in 

which task τj can pre-empt task τk). The results are shown in Figure 4.7. 
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Figure 4.7 - Schedulable tasksets vs Utilisation for the baseline parameters under 
constrained deadlines 

4.5.2 Weighted Schedulability 

Evaluating all combinations of different parameters would take a significant 

amount of time. Therefore, the majority of our evaluation focused on varying 

one parameter at a time. To present the results, weighted schedulability 

measures [21] are used. This allows a graph to be drawn which shows the 

weighted schedulability, Wl (p), for each method used to obtain a layout l as a 

function of parameter p. For each value of p, this measure combines the data for 

all of the generated tasksets τ for all of a set of equally spaced utilisation levels, 

where the utilisation is without including CRPD. The schedulability test returns 

a binary result of 1 or 0 for each layout at each utilisation level. If this result is 

given by Sl (τ,p), and u(τ) is the utilisation of taskset τ, then:  
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(4.26) 

The benefit of using a weighted schedulability measure is that it reduces a 3-

dimensional plot to 2 dimensions. Individual results are weighted by taskset 

utilisation to reflect the higher value placed on a being able to schedule higher 

utilisation tasksets.  

Table 4.3 gives the weighted schedulability measures for the baseline 

experiment under implicit deadlines shown in Figure 4.6. 
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Weighted 

schedulability 

No pre-emption cost 1 

Combined Multiset 0.528 

ECB-Union Multiset 0.501 

UCB-Union Multiset 0.455 

ECB-Union 0.481 

UCB-Union 0.427 

UCB-Only 0.416 

ECB-Only 0.236 

JCR 0.333 

Table 4.3 - Weighted schedulability measures for the baseline experiments show in 
Figure 4.6 

4.5.3 Implicit Deadline Tasksets 

In this section, we present the results for a number of weighted schedulability 

evaluations with implicit deadline tasksets. In each evaluation we varied one 

parameter and fixed all other parameters at the default values, described in 

Section 4.5.1, unless otherwise stated. For all the weighted schedulability 

evaluations, we used 1,000 generated tasksets. 

Cache Utilisation 

 

Figure 4.8 - Weighted measure for varying cache utilisation from 0 to 20 in steps of 2 
for implicit deadline tasksets 

As the cache utilisation increases, see Figure 4.8, all approaches that consider 

CRPD show a decrease in schedulability. In particular, the ECB-Only approach 

shows a very rapid decrease because the cache utilisation directly correlates 
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with the number of ECBs which is all that the approach considers. Additionally, 

the JCR approach starts to drop off at around a cache utilisation of 8, and by a 

cache utilisation of 14, it performs the worst. This is due to the pessimistic 

handling of nested pre-emptions leading to it calculating that the same UCBs 

are evicted multiple times as tasks share an increasing number of cache blocks. 

Maximum UCB Percentage 

 

Figure 4.9 - Weighted measure for varying the maximum UCB percentage from 0 to 
100% in steps of 10% for implicit deadline tasksets 

As the maximum UCB percentage increases, see Figure 4.9, all approaches 

except ECB-Only show a decrease in schedulability. The ECB-Only approach 

shows no change because it does not consider any tasks’ UCBs. The UCB-Only 

approach is particularly vulnerable to high numbers of UCBs. Additionally, the 

JCR approach also shows a large decrease in the number of schedulable 

tasksets. This is because it deals with nested pre-emptions by considering the 

pre-empting and intermediate tasks individually. As the number of UCBs 

increases, the chances of the analysis assuming that the UCBs get evicted more 

than once increases. UCB-Union, UCB-Union Multiset and Combined Multiset 

all tend to similar performance to ECB-Only as the number of UCBs is increased 

as they dominate ECB-Only. All other approaches are incomparable and 

perform worse than ECB-Only under very high numbers of UCBs. 
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Number of Tasks 

 

Figure 4.10 - Weighted measure for varying the number of tasks from 21 = 2 to 26 = 64 
for implicit deadline tasksets 

As the number of tasks increases, see Figure 4.10, all approaches that consider 

pre-emption cost show a decrease in schedulability due to the increased 

number of pre-emptions. We note that as the number of tasks becomes very 

high, some of the approaches level off. This is due to the fact that the other 

parameters, specifically cache utilisation and maximum UCB percentage are 

fixed. As the number of tasks increases, the size of the tasks and therefore the 

number of UCBs decreases, reducing the cost of a pre-emption, especially for 

the approaches that rely heavily on the number of UCBs. This could be avoided 

by fixing the task size by increasing the cache utilisation, but then this would 

also  affect the results as shown previously in Figure 4.8. 
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Cache Size 

 

Figure 4.11 - Weighted measure for varying the number of cache sets from 26 = 64 to 
210 = 1024 for implicit deadline tasksets 

The cache size also has an effect on the schedulability of tasksets, see Figure 

4.11. As the number of cache sets increases, all approaches show a decrease in 

schedulability because the potential impact of a pre-emption increases. 

Block Reload Time (BRT) 

 

Figure 4.12 - Weighted measure for varying the block reload time from 20 = 1μs to 25 = 
32μs for implicit deadline tasksets 

Varying the BRT also has a similar effect of increasing the cost of a pre-emption 

which in turn results in fewer tasksets being deemed schedulable, as seen in 

Figure 4.12. 
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4.5.4 Constrained Deadline Tasksets 

We now briefly present the results for the weighted schedulability evaluation 

under constrained deadlines. In general, using constrained deadlines resulted 

in an overall reduction in the number of schedulable tasksets compared to 

implicit deadline tasksets. However, we note that the JCR approach shows an 

improvement compared to the implicit deadline case for the reason noted in 

Section 4.5.1, because the number of times task 𝜏𝑗 pre-empts task τk, Pj(Dk), is 

reduced. (As Dk is now smaller than Tk, and smaller in relation to Tj, there is a 

smaller window in which task τj can pre-empt task τk). Nevertheless, while it 

does better than the ECB-Only and UCB-Only approach, the JCR approach is 

still outperformed by the other approaches presented in this chapter in almost 

all cases. Furthermore, the Combined Multiset approach presented always 

outperforms the JCR approach. 

 

Figure 4.13 - Weighted measure for varying cache utilisation from 0 to 20 in steps of 2 
for constrained deadline tasksets 
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Figure 4.14 - Weighted measure for varying the maximum UCB percentage from 0 to 
100% in steps of 

 

Figure 4.15 - Weighted measure for varying the number of tasks from 21 = 2 to 26 = 64 
for constrained deadline tasksets 
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Figure 4.16 - Weighted measure for varying the number of cache sets from 26 = 64 to 
210 = 1024 for constrained deadline tasksets 

 

Figure 4.17 - Weighted measure for varying the block reload time from 20 = 1μs to 25 = 
32μs for constrained deadline tasksets 

4.6 Summary 

In this chapter we have presented new CRPD aware analysis for the EDF 

scheduling algorithm based on similar work for FP scheduling. We compared 

our new approaches against an existing approach for EDF by Ju et al. [71], 

referred to as JCR, and showed that our Combined Multiset approach 

dominates the JCR approach. This was confirmed in both a case study and a 

series of evaluations based on synthetically generated tasksets. We examined 



4.6  Summary 
 

100 

the effects of different cache and taskset parameters on the different 

approaches, highlighting the strengths and weaknesses of the different 

approaches. We found that the JCR approach was especially vulnerable to high 

numbers of tasks, high cache utilisation and high UCB percentages. In all of our 

evaluations, our new Combined Multiset approach was able to schedule the 

highest number of tasksets out of the approaches that consider CRPD. 
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CHAPTER 5.  TASK LAYOUT 

OPTIMISATION 

If a pre-empting task does not share any cache sets with a task that it is pre-

empting, then the pre-emption will not result in any CRPD. In most cases it 

would not be possible to avoid all conflicts, but it is feasible to try to minimise 

them. In this chapter, we present a technique for optimising task layout in 

memory so as to increase system schedulability via reduced CRPD. By 

evaluating layouts using schedulability analysis which accounts for CRPD, we 

are able to discover layouts that help to maximise the schedulability of a 

taskset. 

5.1 Introduction 

Tasks are stored in memory and then loaded into cache when needed. As the 

size of the cache is usually smaller than the size of the memory and in some 

cases the size of the tasks, blocks from one task will often be mapped to the 

same location as blocks from other tasks. During a pre-emption, CRPD is 

introduced when the ECBs from the pre-empting task evict UCBs belonging to 

the pre-empted task(s). It is therefore desirable to organise tasks in memory, so 

that when they are loaded into cache, the UCBs of lower priority tasks do not 

share the same locations in cache as the ECBs of higher priority tasks that can 

pre-empt them. This is particularly important with respect to the ECBs of high 

priority tasks with relatively short periods that may pre-empt numerous times. 

In most cases it is not possible to completely avoid such mappings to the same 

location in cache. Nevertheless, layouts can be found that increase the 

schedulability of the taskset. 

Example Layouts 
Figure 5.1 shows how five tasks scheduled under FP ordered by priority could 

be laid out in cache. Task τ1 has the highest priority, so its UCBs can never be 
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evicted as it cannot be pre-empted. Task τ2 and τ3’s UCBs are safe from eviction 

as they are not mapped to the same location in cache as higher priority tasks’ 

ECBs. However, task τ4’s UCBs could be evicted by task τ1, and τ5’s UCBs could 

be evicted by task τ1, τ2 or τ4. 

 

Figure 5.1 - Example layout showing how the position of tasks in cache affects whether 
their UCBs could be evicted during pre-emption. 

An improved layout is shown in Figure 5.2. Although the UCBs of task τ5 could 

still be evicted, they can now only be evicted by the ECBs of task τ3, rather than 

tasks τ1 τ2 and τ4. 

 

Figure 5.2 - Improved version of the layout shown in Figure 5.1. While the UCBs of 
task τ5 could still be evicted, they cannot only be evicted by the ECBs of task τ3, rather 
than tasks τ1 τ2 and τ4. 
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The aim of this approach is to find a layout for a given taskset that results in the 

taskset being schedulable. Good layouts reduce the CRPDs experienced by 

those tasks that are close to missing their deadlines. The code itself is not 

modified, only the start positions of each task in memory. This can be 

implemented in practice by controlling the linker or simply the order in which 

task objects files are passed to it. 

In order to evaluate different layouts for a taskset, a schedulability test that can 

account for CRPD can be used. As a taskset has a fixed utilisation defined by 

the execution times and periods of the tasks, a schedulability test can only check 

if the taskset is, or is not schedulable with a given layout. This boolean result is 

not enough information to distinguish between layouts that result in the taskset 

being only just schedulable, and better layouts that are robust to changes in the 

processor speed or task execution times. We therefore use the breakdown 

utilisation of the taskset as an indicator of the quality of the layout. Scaling the 

deadlines and periods of the tasks simulates slowing down or speeding up the 

speed of the CPU and memory. Using this technique the breakdown utilisation, 

the point at which the taskset becomes unschedulable, can be found for each 

layout. This gives a numerical value that can be used to compare layouts for 

each taskset. 

5.2   Optimising Task Layout 

It would not be feasible to evaluate every possible layout for a taskset. We 

therefore developed an approach that uses a simulated annealing (SA) to discover 

improved task layouts. The SA works by starting with an initial layout, and 

then on each iteration making a random change and then evaluating the effect 

of that change.  In this case we make a random change to the layout of tasks in 

memory, and then evaluate the effect that that change has had on the 

breakdown utilisation of the taskset. 

We started with an initial layout where tasks were ordered sequentially based 

on their priority without any gaps between them. To apply this initial layout 

under EDF scheduling, tasks can be ordered based on their unique task index. 

Layout changes 
The possible changes to the task layout are swap near, swap far, and random gap. 
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Swap near 

Swap near swaps the position of two neighbouring tasks by picking a random 

task and swapping it with the task that is in the next location in memory to it. If 

the selected task is the last in memory, it is swapped with the first task. 

Swap far 

Swap far swaps the position of two randomly chosen tasks. These tasks are 

usually not adjacent in memory, but they can be. These two tasks are swapped 

and if necessary the start positions of the tasks in between them are adjusted. 

This effectively shifts the start positions in memory of all of the tasks in-

between the two chosen tasks by the difference in the size of the two tasks. 

Random gap 

Random gap adds a gap between two adjacent tasks in memory by up to ±half 

cache size based on a random value. Tasks cannot overlap in memory, but if a 

gap already exists it can be reduced. If the gap between tasks becomes greater 

than the size of the cache, it is reduced so as not to waste space. This is because 

for a direct mapped cache the position in cache is calculated by taking the 

position in memory modulo the size of the cache. If a task with a gap after it is 

swapped with another task its gap is maintained so. the gap is moved with the 

task. 

Layout Evaluation 
Changes are made to the layout of tasks in memory, and then mapped to their 

cache layout for evaluation. The breakdown utilisation of the taskset is then 

evaluated for each layout generated by the SA. A binary search can be used to 

find the breakdown utilisation. The binary search starts with a maximum 

utilisation of 1 and a minimum utilisation of 0. The search then terminates once 

the minimum value is within 0.01 of the maximum. After each change to the 

utilisation the schedulability analysis is re-run, and the process repeats until the 

breakdown utilisation is found for the layout. The optimum layout is the layout 

which has the highest breakdown utilisation. 

An initial temperature, temp, of 100 is defined for the SA and after every 

iteration the temperature is reduced by multiplying it by a cooling rate of 0.98 

until it reaches the target temperature of 0.05. While the temperature is high the 

algorithm is more open to negative changes, which are required to escape local 

minima. The start and end values were chosen to balance accepting negative 

changes, and the cooling rate was chosen to give enough generations for the 
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algorithm to find a near optimal solution, without having an excessive number 

of iterations. The total number of iterations based on the initial and end 

temperature and cooling rate is 377 per taskset. The exception to this rule is that 

if the SA finds a layout with a breakdown utilisation of 1, it will terminate early. 

This is because the utilisation cannot be higher than 1 for a single core 

processor, and so the SA algorithm can stop having found an optimal solution. 

If the change in breakdown utilisation, ∆BU, from the last iteration is positive 

then the layout is always accepted. If the change is negative then the layout 

may still be accepted based on how negative a change it is and the temperature. 

The probability of accepting a negative change, Paccept neg ∆ is defined as: 

 
temp

BU

  eP negaccept  
(5.1) 

The complete processes is summarised in a flow chart shown in Figure 5.3. 

 

Figure 5.3 - Task layout optimisation process flow chart 
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5.2.1 Memory Limitations 

To limit increases in the amount of memory required due to gaps introduced 

between tasks, the algorithm can also factor in how much free space may be 

introduced when finding the memory layout. If this is above the amount 

specified, then the new layout will be rejected and will not be evaluated by the 

schedulability test. For example, memory overheads would be 0% for no 

additional free space, 10% for a small amount of free space, or 100% for as much 

free space as used space. 

