

Cache Related Pre-emption Delays

in Embedded Real-Time Systems

William Richard Elgon Lunniss

EngD

University of York

Computer Science

September 2014

2

3

Abstract

Real-time systems are subject to stringent deadlines which make their temporal

behaviour just as important as their functional behaviour. In multi-tasking real-

time systems, the execution time of each task must be determined, and then

combined together with information about the scheduling policy to ensure that

there are enough resources to schedule all of the tasks. This is usually achieved

by performing timing analysis on the individual tasks, and then schedulability

analysis on the system as a whole.

In systems with cache, multiple tasks can share this common resource which

can lead to cache-related pre-emption delays (CRPD) being introduced. CRPD is

the additional cost incurred from resuming a pre-empted task that no longer

has the instructions or data it was using in cache, because the pre-empting

task(s) evicted them from cache. It is therefore important to be able to account

for CRPD when performing schedulability analysis.

This thesis focuses on the effects of CRPD on a single processor system, further

expanding our understanding of CRPD and ability to analyse and optimise for

it. We present new CRPD analysis for Earliest Deadline First (EDF) scheduling

that significantly outperforms existing analysis, and then perform the first

comparison between Fixed Priority (FP) and EDF accounting for CRPD. In this

comparison, we explore the effects of CRPD across a wide range of system and

taskset parameters. We introduce a new task layout optimisation technique that

maximises system schedulability via reduced CRPD. Finally, we extend CRPD

analysis to hierarchical systems, allowing the effects of cache when scheduling

multiple independent applications on a single processor to be analysed.

4

5

Table of Contents

Abstract ... 3

List of Tables .. 9

List of Figures .. 10

Acknowledgements .. 13

Declaration ... 15

Chapter 1. Introduction .. 17

1.1 Contribution ... 19

1.2 Structure .. 20

Chapter 2. Background ... 21

2.1 Real-Time Scheduling ... 21

2.1.1 System Model ... 23

2.1.2 Schedulability Analysis ... 24

2.2 Real-Time Systems and Cache ... 27

2.2.1 Cache Structure .. 30

2.2.2 Replacement Policies ... 30

2.3 Timing Analysis ... 31

2.3.1 Static Analysis ... 32

2.3.2 Static Analysis for Systems with Cache .. 39

2.3.3 Measurement-based Analysis .. 44

2.3.4 Hybrid Measurement-based Analysis .. 45

2.3.5 Measurement-based Analysis for Systems with Cache 49

2.4 Summary ... 51

Chapter 3. Cache Related Pre-emption Delays .. 53

3.1 Cache Related Pre-emption Delays ... 53

3.1.1 Block Reload Time ... 56

3.1.2 UCBs and ECBs .. 57

3.2 CRPD Analysis for FP Scheduling .. 59

3.2.1 Multiset Approaches .. 62

3.3 CRPD Analysis for EDF Scheduling ... 65

3.4 Limiting Pre-emptions .. 68

3.5 Improving Cache Predictability .. 69

3.5.1 Static Code Positioning.. 71

3.6 Summary ... 75

Chapter 4. CRPD Anlaysis for EDF Scheduling ... 77

4.1 Integrating CRPD Analysis into EDF Scheduling 78

6

4.1.1 Effect on Task Utilisation and h(t) Calculation 81

4.2 Improved CRPD Analysis for EDF ... 82

4.2.1 Effect on Task Utilisation and h(t) Calculation 85

4.3 Comparability and Dominance ... 86

4.4 Case Study .. 87

4.5 Evaluation ... 89

4.5.1 Baseline Evaluation .. 90

4.5.2 Weighted Schedulability ... 92

4.5.3 Implicit Deadline Tasksets .. 93

4.5.4 Constrained Deadline Tasksets .. 97

4.6 Summary ... 99

Chapter 5. Task Layout Optimisation ... 101

5.1 Introduction .. 101

5.2 Optimising Task Layout ... 103

5.2.1 Memory Limitations .. 106

5.3 Case Study .. 106

5.3.1 Discussion ... 108

5.4 Evaluation ... 109

5.4.1 Baseline Evaluation .. 111

5.4.2 Detailed Evaluation ... 113

5.4.3 Brute Force Comparison ... 118

5.5 Summary ... 119

Chapter 6. Comparison Between FP and EDF ... 121

6.1 Case Studies ... 122

6.1.1 Single Taskset Case Study... 122

6.1.2 Multiple Taskset Case Studies .. 125

6.2 Evaluation ... 128

6.2.1 Baseline Evaluation .. 128

6.2.2 Detailed Evaluation ... 130

6.3 Summary ... 134

Chapter 7. CRPD Analysis for Hierarchical Scheduling 137

7.1 System Model Extension .. 138

7.2 Hierarchical Schedulability Analysis ... 139

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler 141

7.3.1 Comparison of Approaches .. 147

7.4 CRPD Analysis for Hierarchical Systems: Local EDF Scheduler 151

7.4.1 Effect on Task Utilisation and h(t) Calculation 156

7.4.2 Comparison of Approaches .. 157

7

7.5 Case Study .. 158

7.5.1 Success Ratio ... 160

7.6 Evaluation ... 161

7.6.1 Success Ratio ... 162

7.6.2 Baseline Evaluation .. 163

7.6.3 Detailed Evaluation ... 165

7.6.4 EDF Analysis Investigation .. 172

7.7 Summary ... 174

Chapter 8. Conclusions .. 177

8.1 Summary of Contributions .. 177

8.2 Future Work ... 179

List of Abbreviations .. 181

List of Notations .. 183

References ... 187

8

9

List of Tables

Table 4.1 - WCET and number of UCBs and ECBs for a selection of tasks from
the Mälardalen benchmark suite ... 88

Table 4.2 - Breakdown utilisation for the case study taskset for the different
approaches used to calculate the CRPD ... 89

Table 4.3 - Weighted schedulability measures for the baseline experiments 93

Table 5.1 - WCET and number of UCBs and ECBs for a selection of tasks from
the Mälardalen benchmark suite ... 106

Table 5.2 - Breakdown utilisation for the taskset in Table 5.1 108

Table 5.3 - Weighted schedulability measures for the baseline evaluations 113

Table 6.1 - Execution times, periods and number of UCBs and ECBs for the
tasks from PapaBench .. 124

Table 6.2 - Execution times and number of UCBs and ECBs for the largest
benchmarks from the Mälardalen Benchmark Suite (M), and SCADE
Benchmarks (S) ... 124

Table 6.3 - Breakdown utilisation under the different approaches for the single
PapaBench taskset .. 124

Table 6.4 - Weighted schedulability measures for the mixed case study 128

Table 6.5 - Weighted schedulability measures for the baseline configuration
study ... 130

Table 7.1 - Execution times, periods and number of UCBs and ECBs for the
tasks from PapaBench .. 159

10

List of Figures

Figure 2.1 - Illustration of how the QPA algorithm works 27

Figure 2.2 - Layout of the CPU, Cache and EPROM Memory showing relative
size and access times .. 28

Figure 2.3 - Optimised assembly code generated from two simple statements . 33

Figure 2.4 - Example of exponential blowup of paths if every path is explicitly
enumerated ... 35

Figure 2.5 - WCET analysis process for a typical static analysis tool 36

Figure 2.6 - Merging cache states using must analysis ... 40

Figure 2.7 - Merging cache states using may analysis .. 41

Figure 2.8 – Example showing why full path coverage may be needed in a
system with cache .. 50

Figure 3.1 - Illustration of the effects of a pre-emption .. 54

Figure 3.2 - Illustration of how the CSC can be subsumed into the execution
time of the pre-empting task .. 55

Figure 3.3 - Example showing CRPD can vary throughout the execution of a
task ... 55

Figure 3.4 - Simplified and potentially pessimistic representation of CRPD,
assuming it is incurred at once after a task resumes .. 56

Figure 3.5 - Example schedule demonstrating that Deadline Monotonic is not
optimal when CRPD is considered .. 60

Figure 3.6 - Example schedule showing how the scheduler chooses which task
should execute .. 66

Figure 3.7 - Example schedule showing that EDF is not optimal when CRPD is
considered ... 67

Figure 3.8 – Illustration of how controlling procedure positions can reduce
cache conflicts ... 72

Figure 4.1 - Including the CRPD caused by τ1 pre-empting τ2 in the execution
time of τ2 .. 78

Figure 4.2 - Representing the taskset in Figure 4.3 by including the CRPD
caused by τ1 pre-empting τ2 in the execution time of τ1 ... 78

Figure 4.4 - Illustration of possible pessimism with the ECB-Union approach. . 83

Figure 4.5 - Venn diagram illustrating the relationship between the different
approaches used to calculate CRPD .. 87

Figure 4.6 - Schedulable tasksets vs Utilisation for the baseline parameters
under implicit deadlines ... 91

Figure 4.7 - Schedulable tasksets vs Utilisation for the baseline parameters
under constrained deadlines .. 92

Figure 4.8 - Weighted measure for varying cache utilisation 93

Figure 4.9 - Weighted measure for varying the maximum UCB percentage 94

Figure 4.10 - Weighted measure for varying the number of tasks 95

11

Figure 4.11 - Weighted measure for varying the number of cache sets 96

Figure 4.12 - Weighted measure for varying the block reload time 96

Figure 4.13 - Weighted measure for varying cache utilisation 97

Figure 4.14 - Weighted measure for varying the maximum UCB percentage 98

Figure 4.15 - Weighted measure for varying the number of tasks 98

Figure 4.16 - Weighted measure for varying the number of cache sets 99

Figure 4.17 - Weighted measure for varying the block reload time 99

Figure 5.1 - Example layout showing how the position of tasks in cache affects
whether their UCBs could be evicted during pre-emption.................................. 102

Figure 5.2 - Improved version of the layout shown in Figure 5.1. 102

Figure 5.3 - Task layout optimisation process flow chart..................................... 105

Figure 5.4 - Initial (SeqPO) layout for the taskset in Table 5.1 108

Figure 5.5 - Optimised layout chosen by the SA for the taskset in Table 5.1 109

Figure 5.6 - Graph of the total CRPD/task for the taskset in Table 5.1 109

Figure 5.7 - Two different distributions of UCBs throughout a task 110

Figure 5.8 - Schedulable tasksets vs Utilisation for UCB distribution B with a
maximum of 5 groups of UCBs. ... 112

Figure 5.9 - Weighted measure for varying the number of maximum number of
UCB groups ... 113

Figure 5.10 - Weighted measure for varying the maximum UCB percentage .. 114

Figure 5.11 - Weighted measure for varying the cache utilisation 115

Figure 5.12 - Weighted measure for varying the number of cache sets 116

Figure 5.13 - Weighted measure for varying the number of tasks 117

Figure 5.14 - Comparing the SA algorithm at swapping tasks against a brute
force approach of trying every permutation .. 119

Figure 6.1 - Percentage of schedulable tasksets at each utilisation level for the
PapaBench benchmark .. 126

Figure 6.2 - Percentage of schedulable tasksets at each utilisation level for the
Mälardalen and SCADE benchmarks ... 126

Figure 6.3 - Percentage of schedulable tasksets at each utilisation level for the
mixed case study .. 127

Figure 6.4 - The percentage of schedulable tasksets at each utilisation level for
the baseline configuration ... 130

Figure 6.5 - Weighted measure for varying the cache utilisation 131

Figure 6.6 - Weighted measure for varying the maximum UCB percentage 131

Figure 6.7 - Weighted measure for varying the number of tasks 132

Figure 6.8 - Weighted measure for varying the block reload time (BRT) 133

Figure 6.9 - Weighted measure for varying the scaling factor used to generate
periods ... 134

Figure 7.1 – Example showing how server capacity can be supplied to
components. .. 140

12

Figure 7.2 - Example global schedule to illustrate the server suspend and
resume calculation ... 141

Figure 7.3 - Example global schedule to illustrate the disruptive execution
calculation ... 141

Figure 7.4 - Venn diagram showing the relationship between the different
approaches .. 148

Figure 7.5 - Example schedule and UCB/ECB data for four components to
demonstrate how the different approaches calculate CRPD 149

Figure 7.6 - Percentage of schedulable tasksets at each utilisation level for the
case study tasksets ... 161

Figure 7.7 - Percentage of schedulable tasksets at each utilisation level for the
synthetic tasksets .. 164

Figure 7.8 - Percentage of schedulable tasksets at each utilisation level for the
synthetic tasksets directly comparing the analysis for local FP and EDF
schedulers .. 165

Figure 7.9 - Weighted measure for varying the number of components 166

Figure 7.10 - Weighted measure for varying the system size 167

Figure 7.11 - Weighted measure for varying the server period 169

Figure 7.12 - Weighted measure for varying the cache utilisation 170

Figure 7.13 - Weighted measure for varying the total number of tasks 171

Figure 7.14 - Weighted measure for varying the period range of tasks 172

Figure 7.15 - Weighted measure for varying the block reload time (BRT) 173

Figure 7.16 - Weighted measure for varying the task deadlines 174

13

Acknowledgements

This thesis would not have been possible without the support of a number of

people. Firstly and foremost I would like to thank my supervisor Rob Davis for

his help and guidance with my research over the course of my EngD. Parts of

this thesis originate from collaborative research work and I would especially

like to thank Sebastian Altmeyer for his part. We spent many long evenings

refining papers for conferences over Skype.

Thirdly I would like to thank my industrial supervisor, Antoine Colin, and

everyone at Rapita Systems for providing such a supportive and friendly work

environment. Being able to work on alternative problems in-between long

periods of research proved very enjoyable.

Finally I would like to thank my fiancée Amelia for her love and support over

the course of my EngD.

14

15

Declaration

Except where stated otherwise all of the work contained within this thesis

represents the original contribution of the author, and has not been previously

submitted for examination. This thesis contains work that has been published in

peer-reviewed, conferences, workshops and journals.

The initial response time analysis software framework supporting analysis for

FP scheduling was provided by Sebastian Altmeyer. Through the course of this

thesis, the author extended this software framework to add support for task

layout optimisation, EDF, and hierarchical scheduling, based on the analysis

presented in this thesis. Sebastian Altmeyer also provided the case study data

used as part of the evaluation. The author wrote the main body of the papers

and journal articles, with the additional authors providing help with proof

reading draft copies.

Chapter 4 is based on the following publication:

W. Lunniss, S. Altmeyer, C. Maiza, R.I. Davis, "Integrating Cache Related Pre-

emption Delay Analysis into EDF Scheduling". In proceedings of the 19th

IEEE Conference on Real-Time and Embedded Technology and Applications

(RTAS), April 9-11th, 2013, pp 75-84.

Awarded K.M. Scott Prize for Best Student Paper 2013 - Computer Science

Department, University of York

Chapter 5 is based on the following publication:

W. Lunniss, S. Altmeyer, R.I. Davis "Optimising Task Layout to Increase

Schedulability via Reduced Cache Related Pre-emption Delays". In

proceedings of the 20th International Conference on Real-Time and Network

Systems (RTNS), Nov 8-9th, 2012, pp 161-170.

Chapter 6 is based on the following publication:

W. Lunniss, S. Altmeyer, R.I. Davis, "A Comparison between Fixed Priority

and EDF Scheduling accounting for Cache Related Pre-emption Delays".

Leibniz Transactions on Embedded Systems, Volume 1, Number 1, April 2014,

pp 1-24. DOI: http://dx.doi.org/10.4230/LITES-v001-i001-a001.

16

Chapter 7 is based on the following publications:

W. Lunniss, S. Altmeyer, G. Lipari, R.I. Davis, "Accounting for Cache Related

Pre-emption Delays in Hierarchical Scheduling". In proceedings of the 22nd

International Conference on Real-Time and Network Systems (RTNS), Oct 8-

10th, 2014

Awarded Outstanding Paper

W. Lunniss, S. Altmeyer, R.I. Davis, "Accounting for Cache Related Pre-

emption Delays in Hierarchical Scheduling with Local EDF Scheduler". In

proceedings of the 8th Junior Researcher Workshop on Real-Time Computing

(JRWRTC), Oct 8-10th, 2014

W. Lunniss, S. Altmeyer, G. Lipari, R.I. Davis, "Cache Related Pre-emption

Delays in Hierarchical Scheduling". Under submission to Real-Time Systems,

Special issue for RTNS 2014

17

CHAPTER 1. INTRODUCTION

We are surrounded by embedded systems contained within larger devices, from

medical pacemakers to the engine and control systems in large commercial

aircraft. Many of these embedded systems are also real-time systems that have

specific deadlines that they must meet, and are often required to interact with

an outside environment. It is therefore important that these real-time systems

meet their temporal requirements, as well as being functionally correct. Real-

time systems can be categorised as soft and hard real-time. A soft real-time

system can tolerate a moderate number of deadline misses, at the expense of

reduced quality of service, such as in a live video streaming system. In contrast,

a deadline miss in a hard real-time system would constitute a failure of the

system. Some hard real-time systems are also safety critical systems such that a

deadline miss, and thus a system failure, could cause someone physical harm.

Most real-time systems are multi-tasking systems built up of a number of

individual tasks. To verify the temporal behaviour of a multi-tasking system,

the execution time of each task must be determined, and then combined

together with information about the scheduling policy to ensure that there are

enough resources to run all of the tasks that make up the system. This is usually

achieved by performing timing analysis on the individual tasks, and then

schedulability analysis on the system as a whole.

Timing Analysis

Timing analysis is used to determine the execution time of a task in isolation,

specifically excluding any effects due to scheduling. In most cases, a task’s

execution time will vary depending on factors such as the input data, but also

on the state of hardware features such as processor caches. At a high level the

analysis must calculate how long each block of code takes to execute, and then

combine the blocks together so as to maximise the execution time. Static

1.1 Contribution

18

analysis does this by determining the execution time using a detailed model of

the hardware without executing the software. Measurement-based techniques

measure the execution time of the software running on the target hardware. In

systems with cache the analysis must also consider the potential variation in

access times to fetch instructions and data depending on the state of the cache.

Real-time systems have to respond to inputs from outside of the system and

have specific deadlines that they must meet. Therefore, one of the most

important aspects of a task’s execution time is what is known as the worst case

execution time (WCET). The WCET of a task describes the amount of time that a

task will spend executing under the worst case scenario, such as the worst case

data input, and is obtained using WCET analysis. The goal of WCET analysis is

to calculate a sound, greater than or equal to the actual WCET, and tight, close to

the actual WCET, WCET estimate [99].

Schedulability Analysis

In real applications a system is usually built up of a number of tasks,

collectively called a taskset. In addition to calculating the WCET of every task in

isolation it is just as important to ensure that all the tasks, when running on the

same platform and sharing resources, will meet their deadlines. A scheduling

policy is used to determine which task in the taskset should run at any given

point in time. Schedulability analysis uses the scheduling policy along with

information about the tasks and their WCET, obtained through timing analysis,

to determine whether or not the system as a whole is schedulable given the

hardware resources available. Tasks can either be scheduled pre-emptively or

non-pre-emptively in a multi-tasking system. In a pre-emptive multi-tasking

system, tasks can be pre-empted so that a higher priority task can run, which

must also be taken into account when performing schedulability analysis.

Schedulability analysis can also take into account access to any shared resources

that introduce blocking when a task is unable to execute because another task

has a lock on a resource which it needs.

Cache Related Pre-emption Delays
In a pre-emptive multi-tasking system with cache, when a task is pre-empted,

cache-related pre-emption delays (CRPD) can be introduced. CRPD is the

additional cost incurred from resuming a pre-empted task that no longer has

the instructions or data it was using in cache, because the pre-empting task(s)

evicted them from cache. CRPD will be incurred as the task uses data and

invokes instructions during the remainder of its execution that were evicted by

1.1 Contribution

19

the pre-empting task(s). CRPD is not a fixed cost per pre-emption, as is usually

the case for traditional context switch costs, so simply subsuming an upper

bound on the CRPD into the execution time of the pre-empting task could be

very pessimistic. It is therefore important to accurately account for CRPD when

performing schedulability analysis on a real-time system. There are techniques

that can be used to reduce or completely eliminate CRPD, usually at the

expense of increased task WCETs. For example, the cache can be partitioning so

that each task has its own space in cache. However, Altmeyer et al. [8] recently

noted that the increased predictability of a partitioned cache, in terms of

eliminating CRPD, does not compensate for the performance degradation in the

WCETs due to the smaller cache space per task.

1.1 Contribution

The main hypothesis of this thesis is:

Accurate analysis of cache related pre-emption delays (CRPD) is essential for

resource efficient scheduling of complex embedded real-time systems.

This thesis focuses on the effects of CRPD on a single processor system and

further expands our understanding of CRPD and puts its impact into context

through the following:

CRPD Analysis for EDF
Up until now, research into CRPD analysis has mostly focused on Fixed Priority

(FP) scheduling [37] [77] [115] [6] [7], and while there exists some analysis for

Earliest Deadline First (EDF) scheduling [71], we have identified the potential for

significant pessimism in the analysis. We therefore present a number of new

methods for analysing CRPD under EDF scheduling that significantly

outperform the existing analysis.

Task Layout Optimisation
CRPD is dependent on how tasks are positioned in cache, which is controlled

by their layout in memory. We present a technique for optimising task layout in

memory so as to increase system schedulability via reduced CRPD.

Detailed Comparison between FP and EDF
We perform a detailed comparison between FP and EDF scheduling when

accounting for CRPD. We explore the relative impact of CRPD on these two

1.2 Structure

20

popular scheduling algorithms across a large range of taskset and system

parameters in order to gain a better understanding of how CRPD affects system

schedulability.

CRPD Analysis for Hierarchical scheduling
Hierarchical scheduling [56] [60] provides a means of running multiple

applications or components on a single processor as found in a partitioned

architecture. It is motivated by the need to run multiple components

independently of each other without allowing them to impact the functional or

temporal behaviour of each other. However, as caches are shared there is the

potential for component CRPD to significantly impact schedulability. We

present new analysis for bounding CRPD in hierarchical systems.

1.2 Structure

This thesis is structured as follows. Chapter 2 covers key background material

on caches, timing analysis, and schedulability analysis. Chapter 3 discusses

CRPD and reviews existing analysis techniques for calculating an upper bound

on CRPD when performing schedulability analysis. Chapter 3 also discusses

techniques that can be used to reduce or eliminate CRPD through reduced pre-

emptions and greater cache predictability. The new research contributions of

this thesis are contained in Chapters 4 to 7. Chapter 4 introduces our new CRPD

analysis for bounding CRPD under EDF scheduling. Chapter 5 details how the

task layout can be optimised in order to increase system schedulability via

reduced CRPD. Chapter 6 presents a detailed comparison between FP and EDF

scheduling accounting for CRPD in order to better put the effects of CRPD into

context. Chapter 7 extends CRPD analysis to systems using hierarchical

scheduling. Finally, Chapter 8 concludes and outlines future work.

21

CHAPTER 2. BACKGROUND

In this chapter, we review key background research that forms the basis of the

work presented later in this thesis. Section 2.1 covers the basics of real-time

scheduling and schedulability analysis. Section 2.2 introduces core terminology

relating to caches. Finally, Section 2.3 reviews timing analysis techniques for

calculating a bound on the execution time of individual tasks.

2.1 Real-Time Scheduling

In real applications a system is usually built up of a number of tasks,

collectively called a taskset. In addition to calculating the WCET of every task in

isolation it is just as important to ensure that all the tasks, when running on the

same platform and sharing resources, will meet their deadlines.

A scheduling policy is used to determine which task in the taskset should run at

any given point in time. Scheduling policies can be classified as either offline or

online. Offline scheduling, often referred to as static cyclic scheduling, uses a

pre-computed schedule with very low runtime overhead. Online scheduling

does not generate a schedule in advance, and instead determines which task

should run at runtime. Under offline scheduling, the pre-determined schedule

ensures that the schedulability of the system is known in advance. Sporadic jobs

are more difficult to accommodate, but can be served using spare capacity. The

Slot Shifting method by Fohler [65] makes use of available capacity after

determining a valid schedule for periodic jobs to schedule sporadic jobs online.

However, despite the benefits of offline scheduling, it lacks flexibility and may

lead to an underutilisation of the processor compared to an online scheduling

policy. Due to these limitations, many systems use an online scheduling policy,

which is the focus of this thesis. Some classical online scheduling policies

include:

2.1 Real-Time Scheduling

22

 Fixed Priority (FP) [80] [85] - Fixed priority policy where tasks are

allocated priorities offline and then scheduled according to those

priorities at runtime

 Earliest Deadline First (EDF) [85] - Dynamic priority policy where jobs

with earlier absolute deadlines are given higher priorities. As the

priorities are based on absolute deadlines of the individual jobs, task

priorities change dynamically over the course of the schedule.

Tasks can either be scheduled pre-emptively or non-pre-emptively in a multi-

tasking embedded system. In a non-pre-emptive system, tasks cannot interrupt

each other and run one after the other. Non pre-emptive scheduling is more

predictable than using pre-emption because tasks will be allowed to run to

completion. However, it is only possible to schedule some types of tasks pre-

emptively. In a pre-emptive multi-tasking system, pre-emption is the act of

temporarily interrupting a task in order to share CPU time between all the tasks

running on the system. This switching from one task to another is known as a

context switch and can introduce context switch costs due to the overhead

involved with saving and restoring task state. A task may be pre-empted

because a task with a higher priority needs to run, because the task is waiting

on access to a locked resource, or because the task has used up its allotted time,

otherwise known as a time slice.

There are both non-pre-emptive and pre-emptive variants of FP and EDF

scheduling. In this thesis we focus on the pre-emptive variants as the non-pre-

emptive variants can perform very poorly for tasksets containing tasks with a

range of task periods and execution times [47].

Schedulability Tests
Schedulability tests are used to determine if a taskset is schedulable, such that

all the tasks will meet their deadlines given the worst-case pattern of arrivals

and execution. For a given taskset and scheduling algorithm, the response time

for each task can be calculated and compared against the tasks’ deadline. A

taskset is schedulable if all valid sequences of jobs that may be generated by the

taskset can be scheduled without deadline misses. A taskset is feasible if there

exists a scheduling algorithm that can schedule all possible sequences of jobs

that may be generated by the taskset without any deadline misses. A

scheduling algorithm is optimal with respect to a task model if it can schedule all

feasible tasksets that comply with the task model.

For a given schedulability test, it can be categorised as one of the following:

2.1 Real-Time Scheduling

23

 Sufficient - every taskset deemed to be schedulable by the test is actually

schedulable.

 Necessary - every taskset deemed to be unschedulable by the test is

actually unschedulable.

 Exact - if a test is sufficient and necessary.

When comparing two schedulability tests, test A and test B the following terms

are used:

 Dominates - test A dominates test B if all the tasksets deemed schedulable

by test B are also deemed schedulable by test A, and test A deems

additional tasksets schedulable.

 Incomparable - tests A and B are incomparable if they each deem a different

set of tasksets schedulable.

Schedulability tests are interested in the schedulability of a taskset under the

worst-case system load, for which they can use the synchronous busy period.

From [107] [112], a synchronous busy period is a processor busy period in

which all tasks are released simultaneously at the beginning of the processor

busy period, and then, at their maximum rate, and ended by the first processor

idle period (the length of such a period can be zero). Note that once pre-

emption costs are considered the synchronous busy period may not represent

the worst-case.

2.1.1 System Model

For a complete list of notation used throughout, see the “List of Notations” on

page 183.

Our system model comprises a single core processor running a taskset Г made

up of a fixed number of tasks (τ1..τn) where n is a positive integer. We assume a

discrete time model. The taskset is scheduled using either pre-emptive FP or

pre-emptive EDF. In the case of FP scheduling, each task has a unique fixed

priority and the priority of task τi, is i, where a priority of 1 is the highest and n

is the lowest. In the case of EDF, each task has a unique task index ordered by

relative deadline from smallest to largest. In the case of a tie when assigning the

unique task indices, an arbitrary choice is made.

Each task τi has the following properties:

2.1 Real-Time Scheduling

24


iC - worst case execution time (determined for non-pre-emptive

execution)

 iT - minimum inter-arrival time or period

 iD - relative deadline

 iJ - release jitter

 iU - utilisation (iii TCU /)

 iR - response time

Each task, τi may produce a potentially infinite stream of jobs that are separated

by a minimum inter-arrival time or period Ti. Each job of a task has an absolute

deadline di which is Di after it is released. We define Tmax as the largest period of

any task in the taskset, and similarly Dmax as the largest relative deadline of any

task in the taskset.

In this thesis we consider tasks with either constrained deadlines, Di ≤ Ti or

implicit deadlines, Di = Ti.

The system model could also contain an additional term, Bi, used to represent

blocking due to access to shared resources other than the processor that require

mutual exclusion. Blocking can be accounted for via approaches such as the

Stack Resource Policy (SRP) introduced by Baker [16] which we note introduces

no additional context switches. However, this thesis uses a simpler system

model that does not contain Bi.

2.1.2 Schedulability Analysis

We now briefly cover existing schedulability analysis for FP and EDF

scheduling assuming context switch costs are constant and subsumed into the

tasks’ execution times.

FP Scheduling
FP scheduling assigns each task a fixed priority which is then used as the

priorities of the tasks’ jobs. Under FP scheduling the sets of tasks that can pre-

empt each other are based on the statically assigned fixed task priorities. Using

the fixed priorities, we can define the following sets of tasks for determining

which tasks can pre-empt each other: hp(i) and lp(i) are the sets of tasks with

higher and lower priorities than task τi, and hep(i) and lep(i) are the sets

containing tasks with higher or equal and lower or equal priorities to task τi.

2.1 Real-Time Scheduling

25

The exact schedulability test for FP scheduling assuming constrained deadlines

calculates the worst case response time for each task and then compares it to its

deadline. The equation used to calculate Ri is [15] [70]:

 















ij

j

j

i
ii C

T

R
CR

hp

1


 (2.1)

Equation (2.1) can be solved using fixed point iteration. Iteration starts with the

minimum possible response time, ii CR 0
, and continues until either ii DR 1

in which case the task is unschedulable, or until 
ii RR 1 in which case the

task is schedulable and has a worst-case response time of 
iR . Note the

convergence of equation (2.1) may be speeded up using the techniques

described in [55].

Under FP there are a number of techniques that can be used to assign the fixed

priorities. Deadline Monotonic [80] assigns higher priorities to tasks with shorter

deadlines. Rate Monotonic [85] assigns higher priorities to tasks with shorter

periods. Audsley’s Optimal Priority Assignment (OPA) algorithm [14] takes a

different approach. Using a greedy algorithm it evaluates the schedulability of

each task, from lowest to highest priority, to devise an optimal priority for each

task. It can be applied assuming the schedulability of a task meets certain

conditions, such as not being dependent on the relative priority ordering of

higher priority tasks. A drawback of OPA is that it selects the first schedulable

priority assignment that it finds, which may result in a taskset that is only just

schedulable. The Robust Priority Assignment (RPA) algorithm [52] improves on

OPA by avoiding this drawback.

Assuming negligible pre-emption costs, Leung and Whitehead [80] showed that

Deadline Monotonic priority ordering is an optimal priority ordering for

constrained deadline tasks which can have synchronous releases. Rate

Monotonic is an optimal assignment for tasks with implicit deadlines [85], and

OPA can generate an optimal assignment for tasks with arbitrary deadlines and

periodic tasksets with offset release times [14].

EDF Scheduling
In 1973, Liu and Layland [85] gave an exact schedulability test that indicates

whether a taskset is schedulable under EDF if and only if (iff) 1U , under the

assumption that all tasks have implicit deadlines (Di = Ti). In the case where

Di ≠ Ti this test is still necessary, but is no longer sufficient.

2.1 Real-Time Scheduling

26

Assuming negligible pre-emption costs, in 1974 Dertouzos [57] proved EDF to

be optimal among all scheduling algorithms on a uniprocessor. In 1980, Leung

and Merrill [79] showed that a set of periodic tasks is schedulable under EDF iff

all absolute deadlines in the period [0,max{si}+ 2H] are met, where si is the start

time of task τi, min{si}=0, and H is the hyperperiod (least common multiple) of

all tasks periods.

In 1990 Baruah et al. [19], [20] extended Leung and Merrill’s work [79] to

sporadic tasksets. They introduced h(t), the processor demand function, which

denotes the maximum execution time requirement of all tasks’ jobs which have

both their arrival times and their deadlines in a contiguous interval of length t.

Using this they showed that a taskset is schedulable iff ttht )(,0 where h(t)

is defined as:


 















 


1

1 ,0max)(
i

i

i

i
C

T

Dt
th (2.2)

Examining equation (2.2), it can be seen that h(t) can only change when t is

equal to an absolute deadline, which restricts the number of values of t that

need to be checked. In order to place an upper bound on t, and therefore the

number of calculations of h(t), the minimum interval in which it can be

guaranteed that an unschedulable taskset will be shown to be unschedulable

must be found. For a general taskset with arbitrary deadlines t can be bounded

by La [67]:

 




















 

U

UDT
DDL

n

ni
iii

na
1

,,...,max 1 (2.3)

Spuri [112] and Ripoll et al. [107] showed that an alternative bound Lb, given by

the length of the synchronous busy period can be used. Lb is computed by

solving the following equation using fixed point iteration:















n

i

i

i

C
T

w
w

1

1


 (2.4)

There is no direct relationship between La and Lb which enables t to be bounded

by L = min(La, Lb). Combined with the knowledge that h(t) can only change at

an absolute deadline, a taskset is therefore schedulable under EDF iff 1U

and:

2.2 Real-Time Systems and Cache

27

 tthQt )(,
(2.5)

Where Q is defined as:

   NkLLdDkTddQ bakiikk  ,,min| (2.6)

In 2009, Zhang and Burns [129] presented their Quick convergence Processor-

demand Analysis (QPA) algorithm which exploits the monotonicity of h(t) to

determine schedulability by checking a significantly smaller number of values

of t. Let di be any absolute deadline of a job from task τi, NkDkTd iii  , and

define dmin = min{Di}. When a system is unschedulable, they define d ∆ as:

   iiii ddhLddd  0|max (2.7)

QPA starts with a value of t that is close to L and then iterates back towards 0.

For a schedulable system this sequence converges to 0, but can be stopped once

h(t) ≤ dmin. For an unschedulable system it converges to d∆. On each iteration t is

set to the output of h(t) and h(t) is re-evaluated with the new value of t. If

h(t) = t, then t is set to the largest absolute deadline that is less than h(t). Figure

2.1 shows an illustration of how the QPA algorithm works.

Figure 2.1 - Illustration of how the QPA algorithm works from [129]

2.2 Real-Time Systems and Cache

There are a number of features in modern processors that improve the average

case performance, but make analysis of systems difficult due to the uncertainty

that they introduce. These performance enhancing features include caches,

pipelines, branch predication and out-of-order execution. When performing timing

analysis they must be accounted for as they can affect the execution time of the

basic blocks of code depending on what has been executed previously.

Furthermore, in a pre-emptive multi-tasking system a pre-empting task can

2.2 Real-Time Systems and Cache

28

affect the execution time of a pre-empted task by altering the state of these

hardware features, for example by evicting the contents of the cache. In this

thesis we focus on analysing the effects caused by caches in real-time systems

using pre-emptive multi-tasking, which we discuss in detail in Chapter 3. First

we give a brief summary about caches, and then review the techniques that can

be used to analyse them when performing timing analysis, in Section 2.3.

Caches are small fast memories which are used to speed up access to frequently

used blocks that reside in main memory, either RAM or permanent storage

such as EPROM. CPU caches are either split into instruction and data caches, or

combined into a unified cache. Figure 2.2 shows a simplified representation of a

CPU, 4KB of cache and 4MB of EPROM that could be found in an embedded

system. Only a small percentage of the data or instructions from memory can be

stored in the cache at any point in time, but accesses to the cache require

significantly fewer cycles. If the instruction or data resides in cache, then

accessing it will result in a cache hit, if not, it will result in a cache miss and the

instruction or data must be fetched from memory first.

Figure 2.2 - Layout of the CPU, Cache and EPROM Memory showing relative size and
access times

In this thesis we focus on instruction only caches. In the case of data caches, the

existing analysis in Chapter 3 and the analysis that forms the contribution of

this thesis (Chapters 4-7) would either require a write-through cache or further

extension in order to be applied to write-back caches.

Caches provide a predictable, but almost chaotic performance boost. Provided

the current state of the cache is known, whether the next access will result in a

hit or a miss can be calculated. However, it can be very difficult to keep track of

the contents of the cache. Accessing data which is in the cache will always be

faster than accessing data from memory. However, under some scenarios the

time taken to execute a set of instructions that are in cache can even be slower

CPU
Cache

4KB
5 cycles

EPROM

4MB

100 cycles

2.2 Real-Time Systems and Cache

29

than when the instructions are not in cache. This is referred to as a timing

anomaly and is caused when other hardware features interact and result in

additional blocks having to be loaded from the cache. This makes the ability to

classify if a fetch will result in a hit or a miss even more important [88]. One

solution is to simply disable the cache. However, as the demands of embedded

systems increase it becomes increasingly cost ineffective to keep caches disabled

as they can provide such a significant performance increase [44]. It is therefore

important to be able to analyse systems with cache in order to verify todays’

embedded systems.

