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Abstract 

Total hip replacements (THR) are considered one of the most successful surgical 

procedures in medicine; eliminating pain and restoring mobility following conditions 

such as osteoarthritis. The majority of THR implants have a metal femoral head 

articulating against an UHMWPE acetabular cup, however, UHMWPE wear debris 

is generated over time, and this wear debris stimulates an osteolytic immune 

response around the implant, leading to aseptic loosening and eventually failure of 

the prosthesis. 

Highly crosslinked UHMWPE has been developed with excellent wear resistance, 

however the generation of free radicals following gamma irradiation can lead to 

oxidation of the UHMWPE material, reducing the mechanical properties of 

UHMWPE. In addition, oxidation through lipid absorption in vivo has been shown to 

occur, independent of irradiation-generated radical species. This led to the 

development of antioxidant UHMWPE, with vitamin E enhanced highly crosslinked 

UHMWPE introduced clinically in the hip in 2007, and hindered phenol enhanced 

highly crosslinked UHMWPE introduced clinically in the knee in 2012. 

Using a six station pin-on-plate wear simulator under kinematics associated with the 

hip joint, it was shown that the introduction of a vitamin E or hindered phenol 

antioxidant to UHMWPE had no significant effect on the wear factor. The addition 

of moderate (5MRad) and high (10MRad) levels of crosslinking significantly 

reduced the wear factor of UHMWPE, both with and without vitamin E. Comparing 

both these highly crosslinked antioxidant UHMWPE materials to virgin UHMWPE, 

there was no significant difference in the wear particle size distribution observed, 

indicating the addition of high levels of crosslinking and antioxidant enhancement 

had no significant effect on the size distribution of UHMWPE wear debris.  

A large volume of clinically relevant sterile wear debris was generated in 25% 

bovine serum (v/v) to then incubate with peripheral blood mononuclear cells 

(PBMNCs) isolated from healthy human donors. Testing both the vitamin E 

enhanced and hindered phenol enhanced UHMWPE, along with non-antioxidant 

highly crosslinked UHMWPE wear debris, it was shown that vitamin E enhanced 

highly crosslinked UHMWPE caused significantly lower levels of TNF-α release 

from PBMNCs compared to the non-antioxidant highly crosslinked UHMWPE. This 
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reduction in TNF-α release was also observed in hindered phenol enhanced highly 

crosslinked UHMWPE, indicating the presence of vitamin E or hindered phenol 

antioxidants caused a reduction in the release of the osteolytic cytokine TNF-α. 

Stimulation of significant levels of cytokine release from PBMNCs was only 

achieved in 3D culture at a wear debris concentration of >200 µm³.  

Vitamin E enhanced highly crosslinked UHMWPE wear debris was also shown to 

stimulate lower levels of reactive oxygen species production in PBMNCs, compared 

to highly crosslinked UHMWPE wear debris. This indicated that the presence of 

vitamin E in highly crosslinked UHMPWE wear debris led to intracellular 

antioxidant activity, reducing the oxidative stress following treatment with wear 

debris. These results showed clear evidence that enhancement of highly crosslinked 

UHMWPE with a vitamin E or hindered phenol antioxidant has no significant effect 

on the wear resistance of the material, however the antioxidant and anti-

inflammatory properties of these materials lead to lower levels of TNF-α and 

reactive oxygen species production in macrophages, potentially reducing the levels 

of osteolysis around the implant. 
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Chapter 1 

Introduction 

 

1.1 Anatomy of the Hip Joint 

The hip joint is a multiaxial ball and socket joint located laterally and anteriorly to 

the buttocks, and provides the movement capability of the femur. The joint is 

comprised of the acetabulum and the femoral head. The acetabulum is a forward, 

outward, downward facing cavity formed by the convergence of the ilial, ischial and 

pubic ossification centres that join at the triradiate cartilage (Figure 1.1), which 

allows the articulation of the femoral head within the socket (Drake et al., 2005). The 

femoral head is an imperfect sphere made up of a lattice of cancellous bone that is 

covered in articular cartilage, and is located at the proximal end of the femur (Figure 

1.2). The cancellous bone coupled with the articular cartilage provides an ideal 

weight bearing structure that distributes the applied stresses to the dense bone of the 

femoral neck and proximal femur (Koval and Zuckerman, 2000). 

 

Figure 1.1 – An anterior view showing the pelvis and the position of the acetabulum (left image). 

The right image is the left acetabulum enlarged to show the physiology of the surrounding bone 

(Grays, 1918) 
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Three main ligaments provide the stability of the hip joint. The iliofemoral ligament 

is attached to the illium and extends down to the femur where it is attached at the 

anterior intertrochanteric line. The pubofemoral ligament attaches from the pelvis to 

the femur. The ischiofemoral ligament enhances the posterior stability attaching 

from the posterior ischium (behind the acetabulum) to the intertrochanteric line. All 

three of these ligaments blend with the hip capsule for attachment to the femur. 

Another important ligament is the ligamentum teres found in the fovea capitis 

femoris. It adds little stability beyond childhood but is more important as an arterial 

blood supply to the femoral head (Figure 1.3) (Gray, 1918). 

 

 

Figure 1.2 - An anterior view of the top half of a right femur. 

(Reproduced from Grays, 1918).   
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The hip capsule is the connecting and supporting soft tissue structure that surrounds 

the hip joint. The capsule is attached to the labrum at the top and the femoral neck at 

the bottom (posteriorly) (Koval and Zuckerman, 2000). The acetabular labrum is a 

rim of fibrocartilage found on the edge of the acetabulum. The labrum acts to deepen 

and extend the socket, making it less likely that the femoral head will dislocate. The 

hip joint is a synovial joint designed for stability and weight bearing, capable of 

movements including flexion, extension, abduction, adduction and rotation (Drake et 

al., 2005). The capsule contains periarticular connective tissue, which is made up of 

fibroblasts, fibrous proteins, extracellular substance and water (Neumann, 1999). 

The fibroblasts synthesise collagen which is composed of several tropocollagen 

fibrils linked together at regular intervals to add strength. Many collagen fibres form 

fosciculi, producing a ‘rope’ like weave of fibres that adds strength and rigidity to 

the connective tissues of the joint. In addition to collagen, fibroblasts produce 

elastin; a protein that adds elasticity to the connective tissue. Elastin allows the hip 

capsule to stretch and elongate during movement. It is the combination of these 

molecules, in addition to glycosaminoglycans and water that make up the 

Figure 1.3 – The ligamentum teres can be seen embedded in the femoral head and 

connected to either side of the acetabular notch, blending with the traverse 

ligament (Gray, 1918) 
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characteristics of the connective tissue. The synovial membrane lines the internal 

capsule and tendon sheaths, and contains synoviocytes (Dupont, 1997). These cells 

secrete synovial fluid, which adds nutrition to the connective tissues and lubrication 

to the joint, which in combination with cartilage acts to lubricate the joint. 

Articular cartilage found on the femoral head is around 4mm thick, reducing to 3mm 

at the periphery (Koval and Zuckerman, 2000). This tissue has excellent 

compression resistance properties and is therefore ideal to protect the underlying 

bone from the forces experienced in the hip joint. Articular cartilage is composed 

mainly of collagen, glycosaminoglycans, water and chondrocytes, with no blood 

vessels present (McDevitt, 1973). Chondrocytes are the only cell type found in 

articular cartilage and are responsible for maintaining the extracellular matrix of 

cartilage. Chondrocyte viability is essential for function of articular cartilage due to 

the need for the synthesis of the substances that make up articular cartilage 

(Ramakrishnan et al., 2010). 

The weight bearing properties associated with articular cartilage are largely due to its 

biochemical structure. Glycosaminoglycans bind to the proteoglycan core of 

cartilage and branch out from this core in all directions, markedly increasing the 

surface area of the tissue (Buckwalter et al., 1985). The glycosaminoglycans are 

negatively charged and therefore attract water into the matrix of the substance, 

ensuring the cartilage remains hydrated (Bhosale and Richardson, 2008). As pressure 

is exerted on the joint, the cartilage is deformed as the water in the matrix moves 

away from the high pressure. This allows the articular cartilage to absorb and 

dissipate the stress on the joint, while returning to its hydrated state when the 

pressure is removed as water returns to fill the matrix (Neumann, 1999). 

Articular cartilage, synovial fluid and the macrostructure of the hip joint ensure a 

super-lubricated joint capable of resisting compression and stress encountered in day 

to day activities. However, as a result of aging, disease or trauma, the normal balance 

of cartilage turnover can be disrupted, leading to irreversible cartilage damage. This 

can lead to complications in the hip joint, and these complications could ultimately 

result in arthritis and eventually the need for a total hip replacement.  
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1.2 Kinematics of the Natural Hip Joint 

The main function of the hip joint is to allow the movement of the leg in space, and 

provide stability during weight bearing activities such as standing, walking or 

running. During standing (on two legs), the hip joint supports the head, trunk and 

upper limbs of the body, equating to around 62% of the body weight (Maquet, 1985). 

However during walking, the forces in the hip joint alter according to the progress 

through the walking cycle. 

During walking, the hip undergoes two phases; the swing phase and the static phase. 

During the swing phase of walking, the hip joint undergoes flexion, followed by 

loading to begin the static phase. Simultaneously, the other hip is in the static phase 

undergoing extension, whereby the effective centre of gravity moves from the 

between the centre of the pelvis (during two leg standing) away from the supporting 

hip, due to the additional weight of the non-supporting leg. On the supporting hip 

joint, loads can reach 3-4 times body weight. Within this static phase, the hip 

undergoes two points of peak load, one at the heel strike and one at the toe-off. The 

heel strike occurs following flexion of the hip and describes the moment the heel of 

the foot impacts the ground, creating an instant large load at impact of around four 

times body weight, and ending the swing-phase of the walking cycle. The toe-off 

occurs following extension of the hip and begins the swing-phase of the walking 

cycle (Anderson and Blake, 1994). Between these two peaks the load of the hip joint 

is around two times body weight.  

Looking closer at the articulating surface of the natural hip joint, the peak pressures 

experienced during the heel strike and toe-off are not evenly distributed across the 

contact surface. During walking, peak pressures exist at the superior-posterior aspect 

of the lateral roof of the acetabulum, with contact pressure spread across 80% of the 

contact surface. However during activities such as ascending stairs, peak pressures 

are significantly higher. When descending stairs, the peak pressure is across a more 

concentrated area, however the location of peak pressure also translocates to a more 

superior position. This variation in peak pressures and distribution patterns can lead 

to higher stress and deformation of the articular cartilage (Guilak, 1995, Yoshida et 

al., 2006). In a healthy hip joint, the horseshoe shape of the articular cartilage in the 

hip, in addition to the non-load bearing acetabular fossa, contributes to lower and 
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more homogenous distribution of contact stresses during activity (Daniel et al., 

2005). In dysplastic hips, the peak stresses on the load bearing area of the contact 

surface is considerably and statistically significantly higher than in normal hips, 

leading to significantly higher cartilage deformation. The varying stresses and 

pressures present at the articulating surface of the natural hip are important when 

considering the range of morbidities that can develop in the hip. One of the main 

reasons for variations in the stresses at the hip is an individual’s walking gait cycle.  

The gait cycle describes the individual manner of performing the walking cycle, and 

involves a full stride of the walking cycle. During walking, the static phase occupies 

around 60% of the gait cycle, while the swing phase occupies 40% of the gait cycle. 

Variations in gait and differences in stress on the articulating surface of the hip joint 

can be due to body weight, femoral head/acetabulum size and morphology, and the 

position of the loading point during the peak load points (Abt et al., 1981).  

 

1.3 Arthritis and Total Hip Arthroplasty 

Arthritis is a degenerative disease of joints which can lead to pain and disability, and 

is caused by the degradation and loss of articular cartilage, leading to the 

inflammation of the synovial membrane. The loss of articular cartilage in arthritis 

subsequently leads to joint instability and severe pain in the affected area, to the 

point where the function of the joint is compromised. It is estimated that arthritis 

affects 10 million people in the UK, with around 1.2 million individuals consulting 

their GP with symptoms of osteoarthritis in 2006 (AthritisResearchUK, 2011). It is 

also estimated that 1.6 million people in the UK have X-ray evidence of 

osteoarthritis (ArthritisUK., 2011-2012). One in five Americans were diagnosed 

with a form of arthritis in 2004/05 and osteoarthritis was the most prevalent form of 

the disease. Osteoarthritis accounted for $128 billion spent annually and it has been 

estimated this number will rise considerably by 2030 (Hootman et al., 2006). These 

figures highlight the huge impact of arthritis worldwide.   

Osteoarthritis is a rheumatic condition associated with wear of cartilage over time, 

caused by disintegration of cartilage and the formation of new bone under the 

cartilage, resulting in pain and lack of function (Dekker et al., 1992). It shows a 
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predisposition to patients with a high body mass index (BMI) (McCarthy et al., 

2009), and patients with a high BMI are also at an increased risk of total hip 

replacement as a result of osteoarthritis (Buckwalter and Mankin, 1998, Karlson et 

al., 2003, Buckwalter et al., 2005). Osteoarthritis is thought to be caused by a 

combination of systemic and local factors. Systemic factors include age, sex, race, 

hormone levels and genetic disposition to the disease. The increase in incidence of 

osteoarthritis with age is thought to be partly due to the reduced levels of oestrogen 

in postmenopausal women, and the reduced biological response of the tissues, such 

as chondrocyte response to growth factors (Felson and Zhang, 1998). In addition to 

these biological factors, wear and tear is also responsible for damage to the cartilage 

protecting the hip joint. Stress induced damage to the matrix of the cartilage leads to 

the influx of water and fluids, and if this damage exceeds the ability of the 

chondrocytes to repair the matrix, cysts will eventually develop. These cysts are 

initially asymptomatic, however due to the loss of cartilage, eburnation of the 

exposed bone occurs, leading to microfractures and causing pain and disability in the 

joint (McCarthy et al., 2009).  

Rheumatoid arthritis is a systemic inflammatory disease that mainly affects synovial 

joints, leading to a painful condition and loss of function. Rheumatoid arthritis has a 

prevalence of 1-3% in the population, and is the most common inflammatory joint 

disease in humans (McCarthy M, 2009). It is an autoimmune disease and is 

characterised by the action of host immune cells causing the pathogenicity that is 

associated with the disease (Fournier, 2005, Dhaouadi et al., 2007). The exact 

mechanisms behind rheumatoid arthritis are unknown, although a strong T cell 

response is believed to be crucial to the development of the disease. One hypothesis 

is that there is a genetic susceptibility to the disease whereby a highly immunogenic 

antigen is expressed on a major histocompatibility complex II (MHC II) molecule to 

CD4+ T cells. This then triggers a strong inflammatory response involving cytokines 

and immune cells that culminates in inflammation and the destruction of cartilage 

(Scheinecker et al., 2009).  

Current treatments for arthritis concentrate on reducing pain and inflammation in an 

attempt to restore some function to the joint. Pharmacological treatments include 

acetaminophen and non-steroidal anti-inflammatory drugs to target the pain and 

inflammation respectively (Seed et al., 2009). Hip osteotomy is a surgical treatment 
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that involves realignment of the hip joint, altering the load bearing surface. (Pellicci 

et al., 1985, Rogers et al., 2009). Another surgical procedure for articular cartilage 

repair is debridement, which involves the removal of flaps of loose cartilage 

(Getgood et al., 2009). However, in terms of restoring mobility, both these 

procedures have mixed levels of success, and are short terms treatments where 

symptoms often reoccur (Moseley et al., 2002).  

In recent times, cutting edge tissue-engineered techniques have been researched in an 

attempt to regenerate the articular cartilage and therefore restore function to the joint. 

The use of natural and synthetic scaffolds in tissue engineered cartilage have been 

investigated, however, these scaffolds have so far failed to fulfil the necessary 

requirements of articular cartilage. Furthermore, while the use of stem cells to 

populate these scaffolds has been promising, the cartilage tissue produced from these 

cells has been shown to be inferior to that produced by chondrocytes (Johnstone et 

al., 2013). Despite these findings, the field of tissue engineering remains an exciting 

and promising area where the rapid progress being made could lead to successful 

treatments for arthritis in the hip joint. 

Joint replacement surgery has been shown to be a suitable treatment for conditions in 

the hip joint where the pain and lack of mobility have come to impact heavily on the 

patient’s quality of life. Total hip replacements have been considered one of the most 

successful surgical procedures in medicine, successfully eliminating pain, restoring 

mobility, and returning the high quality of life expected in today’s society (American 

Academy of Orthopaedic Surgeons, 2013).  

 

1.4 History of Total Hip Arthroplasty 

In the 18
th

 century, various methods of treating hip joint pain and disability existed, 

such as joint excision, hip osteotomy and interposition arthroplasty. Interpositional 

materials included pig bladder, muscle and silver plates. The first attempt at a hip 

implant was made in 1891 by the German scientist Professor Themistocles Glück. 

Glück developed an ivory ball and socket joint fixed to the bone with nickel-plated 

screws to restore function in hip replacements destroyed by tuberculosis. Around the 

year 1918, Sir Robert Jones covered a reconstructed femoral head with a strip of 
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gold foil and observed retention of motion after 21 years; the longest successful 

follow up at that time (Gomez and Morcuende, 2005). In the 1920’s, Marius Smith-

Petersen devised a hip mould arthroplasty using glass, Bakelite and plastics, 

although all failed. Smith-Peterson went on to revise the idea, using cups made from 

the metal Vitallium, with reported success rates of 82% (Toledo-Pereyra, 2004).  

Sir John Charnley is credited with the innovation of the low friction arthroplasty as it 

is known today. His long journey to developing this type of implant and surgery 

began with a succession of friction experiments on animal and human joints (Kurtz, 

2009b). Investigating the hydrodynamic principles of cartilage in the hip joint, he 

concluded that this was impossible to replicate in an artificial hip and therefore the 

most important attribute in an artificial joint was low friction. Charnley’s material of 

choice was polytetrafluoroethylene (PTFE, Teflon) due to its low coefficient of 

friction (0.04-0.05). Sir John Charnley designed a ‘double cup’ prostheses, where the 

acetabulum was replaced with a PTFE shell, and a PTFE ball was secured on the 

femoral neck, replacing the natural femoral head, however both the shell and ball 

experienced severe wear leading to failure. 

Charnley experimented with a metal femoral head and filled PTFE cups, but with no 

significant reduction in wear. The development of a wear testing rig, devised by 

Harry Craven, brought about the recognition and use of ultra high molecular weight 

polyethylene (UHMWPE) as a bearing material in arthroplasty. With Charnley 

initially unimpressed by the material, Craven demonstrated very low wear of the 

polymer compared with PTFE, and this led to development of the ‘gold standard’ 

arthroplasty; a stainless steel femoral head and stem secured with acrylic cement, 

articulating on an UHMWPE acetabular cup (Charnley, 1973, Kurtz, 2009b, 

Learmonth et al., 2007). Another revolutionary aspect of Charnley’s design was the 

use of a small femoral head. Charnley designed a 22.25mm diameter stainless steel 

femoral head, much smaller than the previously designed metal-on-metal prostheses. 

Smaller femoral heads produce less wear compared to larger heads, and this is shown 

in Figure 1.4 (Donaldson et al., 2005). Almost all hip prostheses used today use the 

principle of the Charnley low friction arthroplasty, however different materials have 

been developed and different combinations produced in order to improve the long 

term performance of total hip replacements. 
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Figure 1.4– The increase in wear as femoral head diameter increases. Charnley’s small femoral 

heads displayed the lowest wear, while the larger heads showed the greatest levels of wear 

(Donaldson et al., 2005). 

 

 

 

1.5 Bearing Materials for Total Hip Arthroplasty 

1.5.1 Metal on Metal Hip Replacement  

The first metal-on-metal (MOM) hip replacement was performed by Philip Wiles in 

1938 and involved a stainless steel prosthesis fixed to the bone using screws (Wiles, 

1957). These hip replacements were used to treat Stills disease, a type of juvenile 

rheumatoid arthritis. 

McKee, a former colleague of Wiles, experimented with alternative materials for 

MOM bearings, leading to the development of cobalt-chromium (CoCr) prostheses. 
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McKee and Farrar found CoCr to have a lower friction coefficient than stainless 

steel, and at the time believed this material to be more biocompatible (McKee and 

Watson-Farrar, 1966). The first generation MOM prostheses consisted of CoCr as 

the bearing material, and a stem design seen in the Thompson prostheses that McKee 

considered to improve the femoral component. This hip replacement had a 7 year 

success rate of 57% and some prostheses lasted up to 16 years. The design was 

further developed when it was found that the main reason for failure was loosening. 

McKee incorporated acrylic cement into the design, which not only improved 

fixation when applied with a studded acetabular cup, but also acted to better 

distribute weight over the joint than the two screws used previously (McKee and 

Chen, 1973). 

The use of acrylic cement and a CoCr femoral head eventually led to the second 

generation implant, which consisted of a cobalt-chromium (CoCr) articulating 

surface with an ultra-high molecular weight (UHMWPE) modular liner, and a CoCr 

acetabular shell, often described as a sandwich design. This implant allowed 

compatibility with existing acetabular shells, and allowed for fixation without the 

use of screws (Kurtz and Ong, 2009). However, the generation of UHMWPE wear 

particles became an issue, leading to osteolysis and loosening, limiting the life of the 

prostheses to about 20 years (Dorr et al., 2000).  

This prompted the further development of MOM replacements, this time with 

improved clearance between the femoral head and the acetabular component. 

Increased clearance between the surfaced reduces wear to a certain level, until a 

distance too great negatively affects the film lubrication, therefore increasing wear. 

The Metasul
® 

prosthesis
 
was developed and introduced in 1988 by Sulzer and 

comprised a metal-on-metal bearing with a UHMWPE acetabular backing. This 

bearing showed very good survivorship rates, with one study showing only one 

revision in 90 implants due to aseptic loosening, with a 94.4% survivorship rate seen 

after 12.3 years follow up (Saito et al., 2010). The precision of these bearings 

resulted in low friction and low wear of around 5μm
3
/per year (Weber, 1996) This 

bearing showed reduced wear compared to earlier MOM bearings (Dorr et al., 2000). 

The use of MOM bearings gradually increased in popularity between 1999 and 2007, 

when at their peak MOM implants made up 37% of the total hip arthroplasties in the 
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USA (Mendenhall, 2008). Metal-on-metal implants showed much reduced wear rates 

compared to metal-on-polyethylene bearings, and were predicted to lead to an 

extended implant life and a lower rate of revision. The performance of MOM 

improved, with modern manufacturing and finishing techniques giving a super 

polished finish, therefore reducing the surface roughness of the bearing and moving 

the lubrication type closer to full fluid film (Tipper et al., 2005).  

Hip resurfacing arthroplasty was thought to be a good alternative to THA for 

younger patients in need of a replacement. Hip resurfacing arthroplasty involves a 

prosthetic femoral head and acetabular cup that allows most of the femoral bone 

stock to be preserved. This makes hip resurfacing a viable option for patients who 

may require a total hip replacement later in life. Hip resurfacing arthroplasties 

showed excellent short term survival of 93-99% for 2-8 years follow up, with the 

Birmingham hip resurfacing (Smith and Nephew, Warwick, UK) having the lowest 

risk of revision (Macpherson and Breusch, 2010).  

A concern regarding MOM implants and in particular MOM resurfacing arthroplasty 

is that despite the reduced wear rate and wear volume compared to UHMWPE 

bearings; the particles generated from MOM bearings have a mean size of around 

50nm, considerably smaller than the mean size of UHMWPE particles. This means 

despite a smaller volume, the number of particles released from a MOM implant is 

higher for the same volume of UHMWPE, believed to be around 1-10 million 

particles per step, therefore raising concern about toxicity (Sieber et al., 1999, Tipper 

et al., 2005, Brown et al., 2007).   

The biological consequences of the release of CoCr particles and ions include 

cytotoxicity, genotoxicity and hypersensitivity, and there is increasing evidence that 

the metal particles released during wear are highly toxic and cause pseudotumours 

(Pandit et al., 2008). Patient specific hypersensitivity is another aspect of cyst 

formation that can occur soon after implantation (Campbell et al., 2010). The 

nanometre sized particles generated during wear are released into the periprosthetic 

tissues and transported away from the implant site via the lymphatic system, leading 

to systemic distribution of metal particles (Jacobs et al., 1996).  This claim was 

supported by analysis of metal ions in a number of different bodily fluids. 

Comparing eight patients implanted with MOM bearings over 20 years, and negative 
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control patients (no metallic implant), there was a 9-fold increase in chromium levels 

in serum, a 35-fold increase in chromium levels in urine and a 3-fold increase in 

serum cobalt levels in MOM patients compared to negative control patients. A short 

term study of implants of less than 2 years in vivo also showed significantly 

increased levels of serum cobalt and chromium ions. This study was supported by 

several other studies that highlighted an increase in systemic metallosis (Jacobs et 

al., 1996, Sieber et al., 1999, Hart et al., 2008, Figgitt et al., 2010) 

Cobalt and chromium ions have been found to be genotoxic, with chromium (VI) 

ions entering cells through a sulphate ion transporter. Chromium is reduced from 

Cr(IV) to Cr(III) in the cytoplasm and leads to cross linking of DNA, resulting in 

DNA adducts and strand breaks. Damage to DNA, and the errors introduced to DNA 

as a result of this damage, is normally repaired by DNA repair mechanisms such as 

the Ku and DNA-dependent protein kinase. However, the saturation of these repair 

mechanisms as a result of the action of carcinogens such as Co and Cr ions can 

eventually lead to loss of function of certain parts of the DNA code. This can 

therefore result in loss of control of proliferation of the cell cycle, leading to 

carcinogenesis (Lodish et al., 2000). For this reason, chromium is a classified 

carcinogen (Figgitt et al., 2010). Cobalt and chromium ions, both alone and in 

combination, can cause chromosome aberrations in vitro. Chromium (IV) in 

combination with cobalt was found to be the most reactive. These metal ions are 

found in higher concentrations at various locations of the body in THA patients 

compared to people exposed to Co and Cr in industry (Figgitt et al., 2010) 

Cobalt acts like an ‘assistant’ carcinogen, inhibiting the excision repair mechanism 

by inhibiting the incision and polymerisation enzymes. The combination of elevated 

levels of both these ions leads to DNA damage capable of causing cellular 

proliferation and tumour formation. In addition to the carcinogenic properties, these 

metal ions are also teratogenic and capable of crossing the placenta (Delaunay et al., 

2010). Despite the classification of the ions as carcinogenic, there is currently no 

evidence to suggest the use of MOM implants increases the incidence of cancer. Two 

separate studies showed the incidence of cancer to be in line or below the incidence 

of the general population. It was also shown that when osteoarthritis was diagnosed 

in the patient, the incidence of cancer (stomach cancer and colorectal cancers) was 

reduced (Visuri et al., 1996, Visuri et al., 2006). Although these studies are 
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promising for MOM implants, it is after 20 and 30 year follow-ups that reliable data 

will be generated regarding the incidence of cancer as a result of metal ions from 

MOM implants.  

Inflammatory soft-tissue masses, termed pseudotumours, have been found to occur 

after MOM hip resurfacing, and can be a cause of pain and reason for revision 

surgery. One study found that in a cohort of 1224 patients, after 8 years, failure due 

to pseudotumours was 4% (Glyn-Jones et al., 2009). A separate study found that 

wear of a MOM resurfacing implant was associated with pseudotumour formation, 

supporting the hypothesis that high levels of metal particles generated by wear can 

cause pseudotumours (Kwon et al., 2010). 

While pseudotumours are associated with MOM hip resurfacings, atypical 

lymphocytic vasculitis-associated lesions (ALVAL) are commonly associated with 

MOM total hip replacements. These lesions are a result of a type IV hypersensitivity 

reaction to metal ions generated by wear, and cause pain and swelling around the 

joint. All these tumour-like lesions are complications associated with MOM 

replacements or resurfacings, and can result in revision surgery.  

Despite the reduced wear of MOM bearings, and the strength of the prostheses 

making it ideal for younger, active patients, the issues surrounding toxicity of the 

particles have become increasingly worrying. In August 2010, DePuy™ recalled 

their ASR™ Articular Surface Replacement system due to a higher than expected 

revision rate of 8-9% after 3 years, and 12-13% after 5 years. This elevated revision 

rate was associated with the <50mm head diameters. The ASR™ Acetabular system 

was also experiencing higher revision rates of 13% over 5 years (MHRA, 2010). The 

reasons for revision were component loosening, malalignment, fracture of the bone, 

metal sensitivity and pain. This has caused concern regarding the use of metal-on-

metal hip resurfacing, and combined with improvements in the performance of 

alternative bearings has led to a reduction in the use of metal-on-metal implants 

(Figure 1.5).  
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Figure 1.5 – The bearings used in total hip arthroplasty in the UK over a period of 9 years. This 

shows the gradual increase in the total number of hip replacement procedures, along with the increase 

in the use of metal-on-UHMWPE and ceramic-on-ceramic. Metal-on-metal procedures have declined 

from 2007 onwards (National Joint Registry 2013 Report – www.njrcentre.org.uk)  
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1.5.2 Ceramic on Ceramic Hip Replacement 

An increasingly common bearing material for use in total hip replacements is 

ceramic, with the most commonly used ceramic material being zirconia toughened 

alumina (Al2O3). The first reports of ceramic-on-ceramic (COC) hip replacements 

came from France in 1971, where Pierre Boutin used alumina-on-alumina. This 

design was developed by Shikata of Japan in 1977 to incorporate an UHMWPE 

acetabular cup which articulated against a ceramic femoral head (Kurtz and Ong, 

2009). Early designs of COC hip replacements suffered complications, such as 

difficulty fixing the acetabular component, which lead to tilting of the cup and 

subsequent edge loading and impingement (Winter et al., 1992). The materials and 

mechanisms used for ceramic components today contribute to a much improved 

material. 

Ceramic materials used in orthopaedics have very low wear rates compared to metal-

on-metal and metal-on-UHMWPE bearings (Campbell et al., 2004, Kurtz and Ong, 

2009), with excellent biocompatibility, reducing the risk of particle-induced 

osteolysis. An in vitro simulator study comparing the wear rates of UHMWPE, CoCr 

and alumina showed a steady state wear rate of 0.004mm
3
/10

6
 cycles for alumina. 

This was considerably lower than the Metasul mean wear rate of 0.119mm
3
/10

6
 

cycles and the UHMWPE mean wear rate of 13mm
3
/10

6
 cycles (Clarke et al., 2000). 

The very low wear of alumina, in addition to its scratch resistance can be attributed 

to the hardness of the material (Willmann, 1996). Alumina is also more hydrophilic 

than CoCr (Kurtz and Ong, 2009), adding to the lower friction articulation of 

alumina against UHMWPE compared with CoCr on UHMWPE. A small grain size 

combined with a uniform distribution makes a good quality ceramic which is 

important to the long-term success of alumina bearings. Also crucial is good bone 

stock in the patient. This is demonstrated by a study that showed 100% survival of 

alumina-on-alumina bearings after 7 years in patients under 50 years old (Boutin et 

al., 1988). 

Despite the ultra-low wear seen in vitro, wear rates in vivo were around 1-

5mm
3
/annum. Due to the different wear rates, attempts were made to reproduce 

clinically relevant wear rates in vitro to further understand the performance of these 

materials. Clinical wear rates were not achieved in vitro using standard simulation 

conditions or by altering the lubricant or the acetabular cup angle However, when 
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microseperation was applied to hip simulators the wear rate was 1.24mm
3
/per 

million cycles (Tipper et al., 2002). Microseperation is the separation of the femoral 

ball and acetabular socket, which can lead to rim contact and wear. Fluoroscopic 

video of patients with total hip replacements showed microseperation up to 2.8mm, 

with a mean separation of 1.2mm in 10 metal-on-polymer bearings (Lombardi et al., 

2000). It was also observed that the femoral head separated from the acetabulum, yet 

maintained contact with the superior rim of the acetabulum. This microseperation 

motion is thought to be the cause of stripe wear seen in ex vivo alumina implants 

(Tipper et al., 2002).  

Historically, a significant issue with ceramic components was the in vivo fracture 

risk, with fracture rates in the literature ranging from 0.5% to 0.06% (Tateiwa et al., 

2008) . This is due to the brittle nature of ceramics, where the grain size dictates the 

microscopic internal flaws of the material (Kurtz and Ong, 2009). Chipping fracture 

was more common than complete fracture, yet the multiple fragments generated 

through fracture caused catastrophic failure. However, the risk of fracture is still 

relatively low, and with its ultra-low wear, research has focused on further 

improving ceramic materials. A modern hybrid ceramic called BIOLOX delta has 

been developed, composed of 72.5% alumina, 25.5% zirconia and 2% mixed oxides 

(Figure 1.6). The addition of nano-sized yttria-stabilized zirconia particles to the 

alumina acts to reduce the initiation and propagation of cracks, also increasing the 

materials strength, fracture strength and toughness. However, BIOLOX delta is still 

susceptible to stripe wear and surface damage as a result of microseperation. In a hip 

simulator applying microseperation conditions, the 28mm BIOLOX® delta bearing 

generated low wear rates of 0.13mm
3
/million cycles. However, stripe wear was also 

generated on the femoral heads and acetabular cups, increasing the surface roughness 

from around 5nm to 20nm (Al-Hajjar et al., 2010). 
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1.5.3 PEEK, Carbon Fibre and Graphene Composite Materials 

A promising modern alternative polymer material being used for joint replacement is 

polyetheretherketone (PEEK). This is a composite material that has shown promising 

wear results in vitro. This material has been coupled with carbon fibres to increase 

the strength of the material. One study showed wear of 1.16mm
3
/10

6
 cycles for an 

alumina femoral head articulating against a PEEK acetabular component, compared 

to 38.6mm
3
/10

6
 cycles generated from standard UHMWPE. This low wear rate was 

also sustained over longer-term testing, simulating 25 years of wear, demonstrating 

very promising survivorship (Scholes et al., 2008). 

Figure 1.6 – Ceramic-on-ceramic BIOLOX® delta from DePuy International. This 

shows the components used a ceramic-on-ceramic hip replacement. The femoral head 

component (right) has the ability to be connected to a variety of stems, depending on the 

physiology of the patients femur and the surgeons preference. The acetabular cup (top left) is 

shown. The coupling of the components is shown in the bottom left image.  
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The biological response to PEEK and carbon fibre reinforced PEEK (CFR-PEEK) 

has only recently been investigated as interest in this material grows. Utzschneider et 

al., (2010) showed a comparable biological response between PEEK and UHMWPE 

particles, with both materials showing a similarly enhanced leukocyte-endothelial 

cell interaction compared to the negative control (PBS) (Utzschneider et al., 2010). 

These authors used histology to look at the synovial tissue of mouse knees after 

particles from both PEEK and UHMWPE were injected in. This method has the 

restriction of only looking at sections of the tissue and scoring the slides. An 

alternative method to better corroborate the biological response to particles would be 

to isolate clinically relevant PEEK particles and culture the particles generated with 

primary mouse or human monocytes. This would then allow for the comparison 

between the cytokine response between UHMWPE and PEEK.  

Polyetheretherketone showed good biocompatibility, showing no significant adverse 

effects on cell viability, and no cytotoxicity or mutagenesis (Katzer et al., 2002). 

These results show PEEK and carbon fibre-PEEK to be promising biomaterials for 

possible use in prostheses. Considerable further in vivo research is required, but this 

material could be considered an acceptable alternative bearing material for the 

future. Another composite material being investigated for use as a bearing material 

in total hip replacements is a graphene-UHMWPE composite. This material is in its 

infancy, however this material has been shown to have significantly improved wear 

resistance compared to virgin UHMWPE (Tai et al., 2012). 

Amongst the number of bearing materials currently available in total hip 

replacements, UHMWPE remains the gold standard bearing material. Metal-on-

UHMWPE make up around 58% of all primary hip replacements in the UK, with 

UHMWPE the bearing material of choice in 65% of primary hip replacements 

(National Joint Registry, 2013). However, the success of UHMWPE has been due to 

the gradual evolution of the material from its inception by Charnley, to its modern 

equivalent today.  
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1.6 Ultra High Molecular Weight Polyethylene 

UHMWPE is a linear homopolymer of ethylene, with the generic chemical formula - 

(C2H4) n- where n is the degree of polymerisation. Polyethylene is a commonly used 

polymer in industry and packaging. Clinical UHMWPE materials can have a degree 

of polymerisation of n=200,000, with a minimum degree of polymerisation of 

n=36,000, giving UHMWPE a minimum molecular weight of 1 million g/mol 

(Kurtz, 2009d, Sobieraj and Rimnac, 2009). UHMWPE is composed of a crystalline 

phase and an amorphous phase (Figure 1.7). The crystalline phase is arranged as a 

series of folds generating lamellae located randomly amongst the amorphous phase, 

and tie molecules link individual lamellae together, adding crystallinity (Kurtz, 

2009d). The lamellae are 10-50nm thick and 10-50μm long, with an average space 

between lamellae of approximately 50nm.  

 

 

 

 

The manufacture of UHMWPE for use as a bearing component in joint replacement 

begins with the ingredients ethylene and hydrogen, with titanium tetra chloride as the 

catalyst. This produces a powder which is then transformed into a liquid under high 

Figure 1.7– Schematic showing the microstructure of UHMWPE. This shows the 

amorphous and crystalline regions made up of long strands of polyethylene (Kurtz, 2009a). 
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temperatures (>137˚C) and pressures. Melted UHMWPE does not flow like other 

melted polymers and therefore the initial formation of the component is achieved 

either by both compression moulding or ram extrusion. The polymer is then finished 

at an accurate mix of temperature, pressure and time, to properly consolidate the 

component. Machining may then be carried out to finalise the form of the 

component. The UHMWPE component is then sterilised to prevent infection 

following implantation.  

The use of UHMWPE as the bearing material in total joint replacements underwent 

steady growth following the publication of Charnley’s experiences with UHMWPE. 

A follow up study by Charnley and Halley revealed that after an initial bedding in 

period, the average penetration rate of UHMWPE in total joint replacements during 

the first 5 years was 0.18 mm/year for the 72 patients included in the study. This was 

shown to subsequently drop to 0.1 mm/year during the 5-10 year period, showing the 

excellent performance of this material compared to previous prostheses (Charnley 

and Halley, 1975).  Despite these promising results in terms of the low wear of 

UHMWPE in vivo, further research into failed Charnley explants showed wide 

variation in the wear rates of UHMWPE. From 82 retrieved UHMWPE cups, there 

was a very broad negative correlation to implantation time before failure and wear 

rate, however the spread was wide, and several cups had worn at a higher rate than 

presented by Charnley. This showed the importance of generating a greater 

understanding of the wear mechanisms of UHMWPE to allow for improvement to be 

made to the material. 

 

1.7 Tribology of UHMWPE 

Tribology is the study of friction, lubrication and wear, and these are important 

concepts for the development of UHMWPE as a bearing material in joint 

replacement. Wear of UHMWPE is the major cause of failure in joint replacements. 

It is the wear particles and debris generated that cause the problems associated with 

failure, such as inflammation, osteolysis and aseptic loosening (Green et al., 1998, 

Fisher and Ingham, 2004). The detailed immunological response to UHMWPE wear 

debris is discussed in more detail in section 1.8.  
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Since the introduction of the first in vitro wear tests for metal-on-UHMWPE by 

Charnley in 1960, in vitro wear tests have been conducted to better understand the 

wear and wear mechanisms that occur in UHMWPE in vivo. Early wear simulators 

were diverse in their method of motion, however these simulators only exerted 

unidirectional motion on the test components, yielding wear rates significantly lower 

than the rates observed in vivo (Barbour et al., 1999, Rose et al., 1982, Wang et al., 

1997, Kurtz, 2009b). From these results transpired the importance of multidirectional 

motion in the wear of UHMWPE in vivo, with the addition of multidirectional 

motion to wear tests delivering wear rates comparable to those observed 

physiologically (Walker et al., 1996). The importance of multidirectional motion in 

the wear of UHMWPE is related to the cross shear and aspect ratio values of the 

wear track. When considering UHMWPE as a bearing material in vivo, it was 

proposed that differences in gait patterns of an individual could produce different 

wear factors as a result of the cross shear and aspect ratio values of the resulting 

wear track (Turell et al., 2003). While increasing aspect ratio has been shown to 

increase wear rates of virgin UHMWPE up to a critical value, a study by Korduba 

and Wang (2011) found the wear rate of highly crosslinked UHMWPE (90 kGy) to 

be unaffected by increasing aspect ratio (Korduba and Wang, 2011). The effect of 

crosslinking of UHMWPE is discussed in more detail in section 1.10. 

 The mechanism for wear of UHMWPE is believed to be the generation and break up 

of fibrils on the surface of the polymer, generated by the articulation of the femoral 

head against the UHMWPE acetabular cup. It is thought multidirectional articulation 

ruptures the surface of these submicron fibrils, generating particle debris (Muratoglu, 

2009). It is important to point out that the generation of fibrils is the last step in a 

sequence of surface disruption, where folds, then ripples are produced, finally 

forming fibrils (Yamamoto et al., 2003). The formation of UHMWPE particles can 

occur due to cyclic mechanical loading at articulating interfaces, however particles 

can also be formed at the modular interfaces and non-articulating interfaces such as 

where the polyethylene acetabular cup is connected to the shell. This leads to the 

accumulation of particles in surrounding tissue (Hukkanen et al., 1997, Abu-Amer et 

al., 2007). 

There are several types of wear that are important in hip replacements. Abrasive 

wear is due to hard protuberances forced to move against a softer surface. This type 
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of wear is caused by the asperities present on the harder surface causing damage to 

the softer surface, resulting in the loss of material from the softer surface. This type 

of wear can be present in metal-on-UHMWPE bearings due to the difference in 

hardness. Adhesive wear is the wear generated from the sliding of asperities, causing 

the rupture of the solid surface and progressive loss of the material. Adhesive wear 

describes the material transfer from any two sliding surfaces as asperities interact 

(Santavirta et al., 2003). Third-body wear is another type of wear that is clinically 

relevant. This type of wear is due to third body particles such as 

polymethylmethacrylate (PMMA) cement used in fixation, or bone, interacting with 

the articulating surfaces and causing scratches or imperfections. These scratches 

have asperities that interact and cause further wear. Finally, corrosive wear is a very 

important type of wear especially in metal-on-metal bearings. This is the wear 

generated by chemical reactions on the metal, therefore altering the performance of 

the material. Metals that have been oxidised have different mechanical properties 

therefore altering the mechanics of the bearing (Affatato et al., 2008). Corrosive 

wear has once again been mentioned as an important factor in the failure of modern 

metal-on-metal hip replacements, with the release of metal ions as a result of 

corrosion leading to adverse reactions in some patients (Langton et al., 2010).  

Lubrication has a major influence on bearing wear. The ideal form of lubrication for 

any total hip replacement is full fluid film lubrication (Scholes et al., 2000). This is 

the type of lubrication that completely separates the two articulating surfaces so there 

is no contact between their asperities. This would mean almost no wear, however 

this concept is difficult to achieve (Hall et al., 1994). Boundary lubrication occurs 

when the lubrication between the surfaces is insufficient to fully separate the 

asperities. This causes the asperities to come in contact, and the motion causes wear. 

The lubrication mechanism of the bearing is dictated by several properties of the 

bearing itself. These include the surface roughness, material combination, thickness 

of the cup, clearance between the components and the size of the femoral head (Hall 

et al., 1994).  These properties contribute towards the materials friction torque.  

The parameters dictating wear include surface roughness, clearance between the 

bearings, coefficient of friction and sliding distance (Bhatt and Goswami, 2008). The 

surface roughness of the material articulating against UHMWPE is important in the 

wear behaviour of the polymer. The coefficient of friction of the material increases 



Chapter 1 

24 

 

as surface roughness increases, and wear rate correlates with this (Cho et al., 2004). 

Surface roughness has been found to be important in bearing survivorship, especially 

in hard-on-soft bearings, where abrasive wear is common. The lowest surface 

roughness is achieved on metal components. Ito et al., (2010) analysed 108 retrieved 

metal femoral components that were coupled with UHMWPE acetabular shells. The 

mean surface roughness of the femoral heads was 0.18 ± 0.18μm. The roughest 

femoral heads (0.56μm) increased UHMWPE wear, and there was positive 

correlation between increasing surface roughness of the metal head and increasing 

wear (Ito et al., 2010).  

The understanding of the tribology of UHMWPE is important for the development 

of a low-wearing, longer lasting bearing material in total hip replacements. Crucial to 

evaluating the wear performance of UHMWPE prior to implantation is wear testing 

of the components in vitro, in addition to the analysis of wear debris generated under 

clinical conditions.  

 

1.8 Wear Testing and Isolation of UHMWPE Wear Particles 

The use of wear testing to compare different materials and their tribological 

attributes covers a vast range of prosthesis; therefore numerous simulators have been 

developed to simulate different joints in the body. Such machines include finger, 

spine, knee and hip simulators (Galvin et al., 2006, Joyce, 2010, Grupp et al., 2010). 

For hip simulation alone there are a number of different types of machines that have 

been developed to test different components and different materials under a range of 

tribological conditions. While joint simulators are effective at determining the 

overall performance of a prosthesis, simple configuration wear tests are also an 

important part of testing the materials’ properties and wear performance, prior to 

simulator testing. 