5.3 Case Study 

In this section we describe the results of a case study used to evaluate the task 

layouts produced by the SA algorithm. The case study is the same one used in 

Section 4.4 to evaluate CRPD analysis for EDF scheduling.  For each task the 

derived WCET, ECBs and UCBs are shown again in Table 5.1. The system was 

setup to model the same ARM processor. It was clocked at 100MHz with a 2KB 

direct-mapped instruction cache with a line size of 8 Bytes giving 256 cache sets, 

4 Byte instructions, and a block reload time of 8μs. 

 WCET #UCBs #ECBs 

bs 445 5 35 

minmax 504 9 79 

fac 1252 4 24 

fibcall 1351 5 24 

insertsort 6573 10 41 

loop3 13449 4 817 

select 17088 15 151 

qsort-exam    22146 15 170 

fir 29160 9 105 

sqrt 39962 14 477 

ns 43319 13 64 

qurt 214076 14 484 

crc 290782 14 144 

matmult 742585 23 100 

bsort100 1567222 35 62 

Table 5.1 - WCET and number of UCBs and ECBs for a selection of tasks from the 
Mälardalen benchmark suite 

We scheduled the taskset using FP scheduling and performed schedulability 

analysis using the Combined Multiset approach by Altmeyer et al. [7], described 
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in Section 3.2, when evaluating the task layouts. However, we note that the 

approach is not dependent on the scheduling algorithm provided it is capable 

of accounting for CRPD. In Chapter 6 we compare FP and EDF and apply this 

task layout technique to both. 

The taskset was created by assigning periods and implicit deadlines such that 

all 15 tasks had equal utilisation. The periods were generated by multiplying 

the execution times by a constant c such that Ti = c Ci for all tasks. For example,  

c = 15 gave a utilisation of 1.0 and c = 30 gave a utilisation of 0.5. Tasks were 

assigned priorities in deadline monotonic priority order. 

We compared the following layouts: 

 SA - The layout with the highest breakdown utilisation as found by the 

SA algorithm with an allowed memory overhead of 0%, so that adding a 

random gap between tasks was not allowed. 

 Sequential ordered by priority (SeqPO) - Lays out tasks one after another 

with no gaps in-between them. Tasks are in priority order with the 

highest priority task first. This is the starting layout for the SA. 

 Random - 1000 different random tasks orderings in memory are evaluated 

and the average breakdown utilisation for them is used.  

 CS[i]=0 - Aligns the start of every task to the first cache set. This is almost 

always the worst possible layout, especially when UCBs are grouped at 

the start of the task. Note the CS[i]=0 layout has no restriction on how 

much memory it can use. 

For comparison the analysis is also performed on the taskset with the pre-

emption cost ignored. 

The results showing the breakdown utilisation for each layout are given in 

Table 5.2. In this case, the layout obtained via SA provides a significant increase 

in the breakdown utilisation over that obtained by SeqPO of 0.876 versus 0.698. 

The results obtained from 1000 random layouts give some interesting results. 

First, the best layout found via a random approach did result in a slightly 

higher breakdown utilisation than the layout found by the SA in this case; 

although at the expense of evaluating more layouts than the SA. Secondly, 

SeqPO resulted in a breakdown utilisation that was similar to the average of the 

1000 random layouts. Finally, aligning all tasks at the start of the cache resulted 

in a breakdown utilisation that performed similarly to the worst random layout. 

The slight variation is due to the fact that the UCBs of tasks are not all located at 

the same position within the tasks. 
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 Breakdown utilisation 

No pre-emption cost 0.984 

SA 0.876 

SeqPO 0.698 

Random (min, average, max) 0.526,0.685, 0.882 

CS[i]=0 0.527 

Table 5.2 - Breakdown utilisation for the taskset in Table 5.1 

5.3.1 Discussion 

Figure 5.4 shows a representation of the initial layout of the taskset in Table 5.1, 

where tasks are laid out sequentially based on their priority. Figure 5.5 shows 

the layout chosen by the SA for this particular taskset. Although the layout 

generated by the SA algorithm has a larger number of UCBs in conflict 

compared to the SeqPO layout, it improves taskset schedulability. This is 

because of how the UCBs are organised. In the layout generated by the SA 

algorithm the likelyhood of the UCBs of lower priority tasks being evicted is 

reduced in comparison to their positions in the SeqPO layout. This is due to the 

fact that high priority tasks, especially tasks τ1 to τ5, have much shorter periods 

than the lowest priority tasks and can therefore pre-empt them many times. 

 

Figure 5.4 - Initial (SeqPO) layout for the taskset in Table 5.1 
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Figure 5.5 - Optimised layout chosen by the SA for the taskset in Table 5.1 

Figure 5.6 shows a graph of the total CRPD for each task for the layout chosen 

by the SA algorithm and for the SeqPO layout at the breakdown utilisation for 

SeqPO. Note that because the Combined Multiset approach used in the 

evaluation is a combination of two approaches, UCB-Union Multiset and ECB-

Union Multiset [7], the CRPD shown is for each of the approaches. It can be 

seen that the SA algorithm significantly minimises the CRPD for the low 

priority tasks, τ13, τ14, and τ15, which are close to missing their deadlines at the 

expense of the higher priority tasks, τ4 and τ5, which have plenty of slack time. 

 

Figure 5.6 - Graph of the total CRPD/task for the taskset in Table 5.1 under the initial 
SeqPO layout vs the optimisised layout chosen by the SA 

5.4 Evaluation 

In addition to the case study, in this section we describe the results of a number 

of evaluations aimed at investigating the performance of the SA algorithm in 



5.4  Evaluation 
 

110 

terms of the quality of the layouts it produces for synthetically generated 

tasksets, controlled by a random seed for repeatability. 

We used the UUnifast algorithm [32] to calculate the utilisation, iU , of each task 

so that the task utilisations added up to the desired utilisation level for the 

taskset. Task periods Ti, were generated at random between 5ms and 500ms 

according to a log-uniform distribution. From this, Ci was calculated such that 

iii TUC  . As implicit deadlines were used, Di = Ti.  

UCBs were distributed through each task. Figure 5.7 shows two different 

distributions of UCBs. 

A) Consolidates all of the UCBs into a single block at the start of the task. 

B) Groups the UCBs into blocks throughout the task.  Distribution A  is a 

special case where the number of groups is 1 and the starting position is 

fixed to 0. 

 

Figure 5.7 - Two different distributions of UCBs throughout a task 

A single group of UCBs at the start of a task, represented by distribution A, is 

not representative of real code. Therefore the majority of the evaluations were 

performed and presented using distribution B.  

For distribution B the UUnifast algorithm was used to generate a random 

distribution of UCBs throughout the tasks. This required two parameters, the 

number of UCBs and the number of groups of UCBs. The number of UCBs for 

each task was found by multiplying the UCB percentage by the number of 

ECBs. The UCB percentage for each task was based on a random number 

between 0 and a maximum UCB percentage specified for the evaluation.  

The number of UCB groups used was a random number between 1 and the 

given maximum number of UCB groups. Because UUnifast returns floating 

point numbers for the number of blocks in each UCB group, the number of 

blocks was rounded down to the nearest whole number with the remainder 

carried forward and added to the next group. The final group of UCBs then had 

either 0 or 1 extra block added on the end. In some cases, the final number of 

UCB groups was less than the number given to UUnifast. This happened when 
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the number of UCBs in a group was less than 1.0 or the number of blocks in a 

gap between UCBs was less than 1.0. 

UUnifast was first used to generate the size of the groups of UCBs. It was then 

re-run to generate the gaps between the groups of UCBs, at which point the 

UCBs were then laid out using a random starting position. 

5.4.1   Baseline Evaluation 

A number of evaluations were run in order to investigate the quality of the task 

layouts produced by the SA for different cache and task configurations. These 

evaluations looked at varying the following parameters: 

 Distribution of UCBs 

 Maximum number of UCB groups when using distribution B 

 Maximum UCB percentage 

 Cache utilisation 

 Number of cache sets 

 Number of tasks  

 Allowed memory overhead 

Cache utilisation describes the ratio of the total size of the tasks to the size of the 

cache. A cache utilisation of 1 means that the tasks fit exactly in the cache, 

whereas a cache utilisation of 5 means the total size of the tasks is 5 times the 

size of the cache. 

Unless otherwise stated, the parameters were fixed to the following default 

values during the evaluations: 

 Allowed memory overhead was fixed to 0% such that adding a random 

gap between tasks was not allowed 

 10 tasks per taskset 

 1000 tasksets per evaluation 

 Cache size of 512 sets 

 Cache utilisation of 5 

 Maximum UCB percentage of 30% 

 UCBs distributed using distribution B with a maximum of 5 groups 

The case study used a single taskset. Therefore, 1000 random layouts were 

evaluated and averaged out. As the evaluations using synthetically generated 

tasksets used a large number of tasksets, only one random layout per taskset 
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was used. Any bias by using one random layout per taskset is then averaged 

out over the large number of tasksets. 

The first evaluation investigates the quality of the task layouts produced by the 

SA algorithm compared to the other layouts. Figure 5.8 shows results for 

distribution B. This graphs shows the number of schedulable tasksets versus 

utilisation for no pre-emption cost, SA, SeqPO, random and CS[i]=0.  

 

Figure 5.8 - Schedulable tasksets vs Utilisation for UCB distribution B with a 
maximum of 5 groups of UCBs. 

It can be seen that aligning all tasks at a the start of the cache, CS[i]=0, results in 

the worst performance. SeqPO and random were very similar, and the layout 

generated by the SA algorithm resulted in the highest success rate when 

accounting for pre-emption costs.  

UCB Distribution  

Table 5.3 shows the weighted schedulability measures, described in Section 

3.5.2, for the baseline evaluation using distribution A and B. The table shows 

that distribution A results in a larger number of tasksets being schedulable at 

higher utilisations than distribution B for all taskset layouts; except no pre-

emption cost which is not affected by the UCB distribution. This is expected as 

it is much harder to layout tasks with the more realistic fragmented distribution 

B in a way that reduces conflicts between the ECBs of high priority tasks and 

the UCBs of the lower priority tasks. Nevertheless, in both cases the SA 

algorithm was able to improve the weighted measure of 0.581 and 0.377 for 
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SeqPO to 0.665 and 0.465. This is a significant improvement as can be seen in 

Figure 5.8. 

 Distribution A Distribution B 

No pre-emption cost 0.859 0.859 

SA 0.665 0.465 

SeqPO 0.581 0.377 

Random 0.578 0.379 

CS[i]=0 0.475 0.347 

Table 5.3 - Weighted schedulability measures for the baseline evaluations 

5.4.2  Detailed Evaluation 

Evaluating all combinations of different task parameters is not possible. 

Therefore, the majority of our evaluations focused on varying one parameter at 

a time. To present these results weighted schedulability measures [7] are used, 

which are described in Section 4.5.2. For these weighted schedulability 

evaluations, we used 100 tasksets rather than 1000 tasksets at each utilisation 

level. 

Maximum UCB Groups 

 

Figure 5.9 - Weighted measure for varying the number of maximum number of UCB 
groups from 1 to 20 

Figure 5.9 show the impact on the schedulability of the tasksets as the 

maximum number of UCBs groups is varied from 1 to 20. As noted in Section 

5.4, the actual number of UCB groups is chosen at random between 1 and the 

maximum. For small numbers of UCB groups, the weighted measure is slightly 

higher as the tasks are easier to layout in a way that reduces conflicts between 
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the ECBs of pre-empting tasks and the UCBs of pre-empted tasks. This is 

because the UCBs are less fragmented. As the number of groups increased, the 

weighted measure levels off and the SA algorithm continued to perform well in 

terms of the quality of the layouts it produced. The weighted measure does not 

decrease as the number of UCB groups becomes very large because the UCBs 

effectively become uniformly spread throughout the ECBs of each task. This 

leads to the CRPD becoming dependent only on how the ECBs are laid out. 

Maximum UCB Percentage 

 

Figure 5.10 - Weighted measure for varying the maximum UCB percentage from 0% to 
100% 

The results for varying the maximum UCB percentage from 0% to 100% are 

shown in Figure 5.10. As expected, when the maximum UCB percentage is 0% 

the layout has no effect on the schedulability of the taskset and all of the 

weighted measures are equal to the no pre-emption cost measure. This is 

because there are no UCBs to be evicted, resulting in zero CRPD. As the 

maximum UCB percentage increases, the SA algorithm is able to find improved 

layouts with respect to the SeqPO layout which increases the schedulability of 

the taskset. When the maximum UCB percentage gets very high (>90%), there 

are so many UCBs that there is little that can be done to the layout to improve 

the schedulability of the taskset. This results in similar performance for all 

layouts. 
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Cache Utilisation 

 

Figure 5.11 - Weighted measure for varying the cache utilisation from 1 to 10 

The cache utilisation can also have a significant impact on the schedulability of 

tasksets. The results for varying the cache utilisation from 1 to 10 are shown in 

Figure 5.11. A cache utilisation of 1 represents all the tasks fitting into the cache 

therefore any layout which does not include gaps between tasks is an optimal 

layout. Such a layout therefore gives a weighted measure that is the equal to the 

no pre-emption cost case. This is why CS[i]=0 does not have the same weighted 

measure with a cache utilisation of 1, as does not maximise the available cache 

size. As the cache utilisation increases, the weighted measure decreases for all 

layouts with the layouts generated by the SA algorithm giving improved results 

up to a cache utilisation of 10. 
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Cache Sets 

 

Figure 5.12 - Weighted measure for varying the number of cache sets from 64 to 2048 

The results for varying the number of cache sets from 64 to 2048 are shown in 

Figure 5.12. For a given cache utilisation and BRT, as the number of cache sets 

increases, the impact of a pre-emption can increase as the number of evicted 

blocks increases. This is what causes the weighted measures to decrease until 

2048 cache sets, when almost all the tasksets become unschedulable at most 

utilisations when accounting for pre-emption costs. When varying the number 

of cache sets the layouts generated by the SA algorithm outperformed the other 

task layouts, until 2048 cache sets where the pre-emption cost became too great. 
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Number of Tasks 

 

Figure 5.13 - Weighted measure for varying the number of tasks from 2-64 in powers of 
2 

As the number of tasks increases, the number of schedulable tasksets decreases 

as expected because of the increased number of pre-emptions. Figure 5.13 

shows that after about 20 tasks the schedulability of the tasksets levels out for 

all the layouts except for CS[i]=0. CS[i]=0 performs increasingly worse as the 

number of tasksets are increased, as it aligns all of the tasks on top of each other 

in the cache. The result that the weighted measure levels off for SA, SeqPO and 

random layouts is counter-intuitive. This is most likely due to the fact that the 

cache utilisation was fixed.  Therefore, as the number of tasks increased, the size 

of the tasks decreased to a point where they were relatively easy to layout. 

Discussion 

Finding an improved layout for a taskset with 10 tasks took around 10 seconds 

on average, and 60 seconds on average for 24 tasks, using a single thread on a 

processor running at 2.8GHz. We felt this was an acceptable amount of time so 

did not pursue a more complex algorithm which could reduce the number of 

layouts that must be evaluated. 