Many aerospace systems partition different software systems so that they

cannot interfere with each other. As caches are shared amongst everything

running on a processor this is a cause for concern. CAST-20 [43] investigated

caches in aerospace systems. In particular, it noted that “cache memory should

receive special scrutiny in a partitioned system because the cache mechanism is

not aware of the address partitioning architecture” [43]. This is a concern as the

partitions are supposed to ensure that tasks in one partition do not affect

another. However, as caches are not aware of the partitioning tasks in one

partition can evict instructions and data belonging to a task in a different

partition. This in turn can then affect the execution time of the other task,

despite them being separated.

Another problem with cache and predicting its behaviour is that an empty

cache is not always the worst case. For example, when the write back policy is

being used on a data cache, blocks have to be written back to memory before

they can be evicted.

An additional case where an empty cache is not the worst case is the domino

effect [24]. The domino effect describes a situation where a repeating pattern of

instructions cause the cache to transition through a number of states without

converging. This could occur when a loop repeatedly calls a number of

functions/instructions that are laid out in memory in a specific way. Due to the

initial state and replacement policy, the cache does not end up in a consistent

state, which means a different number of cache misses can occur on each loop

iteration. Due to this effect, it must be assumed that the worst case number of

cache misses occur on every iteration of the loop.

These factors combine together to make our ability to accurately analyse caches

very important when verifying the temporal behaviour of real-time systems.

2.2 Real-Time Systems and Cache

30

2.2.1 Cache Structure

In order to maximise the useful contents in the limited cache space, caches work

on the principles of locality. At any given time, a task is likely to access

instructions or data that it has accessed recently, which exploits temporal

locality. A task is also likely to access instructions or data that are located close

to those that it has recently accessed, exploiting spatial locality.

Caches are partitioned into a number of cache sets, S, such that each memory

block m maps to a single cache set. Each block can contain L lines, and by

loading a memory block with multiple lines caches are able to exploit spatial

locality. For example, a memory block may hold 4 lines each containing an

instruction which can be loaded into the cache in one go.

Each cache set may contain up to K memory blocks, where K is equal to the

associativity of the cache, and in the general case, a cache is called a set-associative

cache with K associativity. A direct mapped cache is a special case where K=1,

resulting in each memory block being able to reside in a single cache set.

Conversely, a fully associative cache is the other special case where K=S,

resulting in each memory block being able to reside in any cache set.

2.2.2 Replacement Policies

Except for direct mapped caches, cache sets can store multiple memory blocks

and once they become full they must choose what to evict. This is achieved

through a cache replacement policy, where the goal is to replace the least useful

memory block which can be done by exploiting the concepts of locality. Some of

the commonly used replacement policies are listed below [104].

Least-Recently-Used (LRU)
LRU replaces the element in cache that was used least recently. It effectively

maintains a queue of length equal to the length of the associativity of the set.

Every time an element is accessed from cache it is moved to the front of the

queue, whether it was in the cache or not. When a cache miss occurs the

element at the back of the queue is evicted. LRU does a good job at keeping

useful elements in cache.

2.3 Timing Analysis

31

First-In First-Out (FIFO or Round-Robin)
FIFIO, which is also known as Round-Robin, uses a FIFO queue to choose what

is evicted from cache. It simply replaces the element which has been in cache for

the longest time. Unlike LRU, if an element is accessed while it is in cache, it is

not moved to the front of the queue. It is however, much simpler to implement

than LRU. A downside is that it causes domino effects.

Most Recently Used (MRU)
MRU keeps track of elements that have been used recently and when a cache

miss occurs, replaces an element that has not been used recently. MRU uses a

status bit for each cache line. On each access, this status bit is set to 1 and once

the last status bit is set to 1, all other status bits are reset to 0. Once a cache miss

occurs, one of the elements with a status bit that is equal to 0 is replaced.

Pseudo-LRU (PLRU)
LRU can become prohibitively expensive to implement in caches with large

associativity, such as 4-way or greater. Pseudo-LRU is an alternative that almost

always discards the least recently used element by using a tree-based

approximation of LRU. Each node in the tree records which leaf is older/newer.

Each time an element is accessed, the nodes are updated. When a cache miss

occurs, the tree is followed to find the element to be evicted. Pseudo-LRU

caches can also cause the domino effect.

Random/Pseudo-Random
Random or Pseudo-Random replacement polices make no attempt to keep

important elements in cache; instead they replace elements at random. It does

not require storing any information to decide what to evict and is simple to

implement as it only requires a random or pseudo-random number generator.

A benefit of random replacement policies is that probabilistic analysis [54] [5] can

be performed on caches that use it. Additionally, random/pseudo-random

replacement policies reduce the possibility of performance anomalies due to

access history [102].

2.3 Timing Analysis

In order to determine if a taskset is schedulable when running on a multi-

tasking system, it is essential to know how long each of the tasks could take to

execute. This is achieved by performing timing analysis on the tasks. Timing

2.3 Timing Analysis

32

analysis methods can be classified into three types of analysis; static,

measurement-based, and a combination of the two hybrid measurement-based

analysis. Static analysis calculates the execution time for blocks using a model

of the hardware. Measurement-based analysis executes the software on the

target hardware and records execution time measurements. Hybrid

measurement-based analysis combines the two. It determines the execution

times by measuring small sections of code, and then calculates a bound on

execution time based on the program structure obtained using static analysis

and the collected measurements. While this thesis does not focus on timing

analysis, we present a brief review of the literature as it forms the basis for later

work on the cache analysis required by CRPD analysis.

2.3.1 Static Analysis

Static WCET analysis aims to calculate an upper bound on the WCET by

statically calculating what the execution time for each block of code will be, and

then combining them together to find the worst-case path (WC path) through the

code.

Initial Work
Early work on static WCET analysis was driven by the seminal paper by

Puschner and Koza in 1989 [100]. In [100], Puschner and Koza used source code

to try to calculate an upper bound on the maximum execution time of tasks.

Calculating an estimate for the WCET of an arbitrary program reduces to the

Halting problem [74]. It was therefore apparent from the onset that a number of

restrictions would have to be placed on the code in order to facilitate estimation

by bounding the execution time. Some of those restrictions such as not using

GOTOs and not having unbounded loops and recursive procedures are still

present in today’s techniques. In order to add additional information to the

source code a number of high level path description constructs were defined.

These were based on C like syntax and include things such as the ability to

specify the maximum number of iterations for loops using bounds, and markers

for dealing with multiple paths through loops. They proposed a set of formula,

or timing schema, that could be used to combine together execution times for

simple language constructions, assuming the execution time for them could be

obtained. For example the execution time for a sequence of statements is the

sum of the execution times for each statement. A downside of this approach is

that it requires modifying the source code in ways such as replacing standard

loops with their modified bounded versions.

2.3 Timing Analysis

33

Later in 1991, Park and Shaw [95] took an alternative approach of using external

annotations which has the benefit of not requiring a new programming

language or language subset. Additionally, they focused more on the mapping

between source code and the resulting object code. They used two levels of

granularity in their analysis, small atomic blocks, and large atomic blocks. A small

atomic block is as small as possible and could be an assignment, or an addition,

for example, cba  contains two atomic blocks. However, this is complicated

by simple compiler optimisations.

An example from [95] is that the sequence addcba  ; can be compiled

as follows:

a = b + c; ==> mov @b, d0

 add @c, d0

 mov d0, @a

d = d + a; ==> add d0, @d

Figure 2.3 - Optimised assembly code generated from two simple statements [95]

In this example, @a is the memory address of variable a, and d0 is data register

0. As variable a was already in a register after the first statement, the second

statement can be achieved in one machine instruction. This then makes it

difficult to predict the execution time of a source code statement when

considering it in isolation. Compiler optimisations can also cause multiple

atomic blocks to be merged into one machine instruction. In the example, = and

+ are achieved using one add for the second statement. Most problems like this

can be eliminated by using their second level of granularity, large atomic

blocks, which are as large as possible and represent an entire basic block. Where

a basic block is a sequence of instructions without any decisions or branches so

that the control flow enters at the beginning and leaves at the end. Regardless of

which level of granularity used, Park and Shaw combined together the atomic

blocks using a simple timing schema in the same way used by Puschner and

Koza in [100]. In their work they also considered system interferences in their

calculations due clock interrupts and dynamic RAM refreshes. However, they

did not consider the effect of advanced hardware features such as pipelines or

caches. In order to examine the effectiveness of their tool, Park and Shaw

collected measurements of the code and compared it against the predicted

bounds. For simple procedures, they were able to successfully calculate tight

bounds. For complex procedures such as those with nested loops, where the

number of iterations for the inner loop is dependent on the iteration number of

the outer loop, such as sorting algorithms resulted in much looser bounds. This

2.3 Timing Analysis

34

was refined by introducing more user annotations that enabled infeasible paths

to be eliminated which helped to produce tighter bounds.

In 1993 Park [94] started work on defining and refining which user annotations

are needed for calculating a tight bound on the WCET. These user annotations

provide execution information about the program which has since been known

as flow facts. These flow facts describe information such as loop bounds,

dependencies on conditions or statements and frequency relationships for sub

paths through loops. Using this information Park performed dynamic path

analysis to eliminate infeasible paths which leads to reduced pessimism while

keeping the estimate sound. Park concluded that at a minimum loop bounds

must be provided with additional information helping to make further

improvements. In some cases complete information is not necessary as partial

information can often be sufficient. Therefore, it is worth providing the broad

and general information first, then refining it with more specific localised

information.

Early static analysis found the WC path by using a tree based approach backed

by a timing schema. Provided the execution times of each basic block are

known, they can be added to the tree which can then be traversed from the

bottom up to find the WC path. This only works when the execution times of

procedures and blocks are independent, which is not the case in modern

processors with caches and other hardware features. In 1997, Puschner and

Schedl [101] proposed using a graph based approach for finding the WC path,

otherwise known as path based approaches. The approach used timing graphs

which are similar to flow graphs to represent the structure and timing

behaviour of the code. Flow facts are used to constrain the graph and the

problem is then solved by finding the path through the graph with the

maximum cost using integer linear programming (ILP).

The initial path based static analysis techniques used explicit path enumeration

to find the WC path. After all infeasible paths had been evaluated every

possible path was explicitly examined. The following example from [81]

illustrates the problem.

2.3 Timing Analysis

35

 for (i=0; i<100; i++) {

 if (rand() > 0.5)

 j++;

 else

 k++;

}

Figure 2.4 - Example of exponential blowup of paths if every path is explicitly
enumerated from [81]

The loop in Figure 2.4 above has 2100 different paths and yet if incrementing j

and k have the same cost then all of the 2100 paths are WC paths. Li and Malik in

1997 [81] proposed that by implicitly considering each path in the solution, the

computational effort can be significantly reduced. This is known as implicit path

enumeration technique (IPET), and forms the basis of the modern static analysis

process.

WCET Analysis Processes
Modern static WCET analysis uses IPET to express the analysis problem as an

ILP that is solved by maximising an objective function to find the path with

maximal length. The execution times of basic blocks are determined using very

detailed and accurate hardware. There are different approaches that can be

used to find and combine all the required information, but it is usually broken

down into the following phases [61] [126]. Reconstruction of the call graph (CG)

and control flow graph (CFG), architecture modelling broken down into pipeline

analysis and cache analysis, and value analysis. Finally, path analysis, which is the

process of generating and solving an ILP, to compute the path through the

program that maximises the execution time.

2.3 Timing Analysis

36

Figure 2.5 - WCET analysis process for a typical static analysis tool

While these are different phases, most techniques solved all phases together in

order to calculate as tight an estimate as possible. This is because the outcomes

affect each other: the value of inputs affects which paths are taken which affects

the execution time of blocks due of hardware features. This then affects which

blocks are on the WC path. The result of this combined analysis is a potentially

very large ILP problem that must be solved using ILP solvers. Today value

analysis can be used to determine a large number of flow facts automatically.

Architecture Modelling

Regardless of how the blocks are combined the execution times for the basic

blocks need to be found. This analysis needs to determine how long a basic

block will take to execute which is dependent on the type of instructions in the

block, the input data, and any hardware features that effect the execution time.

Architecture modelling accounts for hardware features such as pipelines and

caches and along with value analysis is usually solved using abstract

interpretation. Using abstract interpretation to perform cache analysis is

discussed in Section 2.3.2. Abstract interpretation is semantics based, meaning

it computes approximate properties of the semantics of programs. The key

concept is it hides some of the details, while still remaining correct, so that a

2.3 Timing Analysis

37

simplified representation can be used. This increases the feasibility of the

analysis by making it easier to obtain a result in a finite time. This enables the

problem to be solved as an ILP system. In 1977, Cousot [45] applied abstract

interpretation to static analysis of programs, forming the basis for much of the

research that has been conducted since.

Value Analysis

Ferdinand and Wilhelm [62] explain that abstract interpretation is used to

perform a program’s computation using value descriptions or abstract values in

place of concrete values. This allows one to work with a set of inputs, ideally all

inputs, rather than just one input. This also helps to ensure the computation

completes in finite time. The results obtained from abstract analysis while often

less precise, can still be proved to be larger than the real WCET; they never

underestimate it. An example given from [62] is that if a boolean variable is

sometimes true, then its value is correctly described by “I don’t know”, but not

by “false”. To guide the results, an objective function is defined and constraints

are placed on it. In static WCET analysis, the objective would be to maximise

the execution time. The constraints placed aim to prevent the WCET estimate

from becoming too pessimistic by, for example, excluding infeasible paths.

Path Analysis

The last part of the problem is the path analysis which comes down to solving a

potentially very large ILP problem. Once the overall structure of the software

has been obtained from the object code the path analysis must identify the WC

path. There will often be a number of possible WC paths that depend, directly

or indirectly, on the input data. The path analysis aims to eliminate as many of

the infeasible paths as possible. This helps to increase the accuracy of the

overall WCET estimate, as the estimated execution time for those paths do not

need to be included. Using flow facts, either provided by the user or found

using value analysis, infeasible paths can be eliminated. This is achieved by

bounding loops and specifying dependencies between blocks of code, especially

inside conditional statements. When this is combined together along with the

architectural modelling, an ILP problem representing the system with a number

of constraints must then be solved.

Limitations
Increased complexity of modern processors has made analysis more difficult

and computationally more intensive due to the higher number of factors that

2.3 Timing Analysis

38

must be taken into account. There are some techniques which can help to make

the cache easier to analyse, but they do not cover all cases. This has led to an

alternative approach where the architectural model is separated and then used

as direct input to the ILP, rather than forming part of an overall larger ILP.

Examples include the separation of the cache analysis [116] by Theiling et al.,

the idea being that the problem can be broken down into smaller less complex

problems which are then composed together. However, as previously noted

this results in a more pessimistic WCET estimate because of the lack of feedback

between the different parts of the analysis.

The described analysis is achieved by analysing the program without executing

it. However, additional information is almost always required in the form of

annotations provided by the developers to better describe the system. These

annotations help to fill in the missing information from the analysis. For

example, Section 4 of AbsInt’s white paper on their static analysis tool aiT [1],

details the required annotations that are needed in order to obtain a WCET

estimate. At a minimum, aiT requires the maximum number of iterations for

loops and the targets of computed calls and branches. If recursion is used, then

upper bounds on the recursion depth must also be specified. Any function

pointers will also require annotations. Information about memory mapping is

also required if accesses to different memory locations have different access

times.

Once the required annotations are provided they must be maintained along

with any changes to the system which can be a non-trivial challenge. Moreover,

if the developers’ understanding of the system or their model of the inputs is

incorrect, the WCET estimate will be inaccurate. Applying the static WCET

analysis tool aiT to automotive communication software is discussed by Byhlin

et al. [40]. The authors noted that detailed system and code knowledge is often

required and a number of annotations must be supplied. They also had to use

relative addressing in their annotations and the analysis often required them to

make changes and then recompile the software, which altered the code layouts.

As static WCET analysis tools rely on an accurate and complete model of the

hardware, a new model must be developed for every new configuration of

hardware. However, these models are inherently costly to develop because of

the complexity of modern hardware which limits the availability of them to the

most commonly used hardware.

2.3 Timing Analysis

39

2.3.2 Static Analysis for Systems with Cache

Static analysis techniques can produce very pessimistic WCET estimates when

cache is used because of the difficulty of knowing what will be in cache at any

point in time. Being able to accurately model the state of the cache is therefore

essential in calculating a tight WCET estimate.

Cache analysis in WCET analysis was originally proposed in 1994 in Mueller’s

PhD thesis [90] via static cache simulation. Static cache simulation simulates the

state of the cache at each program point using dataflow analysis. From this

abstract cache states which describe the possible states of the cache can be found.

These abstract cache states describe what may be in cache and take a sound but

often pessimistic view of the cache. Using the abstract cache states, Mueller

proposed four ways to categorise each instruction using instruction

categorisations; always-hit, always-miss, first-miss and conflict. Always-hit is for

instructions that are always in cache when fetched while always-miss is for

instructions which are never in cache when fetched. First-miss is common for

instructions that form part of a loop. On the first iteration they are not in cache,

but in subsequent iterations they hit as they have now been loaded. Finally

conflict is for any remaining instructions which were not categorised using the

first three options. In more recent literature instruction categorisations are

known as cache categorisations, conflict is often referred to as unknown and an

additional first-hit has been introduced. Mueller’s approach was only applied to

direct mapped caches and used a simple union to merge abstract cache states at

control flow merges. In the case where the abstract caches states were different

at a control flow merge, any non-matching entries are marked as conflict.

Set-Associative Caches
In 2000 Mueller [91] extended his approach to work with set associative caches

using the LRU replacement policy. Set associative caches introduce additional

challenges into the analysis because multiple blocks can be in the same cache set

simultaneously. As new ones are added the blocks age and depending on the

replacement policy, the oldest block is evicted. The analysis must therefore

track which blocks are in cache and how old they are as that then determines

when they will be evicted. Additional pessimism can be introduced at control

flow merges when the abstract cache states are combined using a union because

of the extra potential for uncertainty. In order to limit this, additional data flow

analysis was introduced. This included linear cache states to determine whether a

block will be in cache before the first iteration of a loop, the difference between

2.3 Timing Analysis

40

always-hit and first-miss. Secondly the dominator cache states were used for

determining what must be cached at a specific program point, used for

determining which blocks will be always-hit. Finally post-dominator sets were

introduced to determine what will be cached at a specific program point in the

future, regardless of the path taken to reach that point. Despite this additional

analysis, pessimism is still introduced if the abstract cache states are very

different.

Cache State Merging

Alt et al. in 1996 [2] introduced must and may analysis, described below to deal

with merging abstract cache states at control flow merges for set associative

caches. This is an alternative method which builds on the concept of cache

categorisations introduced by Mueller [90]. As the analysis is dependent on the

replacement policy, the following explanation of must and may analysis is just

for the LRU replacement policy, and is for a fully associative cache.

Must analysis determines what must be in cache and aims to find as many

blocks that are definitely in the cache as possible. This uses the maximum age of

each block to determine if it must be in the cache. Using Figure 2.6 as an

example, d is known to definitely be in the same place in cache in both paths, so

it is kept in the same place. Block a has two different ages, as does c, so the

maximum age is taken. Blocks e and f are not presented in both abstract cache

state so it cannot be determined if they are still in the cache after the merge.

{a} {c} Young

{} {e}

{c,f} {a}

{d} {d} Old

 {}

 {}

 {a,c}

 {d}

Figure 2.6 - Merging cache states using must analysis example from [61]

 May analysis aims to eliminate blocks that definitely are not in the cache

anymore. Any blocks which cannot be determined to not be in cache may be left

in cache. In order to achieve this, the minimum age of a block is used. In the

case where the block is present in one abstract cache state and not the other, it

2.3 Timing Analysis

41

must still be considered. Figure 2.7 shows the same example as Figure 2.6 but

with may analysis. As none of the blocks are evicted the resulting abstract cache

state contains all the original blocks in their youngest place in the cache.

{a} {c} Young

{} {e}

{c,f} {a}

{d} {d} Old

 {a,c}

 {e}

 {f}

 {d}

Figure 2.7 - Merging cache states using may analysis example from [61]

In addition to must and may analysis, virtual inlining virtual unrolling (VIVU) is

used to determine which blocks will miss when first accessed, but hit on a

subsequence access. These blocks are the same as first-miss using Muller’s

cache categorisations. This is important for analysing loops and recursive

procedures. This virtually1 inlines non-recursive procedures and virtually

unrolls the first iteration of all recursive procedures and loops. The benefit of

this approach is that it accounts for blocks being loaded in cache and reused

during loops and small recursive procedures. Otherwise they would have to be

categorised as always miss or unknown using earlier analysis techniques.

Further work such as in 2000 by Theiling et al. [116] defined a separate

persistence analysis which uses VIVU combined with a slightly modified

abstract cache state update function.

The must, may, and persistence analysis is solved by starting with empty

abstract cache states at each program point and then iteratively updates them

until all abstract cache states become stable. Once the must, may and

persistence analysis has been performed, a cache categorisation can then be

assigned to every block. Any block found to be in the abstract cache state after

must analysis is categorised as always-hit. Any block not found in the abstract

cache state after the may analysis is categorised as always-miss. In Mueller’s

work [91], he effectively just had may analysis and inferred the results of the

must analysis from the may analysis and the additional data flow information.

1 Virtually in this context means that the source or object code is not modified. Instead the
representation that is used for analysis is.

2.3 Timing Analysis

42

As with Mueller’s work, this approach still suffers from the same problem of

introducing pessimism at control flow merges.

The aim of the must, may and persistence analysis is to determine which blocks

are in cache at any given program point. However, during the analysis

uncertainty about the state of the cache is often introduced due to the

abstractions. This is especially so when the cache analysis is performed

separately. This leads to the analysis being unable to determine the state of a

block. In this case the sound approach is to calculate the execution time for

both, and use the worst of the two. Additional uncertainty is also introduced

when function pointers are used unless the user annotates them sufficiently.

It is also important to note that the analysis is specific to the replacement policy

and the configuration of the cache, for example, its associativity. Replacement

policies and configurations are applied using additional constraints and are

specific for each instance. LRU is the easiest to model because it is the most

predictable [105]. However, many modern processors have the more cost

effective to implement policies that are less predictable, such as the Pseudo-

LRU policy. Reineke et al. [105] presented an analysis of the predictability of

different replacements policies for the purpose of static WCET analysis. In the

case of Pseudo-LRU, the must analysis will find fewer blocks that must be in

cache and the may analysis will find more. This is because Pseudo-LRU will

not always evict the least recently used block and because of this, extra

pessimism is introduced in the result. FIFO is similar to LRU in that it maintains

a queue based on the age of blocks. The difference is that blocks are not moved

to the front of the queue when accessed. This makes analysis of FIFO in the case

of a miss the same as for LRU but in the case of a hit, it can only be guaranteed

that the block is in the cache, and could be evicted on the next access. MRU is

even more problematic because it tracks accesses by setting a status bit to 1,

however, once every cache line’s status bit is set to 1, it resets them all to 0. This

leads to the cache never being in a state where its entire contents can be

determined.

In the case of random replacement policies, it is not possible to deterministically

analyse the contents of the cache. Instead, probabilistic analysis, which uses the

probability of an access resulting in a cache hit to generate a probabilistic

distribution of the execution time, can be utilised. Examples of this include

probabilistic analysis developed under the PROARTIS project [42]. Altmeyer et

al. provided a review of static probabilistic timing analysis in [5]. In [54] Davis

et al. extended the analysis to deal with the effects of cache in multi-tasking

2.3 Timing Analysis

43

systems. However, the focus of this thesis is on analysis for deterministic

replacement policies.

Integration with WCET Analysis
The cache analysis is of little use on its own and must be combined with WCET

analysis. While it can be applied to an overall ILP problem such as in Alt et al.

[2], Theiling et al. in 2000 [116] presented a method that performs the cache

analysis separately. The results can then be used as constraints for the overall

ILP problem and allow the ILP problem to be simpler. This makes the overall

computation effort smaller, but it does increase the pessimism in the final

estimate as valuable information is not fed into the cache analysis about which

paths have been taken.

Data and Unified Caches
The methods described so far all focused on analysing instruction caches, which

is the focus of this thesis. There has been work towards analysing data and

unified caches [63]. Cache analysis can be used if the addresses of referenced

data can be statically computed. This means that global variables are usually

easy to determine. As local variables and parameters are placed on the stack

and are addressed relatively based on the stack pointer, if recursion is not in use

then data flow analysis [72] can be used along with stack analysis. However,

some addresses cannot be statically determined, such as those referenced by

pointers or arrays. In this case the analysis must consider a set of possible

memory locations, rather than a specific memory location, when performing

must and may analysis. This inevitably results in increased pessimism.

Data caches introduce additional challenges because they can be written to as

well as read from. Some of the write policies are easier to analyse than others.

Write through caches are simpler because they write the contents back to

memory straight away. Write back caches are more complicated because they

only write a modified block back to memory when it is evicted. This is

implemented in the hardware using a dirty bit to indicated blocks which have

been modified. In order to analyse these caches, the analysis is extended in the

same way to also include a dirty bit, and the must and may analysis are

adjusted to account for it.

Multi-level Caches
While the focus of this thesis is on single level instruction caches, it is becoming

ever more common in embedded systems to see multiple levels of cache, either

2.3 Timing Analysis

44

two (L1 and L2) or even three levels (L1, L2 and L3) in multi-core systems.

These extra caches sit between the top level cache, L1 cache, and main memory.

They will be larger than the L1 cache, but with higher access times. They will

still be faster than main memory.

The following example is based around fetching an instruction in a system with

an L1 and L2 instruction and L1 and L2 data cache. When loading the

instruction, the L1 instruction cache will be checked first. If the instruction is

not there then the L2 instruction cache will be checked next. If the instruction

was not in any of the cache levels, then the instruction will be fetched from

main memory. For each level of cache that must be searched there is an

additional, ever increasing, delay. Therefore, the analysis needs to track which

cache level each block is in in order to calculate an accurate WCET estimate.

In 2011, Hardy and Puaut [69] extended the cache analysis developed by

Theiling et al. [116] to work with multi-level caches by introducing the concept

of cache access classification (CAC). For every memory reference r, and cache level

l, a CAC is determined that captures whether r will result in an access to cache

level l. A CAC can be one of the following; always, never, uncertain-never or

uncertain. Where uncertain-never describes an access that could or could not

occur the first time, the next access will never occur at cache level l. The CAC

combined with the cache hit/miss configuration is then used for analysing the next

cache level. They described their analysis for non-inclusive, inclusive and

exclusive cache hierarchies using the LRU replacement policy. They have also

adapted it for non LRU replacement policies. They noted that a current

challenge is that pessimism in the cache analysis of the previous cache level

effects the results of the next level. Extending this to three levels of cache as

found in some multi-core systems and the need for increased precision in cache

analysis becomes even more important.

2.3.3 Measurement-based Analysis

Measurement-based WCET analysis is an alternative to static analysis. It is also

sometimes known as dynamic analysis and is commonly used in industry.

Rather than analysing the executable the software is run on the target system.

The simplest form works by recording the time at the start of a system or tasks’

execution and at the end of it as it executes on the target. This could be achieved

for example, by setting an external pin high at the beginning and setting it low

at the end of a task. A probe could be attached to the pin and it would record

the length of time that the pin was high.

2.3 Timing Analysis

45

One problem with measurement-based analysis is that measuring the end to

end timing of a system will not reveal the WCET unless the WC path is

exercised by the test case. Due to system complexity, and dependence on input

data, it can be very difficult to find a test that exercises the WC path. It is

possible to design systems so that a WCET estimate that is close to the real

WCET. This can be achieved by making the code very simple or having a single

path through the code. However, this may not be feasible for complex software,

making it practically impossible to execute every possible path. Furthermore,

good functional test cases may be very poor at exerting the worst case temporal

behaviour, further increasing the number of tests need. This limited testing then

introduces the problem of working out which tests to run and when sufficient

testing has been performed. Because of this problem, simple measurement-

based analysis are unsuitable for determining WCET estimate that is

guaranteed to be at least as high as the real WCET, unless the software has a

very small number of paths.

One solution to the problem was proposed in 1997 when Mueller and Wegener

[92] used a genetic algorithm to try to find good test cases. They start with an

initial population of test cases which they evaluated. Test cases that resulted in

a high WCET were regarded as strong individuals and were brought forward

through the generations. The end result was test cases that gave the highest

WCET estimate. This allows good test cases to be found that are better than

randomly trying different ones. However, the discovered test cases resulted in a

lower WCET estimate that the actual WCET. This highlights the fact that good

test cases, especially end-to-end ones, are difficult to find.

A benefit of measurement-based analysis is that while the computational cost

for static WCET analysis increases with the complexity of the system,

measurement-based WCET analysis scales linearly with the number and size of

tests. Additionally, it does not require an often expensive and complex to

develop hardware model. It is therefore easy to adapt techniques when moving

to newly released hardware as there is no need for a new hardware model to be

developed.

2.3.4 Hybrid Measurement-based Analysis

Hybrid measurement-based WCET analysis combines statically obtained control

flow information with measurements collected from the software running on

the target. These measurements often replace the value analysis and

architectural modelling that are used in static analysis, although flow facts can

2.3 Timing Analysis

46

still be gained using static analysis. As with pure measurement-based analysis,

the quality of the results are dependent on the coverage of the test cases.

However, because blocks can be combined together from a number of runs,

there is less of a need to find a test cases that exercises the complete WC path

through the code. Hybrid measurement-based analysis requires fewer

annotations for use in determining flow facts than static analysis, but may

require annotations to control/optimise to computed WCET bound. These

points combine together to make hybrid measurement-based analysis a very

attractive alternative for industry. A potential for optimism in the computed

WCET bound is that blocks are combined to build the WC path under the

assumption that they are independent and that the architecture is timing

compositional. In practice, performance enhancing features such as caches can

cause the execution time of a block of code to be dependent on what has

previously been executed. While this could be solved by testing all possible

paths and obtaining full path coverage, this is often unfeasible.

An example implementation of the hybrid measurement-based approach is

pWCET [25] where the background was first described in [26]. pWCET uses

probabilistic WCET analysis to calculate execution time profiles (ETPs) for each

basic block of code. Note that this is not the same as applying extreme value

statistics to the measurements to account for missing tests. Instead

measurements are recorded for every run of each block and combined together

to create the ETPs.

Non-probabilistic analysis would only records the maximum, and in some cases

the minimum values. Either form of analysis must combines these blocks

together, usually using some form of timing schema. The following is an

example simple schema based on a syntax tree representation that allows

timing information to be combined.

• W(X) = integer, when X is a basic block

• W(X; Y) = W(X) + W(Y) - combines together two blocks, X and Y

• W(if Z then X else Y) = W(Z) + max{W(X), W(Y)}

• W(for Z loop X) = (n + 1)W(Z) + nW(X) - where n is the maximum

number of iterations

In the case of pWCET, rather than using integers, ETPs are used when

combining the values for each block. In order to function correctly with the

ETPs the additions must be replaced with join operators. In the case where the

ETPs are independent the join is simply a convolution. However, in the case of

dependent ETPs there are effects that are (possibly highly) correlated that are

2.3 Timing Analysis

47

not accounted for. When precise information about dependencies is known,

alternative operators can be used. In this case the two ETPs can be joined to give

an ETPs equal to P(A = t ∧ B = s). In other words, the join gives the probability

that block A runs for t time units and block B runs for s time units.

pWCET has since been turned into a commercial tool, Rapita Systems’

RapiTime [103]. While obtaining a probabilistic WCET estimate is useful for

some real-time systems such as communications which need to achieve a

certain QoS, many hard real-time systems need absolutes. In that case the

highest values from the ETP can be taken which is the approach used by

RapiTime, although it can display the full ETP for use in appropriate scenarios.

An example for presenting ETPs is when attempting to optimise the code.

Having a distribution of the measured execution times enables insight into the

variation in execution times necessary to make improvements.

The full approach used in RapiTime is as follows. First, the structural analysis is

applied to the source code and then pre-processed. During the analysis, the CG

and CFG are obtained so that the measurements can be matched and combined

with the correct blocks of code. The pre-processed code is then turned into

instrumented code by inserting instrumentation points (Ipoints). These Ipoints

are usually macros or small procedures that output an ID and timestamp which

can then be recorded. The instrumented code can then be compiled in the

normal way to produce an instrumented executable. When executed on the

target, the Ipoints that were inserted into the code write data to memory or to

an output port. The IDs in the data are then used to match the timing

information from the timestamps with the CFG obtained during the initial

analysis. Execution times for each procedure can then be composed together

using a tree based approach from the bottom up to calculate the WCET

estimate. However, as noted before, this does not account for dependencies

between the execution times of procedures caused by caches and other

hardware features unless full path coverage has been obtained.

As with pure measurement-based approaches, blocks must be tested in order to

collect timing information for them. Ernst and Ye [58] proposed an approach

where they reverted to standard static analysis for blocks without timing

information that were not successfully tested. This enables relatively fast

calculation for the ideally small number of blocks. However an accurate

hardware model is then required which is one of the major points that hybrid

measurement-based analysis is supposed to address.

2.3 Timing Analysis

48

The above mentioned techniques used tree based approach to calculate the WC

path based on the source code. Betts and Bernat [30] proposed a method to

transform graphs based on object code into a tree so that a timing schema can

be used as if it was based on the source code. This is an interesting take on the

problem, although this has not been fully implemented in a tool. The benefit of

starting with object code is that it eliminates any uncertainty introduced by

compiler optimisations.

It can be difficult to collect measurements from some systems for a number of

reasons, including:

 If there are no free I/O ports to connect a logic analyser to the target

 If there are free I/O ports, but using them significantly limits

performance and under-utilises the CPU due to the slow speed of the

I/O ports

 If the above two scenarios hold, the only way to extract data may be to

store it in memory, and then download it later. However, if the on board

memory is limited in capacity, this could result in only being able to test

a small portion of the system.

Due to this, the method of extracting data must be tailored to the specific

hardware. Hybrid measurement-based analysis will often require a large

amount of data to be extracted from the target system. Depending on the detail

required, the source code can have different levels of instrumentation, which

will generate more or less data to be extracted. It is therefore important in large

systems with limited I/O port bandwidth or available memory to pick suitable

levels of instrumentation. This could range from recording timing information

for each procedure, down to instrumenting each basic block of code. Initially,

everything could be instrumented at procedure level. On a second run, the

procedures that contribute to the WCET could have more instrumentation

added in order to obtain extra information about which parts of the code are

contributing the most to the execution time. Even greater detail can be obtained

if necessary. This may be useful when evaluating the performance of one

statement over another where, for example, one uses specific hardware features

of the processor. However, it would generally not be used in the final code as

the overheads may become prohibitive if every other statement is an Ipoint that

requires a memory or I/O port access.

Measurement-based techniques also suffer from the probe effect due to

modifying the source code in order to generate the data required to measure the

execution time. In doing so the behaviour of the code is altered which can affect

2.3 Timing Analysis

49

the execution time. In systems with cache, the additional code can alter the

layout of code in memory, potentially affecting the number of cache hits/misses

across the whole software.

An alternative is to use industry standard hardware debuggers such as ARM’s

ETM [12] or Nexus [93] which are built into some chips. These allow a

consistent way to extract execution information from targets in the form of

branch traces. These traces record every branch that is taken [29] and therefore

branches that are not taken must be inferred. They however produce less

accurate measurements as records are grouped together and time stamped,

rather than individually time stamped. Additionally, information could be

missed if there is a high number of branch instruction grouped closely together

due to bandwidth limitations of the JTAG port that is used for communication.

2.3.5 Measurement-based Analysis for Systems with

Cache

The execution time of a basic block in a system with cache is history dependent:

execution time of a block can vary depending on the path that was taken to get

to it. Therefore, measuring all of the individual paths and combining them is

only valid for the specific path through the program. To produce a sound

WCET estimation when cache is used, full path coverage is technically needed.

Figure 2.8 shows an example demonstrating why full path coverage is required.

The WC path after executing the two solid line tests was calculated to result in a

WCET of 150, as shown by the dashed line path. If in this example loading B

into cache evicts F from cache, when it would otherwise have been in cache

after executing C and D, then the WCET would increase to 190.

2.3 Timing Analysis

50

Figure 2.8 – Example showing why full path coverage may be needed in a system with
cache. Executing the solid line tests results in a calculated WC path (dashed line) of A-
>B->D->F->G with an estimated WCET of 150 (left). If B evicts F, which would
otherwise still be in cache when it is called after D, the WC path would remain the
same, but the WCET would increase to 190 (right)

There are some potential solutions to this problem. In 2000 Petters [96] flushed

the cache before each measurement block in order to obtain a WCET estimate

that was not affected by the cache. However, this clearly introduces a large

amount of pessimism and will remove most of the benefits of using the cache.

In 2003, Colin and Petters [44] investigated how much of an effect different

hardware features had on the WCET. They found that for the SimpleScaler

simulator, the level of overestimation was much smaller than the performance

loss due to disabling the cache. This emphasises the importance of cache and

our ability to account for it when performing WCET analysis.

In 2005 Kirner et al. [75] took a similar approach to Petters [96] by partitioning

the CFG into program segments. While they did use basic blocks, they also used

larger multi-path program segments which had a number of paths through

them. This allowed for a less pessimism via considering larger blocks in

isolation, at the expense of requiring a higher number of measurements. In

order to ensure that all the paths were tested, the authors used a model checker

to generate suitable test cases, rather than relying on manually defined test

cases. An extension to this could be to consider procedures in isolation and try

to obtain full path coverage for each procedure.