The improvement of wear test simulators for determining the wear performance of 

materials used in joint replacement has led to more accurate predictions of a 

materials performance in vivo, and therefore improvements in joint replacement as a 

whole. Early wear testers were comprised of unidirectional pin-on-disk, disk-on-

plate, sphere-on-disk, or pin-on-plate wear rigs, however these early wear test 
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machines exerted unidirectional motion on the test components, yielding wear rates 

significantly lower than the rates observed in vivo (Barbour et al., 1999, Rose et al., 

1982, Wang et al., 1997, Kurtz, 2009b). The introduction of multidirectional wear 

test rigs was a major development for determining in vitro the performance of 

potential materials for use in vivo (Baykal et al., 2014). Multidirectional pin-on-disk 

or pin-on-plate wear simulators have been shown to be reliable in determining the 

wear factor or wear rate of UHMWPE at different levels of crosslinking. Highly 

crosslinked UMWWPE has been shown to be differentiated from virgin UMMPWE 

based on wear testing using these simple configurations testers. Sliding distance was 

shown to be linearly related to wear rate, and therefore the introduction of a wear 

factor equation, to normalise the wear rate according to the total sliding distance per 

million cycles, has been shown to be beneficial for the comparison of different 

UHMWPE materials (Baykal et al., 2014). It was also determined that the 

comparison of pin-on-plate wear test results with wear test results in the literature 

may not be conclusive due to differences in load, contact area and stress yielding 

different active wear mechanisms, and therefore wear tests conducted within a single 

study would yield more reliable date for comparison of UHMWPE.  

A commonly used method of wear testing, and the method adopted in the present 

study, is multidirectional pin-on-plate wear testing. While joint simulators are used 

to test the performance of a specific component or design, pin-on-plate wear 

simulators are used to test the wear performance of the material. Multidirectional 

pin-on-plate wear simulators use a plate that moves back and forth as the pin rotates, 

replicating the multidirectional motion of the femur against the acetabulum. The pin 

is attached to the machine and a force applied, simulating the forces of the hip joint, 

whilst the articulating surface is submerged in a lubricant (Tipper et al., 2000, Galvin 

et al., 2006). In a pin-on-plate wear test, Kang et al., (2008) used a compressive load 

of 80N on an UHMWPE pin with a contact surface of 10mm. These conditions were 

selected to simulate the compressive forces of the hip joint. The authors articulated 

the UHMWPE pin against a CoCr plate, which was polished to an average surface 

roughness of 0.01μm. A lubricant of 25% (v/v) bovine serum in sterile water was 

used, with 0.1% (w/v) sodium azide added to the lubricant to inhibit bacterial growth 

during testing. The lubricant was changed every 330,000 cycles and this enabled the 

authors to analyse the lubricant (Kang et al., 2008). This is one example of the 
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conditions commonly used during pin-on-plate wear testing in order to replicate 

wear accurately in vitro. 

Joyce and Unsworth (2004) highlighted the importance of the type of lubricant and 

motion used in these rigs to generate wear particles. Distilled water as a lubricant 

yielded higher wear rates than bovine serum or ringers solution (Joyce and 

Unsworth, 2004). Scholes and Unsworth et al., (2006) investigated different protein 

concentrations of lubricants and the effect of these on the friction factor. The authors 

tested a combination of UHMWPE, CoCr and alumina ceramic bearings and 

generated different friction factors with the use of three different lubricants; human 

synovial fluid, bovine serum and carboxymethyl cellulose (CMC). When these 

lubricants were tested using the metal-on-metal bearing and the ceramic-on-ceramic 

bearing, the friction factors were significantly different for each lubricant. The 

authors hypothesised that the change in the friction factor may be due to the 

adsorption of the protein at the surface of the bearing. This forms a layer of protein 

covering the bearing and therefore reduces the contact between asperities, increasing 

the degree of fluid film lubrication and reducing friction (Scholes and Unsworth, 

2006). Testing in vitro is important to determine the conditions and materials most 

suitable for clinical use; therefore it is vital the conditions reflect the ones found in 

vivo.  

Another method of analysing the wear of a hip replacement is recovery of the 

prosthesis and periprosthetic tissue from failed implants. This provides the 

opportunity to analyse the wear of the implant, and characterise the wear particles 

generated in vivo. When the tissue samples are excised from the hip, tissue digestion 

is necessary to isolate and analyse wear particles. Baxter et al., (2009) evaluated 

different methods for tissue digestion to identify the most efficient and effective 

technique. The authors compared basic (KOH, NaOH), acidic (HNO3) and 

enzymatic conditions (proteinase K, liberase blend 3). The digestion efficiency was 

calculated by cutting one gram of periprosthetic tissue specimens into 0.25 x 0.25cm 

cubes and exposing the cubes to the agent for 24hrs. The initial and final weights of 

the filters (1µm pore filters) and tissue were calculated to quantify the digestion. For 

digestion of porcine tissue, 5M NaOH was the most effective, with only minimal 

amounts of undigested tissue. Statistically, 5M NaOH, 5M KOH and 15M KOH all 

generated final tissue weights of less than 1% of the initial tissue weight. Enzymatic 
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digestion was not as effective as alkali or acid, with 15.8M HNO3 showing very 

thorough tissue digestion (Baxter et al., 2009). 

A method for isolating and characterising wear debris of UHMWPE from 

periprosthetic tissue was outlined by Tipper et al., (2000). In this method, 1g of 

periprosthetic tissue was digested with 12M KOH at 60˚C for 2-5 days. Lipid 

extraction was performed using chloroform: methanol (2:1) incubation at room 

temperature for 2-3 days, followed by centrifugation at 2000g for 10 min. Following 

this, absolute ethanol was added with stirring at 4˚C for 24hrs to precipitate any 

proteins, which were removed by centrifugation at 2000g (4˚C) for 2hrs. To isolate 

the particles, the supernatant was sequentially filtered through preweighed 10μm and 

0.1μm cyclopore filters. The filters were dried and then weighed to determine the 

mass of the particles, and sections of the dried filters were analysed using scanning 

electron microscopy  (Tipper et al., 2000). This method was successful in removing 

the tissue and isolating the polyethylene particles from periprosthetic tissue, and 

additionally has been shown to be suitable for isolating polyethylene particles from 

serum lubricants used in vitro (Tipper et al., 2006). 

Wear testing in vitro has generated a strong understanding of the mechanical 

performance of UHMWPE, however, an understanding of the biological response to 

UHMWPE wear debris, and the subsequent failure mechanisms of metal-on-

UHMWPE implants has also been shown to be crucial in predicting the performance 

of a UHMWPE bearing in vivo, in order to ultimately produce a longer lasting hip 

replacement. 
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1.9 Failure of UHMWPE total hip replacements 

While a total hip replacement consisting of a metal femoral head articulating against 

a UHMWPE acetabular cup is considered the gold standard for total hip arthroplasty, 

failure of this type of bearing occurs at a rate of around 1% per year, with 75% of 

these failures being caused by aseptic loosening as a result of the biological response 

to wear particles (Towheed and Hochberg, 1996, Crawford and Murray, 1997). The 

other 25% of failures are mainly due to infection, technical errors during surgery or 

recurrent dislocation (Malchau et al., 1993). With an increase in the number of 

younger patients requiring a total hip replacement, the demand for a longer lasting 

total hip replacement has driven research and development of alternative 

polyethylenes.  

One of the major causes of failure in metal-on-UHMWPE total hip replacements is 

aseptic loosening. Aseptic loosening is the gradual release of the prostheses from the 

bone it is embedded or cemented into. One aspect of aseptic loosening is mechanical. 

For example, a lack of initial stability as a result of remodelling of the devitalised 

bone bed may lead to migration of the prostheses (Aspenberg and Herbertsson, 

1996). This is due to the formation of a membrane between the acrylic cement and 

the bone that causes lubrication between the prostheses and the bone. Also, poor 

initial fixation or loss of mechanical fixation over time can cause aseptic loosening 

(Abu-Amer et al., 2007). 

However, the most important cause of aseptic loosening is the biological response to 

UHMWPE wear debris, leading to an innate immune response that culminates in the 

loss of bone mass around the implant. Over the course of a year, as the patient uses 

their total hip replacement, billions of  polyethylene wear particles are generated by 

wear of the UHMWPE bearing surface, with these wear particles ranging in size 

from nanometres to several millimetres (Fisher and Ingham, 2004). The size, 

morphology and volume of the particles have been shown to dictate the severity of 

the immune response. Histological studies investigating the phagocytosis of particles 

found that larger polyethylene particles (>10μm) stimulated macrophages to become 

multinucleated giant cells which can engulf these larger particles. These areas of 

giant cell formation and phagocytosis can also become surrounded by a fibrous 
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capsule which can increase the recruitment of macrophages and stimulate a sustained 

innate immune response (Pazzaglia et al., 1987, Murray and Rushton, 1990). 

The primary role of macrophages is to recognise and neutralise infectious agents 

such as bacteria and fungi, which exist in the nanometre to micrometre size range. 

As a consequence, wear particles within this size range are phagocytosed by 

macrophages. The critical size range for macrophage activation by UHMWPE 

particles in vitro was determined to be 0.2-0.8μm, at a concentration of 10-100μm³ 

per cell (Green et al., 1998, Ingham and Fisher, 2000, Liu, 2012). Macrophage 

activation by UHMWPE wear particles leads to the release of osteolytic cytokines 

and cell control molecules as part of the innate immune response. Cytokines and cell 

signalling molecules associated with the particle stimulated response include tumour 

necrosis factor-α (TNF-α), interleukin-1α (IL-1α), IL-1β, IL-3, IL-6, macrophage 

colony stimulating factor-α (M-CSF), platelet-derived growth factor (PDGF), 

Receptor activator of nuclear factor κ-B (RANK)(and its ligand RANKL), the NF-

κB transcription factor pathway, and secretory products such as prostaglandin-E2 

(PGE2) and adhesion molecules (Green et al., 1998, Schwarz et al., 1999, Ingham 

and Fisher, 2000, Abu-Amer et al., 2007) (Figure 1.8). These cytokines act on a 

number of different cell types, and specifically their interaction with osteoclasts, 

osteoblasts and fibroblasts leads to an increase in the population of osteoclasts 

around the implant. The type-1 membrane surface protein RANK is found on the 

surface of pre-osteoclasts, and its ligand; RANKL, is crucially found on the surface 

of T cells. With the increase in RANK and T cell levels following macrophage 

activation there is an increase in osteoclast activation, which is an important step in 

the osteolytic response caused by UHMWPE particles (Abu-Amer et al., 2007).  

Interleukin-1 and IL-6 are also important cytokines in the inflammatory response to 

wear particles and the subsequent bone resorption. These inflammatory responses 

can lead to fluid around the prostheses and a membrane, causing loosening. The 

importance of these cytokines was demonstrated in vivo with analysis of the interface 

membranes that surrounded the femoral components of failed total hip replacements 

(Chiba et al., 1994). The authors compared total hip replacement patients with 

osteolysis and those without. Patients who were experiencing osteolysis showed a 

higher concentration of macrophages, as well as a higher concentration of smaller 

polyethylene particles in the periprosthetic tissue. Higher concentrations of TNF-α, 
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IL-1 and IL-6 were observed in the interface membranes of hip replacements 

undergoing osteolysis compared to those without osteolysis (Chiba et al., 1994). This 

provided clinical evidence of the importance of these inflammatory cytokines in 

osteoclastogenesis, osteolysis and aseptic loosening. Another study found that 

macrophages taken directly from periprosthetic tissue had the ability to differentiate 

into osteoclast precursors (Sabokbar et al., 1997). This highlighted the link between 

the generation of wear particles and the subsequent immune response, to the 

activation of osteoclasts and osteolysis. It is the presence of osteoclasts that is vital to 

the demineralisation of bone, the loss of bone mass around the implant, and the 

loosening of the prosthesis. 

The normal balance of osteoblasts and osteoclasts is unbalanced by this 

inflammatory response, leading to the resorption of bone and osteolysis, and the 

loosening of the prostheses. It is the recruitment, activation and increase in 

proliferation of osteoclasts, in addition to the reduction in osteoblast number and 

activity that causes increased bone resorption, osteolysis and eventually aseptic 

loosening causing failure of the prostheses. The exact interactions that take place 

between the osteolytic cytokines and osteocytes are unknown, although there is an 

important relationship between macrophages and osteoclasts, since they originate 

from the same hematopoietic stem cells. Macrophage colony stimulating factor and 

osteoclast colony stimulating factor play a role in the normal differentiation of 

hematopoietic stem cells into osteoclasts (Lorenzo et al., 1987, Hayase et al., 1997). 

In addition to this, particle stimulated macrophages have been found to have the 

ability to differentiate into osteoclast precursor cells directly, further disrupting the 

normal balance of osteoclasts and osteoblasts that maintains the healthy turnover of 

bone.  

Early research implicated polymethylmethacrylate cement as the source of particles 

leading to osteolysis, although it was shown that cementless hip implants generated 

more wear particles than cement-fixed implants (Gallo et al., 2002). Some modern 

femoral components use a hydroxyapatite-coated stem as hydroxyapatite stimulates 

the synthesis of bone, therefore embedding the femoral stem into the femur. This 

method of fixation has yielded some excellent results in vitro and in vivo (Kress et 

al., 2010). While bone cement can induce osteolysis, polyethylene particles are 

considered to be more important in inducing bone resorption (Ingham et al., 2000).  
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Figure 1.8 – Schematic of the postulated mechanisms behind aseptic loosening. Polyethylene 

wear particles larger than 10µm in diameter are phagocytosed by multinucleated giant cells. Particles 

smaller than 10µm are phagocytosed by macrophages, with particles between 0.2-0.8µm being 

considered the most biologically active particles. The dashed black arrows show a substance released 

from a cell, the solid black lines show that substance acting on a cell. The dashed gold lines show an 

interaction between ligand (RANKL) and receptor (RANK), and the double black lines show the cell 

changing as a result of the cytokines and interactions. This shows the importance of macrophages in 

releasing cytokines that increase the proliferation of osteoclasts. Also important are epithelial cells 

and T cells; both cells commonly seen in areas of inflammation. TNF-α, IL-1α and the interaction 

between RANKL and RANK stimulate the activation of pre-osteoclasts to osteoclasts. Prostaglandin 

E-2 stimulated the expression of RANK ligand on osteoblasts, while hematopoietic stem cells are 

stimulated by M-CSF and IL-3 to differentiate into osteoclasts. This leads an overall increase in 

osteoclasts, with a decrease in osteoblasts, therefore concluding in bone resorption and aseptic 

loosening of the prosthesis. 
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Genetic susceptibility to osteolysis as a result of UHMWPE is becoming an 

increasingly important area of focus in increasing survivorship of implants. Mullins 

et al., (2007) investigated a series of 228 Charnley total hip replacements implanted 

into patients between 1972 and 1973 and found a 30 year survival rate of 73% 

(±6.1). This demonstrated that some Charnley hip arthroplasties could last beyond 30 

years, while some would fail before 10 years (10 year survivorship of 93%) (Mullins 

et al., 2007)  It was hypothesised that the difference in success rate of the same 

bearings could be due to a patient specific reaction to wear debris, therefore inducing 

a different level of osteolysis.  Zhang et al., (2008) investigated the inflammatory 

response and level of osteoclastogenesis of three different genetic groups of mice 

when implanted with UHMWPE particles under the skin of the calvarium (a portion 

of the skull). An immunological assay was conducted using an enzyme linked 

immunosorbent assay (ELISA) for TNF-α and IL-1β. The authors found a difference 

in the levels of both cytokines between all three groups, although none were 

significantly different. The levels of osteoclastogenesis were measured using a 

leukocyte acid phosphatase staining kit, and counter stains, to identify osteolytic 

cells, termed TRAP+ cells. One type of mouse (C57BL/6J) showed significantly 

higher levels of osteoclastogenesis compared to the other two types of mouse 

(Balb/c, Kunming). This shows the variation in the immune response to polyethylene 

particles in a mouse model, therefore indicating such variation could occur in 

humans, potentially leading to a more aggressive cytokine response and 

subsequently an increased rate of osteolysis (Zhang et al., 2008). Heterogeneity in 

human donors has also been demonstrated in a previous study by Liu (2012). When 

investigating the cellular response to UHMWPE wear debris, some donors 

responded with a significantly elevated level of TNF-α release compared to the cells 

only, whereas some donors did not produce a cytokine response to the same 

treatment (Liu, 2012). The eventual aim in this area of research is to develop a test 

which can be carried out on a patient before a total hip replacement, and a patient 

‘more reactive’ with UHMWPE wear debris can be detected and therefore given an 

alternative bearing. 
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1.10 Crosslinked UHMWPE 

The importance of UHMWPE wear debris on stimulating osteolysis in patients has 

been well documented, and the wear mechanisms of UHMWPE are well understood. 

This understanding of the wear mechanisms, combined with importance of reducing 

the generation of UHMWPE wear debris from the bearing, lead to research into a 

more wear resistant UHMWPE material for use in total hip replacements.  

A study by Bragdon et al., (1996) demonstrated how the motion of articulation 

changed the wear patterns of UHMWPE, in particular how multidirectional 

articulation increased wear (Bragdon et al., 1996). Research conducted into the 

mechanisms of wear led to the hypothesis that increasing the entanglement density of 

the polymer would reduce the surface deformation during multidirectional 

articulation. Entanglement is the structural twisting or entwining of strands in a 

polymer, leading to strength at the joins between the strands. A reduction in surface 

deformation and subsequent wear was first provided by melt-annealing, but later 

radiation crosslinking was added to the method.  

Melt-annealing of UHMWPE with irradiation increased wear resistance in vivo, but 

this increase was found to be mainly due to an increase in crosslinking between the 

strands, not necessarily an increase in entanglement density. Crosslinking reduced 

the formation of surface fibrils and increased wear resistance, leading to the 

development of highly crosslinked UHMWPE. Conventional radiation doses of 

25kGy, normally used to sterilise the polyethylene, conferred moderate levels of 

crosslinking in the polymer, although it was found that higher levels of radiation, for 

example 50kGy, significantly increased the amount of crosslinking and this material 

was termed highly crosslinked UHMWPE (Kurtz et al., 1999). 

A significant increase in wear resistance has been demonstrated in UHMWPE 

treated with high levels of gamma irradiation, with a positive correlation between 

irradiation dose and wear resistance (Endo et al., 2001, Galvin et al., 2006) . This 

relationship between increasing irradiation dose and the reduction in wear of 

UHMWPE is demonstrated in Figure 1.9.  
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The effect of irradiation on the surface of the polymer was studied in vitro via the 

investigation of the disruption and appearance of surface fibrils after wear of 

irradiated and non-irradiated UHMWPE. The simulator ran for 6 million cycles, to 

simulate 6 years of wear. Compared to the surface disruption and fibrils on the non-

irradiated component, the 2.5-Mrad irradiated component surface was less disrupted 

and fibrils were less frequent and smaller (1-5μm) in length. The fibrils of the 

irradiated polymer also had a 24-fold reduced aspect ratio, and in general the surface 

disruption was greatly reduced with increased irradiation (Figure 1.10); (Yamamoto 

et al., 2001).  

 

Figure 1.9 – The wear factors of UHMWPE gamma irradiated with different doses; non-

crosslinked (0MRad), moderately crosslinked (5MRad) and highly crosslinked (10MRad). 

The graph shows the reduction in the wear factor as radiation dose increases (Galvin et al., 

2006). 



Chapter 1 

35 

 

 

Ionising radiation leads to the generation of free radicals through the cleaving of C-H 

and C-C bonds in the polymer. The cleavage of C-C bonds is termed chain scission, 

and it is this scission that allows the recombination and crosslinking of neighbouring 

strands.  However, following gamma irradiation, most of the free radicals generated 

do not reform but stay embedded in the polymer with the ability to cause oxidation 

during either storage or in vivo (Al-Ma'adeed et al., 2006). The free radicals 

generated can react with oxygen during storage or in vivo to produce peroxyradicals. 

Peroxyradicals remove a hydrogen from polyethylene chains and can themselves 

react with oxygen, therefore generating a chain reaction of radicals. Peroxyradicals 

react with hydrogen to form hydroperoxides, which then degrade into oxidation 

products such as ketones, esters and acids. These oxidation products cause further 

chain scission leading to embrittlement of the polymer. 
 

The presence of free radicals can be significantly reduced by post-irradiation 

melting. Heating highly crosslinked UHMWPE to above its meting point provides 

sufficient energy to release free radicals from the amorphous region of the polymer, 

Figure 1.10 - The worn cup surfaces at different levels of irradiation. The reduction in surface 

disruption can be seen as radiation dose increases. The non-crosslinked surface (0MRad) shows the 

most disruption, while the very highly crosslinked surface (100MRad) shows little surface disruption 

with no fibrils forming (Koval KJ, 2000, Yamamoto et al., 2001). 
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and for the free radicals to recombine, reducing the residual free radical burden (Oral 

et al., 2005, Muratoglu, 2009). However, it has been demonstrated that post-

irradiation melting reduces fatigue strength and reduces crystallinity of the polymer, 

producing a less favourable bearing material (Wang, 2006, Al-Ma'adeed et al., 

2006). 

Durasul, manufactured by Zimmer, is a clinically available highly crosslinked 

UHMWPE. This type of UHMWPE is irradiated with 95kGy gamma irradiation at 

125˚C and post-irradiation melted (Muratoglu, 2009). In a study comparing the in 

vivo wear of Durasul polyethylene acetabulum liner and a virgin UHMWPE liner 

after 5 years, the annual linear wear rate of Durasul was 55% lower than the virgin 

UHMWPE liner (Dorr et al., 2005). This is one example of a clinically available 

highly crosslinked and melted UHMWPE performing better than standard 

UHMWPE clinically.  

An alternative mechanism for reducing residual free radicals in highly crosslinked 

UHMWPE is post irradiation annealing. That is the process of heating the polymer 

to below its melting point in order to release free radicals yet still preserve the 

favourable mechanical properties of highly crosslinked UHMWPE. However, this 

process was shown to be less effective at reducing the free radical burden in 

UHMWPE compared to post-irradiation melting (Currier et al., 2010).  

Despite the low wear rates observed with highly crosslinked UHMWPE, some 

explant studies have highlighted the mechanical disadvantages of highly crosslinked 

UHMWPE. While crosslinking may increase the wear resistance of UHMWPE, the 

negative effects on the mechanical properties have been shown to be a problem with 

modern components. Bradford et al., (2004) investigated the wear of 21 highly 

crosslinked and annealed UHMWPE acetabular components explanted from patients. 

All of these components showed surface cracking, abrasion, pitting or scratches on 

the articulating surface. Surface damage was visible to the naked eye and damage to 

all the components was found to be much more severe than that seen from most hip 

simulators. The surface cracks and other major surface disruptions were attributed to 

the decreased ductility and fatigue resistance as a result of the extensive crosslinking 

(Bradford et al., 2004).  
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Tower et al., (2007) investigated four highly crosslinked Longevity
®

 UHMWPE 

acetabular cups retrieved from two patients. All of these cups showed severe 

cracking at the rim, and this was seen to be the area of most damage. These two 

studies are examples of clinically relevant failures of highly crosslinked UHMWPE. 

It seems any disruption to either the amorphous or crystalline phase in UHMWPE 

can affect the mechanical behaviour of the material.  When compared to virgin 

materials, studies have found a reduction in the mechanical properties such as 

ductility, fatigue resistance and crystallinity (Sobieraj and Rimnac, 2009). The 

overall opinion on highly crosslinked UHMWPE is positive, due to the 

improvements in wear resistance and the subsequent reduction in incidences of 

osteolysis.  However, the incidence of oxidation as a result of the free radicals 

generated during gamma irradiation was considered a fundamental problem in 

UHMWPE that needed addressing.  
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1.11 Incidence of UHMWPE oxidation 

Gamma sterilisation of UHMWPE in air was a commonly used method of 

sterilisation for early UHMWPE components, but it was found to significantly 

increase the levels of oxidation of the polymer compared with non-sterilised 

UHMWPE (Rockwood and Wirth, 2002). Retrieved hip and knee replacements from 

failed arthroplasties that had undergone gamma in air sterilisation showed a 

subsurface white band as a result of oxidation; a property not seen in non-sterilised 

or ethylene oxide-sterilised components. The white band, a concentrated area of 

oxidation, demonstrated reduced mechanical properties that occurred as a result of 

oxidation. The UHMWPE within this band was found to have significantly reduced 

elongation and ultimate tensile strength, leading to an increased brittleness. These 

properties of oxidised UHMWPE compromise the performance of the polyethylene 

in a joint and can lead to increased wear (Al-Ma'adeed et al., 2006). 

Ethylene oxide is a highly toxic gas that neutralises bacteria, viruses and spores, and 

had been adopted as a mechanism of sterilisation of prostheses by several 

companies, including Smith and Nephew, Inc (Kurtz et al., 1999). Ethylene oxide 

sterilisation was deemed a dangerous method of sterilisation by Charnley due to its 

residual toxicity; although modern evidence has shown UHMWPE has no binding to 

the gas therefore toxicity is not an issue. Ethylene oxide gas (EtO) has been found to 

be an effective method of sterilisation that does not generate free radicals and 

therefore does not compromise the mechanical properties of the polymer (Costa et 

al., 1998). One of the few drawbacks of using such a poisonous chemical is the 

infrastructure required to use the gas in this way.    

The ultimate risks of gamma radiation in air were not fully realised until the 1990’s, 

when it was recognised that a common cause of failure of implants was due to the 

generation of wear particles as a result of oxidative damage to the UHMWPE. This 

research recognised that gamma sterilisation in the presence of oxygen caused a 

cascade of chemical reactions involving and culminating in the generation of free 

radicals. Modern sterilisation techniques involve gamma sterilisation in an inert 

atmosphere, preventing the diffusion of oxygen during irradiation. In order to 

maintain an oxygen-free environment, barrier packaging is used, such as a foil and 

film packaging. The concept is simply to remove oxygen from the packaging using 
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vacuum packaging, however sometimes an inert gas, such as Argon or Nitrogen can 

be used in the packaging (Kurtz, 2009c).  

While sterilisation in an inert atmosphere was shown to reduce oxidation, the 

introduction of high levels of gamma irradiation of the polymer as a method to 

increase crosslinking renewed concerns towards the incidence of oxidation of highly 

crosslinked UHMWPE. Oxidation of UHMWPE commonly occurs after gamma 

irradiation (Sutula et al., 1995), leading to a reduction in mechanical strength, 

reduced ductility, embrittlement and component rim cracking (Kinov et al., 2010). In 

one study, gamma irradiated UHMWPE bars were found to contain subsurface allyl 

radicals, and upon exposure to oxygen, a surface layer of peroxyl radicals formed. 

Over 3 years this peroxyl radical band increased in size (Alam et al., 2004). The 

source of oxygen in this mechanism of oxidation was thought to be dissolved oxygen 

and reactive oxygen species in body fluids around the prosthesis. The synovial fluid 

of the hip and knee joints contain dissolved oxygen, and patients with osteoarthritis 

have been shown to have elevated dissolved oxygen levels around the joint, 

indicating a possible increased incidence of in vivo oxidation (Treuhaft and McCarty, 

1971, Kurtz, 2009a). 

As previously mentioned in section 1.6.2, post irradiation heat treatments were 

introduced to reduce the free radical burden following high levels of gamma 

irradiation. Clinical performance has supported the hypothesis that post irradiation 

treated UHMWPE components have increased oxidative stability, with remelted 

UHMWPE components showing reduced oxidation compared to annealed 

components, suggesting the reduction in free radicals was crucial to the reduction in 

oxidation (Rowell et al., 2010, Atwood et al., 2010).  

While the presence of free radicals was found to be vital to oxidation in vivo, Oral et 

al., (2010) demonstrated an alternative method of oxidation occurring in components 

without the presence of free radicals. There have been several incidences of highly-

irradiated and remelted UHWMPE components showing unexplained areas of 

oxidation and reduced crosslink densities after explantation. These components 

showed a correlation between time implanted and oxidation, indicating a novel 

pathway for the generation of free radicals.  This hypothesis was based on research 

by Costa et al., (2001) which demonstrated the diffusion of products from the 
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surrounding synovial fluid into UHMWPE component of hip replacements (Costa et 

al., 2001). Organic compounds were extracted from slices of the retrieved 

UHMWPE component using boiling cyclohexane, and analysed using Fourier 

transform infra-red spectroscopy (FTIR) and gas chromatography-mass 

spectrometry. The extracts from UHMWPE showed a similar composition to the 

synovial fluid from the donor, with compounds such as squalene, cholesterol, esters 

of cholesterol and fatty acids present. While this study did not look at remelted 

components, it was noted that increased crosslinking did not affect the diffusion of 

these apolar compounds. 

Oral et al., (2012) developed an in vitro model of squalene and cholesterol stearate 

absorption in highly irradiated (100kGy) remelted UHMWPE, followed by 

accelerated aging to determine if lipid absorption could affect oxidation in 

UHMWPE (Oral et al., 2012). These authors showed a significant increase in the 

oxidation index of UHMWPE exposed to squalene for 14 days compared to the non-

lipid exposed control. The depth of oxidation increased over time. Cholesterol 

stearate-doping caused no measurable oxidation. It was hypothesised that squalene 

initiates oxidation by reacting with oxygen and generating lipid peroxy radicals 

which attack polyethylene chains. It was also proposed that the initial reaction with 

oxygen is dependent on reactive oxygen species present in the synovial fluid, 

therefore the reactivity of the lipid may affect the rate of oxidation. This method of 

oxidation is independent of free radicals, indicating a change in the understanding of 

UHMWPE oxidation in vivo.  

While remelted UHMWPE relies on the high temperatures to quench the free 

radicals generated during gamma irradiation, this new method of oxidation provides 

a mechanism that could occur independent of irradiation generated radicals. This 

oxidation mechanism is a hypothesis that has not been shown to occur in vivo. 

However it is clear that oxidation can occur in vivo independent of the presence of 

free radicals prior to implantation, and is therefore immune to the post-irradiation 

heat treatments currently employed. This has therefore strengthened the appeal of 

introducing an antioxidant compound into UHMWPE which will be present 

throughout the life of the material and active in vivo. This subsequently led to the 

introduction of vitamin E as the first antioxidant compound incorporated into 

clinically available UHMWPE for use in joint replacements.   
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1.12 Vitamin E 

With concerns regarding the mechanical properties of UHMWPE after annealing or 

melting, there has been increased research into compounds that reduce the free 

radical burden of the polymer whilst protecting the favourable mechanical properties 

of UHMWPE. The appeal was to be able to reduce in vivo oxidation, while not 

reducing the fatigue resistance or fracture resistance properties that make UHMWPE 

an excellent bearing material (Gomez-Barrena et al., 2008). Vitamin E was 

considered an ideal antioxidant for use in this way, and in 2007, highly crosslinked 

vitamin E enhanced UHMWPE for use in total hip replacements became clinically 

available.  

In 1936, Evans et al., (1936) isolated an ‘alcohol resembling alpha tocopherol’ from 

the unsaponifiable constituent of wheat germ oil (Emerson et al., 1936). The same 

compound was also isolated from cotton seed oil. This was the first description of α-

tocopherol (Drummond and Hoover, 1937). 

The chemical formula of α-tocopherol is C29H50O2 and the structure is shown in 

Figure 1.11. It is described as 5,7,8-trimethyltocol and is a lipophillic compound, 

therefore providing good interactions with polyethylene (Oral et al., 2004). The 

chroman head serves as a reducing agent, donating a hydrogen atom to the oxidising 

agent and therefore stopping any further reactions with that radical. When the 

chroman head of α-tocopherol donates a hydrogen atom it becomes a tocopheryl free 

radical with the ability to combine with another free radical. This means one α-

tocopherol molecule can remove two free radicals. The long carbon-rich phytyl tail 

is what makes the molecule lipophillic, enabling it to interact with membranes, 

which is an area where vitamin E is biologically crucial.  
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Schneider (2005) described an antioxidant reaction as ‘the interception of the auto-

oxidation radical chain process’, and α-tocopherol (referred to as vitamin E from this 

point) does this by reacting with fatty acid peroxy radicals, therefore preventing lipid 

peroxidation (Schneider, 2005). Lipid peroxidation is the gradual oxidative 

degradation of the lipids, and in cells this leads to damage of the cytoplasmic 

membrane, eventually leading to necrosis. Vitamin E is considered to be a lipid 

antioxidant, scavenging free radical intermediates generated throughout the 

peroxidation of unsaturated fatty acids (Diplock, 1983). Vitamin E is positioned in 

the membrane, perpendicular to the plane of the bilayer with the hydroxyl group 

pointing to the lipid-water interface (Quinn, 2004).This is the basis of the antioxidant 

properties of α-tocopherol in cells, although α-tocopherol is also recognised as an 

anti-inflammatory molecule, broadening its range of medical applications to treat 

conditions where inflammation is important (Reiter et al., 2007).  

The importance of vitamin E in animals can be demonstrated in vitamin E-deficient 

experimental animals. Muscular dystrophy and encephalopalacia (softening of the 

brain tissue due to inflammation and or hemmorhage) were observed in vitamin E 

deficient chickens (Shih et al., 1977), and the importance of vitamin E in maintaining 

the redox state of sulphur-containing amino acids has been demonstrated. In vitamin 

E deficient rats, neuromuscular lesions developed, as well as nomorcytic anaemia 

and skin ulcers (Machlin et al., 1977).  

Deficiency of vitamin E is extremely rare in humans with the only known cases 

being due to fat malabsorption conditions. Where vitamin E deficiency does occur in 

Figure 1.11 - Chemical structure of α-tocopherol, showing the chroman head 

and phytyl tail. It is the OH group (red) that donates the hydrogen atom in order 

to receive the radical species from a free radical. 
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humans, spinocerebellar lesions develop in addition to other disfunctions (Schneider, 

2005). This deficiency can be seen in patients with autosomal neurodegenerative 

disease; ataxia with isolated vitamin E deficiency (AVED). This is the inability to 

incorporate vitamin E into very low density lipoproteins (VLDL) in the liver, an 

important step in the metabolism of vitamin E.  

Two studies by Hill et al., (2001; 2003) revealed the synergy of vitamin E with 

vitamin C and selenium. In animal models, a vitamin E and C deficient diet resulted 

in paralysis of all the limbs and difficulty breathing, culminating in mortality in 8 of 

the 21 guinea pigs just 9 days after starting the diet. In a separate study investigating 

a vitamin E and selenium deficiency, myopathy occurred and 7 of the 13 mice were 

euthanised after 30-35 days. This fatal myopathy was associated with lipid 

peroxidation in the affected muscle, a condition where absence of the antioxidant 

properties of vitamin E is apparent (Hill et al., 2001, Hill et al., 2003). 

In addition to the antioxidant properties of vitamin E, is has also been found to 

inhibit protein kinase C in smooth muscle cells. This inhibition is thought to be 

indirect, as vitamin E was seen to activate protein phosphatase type 2A in vitro, 

which could lead to the dephosphorylation and deactivation of protein kinase C 

(Ricciarelli et al., 1998). This is thought to be an important part of the anti-

inflammatory properties of vitamin E. 

Due to its anti-inflammatory properties, vitamin E has also been strongly linked as a 

protective compound against atherosclerosis. Atherosclerosis is a vascular disease 

characterised by the thickening of the artery wall due to the build-up of fatty 

residues. An important stage in early atherosclerosis is the deposition of oxidised 

low-density lipoprotein (LDL) in the arterial wall (Schneider, 2005). Specific 

receptors on macrophages recognise the LDL and phagocytose the mass, leading to 

lipid-filled foam cells and fatty streaks on the artery wall.  

Vitamin E acts in many ways to protect against the initiation of atherosclerosis. 

Firstly, vitamin E significantly reduces the monocyte-endothelial cell adhesion that 

is normally important in atherogenesis. This is achieved through the downregulation 

of the adhesion molecule ICAM-1. Vitamin E also reduces platelet adhesion and 

accumulation, an important step in the initiation of atherosclerosis (Osterud and 

Bjorklid, 2003). Vitamin E has also been found to inhibit uptake of oxidised LDL by 
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monocyte-derived macrophages (Ricciarelli et al., 2000). The scavenger receptor 

CD36 is found on smooth muscle cells and is important in uptake of oxidised LDL. 

Vitamin E applied to smooth muscle cells results in the downregulation of CD36 

mRNA, and therefore reduced expression. These examples indicate the multiple 

effects that vitamin E has on one disease.   

The range of applications of vitamin E is vast. From causing a significant reduction 

in interleukin-1β expression and therefore blocking joint inflammation and 

destruction seen in rheumatoid arthritis, to inhibiting interleukin-4 gene expression 

and therefore reducing the levels of a cytokine crucial to atopic diseases (De Bandt et 

al., 2002, Li-Weber et al., 2002). The use of vitamin E has also been implicated in 

the treatment of some forms of cancer. Multiple studies have highlighted the possible 

protective effect of vitamin E combined with selenium against radiogenic and 

chemical transformation of cells, therefore possibly resulting in cancer-protection of 

the tissue (Borek et al., 1986, Noaman et al., 2002). Cells pre-treated with vitamin E 

and selenium showed increased levels of glutathione and reduced transformation. 

The increased levels of glutathione (a natural antioxidant) indicate an alternative 

antioxidant is present, therefore allowing for the levels of glutathione to increase as it 

is not used in the reaction. However, a study on the effect of these compounds on 

prostate cancer showed no reduction in the incidence of prostate cancer, putting 

doubt on the possible application of vitamin E in this way (Hatfield and Gladyshev, 

2009).  

Research has also shown the anti-inflammatory properties of vitamin E, both in vivo 

and in vitro. In some studies the antioxidant properties have been found to be related 

to the anti-inflammatory actions. In a study by Devaraj et al., (1996), it was shown 

that the supplementation of monocytes relevant to atherosclerosis with vitamin E 

resulted in a reduction in lipid peroxidation, and a reduction in the release of reactive 

oxygen species and IL-1β. This was once again related to the inhibition of protein 

kinase C, but the action was recognised as anti-inflammatory nonetheless. The anti-

inflammatory properties of vitamin E have also been implicated in the prevention of 

cardiovascular disease through the inhibition of oxidation of low-density lipoproteins 

(Devaraj et al., 1996, Reiter et al., 2007).  
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Nonetheless, what is clear is the crucial role that vitamin E plays in the human body, 

from the cellular level right through to the function and protection of organs and 

organisms. It is the antioxidant and free radical scavenging properties of vitamin E, 

in addition to its biocompatibility, that brought about the use of vitamin E enhanced 

UHMWPE in an attempt to incorporate a highly crosslinked polymer with an 

antioxidant compound to confer oxidative stability to the material.  

 

1.13 Doping of UHMWPE with Vitamin E 

In order to generate a material where the presence of vitamin E can protect against 

oxidation, vitamin E must be evenly distributed throughout the polymer. There are 

two ways of preparing vitamin E enhanced UHMWPE; diffusion and blending 

(Figure 1.12). Diffusion involves submerging the manufactured component in a 

vitamin E solution and allowing vitamin E to diffuse into the polymer. The benefit of 

using vitamin E diffusion is that vitamin E is not present during the irradiation and 

crosslinking stage to interfere with free radicals during crosslinking; therefore the 

beneficial effects of crosslinking are not affected (Oral et al., 2007).  

The alternative method for doping of UHMWPE with vitamin E is blending. This 

involves mixing the UHMWPE resin powder with vitamin E powder prior to 

irradiation and machining into the components (Oral et al., 2005). This method 

showed reduced oxidation of the polymer in vitro compared with conventional 

gamma-sterilised UHMWPE, however it was shown that 0.1wt% and 0.3wt% 

blended vitamin E reduced the crosslink density by 17% and 47% respectively. This 

supports the hypothesis put forward by Oral et al., (2005) that vitamin E blending 

before irradiation reduced the primary free-radicals available for crosslinking, and 

therefore effectively reduced the crosslinking of UHMWPE, leading to reduced wear 

resistance compared to diffused vitamin E in highly crosslinked UHMWPE (Oral et 

al., 2005).  

Clinically, vitamin E enhanced UHMWPE is available in both blended and diffused 

materials. The clinical materials Vivacit-E
®
 (Zimmer, Warsaw, Indiana, USA) and 

eCiMa
™

 (Corin, Gloucestershire, UK) are both vitamin E blended highly crosslinked 

UHMWPE, while the E1® (Biomet, Warsaw, Indiana, USA) bearing materials is a 
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vitamin E diffused highly crosslinked UHMWPE. One of the disadvantages of 

diffused vitamin E is the difficulty in accurately controlling the even distribution of 

the vitamin E solution through the polymer. Vitamin E distribution is very well 

distributed in blended vitamin E UHMWPE due to the ability to thoroughly mix the 

polymer and vitamin E powder prior to consolidation.  

 

 

Figure 1.12 - Schematic showing the different methods of vitamin E doping of UHMWPE. The 

left side shows the blending method, where the vitamin E is added to the UHMWPE before the 

material is manufactured (*) – compression moulded or ram extrusion moulded), followed by 

crosslinking by high dose gamma irradiation. The right hand side shows the diffusion method, where 

the crosslinked material is then soaked in vitamin E solution for 2 hours at 120ºC. 
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1.14 Wear and Oxidative Stability of Vitamin E enhanced 

UHMWPE 

Several studies have been performed to compare the wear of virgin-UHMWPE (non-

doped) and vitamin E enhanced UHMWPE. Wannomae et al., (2010) compared the 

wear rate of vitamin E enhanced UHMWPE and virgin UHMWPE. The doped 

polymer was a compression moulded GUR1050 puck (Ticona), vacuum packed and 

electron beam irradiated to 100kGy. It was then vitamin E doped by diffusion by 

immersing in α-tocopherol solution for 7 hours at 120˚C to a 1.1% wt vitamin E 

content. The vitamin E enhanced pucks were then vacuum packaged and gamma 

sterilised (25-40 kGy). The negative control pucks were compression moulded 

GUR1050 (Ticona) pucks gamma sterilised at 25-40kGy. 

Wear was generated on a multidirectional pin-on-plate rig with 100% (v/v) bovine 

serum as a lubricant. The wear test ran for 2 million cycles and the wear rates were 

calculated every 0.5 million cycles through gravimetric analysis. Vitamin E 

enhanced GUR1050 UHMWPE showed a significantly reduced wear rate compared 

to virgin GUR1050 UHMWPE. Some samples were also age accelerated to 

investigate the potential antioxidant protection vitamin E might offer. Accelerated 

aging was carried out at 1 atm of air at 80˚C for 5 weeks (oven-aged). This treatment 

generated increased wear rates for oven-aged virgin UHMWPE compared to non 

oven-aged. Vitamin E enhanced UHMWPE that was oven-aged showed a 

significantly reduced wear rate compared to oven-aged virgin UHMWPE, once again 

indicating that vitamin E doping conferred wear resistance (Wannomae et al., 2010).  

The methods used by Wannomae et al., (2010) did have limitations. The study 

compared a highly crosslinked (100 kGy electron beam irradiation) vitamin E 

enhanced UHMWPE material against a virgin UHMWPE material. With the 

presence of two variables between the materials (crosslinking, vitamin E 

enhancement), it is impossible to draw conclusions about the cause of the reduction 

in wear. Previous studies have shown the introduction of high levels of crosslinking 

to UHMWPE significantly reduce the wear rate (Galvin et al., 2006), therefore it 

more likely the 100 kGy irradiation dose was the factor which led to the reduction in 

wear for the vitamin E enhanced highly crosslinked UHMWPE.  



Chapter 1 

48 

 

In a separate study, Teramura et al., (2008) used 0.3% wt and 3.0% wt vitamin E 

enhanced UHMWPE knee components to determine the delamination and wear 

resistance of vitamin E. The vitamin E enhanced components were made from 

UHMWPE GUR1050 blended with α-tocopherol where the powder was then direct 

compression moulded at 220˚C. The test components were not sterilised and the 

experiments were conducted in air using a knee joint simulator. The particles were 

isolated from the bovine calf serum lubricant at 0.5 million cycle intervals up to 5 

million cycles and the wear volume was calculated using gravimetric wear. The wear 

particles were isolated by sequential filtration using cyclopore filters and imaged by 

scanning electron microscopy of the filters. The authors showed a reduced wear 

volume for vitamin E enhanced UHMWPE compared to virgin UHMWPE, with a 

significant difference after 5 million cycles of knee simulation (Figure 1.13). In 

addition to a reduced wear volume, the wear debris from the vitamin E enhanced 

components exhibited a 5% reduction in submicron sized particles compared to 

virgin UHMWPE, although this difference was not statistically significant (Teramura 

et al., 2008). It was important to note that the study by Teramura et al., (2008) used a 

vitamin E concentration higher than used clinically in the EU and USA. This should 

be addressed in future research by in addition to using higher doses of vitamin E,  

clinically relevant vitamin E enhanced UHMWPE (0.1% w/w) should also be 

included in the study in order to generate data that is clinically relevant to all parts of 

the world.  
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A study by Oral et al., (2006) investigated the effect of vitamin E doping on the wear 

rate of UHMWPE. The non-vitamin E enhanced components were made from 

isostatically moulded GUR1050 (Ticona), packaged in argon gas and gamma 

sterilised (dose not outlined). The vitamin E enhanced components were also 

isostatically moulded GUR1050 components, annealed, packaged under argon gas 

and gamma irradiated at 85kGy to generate a highly crosslinked polymer. The 

components were then doped with vitamin E by immersion at 120˚C (duration not 

outlined). The components were then packaged under argon and sterilised (dose not 

outlined). Using a hip simulator, the authors investigated how vitamin E affected the 

adhesive and third-body wear of UHMWPE. The average wear rate of conventional 

UHMWPE was 9.54 ±0.73 mg/million cycles, and the vitamin E enhanced 

UHMWPE had an average wear rate of 0.78±0.28mg/million cycles. With the 

addition of third body bone cement particles, the 28mm diameter virgin UHMWPE 

component yielded a wear rate of 20.55 ±0.50 mg/million cycles, while the 28mm 

diameter vitamin E enhanced, irradiated UHMWPE component gave a wear rate of 

5.76 ± 0.82 mg/million cycles. With the addition of third body wear particles vitamin 

Figure 1.13 - The cumulative wear volume for virgin and vitamin E enhanced 

UHMWPE tibial components (n=3) in knee simulator testing. After 5 million cycles 

there is a significant difference in cumulative wear volume compared to virgin 

UHMWPE (Teramura et al., 2008). 
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E gave a 72% reduction in the wear rate compared to the virgin material (Oral et al., 

2006). These results are comparable to data generated for the wear rate of gamma 

irradiated and melted UHWMPE (Muratoglu et al., 2001, Oral et al., 2006). 