We also investigated the distribution of CRPD per task for our default values 

under different layouts. We found that it followed a very similar pattern to the 

results of the case study presented in Section 5.3. 
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All of the evaluations were run with three different memory restrictions on the 

SA algorithm, 0%, 10% and 100%. However, we have only presented the results 

for 0%. This is because for the majority of our results, allowing the SA algorithm 

to add gaps between tasks had little effect. When changing the allowed memory 

overhead from 0% to 100%, the weighted measure for the baseline evaluation 

with distribution B only varied from 0.463 to 0.469. Because these values are 

close, the lines on the graphs are not shown as they are indistinguishable. This 

is due to a combination of factors, including the fact that the UCBs are scattered 

throughout the tasks and the high cache utilisation, which means there will 

always be a large number of conflicts.  

5.4.3 Brute Force Comparison 

As we found that allowing gaps between tasks did not significantly impact the 

breakdown utilisation, we compared the layouts produced by the SA algorithm 

against a brute force approach of trying every permutation of task ordering. As 

the majority of the computational effort goes to evaluating a layout using the 

schedulability test, the SA algorithm can be roughly compared against a brute 

force approach based on the number of layouts it evaluates. The number of 

layouts that must be evaluated for a taskset with n tasks is equal to n!. With 7 

tasks, evaluating every permutation results in 5040 (7!) different layouts, 

compared to the fixed 377 layouts1  for the SA algorithm. This approach is 

feasible for 7 tasks, but becomes infeasible when the number of tasks increases.  

                                                 

1 See Section 5.2 for an explanation of the SA algorithm, how many iterations it goes through, 
and why. 
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Figure 5.14 - Comparing the SA algorithm at swapping tasks against a brute force 
approach of trying every permutation 

Figure 5.14 shows the results for 1000 tasksets normalised against the initial 

SeqPO layout. The value indicates the number of tasksets that were deemed 

schedulable under an approach relative to those deemed schedulable under 

SeqPO. The graph shows that while the SA algorithm does not always find an 

optimal layout, the layouts are near optimal and are discovered in significantly 

less time. At low utilisation levels, the variation in schedulable tasksets is very 

small, as almost all tasksets are schedulable regardless of task layout. 

Conversely, at high utilisation levels, all tasksets are unschedulable regardless 

of task layout. 

5.5 Summary 

In this chapter, we have presented a new technique that uses simulated annealing 

(SA) driven by CRPD aware schedulability analysis to find task layouts that 

increase system schedulability. This is important because the position of tasks 

in memory affects the worst-case response time of the tasks due to CRPD. While 

the SA algorithm did not always find the optimum solution, it did find a near 

optimal solution. We built functionality into our SA algorithm to add gaps 

between tasks in memory, but found that this had little effect on the 

schedulability of tasksets for all but the most trivial cases. The fact that adding 

gaps made little difference is beneficial for a number of reasons.  Firstly, the 

search space is significantly reduced when just considering the order of tasks. 

Secondly, it is easier to setup a linker when combining object files to layout 
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tasks with no gaps between them. This is also an important practical point, in 

that it means that no additional memory space is required. 

When no gaps are added between tasks we showed for 7 tasks that the SA 

algorithm was able to find a near optimal ordering of tasks; compared with a 

brute force approach which tried every permutation. We therefore did not focus 

on optimising the SA any further. However, alternative solutions such as using 

a genetic algorithm, instead of a SA, may be more suitable for the relatively flat 

search space as many layouts gave similar breakdown utilisations. The 

algorithm could also be improved by accounting for how much progress has 

made recently when determining whether to stop. 

We evaluated our technique and showed that it was able to find layouts that 

allowed the tasksets to be schedulable at a higher utilisation level than other 

layouts. This included the default sequential layout with tasks ordered by 

priority (SeqPO). Using the default values for the parameters used to generate 

our synthetic tasksets, the layouts produced by the SA algorithm achieved a 

weighted schedulability measure of 0.465, compared to 0.377 for SeqPO. This is 

a significant difference as shown in Figure 5.8. 

This work has a number of important uses. It can firstly be used when 

optimising an unschedulable taskset. If a layout can be found that makes the 

taskset schedulable then the problem is solved. Even if the taskset is still not 

schedulable, the work required to optimise the individual tasks and procedures 

to achieve schedulability will have been reduced. Alternatively, many 

embedded systems have stringent power usage requirements. It may be that an 

improved layout can allow the CPU and memory to be clocked at a lower 

frequency to reduce power usage, while still maintaining the schedulability of 

the taskset.  
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CHAPTER 6.  COMPARISON 

BETWEEN FP AND EDF 

Two popular scheduling algorithms for real-time systems are FP and EDF. In 

this chapter we build on the work by Buttazzo [38] and use state of the art 

CRPD analysis for FP [7] and EDF to perform a comprehensive study of the 

performance of FP and EDF scheduling when accounting for CRPD. The 

analysis for FP [7] is discussed in Section 3.2 and the analysis for EDF is 

introduced in Chapter 4. 

FP scheduling uses statically defined priorities to run the task with the highest 

priority first. In comparison, EDF is a dynamic scheduling algorithm that 

schedules the task with the earliest absolute deadline first. EDF is an optimal 

scheduling algorithm without pre-emption costs, whereas FP is not, and EDF is 

therefore typically able to schedule tasksets at a higher processor utilisation 

than FP [85]. However, despite the significant performance benefits over FP, 

EDF is not widely used in commercial real-time operating systems.  

In 2005, Buttazzo [38] performed a detailed study of FP and EDF scheduling. 

This work covered both schedulability under a variety of scenarios, in addition 

to practical implementation considerations. Results showed that the FP 

scheduling algorithm introduces more pre-emptions than EDF, especially at 

high processor utilisation levels. This leads to FP performing worse than EDF. 

Yet, FP has an advantage over EDF, in that it is generally simpler to implement 

in commercial kernels which do not provide explicit support for timing 

constraints. Despite being a very detailed study, these comparisons where done 

under the assumption that there were no pre-emption costs due to CRPD. 
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6.1 Case Studies 

In this section we compare the different approaches for calculating CRPD using 

a set of case studies based on PapaBench1, the Mälardalen2 benchmark suite and 

a set of SCADE3 tasks. These are different from the single taskset case study 

used in Chapter 3 and 4. However, in all cases the system was set up to model 

the same ARM processor clocked at 100MHz with a 2KB direct-mapped 

instruction cache and a line size of 8 Bytes, giving 256 cache sets, 4 Byte 

instructions, and a BRT of 8μs.  

6.1.1 Single Taskset Case Study 

PapaBench is a real-time embedded benchmark based on the software of a 

GNU-license UAV, called Paparazzi. PapaBench contains two sets of tasks, fly-

by-wire and autopilot. We used the autopilot tasks for which the WCETs, periods, 

UCBs, and ECBs were collected using aiT, see Table 6.1. We made the following 

assumptions in our evaluation to handle the interrupt tasks: 

 Interrupts have higher priority than the normal tasks, but they cannot 

pre-empt each other 

 Interrupts can occur at any time 

 All interrupts have the same deadline which must be greater than or 

equal to the sum of their execution times in order for them to be 

schedulable 

 The cache is disabled whenever an interrupt is executing  and enabled 

again after it completes 

In the case of FP scheduling the interrupts can be modelled as normal tasks 

with no UCBs or ECBs. Due to the interrupts having the same deadline, which 

is large enough to accommodate the interrupts execution times, no other 

changes need to be made to the analysis. For EDF scheduling a number of 

adjustments must be made to correctly account for the interrupts not being able 

to pre-empt each other. First we modify equation (4.12) to exclude interrupts 

when calculating the processor demand, h(t). We then calculate the execution time 

of each interrupt, Ix, in the interval t using equation (2) of [34]: 

                                                 

1 http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97 
2 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html 
3 Esterel SCADE http://www.esterel-technologies.com/ 
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The result of which is then added onto the result of the modified version of 

equation (4.12), giving the processor demand for both tasks and interrupts as: 
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We then adjust the upper bound L used when checking h(t). This is 

implemented by substituting interruptstasks UUU  into equation (4.21) when 

calculating Ld to give: 
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Note that we leave U  to represent the utilisation of the CRPD caused by just 

tasks. This is because we assume that the cache is disabled while the interrupts 

are executing and as such they cannot cause any CRPD. 

We assigned a deadline of 2ms to all of the interrupt tasks, and implicit 

deadlines so that Di = Ti, to the normal tasks. We then calculated the total 

utilisation for the system, and then effectively scaled the clock speed in order to 

reduce the total utilisation to the target utilisation for the system. We used the 

number of UCBs and ECBs obtained via analysis, placing the UCBs in a group 

at a random location in each task. 

In each evaluation the taskset utilisation, not including pre-emption costs, was 

varied from 0.025 to 1 in steps of 0.001. For each utilisation value the 

schedulability of the taskset was determined under both FP and EDF. 

Specifically, we compared each scheduling algorithm (i) assuming no pre-

emption cost, (ii) using CRPD analysis using the standard task layout, and (iii) 

using CRPD analysis after optimising the task layout using the approach 

presented in Chapter 5. The standard task layout is obtained by ordering tasks 

sequentially in memory based on their unique task indices.  

Table 6.3 shows the breakdown utilisation for the single taskset based on 

PapaBench. There are a few interesting points to note. Firstly the breakdown 

utilisation is very high for both FP and EDF, this is due to the nearly harmonic 

periods and small range of task periods, with EDF outperforming FP. Secondly, 

the CRPD is very low when scheduled using either FP or EDF due to the small 
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number of UCBs. As the CRPD is very low, the layout optimisation makes little 

to no difference.  

 

Task UCBs ECBs WCET Period 

I4 interrupt_modem 2 10 0.303 ms 100 ms 

I5 interrupt_spi_1 1 10 0.251 ms 50 ms 

I6 interrupt_spi_2 1 4 0.151 ms 50 ms 

I7 interrupt_gps 3 26 0.283 ms 250 ms 

T5 altitude_control 20 66 1.478 ms 250 ms 

T6 climb_control 1 210 5.429 ms 250 ms 

T7 link_fbw_send 1 10 0.233 ms 50 ms 

T8 navigation 10 256 4.432 ms 250 ms 

T9 radio_control 0 256 15.681 ms 25 ms 

T10 receive_gps_data 22 194 5.987 ms 250 ms 

T11 reporting 2 256 12.222 ms 100 ms 

T12 stabilization 11 194 5.681 ms 50 ms 

Table 6.1 - Execution times, periods and number of UCBs and ECBs for the tasks from 
PapaBench 

Source Description UCBs ECBs WCET 

M adpcm 24 226 5.541 s 

M compress 25 114 3.664 s 

M edn 56 98 244.9 ms 

M fir 28 50 21.53 ms 

M jfdctinit 40 162 62.53 ms 

M ns 17 26 73.38 ms 

M nsichneu 53 256 149.6 ms 

M statemate 3 256 77.96 ms 

S cruise control system 25 107 1.959 s 

S flight control system 70 256 2.138 s 

S navigation system 45 82 1.409 s 

S stopwatch 58 130 3.786 s 

S elevator simulation 40 114 1.586 s 

S robotics systems 68 256 4.311 s 

Table 6.2 - Execution times and number of UCBs and ECBs for the largest benchmarks 
from the Mälardalen Benchmark Suite (M), and SCADE Benchmarks (S) 

 Breakdown Utilisation 

EDF - No Pre-emption Cost 0.999 

EDF- Optimised Layout 0.985 

EDF - Standard Layout 0.985 

FP - No Pre-emption Cost 0.977 

FP - Optimised Layout 0.970 

FP - Standard Layout 0.969 

Table 6.3 - Breakdown utilisation under the different approaches for the single 
PapaBench taskset 
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6.1.2 Multiple Taskset Case Studies 

The single taskset case study provides one specific example based on the 

PapaBench taskset. The remaining case studies used tasksets generated by 

randomly selecting tasks from a set of benchmarks. In the case of the 

PapaBench tasks, we treated the interrupts as normal tasks. We obtained 

tasksets by randomly selecting 10 tasks from Table 6.1, PapaBench benchmarks, 

or 10 tasks from Table 6.2, Mälardalen and SCADE benchmarks, or 15 tasks 

from the two tables, Mixed benchmarks. Using the UUnifast algorithm [32], we 

calculated the utilisation, iU , of each task so that the utilisations added up to 

the desired utilisation level for the taskset. Based on the target utilisation and 

task execution times, Ti was calculated such that iii TUC  . We used Di = y + x(Ti 

- y) to generate constrained deadlines, where x is a random number between 0 

and 1, and y = max(Ti/2, 2Ci). This generates constrained deadlines that are no 

less than half the period of the tasks. Note that allowing deadlines to be as small 

as Ci would result in tasks that were unschedulable once CRPD were 

introduced. We used the number of UCBs and ECBs obtained using aiT, and 

placed the UCBs in a group at a random location in each task. 

We generated 1000 tasksets for the multiple taskset case studies and evaluated 

them using the same method as the single taskset case study. The only 

difference was that we varied the utilisation excluding pre-emption costs from 

0.025 to 1 in steps of 0.0125. 

PapaBench Benchmark 

The tasks in the PapaBench benchmarks are simple, short control tasks with 

limited computations and data accesses.  Figure 6.1 shows the percentage of 

tasksets that were deemed schedulable by each approach for the 1000 tasksets 

of cardinality 10 that we randomly selected from Table 6.1. The results are 

similar to those obtained using the single taskset PapaBench case study.  

Specifically, EDF outperformed FP as it deemed a higher number of tasksets 

schedulable at each utilisation level. Because the range of execution times is 

relatively small, so is the typical range of task periods for the generated 

tasksets. Hence the number of pre-emption is also relatively small. 

Furthermore, the number of UCBs is small resulting in low CRPD. Therefore 

the task layout optimisation was only able to make a small improvement, but 

did so for both FP and EDF. 
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Figure 6.1 - Percentage of schedulable tasksets at each utilisation level for the 
PapaBench benchmark for tasksets of cardinality 10 

Mälardalen and SCADE Benchmarks 

The second multiple taskset case study was based on tasks from the Mälardalen 

and SCADE benchmarks, shown in Table 6.2. Compared to the tasks from 

PapaBench, these tasks have higher execution times, high amounts of 

computation, and a larger number of UCBs.   Figure 6.2 shows the percentage of 

tasksets that were deemed schedulable by each approach for the 1000 tasksets 

of cardinality 10 that we randomly selected from Table 6.2. As with the 

PapaBench benchmarks, EDF outperformed FP scheduling as it has a higher 

percentage of schedulable tasksets at each utilisation level. Likewise, because 

the range of task periods was also relatively small, CRPD is minimised.  

 

Figure 6.2 - Percentage of schedulable tasksets at each utilisation level for the 
Mälardalen and SCADE benchmarks for tasksets of cardinality 10 
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Mixed Benchmark 

The third multiple taskset case study was based on a mixture of the small and 

short PapaBench tasks, and the large and long Mälardalen and SCADE tasks. 

Here the tasksets had 15 tasks each and represent systems with background 

tasks combined with short control tasks. As we mixed tasks from both tables, it 

also allowed us to generate tasksets with a higher number of tasks. 

The results, shown in Figure 6.3, show that when a taskset contains tasks with a 

wide range of periods CRPD can become a significant factor in the 

schedulability of the taskset. This is because short high priority tasks are able to 

pre-empt long running low priority tasks multiple times.  