2.4 Summary

51

A slightly different way to tackle the problem was taken by Betts et al. [31] in

2006 with their concept of WCET coverage. Although this was designed for

pipelines, the ideas are still relevant for caches. It is based on the fact that

traditional functional coverage metrics, such as branch coverage or MC/DC

coverage, will often result in poor temporal coverage when advanced processor

features such as caches are used. Because of this, and despite the benefits of

hybrid measurement-based analysis, there is no way to prove that sufficient

testing has been performed. They therefore setup a number of WCET coverage

metrics which reflect different levels of temporal coverage when pipelines are

used. A basic form of WCET coverage for caches can be achieved by applying

the technique used in Petters [96] to flush the cache at the start of each basic

block. Kirner et al. [75] presented an approach where the CFG is split into multi-

path program segments, in which case WCET coverage would be obtained by

ensuring that every path through each program segment had been tested.

2.4 Summary

This chapter has introduced the key background research that forms the

grounding for the work presented in this thesis. When analysing tasks in

isolation a sound WCET for each task can be calculated and can be done in such

a way that the effects of caches are also accounted for. Schedulability analysis

can then be used to determine if all of the tasks when running on the system

will meet their deadlines. However, the schedulability analysis assumes that the

tasks’ WCET obtained in isolation will not be affected when scheduling

multiple tasks pre-emptively. While this assumption is valid for simple

architectures, it is not for more complex ones that contain performance

enhancing features such as cache. In the next chapter, we look at existing work

that uses information from static analysis and scheduling information to

determine the schedulability of a system, accounting for the effects of cache

when scheduling multiple tasks pre-emptively.

52

53

CHAPTER 3. CACHE RELATED

PRE-EMPTION DELAYS

In this chapter, we describe cache related pre-emption delays (CRPD), and review

the current state-of-the art analysis for accounting for CRPD when performing

schedulability analysis. We also discuss a number of techniques that can be

used to minimise these delays either by reducing the number of pre-emptions,

or reducing/eliminating intra-task cache conflicts. From this point we assume

that an accurate model of the processor being used is available, and that the

static analysis techniques discussed in Chapter 2 can be applied to our system.

We can then assume that we are able to obtain the following properties:

 A sound WCET estimate for each task in isolation

 Correct information about what ‘must’ and ‘may’ be in cache at each

program point

3.1 Cache Related Pre-emption Delays

When a pre-emption occurs there is a mandatory delay introduced by the need

to save the state of the current task, decide which task to switch to, and then

setup the new task. This delay is known as the context switch cost (CSC). As this

is a fairly constant cost, it can usually be upper bounded and then subsumed into

the execution time of the pre-empting task. In other words, in order to perform

schedulability analysis on a taskset, the execution time of each task in the

system is inflated by a bound on the time taken by the scheduler/operating

system to switch to and then back from a task.

In a system with cache after a pre-emption occurs there can be additional costs

due to interferences on the cache which affect the pre-empted task(s). This is

known as cache-related pre-emption delay (CRPD) and it cannot simply be

subsumed into the execution time of the pre-empting task without potentially

3.1 Cache Related Pre-emption Delays

54

introducing significant pessimism. This is because CRPD is dependent on the

pre-empting and pre-empted tasks and the point of pre-emption. Specifically, it

is incurred when a pre-empted task resumes and no longer has the instructions

or data that the task was using in cache, because the pre-empting task(s) evicted

them from cache. It is therefore difficult to determine the exact CRPD because

the delay will not be incurred at once. Instead, CRPD will be incurred as the

task uses data and invokes instructions that were evicted by the pre-empting

task(s) during the remainder of its execution. In addition to being highly

variable, CRPD can be significantly larger than CSC. In a study of a large

multicore platform, Bastoni et al. [22] found the CSC to be around 5-10µs in the

worst case, with variation being down to the number of tasks and scheduling

policy which would not be changed at runtime. In comparison, they found the

worst-case pre-emption costs to be much greater and more varied than the CSC,

specifically they varied between 1-10000µs depending on the cache usage and

system load. Figure 3.1 shows an example pre-emption with a small amount of

CSC occurring when switching tasks and a large amount of CRPD spread out

during the execution of a task after being pre-empted.

Figure 3.1 - Illustration of the effects of a pre-emption. CSC are incurred when
switching tasks, and pre-emption delays are incurred during the remainder of a tasks
execution after pre-emption as it accesses blocks that were evicted from cache during the
pre-emption

As noted, the CSC is fairly constant and can be upper bounded and is therefore

usually subsumed into the execution time of the pre-empting task. Figure 3.2

shows a revised version of Figure 3.1 with the CSC replaced by an increase to

the execution time of task τ1.

3.1 Cache Related Pre-emption Delays

55

Figure 3.2 - Illustration of how the CSC can be subsumed into the execution time of the
pre-empting task when compared to Figure 3.1

CRPD depends on the point at which a task is pre-empted. For example, pre-

empting a task when it has not loaded anything into cache, or when it no longer

requires anything it has in cache will have minimal effects. Figure 3.3 is taken

from [28] and is based on Matlab automotive code that models an automatic

transmission controller. Pre-emption points were placed at fixed points and a

high priority task which evicts all cache lines was used. The plotted CRPD at

each point in the figure below was calculated by taking the difference in the

execution time with and without pre-emption.

Figure 3.3 - Example showing CRPD can vary throughout the execution of a task as the
maximum amount of CRPD is related to the amount of useful information that has to be
re-loaded back into cache. Example taken from [28]

Furthermore, if a task is pre-empted shortly after resuming from a pre-emption,

it may not have yet re-loaded all of the evicted blocks and will therefore not be

able to incure the maximum CRPD from the first pre-emption. However,

without knowing the exact point at which a task is pre-empted, we must make

the pessimistic assumption that the pre-emption will result in the maximum

CRPD being incured directly after the pre-emption. This results in a simplified

3.1 Cache Related Pre-emption Delays

56

representation of the CRPD whereby it is combined into a single cost pre-

emption as shown in Figure 3.4.

Figure 3.4 - Simplified and potentially pessimistic representation of CRPD, assuming it
is incurred at once after a task resumes

The analysis presented in this thesis does not consider blocking due to shared

resources. However, we note that the effect of CRPD when using shared

resources via SRP [16] can be accounted for as shown in [6] [7].

In order to determine an upper bound on the CRPD, we must calculate how

many blocks may be evict from cache that then need to be reloaded, and then

multiply that by the additional time incurred when reloading a block from

memory.

3.1.1 Block Reload Time

The additional time taken to reload a block from memory into cache after a pre-

emption is dependent on the hardware and is known as the block reload time

(BRT). There are three possible cases of processor architecture [127]. For

processors than employ a simple architecture that does not suffer from timing

anomalies such as the ARM7, this is simply the difference in the number of

cycles to load a block from cache verses from memory. If timing anomalies are

possible but not domino effects, for example TriCore, then the BRT can be

increased to include any additional time that may be incurred as a result of a

cache miss. If timing anomalies and domino effects are possible in the

architecture, for example PPC 755, then the effects of a cache miss cannot be

constant bounded. Therefore the effects of CRPD cannot be calculated

separately [109]. In this work we assume that the BRT can be determined and

that there are no domino effects.

3.1 Cache Related Pre-emption Delays

57

3.1.2 UCBs and ECBs

To calculate the number of blocks that must be reloaded, CRPD analysis uses

the concept of useful cache blocks (UCBs) and evicting cache blocks (ECBs) based on

the work by Lee et al. [77]. Any memory block that is accessed by a task while

executing is classified as an ECB, as accessing that block may evict a cache block

of a pre-empted task. Out of the set of ECBs, some of them may also be UCBs. A

memory block m is classified as a UCB at program point ρ, if (i) m may be

cached at ρ and (ii) m may be reused at program point ϥ that may be reached

from ρ without eviction of m on this path. In the case of a pre-emption at

program point ρ, only the memory blocks that are (i) in cache and (ii) will be

reused, may cause additional reloads. The maximum possible pre-emption cost

for a task is determined by the program point with the highest number of

UCBs. For each subsequent pre-emption, the program point with the next

smallest number of UCBs could be considered. In this thesis, we assume that

the set of UCBs and ECBs can be obtained via static analysis.

We represent the set of UCBs and ECBs as a set of integers with the following

meanings:

iis UCB has a useful cache block in cache set s

jjs ECB may evict a cache block in cache set s

Depending on the approach used, CRPD analysis combines the UCBs belonging

to the pre-empted task(s) with the ECBs of the pre-empting task(s). Using this

information the total number of blocks that are evicted, which must then be

reloaded after the pre-emption, can be calculated and combined with the cost of

reloading a block, the BRT, to then give the CRPD. We could therefore calculate

an upper bound on the cost of task τj directly pre-empting τi as

ji ECBUCB BRT  . However, note that it could be optimistic in the case of

nested pre-emptions and thus cannot be used directly.

As an example, let UCB2 = {2,3,4,5}, ECB1 = {3,4,5,6,7,8,9} and BRT=1. An upper

bound on the CRPD due to a job of task τ1 directly pre-empting a job of task τ2

once is then given by:

3.1 Cache Related Pre-emption Delays

58

   

 

3

31

5,4,31

9,8,7,6,5,4,35,4,3,2 BRT

ECBUCB BRT 12











We use the term cache utilisation to describe the ratio of the total size of the tasks

to the size of the cache. A cache utilisation of 1 means that the tasks fit exactly in

the cache, whereas a cache utilisation of 5 means the total size of the tasks is 5

times the size of the cache.

We focus on instruction only caches. In the case of data caches, the analysis

would either require a write-through cache or further extension in order to be

applied to write-back caches. We also assume that tasks do not share any code.

Set-Associative Caches

In the case of set-associative LRU1 caches, a single cache set may contain several

UCBs. For example, UCB1 = {2,2,4} means that task τ1 has two UCBs in cache set

2 and one UCB in cache set 4. As one ECB suffices to evict all UCBs of the same

cache set, multiple accesses to the same set by the pre-empting task do not

appear in the set of ECBs. A bound on the CRPD in the case of LRU caches due

to task τj directly pre-empting τi is thus given by substituting the intersection

between a set of UCBs and ECBs, ji ECBUCB  , with a modified version,

ji ECBUCB  . Where  jiji mmm ECB:UCB|ECBUCB  and the result is

a multiset that contains each element from UCBi if it is also in ECBj. A precise

computation of CRPD in the case of LRU caches is given in Altmeyer et al. [9].

The equations provided in this thesis can be applied to set-associative LRU

caches with the above adaptation to the set-intersection.

Definitely-Cached UCBs

During timing analysis, a memory blocks may not be classified as a cache hit or

a cache miss and is contained within the set of cache blocks derived through

may analysis. In this case the block could be categorised as a UCB, but would

also be counted as a cache miss by the timing analysis for the purpose of

1 The concept of UCBs and ECBs cannot be applied to the FIFO or PLRU replacement policies as
shown by Burguière et al. [35]

3.2 CRPD Analysis for FP Scheduling

59

calculating the task’s WCET. This could lead to additional pessimism when

performing CRPD analysis. Altmeyer et al. [3] introduced the concept of

definitely-cached UCBs, or DC-UCBs, to solve this problem. They extend the

original UCBs definition with a third requirement to give:

A memory block m is classified as a DC-UCB at program point ρ, if (i) m may be

cached at ρ and (ii) m may be reused at program point ϥ that may be reached

from ρ without eviction of m on this path, and (iii) m is considered a hit at

program point ϥ by the timing analysis.

By restricting the set of UCBs to just those considered as a hit by the timing

analysis, the number of UCBs can be reduced which leads to a tighter bound on

the CRPD. In practice using DC-UCBs could lead to an under estimation in the

CRPD analysis however it would always be accompanied by an equal or greater

overestimation in the WCET estimate from the timing analysis. This occurs

when a memory block that could not be categorised by the static analysis is

actually a UCB and would actually result in a cache hit without pre-emption.

However, the static analysis will assume the worst case, a cache miss, in the

event that it cannot categorise an access to a block. Therefore, any unaccounted

CRPD that may be introduced by a pre-emption would have already been

accounted for, as an assumed cache miss, during the WCET analysis.

In this thesis, we use the more precise DC-UCB definition when referring to

UCBs. Additionally, the UCB data presented in later chapters for comparing

approaches was collected using DC-UCB analysis.

3.2 CRPD Analysis for FP Scheduling

In this section, we review existing approaches for calculating CRPD when

performing schedulability analysis for FP scheduling. To account for the CRPD

when determining the schedulability of a taskset, a component ji , is

introduced into the response time analysis equation for FP, equation (2.1) ,

where ji , represents the cost of a single pre-emption of task τi by task τj. This

gives a revised equation for Ri as:

)(,

)(hp

1
jij

i j

i
ii C

T

R
CR

j




 







 



 (3.1)

Note that the analysis effectively determines the response time via a busy

period calculated based on a synchronous release of tasks. However, it also

3.2 CRPD Analysis for FP Scheduling

60

assumes that the maximum number of pre-emptions could occur. This is not

possible with a synchronous release of tasks and is thus a slightly pessimistic

assumption.

Note that once we include CRPD in the schedulability analysis, the effectiveness

of priority assignments used under FP are changed. For example Audsley’s

OPA algorithm has a number of conditions [14] such as requiring the

schedulability of a task to not be dependent on the relative priority ordering of

higher priority tasks. When considering CRPD, this condition no longer holds.

Deadline Monotonic and Rate Monotonic are optimal assignments assuming

negligible pre-emption costs under constrained and implicit deadline tasks

respectively. However, once CRPD is considered, they are no longer optimal in

the general case [53], as shown in Figure 3.5.

Figure 3.5 - Example schedule demonstrating that Deadline Monotonic is not optimal
when CRPD is considered. a) Shows three tasks scheduled under FP with priorities
assigned using Deadline Monotonic priority order. Due to the pre-emption and
resulting pre-emption delay, task τ3 misses its deadline. b) Shows the same tasks with
the priorities of task τ1 and τ2 swapped. In this case the pre-emptions that resulted in
pre-emption delays are avoided, and all tasks meet their deadlines

We define aff(i,j) = hep(i) ∩ lp(j) (based on the notation presented in Section

2.1.2) to mean all tasks that can have CRPD caused by task τj pre-empting them,

which affects the response time of task τi. In other words, it is the set of tasks

that may be pre-empted by task τj and have at least the priority of task τi.

There are then a number of approaches that have been developed in order to

calculate ji , which we will now briefly summarise.

3.2 CRPD Analysis for FP Scheduling

61

ECB-Only

Busquets et al. [37] in 1996 presented their ECB-Only approach which considers

just the pre-empting task. It captures the worst case effect of task τj pre-empting

any task regardless of that task’s UCBs, by assuming that every block evicted by

task τj will have to be reloaded.

j

ecb
ji ECB BRT,  (3.2)

UCB-Only

In 1998, Lee et al. [77] presented the UCB-Only approach, which considers just

the pre-empted task(s). The UCB-Only approach accounts for nested pre-

emptions by calculating the maximum number of UCBs that may need to be

reloaded by any task that may be directly pre-empted by task τj.

   UCB max BRT
),(aff

, k
jik

ucb
ji


 (3.3)

The disadvantage of the ECB-Only and UCB-Only approaches is that they only

consider either the pre-empting tasks or the pre-empted tasks. The following

approaches aim to solve this problem by combining UCBs and ECBs from the

pre-empted and pre-empting tasks. However, as previously noted we cannot

simply take the intersection of the pre-empting task’s ECBs with the pre-

empted task’s UCBs as this would be optimistic in the case of nested pre-

emptions.

UCB-Union

In 2007 Tan and Mooney [115] considered both the pre-empted and pre-

empting task(s) in their UCB-Union approach. UCB-Union accounts for the

effects of nested pre-emptions by assuming that the UCBs of any tasks that

could be pre-empted, including nested pre-emptions, by task τj are evicted by

the ECBs of task τj.

j

jik

k
uucb

ji ECBUCB BRT
),(aff

, 

















  (3.4)

ECB-Union

Altmeyer et al. [6] presented their ECB-Union approach in 2011 which

compliments Tan and Mooney’s UCB-Union approach. It accounts for nested

pre-emptions by computing the union of all ECBs that may affect a pre-empted

3.2 CRPD Analysis for FP Scheduling

62

task. The reasoning behind the approach being that a direct pre-emption by task

τj is represented by the pessimistic assumption that task τj has itself already

been pre-empted by all of the tasks with a higher priority. Hence, a pre-emption

by task τj may result in the eviction of  }{)(hp
ECB

jjh
h


. The maximum number

of blocks that may be evicted as a result of an already nested pre-emption by

task τj is then obtained by considering the maximum number of UCBs that may

need to be reloaded by any task that may be directly pre-empted by task τj, as in

the UCB-Only case.

  





























 
}{)(hp

,aff
, ECBUCBmax BRT

jjh

hk
jik

uucb
ji (3.5)

3.2.1 Multiset Approaches

The approaches presented thus far all calculate the CRPD due to a single pre-

emption of task τi by task τj. However, calculating the pre-emption costs this

way can introduce additional pessimism when there are nested pre-emptions.

The approaches effectively assume that task τj can pre-empt each intermediate

task τk the same number of times that it pre-empts task τi. While this is

potentially true if Dk = Di, it can be a pessimistic assumption when Dk < Di and

particularly when Dk << Di .

The remainder of the approaches take a different approach by calculating the

CRPD due to all jobs of task τj executing within the response time of task τi.

They do so by using multisets which are unordered collections of elements

which can contain the same element multiple times. For example, a multiset can

be used to represent the costs of all possible pre-emptions. The total CRPD

could then be bounded by calculating how many pre-emptions could occur as q,

and then taking the sum of the q largest values from the multiset.

Staschulat

Staschulat et al. [113] in 2005 took a different approach towards combining pre-

empted and pre-empting task(s). The analysis accounts for the fact that each

additional pre-emption of task τi may result in a smaller pre-emption cost than

the last. In order to integrate their approach into the response time analysis we

use ji,  to represent the total cost of all pre-emptions due to jobs of task τj

executing within the response time of task τi. The approach is integrated into

the response time analysis equation for FP, equation (2.1), to give:

3.2 CRPD Analysis for FP Scheduling

63






























)(hp

,
1

i

jij

j

i
ii

j

C
T

R
CR 




 (3.6)

In order to present Staschulat et al. approach, we define the maximum number

of jobs of task τk that can execute during the response time of task τi, Ek(Ri) as:

  










k

i
ik

T

R
RE (3.7)

The first step of Staschulat et al. approach is to form a multiset, M, containing

the cost of each possible pre-emption of task τj pre-empting jobs of any lower

priority task),(aff jik  that can execute during the response time of task τi. M

is given by:

     

 
 

),(aff

;1|ECBUCB
jik RiE

kj
n

jk

k

REnM















 (3.8)

where  njk ECBUCB  gives the n-th highest pre-emption cost for task τj pre-

empting task τk. As M is a multiset, the union over Ek(Ri) means that the set of

values for task τk are repeated Ek(Ri) times in M.

The next step is to calculate the maximum number of pre-emptions q, including

nested-pre-emptions, from the set of tasks),(aff jik  that can execute during

the response time of task τi:

 



),(aff

)(
jik

ik REq (3.9)

The total CRPD due to all pre-emptions due to jobs of task τj executing within

the response time of task τi is then given by the sum of the q largest pre-

emptions.





q

l

lsta
ji M

1

, BRT (3.10)

where Ml is the l-th largest element from the multiset M.

However, as shown in [7], this approach can significantly over-estimate the

number of pre-emptions that can affect the response time of the pre-empted

task, especially when there are a large number of tasks.

3.2 CRPD Analysis for FP Scheduling

64

UCB-Union Multiset

In 2012, Altmeyer et al. [7] presented their UCB-Union Multiset approach

which combines the UCB-Union approach with Staschulat et al. [113] method of

counting the maximum number of pre-emptions incurred by intermediate

tasks. The first step is to form a multiset
ucb

jiM , containing Ej(Rk)Ek(Ri) copies of

the UCBk of each task τkaff(i, j). This multiset reflects the fact that jobs of task τj

cannot evict the UCBs of jobs of task τk more than Ej(Rk)Ek(Ri) times during the

response time Ri of task τi. Hence:



















)()(),(aff

, UCB
ikkj RERE

k

jik

ucb
jiM (3.11)

To represent the pre-empting tasks, Altmeyer et al. form a multiset
ecb

jiM ,

containing Ej(Ri) copies of the ECBj of task τj. This multiset reflects the fact that

during the response time Ri of task τi, task τj can evict cache blocks in the set

ECBj at most Ej(Rk)Ek(Ri) times.

  
)(

, ECB
ij RE

j

ecb

jiM  (3.12)

mucb
ji

, is then given by the size of the multiset intersection between
ucb

jiM , and
ecb

jiM , :

 ecb
ji

ucb
ji

mucb
ji MM ,,, BRT   (3.13)

ECB-Union Multiset

Altmeyer et al. [7] also presented the ECB-Union Multiset approach which

builds upon the ECB-Union approach. It computes the union of all ECBs that

may affect a pre-empted task during a pre-emption by task τj. Specifically, it

accounts for nested pre-emptions by assuming that task τj has already been pre-

empted by all tasks of a higher priority.

The first step is to calculate the number of UCBs that task τj could evict when

pre-empting an intermediate task, τk. This is given by calculating the

intersection of the UCBs of the pre-empted task, task τk, with the set of ECBs

belonging to the pre-empting tasks  }{)(hp
ECB

jjh
h


to give:



















}{)(hp

ECBUCB
jjh

hk (3.14)

3.3 CRPD Analysis for EDF Scheduling

65

Note    jjh hp is used to account for the case when tasks can share

priorities.

The ECB-Union multiset approach recognises that task τj cannot pre-empt each

intermediate task τk more than Ej(Rk)Ek(Ri) times during the response time of

task τi. Therefore, the next step is to form a multiset jiM , that contains the cost of

task τj pre-empting task τk , equation (3.14), repeated Ej(Rk)Ek(Ri) times, for each

task τkaff(i, j), hence:

 
),(aff }{)(hp)()(

, ECBUCB
jik jjh

hk

RERE

ji

ikkj

M
 




























 (3.15)

As only Ej(Ri) jobs of task τj can execute during the response time of task τi, the

maximum CRPD is obtained by summing the Ej(Ri) largest pre-emptions, the

Ej(Ri) largest values in jiM , .







)(

1

,, BRT
ij RE

l

l
ji

mecb
ji M (3.16)

Combined Multiset

Altmeyer et al. [7] presented a further improvement to their multiset

approaches by recognising that the UCB-Union Multiset and ECB-Union

Multiset approaches are incomparable. Because of this, they can be combined to

deliver a more precise bound that by construction dominates the use of either

approach alone. Note that some tasksets can be deemed schedulable by the

combined approach that would not be deemed by either approach individually.

This is because the response time for each task can be individually determined

using either approach.

  mecb
i

mucb
ii RRR  ,min (3.17)

3.3 CRPD Analysis for EDF Scheduling

In this section, we review an existing approach for calculating CRPD when

performing schedulability analysis for EDF scheduling. The EDF scheduling

always schedules the job with the earliest absolute deadline first. Assuming

negligible pre-emption costs, it is an optimal scheduling algorithm for a single

processor. Any time a job arrives with an earlier absolute deadline than the

current running job, it will pre-empt the current job. When a job completes its

3.3 CRPD Analysis for EDF Scheduling

66

execution, the EDF scheduler chooses the pending job with the earliest absolute

deadline to execute next. In the case where two or more jobs have the same

absolute deadline, we assume the scheduler always picks the job belonging to

the task with the lowest unique task index, see Figure 3.6. This has the benefit of

minimising the number of pre-emptions. In the case where two task jobs have

the same absolute and relative deadlines, it ensures that they cannot pre-empt

each other. Furthermore, it ensures that after a pre-emption, the task that was

pre-empted last is resumed first.

Figure 3.6 - Example schedule showing how the scheduler chooses which task should
execute. Task τ3 is released at t = 0. At t = 5, task τ2 is released, pre-empting τ3 as
although it has the same absolute deadline, it has a lower task index. At t = 6, task τ1 is
released, pre-empting task τ2. At t = 7, τ1 completes, the scheduler then chooses to
resume task τ2 as although it has the same absolute deadline as task τ3, it has the lower
task index

We note that when CRPD is taken into account, EDF is no longer optimal in the

general case. Consider the following example with two tasks shown in Figure

3.7. The first schedule a) shows three tasks scheduled under EDF. Due to the

pre-emption and resulting pre-emption delay, task τ3 misses its deadline. The

second schedule b) shows the same tasks scheduled under FP with priorities

assigned τ2, τ1, τ3, highest to lowest. In this case the pre-emptions that resulted in

pre-emption delays are avoided, and all tasks meet their deadlines.

3.3 CRPD Analysis for EDF Scheduling

67

Figure 3.7 - Example schedule showing that EDF is not optimal when CRPD is
considered. a) Shows three tasks scheduled under EDF. Due to the pre-emption and
resulting pre-emption delay, task τ3 misses its deadline. b) Shows the same tasks
scheduled under FP with priorities assigned τ2, τ1, τ3. In this case the pre-emptions that
resulted in pre-emption delays are avoided, and all tasks meet their deadlines

We assume that any task τj with a relative deadline Dj < Di can pre-empt task τi.

Therefore, we define the set of tasks that may have a higher priority, and can

pre-empt task τi, as:

 }|{)(hp ijj DDi   (3.18)

We use Pj(Di) to denote the maximum number of times that jobs of task τj can

pre-empt a single job of task τi which we calculate as follows:


















 


j

ji
ij

T

DD
DP ,0max)((3.19)

We use Ej(t) to denote the maximum number of jobs of task τj that can have

both their release times and their deadlines in an interval of length t, which we

calculate as follows:





















 


j

j
j

T

Dt
tE 1 ,0max)((3.20)

JCR Approach

There has been little work towards integrating CRPD analysis into

schedulability tests for EDF. To the best of our knowledge, the only existing

work on integrating CRPD analysis with EDF schedulability tests was

3.4 Limiting Pre-emptions

68

developed by Ju et al. [71] in 2007. We refer to this approach as the JCR

approach after the initials of the authors’ names. The JCR approach calculates

the number of blocks evicted due to task τj directly pre-empting task τi

multiplied by the number of times that pre-emption could occur, Pj(Di). This is

repeated for each task that could pre-empt task τi and summed up. Using our

notation, this gives the CRPD associated with task τi being pre-empted as

follows:

 



)(hp

ECBUCB)(BRT
ij

jiij
jcr

i DP (3.21)

i can then be integrated into the processor demand bound function, equation

(2.2), to give:

 jcr

ii

n

i i

i
C

T

Dt
th 
















 


1

1 ,0max)((3.22)

One source of pessimism in this approach is how it deals with nested, or

indirect, pre-emptions. It always defines the CRPD between a pair of tasks and

adds them together. For example, if during the pre-emption of task τi by task τj,

task τj was itself pre-empted by task τk the JCR approach calculates i to be the

sum of the pre-emptions. However, unless ØECBECB  kj , the analysis could

pessimistically calculate that some UCBs are evicted multiple times. In Chapter

4, we present a number of approaches for calculating CRPD under EDF

scheduling and compare them to the JCR approach.

3.4 Limiting Pre-emptions

Recent work towards analysing CRPD has improved yet the fact that tasks can

be pre-empted at any point in their execution leads to increased pessimism

when considering the worst case pre-emptions. In this section, we briefly

review a number of methods that aim to limit pre-emptions. In 2011 Bertogna

[28] described an approach which extends previous work which he proposed in

2010 [27] with a goal to calculate the CRPD by ensuring that tasks can only be

pre-empted at known points. This builds on work into co-operative scheduling

from 1994 by Burns [36]. In Bertogna’s work, he defined these known points as

fixed pre-emption points (FPP) which allow for the pre-emption cost to be

calculated while not significantly blocking the pre-empting task. It requires the

programmer to define a set of potential pre-emption points during design time.

The algorithm then selects pre-emption points to minimise the overall pre-

3.5 Improving Cache Predictability

69

emption cost. A notable improvement of [28] over [27] is that the new approach

can deal with the fact that the pre-emption cost varies at different points in the

task.

Buttazzo et al. [39] in 2012 presented a survey of techniques that limit pre-

emption. In addition to FPP from Bertogna [28], it also included pre-emption

thresholds scheduling (PTS) [118], and deferred pre-emptions scheduling (DPS) [17]

[48]. DPS allows a task to run for a period of time without being pre-empted up

to a certain limit. Alternatively, PTS introduces an additional parameter to

control the balance between fully pre-emptive scheduling, and non-pre-emptive

scheduling. The pre-emption threshold allows a task to disable pre-emption by

higher priority tasks, up to a certain priority. Out of these techniques, using FPP

resulted in the most predictable system and seems most promising. However,

as previously discussed, this approach requires determining and adding these

points to the code. The problem becomes even less trivial when loops with large

number of iterations, or branches with large variations in the number of

instructions are involved. If the pre-emption points are not placed carefully, the

time between possible pre-emptions could be either too long or too short

depending on the path taken through the code. Recent work by Bo et al. [33]

aimed to address these limitations and support branches, conditional

statements and loops. They proposed a pseudo-polynomial-time algorithm for

determining the optimal set of pre-emption points by operating on the CFG.

However, the analysis became prohibitively expensive in terms of memory

requirements and runtime, so the authors also proposed a near-optimal

heuristic. Nevertheless, accurate CRPD analysis is still crucial as there will

always be some pre-emptions.

3.5 Improving Cache Predictability

We now discuss a number of techniques that can be used to improve the

predictability of cache, which in turn increases our ability to analyse it. The key

challenge with improving cache predictability effectively is to maximise the

useful information in cache. Some of the key techniques include cache

partitioning, cache locking, static code positioning, or a very different approach of

using a scratchpad instead of a traditional cache.

Cache Partitioning

Cache partitioning [89] [98] [73] is a technique that can be used to reduce or

eliminate intra-task interference by splitting the cache into a number of

3.5 Improving Cache Predictability

70

partitions and allocating tasks to the partitions. For example, each task can be

allocated its own partition in the cache so that it cannot interfere with the cache

contents belonging to other tasks in the system. However, the reduced cache

size per task can result in increased WCET through increased inter-task

interference. Ideally, this is implemented using either a cache that can be locked

on a way-by-way basis. However, if that is not possible then it can be achieved

by using a compiler with specific support. Recent work by Altmeyer et al. [8]

has investigated the performance of a partitioning architecture with no CRPD

versus a traditional cache analysed using state-of-the-art CRPD analysis. They

found that the increased predictability of a partitioned cache, in terms of

eliminating CRPD, does not compensate for the performance degradation in the

WCETs due to the smaller cache space per task. Cache partitioning can be

implemented in hardware in some systems however, in most caches it requires

specific compiler support in order to ensure each task is confined to its

partition.

Cache Locking

Cache locking is an alternative technique where a part, or the whole of the

cache, is locked in order to fix the cache contents using specific hardware

support in the cache. Accesses that result in a cache hit will be served as

normal, while accesses that result in a cache miss will be served from memory

but will not result in the cache being updated. Cache locking was first tackled

in [41] by Campoy et al. in 2001. They used a genetic algorithm to find which

blocks should be locked in cache. One of the key challenges with cache locking

is that if a block is not on the WC path, then locking it into cache will not reduce

the WCET. However, just selecting blocks that are on the WC path initially is

not enough, because the WC path can change as the execution times of those

blocks decreases. As with cache partitioning, cached locking also reduces or

eliminates CRPD at the expense of a potentially increased WCET. In addition to

the effort required to determine what should be locked into cache and when to

do so, additional code must be added to the system in order to lock and unlock

the cache.

Static Code Positioning

Static code positioning uses a shared cache, but positions procedures/functions

and/or tasks in memory such that the layout in cache results in reduced inter or

intra-task interference, depending on the target of the optimisation. Unlike

cache partitioning, static code positioning does not restrict the available cache

3.5 Improving Cache Predictability

71

size that each task can make use of. Positioning tasks can usually be

implemented by controlling how object files are combined at the linker/locator

stage of compilation. However, positioning procedures or functions often

requires specific compiler support unless each procedure or function can be

compiled into a separate object file.

Out the above techniques, this thesis focuses on concepts behind static code

positioning, which are discussed in detail in Section 3.5.1.

Scratchpads

Scratchpads are small fast memories like cache, but are directly addressable and

occupy a distinct part of the memory address space. Scratchpads must be

managed directly though the software, either by the programmer or by a

compiler with specific support. The contents of the scratchpad are assigned

prior to runtime and can remain constant as described by Suhendra et al. [114].

Alternatively, the contents can also be dynamically modified during runtime as

in Wehmeyer and Marwedel [120]. Scratchpads are also suited to storing

temporary results that do not reside in main memory.

Scratchpads are especially beneficial in multi-core systems as using them avoids

contention for access to the slower main memory. Because there is no

uncertainty over whether instructions or data will reside in the scratchpad,

there is no uncertainty about the access time. This makes calculating a tight

WCET estimate much easier. In 2009, Whitham first described a scratchpad

memory management unit (SMMU) in [122], [123] and [121] that “combines the

address transparency of a cache with the time-predictability property of a

scratchpad” [122]. An OPEN operation can be issued to the SMMU which will

cause it to map an area in the logical address space to the scratchpad. The

SMMU will then copy the contents from external memory to the scratchpad.

Any accesses to memory in that area will be transparently translated to use the

scratchpad. A CLOSE operation can then be issued to reverse to process.

Recent work by Whitham et al. [125] [124] has introduced the concept of

explicitly reservation whereby when a task is pre-empted, the state of the cache is

saved, and is later restored when the task resumes.

3.5.1 Static Code Positioning

Static code positioning, also known as code layout techniques, can be used to

reduce the task execution times by statically ensuring that the code is laid out in

3.5 Improving Cache Predictability

72

its optimum configuration. This is achieved at the linker/locator stage of the

code compilation and uses information about the cache, its associativity and the

memory to position the code for optimum performance. An example from [86]

is shown in Figure 3.8 that demonstrates the conflicts between procedures and

the resultant evictions if they are not positioned optimally.

Static code positioning techniques were originally investigated to help decrease

the average-case execution time (ACET). While ACET centric optimisations do not

usually help improve the WCET, they formed the base for much of the WCET

orientated code positioning work. In 2004/2005, Zhao et al. [131] [130] were first

to apply code positioning techniques in order to try to reduce the WCET.

However, their processor did not have a cache and they focused on reducing

pipeline stalls. This work focused on reordering basic blocks in order to reduce

branch penalties along the WC path. They used static WCET analysis to drive

their optimisation. They also re-ran the WCET analysis after every modification

to the block positions to account for the fact that the WC path can switch.

Figure 3.8 – Illustration of how controlling procedure positions can reduce cache
conflicts. Reproduced from [86]

Lokuciejewski et al. in 2008 [86] were the first to try to reduce the WCET with

respect to cache. They presented two different approaches that perform

procedure positioning, a greedy algorithm and a fast heuristic. Both approaches

use a call graph where the edges contain the call frequencies between

procedures derived from static WCET analysis. The principles are similar to

those of Pettis and Hanson [97] as described above. The two nodes that have the

heaviest edge connecting them are selected. These nodes are then merged and

their edges are coalesced. Again if a node is merged into an already merged

node, the original call graph is used to determine the new ordering. Upon

making a change, the WCET analysis is performed on the new graph, if the

3.5 Improving Cache Predictability

73

change results in an increase in the WCET then it is rejected, otherwise it is

accepted. The full WCET analysis is performed, to ensure that any changes to

the WC path due to it switching are taken into account for the next round of

optimisation. This process terminates when only disjointed nodes remain. The

authors note that their greedy approach may become stuck in a local minimum

as this is a common problem with greedy algorithms. However, this was not the

case for their selected benchmarks. They reported up to a 22% reduction in

WCET for their benchmarks.

Their fast heuristic is very similar to the greedy algorithm, however the WCET

analysis is not re-run after every modification. While this is faster, it can lead to

an overall worse WCET as they found in one of their benchmarks, a GSM

encoder.

They also presented an approach based on procedure cloning which duplicates

procedures in memory. This is based on their earlier work in [87]. However,

this is more beneficial when static WCET analysis is being performed and it

might not have the same benefits if driven by hybrid measurement-based

WCET analysis. This is because it enables the overestimation incurred during

static WCET analysis, due to being unable to annotate procedures with context

dependent information, to be reduced. Examples include loops in procedures

that are only iterated 10 times in one context and 100 times in another context.

Static analysis has to assume that the loop is always iterated 100 times. Their

procedure cloning approach was very successfully, with up to a 65% reduction.

However that could be largely down to the less pessimistic WCET analysis. An

interesting comparison would be to perform hybrid measurement-based

analysis with full path coverage obtained using cache flushing to determine

what the actual effect would be. An optimising compiler could take advantage

of the procedure cloning to remove unused code from the call context specific

procedures, which would then result in improved cache pre-fetching, and less

pipeline stalls from branch miss-predictions.