However, the advantage of vitamin E doping is that the melting stage can be 

ommited from the manufacture process, therefore preserving the mechanical 

properties of the polymer. Once again however, this study compared a highly 

crosslinked vitamin E enhanced UHMWPE component to a virgin UHMWPE 

material.  

A separate study showed a wear rate of highly crosslinked vitamin E enhanced 

UHMWPE to be comparable to that of a highly crosslinked remelted UHMWPE 

component, indicating the presence of vitamin E to highly crosslinked UHMWPE 

had no negative effect on the wear of the component. The aforementioned study also 

demonstrated reduced oxidation in vitamin E enhanced highly crosslinked 

UHMWPE compared to the non-vitamin E highly crosslinked UHMWPE following 

five weeks of accelerated aging (Oral et al., 2004). While the study showed the 

potential for vitamin E to protect against oxidation following irradiation, a separate 

study also showed that vitamin E in UHMWPE had the potential to protect against 

the alternative mechanism of oxidation mentioned previously, lipid initiated 

oxidation. 

Oral et al., (2012) showed vitamin E doping (blended) at a minimum dose of 0.3% 

(wt) protected against squalene initiated oxidation in vitro. However, the clinical 

antioxidant concentration of 0.1% (wt) vitamin E did not protect against squalene 

initiated oxidation. The study hypothesised that due to the irradiation following 

vitamin E doping, the antioxidant activity of vitamin E was adversely affected, as a 

result of the free radicals generated in the presence of vitamin E (Oral et al., 2012). 

While the higher dose of 0.3% (wt) may seem an attractive alternative to protect 

against this form of oxidation, it has been shown that higher doses of vitamin E 

(blended) adversely affect the crosslinking efficiency of UHMWPE. This therefore 

shows the importance of developing an optimised antioxidant UHMWPE, whereby 

the oxidative stability and crosslinking level of UHMWPE are at the optimum level 

for longevity and performance.  
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1.15 Biological Response to Vitamin E Enhanced UHMWPE 

Vitamin E is considered to be a biocompatible compound, and is required by animals 

as part of a healthy diet and for the normal function of cells. The recommended daily 

intake of vitamin E is 15 mg and this is commonly taken orally (Institute of 

Medicine, 2000). Naturally, vitamin E can be found in foods such as whole grains, 

leafy green vegetables and vegetable oils (Sheppard et al., 1993).  

The biocompatibility of vitamin E in the synovial joint of the knee and hip has been 

demonstrated by vitamin E injections in animal models, where no inflammation or 

sterile puss was observed. These experiments showed that even the high doses of 

10mg of vitamin E injected into a joint had no adverse effects. This may indicate that 

vitamin E levels released in vivo from total hip replacement components would not 

cause pathology or a toxicological response.  

In order to investigate the cellular response to vitamin E, Tipper et al., (2011) 

incubated peripheral blood mononuclear cells and U937 human histiocytes with 

vitamin E at a seeding density of 1 x 10
4
 cells per well. An ATP-Lite assay was used 

to determine the cell viability after 24 hrs in an atmosphere of 5% (v/v) CO2 in air 

(Figure 1.14). The authors determined that vitamin E was well tolerated by cells, 

only significantly affecting cell viability of U397 cells at 4mM concentration or 

greater, and peripheral blood mononuclear cells at 3mM (Tipper et al., 2011). This 

demonstrated the very low toxicity of vitamin E to human cells, as high 

concentrations were required to induce a reduction in cell viability.  
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Figure 1.14 - Showing the cell viability of U937 human histiocytes incubated with different 

concentrations of vitamin E. Significant loss in cell viability is shown by asterisk (Tipper et al., 

2011). Compared to cells only, there is no significant effect on cell viability with the addition of 

vitamin E up to a concentration of 3mM. At concentrations greater than 4mM cell viability if 

significantly affected. 

 

In addition to understanding the biological response to vitamin E, it is important to 

understand the biological response to UHMWPE; the material that the antioxidant 

compound is being added to. One aspect of the biological response to UHMWPE to 

consider is the biological response to wear particles generated from the polymer. The 

biological response to UHMWPE wear debris was previously described in section 

1.9, and the importance of wear debris in stimulating osteolysis around UHMWPE-

containing implants has been detailed. While UHMWPE is a bioinert material; the 

particles generated during wear are able to stimulate the activation of macrophages 

which then leads to an innate immune response. Previous studies have shown that 

the particle size, morphology and volume dose are crucial to the severity of the 

osteolytic response to the wear particles, with the critical particle size range for 

macrophage activation found to be 0.1 μm - 1.0 μm at a ratio of 100 μm
3
 of wear 

debris per cell (Green et al., 1998, Ingham and Fisher, 2000). The volume of 

particles generated within this critical size range has been shown to dictate the 

strength of the immune response; therefore the overall wear particle volume does not 

necessarily command the immune response. The morphology of particles has also 

been shown to affect the critical size range for biologically active particles, with 
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rounder, more even particles possessing a slightly higher critical size range for 

macrophage stimulation (Green et al., 1998).  

In terms of the overall biological response to virgin UHMWPE particles, this has 

been demonstrated in several cell types, including primary human macrophages, 

U937 histiocytic cell line, fibroblasts, chondrocytes and synoviocytes; with an 

increase in osteolytic cytokine release and inflammatory cell mediators the most 

common response to particle stimulation (Park et al., 2013, Bladen et al., 2013a). 

However, the biological response to different types of UHMWPE is also an 

important area of research, especially with the introduction of novel UHMWPE 

materials clinically, such as vitamin E enhanced highly crosslinked UHMWPEs. 

A study by Teramura et al., (2009) investigated the biological response to vitamin E 

enhanced UHMWPE particles (non crosslinked) in comparison to the biological 

response to virgin UHMWPE particles. Particles generated by a pin-on-plate wear 

simulator were cultured with human peripheral blood mononuclear cells (PBMNCs) 

at a particle volume of 100 µm³ using the agarose technique, whereby particles and 

cells are suspended in contact in agarose. Vitamin E enhanced UHMWPE at 3% 

(w/w) and 0.3% (w/w) was compared to virgin UHMWPE in terms of the cell 

viability of cells and the cytokine release. While neither UHMWPE treatment had a 

significant effect on the cell viability of PBMNCs, virgin UHMWPE wear particles 

stimulated a significantly higher level of TNF-α release from mononuclear cells 

compared with vitamin E enhanced UHMWPE, which gave a TNF-α release 

comparable to the cell only negative control. This trend was also seen for the release 

of other cytokines important to osteolysis, such as IL-1β, IL-6 and IL-8 (Teramura et 

al., 2009). This indicated that vitamin E had a significant anti-inflammatory effect 

and significantly reduced the levels of osteolytic cytokines released from monocyte 

cells in response to wear particles. However, the clinical relevance of this study to 

the EU and USA is questionable, due to the higher dose of vitamin E enhancement 

used (0.3-3% wt) compared to the clinically relevant dose used in vitamin E 

enhanced highly crosslinked UHMWPE in the EU and USA (0.1% wt).  

A separate study by Bladen et al., (2013) investigated the osteolytic cytokine 

response of PBMNCs to vitamin E enhanced (0.1% wt) UHMWPE wear debris at a 

dose of 100 µm³ per cell. The authors observed a significant reduction in the TNF-α 



Chapter 1 

54 

 

release from PBMNCs incubated with vitamin E enhanced UHMWPE compared to 

virgin UHMWPE (Bladen et al., 2013a). There were no significant differences in the 

wear and wear particle size distributions of these materials, therefore the results 

indicated the presence of vitamin E in UHMWPE wear particles exerted an anti-

inflammatory effect on the cells. Despite the promising results in the two studies 

mentioned, the vitamin E enhanced UHMWPE materials used in the studies were 

non-crosslinked. The non-crosslinked material is not a clinically relevant antioxidant 

material, with the clinically available vitamin E enhanced UHMWPE material being 

treated with high levels of crosslinking.  In addition, there is some debate as to the 

ability of vitamin E to leach from non-crosslinked and crosslinked UHMWPE, 

therefore potentially affecting the availability of vitamin E to cells.  

A separate study by Wolf et al., (2007) investigated the biocompatibility of vitamin 

E enhanced UHMWPE in terms of its cytotoxicity to mouse L929 fibroblasts and 

HF-SAR (human skin fibroblasts) compared to virgin UHMWPE. When culturing 

these cell types on surfaces composed of either the virgin or vitamin E enhanced 

UHMWPE, the authors observed no difference in cell proliferation rates. In addition, 

there was no difference in mitochondrial activity between cells grown on either 

material, with results comparable to cells cultured on the polystyrene negative 

control (Wolf et al., 2007). This study showed that both these UHMWPE materials 

had no adverse effect on cell proliferation, however, crucially there was no positive 

control included in the study, the inclusion of which would have added confidence to 

the conclusion that both these UHMWPE had no significant effect on cell 

proliferation.  

Animal studies have been performed to investigate the bone remodelling response to 

UHMWPE particles. An animal study performed by Bichara et al., (2013) used 

UHMWPE particles implanted under the skin of the calvarium of mice. Comparing a 

vitamin E enhanced highly crosslinked UHMWPE to virgin UHMWPE particles, the 

vitamin E enhanced highly crosslinked UHMWPE particles showed a significant 

reduction in osteolysis compared to virgin UHMWPE particles (Bichara et al., 2013). 

While this indicated vitamin E could offer some protection against osteolysis, the 

material tested was a post-irradiation vitamin E diffused material; therefore the 

vitamin E may be more readily available than the vitamin E blended materials such 

as Vivacit-E® and ECiMa™, which are irradiated after addition of vitamin E. 
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Despite the excellent biocompatibility demonstrated for vitamin E, along with the 

anti-inflammatory properties which have been indicated to be beneficial to reducing 

osteolysis in vivo, one study has demonstrated the ability for vitamin E to have a 

negative effect on bone mass. The study by Fujita et al (2012) compared the bone 

mass of healthy mice to mice deficient in alpha-tocopherol transfer protein; a key 

protein for the transfer of alpha tocopherol (a form of vitamin E) from the liver to 

lipoprotein. While alpha-tocopherol deficient mice displayed negative effects such as 

infertility and ataxia due to the reduced levels of serum alpha-tocopherol, they 

showed an increased bone mass due to lower bone resorption compared to the 

healthy mice. Bone formation was not affected by the vitamin E deficiency, and the 

authors concluded that alpha-tocopherol increased bone resorption by stimulating the 

fusion of osteoclasts (Fujita et al., 2012). This study presented a contrasting 

conclusion to the studies mentioned previously in terms of the potential role of 

vitamin E in osteolysis. However, the study by Fujita et al., used a mouse model, and 

while this can be a reliable model, further work is needed to investigate the effect of 

vitamin E on human bone mass. In addition, the doses of vitamin E used in the 

previous study seemed very high for the size of the animal, and the equivalent doses 

of vitamin E would not be expected to elute from a vitamin E enhanced UHMWPE 

component.  

While vitamin E enhanced highly crosslinked UHMWPEs have been shown to have 

many positive attributes, such as its oxidative resistance and potential anti-osteolytic 

properties, alternative antioxidants for use in UHMWPE are being investigated, with 

the aim to find a more suitable antioxidant to further improve this ever evolving 

bearing material.  

  

1.16 Alternative Antioxidants for use in UHMWPE 

Despite the well documented mechanical and chemical benefits of enhancing 

UHMWPE with vitamin E, there are certain drawbacks associated with both methods 

of vitamin E doping. While the negative impact of pre-irradiation blending has been 

mentioned in terms of the reduction in crosslinking efficiency caused by vitamin E, 

there are also disadvantages of post-irradiation diffusion, for example the time 

consuming nature of the process and the lack of accuracy in creating a homogenous 
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distribution of vitamin E throughout the polymer. Also, the aesthetics of the yellow-

brown material could be considered a negative attribute to a manufacturer as patient 

research and choice of replacement increases. Research into alternative antioxidants 

to vitamin E is continuing in order to improve the antioxidant properties of the 

stabilised polymer. 

Hindered amine light stabilisers have been proposed as an alternative free radical 

scavenger for use in UHMWPE in joint replacements. Chimassorb
®

 994 is a 

hindered amine light stabiliser that has been FDA approved for use (0.3 wt%) in 

polyethylene that is intended to come in contact with food, so this type of compound 

is currently being used as a biomaterial stabiliser. The mechanism of free radical 

scavenging believed to occur with Chimassorb
®
 involves the conversion of an amine 

group to a nitroxide group. One hypothesis is that the formed nitroxide can react 

with an alkyl radical, forming an aminoether, and the formed aminoether can react 

with a peroxy radical once again forming an aminoether capable of reacting again. 

This and other mechanisms for scavenging by hindered amine light stabiliser 

therefore propose that the nitroxide molecule is not consumed, but recycled to 

continue its scavenging (Figure 1.15); (Yub and Denisov, 1974).  

Gijsman et al., (2010) investigated the mechanical and oxidative effects of 

UHMWPE enhanced with three different hindered amine light stabilsers, in addition 

to a vitamin E enhanced UHMWPE. Although vitamin E enhanced UHMWPE was 

superior in terms of mechanical strength and protection against oxidation, the 

hindered amine light stabilsers were shown to protect against oxidation, and 

therefore warrant further research into these compounds (Gijsman et al., 2010).  

Lanthanides are found in the table of elements from atomic number 57 to 71, and 

some of these elements have been investigated as possible antioxidant compounds 

for the protection of UHMWPE in vivo. Europium (III) stearate was used in a study 

by Laurent et al., (2010), and was blended with GUR1050 UHMWPE powder. The 

powder was then compression moulded and gamma irradiated at 3.5kGy. The 

lanthanide-doped UHMWPE and the non-doped UHMWPE were subjected to 

accelerated aging and the oxidation index was compared. The addition of europium 

(III) stearate reduced the oxidation index, demonstrating the oxidation resistance 

invoked by the addition of this chemical. Also, the two doses of lanthanide used 
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(750ppm and 7500ppm) showed little difference in protection, an observation which 

the authors implied indicated the presence of a renewable antioxidant (Laurent et al., 

2010). In addition to antioxidant properties, europium (III) stearate has well 

documented anti-inflammatory properties in combination with a low cytotoxicity. 

These results show the potential for another antioxidant in UHMWPE although 

comparison studies with vitamin E are required to evaluate the effectiveness of 

lanthanides in the current landscape of hip arthroplasty biomaterials (Laurent et al., 

2010).  

 

 

Figure 1.15 - The structure of Chimassorb® 994, and the proposed mechanism of free radical 

scavenging. This shows the way the nitroxide is recycled while consuming two radical groups. The 

R• group represents the radical species with an unpaired electron (Gijsman et al., 2010). 

 
 

The naturally occurring polyphenols gallic acid (GA) and dodecyl gallate (DG) have 

also been investigated as potential antioxidants for their use in UHMWPE. A 

previous study investigating the oxidative stability of these novel antioxidant 

UHMWPE incorporated both GA and DG into UHWMPE at a range of doses (0.5%-

1.0%wt) and irradiation doses (50kGy, 100kGy, 150kGy). The GA and DG 
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enhanced UHMWPEs showed comparable oxidative stability to vitamin E enhanced 

UHMWPE following accelerated aging. However, while the presence of vitamin E 

was shown to hinder crosslinking following irradiation, the polyphenol compounds 

had no negative effect on crosslinking. It was believed this preservation of 

crosslinking was due to the increased stability in GA and DG compared to alpha 

tocopherol following gamma irradiation. Also, it was understood that the ability of 

alpha tocopherol to become a tocopheryl radical contributed to the reduction in 

crosslink density of the polymer following irradiation, compared to the polyphenol 

enhanced materials. The findings of the previous study suggests polyphenols could 

increase the efficiency of crosslinking of UHMWPE while still maintaining the 

oxidative stability found with vitamin E enhanced UHMWPE. Research into new 

and improved antioxidant compounds has continued, with the aim to develop an 

oxidative resistant, wear resistant UHMWPE. Following the introduction of vitamin 

E enhanced highly crosslinked UHMWPE; the first alternative antioxidant 

UHMWPE for use clinically was developed, incorporating a hindered phenol 

antioxidant into UHMWPE for use in the knee.  

 

1.17 Hindered Phenols 

Hindered phenols are phenolic stabilsers, and are recognised as effective antioxidant 

compounds. They have the ability to block chain reactions of free radicals due to 

their ability to donate hydrogen atoms. In addition, due to the ability of their 

electrons to be in several places they can produce several mesomeric forms and 

therefore remain stable (Figure 1.16).  

The phenol group is the crucial part of the molecule, as highlighted in Figure 1.16. 

Pentaerythritol Tetrakis (3-)3,5-di-tert-butyl-4-hydroxyphenyl) propionate) (referred 

to as hindered phenol antioxidant; HPAO) is an example of a hindered phenol 

compound being used in UHMWPE for total joint replacement components, with the 

chemical structure of HPAO shown in Figure 1.17. There are four phenol groups on 

each molecule of HPAO, indicating the antioxidant potential of the chemical. This 

hindered phenol compound has recently been incorporated into the first non-vitamin 

E antioxidant UHMWPE material; AOX
™

 (Green et al., 2013).  
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Figure 1.16 - A phenol molecule reacting with a free radical and example of the reactions that 

take place. The diagram on the right hand side of the red-highlighted arrow shows the different 

positions the radical species can reside. 

http://www.specialchem4adhesives.com/tc/antioxidants/index.aspx?id=hinderedphenols 

 

  

Some hindered phenol compounds have been used in orthopaedic implant devices 

for decades (Wroblewski et al., 2005). Studies have recently been conducted on the 

mechanical properties of hindered phenol doped UHMWPE. Narayan et al., (2010) 

investigated UHMWPE doped with three different hindered phenols; Pentaerythritol 

Tetrakis (HPAO; Figure 1.17), Octadecyl-3,5-di-tert-butyl-4-hydroxycinnamate 

(HPAO2) and Isooctyl-3,5-di-tert-butyl-4-hydroxycinnamate (HPAO3), and a non-

enhanced UHMWPE was used as a negative control. All the specimens were 

prepared from GUR1020 (Ticona) powder compression moulded (0.3% w/w) and 

gamma irradiated at 10 MRad.  

To investigate the oxidation index, carbonyl absorption was carried out as an 

indicator of the oxidation potential of a material. Due to the hindered phenol ester 

linkages, carbonyl absorption was initially higher in the hindered phenol-doped 
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UHMWPE than in the non-doped UHMWPE, although over 10 weeks the 

antioxidant UHMWPE remained almost constant, while the non-doped UHMWPE 

demonstrated an increasing oxidation index. These studies demonstrated that 

hindered phenols provided effective antioxidant compounds when they were added 

to UHMWPE (Narayan et al., 2010). 

Narayan et al., (2010) also showed inefficient crosslinking and differing levels of 

carbonyl absorption between the different hindered phenols. This was thought to be 

due to the large molecules affecting the efficiency of forming crosslinks. The HPAO 

enhanced UHMWPE, the largest molecular antioxidant of the three materials, gave 

the lowest incidence of crosslinking of UHMWPE, supporting this that the size of 

the antioxidant molecule can affect the crosslinking efficiency. Overall this study 

showed that the use of hindered phenols in UHMWPE was advantageous for the 

protection of UHMWPE from oxidation (Narayan et al., 2010). 

 

      

Figure 1.17 - Molecular structure of Pentaerythritol Tetrakis (HPAO) 

http://www.chemblink.com/products/6683-19-8.htm 

 

 

Certain hindered phenols have been found to provide excellent oxidation stability 

and therefore eliminate the need for post-irradiation melting. Irradiated hindered 

phenol-enhanced UHMWPE show better tensile strength and fatigue resistance 

compared to post-irradiation melted UHMWPE (King, 2010).  
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A study by Bladen et al.,  (2013) investigated the cytotoxicity of HPAO by 

incubating U937 human histiocytes and human peripheral blood mononuclear cells 

with HPAO at a seeding density of 2 x 10
4
 cells per well, in 5% (v/v) CO2 in air. It 

was found that HPAO was toxic to U937 cells at a concentration of 50μM, and toxic 

to peripheral blood mononuclear cells at 156μM. This demonstrated the high toxicity 

of HPAO, and compared to vitamin E (4mM toxic to U937 cells), HPAO was 

significantly more toxic to U937 cells in vitro. Interestingly, the authors found that 

HPAO conferred some protection to cells against solvents such as ethanol and 

dimethyl sulfoxide. This is an area where more research is required in order to 

further understand the biocompatability of hindered phenols in UHMWPE 

components (Bladen et al., 2013b). The toxicity of hindered phenols and other 

antioxidants should be thoroughly investigated when considering these compounds 

as antioxidant additives for orthopaedic implants.  

 

1.18 Aims 

The development of UHMWPE as a bearing material in total hip replacements has 

led to the current highly crosslinked UHMWPE material used clinically today. This 

low wearing material has performed well in vivo, however the generation of free 

radicals and oxidative instability have been seen as concerns with this material, with 

previous attempts to reduce the free radical burden having negative effects on the 

mechanical properties of UHMWPE.  

This has led to the introduction of antioxidant UHMWPE in total hip replacements, 

to maintain the oxidative stability of UHMWPE, and remove the need for post-

irradiation heat treatments which have been shown to have a negative effect on the 

mechanical performance of the material. In 2007, a vitamin E enhanced highly 

crosslinked UHMWPE became available clinically for use in total hip replacements, 

with hindered phenol enhanced highly crosslinked UHMWPE available in 2012 for 

use in the knee. Despite these materials being clinically available, not much is 

known in terms of the biological response to wear debris generated from these highly 

crosslinked antioxidant materials. Wear debris generated from UHMWPE has been 

shown to be critical to the biological response in vivo, leading to the osteolytic 

immune response that results in aseptic loosening of the prosthesis and failure. With 
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the introduction of vitamin E to UHMWPE, it was hypothesised that alongside its 

antioxidant properties, the well documented anti-inflammatory properties of vitamin 

E could have an effect on the immune response to UHMWPE wear debris, 

potentially reducing the process of aseptic loosening.  

Previous studies have investigated the biological response to vitamin E enhanced 

UHMWPE (non crosslinked), however those studies have not used the clinically 

relevant highly crosslinked materials, both in terms of the antioxidant materials and 

the non-antioxidant control materials. This study aims to use both these highly 

crosslinked UHMWPEs to determine the effect of vitamin E addition to highly 

crosslinked UHMWPE. Alongside the immune response to this wear debris, not 

much is understood in terms of the deeper mechanisms that occur in the cell in 

response to antioxidant UHMWPE, for example the oxidative stress in response to 

wear debris.  

In addition to vitamin E, the hindered phenol enhanced highly crosslinked 

UHMWPE has recently been introduced clinically in knee replacements. This is a 

relatively untested material in terms of the biological response to wear debris, 

however this is an important aspect of predicting the performance of a novel 

UHMWPE material.  

 

The primary aims of this study were to investigate the wear performance, wear 

particle size distributions and biological activity, in terms of the osteolytic cytokine 

release and production of reactive oxygen species, of two novel antioxidant 

UHMWPEs; vitamin E enhanced highly crosslinked UHMWPE, and hindered 

phenol enhanced highly crosslinked UHMWPE.  

The main objectives of this study were: 

1. To determine the effect of crosslinking and antioxidant enhancement on the wear 

factor of UHMWPE  

2. To investigate the wear particle size distributions for the antioxidant UHMWPE 

materials, to determine the effect, if any, of antioxidant enhancement and 

crosslinking on the particle size and volume distribution. 
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3. To determine the biological response to clinically-relevant wear debris from both 

antioxidant UHMWPE materials using in vitro cell culture in terms of TNF-α release 

from PBMNCs.  

4. To investigate the production of reactive oxygen species in PBMNCs in response 

to UHMWPE wear debris from vitamin E enhanced highly crosslinked UHMWPE 

wear debris 
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Chapter 2 

Materials and Methods 

 

All the materials used in this study are shown in Appendix A. The chemicals and 

reagents used in this study, along with their manufacturer, are shown in Table A-1. 

The equipment used in this study, along with their manufacturer, is shown in Table 

A-2. Consumables and plastic ware used in this study are shown in Table A-3.  

 

2.1 Wear Testing 

2.1.1 UHMWPE Materials  

The following polyethylene materials were tested; GUR1050 virgin UHMWPE, 

GUR1050 vitamin E enhanced UHMWPE, GUR1050 vitamin E enhanced 

UHMWPE (5 MRad gamma irradiation), GUR1050 vitamin E enhanced UHMWPE 

(10 MRad gamma irradiation), GUR1050 Marathon
®
 UHMWPE (5 MRad gamma 

irradiation), GUR1050 highly crosslinked UHMWPE (10MRad gamma irradiation), 

GUR1020 virgin UHMWPE, GUR1020 hindered phenol antioxidant (HPAO) 

enhanced UHMWPE and GUR1020 HPAO enhanced highly crosslinked UHMWPE 

(8 MRad gamma irradiation). All antioxidant compounds were blended with 

UHMWPE prior to manufacture unless stated otherwise. The vitamin E enhancement 

dose was 1000ppm while the HPAO was added at a dose of 700ppm. The hindered 

phenol antioxidant material used in this study was called AOX
™

 by the manufacturer 

and will be referred to as AOX
™

 from this point. The UHMWPE materials and their 

abbreviations are shown in Table 2.1.  
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Table 2.1 - UHMWPE’s tested in this study, detailing the name, resin type, gamma irradiation dose applied, antioxidant added (if any), the supplier and the 

abbreviation used throughout the study 

Material Resin Gamma Irradiation Dose Antioxidant Supplier Abbreviation 

1050 Virgin  GUR 1050 0 MRad none DePuy Synthes® 1050 Virgin 

1050 Marathon® GUR1050 5 MRad none DePuy Synthes® 1050 Marathon 

1050 Highly Crosslinked 

UHMWPE 
GUR1050 10 MRad none DePuy Synthes® 1050 HXL 

1050 Vitamin E enhanced 

UHMWPE 
GUR1050E 0 MRad Vitamin E 1000 ppm MediTech® Medical Polymers 1050 Vit E 

1050 Vitamin E enhanced 

UHMWPE + 5 MRad Irradiation 
GUR1050E 5 MRad Vitamin E 1000 ppm MediTech® Medical Polymers 1050 Vit E 5 

1050 Vitamin E enhanced 

UHMWPE + 10 MRad Irradiation 
GUR1050E 10 MRad Vitamin E 1000 ppm MediTech® Medical Polymers 1050 Vit E 10 

1020 Virgin  GUR1020 0 MRad none DePuy Synthes 1020 Virgin 

1020 Hindered Phenol enhanced 

UHMWPE 
GUR1020 0 MRad Hindered Phenol DePuy Synthes 1020 AOX 

1020 Hindered Phenol enhanced 

UHMWPE + 8 MRad 
GUR1020 8 MRad Hindered Phenol DePuy Synthes 1020 AOX 8 
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2.1.2 Methods 

In order to determine the wear factor of each material, four pins of each UHMWPE 

material were tested using a simple configuration six station pin-on-plate articulating 

wear simulator against smooth high-carbon content (0.27% w/w) cobalt-chromium 

(CoCr) plates to simulate the conditions of a metal-on-polyethylene hip arthroplasty. 

By measuring the wear from each pin gravimetrically over approximately 500,000 

cycles, the wear factor for each UHMWPE was calculated (n = 4).  

 

2.1.2.1 Machining and Preparation of UHMWPE Pins 

The polyethylene pins for 1050 Vit E, 1050 Vit E 5 and 1050 Vit E 10 were 

machined in house from bar stock supplied as a gift by MediTech
®
 Medical 

Polymers. The 1050 Virgin, 1050 Marathon, 1050 HXL, 1020 Virgin, 1020 AOX 

and 1020 AOX 8 pins were machined in house from bar stock supplied by DePuy 

Synthes. All pins were machined to specific dimensions. Pins had a 10mm contact 

face, with a pin diameter of 11.95mm and a depth of 12mm, as shown in Figure 2.1.  

All pins were engraved with a number on the non-contact face of the cylinder to 

allow for identification and continuity of orientation in the test rig. All pins were 

soaked for at least 14 days in deionised water at room temperature to ensure that the 

mass change due to moisture absorption had reached a stable point. Pins were 

handled using tweezers and/or clean gloves from this point to prevent grease and 

debris coming into contact with the pins. 
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Figure 2.1 – Diagram showing the dimensions of the pins used in the 6 station pin-on-plate wear 

tests and the aseptic single station pin-on-plate wear rig. The measurement ‘D’ refers to the 10 

mm diameter of the contact face.  

 

2.1.2.2 Machining of CoCr Plates 

Plates were manufactured in house from wrought cobalt-28chromium-6molybdenum 

high carbon-content alloy (0.27% w/w) (ASTM: F 1537 – 08) used for surgical 

implants.  The dimensions of the plates are shown in Figure 2.2. For wear testing 

using the six station pin-on-plate wear simulator, plates were manufactured to have a 

smooth contact face to a mean Ra value of ≤0.01 µm. For the single station wear 

simulator plates were manufactured to have a rough contact face to a mean Ra 0.7-

0.9 µm.  

 

2.1.2.3 Surface Measurement of CoCr Plates 

The CoCr plate surface roughness was measured using the Form Talysurf 120L 

contacting surface profilometer which is housed in a temperature controlled 

laboratory. The measurement tracks taken are shown in Figure 2.2A. Several tracks 

were taken on the plate; two along the x axis (p1, p2) over a 10mm distance, 10mm 
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from the edge of the plate and 5mm apart, and an additional two tracks perpendicular 

to these (p3, p4). To calculate the surface roughness of each plate, a mean was taken 

of the four measurements.  This was repeated for each plate that was tested in the six 

station pin-on-plate wear simulator and the single station aseptic wear simulator.  

 

 

Figure 2.2 – Schematic showing A) the tracks (blue arrows) measured by the Form Talysurf 

120L to calculate the mean surface roughness of a B) standard CoCr plate. A mean of the four 

measurements was taken to determine the representative surface roughness. Plates had standard 

dimensions of 86 mm length with a raised surface 57 mm in length, 25 mm width and a 13 mm total 

height (5 mm step) . Measurement tracks were 10 mm long traces and were taken 10 mm from the 

edge of the plate and then 5 mm apart. Tracks 10 mm in length were then taken perpendicular to these 

tracks, also 5 mm apart.  

 

2.1.2.4 Weighing of UHMWPE Pins  

Prior to weighing, UHMWPE pins were cleaned using household detergent, rinsed in 

distilled water, then sonicated in 70% (v/v) iso-propanol for 10 min, and dabbed dry 

A 

B 
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using medical wipes. Pins were stored at 21°C ± 2°C for 72 hours before weighing. 

Immediately prior to weighing, pins were placed beneath an ion streamer for 10 min 

to remove any static build up. Pins were weighed using an AT21 Comparator digital 

microbalance (accurate to 1 µg) to give five measurements (±5 µg) with a mean 

weight being calculated for each pin. Tweezers were used to handle the pins to avoid 

contamination with dust or grease. 

  

2.1.2.5 Preparation of 25% (v/v) Bovine Serum 

Bovine serum was defrosted in a water bath at 37ºC for 30 min. A volume of 500 ml 

of serum was mixed with 1500 ml of 0.3% (w/v) sodium azide into a container. This 

solution was aliquoted into 500 ml containers and stored at -20˚C until required for 

wear testing. 

  

2.1.2.6 Assembly of the Six Station Pin on Plate Simulator 

2.1.2.6.1 Preparation of the Linear Bearing Trays 

A six station pin-on-plate reciprocating wear test simulator was used to determine 

the wear factor of the UHMWPE pins against the CoCr plates. The stroke length was 

set at 28 mm with a rotation of ± 30˚, and a load of 160 N at a reciprocating speed of 

1 Hz. The tests were performed in 25% (v/v) bovine serum which was prepared as 

described in section 2.1.2.5. The calibration of the stroke length and reciprocating 

speed was performed by a lab technician.  

 The components of the wear test rig consisted of:  

 12 stainless steel screws (large) 

 12 stainless steel screws (small, short) 

 12 stainless steel screws (small, long) 

 6 stainless steel wells 

 6 stainless steel bath inserts 

 6 polymer baffles 

 6 stainless steel toothed racks 

 6 polymer gear wheels 
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 4 bridge sections (covering 6 stations (2 double, 2 single)) 

 6 ball bearing assemblies 

 6 collets (pin holders) 

 6 pin holder outer sleeves 

 6 threaded nuts 

 6 spacer pins 

 6 connecting rods 

 6 cantilever arms 

 6 weights 

 6 pivot pins 

 6 split pins 

 6 plastic sheets  

 

The removable components of the 6 station pin-on-plate wear rig are shown in 

Figure 2.3. Additional equipment for the assembly of the wear rig was as follows: 

 PVC tape 

 Scalpel 

 Four Allen keys to fit the appropriate screws  

 Spirit level 

 Adjustable wrench 
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Figure 2.3 – Removable components of the six station pin-on-plate wear rig. 

 

The appropriately numbered bath insert was placed in the correspondingly numbered 

stainless steel well. The appropriately numbered plate was then screwed into the bath 

insert using the large screws. The number on the plate was used to ensure correct 

orientation of the plate in the bath, and the plate-station pairing was noted.  

The correct baffle was then placed into the bath, secured and sealed with two layers 

of PVC tape to prevent serum leaking from around the baffle. The screw holes on the 

side of the well were exposed by cutting the PVC tape away from these sections 

using a scalpel. The toothed rack was then secured onto the side of the well using 

two small screws. The assembled bearing tray is shown in Figure 2.4. The bearing 

tray was then placed onto the linear bearing platform with the plastic sheet 

underneath, and secured using four of the small-long screws. This was repeated for 

each bearing tray, and the plate-tray-station number allocation was noted.  
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2.1.2.6.2 Preparation of the Pin Holders 

A stainless steel spacer was placed in the collet, followed by the test pin to ensure 

that at least 5mm of the test pin was protruding from the holder. The collet was then 

placed in an outer sleeve, correctly aligning the key and the taper. The pin holder 

was threaded through the hole in the bridge and a threaded nut screwed onto the end 

(top) of the pin holder, therefore securing the pin in the collet.  

The gear wheel was attached to the pin holder below the bridge. The fully assembled 

pin holder is shown in Figure 2.5. With the pin holder now complete, the bridge-pin 

holder complex was slotted into the support brackets spanning the trays. The pin-

station-holder number allocation was noted. The bridge was secured using the 

clamps, and the gear wheel was slotted neatly into the toothed rack. The pins were 

checked to ensure contact with the plates, and that the threaded nut was not in 

contact with the bridge. This was repeated for each station. 

 

Figure 2.4 – A bird’s eye view of the assembled linear bearing tray and bath with 50 ml of 

25% (v/v) bovine serum. The bottom of the image shows the front of the linear tray, where the 

connecting rods slot in to attach to the tray. The toothed rack is shown on the left hand side of the 

image. The black PVC tape used to seal the bath is also shown.  
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2.1.2.6.3 Final Assembly of the Test Rig 

Using a syringe, approx 50ml of 25% (v/v) bovine serum was added to each bath, 

ensuring the level of serum was approximately 2-3mm above the surface of the plate. 

The connecting rods were screwed into place, connecting the scotch yolk mechanism 

to the trays. The appropriately numbered cantilever arms were installed into the 

appropriate stations, and the bearing assemblies were installed. The pivot pin on the 

cantilever arm was secured using a split pin, and the cantilever arms were levelled 

using a spirit level. The ball bearing assemblies were placed on top of the threaded 

nut to provide a point for the load to be smoothly applied through.  

The counter was reset, and the motor turned on. The speed was adjusted so the rig 

performed 60 cycles per minute (cpm), and the weights were placed in the correct 

position on the cantilever arm to give a load of 160 N.  Alongside the pins being 

tested were also soak control pins of the same material, providing a control value for 

the mass change during soaking. These pins were prepared according to section 

2.1.2.4 and submerged in 25% (v/v) bovine serum in a 50 ml container open to the 

Figure 2.5 – The left hand image shows an exploded view of the components that make up the pin 

holder. The right image shows the fully assembled pin holder, showing the pin protruding from the bottom 

and the cog positioned above the pin. The pin holder was composed of the following components; A – 

Threaded nut; B – Bridge section; C – Pin holder outer sleeve with polymer gear wheel attached; D – Collet 

(pin holder); E – Spacer pin. The fully assembled image shows a 1050 Vit E 10 UHMWPE pin in place, 

protruding from the bottom of the pinholder. 

A 

B 

C 

E 

D 
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air. The control pins were placed near to the centre of the rig to ensure the same 

conditions as the test specimens. The Perspex lid was then replaced on top of the rig. 

The fully assembled wear rig is shown in Figure 2.6. 

The rig was checked at least twice daily to ensure all components were running 

correctly and that the lubricant level was maintained. When the lubricant needed 

replenishing, 0.03% (w/v) sodium azide was added using a syringe.  

 

2.1.2.7 Dismantling the Wear Test Rig 

After approximately 250,000 cycles, which normally took approximately four days, 

the wear rig was stopped by first removing the weights from each station, followed 

by turning down the speed until the wear rig stopped, and the motor was turned off. 

The number of cycles was noted in order to calculate the sliding distance of the pins. 

The cantilever arms were removed and put back on their appropriate rack. 

The connecting rods were unscrewed, disconnecting the trays from the scotch yolk 

mechanism. The ball bearing assemblies were removed and each bridge was released 

by unscrewing the clamps. The threaded nut was carefully unscrewed, allowing for 

the pin holder and polymer gear assembly to be removed from the bridge. The pin 

and spacer were removed from the collet onto medical wipes to protect the pin from 

grease and debris, and the collet was removed from the pin holder.  

Each bearing tray was removed from the linear bearing platform, and the toothed 

racks, PVC tape, baffles and bath inserts removed from the well. The serum was then 

extracted from the bath inserts by carefully decanting into a suitably sized container. 

Using a syringe, the remaining particles were collected by washing out the bath with 

approximately 15 ml 0.03% (w/v) sodium azide. This method of serum extraction 

was used to prevent cross-contamination of samples. Serum was stored in a labelled 

container at -20˚C until required for particle analysis. The plates were removed from 

the bath, taking care not to damage the surface when unscrewing.  
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Figure 2.6 – The fully assembled 6 station pin-on-plate wear rig.  The top image shows 

one individual station with the pin submersed in 25% (v/v) bovine serum. The bottom image 

shows the six stations, each with a cantilever arm and a weight situated to apply 160N of 

force.  
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2.1.2.8 Cleaning the Components and Specimens 

After a week of wear testing, all the components and test specimens were washed 

thoroughly to remove any traces of serum. Immediately after the test, all the 

removable wear rig components and test specimens (pins, plates) were washed in 

household detergent solution. A hard bristled brush was used to scrub all the metal 

parts. After thorough cleaning, all the parts were rinsed with distilled water to 

remove the detergent. 

Following this stage, all the components and specimens were then washed in 1% 

(v/v) Trigene solution for 20 min and then rinsed with distilled water. The wear rig 

components were then dried in air, while the pins, plates and plate-screws were 

placed in a sonicating water bath in 70% (v/v) iso-propanol solution for 10 min. The 

test specimens were then dabbed dry using medical wipes. The plates were wrapped 

in medical wipes ready for the following wear test, while the pins were stored in a 

petri dish for at least 48 hrs in the temperature controlled measurements laboratory. 

The pins were then weighed as described in section 2.1.2.4. The mass of each pin 

after two weeks of wear testing (approx 500,000 cycles) was subtracted from the 

starting weight of each pin to calculate the mass loss, and a mean mass loss was 

taken for the four pins. A mean volume loss and wear factor for each material was 

then determined.   

 

2.1.2.9 Calculating the Wear Factor 

The 6 station pin-on-plate wear rig was used to simulate the motion and forces 

experienced in the hip joint. This experiment was designed to run for a minimum of 

500,000 cycles. The mass loss of each pin was calculated gravimetrically using an 

AT21 comparator microbalance. A mean of five measurements (within 0.00001g of 

each other) before and after testing were obtained and the soak control mass gain 

subtracted from the final mass.  

 In order to calculate the wear factor, the following equation was used: 

 

𝑊𝑒𝑎𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝐿𝑜𝑠𝑠

𝐹𝑜𝑟𝑐𝑒 ×  𝑆𝑙𝑖𝑑𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

Equation 1 
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 This calculation was used to normalise the wear volume obtained from a 

wear test by including the force applied and the total sliding distance travelled by the 

UHMWPE pin component. The equation can be adjusted to allow for the input of 

results obtained in this report: 

 

𝐾 =  

(
𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠 (𝑔)

𝑈𝐻𝑀𝑊𝑃𝐸 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘𝑔𝑚−3) × 10−6⁄ )

𝐹𝑜𝑟𝑐𝑒(𝑁) × (2 × 𝑆𝑡𝑟𝑜𝑘𝑒 𝐿𝑒𝑛𝑔𝑡ℎ(𝑚𝑚) × 10−3 × 𝑐𝑦𝑐𝑙𝑒𝑠)
 

  

This equation was then adjusted for the parameters in the 6 station pin-on-plate wear 

test so that only the mean mass loss and number of cycles were required. This 

simplified equation is shown below, with the input variables highlighted in red: 

 

𝐾 =  

𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠 (𝑔)
0.934 × 10−3⁄

160𝑁 × (2 × 28𝑚𝑚 × 10−3 × 𝑐𝑦𝑐𝑙𝑒𝑠)
 

 

Calculating the wear factor for each material allowed for comparison of the wear 

performance of each material. This equation yielded a wear factor for each pin, and a 

mean wear factor was taken for each material (n=4). The mean wear factors for all 

the UHMWPE tested were plotted onto a graph, with error bars showing ± 95% 

confidence level. Mean wear factors were compared and any significant changes in 

the wear factor were determined using the student tukey method.  

 

 

 

Equation 2 

Equation 3 
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2.2 Generation of Wear Particles under Aseptic Conditions for Cell 

Culture Studies 

In order to replicate the interaction between macrophages and UHMWPE particles 

that occurs during osteolysis, and to then determine the cytokine response to these 

particles, sterile endotoxin-free wear particles were required for culture with primary 

macrophages. In order to generate these wear particles, a single station pin-on-plate 

wear simulator was used under aseptic conditions and housed in a class II safety 

cabinet. This involved the sterilisation of all the simulator components, including the 

pin, plate, and 25% (v/v) bovine serum lubricant, and the use of aseptic technique, to 

generate a volume of sterile, endotoxin free wear particles for culture with PBMNCs.  

 

2.2.1 Machining and Preparation of UHMWPE pins 

The pins tested on the single station aseptic wear simulator were machined and 

prepared as described in section 2.2.1.1. The UHMWPE materials from which sterile 

particles were generated from are outlined in Table 2.2. 

 

2.2.2 Machining and Preparation of CoCr plates 

Plates were manufactured in house from wrought Cobalt-28Chromium-

6Molybdenum high carbon-content alloy used for surgical implant (carbon content 

was 0.27% (w/w) and therefore can be specified as high-carbon according to ASTM: 

F 1537 – 08). Plates were scratched to produce a ‘rough’ surface, with a target Ra of 

0.07-0.09µm. 
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Table 2.2 - UHMWPE materials from which sterile wear particles were generated using the 

aseptic single station pin-on-plate wear simulator. 

Name Resin 
Gamma Irradiation 

Dose 
Antioxidant Supplier 

Virgin 1050 GUR 1050 0 MRad none DePuy Synthes 

Highly Crosslinked 

1050 UHMWPE 
GUR1050 10 Mrad none DePuy Synthes 

Vitamin E enhanced 

UHMWPE + 10 

MRad 

GUR1050 10 MRad Vitamin E 1000 ppm 
MediTech® Medical 

Polymers 

Virgin 1020 GUR1020 0 MRad none DePuy Synthes 

AOX
™

 enhanced 

UHMWPE + 8 Mrad 

GUR1020 8 MRad 

AOX
™

 

(Pentaerythritol 

Tetrakis) 

DePuy Synthes 

 

2.2.3 Surface Measurement of CoCr Plates 

The surface roughness of the CoCr plates was measured as outlined in section 

2.2.1.3. The plate dimensions and measurement tracks are shown in Figure 2.2.  

 

2.2.4 Weighing of UHMWPE Pins  

To ensure there were no delays during assembly of the wear simulator, two pins for 

each material were prepared. Pins were weighed as outlined in section 2.1.2.4 and 

following a wear test, mean wear factors were calculated from n=4 measurements.  