 

Figure 6.3 - Percentage of schedulable tasksets at each utilisation level for the mixed 
case study with tasks randomly selected from both the PapaBench and Mälardalen and 
SCADE benchmarks (taskset cardinality 15) 

While EDF still outperformed FP, the gain in schedulability of using EDF over 

FP was diminished once CRPD was taken into account. Optimising the task 

layout resulted in a significant improvement for both FP and EDF, showing the 

task layout optimisation can be effectively applied to both EDF and FP 

scheduling. Furthermore, by optimising the task layout, FP was able to 

schedule a similar number of tasksets to EDF with the standard layout.  In other 

words, in cases where the CRPD is relatively high, selecting an optimised task 

layout can be as effective as changing the scheduling algorithm. The results are 

summarised in Table 6.4 using weighted schedulability measures, as discussed 

in Section 3.5.2. They show that for these tasksets, FP with an optimised layout 

achieved a weighted measure of 0.784, outperforming EDF with the standard 

layout as it achieved a weighted measure of 0.771. 
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 Weighted Schedulability 

EDF - No Pre-emption cost 0.922 

FP - No Pre-emption cost 0.855 

EDF - Optimised layout 0.830 

EDF - Standard layout 0.771 

FP - Optimised layout 0.784 

FP - Standard layout 0.747 

Table 6.4 - Weighted schedulability measures for the mixed case study shown in Figure 
6.3.The higher the weighted schedulability measure, the more tasksets deemed 
schedulable by the approach 

6.2 Evaluation 

In addition to the case studies based on the PapaBench, Mälardalen and SCADE 

benchmarks, we evaluated FP and EDF with CRPD analysis using synthetically 

generated tasksets. This enabled us to investigate the effect of varying key 

parameters under each scheduling algorithm. 

The UUnifast algorithm [32] was again used to calculate the utilisation, iU of 

each task so that the utilisations added up to the desired utilisation level for the 

taskset. Task periods Ti, were generated at random between 5ms and 500ms 

according to a log-uniform distribution. Ci was then calculated via iii TUC  . 

We generated two sets of tasksets, one with implicit deadlines and one with 

constrained deadlines. In the following section, we present the results for 

constrained deadline tasksets. In general, the results for implicit deadline 

tasksets gave a higher number of schedulable tasksets for every approach 

compared to the constrained deadline tasksets. Additionally, the task layout 

had a similar or slightly larger effect on schedulability in relation to the chosen 

scheduling algorithm.  

The UCB percentage for each task was based on a random number between 0 

and a maximum UCB percentage specified for the evaluation. UCBs were split 

into N groups, where N was chosen at random between 1 and 5, and placed at a 

random starting point within the task’s ECBs. 

6.2.1 Baseline Evaluation 

To investigate the effect of key cache and taskset configurations we varied the 

following parameters: 

 Cache utilisation (default of 10) 
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 Maximum UCB percentage (default of 30%) 

 Number of tasks (default of 15) 

 Block Reload Time (BRT) (default of 8μs)  

 Period range (default of [5, 500]ms) 

We used 1,000 randomly generated tasksets for the evaluation.  

In addition to testing the different analyses as done for the case study, we also 

performed a simulation of the schedule for the tasksets1. Our aim with the 

simulation was to minimise schedulability by maximising the number of pre-

emptions. As noted in previous chapters, traditional methods for generating the 

worst case arrival pattern will not necessarily generate them in the presence of 

CRPD. For FP the simulation tested each task τi in turn by releasing it at time     

t = 0. It then released all of the other tasks that have a higher priority than task 

τi, sorted by lowest to highest priority, at t = 1, t = 2, t = 3 etc… If all tasks were 

schedulable it also performed the same test, but instead of staggering the other 

tasks, released them at random. For EDF we tried to maximise pre-emptions by 

releasing tasks so that their deadlines were staggered. The first step is to 

determine the interval that needs to be checked, L, which can be achieved by 

using equation (4.24). Then for each task τi in turn, we scheduled a job of task τi 

so that it has a deadline at t = L. We then scheduled a job of all of the other 

tasks, sorted by longest to shortest deadline, so that they have their deadlines at 

t = L - 1, t = L - 2, t = L - 3 etc… Based on the final jobs’ deadlines we then 

calculated when the first jobs for each task need to be released. If all tasks are 

schedulable, we repeated the process using t = L - 1 for all of the other tasks’ 

jobs, and also using a random schedule. 

The results for the baseline configuration are shown in Figure 6.4 and are 

summarised in Table 6.5 using weighted schedulability measures. The results 

follow a similar pattern to the results from the case study. EDF outperformed 

FP finding a higher number of tasksets schedulable. The results for the 

simulations show that the CRPD affects both FP and EDF, with the CRPD being 

slightly lower for EDF. Specifically, the simulation shows that CRPD reduced 

the weighted measure by at least 0.129 for EDF, 0.925-0.795, and 0.141 for FP, 

0.774-0.633, in this case. However, once the CRPD obtained via analysis is taken 

into account, the performance gains of using EDF over FP are diminished. This 

is most likely caused by increased pessimism in the CRPD analysis for EDF. The 

                                                 

1 Note that the simulation effectively provides a necessary, but not sufficient test of 
schedulability 
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results also showed that the layout optimisation improved the schedulability of 

tasksets scheduled under both FP and EDF.  

 

Figure 6.4 - The percentage of schedulable tasksets at each utilisation level for the 
baseline configuration (taskset cardinality 15) 

 

 Weighted Schedulability 

EDF - No Pre-emption cost 0.925 

EDF - Simulation 0.796 

FP - No Pre-emption cost 0.774 

FP - Simulation 0.633 

EDF - Optimised layout 0.455 

EDF - Standard layout 0.413 

FP - Optimised layout 0.369 

FP - Standard layout 0.336 

Table 6.5 - Weighted schedulability measures for the baseline configuration study 
shown in Figure 6.4. The higher the weighted schedulability measure, the more tasksets 
deemed schedulable by the approach 

6.2.2 Detailed Evaluation 

Evaluating all combinations of different task parameters is not possible. 

Therefore, the majority of our evaluations focused on varying one parameter at 

a time. To present these results, weighted schedulability measures [21] are used, 

which are described in Section 4.5.2.  

Cache Utilisation 

As the cache utilisation increases the likelihood of tasks evicting each other 

from cache increases, this causes higher CRPD reducing the number of 

schedulable tasksets. It can be seen in Figure 6.5 that task layout optimisation is 



6.2  Evaluation 
 

131 

effective for FP and EDF across the same range of cache utilisations. In both 

cases it becomes less effective once the cache utilisation becomes high. We note 

that because the number of tasks is fixed, that the average size of the tasks is 

equal to the cache utilisation divided by the number of tasks. This means that as 

the cache utilisation increases, so does the size of the tasks and therefore, the 

number of UCBs. This in turn makes it harder to find an improved layout.  

 

Figure 6.5 - Weighted measure for varying the cache utilisation from 0 to 20 in steps of 
2 

Maximum UCB Percentage 

 

Figure 6.6 - Weighted measure for varying the maximum UCB percentage from 0 to 
100 in steps of 10 

As the maximum UCB percentage increases, the CRPD increases resulting in a 

reduction in the number of tasksets that are deemed schedulable, as can be seen 
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in Figure 6.6. With a low percentage of UCBs, the CRPD is low which means 

there is little benefit from layout optimisation. When the UCB percentage is 

very high there are a significant number of conflicts that there is very little that 

can be done to improve the layout. When the maximum UCB percentage is at 

40-60% there is a notable amount of CRPD, but there is also room for the task 

layout algorithm to optimise the layout. This allows FP using an optimised task 

layout to schedule a similar number of tasksets as EDF using the standard 

layout. 

Number of Tasks 

When varying the number of tasks, as seen in Figure 6.7, we scaled the cache 

utilisation to keep the average size of tasks constant based on a cache utilisation 

of 10 for 15 tasks. This is because it would be unrealistic for the size of tasks to 

decrease as more tasks are added to the system. Hence with 8 tasks the cache 

utilisation is equal to 5.33, whereas for 32 tasks, it is equal to 21.33. As the 

number of tasks increases, it becomes harder to schedule all tasks. This leads to 

a decrease in the overall weighted measure. The task layout optimisation 

performs best when there is a moderate number of tasks as there are enough 

conflicts that optimising the layout can give an improvement; but not so many 

that there is nothing that can be done to avoid the conflicts.  

 

Figure 6.7 - Weighted measure for varying the number of tasks from 20 to 26 while 
maintaining a constant ratio of number of tasks to cache utilisation 
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Block Reload Time 

 

Figure 6.8 - Weighted measure for varying the block reload time (BRT) from 0 to 20µs 
in steps of 2 

As the block reload time is increased, it becomes more costly to reload a block, 

which causes an increase in CRPD. It can be seen in Figure 6.8 that as the block 

reload time is increased, the analysis that takes into account the pre-emption 

cost shows a decrease in the overall weighted measure. We note that as the cost 

of reloading a block increases, the potential gains of optimising the layout 

increases. Once the block reload time exceeds 14µs, using an optimised layout 

under FP scheduling outperforms using a standard layout under EDF 

scheduling. 
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Period Range 

 

Figure 6.9 - Weighted measure for varying the scaling factor used to generate periods, 
w, in w[1, 100]ms, from 0.5 to 10 

We also investigated the effect of the scaling factor used to generate task 

periods, to simulate tasksets with shorter to longer execution times. We varied 

the scaling factor, w, from 0.5 to 10 and hence the range of task periods given by       

w[1, 100]ms. A lower scaling factor resembles tasks with shorter execution 

times, as seen in the PapaBench benchmark. A higher scaling factor resembles 

tasks with higher execution times and commensurately longer periods, as seen 

in the Mälardalen and SCADE benchmarks. The results in Figure 6.9 show the 

layout optimisation performs best when task periods are relatively short, as that 

is when the pre-emption costs are highest. Once the period range is greater than 

[10, 1000]ms, the relative pre-emption costs are low enough that performing the 

layout optimisation only makes a very small improvement on the schedulability 

of the tasksets. 

6.3 Summary 

The EDF scheduling algorithm is an optimal scheduling algorithm assuming 

negligible pre-emption costs for single processors. However, it has been largely 

disregarded by industry. Whereas FP despite offering lower theoretical 

schedulable processor utilisation, is relatively popular with many commercial 

real- time operating systems supporting it. 
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Previous work by Buttazzo [38] has compared the two algorithms, but it did not 

take into account CRPD which can have a significant effect on the 

schedulability of a taskset. 

In this chapter we performed a detailed comparison of FP and EDF taking into 

account CRPD using state-of-the-art CRPD analysis for FP [7], and EDF, 

presented in Chapter 3. This showed the feasibility of simple, yet effective, task 

layout optimisation techniques for EDF. We found that when CRPD is 

considered, the performance gains offered by EDF over FP, while still 

significant, are somewhat diminished. This is most likely due to greater 

pessimism in the CRPD analysis for EDF than FP. We also discovered that in 

configurations that cause relatively high CRPD, optimising task layout can be 

just as effective as changing the scheduling algorithm from FP to EDF. This is 

important in an industrial setting as it is considerably simpler and cheaper to 

control the task layout via the linker than it is to change the scheduler. 

Nevertheless, our evaluations showed that changing to an EDF scheduler and 

optimising the task layout provides a gain over FP scheduling. Although this 

gain was not as pronounced as the advantage that EDF has over FP when pre-

emption costs are not accounted for via analysis. 
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CHAPTER 7.  CRPD ANALYSIS 

FOR HIERARCHICAL 

SCHEDULING 

There is a growing need in industry to combine multiple applications together 

to build complex embedded real-time systems. This is driven by the need to re-

use legacy applications that once ran on slower, but dedicated processors. 

Typically, it is too costly to go back to the design phase resulting in a need to 

use applications as-is. Furthermore, there are often a number of vendors 

involved in implementing today’s complex embedded real-time systems, each 

supplying separate applications which must then be integrated together. 

Hierarchical scheduling provides a means of composing multiple applications 

onto a single processor, such that the temporal requirements of each application 

are met. Each application, or component, has a dedicated server. A global 

scheduler then allocates processor time to each server, during which the 

associated component can use its own local scheduler to schedule its tasks.   

In pre-emptive multi-tasking systems, CRPD is caused by the need to re-fetch 

cache blocks belonging to the pre-empted task which were evicted from the 

cache by the pre-empting task. This is further complicated when using 

hierarchical scheduling as servers will often be suspended while their 

components’ tasks are still active. In this case they have started, but have not 

yet completed executing. While a server is suspended the cache can be polluted 

by the tasks belonging to other components. When the global scheduler then 

switches back to the first server, tasks belonging to the associated component 

may have to reload blocks into cache that were in use before the global context 

switch. 

In this chapter we present new analysis that bounds the CRPD caused by blocks 

being evicted from cache by other components in hierarchical systems. The 
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analysis is for a hierarchical system with a global non-pre-emptive scheduler 

and a local pre-emptive Fixed Priority (FP) or Earliest Deadline First (EDF) 

scheduler. 

Related Work on Hierarchical Scheduling 
Hierarchical scheduling has been studied extensively in the past 15 years. Deng 

and Liu [56] were the first to propose such a two-level scheduling approach. 

Later Feng and Mok [60] proposed the resource partition model and 

schedulability analysis based on the supply bound function. Shih and Lee [111] 

introduced the concept of a temporal interface and the periodic resource model, 

and refined the analysis of Feng and Mok. Kuo and Li [76] and Saewong et al. 

[108] specifically focused on fixed priority hierarchical scheduling. Lipari and 

Bini [83] solved the problem of computing the values of the partition 

parameters to make an application schedulable. Davis and Burns [50] proposed 

a method to compute the response time of tasks running on a local fixed 

priority scheduler. Later, Davis and Burns [49] investigated selecting optimal 

server parameters for fixed priority pre-emptive hierarchical systems. When 

using a local EDF scheduler Lipari et al. [82] [84] investigated allocating server 

capacity to components, proposing an exact solution. Recently Fisher and 

Dewan [64] developed a polynomial-time approximation with minimal over 

provisioning of resources. 

Hierarchical systems have been used mainly in the avionics industry. The 

Integrated Modular Avionics (IMA) [119] [10] is a set of standard specifications for 

simplifying the development of avionics software. Among other requirements it 

allows different independent applications to share the same hardware and 

software resources [11]. The ARINC 653 standard [11] defines temporal 

partitioning for avionics applications. The global scheduler is a simple Time 

Division Multiplexing (TDM), in which time is divided into frames of fixed 

length, each frame is divided into slots and each slot is assigned to one 

application. 

7.1 System Model Extension 

In this section we describe the extension to our system model presented in 

Section 2.1.1 for hierarchical scheduling. 

We assume a single processor system comprising m applications or 

components, each with a dedicated server (S1..Sm) that allocates processor 
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capacity to it. We use Ψ to represent the set of all components in the system. G 

is used to indicate the index of the component that is being analysed. Each 

server SG has a budget QG and a period PG, such that the associated component 

will receive QG units of execution time from its server every PG units of time. 