In 2011, Falk et al. [59] took into account the cache configuration with the aim of

reducing the WCET by minimising cache conflicts. While previous works such

as Lokuciejewski et al [86] positioned procedures in order to improve cache

performance, they did not consider the cache configuration. Factors such as the

caches associativity and size were not taken into account. Falk et al. used a

conflict graph with edges based on cache misses. The information was obtained

using static WCET analysis. The aim is to place them contiguously in memory

to reduce conflicts. As with previous work, a greedy algorithm was used to

3.6 Summary

74

select the nodes that were connected with the heaviest edge. These nodes were

then merged and the change was evaluated and only accepted if it resulted in a

reduction in the WCET. Additionally, they also rebuilt the conflict graph to

ensure they were always optimising the current WC path. First they applied the

processes to the basic blocks. Once the process terminates, they applied it to the

procedures. Again, their greedy algorithm could be susceptible to becoming

stuck in a local minimum, but this did not occur during their tests. One

restriction of their work was that it focused on caches with a LRU replacement

policy. This was due to the fact that static WCET analysis performs best when

analysing LRU caches [105] compared to other less predictable policies, rather

than a limitation of their approach.

Gebhard and Altmeyer [66] took an alternative approach in 2007 by using

schedulability analysis to evaluate different layouts. They performed their

analysis on a pre-emptive multi-tasking system with a goal to prevent pre-

empting tasks from evicting the pre-empted tasks blocks from cache by

positioning whole tasks contiguously in memory. First they collect performance

influencing metrics such as tasks periods, sizes, interdependencies and timing

constraints. The layouts are evaluated using a cost function that estimates the

number of conflicts caused by a pre-emption. This uses information about the

tasks’ position in memory and the cache configuration to determine where the

tasks are placed in the cache. The cost is proportional to the number of blocks

belonging to the pre-empted task that reside in the same location as the pre-

empting tasks’ blocks. It also takes into account the lifespan of blocks due to the

replacement policy. They then found an improved layout using both ILP and a

simulated annealing (SA). While the ILP found an optimum solution, it suffered

from increased complexity. They added an additional constraint that prevented

any gaps in the memory in order to reduce the search space. They used a SA to

find a non-optimal solution, but in reduced time. The new layouts resulted in

up to a 50% decrease in the number of cache misses. However, the number of

cache misses did not correlate directly with the values return by the cost

function. This was because no consideration was taken for the actual code

inside the tasks. If blocks containing loops were positioned so that they were

safe from eviction, the overall number of misses is reduced significantly more

than for straight line code which is not reused.

3.6 Summary

75

3.6 Summary

In this chapter we have discussed CRPD and the importance of being able to

correctly account for it when determining the schedulability of a system.

Specifically, we note that CRPD is dependent on the pre-empting and pre-

empted task(s) and cannot simply be subsumed into the execution time of the

pre-empting task as is done for traditional context switch costs. Therefore in

order to ensure that a system can be scheduled, without simply

overprovisioning the hardware, schedulability analysis must account for CRPD.

We reviewed the current state-of-the art techniques for calculating CRPD under

FP and EDF scheduling. These techniques work by bounding the maximum

number of useful blocks that could be evicted from cache during a pre-emption

that may need to be reloaded afterwards. We identified a potential source of

pessimism in the existing analysis for calculating CRPD under EDF scheduling.

In Chapter 4, we present new analysis for calculating CRPD under EDF and

compare it to the existing approach.

We also reviewed a number of techniques that can be used to either minimise

the number of pre-emptions, or to increase the predictability of the cache. We

note that even if the number of pre-emptions is reduced, accurate CRPD

analysis is still required. The predictability of caches can be increased by either

locking content into cache, or positioning content to minimise interference.

However, many of the techniques either require specific hardware or compiler

support, which may make them less suitable for industry. Statically positioning

tasks can be achieved by controlling the linker which could be applied with

relative ease to existing systems. However, it has not yet been used to try to

minimise CRPD. In Chapter 5, we present a new technique for positioning tasks

so as to increase system schedulability via reduced CRPD.

In the existing work, the focus has been on comparing CRPD analysis under the

same scheduling algorithm which makes it difficult to put the effects of CRPD

into context. In Chapter 6, we perform a detailed comparison of FP vs EDF

when accounting and optimising for CRPD.

Finally, we note that the existing CRPD analysis is designed for systems that

have a single FP or EDF scheduler, and are not applicable to systems that use

hierarchical scheduling, such as those that employ a partitioned architecture. In

Chapter 7 we present new analysis for calculating CRPD when using

hierarchical scheduling.

76

77

CHAPTER 4. CRPD ANLAYSIS

FOR EDF SCHEDULING

In this chapter we present new CRPD analysis for EDF and compare it to the

existing CRPD analysis for EDF. These new analysis methods are based on a

number of approaches originally developed for FP, discussed in Section 3.2.

Through a series of evaluations, we show that our new approaches can

significantly outperform the existing approach for EDF.

For background material on the system model and EDF scheduling see Section

2.1, and for some initial assumptions and definitions required for integrating

CRPD analysis into EDF see Section 3.3.

While there has been significant progress towards bounding the effects of

CRPD under FP scheduling, as discussed in Section 3.2, there has been little

prior work for EDF. This is despite EDF offering improved schedulability over

FP scheduling. There is an existing approach for calculating CRPD under EDF

by Ju et al. [71]. This approach is discussed in Section 3.3 where we note that a

source of pessimism in this approach is how it deals with nested, or indirect,

pre-emptions. It always defines the CRPD between a pair of tasks and adds

them together. As such, if the pre-empting tasks share the same ECBs, then the

analysis could pessimistically calculate that some UCBs are evicted multiple

times.

EDF is a dynamic scheduling algorithm that always schedules the job of the

task with the earliest absolute deadline first. In 1974, Dertouzos [57] proved

EDF to be optimal among all scheduling algorithms on a uniprocessor.

However, this only applies when there are negligible context switch costs.

When CRPD is taken into account, EDF is no longer optimal in the general case

as shown in Section 3.3.

4.1 Integrating CRPD Analysis into EDF Scheduling

78

4.1 Integrating CRPD Analysis into EDF

Scheduling

In order to account for CRPD using EDF scheduling, we use a component jt ,

which represents the CRPD associated with a pre-emption by a single job of

task τj on jobs of other tasks that are both released and have their deadlines in

an interval of length t. This component jt , is then included into the processor

demand bound function, equation (2.2), so as to calculate the demand on the

processor within an interval of length t due to task execution and CRPD. Note,

unlike its counterpart in CRPD analysis for FP scheduling, jt , refers to the pre-

empting task τj and t, rather than the pre-empting and pre-empted tasks.

Including jt , in equation (2.2) we get our revised equation for h(t):

 



















 


n

j

jtj

j

j
C

T

Dt
th

1

,1 ,0max)( (4.1)

Equation (4.1) is evaluated for a bounded number of values of t to ensure that

the demand on the processor in an interval of length t, h(t), is always ≤ t. The

exact method for determining which values of t need to be checked is described

in Section 2.1.2.

In equation (4.1), we are effectively including the CRPD caused by task τj as if it

were part of the execution time of task τj. Figure 4.1 and Figure 4.2 illustrate the

CRPD increasing the execution time of the pre-empted task and modelling it as

an increase in the execution time of the pre-empting task respectively.

Figure 4.1 - Including the CRPD caused by τ1 pre-empting τ2 in the execution time of τ2

Figure 4.2 - Representing the taskset in Figure 4.3 by including the CRPD caused by τ1

pre-empting τ2 in the execution time of τ1 which is the approach used in equation (4.1)

4.1 Integrating CRPD Analysis into EDF Scheduling

79

We make use of the approach used to prove theorem 4 in Baruah and Burns [18]

to show that if a taskset is deemed schedulable by equation (4.1), Figure 4.2,

then the equivalent taskset which it represents, Figure 4.1, is also schedulable.

Theorem 4.1: Let J = {(rv, cv dv)} denote a collection of independent jobs

represented by a release time rv execution time cv and absolute deadline dv. Let

S be an EDF schedule of J. Let w and x be jobs of J, such that rw ≤ rx and dw ≥ dx,

i.e. job x is a job that pre-empts job w. Let J ′ be obtained from J by modifying

jobs w and x to obtain jobs y and z such that cz = cx - a and cy = cw + a where a ≤

cx. (The release times and absolute deadlines of the jobs in J ′ are identical to

their counterpart jobs in J). If J is schedulable by EDF, then so is J ′.

Proof: J is equivalent to K where K is a set of sub-jobs containing cv sub-jobs of

unit length for each job v in J. Each sub-job qv q is described by (r vq = rv, c vq = 1, d

vq = dv). Let K ′ be a transformation of K such that a sub-jobs qxq have their

deadline increased from dxq = dx to dz. Hence, K ′ is equivalent to J ′. As S is a

valid schedule for J, it is also a valid schedule for K. It follows that S is also a

valid schedule for K ′ and hence J ′. Therefore, the EDF schedule S of J proves the

feasibility of J ′. Since EDF is optimal on pre-emptive uniprocessors, it is

therefore guaranteed to successfully schedule J ′ to meet all deadlines □

We need to define the set of tasks that can be pre-empted by jobs of task τj in an

interval of length t, aff(t, j). For EDF, this set is based on the relative deadlines

of the tasks. We therefore want to capture all of the tasks whose relative

deadlines are greater than the relative deadline of task τj giving our initial

definition of aff(t, j) as:

    jii DDjt  |,ffa  (4.2)

However, we can refine this by excluding tasks whose deadlines are larger than

t as they do not need to be included when calculating h(t):

    jii DDtjt  |,ffa  (4.3)

as shown by Theorem 4.2.

Theorem 4.2: When evaluating the processor demand h(t), equation (4.1), for

taskset Г, the execution requirement of any task τk, where Dk > t, is not

considered. Therefore, we may exclude any contribution to jt , due to the

CRPD incurred by any task τk (where Dk > t) as a result of its pre-emption

without impacting the soundness of the result.

4.1 Integrating CRPD Analysis into EDF Scheduling

80

Proof: We use the proof by Baruah et al. [20] that was used to prove that

equation (2.2) is necessary. Assume that taskset Г satisfies equation (4.1) and yet

τ is not feasible. Let S be an EDF schedule of Г where there is a missed deadline.

Let t2 be the time of the first missed deadline and let t1 be the last time prior to t2

such that there is no task with a deadline ≤ t2 scheduled at t1 - 1 in S. Since the

deadline t2 is not met, there is an active task at t2 - 1, so some task must be

scheduled at t2 - 1. By definition of t1 it follows that there is a task scheduled at

every time in [t1, t2]. By the choice of t1 and t2, only jobs with deadlines ≤ t2

execute during [t1, t2] and all jobs released by tasks with relative deadlines < t2 -

t1 = t prior to t1 will have completed by t1. Therefore, as there is a task scheduled

at every time in [t1, t2] and the deadline t2 is missed, h(t2 - t1) > t2 - t1, which

contradicts our original assumption that Г satisfies equation (4.1). Note in the

case of a missed deadline, no job of a task τk with Dk > t2 - t1 executes in the

interval [t1, t2], hence it is not necessary to include any CRPD arising in such a

task □

We now show how a number of existing approaches for calculating CRPD for

FP scheduling, discussed in Section 3.2, can be adapted to work with EDF

scheduling.

ECB-Only
We start with the ECB-Only approach by Busquets et al. [37], see equation (3.2)

in Section 3.2. It captures the worst case effect of task τj pre-empting any task

regardless of that task’s UCBs, by assuming that every block evicted by task τj

will have to be reloaded. For EDF, ECB-Only is simply:

j

ecb
jt ECB BRT,  (4.4)

UCB-Only
The alternative UCB-Only approach by Lee et al. [77], see equation (3.3) in

Section 3.2, considers just the UCBs of the pre-empted task(s). The UCB-only

approach accounts for nested pre-emptions by calculating the maximum

number of UCBs that may need to be reloaded by any task that may be directly

pre-empted by task τj. For EDF, this equates to the maximum number of UCBs

belonging to any task that can be pre-empted by task τj and can also have a job

with a release time and absolute deadline within an interval of length t. This set

of tasks is given by aff(t, j). Hence we can define the UCB-Only approach for

EDF as:

4.1 Integrating CRPD Analysis into EDF Scheduling

81

   UCB max BRT
),aff(

, k
jtk

ucb
jt


 (4.5)

UCB-Union
The UCB-Union approach of Tan and Mooney [115], see equation (3.4) in

Section 3.2, accounts for the effects of nested pre-emptions by assuming that the

UCBs of any tasks that could be pre-empted, including nested pre-emptions, by

task τj are evicted by the ECBs of task τj. When adapting this approach for EDF,

we are interested in the UCBs of any tasks that may be pre-empted by task τj

and can also have a job with a release time and absolute deadline within an

interval of length t. This set of tasks is again given by aff(t, j), hence, we can

define the UCB-Union approach for EDF as:

j

jtk

k
uucb

jt ECBUCB BRT
),aff(

, 

















  (4.6)

ECB-Union
The ECB-Union approach by Altmeyer et al. [6], see equation (3.5) in Section 3.2,

accounts for nested pre-emptions by making the pessimistic assumption that in

any pre-emption by task τj, task τj may itself have already been pre-empted by

all of the other tasks that may pre-empt it. For EDF, this set of tasks is given by

}{)(jjhp  . Note in general this is different to the set of tasks with relative

deadlines less than or equal to that of task τj, as tasks with the same deadline as

task τj cannot pre-empt it. Pre-emption by task τj is therefore assumed to

potentially evict blocks in the set hjjh ECB}{)(hp  . The maximum number of

blocks that may be evicted as a result of an already nested pre-emption by task

τj is then obtained by considering the maximum number of UCBs that may need

to be reloaded by any task that may be directly pre-empted by task τj, as in the

UCB-Only case. Hence we can define the ECB-Union approach for EDF as:































 ECBUCBmax BRT
}{)(hp

),aff(
, 

jjh

hk
jtk

uecb
jt (4.7)

4.1.1 Effect on Task Utilisation and h(t) Calculation

We have shown how ECB-only, UCB-Only, UCB-Union, and ECB-Union CRPD

analysis can be integrated into the calculation of the processor demand h(t).

4.2 Improved CRPD Analysis for EDF

82

However, to obtain a schedulability test for EDF incorporating these CRPD

analyses, we also have to adjust how we calculate task utilisation and the upper

bound on the values of t that must be checked. Effectively, we are increasing jC

by jt , . To account for this we introduce a modified utilisation *
jU for task τj that

includes the CRPD:

j

jtj
j

T

C
U

,* 
 (4.8)

We then adjust the two upper bounds for t by substituting *
jU for jU in

equation (2.3) and substituting jtjj CC ,
*  for jC in equation (2.4). (Note,

when calculating jt , to include in *
jC and *

jU , we use t = Dmax, the largest

relative deadline, as it gives the maximum value for jt ,). This gives our revised

bounds as:

 




















 

U

UDT
DDL

n

nj
jjj

na

1
,,...,max

*

1 (4.9)

and
















n

j

j

j

C
T

w
w

1

*1



 (4.10)

Finally, we note that jt , is monotonically non-decreasing in t and hence using

the above bounds, equation (4.1) can be used with the QPA method to obtain an

efficient schedulability test for EDF scheduling accounting for CRPD. We note

that this test is no longer exact as the CRPD analysis is only sufficient.

We observe that for implicit deadline tasksets, a sufficient schedulability test is

simply:

 1* U (4.11)

4.2 Improved CRPD Analysis for EDF

In this section, we present improved CRPD analysis for EDF based on the

multiset approaches to CRPD analysis for FP scheduling by Altmeyer et al. [7],

discussed in Section 3.2.1.

In the following analysis, we use jt ,  to represent the cost of the maximum

number Ej(t) of pre-emptions by jobs of task τj that have their release times and

4.2 Improved CRPD Analysis for EDF

83

absolute deadlines in an interval of length t. It is therefore included in the

processor demand bound function, equation (2.2), as follows:


































 


n

j

jtj

j

j
C

T

Dt
th

1

,1 ,0max)( (4.12)

ECB-Union Multiset Approach
We now present the ECB-Union Multiset approach for EDF which is derived

from the ECB-Union Multiset approach for FP scheduling by Altmeyer et al. [7],

equations (3.14), (3.15) and (3.16) in Section 3.2.

Figure 4.4 - Illustration of possible pessimism with the ECB-Union approach. The pre-
emption cost of task τ1 pre-empting task τ2 contributes three times to the total pre-
emption cost of task τ1 pre-empting other tasks in an interval of length 10; despite it
only really contributing at most once

The ECB-Union approach is pessimistic in that it assumes that task τj can pre-

empt any task τkaff(t, j) up to Ej(t) times in an interval of length t. While this is

potentially true if Dk = t, it can be a pessimistic assumption when Dk < t and

particularly when Dk << Tk < t. We can calculate a tighter bound on the number

of times that jobs of task τk can be pre-empted by jobs of task τj in an interval of

length t. This can be found by multiplying the maximum number of times task

τj can pre-empt a single job of task τk, given by Pj(Dk), by the number of jobs of

task τk that are released and have their deadlines in an interval of length t, given

by Ek(t).

First we form a multiset jtM , that contains the cost:



















}{)(hp

ECBUCB
jjh

hk (4.13)

of task τj pre-empting task τk repeated Pj(Dk)Ek(t) times, for each task τkaff(t, j),

hence:

4.2 Improved CRPD Analysis for EDF

84

 
),(aff }{)(hp)()(

, ECBUCB
jtk jjh

hk

tEDP

jt

kkj

M
 




























 (4.14)

As there are only Ej(t) jobs of task τj with release times and deadlines in an

interval of length t, the maximum CRPD is obtained by summing the Ej(t)

largest values in jtM , .







)(

1

,, BRT
tE

l

l
jt

mecb
jt

j

M (4.15)

UCB-Union Multiset Approach
The UCB-Union approach is also pessimistic in that it assumes that task τj can

pre-empt any task τkaff(t, j) up to Ej(t) times. The UCB-Union Multiset

approach for EDF removes this source of pessimism. It is based on the UCB-

Union Multiset approach for FP scheduling by Altmeyer et al. [7], see equation

(3.11), (3.12) and (3.13) in Section 3.2

First we form a multiset ucb
jtM , containing Pj(Dk)Ek(t) copies of the UCBk of each

task τkaff(t, j). This multiset reflects the fact that jobs of task τj cannot evict the

UCBs of jobs of task τk that have both their release times and deadlines in an

interval of length t more than Pj(Dk)Ek(t) times. Hence:



















)()(),(aff

, UCB
tEDP

k

jtk

ucb
jt

kkj

M (4.16)

Next we form a multiset ecb
jtM , containing Ej(t) copies of the ECBj of task τj. This

multiset reflects the fact that there are at most Ej(t) jobs of task τj that have their

release times and deadlines in an interval of length t, each of which can evict

ECBs in the set ECBj.

  
)(

, ECB
tE

j
ecb

jt

j

M  (4.17)

mucb
jt

, is then given by the size of the multiset intersection between ucb
jtM , and

ecb
jtM , :

 ecb
jt

ucb
jt

mucb
jt MM ,,, BRT   (4.18)

4.2 Improved CRPD Analysis for EDF

85

Combined Multiset Approach
The ECB-Union Multiset and UCB-Union Multiset approaches are

incomparable, we can therefore calculate h(t) at each stage of the QPA

algorithm using both approaches and take the minimum to form a combined

approach:

  mecbmucb ththth )(,)(min)((4.19)

4.2.1 Effect on Task Utilisation and h(t) Calculation

The multiset approaches calculate the CRPD for all of the tasks in one go.

Therefore, inflating the upper bounds on t used in the schedulability test,

equation (2.3) and (2.4), by substituting in *
jU and *

jC to give equation (4.9) and

(4.10) as described in Section 4.1.1 is not possible. This is because the test that

1* U may pass even though one or more tasks may have utilisations > 1,

causing them to miss a deadline. Therefore, we need a new upper bound.

The method we use to determine a suitable upper bound is based on using an

upper bound on the utilisation due to CRPD that is valid for all intervals of

length greater than some value Lc. We then use this CRPD utilisation value to

inflate the taskset utilisation and thus compute an upper bound Ld on the

maximum length of the synchronous busy period. This upper bound is valid

provided that it is greater than Lc, otherwise the actual maximum length of the

busy period may lie somewhere in the interval [Ld, Lc], hence we can use

max(Lc, Ld) as a bound.

We choose a value of t = Lc = 100 Tmax which limits the overestimation of the

CRPD utilisation U = γ′t /t to at most 1%. We then calculate γ′t using equation

(4.15) for ECB-Union Multiset and equation (4.18) for UCB-Union Multiset.

However, in equation (4.14), (4.16) and (4.17), we substitute)(tEmax
x for)(tE x to

ensure that the computed value of U is a valid upper bound for all intervals of

length t ≥ Lc.
















 


x

xmax
x

T

Dt
tE 1 ,0max)((4.20)

4.3 Comparability and Dominance

86

We then check that 1 UU , if not then we deem the taskset unschedulable,

otherwise we compute an upper bound on the length of the busy period via a

modified version of equation (2.4):




 









j

j

j

UwC
T

w
w 


 11 (4.21)

rearranged to give:

  




j

jjTU

UU

w

 1

1



 (4.22)

Then, substituting in Tmax for each value of Tj we get our upper bound:

   1

UU

TU
Ld






max
 (4.23)

We then use L = max(Lc, Ld) as the maximum value of t to check in the EDF

schedulability test.

4.3 Comparability and Dominance

The CRPD analyses for EDF scheduling have similar comparability

relationships to their counterparts presented in [7] for FP scheduling. The UCB-

Union approach dominates the ECB-Only approach, and the ECB-Union

approach dominates the UCB-Only approach. The JCR approach by Ju et al.

[71], discussed in Section 3.3, is incomparable with all of the non-multiset

approaches. However, if we re-write the JCR approach, equation (2.27), so that

it calculates the cost of all Ej(t) pre-emptions at once, then it can be seen that the

UCB-Union Multiset approach dominates it.

 



jiDDj

jijij
jcr

it

ji

tEDP

, ECB UCB)()(BRT (4.24)

Furthermore, the UCB-Union Multiset approach dominates the UCB-Union

approach and the ECB-Union Multiset approach dominates the ECB-Union

approach. This is because the sum of the Ej(t) largest pre-emption costs will

always be less than or equal to Ej(t) multiplied by the largest pre-emption cost.

The combined multiset approach dominates all other approaches as shown in

Error! Reference source not found.. Furthermore, because the combined

approach uses the two multiset approaches at each stage of the QPA algorithm,

4.4 Case Study

87

the number of tasksets that it deems schedulable can is greater than a simple

union of the two multiset approaches.

Figure 4.5 - Venn diagram illustrating the relationship between the different approaches
used to calculate CRPD. The larger the area, the more tasksets deemed schedulable by
the approach

We note that including the CRPD as if it were additional execution time of the

pre-empting task, as we have done in all of the non-multiset approaches, has

the potential for significant pessimism if the execution time of a task τi is close

to its deadline such that:

jtjjj CDC , (4.25)

In this case task τi would be deemed unschedulable when it may not be. This

problem is avoided by the multiset approaches.

4.4 Case Study

In this section we evaluate the schedulability tests for EDF including integrated

CRPD analysis using the approaches introduced in this chapter: ECB-Only,

UCB-Only, UCB-Union, ECB-Union, ECB-Union Multiset, UCB-Union Multiset

and the combined multiset approaches, as well as the JCR approach of Ju et al.

[71] on a case study. For comparison purposes, we also used the EDF

schedulability test assuming no pre-emption costs.

4.4 Case Study

88

The case study is the same one used in Altmeyer et al. [6] to evaluate CRPD

analysis for systems using FP scheduling. The case study comprises a number

of tasks from the Mälardalen benchmark suite1 [68]. While these tasks do not

represent a real taskset, they do represent typical code found in real-time

systems. For each task, the WCET and number of ECBs and UCBs are taken

from [4], details for each task can be found in Table 4.1. The system was setup

to model an ARM processor clocked at 100MHz with a 2KB direct-mapped

instruction cache. The cache was setup with a line size of 8 Bytes, giving 256

cache sets, 4 Byte instructions, and a BRT of 8μs. This configuration was chosen

so as to give representative results when using the relatively small benchmarks

that were available to us.

 WCET #UCBs #ECBs

bs 445 5 35

minmax 504 9 79

fac 1252 4 24

fibcall 1351 5 24

insertsort 6573 10 41

loop3 13449 4 817

select 17088 15 151

qsort-exam 22146 15 170

fir 29160 9 105

sqrt 39962 14 477

ns 43319 13 64

qurt 214076 14 484

crc 290782 14 144

matmult 742585 23 100

bsort100 1567222 35 62

Table 4.1 - WCET and number of UCBs and ECBs for a selection of tasks from the
Mälardalen benchmark suite

The taskset was created by assigning periods and implicit deadlines such that

all 15 tasks had equal utilisation. The periods were generated by multiplying

the execution times by a constant c such that Ti = c Ci for all tasks. We varied c

from 15 upwards in steps of 0.25, which varied the utilisation from 1.0

downwards. In order to evaluate different approaches, we found the breakdown

utilisation [78] of the tasksets. By scaling the deadlines and periods of the tasks,

we simulated scaling the speed of the CPU and memory. Using this technique

1 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

4.5 Evaluation

89

the breakdown utilisation, the point at which the taskset is deemed

unschedulable, can be found.

Breakdown

utilisation

No pre-emption cost 1

Combined Multiset 0.659

ECB-Union Multiset 0.659

UCB-Union Multiset 0.594

ECB-Union 0.612

UCB-Union 0.583

UCB-Only 0.462

ECB-Only 0.364

JCR 0.488

Table 4.2 - Breakdown utilisation for the case study taskset for the different approaches
used to calculate the CRPD

The breakdown utilisation for each approach is shown in Table 4.2. The ECB-

Union Multiset, and hence the Combined Multiset, approach performed the

best with a breakdown utilisation of 0.659. The JCR approach outperformed the

ECB-Only and UCB-Only approaches with a breakdown utilisation of 0.488, but

did worse than the other approaches that we have presented.

4.5 Evaluation

In addition to the case study, we evaluated the schedulability tests for EDF with

integrated CRPD analysis using synthetically generated tasksets. This enabled

us to investigate the behaviour of the different approaches as we varied a

number of key parameters. We did so by generating a large number of tasksets

with representative but varied timings and cache usage so that we could get an

overall picture for how the different approaches performed. To determine the

margin of error we re-ran a typical evaluation 100 times for each of the different

number of tasksets used, using different random seeds for each run, and then

computed the margin of error in each case. We note that the maximum margin

of error is observed when approximately half of the tasksets are schedulable, as

this is where there is the maximum variation. For a typical evaluation depicting

the number of schedulable tasksets, the margin of error based on a 95%

confidence interval is around ±0.1% for 10,000 tasksets per utilisation level and

hence per data point and ±0.3% for 1,000 tasksets. For the weighted

schedulability evaluations introduced in Section 4.5.2 the margin of error based

on a 95% confidence interval is around ±0.1% for 1,000 tasksets per utilisation

4.5 Evaluation

90

level with 40 utilisation levels per data point, and ±0.25% for 100 tasksets per

utilisation level again with 40 utilisation levels per data point.

The UUnifast algorithm [32] was used to calculate the utilisation, iU of each task

so that the utilisations add up to the desired utilisation level for the taskset.

Task periods Ti, were generated at random between 5ms and 500ms according

to a log-uniform distribution. From this, Ci was calculated via iii TUC  .

We generated two sets of tasksets, one with implicit deadlines and one with

constrained deadlines. We used Di = min(Ti, 2Ci + x(Ti - 2Ci)) to generate the

constrained deadlines, where x is a random number between 0 and 1. In the

following sections we assume implicit deadline tasksets unless stated

otherwise. In general, using constrained deadlines resulted in an overall

reduction in schedulable tasksets compared to implicit deadline tasksets.

The UCB percentage for each task was based on a random number between 0

and a maximum UCB percentage specified for the experiment. UCBs were

placed in a continuous group at the start of the tasks’ ECBs.

4.5.1 Baseline Evaluation

We investigated the effects of the following parameters:

 Cache utilisation (default of 10)

 Maximum UCB percentage (default of 30%)

 Number of tasks (default of 10)

 Number of cache sets (default of 256)

 Block Reload Time (BRT) (default of 8μs)

First we evaluated how the integrated CRPD and EDF schedulability analysis

performed under the default configuration for implicit deadline tasksets. We

generated 10,000 tasksets and then varied the utilisation, excluding any pre-

emption cost, from 0.025 to 1 in steps of 0.025 and recorded how many tasksets

were deemed schedulable by the EDF schedulability test. The results for

implicit deadline tasksets are shown in Figure 4.6 and in Table 4.3 in the form of

weighted schedulability measures, see the next sub-section, Section 4.5.2 for a

definition of weighted schedulability.

The results follow a similar pattern to the equivalent CRPD analyses for FP

scheduling, see Figure 9 in [7]. Furthermore, the results confirm the dominance

relationships between approaches with the Combined Multiset approach

performing the best. Additionally, with the exception of ECB-Only, all of the

4.5 Evaluation

91

approaches presented outperformed JCR with the Combined Multiset approach

achieving a weighted schedulability measure of 0.528 compared to 0.333 for

JCR.

Figure 4.6 - Schedulable tasksets vs Utilisation for the baseline parameters under
implicit deadlines

We then repeated the first evaluation with constrained deadlines. The results

showed an overall reduction in the number of schedulable tasksets due to the

tighter deadlines. However, the JCR approach performs better than with

implicit deadlines, outperforming ECB-Only and UCB-Only. This is because the

number of times task 𝜏𝑗 pre-empts task τk, given by Pj(Dk), is reduced. (As Dk is

now smaller than Tk, and smaller in relation to Tj, there is a smaller window in

which task τj can pre-empt task τk). The results are shown in Figure 4.7.

4.5 Evaluation

92

Figure 4.7 - Schedulable tasksets vs Utilisation for the baseline parameters under
constrained deadlines

4.5.2 Weighted Schedulability

Evaluating all combinations of different parameters would take a significant

amount of time. Therefore, the majority of our evaluation focused on varying

one parameter at a time. To present the results, weighted schedulability

measures [21] are used. This allows a graph to be drawn which shows the

weighted schedulability, Wl (p), for each method used to obtain a layout l as a

function of parameter p. For each value of p, this measure combines the data for

all of the generated tasksets τ for all of a set of equally spaced utilisation levels,

where the utilisation is without including CRPD. The schedulability test returns

a binary result of 1 or 0 for each layout at each utilisation level. If this result is

given by Sl (τ,p), and u(τ) is the utilisation of taskset τ, then:

 
   

 



























u

pSu

pW

l

l

,

(4.26)

The benefit of using a weighted schedulability measure is that it reduces a 3-

dimensional plot to 2 dimensions. Individual results are weighted by taskset

utilisation to reflect the higher value placed on a being able to schedule higher

utilisation tasksets.

Table 4.3 gives the weighted schedulability measures for the baseline

experiment under implicit deadlines shown in Figure 4.6.

4.5 Evaluation

93

Weighted

schedulability

No pre-emption cost 1

Combined Multiset 0.528

ECB-Union Multiset 0.501

UCB-Union Multiset 0.455

ECB-Union 0.481

UCB-Union 0.427

UCB-Only 0.416

ECB-Only 0.236

JCR 0.333

Table 4.3 - Weighted schedulability measures for the baseline experiments show in
Figure 4.6

4.5.3 Implicit Deadline Tasksets

In this section, we present the results for a number of weighted schedulability

evaluations with implicit deadline tasksets. In each evaluation we varied one

parameter and fixed all other parameters at the default values, described in

Section 4.5.1, unless otherwise stated. For all the weighted schedulability

evaluations, we used 1,000 generated tasksets.

Cache Utilisation

Figure 4.8 - Weighted measure for varying cache utilisation from 0 to 20 in steps of 2
for implicit deadline tasksets

As the cache utilisation increases, see Figure 4.8, all approaches that consider

CRPD show a decrease in schedulability. In particular, the ECB-Only approach

shows a very rapid decrease because the cache utilisation directly correlates

4.5 Evaluation

94

with the number of ECBs which is all that the approach considers. Additionally,

the JCR approach starts to drop off at around a cache utilisation of 8, and by a

cache utilisation of 14, it performs the worst. This is due to the pessimistic

handling of nested pre-emptions leading to it calculating that the same UCBs

are evicted multiple times as tasks share an increasing number of cache blocks.

Maximum UCB Percentage

Figure 4.9 - Weighted measure for varying the maximum UCB percentage from 0 to
100% in steps of 10% for implicit deadline tasksets

As the maximum UCB percentage increases, see Figure 4.9, all approaches

except ECB-Only show a decrease in schedulability. The ECB-Only approach

shows no change because it does not consider any tasks’ UCBs. The UCB-Only

approach is particularly vulnerable to high numbers of UCBs. Additionally, the

JCR approach also shows a large decrease in the number of schedulable

tasksets. This is because it deals with nested pre-emptions by considering the

pre-empting and intermediate tasks individually. As the number of UCBs

increases, the chances of the analysis assuming that the UCBs get evicted more

than once increases. UCB-Union, UCB-Union Multiset and Combined Multiset

all tend to similar performance to ECB-Only as the number of UCBs is increased

as they dominate ECB-Only. All other approaches are incomparable and

perform worse than ECB-Only under very high numbers of UCBs.

4.5 Evaluation

95

Number of Tasks

Figure 4.10 - Weighted measure for varying the number of tasks from 21 = 2 to 26 = 64
for implicit deadline tasksets

As the number of tasks increases, see Figure 4.10, all approaches that consider

pre-emption cost show a decrease in schedulability due to the increased

number of pre-emptions. We note that as the number of tasks becomes very

high, some of the approaches level off. This is due to the fact that the other

parameters, specifically cache utilisation and maximum UCB percentage are

fixed. As the number of tasks increases, the size of the tasks and therefore the

number of UCBs decreases, reducing the cost of a pre-emption, especially for

the approaches that rely heavily on the number of UCBs. This could be avoided

by fixing the task size by increasing the cache utilisation, but then this would

also affect the results as shown previously in Figure 4.8.

4.5 Evaluation

96

Cache Size

Figure 4.11 - Weighted measure for varying the number of cache sets from 26 = 64 to
210 = 1024 for implicit deadline tasksets

The cache size also has an effect on the schedulability of tasksets, see Figure

4.11. As the number of cache sets increases, all approaches show a decrease in

schedulability because the potential impact of a pre-emption increases.

Block Reload Time (BRT)

Figure 4.12 - Weighted measure for varying the block reload time from 20 = 1μs to 25 =
32μs for implicit deadline tasksets

Varying the BRT also has a similar effect of increasing the cost of a pre-emption

which in turn results in fewer tasksets being deemed schedulable, as seen in

Figure 4.12.

4.5 Evaluation

97

4.5.4 Constrained Deadline Tasksets

We now briefly present the results for the weighted schedulability evaluation

under constrained deadlines. In general, using constrained deadlines resulted

in an overall reduction in the number of schedulable tasksets compared to

implicit deadline tasksets. However, we note that the JCR approach shows an

improvement compared to the implicit deadline case for the reason noted in

Section 4.5.1, because the number of times task 𝜏𝑗 pre-empts task τk, Pj(Dk), is

reduced. (As Dk is now smaller than Tk, and smaller in relation to Tj, there is a

smaller window in which task τj can pre-empt task τk). Nevertheless, while it

does better than the ECB-Only and UCB-Only approach, the JCR approach is

still outperformed by the other approaches presented in this chapter in almost

all cases. Furthermore, the Combined Multiset approach presented always

outperforms the JCR approach.

Figure 4.13 - Weighted measure for varying cache utilisation from 0 to 20 in steps of 2
for constrained deadline tasksets

4.5 Evaluation

98

Figure 4.14 - Weighted measure for varying the maximum UCB percentage from 0 to
100% in steps of

Figure 4.15 - Weighted measure for varying the number of tasks from 21 = 2 to 26 = 64
for constrained deadline tasksets

4.6 Summary

99

Figure 4.16 - Weighted measure for varying the number of cache sets from 26 = 64 to
210 = 1024 for constrained deadline tasksets

Figure 4.17 - Weighted measure for varying the block reload time from 20 = 1μs to 25 =
32μs for constrained deadline tasksets

4.6 Summary

In this chapter we have presented new CRPD aware analysis for the EDF

scheduling algorithm based on similar work for FP scheduling. We compared

our new approaches against an existing approach for EDF by Ju et al. [71],

referred to as JCR, and showed that our Combined Multiset approach

dominates the JCR approach. This was confirmed in both a case study and a

series of evaluations based on synthetically generated tasksets. We examined

4.6 Summary

100

the effects of different cache and taskset parameters on the different

approaches, highlighting the strengths and weaknesses of the different

approaches. We found that the JCR approach was especially vulnerable to high

numbers of tasks, high cache utilisation and high UCB percentages. In all of our

evaluations, our new Combined Multiset approach was able to schedule the

highest number of tasksets out of the approaches that consider CRPD.

101

CHAPTER 5. TASK LAYOUT

OPTIMISATION

If a pre-empting task does not share any cache sets with a task that it is pre-

empting, then the pre-emption will not result in any CRPD. In most cases it

would not be possible to avoid all conflicts, but it is feasible to try to minimise

them. In this chapter, we present a technique for optimising task layout in

memory so as to increase system schedulability via reduced CRPD. By

evaluating layouts using schedulability analysis which accounts for CRPD, we

are able to discover layouts that help to maximise the schedulability of a

taskset.