 

2.2.5 Preparation of the UHMWPE Pins 

After weighing, the pins were rinsed in warm water, scrubbed using a soft toothbrush 

and household detergent and rinsed in deionised water three times. After rinsing, the 

pins were submersed in 4% (v/v) sodium hypochlorite in a universal tube and placed 

on a shaker at 120 rpm for 10 min. Using aseptic technique with a Bunsen burner; 

the pin was transferred to 10 ml nutrient broth and was incubated at 37°C for 48 
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hours with shaking to test for bacterial contamination. The broth was checked for 

bacterial contamination (clouding of the medium indicated contamination) and if 

there was none, the pins were transferred to 70% (v/v) ethanol using aseptic 

technique. The pins were stored in ethanol for a maximum of two weeks but usually 

used in the wear simulator within four days of preparation. 

 

2.2.6 Preparation of Lubricant 

The serum lubricant was made up either the day before or on the first day of the 

experiment. Particles for cell culture were generated in a lubricant that consisted of 

RPMI 1640 medium containing 25% (v/v) foetal bovine serum. This was prepared in 

a class II safety cabinet to ensure sterility. Five 50 ml aliquots of sterile, pyrogen free 

ultrapure water were also prepared in the class II laminar flow cabinet to be used in 

the syringe driver system during the experiment.  

 

2.2.7 Assembly of the Single Station Pin-on-Plate Wear Simulator 

2.2.7.1 Preparation and Sterilisation of the Components of the Single Station 

Pin-on-Plate Wear Simulator 

A single station pin-on-plate reciprocating wear test simulator was used to generate 

particles from the UHMWPE pins under aseptic conditions. The stroke length was 

set at 28mm with a rotation of ± 30˚, and a load of 160N at a reciprocating speed of 

1Hz. The tests were performed in RPMI 1640 medium with 25% (v/v) bovine serum, 

which was prepared as described in section 2.1.2.5. The calibration of the stroke 

length and reciprocating angle was performed before testing by a lab technician.  

 The components of the wear test rig consisted of: 

 1 bath with toothed rack attached 

 1 rough CoCr plate (Ra 0.07-0.09 µm) 

 1 medium spacer 

 1 bridge 

 1 pin holder with cog attached 

 1 pin holder fastener 
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 1 collet 

 2 long screws 

 2 short screws 

 1 tweezers 

 2 Allen keys 

 

2.2.7.2 Sterilisation of Wear Simulator Components and Class II Cabinet 

Prior to the day of set up of the simulator, all the removable rig components 

described above were cleaned thoroughly using household detergent and a 

toothbrush, and then soaked in 1% (v/v) Virkon for 20 min. Finally the components 

were sonicated in 70% (v/v) iso-propanol for 10 min. The components were dried at 

room temperature for 20 min. The bath, plate and screws were loosely assembled 

and wrapped in aluminium foil, and all other components (excluding the bridge) 

were individually wrapped in aluminium foil. These components were then sterilised 

by heating at 190°C for 3 hours in a hot air over. The bridge section contained a 

plastic insert so could not be sterilised in the oven. This component was therefore 

thoroughly cleaned as described above and cleaned by spraying with 1% (v/v) 

Virkon followed by 70% (v/v) ethanol immediately before placing in the class II 

safety cabinet. The day before the experiment commenced, the class II safety cabinet 

was thoroughly cleaned using 1% (v/v) Virkon and then 70% (v/v) ethanol. The UV 

light was then turned on for 30 min after cleaning to ensure sterility.  

 

2.2.7.3 Assembly of the Single Station Pin-on-Plate Wear Simulator 

The class II safety cabinet was run on fan level two throughout setting up and 

running of the simulator. The operator wore a clean, howie style lab coat at all times. 

The class II safety cabinet was once again thoroughly cleaned using 1% (v/v) Virkon 

followed by 70% (v/v) ethanol prior setting up the simulator. Aseptic technique was 

followed whereby gloves and all equipment that was put into the cabinet were 

sprayed thoroughly with 70% (v/v) ethanol. Once all components were in the 

cabinet, sterile gloves were worn throughout the set up.  
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Each component was unwrapped inside the cabinet, removing the aluminium foil as 

each piece was required. The screws to fasten the plate securely to the bath were 

tightened, taking care not to touch the end of the Allen key that was in contact with 

the screws. Care was also taken to use the Allen key to hold the screws in order to 

avoid touching them and thus reducing the risk of contamination. The toothed rack 

component was then tightly screwed against the rear of the bath using the smaller 

diameter Allen key. The bath and plate were then placed into the rig, aligning the 

dowels. The bath itself was then fastened to the rig using the correct screws and 

Allen key. A small amount of anti-fretting lubricant was applied to the serrated edge 

of the toothed rack. The spacer was inserted into the collet using tweezers. Tweezers 

were then used to remove the pin from the ethanol, and the pin was carefully inserted 

in the correct orientation into the collet. The collet was then inserted into the pin 

holder, and the pin holder inserted through the bridge, which allowed for the pin to 

be tightened into the collet by tightening the pin holder fastener. A small amount of 

anti-fretting lubricant was applied to the cog, and the bridge was then placed into the 

rig and screwed into place. Checks were then performed to ensure the cog was in 

intimate contact with the serrated edge of the toothed rack, and that the pin holder 

was free to lift up and rotate in the bridge.  

Approximately 35-40mls of RPMI 1640 medium with 25% (v/v) foetal bovine serum 

lubricant was added to the bath, ensuring a gap of 1-2mm to the top of the bath. The 

pin was lifted to allow the medium to lubricate all surfaces. The counter was reset, 

and the rig was then turned on without the load in place and the correct speed was 

selected (1Hz). Anti-fretting lubricant was applied to the washers and bearings 

before they were placed on top of the pin holder. The arm was then lowered, levelled 

using a spirit level, and then the load applied at 160N.  

 

2.2.7.4 Setting up the Syringe Driver Mechanism 

The syringe drive mechanism was composed of a syringe containing sterile water in 

a machine that slowly pushed the plunger of the syringe. A sterile tube delivered the 

water from the syringe (outside the safety cabinet) to the bath of the single station 

pin-on-plate wear simulator. 
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Prior to setting up, the connecting tube was sterilised using an autoclave at 121˚C for 

20 min, at 103 kPa, and 50 ml aliquots of sterile water were prepared as outlined in 

section 2.1.2.6.  

The syringe driver delivery mechanism comprised a stainless steel delivery pipe, a 

screw and an Allen key. The components of the syringe driver delivery mechanism 

were prepared in the same way as the other metal components, as outlined in section 

2.1.2.7.2. To assemble the syringe driver, the grub screw on the drive shaft was 

loosened, and the drive shaft rewound until all the exposed thread had disappeared. 

The drive shaft was connected to the threaded shaft by tightening the grub screw, 

ensuring correct alignment. In the cabinet, the delivery pipe was screwed onto the 

bridge ensuring the end of the pipe would be over the bath throughout the test. A 50 

ml syringe was filled with 50ml of sterile pyrogen-free water. The connecting tube 

was unwrapped and one end firmly fitted around the non-dispensing end of the 

driver pipe. At this point the syringe was placed in one of the slots on the syringe 

holder, and the other end of the connecting tube was fitted to the syringe. The 

syringe holder-connecting tube assembly was then taken out of the cabinet and fitted 

onto the syringe driver. The nuts securing the syringe holder were secured, and the 

drive shaft was adjusted to ensure the driver mechanism was in contact with the 

syringe plunger. The syringe driver was switched on and adjusted accordingly for the 

test. Typically, approximately 40 ml of sterile water was dispensed over 24 hrs. 

Finally, the front exposed section of the cabinet surface was sprayed with 70% (v/v) 

ethanol to ensure sterility. The simulator was checked at least twice daily. The 

syringe within the syringe driver mechanism was changed daily using the method 

outlined above. Sterile technique was observed throughout.  

 

2.2.7.5 Bacterial Testing of the Lubricant 

Once a day throughout the running of the simulator, a 2 ml sample of lubricant was 

taken directly from the bath using a sterile syringe. This was aliquoted into a small 

sterile bijous bottle. Before bacterial testing, heated-blood agar (HBA), nutrient agar 

(NA) and Sabouraud (SAB) plates were prepared by placing them inverted in the 

plate drying room for 30 mins at 37°C.  
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Using sterile technique with a Bunsen burner, a sample of the serum lubricant was 

plated out onto each plate i.e. flaming the platinum loop and flaming the top of the 

bijous each time the loop was dipped into the serum. The serum was spread over the 

plates in a series of lines, shown in Figure 2.7, flaming the platinum loop between 

spreading each line. The NA and HBA plates were incubated at 37°C and the SAB 

plate at 30°C. The plates were checked over a 3 day period for bacterial growth. A 

small sample of lubricant was taken every day to ensure the test remained sterile.  

 

Figure 2.7 – Schematic showing the method for bacterial testing of serum lubricant using agar 

plates. Image A shows the series of lines used to spread the sample, with the platinum loop flamed 

after each line is spread. Image B shows the result of a contaminated sample, with bacteria colonies 

present where the sample has been spread on the agar. Image C shows the result of a non-

contaminated sample, with no bacterial colonies present on the agar plate.  

 

 

2.2.7.6 Disassembly of the Single Station Pin-on-Plate Wear Simulator 

At the end of the test, the counter-weight was removed, and the speed controller was 

turned down until the rig stopped. The rig motor was then switched off, followed by 

the syringe driver motor. The number of cycles was noted.  

A 

B 

C

  A 

1

 
 A 

2

 
 A 

3

 
 A 

4

 
 A 
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The lubricant was removed from the bath using a sterile syringe and transferred to a 

sterile 60 ml container. The bath was tilted in order to collect all the lubricant, and 

the bath was washed with 10 ml sterile water to ensure efficient collection of wear 

particles. The final lubricant sample was tested for bacterial contamination as 

outlined in section 2.1.2.7.5. The components of the rig including the pin and plate 

were then disassembled and removed from the cabinet. All the components were 

cleaned in household detergent, and the pin was then placed in 70% (v/v) iso-

propanol in a sonicating water bath for 10 min. The pin was then dried and placed in 

the temperature controlled measurements laboratory to dry for 48 hrs. The pin was 

then weighed 5 times to obtain measurements with an accuracy of ± 5µg.  The other 

components were cleaned as outlined in section 2.1.2.7.2. The class II safety cabinet 

was cleaned with 1% (v/v) Virkon, followed by 70% (v/v) ethanol and the UV light 

was switched on for 30 min to ensure sterility.   

 

2.3 Isolation and Characterisation of UHMWPE Particles from 

Serum 

2.3.1 Isolation of UHMWPE Particles from Serum  

The serum lubricant samples collected from the six station pin-on-plate wear tests 

were collected in order to isolate the wear particles present and determine the 

particle size distribution for each material. The methods previously used by Richards 

(Richards, 2008) for particle isolation was used in this study.  

The serum samples were defrosted at 37˚C in a water bath for 60 min before being 

processed. The serum samples were then gently agitated to resuspend particles and 

placed in a sonicating water bath for 30 min. Potassium hydroxide (KOH) pellets at a 

concentration of 12 M were weighed into a clean glass bottle at a concentration of 

6.72 g for every 10 ml of serum being processed. The appropriate volume of serum 

(to provide approx. 1mm
3
 wear debris) was then added to the glass bottle containing 

the KOH pellets, swirled to mix, and placed in a water bath at 60˚C for approx 3-5 

days, until the serum was completely digested. This was assessed visibly as the 

serum cleared when it was digested.  Throughout the 60˚C incubation, the serum was 

regularly swirled to mix in order to increase the efficiency of the digestion. 
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Following digestion, the serum was cooled to 4ºC for 30 min, after which the 

digested serum was pipetted into sterile universal tubes in 10 ml volumes. An equal 

volume of 2:1 chloroform: methanol was then pipetted into the universal, and 

swirled to mix. The bottle was kept upright throughout as polyethylene will adhere 

to the plastic of the tube lids and could affect the outcome of the particle isolation. 

The samples were then incubated in a fume hood for 48 hrs at room temperature. 

Following this incubation, the serum was centrifuged at 2000 g for 20 min at room 

temperature to remove the proteins and lipids from the sample. The top layer was 

then pipetted into a clean universal, whilst being careful not to remove any of the 

bottom layer or the interface. Once again, an equal volume of 2:1 chloroform: 

methanol was added to the sample and this was incubated at room temperature for 48 

hrs in a fume cupboard. This was repeated until the top layer was completely clear; 

indicating all the lipids and proteins had been removed.  

Prior to the next step of the isolation, 500 ml absolute ethanol (99.7% (v/v)) was 

placed at -20˚C for 30min in a clean, glass bottle. The top layer of the 

serum/cholorform/methanol solution was pipetted off for the final time, and placed 

in a clean Sorvall 250ml Dry Spin centrifuge bottle. An equal volume of ice-cold 

ethanol was added to the centrifuge bottle, and for multiple bottles the mass of each 

bottle was checked to be within 1g to ensure balancing of the centrifuge. When 

processing an odd number of samples, a Sorvall tube with the same volume of water 

was used to balance the centrifuge. The sample was then centrifuged at 2000 g for 20 

min at 4˚C to pellet the salt precipitate. After this, the supernatant was carefully 

decanted into a clean glass bottle taking care to not disrupt the pellet, and an equal 

volume of ultrapure water was added. A stirrer bar was added to the sample and it 

was incubated at 4˚C on a stirrer platform overnight to precipitate any remaining 

proteins. The supernatant was then decanted into a clean sterile Sorvall 250 ml Dry 

Spin centrifuge bottle, and centrifuged at 10,000g for 2 hours at 4˚C using a Sorvall 

high speed Evolution RC centrifuge (Sorvall SLA 1500 rotor). The supernatant was 

carefully decanted into a clean 500 ml bottle.  
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2.3.2 Filtration of Sample 

All of the glass filtration apparatus was vigorously cleaned prior to use. Household 

detergent was used with a hard bristled brush, followed by three washes with de-

ionised water. The apparatus was then rinsed with ultrapure water and sterilised in a 

hot air oven at 190˚C for 4 hours. The filter tray was washed in the same way, but 

sterilised in an autoclave at 121˚C for 20 min, at 103 kPa. The filtration unit was 

assembled as shown in Figure 2.8 in a class I laminar flow hood. All filtration was 

performed in a class 1 laminar flow hood to reduce airborne contamination of the 

filters. The supernatant was sequentially filtered through 10μm, 1μm and 0.015μm 

filters, as shown in Figure 2.8. The filters were handled with tweezers at the edges of 

the filter to prevent damage. Prior to the supernatant passing through the filter, 10 ml 

70% (v/v) ethanol followed by 10 ml ultrapure water was passed through each filter 

to clean the filter and to check for any leaks in the apparatus. After filtering the 

supernatant, 10 ml ultrapure water was again used to wash the filter. After use, the 

filters were immediately placed in a sterile petri dish and dried under a red lamp for 

4 hours in the class I hood. The filters were stored in an air tight box with silica gel 

to avoid an increase in moisture content prior to FEGSEM analysis.  
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Figure 2.8 – A schematic showing an exploded view of the glass filtration unit (left) and the fully 

assembled glass filtration unit (right). The unit was comprised of 3 pieces of glass ware and one 

plastic filter tray. The apparatus was assembled as shown in the exploded view, building upwards. 

The glass reservoir (top) and the middle unit were clamped together, while the middle unit fits tightly 

into the neck of the bottle as vacuum grease was applied to the neck of the bottle before assembly. 

The filter was carefully placed in the centre of the filter tray and dampened with 70% (v/v) ethanol to 

remove any air bubbles. The pump was used to pull the liquid through the filter.  

 

2.3.3 Field Emission Gun Scanning Electron Microscope (FEGSEM) 

Analysis of Wear Particles 

 

2.3.3.1 Preparation of Filters for Scanning Electron Microscopy 

A small section of each filter was cut and mounted onto an aluminium stub using a 

double sided adhesive carbon tab. The edge of the filter was painted with carbon 

paste and the filter was sputter coated with platinum to a thickness of 5nm. The 

coated samples were stored in an air tight box with silica gel, to provide a moisture 

free environment. Samples were imaged within five days to avoid microbial 

contamination on the filters.  
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2.3.3.2 FEGSEM Analysis 

Each sample was observed using a LEO 1530 FEGSEM with SmartSEM Interface 

software. Images of particles on each filter were viewed using a voltage of 3kV and a 

working distance of 3mm. For each sample, 3 random fields of view per 

magnification were captured. A total of 60 images were captured per sample. The 

magnifications used to view each filter are listed below; 

 

10μm filter stub  

x400 x700 x1.5K x3K x8K x12K x15K 

 

1μm filter stub  

x1.5K  x5K x10K x20K x30K x40K x65K 

 

0.015μm filter stub 

x10K x20K x30K x60K x75K x90K 

 

2.3.4 Particle Image Analysis and Size Distribution Graphs 

Scanning electron microscopy images were analysed in order to size the UHMWPE 

wear particles and compile frequency and volume size distribution graphs. Images 

were analysed using Image Pro Plus image analysis software. The whole area of each 

image was measured and recorded as (A). Each particle was then sized manually, 

measuring the particle area, perimeter, aspect, roundness, width and height. A 

minimum of 100 particles were analysed for each material. The data was exported to 

an Excel spreadsheet and sorted to generate a frequency and volume size distribution 

graph. Values for the percentage number of particles per area (N/A) in each size 

range, and the average percentage area of particles (P/N) in each size range were 

calculated. The size ranges analysed in this study were <0.1 µm, 0.1-1.0 µm, 1.0-10 

µm and >10 µm. The results for the size distribution of wear particles was presented 



 Chapter 2 

90 

 

as a percentage, and therefore not normally distributed. As a result, the raw data was 

transformed using arc-sin in order for descriptive statistics to be generated and a one-

way ANOVA to be performed. The data was then back transformed to be presented 

as percentages.   
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2.4 Culture of Human Peripheral Blood Mononuclear Cells 

(PBMNCs) with UHMWPE Particles to Determine the Biological 

Response to UHMWPEs 

In order to determine the biological response to UHMWPE wear debris in vitro, 

PBMNCs were isolated from the blood of healthy human donors and incubated for 

24 hours with UHMWPE particles. Due to the density of UHMWPE causing 

particles to float in solution, a suspension medium was required to hold the particles 

and allow the cells to come into contact with them. This is outlined in section 2.4.3. 

Following incubation, cell viability was determined using an ATP Lite assay, and the 

supernatant was carefully collected to determine the cytokine response from the cells 

using an ELISA.  

 

2.4.1 Stock Solutions 

2.4.1.1 Transport Medium 

Transport medium was used in this study for the temporary storage and transfer of 

cells during isolation of PBMNCs. Transport medium consisted of RPMI 1640 

medium with 20 mM HEPES (N-(2-hydroxyethyl) piperazine-N’-(2-ethanulfonic 

acid)) and 100 µg.ml
-1 penicillin/streptomycin. Transport medium was stored at 4˚C 

for a maximum of four weeks.  

 

2.4.1.2 Culture Medium 

Culture medium was used for the final culture of PBMNCs and was intended to 

provide all the nutrients required for cell growth. Culture medium consisted of RPMI 

1640 medium supplemented with 10% (v/v) foetal bovine serum (FBS), 2 mM L-

glutamine and 100 µg.ml
-1

 penicillin/streptomycin. Culture medium was stored at 

4˚C for a maximum of four weeks. 
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2.4.1.3 2% (w/v) Low Melting Point Agarose 

The 2% (w/v) low melting point agarose gel was made up with RPMI 1640 transport 

medium and 2% (w/v) low melting point agarose. The 2% (w/v) agarose gel was 

mixed thoroughly and heated until the powder had fully dissolved and the agarose 

medium was clear. The agarose medium was sterilised by autoclaving at 121˚C for 

20 min, at 103 kPa. The medium was then stored at 4˚C until required for a 

maximum of four weeks.   

 

2.4.2 Endotoxin testing of the serum lubricant using the Limulus 

Amebocyte Lysate (LAL) assay 

Prior to incubation with PBMNCs, lubricant samples containing UHMWPE particles 

were tested to ensure there was no endotoxin present which would stimulate TNF-α 

release from PBMNCs in culture. The Limulus Amebocyte Lysate (LAL) assay is 

used to detect and quantify gram-negative bacterial endotoxin, or lipopolysaccharide 

(LPS), in human and animal products. In the presence of endotoxin, the LAL is 

activated, resulting in the release of p-Nitroalinine (pNa) which produces a yellow 

colour. This yellow colour is detected at an absorbance of 405nm, and the time taken 

for the absorbance to reach an onset value of 0.5OD is inversely proportional to the 

amount of endotoxin present. The absorbance of this colour is determined 

spectrophotometrically at 405 nm, and compared to a standard curve where 

endotoxin concentrations in the samples can be determined. In addition, positive 

product controls are used, where test samples are spiked with a known concentration 

of endotoxin. This is to determine the percentage recovery of the known 

concentration of endotoxin, in order to validate the results of the assay on the sample 

type used.  

2.4.2.1 Sample Details 

The aseptic single station pin-on-plate wear simulator was used to generate sterile 

lubricant samples containing UHMWPE wear particles. The LAL assay was 

therefore used to determine the endotoxin concentration in the lubricant samples. 

The lubricant was tested daily during the running of the test for the presence of 

microbes; however the presence of endotoxin was also determined.  
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2.4.2.2 Additional Reagents and Equipment 

The additional reagents and equipment used in the LAL assay are shown in Table 

2.3.  

Table 2.3 – Additional reagents and equipment used in the LAL endotoxin assay. 

Material Supplier 

Pyrychrome Associates of Cape Cod Inc.  

Pyrochrome reconstitution 

buffer Associates of Cape Cod Inc.  

Control Standard 

Endotoxin Associates of Cape Cod Inc.  

LAL reagent water (LRW) Associates of Cape Cod Inc.  

Pyroplate 96 well 

microplate Associates of Cape Cod Inc.  

Pyrotube test tubes Associates of Cape Cod Inc.  

Precision pipette tips Associates of Cape Cod Inc.  

 

 

2.4.2.3 Preparation of Lubricant Samples 

Serum lubricant samples were prepared according to the method used in a previous 

study (Richards, 2008).  Lubricant samples from the single station pin-on-plate wear 

simulator had previously been stored at -20ºC; therefore prior to performing the 

assay, samples were incubated at room temperature for 30 min until the sample had 

completely defrosted. Samples were then incubated in a sonicating water bath for 40 

min at 37ºC. Samples were then diluted 1:100 using LAL reagent water prior to 

conducting the test. 

 

2.4.2.4 Preparation of Reagents 

1) Pyrochrome Reconstitution 

The Pyrochrome reagent contained an aqueous extract of amebocytes of the 

horseshoe crab Limulus polyphemus, in addition to the chromogenic substrate. The 

pyrochrome was reconstituted using 3.2 ml of Pyrochrome reconstitution buffer per 

vial, at least 5 min prior to use. This vial was gently agitated to fully resuspend the 

pyrochrome pellet, avoiding vigorous mixing to prevent excessive foaming which 
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would affect the sensitivity of the pyrochrome. The vial of reconstituted Pyrochrome 

was covered with Parafilm
® 

(VWR Internationl, UK) and stored at 2-8ºC in the dark 

when not being used. The reconstituted Pyrochrome was stored for no longer than 8 

hours.  

2) Control Standard Endotoxin Preparation 

The control standard endotoxin was reconstituted using LAL reagent water 

according to the volume specified on each vial, to give a concentration of 100 

EU.ml
-1

. The reconstituted control standard was then vortexed for 30-60 seconds 

until complete dissolution occured. A series of dilutions were then performed to 

achieve the desired series of four endotoxin standards (5 EU.ml
-1

, 0.5 EU.ml
-1

, 0.05 

EU.ml
-1

, and 0.005 EU.ml
-1

). The standard solutions were vortexed in between each 

dilution and immediately prior to use to avoid the endotoxin adhering to the glass. 

Reconstituted endotoxin stock (100 EU.ml
-1

) was stable for one week and stored at 

2-8ºC.  

 

2.4.2.5 Performing the LAL Endotoxin Assay 

The LAL endotoxin assay was performed using SkanIt
™

 Software 3.2, and using a 

Multiskan
™

 GO microplate spectrophotometer. A volume of 50 µl of each diluted 

sample and standard was dispensed into a Pyroplate 96 well plate in duplicate. A 

volume of 50 µl LAL reagent water was used as the negative control. The positive 

product controls were composed of 45 µl sample, with 5 µl 5 EU.ml
-1

 standard 

positive control, providing a final endotoxin concentration of 0.5 EU.ml
-1

 in each 

positive product control well. The positive product controls were loaded in duplicate.  

A volume of 50 µl reconstituted Pyrochrome was then added to the negative control, 

endotoxin standards, samples and positive product controls to a give a ratio of 1:1 

(v/v). Immediately after dispensing the Pyrochrome, the 96 well plate was placed in 

an incubating plate reader. The plate was shaken for 10 seconds in the plate reader, 

after which a reading was performed using a kinetic reading type with a 

measurement filter of 405 nm at 37ºC.  
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2.4.2.6 LAL Results Interpretation 

Using the data generated in SkanIt
™

 software, a standard curve was produced, by 

regression analysis of the reaction time (onset time to reach 0.5OD) against the log 

endotoxin concentration of standards. The correlation coefficient obtained from the 

standard curve was required to be greater than 0.980 for a valid curve. The endotoxin 

concentration of the samples was calculated by the regression equation and adjusted 

according to the dilution of the samples. The endotoxin level of the negative controls 

was required to be significantly less than the lowest concentration of control sample 

used. Samples which exceeded the range of endotoxin level provided by the standard 

endotoxin concentrations were reported as either < the lowest standard concentration 

of > the highest standard concentration. The endotoxin concentration recovered from 

the positive product control was required to be within 50-200% of the known 

concentration of added endotoxin in the positive product control.  

  

2.4.3 Preparation of UHMWPE particle suspensions in 2% (w/v) agarose 

gels 

Due to the low density and high buoyancy of UHMWPE (0.945 g/cm
3
), particles 

cultured in culture medium will float to the surface, whereas cells will adhere to the 

bottom of the well. This creates a problem due to the lack of contact between the 

cells and particles, and therefore lack of stimulation of the cells. This problem has 

been avoided through the use of low melting point agarose as a medium within 

which to suspend the particles, while the cells can gradually penetrate the porous 

agarose gel and come into contact with particles. A schematic depicting this is shown 

in Figure 2.9.  
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Figure 2.9 – Schematic showing the culture of UHMWPE particles with PBMNCs, both in 

solution (1) and in 0.4% (w/v) agarose (2). The agarose is necessary to act as a suspension medium 

for the particles and therefore allows the cells to come into contact with the particles. A – UHMWPE 

particles floating in media due to their high buoyancy; B – PBMNCs isolated from blood from a 

human donor; C –0.4% (w/v) low melting point agarose plug; D – UHMWPE particles suspended in 

0.4% (w/v) agarose gel; E – UHMWPE particles floating in culture media and therefore not in contact 

with cells; F – PBMNCs adhered to the bottom of the well; G – In agarose, the UHMWPE particles 

are held in suspension while the PBMNCs are able to contact the particles. The porous agarose gel 

allows for the penetration of cells deep into the agarose and the stimulation of macrophages by the 

particles; H – Following particle stimulation, the supernatant was harvested and cytokine release was 

measured using an ELISA. The cell viability was also determined using the ATP Lite assay.  

  

A 

B 

C 

D 
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H 
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2.4.3.1 Calculation of the particle volume: cell ratio for cell culture 

experiments 

The conditions for the culture of PBMNCs with UHMWPE are shown in Table 2.4. 

These values show the typical cell seeding density and particle concentration; 

however these values were altered during the project to determine the optimal 

conditions.  

 

Table 2.4 – Typical cell culture conditions for the culture of PBMNCs with UHMWPE particles 

in agarose gel.  

Cell number 2 x 10
5 

per well 

Particle Concentration 100 µm
3
 per cell 

Agarose Gel Concentration 0.4 % (w/v) 

Agarose Gel Volume 300 µl 

Plate 48 well plate 

 

For this project, lubricants containing UHWMPE wear particles were used in cell 

culture studies as they were generated, with no fractionation of specific size ranges. 

This provided a clinically relevant representation of the full size range of wear 

particles that would be produced in vivo. The volume of lubricant required in each 

well was determined using the calculations shown below.  

In order to provide a particle concentration of 100 µm
3
 per cell, and with a cell 

seeding density of 2 x 10
5
 per well, a particle volume of 2 x 10

7
 µm

3
 was required 

per well. The density of UHMWPE was determined to be as 1 x 10
-6

 µg.µm
3
 

according to a previous study by Richards et al (2008). With this in mind, the 

following calculation was applied to determine the mass of particles required: 

Equation 4 

Mass of particles = Volume of particles x Density 

        = 2 x 10
7 

µm
3
   x   1 x 10

-6
 µg.µm

3 

  
      = 20 µg 
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Using this calculation, and taking a lubricant containing a particle concentration of 

500 µg.ml
-1

, a volume of 40 µl of lubricant would be required per well. This test was 

run in quadruplicate; therefore the total volume for four wells was calculated as 

160µl. The agarose gel volume per well was 300µl, therefore a total volume of 1200 

µl was required.  

In order to have a final agarose concentration of 0.4% (w/v), the 2% (w/v) agarose 

stock solution required diluting 1:5 in the final gel. A volume of 60 µl of 2% (w/v) 

agarose was therefore required per well (240 µl for four wells). Therefore, in order to 

make up four 0.4% (w/v) agarose gels containing 100 µm
3
 per cell, a volume of 160 

µl of 500 µg.ml
-1

 particle suspension (40 µl per well) was added to 240 µl of agarose 

gel (60 µl per well) and 800 µl RPMI Transport Medium (200 µl per well), to give a 

final particle concentration of 2 x 10
7 

per well, and final agarose concentration of 

0.4% (w/v) in a 300 µl agarose gel.  

 

 2.4.3.2 Calculation of the Fluosphere
®
 dosing volume required in cell 

culture experiments 

In order to provide a positive control for particle stimulation, 200 nm and 40 nm 

polystyrene Fluospheres
®
 were used. Fluospheres

®
 have a uniform size distribution 

and therefore consistently stimulate PBMNCs to release TNF-α. The Fluospheres
®

 

were provided at the concentrations shown in Table 2.5.  

 

Table 2.5 – The properties of the Fluospheres
®
 used in this study. Fluospheres

®
 have a density of 

1.05 x 10
-6

 µg.µm
-3

.  

Diameter (µm) Number of FS/ml Volume of FS/ml (µm³) 

0.2 2.274 x 10
12

 9.52 x 10
9
 

0.04 2.824 x 10
14

 9.52 x 10
9
 

 

Cells were seeded at a density of 2 x 10
5
 cells per well, therefore 2 x 10

7
 µm

3
 of 

Fluospheres
®
 were required for a particle: cell ratio of 100 µm

3
 particles per cell. 

Fluospheres
®
 were provided at a volume of 9.52 x 10

9
 µm

3
 per ml, giving a dilution 

factor of 476 to get the desired 2 x 10
7
 µm

3
. Using this dilution factor and applying it 
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to the volume, it was calculated that 2.1 µl of stock Fluospheres
®
 was required per 

well.  

 

2.4.3.3 Preparation of particle containing 0.4% (w/v) agarose gels  

Prior to making the particle-gel suspensions, UHMWPE particles were defrosted in a 

37ºC water bath for 30 min. Fluospheres
®
 and the defrosted UHMWPE particles 

were then placed in a sonicating water bath for a further 30 min. The 2% (w/v) low 

melting point (LMP) agarose was melted using a microwave at high power for 10 

second intervals. The gel was gently mixed in between each 10 second heating 

period to ensure the gel was fully melted and no air bubbles remaining in the gel. 

The gel was then allowed to cool to a temperature considered ‘hand hot’ (35-40˚C), 

when a gloved hand could comfortably hold the bottle of gel yet the gel was still 

warm.  

The gels for each treatment were prepared in sterile bijous, with the 2% (w/v) 

agarose the last component added to ensure the gel had as low a viscosity as 

possible. The particle-agarose suspension was mixed by gently pipetting up and 

down, and then pipetted into the relevant wells of the 48 well plate. The negative 

control (cells only) and positive control (lipopolysaccharide) wells were prepared 

from transport medium and agarose alone, e.g. in a 300 µl gel; 240 µl RPMI 

transport medium and 60 µl 2% (w/v) agarose.  

 

2.4.4 Isolation of human PBMNCs from the blood of healthy volunteers 

This study used 10 healthy donors aged between 24-60 years. All blood was 

collected in accordance with Faculty of Biological Sciences Ethics Committee 

approval (BIOSCI 10-018) and informed consent was obtained from the donor prior 

to venepuncture. The procedure for using blood was recorded and tracked using the 

Achiever tissue tracking system (Leeds Teaching Hospital NHS Trust and University 

of Leeds). From each donor, approximately 28 ml of blood was taken using a 21G 

needle and added to sodium heparinised collection tubes. The blood was collected on 

the morning of the cell seeding procedure to ensure cells were fresh for seeding.  
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Isolation of PBMNCs from blood was performed in a class II safety cabinet. Prior to 

isolation, RPMI 1640 transport medium and RPMI 1640 culture medium (section 

2.2.1.1 and 2.2.1.2) were placed in a 37˚C water bath for one hour to bring the 

medium to a suitable temperature for cells.  

The blood was mixed gently by inverting the collection tubes and all the blood was 

pooled in a sterile 150 ml container and immediately diluted 1:1 with RPMI 1640 

transport medium. This blood: transport medium mixture was then very carefully 

layered over 3 ml lymphoprep in sterile test tubes (7 ml blood: transport medium 

mixture per 3 ml lymphoprep). This was achieved by tilting the test tube, and 

angling the pipette against the side of the tube so the diluted blood streamed down 

the wall of the test tube, layering over the lymphoprep without mixing. The tubes 

were then centrifuged at 800 rcf for 30 min. A band of mononuclear cells was visible 

at the interface between the lymphoprep and blood plasma. Keeping the contents of 

each test tube separate, the mononuclear cell band was carefully removed and 

transferred to a clean sterile test tube using a sterile Pasteur pipette. The volume in 

each test tube was then made up to 10 ml with RPMI 1640 transport medium. These 

test tubes were centrifuged at 600 rcf for 30 min to form a pellet of cells at the 

bottom of each tube. The supernatant was discarded and the pellet resuspended in 10 

ml RPMI 1640 transport medium, and centrifuged at 600 rcf for 30 min. This step 

was repeated if the medium remained cloudy. At this stage a white pellet was formed 

at the bottom of each test tube. The supernatant was discarded and each pellet was 

resuspended in 500 µl RPMI 1640 culture medium. These cell suspensions were then 

pooled to give a total cell suspension volume of 4 ml.  

 

2.4.4.1 Determination of viable PBMNCs using Trypan blue exclusion 

assay 

The Trypan blue exclusion assay is a quick way of determining the number of viable 

cells in a sample. The cell suspension was gently mixed by inverting to ensure an 

even concentration of cells throughout, and a 90 µl sample was taken and transferred 

to a sterile bijou. A volume of 10 µl of Trypan blue was added to the cell suspension 

sample and mixed by pipetting up and down. A 10 µl Trypan-cell sample was then 

added to the chamber of a clean haemocytometer. The haemocytometer was then 
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observed under an inverted light microscope to count the cells. The Trypan blue dye 

permeated any non-viable cells due to the loss of membrane potential after cell 

death, but was excluded from live cells, therefore these cells appeared colourless 

amongst the blue dye. A minimum of 100 cells were then counted from the 5 x 5 

square grid in the centre of the haemocytometer. During this study, counting the cells 

in six randomly selected squares was often sufficient to count over 100 cells. This 

was then later compensated in the final equation to calculate the cell number. The 

equation is shown below. 

Number of cells in 1 ml = viable cells counted    x    (25/6)   x   (10/9)    x    1 x 10
4
 

Where 25/6 was the correction factor for counting 6 of 25 squares in a known area; 

10/9 was the dilution factor for diluting 10 µl trypan blue with the cell suspension; 1 

x 10
4
 was the dilution factor per ml. A working example of this equation is shown 

below where a typical cell count was 180. 

= 180   x   (25/6)   x   (10/9)   x   1 x 10
4
 

= 8.3 x 10
6
 in 1 ml 

= 3.33 x 10
7
 total cells (in 4 ml) 

Data shown in a previous study (Liu, 2012) showed isolated PBMNCs to have a 

phagocytic fraction of 3-10%, with the author using a final phagocytic fraction of 

6%. For this reason, the present study also used a 6% phagocytic fraction, and at this 

stage in the cell count the number of phagocytic monocytes was calculated using this 

percentage. 

= 3.33 x 10
7
   x   0.06 

= 2 x 10
6
 total phagocyte count in 4 ml 

 

2.4.5 Culture of PBMNCs with UHMWPE particles to determine the 

biological response to wear particles  

Following cell isolation and the solidification of the 0.4% (w/v) agarose gel, 2 x 10
5
 

cells were added to each well in 1 ml RPMI 1640 culture medium. 

Lipopolysaccharide (LPS) was added to the positive control wells at a concentration 
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of 200 ng.ml
-1

 after seeding the cells. Negative control wells were seeded in the same 

way but with no particles or treatment. The positive control wells were seeded in a 

separate 48 well plate to ensure no cross-contamination of LPS. To reduce the rate of 

evaporation from the wells, 500 µl RPMI 1640 culture medium was added to 

surrounding wells. Plates were then covered and incubated in an atmosphere of 5% 

(v/v) CO2 in air at 100% humidity at 37˚C for 24 hours.  

Cell viability was determined at the 24 hour time point using the ATP Lite™ assay. 

Cytokine release was also determined through the harvesting of the supernatant to be 

used in an ELISA. The supernatant was collected in a 900 µl volume (to account for 

some evaporation during incubation) and aliquoted into 3 x 96 well plates. A volume 

of 150 µl was aliquoted into each well, in duplicate, and into three plates to prevent 

the repeated freeze-thaw of samples ((150 µl x 2) x 3). These plates were wrapped in 

Parafilm and stored at -20˚C until an ELISA was performed.  

 

2.4.5.1 Determining the cell viability using the ATP Lite™ Assay 

Adenosine triphosphate (ATP) is a nucleoside triphosphate molecule essential in all 

metabolically active cells as a source of energy. Its presence in all metabolically 

active cells makes it an excellent marker for viable cells, while ATP levels rapidly 

decline in cells undergoing necrosis or apoptosis. This study used a Luminescence 

ATP Detection Assay System (ATP Lite™) to determine the cell viability of 

PBMNCs following incubation.  

This assay is based on the production of light caused by the reaction between cellular 

ATP with the added luciferase and D- Luciferin. This reaction is illustrated below. 

 

ATP +  D-Luciferin  +  O2    
𝐿𝑢𝑐𝑖𝑓𝑒𝑟𝑎𝑠𝑒

𝑀g²⁺
     Oxyluciferin  +  AMP  +  PPi  +  CO2  +  Light 

The emitted light from this reaction is proportional to the ATP concentration with 

some limitations. The strengths of this assay for determining cell viability include its 

high sensitivity, linearity, speed and the lack of separation techniques. The assay has 

a signal half-life of 5 hours. 
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Prior to use, the reagents were removed from the cold room and incubated at room 

temperature for 20 min to allow the reagents to warm to room temperature. The 

culture supernatant in each well was harvested as described in section 2.2.5. A 

volume of 150 µl mammalian cell lysis solution was added to each well, the plate 

was covered and placed on an orbital shaker at 700 rpm for 5 min. The lyophilized 

luciferase/D-luciferin substrate solution was reconstituted by adding 25 ml substrate 

buffer solution and gently shaken to dissolve. Following the lysis of the cells, 150 µl 

substrate solution was added to each well, covered and wrapped in foil to protect the 

substrate from light. The plate was shaken on an orbital shaker at 700 rpm for 5 min. 

A volume of 100 µl cell lysis solution from each well was transferred to a well in a 

white 96-well opti-plate in duplicate. This procedure was carried out in the dark to 

protect the substrate from light, and care was taken during pipetting due to the 

increase in viscosity of the solution following substrate addition. Following transfer 

of each sample to the opti-plate in duplicate, an adhesive sealing film was placed on 

the plate to prevent contamination, and the plate was placed in the black box of Top 

Count luminometer. After a dark-adapt period of 10 min, the light emission was read 

in counts per second (cps) of luminescence.  

 

2.4.5.2 Measurement of the TNF-α release from PBMNCs incubated with 

UHMWPE particles 

A solid-phase sandwich enzyme-linked immunosorbent assay (ELISA) was used to 

determine the concentration of cytokine release from PBMNCs after culture with 

UHMWPE particles. During this study ELISAs were primarily used to detect TNF-α 

release; an important cytokine involved in osteolysis (Ingham and Fisher, 2000). The 

principle behind this assay is the specific binding of the cytokine antigen to 

antibodies bound to the plate, which in turn leads to the binding of an enzyme which 

catalyses a substrate added during the process resulting in a colour change. In the 

presence of the antigen and the downstream binding of the enzyme, the intensity of 

the final colour change can be used to determine the concentration of the cytokine in 

the sample.  
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2.4.5.2.1 Preparation of reagents for the TNF-α ELISA 

The reagents used in the ELISA are shown in Table 2.6 and 2.7. Prior to preparing 

reagents, two litres of phosphate buffered saline (PBS) solution was prepared and 

autoclaved at 121˚C for 20 min, at 103 kPa, and stored at room temperature. 

Reagents were stored for a maximum of four weeks. The reagents provided with the 

ELISA kit are shown in Table 2.7. 

 

Table 2.6 –The reagents made up for use with the ELISA kit. 

Reagent 
(Stored at 2-8˚C) 

Composition 

Coating Buffer PBS (pH 7.2-7.4) 

Wash Buffer PBS with 0.05% (v/v) Tween20 

Blocking Buffer PBS with 5% (w/v) Bovine serum albumin (BSA) 

Standard and 

Secondary Antibody 

Diluent Buffer 
PBS with 1% (w/v) BSA 

Streptavidin-HRP 

Diluent Buffer 
PBS with 1% (w/v) BSA, 0.1% (v/v) Tween20 

 

 

Table 2.7 – The reagents provided with the ELISA kit and the preparation required 

Reagent 
(Stored at 2-8˚C) 

Preparation 

TNF-α Standard; 800 pg/ml Reconstituted with 1.25 ml diluent buffer 

Capture Antibody Sterile and diluted prior to use 

Biotinylated anti-TNF-α 

Detection Antibody 
Reconstituted with 550 µl of distilled water 

Streptavidin-HRP Diluted prior to use 

TMB Substrate Ready to use 
 

 

2.4.5.2.2 Preparation of ELISA plate 

The ELISA was carried out using Eli-pair ELISA kits (Diaclone, France). For a 

typical TNF-α ELISA, 100 µl TNF-α capture antibody was added to 10 ml coating 

buffer. This was enough to coat a full 96-well Maxisorp plate. A volume of 100 µl of 

diluted capture antibody was then added to each well using an automated pipette. 

The plate was incubated at 4˚C overnight. The diluted capture antibody was then 
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discarded and washed with 350 µl wash buffer per well. The wash buffer was 

aspirated with a firm tap over absorbent paper to remove the wash buffer. This was 

repeated once. A volume of 250 µl blocking buffer was then added to each well, the 

plate was covered and incubated at room temperature (18-25˚C) for two hours. The 

plate was then washed with wash buffer a further three times and allowed to dry at 

room temperature for 24 hours. The plate was then covered, wrapped in Parafilm 

within an airtight container (with desiccant), and stored at 2-8˚C for up to 1 month.  

 

2.4.5.2.3 Performing the ELISA 

Prior to performing the ELISA, cell: particle culture supernatant samples were 

thawed at room temperature for 60 min and all reagents shown in Table 2.6 were 

prepared. The TNF-α standard was reconstituted with diluent buffer as shown in 

Table 2.7, giving an 800 pg/ml sample. Serial dilutions were then produced to give 

500 µl of each concentration in sterile bijous bottles (800 pg/ml, 400 pg/ml, 200 

pg/ml, 100 pg/ml, 50 pg/ml, 25 pg/ml). Each dilution was swirled gently during 

preparation to ensure a homologous solution prior to further dilution. The standards 

and samples were then were then dispensed in duplicate at a volume of 100 µl in 

each well. Where LPS was used as a positive control the sample was diluted 1:2 due 

to the anticipated high level of TNF-α release. This was important to ensure the 

TNF-α level did not exceed the maximum standard concentration.  Diluent buffer 

was added as the blank standard.  

The biotinylated anti-TNF-α detection antibody was reconstituted with 550 µl 

distilled water prior to use. For one full plate, 100 µl of reconstituted detection 

antibody was diluted in 5 ml antibody dilution buffer. A volume of 50 µl was then 

dispensed in each well, the plate was covered and then incubated for three hours at 

room temperature (18 to 25˚C). Following this incubation, the liquid was aspirated 

from the plate and 350 µl wash buffer was dispensed in each well. The wash buffer 

was then aspirated and the plate tapped firmly against absorbent paper to remove any 

liquid. This wash step was repeated three times.  

The HRP diluent buffer was prepared as shown in Table 2.6. Streptavidin-HRP was 

provided in a small volume in a vial, and this vial was centrifuged for 5 seconds 

prior to use to collect all the volume of the solution at the bottom. A volume of 5 µl 
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of streptavidin-HRP was diluted in 500 µl HRP diluent buffer immediately before 

use. For a full plate, 150 µl of diluted streptavidin-HRP was diluted in 10 ml HRP 

diluent buffer, and 100 µl of this dilution was added to each well. The plate was 

covered and incubated at room temperature for 20 min.  

The streptavidin-HRP dilution was aspirated from the wells and washed three times 

with wash buffer, ensuring no liquid remained in the wells following the final wash. 