Servers are assumed to be scheduled globally using a non-pre-emptive 

scheduler, as found in systems that use time partitioning to divide up access to 

the processor. While a server has remaining capacity and is allocated the 

processor, we assume that the tasks of the associated component are scheduled 

according to the local scheduler policy. If there are no tasks in the associated 

component to schedule, we assume that the processor idles until the server 

exhausts all of its capacity, or a new task in the associated component is 

released. 

The system comprises a taskset Г made up of a fixed number of tasks (τ1..τn) 

divided between the components. Each component contains a strict subset of 

the tasks, represented by ГG. For simplicity, we assume that the tasks are 

independent and do not share resources requiring mutually exclusive access, 

other than the processor. We note that global and local resource sharing has 

been extensively studied for hierarchical systems [51] [23] [13]. Resource 

sharing and its effects on CRPD have also been studied for single level systems 

[6] [7].  

In the case of a local FP scheduler, we use the notation hp(G,i) and hep(G,i) to 

restrict hp(i) and hep(i) to just tasks of component G. 

Each component G also has a set of UCBs, UCBG and a set of ECBs, ECBG, that 

contain respectively all of the UCBs, and all of the ECBs, of the associated tasks, 

 G UCBUCBG




i
i


and  G ECBECBG




i
i


. 

7.2 Hierarchical Schedulability Analysis 

Hierarchical scheduling is a technique that allows multiple independent 

components to be scheduled on the same system. A global scheduler allocates 

processing resources to each component via server capacity. Each component 

can then utilise the server capacity by scheduling its tasks using a local 

scheduler. 
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Supply Bound Function 

In hierarchical systems components do not have dedicated access to the 

processor, but must instead share it with other components. The supply bound 

function [111], or specifically the inverse of it, can be used to determine the 

maximum amount of time needed by a specific server to supply some capacity 

c.  

Figure 7.1 shows an example for server SG with QG = 5 and PG = 8. Here we 

assume the worst case scenario where a task is activated just after the server’s 

budget is exhausted. In this case the first instance of time at which tasks can 

receive some supply is at 2(PG - QG) = 6. 

 

Figure 7.1 – Example showing how server capacity can be supplied to components. 
General case of a server where QG = 5 and PG = 8 showing it can take up to 6 time units 
before a task receives supply 

We define the inverse supply bound function, isbf, for component G as Gisbf  [106]: 
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In order to account for component level CRPD we must define two terms. We 

use  tEG  to denote the maximum number of times server SG can be both 

suspended and resumed within an interval of length t: 
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Figure 7.2 shows an example global schedule for three components, G, Z and Y. 

When t >0 server SG can be suspended and resumed at least once. Then for each 

increase in t by PG, server SG could be suspended and resumed one additional 

time per increase in t by PG. We note that technically the number of times a 

server can be both suspended and resumed increases by one at t = PG + 2,           
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t = (2 × PG) + 2, etc… Therefore equation (7.2) is a conservative bound on the 

number of times that a server is both suspended and resumed within an 

interval of length t. 

 

Figure 7.2 - Example global schedule to illustrate the server suspend and resume 
calculation with PG = PZ = PY = 8, QG = 5, QZ = 2, QY = 1 

We use the term disruptive execution to describe an execution of server SZ while 

server SG is suspended that results in tasks from component Z evicting cache 

blocks that tasks in component G may have loaded and need to reload. Note 

that if server SZ runs more than once while server SG is suspended, its tasks 

cannot evict the same blocks twice. As such, the number of disruptive 

executions is bounded by the number of times that server SG can be both 

suspended and resumed,  tEG . We use XZ to denote the maximum number of 

such disruptive executions.  
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Figure 7.3 shows an example global schedule for components G and Z. Between 

t=0 and t=6, component Z executes twice, but can only evict cache blocks that 

tasks in component G might have loaded and need to reload once.  

 

Figure 7.3 - Example global schedule to illustrate the disruptive execution calculation 
with PG = PZ = 8, QG = 5, QZ = 3 

7.3 CRPD Analysis for Hierarchical Systems: 

Local FP Scheduler 

In this section, we describe how CRPD analysis can be extended for use in 

hierarchical systems with a local FP scheduler and integrated into the 

schedulability analysis for it. We do so by extending the concepts of ECB-Only, 

UCB-Only, UCB-Union and UCB-Union Multiset analysis introduced in [37], 
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[77], [115] and [7], described in Section 3.2, respectively to hierarchical systems. 

This analysis assumes a non-pre-emptive global scheduler such that the 

capacity of a server is supplied without pre-emption, but may be supplied 

starting at any time during the server’s period. It assumes that tasks are 

scheduled locally using a pre-emptive fixed priority scheduler. We explain a 

number of different methods, building up in complexity. 

The analysis needs to capture the cost of reloading any UCBs into cache that 

may be evicted by tasks belonging to other components; in addition to the cost 

of reloading any UCBs into cache that may be evicted by tasks in the same 

component. For calculating the intra-component CRPD, we use the Combined 

Multiset approach by Altmeyer et al. [7], which is described in Section 3.2. This 

can be achieved by combining the intra-component CRPD due to pre-emptions 

between tasks within the same component via the Combined Multiset 

approach, equation (3.6), with modified response time analysis for non-

dedicated processor access, with a new term,
G

i  : 

 





































 
 



 G
i

iGj

jij

j

ji
i

G
i C

T

JR
CisbfR 




),(hp

,
1  (7.4) 

Here,
G

i  represents the CRPD on task τi in component G caused by tasks in the 

other components running while the server, SG, for component G is suspended. 

Use of the inverse supply bound function gives the response time of τi under 

server, SG, taking into account the shared access to the processor. 

ECB-Only 
A simple approach to calculate component CPRD is to consider the maximum 

effect of the other components by assuming that every block evicted by the 

tasks in the other components has to be reloaded. There are two different ways 

to calculate this cost. 

ECB-Only-All 

The first option is to assume that every time server SG is suspended, all of the 

other servers run and their tasks evict all the cache blocks that they use. We 

therefore take the union of all ECBs belonging to the other components to get 

the number of blocks that could be evicted. We then sum them up  iREG  times, 

where  iREG  upper bounds the number of times server SG could be both 

suspended and resumed during the response time of task τi, see equation (7.2). 

We can calculate the CRPD impacting task τi of component G due to the other 

components in the system as: 
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ECB-Only-Counted 

The above approach works well when the global scheduler uses a TDM 

schedule, such that each server has the same period and/or components share a 

large number of ECBs. If some servers run less frequently than server SG, then 

the number of times that their ECBs can evict blocks may be over counted. One 

solution to this problem is to consider each component separately. This is 

achieved by calculating the number of disruptive executions that server SZ can 

have on task τi in component G during the response time of task τi, given by 









i

GZ RSX , , see equation (7.3). We can then calculate an alternative bound for 

the CRPD incurred by task τi of component G due to the other components in 

the system as: 
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Note that the ECB-Only-All and ECB-Only-Counted approaches are 

incomparable. 

UCB-Only 
Alternatively we can focus on the tasks in component G, hence calculating 

which UCBs could be evicted if the entire cache was flushed by the other 

components in the system. However, task τi may have been pre-empted by 

higher priority tasks. So we must bound the pre-emption cost by considering 

the number of UCBs over all tasks in component G that may pre-empt task τi, 

and task τi itself, given by  iGk ,hep .  
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We multiply the number of UCBs, equation (7.7), by the number of times that 
server SG can be both suspended and resumed during the response time of task 
τi to give:  
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This approach is incomparable with the ECB-Only-All and ECB-Only-Counted 

approaches. 

UCB-ECB 
While it is a sound to only consider the ECBs of the tasks in the other 

components, or only the UCBs of the tasks in the component of interest, these 

approaches are clearly pessimistic. We can tighten the analysis by considering 

both. 

UCB-ECB-All 

We build upon the ECB-Only-All and UCB-Only methods. For task τi and all 

tasks that could pre-empt it in component G, we first calculate which UCBs 

could be evicted by the tasks in the other components, this is given by equation 

(7.7). We then take the union of all ECBs belonging to the other components to 

get the number of blocks that could potentially be evicted. We then calculate the 

intersection between the two unions to give an upper bound on the number of 

UCBs evicted by the ECBs of the tasks in the other components. 
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This is then multiplied by the number of times that the server SG could be both 

suspended and resumed during the response time of task τi to give: 
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By construction, the UCB-ECB-All approach dominates the ECB-Only-All and 

UCB-Only approaches.  

UCB-ECB-Counted 

Alternatively, we can consider each component in isolation by building upon 

the ECB-Only-Counted and UCB-Only approaches. For task τi and all tasks that 

could pre-empt it in component G, we start by calculating an upper bound on 

the number of blocks that could be evicted by component Z: 
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We then multiply this number of blocks by the number of disruptive executions 

that server SZ can have during the response time of task τi, and sum this up for 

all components to give: 
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By construction, the UCB-ECB-Counted approach dominates the ECB-Only-

Counted approach, but is incomparable with the UCB-Only approach. 

UCB-ECB-Multiset 
The UCB-ECB approaches are pessimistic in that they assume that each 

component can, directly or indirectly, evict UCBs of each task  iGk ,hep  in 

component G up to  i
G RE  times during the response time of task τi. While this is 

potentially true when τk = τi, it can be a pessimistic assumption in the case of 

intermediate tasks which may have much shorter response times. The UCB-

ECB-Multiset approaches, described below, remove this source of pessimism by 

upper bounding the number of times intermediate task  iGk ,hep  can run 

during the response time of τi. They then multiply this value by the number of 

times that the server SG can be both suspended and resumed during the 

response time of task τk,  k
G RE . 

UCB-ECB-Multiset-All 

First we form a multiset ucb
iGM ,  that contains the UCBs of task τk repeated 

   ikk
G RERE  times for each task  iGk ,hep . This multiset reflects the fact that 

the UCBs of task τk can only be evicted and reloaded    ikk
G RERE  times during 

the response time of task τi as a result of server SG being suspended and 

resumed.  
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Then we form a second multiset Aecb
iGM 

,  that contains  i
G RE  copies of the ECBs 

of all of the other components in the system. This multiset reflects the fact that 

the other servers’ tasks can evict blocks that may subsequently need to be 

reloaded at most  i
G RE  times within the response time of task τi. 
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The total CRPD incurred by task τi, in component G due to the other 

components in the system is then bounded by the size of the multiset 

intersection of ucb
iGM , , equation (7.13), and Aecb

iGM 
, , equation (7.14). 
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UCB-ECB-Multiset-Counted 

For the UCB-ECB-Multiset-Counted approach, we keep equation (7.13) for 

calculating the set of UCBs; however, we form a second multiset Cecb
iGM 

,  that 

contains 



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GZ RSX ,  copies of the ECBs of each other component Z in the 

system. This multiset reflects the fact that tasks of each server SZ can evict 

blocks at most 
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The total CRPD incurred by task τi, in component G due to the other 

components in the system is then bounded by the size of the multiset 

intersection of ucb
iGM , , equation (7.13), and Cecb

iGM 
, , equation (7.16).  
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UCB-ECB-Multiset-Open 

In open hierarchical systems the other components may not be known a priori as 

they can be introduced into a system dynamically. Additionally, even in closed 

systems, full information about the other components in the system may not be 

available until the final stages of system integration. In both of these cases, only 

the UCB-Only approach can be used as it requires no knowledge of the other 

components. We therefore present a variation called UCB-ECB-Multiset-Open 

that improves on UCB-Only while bounding the maximum component CRPD 

that could be caused by other unknown components. This approach draws on 

the benefits of the Multiset approaches, by counting the number of intermediate 

pre-emptions, while also recognising the fact that the cache utilisation of the 
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other components can often be greater than the size of the cache. As such, the 

precise number of ECBs does not matter. 

For the UCB-ECB-Multiset-Open approach we keep equation (7.13) for 

calculating the set of UCBs. Furthermore, we form a second multiset Oecb
iGM 

,  that 

contains  i
G RE  copies of all cache blocks. This multiset reflects the fact that 

server SG can be both suspended and resumed, and the entire contents of the 

cache evicted at most  i
G RE  times within the response time of task τi. 

   
 


i
G RE

Oecb
iG NM ,..2,1,   (7.18) 

Where N is the number of cache sets. 

The total CRPD incurred by task τi, in component G due to the other unknown 

components in the system is then bounded by the size of the multiset 

intersection of ucb
iGM , , equation (7.13), and Oecb

iGM 
, , equation (7.18). 

 Oecb
iG

ucb
iG

G
i MM  ,,BRT  (7.19) 

7.3.1 Comparison of Approaches 

We have presented a number of approaches that calculate the CRPD due to 

global context switches, server switching, in a hierarchical system. Figure 7.4 

shows a Venn diagram representing the relationships between the different 

approaches. The larger the area, the more tasksets the approach deems 

schedulable. The diagram highlights the incomparability between the ‘-All’ and 

‘-Counted’ approaches. The diagram also highlights dominance. For example, 

by construction, UCB-ECB-Multiset-All dominates UCB-ECB-Multiset-Open 

and UCB-ECB-All, and UCB-All dominates ECB-Only-All. 

We now give worked examples illustrating both incomparability and 

dominance relationships between the different approaches.  
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Figure 7.4 - Venn diagram showing the relationship between the different approaches 

Consider the following example with three components, G, A and B, where 

component G has one task, Let BRT=1,   101 REG , 10, 1 






 RSX GA , 

2, 1 






 RSX GB , }2,1{AECB  and }10,9,8,7,6,5,4,3{BECB . In this example 

components  A and G run at the same rate, while component B runs at a tenth of 

the rate of component G.  

ECB-Only-All considers the ECBs of component B effectively assuming that 

component B runs at the same rate as component G: 

 

   

  100101010,9,8,7,6,5,4,3,2,110

10,9,8,7,6,5,4,32,1101

ECBECBBRT

1

11







G

BAGG RE





 

By comparison ECB-Only-Counted considers components A and B individually, 

and accounts for the ECBs of component B based on the number of disruptive 

executions that it may have. 

 

    3682210

}10,9,8,7,6,5,4,3{2

2,110
1

ECB,

ECB,
BRT

1

1

1

1



























































G

BGB
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G

RSX

RSX


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We now present a more detailed worked example for all approaches where the 

ECB-Only-All approach outperforms the ECB-Only-Counted approach. This 

confirms the incomparability of the -All and -Counted approaches. 
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Figure 7.5 - Example schedule and UCB/ECB data for four components to demonstrate 
how the different approaches calculate CRPD 

Figure 7.5 shows an example schedule for four components, G, A, B and C, 

where component G has two tasks. Let BRT=1,   11 REG ,   22 REG ,   121 RE  

and   122 RE , and the number of disruptive executions be: 

1, 1 






 RSX GA , 1, 1 






 RSX GB , 1, 1 






 RSX GC  and 2, 2 






 RSX GA , 2, 2 






 RSX GB , 

2, 2 






 RSX GC . 

The following examples show how some of the approaches calculate the 

component CRPD for task τ2 of component G. 