5.1 Introduction

Tasks are stored in memory and then loaded into cache when needed. As the

size of the cache is usually smaller than the size of the memory and in some

cases the size of the tasks, blocks from one task will often be mapped to the

same location as blocks from other tasks. During a pre-emption, CRPD is

introduced when the ECBs from the pre-empting task evict UCBs belonging to

the pre-empted task(s). It is therefore desirable to organise tasks in memory, so

that when they are loaded into cache, the UCBs of lower priority tasks do not

share the same locations in cache as the ECBs of higher priority tasks that can

pre-empt them. This is particularly important with respect to the ECBs of high

priority tasks with relatively short periods that may pre-empt numerous times.

In most cases it is not possible to completely avoid such mappings to the same

location in cache. Nevertheless, layouts can be found that increase the

schedulability of the taskset.

Example Layouts
Figure 5.1 shows how five tasks scheduled under FP ordered by priority could

be laid out in cache. Task τ1 has the highest priority, so its UCBs can never be

5.1 Introduction

102

evicted as it cannot be pre-empted. Task τ2 and τ3’s UCBs are safe from eviction

as they are not mapped to the same location in cache as higher priority tasks’

ECBs. However, task τ4’s UCBs could be evicted by task τ1, and τ5’s UCBs could

be evicted by task τ1, τ2 or τ4.

Figure 5.1 - Example layout showing how the position of tasks in cache affects whether
their UCBs could be evicted during pre-emption.

An improved layout is shown in Figure 5.2. Although the UCBs of task τ5 could

still be evicted, they can now only be evicted by the ECBs of task τ3, rather than

tasks τ1 τ2 and τ4.

Figure 5.2 - Improved version of the layout shown in Figure 5.1. While the UCBs of
task τ5 could still be evicted, they cannot only be evicted by the ECBs of task τ3, rather
than tasks τ1 τ2 and τ4.

5.2 Optimising Task Layout

103

The aim of this approach is to find a layout for a given taskset that results in the

taskset being schedulable. Good layouts reduce the CRPDs experienced by

those tasks that are close to missing their deadlines. The code itself is not

modified, only the start positions of each task in memory. This can be

implemented in practice by controlling the linker or simply the order in which

task objects files are passed to it.

In order to evaluate different layouts for a taskset, a schedulability test that can

account for CRPD can be used. As a taskset has a fixed utilisation defined by

the execution times and periods of the tasks, a schedulability test can only check

if the taskset is, or is not schedulable with a given layout. This boolean result is

not enough information to distinguish between layouts that result in the taskset

being only just schedulable, and better layouts that are robust to changes in the

processor speed or task execution times. We therefore use the breakdown

utilisation of the taskset as an indicator of the quality of the layout. Scaling the

deadlines and periods of the tasks simulates slowing down or speeding up the

speed of the CPU and memory. Using this technique the breakdown utilisation,

the point at which the taskset becomes unschedulable, can be found for each

layout. This gives a numerical value that can be used to compare layouts for

each taskset.

5.2 Optimising Task Layout

It would not be feasible to evaluate every possible layout for a taskset. We

therefore developed an approach that uses a simulated annealing (SA) to discover

improved task layouts. The SA works by starting with an initial layout, and

then on each iteration making a random change and then evaluating the effect

of that change. In this case we make a random change to the layout of tasks in

memory, and then evaluate the effect that that change has had on the

breakdown utilisation of the taskset.

We started with an initial layout where tasks were ordered sequentially based

on their priority without any gaps between them. To apply this initial layout

under EDF scheduling, tasks can be ordered based on their unique task index.

Layout changes
The possible changes to the task layout are swap near, swap far, and random gap.

5.2 Optimising Task Layout

104

Swap near

Swap near swaps the position of two neighbouring tasks by picking a random

task and swapping it with the task that is in the next location in memory to it. If

the selected task is the last in memory, it is swapped with the first task.

Swap far

Swap far swaps the position of two randomly chosen tasks. These tasks are

usually not adjacent in memory, but they can be. These two tasks are swapped

and if necessary the start positions of the tasks in between them are adjusted.

This effectively shifts the start positions in memory of all of the tasks in-

between the two chosen tasks by the difference in the size of the two tasks.

Random gap

Random gap adds a gap between two adjacent tasks in memory by up to ±half

cache size based on a random value. Tasks cannot overlap in memory, but if a

gap already exists it can be reduced. If the gap between tasks becomes greater

than the size of the cache, it is reduced so as not to waste space. This is because

for a direct mapped cache the position in cache is calculated by taking the

position in memory modulo the size of the cache. If a task with a gap after it is

swapped with another task its gap is maintained so. the gap is moved with the

task.

Layout Evaluation
Changes are made to the layout of tasks in memory, and then mapped to their

cache layout for evaluation. The breakdown utilisation of the taskset is then

evaluated for each layout generated by the SA. A binary search can be used to

find the breakdown utilisation. The binary search starts with a maximum

utilisation of 1 and a minimum utilisation of 0. The search then terminates once

the minimum value is within 0.01 of the maximum. After each change to the

utilisation the schedulability analysis is re-run, and the process repeats until the

breakdown utilisation is found for the layout. The optimum layout is the layout

which has the highest breakdown utilisation.

An initial temperature, temp, of 100 is defined for the SA and after every

iteration the temperature is reduced by multiplying it by a cooling rate of 0.98

until it reaches the target temperature of 0.05. While the temperature is high the

algorithm is more open to negative changes, which are required to escape local

minima. The start and end values were chosen to balance accepting negative

changes, and the cooling rate was chosen to give enough generations for the

5.2 Optimising Task Layout

105

algorithm to find a near optimal solution, without having an excessive number

of iterations. The total number of iterations based on the initial and end

temperature and cooling rate is 377 per taskset. The exception to this rule is that

if the SA finds a layout with a breakdown utilisation of 1, it will terminate early.

This is because the utilisation cannot be higher than 1 for a single core

processor, and so the SA algorithm can stop having found an optimal solution.

If the change in breakdown utilisation, ∆BU, from the last iteration is positive

then the layout is always accepted. If the change is negative then the layout

may still be accepted based on how negative a change it is and the temperature.

The probability of accepting a negative change, Paccept neg ∆ is defined as:

temp

BU

  eP negaccept
(5.1)

The complete processes is summarised in a flow chart shown in Figure 5.3.

Figure 5.3 - Task layout optimisation process flow chart

5.3 Case Study

106

5.2.1 Memory Limitations

To limit increases in the amount of memory required due to gaps introduced

between tasks, the algorithm can also factor in how much free space may be

introduced when finding the memory layout. If this is above the amount

specified, then the new layout will be rejected and will not be evaluated by the

schedulability test. For example, memory overheads would be 0% for no

additional free space, 10% for a small amount of free space, or 100% for as much

free space as used space.

5.3 Case Study

In this section we describe the results of a case study used to evaluate the task

layouts produced by the SA algorithm. The case study is the same one used in

Section 4.4 to evaluate CRPD analysis for EDF scheduling. For each task the

derived WCET, ECBs and UCBs are shown again in Table 5.1. The system was

setup to model the same ARM processor. It was clocked at 100MHz with a 2KB

direct-mapped instruction cache with a line size of 8 Bytes giving 256 cache sets,

4 Byte instructions, and a block reload time of 8μs.

 WCET #UCBs #ECBs

bs 445 5 35

minmax 504 9 79

fac 1252 4 24

fibcall 1351 5 24

insertsort 6573 10 41

loop3 13449 4 817

select 17088 15 151

qsort-exam 22146 15 170

fir 29160 9 105

sqrt 39962 14 477

ns 43319 13 64

qurt 214076 14 484

crc 290782 14 144

matmult 742585 23 100

bsort100 1567222 35 62

Table 5.1 - WCET and number of UCBs and ECBs for a selection of tasks from the
Mälardalen benchmark suite

We scheduled the taskset using FP scheduling and performed schedulability

analysis using the Combined Multiset approach by Altmeyer et al. [7], described

5.3 Case Study

107

in Section 3.2, when evaluating the task layouts. However, we note that the

approach is not dependent on the scheduling algorithm provided it is capable

of accounting for CRPD. In Chapter 6 we compare FP and EDF and apply this

task layout technique to both.

The taskset was created by assigning periods and implicit deadlines such that

all 15 tasks had equal utilisation. The periods were generated by multiplying

the execution times by a constant c such that Ti = c Ci for all tasks. For example,

c = 15 gave a utilisation of 1.0 and c = 30 gave a utilisation of 0.5. Tasks were

assigned priorities in deadline monotonic priority order.

We compared the following layouts:

 SA - The layout with the highest breakdown utilisation as found by the

SA algorithm with an allowed memory overhead of 0%, so that adding a

random gap between tasks was not allowed.

 Sequential ordered by priority (SeqPO) - Lays out tasks one after another

with no gaps in-between them. Tasks are in priority order with the

highest priority task first. This is the starting layout for the SA.

 Random - 1000 different random tasks orderings in memory are evaluated

and the average breakdown utilisation for them is used.

 CS[i]=0 - Aligns the start of every task to the first cache set. This is almost

always the worst possible layout, especially when UCBs are grouped at

the start of the task. Note the CS[i]=0 layout has no restriction on how

much memory it can use.

For comparison the analysis is also performed on the taskset with the pre-

emption cost ignored.

The results showing the breakdown utilisation for each layout are given in

Table 5.2. In this case, the layout obtained via SA provides a significant increase

in the breakdown utilisation over that obtained by SeqPO of 0.876 versus 0.698.

The results obtained from 1000 random layouts give some interesting results.

First, the best layout found via a random approach did result in a slightly

higher breakdown utilisation than the layout found by the SA in this case;

although at the expense of evaluating more layouts than the SA. Secondly,

SeqPO resulted in a breakdown utilisation that was similar to the average of the

1000 random layouts. Finally, aligning all tasks at the start of the cache resulted

in a breakdown utilisation that performed similarly to the worst random layout.

The slight variation is due to the fact that the UCBs of tasks are not all located at

the same position within the tasks.

5.3 Case Study

108

 Breakdown utilisation

No pre-emption cost 0.984

SA 0.876

SeqPO 0.698

Random (min, average, max) 0.526,0.685, 0.882

CS[i]=0 0.527

Table 5.2 - Breakdown utilisation for the taskset in Table 5.1

5.3.1 Discussion

Figure 5.4 shows a representation of the initial layout of the taskset in Table 5.1,

where tasks are laid out sequentially based on their priority. Figure 5.5 shows

the layout chosen by the SA for this particular taskset. Although the layout

generated by the SA algorithm has a larger number of UCBs in conflict

compared to the SeqPO layout, it improves taskset schedulability. This is

because of how the UCBs are organised. In the layout generated by the SA

algorithm the likelyhood of the UCBs of lower priority tasks being evicted is

reduced in comparison to their positions in the SeqPO layout. This is due to the

fact that high priority tasks, especially tasks τ1 to τ5, have much shorter periods

than the lowest priority tasks and can therefore pre-empt them many times.

Figure 5.4 - Initial (SeqPO) layout for the taskset in Table 5.1

5.4 Evaluation

109

Figure 5.5 - Optimised layout chosen by the SA for the taskset in Table 5.1

Figure 5.6 shows a graph of the total CRPD for each task for the layout chosen

by the SA algorithm and for the SeqPO layout at the breakdown utilisation for

SeqPO. Note that because the Combined Multiset approach used in the

evaluation is a combination of two approaches, UCB-Union Multiset and ECB-

Union Multiset [7], the CRPD shown is for each of the approaches. It can be

seen that the SA algorithm significantly minimises the CRPD for the low

priority tasks, τ13, τ14, and τ15, which are close to missing their deadlines at the

expense of the higher priority tasks, τ4 and τ5, which have plenty of slack time.

Figure 5.6 - Graph of the total CRPD/task for the taskset in Table 5.1 under the initial
SeqPO layout vs the optimisised layout chosen by the SA

5.4 Evaluation

In addition to the case study, in this section we describe the results of a number

of evaluations aimed at investigating the performance of the SA algorithm in

5.4 Evaluation

110

terms of the quality of the layouts it produces for synthetically generated

tasksets, controlled by a random seed for repeatability.

We used the UUnifast algorithm [32] to calculate the utilisation, iU , of each task

so that the task utilisations added up to the desired utilisation level for the

taskset. Task periods Ti, were generated at random between 5ms and 500ms

according to a log-uniform distribution. From this, Ci was calculated such that

iii TUC  . As implicit deadlines were used, Di = Ti.

UCBs were distributed through each task. Figure 5.7 shows two different

distributions of UCBs.

A) Consolidates all of the UCBs into a single block at the start of the task.

B) Groups the UCBs into blocks throughout the task. Distribution A is a

special case where the number of groups is 1 and the starting position is

fixed to 0.

Figure 5.7 - Two different distributions of UCBs throughout a task

A single group of UCBs at the start of a task, represented by distribution A, is

not representative of real code. Therefore the majority of the evaluations were

performed and presented using distribution B.

For distribution B the UUnifast algorithm was used to generate a random

distribution of UCBs throughout the tasks. This required two parameters, the

number of UCBs and the number of groups of UCBs. The number of UCBs for

each task was found by multiplying the UCB percentage by the number of

ECBs. The UCB percentage for each task was based on a random number

between 0 and a maximum UCB percentage specified for the evaluation.

The number of UCB groups used was a random number between 1 and the

given maximum number of UCB groups. Because UUnifast returns floating

point numbers for the number of blocks in each UCB group, the number of

blocks was rounded down to the nearest whole number with the remainder

carried forward and added to the next group. The final group of UCBs then had

either 0 or 1 extra block added on the end. In some cases, the final number of

UCB groups was less than the number given to UUnifast. This happened when

5.4 Evaluation

111

the number of UCBs in a group was less than 1.0 or the number of blocks in a

gap between UCBs was less than 1.0.

UUnifast was first used to generate the size of the groups of UCBs. It was then

re-run to generate the gaps between the groups of UCBs, at which point the

UCBs were then laid out using a random starting position.

5.4.1 Baseline Evaluation

A number of evaluations were run in order to investigate the quality of the task

layouts produced by the SA for different cache and task configurations. These

evaluations looked at varying the following parameters:

 Distribution of UCBs

 Maximum number of UCB groups when using distribution B

 Maximum UCB percentage

 Cache utilisation

 Number of cache sets

 Number of tasks

 Allowed memory overhead

Cache utilisation describes the ratio of the total size of the tasks to the size of the

cache. A cache utilisation of 1 means that the tasks fit exactly in the cache,

whereas a cache utilisation of 5 means the total size of the tasks is 5 times the

size of the cache.

Unless otherwise stated, the parameters were fixed to the following default

values during the evaluations:

 Allowed memory overhead was fixed to 0% such that adding a random

gap between tasks was not allowed

 10 tasks per taskset

 1000 tasksets per evaluation

 Cache size of 512 sets

 Cache utilisation of 5

 Maximum UCB percentage of 30%

 UCBs distributed using distribution B with a maximum of 5 groups

The case study used a single taskset. Therefore, 1000 random layouts were

evaluated and averaged out. As the evaluations using synthetically generated

tasksets used a large number of tasksets, only one random layout per taskset

5.4 Evaluation

112

was used. Any bias by using one random layout per taskset is then averaged

out over the large number of tasksets.

The first evaluation investigates the quality of the task layouts produced by the

SA algorithm compared to the other layouts. Figure 5.8 shows results for

distribution B. This graphs shows the number of schedulable tasksets versus

utilisation for no pre-emption cost, SA, SeqPO, random and CS[i]=0.

Figure 5.8 - Schedulable tasksets vs Utilisation for UCB distribution B with a
maximum of 5 groups of UCBs.

It can be seen that aligning all tasks at a the start of the cache, CS[i]=0, results in

the worst performance. SeqPO and random were very similar, and the layout

generated by the SA algorithm resulted in the highest success rate when

accounting for pre-emption costs.

UCB Distribution

Table 5.3 shows the weighted schedulability measures, described in Section

3.5.2, for the baseline evaluation using distribution A and B. The table shows

that distribution A results in a larger number of tasksets being schedulable at

higher utilisations than distribution B for all taskset layouts; except no pre-

emption cost which is not affected by the UCB distribution. This is expected as

it is much harder to layout tasks with the more realistic fragmented distribution

B in a way that reduces conflicts between the ECBs of high priority tasks and

the UCBs of the lower priority tasks. Nevertheless, in both cases the SA

algorithm was able to improve the weighted measure of 0.581 and 0.377 for

5.4 Evaluation

113

SeqPO to 0.665 and 0.465. This is a significant improvement as can be seen in

Figure 5.8.

 Distribution A Distribution B

No pre-emption cost 0.859 0.859

SA 0.665 0.465

SeqPO 0.581 0.377

Random 0.578 0.379

CS[i]=0 0.475 0.347

Table 5.3 - Weighted schedulability measures for the baseline evaluations

5.4.2 Detailed Evaluation

Evaluating all combinations of different task parameters is not possible.

Therefore, the majority of our evaluations focused on varying one parameter at

a time. To present these results weighted schedulability measures [7] are used,

which are described in Section 4.5.2. For these weighted schedulability

evaluations, we used 100 tasksets rather than 1000 tasksets at each utilisation

level.

Maximum UCB Groups

Figure 5.9 - Weighted measure for varying the number of maximum number of UCB
groups from 1 to 20

Figure 5.9 show the impact on the schedulability of the tasksets as the

maximum number of UCBs groups is varied from 1 to 20. As noted in Section

5.4, the actual number of UCB groups is chosen at random between 1 and the

maximum. For small numbers of UCB groups, the weighted measure is slightly

higher as the tasks are easier to layout in a way that reduces conflicts between

5.4 Evaluation

114

the ECBs of pre-empting tasks and the UCBs of pre-empted tasks. This is

because the UCBs are less fragmented. As the number of groups increased, the

weighted measure levels off and the SA algorithm continued to perform well in

terms of the quality of the layouts it produced. The weighted measure does not

decrease as the number of UCB groups becomes very large because the UCBs

effectively become uniformly spread throughout the ECBs of each task. This

leads to the CRPD becoming dependent only on how the ECBs are laid out.

Maximum UCB Percentage

Figure 5.10 - Weighted measure for varying the maximum UCB percentage from 0% to
100%

The results for varying the maximum UCB percentage from 0% to 100% are

shown in Figure 5.10. As expected, when the maximum UCB percentage is 0%

the layout has no effect on the schedulability of the taskset and all of the

weighted measures are equal to the no pre-emption cost measure. This is

because there are no UCBs to be evicted, resulting in zero CRPD. As the

maximum UCB percentage increases, the SA algorithm is able to find improved

layouts with respect to the SeqPO layout which increases the schedulability of

the taskset. When the maximum UCB percentage gets very high (>90%), there

are so many UCBs that there is little that can be done to the layout to improve

the schedulability of the taskset. This results in similar performance for all

layouts.

5.4 Evaluation

115

Cache Utilisation

Figure 5.11 - Weighted measure for varying the cache utilisation from 1 to 10

The cache utilisation can also have a significant impact on the schedulability of

tasksets. The results for varying the cache utilisation from 1 to 10 are shown in

Figure 5.11. A cache utilisation of 1 represents all the tasks fitting into the cache

therefore any layout which does not include gaps between tasks is an optimal

layout. Such a layout therefore gives a weighted measure that is the equal to the

no pre-emption cost case. This is why CS[i]=0 does not have the same weighted

measure with a cache utilisation of 1, as does not maximise the available cache

size. As the cache utilisation increases, the weighted measure decreases for all

layouts with the layouts generated by the SA algorithm giving improved results

up to a cache utilisation of 10.

5.4 Evaluation

116

Cache Sets

Figure 5.12 - Weighted measure for varying the number of cache sets from 64 to 2048

The results for varying the number of cache sets from 64 to 2048 are shown in

Figure 5.12. For a given cache utilisation and BRT, as the number of cache sets

increases, the impact of a pre-emption can increase as the number of evicted

blocks increases. This is what causes the weighted measures to decrease until

2048 cache sets, when almost all the tasksets become unschedulable at most

utilisations when accounting for pre-emption costs. When varying the number

of cache sets the layouts generated by the SA algorithm outperformed the other

task layouts, until 2048 cache sets where the pre-emption cost became too great.

5.4 Evaluation

117

Number of Tasks

Figure 5.13 - Weighted measure for varying the number of tasks from 2-64 in powers of
2

As the number of tasks increases, the number of schedulable tasksets decreases

as expected because of the increased number of pre-emptions. Figure 5.13

shows that after about 20 tasks the schedulability of the tasksets levels out for

all the layouts except for CS[i]=0. CS[i]=0 performs increasingly worse as the

number of tasksets are increased, as it aligns all of the tasks on top of each other

in the cache. The result that the weighted measure levels off for SA, SeqPO and

random layouts is counter-intuitive. This is most likely due to the fact that the

cache utilisation was fixed. Therefore, as the number of tasks increased, the size

of the tasks decreased to a point where they were relatively easy to layout.

Discussion

Finding an improved layout for a taskset with 10 tasks took around 10 seconds

on average, and 60 seconds on average for 24 tasks, using a single thread on a

processor running at 2.8GHz. We felt this was an acceptable amount of time so

did not pursue a more complex algorithm which could reduce the number of

layouts that must be evaluated.

We also investigated the distribution of CRPD per task for our default values

under different layouts. We found that it followed a very similar pattern to the

results of the case study presented in Section 5.3.

5.4 Evaluation

118

All of the evaluations were run with three different memory restrictions on the

SA algorithm, 0%, 10% and 100%. However, we have only presented the results

for 0%. This is because for the majority of our results, allowing the SA algorithm

to add gaps between tasks had little effect. When changing the allowed memory

overhead from 0% to 100%, the weighted measure for the baseline evaluation

with distribution B only varied from 0.463 to 0.469. Because these values are

close, the lines on the graphs are not shown as they are indistinguishable. This

is due to a combination of factors, including the fact that the UCBs are scattered

throughout the tasks and the high cache utilisation, which means there will

always be a large number of conflicts.

5.4.3 Brute Force Comparison

As we found that allowing gaps between tasks did not significantly impact the

breakdown utilisation, we compared the layouts produced by the SA algorithm

against a brute force approach of trying every permutation of task ordering. As

the majority of the computational effort goes to evaluating a layout using the

schedulability test, the SA algorithm can be roughly compared against a brute

force approach based on the number of layouts it evaluates. The number of

layouts that must be evaluated for a taskset with n tasks is equal to n!. With 7

tasks, evaluating every permutation results in 5040 (7!) different layouts,

compared to the fixed 377 layouts1 for the SA algorithm. This approach is

feasible for 7 tasks, but becomes infeasible when the number of tasks increases.

1 See Section 5.2 for an explanation of the SA algorithm, how many iterations it goes through,
and why.

5.5 Summary

119

Figure 5.14 - Comparing the SA algorithm at swapping tasks against a brute force
approach of trying every permutation

Figure 5.14 shows the results for 1000 tasksets normalised against the initial

SeqPO layout. The value indicates the number of tasksets that were deemed

schedulable under an approach relative to those deemed schedulable under

SeqPO. The graph shows that while the SA algorithm does not always find an

optimal layout, the layouts are near optimal and are discovered in significantly

less time. At low utilisation levels, the variation in schedulable tasksets is very

small, as almost all tasksets are schedulable regardless of task layout.

Conversely, at high utilisation levels, all tasksets are unschedulable regardless

of task layout.

5.5 Summary

In this chapter, we have presented a new technique that uses simulated annealing

(SA) driven by CRPD aware schedulability analysis to find task layouts that

increase system schedulability. This is important because the position of tasks

in memory affects the worst-case response time of the tasks due to CRPD. While

the SA algorithm did not always find the optimum solution, it did find a near

optimal solution. We built functionality into our SA algorithm to add gaps

between tasks in memory, but found that this had little effect on the

schedulability of tasksets for all but the most trivial cases. The fact that adding

gaps made little difference is beneficial for a number of reasons. Firstly, the

search space is significantly reduced when just considering the order of tasks.

Secondly, it is easier to setup a linker when combining object files to layout

5.5 Summary

120

tasks with no gaps between them. This is also an important practical point, in

that it means that no additional memory space is required.

When no gaps are added between tasks we showed for 7 tasks that the SA

algorithm was able to find a near optimal ordering of tasks; compared with a

brute force approach which tried every permutation. We therefore did not focus

on optimising the SA any further. However, alternative solutions such as using

a genetic algorithm, instead of a SA, may be more suitable for the relatively flat

search space as many layouts gave similar breakdown utilisations. The

algorithm could also be improved by accounting for how much progress has

made recently when determining whether to stop.

We evaluated our technique and showed that it was able to find layouts that

allowed the tasksets to be schedulable at a higher utilisation level than other

layouts. This included the default sequential layout with tasks ordered by

priority (SeqPO). Using the default values for the parameters used to generate

our synthetic tasksets, the layouts produced by the SA algorithm achieved a

weighted schedulability measure of 0.465, compared to 0.377 for SeqPO. This is

a significant difference as shown in Figure 5.8.

This work has a number of important uses. It can firstly be used when

optimising an unschedulable taskset. If a layout can be found that makes the

taskset schedulable then the problem is solved. Even if the taskset is still not

schedulable, the work required to optimise the individual tasks and procedures

to achieve schedulability will have been reduced. Alternatively, many

embedded systems have stringent power usage requirements. It may be that an

improved layout can allow the CPU and memory to be clocked at a lower

frequency to reduce power usage, while still maintaining the schedulability of

the taskset.

121

CHAPTER 6. COMPARISON

BETWEEN FP AND EDF

Two popular scheduling algorithms for real-time systems are FP and EDF. In

this chapter we build on the work by Buttazzo [38] and use state of the art

CRPD analysis for FP [7] and EDF to perform a comprehensive study of the

performance of FP and EDF scheduling when accounting for CRPD. The

analysis for FP [7] is discussed in Section 3.2 and the analysis for EDF is

introduced in Chapter 4.

FP scheduling uses statically defined priorities to run the task with the highest

priority first. In comparison, EDF is a dynamic scheduling algorithm that

schedules the task with the earliest absolute deadline first. EDF is an optimal

scheduling algorithm without pre-emption costs, whereas FP is not, and EDF is

therefore typically able to schedule tasksets at a higher processor utilisation

than FP [85]. However, despite the significant performance benefits over FP,

EDF is not widely used in commercial real-time operating systems.

In 2005, Buttazzo [38] performed a detailed study of FP and EDF scheduling.

This work covered both schedulability under a variety of scenarios, in addition

to practical implementation considerations. Results showed that the FP

scheduling algorithm introduces more pre-emptions than EDF, especially at

high processor utilisation levels. This leads to FP performing worse than EDF.

Yet, FP has an advantage over EDF, in that it is generally simpler to implement

in commercial kernels which do not provide explicit support for timing

constraints. Despite being a very detailed study, these comparisons where done

under the assumption that there were no pre-emption costs due to CRPD.

6.1 Case Studies

122

6.1 Case Studies

In this section we compare the different approaches for calculating CRPD using

a set of case studies based on PapaBench1, the Mälardalen2 benchmark suite and

a set of SCADE3 tasks. These are different from the single taskset case study

used in Chapter 3 and 4. However, in all cases the system was set up to model

the same ARM processor clocked at 100MHz with a 2KB direct-mapped

instruction cache and a line size of 8 Bytes, giving 256 cache sets, 4 Byte

instructions, and a BRT of 8μs.

6.1.1 Single Taskset Case Study

PapaBench is a real-time embedded benchmark based on the software of a

GNU-license UAV, called Paparazzi. PapaBench contains two sets of tasks, fly-

by-wire and autopilot. We used the autopilot tasks for which the WCETs, periods,

UCBs, and ECBs were collected using aiT, see Table 6.1. We made the following

assumptions in our evaluation to handle the interrupt tasks:

 Interrupts have higher priority than the normal tasks, but they cannot

pre-empt each other

 Interrupts can occur at any time

 All interrupts have the same deadline which must be greater than or

equal to the sum of their execution times in order for them to be

schedulable

 The cache is disabled whenever an interrupt is executing and enabled

again after it completes

In the case of FP scheduling the interrupts can be modelled as normal tasks

with no UCBs or ECBs. Due to the interrupts having the same deadline, which

is large enough to accommodate the interrupts execution times, no other

changes need to be made to the analysis. For EDF scheduling a number of

adjustments must be made to correctly account for the interrupts not being able

to pre-empt each other. First we modify equation (4.12) to exclude interrupts

when calculating the processor demand, h(t). We then calculate the execution time

of each interrupt, Ix, in the interval t using equation (2) of [34]:

1 http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
2 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
3 Esterel SCADE http://www.esterel-technologies.com/

6.1 Case Studies

123


























 x

x

xx

x

x T
T

t
tCC

T

t
tIh ,min),((6.1)

The result of which is then added onto the result of the modified version of

equation (4.12), giving the processor demand for both tasks and interrupts as:

  

 
































 


n

j x

xjtj

j

j
tIhC

T

Dt
th

1 1

, ,1 ,0max)( (6.2)

We then adjust the upper bound L used when checking h(t). This is

implemented by substituting interruptstasks UUU  into equation (4.21) when

calculating Ld to give:

  

   1

UUU

TUU
L

interruptstasks

interruptstasks

d






max
 (6.3)

Note that we leave U to represent the utilisation of the CRPD caused by just

tasks. This is because we assume that the cache is disabled while the interrupts

are executing and as such they cannot cause any CRPD.

We assigned a deadline of 2ms to all of the interrupt tasks, and implicit

deadlines so that Di = Ti, to the normal tasks. We then calculated the total

utilisation for the system, and then effectively scaled the clock speed in order to

reduce the total utilisation to the target utilisation for the system. We used the

number of UCBs and ECBs obtained via analysis, placing the UCBs in a group

at a random location in each task.

In each evaluation the taskset utilisation, not including pre-emption costs, was

varied from 0.025 to 1 in steps of 0.001. For each utilisation value the

schedulability of the taskset was determined under both FP and EDF.

Specifically, we compared each scheduling algorithm (i) assuming no pre-

emption cost, (ii) using CRPD analysis using the standard task layout, and (iii)

using CRPD analysis after optimising the task layout using the approach

presented in Chapter 5. The standard task layout is obtained by ordering tasks

sequentially in memory based on their unique task indices.

Table 6.3 shows the breakdown utilisation for the single taskset based on

PapaBench. There are a few interesting points to note. Firstly the breakdown

utilisation is very high for both FP and EDF, this is due to the nearly harmonic

periods and small range of task periods, with EDF outperforming FP. Secondly,

the CRPD is very low when scheduled using either FP or EDF due to the small

6.1 Case Studies

124

number of UCBs. As the CRPD is very low, the layout optimisation makes little

to no difference.

Task UCBs ECBs WCET Period

I4 interrupt_modem 2 10 0.303 ms 100 ms

I5 interrupt_spi_1 1 10 0.251 ms 50 ms

I6 interrupt_spi_2 1 4 0.151 ms 50 ms

I7 interrupt_gps 3 26 0.283 ms 250 ms

T5 altitude_control 20 66 1.478 ms 250 ms

T6 climb_control 1 210 5.429 ms 250 ms

T7 link_fbw_send 1 10 0.233 ms 50 ms

T8 navigation 10 256 4.432 ms 250 ms

T9 radio_control 0 256 15.681 ms 25 ms

T10 receive_gps_data 22 194 5.987 ms 250 ms

T11 reporting 2 256 12.222 ms 100 ms

T12 stabilization 11 194 5.681 ms 50 ms

Table 6.1 - Execution times, periods and number of UCBs and ECBs for the tasks from
PapaBench

Source Description UCBs ECBs WCET

M adpcm 24 226 5.541 s

M compress 25 114 3.664 s

M edn 56 98 244.9 ms

M fir 28 50 21.53 ms

M jfdctinit 40 162 62.53 ms

M ns 17 26 73.38 ms

M nsichneu 53 256 149.6 ms

M statemate 3 256 77.96 ms

S cruise control system 25 107 1.959 s

S flight control system 70 256 2.138 s

S navigation system 45 82 1.409 s

S stopwatch 58 130 3.786 s

S elevator simulation 40 114 1.586 s

S robotics systems 68 256 4.311 s

Table 6.2 - Execution times and number of UCBs and ECBs for the largest benchmarks
from the Mälardalen Benchmark Suite (M), and SCADE Benchmarks (S)

 Breakdown Utilisation

EDF - No Pre-emption Cost 0.999

EDF- Optimised Layout 0.985

EDF - Standard Layout 0.985

FP - No Pre-emption Cost 0.977

FP - Optimised Layout 0.970

FP - Standard Layout 0.969

Table 6.3 - Breakdown utilisation under the different approaches for the single
PapaBench taskset

6.1 Case Studies

125

6.1.2 Multiple Taskset Case Studies

The single taskset case study provides one specific example based on the

PapaBench taskset. The remaining case studies used tasksets generated by

randomly selecting tasks from a set of benchmarks. In the case of the

PapaBench tasks, we treated the interrupts as normal tasks. We obtained

tasksets by randomly selecting 10 tasks from Table 6.1, PapaBench benchmarks,

or 10 tasks from Table 6.2, Mälardalen and SCADE benchmarks, or 15 tasks

from the two tables, Mixed benchmarks. Using the UUnifast algorithm [32], we

calculated the utilisation, iU , of each task so that the utilisations added up to

the desired utilisation level for the taskset. Based on the target utilisation and

task execution times, Ti was calculated such that iii TUC  . We used Di = y + x(Ti

- y) to generate constrained deadlines, where x is a random number between 0

and 1, and y = max(Ti/2, 2Ci). This generates constrained deadlines that are no

less than half the period of the tasks. Note that allowing deadlines to be as small

as Ci would result in tasks that were unschedulable once CRPD were

introduced. We used the number of UCBs and ECBs obtained using aiT, and

placed the UCBs in a group at a random location in each task.

We generated 1000 tasksets for the multiple taskset case studies and evaluated

them using the same method as the single taskset case study. The only

difference was that we varied the utilisation excluding pre-emption costs from

0.025 to 1 in steps of 0.0125.

PapaBench Benchmark

The tasks in the PapaBench benchmarks are simple, short control tasks with

limited computations and data accesses. Figure 6.1 shows the percentage of

tasksets that were deemed schedulable by each approach for the 1000 tasksets

of cardinality 10 that we randomly selected from Table 6.1. The results are

similar to those obtained using the single taskset PapaBench case study.

Specifically, EDF outperformed FP as it deemed a higher number of tasksets

schedulable at each utilisation level. Because the range of execution times is

relatively small, so is the typical range of task periods for the generated

tasksets. Hence the number of pre-emption is also relatively small.

Furthermore, the number of UCBs is small resulting in low CRPD. Therefore

the task layout optimisation was only able to make a small improvement, but

did so for both FP and EDF.

6.1 Case Studies

126

Figure 6.1 - Percentage of schedulable tasksets at each utilisation level for the
PapaBench benchmark for tasksets of cardinality 10

Mälardalen and SCADE Benchmarks

The second multiple taskset case study was based on tasks from the Mälardalen

and SCADE benchmarks, shown in Table 6.2. Compared to the tasks from

PapaBench, these tasks have higher execution times, high amounts of

computation, and a larger number of UCBs. Figure 6.2 shows the percentage of

tasksets that were deemed schedulable by each approach for the 1000 tasksets

of cardinality 10 that we randomly selected from Table 6.2. As with the

PapaBench benchmarks, EDF outperformed FP scheduling as it has a higher

percentage of schedulable tasksets at each utilisation level. Likewise, because

the range of task periods was also relatively small, CRPD is minimised.

Figure 6.2 - Percentage of schedulable tasksets at each utilisation level for the
Mälardalen and SCADE benchmarks for tasksets of cardinality 10

6.1 Case Studies

127

Mixed Benchmark

The third multiple taskset case study was based on a mixture of the small and

short PapaBench tasks, and the large and long Mälardalen and SCADE tasks.

Here the tasksets had 15 tasks each and represent systems with background

tasks combined with short control tasks. As we mixed tasks from both tables, it

also allowed us to generate tasksets with a higher number of tasks.

The results, shown in Figure 6.3, show that when a taskset contains tasks with a

wide range of periods CRPD can become a significant factor in the

schedulability of the taskset. This is because short high priority tasks are able to

pre-empt long running low priority tasks multiple times.

Figure 6.3 - Percentage of schedulable tasksets at each utilisation level for the mixed
case study with tasks randomly selected from both the PapaBench and Mälardalen and
SCADE benchmarks (taskset cardinality 15)

While EDF still outperformed FP, the gain in schedulability of using EDF over

FP was diminished once CRPD was taken into account. Optimising the task

layout resulted in a significant improvement for both FP and EDF, showing the

task layout optimisation can be effectively applied to both EDF and FP

scheduling. Furthermore, by optimising the task layout, FP was able to

schedule a similar number of tasksets to EDF with the standard layout. In other

words, in cases where the CRPD is relatively high, selecting an optimised task

layout can be as effective as changing the scheduling algorithm. The results are

summarised in Table 6.4 using weighted schedulability measures, as discussed

in Section 3.5.2. They show that for these tasksets, FP with an optimised layout

achieved a weighted measure of 0.784, outperforming EDF with the standard

layout as it achieved a weighted measure of 0.771.