A volume of 100 µl ready-to-use TMB (3,3’,5,5’,-Tetramethylbenzidine) was added 

to each well and the plate was covered and immediately wrapped in aluminium foil 

to incubate in the dark for 15 min at room temperature. A volume of 100 µl 1M 

sulphuric acid (H2SO4) was added to each well to stop the reaction. During 

incubation the with TMB the solution turned blue in the presence of TNF-α, and the 

addition of sulphuric acid then turned the solution yellow. The absorbance value of 

each well was then read on a multiscan spectrum micro-plate spectrophotometer 

using a 450 nm primary wavelength and a 630 nm reference wavelength.  

 

2.4.5.2.4 Analysis and Statistical Analysis of ELISA results 

A linear standard curve for optical density against TNF-α concentration was 

generated using the average value for each concentration. From this standard curve, 

the average optical density for each sample was used to determine the TNF-α 

concentration in pg.ml
-1

. Where samples were diluted (e.g. LPS), the values were 

multiplied by their dilution factor. 

 Final TNF-α values were plotted on a graph, using separate y-axis where there was a 

considerable difference in value, e.g. LPS on a different y-axis to cells only. Values 

are shown as means ± 95% confidence level and analysed using a one-way ANOVA. 

Differences between the treatment groups and the negative control were determined 

by calculating the minimum significant difference (MSD) value (p<0.05) using the 

Tukey-method (Sokal and Rohlf, 1981).  
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2.4.6 Culture of U937 Cell Line with UHMWPE Wear Debris to 

Determine the Cellular Response to Wear Particles 

Cells derived from the U937 cell line were used in this study as a cell type that 

would remove the factor of donor variation from the cellular response. The U937 cell 

line is a human cell type established from a hystiocytic lymphoma, displaying 

monocytic characteristics. Following stimulation it differentiates into macrophage 

cells, making it an ideal cell type to use as an alternative to PBMNCs isolated from 

human blood.  

 

2.4.6.1 Resurrection and Splitting of U937 Cells  

A vial containing U937 cells was carefully removed from liquid nitrogen and 

immediately thawed by incubating in a water bath at 37ºC until the 1 ml of cell 

suspension in the vial was completely defrosted. All cell culture using U937 cells 

was carried out in a class II safety cabinet using aseptic technique. Prior to 

processing the cells, RPMI 1640 cell culture medium was made up, as described in 

section 2.4.1.2, and incubated in a water bath for 37ºC for 1 hour to bring the 

medium to a suitable temperature for the cells.  

In the class II safety cabinet, the 1 ml cell suspension was pipetted dropwise into 10 

ml RPMI 1640 culture medium in a sterile universal. The universal containing cells 

was centrifuged at 150 rpm for 10 min to pellet the cells. Following this, the 

supernatant was disposed of, and the pellet was resuspended in 10ml RPMI culture 

medium. This cell suspension was pipetted into a T25 cell culture flask. The cells 

were then cultured at 37ºC for 24 hours in an incubator. The U937 cell line is a 

suspension cell line and for that reason, cell culture flasks were incubated at a 

45ºangle to provide sufficient depth to the culture medium while maintaining a large 

surface area for gas diffusion.  

Cells were viewed daily using a upright microscope to determine confluency. When 

cells appeared to be 80% confluent, the cell suspension was once again centrifuged 

at 150 rpm to pellet the cells. The cells were then resuspended in 10 ml RPMI 1640 

culture medium, and the cell suspension was pipetted into two T25 cell culture 

flasks; 5 ml into each. A further 5 ml RPMI 1640 cell culture medium was then 
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added to each flask to provide a final volume of 10 ml per flask. Cells were 

incubated and split in this way until a sufficient density of cells was available. 

 

2.4.6.2 Differentiation of U937 Cells  

In order to stimulate the U937 cell line to become macrophages, cells were incubated 

in RPMI 1640 culture medium as described in section 2.4.1.2, with the addition of 

10 ng.ml
-1

 phorbol 12-myristate 13-acetate (PMA). The PMA in the culture medium 

acts as a stimuli for macrophage differentiation. Cells were cultured in this PMA-

enhanced culture medium for 24 hours with the flask laid flat to allow cells to settle.  

Cells were viewed under an upright light microscope, and differentiated cells could 

be seen attaching to the bottom of the flask. Following differentiation, the PMA-

enhanced medium was removed from the flask, the cells were washed with 10 ml 

Dulbeccos Phosphate Buffered Saline (DPBS), followed by the addition of 10 ml 

fresh RPMI 1640 culture medium to be incubated with for 24 hours with the flask 

laid flat.  

 

2.4.6.3 Harvesting and Culture of U937 Cells with UHMWPE Wear Debris 

Prior to harvesting of differentiated U937 cells, trypsin/EDTA was warmed to 37ºC 

in a water bath for 15 min. Trypsin/EDTA is used to detach cells from cell culture 

flasks in order to then isolate cells for cell culture. Flasks were viewed under the 

light microscope to ensure cell attachment. The cell culture medium was aspirated 

from the flask and 3 ml trypsin/EDTA was added to each flask. The cells were 

incubated with the trypsin/EDTA for 3 min at 37ºC, after which the cells were gently 

tapped on the side to assist with cells detachment. The flasks were incubated for a 

maximum of 7 min (10 min total trypsin/EDTA incubation) depending on the 

process of cell detachment as seen using the light microscope.  

The cell suspension was then aspirated from the flask and transferred to a sterile 

universal. A volume of 10 ml RPMI cell culture medium was added to the cell 

suspension to inhibit the trypsin/EDTA. Universals containing cells were centrifuged 

at 150 rpm for 10 min to pellet the cells. Following centrifugation, the supernatant 
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was disposed of, and the pellet of cells was resuspended in a known volume of 

RPMI 1640 culture medium.  

Following the isolation of differentiated U937 cells, the number of viable cells was 

determined using the Trypan blue exclusion assay, as outlined in section 2.4.4.1. 

Cells were then seeded onto the agarose gels and incubated for 24 hours at 37ºC, 

after which the cell viability was determined and the supernatant collected for TNF-α 

analysis, using the methods described in section 2.4.5.  

 

2.4.7 Confocal Imaging of UHMWPE Particle Uptake by PBMNCs in 

0.4% (w/v) Agarose Gel 

In order to determine the uptake of UHMWPE wear debris by PBMNCs incubated 

using the agarose gel technique, fluorescently-labelled UHMPWE wear particles 

were embedded in the agarose gel, where PBMNCs were then seeded onto the gel, 

using the same culture method outlined in section 2.4.4. The main differences with 

this protocol is that the particle: cell culture is performed on a smaller scale using 

wells on a microscope slide, in addition to the use of fluorescent UHMWPE wear 

particles. 

 

2.4.7.1 Generation of Wear Particles under Aseptic Conditions for Particle 

Uptake Studies 

For the generation of sterile wear debris from the UHMWPE material, the aseptic 

single station wear simulator was used, as described in section 2.2. The preparation 

of the pin and simulator, and running of the simulator was performed as described in 

section 2.2. The only change was the use of 100% RPMI 1640 Transport Medium as 

the lubricant throughout the test. This was in order to provide a protein free 

environment which was necessary for fluorescein labelling of particles. Following 

the wear test, the particle lubricant suspension was collected and stored at -20ºC until 

required.  
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2.4.7.2 Fractionation of UHMWPE Wear Debris using Filtration 

In order to investigate the uptake of UHMWPE wear debris in two size ranges, 

UHMWPE wear debris was fractionated to produce a micrometre sample and a 

nanometre-sized sample. Fractionation of UHMWPE wear debris involved filtering 

the stock particle suspension onto a series of filters, after which the filters could be 

sonicated to disperse the particles into solution. 

The filtration and labelling method was performed in a class I laminar flow cabinet 

to ensure the particle suspension remained sterile. Prior to filtration, 10 µm, 1 µm 

and 0.015 µm pore sized filters were washed with 70% (v/v) ethanol and dried under 

an infrared light for four hours. The filters were then weighed using an AT21 

balance, accurate to 1 µg. All filtration glassware was sterilised in the oven at 190ºC 

for 3 hours, while all polymer equipment was sterilised in the autoclave at 121ºC for 

20 min, at 103 kPa. The laminar flow cabinet was cleaned thoroughly with 70% (v/v) 

prior to use, and all equipment was sprayed with 70% (v/v) ethanol when being 

moved into the cabinet.  

The stock particle suspension was then sequentially filtered through the filters, using 

the method outlined in section 2.3.2, with the only change being the use of sterile 

equipment and the use of aseptic technique in terms of spraying 70% (v/v) ethanol 

on gloves and equipment. Each filter was dried under an infrared light for four hours 

in the laminar flow cabinet, after which the filter was weighed to determine the mass 

of UHMWPE wear debris collected on each filter. 

The 0.015µm and 1 µm filters were cut into small pieces and separately added to a 

universal containing 5 ml RPMI Transport Medium to ensure each piece of filter 

paper was submerged. The universals were then sonicated for 30 min to disperse the 

wear particles into the solution, and then stored at 4ºC until required for labelling. 

 

2.4.7.3 Fluorescent Labelling of UHMWPE Wear Particles 

In order to visualise the wear particles in the presence of cells under a confocal 

microscope, the wear particles were labelled with sodium fluorescein according the 

method described previously by Liu (2012).  
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The staining process was performed in a class I laminar flow cabinet to ensure 

sterility of particle suspensions. Micrometre and nanometre article suspensions 

prepared in section 2.4.7.2 were placed in a sonicating water bath for 30 min at 37ºC 

to disperse the wear particles throughout the solution. A correct volume to provide 

200 µg wear particles was taken from each particle suspension, and placed in 

separate sterile universals. A mass of 10 mg fluorescein sodium powder was 

dissolved in 10 ml sterile water to provide a sodium fluorescein dye solution at a 

concentration of 1 mg.ml
-1

. A volume of 2 ml sodium fluorescein dye solution was 

added to each universal containing the particle suspensions, followed by 2 ml sterile 

bicarbonate buffered saline solution. The wear particles were incubated with the 

sodium fluorescein bicarbonate buffer overnight at 4ºC.  

Prior to filtration, two 25mm diameter 0.015 µm pore-sized filters were washed with 

70% (v/v) ethanol and dried under an infrared lamp for four hours in a class I 

laminar flow cabinet. Following the particle-fluorescein dye incubation, the 

micrometre and nanometre particle suspensions were filtered separately through the 

0.015 µm filter. This was followed by 15 ml RPMI 1640 Transport Medium to wash 

through any unbound sodium fluorescein. The filters were then separately placed in 

clean sterile universals, where 1 ml RPMI 1640 Transport Medium was added to 

each universal. The universals were then sonicated to disperse the labelled 

UHMWPE wear particles, ready to use in cell culture.  

 

2.4.7.4 Culture of Fluorescently Labelled UHMWPE Wear Particles with 

PBMNCs 

In order to image the agarose gel in which the UHMWPE wear particles were 

suspended, a thinner well was required to eventually fit under a confocal microscope 

lens. The author could not find a suitable cell-culture apparatus to provide this, and 

therefore constructed a custom cell culture-microscope slide. This involved a 

standard 75 x 26 mm microscope slide, with several layers of vinyl tape built up on 

one side of the slide to produce a stage. In this stage, a 10 x 10 square well was cut 

out using a scalpel blade. This well was deep enough to hold approx. 400 µl solution. 

An additional adjustment was the addition of an extra-long piece of tape for the sixth 

piece. This allowed for a tab to peel off the majority of the strips of tape prior to 
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imaging under the confocal microscope, leaving the well six-strips deep to hold the 

agarose gel for imaging. Prior to use, the wells of the apparatus were washed with 

70% (v/v) ethanol and dried at room temperature for 2 hours. The apparatus was then 

sterilised in an autoclave at 121ºC for 20 min, at 103 kPa. A schematic of the 

microscope-cell culture well construction is shown in Figure 2.10.  

Following optimisation, it was determined that an agarose gel volume of 100 µl, with 

a total cell suspension volume of 280 µl, was the optimum cell culture condition. 

Particles were dosed at a concentration of 100 µm³ per cell in 0.4% (w/v) agarose. 

Cell isolation and seeding of PBMNCs was carried out as described in section 2.4. 

Cells were incubated with UHMWPE wear debris over a period of 48 hours at 37ºC 

in 5% (v/v) CO2 in air. Fresh RPMI 1640 Culture Medium was added to the well at 

regular intervals to maintain the level of culture medium. Throughout the incubation, 

every effort was taken to protect the fluorescent particles from direct light.  

Prior to imaging using the confocal microscope, cell culture medium was carefully 

extracted from the well. Cells were washed twice in DPBS, followed by the addition 

of 100 µl Hoechst 33342 (5µg.ml
-1

) to each well. Cells were incubated for 10 min in 

the dark, after which the Hoechst 33342 was aspirated from each well. The top layers 

of tape were removed, leaving the agarose gel in a smaller well. A volume of 100 µl 

RPMI 1640 Transport medium was added to each well, and a sterile cover slip was 

applied over each well. The slides were now ready for imaging.  
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Figure 2.10 – Schematic showing the microscope slide – cell culture well assembly. Image A 

shows a side view of the apparatus, where layers of vinyl tape (2) were built up on a microscope slide 

(3) to create a solid stage. In this stage, two 10 x 10 mm wells were cut using a scalpel. In each well, 

100 µl agarose gel- particle suspension was added (1); followed by 280 µl RPMI 1640 Culture 

Medium containing PBMNCs. Image B shows a birds-eye view of the apparatus. Image C shows a 

close up of an individual well. The agarose gel can be seen with UHMWPE particles embedded in it. 

PBMNCs are seeded on top of the gel (blue cell), while the red curved line indicated the meniscus of 

the Culture medium.  

 

2.4.7.5 Confocal Laser Scanning Microscopy Imaging of UHMWPE Particle 

Uptake by PBMNCs 

A Zeiss LSM510 Confocal laser scanning upright microscope was used to 

demonstrate the uptake of UHMWPE wear particles by PBMNCs in agarose gel 

culture. The images were taken using a 63 X oil lens with helium and argon lasers 

switched on. Channels for DAPI and FITC were used to image the blue nucleus and 

green fluorescent labelled particles respectively, in addition to bright field 

microscopy. Images were extracted and overlays were processed using ZEN 2009 

software (Carl Zeiss Microscopy Ltd.). Throughout imaging, any bubbles under the 

cover slip were removed by reapplying to cover slip over fresh transport medium.  

 

A 

B

 
 A 

C 

1 

2 

2

 
 2 

1 

3

 
 2 



Chapter 3 

114 

 

Chapter 3 

 

Pin on Plate Wear Testing and Particle Characterisation of 

Antioxidant UHMWPE Materials With and Without Crosslinking 

 

3.1 Introduction 

In order to determine the wear performance of total hip replacements, wear 

simulators with varying degrees of sophistication have been used. Physiologically 

relevant joint simulators allow for the performance of the joint replacement to be 

analysed in detail, identifying the effects of design or changes in the motion of the 

walking cycle. A pin-on-plate wear simulator is a simpler simulator that enables the 

reproduction of some of the wear mechanisms observed in vivo, and thus allows the 

wear performance of the materials to be compared and evaluated, in addition to 

producing clinically relevant wear particles (Lancaster et al., 1997, Endo et al., 2001, 

Ingram et al., 2004, Galvin et al., 2006, Affatato et al., 2008). A six station 

multidirectional pin-on-plate wear simulator has been shown to be a suitable for 

determining the wear rate of UHMWPE due its ability to run six stations 

concurrently under the same conditions. Using kinematics shown to replicate the 

conditions in the hip during normal gait, clinically relevant wear debris has been 

produced and characterised (Galvin et al., 2006).  

The wear performance of UHMWPE is critical to the survivorship of joint 

replacements that use UHMWPE as the bearing material. Osteolysis caused by 

UHMWPE wear particles is considered to be one of the most important modes of 

failure of metal-on-UHMWPE primary total hip replacements, accounting for around 

75% of all failures (National Joint Registry, 2013). Particles generated from 

UHMWPE stimulate the activation of macrophages around the prosthesis, leading to 

an innate immune response that culminates in an increase in activity of osteoclasts 

(Bertolini et al., 1986). This causes an increase in bone resorption around the 

prosthesis, loosening the implant, which leads to pain and the need for revision 

surgery. The developments of UHMWPE over the last 20 years have focused on 
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increasing the wear resistance of the material in order to reduce osteolysis. The 

improvements in UHMWPE can largely be attributed to the introduction of gamma 

sterilisation in a vacuum or inert environment, barrier packaging, and the resultant 

high levels of crosslinking.  

Highly crosslinked UHMWPE has been shown to produce significantly lower wear 

rates compared to virgin UHMWPE (Chiesa et al., 2000, Galvin et al., 2006). 

However, free radicals are generated during gamma irradiation through chain 

scission of the polymer, and these radical species have the potential to cause 

oxidation of the polymer. While some free radicals recombine to form beneficial 

crosslinks, most remain in the crystalline domain of the material and do not 

recombine, and it is these free radicals that are able to cause oxidation which can 

reduce the mechanical properties of UHMWPE (Wannomae et al., 2006). While 

thermal treatments were introduced in order to reduce the free radical burden, the 

challenge was to find a compromise between preserving the mechanical properties of 

UHMWPE whilst effectively removing the free radicals (Baker et al., 2003). Vitamin 

E was added to highly crosslinked UHMWPE in order to protect against oxidation 

whilst removing the need for heat treatment, therefore preserving the mechanical 

properties of UHMWPE. While studies have shown a reduction in the wear rate for 

vitamin E enhanced highly crosslinked UHMWPE compared to virgin UHMWPE 

(Haider et al., 2012, Micheli et al., 2012), no studies have clearly outlined the effect 

of each separate treatment (crosslinking and vitamin E enhancement) on the wear 

rate of UHMWPE. Alternative antioxidants to vitamin E are also being researched, 

with the aim of developing a more oxidative resistant material. Hindered phenols are 

antioxidants commonly used in industry, and one form of hindered phenol has 

recently been used in UHMWPE clinically under the name of AOX
™

 UHMWPE for 

use in knee replacements. The same material is also being investigated for use in hip 

replacements. Despite this, few studies have directly compared the wear performance 

of this new hindered phenol UHMWPE to other clinical highly crosslinked and 

antioxidant UHMWPE materials.   

In addition to the wear rate of UHMWPE, particle size distribution has been shown 

to play an important role in osteolysis. A critical size range for macrophage 

activation has been shown to be 0.2-0.8µm (Ingham and Fisher, 2000). It is therefore 

important to focus on the wear rate and particle size distribution when evaluating 
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UHMWPE materials in terms of their clinical performance and potential to reduce 

osteolysis. 

The aim of this section of the study was to investigate the wear of current clinical 

and experimental antioxidant UHMWPE materials. Specifically, this involved the 

wear testing of GUR1050 UHMWPE with three different levels of crosslinking, both 

with and without 1000 ppm vitamin E enhancement. This study also investigated the 

wear of GUR1020 UHMWPE at two different levels of crosslinking, both with and 

without the addition of a hindered phenol antioxidant (AOX
™ 

UHMWPE).  The wear 

particle morphology and size distribution of these UHMWPE materials was 

determined in order to investigate whether crosslinking and/or antioxidant 

enhancement had any effect on the wear factor or wear particle size distribution, and 

hence potentially on clinical performances of these materials.  

A six station pin-on-plate wear rig was used to determine the wear of UHMWPE 

pins of each material. The wear rig incorporated multidirectional motion to replicate 

the kinematics found in the natural hip joint. Wear tests were performed against 

counterfaces comprised of smooth high-carbon cobalt chromium (CoCr) plates 

which simulated the smooth CoCr femoral head of the total hip replacement that 

would be used clinically. The wear test serum lubricant samples were collected and 

the particles isolated from the serum to determine the size distribution and particle 

characteristics produced by each material.  
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3.2 Materials and Methods 

3.2.1 Materials  

The UHMWPE materials tested in this chapter are shown in Table 3.1. The 

UHMWPE materials were kindly provided by DePuy Synthes Joint Reconstruction 

(Leeds, UK; Warsaw, USA) and MediTech Medical Polymers (Pennsylvania, USA). 

Additional gamma irradiation treatments were required for some experimental 

materials, and these were provided by DePuy Synthes Joint Reconstruction. 

Additional general materials used in this chapter are described in Tables A-1,-2 and-

3 in Appendix A.   

 

Table 3.1 – UHMWPE materials tested in this chapter, including the resin, gamma irradiation dose, 

antioxidant, supplier and the abbreviation to be used for each material throughout the chapter. *The 

exact dosage of hindered phenol in the AOX
™

 UHMWPE was disclosed by the manufacturer to be 

700 ppm. The comparison of two separate doses of antioxidant (vitamin E – 1000 ppm; hindered 

phenol – 700 ppm) was not considered significant to the study, due to the difference in the chemical 

structure of the compounds in terms of the number of groups capable of neutralising radical species. 

Name Resin  
Gamma 

Irradiation Dose 
Antioxidant Abbreviation 

1050 Virgin GUR1050 0 MRad none 1050 Virgin 

1050 Marathon
® 

GUR1050 5 MRad none 1050 Marathon 

1050 Highly 

Crosslinked 

UHMWPE 

GUR1050 10 MRad none 1050 HXL 

1050 Vitamin E 

enhanced 

UHMWPE 

GUR1050E 0 MRad 
Vitamin E 

1000 ppm 
1050 Vit E 

1050 Vitamin E 

enhanced 

UHMWPE + 5 

MRad irradiation 

GUR1050E 5 MRad 
Vitamin E 

1000 ppm 
1050 Vit E 5 

1050 Vitamin E 

enhanced 

UHMWPE + 10 

MRad irradiation 

GUR1050E 10 MRad 
Vitamin E 

1000 ppm 
1050 Vit E 10 

     1020 Virgin 

UHMWPE 
GUR1020 0 MRad none 1020 Virgin 

1020 Hindered 

Phenol enhanced 

UHMWPE 

GUR1020 0 MRad 

Hindered 

Phenol      

700 ppm*
 

1020 AOX 

1020 Hindered 

Phenol enhanced 

UHMWPE + 8 

MRad irradiation 

GUR1020 8 MRad 

Hindered 

Phenol      

700 ppm*
 

1020 AOX 8 
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The GUR1050 vitamin E enhanced UHMWPE material supplied by Meditech 

Medical Polymers (0 MRad, 5 MRad and 10 MRad) used GUR1050 UHMWPE as 

the raw material, with 1000 ppm vitamin E blended with the UHMWPE resin prior 

to consolidation.  

Pins of each material were machined in-house to have a 10 mm wear face, and were 

soaked in deionised water for two weeks prior to weighing to ensure moisture uptake 

was stabilised prior to the wear test. High-carbon (0.27% w/v) cobalt chromium 

smooth (Ra <0.01) plates were used as the counterface surface, and the mean Ra was 

determined prior to each test, as outlined in section 2.1.2.3.  

 

3.2.2 Determination of Wear Factor of Different UHMWPEs using the 

Six Station Pin-on-Plate Wear Simulator 

The wear tests were carried out using a multidirectional six station pin on plate 

simulator which is described in detail in Chapter 2.1. The purpose of the tests was to 

gravimetrically measure the mass loss from each pin over the course of two weeks 

(approximately 500,000 cycles), and then to calculate the wear factor for each 

UHMWPE material using equation 3 shown in section 2.1.2.9. During testing, at 

least two pins of each material were tested at the same time, depending on the 

allocation of the six stations, to give a final test sample of n = 4 for each material. 

During these wear tests, the six station pin-on-plate wear simulator was operated 

using a 28 mm stroke length with a rotation of ± 30˚, under a load of 160 N, at a 

frequency of 1 Hz, as described in section 2.1.2.6.1. The wear tests used a serum 

lubricant comprised of 25% (v/v) bovine serum with 0.03% (w/v) sodium azide.  

Pin on plate tests were performed using smooth high-carbon CoCr counterfaces, to 

replicate the smooth CoCr femoral heads articulating against the UHMWPE bearing 

in vivo (Eberhardt et al., 2009). To ensure plates had a mean surface roughness of Ra 

≤ 0.01 µm, each plate was measured using a Form Talysurf Contacting Profilometer. 

A total of four measurements were taken for each plate (Figure 2.2A, section 2.1.2.3) 

to give a mean value for each of the four plates tested against four pins. The mean 

surface roughness of each plate tested against GUR 1050 UHMWPE pins are shown 
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in Table 3.2. The mean surface roughness for plates tested against GUR 1020 

UHMWPE pins are shown in Table 3.3. All plates used in the wear test had a surface 

roughness of Ra ≤ 0.01µm (two decimal places). 

 

Table 3.2 – Mean surface roughness of each smooth high-carbon CoCr plate used in this study 

against GUR 1050 UHMWPE pins. Plates with a mean Ra ≤ 0.01µm (2 decimal places) were 

considered smooth. The table shows the mean value (± 95% confidence level, n=4). The measurement 

tracks to determine the mean roughness are shown in section 2.1.2.3. Four plates were measured to 

test against the four pins tested for each material.  

UHMWPE 

Material 
Mean Ra of CoCr Counterface (µm) 

  Plate 1 Plate 2 Plate 3 Plate 4 

1050 Virgin 
0.00603 

(±0.0009) 

0.00638 

(±0.0028) 

0.0074 

(±0.0018) 

0.00743 

(±0.003) 

1050 Vit E 
0.00903 

(±0.0005) 

0.00795 

(±0.0022) 

0.00673 

(±0.0035) 

0.00705 

(±0.0026) 

1050 Vit E 5 
0.00638 

(±0.0009) 

0.0077 

(±0.0006) 

0.00508 

(±0.0004) 

0.00868 

(±0.0044) 

1050 Marathon 
0.01063 

(±0.0008) 

0.00515 

(±0.0011) 

0.00735 

(±0.0031) 

0.0077 

(±0.0004) 

1050 Vit E 10 
0.00508 

(±0.0051) 

0.00868 

(±0.0022) 

0.01063 

(±0.0033) 

0.00478 

(±0.0003) 

1050 HXL  
0.00735 

(±0.0014) 

0.00618 

(±0.0006) 

0.00853 

(±0.0019) 

0.00605 

(±0.0007) 
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Table 3.3 – Mean surface roughness of each smooth high-carbon CoCr plate used in this study 

against GUR 1020 UHMWPE pins. Plates with a mean Ra <0.01µm (2 decimal places) were 

considered smooth. The table shows the mean value (± 95% confidence level, n=4). The measurement 

tracks to determine the mean roughness are shown in section 2.1.2.3. Four plates were measured to 

test against the four pins tested for each material. 

UHMWPE 

Material 
Mean Ra of CoCr Counterface (µm) 

  Plate 1 Plate 2 Plate 3 Plate 4 

1020 Virgin 
0.00758 

(±0.0009) 

0.00595 

(±0.0003) 

0.00738 

(±(0.00068) 

0.00995 

(±0.0002) 

1020 AOX 
0.00938 

(±0.0015) 

0.0063 

(±0.0008) 

0.0057 

(±0.0004) 

0.0057 

(±0.0008) 

1020 AOX 8 
0.00668 

(±0.0016) 

0.00918 

(±0.0071) 

0.00668 

(±0.0006) 

0.00653 

(±0.009) 

 

 

The pin-on-plate wear simulator was assembled as described in section 2.1.2.6. A 

control pin of each material was soaked in 25% (v/v) bovine serum lubricant for the 

duration of the wear test to determine the uptake of lubricant throughout the test. The 

only variable in the test was the UHMWPE material used. Prior to and after a wear 

test, the pin was cleaned and weighed as described in section 2.1.2.4 to determine the 

mass loss during the wear test. The wear factor was then calculated for each pin 

using the equation outlined in section 2.1.2.9, after which the mean wear factor for 

each material was calculated to compare the wear performance of the different 

UHMWPE materials.  

The two resins used in this study; GUR 1050 and GUR1020 are UHMWPE resins 

produced by Ticona. The major difference between these resins is their average 

molecular weight, with the GUR 1050 having an average molecular weight of 3.5 x 

10
6 

g/mol, and GUR 1020 having an average molecular weight of 5.5 x 10
6
 g/mol. 

These resins did not contain added calcium stearate unlike some historical resins 

(such as GUR 1150 and 1120).  
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3.2.3 Characterisation of UHMWPE Wear Debris from the Six Station 

Pin-on-Plate Wear Simulator 

The aim of this part of the study was to characterise the size distribution of wear 

particles generated from each material during simple configuration wear simulation 

using the six station pin-on-plate wear simulator. The importance of particle size and 

volume distribution in the biological response to these particles has been shown in 

several studies (Green et al., 1998, Ingham and Fisher, 2000). A critical size range of 

0.1-1.0 µm at a dose of 100 µm
3
 per cell has been shown to stimulate a response in 

macrophages, showing the importance of the particle size distribution to the 

subsequent biological response. It is therefore important to determine the size and 

volume distribution of the particles from each material to examine these aspects of 

the materials’ potential to stimulate a biological response.  

The method for particle isolation and characterisation has been previously outlined 

by Richards et al., (2008). The principle behind this method was to remove proteins, 

lipids and salts, which may appear as contamination on the filters and will affect the 

SEM imaging, making particle characterisation difficult. Following the culmination 

of each wear test, the serum lubricant was collected from each station for isolation 

and characterisation of the wear debris for each UHMWPE material. Serum proteins 

were digested in alkali solution, followed by the removal of lipids using multiple 2:1 

chloroform: methanol incubations. The methods used for particles isolation are 

described  in detail in section 2.3.1. Lubricant samples were then filtered through a 

series of filters to collect the wear particles on the filter surface for SEM imaging. 

The filters used were 10 µm, 1 µm and 0.015 µm pore sized filters, and the filtration 

method is described in section 2.3.2. The particles present on these filters were 

imaged using a high resolution FEGSEM, as described in section 2.3.3. The particles 

in these images were then sized using Image Pro Plus image analysis software to 

generate a frequency and volume size distribution graphs for each material. The 

method used to generate these distribution graphs is described in section 2.3.4 

(Richards, 2008).  
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3.3 Results  

3.3.1 Determining the Wear Factor of UHMWPE With and Without an 

Antioxidant and at Three Levels of Crosslinking 

The mean wear factors for the GUR 1050 UHMWPE and GUR 1020 UHMWPE 

pins tested in multidirectional pin on plate tests against smooth CoCr counterfaces 

are shown in Figure 3.1. With both GUR1050 and GUR1020 UHMWPE materials, 

there was a significantly lower wear factor as the levels of crosslinking increased. 

The mean wear factor of the 1050 HXL (10 MRad) UHMWPE material was 52% 

lower than the wear rate of the 1050 Virgin UHMWPE, and this difference was 

statistically significant (ANOVA, p<0.05). The mean wear factor of Marathon 

UHMWPE (5 MRad) was 32% lower than that the wear rate of 1050 Virgin, with 

this difference also statistically significant (ANOVA, p<0.05). This demonstrated a 

clear correlation for a decreased wear factor as the crosslinking level increased in 

non-antioxidant GUR1050 UHMWPE.  

The mean wear factors for the vitamin E enhanced materials showed a similar trend 

to the non-antioxidant GUR1050 materials. The mean wear factor for 1050 Vit E 10 

(10 MRad) UHMWPE was 65% lower than the mean wear factor of 1050 Vit E (non 

crosslinked) UHMWPE, and this was a statistically significant difference (ANOVA, 

p<0.05). Furthermore, a significantly lower wear factor was observed in 1050 Vit E 

5 (5 MRad) compared to the non-crosslinked 1050 Vit E UHMWPE material. 

In order to determine any interaction between the GUR 1050 UHMWPE irradiation 

dose and additive level, a two-way analysis of variance was carried out (Irradiation 

dose vs additive). This showed no significant interaction between the two variables, 

supporting the observation that the addition of vitamin E to GUR 1050 UHMWPE 

had no effect on the wear factor.  

Comparing the GUR1020 materials in a separate sub-group analysis of variance, 

there was no significant difference in the mean wear factors of each material, despite 

the addition of the hindered phenol antioxidant to UHMWPE, or with increasing the 

level of crosslinking (8 MRad)(ANOVA, p>0.05). The mean wear factor of 1020 

AOX UHMWPE was 18% lower than 1020 Virgin UHMWPE, with the mean wear 

factor of 1020 AOX 8 35% lower than the wear factor of 1020 Virgin UHMWPE.  
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These results demonstrated that increasing the levels of irradiation of UHMWPE 

increased the wear resistance of the material through beneficial crosslinking. To 

determine the effects of the addition of an antioxidant on the wear factor, 

comparisons were made between groups of materials. 

When comparing the two GUR1050 materials without any crosslinking (1050 

Virgin/ 1050 Vit E), there was no significant difference in their mean wear factors. 

This lack of a significant difference in the wear factor was observed in all the 

GUR1050 UHMWPE materials that possessed the same levels of crosslinking, such 

as the 5 MRad crosslinked materials 1050 Marathon and 1050 Vit E 5 ; and with the 

10 MRad crosslinked materials 1050 HXL and 1050 Vit E 10 (ANOVA, p>0.05). 

These results indicated that the addition of vitamin E at 1000 ppm to GUR1050 

UHMWPE had no significant effect on the wear factor under normal wear 

conditions. With the addition of the AOX antioxidant to GUR1020, there was no 

significant effect on the mean wear factor (comparing 1020 Virgin with 1020 AOX).  
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Figure 3.1 – Mean wear factors for each UHMWPE material after 2 weeks testing (>500,000 cycles) against smooth CoCr plates in 25% (v/v) bovine serum. Error 

bars show the 95% confidence level; n=4. Green bars show the wear factors of the non-enhanced GUR 1050; Orange bars show vitamin E enhanced GUR 1050; Blue bars 

show GUR 1020. ∆ - depicts the significantly higher mean wear factor of 1050 Virgin and 1050 Marathon compared to 1050 HXL UHMWPE; □ – shows a significant higher  

mean wear factor of 1050 Vit E and 1050 Vit E 5 compared to 1050 Vit E 10 (ANOVA, p<0.05). 
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3.3.2 Isolation and Characterisation of Wear Particles Generated from 

UHMWPE With and Without Crosslinking and Antioxidant Addition 

For the GUR 1050 UHMWPE materials, the particles from 1050 Virgin, 1050 HXL 

and 1050 Vit E 10 were characterised. It was thought these materials would provide 

a good indication of the effect, if any, that crosslinking and/or vitamin E doping has 

on the size distribution of the wear particles compared to 1050 Virgin UHMWPE. 

Comparing the clinically relevant highly crosslinked UHMWPE and vitamin E 

enhanced clinically relevant UHMWPE materials to the virgin material allowed any 

significant difference in particle size distribution to be evident 

From the six station pin-on-plate wear simulator tests, the serum lubricant from three 

of the four stations was processed and isolated, as described section 2.3. Samples 

from separate stations were kept separate throughout the whole process to allow for 

an n=3 value.  

 

3.3.2.1 Isolation and Characterisation of Wear Particles Generated from 

GUR1050 Virgin UHMWPE and GUR1050 Vitamin E enhanced Highly 

Crosslinked UHMWPE 

The SEM images showing wear particles from 1050 Virgin UHMWPE are shown in 

Figure 3.2, highlighting some of the different particle morphologies. Particles 

observed on the 10 µm filter were typically large, flake-like particles, as highlighted 

by the black arrow in image A. The yellow arrow in image A highlights a cluster of 

smaller, granular particles. The black arrow in image B shows a globular-shaped 

particle. A long, fibril shaped particle is shown in image D, highlighted by the black 

arrow. A globular particle of around 1 µm in length can also be seen alongside the 

fibril shaped particle.  

The mean percentage frequency and volume size distribution graphs for the 1050 

Virgin particles are shown in Figure 3.3. The mode of the frequency size distribution 

was within the 0.1-1.0 µm size range, however a large number of nanoscale particles 

were also isolated, with around 45% particles in this <0.1 µm size range. Around 5% 

of the total number of particles were in the 1.0-10 µm size range, with even fewer 

particles in the larger >10 µm size range.   
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The volume size distribution graph shows the importance of analysing volume in 

addition to frequency distribution, as a clear difference can be seen. The mode of the 

volume size distribution of 1050 Virgin wear particles was in the 1.0-10 µm size 

range, with around 56% of the volume of particles in this size range. Around 26% of 

the volume of particles was in the 0.1-1.0 µm, with less than 20% of the volume of 

particles in the larger >10 µm size range. As expected, despite nanoscale particles 

contributing a significant portion of the number of particles, these particles make up 

a very small percentage of the total volume of particles.  

 

 

Figure 3.2 – FEGSEM images of UHMWPE wear particles isolated from serum lubricant used on the 

six station pin-on-plate wear rig. These particles were generated from GUR 1050 Virgin UHMWPE 

pins articulating against a smooth CoCr counterface. Image A shows a 10 µm filter imaged at a 

magnification of 1500x. The black arrows show flake like particles, while the orange arrow shows a 

cluster of smaller particles; Image B shows a 1 µm filter imaged at a magnification of 20,000x. The 

black arrow shows a globular-shaped particle; Image C shows a 0.015 µm filter imaged at a 

magnification of 20,000x. Image D is an additional image of a 1 µm filter imaged at a magnification 

of 20,000x. The black arrow shows a fibril shaped particle.  
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Figure 3.3 – A) The mean percentage frequency and B) the mean percentage volume size distribution 

of GUR 1050 Virgin UHMWPE particles generated on the six station pin-on-plate wear rig. The error 

bars represent ± standard error of the mean.  

 

 

The SEM images showing wear particles from 1050 Vit E 10 UHMWPE are shown 

in Figure 3.4. Large flake-like particles were seen on the 10 µm pore-size filter in 

image A, showing the complex shapes of wear particles generated under clinically 

relevant hip kinematics. A fibril-shaped particle with a length of approximately 25 
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µm is shown in image B, as highlighted by the black arrow. The black arrows in 

image C highlight four sub-micron particles on the 0.015 pore-size filter.  

The mean percentage number and volume size distribution graph for particles 

generated from 1050 Vit E 10 are shown in Figure 3.5A and B. The mode of the 

frequency distribution was in the nanoscale range of <0.1 µm (Figure 3.5A). Around 

a third of particles were in the 0.1-1.0 µm size range, while less than 5% particles 

were in the 1.0-10 µm size range. The volume distribution (Figure 3.5B) shows the 

mode size range to in the 1.0-10 µm size range, making up around 55% of the total 

volume of wear particles for 1050 Vit E 10. Once again despite contributing a large 

number of particles to the overall sample, the nanoscale particles contribute only a 

very small percentage of the overall volume of particles.  
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Figure 3.4 - FEGSEM images of UHMWPE wear particles isolated from serum lubricant used on the 

six station pin-on-plate wear rig. These particles were generated from GUR 1050 vitamin E enhanced 

10 MRad irradiated UHMWPE pins articulating against a smooth CoCr counterface. Image A shows a 

10 µm filter imaged at a magnification of 1,500x. Several flake-like particles are visible in this image. 

Image B shows a 1 µm filter imaged at a magnification of 10,000x. The black arrow shows a fibril 

shaped particle with an approximate length of 15 µm. Image C shows a 0.015 µm filter imaged at a 

magnification of 30,000x. Black arrows show the sub-micron particles present on the filter.  
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Figure 3.5 - A) The mean percentage frequency and B) the mean percentage volume size distribution 

of GUR 1050 Vit E 10 UHMWPE particles generated on the six station pin-on-plate wear rig. The 

error bars represent ± standard error of the mean.  
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there were technical problems when using the FEGSEM. For example, during one 

session, the level of static generated by the filter was making capturing a high 

resolution image almost impossible. A second layer of platinum coating was applied 

to try to reduce this static, however this did not improve the sample. A second 

technical fault occurred during a later session which results in several weeks of 

downtime for the FEGSEM.  

Due to the limited volume of lubricant available from the six station pin-on-plate 

wear rig, and because the 1050 HXL sample required a large volume of lubricant to 

be processed in order to provide an adequate particle sample (due to the low wearing 

1050 HXL material), these problems resulted in the loss of the 1050 HXL 

UHMWPE wear debris to analyse. This was a disappointing outcome; however this 

was an example of the limitations and difficulties experienced during research. As a 

result of the exclusion of this material, the study compared the particle size 

distribution of 1050 Virgin and 1050 Vit E 10 UHMWPE, to determine if there were 

any significant differences between these materials in terms of wear debris.  

 

3.3.2.2 Comparison of the Frequency and Volume Size Distribution for 

GUR1050 Virgin and GUR1050 Vitamin E enhanced Highly Crosslinked 

UHMWPE 

A comparison of the mean frequency and volume size distributions for the 1050 

Virgin and 1050 Vit E 10 wear particles was performed. No significant differences 

were observed for either the frequency or volume size distribution of these materials 

(ANOVA p>0.05). The mean frequency size distribution comparison graph is shown 

in Figure 3.6A, and indicated the majority of the particles generated were in the sub 

micrometre size ranges (<0.1 µm, 0.1-1.0 µm) for both 1050 Virgin and 1050 Vit E 

10 UHMWPE. While the 1050 Virgin material generated a higher percentage 

number of particles in the nanoscale range, this was not significantly higher. Both 

materials had a small number of particles in 1.0-10 µm and >10 µm size range.  

The mean volume distribution comparison graph is show in Figure 3.6B. This graph 

shows a very similar mean volume size distribution for both materials. Both 

materials showed a mode volume distribution in the 1.0-10 µm size range, with both 
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materials generating over 50% of the volume of particles in this size range. A 

smaller proportion of the volume of particles was in the 0.1-1.0 µm (<30%) and <10 

µm (<20%) size ranges. Nanoparticles, despite contributing a large majority of the 

number of particles, make up a very small percentage of the total volume of 

particles, with both materials generating less than 1% of the total wear volume in this 

size range.  
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Figure 3.6 – Comparison of 1050 Virgin and 1050 Vit E 10 wear particles generated on the six station 

pin-on-plate wear rig; A) the mean frequency size distribution; B) the mean volume size distribution. 

The error bars show ± standard error (SE) of the mean.  
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3.3.2.3 Isolation and Characterisation of Wear Particles Generated from 

GUR1020 Virgin UHMWPE and Hindered Phenol Enhanced Highly 

Crosslinked UHMWPE 

Wear debris from GUR1020 Virgin UHMWPE and GUR1020 AOX 8 UHMWPE 

were isolated from the serum lubricant collected following the wear test of these 

materials to determine the wear factor. It was intended to also isolate and 

characterise the wear debris from a GUR1020 crosslinked but non-AOX UHMWPE 

material to provide a complete set of materials from this resin. However, this study 

was unable to source a GUR1020 UMWPE material irradiated to 8 MRad for 

comparison with the AOX
™

 highly crosslinked UHMWPE. For this reason, 1020 

Virgin and 1020 AOX 8 UHMWPE were compared in this section of the study. 

The serum lubricant from three of the four stations was processed and particles 

isolated, as described in section 2.3. Samples were kept separate throughout the 

whole process to allow for an n=3 value. These materials were chosen as a good 

representation of the virgin GUR1020 material and the highly crosslinked 

antioxidant GUR1020 material. If crosslinking and AOX
™

 addition had a significant 

effect on the particle size distribution compared to 1020 virgin, this would be evident 

when comparing these two materials. .  

The SEM images showing wear particles from 1050 Virgin UHMWPE are shown in 

Figure 3.2. Particles observed on a 10 µm filter were typically large, flake-like 

particles, as highlighted by the black arrows in image A. A single, flake-like particle 

was observed on a 1.0 µm filter in image B, captured at a magnification of 10,000x. 

A 0.015 µm filter captured at a magnification of 60,000x is shown in Image C. A 

micron-sized globular shaped particle was captured on this filter, with a submicron 

particle beside this larger particle, highlighted by the black arrow. Finally, an 

additional image of a 10 µm filter showed (image D) showed a flake-like particle 

surrounded by submicron wear debris. This is a very clear image of wear debris 

generated from 1020 Virgin UHMWPE.  

The mean percentage frequency and volume size distribution graphs for 1020 Virgin 

wear particles are shown in Figure 3.8A and B respectively. The mode of the 

frequency size distribution was within the 0.1-1.0 µm size range, as shown in Figure 

3.8A. The second most frequent size range of particles was the <0.1 µm size range, 
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with around 20% of particles falling in this size range. Around 10% particles were 

within the 1.0-10 µm size range, however, from the volume distribution, it was clear 

that this size range contributed over 70% of the total volume of the wear debris 

(Figure 3.8B). Only 20% of the volume of wear debris was within the 0.1-1.0 µm 

size range, with a lower percentage of the volume of particles in the >10 µm and 

<0.1 µm size range. This once again shows the importance of determining the 

percentage volume size distribution alongside the percentage number distribution. 
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Figure 3.7 – FEGSEM images of UHMWPE wear particles isolated from serum lubricant used on the 

six station pin-on-plate wear rig. These particles were generated from GUR 1020 Virgin UHMWPE 

pins articulating against a smooth CoCr counterface. Image A shows a 10 µm filter imaged at a 

magnification of 400x. The black arrows show flake like particles; Image B shows a 1 µm filter 

imaged at a magnification of 10,000x; Image C shows a 0.015 µm filter imaged at a magnification of 

60,000x. The orange arrow shows a globular shaped particle with a width of around 1 µm. The black 

arrow shows a submicron particle close to the larger particle.  Image D is an additional image of a 10 

µm filter imaged at a magnification of 12,000x. The black arrow shows a flake-like particle, 

surrounded by submicron wear debris highlighted in the red circles.  
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Figure 3.8 - A) The mean percentage frequency and B) the mean percentage volume size distribution 

of GUR 1020 Virgin UHMWPE particles generated on the six station pin-on-plate wear rig. The error 

bars represent ± standard error of the mean.  
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Wear debris generated from GUR1020 AOX 8 was also isolated and characterised. 