ECB-Only-All: 

 

     

  189210,9,8,7,6,5,4,3,22
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ECB-Only-Counted: 
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UCB-Only: 

 

 
6}3,2,1{2

}3,2,1{}2{21

UCBUCBBRT

2

2122




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All of those approaches overestimated the CRPD, although UCB-Only achieves 

a much tighter bound than the ECB-Only-All and ECB-Only-Counted 

approaches. The bound can be tightened further by using the more 

sophisticated approaches, for example, UCB-ECB-Multiset-Counted: 

   

}3,3,2,2,2,1,1{}3,2,1{}3,2,1{}2{

UCBUCB
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
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5}3,3,2,2,2{1BRT 2,2,2  Cecb
G

ucb
G

G MM  

In this specific case, the UCB-ECB-Multiset-All approach calculates the tightest 

bound: 

 
 

      

  
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4}3,3,2,2{1BRT 2,2,2  Aecb
G

ucb
G

G MM  

Assuming there are 12 cache sets in total1, the UCB-ECB-Multiset-Open 

approach gives: 

                                                 

1 Although we used 12 cache sets in this example, we note that the result obtained is in fact 
independent of the total number of cache sets. 
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6}3,3,2,2,1,1{1BRT 2,2,2  Oecb
G

ucb
G

G MM  

7.4 CRPD Analysis for Hierarchical Systems: 

Local EDF Scheduler 

In this section we present CRPD analysis for hierarchical systems with a local 

EDF scheduler by adapting the analysis that we presented for a local FP 

scheduler in Section 7.3.  

Overall, the analysis must account for the cost of reloading any UCBs into cache 

that may be evicted by tasks running in the other components. This is in 

addition to the cost of reloading any UCBs into cache that may be evicted by 

tasks in the same component. For calculating the intra-component CRPD, we 

use the Combined Multiset approach presented in Chapter 4 for EDF 

scheduling of a single level system. To account for the component level CRPD, 

we define a new term 
G

t   that represents the CRPD incurred by tasks in 

component G due to tasks in the other components running while the server, 

SG, for component G is suspended. Combining equation (4.12) with Gisbf , 

equation (7.1), and 
G

t  , we get the following expression for the modified 

processor demand1 within an interval of length t: 
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 
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G
tjtj

j

jG C
T

Dt
isbfth

1

,1 ,0max)(   (7.20) 

In order to account for component CRPD we must define an additional term. 

The set of tasks in component G that can be affected by the server SG being both 

suspended and resumed in an interval of length t, aff(G,t) is based on the 

relative deadlines of the tasks. It captures all of the tasks whose relative 

deadlines are less than or equal to t as they need to be included when 

                                                 

1 Strictly, h(t) is the maximum time required for the server to provide the processing time 
demand. 
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calculating h(t). See Theorem 4.2 in Section 4.1 for a proof for why tasks whose 

deadlines are larger than t can be excluded. This gives: 

    ii DttG G   |,ffa   (7.21) 

ECB-Only 
Recall that the ECB-Only approach to calculate component CPRD considers the 

maximum effect of the other components by assuming that every block evicted 

by the tasks in the other components has to be reloaded. There are two different 

ways to calculate this cost. 

ECB-Only-All 

The ECB-Only-All approach assumes that every time server SG is suspended, all 

of the other servers run and their tasks evict all the cache blocks that they use. 

We therefore take the union of all ECBs belonging to the other components to 

get the number of blocks that could be evicted. We then sum them up  tEG  

times, where  tEG  upper bounds the number of times server SG could be both 

suspended and resumed during an interval of length t. We can calculate the 

CRPD impacting tasks in component G due to the other components in the 

system as: 

 

  
GZ

Z

GG
t tE




 ZECB  BRT  (7.22) 

ECB-Only-Counted 

The ECB-Only-Counted approach considers each component separately by 

calculating the number of disruptive executions that server SZ can have on tasks 

in component G during an interval of length t, 






 tSX GZ , . We can then calculate 

an alternative bound for the CRPD incurred by tasks in component G due to the 

other components in the system as: 

   





GZ
Z

GZG
t tSX ZECB,  BRT  (7.23) 

Note that the ECB-Only-All and ECB-Only-Counted approaches are 

incomparable. 
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UCB-Only 
The UCB-Only approach focuses on the tasks in component G, hence 

calculating which UCBs could be evicted if the entire cache was flushed by the 

other components in the system. With a local EDF scheduler, we must consider 

all tasks in component G that are both released and have their deadlines within 

an interval of length t. We therefore take the union of the UCBs of all tasks in 

component G that have a deadline less than t, 




 tGk ,aff , to give: 

 

 


tGk

k

,aff

UCB


 (7.24) 

We then multiply the number of UCBs, equation (7.24), by the number of times 

that server SG can be both suspended and resumed during an interval of length 

t.  

 
 

 


tGk

k
GG

t tE
,aff

UCB   BRT


  (7.25) 

This approach is incomparable with the ECB-Only-All and ECB-Only-Counted 
approaches. 

UCB-ECB 
We now re-formulate the UCB-ECB approaches for a local EDF scheduler. 

UCB-ECB-All 

We build upon the ECB-Only-All and UCB-Only methods. We start with the 

union of the UCBs of all tasks in component G that could be affected within an 

interval of length t, (7.24). We then take the union of all ECBs belonging to the 

other components to give the number of blocks that could potentially be 

evicted. We then calculate the intersection between the two unions to give an 

upper bound on the number of UCBs evicted by the ECBs of the tasks in the 

other components: 
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
GZ

ZtGk

k
Z
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ECBUCB  (7.26) 

This upper bound is then multiplied by the number of times that the server SG 

could be both suspended and resumed during an interval of length t to give: 
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By construction, the UCB-ECB-All approach dominates the ECB-Only-All and 

UCB-Only approaches.  

UCB-ECB-Counted 

With the UCB-ECB-Counted approach we start by calculating an upper bound 

on the number of blocks that could be used by tasks in component G which are 

both released and have their deadlines within an interval of length t. We then 

take the intersection of these UCBs with the set of ECBs of component Z to give 

the number of blocks that could be evicted by component Z: 

 

 
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,aff

ECBUCB 
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
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k  (7.28) 

We then multiply this number of blocks by the number of disruptive executions 

that server SZ can have during an interval of length t and sum this up for all 

components to give: 
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By construction, the UCB-ECB-Counted approach dominates the ECB-Only-

Counted approach, but is incomparable with the UCB-Only approach. 

UCB-ECB-Multiset 
The UCB-ECB approaches are pessimistic in that they assume that each 

component can, directly or indirectly, evict UCBs of each task 




 tGk ,aff  in 

component G up to  tEG  times during an interval of length t. The UCB-ECB-

Multiset approaches, described below, remove this source of pessimism by 

upper bounding the number of times server SG can be both suspended and 

resumed while each task G
k   is running during an interval of length t. 

We first calculate an upper bound on the UCBs that if evicted by tasks in the 

other components may need to be reloaded. We do this by forming a multiset 

that contains the UCBs of task τk repeated    tEDE kk
G  times for each task in 

G
k  . This multiset reflects the fact that server SG can be suspended and 
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resumed at most  k
G DE  times during a single schedulable job of task τk and 

there can be at most  tEk  jobs of task τk that have their release times and 

absolute deadlines within the interval of length t. 
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
 UCB,  (7.30) 

Note that we do not restrict the set of tasks G
k   using 





 tGk ,aff , as  tEk  

will be 0 for any task which has a deadline shorter than t. 

The second step is to determine which ECBs of the tasks in the other 

components could evict the UCBs in equation (7.30), for which we present three 

different approaches. 

UCB-ECB-Multiset-All 

The first option is to assume that every time server SG is suspended, all of the 

other servers run and their tasks evict all the cache blocks that they use. We 

therefore take the union of all ECBs belonging to the other components to get 

the set of blocks that could be evicted. We form a second multiset Aecb
tGM 

,  that 

contains )(tEG
 copies of the ECBs of all of the other components in the system. 

This multiset reflects the fact that the other servers’ tasks can evict blocks, that 

need to be reloaded, at most )(tEG
 times within an interval of length t. 
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The total CRPD incurred by tasks in component G due to the other components 

in the system is then given by the size of the multiset intersection of 
ucb

tG
M

, , 

equation (7.30), and Aecb
tGM 

, , equation (7.31): 

 Aecb
tG

ucb
tG

G
t MM  ,,BRT  (7.32) 

UCB-ECB-Multiset-Counted 

The second option is to consider each component separately by calculating the 

number of disruptive executions, 






 tSX GZ , , that server SZ can have on tasks in 

component G during t. We form a second multiset Cecb
tGM 

,  that contains 








 tSX GZ ,  copies of ECBZ for each of the other components Z in the system. This 
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multiset reflects the fact that the tasks of each component Z can evict blocks at 

most 






 tSX GZ ,  times within an interval of length t. 
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The total CRPD incurred by tasks in component G which are released and have 

their deadlines in an interval of length t, due to the other components in the 

system is then given by the size of the multiset intersection of 
ucb

tGM , , equation 

(7.30), and Cecb
tGM 

, , equation (7.33) 

 Cecb
tG

ucb
tG

G
t MM  ,,BRT  (7.34) 

UCB-ECB-Multiset-Open 

With the UCB-ECB-Multiset-Open approach we form a second multiset 
Oecb

tGM 
,  

that contains  tEG  copies of all cache blocks. This multiset reflects the fact that 

server SG can be both suspended and then resumed, after the entire contents of 

the cache have been evicted at most )(tEG
 times within an interval of length t. 

   
 


tE

Oecb
tG

G

NM ,..2,1, 
 (7.35) 

Where N is the number of cache sets. 

The total CRPD incurred by tasks in component G due to the other unknown 

components in the system is then given by the size of the multiset intersection 

of 
ucb

tGM , , equation (7.30), and 
Oecb

tGM 
, , equation (7.35). 

 Oecb
tG

ucb
tG

G
t MM  ,,BRT  (7.36) 

7.4.1 Effect on Task Utilisation and h(t) Calculation 

As the component level CRPD analysis effectively inflates the execution time of 

tasks by the CRPD that can be incurred in an interval of length t, the upper 

bound L used for calculating the processor demand h(t) must be adjusted. This 

is an extension to the adjustment that must be made for task level CRPD as 

described in Section 4.2.1. This is achieved by calculating an upper bound on 

the utilisation due to CRPD that is valid for all intervals of length greater than 

some value Lc. This CRPD utilisation value is then used to inflate the taskset 
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utilisation, and thus compute an upper bound Ld on the maximum length of the 

busy period. This upper bound is valid provided that it is greater than Lc, 

otherwise the actual maximum length of the busy period may lie somewhere in 

the interval [Ld, Lc], hence we can use max(Lc, Ld) as a bound. 

The first step is to assign t = Lc = 100 Tmax which limits the overestimation of 

both the task level CRPD utilisation tU t
  and the component level CRPD 

utilisation tU G
t

G   to at most 1%. We determine GU   by calculating
G

t   

however when calculating the multiset of the UCBs that could be affected 
ucb

tGM , , 

equation (7.30), )(tEmax
x  is substituted for )(tEx  to ensure that the computed 

value of GU  is a valid upper bound for all intervals of length t ≥ Lc. 
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We use a similar technique of substituting )(tEmax
x  for )(tEx  in the calculation of 

the task level CRPD, as described in Section 4.2.1, to give U . 

If 1 GUUU  , then the taskset is deemed unschedulable, otherwise an 

upper bound on the length of the busy period can be computed via a modified 

version of equation (2.4): 
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rearranged to give:  
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Then, substituting in Tmax for each value of Tj the upper bound is given by: 
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max
 (7.40) 

Finally, L = max(Lc, Ld) can then be used as the maximum value of t to check in 

the EDF schedulability test. 

7.4.2 Comparison of Approaches 

In this section we have presented a number of approaches for calculating 

component CRPD in a hierarchical system with a local EDF scheduler. These 
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approaches all have the same dominance and incomparability relationships as 

the approaches presented in Section 7.3 for a local FP scheduler. We therefore 

refer the reader to Section 7.3.1 for an explanation of the relationships between 

the approaches. However, the relative performance between the approaches 

differ from the FP variants as shown in the next section. 

7.5 Case Study 

In this section we compare the different approaches for calculating CRPD in 

hierarchical scheduling using tasksets based on a case study. The case study 

uses PapaBench1 which is a real-time embedded benchmark based on the 

software of a GNU-license UAV, called Paparazzi. WCETs, UCBs, and ECBs 

were calculated for the set of tasks using aiT2 based on an ARM processor 

clocked at 100MHz with a 2KB direct-mapped instruction cache. The cache was 

again setup with a line size of 8 Bytes, giving 256 cache sets, 4 Byte instructions, 

and a BRT of 8μs. WCETs, periods, UCBs, and ECBs for each task based on the 

target system are provided in Table 7.1. As in Chapter 6, we made the following 

assumptions in our evaluation to handle the interrupt tasks: 

 Interrupts have a higher priority than the servers and normal tasks. 

 Interrupts cannot pre-empt each other. 

 Interrupts can occur at any time. 

 All interrupts have the same deadline which must be greater than or 

equal to the sum of their execution times in order for them to be 

schedulable. 

 The cache is disabled whenever an interrupt is executing and enabled 

again after it completes. 

Based on these assumptions, we integrated interrupts into the model by 

replacing the server capacity QG in equation (7.1) by QG - IG, where IG is the 

maximum execution time of all interrupts in an interval of length QG. This 

effectively assumes that the worst case arrival of interrupts could occur in any 

component and steals time from its budget. 