6.2 Evaluation

128

 Weighted Schedulability

EDF - No Pre-emption cost 0.922

FP - No Pre-emption cost 0.855

EDF - Optimised layout 0.830

EDF - Standard layout 0.771

FP - Optimised layout 0.784

FP - Standard layout 0.747

Table 6.4 - Weighted schedulability measures for the mixed case study shown in Figure
6.3.The higher the weighted schedulability measure, the more tasksets deemed
schedulable by the approach

6.2 Evaluation

In addition to the case studies based on the PapaBench, Mälardalen and SCADE

benchmarks, we evaluated FP and EDF with CRPD analysis using synthetically

generated tasksets. This enabled us to investigate the effect of varying key

parameters under each scheduling algorithm.

The UUnifast algorithm [32] was again used to calculate the utilisation, iU of

each task so that the utilisations added up to the desired utilisation level for the

taskset. Task periods Ti, were generated at random between 5ms and 500ms

according to a log-uniform distribution. Ci was then calculated via iii TUC  .

We generated two sets of tasksets, one with implicit deadlines and one with

constrained deadlines. In the following section, we present the results for

constrained deadline tasksets. In general, the results for implicit deadline

tasksets gave a higher number of schedulable tasksets for every approach

compared to the constrained deadline tasksets. Additionally, the task layout

had a similar or slightly larger effect on schedulability in relation to the chosen

scheduling algorithm.

The UCB percentage for each task was based on a random number between 0

and a maximum UCB percentage specified for the evaluation. UCBs were split

into N groups, where N was chosen at random between 1 and 5, and placed at a

random starting point within the task’s ECBs.

6.2.1 Baseline Evaluation

To investigate the effect of key cache and taskset configurations we varied the

following parameters:

 Cache utilisation (default of 10)

6.2 Evaluation

129

 Maximum UCB percentage (default of 30%)

 Number of tasks (default of 15)

 Block Reload Time (BRT) (default of 8μs)

 Period range (default of [5, 500]ms)

We used 1,000 randomly generated tasksets for the evaluation.

In addition to testing the different analyses as done for the case study, we also

performed a simulation of the schedule for the tasksets1. Our aim with the

simulation was to minimise schedulability by maximising the number of pre-

emptions. As noted in previous chapters, traditional methods for generating the

worst case arrival pattern will not necessarily generate them in the presence of

CRPD. For FP the simulation tested each task τi in turn by releasing it at time

t = 0. It then released all of the other tasks that have a higher priority than task

τi, sorted by lowest to highest priority, at t = 1, t = 2, t = 3 etc… If all tasks were

schedulable it also performed the same test, but instead of staggering the other

tasks, released them at random. For EDF we tried to maximise pre-emptions by

releasing tasks so that their deadlines were staggered. The first step is to

determine the interval that needs to be checked, L, which can be achieved by

using equation (4.24). Then for each task τi in turn, we scheduled a job of task τi

so that it has a deadline at t = L. We then scheduled a job of all of the other

tasks, sorted by longest to shortest deadline, so that they have their deadlines at

t = L - 1, t = L - 2, t = L - 3 etc… Based on the final jobs’ deadlines we then

calculated when the first jobs for each task need to be released. If all tasks are

schedulable, we repeated the process using t = L - 1 for all of the other tasks’

jobs, and also using a random schedule.

The results for the baseline configuration are shown in Figure 6.4 and are

summarised in Table 6.5 using weighted schedulability measures. The results

follow a similar pattern to the results from the case study. EDF outperformed

FP finding a higher number of tasksets schedulable. The results for the

simulations show that the CRPD affects both FP and EDF, with the CRPD being

slightly lower for EDF. Specifically, the simulation shows that CRPD reduced

the weighted measure by at least 0.129 for EDF, 0.925-0.795, and 0.141 for FP,

0.774-0.633, in this case. However, once the CRPD obtained via analysis is taken

into account, the performance gains of using EDF over FP are diminished. This

is most likely caused by increased pessimism in the CRPD analysis for EDF. The

1 Note that the simulation effectively provides a necessary, but not sufficient test of
schedulability

6.2 Evaluation

130

results also showed that the layout optimisation improved the schedulability of

tasksets scheduled under both FP and EDF.

Figure 6.4 - The percentage of schedulable tasksets at each utilisation level for the
baseline configuration (taskset cardinality 15)

 Weighted Schedulability

EDF - No Pre-emption cost 0.925

EDF - Simulation 0.796

FP - No Pre-emption cost 0.774

FP - Simulation 0.633

EDF - Optimised layout 0.455

EDF - Standard layout 0.413

FP - Optimised layout 0.369

FP - Standard layout 0.336

Table 6.5 - Weighted schedulability measures for the baseline configuration study
shown in Figure 6.4. The higher the weighted schedulability measure, the more tasksets
deemed schedulable by the approach

6.2.2 Detailed Evaluation

Evaluating all combinations of different task parameters is not possible.

Therefore, the majority of our evaluations focused on varying one parameter at

a time. To present these results, weighted schedulability measures [21] are used,

which are described in Section 4.5.2.

Cache Utilisation

As the cache utilisation increases the likelihood of tasks evicting each other

from cache increases, this causes higher CRPD reducing the number of

schedulable tasksets. It can be seen in Figure 6.5 that task layout optimisation is

6.2 Evaluation

131

effective for FP and EDF across the same range of cache utilisations. In both

cases it becomes less effective once the cache utilisation becomes high. We note

that because the number of tasks is fixed, that the average size of the tasks is

equal to the cache utilisation divided by the number of tasks. This means that as

the cache utilisation increases, so does the size of the tasks and therefore, the

number of UCBs. This in turn makes it harder to find an improved layout.

Figure 6.5 - Weighted measure for varying the cache utilisation from 0 to 20 in steps of
2

Maximum UCB Percentage

Figure 6.6 - Weighted measure for varying the maximum UCB percentage from 0 to
100 in steps of 10

As the maximum UCB percentage increases, the CRPD increases resulting in a

reduction in the number of tasksets that are deemed schedulable, as can be seen

6.2 Evaluation

132

in Figure 6.6. With a low percentage of UCBs, the CRPD is low which means

there is little benefit from layout optimisation. When the UCB percentage is

very high there are a significant number of conflicts that there is very little that

can be done to improve the layout. When the maximum UCB percentage is at

40-60% there is a notable amount of CRPD, but there is also room for the task

layout algorithm to optimise the layout. This allows FP using an optimised task

layout to schedule a similar number of tasksets as EDF using the standard

layout.

Number of Tasks

When varying the number of tasks, as seen in Figure 6.7, we scaled the cache

utilisation to keep the average size of tasks constant based on a cache utilisation

of 10 for 15 tasks. This is because it would be unrealistic for the size of tasks to

decrease as more tasks are added to the system. Hence with 8 tasks the cache

utilisation is equal to 5.33, whereas for 32 tasks, it is equal to 21.33. As the

number of tasks increases, it becomes harder to schedule all tasks. This leads to

a decrease in the overall weighted measure. The task layout optimisation

performs best when there is a moderate number of tasks as there are enough

conflicts that optimising the layout can give an improvement; but not so many

that there is nothing that can be done to avoid the conflicts.

Figure 6.7 - Weighted measure for varying the number of tasks from 20 to 26 while
maintaining a constant ratio of number of tasks to cache utilisation

6.2 Evaluation

133

Block Reload Time

Figure 6.8 - Weighted measure for varying the block reload time (BRT) from 0 to 20µs
in steps of 2

As the block reload time is increased, it becomes more costly to reload a block,

which causes an increase in CRPD. It can be seen in Figure 6.8 that as the block

reload time is increased, the analysis that takes into account the pre-emption

cost shows a decrease in the overall weighted measure. We note that as the cost

of reloading a block increases, the potential gains of optimising the layout

increases. Once the block reload time exceeds 14µs, using an optimised layout

under FP scheduling outperforms using a standard layout under EDF

scheduling.

6.3 Summary

134

Period Range

Figure 6.9 - Weighted measure for varying the scaling factor used to generate periods,
w, in w[1, 100]ms, from 0.5 to 10

We also investigated the effect of the scaling factor used to generate task

periods, to simulate tasksets with shorter to longer execution times. We varied

the scaling factor, w, from 0.5 to 10 and hence the range of task periods given by

w[1, 100]ms. A lower scaling factor resembles tasks with shorter execution

times, as seen in the PapaBench benchmark. A higher scaling factor resembles

tasks with higher execution times and commensurately longer periods, as seen

in the Mälardalen and SCADE benchmarks. The results in Figure 6.9 show the

layout optimisation performs best when task periods are relatively short, as that

is when the pre-emption costs are highest. Once the period range is greater than

[10, 1000]ms, the relative pre-emption costs are low enough that performing the

layout optimisation only makes a very small improvement on the schedulability

of the tasksets.

6.3 Summary

The EDF scheduling algorithm is an optimal scheduling algorithm assuming

negligible pre-emption costs for single processors. However, it has been largely

disregarded by industry. Whereas FP despite offering lower theoretical

schedulable processor utilisation, is relatively popular with many commercial

real- time operating systems supporting it.

6.3 Summary

135

Previous work by Buttazzo [38] has compared the two algorithms, but it did not

take into account CRPD which can have a significant effect on the

schedulability of a taskset.

In this chapter we performed a detailed comparison of FP and EDF taking into

account CRPD using state-of-the-art CRPD analysis for FP [7], and EDF,

presented in Chapter 3. This showed the feasibility of simple, yet effective, task

layout optimisation techniques for EDF. We found that when CRPD is

considered, the performance gains offered by EDF over FP, while still

significant, are somewhat diminished. This is most likely due to greater

pessimism in the CRPD analysis for EDF than FP. We also discovered that in

configurations that cause relatively high CRPD, optimising task layout can be

just as effective as changing the scheduling algorithm from FP to EDF. This is

important in an industrial setting as it is considerably simpler and cheaper to

control the task layout via the linker than it is to change the scheduler.

Nevertheless, our evaluations showed that changing to an EDF scheduler and

optimising the task layout provides a gain over FP scheduling. Although this

gain was not as pronounced as the advantage that EDF has over FP when pre-

emption costs are not accounted for via analysis.

136

137

CHAPTER 7. CRPD ANALYSIS

FOR HIERARCHICAL

SCHEDULING

There is a growing need in industry to combine multiple applications together

to build complex embedded real-time systems. This is driven by the need to re-

use legacy applications that once ran on slower, but dedicated processors.

Typically, it is too costly to go back to the design phase resulting in a need to

use applications as-is. Furthermore, there are often a number of vendors

involved in implementing today’s complex embedded real-time systems, each

supplying separate applications which must then be integrated together.

Hierarchical scheduling provides a means of composing multiple applications

onto a single processor, such that the temporal requirements of each application

are met. Each application, or component, has a dedicated server. A global

scheduler then allocates processor time to each server, during which the

associated component can use its own local scheduler to schedule its tasks.

In pre-emptive multi-tasking systems, CRPD is caused by the need to re-fetch

cache blocks belonging to the pre-empted task which were evicted from the

cache by the pre-empting task. This is further complicated when using

hierarchical scheduling as servers will often be suspended while their

components’ tasks are still active. In this case they have started, but have not

yet completed executing. While a server is suspended the cache can be polluted

by the tasks belonging to other components. When the global scheduler then

switches back to the first server, tasks belonging to the associated component

may have to reload blocks into cache that were in use before the global context

switch.

In this chapter we present new analysis that bounds the CRPD caused by blocks

being evicted from cache by other components in hierarchical systems. The

7.1 System Model Extension

138

analysis is for a hierarchical system with a global non-pre-emptive scheduler

and a local pre-emptive Fixed Priority (FP) or Earliest Deadline First (EDF)

scheduler.

Related Work on Hierarchical Scheduling
Hierarchical scheduling has been studied extensively in the past 15 years. Deng

and Liu [56] were the first to propose such a two-level scheduling approach.

Later Feng and Mok [60] proposed the resource partition model and

schedulability analysis based on the supply bound function. Shih and Lee [111]

introduced the concept of a temporal interface and the periodic resource model,

and refined the analysis of Feng and Mok. Kuo and Li [76] and Saewong et al.

[108] specifically focused on fixed priority hierarchical scheduling. Lipari and

Bini [83] solved the problem of computing the values of the partition

parameters to make an application schedulable. Davis and Burns [50] proposed

a method to compute the response time of tasks running on a local fixed

priority scheduler. Later, Davis and Burns [49] investigated selecting optimal

server parameters for fixed priority pre-emptive hierarchical systems. When

using a local EDF scheduler Lipari et al. [82] [84] investigated allocating server

capacity to components, proposing an exact solution. Recently Fisher and

Dewan [64] developed a polynomial-time approximation with minimal over

provisioning of resources.

Hierarchical systems have been used mainly in the avionics industry. The

Integrated Modular Avionics (IMA) [119] [10] is a set of standard specifications for

simplifying the development of avionics software. Among other requirements it

allows different independent applications to share the same hardware and

software resources [11]. The ARINC 653 standard [11] defines temporal

partitioning for avionics applications. The global scheduler is a simple Time

Division Multiplexing (TDM), in which time is divided into frames of fixed

length, each frame is divided into slots and each slot is assigned to one

application.

7.1 System Model Extension

In this section we describe the extension to our system model presented in

Section 2.1.1 for hierarchical scheduling.

We assume a single processor system comprising m applications or

components, each with a dedicated server (S1..Sm) that allocates processor

7.2 Hierarchical Schedulability Analysis

139

capacity to it. We use Ψ to represent the set of all components in the system. G

is used to indicate the index of the component that is being analysed. Each

server SG has a budget QG and a period PG, such that the associated component

will receive QG units of execution time from its server every PG units of time.

Servers are assumed to be scheduled globally using a non-pre-emptive

scheduler, as found in systems that use time partitioning to divide up access to

the processor. While a server has remaining capacity and is allocated the

processor, we assume that the tasks of the associated component are scheduled

according to the local scheduler policy. If there are no tasks in the associated

component to schedule, we assume that the processor idles until the server

exhausts all of its capacity, or a new task in the associated component is

released.

The system comprises a taskset Г made up of a fixed number of tasks (τ1..τn)

divided between the components. Each component contains a strict subset of

the tasks, represented by ГG. For simplicity, we assume that the tasks are

independent and do not share resources requiring mutually exclusive access,

other than the processor. We note that global and local resource sharing has

been extensively studied for hierarchical systems [51] [23] [13]. Resource

sharing and its effects on CRPD have also been studied for single level systems

[6] [7].

In the case of a local FP scheduler, we use the notation hp(G,i) and hep(G,i) to

restrict hp(i) and hep(i) to just tasks of component G.

Each component G also has a set of UCBs, UCBG and a set of ECBs, ECBG, that

contain respectively all of the UCBs, and all of the ECBs, of the associated tasks,

 G UCBUCBG




i
i


and  G ECBECBG




i
i


.

7.2 Hierarchical Schedulability Analysis

Hierarchical scheduling is a technique that allows multiple independent

components to be scheduled on the same system. A global scheduler allocates

processing resources to each component via server capacity. Each component

can then utilise the server capacity by scheduling its tasks using a local

scheduler.

7.2 Hierarchical Schedulability Analysis

140

Supply Bound Function

In hierarchical systems components do not have dedicated access to the

processor, but must instead share it with other components. The supply bound

function [111], or specifically the inverse of it, can be used to determine the

maximum amount of time needed by a specific server to supply some capacity

c.

Figure 7.1 shows an example for server SG with QG = 5 and PG = 8. Here we

assume the worst case scenario where a task is activated just after the server’s

budget is exhausted. In this case the first instance of time at which tasks can

receive some supply is at 2(PG - QG) = 6.

Figure 7.1 – Example showing how server capacity can be supplied to components.
General case of a server where QG = 5 and PG = 8 showing it can take up to 6 time units
before a task receives supply

We define the inverse supply bound function, isbf, for component G as Gisbf [106]:























 1)()(

G

GGG

Q

c
QPccisbf (7.1)

In order to account for component level CRPD we must define two terms. We

use  tEG to denote the maximum number of times server SG can be both

suspended and resumed within an interval of length t:

















G

G

P

t
tE 1 (7.2)

Figure 7.2 shows an example global schedule for three components, G, Z and Y.

When t >0 server SG can be suspended and resumed at least once. Then for each

increase in t by PG, server SG could be suspended and resumed one additional

time per increase in t by PG. We note that technically the number of times a

server can be both suspended and resumed increases by one at t = PG + 2,

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

141

t = (2 × PG) + 2, etc… Therefore equation (7.2) is a conservative bound on the

number of times that a server is both suspended and resumed within an

interval of length t.

Figure 7.2 - Example global schedule to illustrate the server suspend and resume
calculation with PG = PZ = PY = 8, QG = 5, QZ = 2, QY = 1

We use the term disruptive execution to describe an execution of server SZ while

server SG is suspended that results in tasks from component Z evicting cache

blocks that tasks in component G may have loaded and need to reload. Note

that if server SZ runs more than once while server SG is suspended, its tasks

cannot evict the same blocks twice. As such, the number of disruptive

executions is bounded by the number of times that server SG can be both

suspended and resumed,  tEG . We use XZ to denote the maximum number of

such disruptive executions.

















 















Z

GGZ

P

t
tEtSX 1,min, (7.3)

Figure 7.3 shows an example global schedule for components G and Z. Between

t=0 and t=6, component Z executes twice, but can only evict cache blocks that

tasks in component G might have loaded and need to reload once.

Figure 7.3 - Example global schedule to illustrate the disruptive execution calculation
with PG = PZ = 8, QG = 5, QZ = 3

7.3 CRPD Analysis for Hierarchical Systems:

Local FP Scheduler

In this section, we describe how CRPD analysis can be extended for use in

hierarchical systems with a local FP scheduler and integrated into the

schedulability analysis for it. We do so by extending the concepts of ECB-Only,

UCB-Only, UCB-Union and UCB-Union Multiset analysis introduced in [37],

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

142

[77], [115] and [7], described in Section 3.2, respectively to hierarchical systems.

This analysis assumes a non-pre-emptive global scheduler such that the

capacity of a server is supplied without pre-emption, but may be supplied

starting at any time during the server’s period. It assumes that tasks are

scheduled locally using a pre-emptive fixed priority scheduler. We explain a

number of different methods, building up in complexity.

The analysis needs to capture the cost of reloading any UCBs into cache that

may be evicted by tasks belonging to other components; in addition to the cost

of reloading any UCBs into cache that may be evicted by tasks in the same

component. For calculating the intra-component CRPD, we use the Combined

Multiset approach by Altmeyer et al. [7], which is described in Section 3.2. This

can be achieved by combining the intra-component CRPD due to pre-emptions

between tasks within the same component via the Combined Multiset

approach, equation (3.6), with modified response time analysis for non-

dedicated processor access, with a new term,
G

i  :





































 
 



 G
i

iGj

jij

j

ji
i

G
i C

T

JR
CisbfR 




),(hp

,
1 (7.4)

Here,
G

i  represents the CRPD on task τi in component G caused by tasks in the

other components running while the server, SG, for component G is suspended.

Use of the inverse supply bound function gives the response time of τi under

server, SG, taking into account the shared access to the processor.

ECB-Only
A simple approach to calculate component CPRD is to consider the maximum

effect of the other components by assuming that every block evicted by the

tasks in the other components has to be reloaded. There are two different ways

to calculate this cost.

ECB-Only-All

The first option is to assume that every time server SG is suspended, all of the

other servers run and their tasks evict all the cache blocks that they use. We

therefore take the union of all ECBs belonging to the other components to get

the number of blocks that could be evicted. We then sum them up  iREG times,

where  iREG upper bounds the number of times server SG could be both

suspended and resumed during the response time of task τi, see equation (7.2).

We can calculate the CRPD impacting task τi of component G due to the other

components in the system as:

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

143

  
GZ

Z

i
GG

i RE




 ZECB BRT (7.5)

ECB-Only-Counted

The above approach works well when the global scheduler uses a TDM

schedule, such that each server has the same period and/or components share a

large number of ECBs. If some servers run less frequently than server SG, then

the number of times that their ECBs can evict blocks may be over counted. One

solution to this problem is to consider each component separately. This is

achieved by calculating the number of disruptive executions that server SZ can

have on task τi in component G during the response time of task τi, given by









i

GZ RSX , , see equation (7.3). We can then calculate an alternative bound for

the CRPD incurred by task τi of component G due to the other components in

the system as:

   





GZ
Z

i
GZG

i RSX ZECB, BRT (7.6)

Note that the ECB-Only-All and ECB-Only-Counted approaches are

incomparable.

UCB-Only
Alternatively we can focus on the tasks in component G, hence calculating

which UCBs could be evicted if the entire cache was flushed by the other

components in the system. However, task τi may have been pre-empted by

higher priority tasks. So we must bound the pre-emption cost by considering

the number of UCBs over all tasks in component G that may pre-empt task τi,

and task τi itself, given by  iGk ,hep .

 


iGk

k

,hep

UCB


 (7.7)

We multiply the number of UCBs, equation (7.7), by the number of times that
server SG can be both suspended and resumed during the response time of task
τi to give:

 
 


iGk

ki
GG

i RE
,hep

UCB BRT


 (7.8)

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

144

This approach is incomparable with the ECB-Only-All and ECB-Only-Counted

approaches.

UCB-ECB
While it is a sound to only consider the ECBs of the tasks in the other

components, or only the UCBs of the tasks in the component of interest, these

approaches are clearly pessimistic. We can tighten the analysis by considering

both.

UCB-ECB-All

We build upon the ECB-Only-All and UCB-Only methods. For task τi and all

tasks that could pre-empt it in component G, we first calculate which UCBs

could be evicted by the tasks in the other components, this is given by equation

(7.7). We then take the union of all ECBs belonging to the other components to

get the number of blocks that could potentially be evicted. We then calculate the

intersection between the two unions to give an upper bound on the number of

UCBs evicted by the ECBs of the tasks in the other components.

  


































GZ

ZiGk

k
Z

,hep

ECBUCB (7.9)

This is then multiplied by the number of times that the server SG could be both

suspended and resumed during the response time of task τi to give:

 
  




































GZ

ZiGk

ki
GG

i RE Z

,hep

ECBUCB BRT (7.10)

By construction, the UCB-ECB-All approach dominates the ECB-Only-All and

UCB-Only approaches.

UCB-ECB-Counted

Alternatively, we can consider each component in isolation by building upon

the ECB-Only-Counted and UCB-Only approaches. For task τi and all tasks that

could pre-empt it in component G, we start by calculating an upper bound on

the number of blocks that could be evicted by component Z:

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

145

 

Z

,hep

ECBUCB 

















iGk

k (7.11)

We then multiply this number of blocks by the number of disruptive executions

that server SZ can have during the response time of task τi, and sum this up for

all components to give:

 
 



 































GZ
Z iGk

ki
GZG

i RSX Z

,hep

ECBUCB, BRT  (7.12)

By construction, the UCB-ECB-Counted approach dominates the ECB-Only-

Counted approach, but is incomparable with the UCB-Only approach.

UCB-ECB-Multiset
The UCB-ECB approaches are pessimistic in that they assume that each

component can, directly or indirectly, evict UCBs of each task  iGk ,hep in

component G up to  i
G RE times during the response time of task τi. While this is

potentially true when τk = τi, it can be a pessimistic assumption in the case of

intermediate tasks which may have much shorter response times. The UCB-

ECB-Multiset approaches, described below, remove this source of pessimism by

upper bounding the number of times intermediate task  iGk ,hep can run

during the response time of τi. They then multiply this value by the number of

times that the server SG can be both suspended and resumed during the

response time of task τk,  k
G RE .

UCB-ECB-Multiset-All

First we form a multiset ucb
iGM , that contains the UCBs of task τk repeated

   ikk
G RERE times for each task  iGk ,hep . This multiset reflects the fact that

the UCBs of task τk can only be evicted and reloaded    ikk
G RERE times during

the response time of task τi as a result of server SG being suspended and

resumed.

    
 

iGk RERE

k
ucb

iG

ikk
G

M
,hep

, UCB















 (7.13)

Then we form a second multiset Aecb
iGM 

, that contains  i
G RE copies of the ECBs

of all of the other components in the system. This multiset reflects the fact that

the other servers’ tasks can evict blocks that may subsequently need to be

reloaded at most  i
G RE times within the response time of task τi.

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

146

 
 

i
G RE

GZ
Z

Aecb
iGM






















 Z
, ECB (7.14)

The total CRPD incurred by task τi, in component G due to the other

components in the system is then bounded by the size of the multiset

intersection of ucb
iGM , , equation (7.13), and Aecb

iGM 
, , equation (7.14).

 Aecb
iG

ucb
iG

G
i MM  ,,BRT (7.15)

UCB-ECB-Multiset-Counted

For the UCB-ECB-Multiset-Counted approach, we keep equation (7.13) for

calculating the set of UCBs; however, we form a second multiset Cecb
iGM 

, that

contains 







i

GZ RSX , copies of the ECBs of each other component Z in the

system. This multiset reflects the fact that tasks of each server SZ can evict

blocks at most 







i

GZ RSX , times within the response time of task τi.

 
 

GZ
Z RSX

Cecb
iG

i
GZ

M





















,

Z
, ECB (7.16)

The total CRPD incurred by task τi, in component G due to the other

components in the system is then bounded by the size of the multiset

intersection of ucb
iGM , , equation (7.13), and Cecb

iGM 
, , equation (7.16).

 Cecb
iG

ucb
iG

G
i MM  ,,BRT (7.17)

UCB-ECB-Multiset-Open

In open hierarchical systems the other components may not be known a priori as

they can be introduced into a system dynamically. Additionally, even in closed

systems, full information about the other components in the system may not be

available until the final stages of system integration. In both of these cases, only

the UCB-Only approach can be used as it requires no knowledge of the other

components. We therefore present a variation called UCB-ECB-Multiset-Open

that improves on UCB-Only while bounding the maximum component CRPD

that could be caused by other unknown components. This approach draws on

the benefits of the Multiset approaches, by counting the number of intermediate

pre-emptions, while also recognising the fact that the cache utilisation of the

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

147

other components can often be greater than the size of the cache. As such, the

precise number of ECBs does not matter.

For the UCB-ECB-Multiset-Open approach we keep equation (7.13) for

calculating the set of UCBs. Furthermore, we form a second multiset Oecb
iGM 

, that

contains  i
G RE copies of all cache blocks. This multiset reflects the fact that

server SG can be both suspended and resumed, and the entire contents of the

cache evicted at most  i
G RE times within the response time of task τi.

   
 


i
G RE

Oecb
iG NM ,..2,1,  (7.18)

Where N is the number of cache sets.

The total CRPD incurred by task τi, in component G due to the other unknown

components in the system is then bounded by the size of the multiset

intersection of ucb
iGM , , equation (7.13), and Oecb

iGM 
, , equation (7.18).

 Oecb
iG

ucb
iG

G
i MM  ,,BRT (7.19)

7.3.1 Comparison of Approaches

We have presented a number of approaches that calculate the CRPD due to

global context switches, server switching, in a hierarchical system. Figure 7.4

shows a Venn diagram representing the relationships between the different

approaches. The larger the area, the more tasksets the approach deems

schedulable. The diagram highlights the incomparability between the ‘-All’ and

‘-Counted’ approaches. The diagram also highlights dominance. For example,

by construction, UCB-ECB-Multiset-All dominates UCB-ECB-Multiset-Open

and UCB-ECB-All, and UCB-All dominates ECB-Only-All.

We now give worked examples illustrating both incomparability and

dominance relationships between the different approaches.

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

148

Figure 7.4 - Venn diagram showing the relationship between the different approaches

Consider the following example with three components, G, A and B, where

component G has one task, Let BRT=1,   101 REG , 10, 1 






 RSX GA ,

2, 1 






 RSX GB , }2,1{AECB and }10,9,8,7,6,5,4,3{BECB . In this example

components A and G run at the same rate, while component B runs at a tenth of

the rate of component G.

ECB-Only-All considers the ECBs of component B effectively assuming that

component B runs at the same rate as component G:

 

   

  100101010,9,8,7,6,5,4,3,2,110

10,9,8,7,6,5,4,32,1101

ECBECBBRT

1

11







G

BAGG RE





By comparison ECB-Only-Counted considers components A and B individually,

and accounts for the ECBs of component B based on the number of disruptive

executions that it may have.

 

    3682210

}10,9,8,7,6,5,4,3{2

2,110
1

ECB,

ECB,
BRT

1

1

1

1



























































G

BGB

AGA

G

RSX

RSX





We now present a more detailed worked example for all approaches where the

ECB-Only-All approach outperforms the ECB-Only-Counted approach. This

confirms the incomparability of the -All and -Counted approaches.

7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

149

}4,3,2,1{}3,2,1{

}3,2{}2{

}8,7,6,5,4,3,2{-

}5,4,3,2{-

,9,10}{4,5,6,7,8-

ECBUCB

2

1





A

B

C

S

S

S

Figure 7.5 - Example schedule and UCB/ECB data for four components to demonstrate
how the different approaches calculate CRPD

Figure 7.5 shows an example schedule for four components, G, A, B and C,

where component G has two tasks. Let BRT=1,   11 REG ,   22 REG ,   121 RE

and   122 RE , and the number of disruptive executions be:

1, 1 






 RSX GA , 1, 1 






 RSX GB , 1, 1 






 RSX GC and 2, 2 






 RSX GA , 2, 2 






 RSX GB ,

2, 2 






 RSX GC .

The following examples show how some of the approaches calculate the

component CRPD for task τ2 of component G.

ECB-Only-All:

 

     

  189210,9,8,7,6,5,4,3,22

10,9,8,7,6,5,45,4,3,28,7,6,5,4,3,221

ECBECBECBBRT

2

22







G

CBAGG RE





ECB-Only-Counted:

 

      36724272

}10,9,8,7,6,5,4{2

}5,4,3,2{2

8,7,6,5,4,3,22

1

ECB,

ECB,

ECB,

BRT

2

2

2

2

2


















































































G

CGC

BGB

AGA

G

RSX

RSX

RSX





7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler

150

UCB-Only:

 

 
6}3,2,1{2

}3,2,1{}2{21

UCBUCBBRT

2

2122







G

GG RE





All of those approaches overestimated the CRPD, although UCB-Only achieves

a much tighter bound than the ECB-Only-All and ECB-Only-Counted

approaches. The bound can be tightened further by using the more

sophisticated approaches, for example, UCB-ECB-Multiset-Counted:

   

}3,3,2,2,2,1,1{}3,2,1{}3,2,1{}2{

UCBUCB

2,

)(

2

)(

12,

222211
































ucb
G

RERERERE

ucb
G

M

M
GG



     

}10,10,9,9,8,8,8,8,,7,7,7,7,6,6,6,6

,5,5,5,5,5,5,4,4,4,4,4,4,3,3,3,3,2,2,2,2{

}10,9,8,7,6,5,4{}10,9,8,7,6,5,4{}5,4,3,2{

}5,4,3,2{}8,7,6,5,4,3,2{}8,7,6,5,4,3,2{

ECBECBECB

2,

,,,

2,

222






















































Cecb
G

RSX

C

RSX

B

RSX

ACecb
G

M

M
GCGBGA



5}3,3,2,2,2{1BRT 2,2,2  Cecb
G

ucb
G

G MM

In this specific case, the UCB-ECB-Multiset-All approach calculates the tightest

bound:

 
 

      

  

 10,10,9,9,8,8,7,7,6,6,5,5,4,4,3,3,2,2

10,9,8,7,6,5,4,3,2

10,9,8,7,6,5,45,4,3,28,7,6,5,4,3,2

ECBECBECB

2

2

2,

2,

2


















Aecb

G

RE

CBAAecb
G

M

M
G

4}3,3,2,2{1BRT 2,2,2  Aecb
G

ucb
G

G MM

Assuming there are 12 cache sets in total1, the UCB-ECB-Multiset-Open

approach gives:

1 Although we used 12 cache sets in this example, we note that the result obtained is in fact
independent of the total number of cache sets.

7.4 CRPD Analysis for Hierarchical Systems: Local EDF Scheduler

151

  
 

  



















12,12,11,11,10,10,9,9

,8,8,7,7,6,6,5,5,4,4,3,3,2,2,1,1

12,11,10,9,8,7,6,5,4,3,2,1

12,11,10,9,8,7,6,5,4,3,2,1

2

2,

2,

2




Oecb

G

RE

Oecb
G

M

M
G

6}3,3,2,2,1,1{1BRT 2,2,2  Oecb
G

ucb
G

G MM

7.4 CRPD Analysis for Hierarchical Systems:

Local EDF Scheduler

In this section we present CRPD analysis for hierarchical systems with a local

EDF scheduler by adapting the analysis that we presented for a local FP

scheduler in Section 7.3.

Overall, the analysis must account for the cost of reloading any UCBs into cache

that may be evicted by tasks running in the other components. This is in

addition to the cost of reloading any UCBs into cache that may be evicted by

tasks in the same component. For calculating the intra-component CRPD, we

use the Combined Multiset approach presented in Chapter 4 for EDF

scheduling of a single level system. To account for the component level CRPD,

we define a new term
G

t  that represents the CRPD incurred by tasks in

component G due to tasks in the other components running while the server,

SG, for component G is suspended. Combining equation (4.12) with Gisbf ,

equation (7.1), and
G

t  , we get the following expression for the modified

processor demand1 within an interval of length t:














































 
 



n

j

G
tjtj

j

jG C
T

Dt
isbfth

1

,1 ,0max)( (7.20)

In order to account for component CRPD we must define an additional term.

The set of tasks in component G that can be affected by the server SG being both

suspended and resumed in an interval of length t, aff(G,t) is based on the

relative deadlines of the tasks. It captures all of the tasks whose relative

deadlines are less than or equal to t as they need to be included when

1 Strictly, h(t) is the maximum time required for the server to provide the processing time
demand.

7.4 CRPD Analysis for Hierarchical Systems: Local EDF Scheduler

152

calculating h(t). See Theorem 4.2 in Section 4.1 for a proof for why tasks whose

deadlines are larger than t can be excluded. This gives:

    ii DttG G   |,ffa  (7.21)

ECB-Only
Recall that the ECB-Only approach to calculate component CPRD considers the

maximum effect of the other components by assuming that every block evicted

by the tasks in the other components has to be reloaded. There are two different

ways to calculate this cost.

ECB-Only-All

The ECB-Only-All approach assumes that every time server SG is suspended, all

of the other servers run and their tasks evict all the cache blocks that they use.

We therefore take the union of all ECBs belonging to the other components to

get the number of blocks that could be evicted. We then sum them up  tEG

times, where  tEG upper bounds the number of times server SG could be both

suspended and resumed during an interval of length t. We can calculate the

CRPD impacting tasks in component G due to the other components in the

system as:

  
GZ

Z

GG
t tE




 ZECB BRT (7.22)

ECB-Only-Counted

The ECB-Only-Counted approach considers each component separately by

calculating the number of disruptive executions that server SZ can have on tasks

in component G during an interval of length t, 






 tSX GZ , . We can then calculate

an alternative bound for the CRPD incurred by tasks in component G due to the

other components in the system as:

   





GZ
Z

GZG
t tSX ZECB, BRT (7.23)

Note that the ECB-Only-All and ECB-Only-Counted approaches are

incomparable.

7.4 CRPD Analysis for Hierarchical Systems: Local EDF Scheduler

153

UCB-Only
The UCB-Only approach focuses on the tasks in component G, hence

calculating which UCBs could be evicted if the entire cache was flushed by the

other components in the system. With a local EDF scheduler, we must consider

all tasks in component G that are both released and have their deadlines within

an interval of length t. We therefore take the union of the UCBs of all tasks in

component G that have a deadline less than t, 




 tGk ,aff , to give:

 


tGk

k

,aff

UCB


 (7.24)

We then multiply the number of UCBs, equation (7.24), by the number of times

that server SG can be both suspended and resumed during an interval of length

t.

 

 


tGk

k
GG

t tE
,aff

UCB BRT


 (7.25)

This approach is incomparable with the ECB-Only-All and ECB-Only-Counted
approaches.

UCB-ECB
We now re-formulate the UCB-ECB approaches for a local EDF scheduler.

UCB-ECB-All

We build upon the ECB-Only-All and UCB-Only methods. We start with the

union of the UCBs of all tasks in component G that could be affected within an

interval of length t, (7.24). We then take the union of all ECBs belonging to the

other components to give the number of blocks that could potentially be

evicted. We then calculate the intersection between the two unions to give an

upper bound on the number of UCBs evicted by the ECBs of the tasks in the

other components:

  


































GZ

ZtGk

k
Z

,aff

ECBUCB (7.26)

This upper bound is then multiplied by the number of times that the server SG

could be both suspended and resumed during an interval of length t to give:

7.4 CRPD Analysis for Hierarchical Systems: Local EDF Scheduler

154

 
  




































GZ

ZtGk

k
GG

t tE Z

,aff

ECBUCB BRT (7.27)

By construction, the UCB-ECB-All approach dominates the ECB-Only-All and

UCB-Only approaches.