Images of 1020 AOX 8 wear debris were obtained using high resolution SEM, and 

these images are shown in Figure 3.9. Some of the different particle morphologies 

are highlighted in these images. Particles observed on a 10 µm filter were typically 

large, flake-like particles, as highlighted by the black arrows in image A. Long, 

fibril-like extensions were often seen on these particles, as highlighted by the orange 

arrow. While these extensions do not hugely increase the volume of the particle, the 

perimeter and surface area of these particles were increased due to these thin 

extensions.   

The 1.0 µm filter is shown in image B, captured at a magnification of 60,000x. A 

flake-like particle was observed on this filter, highlighted by the black arrow, along 

with a smaller globular-shaped particle.  The 0.015 µm filter, imaged at a 

magnification of 10,000x, is shown in image C. This image showed clusters of sub-

micron UHMWPE wear particles, as highlighted by the red circles. These smaller 

particles tended to be more globular and round in morphology. Finally, an additional 

image of a 10 µm filter (image D) showed two flake like particles imaged at a 

magnification of 1,500x. The detail in these flake-like particles was clear in these 

images. Once again, fibril extensions from the flake-like shapes were observed.  

The mean percentage frequency and volume size distribution graphs for 1020 AOX 8 

wear particles are shown in Figure 3.10A and B respectively. The mode of the 

frequency size distribution was within the 0.1-1.0 µm size range. The second most 

frequent size range of particles was the 1.0-10 µm size range followed closely by the 

<0.1 µm size range. A very small percentage of the number of the particles was in 

the >10 µm size range. This size range did however contribute the second highest 

percentage of the volume of particles generated. The mode size range for the volume 

distribution of the particles was the 1.0-10 µm size range. Despite contributing the 

largest percentage of the number of particles, the 0.1-1.0 µm size range contributed 

less than 10% of the total volume of wear particles.  
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Figure 3.9 – FEGSEM images of UHMWPE wear particles isolated from serum lubricant used on the 

six station pin-on-plate wear rig. These particles were generated from GUR 1020 AOX 8 UHMWPE 

pins articulating against a smooth CoCr counterface. Image A shows a 10 µm filter imaged at a 

magnification of 300x. The black arrows shows a flake like particle with a fibril extension (orange 

arrow) around 25 µm in length; Image B shows a 1 µm filter imaged at a magnification of 60,000x. 

The black arrow shows a micron-sized particle; Image C shows a 0.015 µm filter imaged at a 

magnification of 10,000x. This image shows several particles smaller than a micron, with some of 

these particles highlighted by the red circle; Image D is an additional image of a 10 µm filter imaged 

at a magnification of 1,500x. The black arrows show two flake-like particles, also with fibril 

extensions. 
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Figure 3.10 - A) The mean percentage frequency and B) the mean percentage volume size distribution 

of GUR 1020 AOX 8 UHMWPE wear particles generated on the six station pin-on-plate wear rig. 

The error bars represent ± standard error of the mean.  
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3.3.2.4 Comparison of the Frequency and Volume Size Distribution for 

GUR1020 Virgin and GUR1020 Hindered Phenol enhanced Highly 

Crosslinked UHMWPE 

A comparison of the mean frequency and volume size distribution of 1020 Virgin 

and 1020 AOX 8 UHMWPE wear debris was performed. No significant differences 

were observed between the two samples for either the frequency or volume 

distributions (ANOVA, p>0.05). The mean frequency size distribution graph is 

shown in Figure 3.11A, and indicates that both 1020 Virgin and 1020 AOX 8 had a 

mode size range for the number of particles in the 0.1-1.0 µm size range. The size 

ranges <0.1 µm and 1.0-10 µm made up the majority of remainder of the particles 

characterised for both materials. Both materials generated a very low percentage of 

the number of particles in the size range greater than 10 µm.  

The mean volume size distribution graph is shown in Figure 3.11B and also shows 

that both materials had a similar distribution of the volume of particles. Both 

materials had the mode percentage volume of particles in the 1.0-10 µm size range. 

A third of the wear debris from 1020 Virgin UHMWPE was in the >10 µm size 

range, whereas only a small percentage of the volume of wear debris from 1020 

AOX 8 was in this large size range, although these differences were not statistically 

significant. Both materials had a low percentage volume of wear debris in the 0.1-1.0 

µm size range; with this size range being thought be crucial to biological response to 

wear debris.  

In conclusion, these results showed that there was no significant difference in the 

particle size distribution in terms of frequency and volume between 1020 Virgin and 

1020 AOX 8 UHMWPE. 
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Figure 3.11 – Comparison of 1020 Virgin and 1050 AOX 8 UHMWPE wear particles generated on 

the six station pin-on-plate wear rig; A) the mean frequency size distribution; B) the mean volume 

size distribution. The error bars show ± standard error (SE) of the mean.  
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3.4 Discussion 

Wear Testing 

In this chapter, the six station multidirectional pin-on-plate wear simulator was used 

to determine the wear factor of nine different UHMWPE materials. Wear tests were 

performed against smooth (Ra <0.01 µm) high carbon CoCr counterfaces in a 

lubricant of 0.03% (w/v) sodium azide supplemented with 25% (v/v) bovine serum. 

This group of UHMWPE materials was comprised of experimental and clinically 

relevant materials, providing a strong matrix of materials that allowed for the 

comparison of the effect of crosslinking and/or antioxidant addition on the wear 

performance.    

Each wear test used four pins per material and was operated over a two week period 

to allow for a minimum of 500,000 cycles at a rate of 1Hz. A load of 160N was 

applied throughout the test, with a stroke length of 28 mm, and a contact face on the 

UHMWPE material of 10 mm. Pins were weighed before and after the wear test to 

determine the wear of the pin gravimetrically. From this, the mean wear factor was 

determined for each material.  

The results from the six station pin-on-plate wear simulator indicated that an increase 

in the level of crosslinking of UHMWPE produced a significantly lower wear factor 

compared to non-crosslinked UHMWPE. For each of the two GUR1050 categories 

of material; non-antioxidant (1050 Virgin, 1050 Marathon, 1050 HXL) and vitamin 

E enhanced (1050 Vit E, 1050 Vit E 5, 1050 Vit E 10), a significantly lower mean 

wear factor was demonstrated as crosslinking increased. A significantly lower wear 

factor was observed between 1050 Virgin and 1050 HXL, along with a significantly 

lower wear factor between 1050 Vit E and 1050 Vit E 10 (ANOVA; p<0.05). There 

was no significant change in the wear factor observed between the GUR1020 

materials, however a lower wear factor was still observed in 1020 AOX 8 compared 

to 1020 Virgin UHMWPE. 

There was no significant difference in the wear factor between 1050 Virgin and 1050 

Vit E, or between 1050 HXL and 1050 Vit E 10, indicating that the addition of 

vitamin E had no significant effect on the wear factor of these UHMWPE materials. 

A two-way analysis of variance also determined that there was no significant 
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interaction between the level of crosslinking and the addition of vitamin E 

enhancement (2-way ANOVA, p<0.05). A previous study had concluded vitamin E 

reduced the wear of UHMWPE compared to conventional UHMWPE, however the 

aforementioned study tested vitamin E highly crosslinked UHMWPE against virgin 

UHMWPE, therefore the conclusions made regarding vitamin E and its effect on the 

wear of UHMWPE cannot be made. It is probable that the reduction in the wear 

factor observed in the previous study was due to the high levels of crosslinking 

rather than the presence of vitamin E (Micheli et al., 2012). The present study 

showed that under normal conditions (non-aged), vitamin E had no significant effect 

on the wear of UHMWPE in a pin-on-plate wear test.  

The addition of vitamin E has previously been shown to maintain the mechanical 

properties of highly crosslinked UHMWPE following accelerated aging. The study 

by Kurtz et al., (2009) showed that after two or four weeks of accelerated, vitamin E 

enhanced UHMWPE at a dose of 500 ppm maintained the baseline mechanical 

properties of the material (Kurtz et al., 2009). The addition of vitamin E to 

UHMWPE has also been shown to improve fatigue crack propagation resistance 

following accelerated aging (Oral et al., 2008). These studies highlight that following 

accelerated aging; vitamin E may have a significant effect on the wear of the 

material compared to highly crosslinked and remelted UHMWPE. This is an area 

where further study would be beneficial to the understanding of the effect of vitamin 

E on the wear of UHMWPE. 

One of the alternative antioxidants being considered for use in UHMWPE is the 

hindered phenol pentaerythritol tetrakis. Hindered phenols have been shown to be 

effective antioxidants due to the four phenol groups the molecule possesses. The first 

hindered phenol UHMWPE for orthopaedic use has been developed by DePuy 

Synthes, with the materials termed AOX™. This crosslinked AOX™ material (1020 

AOX 8), along with a non-crosslinked AOX™ material (1020 AOX) and virgin 

material (1020 Virgin) were also tested using the six station pin-on-plate wear 

simulator. The addition of the hindered phenol antioxidant (AOX
™

) also had no 

significant effect on the wear factor of UHMWPE compared to GUR1020 Virgin 

UHMWPE. There was a lower mean wear factor for AOX
™

 enhanced UHMWPE 

compared to 1020 Virgin UHMWPE, and then a further reduction in the wear factor 
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with the addition of 8MRad gamma irradiation; however these reductions were not 

statistically significant (ANOVA; p>0.05).   

The wear factor of the GUR1020 Virgin UHMWPE was significantly lower than the 

mean wear factor for the GUR1050 Virgin UHMWPE material (ANOVA, p<0.05). 

This was surprising given the lack of crosslinking in both materials. The main 

difference between these two materials is the resin used, and the average molecular 

weights of the materials. The GUR1050 resin has a higher average molecular weight 

(7.3 x 10
6
 g.ml

-1
) compared to the GUR1020 resin (4.4 x 10

6
 g.ml

-1
)(Tipper et al., 

2005)
 
. These differences were not expected to generate a significant difference in 

the wear factor, and a previous study by Tipper et al., showed no significant 

difference in the wear rates of GUR1050 and GUR1020 Virgin UHMWPE when 

using a hip simulator (Tipper et al., 2005). Further investigation into the reasons for 

this difference is required to better understand the properties of these UHMWPE 

materials.  

 

Wear Particle Characterisation 

Serum lubricant from the six station pin-on-plate wear tests was collected to allow 

for the isolation and characterisation of wear debris generated during these tests. A 

previous study by Liu (2012) used a filtration sequence of 10 µm, 1 µm, and 0.015 

µm to successfully isolate wear particles to be imaged using high resolution 

FEGSEM followed by characterisation using image analysis software. This method 

successfully characterised the wear debris sample generated on the six station pin-

on-plate wear rig, and for that reason the same method was used in this study. 

For each material, three serum lubricant samples were isolated using the methods 

outlined in section 2.3.1. This involved the use of 12M KOH to digest the protein 

present in the sample. Following this, 2:1 chloroform: methanol was used for lipid 

extraction from the sample, and protein precipitation. Finally, ethanol was used for 

further lipid extraction, while also precipitating and removing a large quantity of 

salts from the sample. Particle samples were then sequentially filtered through a 

sequence of filters consisting of 10 µm, 1.0 µm, and 0.015 µm pore-sized filters. 

These filters were then imaged using a FEGSEM at a range of magnifications. This 

method successfully produced high quality images of UHMWPE wear debris on the 
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filters, where the lack of protein or salt contamination on the filters allowed for clear 

images of particles, making the particle analysis process more accurate.  

Wear particle characterisation was performed to compare to frequency and volume 

size distribution of wear particles, and to identify if the addition of an antioxidant 

and high levels of crosslinking affected the size distribution of the wear debris. The 

sizing and analysis of wear particles was done manually, and this allowed for 

UHMWPE wear particles to be identified according to their recognisable shape and 

appearance when imaging using SEM. Attempts have been made to use automated 

particle analysis, however amongst the pores and various contaminants on the filters 

this was never performed accurately enough by the computer, and manual analysis 

was continued. Wear debris from 1050 Virgin was compared to wear debris from 

1050 Vit E 10. There was no significant difference in the size distribution of wear 

particles from both materials. The majority of wear particles generated from both 

materials were within the submicron categories of <0.1 µm and 0.1-1.0 µm. 

However, when analysing the volume of particles produced, both materials generated 

the vast majority of the total volume of particles in the 1.0-10 µm size range. This 

difference highlights the importance of considering the volume of wear debris rather 

than the number of wear particles. This result appeared to show the addition of 

crosslinking and vitamin E enhancement had no significant effect on the size 

distribution of wear particles generated against a smooth CoCr counterface.  

Throughout the isolation and characterisation of 1050 HXL UHMWPE wear 

particles, limitations and difficulties arose. One of the limitations with isolating wear 

particles from serum lubricant samples used in the six station pin-on-plate wear tests 

is the limited volume of wear debris to work with. This became apparent when 

problems arose with the isolation and subsequent imaging of 1050 HXL wear 

particles. One two occasions, the 1.0 µm filter had high levels of contamination 

present, and this made identifying and sizing UHMWPE wear particles very 

difficult. This meant the author was not able to obtain even one full set of images to 

present a size distribution for one sample. Furthermore, when analysing a second 

sample of 1050 HXL UHMWPE wear debris, technical problems occurred with the 

FEGSEM. This subsequently meant that the complete lubricant sample for the 1050 

HXL material was diminished during the unsuccessful isolation/imaging procedure. 

A future study would repeat this experiment and include this vital, clinically relevant 
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material for a more complete set of results, and adding more confidence to any 

conclusions made regarding the effect of crosslinking and vitamin E addition on the 

particle size distribution of UHMWPE. 

This study also compared the wear particle distribution from 1020 Virgin and 1020 

AOX 8. Once again there was no significant difference in the frequency or volume 

size distribution of wear debris between these materials. For both these GUR1020 

materials, the majority of the wear particles were produced in the 0.1-1.0 µm size 

range. However, as with the GUR1050 materials, the mode size range for the volume 

size distribution was the 1.0-10 µm size range.  

In this case, a further limitation prevented a full range of GUR1020 materials to be 

processed. A material that would have made the particle size distribution analysis 

more complete, in addition to the wear testing section of this chapter, would have 

been a highly crosslinked (8 MRad) non-antioxidant GUR1020 UHMWPE material. 

This would have filled the gap between 1020 Virgin and 1020 AOX 8 UHMWPE in 

both the wear test and particle analysis. However, this study was unable to source 

such a material. In addition, due to time constraints, it would have been difficult to 

include this extra material in the time provided for the study. As with the GUR1050 

material, future work should aim to include this material in the GUR1020 studies, to 

provide a more complete matrix of materials.  

A previous study investigating the wear particle size distribution of GUR1050 virgin 

UHMWPE, along with GUR1050 UHMWPE crosslinked with 5MRad or 10MRad 

irradiation was conducted by Ingram et al. (2004). Against a smooth CoCr 

counterface, the authors observed no significant difference in the particle frequency 

or volume size distribution between the three materials. The mode size range 

observed for all three materials in terms of frequency of particles was the <0.1 µm 

nanometre size range, contributing around 90% of the particles measured. In the 

present study, a similar result was observed for 1050 Vit E 10 UHMWPE wear 

debris, with the mode size range also <0.1 µm. The frequency size distribution for 

1050 Virgin was different in the present study compared to the study by Ingram et 

al. In the present study, the 0.1-1.0 µm size range was the mode size range, while in 

the previous study, the <0.1 µm size range was represented the mode size range. 
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This variation in the GUR1050 virgin size distribution could be attributed to the 

variation in methodology between the two studies. In the present study, following 

sequential filtration through 0.015µm, 1.0 µm and 10 µm filter membranes, each 

section of filter was imaged at a range of magnifications, with three separate fields of 

view at each magnification, as described in the method developed by Richards 

(2008). For example, the section of filter imaged from the 1.0 µm filter membrane 

was imaged at magnifications of x1.5K, x5K, x10K, x20K, x30K, x40K, x65K, with 

three fields of view captured at each magnification. In comparison, the authors in the 

previous study filtered their lubricant through 0.1 µm, 1.0 µm and 10 µm filter 

membranes. The authors then quantified the wear particles on only the 0.1 µm and 

1.0 µm filter membranes, excluding the 10 µm filter. Finally, only six SEM images 

were captured from each membrane filter; two images at ‘low magnification’ and 

four images at a higher magnification, in order to capture the nano-metre sized wear 

particles. The low number of images captured in the previous study, combined with 

the small range of magnifications used, could explain the conflicting results obtained 

between the two studies for GUR1050 virgin UHMWPE frequency size distribution. 

When comparing the volume size distribution of GUR1050 virgin UHMWPE in the 

two studies, a similar result was obtained, with the mode size range determined as 

the 1.0-10 µm range in both studies. Variation was observed when analysing the 

other size ranges, however these differences could also be due to the variation in the 

methodology outlined previously. Despite these variations, the previous study does 

shed some light on a question that remained following the investigation in this 

section. While the present study was unable to compare highly crosslinked 

UHMWPE with the virgin material, the previous study showed no significant 

difference in the frequency or volume size distribution between virgin and highly 

crosslinked GUR1050 UHMWPE. Combined with the present study, these results 

would suggest that the addition of high levels of crosslinking, and/or the addition of 

vitamin E/hindered phenol as an antioxidant, have no significant effect on the 

frequency and volume size distribution of UHMWPE wear debris following wear 

testing against a smooth counterface.  

The size of UHMWPE wear particles has been shown to be critical to the cellular 

response the particles stimulate in vitro. Particles in the size range of 0.1-1.0 µm 

have been shown to be the most biologically active, stimulating a significant 
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osteolytic cytokine response from macrophages (Ingham and Fisher, 2000, Ingram et 

al., 2004). A previous study by Liu (2012) showed a significant cytokine response 

from peripheral blood mononuclear cells was stimulated by 100 µm³ of 0.1-0.6 µm 

sized UHMWPE particles per cell. No significant cytokine response was observed 

from cells incubated with particles within either the smaller (<0.1 µm) or larger 

(>0.6µm) size ranges. This showed the importance of particle size, in addition to the 

volume of particles, for stimulating a significant biological response. Linking this to 

the particle size distribution results in this section, the small percentage of the 

volume of particles in the biologically active size range (0.1-1.0 µm), typically 

around 30%, may be important when investigating the biological response of 

peripheral blood mononuclear cells to the complete size range of wear debris from 

each material. It may also be important when considering the total volume of wear 

debris required to stimulate a significant cytokine response from a cell sample. 
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3.5 Conclusion 

No significant difference in the wear factor was observed between virgin UHMWPE 

and vitamin E enhanced UHMWPE. Highly crosslinked versions of these vitamin E 

and non-vitamin E materials also showed no significant difference in the wear factor. 

The addition of high levels of crosslinking significantly reduced the wear factor of 

UHMWPE compared to the non-crosslinked equivalents. The addition of the 

hindered phenol antioxidant to UHMWPE (AOX
™ 

UHMWPE) had no significant 

effect on the wear factor of UHMWPE. No significant difference was observed for 

the particle size distribution of GUR1050 Virgin and GUR1050 Highly Crosslinked 

Vitamin E enhanced UHMWPE. The mode size of particles was the 0.1-1.0 µm size 

range for both these materials; however the mode size of particles in terms of volume 

was the 1.0-10 µm size range. No significant difference was observed for the particle 

size distribution of GUR1020 Virgin and GUR1020 Highly Crosslinked hindered 

phenol enhanced UHMWPE.  

The addition of vitamin E had no significant effect on the wear of UHMWPE, or the 

particle size distribution of debris generated during wear tests. High levels of 

crosslinking improved the wear resistance of UHMWPE, even in the presence of 

vitamin E. Hindered phenol had no significant effect on the wear resistance of 

GUR1020 UHWMPE.  
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Chapter 4 

 

The Biological Response of Peripheral Blood Mononuclear Cells to 

Antioxidant UHMWPE Wear Debris 

 

4.1 Introduction 

The biological response of macrophages to UHMWPE wear debris is one of the 

main factors responsible for osteolysis and aseptic loosening associated with metal-

on-UHMWPE total hip replacement devices (Amstutz et al., 1992). The majority of 

total hip replacements still follow the Charnley principle of a metal femoral head 

articulating against an UHMWPE acetabular cup (National Joint Registry, 2013), 

and it is this coupling of materials that leads to the generation of UHMWPE wear 

debris and the downstream immune response to these wear particles that is 

associated with aseptic loosening. While huge progress has been made in improving 

the physical properties of UHMWPE; such as the introduction of high levels of 

crosslinking which improves wear resistance (Galvin et al., 2006), thinner cups to 

facilitate larger femoral heads (Kelly et al., 2010), and heat treatments which quench 

free radicals and improve oxidative stability (Medel et al., 2007, Ferroni and 

Quaglini, 2010), no deliberate advances have been made to reduce the innate 

immune response to wear particles that leads to osteolysis and aseptic loosening.  

The introduction of vitamin E as an antioxidant is the most recent major advance in 

UHMWPE technology for total joint replacements, with the intention of quenching 

the free radicals generated during irradiation crosslinking. An antioxidant like 

vitamin E therefore protects against oxidation, while simultaneously negating the 

need for post-irradiation heat treatments that have been shown to be detrimental to 

the mechanical properties of UHMWPE (Oral et al., 2005, Wang, 2006, Muratoglu, 

2009). However, this mechanical improvement has the potential to also address the 

problem of particle-induced osteolysis. Vitamin E has well documented anti-

inflammatory properties, and there is evidence to suggest that alpha tocopherol-

treated macrophages demonstrate a reduction in the release of pro-inflammatory 
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cytokines such as interleukin- 1β, interleukin 6 and tumour necrosis factor – α (TNF-

α) from macrophages (Singh and Jialal, 2004). The anti-inflammatory properties of 

vitamin E have also been demonstrated in the treatment of cardiovascular disease, 

such as atherosclerosis (Devaraj et al., 1996, Ricciarelli et al., 2000), and in treating 

rheumatoid arthritis through the uncoupling of joint destruction (De Bandt et al., 

2002). Vitamin E is also the most potent lipid soluble antioxidant present in plasma 

and lipoproteins (Singh and Jialal, 2004), and its lipid solubility makes it an 

attractive additive to a carbon-rich polymer like UHMWPE.  

Previous studies have shown an osteolytic cytokine response from peripheral blood 

mononuclear cells (PBMNCs) to UHMWPE wear debris generated in vitro 

(Richards, 2008, Bladen et al., 2013). A study by Ingram et al. (2004) showed 

elevated TNF-α release from PBMNCs incubated with wear debris generated from 

GUR1050 virgin UHMWPE, and GUR1050 UHMWPE with 5 MRad or 10 MRad 

irradiation compared to the cells only control. The strongest TNF-α release was 

observed after 24 hours. Bladen et al. (2013) demonstrated a significantly elevated 

TNF-α, IL-1β and IL-6 response from PBMNCs cultured with GUR1050 Virgin 

UHMWPE wear debris (non-crosslinked) at a dose of 100 µm
3
 particles per cell, 

compared to the cell only negative control. These authors also demonstrated a 

significant reduction in cytokine release from PBMNCs stimulated with 100 µm³ per 

cell vitamin E enhanced UHMWPE wear debris, with vitamin E doped at a dose of 

3000 ppm. While this study showed a reduction in the osteolytic response with 

vitamin E enhanced UHMWPE, the experimental materials were not representative 

of the clinical situation. The addition of high levels of crosslinking to modern 

vitamin E enhanced materials leads to questions about whether vitamin E can leach 

from the crosslinked material or whether crosslinking causes grafting of vitamin E to 

the polymer, and also raises questions about the availability of vitamin E to cells. In 

addition, with vitamin E doping of UHMWPE at 1000 ppm in Europe and the USA, 

the former study clearly used a UHMWPE material with vitamin E doping at a much 

higher level which is not clinically relevant to antioxidant UHMWPE materials used 

in these regions.    

The cell culture technique used most frequently for incubating PBMNCs with 

UHMWPE wear debris is the agarose gel technique, with two variations on this basic 

principle (Green et al., 1998, Liu, 2012). This is a cell culture technique designed to 
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provide a matrix for the PBMNCs in cell culture to come into contact with the 

buoyant UHMWPE wear particles that would normally float in suspension. A 

previous study by Green et al. (1998) used this technique to produce a 2D culture 

system, whereby the wear debris was added to the molten agarose gel in a 48 well 

plate. Immediately following this, the 48 well plate was centrifuged to produce a 

superficial layer of UHMWPE wear debris at the surface. An alternative technique 

was developed and used by Liu (2012) and Bladen et al. (2013), whereby no 

centrifuge step was carried out, meaning the UHMWPE wear debris was suspended 

throughout the agarose gel, producing a more 3D culture system. This then allowed 

the cells to be seeded onto this porous gel where the cells can penetrate and come 

into contact with the wear particles. In addition, with the omission of the centrifuge 

step from the technique, larger-well plates could be used. This was an important 

option when very low-wearing UHMWPE debris was being used, and a larger 

volume of lubricant was required to reach a required particle dose per cell within the 

agarose plug. A detailed description and rationale behind this technique is outlined in 

section 2.4.3. Previous studies have used this technique and have shown it to be an 

effective way of incubating PBMNCs with UHMWPE wear debris to determine the 

cell viability and cytokine response to wear debris (Liu, 2012, Bladen et al., 2013). 

While this technique relies on the penetration of PBMNCs into the gel, it is more 

reliable in producing a level surface to the gel, as the centrifuge step can produce an 

uneven surface, leading to an uneven distribution of PBMNCs as they settle on the 

gel. However, phagocytosis of nanometre and micrometre sized UHMWPE wear 

particles using this 3D technique has never been proven, and therefore there are 

questions regarding the mechanism behind the cytokine response to UHMWPE wear 

debris, for example whether phagocytosis is necessary for the increased levels of 

cytokine release in response to UHMWPE wear debris observed in previous studies.  

The aim of the present study was to further develop the methodology for 

investigating the biological response to clinically relevant antioxidant highly 

crosslinked UHMWPE wear particles in terms of osteolytic cytokine release. The 

challenges faced in developing this experiment was the need to create an 

environment where the TNF-α release from PBMNCs in response to UHMWPE 

wear debris observed in previous studies was repeated in this study, but in a 3D 

culture environment and using wear debris ‘as-generated’. Following this 
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development of the methodology, the aim was to investigate the effect of clinically 

relevant antioxidant wear debris on TNF-α production by PBMNCs.  

The present study tested aseptic wear debris from a highly crosslinked (10 MRad) 

GUR1050 UHMWPE (1050 HXL) as a representative of the highly crosslinked 

bearing material commonly used today, and tested aseptic wear debris from a highly 

crosslinked (10 MRad) vitamin E enhanced GUR1050 UHMWPE and a highly 

crosslinked (8MRad) hindered phenol (AOX
™

) enhanced GUR1020 UHMWPE as 

antioxidant materials. The vitamin E enhanced material was very close to the 

specification of the vitamin E enhanced material available clinically (Biomet
®
 E1

® 
– 

GUR1050, highly crosslinked, vitamin E enhanced 1000 ppm), while the hindered 

phenol (AOX
™

) enhanced material is a novel clinical material provided by DePuy 

Synthes (AOX
™

 UHMWPE with Covernox™ antioxidant). Virgin GUR1050 and 

GUR 1020 UHMWPEs were used as control materials and to stimulate cells in early 

experiments.  

Wear particles were generated from all materials using the aseptic single station pin-

on-plate wear simulator, using a serum lubricant of 25% (v/v) bovine serum in RPMI 

1640 medium. This simulator has been shown to successfully produce clinically 

relevant wear debris in a sterile environment (Ingram et al., 2004). Pins were 

weighed before and after the test to determine the volume of wear generated during 

the test, and hence the mass of sterile wear debris produced in the serum lubricant 

sample. Pins were articulated against rough high-carbon CoCr counterfaces to 

produce a large volume of wear debris in a reduced time frame.  

Wear particles were then incubated with PBMNCs isolated from healthy human 

donors to investigate the uptake of UHMWPE wear particles by PBMNCs using 

confocal microscopy. The assay was then used to determine the effect of each 

UHMWPE material on cell viability, and to determine the TNF-α release over a 24 

hour incubation time period. The methods for the particle: cell culture experiments 

are outlined in section 2.4.  

Experimental Rationale 

The rationale behind this section of the study was to replicate the clinical situation of 

the biological response to wear debris generated from antioxidant UHMWPE 

materials in vivo. A previous study by Liu (2012) demonstrated a significantly 
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elevated TNF-α response from PBMNCs to a fractionated sample of GUR1050 

Virgin UHMWPE wear debris in the 0.1-0.6 µm size range. Wear particles in the 

other size ranges did not stimulate a significant TNF-α response. This highlighted the 

importance of particle size for the stimulation of macrophages by UHMWPE wear 

debris. However, the former study did not demonstrate the clinical situation where 

the full size range of wear particles would be generated and encountered by 

macrophages in the surrounding tissue. In addition, the particles generated by Liu 

(2012) were generated on the six station pin-on-plate wear simulator, with no serum 

proteins present in the lubricant. Serum lubricant was added to the particle sample 

prior to incubation with cells, however the particles generated in the present study 

used 25% (v/v) bovine serum throughout wear tests and particle generation.  

The present study investigated the biological response to the full size range of wear 

particles generated using the single station pin-on-plate wear simulator. This gave a 

representative size distribution of particles that would be generated in vivo, to then 

allow for this particle cell environment to be replicated in vitro (Tipper et al., 2000).  

In order to replicate the significant TNF-α release demonstrated in previous studies, 

several method development steps were taken in the present study to produce an 

environment whereby the full size range of UHMWPE wear debris ‘as generated’ 

would stimulate significant TNF-α release. Following this development, a 

comparison between antioxidant and non-antioxidant UHMWPE could be made. In 

addition to changing aspects of the protocol such as cell seeding density, agarose gel 

concentration and particle concentration, the U937 cell line was also used as an 

alternative to PBMNCs in order to remove the variation often seen between human 

donors.  
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4.2 Materials and Methods 

4.2.1 Materials 

For the cell culture experiments, four UHMWPE materials were tested and these are 

listed in Table 4.1. The materials were chosen to allow investigation of the effect of 

highly crosslinked antioxidant UHMWPE wear particles on the biological response 

of macrophages, in comparison to non-antioxidant highly crosslinked UHMWPE. 

The materials GUR1050 Virgin, GUR1050 HXL and GUR1050 Vit E 10 were used 

throughout the experiment and development of the experiment. Following successful 

method development, GUR1020 AOX 8 was then included in the study. 

 

Table 4.1 – UHMWPE materials used in the cell culture experiments. Details of the full name of 

each material, the resin type, the gamma irradiation dose, the antioxidant used, the supplier, the 

abbreviation used through the study, and the colour key used throughout this chapter for each 

material.  

Name Resin  

Gamma 

Irradiation 

Dose 

Antioxidant Supplier Abbreviation 
Colour 

Key 

1050 Virgin GUR1050 0 MRad none 
DePuy 

Synthes
®

 
1050 Virgin 

 

1050 Highly 

Crosslinked 

UHMWPE 

GUR1050 10 MRad none 
DePuy 

Synthes
®

 
1050 HXL 

 

1050 Vitamin E 

enhanced 

UHMWPE + 10 

MRad 

irradiation 

GUR1050 10 MRad Vitamin E  

MediTech
®
 Medical 

Polymers 

1050 Vit E 10 

 

1020 Hindered 

Phenol 

enhanced 

UHMWPE + 8 

MRad 

irradiation 

GUR1020 8 MRad 
Hindered 

Phenol 

DePuy 

Synthes
®

 
1020 AOX 8 
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4.2.2 Methods 

4.2.2.1 Generation of UHMWPE Wear Particles using the Aseptic Single 

Station Pin-on-Plate Wear Simulator 

Wear particles were generated from each material listed in Table 4.1 using the 

aseptic single station pin-on-plate wear simulator, against a rough (Ra 0.07-0.09 µm) 

high carbon (0.27% w/v) CoCr alloy counterface. The lubricant was comprised of 

RPMI 1640 medium with 25% (v/v) bovine serum described in section 2.2.6. The 

assembly of the single station pin-on-plate wear simulator is outlined in section 

2.2.7. A 2 ml sample of lubricant was collected and plated onto microbial growth 

plates each day of the wear test, to ensure no bacterial or fungal contamination was 

present, as described in section 2.2.7.5. Serum lubricants which remained sterile 

throughout the wear test were collected and stored at -20˚C until required for cell 

culture experiments. Pins were weighed before and after the wear test, and the wear 

was measured to determine the mass of UHMWPE wear debris in the final lubricant 

sample, as described in section 2.4.3.1.  

 

4.2.2.2 Endotoxin testing of the Serum Lubricant 

The endotoxin levels in each serum lubricant sample were determined prior to their 

use in cell culture experiments. The methods for this test are outlined in section 

2.4.2.2. Sample lubricants were sonicated for 40 min at 37ºC, after which the 

samples were diluted 1:100 using LAL reagent water. The endotoxin levels in each 

sample lubricant from a 4 day test using the single station pin-on-plate simulator 

were determined using a standard curve of known endotoxin concentrations. The 

percentage product recovery in each sample was also determined using a sample 

spiked with a known concentration of endotoxin.  

 

4.2.2.3 Culture of PBMNCs with Fluorescein-Labelled UHMWPE Wear 

Particles for Analysis of Particle Uptake using Confocal Microscopy 

Cell culture experiments incubating PBMNCs isolated from human donor blood with 

fluorescently labelled UHMWPE wear particles were performed in order to visualise 

the uptake of UHMWPE wear particles by macrophages, and to confirm whether 
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phagocytosis occurs when using the agarose gel cell culture technique. Peripheral 

blood mononuclear cells were isolated from healthy human donors as described in 

section 2.4.4 and cells were incubated with micrometre sized (1- 10 µm) or 

nanometre sized (0.015- 0.1µm) particles separately using the agarose gel technique. 

The microscope slide-cell culture apparatus described in section 2.4.7.4 (Figure 2.10) 

was used to allow for imaging using the confocal microscope. Cells were incubated 

with fluorescein labelled 1050 HXL UHMWPE wear particles for 48 hours at 37ºC 

in 5% (v/v) CO2 in air. Cells were seeded at a density of 2 x 10
5
 cells per well, with a 

particle concentration of 100 µm³ per cell. Throughout the incubation, the level of 

culture medium was checked and if necessary, was topped up with RPMI 1640 

Culture medium to maintain a meniscus of medium above the top of the well. 

Following the 48 hour incubation, the culture medium was aspirated carefully, 

ensuring the cells were not disturbed. The cells were gently washed twice with 100 

µl DPBS, after which, 100 µl Hoechst (5µg.ml
-1

) was added to each well and 

incubated for 10 min at 37ºC. Following this incubation, the Hoechst was aspirated 

from the well, and the top layers of tape were removed, to reveal a flatter well 

containing just the agarose gel. A volume of 100 µl RPMI Transport Medium was 

added to each well, and a sterile glass coverslip was applied. 

A Zeiss LSM510 Confocal laser scanning upright microscope was used to determine 

the presence of UHMWPE wear particles in PBMNCs. Channels for DAPI and FITC 

were used to image the nucleus and green fluorescently labelled particles 

respectively, in addition to bright field microscopy. Where particles were identified 

inside a cell nucleus, a Z-stack of images was taken to determine that the particle 

was indeed inside the cell and not above or behind the cell nucleus. Images were 

captured and overlayed using Zen 2009 (Carl Zeiss).  

 

4.2.2.4 Culture of PBMNCs with UHMWPE Wear Particles 

Cell culture experiments were performed to determine the biological response of 

PBMNCs to highly crosslinked antioxidant UHMWPE wear particles. Tumour 

necrosis factor α has been shown to be an important cytokine in osteolysis, and is 

found in high levels around an osteolytic implant (Ingham et al., 2000). For this 

reason, TNF-α was used as a marker for the osteolytic response from PBMNCs.  
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Peripheral blood mononuclear cells were isolated from healthy human donors as 

described in section 2.4.4, and incubated with the complete size range (as generated) 

of wear particles for 24 hours at 37˚C (5% (v/v) CO2 in air). Due to the low density 

of the UHMWPE particles, particle: cell culture experiments used the agarose gel 

technique, as described in section 2.4.2, to ensure the cells were able to come into 

contact with the buoyant particles. The calculations for the dosing of UHMWPE 

particles are described in section 2.4.3.1. Polystyrene Fluospheres
®
 (0.2 µm in size) 

were used as a positive control for particle uptake, dosed at a concentration of 100 

µm
3
 per cell. Fluospheres have previously been shown to stimulate TNF-α release 

from PBMNCs (Liu, 2012). Lipopolysaccharide (LPS) (200 ng/ml) was also 

included as an additional positive control for TNF-α response. After 24 hours 

incubation, the supernatant was collected as described in section 2.4.5, and the ATP 

Lite cell viability assay was performed as outlined in section 2.4.5.1, to determine if 

the wear particles had any effect on cell viability. An ELISA for TNF-α was 

performed on the supernatant as described in section 2.4.5.2, to determine TNF-α 

release from PBMNCs in response to UHMWPE particles.   

 

4.2.2.5 Culture of U937 Cell Line with UHMWPE Wear Particles 

The U937 cell line was used in this study as a cell type that would remove donor 

variation as a factor in the cellular response to wear debris. The U937 cell line is a 

human cell type established from a hystiocytic lymphoma, displaying monocytic 

characteristics. Stimulation with phorbol-12-myristate-13-acetate (PMA) causes the 

differentiation of U937 cells into macrophage cells, making it an ideal cell type to 

use as an alternative to PBMNCs isolated from human blood.  

Cells were resurrected and split using the standard cell culture methods outlined in 

section 2.4.6.1. A sufficient cell population was maintained to provide enough cells 

for cell culture experiments.  

 

4.2.2.5.1 Differentiation of U937 Cells  

In order to stimulate the U937 cells to become macrophages, cells were incubated in 

RPMI 1640 culture medium as described in section 2.4.1.2, with the addition of 10 
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ng.ml
-1

 phorbol 12-myristate 13-acetate (PMA). Cells were treated with PMA over a 

24 hour period and then incubated with non-PMA standard culture medium for a 

further 24 hours prior to incubation with UHMWPE particle treatments, as described 

in section 2.4.6.2.    

 

4.2.2.5.2 Harvesting and Culture of U937 Cells with UHMWPE Wear 

Debris 

Following differentiation of U937 cells, cells were harvested from the flasks using 3 

ml Trypsin-EDTA, and isolated to provide a known cell number in RPMI 1640 

culture medium, as described in section 2.4.6.3. The Trypan blue assay was used to 

determine the number of viable cells in the sample, as described in section 2.4.4.1. 

Cells were then seeded onto the UHMWPE-containing agarose gels and incubated 

for 24 hours at 37ºC, after which the cell viability was determined and the 

supernatant collected for TNF-α analysis, using the methods described in section 

2.4.5.  
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4.3 Results 

4.3.1. Generation of Clinically Relevant UHMWPE Wear Particles using 

the Aseptic Single Station Pin-on-Plate Wear Simulator – Test A 

Using the aseptic single station pin-on-plate wear simulator, clinically relevant wear 

particles of each UHMWPE material listed in Table 4.1 were generated in a lubricant 

comprised of RPMI 1640 medium with 25% (v/v) bovine serum, and using rough 

(Ra 0.07-0.09µm) counterfaces, as described in section 2.2. The simulator was run 

for four days for each material, and these four-day wear tests were referred to as Test 

A throughout this chapter. From each material, a volume of 20 ml of lubricant was 

collected aseptically from the bath at the end of each wear test. The materials tested 

in Test A and the particle concentrations in the lubricants from each material are 

shown in Table 4.2. From these serum lubricants, particles were dosed at a 

concentration of 100 µm³ per cell in the particle: cell incubations.  

The rationale behind using rough plates to generate sterile wear debris was that there 

would be an increase in the volume of wear generated over four days compared to 

wear debris generated against a smooth counterface over the same period of time. 

This increase in wear is demonstrated in Figure 4.1. Using the six station pin-on-

plate wear simulator and the methods outlined in section 2.1, 1050 Virgin 

UHMWPE was tested against smooth (Ra <0.01 µm) and rough (Ra 0.07-0.09µm) 

CoCr counterfaces over a two-week long wear test (n=4). The wear factor for 1050 

Virgin against a rough CoCr counterface was double the wear factor of 1050 Virgin 

against the smooth CoCr counterface. There was a significant increase in the wear 

factor for the 1050 Virgin material against the rough counterface compared to 1050 

Virgin material against the smooth counterface (ANOVA; p<0.05).  

To ensure the frequency and volume size distribution of the wear debris generated 

against the rough CoCr counterface was not significantly different to the clinically 

relevant wear debris generated against the smooth CoCr counterface, a sample of 

1050 Virgin UHMWPE wear debris generated in the six station wear simulator 

against rough plates was isolated and characterised using the particle characterisation 

method described in section 2.3. The particle characterisation results were then 

compared to the size and frequency size distribution of 1050 Virgin UHMWPE wear 
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debris generated against a smooth CoCr counterface. The frequency and volume 

distribution of these two wear debris samples are shown in Figure 4.2.  

There were no significant differences in the frequency or volume distributions of the 

1050 Virgin UHMWPE particles generated against the rough counterface compared 

to 1050 Virgin UHMWPE particles generated against the smooth counterface 

(ANOVA; p<0.05). The wear debris generated against a rough plate showed a mode 

size frequency in the <0.1 µm size range, followed by around 40% of wear particles 

comprised of particles in the 0.1-1.0 µm size range. The size distribution according 

to % volume was very closely matched to wear debris generated against a smooth 

counterface, with the mode of the volume distribution in the 1.0-10 µm size range. 

Since there was no significant difference between particles generated against the two 

different counterface finishes, this confirmed that a rough counterface was suitable 

for use for the generation of a large volume of clinically relevant UHMWPE wear 

particles.  

 

 

Figure 4.1 – Mean wear factors for 1050 Virgin UHMWPE against smooth (Ra <0.01 µm) and rough 

(Ra 0.07-0.09 µm) CoCr alloy counterfaces. Wear tests were carried out using the six station pin-on-

plate wear simulator for 2 weeks, achieving a minimum of 500,000 cycles. Wear tests used a stroke 

length of 28 mm at 1 Hz with a 160N load and used a lubricant of 25% (v/v) bovine serum 

supplemented with 0.3% (w/v) sodium azide. Error bars show the 95% confidence level, n=3. * 

indicates a statistically significant increase in the wear factor compared to the virgin (smooth) wear 

test (ANOVA; p<0.05).  
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Figure 4.2 – A) The mean percentage number and B) the mean percentage volume size distribution of 

GUR1050 Virgin UHMWPE wear debris generated on the six station pin-on-plate simulator against 

either a smooth (Ra <0.01 µm) CoCr alloy counterface, or a rough (Ra 0.07-0.09 µm) CoCr alloy 

counterface for 500,000 cycles. The wear simulator used a stroke length of 28 mm, with a load of 160 

N at a frequency of 1 Hz. UHMWPE pins had a contact face of 10 mm and wear tests lubricants were 

25% (v/v) bovine serum supplemented with 0.3% (w/v) sodium azide, for a minimum of 500,000 

cycles. Error bars show the standard error, n=4.  
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Table 4.2 – The concentration of UHMWPE wear debris in serum lubricant samples collected 

from the aseptic single station pin-on-plate wear simulator during Test A. The colour key 

indicates the colour used to represent each UHMWPE material throughout this chapter.  

Name Resin  
Conc. of UHMWPE 

Wear Debris (µg/ml) 
Colour Key 

1050 Virgin GUR1050 45  

1050 HXL GUR1050 71 
 

1050 Vit E 10 GUR1050 92.5 
 

 

 

4.3.1.1 Determination of the Endotoxin Levels in Serum Lubricants  

The levels of endotoxin present in the sterile serum lubricant samples from the single 

station pin-on-plate wear simulator were detected using the LAL endotoxin assay. 

The detailed methods for this assay are described in section 2.4.2. The lubricant 

samples were sonicated for 40 min at 37ºC, after which each sample was diluted 

1:100 in LAL reagent water.  

The endotoxin levels in each serum lubricant sample are shown in Table 4.3. The 

endotoxin levels of all three samples were below the range of the control standard 

endotoxin, and were therefore presented as <0.005 EU.ml
-1

. This result was below 

the accepted value of <5 EU.ml
-1

, as specified by the pharmaceutical industry for 

injectable pharmaceuticals (FDA, Regulatory Affairs, 1985). The positive product 

control percentage retrieval was within the 50-200% range, which indicated that the 

endotoxin levels detected in the serum lubricant samples were valid results. These 

results showed that using the single station pin-on-plate wear simulator under aseptic 

conditions allowed for the generation of sterile, endotoxin free wear debris in 25% 

(v/v) bovine serum lubricant.  
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Table 4.3 – Levels of endotoxin present in the lubricant samples generated in 25% (v/v) bovine 

serum lubricants using the single station pin-on-plate simulator (Test A).  

UHMWPE Material PPC% Recovery Endotoxin (EU.ml
-1

) 

1050 Virgin 120% <0.005 

1050 HXL 120% <0.005 

1050 Vit E 10 102% <0.005 

Note – The positive product control (PPC%) was the sample which was spiked with 

a known concentration of endotoxin. The recovery of endotoxin was required to be 

equal to the known concentration, within 50-200% range, to be considered free of 

significant interference.  