 

 

                                                 

1 http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97 

2 http://www.absint.com/ait/ 
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Task UCBs ECBs WCET Period 

FLY-BY-WIRE 
    

I1 interrupt_radio 2 10 0.210 ms 25 ms 

I2 interrupt_servo 1 6 0.167 ms 50 ms 

I3 interrupt_spi 2 10 0.256 ms 25 ms 

T1 check_failsafe 10 132 1.240 ms 50 ms 

T2 check_mega128_values 10 130 5.039 ms 50 ms 

T3 send_data_to_autopilot 10 114 2.283 ms 25 ms 

T4 servo_transmit 2 10 2.059 ms 50 ms 

T5 test_ppm 30 255 12.579 ms 25 ms 

AUTOPILOT 
    

I4 interrupt_modem 2 10 0.303 ms 100 ms 

I5 interrupt_spi_1 1 10 0.251 ms 50 ms 

I6 interrupt_spi_2 1 4 0.151 ms 50 ms 

I7 interrupt_gps 3 26 0.283 ms 250 ms 

T5 altitude_control 20 66 1.478 ms 250 ms 

T6 climb_control 1 210 5.429 ms 250 ms 

T7 link_fbw_send 1 10 0.233 ms 50 ms 

T8 navigation 10 256 4.432 ms 250 ms 

T9 radio_control 0 256 15.681 ms 25 ms 

T10 receive_gps_data 22 194 5.987 ms 250 ms 

T11 reporting 2 256 12.222 ms 100 ms 

T12 stabilization 11 194 5.681 ms 50 ms 

Table 7.1 - Execution times, periods and number of UCBs and ECBs for the tasks from 
PapaBench 

We assigned a deadline of 2ms to all of the interrupt tasks, and implicit 

deadlines so that Di = Ti, to the normal tasks. We then calculated the total 

utilisation for the system and then scaled Ti and Di up for all tasks in order to 

reduce the total utilisation to the target utilisation for the system. We used the 

number of UCBs and ECBs obtained via analysis, placing the UCBs in a group 

at a random location in each task. We then generated 1000 systems each 

containing a different allocation of tasks to each component, using the 

following technique. We split the normal tasks at random into 3 components 

with four tasks in two components and five in the other. In the case of local FP 

scheduling, we assigned task priorities according to deadline monotonic 

priority assignment. Next we set the period of each component’s server to 

12.5ms, which is half the minimum task period. Finally, we organised tasks in 

each component in memory in a sequential order based on their priority for FP, 

or their unique task index for EDF. Due to task index assignments, this gave the 

same task layout. We then ordered components in memory sequentially based 

on their index. 
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7.5.1 Success Ratio 

For each system the total task utilisation across all tasks not including pre-

emption cost was varied from 0.025 to 1 in steps of 0.025. For each utilisation 

value we initialised each servers’ capacity to the minimum possible value, the 

utilisation of all of its tasks. We then performed a binary search between this 

minimum and the maximum, 1 minus the minimum utilisation of all of the 

other components, until we found the server capacity required to make the 

component schedulable. As the servers all had equal periods, provided all 

components were schedulable and the total capacity required by all servers was 

≤ 100%, then the system was deemed schedulable at that specific utilisation 

level. In addition to evaluating each of the presented approaches, we also 

calculated schedulability based on no component pre-emption costs, but still 

including task level CRPD. For every approach the intra-component CRPD, 

between tasks in the same component, was calculated using either the 

Combined Multiset approach for FP [7], described in Section 3.2, or the 

Combined Multiset approach, introduced in Chapter 4 for EDF. 

The results for the case study for a local FP scheduler and local EDF scheduler 

are shown in Figure 7.6. Although we generated 1000 systems, they were all 

very similar as they are made up of the same set of tasks. The first point to note 

is that the FP approaches deem a higher number of tasksets schedulable than 

the EDF ones, despite EDF having a higher number of schedulable tasksets for 

the No-Component-Pre-emption-Cost case. In section 7.6.4, we explore the 

source of pessimism in the EDF analysis. Focusing on the different approaches, 

ECB-Only-Counted and ECB-Only-All perform the worst as they only consider 

the other components in the system. In the case of a local EDF scheduler, the 

ECB-Only-Counted approach is unable to deem any tasksets schedulable except 

at the lowest utilisation level. Next was UCB-ECB-Counted which though it 

considers all components, accounts for the other components pessimistically in 

this case study, since all servers have the same period. The remainder of the 

approaches all had very similar performance.  

We note that No-Component-Pre-emption-Cost reveals that the pre-emption 

costs are very small for the PapaBench tasks. This is due to a number of factors 

including the nearly harmonic periods, small range of task periods, and 

relatively low number of ECBs for many tasks. 
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Figure 7.6 - Percentage of schedulable tasksets at each utilisation level for the case study 
tasksets 

7.6 Evaluation 

In this section we compare the different approaches for calculating CRPD in 

hierarchical scheduling using synthetically generated tasksets. This allows us to 

explore a wider range of parameters and therefore give some insight into how 

the different approaches perform in a variety of cases.  

To generate the components and tasksets we generated n, default of 24, tasks 

using the UUnifast algorithm [32] to calculate the utilisation, iU , of each task so 

that the utilisations added up to the desired utilisation level. Periods Ti, were 

generated at random between 10ms and 1000ms according to a log-uniform 
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distribution. Ci was then calculated via iii TUC  . We generated two sets of 

tasksets, one with implicit deadlines, so that Di = Ti, and one with constrained 

deadlines. We used Di = y + x(Ti - y)) to generate the constrained deadlines, 

where x is a random number between 0 and 1, and y = max(Ti/2, 2 Ci). This 

generates constrained deadlines that are no less than half the period of the 

tasks. All results presented are for tasks with implicit deadlines. In general the 

results for constrained deadlines were similar with a lower number of systems 

deemed schedulable. The exception to this is that under a local EDF scheduler, 

the UCB-ECB-Multiset approaches showed an increase in schedulability when 

deadlines were reduced by a small amount. This behaviour is investigated and 

explained in Section 7.6.4. 

We used the UUnifast algorithm to generate the number of ECBs for each task 

so that the ECBs added up to the desired cache utilisation, default of 10. The 

number of UCBs was chosen at random between 0% and 30% of the number of 

ECBs on a per task basis, and the UCBs were placed in a single group at a 

random location in each task. 

We then split the tasks at random into 3 components with equal numbers of 

tasks in each. In the case of a local FP scheduler, we assigned task priorities 

according to Deadline Monotonic priority assignment. Next we set the period of 

each component’s server to 5ms, which was half the minimum possible task 

period. Finally we organised tasks in each component in memory in a 

sequential order based on their priority for FP, or their unique task index for 

EDF, which gave the same task layout, and then ordered components in 

memory sequentially based on their index. We generated 1000 systems using 

this technique. 

In our evaluations we used the same local scheduler in each component, so that 

all components were scheduled locally using either FP or EDF. However, we 

note that the analysis is not dependent on the scheduling policies of the other 

components and hence can be applied to a system where some components are 

scheduled locally using FP and others using EDF.  

7.6.1 Success Ratio 

We determined the schedulability of the synthetic tasksets using the approach 

described in the first paragraph of Section 7.5.1. 
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7.6.2 Baseline Evaluation 

We investigated the effect of key cache and taskset configurations on the 

analysis by varying the following key parameters: 

 Number of components (default of 3)  

 Server period (default of 5ms)  

 Cache Utilisation (default of 10) 

 Total number of tasks (default of 24)  

 Range of task periods (default of [10, 1000]ms)  

The results for the baseline evaluation under implicit deadline tasksets are 

shown in Figure 7.7. The results again show that the analysis for determining 

inter-component CRPD for a local FP scheduler deems a higher number of 

systems schedulable than the analysis for a local EDF scheduler. In the case of a 

local EDF scheduler, both ECB-Only approaches deemed no tasksets 

schedulable. In the case of a local FP scheduler ECB-Only-Counted is least 

effective as it only considers the other components and does so individually, 

followed by ECB-Only-All. UCB-ECB-Counted deemed a higher number of 

tasksets schedulable, although it deemed significantly fewer for a local EDF 

scheduler than with a local FP scheduler. Under EDF, UCB-ECB-Multiset-

Counted was next, followed by all other approaches. Under FP, UCB-ECB-

Multiset-Counted performed similarly to UCB-Only and UCB-ECB-All, 

crossing over at a utilisation of 0.725 highlighting their incomparability. 

Although UCB-ECB-All dominates UCB-Only, it can only improve over UCB-

Only when the cache utilisation of the other components is sufficiently low that 

they cannot evict all cache blocks. The UCB-ECB-Multiset-All and UCB-ECB-

Multiset-Open approaches performed the best for both types of local scheduler. 

Despite only considering the properties of the component under analysis, the 

UCB-ECB-Multiset-Open approach proved highly effective. The reason for this 

is that once the size of the other components that can run while a given 

component is suspended is equal to or greater than the size of the cache then 

UCB-ECB-Multiset-All and UCB-ECB-Multiset-Open become equivalent. 
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Figure 7.7 - Percentage of schedulable tasksets at each utilisation level for the synthetic 
tasksets 

Consider the UCB-ECB-Multiset approaches under a local EDF scheduler. 

Examining equation (7.30) , we note that )()( tEDE kk
G  is based on the deadline 

of a task.  Therefore, the analysis under implicit deadlines effectively assumes 

the UCBs of all tasks in component G could be in use each time the server for 

component G is suspended. Whereas, under a local FP scheduler the analysis is 

able to bound how many times the server for component G is suspended and 

resumed based on the computed response time of each task which for many 

tasks is much less than its deadline, and period. Figure 7.8 shows a subset of the 

results presented in Figure 7.7. When component CRPD is not considered, EDF 

outperforms FP. However, once component CRPD is taken into account, the 

analysis for FP significantly outperforms the analysis for EDF. 
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Figure 7.8 - Percentage of schedulable tasksets at each utilisation level for the synthetic 
tasksets directly comparing the analysis for local FP and EDF schedulers 

7.6.3 Detailed Evaluation 

Evaluating all combinations of different task parameters is not possible. 

Therefore, the majority of our evaluations focused on varying one parameter at 

a time. To present these results, weighted schedulability measures [21] are used, 

which are described in Section 4.5.2. 

We used 100 systems and varied the utilisation level from 0.025 to 1.0 in steps of 

0.025 for the detailed evaluation.  

Number of Components 

To investigate the effects of splitting the overall set of tasks into components, 

we fixed the total number of tasks in the system at 24, and then varied the 

number of components from 1, with 24 tasks in one component, to 24, with 1 

task per component, see Figure 7.9. Components were allocated an equal 

number of tasks where possible, otherwise tasks were allocated to each 

component in turn until all tasks where allocated. We note that with one 

component, the UCB-Only and UCB-ECB-Multiset-Open approaches calculate a 

non-zero inter-component CRPD. This is because they assume that every time a 

component is suspended its UCBs are evicted, even though there is only one 

component running in the system. With two components the ECB-Only-All and 

ECB-Only-Counted approaches are equal. Above two components the ECB-

Only-All, ECB-Only-Counted and UCB-ECB-Counted approaches get rapidly 

worse as they over-count blocks. Under a local FP scheduler, all other 
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approaches improve as the number of components is increased above 2 up to 8 

components.  

 

 

Figure 7.9 - Weighted measure for varying the number of components from 1 to 16, 
while keeping the number of tasks in the system fixed 

Under a local EDF scheduler, all approaches that consider inter-component 

CRPD show a decrease in schedulability as the number of components increases 

above 2. The No-Component-Pre-emption-Cost case shows an increase in 

schedulability up to approximately 6-7 components before decreasing. This is 

because as the number of components increases, the amount of intra-

component CRPD from tasks in the same component decreases. This is then 

balanced against an increased delay in capacity from the components’ servers. 

As the number of components is increased, and therefore the number of servers, 

QG is reduced leading to an increase in PG – QG  which increases the maximum 

time between a server supplying capacity to its component. We also note that at 

two components, UCB-Only, UCB-ECB-All and UCB-ECB-Counted perform the 
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same; as do the Multiset approaches. This is because the ‘-All’ and ‘-Counted’ 

variations are equivalent when there is only one other component.   

System Size 

We investigated the effects of introducing components into a system by varying 

the system size from 1 to 10, see Figure 7.10, where each increase introduces a 

new component which brings along with it 5 tasks taking up approximately 

twice the size of the cache.  

 

 

Figure 7.10 - Weighted measure for varying the system size from 1 to 10 where an 
increase of 1 in the system size relates to introducing another component that brings 
along with it another 5 tasks and an increase in the cache utilisation of 2 

When there is one component, all approaches except for UCB-Only and UCB-

ECB-Multiset-Open give the same result as No-Component-Pre-emption-Cost. 

As expected, as more components are introduced into the system, system 

schedulability decreases for all approaches including No-Component-Pre-

emption-Cost. This is because each new component includes additional intra-
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component CRPD in addition to the inter-component CRPD that it causes when 

introduced. Furthermore, each new component that is introduced into the 

system effectively increases the maximum delay before search server supplies 

capacity to its components. Under a local FP scheduler, the ECB-Only-All 

approach outperforms UCB-ECB-Counted above a system size of 2, UCB-Only 

and UCB-ECB-All outperform UCB-ECB-Multiset-Counted above a system size 

of 3, highlighting their incomparability. Again we note that the ‘-All’ and ‘-

Counted’ variations are the same when there are only two components in the 

system. 

Server Period 

The server period is a critical parameter when composing a hierarchical system. 

The results for varying the server period from 1ms to 20ms, with a fixed range 

of task periods from 10 to 1000ms are shown in Figure 7.11. When the 

component pre-emption costs are ignored, having a small server period ensures 

that short deadline tasks meet their time constraints. However, switching 

between components clearly has a cost associated with it making it desirable to 

switch as infrequently as possible. As the server period increases, schedulability 

increases due to a smaller number of server context switches, and hence inter-

component CRPD, up until approximately 7ms under FP, and 7-8ms under 

EDF, for the best performance. At this point although the inter-component 

CRPD continues to decrease, short deadline tasks start to miss their deadlines 

due to the delay in server capacity being supplied unless server capacities are 

greatly inflated, and hence the overall schedulability of the system decreases. 

We note that in the case of EDF, the optimum server period is between 7-8ms 

for most approaches and 9ms for the UCB-ECB-Counted approach. This 

increase in optimum server period over FP is due to the increased calculated 

inter-component CRPD under a local EDF scheduler. 
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Figure 7.11 - Weighted measure for varying the server period from 1ms to 20ms (fixed 
task period range of 10ms to 1000ms) 

Cache Utilisation 

As the cache utilisation increases the likelihood of the other components 

evicting UCBs belonging to the tasks in the suspended component increases. 

The results for varying the cache utilisation from 0 to 20 are shown in Figure 

7.12. In general, all approaches show a decrease in schedulability as the cache 

utilisation increases. Up to a cache utilisation of around 2, the UCB-Only and 

UCB-ECB-Multiset-Open approaches do not perform as well as the more 

sophisticated approaches, as the other components do not evict all cache blocks 

when they run. We also observe that up to a cache utilisation of 1 under a local 

FP scheduler, the ECB-Only-Counted, and the ECB-Only-All approaches 

perform identically as no ECBs are duplicated. 

We note that the weighted measure stays relatively constant for No-

Component-Pre-emption-Cost up to a cache utilisation of approximately 2.5. 
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This is because the average cache utilisation of each component is still less than 

1, which leads to relatively small intra-component CRPD between tasks. 

 

 

Figure 7.12 - Weighted measure for varying the cache utilisation from 0 to 20 

Number of Tasks 

We also investigated the effect of varying the number of tasks, while keeping 

the number of components fixed. As we introduced more tasks, we scaled the 

cache utilisation in order to keep a constant ratio of tasks to cache utilisation. 

The results for varying the number of tasks from 3 to 48 are shown in Figure 

7.13. As expected, increasing the number of tasks leads to a decrease in 

schedulability across all approaches that consider inter-component CRPD. 

However, under a local EDF scheduler, the No-Component-Pre-emption-Cost 

case actually shows an increase peaking at 12 tasks before decreasing due to the 

intra-component CRPD. Consider that when there are 3 tasks, there is only one 

task per component, so there is effectively no local scheduling. Therefore 

schedulability is based solely on the global scheduling algorithm, which is why 
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the results for No-Component-Pre-emption-Cost are the same for FP and EDF 

with 3 tasks. As more tasks are introduced the execution time of individual 

tasks is reduced, making it less likely that a task will miss a deadline due to its 

components’ server not running. This increases schedulability until the effect of 

the intra-component CRPD outweighs it. 