UCB-ECB-Counted

With the UCB-ECB-Counted approach we start by calculating an upper bound

on the number of blocks that could be used by tasks in component G which are

both released and have their deadlines within an interval of length t. We then

take the intersection of these UCBs with the set of ECBs of component Z to give

the number of blocks that could be evicted by component Z:

 

Z

,aff

ECBUCB 

















tGk

k (7.28)

We then multiply this number of blocks by the number of disruptive executions

that server SZ can have during an interval of length t and sum this up for all

components to give:

 
 



 































GZ
Z tGk

k
GZG

t tSX Z

,aff

ECBUCB, BRT  (7.29)

By construction, the UCB-ECB-Counted approach dominates the ECB-Only-

Counted approach, but is incomparable with the UCB-Only approach.

UCB-ECB-Multiset
The UCB-ECB approaches are pessimistic in that they assume that each

component can, directly or indirectly, evict UCBs of each task 




 tGk ,aff in

component G up to  tEG times during an interval of length t. The UCB-ECB-

Multiset approaches, described below, remove this source of pessimism by

upper bounding the number of times server SG can be both suspended and

resumed while each task G
k  is running during an interval of length t.

We first calculate an upper bound on the UCBs that if evicted by tasks in the

other components may need to be reloaded. We do this by forming a multiset

that contains the UCBs of task τk repeated    tEDE kk
G times for each task in

G
k  . This multiset reflects the fact that server SG can be suspended and

7.4 CRPD Analysis for Hierarchical Systems: Local EDF Scheduler

155

resumed at most  k
G DE times during a single schedulable job of task τk and

there can be at most  tEk jobs of task τk that have their release times and

absolute deadlines within the interval of length t.

   
 

G
kk

Gk tEDE

k
ucb

tGM















 UCB, (7.30)

Note that we do not restrict the set of tasks G
k  using 





 tGk ,aff , as  tEk

will be 0 for any task which has a deadline shorter than t.

The second step is to determine which ECBs of the tasks in the other

components could evict the UCBs in equation (7.30), for which we present three

different approaches.

UCB-ECB-Multiset-All

The first option is to assume that every time server SG is suspended, all of the

other servers run and their tasks evict all the cache blocks that they use. We

therefore take the union of all ECBs belonging to the other components to get

the set of blocks that could be evicted. We form a second multiset Aecb
tGM 

, that

contains)(tEG
 copies of the ECBs of all of the other components in the system.

This multiset reflects the fact that the other servers’ tasks can evict blocks, that

need to be reloaded, at most)(tEG
 times within an interval of length t.

 
 

tE
GZ

Z

Aecb
tG

G

M





















 Z
, ECB (7.31)

The total CRPD incurred by tasks in component G due to the other components

in the system is then given by the size of the multiset intersection of
ucb

tG
M

, ,

equation (7.30), and Aecb
tGM 

, , equation (7.31):

 Aecb
tG

ucb
tG

G
t MM  ,,BRT (7.32)

UCB-ECB-Multiset-Counted

The second option is to consider each component separately by calculating the

number of disruptive executions, 






 tSX GZ , , that server SZ can have on tasks in

component G during t. We form a second multiset Cecb
tGM 

, that contains








 tSX GZ , copies of ECBZ for each of the other components Z in the system. This

7.4 CRPD Analysis for Hierarchical Systems: Local EDF Scheduler

156

multiset reflects the fact that the tasks of each component Z can evict blocks at

most 






 tSX GZ , times within an interval of length t.

 
 

GZ
Z tSX

Cecb
tG

GZ

M





















,

Z
, ECB (7.33)

The total CRPD incurred by tasks in component G which are released and have

their deadlines in an interval of length t, due to the other components in the

system is then given by the size of the multiset intersection of
ucb

tGM , , equation

(7.30), and Cecb
tGM 

, , equation (7.33)

 Cecb
tG

ucb
tG

G
t MM  ,,BRT (7.34)

UCB-ECB-Multiset-Open

With the UCB-ECB-Multiset-Open approach we form a second multiset
Oecb

tGM 
,

that contains  tEG copies of all cache blocks. This multiset reflects the fact that

server SG can be both suspended and then resumed, after the entire contents of

the cache have been evicted at most)(tEG
 times within an interval of length t.

   
 


tE

Oecb
tG

G

NM ,..2,1, 
 (7.35)

Where N is the number of cache sets.

The total CRPD incurred by tasks in component G due to the other unknown

components in the system is then given by the size of the multiset intersection

of
ucb

tGM , , equation (7.30), and
Oecb

tGM 
, , equation (7.35).

 Oecb
tG

ucb
tG

G
t MM  ,,BRT (7.36)

7.4.1 Effect on Task Utilisation and h(t) Calculation

As the component level CRPD analysis effectively inflates the execution time of

tasks by the CRPD that can be incurred in an interval of length t, the upper

bound L used for calculating the processor demand h(t) must be adjusted. This

is an extension to the adjustment that must be made for task level CRPD as

described in Section 4.2.1. This is achieved by calculating an upper bound on

the utilisation due to CRPD that is valid for all intervals of length greater than

some value Lc. This CRPD utilisation value is then used to inflate the taskset

7.4 CRPD Analysis for Hierarchical Systems: Local EDF Scheduler

157

utilisation, and thus compute an upper bound Ld on the maximum length of the

busy period. This upper bound is valid provided that it is greater than Lc,

otherwise the actual maximum length of the busy period may lie somewhere in

the interval [Ld, Lc], hence we can use max(Lc, Ld) as a bound.

The first step is to assign t = Lc = 100 Tmax which limits the overestimation of

both the task level CRPD utilisation tU t
  and the component level CRPD

utilisation tU G
t

G   to at most 1%. We determine GU  by calculating
G

t 

however when calculating the multiset of the UCBs that could be affected
ucb

tGM , ,

equation (7.30),)(tEmax
x is substituted for)(tEx to ensure that the computed

value of GU  is a valid upper bound for all intervals of length t ≥ Lc.
















 


x

xmax
x

T

Dt
tE 1 ,0max)((7.37)

We use a similar technique of substituting)(tEmax
x for)(tEx in the calculation of

the task level CRPD, as described in Section 4.2.1, to give U .

If 1 GUUU  , then the taskset is deemed unschedulable, otherwise an

upper bound on the length of the busy period can be computed via a modified

version of equation (2.4):




 











j

j

j

UwC
T

w
w 


 11 (7.38)

rearranged to give:

  




j

jj

G

TU

UUU

w

 1

1



 (7.39)

Then, substituting in Tmax for each value of Tj the upper bound is given by:

   1

G

d

UUU

TU
L

 




max
 (7.40)

Finally, L = max(Lc, Ld) can then be used as the maximum value of t to check in

the EDF schedulability test.

7.4.2 Comparison of Approaches

In this section we have presented a number of approaches for calculating

component CRPD in a hierarchical system with a local EDF scheduler. These

7.5 Case Study

158

approaches all have the same dominance and incomparability relationships as

the approaches presented in Section 7.3 for a local FP scheduler. We therefore

refer the reader to Section 7.3.1 for an explanation of the relationships between

the approaches. However, the relative performance between the approaches

differ from the FP variants as shown in the next section.

7.5 Case Study

In this section we compare the different approaches for calculating CRPD in

hierarchical scheduling using tasksets based on a case study. The case study

uses PapaBench1 which is a real-time embedded benchmark based on the

software of a GNU-license UAV, called Paparazzi. WCETs, UCBs, and ECBs

were calculated for the set of tasks using aiT2 based on an ARM processor

clocked at 100MHz with a 2KB direct-mapped instruction cache. The cache was

again setup with a line size of 8 Bytes, giving 256 cache sets, 4 Byte instructions,

and a BRT of 8μs. WCETs, periods, UCBs, and ECBs for each task based on the

target system are provided in Table 7.1. As in Chapter 6, we made the following

assumptions in our evaluation to handle the interrupt tasks:

 Interrupts have a higher priority than the servers and normal tasks.

 Interrupts cannot pre-empt each other.

 Interrupts can occur at any time.

 All interrupts have the same deadline which must be greater than or

equal to the sum of their execution times in order for them to be

schedulable.

 The cache is disabled whenever an interrupt is executing and enabled

again after it completes.

Based on these assumptions, we integrated interrupts into the model by

replacing the server capacity QG in equation (7.1) by QG - IG, where IG is the

maximum execution time of all interrupts in an interval of length QG. This

effectively assumes that the worst case arrival of interrupts could occur in any

component and steals time from its budget.

1 http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97

2 http://www.absint.com/ait/

7.5 Case Study

159

Task UCBs ECBs WCET Period

FLY-BY-WIRE

I1 interrupt_radio 2 10 0.210 ms 25 ms

I2 interrupt_servo 1 6 0.167 ms 50 ms

I3 interrupt_spi 2 10 0.256 ms 25 ms

T1 check_failsafe 10 132 1.240 ms 50 ms

T2 check_mega128_values 10 130 5.039 ms 50 ms

T3 send_data_to_autopilot 10 114 2.283 ms 25 ms

T4 servo_transmit 2 10 2.059 ms 50 ms

T5 test_ppm 30 255 12.579 ms 25 ms

AUTOPILOT

I4 interrupt_modem 2 10 0.303 ms 100 ms

I5 interrupt_spi_1 1 10 0.251 ms 50 ms

I6 interrupt_spi_2 1 4 0.151 ms 50 ms

I7 interrupt_gps 3 26 0.283 ms 250 ms

T5 altitude_control 20 66 1.478 ms 250 ms

T6 climb_control 1 210 5.429 ms 250 ms

T7 link_fbw_send 1 10 0.233 ms 50 ms

T8 navigation 10 256 4.432 ms 250 ms

T9 radio_control 0 256 15.681 ms 25 ms

T10 receive_gps_data 22 194 5.987 ms 250 ms

T11 reporting 2 256 12.222 ms 100 ms

T12 stabilization 11 194 5.681 ms 50 ms

Table 7.1 - Execution times, periods and number of UCBs and ECBs for the tasks from
PapaBench

We assigned a deadline of 2ms to all of the interrupt tasks, and implicit

deadlines so that Di = Ti, to the normal tasks. We then calculated the total

utilisation for the system and then scaled Ti and Di up for all tasks in order to

reduce the total utilisation to the target utilisation for the system. We used the

number of UCBs and ECBs obtained via analysis, placing the UCBs in a group

at a random location in each task. We then generated 1000 systems each

containing a different allocation of tasks to each component, using the

following technique. We split the normal tasks at random into 3 components

with four tasks in two components and five in the other. In the case of local FP

scheduling, we assigned task priorities according to deadline monotonic

priority assignment. Next we set the period of each component’s server to

12.5ms, which is half the minimum task period. Finally, we organised tasks in

each component in memory in a sequential order based on their priority for FP,

or their unique task index for EDF. Due to task index assignments, this gave the

same task layout. We then ordered components in memory sequentially based

on their index.

7.5 Case Study

160

7.5.1 Success Ratio

For each system the total task utilisation across all tasks not including pre-

emption cost was varied from 0.025 to 1 in steps of 0.025. For each utilisation

value we initialised each servers’ capacity to the minimum possible value, the

utilisation of all of its tasks. We then performed a binary search between this

minimum and the maximum, 1 minus the minimum utilisation of all of the

other components, until we found the server capacity required to make the

component schedulable. As the servers all had equal periods, provided all

components were schedulable and the total capacity required by all servers was

≤ 100%, then the system was deemed schedulable at that specific utilisation

level. In addition to evaluating each of the presented approaches, we also

calculated schedulability based on no component pre-emption costs, but still

including task level CRPD. For every approach the intra-component CRPD,

between tasks in the same component, was calculated using either the

Combined Multiset approach for FP [7], described in Section 3.2, or the

Combined Multiset approach, introduced in Chapter 4 for EDF.

The results for the case study for a local FP scheduler and local EDF scheduler

are shown in Figure 7.6. Although we generated 1000 systems, they were all

very similar as they are made up of the same set of tasks. The first point to note

is that the FP approaches deem a higher number of tasksets schedulable than

the EDF ones, despite EDF having a higher number of schedulable tasksets for

the No-Component-Pre-emption-Cost case. In section 7.6.4, we explore the

source of pessimism in the EDF analysis. Focusing on the different approaches,

ECB-Only-Counted and ECB-Only-All perform the worst as they only consider

the other components in the system. In the case of a local EDF scheduler, the

ECB-Only-Counted approach is unable to deem any tasksets schedulable except

at the lowest utilisation level. Next was UCB-ECB-Counted which though it

considers all components, accounts for the other components pessimistically in

this case study, since all servers have the same period. The remainder of the

approaches all had very similar performance.

We note that No-Component-Pre-emption-Cost reveals that the pre-emption

costs are very small for the PapaBench tasks. This is due to a number of factors

including the nearly harmonic periods, small range of task periods, and

relatively low number of ECBs for many tasks.

7.6 Evaluation

161

Figure 7.6 - Percentage of schedulable tasksets at each utilisation level for the case study
tasksets

7.6 Evaluation

In this section we compare the different approaches for calculating CRPD in

hierarchical scheduling using synthetically generated tasksets. This allows us to

explore a wider range of parameters and therefore give some insight into how

the different approaches perform in a variety of cases.

To generate the components and tasksets we generated n, default of 24, tasks

using the UUnifast algorithm [32] to calculate the utilisation, iU , of each task so

that the utilisations added up to the desired utilisation level. Periods Ti, were

generated at random between 10ms and 1000ms according to a log-uniform

7.6 Evaluation

162

distribution. Ci was then calculated via iii TUC  . We generated two sets of

tasksets, one with implicit deadlines, so that Di = Ti, and one with constrained

deadlines. We used Di = y + x(Ti - y)) to generate the constrained deadlines,

where x is a random number between 0 and 1, and y = max(Ti/2, 2 Ci). This

generates constrained deadlines that are no less than half the period of the

tasks. All results presented are for tasks with implicit deadlines. In general the

results for constrained deadlines were similar with a lower number of systems

deemed schedulable. The exception to this is that under a local EDF scheduler,

the UCB-ECB-Multiset approaches showed an increase in schedulability when

deadlines were reduced by a small amount. This behaviour is investigated and

explained in Section 7.6.4.

We used the UUnifast algorithm to generate the number of ECBs for each task

so that the ECBs added up to the desired cache utilisation, default of 10. The

number of UCBs was chosen at random between 0% and 30% of the number of

ECBs on a per task basis, and the UCBs were placed in a single group at a

random location in each task.

We then split the tasks at random into 3 components with equal numbers of

tasks in each. In the case of a local FP scheduler, we assigned task priorities

according to Deadline Monotonic priority assignment. Next we set the period of

each component’s server to 5ms, which was half the minimum possible task

period. Finally we organised tasks in each component in memory in a

sequential order based on their priority for FP, or their unique task index for

EDF, which gave the same task layout, and then ordered components in

memory sequentially based on their index. We generated 1000 systems using

this technique.

In our evaluations we used the same local scheduler in each component, so that

all components were scheduled locally using either FP or EDF. However, we

note that the analysis is not dependent on the scheduling policies of the other

components and hence can be applied to a system where some components are

scheduled locally using FP and others using EDF.

7.6.1 Success Ratio

We determined the schedulability of the synthetic tasksets using the approach

described in the first paragraph of Section 7.5.1.

7.6 Evaluation

163

7.6.2 Baseline Evaluation

We investigated the effect of key cache and taskset configurations on the

analysis by varying the following key parameters:

 Number of components (default of 3)

 Server period (default of 5ms)

 Cache Utilisation (default of 10)

 Total number of tasks (default of 24)

 Range of task periods (default of [10, 1000]ms)

The results for the baseline evaluation under implicit deadline tasksets are

shown in Figure 7.7. The results again show that the analysis for determining

inter-component CRPD for a local FP scheduler deems a higher number of

systems schedulable than the analysis for a local EDF scheduler. In the case of a

local EDF scheduler, both ECB-Only approaches deemed no tasksets

schedulable. In the case of a local FP scheduler ECB-Only-Counted is least

effective as it only considers the other components and does so individually,

followed by ECB-Only-All. UCB-ECB-Counted deemed a higher number of

tasksets schedulable, although it deemed significantly fewer for a local EDF

scheduler than with a local FP scheduler. Under EDF, UCB-ECB-Multiset-

Counted was next, followed by all other approaches. Under FP, UCB-ECB-

Multiset-Counted performed similarly to UCB-Only and UCB-ECB-All,

crossing over at a utilisation of 0.725 highlighting their incomparability.

Although UCB-ECB-All dominates UCB-Only, it can only improve over UCB-

Only when the cache utilisation of the other components is sufficiently low that

they cannot evict all cache blocks. The UCB-ECB-Multiset-All and UCB-ECB-

Multiset-Open approaches performed the best for both types of local scheduler.

Despite only considering the properties of the component under analysis, the

UCB-ECB-Multiset-Open approach proved highly effective. The reason for this

is that once the size of the other components that can run while a given

component is suspended is equal to or greater than the size of the cache then

UCB-ECB-Multiset-All and UCB-ECB-Multiset-Open become equivalent.

7.6 Evaluation

164

Figure 7.7 - Percentage of schedulable tasksets at each utilisation level for the synthetic
tasksets

Consider the UCB-ECB-Multiset approaches under a local EDF scheduler.

Examining equation (7.30) , we note that)()(tEDE kk
G is based on the deadline

of a task. Therefore, the analysis under implicit deadlines effectively assumes

the UCBs of all tasks in component G could be in use each time the server for

component G is suspended. Whereas, under a local FP scheduler the analysis is

able to bound how many times the server for component G is suspended and

resumed based on the computed response time of each task which for many

tasks is much less than its deadline, and period. Figure 7.8 shows a subset of the

results presented in Figure 7.7. When component CRPD is not considered, EDF

outperforms FP. However, once component CRPD is taken into account, the

analysis for FP significantly outperforms the analysis for EDF.

7.6 Evaluation

165

Figure 7.8 - Percentage of schedulable tasksets at each utilisation level for the synthetic
tasksets directly comparing the analysis for local FP and EDF schedulers

7.6.3 Detailed Evaluation

Evaluating all combinations of different task parameters is not possible.

Therefore, the majority of our evaluations focused on varying one parameter at

a time. To present these results, weighted schedulability measures [21] are used,

which are described in Section 4.5.2.

We used 100 systems and varied the utilisation level from 0.025 to 1.0 in steps of

0.025 for the detailed evaluation.

Number of Components

To investigate the effects of splitting the overall set of tasks into components,

we fixed the total number of tasks in the system at 24, and then varied the

number of components from 1, with 24 tasks in one component, to 24, with 1

task per component, see Figure 7.9. Components were allocated an equal

number of tasks where possible, otherwise tasks were allocated to each

component in turn until all tasks where allocated. We note that with one

component, the UCB-Only and UCB-ECB-Multiset-Open approaches calculate a

non-zero inter-component CRPD. This is because they assume that every time a

component is suspended its UCBs are evicted, even though there is only one

component running in the system. With two components the ECB-Only-All and

ECB-Only-Counted approaches are equal. Above two components the ECB-

Only-All, ECB-Only-Counted and UCB-ECB-Counted approaches get rapidly

worse as they over-count blocks. Under a local FP scheduler, all other

7.6 Evaluation

166

approaches improve as the number of components is increased above 2 up to 8

components.

Figure 7.9 - Weighted measure for varying the number of components from 1 to 16,
while keeping the number of tasks in the system fixed

Under a local EDF scheduler, all approaches that consider inter-component

CRPD show a decrease in schedulability as the number of components increases

above 2. The No-Component-Pre-emption-Cost case shows an increase in

schedulability up to approximately 6-7 components before decreasing. This is

because as the number of components increases, the amount of intra-

component CRPD from tasks in the same component decreases. This is then

balanced against an increased delay in capacity from the components’ servers.

As the number of components is increased, and therefore the number of servers,

QG is reduced leading to an increase in PG – QG which increases the maximum

time between a server supplying capacity to its component. We also note that at

two components, UCB-Only, UCB-ECB-All and UCB-ECB-Counted perform the

7.6 Evaluation

167

same; as do the Multiset approaches. This is because the ‘-All’ and ‘-Counted’

variations are equivalent when there is only one other component.

System Size

We investigated the effects of introducing components into a system by varying

the system size from 1 to 10, see Figure 7.10, where each increase introduces a

new component which brings along with it 5 tasks taking up approximately

twice the size of the cache.

Figure 7.10 - Weighted measure for varying the system size from 1 to 10 where an
increase of 1 in the system size relates to introducing another component that brings
along with it another 5 tasks and an increase in the cache utilisation of 2

When there is one component, all approaches except for UCB-Only and UCB-

ECB-Multiset-Open give the same result as No-Component-Pre-emption-Cost.

As expected, as more components are introduced into the system, system

schedulability decreases for all approaches including No-Component-Pre-

emption-Cost. This is because each new component includes additional intra-

7.6 Evaluation

168

component CRPD in addition to the inter-component CRPD that it causes when

introduced. Furthermore, each new component that is introduced into the

system effectively increases the maximum delay before search server supplies

capacity to its components. Under a local FP scheduler, the ECB-Only-All

approach outperforms UCB-ECB-Counted above a system size of 2, UCB-Only

and UCB-ECB-All outperform UCB-ECB-Multiset-Counted above a system size

of 3, highlighting their incomparability. Again we note that the ‘-All’ and ‘-

Counted’ variations are the same when there are only two components in the

system.

Server Period

The server period is a critical parameter when composing a hierarchical system.

The results for varying the server period from 1ms to 20ms, with a fixed range

of task periods from 10 to 1000ms are shown in Figure 7.11. When the

component pre-emption costs are ignored, having a small server period ensures

that short deadline tasks meet their time constraints. However, switching

between components clearly has a cost associated with it making it desirable to

switch as infrequently as possible. As the server period increases, schedulability

increases due to a smaller number of server context switches, and hence inter-

component CRPD, up until approximately 7ms under FP, and 7-8ms under

EDF, for the best performance. At this point although the inter-component

CRPD continues to decrease, short deadline tasks start to miss their deadlines

due to the delay in server capacity being supplied unless server capacities are

greatly inflated, and hence the overall schedulability of the system decreases.

We note that in the case of EDF, the optimum server period is between 7-8ms

for most approaches and 9ms for the UCB-ECB-Counted approach. This

increase in optimum server period over FP is due to the increased calculated

inter-component CRPD under a local EDF scheduler.

7.6 Evaluation

169

Figure 7.11 - Weighted measure for varying the server period from 1ms to 20ms (fixed
task period range of 10ms to 1000ms)

Cache Utilisation

As the cache utilisation increases the likelihood of the other components

evicting UCBs belonging to the tasks in the suspended component increases.

The results for varying the cache utilisation from 0 to 20 are shown in Figure

7.12. In general, all approaches show a decrease in schedulability as the cache

utilisation increases. Up to a cache utilisation of around 2, the UCB-Only and

UCB-ECB-Multiset-Open approaches do not perform as well as the more

sophisticated approaches, as the other components do not evict all cache blocks

when they run. We also observe that up to a cache utilisation of 1 under a local

FP scheduler, the ECB-Only-Counted, and the ECB-Only-All approaches

perform identically as no ECBs are duplicated.

We note that the weighted measure stays relatively constant for No-

Component-Pre-emption-Cost up to a cache utilisation of approximately 2.5.

7.6 Evaluation

170

This is because the average cache utilisation of each component is still less than

1, which leads to relatively small intra-component CRPD between tasks.

Figure 7.12 - Weighted measure for varying the cache utilisation from 0 to 20

Number of Tasks

We also investigated the effect of varying the number of tasks, while keeping

the number of components fixed. As we introduced more tasks, we scaled the

cache utilisation in order to keep a constant ratio of tasks to cache utilisation.

The results for varying the number of tasks from 3 to 48 are shown in Figure

7.13. As expected, increasing the number of tasks leads to a decrease in

schedulability across all approaches that consider inter-component CRPD.

However, under a local EDF scheduler, the No-Component-Pre-emption-Cost

case actually shows an increase peaking at 12 tasks before decreasing due to the

intra-component CRPD. Consider that when there are 3 tasks, there is only one

task per component, so there is effectively no local scheduling. Therefore

schedulability is based solely on the global scheduling algorithm, which is why

7.6 Evaluation

171

the results for No-Component-Pre-emption-Cost are the same for FP and EDF

with 3 tasks. As more tasks are introduced the execution time of individual

tasks is reduced, making it less likely that a task will miss a deadline due to its

components’ server not running. This increases schedulability until the effect of

the intra-component CRPD outweighs it.

Figure 7.13 - Weighted measure for varying the total number of tasks from 3 to 48 (1 to
16 tasks per component)

Task Period Range

We varied the range of task periods from [1, 100]ms to [20, 2000]ms, while

fixing the server period at 5ms. The results are shown in Figure 7.14, as

expected, the results show an increase in schedulability across all approaches as

the task period range is increased.

7.6 Evaluation

172

Figure 7.14 - Weighted measure for varying the period range of tasks from [1, 100]ms to
[20, 2000]ms (while fixing the server period at 5ms)

7.6.4 EDF Analysis Investigation

The results for varying the system size, Figure 7.10, and varying the cache

utilisation, Figure 7.12, suggest that the inter-component CRPD analysis for a

local EDF scheduler has a significant reduction in performance when CRPD

costs are increased. In this section we present the results for varying the BRT,

which impacts the cost of a pre-emption, and for varying the deadlines of tasks.

These results give further insight into this behaviour.

Block Reload Time (BRT)

We investigated the effects of varying the BRT, effectively adjusting the costs of

a pre-emption in Figure 7.15. With a BRT of 0 there is effectively no CRPD, so

all approaches achieve the same weighted measure. Once the BRT increases, the

results show that the performance of the approaches that consider inter-

7.6 Evaluation

173

component CRPD under a local EDF scheduler are significantly reduced. This

indicates that the analysis for a local EDF scheduler is particularly susceptible to

higher pre-emption costs.

Figure 7.15 - Weighted measure for varying the block reload time (BRT) from 0 to 10 in
steps of 1

Deadline Factor

We also varied the task deadlines via Di = xTi by varying x from 0.1 to 1 in steps

of 0.1. The results are shown in Figure 7.16. Under a local FP scheduler, all

approaches showed an increase in the weighted measure as the deadlines are

increased. Under a local EDF scheduler, the No-Component-Pre-emption-Cost

case performs as expected, showing an increase in schedulability as the

deadlines are increased. Additionally, the non UCB-ECB-Multiset approaches

also show an increase in the number of schedulable systems. However, the

UCB-ECB-Multiset approaches show an increase in the number of systems

deemed schedulable, and hence the weighted measure, up to a deadline factor

7.7 Summary

174

of 0.8. After this point it shows a reduction in schedulability. This reduction is

because although tasks deadlines are relaxed, and thus tasks are less likely to

miss them, the number of times that the inter-component CRPD is accounted

for is also increased as)()(tEDE kk
G will increase with longer deadlines.

Figure 7.16 - Weighted measure for varying the task deadlines via Di = xTi by varying
x from 0.1 to 1 in steps of 0.1

7.7 Summary

Hierarchical scheduling provides a means of composing multiple real-time

applications onto a single processor, such that the temporal requirements of

each application are met. The main contribution of this chapter is a number of

approaches for calculating CRPD in hierarchical systems with a global non-pre-

emptive scheduler and a local pre-emptive FP or EDF scheduler. This is

important because hierarchical scheduling has proved popular in industry as a

way of composing applications from multiple vendors as well as re-using

7.7 Summary

175

legacy code. However, unless the cache is partitioned these isolated

applications can interfere with each other, and so inter-component CRPD must

be accounted for.

In this chapter we presented a number of approaches to calculate inter-

component CRPD in a hierarchical system with varying levels of sophistication.

We showed that when taking inter-component CRPD into account, minimising

server periods does not maximise schedulability. Instead, the server period

must be carefully selected to minimise inter-component CRPD while still

ensuring short deadline tasks meet their time constraints.

We found the analysis for determining inter-component CRPD under a local

EDF scheduler deemed a lower number of systems schedulable than the

equivalent analysis for a local FP scheduler. This is due to pessimism in the

analysis for EDF, and the difficulty in tightly bounding the number of server

suspensions that result in inter-component CRPD. Specifically, the analysis

considers the number of server suspensions that result in inter-component

CRPD based on a task’s deadline. In contrast for a local FP scheduler, the

analysis can calculate a bound based on a task’s response time.

While it was not the best approach in all cases we found the UCB-ECB-Multiset-

Open approach, which does not require any information about the other

components in the system, to be highly effective. This is a useful result as the

approach does not require a closed system. Therefore it can be used when no

knowledge of the other components is available and/or cache flushing is used

between the execution of different components to ensure isolation and

composability.

The UCB-ECB-Multiset-All approach dominates the UCB-ECB-Multiset-Open

approach. Therefore, if information about other components is available, it can

be used to calculate tighter bounds in cases where not all cache blocks will be

evicted by the other components. However, this requires a small enough cache

utilisation such that the union of the other components ECBs is less than the

size of the cache.

Finally, we note that the presented analysis is not dependent on the scheduling

policies of the other components, and hence can be applied to a system where

some components are scheduled locally a FP scheduler while others use an EDF

scheduler.

176

177

CHAPTER 8. CONCLUSIONS

Accurate analysis of cache related pre-emption delays (CRPD) is essential for

resource efficient scheduling of complex embedded real-time systems

8.1 Summary of Contributions

This thesis set out with the view that CRPD can be a significant factor affecting

the schedulability of multi-tasking systems with cache. This is not a new idea.

Existing research has recognised this and developed advanced analysis for FP

scheduling and some basic analysis for EDF scheduling. However, the focus has

been mainly been on FP, with the analysis for EDF being overly pessimistic, and

the effects of CRPD have not been previously compared across scheduling

algorithms. Furthermore, up until now it has not been possible to account for

the effects of CRPD when analysing systems that utilise hierarchical scheduling.

In Chapter 4 we presented a number of new methods for analysing CRPD

under EDF scheduling. While there was an existing approach for analysing

CRPD under EDF scheduling, we identified the potential for significant

pessimism in it which we demonstrated during our evaluation. In particular,

we found that the approach was especially vulnerable to high numbers of tasks,

high cache utilisation and high UCB percentages, giving pessimistic results in

these cases. Our new analysis, specifically the Combined Multiset approach,

both dominates and significantly outperformed the existing analysis for EDF.

CRPD is dependent on how tasks are positioned in cache, which is controlled

by their layout in memory. In Chapter 5 we presented a technique for

optimising task layout in memory so as to increase system schedulability via

reduced CRPD. This approach uses simulated annealing (SA) driven by

schedulability analysis which can account for CRPD in order to evaluate task

layouts. By making a series of changes to the layout, the approach can discover

a layout that maximises system schedulability. We built functionality into our

algorithm to add gaps between tasks in memory, but found that this had little

8.1 Summary of Contributions

178

effect on the schedulability of tasksets for all but the most trivial cases. The fact

that adding gaps made little difference is beneficial for a number of reasons.

Firstly, the search space is significantly reduced when just considering the order

of tasks. Secondly, it is easier to setup a linker to layout tasks with no gaps

between them. This is also an important practical point, in that it means that no

additional memory space is required.

In Chapter 6, using the new CRPD analysis for EDF presented in Chapter 4, we

performed a detailed comparison between FP and EDF scheduling accounting

for CRPD. This comparison allowed us to explore the relative impact of CRPD

on these two popular scheduling algorithms across a large range of taskset and

system parameters in order to gain a better understanding for how CRPD

affects system schedulability. We found that when CRPD is considered, the

performance gains offered by EDF over FP, while still significant, are somewhat

diminished. This is most likely due to greater pessimism in the CRPD analysis

for EDF than FP. We also discovered that in configurations that cause relatively

high CRPD, optimising task layout can be just as effective as changing the

scheduling algorithm from FP to EDF.

Hierarchical scheduling provides a means of running multiple applications or

components on a single processor, as found in a partitioned architecture. It is

motivated by the need to run multiple components independently of each other

without allowing them to impact the functional or temporal behaviour of each

other. However, as caches are shared there is the potential for inter-component

CRPD to significantly impact schedulability. In Chapter 7, we presented new

analysis with varying levels of sophistication that bound CRPD in hierarchical

systems. We showed that when taking inter-component CRPD into account,

minimising server periods does not maximise schedulability. Instead, the server

period must be carefully selected to minimise inter-component CRPD while still

ensuring short deadline tasks meet their time constraints. The analysis works

for both local FP and EDF schedulers, although the analysis was somewhat

pessimistic in the case of EDF. However, the analysis is not dependent on the

scheduling policies of the other components, and hence can be used in a system

where components are scheduled using different local schedulers. We also

noted that in most practical systems components’ tasks will occupy an area of

memory equal or larger than the size of the cache. We therefore presented an

approach which does not require any information about the other components

in the system, and found it to be highly effective. This is a useful result as the

approach does not require a closed system. It can therefore be used when no

knowledge of the other components is available and/or cache flushing is used

8.2 Future Work

179

between the execution of different components to ensure isolation and

composability.

8.2 Future Work

The author was recently involved in an investigation led by Altmeyer et al. [8]

comparing a fully partitioned cache, with one task per partition, against a

shared cache without partitions. We found that the gain due to no CRPD did

not compensate for the increase in task WCET due to increased inter-task

interference. It may be that a hybrid approach, of partitioning groups of tasks

with similar periods into their own partition, and then applying layout

optimisation, could increase system schedulability further.

Assigning priorities under FP using Deadline Monotonic is not optimal when

considering CRPD [53]. Furthermore, schedulability tests that account for

CRPD violate some of the conditions that are required for Audsley’s OPA

algorithm [14]. Therefore, optimal priority assignment for FP with CRPD,

without performing an exhaustive search through all possible priority orders

which would be intractable for moderately sized tasksets, remains an open

problem.

This thesis has focused on techniques for calculating CRPD when performing

schedulability analysis on a single core processor. The next major advance

would be to extend the work to multi core processors. This brings with it an

additional factor to consider, cache related migration delays, due to a task being

migrated to a different core and losing its private cache. Some work has been

conducted which focuses on determining a lower bound via measurements [21]

and then utilising those bounds for analysis purposes [128].

180

181

List of Abbreviations

ACET Average Case Execution Time

BCET Best Case Execution Time

BRT Block Reload Time

BU Breakdown Utilisation

CAC Cache Access Classification

CFG Control Flow Graph

CRPD Cache Related Pre-emption Delays

CSC Context Switch Cost

DC-UCB Definitely Cached UCB

ECB Evicting Cache Block

EDF Earliest Deadline First

ETPs Execution Time Profiles

FIFO First In First Out

FP Fixed Priority

GC Call Graph

ILP Integer Linear Programming

IPET Implicit Path Enumeration Technique

LRU Least Recently Used

MRU Most Recently Used

OPA Optimal Priority Assignment

QPA Quick convergence Processor-demand Analysis

SA Simulated Annealing

SeqPO Sequential Priority Order

SRP Stack Resource Policy

List of Abbreviations

182

TDM Time Division Multiplexing

UCB Useful Cache Block

VIVU Virtual Inlining Virtual Unrolling

WC path Worst Case path

WCET Worst Case Execution Time

183

List of Notations

iC Worst case execution time (determined for non-pre-emptive

execution) of task τi

iD Relative deadline of task τi

Dmax The largest relative deadline of any task in the taskset

ECBi Set of ECBs of task τi

ECBG Set of ECBs of all tasks in ГG

G A component in a hierarchical system

IG Maximum execution time of all interrupts in an interval of length

QG

iJ Release jitter of task τi

L Minimum interval in which it can be guaranteed that an

unschedulable taskset will be shown to be unschedulable when

determining the processor demand under EDF

m Memory block

ndescriptio
nrestrictioM A multiset of cache blocks, specific to the description of the

approach, with an optional restriction. E.g. ucb
jiM , is the multiset of

UCBs that could be affected by task τj pre-empting task τi

PG Server period for component G

QG Server capacity for component G

iR Response time of task τi

SG The server for component G

τi Task i from the taskset Г

iT Minimum inter-arrival time or period of task τi

Tmax The largest period of any task in the taskset

U Utilisation of the taskset

iU Utilisation (iii TCU /) of task τi

List of Notations

184

U Utilisation due to CRPD incurred by tasks

GU  Utilisation due to inter-component CRPD incurred by tasks in

component G

UCBi Set of UCBs of task τi

UCBG Set of UCBs of all tasks in ГG

ji , CRPD due to a single pre-emption of task τi by task τj under FP

scheduling

ji ,  CRPD due to all jobs of task τj executing within the response time of

task τi under FP scheduling

jt , CRPD associated with a pre-emption by a single job of task τj on

jobs of other tasks that are both released and have their deadlines in

an interval of length t under EDF scheduling

jt ,  CRPD due to the maximum number Ej(t) of pre-emptions by jobs of

task τj that have their release times and absolute deadlines in an

interval of length t under EDF scheduling

G
i  CRPD incurred by task τi in component G caused by tasks in the

other components running while the server (SG) for component G is

suspended with a local FP scheduler

G
t  CRPD incurred by tasks in component G due to tasks in the other

components running while the server (SG) for component G is

suspended with a local EDF scheduler

Г Taskset made up of a fixed number of tasks (τ1..τn) where n is a

positive integer

ГG Set of tasks in component G from the taskset Г

Ψ Set of components in a hierarchical system

aff(i,j) The set of tasks that may be pre-empted by task τj and have at least

the priority of task τi. aff(i,j) = hep(i) ∩ lp(j) under FP scheduling

aff(t,j) The set of tasks that can be pre-empted by jobs of task τj in an

interval of length t under EDF scheduling

List of Notations

185

aff(G,t) Set of tasks in component G whose relative deadlines are less than

or equal to t with a local EDF scheduler

Ek(Ri) Maximum number of jobs of task τk that can execute during the

response time of task τi

Ej(t) The maximum number of jobs of task τj that can have both their

release times and their deadlines in an interval of length t

 tEG The maximum number of times server SG can be both suspended

and resumed within an internal of length t

h(t) Processor demand bound function used to determine demand on

the processor within an interval of length t under EDF scheduling

hp(i) Set of tasks that may have a higher priority, and can pre-empt task

τi,

hp(G, i) Sets of tasks in component G with higher priorities than task τi with

a local FP scheduler

hep(i) Sets of tasks with higher or equal priorities to task τi under FP

scheduling

hep(G, i) Sets of tasks in component G with higher or equal priorities to task

τi with a local FP scheduler

)(cisbf G Inverse supply bound function for component G. Used to determine

the maximum amount of time needed by a specific server to supply

some capacity c

lp(i) Sets of tasks with lower priorities than task τi under FP scheduling

lep(i) Sets of tasks with lower or equal priorities to task τi under FP

scheduling

Pj(Di) The maximum number of times that jobs of task τj can pre-empt a

single job of task τi under EDF scheduling








 tSX GZ , The number of executions of server SZ while server SG is suspended

that results in tasks from component Z evicting cache blocks that

tasks in component G might have loaded and need to reload

186

187

References

[1] AbsInt. aiT Worst-Case Execution Time Analyzers. http://
www.absint.com/aiT_WCET.pdf (Last accessed September 2014)

[2] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm, "Cache Behavior
Prediction by Abstract Interpretation," in Proceedings of the 3rd International
Symposium on Static Analysis, 1996, pp. 52-66.