 

4.3.2 Uptake of UHMWPE Wear Particles by PBMNCs in the Agarose 

Gel Cell Culture Technique 

The agarose gel cell culture technique is used to provide a matrix structure for cells 

to come into contact with UHMWPE wear debris. This method is an important 

protocol for the culture of PBMNCs with UHMWPE wear particles. Traditional 

direct culture does not allow contact between the cells and particles, due to the high 

buoyancy of the UHMWPE wear particles. However, prior to using the agarose gel 

technique to determine the cytokine response of PBMNCs to UHMWPE wear 

debris, it was deemed necessary to validate that this technique allowed for the 

contact and phagocytosis of UHMWPE wear particles by PBMNCs. 

Using confocal microscopy, and the methods outlined in section 2.4.7, PBMNCs 

were incubated with fluorescein labelled 1050 HXL UHMWPE wear particles using 

the agarose gel technique, and imaged using confocal microscopy. The aim of this 

section was to visualise particles phagocytosed by PBMNCs, and therefore confirm 

that this technique facilitates the phagocytosis of UHMWPE wear particles in vitro. 
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Uptake of 0.04 µm sized Fluospheres 

The initial experiments aimed to investigate the uptake of 0.04 µm Fluospheres by 

PBMNCs over a 48 hour incubation period. Fluospheres have previously been 

shown to be a good model particle to stimulate a significant cytokine response from 

PBMNCs (Liu, 2012). The confocal microscopy images for Fluospheres cultured 

with PBMNCs are shown in Figure 4.3. Fluospheres emitted bright green 

fluorescence under the confocal microscope when the FITC channel was selected. In 

Figure 4.3.1, a single monocyte can be seen, as indicated by the deep blue nucleus in 

image A. Image C (FITC) shows the presence of 40nm Fluospheres inside the cell. 

The overlay of DAPI, Bright field and FITC shows the localisation of Fluospheres 

inside the cell, focused around the edge of the nucleus. The images in Figure 4.3.2 

show the localisation of Fluospheres inside the cells, around the edge of the nucleus. 

Each cell shows some internalisation of particles, indicating the agarose gel 

technique facilitated the uptake of 0.04 µm Fluospheres.  
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Figure 4.3 – Two fields of view of the visualisation of 0.04 µm Fluospheres internalised by PBMNCs. 

Confocal images show a single section through the agarose gel. A) Blue signals represent the cell 

nucleus stained with Hoechst 33342, B) Bright field microscopy showing the outline of the cell, C) 

Green signals represent 0.04 µm Fluospheres, D) Overlay. Arrows indicate the localisation of 

Fluospheres in the cytoplasm. Size bar indicates 10 µm.  
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Uptake of Micrometre sized UHMWPE Wear Particles 

Using the methods outlined in section 2.4.7.2 for the fractionation of UHMWPE 

wear debris, a micrometre sized (1-10 µm) sample of 1050 HXL UHMWPE wear 

debris was incubated with PBMNCs for 48 hours at 37ºC in 5% CO2 (v/v) in air, 

using the agarose gel technique and the microscope slide-cell culture apparatus 

outlined in section 2.4.7.4. The experiment was performed as outlined for the uptake 

of 0.04µm Fluospheres, with the only exception the use of micrometre sized 

UHMWPE wear debris.  

The internalisation of micrometre sized UHMWPE wear particles is shown in Figure 

4.4.1. In one of the cells, indicated by the red arrow in the FITC and overlay images, 

the internalisation of micrometre sized 1050 HXL wear particles can be observed. 

These wear particles appear to be outside of the cell nuclei and inside the cell 

cytoplasm. There also appears to be aggregation of wear particles once they are 

internalised. Two cells that have internalised UHMWPE wear particles are shown in 

Figure 4.4.2. The cell on the left of the image shows a faint green ring of particles 

around the nucleus, demonstrating the uptake of wear particles externally to the 

nucleus. The cell on the right of the image shows several larger particles inside the 

cell. The distribution of micrometre wear particles inside the cells was similar to the 

distribution of Fluospheres in Figure 4.3.  
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Figure 4.4 –Two fields of view of the visualisation of micrometre sized 1050 HXL UHMWPE wear 

particles internalised by PBMNCs. Confocal images show a single section through the agarose gel. A) 

Blue signals represent the cell nucleus stained with Hoechst 33342, B) Bright field microscopy 

showing the outline of the cell, C) Green signals represent Fluorescein labelled UHMWPE wear 

particles, D) Overlay. Arrows indicate the localisation of Fluospheres in the cytoplasm. Size bar 

indicates 10 µm.  
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Uptake of Nanometre sized UHMWPE Wear Particles 

Using the methods outlined in section 2.4.7.2 for the fractionation of UHMWPE 

wear debris, a nanometre sized (0.015-0.1 µm) sample of 1050 HXL UHMWPE 

wear debris was incubated with PBMNCs using the agarose gel technique and the 

microscope slide-cell culture apparatus outlined in section 2.4.7.4. The experiment 

was performed as outlined for the uptake of 0.04µm Fluospheres and micrometre 

sized UHMWPE wear debris, with the only difference being the use of nanometre 

sized UHMWPE wear debris in the agarose gels.  

The internalisation of nanometre sized 1050 HXL UHMWPE wear particles is 

shown in Figure 4.5. These wear particles were much smaller than the particles used 

in the study up to this point, and were therefore observed as a diffuse green 

fluorescence rather than as defined particles. The uptake of nanometre sized 

UHMWPE wear particles in two cells shown is shown in Figure 4.5.1. The cell 

indicated by the red arrows showed internalisation of nanometre sized wear particles, 

and localisation outside the nucleus as previously observed. There were small 

aggregates of wear particles inside the cell cytoplasm, indicated by the red arrows. 

The other two cells in the image, indicated by the yellow arrows, also showed faint 

diffuse green fluorescence outside the nucleus, indicating the uptake of nanometre 

sized UHMWPE wear particles. The internalisation of nanometre sized wear 

particles is shown in both cells in Figure 4.5.2, although the fluorescence intensity 

was much weaker than observed in Figure 4.5.1. The cell at the top appears to show 

a clump of nanometre sized wear particles inside the cell, although further outside 

the nucleus than previously seen (red arrow). In the cell at the bottom of the image, 

the faint presence of fluorescent particles was observed (yellow arrow), which is 

expected following the uptake of such small wear particles. The porous structure of 

the agarose gel can be seen in Figure 4.5 in the bright field image, appearing as small 

dark dots.  
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Figure 4.5 – Two fields of view of the visualisation of nanometre sized 1050 HXL UHMWPE wear 

particles internalised by PBMNCs. Confocal images show a single section through the agarose gel. A) 

Blue signals represent the cell nucleus stained with Hoechst 33342, B) Bright field microscopy 

showing the outline of the cell, C) Green signals represent fluorescein labelled UHMWPE wear 

particles, D) Overlay. Arrows indicate the internalisation of UHMWPE wear particles. Size bar 

indicates 10 µm.  
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Summary 

These insightful experiments using fluorescently labelled UHMWPE wear particles 

incubated with PBMNCs were able to determine that cells were able to internalise 

UHMWPE wear particles when incubated together using the agarose gel technique. 

When incubated with 0.04 µm Fluospheres, micrometre and nanometre size 

UHMWPE 1050 HXL wear particles, PBMNCs internalised these particles, and 

localisation was commonly observed inside the cell cytoplasm, outside of the 

nucleus. These experiments validated the use of the agarose gel technique in order to 

provide a matrix to allow PBMNCs to come into contact with particles, but also to 

phagocytose them. Following this result, the agarose gel technique could be used 

with extra confidence for subsequent experiments investigating the effect of wear 

debris from the different UHMWPEs on the cell viability and TNF-α release from 

PBMNCs.  

 

 

4.3.3. Development of the Method for Assessment of the Effects of 

UHMWPE Wear Particles on TNF-α Production in PBMNCs - Test A 

The aim of this section of the study was to develop the methodology used to 

determine the osteolytic cytokine release from PBMNCs in response to both vitamin 

E and non-vitamin E enhanced highly crosslinked UHMWPE particles. Peripheral 

blood mononuclear cells isolated from healthy human volunteers were cultured with 

wear debris for 24 hours. The cell viability and the TNF-α release from PBMNCs in 

response to the different UHMWPE wear particles was determined. 

 The agarose gel technique, as described in section 2.4.3, was used throughout this 

section, unless stated otherwise. This methodology allowed the buoyant UHMWPE 

wear particles to be kept in suspension enabling the PBMNCs to come into contact 

with particles when the cells were seeded on top of the particle-containing gels. This 

therefore introduced an addition potential variable to the experiment in terms of the 

concentration and volume of the agarose gel. For that reason, the particle: cell 

culture assay required development in order to stimulate a cytokine response from 

the PBMNCs. The variables controlled and improved throughout this section 
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included the agarose gel concentration (v/v), the agarose gel volume, the particle 

concentration, the cell seeding concentration and the phagocytic fraction of the 

isolated peripheral blood cells.  

The first part of this investigation determined the cytokine release from PBMNCs in 

response to stimulation with the materials listed in Table 4.1, under initial conditions 

used previously by Liu (2012) to determine whether these conditions were suitable 

for the present study. Under these conditions, Liu (2012) successfully stimulated a 

significantly elevated TNF-α release from PBMNCs incubated with UHMWPE wear 

particles fractionated into the size range of 0.1-0.6 µm at a dose of 100 µm
3
 per cell. 

Due to the low concentration of UHMWPE wear debris in the lubricant samples 

generated in this study, the agarose gel plug was increased from 200 µl to a volume 

of 300 µl to provide a dose of 100 µm³ particles per cell. A major difference between 

the present study and the study by Liu (2012) was the generation of UHMWPE wear 

debris, which was produced aseptically in a single station wear simulator a lubricant 

containing serum. Liu (2012) produced wear debris aseptically on a six station pin-

on-plate wear simulator in a serum-free lubricant. The generation of wear debris by 

articulation in serum-containing lubricant is considered to be similar to the in vivo 

conditions and hence produces clinically relevant wear debris. The concentration of 

UHMWPE wear debris generated from each UHMWPE material is shown in Table 

4.2, while the endotoxin levels in each sample are shown in Table 4.3. The initial 

conditions for the cell culture experiments for this section are outlined in Table 4.4.  

Two different methods of aseptic particle generation were used in this study, with a 

four day test producing sample A, and the ten day test producing sample B. For this 

reason, the method of generation of lubricant sample (four (A) or ten (B) day) 

dictated the name of the test; either Test A or Test B. Throughout the method 

development section of the study, each experiment has been assigned under the name 

‘Test A’, followed by the experiment number in the development section, as this 

section exclusively used wear debris generated in the four days; sample A. Where 

the study used wear debris generated over 10 days, the experiments were named Test 

B. Some method development used this B sample, and is therefore grouped within 

Test B. The investigatory section of this chapter exclusively used B sample wear 

debris therefore assigned the name Test B, with the relevant experiment number 

following that letter. For example the first method development experiment using a 
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lubricant sample generated in Test A was named Test A:1. In addition, for each 

condition (for example the conditions shown in Table 4.4 represent the initial 

conditions); the repeat experiments under those conditions are numbered starting 

from number 1 each time.  

 

Table 4.4 – Cell culture conditions for the initial experiments investigating the biological 

response to antioxidant UHMWPE.  

Cell number 

1.125 x 10
5 

per 

well 

Particle Concentration 100 µm
3
 per cell 

Agarose Gel Concentration 1 % (w/v) 

Agarose Gel Volume 300 µl 

Plate 48 well plate 

 

4.3.3.1 TNF-α Release from PBMNCs Stimulated with Highly 

Crosslinked Vitamin E Enhanced UHMWPE Wear Debris under Initial 

Conditions 

This aim of this section of the study was to determine TNF-α release from PBMNCs 

in response to the full size range of clinically relevant UHMWPE wear debris dosed 

at 100 µm
3 

particles per cell. Particle: cell incubations were conducted using the 

initial cell culture conditions outlined in Table 4.4. The cell viability of PBMNCs 

following incubation with the particle treatments and controls was determined using 

the ATP Lite assay (section 2.4.5.1), and an ELISA was conducted on the culture 

supernatants to determine the TNF-α release from cells over that period (section 

2.4.5.2). The cellular response of PBMNCs to 1050 HXL UHMWPE wear debris 

was compared to the cellular response to 1050 Vit E 10 UHMWPE wear debris.  
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1. Biological Response of PBMNCs isolated from Donor 2 to 1050 Vit E 10 wear 

debris compared to 1050 HXL wear debris under initial cell culture conditions 

(Table 4.4) – Test A:1 

Peripheral blood mononuclear cells isolated from Donor 2 were incubated with wear 

debris generated from 1050 HXL and 1050 Vit E 10 under the initial cell culture 

conditions successfully used by Liu (2012) and outlined in Table 4.4. The cell 

viability and TNF-α release from PBMNCs after 24 hours incubation with 100 µm³ 

debris per cell is shown in Figure 4.6. None of the treatments had a significant effect 

on the cell viability of PBMNCs compared to the cells only negative control 

(ANOVA, p>0.05). The positive control LPS treatment caused significant TNF-α 

release from PBMNCs compared to the cells only negative control (ANOVA; 

p<0.05). Cells treated with 1050 HXL showed a higher mean TNF-α response 

compared to cells only and 1050 Vit E 10, however this increase was not significant. 

 

  

Figure 4.6 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 2 incubated 

with 1050 HXL and 1050 Vit E 10 UHMWPE wear debris at a concentration of 100 µm³ debris per 

cell for 24 hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 1.125 x 10
5 
cells per 

well. Cells only acted as the negative control, 200 ng/ml
-1

 lipopolysaccharide acted as the positive 

control. * indicates statistically significant TNF-α release from PBMNCs compared to the cells only 

negative control (ANOVA, p<0.05). Error bars show ± the 95% confidence levels, n=4.  
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2. Biological Response of PBMNCs isolated from Donor 12 to 1050 Vit E 10 wear 

debris and 1050 HXL wear debris under initial cell culture conditions (Table 4.4) 

– Test A:2 

Peripheral blood mononuclear cells isolated from Donor 12 were incubated with 

wear debris generated from 1050 HXL and 1050 Vit E 10 under the initial cell 

culture conditions successfully used by Liu (2012) and outlined in Table 4.4. Cell 

viability and TNF-α release after 24 hours incubation are shown in Figure 4.7. None 

of the UHMWPE particle treatments had a significant effect on the cell viability of 

PBMNCs compared to the cells only negative control (ANOVA, p>0.05). The 

lipopolysaccharide treatment significantly reduced cell viability following the 24 

hours incubation. The positive control LPS treatment caused significant TNF-α 

release from PBMNCs compared to the cells only negative control (ANOVA; 

p<0.05). However, neither of the UHMWPE particle treatments generated a 

significant TNF-α release compared to the cells only negative control (ANOVA; 

p>0.05), indicating the absence of any biological response to these wear particles 

under the conditions applied.  

 

 

  

Figure 4.7 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 12 incubated 

with 1050 HXL and 1050 Vit E 10 UHMWPE wear debris at a concentration of 100 µm³ debris per 

cell for 24 hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 1.125 x 10
5 
cells per 

well. Cells only acted as the negative control, 200 ng/ml
-1

 lipopolysaccharide acted as the positive 

control. # indicated a statistically significant reduction in cell viability compared to the cells only 

negative control. * indicates statistically significant TNF-α release from PBMNCs compared to the 

cells only negative control (ANOVA, p<0.05).. Error bars show ± the 95% confidence levels, n=4.  
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3. Biological Response of PBMNCs isolated from Donor 13 to 1050 Vit E 10 wear 

debris compared to 1050 HXL wear debris under initial cell culture conditions 

(Table 4.4) – Test A:3 

In the third experiment, 1050 Virgin wear debris was included as an additional 

material and the stimulation of TNF-α release from PBMNCs was determined. The 

effects on cell viability and TNF-α release from PBMNCs isolated from Donor 13 

and incubated with 100 µm³ wear debris per cell are shown in Figure 4.8. None of 

the treatments had a significant effect on cell viability. Peripheral blood mononuclear 

cells from Donor 13 released significantly elevated levels of TNF-α in response to 

LPS treatment, compared to the cells only negative control (Figure 4.8B). Cells 

treated with 1050 HXL wear debris elicited a higher mean level of TNF-α release 

compared to cells only and 1050 Vit E 10 treated cells, however this was not 

significantly different, and therefore not considered a significant biological response 

(ANOVA, p>0.05). Cells treated with 1050 Virgin UHMWPE also showed no 

significant release of TNF-α compared to the cells only negative control.   

 

 

Figure 4.8 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 13 incubated 

with 1050 HXL, 1050 Vit E 10 and 1050 Virgin UHMWPE wear debris at a concentration of 100 µm³ 

debris per cell for 24 hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 1.125 x 

10
5 
cells per well. Cells only acted as the negative control, 200 ng/ml

-1
 lipopolysaccharide acted as the 

positive control. * indicates statistically significant TNF-α release from PBMNCs compared to the 

cells only negative control (ANOVA, p<0.05).. Error bars show ± the 95% confidence levels, n=4. 
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 4. Summary 

The results presented from this set of initial experiments revealed that PBMNCs 

incubated with UHMWPE wear debris under the conditions outlined in Table 4.4 did 

not produce a significant response, in terms of TNF-α release compared to the cells 

only negative controls. Due to the number of potential variables in this experiment 

(e.g. cell seeding density, agarose concentration), there may have been several 

reasons for this lack of stimulation, and the experiment was subsequently developed 

to produce an environment where the UHMWPE wear debris produced a significant 

response from PBMNCs in a reproducible fashion. The first method development 

step was to determine the percentage agarose gel that would produce the optimal 

conditions for particle: cell interaction.  

 

4.3.3.2 TNF-α Release from PBMNCs Stimulated with Highly 

Crosslinked Vitamin E Enhanced UHMWPE Wear Debris embedded in 

Different Concentrations of Agarose Gel 

The first change to the cell culture conditions was to alter the agarose percentage 

concentration in the agarose plugs that contained the UHMWPE wear debris. The 

rationale behind this change was to potentially create a more porous medium by 

reducing the agarose concentration to allow for increased cell penetration. To test 

this hypothesis, particle: cell culture experiments were conducted treating PBMNCs 

with two test materials; 1050 HXL and 1050 Vit E 10 using 0.4% (w/v) agarose gels. 

The experiment also included 1050 Virgin wear debris in three different agarose 

concentrations; 1% (w/v), 0.4% (w/v), and a final test using no agarose. While 

investigating the effect of different agarose concentrations, the inclusion of an 

agarose-free well was used to determine the effect of the agarose on cells. A large 

volume of 1050 Virgin UHMWPE wear debris was produced using the single station 

wear simulator, and this allowed for these multiple experiments using this material, 

whereas the 1050 HXL and 1050 Vit E 10 were used more sparingly due to their 

lower wear and lower particle concentrations in these samples. An agarose volume 

of 300 µl was maintained in these experiments, with additional RPMI 1640 transport 

medium used to dilute the agarose gel to the lower concentration of 0.4% (w/v). 

Where no agarose gel was used, the particles were added at a dose of 100 µm³ wear 
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debris per cell, followed by the addition of cells, after which a volume of RPMI 1640 

culture medium was added to bring the final volume to 1 ml per well as used 

previously, to ensure cells were cultured in the same volume of solution in all 

experiments.  

 

1. Biological response of PBMNCs isolated from Donor 1 to 1050 Vit E 10 wear 

debris compared to 1050 HXL  and 1050 Virgin wear debris using different 

agarose concentrations (Table 4.5) – Test A:4 

In these experiments, the particle: cell culture experiment was repeated with 1050 

HXL and 1050 Vit E 10 UHMWPE wear debris but using 0.4% (w/v) agarose gels 

instead of the 1% (w/v) gels used previously in section 4.3.2.1. In addition, 1050 

Virgin UHMWPE wear debris was tested in 1% (w/v) and 0.4% (w/v) agarose, and 

also without agarose gel, in direct culture. The cell culture conditions are shown in 

Table 4.5. The aim of this section was to investigate the effect of changing the 

agarose concentration on the interaction of cells with wear particles and on the 

cellular response to the wear particles. The effect on cell viability and TNF-α release 

from PBMNCs isolated from Donor 1 incubated with 100 µm³ wear particles per cell 

are shown in Figure 4.9. There was no significant effect of any of the treatments on 

cell viability (ANOVA, p>0.05). There was a significantly elevated TNF-α release 

from PBMNCs treated with 200ng/ml
-1

 LPS, however there was no significant TNF-

α release in response to any of the UHMWPE particle treatments. The alteration of 

the agarose concentration had no significant effect on the cell viability or TNF-α 

response of PBMNCs treated with UHMWPE wear debris. Large error bars were 

observed for the mean TNF-α release of cells treated with each of the UHMWPE 

particle treatments..  
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Table 4.5 – Cell culture conditions for experiments investigating the biological response to 

antioxidant UHMWPE using different agarose concentrations 

Cell number 

1.125 x 10
5 

per 

well 

Particle Concentration 100 µm
3
 per cell 

Agarose Gel Concentration 

1 %, 0.4%, 0% 

(w/v) 

Agarose Gel Volume 300 µl 

Plate 48 well plate 

 

 

 

Figure 4.9 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 1 incubated 

with 1050 HXL, 1050 Vit E 10 and 1050 Virgin UHMWPE wear debris at a concentration of 100 µm³ 

wear debris per cell for 24 hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 

1.125 x 10
5 

cells per well. The agarose gel plugs were produced at a concentration of 0.4% (w/v) for 

each  UHMWPE particle treatment, with an additional 1% (w/v) and no-agarose condition for 1050 

Virgin treatments. Cells only acted as the negative control, 200 ng/ml
-1

 lipopolysaccharide acted as 

the positive control. * indicates a statistically significant TNF-α response from PBMNCs compared to 

cells only control (ANOVA, p<0.05). Error bars show ± the 95% confidence level, n=4.  
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2. Biological response of PBMNCs isolated from Donor 2 to 1050 Vit E 10 wear 

debris compared to 1050 HXL  wear debris (no agarose) – Test A:5 

A repeat experiment was carried out to determine the optimum agarose percentage 

concentration for the stimulation of PBMNCs with UHMWPE wear debris. Cells 

isolated from Donor 2 were seeded at a concentration of 1.125 x 10
5
, in a final 

volume of 1 ml RPMI 1640 culture medium with UHMWPE wear debris. The 

incubation was for 24 hours after which point the supernatant was carefully 

collected, so that the UHMWPE wear particles were not disturbed. The effect on cell 

viability and TNF-α release from PBMNCs isolated from Donor 2 and stimulated 

with 1050 HXL or 1050 Vit E 10 UHMWPE wear debris at a concentration of 100 

µm³ per cell are shown in Figure 4.10.  

In addition, this experiment included 0.2 µm polystyrene Fluospheres (FS) as a 

positive control at 100 µm³ per cell to determine TNF-α release. Fluospheres have 

previously been shown to stimulate TNF-α release from PBMNCs as a model 

particle (Liu, 2012).  

There was no significant effect of any of the treatments on cell viability of PBMNCs 

(ANOVA; p>0.05). The LPS positive control stimulated a significantly elevated 

level of TNF-α release from PBMNCs, compared to the cells only negative control 

(ANOVA; p<0.05). None of the other treatments had a significant effect on TNF-α 

release. For this donor, the background cellular response was higher than in previous 

experiments with other donors, and also higher than when this donor (Donor 2) was 

used previously. The 1050 HXL treated cells produced a TNF-α response of 47 

pg/ml
-1

, a response that would have been considered high in previous experiments 

with a lower cells only negative control response. In comparison to the 1050 HXL 

treated cells, 1050 Vit E 10 treated cells produced lower levels of TNF-α. However, 

in comparison to the Fluosphere treated cells, the TNF-α response was generally 

low, indicating that removing the agarose gel technique had no beneficial effect on 

the stimulation of PBMNCs by UHMWPE wear debris. 

 

 

 



Chapter 4 

182 

 

 

Figure 4.10 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 2 incubated 

with 1050 HXL and 1050 Vit E 10 UHMWPE wear debris at a concentration of 100 µm³ wear debris 

per cell for 24 hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 1.125 x 10
5 
cells 

per well. Particles and cells were incubated in RPMI 1640 culture medium using direct cell culture 

method. Cells only acted as the negative control, 200 ng/ml
-1

 lipopolysaccharide acted as the positive 

control along with 100 µm³ 0.2 µm Fluospheres. * indicates a statistically significant TNF-α response 

from PBMNCs compared to cells only control (ANOVA, p<0.05). Error bars show ± the 95% 

confidence level, n=4..  

 

3. Summary 

The change in agarose concentration had no significant effect on the cellular 

response to wear debris. There was no significant difference in the cell viability of 

the level of TNF-α release from cells incubated in 0.1% (w/v) or 0.4% (w/v) agarose 

gel, or from cells cultured directly with UHMWPE particles (agarose-free). As a 

result, particle: cell experiments from this point used 0.4% (w/v) agarose as it was 

believed that a more viscous agarose gel would maximise the movement of the 

buoyant UHMWPE particles to the surface of the gel before solidification. 
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4.3.3.3 TNF-α Release from PBMNCs Stimulated with Highly 

Crosslinked Vitamin E Enhanced UHMWPE Wear Debris - Altering the 

Cell Seeding Density 

The density of cells incubated in each well was hypothesised to be an important part 

of the experimental procedure. For that reason, the next step was to alter the cell 

seeding density and phagocytic fraction to determine the ideal cell conditions for 

PBMNCs to be incubated and respond to UHMWPE wear debris. 

The process for the isolation of peripheral blood mononuclear cells from human 

blood does not specifically isolate phagocytes but rather the white cell fraction, 

including lymphocytes, monocytes and macrophages. For that reason, the final cell 

seeding density of PBMNCs was determined as a fraction of the overall cell count. 

The process for calculating the final phagocytic cell count is described in section 

2.4.4.1. The experiments performed previously (test A: 1 – A: 4) used a phagocytic 

fraction of 12% as the initial test phagocytic fraction, and a cell seeding density of 

1.125 x10
5
 per well.  

In addition, the following experiments incubated 0.2 µm polystyrene Fluospheres 

(FS) at 100 µm³ per cell as a positive particle control. Fluospheres have previously 

been shown to stimulate TNF-α release from PBMNCs and have been used as a 

model particle (Liu, 2012).  

This aim of this section of experiments was to determine the effect of increasing the 

cell seeding density on the cell viability and TNF-α release from PBMNCs. Previous 

experiments had used 1.125 x 10
5
 cells per well; here a density of 2 x 10

5
 cells per 

well was tested with two donors. The first donor was Donor 7, followed by Donor 3.  

The cell culture conditions for this section are shown in Table 4.6.  

One limitation when using primary cells isolated from blood from healthy human 

donors is the limitation on the total cell number, due to the finite number of cells 

available in the sample of blood used. Due to ethical reasons, only a small volume of 

blood could be taken from donors; usually around 28 ml. This limited the number of 

PBMNCs isolated, and subsequently only five-six treatments could be investigated 

with each sample at a cell seeding density of 2 x 10
5
.  
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Table 4.6 – Cell culture conditions for experiments investigating the biological response to 

antioxidant UHMWPE using an increased cell seeding density of 2 x 10
5
 cells per well 

Cell number 2 x 10
5 

per well 

Particle Concentration 100 µm
3
 per cell 

Agarose Gel Concentration 0.4% (w/v) 

Agarose Gel Volume 300 µl 

Plate 48 well plate 

 

 

1. Biological response of PBMNCs isolated from Donor 7 to 1050 Vit E 10 wear 

debris compared to 1050 HXL  wear debris with a higher cell seeding density of 2 

x 10
5
 cells per well – Test A:5 

Cells isolated from Donor 7 were incubated with particles at a concentration of 

100µm³ per cell in 300 µl agarose (0.4% (w/v)) for 24 hours. The cell culture 

conditions are shown in Table 4.6, with the changes from the initial conditions being 

the increased cell seeding density of 2 x 10
5
 per well, and the reduced agarose gel 

concentration of 0.4% (v/v). The effect on cell viability and TNF-α release of 

PBMNCs isolated from Donor 7 and incubated with 100 µm³ UHMWPE wear debris 

are shown in Figure 4.11. There was no significant effect of any of the treatments on 

cell viability compared to the cells only negative control. There was significantly 

elevated TNF-α release from cells treated with 200 ng/ml
-1

 LPS, and also from cells 

incubated with 0.2 µm Fluospheres. The mean TNF-α release from cells incubated 

with 1050 HXL was higher than from the cells only negative control and the 1050 

Vit E 10 treated cells, however this was not statistically significant (ANOVA; 

p>0.05).  
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Figure 4.11 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 7 incubated 

at  with 1050 HXL and 1050 Vit E 10 UHMWPE wear debris at a concentration of 100 µm³ wear 

debris for 24 hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 2 x 10
5 

cells per 

well. Cells only acted as the negative control, 200 ng/ml
-1

 lipopolysaccharide acted as the positive 

control, while 0.2 µm Fluospheres at a concentration of 100 µm³ per cell acted as a model particle 

positive control. * indicates a statistically significant TNF-α response from PBMNCs compared to 

cells only control (ANOVA, p<0.05). Error bars show ± the 95% confidence level, n=4. Where only + 

error bars are shown, this is due to ± error bars altering the scale of the graph to make it difficult to 

read.  

 

 

2. Biological response of PBMNCs isolated from Donor 3 to 1050 Vit E 10 wear 

debris compared to 1050 HXL  wear debris with a higher cell seeding density of 2 

x 10
5
 cells per well – Test A:6 

A repeat experiment was carried out using the conditions outlined in test A: 5. In the 

previous test, neither 1050 HXL nor 1050 Vit E 10 UHMWPE debris treatments 

caused an increase in the TNF-α release from PBMNCs isolated from Donor 7. This 

experiment used cells isolated from Donor 3. The effect on cell viability and TNF-α 

release from PBMNCs isolated from Donor 3 and incubated with 100 µm³ 

UHMWPE wear debris are shown in Figure 4.12. None of the treatments had any 

significant effect on the cell viability of PBMNCs isolated from Donor 3. There was 

significantly elevated TNF-α release from cells incubated with 200 ng/ml
-1

 LPS, and 

also cells incubated with 0.2 µm Fluospheres, compared to the cells only negative 

control.  
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Figure 4.12 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 3 incubated 

with 1050 HXL, and 1050 Vit E 10 UHMWPE wear debris at a concentration of 100 µm³ wear debris 

for 24 hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 2 x 10
5 

cells per well. 

Cells only acted as the negative control, 200 ng/ml
-1

 lipopolysaccharide acted as the positive control, 

while 0.2 µm Fluospheres at a concentration of 100 µm³ per cell acted as a model particle positive 

control. * indicates a statistically significant TNF-α response from PBMNCs compared to cells only 

control (ANOVA, p<0.05). Error bars show ± the 95% confidence level, n=4.  

 

 

The increased cell seeding density had no negative effect on the cell viability or 

TNF-α release from PBMNCs in response to UHMWPE wear debris. While no 

significant release of TNF-α was observed from cells at a seeding density of 2 x 10
5
 

per well, the increased cell density provided a significant TNF-α response from cells 

incubated with 0.2 µm Fluospheres compared to the cells only control; a significant 

result not observed in the previous experiment with Fluospheres incubated with cells 

at a seeding density of 1.125 x 10
5
 cells per well. This suggested a stronger cellular 

response was achieved at this cell seeding density, and therefore a density of 2 x 10
5
 

cells per well was used in all further experiments. 
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In an attempt to further develop the particle: cell experiment, a test was conducted 

investigating three different phagocytic fractions. The final cell seeding density 

remains at 2 x 10
5
 cells per well, however the assumed fraction of cells that were 

phagocytes was adjusted.  

 

3. Biological response of PBMNCs isolated from Donor 15 to 1050 HXL wear 

debris using different phagocytic fractions – Test A:7 

To investigate the optimum phagocytic fraction to be used for this experiment, a test 

experiment was conducted using three different assumed phagocytic fractions of 

12%, 6% and 3%. These fractions were chosen as a previous study showed that the 

fraction of phagocytes isolated from human blood was between 3-10%, using the 

latex bead assay (Liu, 2012). These experiments used a cell seeding density of 2 x 

10
5
 cells per well, in a 300 µl agarose plug (0.4% (w/v)). Wear debris from 1050 

HXL was the only UHMWPE treatment used in order to limit the treatment 

variables, while the assumed phagocytic fraction was adjusted. Wear debris derived 

from 1050 HXL was used at a concentration of 100 µm³ per cell. The cells only 

negative and LPS positive controls used a phagocytic fraction of 12% due to the 

limit on cell number, and therefore the limit on the number of treatments in one 

experiment. The effect on cell viability and TNF-α release from PBMNCs isolated 

from Donor 15 and incubated with 100 µm³ UHMWPE wear debris are shown in 

Figure 4.13.  

None of the treatments had a significant effect on the cell viability of PBMNCs 

isolated from Donor 15, and there was no significant difference in the cell viability 

of the 1050 HXL treated cells at different phagocytic fractions compared to the cells 

only negative control. There was significantly elevated TNF-α release from cells 

incubated with 200 ng/ml
-1

 LPS (ANOVA; p<0.05). There was no significantly 

elevated TNF-α release from PBMNCs treated with 1050 HXL, indicating the 

change in phagocytic fraction had no effect on the cellular response to UHMWPE 

wear debris. However, cells seeded with a 6% assumed phagocytic fraction caused a 

higher mean TNF-α release than cells only negative control, with a large error bar. 

This increase was not significant however.  
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Figure 4.13 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 15 

incubated with 1050 HXL UHMWPE wear debris at a concentration of 100 µm³ wear debris for 24 

hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 2 x 10
5 

cells per well, using 

three different assumed phagocytic fractions (PF) of 12%, 6% and 3%. Cells only acted as the 

negative control, 200 ng/ml
-1

 lipopolysaccharide acted as the positive control. * indicates a 

statistically significant TNF-α response from PBMNCs compared to cells only control (ANOVA, 

p<0.05). Error bars show ± the 95% confidence level, n=4.  

 

 

4. Summary 

Altering the assumed phagocytic fraction of cells isolated from Donor 15 had no 

significant effect on TNF-α release in response to 1050 HXL. The 6% phagocytic 

fraction test showed a mean TNF-α release very close to the TNF-α release from the 

12% phagocytic fraction test. Using the previous 12% phagocytic fraction has so far 

not yielded significant TNF-α release, therefore to maximise cell usage, the 

subsequent particle: cell culture experiments used a 6% phagocytic fraction, and a 

cell seeding density of 2 x 10
5
 per well.  

Throughout this section of the study, steps have been taken to alter the conditions of 

the particle: cell experiments in order to improve the stimulation of PBMNCs by 

UHMWPE wear debris at a dose of 100 µm³ per cell. So far, no significantly 

elevated TNF-α release has been observed from PBMNCs incubated with UHMWPE 

wear debris, compared to the cells only negative control. At a cell seeding density of 
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2 x 10
5
, PBMNCs have shown a significant TNF-α response to 0.2µm Fluospheres at 

a dose of 100 µm³. Under all conditions, a significant TNF-α response has been 

observed from PBMNCs incubated with LPS at a concentration of 200 ng.ml
-1

 

(ANOVA; p<0.05).  

Although several factors have been changed throughout this section, it was apparent 

that individual donor variation was an important factor when determining the 

response of primary cells isolated from human blood to UHMWPE wear particles. 

Some donors (e.g. Donors 8 and 15) showed slightly elevated TNF-α release in 

response to UHMWPE wear debris, while other donors showed almost no TNF-α 

release. At this stage, the present study therefore investigated the response of cells 

derived from a cell line, in order to eliminate the effects of donor variation. For the 

subsequent section of this study, cells derived from the U937 cell line were 

incubated with UHMWPE wear debris to determine the TNF-α response.  

 

4.3.3.4 Cellular Response of U937 Cells to Vitamin E enhanced Highly 

Crosslinked UHMWPE Wear Debris  

Donor variation was hypothesised to play an important role in TNF-α release from 

PBMNCs in response to UHMWPE wear debris. In a previous study, Liu (2012) 

showed certain donor PBMNCs responded to UHMWPE wear debris in the 0.1-0.6 

µm size range with a significant TNF-α release compared to the cells only control; 

however this was no consistent across all donors. This variation was therefore 

thought to be an important factor in this study when using primary donor cells to 

determine the cellular response to non-fractionated antioxidant wear debris. For this 

reason, a cell line was used in order to remove donor variation as a factor from these 

experiments, while still providing a macrophage cell type to determine the cytokine 

response to UHMWPE wear debris. 

The U937 cell line is a human cell line established from a histiocytic lymphoma and 

displays characteristics of monocytes. The cells differentiate following stimulation 

with phorbol 12-myristate 13-acetate (PMA) to form mature macrophages. For this 

reason this U937 cells were chosen as a cell type to use for the investigation of the 

TNF-α response to UHMWPE wear debris, without the factor of donor variation. 
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Cells from the U937 lineage were differentiated with 10ng.ml
-1

 PMA for 24 hours 

and harvested as described in section 2.4.6.2 and 2.4.6.3, respectively. Differentiated 

cells were seeded with 1050 HXL and 1050 Vit E 10 UHMWPE wear debris using 

the agarose gel technique, as outlined in section 2.4.3.  

 

1. Biological response of U937 macrophages to 1050 HXL, 1050 Vit E 10  and 

1050 Virgin UHMWPE wear debris – Test A:8 

Macrophages derived from U937 cells were seeded at a density of 2 x 10
5
 per well, 

with a particle concentration of 100 µm³ per cell. Cells were incubated for 24 hours 

with 1050 HXL, 1050 Virgin and 1050 Vit E 10 UHMWPE wear debris, in addition 

to 0.2 µm Fluospheres and LPS as positive controls for TNF-α release. The lack of 

restriction on cell number allowed for more treatments in one experiment than was 

possible when using PBMNCs. Following seeding of cells, the experiment followed 

the same protocol as when using PBMNCs, including using the agarose gel 

technique, as outlined in section 2.4.5. The cell culture conditions are shown in 

Table 4.7.  

Table 4.7 - Cell culture conditions for experiments investigating the biological response of U937 

cells to antioxidant UHMWPE  

Cell number  2 x 10
5 

per well 

Particle Concentration 100 µm
3
 per cell 

Agarose Gel Concentration 0.4% (w/v) 

Agarose Gel Volume 300 µl 

Plate 48 well plate 

 

The effect on cell viability and TNF-α release from differentiated U937 cells 

following 24 hour incubation with 100 µm³ UHMWPE wear debris per cell are 

shown in Figure 4.14. None of the treatments had a significant effect on the cell 

viability after 24 hours. The LPS and Fluosphere treatments stimulated significantly 

elevated levels of TNF-α release compared to the cells only negative control. In 

addition, 1050 Virgin UHMWPE wear debris at 100 µm³ per cell stimulated 
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significantly elevated levels of TNF-α release from U937 cells compared to the cells 

only negative control (ANOVA; p<0.05). The 1050 HXL UHMWPE particle treated 

cells did not show an increase in TNF-α release. The lack of TNF-α release 

compared to the cells only negative control was also the case in the 1050 Vit E 10 

particle treated cells.  
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Figure 4.14 - A) Cell viability and B) TNF-α release from U937 derived macrophages incubated with 

1050 HXL, 1050 Vit E 10 and 1050 Virgin UHMWPE wear debris at a concentration of 100 µm³ for 

24 hours. Cells were seeded at a density of 2 x 10
5 

cells per well with treatments using the agarose gel 

technique. Cells only acted as the negative control, 200 ng/ml
-1

 lipopolysaccharide acted as the 

positive control along with 100 µm³ 0.2 µm Fluospheres. * indicates a statistically significant TNF-α 

response from PBMNCs compared to cells only control (ANOVA, p<0.05). Error bars show ± the 

95% confidence level, n=4.  
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2. Summary 

So far in the method development section of this study, a significantly elevated TNF-

α release has not been observed from PBMNCs in response to UHMWPE wear 

debris. Factors such as the cell seeding density, agarose gel concentration and 

phagocytic fraction have been altered during this section (Test A) to develop the 

conditions for the particle: cell culture, however no significant effect on the 

biological response to UHMWPE wear debris in PBMNCs has been observed. 

This experiment then used U937 cells as an alternative source of macrophages, and 

demonstrated a significantly elevated level of TNF-α release from macrophages in 

response to 1050 Virgin UHMWPE wear debris. This was the first significant 

cytokine release from cells in response to UHMWPE wear debris in this study so far.  

Throughout Test A, wear debris has been dosed at 100 µm³ per cell in each 

experiment. However, it was hypothesised that this was an insufficient concentration 

to stimulate significant TNF-α release from PBMNCs. It was observed from the wear 

particle characterisation results shown in section 3.4.1.1 that only around 30% of 

wear particles for both 1050 Virgin and 1050 Vit E 10 fall within the range of 0.1-

1.0 µm that is normally considered the most biologically active particles. The 

significant TNF-α stimulation achieved in a previous study by Liu (2012) was 

achieved by seeding PBMNCs with 100 µm³ per cell of fractionated wear debris in 

the size range 0.1-0.6 µm. This method provided 100 µm³ of particles, where 100% 

of the volume of the particles was within this biologically active size range. In 

comparison, in the present study, non-fractionated wear debris provided only 30-

40% particles within this size range, therefore at a concentration of 100 µm³ per cell, 

only 30 µm³ of UHMWPE wear particles in the biologically active size range were 

available per cell. This reduction in the dose of critically sized UHMWPE particles 

was hypothesised to be a reason for the lack of TNF-α release from PBMNCs.  

To dose UHMWPE wear debris at higher concentrations, a higher concentration of 

UHMWPE wear debris in the initial sterile lubricant sample was required. The 

difficulty with altering this is that the particle concentration achievable from a 4 day 

wear test is limited, as is the subsequent particle concentration available to dose in a 

300 µl agarose plug. In order to generate a more concentrated sample of wear debris, 

a longer wear test was performed using the aseptic single station pin-on-plate wear 
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simulator. This longer wear test produced a more concentrated sample of UHMWPE 

wear debris, and cell culture experiments using this concentrated sample were 

subsequently named Test B.  
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4.3.4. Development of the Method for Assessment of the Effect of High 

Volume Concentrations of UHMWPE Wear Particles on TNFα 

Production in PBMNCs – Test B 

The rationale behind increasing the concentration of the UHMWPE wear debris 

incubated with PBMNCs was two-fold. Firstly, during the method development of 

this experiment, investigating the effect of particle concentration on TNF-α response 

from PBMNCs was the final variable to be investigated. Secondly, as discussed in 

the previous section, only a small percentage of the 100 µm³ of UHMWPE wear 

debris per cell is in the size range considered the most biologically active (0.1-

1.0µm). In order to dose the UHMWPE wear debris at a higher particle volume 

concentration, a more concentrated particle sample was required, and this was 

achieved by performing a longer wear test on the aseptic single station simulator. 

The difficulties with this longer aseptic wear test were maintaining the sterile 

environment for the extended time, and maintaining the running of the simulator 

throughout the extended period. Despite these difficulties, a longer wear test protocol 

was devised to provide a ‘super-concentrated’ sample of wear debris, generated over 

ten days instead of four.  

 

4.3.4.1. Generation of Clinically Relevant UHMWPE Wear Particles 

using the Aseptic Single Station Pin-on-Plate Wear Simulator – Test B 

Using the aseptic single station pin-on-plate wear simulator, clinically relevant wear 

particles of each UHMWPE material listed in Table 4.8 were generated in a lubricant 

comprised of RPMI 1640 medium with 25% (v/v) bovine serum, as described in 

section 2.2. The simulator was operated for ten days for each material, and these ten-

day wear tests were categorised as Test B throughout this study. From each material, 

a volume of 20 ml of lubricant was collected from the bath under aseptic conditions 

at the end of a wear test. The materials tested in Test B and the particle 

concentrations of the lubricants from each material are shown in Table 4.9. For each 

material, there was approximately a five-fold increase in the volume of wear debris 

generated over a ten-day wear test compared to the traditional 4 day wear test.  
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Table 4.8 – UHMWPE materials used to generate super concentrated UHMWPE particle 

stocks. The full name of each material, the resin type, the gamma irradiation dose, the antioxidant 

used, the supplier, the abbreviation used through the study, and the colour key used throughout this 

chapter for each material are shown.  

Name Resin  

Gamma 

Irradiation 

Dose 

Antioxidant Supplier Abbreviation 
Colour 

Key 

1050 Highly 

Crosslinked 

UHMWPE 

GUR1050 10 MRad none 
DePuy 

Synthes
®

 
1050 HXL 

 

1050 Vitamin E 

enhanced 

UHMWPE + 10 

MRad 

irradiation 

GUR1050 10 MRad 
Vitamin E 

1000 ppm 

MediTech
®
 Medical 

Polymers 

1050 Vit E 10 

 

1020 Hindered 

Phenol 

enhanced 

UHMWPE + 8 

MRad 

irradiation 

GUR1020 8 MRad 
Hindered 

phenol 

DePuy 

Synthes
®

 
1020 AOX 8 

 

 

 

Table 4.9 – The concentration of UHMWPE wear debris in serum lubricant samples collected 

from the aseptic single station pin-on-plate wear simulator during Test B.  