 
 

 

Figure 7.13 - Weighted measure for varying the total number of tasks from 3 to 48 (1 to 
16 tasks per component) 

Task Period Range 

We varied the range of task periods from [1, 100]ms to  [20, 2000]ms, while 

fixing the server period at 5ms. The results are shown in Figure 7.14, as 

expected, the results show an increase in schedulability across all approaches as 

the task period range is increased.  
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Figure 7.14 - Weighted measure for varying the period range of tasks from [1, 100]ms to 
[20, 2000]ms (while fixing the server period at 5ms)  

7.6.4 EDF Analysis Investigation 

The results for varying the system size, Figure 7.10, and varying the cache 

utilisation, Figure 7.12, suggest that the inter-component CRPD analysis for a 

local EDF scheduler has a significant reduction in performance when CRPD 

costs are increased. In this section we present the results for varying the BRT, 

which impacts the cost of a pre-emption, and for varying the deadlines of tasks. 

These results give further insight into this behaviour. 

Block Reload Time (BRT) 

We investigated the effects of varying the BRT, effectively adjusting the costs of 

a pre-emption in Figure 7.15. With a BRT of 0 there is effectively no CRPD, so 

all approaches achieve the same weighted measure. Once the BRT increases, the 

results show that the performance of the approaches that consider inter-
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component CRPD under a local EDF scheduler are significantly reduced. This 

indicates that the analysis for a local EDF scheduler is particularly susceptible to 

higher pre-emption costs. 

 

 

Figure 7.15 - Weighted measure for varying the block reload time (BRT) from 0 to 10 in 
steps of 1 

Deadline Factor 

We also varied the task deadlines via Di = xTi by varying x from 0.1 to 1 in steps 

of 0.1. The results are shown in Figure 7.16. Under a local FP scheduler, all 

approaches showed an increase in the weighted measure as the deadlines are 

increased. Under a local EDF scheduler, the No-Component-Pre-emption-Cost 

case performs as expected, showing an increase in schedulability as the 

deadlines are increased. Additionally, the non UCB-ECB-Multiset approaches 

also show an increase in the number of schedulable systems. However, the 

UCB-ECB-Multiset approaches show an increase in the number of systems 

deemed schedulable, and hence the weighted measure, up to a deadline factor 
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of 0.8. After this point it shows a reduction in schedulability. This reduction is 

because although tasks deadlines are relaxed, and thus tasks are less likely to 

miss them, the number of times that the inter-component CRPD is accounted 

for is also increased as )()( tEDE kk
G  will increase with longer deadlines. 

 

 

Figure 7.16 - Weighted measure for varying the task deadlines via Di = xTi by varying 
x from 0.1  to 1 in steps of 0.1 

7.7 Summary 

Hierarchical scheduling provides a means of composing multiple real-time 

applications onto a single processor, such that the temporal requirements of 

each application are met. The main contribution of this chapter is a number of 

approaches for calculating CRPD in hierarchical systems with a global non-pre-

emptive scheduler and a local pre-emptive FP or EDF scheduler. This is 

important because hierarchical scheduling has proved popular in industry as a 

way of composing applications from multiple vendors as well as re-using 
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legacy code. However, unless the cache is partitioned these isolated 

applications can interfere with each other, and so inter-component CRPD must 

be accounted for.  

In this chapter we presented a number of approaches to calculate inter-

component CRPD in a hierarchical system with varying levels of sophistication. 

We showed that when taking inter-component CRPD into account, minimising 

server periods does not maximise schedulability. Instead, the server period 

must be carefully selected to minimise inter-component CRPD while still 

ensuring short deadline tasks meet their time constraints. 

We found the analysis for determining inter-component CRPD under a local 

EDF scheduler deemed a lower number of systems schedulable than the 

equivalent analysis for a local FP scheduler. This is due to pessimism in the 

analysis for EDF, and the difficulty in tightly bounding the number of server 

suspensions that result in inter-component CRPD. Specifically, the analysis 

considers the number of server suspensions that result in inter-component 

CRPD based on a task’s deadline. In contrast for a local FP scheduler, the 

analysis can calculate a bound based on a task’s response time. 

While it was not the best approach in all cases we found the UCB-ECB-Multiset-

Open approach, which does not require any information about the other 

components in the system, to be highly effective. This is a useful result as the 

approach does not require a closed system. Therefore it can be used when no 

knowledge of the other components is available and/or cache flushing is used 

between the execution of different components to ensure isolation and 

composability.  

The UCB-ECB-Multiset-All approach dominates the UCB-ECB-Multiset-Open 

approach. Therefore, if information about other components is available, it can 

be used to calculate tighter bounds in cases where not all cache blocks will be 

evicted by the other components. However, this requires a small enough cache 

utilisation such that the union of the other components ECBs is less than the 

size of the cache. 

Finally, we note that the presented analysis is not dependent on the scheduling 

policies of the other components, and hence can be applied to a system where 

some components are scheduled locally a FP scheduler while others use an EDF 

scheduler. 
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CHAPTER 8.  CONCLUSIONS 

Accurate analysis of cache related pre-emption delays (CRPD) is essential for 

resource efficient scheduling of complex embedded real-time systems 

8.1 Summary of Contributions 

This thesis set out with the view that CRPD can be a significant factor affecting 

the schedulability of multi-tasking systems with cache. This is not a new idea. 

Existing research has recognised this and developed advanced analysis for FP 

scheduling and some basic analysis for EDF scheduling. However, the focus has 

been mainly been on FP, with the analysis for EDF being overly pessimistic, and 

the effects of CRPD have not been previously compared across scheduling 

algorithms. Furthermore, up until now it has not been possible to account for 

the effects of CRPD when analysing systems that utilise hierarchical scheduling.  

In Chapter 4 we presented a number of new methods for analysing CRPD 

under EDF scheduling. While there was an existing approach for analysing 

CRPD under EDF scheduling, we identified the potential for significant 

pessimism in it which we demonstrated during our evaluation. In particular, 

we found that the approach was especially vulnerable to high numbers of tasks, 

high cache utilisation and high UCB percentages, giving pessimistic results in 

these cases.  Our new analysis, specifically the Combined Multiset approach, 

both dominates and significantly outperformed the existing analysis for EDF. 

CRPD is dependent on how tasks are positioned in cache, which is controlled 

by their layout in memory. In Chapter 5 we presented a technique for 

optimising task layout in memory so as to increase system schedulability via 

reduced CRPD. This approach uses simulated annealing (SA) driven by 

schedulability analysis which can account for CRPD in order to evaluate task 

layouts. By making a series of changes to the layout, the approach can discover 

a layout that maximises system schedulability. We built functionality into our 

algorithm to add gaps between tasks in memory, but found that this had little 
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effect on the schedulability of tasksets for all but the most trivial cases. The fact 

that adding gaps made little difference is beneficial for a number of reasons.  

Firstly, the search space is significantly reduced when just considering the order 

of tasks. Secondly, it is easier to setup a linker to layout tasks with no gaps 

between them. This is also an important practical point, in that it means that no 

additional memory space is required. 

In Chapter 6, using the new CRPD analysis for EDF presented in Chapter 4, we 

performed a detailed comparison between FP and EDF scheduling accounting 

for CRPD. This comparison allowed us to explore the relative impact of CRPD 

on these two popular scheduling algorithms across a large range of taskset and 

system parameters in order to gain a better understanding for how CRPD 

affects system schedulability. We found that when CRPD is considered, the 

performance gains offered by EDF over FP, while still significant, are somewhat 

diminished. This is most likely due to greater pessimism in the CRPD analysis 

for EDF than FP. We also discovered that in configurations that cause relatively 

high CRPD, optimising task layout can be just as effective as changing the 

scheduling algorithm from FP to EDF. 

Hierarchical scheduling provides a means of running multiple applications or 

components on a single processor, as found in a partitioned architecture. It is 

motivated by the need to run multiple components independently of each other 

without allowing them to impact the functional or temporal behaviour of each 

other. However, as caches are shared there is the potential for inter-component 

CRPD to significantly impact schedulability.  In Chapter 7, we presented new 

analysis with varying levels of sophistication that bound CRPD in hierarchical 

systems. We showed that when taking inter-component CRPD into account, 

minimising server periods does not maximise schedulability. Instead, the server 

period must be carefully selected to minimise inter-component CRPD while still 

ensuring short deadline tasks meet their time constraints. The analysis works 

for both local FP and EDF schedulers, although the analysis was somewhat 

pessimistic in the case of EDF. However, the analysis is not dependent on the 

scheduling policies of the other components, and hence can be used in a system 

where components are scheduled using different local schedulers. We also 

noted that in most practical systems components’ tasks will occupy an area of 

memory equal or larger than the size of the cache. We therefore presented an 

approach which does not require any information about the other components 

in the system, and found it to be highly effective. This is a useful result as the 

approach does not require a closed system. It can therefore be used when no 

knowledge of the other components is available and/or cache flushing is used 



8.2  Future Work 
 

179 

between the execution of different components to ensure isolation and 

composability. 

8.2 Future Work 

The author was recently involved in an investigation led by Altmeyer et al. [8] 

comparing a fully partitioned cache, with one task per partition, against a 

shared cache without partitions. We found that the gain due to no CRPD did 

not compensate for the increase in task WCET due to increased inter-task 

interference. It may be that a hybrid approach, of partitioning groups of tasks 

with similar periods into their own partition, and then applying layout 

optimisation, could increase system schedulability further.  

Assigning priorities under FP using Deadline Monotonic is not optimal when 

considering CRPD [53]. Furthermore, schedulability tests that account for 

CRPD violate some of the conditions that are required for Audsley’s OPA 

algorithm [14]. Therefore, optimal priority assignment for FP with CRPD, 

without performing an exhaustive search through all possible priority orders 

which would be intractable for moderately sized tasksets, remains an open 

problem. 

This thesis has focused on techniques for calculating CRPD when performing 

schedulability analysis on a single core processor. The next major advance 

would be to extend the work to multi core processors. This brings with it an 

additional factor to consider, cache related migration delays, due to a task being 

migrated to a different core and losing its private cache. Some work has been 

conducted which focuses on determining a lower bound via measurements [21] 

and then utilising those bounds for analysis purposes [128]. 
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List of Abbreviations 

ACET Average Case Execution Time 

BCET Best Case Execution Time 

BRT Block Reload Time 

BU Breakdown Utilisation 

CAC Cache Access Classification 

CFG Control Flow Graph 

CRPD Cache Related Pre-emption Delays 

CSC Context Switch Cost 

DC-UCB Definitely Cached UCB 

ECB Evicting Cache Block  

EDF Earliest Deadline First 

ETPs Execution Time Profiles 

FIFO First In First Out 

FP Fixed Priority 

GC Call Graph 

ILP Integer Linear Programming 

IPET Implicit Path Enumeration Technique 

LRU Least Recently Used 

MRU Most Recently Used 

OPA Optimal Priority Assignment 

QPA Quick convergence Processor-demand Analysis 

SA Simulated Annealing 

SeqPO Sequential Priority Order 

SRP Stack Resource Policy 
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TDM Time Division Multiplexing 

UCB Useful Cache Block 

VIVU Virtual Inlining Virtual Unrolling 

WC path Worst Case path 

WCET Worst Case Execution Time 
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List of Notations 

iC  Worst case execution time (determined for non-pre-emptive 

execution) of task τi 

iD  Relative deadline of task τi 

Dmax The largest relative deadline of any task in the taskset 

ECBi Set of ECBs of task τi 

ECBG Set of ECBs of all tasks in ГG 

G A component in a hierarchical system 

IG Maximum execution time of all interrupts in an interval of length 

QG 

iJ  Release jitter of task τi 

L Minimum interval in which it can be guaranteed that an 

unschedulable taskset will be shown to be unschedulable when 

determining the processor demand under EDF 

m Memory block 

ndescriptio
nrestrictioM  A multiset of cache blocks, specific to the description of the 

approach, with an optional restriction. E.g. ucb
jiM , is the multiset of 

UCBs that could be affected by task τj pre-empting task τi 

PG Server period for component G 

QG Server capacity for component G 

iR  Response time of task τi 

SG The server for component G 

τi Task i from the taskset Г 

iT  Minimum inter-arrival time or period of task τi 

Tmax The largest period of any task in the taskset 

U  Utilisation of the taskset 

iU  Utilisation ( iii TCU / ) of task τi 
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U  Utilisation due to CRPD incurred by tasks 

GU   Utilisation due to inter-component CRPD incurred by tasks in 

component G 

UCBi Set of UCBs of task τi 

UCBG Set of UCBs of all tasks in ГG 

ji ,  CRPD due to a single pre-emption of task τi by task τj under FP 

scheduling 

ji ,   CRPD due to all jobs of task τj executing within the response time of 

task τi under FP scheduling 

jt ,  CRPD associated with a pre-emption by a single job of task τj on 

jobs of other tasks that are both released and have their deadlines in 

an interval of length t under EDF scheduling 

jt ,   CRPD due to the maximum number Ej(t) of pre-emptions by jobs of 

task τj that have their release times and absolute deadlines in an 

interval of length t under EDF scheduling 

G
i   CRPD incurred by task τi in component G caused by tasks in the 

other components running while the server (SG) for component G is 

suspended with a local FP scheduler 

G
t   CRPD incurred by tasks in component G due to tasks in the other 

components running while the server (SG) for component G is 

suspended with a local EDF scheduler 

Г Taskset made up of a fixed number of tasks (τ1..τn) where n is a 

positive integer 

ГG Set of tasks in component G from the taskset Г 

Ψ Set of components in a hierarchical system 

  

aff(i,j) The set of tasks that may be pre-empted by task τj and have at least 

the priority of task τi. aff(i,j) = hep(i) ∩ lp(j)  under FP scheduling 

aff(t,j) The set of tasks that can be pre-empted by jobs of task τj in an 

interval of length t under EDF scheduling 
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aff(G,t) Set of tasks in component G whose relative deadlines are less than 

or equal to t with a local EDF scheduler 

Ek(Ri) Maximum number of jobs of task τk that can execute during the 

response time of task τi 

Ej(t) The maximum number of jobs of task τj that can have both their 

release times and their deadlines in an interval of length t 

 tEG  The maximum number of times server SG can be both suspended 

and resumed within an internal of length t 

h(t) Processor demand bound function used to determine demand on 

the processor within an interval of length t under EDF scheduling 

hp(i) Set of tasks that may have a higher priority, and can pre-empt task 

τi, 

hp(G, i) Sets of tasks in component G with higher priorities than task τi with 

a local FP scheduler 

hep(i) Sets of tasks with higher or equal priorities to task τi under FP 

scheduling 

hep(G, i) Sets of tasks in component G with higher or equal priorities to task 

τi with a local FP scheduler 

)(cisbf G  Inverse supply bound function for component G. Used to determine 

the maximum amount of time needed by a specific server to supply 

some capacity c 

lp(i) Sets of tasks with lower priorities than task τi under FP scheduling 

lep(i) Sets of tasks with lower or equal priorities to task τi under FP 

scheduling 

Pj(Di) The maximum number of times that jobs of task τj can pre-empt a 

single job of task τi under EDF scheduling 








 tSX GZ ,  The number of executions of server SZ while server SG is suspended 

that results in tasks from component Z evicting cache blocks that 

tasks in component G might have loaded and need to reload 
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