[3] S. Altmeyer and C. Burguiere, "A New Notion of Useful Cache Block to
Improve the Bounds of Cache-Related Preemption Delay," in Proceedings of
the 21st Euromicro Conference on Real-Time Systems (ECRTS), Dublin,
Ireland, 2009, pp. 109-118.

[4] S. Altmeyer and C. Burguière, "Cache-related Preemption Delay via
Useful Cache Blocks: Survey and Redefinition," Journal of Systems
Architecture, vol. 57, no. 7, pp. 707-719, August 2011.

[5] S. Altmeyer and R. I. Davis, "On the Correctness, Optimality and Precision
of Static Probabilistic Timing Analysis," in Proceedings Design Automation
and Test Europe (DATE), Dresden, Germany, 2014.

[6] S. Altmeyer, R.I. Davis, and C. Maiza, "Cache Related Pre-emption Delay
Aware Response Time Analysis for Fixed Priority Pre-emptive Systems,"
in Proceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS),
Vienna, Austria, 2011, pp. 261-271.

[7] S. Altmeyer, R.I. Davis, and C. Maiza, "Improved Cache Related Pre-
emption Delay Aware Response Time Analysis for Fixed Priority Pre-
emptive Systems," Real-Time Systems, vol. 48, no. 5, pp. 499-512, September
2012.

[8] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis, "Evaluation of Cache
Partitioning for Hard Real-Time Systems," in Proceedings 26th Euromicro
Conference on Real-Time Systems (ECRTS), Madrid, Spain, 2014, pp. 15-26.

[9] S. Altmeyer, C. Maiza, and J. Reineke, "Resilience Analysis: Tightening the
CRPD Bound for Set-Associative Caches," in Proceedings of the ACM
SIGPLAN/SIGBED 2010 conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), Stockholm, Sweden, 2010, pp. 153-162.

[10] ARINC, "ARINC 651: Design Guidance for Integrated Modular Avionics,"
Airlines Electronic Engineering Committee (AEEC), 1991.

[11] ARINC, "ARINC 653: Avionics Application Software Standard Interface
(Draft 15)," Airlines Electronic Engineering Committee (AEEC), 1996.

[12] ARM. CoreSight Trace Macrocells. http://www.arm.com/products/
system-ip/debug-trace/trace-macrocells-etm/index.php (Last accessed
September 2014)

[13] M. Åsberg, M. Behnam, and T. Nolte, "An Experimental Evaluation of
Synchronization Protocal Mechanisms in the Domain of Hierarchical
Fixed-Priority Scheduling," in Proceedings of the 21st International Conference

References

188

on Real-Time and Network Systems (RTNS), Sophia Antipolis, France, 2013.

[14] N. C. Audsley, "On Priority Asignment in Fixed Priority Scheduling,"
Information Processing Letters, vol. 79, no. 1, pp. 39-44, May 2001.

[15] N. C. Audsley, A. Burns, M. Richardson, and A.J Wellings, "Applying new
Scheduling Theory to Static Priority Preemptive Scheduling," Software
Engineering Journal, vol. 8, no. 5, pp. 284-292, 1993.

[16] T. P. Baker, "Stack-Based Scheduling for Realtime Processes," Real-Time
Systems, vol. 3, no. 1, pp. 67-99, 1991.

[17] S. Baruah, "The Limited-Preemption Uniprocessor Scheduling of Sporadic
Task Systems," in Proceedings of the 16th Euromicro Conference on Real-Time
Systems (ECRTS), Palma de Mallorca, Balearic Islands, Spain, 2005, pp.
137-144.

[18] S. Baruah and A. Burns, "Sustainable Scheduling Analysis," in Proceedings
of the 27th IEEE Real-Time Systems Symposium (RTSS), 2006, pp. 159-168.

[19] S. K. Baruah, A. K. Mok, and L. E. Rosier, "Preemptive Scheduling Hard-
Real-Time Sporadic Tasks on One Processor," in Proceedings of the 11th
IEEE Real-Time Systems Symposium (RTSS), Lake Buena Vista, Florida,
USA, 1990, pp. 182-190.

[20] S. K. Baruah, L. E. Rosier, and R. R. Howell, "Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic Real-Time Tasks on
One Processor," Real-Time Systems, vol. 2, no. 4, pp. 301-324, 1990.

[21] A. Bastoni, B. Brandenburg, and J. Anderson, "Cache-Related Preemption
and Migration Delays: Empirical Approximation and Impact on
Schedulability," in Proceedings of Operating Systems Platforms for Embedded
Real-Time applications (OSPERT), Brussels, Belgum, 2010, pp. 33-44.

[22] A. Bastoni, B. Brandenburg, and J. Anderson, "Is Semi-Partitioned
Scheduling Practical?," in Proceedings of the 23rd Euromicro Conference on
Real-Time Systems (ECRTS), Porto, Portugal, 2011, pp. 125-135. [Online].
Extended version: http://www.cs.unc.edu/~anderson/papers/ecrts11-
long.pdf

[23] M. Behnam, I. Shin, T. Nolte, and M. Nolin, "SIRAP: A Synchronization
Protocol for Hierarchical Resource Sharing Real-Time Open Systems," in
Proceedings of the 7th ACM & IEEE International Conference on Embedded
Software (EMSOFT), 2007, pp. 279-288.

[24] C. Berg, "PLRU Cache Domino Effects," in Proceedings of the 6th
International Workshop on Worst-Case Execution Time Analysis, in conjunction
with the 18th Euromicro Conference on Real-Time Systems (ECRTS), Dresden,
Germany, 2006.

[25] G. Bernat, A. Colin, and S. Patters, "pWCET: a Tool for Probabilistic
Worst-Case Execution Time Analysis of Real-Time Systems," University of
York, York, UK, Technical Report YCS-2003-353, 2003.

References

189

[26] G. Bernat, A. Colin, and S. Petters, "WCET Analysis of Probabilistic Hard
Real-Time Systems," in Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS), 2002, pp. 279-288.

[27] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and M.
Caccamo, "Preemption Points Placement for Sporadic Task Sets," in
Proceedings of the 22nd Euromicro Conference on Real-Time Systems (ECRTS),
Bruxelles, Belgium, 2010, pp. 251-260.

[28] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo,
"Optimal Selection of Preemption Points to Minimize Preemption
Overhead," in Proceedings of 23rd Euromicro Conference on Real-Time Systems
(ECRTS), Porto, Portugal, 2011, pp. 217-227.

[29] A. Betts and G. Bernat, "Issues using the Nexus Interface for
Measurement-Based WCET Analysis," in Proceedings of the 5th International
Workshop on Worst-Case Execution Time Analysis, Palma de Mallorca,
Balearic Islands, Spain, 2007.

[30] A. Betts and G. Bernat, "Tree-Based WCET Analysis on Instrumentation
Point Graphs," in Proceedings of the 9th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing, Gyeongju,
Korea, 2006, pp. 558-565.

[31] A. Betts, G. Bernat, R. Kirner, P. Puschner, and I. Wenzel, "WCET
Coverage for Pipelines," University of York, York, Technical Report for the
ARTIST2 Network of Excellence 2006.

[32] E. Bini and G. Buttazzo, "Measuring the Performance of Schedulability
Tests ," Real-Time Systems, vol. 30, no. 1, pp. 129-154, 2005.

[33] P. Bo, N. Fisher, and M. Bertogna, "Explicit Preemption Placement for
Real-Time Conditional Code," in Proceedings of the 26th Euromicro
Conference on Real-Time Systems (ECRTS), Madrid, Spain, 2014.

[34] B. B. Brandenburg, H. Leontyev, and J. H. Anderson, "Accounting for
Interrupts in Multiprocessor Real-Time Systems," in Proceedings of the 15th
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), Beijing, 2009, pp. 273 - 283.

[35] C. Burguière, J. Reineke, and S. Altmeyer, "Cache-Related Preemption
Delay Computation for Set-Associative Caches - Pitfalls and Solutions," in
Proceeding of the 9th International Workshop on Worst-Case Execution Time
Analysis (WCET), Dublin, Ireland, 2009.

[36] A. Burns, "Premptive Priority-Based Scheduling: An Appropriate
Engineering Approach," in Advances in Real-Time Systems.: Prentice Hall,
1994, pp. 225-248.

[37] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings,
"Adding Instruction Cache Effect to Schedulability Analysis of Preemptive
Real-Time Systems," in Proceedings of the 2nd IEEE Real-Time Technology and
Applications Symposium (RTAS), 1996, pp. 204-212.

References

190

[38] G. C. Buttazzo, "Rate Monotonic vs. EDF: Judgment Day," Real-Time
Systems, vol. 29, no. 1, pp. 5-26, January 2005.

[39] G. C. Buttazzo, M. Bertogna, and G. Yao, "Limited Preemptive Scheduling
for Real-Time Systems: A Survey," IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 3-15, March 2013.

[40] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper, "Applying Static
WCET Analysis to Automotive Communication Software," in Proceedings
of the 17th Euromicro Conference on Real-Time Systems (ECRTS), Palma de
Mallorca, Balearic Islands, Spain, 2005, pp. 249-258.

[41] A. M. Campoy, A. P. Ivars, and J. V. Busquets-Mataix, "Static Use of
Locking Caches in Multitask Preemptive Real-Time Systems," in
Proceedings of the IEEE/IEE Real-Time Embedded Systems Workshop, 2001.

[42] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E.
Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo,
and D. Maxim, "PROARTIS: Probabilistically Analysable Real-Time
Systems," ACM Transactions on Embedded Computing Systems - Special
section on Probabilistic Embedded Computing, 2013.

[43] Certification Authorities Software Team (CAST), "CAST-20 Addressing
Cache in Airborne Systems and Equiptment," Position Paper 2003.

[44] A. Colin and S. M. Petters, "Experimental Evaluation of Code Properties
for WCET Analysis," in Proceedings of the 24th IEEE Real-Time Systems
Symposium (RTSS), Cancun, Mexico, 2003, pp. 190-199.

[45] P. Cousot and R. Cousot, "Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints," in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, 1977, pp. 238-252.

[46] R. I. Davis, "A Review of Fixed Priority and EDF Scheduling for Hard
Real-Time Uniprocessor Systems," ACM SIGBED Review - Special Issue on
the 3rd Embedded Operating Systems Workshop (Ewili 2013), vol. 11, no. 1, pp.
8-19, 2014.

[47] R. I. Davis and M. Bertogna, "Optimal Fixed Priority Scheduling with
Deferred Pre-emption," in Proceedings 33rd IEEE Real-Time Systems
Symposium (RTSS, San Jan, Puerto Rico, 2012, pp. 39-50.

[48] R. I. Davis and M. Bertogna, "Optimal Fixed Priority Scheduling with
Deferred Pre-emption," in Proceedings of the 33rd IEEE Real-Time Systems
Symposium (RTSS'12), San Juan, Puerto Rico, 2012, pp. 39 - 50.

[49] R. I. Davis and A. Burns, "An Investigation into Server Parameter
Selection for Hierarchical Fixed Priority Pre-emptive Systems," in
Proceedings 16th International Conference on Real-Time and Network Systems
(RTNS), Renne, France, 2008, pp. 19-28.

[50] R. I. Davis and A. Burns, "Hierarchical Fixed Priority Pre-emptive
Scheduling," in Proceedings of the 26th IEEE Real-Time Systems Symposium

References

191

(RTSS), 2005.

[51] R. I. Davis and A. Burns, "Resource Sharing in Hierarchical Fixed Priority
Pre-Emptive Systems," in Proceedings of the 27th IEEE Real-Time Systems
Symposium (RTSS), Rio de Janeiro, Brazil, 2006, pp. 257-270.

[52] R. I. Davis and A. Burns, "Robust Priority Assignment for Fixed Priority
Real-Time Systems," in Proceedings 28th IEEE Real-Time Systems Symposium
(RTSS), Tucson, Arizona, USA, 2009, pp. 3-14.

[53] R. I. Davis, L. Cucu-Grosjean, and A. Burns, "Getting One's Priorities
Right: A Review of Priority Assignment in Fixed Priority Real-Time
Systems," Real-Time Systems (Under Submission).

[54] R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean,
"Analysis of Probabilistic Cache Related Pre-emption Delays," in
Proceedings 25th Euromicro Conference on Real-Time Systems (ECRTS), Paris,
France, 2013, pp. 168-179.

[55] R. I. Davis, A. Zabos, and A. Burns, "Efficient Exact Schedulability Tests
for Fixed Priority Real-Time Systems," IEEE Transactions on Computers, vol.
57, no. 9, pp. 1261-1276, September 2008.

[56] Z. Deng and J. W. S. Liu, "Scheduling Real-Time Applications in Open
Environment," in Proceedings of the IEEE Real-Time Systems Symposium
(RTSS), San Francisco, USA, 1997.

[57] M. L. Dertouzos, "Control Robotics: The Procedural Control of Physical
Processes," in Proceedings of the International Federation for Information
Processing (IFIP) Congress, 1974, pp. 807-813.

[58] R. Ernst and W. Ye, "Embedded Program Timing Analysis Based on Path
Clustering and Architecture Classification," in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, San Jose, California,
USA, 1997, pp. 598-604.

[59] H. Falk and H. Kotthaus, "WCET-driven Cache-aware Code Positioning,"
in Proceedings of the International Conference on Compilers, Architectures and
Synthesis for Embedded Systems (CASES), Taipei, Taiwan, 2011, pp. 145-154.

[60] X. Feng and A. K. Mok, "A Model of Hierarchical Real-Time Virtual
Resources," in Proceedings of the 23rd IEEE Real-Time Systems Symposium
(RTSS), Austin, TX, USA, 2002, pp. 26-35.

[61] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
Theiling. H., S. Thesing, and R. Wilhelm, "Reliable and Precise WCET
Determination for a Real-Life Processor," Lecture Notes in Computer Science,
vol. 2211, pp. 469-485, 2001.

[62] C. Ferdinand and R. Wilhelm, "Efficient and Precise Cache Behavior
Prediction for Real-Time Systems," Real-Time Systems, vol. 17, no. 2, pp.
131-181, November 1999.

[63] C. Ferdinand and R. Wilhelm, "On Predicting Data Cache Behavior for

References

192

Real-Time Systems," in Proceedings of the ACM SIGPLAN Workshop on
Languages Compilers, and Tools for Embedded Systems (LCETS), Montreal,
Canada, 1998, pp. 16-30.

[64] N. Fisher and F. Dewan, "A Bandwidth Allocation Scheme for
Compositional Real-time Systems with Periodic Resources," Real-Time
Systems, vol. 48, no. 3, pp. 223-263, 2012.

[65] G. Fohler, "Joint Scheduling of Distributed Complex Periodic and Hard
Aperiodic Tasks in Statically Scheduled Systems," in Proceedings of the 16th
IEEE Real-Time Systems Symposium (RTSS), Pisa, Itally, 1995, pp. 152-161.

[66] G. Gebhard and S. Altmeyer, "Optimal Task Placement to Improve Cache
Performance," in Proceedings of the 7th ACM & IEEE International Conference
on Embedded Software (EMSOFT), Salzburg, Austria, 2007, pp. 259-268.

[67] L. George, N. Rivierre, and M. Spuri, "Preemptive and Non-Preemptive
Real-Time Uniprocessor Scheduling," INRIA, Technical Report 2966, 1996.

[68] J. Gustafsson, A. Betts, A. Ermedah, and B. Lisper, "The Mälardalen WCET
benchmarks – past, present and future," in Proceedings of the 10th
International Workshop on Worst-Case Execution Time Analysis (WCET’2010),
Brussels, Belgium, September 2010, pp. 137-147.

[69] D. Hardy and I. Puaut, "WCET Analysis of Instruction Cache Hierarchies,"
Journal of Systems Architecture, vol. 57, no. 7, pp. 677-694, August 2011.

[70] M. Joseph and P. Pandya, "Finding Response Times in a Real-Time
System," BCS Computer Journal, vol. 29, no. 5, pp. 390-395, 1986.

[71] L. Ju, S. Chakraborty, and A. Roychoudhury, "Accounting for Cache-
Related Preemption Delay in Dynamic Priority Schedulability Analysis,"
in Design, Automation and Test in Europe Conference and Exposition (DATE),
Nice, France, 2007, pp. 1623-1628.

[72] S. Kim, S. Min, and R. Ha, "Efficient Worst Case Timing Analysis of Data
Caching," in Proceedings of the 2nd IEEE Real-Time Technology and
Application Symposium (RTAS), Boston, MA, USA, 1996, pp. 230-240.

[73] D. B. Kirk and J. K. Strosnider, "SMART (Strategic Memory Allocation for
Real-Time) Cache Design," in Proceedings 11th Real-Time Systems
Symposium (RTSS), Lake Buena Vista, FL , USA, 1990, pp. 322-330.

[74] R. Kirner and P. Puschner, "Transformation of Path Information for WCET
Analysis During Compilation," in Proceedings of the 13th Euromicro
Conference of Real-Time Systems (ECRTS), 2001, pp. 29-36.

[75] R. Kirner, I. Wenzel, B. Rieder, and P. Puschner, "Using Measurements as
a Complement to Static Worst-Case Execution Time Analysis," Intelligent
Systems at the Service of Mankind, vol. 2, December 2005.

[76] T-W. Kuo and C-H. Li, "A Fixed Priority Driven Open Environment for
Real-Time Applications," in Proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS), Madrid, Spain, 1998.

References

193

[77] C. Lee, J. Hahn, Y. Seo, S. Min, H. Ha, S. Hong, C. Park, M. Lee, and C.
Kim, "Analysis of Cache-related Preemption Delay in Fixed-priority
Preemptive Scheduling," IEEE Transactions on Computers, vol. 47, no. 6, pp.
700-713, June 1998.

[78] J. Lehoczky, "The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior," in Proceedings of the 10th
Real Time Systems Symposium (RTSS), Santa Monica, California, USA, 1989,
pp. 166-171.

[79] J. Y.-T. Leung and M. L. Merrill, "A Note on Preemptive Scheduling of
Periodic, Real-Time Tasks," Information Processing Letters, vol. 11, no. 3, pp.
115-118, 1980.

[80] J. Y.-T. Leung and J. Whitehead, "On the Complexity of Fixed-Priority
Scheduling of Periodic Real-Time Tasks," Performance Evaluation, vol. 2, no.
2, pp. 237-250, 1982.

[81] Y-T. S. Li and S. Malik, "Performance Analysis of Embedded Software
Using Implicit Path Enumeration," in Proceedings of the 32nd Annual
ACM/IEEE Design Automation Conference , San Francisco, USA, 1995, pp.
456-461.

[82] G. Lipari and S. K. Baruah, "Efficient Scheduling of Real-time Multi-task
Applications in Dynamic Systems," in Proceddings Real-Time Technology and
Applications Symposium (RTAS), 2000, pp. 166-175.

[83] G. Lipari and E. Bini, "A Methodology for Designing Hierarchical
Scheduling Systems," Journal of Embedded Computing, vol. 1, no. 2, pp. 257-
269, December 2005.

[84] G. Lipari, J. Carpenter, and S. Baruah, "A Framework for Achieving Inter-
application Isolation in Multiprogrammed, Hard Real-time
Environments," in Proceedings of the 21st IEEE Real-Time Systems Symposium
(RTSS), Orlando, FL, USA, 2000, pp. 217-226.

[85] C. L. Liu and J. W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment," Journal of the
ACM, vol. 20, no. 1, pp. 46-61, January 1973.

[86] P. Lokuciejewski, H. Falk, and P. Marwedel, "WCET-driven Cache-based
Procedure Positioning Optimizations," in Proceedings of the 20th Euromicro
Conference on Real-Time Systems (ECRTS), Prague, Czech Republic, 2008,
pp. 321-330.

[87] P. Lokuciejewski, H. Falk, P. Marwedel, and H. Theiling, "WCET-Driven,
Code-Size Critical Procedure Cloning," in Proceedings of the 11th
International Workshop on Software & Compilers for Embedded Systems
(SCOPES), Munich, Germany, 2008, pp. 21-30.

[88] T. Lundqvist and P. Stenstrom, "Timing Anomalies in Dynamically
Scheduled Microprocessors," in Proceedings of the 20th IEEE Real-Time
Systems Symposium (RTSS), Phoenix, AZ , USA, 1999, pp. 12-21.

References

194

[89] F. Mueller, "Compiler Support for Software-based Cache," SIGPLAN Not.,
vol. 30, no. 11, pp. 125-133, 1995.

[90] F. Mueller, "Static Cache Simulation and its Applications," PhD Thesis
1994.

[91] F. Mueller, "Timing Analysis for Instrction Caches," Real-Time Systems, vol.
18, no. 2-3, pp. 217-247, May 2000.

[92] F. Mueller and J. Wegener, "A Comparison of Static Analysis and
Evolutionary Testing for the Verification of Timing Constraints," in
Proceedings of the 4th Real-Time Technology and Application Symposium
(RTAS), Denver, Colorado, USA, 1998, pp. 144-154.

[93] Nexus. Nexus 5001 Forum. http://www.nexus5001.org (Last accessed
September 2014)

[94] C. Y. Park, "Predicting Program Execution Times by Analyzing Static and
Dynamic Program Paths," Real-Time Systems, vol. 5, no. 1, pp. 31-62, 1993.

[95] C. Y. Park and A. C. Shaw, "Experiments with a Program Timing Tool
Based on Source-Level Timing Schema," Computer, vol. 24, no. 5, pp. 48-57,
May 1991.

[96] S. M. Petters, "Bounding the Execution Time of Real-Time Tasks on
Modern Processors," in Proceedings of the 7th International Conference on
Real-Time Computing Systems and Applications (RTCSA), Cheju Island,
South Korea, 2000, pp. 498-502.

[97] K. Pettis and R. Hansen, "Profile Guided Code Positioning," in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, 1990, pp. 16-27.

[98] S. Plazar, P. Lokuciejewski, and P. Marwedel, "WCET-aware Software
Based Cache Partitioning for Multi-Task Real-Time Systems," in
Proceedings of the 9th Intl. Workshop on Worst-Case Execution Time Analysis
(WCET), Dublin, Ireland, 2009.

[99] P. Puschner and A. Burns, "Guest Editorial: A Review of Worst-Case
Execution-Time Analysis," Real-Time Systems, vol. 18, no. 2, pp. 115-128,
May 2000.

[100] P. Puschner and C. Koza, "Calculating the Maximum Execution Time of
Real-Time Programs," The Journal of Real-Time Systems, vol. 1, no. 2, pp.
159-176, 1989.

[101] P. P. Puschner and A. V. Schedl, "Computing Maximum Task Execution
Times — A Graph-Based Approach," Real-Time Systems, vol. 13, no. 1, pp.
67-91, 1997.

[102] E. Quinones, E. D. Berger, G. Bernat, and F. J. Cazorla, "Using
Randomized Caches in Probabilistic Real-Time Systems," in Proceedings of
the 21st Euromicro Conference on Real-Time Systems (ECRTS), 2009, pp. 129-
138.

References

195

[103] Rapita Systems Ltd. RapiTime. http://www.rapitasystems.com/
products/RapiTime (Last accessed September 2014)

[104] J. Reineke, "Caches in WCET Analysis," Universität des Saarlandes,
Saarbrücken, PhD Thesis 2008.

[105] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, "Timing Predictability for
Cache Replacement Polcies," Real-Time Systems, vol. 37, no. 2, pp. 99-122,
November 2007.

[106] K. Richter, "Compositional Scheduling Analysis Using Standard Event
Models," Technical University Carolo-Wilhelmina of Braunschweig, PhD
Dissertation 2005.

[107] I. Ripoll, A. Crespo, and A. K. Mok, "Improvement in Feasibility Testing
for Real-Time Tasks," Real-Time Systems, vol. 11, no. 1, pp. 19-39, 1996.

[108] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein, "Analysis of
Hierarchical Fixed Priority Scheduling," in Proceedings of the 14th Euromicro
Conference on Real-Time Systems (ECRTS), Vienna, Austria, 2002, pp. 173-
181.

[109] J. Schneider, "Cache and Pipeline Sensitive Fixed Priority Scheduling for
Preemptive Real-time Systems," in Proceddings of the 21st IEEE Real-Time
Systems Symposium (RTSS), Orlando, USA, 2000, pp. 195-204.

[110] F. Sebek, "Measuring Cache Related Pre-emption Delay on a
Multiprocessor Real-Time System," Dept. of Computer Engineering,
Mälardalen University, Västerås, Sweden, 2001.

[111] I. Shin and I. Lee, "Periodic Resource Model for Compositional Real-Time
Guarantees," in Proceedings of the 24th IEEE Real-Time Systems Symposium
(RTSS), Cancun, Mexico, 2003, pp. 2-13.

[112] M. Spuri, "Analysis of Deadline Schedule Real-Time Systems," INRIA,
Technical Report 2772, 1996.

[113] J. Staschulat, S. Schliecker, and R. Ernst, "Scheduling Analysis of Real-
Time Systems with Precise Modeling of Cache Related Preemption Delay,"
in In Proceedings 17th Euromicro Conference on Real-Time Systems (ECRTS),
Balearic Islands, Spain, 2005, pp. 41-48.

[114] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, "WCET Centric
Data Allocation to Scratchpad Memory," in Proceedings of the 26th IEEE
International Real-Time Systems Symposium (RTSS), Miami, Florida, USA,
2005, pp. 223-232.

[115] Y. Tan and V. Mooney, "Timing Analysis for Preemptive Multitasking
Real-Time Systems with Caches," ACM Transactions on Embedded
Computing Systems (TECS), vol. 6, no. 1, February 2007.

[116] H. Theiling, C. Ferdinand, and R. Wilhelm, "Fast and Precise WCET
Prediction by Separated Cache and Path Analyses," Real-Time Systems, vol.
18, no. 2, pp. 157-179, 2000.

References

196

[117] L. Thiele and R. Wilhelm, "Design for Timing Predictability," Real-Time
Systems, vol. 28, no. 2, pp. 157-177, November 2004.

[118] Y. Wang and M. Saksena, "Scheduling Fixed-Priority Tasks with
Preemption," in Proceedings of the 6th IEEE International Conference on Real-
Time Computing Systems and Applications (RTCSA), Hong Kong, China,
1999, pp. 328-335.

[119] C. B. Watkins and R. Walter, "Transitioning from Federated Avionics
Architectures to Integrated Modular Avionics," in Proceedings of the 26th
IEE/AIAA Digital Avionics Systems Conference (DASC), 2007.

[120] L. Wehmeyer and P. Marwedel, "Influence of Onchip Scratchpad
Memories on WCET Prediction," in Proceedings of the 4th International
Workshop on Worst-Case Execution Time (WCET) Analysis, 2004.

[121] J. Whitham and N. Audsley, "Investigating Average versus Worst-Case
Timing Behavior of Data Caches and Data Scratchpads," in Proceedings of
the 22nd Euromicro Conference on Real-Time Systems (ECRTS), Brussels,
Belgium, 2010, pp. 165-174.

[122] J. Whitham and N. Audsley, "Studying the Applicability of the Scratchpad
Memory Management Unit," in Proceedings of the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), Stockholm,
Sweden, 2010, pp. 205-214.

[123] J. Whitham and N. Audsley, "The Scratchpad Memory Management Unit
for Microblaze: Implementation, Testing, and Case Study," University of
York, York, UK, Technical Report YCS-2009-439, 2009.

[124] J. Whitham, N. C. Audsley, and R. I. Davis, "Explicit Reservation of Cache
Memory in a Predictable, Preemptive Multitasking Real-time System,"
ACM Transactions on Embedded Computing Systems (TECS), vol. 13, no. 4,
2014.

[125] J. Whitham, R. I. Davis, N. C. Audsley, S. Altmeyer, and C. Maiza,
"Investigation of Scratchpad Memory for Preemptive Multitasking," in
Poceedings 33rd IEEE Real-Time Systems Symposium (RTSS), San Juan,
Puerto Rico, 2012, pp. 3-13.

[126] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P.
Puschner, J. Staschulat, and P. Stenström, "The Worst-Case Execution
Time Problem - Overview of Methods and Survey of Tools," ACM
Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3, April
2008.

[127] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C.
Ferdinand, "Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-Critical Embedded Systems," IEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 7, pp.
966-978, July 2009.

References

197

[128] M. Xu, L. T.X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and C. Gill, "Cache-
Aware Compositional Analysis of Real-Time Multicore Virtualization
Platforms," in Proceedings of the 34th IEEE Real-Time Systems Symposium
(RTSS), Vancouver, Canada, 2013.

[129] F. Zhang and A. Burns, "Schedulability Analysis for Real-Time Systems
with EDF Scheduling," IEEE Transactions on Computers, vol. 58, no. 9, pp.
1250-1258, September 2009.

[130] W. Zhao, D. Whalley, C. Healy, and F. Mueller, "Improving WCET by
Applying a WC Code Positioning Optimization," ACM Transcations on
Architecture and Code Optimization (TACO), vol. 2, no. 4, pp. 335-365,
December 2005.

[131] W. Zhao, D. Whalley, C. Healy, and F. Mueller, "WCET Code Positioning,"
in Proceedings of the 25th IEEE International Real-Time Systems Symposium
(RTSS), Lisbon, Portugal, 2004, pp. 81-91.

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	Chapter 1. Introduction
	Timing Analysis
	Schedulability Analysis
	Cache Related Pre-emption Delays
	1.1 Contribution
	CRPD Analysis for EDF
	Task Layout Optimisation
	Detailed Comparison between FP and EDF
	CRPD Analysis for Hierarchical scheduling

	1.2 Structure

	Chapter 2. Background
	2.1 Real-Time Scheduling
	Schedulability Tests
	2.1.1 System Model
	2.1.2 Schedulability Analysis
	FP Scheduling
	EDF Scheduling

	2.2 Real-Time Systems and Cache
	2.2.1 Cache Structure
	2.2.2 Replacement Policies
	Least-Recently-Used (LRU)
	First-In First-Out (FIFO or Round-Robin)
	Most Recently Used (MRU)
	Pseudo-LRU (PLRU)
	Random/Pseudo-Random

	2.3 Timing Analysis
	2.3.1 Static Analysis
	Initial Work
	WCET Analysis Processes
	Architecture Modelling
	Value Analysis
	Path Analysis

	Limitations

	2.3.2 Static Analysis for Systems with Cache
	Set-Associative Caches
	Cache State Merging

	Integration with WCET Analysis
	Data and Unified Caches
	Multi-level Caches

	2.3.3 Measurement-based Analysis
	2.3.4 Hybrid Measurement-based Analysis
	2.3.5 Measurement-based Analysis for Systems with Cache

	2.4 Summary

	Chapter 3. Cache Related Pre-emption Delays
	3.1 Cache Related Pre-emption Delays
	3.1.1 Block Reload Time
	3.1.2 UCBs and ECBs
	Set-Associative Caches
	Definitely-Cached UCBs

	3.2 CRPD Analysis for FP Scheduling
	ECB-Only
	UCB-Only
	UCB-Union
	ECB-Union
	3.2.1 Multiset Approaches
	Staschulat
	UCB-Union Multiset
	ECB-Union Multiset
	Combined Multiset

	3.3 CRPD Analysis for EDF Scheduling
	JCR Approach

	3.4 Limiting Pre-emptions
	3.5 Improving Cache Predictability
	Cache Partitioning
	Cache Locking
	Static Code Positioning
	Scratchpads
	3.5.1 Static Code Positioning

	3.6 Summary

	Chapter 4. CRPD Anlaysis for EDF Scheduling
	4.1 Integrating CRPD Analysis into EDF Scheduling
	ECB-Only
	UCB-Only
	UCB-Union
	ECB-Union
	4.1.1 Effect on Task Utilisation and h(t) Calculation

	4.2 Improved CRPD Analysis for EDF
	ECB-Union Multiset Approach
	UCB-Union Multiset Approach
	Combined Multiset Approach
	4.2.1 Effect on Task Utilisation and h(t) Calculation

	4.3 Comparability and Dominance
	4.4 Case Study
	4.5 Evaluation
	4.5.1 Baseline Evaluation
	4.5.2 Weighted Schedulability
	4.5.3 Implicit Deadline Tasksets
	Cache Utilisation
	Maximum UCB Percentage
	Number of Tasks
	Cache Size
	Block Reload Time (BRT)

	4.5.4 Constrained Deadline Tasksets

	4.6 Summary

	Chapter 5. Task Layout Optimisation
	5.1 Introduction
	Example Layouts

	5.2 Optimising Task Layout
	Layout changes
	Swap near
	Swap far
	Random gap

	Layout Evaluation
	5.2.1 Memory Limitations

	5.3 Case Study
	5.3.1 Discussion

	5.4 Evaluation
	5.4.1 Baseline Evaluation
	UCB Distribution

	5.4.2 Detailed Evaluation
	Maximum UCB Groups
	Maximum UCB Percentage
	Cache Utilisation
	Cache Sets
	Number of Tasks
	Discussion

	5.4.3 Brute Force Comparison

	5.5 Summary

	Chapter 6. Comparison Between FP and EDF
	6.1 Case Studies
	6.1.1 Single Taskset Case Study
	6.1.2 Multiple Taskset Case Studies
	PapaBench Benchmark
	Mälardalen and SCADE Benchmarks
	Mixed Benchmark

	6.2 Evaluation
	6.2.1 Baseline Evaluation
	6.2.2 Detailed Evaluation
	Cache Utilisation
	Maximum UCB Percentage
	Number of Tasks
	Block Reload Time
	Period Range

	6.3 Summary

	Chapter 7. CRPD Analysis for Hierarchical Scheduling
	Related Work on Hierarchical Scheduling
	7.1 System Model Extension
	7.2 Hierarchical Schedulability Analysis
	Supply Bound Function

	7.3 CRPD Analysis for Hierarchical Systems: Local FP Scheduler
	ECB-Only
	ECB-Only-All
	ECB-Only-Counted

	UCB-Only
	UCB-ECB
	UCB-ECB-All
	UCB-ECB-Counted

	UCB-ECB-Multiset
	UCB-ECB-Multiset-All
	UCB-ECB-Multiset-Counted
	UCB-ECB-Multiset-Open

	7.3.1 Comparison of Approaches

	7.4 CRPD Analysis for Hierarchical Systems: Local EDF Scheduler
	ECB-Only
	ECB-Only-All
	ECB-Only-Counted

	UCB-Only
	UCB-ECB
	UCB-ECB-All
	UCB-ECB-Counted

	UCB-ECB-Multiset
	UCB-ECB-Multiset-All
	UCB-ECB-Multiset-Counted
	UCB-ECB-Multiset-Open

	7.4.1 Effect on Task Utilisation and h(t) Calculation
	7.4.2 Comparison of Approaches

	7.5 Case Study
	7.5.1 Success Ratio

	7.6 Evaluation
	7.6.1 Success Ratio
	7.6.2 Baseline Evaluation
	7.6.3 Detailed Evaluation
	Number of Components
	System Size
	Server Period
	Cache Utilisation
	Number of Tasks
	Task Period Range

	7.6.4 EDF Analysis Investigation
	Block Reload Time (BRT)
	Deadline Factor

	7.7 Summary

	Chapter 8. Conclusions
	8.1 Summary of Contributions
	8.2 Future Work

	List of Abbreviations
	List of Notations
	References