Name Resin  
Conc of UHMWPE 

Wear Debris (µg/ml) 
Colour Key 

1050 HXL GUR1050 512 
 

1050 Vit E 10 GUR1050 431 
 

1020 AOX 8 GUR1020 835  
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4.3.4.2 Determination of the Endotoxin Levels in each Serum Lubricant 

Sample 

A new sample of UHMWPE wear debris from each material listed in Table 4.8 was 

generated using the single station pin-on-plate wear simulator under aseptic 

conditions. This additional test was conducted over 10 days, therefore increasing the 

risk of contamination. Throughout the test, the serum lubricant was tested for any 

microbial contamination, as outlined in section 2.2.7.5. In addition, to ensure the 

lubricant sample was also endotoxin free, the LAL endotoxin assay was performed 

to determine the levels of endotoxin present in each sample. Samples were tested 

using the method described in section 2.4.2. Samples were sonicated for 40 min at 

37ºC, after which each sample was diluted 100:1 in LAL reagent water.  

Endotoxin levels present in the samples are shown in Table 4.10. The endotoxin 

levels of all the samples was below the accepted value of <5 EU.ml
-1

, as specified by 

the pharmaceutical industry for injectable pharmaceuticals (FDA Regulatory Affairs, 

1985). The positive product control percentage recovery was within the accepted 

range of 50-200%, indicating that the endotoxin levels detected in the samples were 

valid. These results showed that the longer 10 day test using the single station pin-

on-plate wear simulator under aseptic conditions was suitable to produce sterile, 

endotoxin free UHMWPE wear debris samples.  

 

Table 4.10 – Levels of endotoxin present in the lubricant samples generated in 25% (v/v) bovine 

serum lubricants using the single station pin-on-plate simulator (Test B).  

UHMWPE Material PPC% Recovery Endotoxin (EU.ml
-1

) 

1050 HXL 128% 0.017 

1050 Vit E 10 156% 0.068 

1020 AOX 8 120% <0.005 

Note – The positive product control (PPC%) was the sample which was spiked with 

a known concentration of endotoxin. The recovery of endotoxin was required to be 

equal to the known concentration, within 50-200% range, to be considered free of 

significant interference.  

 

 



Chapter 4 

198 

 

4.3.4.3 Cellular Response to High Volume Concentrations of Highly 

Crosslinked UHMWPE Wear Debris 

The aim of this section of study was to further develop the methodology for 

determining the biological response of PBMNCs incubated with UHMWPE wear 

debris in terms of cell viability and TNF-α release after 24 hours. The agarose gel 

technique, as described in section 2.4.3, was used throughout this section as a matrix 

to suspend the buoyant UHMWPE wear particles and allow for contact between 

PBMNCs and wear debris. The developed cell culture conditions used in section 

4.2.3.2 were used throughout this section, and these conditions are described in 

Table 4.11. Cells were isolated and seeded as described in section 2.4, with the only 

difference to the experiments in section 4.2.3.2 being a higher dose of UHMWPE 

wear debris in the 0.4% (w/v) agarose gels.  

The first step in the development of the methodology using this lubricant sample was 

to determine the dose of UHMWPE wear debris (full size range) that would 

stimulate significant TNF-α release from PBMNCs compared to the cells only 

negative control. For this experiment, PBMNCs were seeded with 1050 HXL 

UHMWPE wear debris at doses of 100 µm³, 200 µm³ and 600 µm³ per cell. An 

intermediate dose of 400 µm³ was planned, however the yield of mononuclear cells 

from the donor blood sample limited the number of treatments to five (n = 4). A cells 

only negative control was used, along with 200 ng/ml
-1

 LPS as a positive control. 

Cells were incubated for 24 hours in an incubator at 37ºC in 5% (v/v) CO2 in air. 

Cell culture conditions are shown in Table 4.11.  
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Table 4.11 –Cell culture conditions for experiments investigating the dose response PBMNCs to 

highly crosslinked UHMWPE  

Cell number  2 x 10
5 

per well 

Particle Concentration 

100 µm
3
, 200 

µm³, 600 µm³ 

per cell 

Agarose Gel Concentration 0.4% (w/v) 

Agarose Gel Volume 300 µl 

Plate 48 well plate 

 

 

1. Biological Response of PBMNCs isolated from Donor 2 to 1050 HXL wear 

debris at different UHMWPE particle concentrations – Test B:1 

Using the agarose gel technique, peripheral blood mononuclear cells isolated from 

Donor 2 were incubated with wear debris generated from 1050 HXL at different 

volume doses of particles per cell. The PBMNCs were treated with 100 µm³, 200 

µm³ or 600 µm³ 1050 HXL wear debris per cell. The effect on cell viability and 

TNF-α release from PBMNCs isolated from Donor 2 following incubation with 

variable dose volume of 1050 HXL UHMWPE wear debris per cell at 37ºC in 5% 

(v/v) CO2 in air are shown in Figure 4.15. None of the UHMWPE or control 

treatments had a significant effect on the cell viability of PBMNCs compared to the 

cells only negative control. Significant elevated TNF-α release was produced by 

PBMNCs incubated with 200 µm³ and 600 µm³ 1050 HXL UHMWPE wear debris 

per cell, compared to the cells only negative control (ANOVA: p<0.05). A 

significantly elevated TNF-α release was also observed from cells incubated with the 

LPS positive control. Cells incubated with 100 µm³ 1050 HXL showed a higher 

mean TNF-α response compared to the cells only control; however this was not 

statistically significant.  
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Figure 4.15 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 2 incubated 

with 1050 HXL UHMWPE wear debris at concentrations 100 µm³, 200 µm³ and 600 µm³ wear debris 

per cell for 24 hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 2 x 10
5 

cells per 

well with treatments using the agarose gel technique. Cells only acted as the negative control, 200 

ng/ml
-1

 lipopolysaccharide acted as the positive control. * indicates a statistically significant TNF-α 

response from PBMNCs compared to cells only negative control (ANOVA, p<0.05). Error bars show 

± the 95% confidence level, n=4.  
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2. Biological Response of PBMNCs isolated from Donor 8 to 1050 HXL wear 

debris at different UHMWPE particle concentrations – Test B:2 

A repeat experiment of test B:1 was conducted using an alternative donor. Peripheral 

blood mononuclear cells were isolated from blood from Donor 8 and incubated with 

1050 HXL UHMWPE wear debris at concentrations of 100 µm³, 200 µm³ and 600 

µm³ using the agarose gel technique. This test used the cell culture conditions 

described in Table 4.11. The effect on cell viability and TNF-α release from 

PBMNCs isolated from Donor 8 following incubation with variable dose volumes of 

1050 HXL UHMWPE wear debris per cell at 37ºC in 5% (v/v) CO2 in air are shown 

in Figure 4.16. None of the treatments had a significant effect on the viability of 

PBMNCs compared to the cells only negative control. As with the previous test, 

significantly elevated levels of TNF-α release were observed from PBMNCs 

incubated with 200 µm³ and 600 µm³ 1050 HXL UHMWPE wear debris, compared 

to the cells only control (ANOVA; p<0.05). There was also significantly elevated 

TNF-α release from PBMNCs incubated with the LPS positive control.  
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Figure 4.16 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 8 incubated 

with 1050 HXL UHMWPE wear debris at concentrations 100 µm³, 200 µm³ and 600 µm³ wear debris 

per cell for 24 hours at 37ºC in 5% (v/v) CO2. Cells were seeded at a density of 2 x 10
5 

cells per well 

with treatments using the agarose gel technique. Cells only acted as the negative control, 200 ng/ml
-1

 

lipopolysaccharide acted as the positive control. * indicates a statistically significant TNF-α response 

from PBMNCs compared to cells only control (ANOVA, p<0.05). Error bars show ± the 95% 

confidence level, n=4.  

 

 

3. Summary 

Significantly elevated TNF-α release was observed when PBMNCs were incubated 

with 1050 HXL UHMWPE wear debris at 200µm³ and 600 µm³ per cell, indicating 

that a higher concentration of wear debris per cell stimulated a significant cytokine 
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treatments. This supports the hypothesis that a higher dose of particles within the 

0.1-1.0 µm size range was important for a TNF-α response from PBMNCs.  

Subsequently, higher volume doses of 1050 HXL and 1050 Vit E 10 were incubated 

with PBMNCs in order to investigate the biological response highly crosslinked 

antioxidant UHMWPE wear particles. Due to the low volume of 1050 Vit E 10 wear 

debris generated in the serum sample over ten days, the maximum particle 

concentration possible in a 300 µl agarose plug was 500 µm³ wear debris per cell. 

This was therefore chosen as the particle concentration to compare these materials. 

Fluospheres (0.2 µm) were once again included as a positive control at 100 µm³ per 

cell, along with 200 ng.ml
-1

 LPS. Cells were incubated for 24 hours using the cell 

culture conditions outlined in Table 4.10.  
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4.3.5 Investigating the Cellular Response to High Volume Concentrations 

of Vitamin E enhanced Highly Crosslinked UHMWPE and Highly 

Crosslinked UHMWPE Wear Debris  

Following several steps of method development, this section of the study aimed to 

investigate the biological response of PBMNCs to highly crosslinked UHMWPE 

wear debris compared to highly crosslinked vitamin E enhanced UHMWPE wear 

debris, in terms of TNF-α release from PBMNC, and to determine the effect, if any, 

of vitamin E when present in highly crosslinked UHMWPE wear particles.  

 

4.3.5.1 Cellular Response to Vitamin E enhanced Highly Crosslinked 

UHMWPE and Highly Crosslinked UHMWPE Wear Debris  

Peripheral blood mononuclear cells were shown to produce significantly elevated 

levels of TNF-α release in response to 1050 UHMWPE wear debris at 200 µm³ and 

600 µm³ per cell, compared to the cells only negative control. Using the 

experimental conditions developed in section 4.2.3.2, and the increased particle dose 

of 500 µm³ per cell, the experiment was conducted to compare the cellular response 

to 1050 HXL and 1050 Vit E 10 UHMWPE wear debris. Cell culture conditions are 

shown in Table 4.12.  

 

Table 4.12 –Cell culture conditions for experiments investigating the biological response of 

PBMNCs to antioxidant UHMWPE  

Cell number  2 x 10
5 

per well 

Particle Concentration 
500 µm³ per cell 

Agarose Gel Concentration 0.4% (w/v) 

Agarose Gel Volume 300 µl 

Plate 48 well plate 
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1. Biological Response of PBMNCs isolated from Donor 8 to 1050 HXL and 1050 

Vit E 10 UHMWPE wear debris using improved conditions – Test B:3 

Peripheral blood mononuclear cells were isolated from blood from Donor 8 and 

incubated with 1050 HXL and 1050 Vit E 10 UHMWPE wear debris at a 

concentration of 500 µm³ per cell using the agarose gel technique. Fluospheres (0.2 

µm) were included as a positive particle control at a dose of 100 µm³, along with 200 

ng.ml
-1

 LPS. Cells were incubated at for 24 hours at a seeding density of 2 x 10
5
 

cells per well. The effect on cell viability and TNF-α release from PBMNCs isolated 

from Donor 8 and incubated with 500 µm³ wear debris per cell for 24 hours at 37ºC 

in 5% (v/v) CO2 in air are shown in Figure 4.17.  

None of the treatments had a significant effect on the cell viability of PBMNCs 

following the 24 hour incubation. A significantly elevated level of TNF-α release 

was observed from PBMNCs incubated with 500 µm³ 1050 HXL UHMWPE wear 

debris compared to the cells only control (ANOVA: p<0.05). In contrast, there was 

no significant increase in TNF-α release from PBMNCs incubated with 1050 Vit E 

10 UHMWPE wear debris compared to cells only negative control. The level of 

TNF-α released from PBMNCs in response to 1050 Vit E 10 wear debris was 

significantly lower than that released from PBMNCs incubated with 1050 HXL wear 

debris. Cells incubated with 100 µm³ Fluospheres produced a significant TNF-α 

response compared to cells only, along with the positive control of LPS treated cells 

(ANOVA: p<0.05).  
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Figure 4.17 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 8 incubated 

with 1050 HXL and 1050 Vit E 10 UHMWPE wear debris at a concentration of 500 µm³ wear debris 

per cell for 24 hours at 37ºC in 5% (v/v) CO2. Cells were seeded at a density of 2 x 10
5 

cells per well 

with treatments using the agarose gel technique. Cells only acted as the negative control, 200 ng/ml
-1

 

lipopolysaccharide acted as the positive control along with 100 µm³ 0.2 µm Fluospheres. * indicates a 

statistically significant TNF-α response from PBMNCs compared to cells only control (ANOVA, 

p<0.05). Error bars show ± the 95% confidence level, n=4. Only + error bars are shown where ± error 

bars would change the scale of the graph, making the graph difficult to read.  
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Donor 15 were used to compare the biological response of PBMNCs to 1050 HXL 

and 1050 Vit E 10 UHMWPE wear debris.  

 

2. Biological Response of PBMNCs isolated from Donor 15 to 1050 HXL and 1050 

Vit E 10 UHMWPE wear debris using improved conditions – Test B:4 

Peripheral blood mononuclear cells were isolated from Donor 15 and incubated with 

UHMWPE wear debris using the agarose gel technique. As in test B:3, 1050 HXL 

and 1050 Vit E 10 were incubated at a concentration of 500 µm³ per cell, with cells 

seeded at a density of 2 x 10
5
 per well. Cells were incubated for 24 hours at 37ºC in 

5% (v/v) CO2, after which the cell viability and TNF-α release from PBMNCs was 

determined. Cells only acted as a negative control, while 0.2 µm Fluospheres at a 

dose of 100 µm³ acted as a positive particle control, along with 200 ng.ml
-1

 LPS. . 

The effect on cell viability and TNF-α release from PBMNCs incubated with 500 

µm³ UHMWPE wear debris per cell for 24 hours at 37ºC in 5% (v/v) CO2 are shown 

in Figure 4.18.  

None of the treatments had a significant effect on the cell viability of PBMNCs 

compared to the cells only control. Cells incubated with 1050 HXL UHMWPE wear 

debris produced significantly elevated TNF-α release compared to the cells only 

negative control (ANOVA: p<0.05). In comparison, cells incubated with 1050 Vit E 

10 UHMWPE wear debris did not show a significant increase in TNF-α release 

compared to the cells only negative control. The level of TNF-α produced by 

PBMNCs incubated with 1020 Vit E 10 wear debris was significantly lower than the 

level of TNF-α produced by PBMNCs incubated with the same volume of 1050 

HXL wear debris, and comparable to the TNF-α release observed in the cells only 

negative control. Cells treated with 100 µm³ per cell of 0.2 µm Fluospheres showed 

a significant TNF-α response compared to the cells only control, while LPS treated 

cells also showed a significant TNF-α response compared to the cells only negative 

control (ANOVA; p<0.05).  
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Figure 4.18 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 15 

incubated with 1050 HXL and 1050 Vit E 10 UHMWPE wear debris at a concentration of 500 µm³ 

wear debris per cell for 24 hours at 37ºC in 5% CO2 (v/v) in air. Cells were seeded at a density of 2 x 

10
5 

cells per well with treatments using the agarose gel technique. Cells only acted as the negative 

control, 200 ng/ml
-1

 lipopolysaccharide acted as the positive control along with 100 µm³ 0.2 µm 

Fluospheres. * indicates a statistically significant TNF-α response from PBMNCs compared to cells 

only control (ANOVA, p<0.05). Error bars show ± the 95% confidence level, n=4.  
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3. Summary 

Using cell culture conditions developed in this study, and seeding UHMWPE wear 

debris at a concentration of 500 µm³ per cell, a significantly elevated level of TNF-α 

release was observed from PBMNCs incubated with 1050 HXL compared to the 

cells only negative control. In comparison, PBMNCs incubated with 1050 Vit E 10 

at the same dose, and using the same conditions, produced a TNF-α release 

significantly lower than that observed in 1050 HXL treated cells. The TNF-α release 

from 1050 Vit E 10 treated cells was comparable to that observed in the cells only 

negative control. This result was observed with both Donor 8 and Donor 15; two of 

the donors that were considered to be responders to UHMWPE wear debris in terms 

of increased levels of TNF-α release. This result indicated that the presence of 

vitamin E in the highly crosslinked material had a significant effect on the TNF-α 

release from PBMNCs in response to wear debris at a dose of 500 µm³ per cell. 

Following the successful stimulation of PBMNCs, an additional material was 

included in the experiment. As an alternative to vitamin E enhanced highly 

crosslinked UHMWPE, a hindered phenol enhanced highly crosslinked UHMWPE 

was investigated to determine if this alternative antioxidant had any effect on the 

cellular response to UHMWPE wear debris at a concentration of 500 µm³ per cell.  

 

4.3.5.2 Cellular Response to Vitamin E enhanced Highly Crosslinked 

UHMWPE, Hindered Phenol enhanced Highly Crosslinked UHMWPE, 

and Highly Crosslinked UHMWPE Wear Debris 

The previous section of the study showed that when seeded with 500 µm³ UHMWPE 

wear debris per cell, PBMNCs produced a significantly elevated level of TNF-α 

release compared to the cells only negative control. This significant TNF-α release 

was not observed in PBMNCs incubated with 1050 Vit E UHMWPE wear debris at 

the same concentration, indicating that the presence of vitamin E had an effect on 

this response. Using the cell culture conditions described in Table 4.12, the novel 

highly crosslinked antioxidant material 1020 AOX 8 was included in the study to 

determine the cytokine response to wear debris from this material. The 1020 AOX 8 

UHMWPE is enhanced with a hindered phenol antioxidant (pentaerythritol tetrakis), 
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and irradiated to a level of 8 MRad, therefore the material was considered highly 

crosslinked. Wear debris was generated from this material using the methods 

outlined in section 2.2, and the volume of wear debris generated is shown in Table 

4.8.  

 

1. Biological Response of PBMNCs isolated from Donor 8 to 1050 HXL, 1050 Vit 

E 10 and 1020 AOX 8 UHMWPE wear debris using improved conditions – Test 

B:5 

Using the agarose gel technique, peripheral blood mononuclear cells isolated from 

Donor 8 were incubated with UHMWPE wear debris generated from 1050 HXL, 

1050 Vit E 10 and 1020 AOX 8 at a particle concentration of 500 µm³ per cell. Cells 

were incubated with particles for 24 hours, after which the cell viability and TNF-α 

response was determined. The effect on cell viability and TNF-α release from 

PBMNCs incubated with 500 µm³ wear debris per cell for 24 hours at 37ºC in 5% 

(v/v) CO2 in air  is shown in Figure 4.19. None of the UHMWPE treatments had a 

significant effect on the cell viability of PBMNCs compared to the cells only 

negative control. A significant TNF-α response was observed in PBMNCs incubated 

with both 1050 HXL and 1050 Vit E 10 UHMWPE wear debris treatments compared 

to the cells only control (ANOVA: p<0.05). Cells incubated with 1050 HXL 

produced the strongest TNF-α response, with cells incubated with 1050 Vit E 10 

producing a lower but significant TNF-α response compared to the cells only 

negative control (ANOVA; p<0.05). Cells incubated with 1020 AOX 8 produced the 

lowest response out of the wear debris-treated cells, with a response not significantly 

elevated compared to the cells only control. A significant TNF-α response was also 

observed in the LPS positive control.  

This was the only experiment that showed a significant response from cells 

incubated with 1050 Vit E 10. This response was lower than the 1050 HXL 

response, indicating vitamin E had an effect on the cytokine response. The 1020 

AOX 8 treated cells produced a very low TNF-α response.  
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Figure 4.19 - A) Cell viability and B) TNF-α release from PBMNCs isolated from Donor 8 incubated 

with 1050 HXL, 1050 Vit E 10 and 1020 AOX 8 UHMWPE wear debris at a concentration of 500 

µm³ wear debris per cell for 24 hours at 37ºC in 5% (v/v) CO2 in air. Cells were seeded at a density of 

2 x 10
5 

cells per well with treatments using the agarose gel technique. Cells only acted as the negative 

control, 200 ng/ml
-1

 lipopolysaccharide acted as the positive control. * indicates a statistically 

significant TNF-α response from PBMNCs compared to cells only control (ANOVA, p<0.05). Error 

bars show ± the 95% confidence level, apart from where + error bars are shown to maintain the scale 

of the graph, n=4.  
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4.4. Discussion 

In this chapter, the cellular response to antioxidant UHMWPE wear debris in terms 

of the osteolytic cytokine response was determined. Previous studies have shown 

UHMWPE wear debris stimulated a significantly elevated TNF-α release from 

PBMNCs when they were incubated a dose of 100 µm³ wear debris per cell 

(Richards, 2008, Liu, 2012). A separate study showed that non-crosslinked vitamin E 

enhanced UHMWPE particles reduced the release of TNF-α from PBMNCs 

incubated with 100 µm³ UHMWPE wear debris compared to virgin UHMWPE wear 

debris (Bladen et al., 2011). However, up to this point no study has evaluated the 

cellular response to highly crosslinked vitamin E enhanced UHMWPE wear debris; 

the clinically relevant material. This chapter set out to determine the cellular 

responses to this material in comparison to clinically relevant non-antioxidant highly 

crosslinked UHMPWE wear debris. In addition, the cellular response to a novel 

antioxidant hindered phenol enhanced highly crosslinked UHMWPE material was 

determined, using the hindered phenol (pentaerythritol tetrakis) enhanced UHMWPE 

material from DePuy Synthes Joint Reconstruction®.  

Firstly, confocal microscopy was used to determine if the agarose gel technique for 

the culture of PBMNCs with UHMWPE wear debris was indeed facilitating the 

contact and phagocytosis of wear particles. The agarose gel technique has been used 

previously by Liu (2012) and Bladen et al. (2013) to determine the cytokine release 

from PBMNCs in response to UHMWPE wear debris, however it had not been 

determined whether this technique allowed the uptake of wear particles. Using 

fluorescently labelled UHMWPE wear debris generated from the 1050 HXL 

material, wear particles in micrometre and nanometre size range were observed to be 

internalised in the PBMNCs, localising in the cytoplasm outside the nucleus. This 

validated that the agarose gel cell culture technique was facilitating the contact and 

internalisation of UHMWPE wear particles, and this technique was therefore 

subsequently used with confidence in the cellular response experiments that 

followed.  

The agarose gel technique was used to determine the cell viability and TNF-α release 

from PBMNCs in response to highly crosslinked and antioxidant UHMPWE wear 

debris. Using the initial cell culture conditions used previously by Liu (2012; 1.125 x 
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10
5
 cells per well, 100 µm³ wear debris per cell, 1% (w/v) agarose gel), no 

significant TNF-α release was observed from PBMNCs incubated with 1050 HXL, 

1050 Vit E 10 or 1050 Virgin UHMWPE wear debris. The following experiments 

then investigated the effect of different agarose concentrations on the TNF-α 

response from PBMNCs. Using agarose concentrations of 1% and 0.4% (w/v), and 

also an agarose free test (direct cell culture), once again no significant TNF-α 

response was observed from PBMNCs incubated with 1050 HXL, 1050 Vit E 10 or 

1050 Virgin UHMWPE wear debris. However, despite the change in agarose 

concentration having no significant effect on the TNF-α release from PBMNCs, a 

new agarose concentration of 0.4% (w/v) was carried forward to the subsequent 

experiments, due to the hypothesis that a more dilute gel would provide a better 

environment for particle: cell contact.  

The next experiment investigated the effect of an increasing the cell seeding density 

on the biological response of PBMNCs to the UHMWPE treatments. Increasing the 

cell seeding density from 1.125 x 10
5
 cells per well to 2 x 10

5
 cells per well did not 

stimulate a significant TNF-α release from PBMNCs in response to the UHMWPE 

treatments. A significant response was seen, however, from PBMNCs incubated with 

0.2 µm Fluospheres at a concentration of 100 µm³ per cell. This elevated TNF-α 

release did not occur with Fluospheres-treated cells at the lower cell seeding density, 

indicating an increased cell seeding density was beneficial for the experiment.  

Following this method development step, and as a result of a variation that had been 

observed between donors, a U937 cell line was used. Macrophages derived from 

U937 cells were incubated with 1050 HXL, 1050 Vit E 10 and 1050 Virgin 

UHMWPE wear debris. Although the cells only negative control treatment produced 

a higher TNF-α release than previously seen, possibly due to the lingering effects of 

the PMA stimulation used to differentiate cells, significantly elevated TNF-α release 

was observed from cells incubated with 1050 Virgin UHMWPE wear debris at a 

dose of 100 µm³ per cell. This was the first time a significant TNF-α release was 

observed from macrophages incubated with a UHMWPE treatment in this study. 

While the use of U937 cells removed the possibility of donor variation, the use of a 

cell line did not represent the clinical situation as well as primary monocytes isolated 

from human blood. For that reason, the study continued developing the experiment 

using PBMNCs.  
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 Up to this point, the development steps undertaken had revealed that when 

incubating the whole size range of wear debris ‘as generated’ using the 3D agarose 

technique used in this study, a particle concentration of 100 µm³ wear debris per cell 

was not sufficient to stimulate a significant increase in TNF-α release from 

PBMNCs. A previous study by Ingram et al. (2004) demonstrated that using the 2D 

agarose culture technique, a UHMWPE particle concentration as low as 10 µm³ 

(GUR1050 virgin; as generated) was sufficient to stimulate a significant TNF-α 

release from PBMNCs compared to a cells only control. The difference in results 

between the present study and previous study, while both using GUR1050 virgin and 

10 MRad irradiation UHMWPE, could be due to the different agarose techniques 

used. The requirement for cells to penetrate the agarose in the 3D technique may 

increase the particle dose required to stimulate a given cell density.  

 In order to investigate the effect of higher doses of UHMWPE wear debris using the 

3D agarose gel technique, the single station wear simulator was used to generate a 

‘super concentrated’ UHMWPE wear debris sample. This provided the opportunity 

to seed cells with UHMWPE wear debris at a concentration up to five fold higher 

than previously used. Using the agarose gel technique for culturing cells with 

UHWMPE wear debris, it was determined that a particle volume concentration of 

greater than 200 µm³ per cell of 1050 HXL wear debris was necessary to stimulate a 

significant TNF-α release from PBMNCs compared to the cells only negative 

control. This was thought to be due to the percentage of particles within the size 

range of 0.1-1.0 µm, which is thought to be the ‘critical size range’ for a biological 

response. Particle analysis in this study showed that only 30% of particles were 

generated in this size range when using wear debris across the full size range 

generated. This correlated with the findings of a previous study by Liu (2012), where 

a significant increase in TNF-α released from PBMNCs was only observed when 

incubated with 100 µm³ 0.1-0.6 µm sized UHMWPE wear debris per cell. These 

findings therefore indicate that a threshold of wear particles are required in this 

critical size range to stimulate significant cytokine release, and when using the full 

size range of wear debris, a volume of greater than 200 µm³ per cell wear debris was 

required. 

The development steps undertaken earlier in this study were to provide conditions 

that would best facilitate cellular interaction with UHMWPE wear debris. These 
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method development steps did not have a significant effect on the cellular response 

to UHMWPE wear debris. However, these steps were all carried out with wear 

debris at a concentration of 100 µm³ per cell; a concentration which was later found 

to be insufficient to stimulate elevated cytokine release from PBMNCs. With the 

knowledge that a higher concentration of UHMWPE wear debris was required to 

stimulate significant TNF-α release from PBMNCs, it would be beneficial to repeat 

these method development steps using the higher particle concentration to determine 

the truly optimal conditions for this experiment.   

 

Eventually, the developed cell culture conditions were incorporated into the 

investigation of the cellular response to 1050 HXL and 1050 Vit E 10 UHMWPE 

wear debris. Incubating UHMWPE wear debris at a concentration of 500 µm³ per 

cell, and at a cell seeding density of 2 x 10
5
, a significant increase in TNF-α release 

was observed from PBMNCs incubated with 1050 HXL, compared to the cells only 

negative control. This TNF-α response was not observed with PBMNCs incubated 

with 1050 Vit E 10. There was a significant reduction in the TNF-α release from 

PBMNCs from two donors when incubated with 1050 Vit E 10 compared to 1050 

HXL wear debris. This suggested the addition of vitamin E to highly crosslinked 

UHMWPE could be having an effect on the TNF-α release from PBMNCs, however 

further testing would be required to conclude this. Whether vitamin E is available to 

leach from the UHMWPE material, or even required to leach from the UHMWPE 

material to be available to cells, is a topic of great interest in this area of research. 

Mutual irradiation is technique commonly used to graft a monomer (for example 

vitamin E) to a polymer (e.g. UHMWPE) through the gamma irradiation of both 

compounds (as opposed to pre irradiation, where the polymer is irradiated prior to 

addition of the monomer). The mutual irradiation technique uses gamma irradiation 

in the presence of both monomer and polymer to create a free radical environment, 

whereby the co-polymerisation of these compounds then occurs (Bhattacharya and 

Misra, 2004). Despite the theory behind this process, the results of this study appear 

to suggest that vitamin E has biological effect when present in highly crosslinked 

UHMWPE. This is an area of the study where further research into the availability of 

vitamin E in highly crosslinked UHMWPE would be of great value. For example, 

investigating whether vitamin E can leach from the highly crosslinked material in 
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solution, or in the harsh environment of the cell lysosome following fusion with the 

phagosome would help add to the understanding of additives to UHMWPE in joint 

replacements. 

Clinically, this reduction in TNF-α release could be beneficial to patients implanted 

with a vitamin E enhanced highly crosslinked UHMWPE acetabular cup. 

Mechanically, vitamin E addition has been shown to protect against oxidation in vivo 

and preserve the mechanical properties of UHMWPE. However by reducing the 

TNF-α response of PBMNCs incubated with wear debris, it could be hypothesised 

that vitamin E enhanced highly crosslinked UHMWPE wear debris may have an 

effect on the process of osteolysis. Osteolysis is dependent on the cytokine response 

of cells encountering UHMWPE wear debris; therefore a reduction in cytokine 

production could slow this osteolytic process and delay the onset of aseptic 

loosening. Eventually, vitamin E enhancement could result in a longer lasting hip 

replacement.  

In addition to vitamin E enhanced highly crosslinked UHMWPE; a hindered phenol 

enhanced highly crosslinked UHMPWE (1020 AOX 8) was also incubated with 

PBMNCs using the improved cell culture conditions and higher particle volume 

concentrations. Hindered phenol enhanced UHMWPE is being developed as an 

alternative antioxidant material for use in joint replacement. Due to time restraints, 

only one experiment using 1020 AOX 8 was conducted, and with more time, this 

experiment would have been repeated with multiple donors and investigated further. 

Cells isolated from Donor 8 were incubated with 1050 HXL, 1050 Vit E 10 and 

1020 AOX 8 at a dose of 500 µm³ wear debris per cell. The 1050 HXL UHMWPE 

was shown to stimulate a significantly elevated TNF-α release from PBMNCs, along 

with PBMNCs incubated with 1050 Vit E 10, compared to the cells only negative 

control (ANOVA; p<0.05). This was the first significant TNF-α release observed 

from cells incubated with 1050 Vit E 10, and once again shows the intra-donor 

variation. Alongside this, PBMNCs incubated with 1020 AOX 8 showed no 

elevation in TNF-α release compared to the cells only negative control. This result 

shows the hindered phenol material to also have some anti-inflammatory properties, 

therefore reducing the TNF-α release from PBMNCs. Further work is required, as 

the different resin of 1020 AOX 8 could also be a factor.  
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Another important finding in this chapter was the influence of donor variation, 

observed in the variable response of PBMNCs isolated from different donors to the 

UHMWPE and control treatments. While a significant increase in the TNF-α 

response to UHMWPE wear debris was observed from PBMNCs isolated just from 

two donors, the non-responsive donors also showed variation in the strength of the 

TNF-α response to 200 ng.ml
-1 

lipopolysaccharide and 100 µm³ per cell of 0.2 µm 

Fluospheres. For example, comparing the response of Donors 7 and 3 in tests A:5 

and A:6 respectively, there was a difference in the level of TNF-α release from 

PBMNCs in response to 100 µm³ per cell of 0.2 µm Fluospheres, and also to the LPS 

positive control. Under the same cell culture conditions (100 µm³ per cell UHMWPE 

wear debris, 0.4% (v/v) agarose gel, 2 x 10
5
 cells per well), Donor 7 produced a 

TNF-α response of around 250 pg/ml, while Donor 3 produced a TNF-α response of 

around 500 pg/ml. However, looking at the TNF-α release in response to 200 ng/ml 

LPS, Donor 7 produced a TNF-α response of over 1600 pg/ml, while Donor 3 

produced 1200 pg/ml TNF-α. This highlights the varying cell response to the 

different kinds of stimulants. The positive particle control (FS) produced an 

increased TNF-α release in one donor, while the positive LPS control produced an 

increased TNF-α release in the other donor.  

Variations and single nucleotide polymorphisms have been investigated to determine 

the reason for differences in the TNF-α response from human donors. For example, 

one study identified a G-to-A single nucleotide polymorphism 308 nucleotides 

upstream from the initiator site for the TNF-α promoter gene to be associated with 

elevated TNF-α release, and subsequently an increased risk of autoimmune disorders 

such as diabetes mellitus type 1(Abraham and Kroeger, 1999). While this 

polymorphism is associated with disease and not necessarily the cause of TNF-α 

variation in this study, it highlights the potential for genetic variation to affect the 

TNF-α response in humans, as displayed in this study. The heterogeneity in the TNF-

α response across donors has also been found to be stimulus and cell-type specific 

(Longo et al., 2012, Mueller et al., 2012). Donor variation is potentially important in 

the clinical setting, as some donors may respond with a stronger cytokine response to 

UHMWPE wear debris than others, therefore making these donors more susceptible 

to osteolysis and aseptic loosening. 
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In addition to inter-donor variation, intra-donor variation was also observed. Intra-

donor variation was the variation in the response from the same donor at different 

times. For example, Donor 8 produced a significantly elevated TNF-α release to 500 

µm³ per cell of 1050 HXL wear debris consistently. However, this response to the 

wear debris varied at different times of the experiment. Test B:5 showed unusually 

high levels of TNF-α release from PBMNCs isolated from Donor 8 incubated with 

1050 Vit E 10. This was a much higher level of TNF-α release in response to 1050 

Vit E 10 wear debris compared to the response previously observed in test B:3 with 

the same donor under the same conditions. 

  



Chapter 4 

219 

 

4.5 Conclusions 

In two donors, Vitamin E enhanced highly crosslinked UHMWPE wear debris 

caused a reduction in the levels of TNF-α release from PBMNCs compared to 

PBMNCs incubated with non-antioxidant highly crosslinked UHMWPE wear debris. 

Highly crosslinked UHMWPE stimulated a significant TNF-α response compared to 

cells only, however on two occasions, vitamin E enhanced highly crosslinked 

UHMWPE wear debris did not stimulate this TNF-α response, with a cellular 

response comparable to the cells only control. These results were variable, however 

they suggested that vitamin E is available to cells to exert its anti-inflammatory 

properties despite it being contained in a highly crosslinked polymer. Hindered 

phenol enhanced highly crosslinked UHMWPE wear debris also caused a significant 

reduction in TNF-α from PBMNCs incubated with this material compared to cells 

incubated with non-antioxidant highly crosslinked UHMWPE. It was also 

determined that a seeding density of over 200 µm³ UHMWPE wear debris per cell 

was required to stimulate a significant TNF-α response from PBMNCs. This 

suggested that there existed the possibility of a volume threshold of UHMWPE 

particles required to stimulate an osteolytic cytokine response. Finally, inter- and 

intra-donor variation was observed, highlighting the importance of patient variation 

and the application of UHMWPE as a bearing material in hip replacements.  
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Chapter 5 

 

The Production of Reactive Oxygen Species in Peripheral Blood 

Mononuclear Cells in Response to UHMWPE Wear Particles 

 

5.1 Introduction 

The results from the cell culture experiments in chapter 4 were variable, possibly due 

to the nature of using human donor cells, however the results suggested vitamin E 

enhanced highly crosslinked UHMWPE wear debris at a dose of 500 µm³ per cell 

produced significantly lower levels of TNF-α release from PBMNCs compared to 

highly crosslinked UHMWPE wear debris at the same dose. Release of TNF-α in 

response to vitamin E enhanced highly crosslinked UHMWPE wear debris was in 

some cases comparable to the response observed in the cells only negative control, 

indicating vitamin E had an effect on the cells that resulted in a reduction in the level 

of TNF-α release. It was also determined that there was a minimum volume 

threshold required to produce a significantly elevated TNF-α release from PBMNCs 

when using the 3D agarose gel technique described previously. This threshold was 

found to be equivalent to a volume greater than 200 µm³ of wear debris per cell. 

Another aspect of the cellular responses to UHMWPE wear debris that has generated 

interest is oxidative stress as a result of phagocytosis of wear debris, and more 

specifically the production of reactive oxygen species following stimulation of cells 

by UHMWPE wear debris. Reactive oxygen species are reactive molecules that 

contain oxygen, for example hydrogen peroxide, and are produced following the 

reduction of oxygen to a superoxide molecule (O2
-
)(Murphy, 2009). Production of 

ROS in cells results in the alteration of cell membrane lipids, proteins and nucleic 

acids, and is an important cellular process for redox signalling, apoptosis and general 

cell signalling, while also causing oxidative stress in cells (Balaban et al., 2005). 

Phagocytosis of cobalt chrome nanometre-sized wear particles rapidly induces the 

production of reactive oxygen species in fibroblasts, indicating a phagocytosis 

mediated response. A more prolonged, MitoQ sensitive reactive oxygen species 
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response has also been observed (24h), indicating mitochondrial involvement in the 

response (Raghunathan et al., 2013). While this doesn’t directly relate to the 

phagocytosis of UHMWPE wear debris, it does build intrigue as to whether the 

internalisation of UHMWPE particles could produce the same oxidative stress 

situation in cells. A previous study by Bladen et al. (2010) showed both UHMWPE 

and CoCr wear particles at doses of 100 µm³ and 50 µm³ per cell, respectively, 

induced oxidative stress in PBMNCs. The study showed an increase in the 

production of reactive oxygen species following incubation with these particles, and 

the authors hypothesised that the oxidative stress observed following UHMWPE 

wear particle treatment was not due to DNA damage, unlike the metal particle-

induced oxidative stress (Bladen et al., 2010). This study investigated the effect of 

virgin UHMWPE, a material that is rarely used clinically today. With the 

introduction of antioxidant UHMWPEs, the present study investigated whether the 

presence of an antioxidant compound in UHMWPE could have a significant effect 

on the oxidative stress in cells after stimulation with UHMWPE wear debris 

treatment.  

The antioxidant properties of vitamin E are very well documented. It is the structure 

of alpha tocopherol (vitamin E) that gives the compound its antioxidant properties, 

with the hydroxyl group on the aromatic ring able to donate a hydrogen atom to a 

radical species, therefore breaking the chain of oxidation (Diplock, 1983, Sheppard 

et al., 1993). The rationale behind the addition of vitamin E to highly crosslinked 

UHMWPE was to reduce the free radical burden after irradiation, and protect against 

oxidation in the polymer. It is hypothesised that this antioxidant activity could also 

act at a cellular level, potentially reducing the presence of reactive oxygen species 

and therefore protecting the cell against oxidative stress.  

The antioxidant properties of vitamin E have been shown to have an effect at a 

cellular level, and these effects have been positively associated with the treatment 

several diseases where the mechanism of disease is due to oxidative stress and 

inflammation. For example, vitamin E administered intravenously has been shown to 

interrupt joint destruction in rheumatoid arthritis; a disease where reactive oxygen 

species are thought to play an important role (De Bandt et al., 2002). Vitamin E has 

also been shown to have a beneficial effect in atherosclerosis; a condition where 

plaques build up on the inside of arterial walls. The oxidation of lipoproteins is an 
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important mechanism that contributes to the development of this disease, and it is 

this process that vitamin E is able to disrupt due to its potent antioxidant and anti-

inflammatory properties (Osterud and Bjorklid, 2003, Singh and Jialal, 2004, Singh 

et al., 2005). 

Another aspect to consider is that the release of TNF-α following internalisation of 

wear debris may lead to the production of reactive oxygen species, therefore 

oxidative stress could also be a result of TNF-α release. Reactive oxygen species 

have been postulated to be produced following TNF-α stimulation as part of the 

signalling cascade associated with TNF-α release, however the mechanisms are 

poorly understood (Woo et al., 2000). The previous chapter showed that the presence 

of vitamin E in highly crosslinked UHMWPE wear debris might lead to a lower 

level of TNF-α release from PBMNCs. It is postulated this anti-inflammatory effect 

may subsequently lead to a reduction in reactive oxygen species, whilst also 

stabilising any radical-containing reactive oxygen species that are produced.  

The aim of this chapter was to investigate the effect of highly crosslinked UHMWPE 

wear debris on the production of ROS in PBMNCs, and also to determine whether 

the presence of vitamin E in highly crosslinked UHMWPE had any effect on the 

production of ROS in PBMNCs. This was achieved by generating clinically relevant 

UHMWPE wear debris aseptically using a single station pin-on-plate wear simulator. 

Using both highly crosslinked UHMWPE and vitamin E enhanced highly 

crosslinked UHMWPE wear debris; PBMNCs were incubated with wear debris on 

serum-coated glass coverslips which allowed imaging of cells using a fluorescence 

microscope. Reactive oxygen species were detected using a kit with live PBMNCs. 

The Image-iT
™ 

LIVE Green Reactive Oxygen Species detection kit was used, with 

the assay using 5-(and 6-)-carboxy-2’,7’-dichlorodohydrofluorescein diacetate 

(carboxy-H2DCFDA) as the fluorogenic marker for accumulation of ROS in live 

cells. Generation of ROS is normal in live cells in an aerobic environment, however 

under conditions that induce oxidative stress, the production of ROS is increased. 

Cells were imaged using fluorescence microscopy, and the intensity of reactive 

oxygen species was then quantified using image analysis software that measured the 

grey scale intensity of the green fluorescent dye within cells.  
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5.2 Materials 

Additional equipment and materials used in the assay for determination of reactive 

oxygen species are shown in Table 5.1.  

Table 5.1 - Additional materials and reagents used for the investigation of the production of 

reactive oxygen species in PBMNCs in response to UHMWPE wear debris. 

Materials/ Regents Supplier Storage and Preparation 

Image-iT™ LIVE 

Green ROS Detection 

Kit 

Life Technologies - 

California, USA 

Stored at 2-6ºC, protected 

from light 

Hoechst 33342, 

trihydrochloride, 

trihydrate 

Life Technologies - 

California, USA 

Aliquoted and stored at -

20ºC 

Hanks Balanced Salt 

Solution (with 

Ca/Mg/phenol red) 

Sigma Aldridge, St 

Louis, USA 
Room temperature 

6 well plates 
Thermo-Scientific, 

Massacheusets, USA 
 N/A 

 

5.3 Methods 

5.3.1 Generation of UHMWPE Wear Particles using the Aseptic Single 

Station Pin-on-Plate Wear Simulator 

For this section of the study, only two UHMWPE materials were tested with 

PBMNCs to determine the production of ROS in response to the wear debris. These 

materials were GUR1050 highly crosslinked UHMWPE (1050 HXL) and GUR1050 

Vitamin E enhanced highly crosslinked UHMWPE (1050 Vit E 10); the same 

UHMWPE materials used in chapter 4. . These materials are described in more detail 

in chapter 4; table 4.1. These materials were chosen in order to investigate the 

reactive oxygen species production in response to a clinically relevant highly 

crosslinked UHMWPE, and to determine if the presence of vitamin E in highly 

crosslinked UHMWPE had any effect.  

A single station multidirectional pin-on-plate wear simulator was used to aseptically 

generate clinically relevant wear debris from these two materials. The rig 

components were sterilised as described in section 2.2.7.2. The assembly, running, 

and disassembly of the wear simulator was carried out using aseptic technique to 
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ensure sterility of the simulator and lubricant, as outlined in section 2.2.7. The wear 

tests were performed under the kinematics described previously, with a 28 mm 

stroke length and a rotation of ± 30º, under a load of 160N, at a reciprocating speed 

of 1 Hz. Tests were performed in RPMI 1640 medium supplemented with 25% (v/v) 

bovine serum, which is described in section 2.2.6. The serum lubricant was collected 

following completion of the ten day test using a sterile syringe and stored in a sterile 

glass universal. The sample was stored at -20ºC until required. The levels of 

endotoxin in the sample were determined using the Limulus amebocyte lysate (LAL) 

assay, as described in section 2.4.2.2. The UHMWPE pins used in the tests were 

weighed before and after the wear test, and the mass of wear debris generated from 

the pin was calculated. This calculation then provided an approximation of the wear 

debris in the serum lubricant sample which was used to calculate particle 

concentrations for particle: cell culture experiments. 

 

5.3.2 Culture of PBMNCs with UHMWPE Wear Debris in Chamber 

Slides 

In this section of the study, two UHMWPE materials were tested (1050 HXL and 

1050 Vit E 10), and compared to the cells only negative control (no particle 

treatment). A positive control was included, which was provided in the ROS 

detection kit (tert-Butyl hydroperoxide (TBHP)).  

The aim of these experiments was to determine the levels of reactive oxygen species 

produced in response to stimulation of PBMNCs with UHMWPE wear debris, 

through the visualisation of reactive oxygen species. Due to the difficulties 

experienced with labelling live cells with fluorescent dye in an agarose gel, in 

addition to the difficulties obtaining high quality images in a 3D culture system, 

these cell culture experiments did not use the agarose gel technique which has been 

used throughout this study. It was observed that in wear test lubricant samples 

containing UHMWPE wear debris, the wear debris appeared to sink in solution, 

which was in contrast with the theory that UHMWPE is less dense than water and 

therefore buoyant in solution. It was hypothesised that the presence of serum 

proteins on the wear particles may lead to the wear particles becoming less buoyant 

and therefore sinking in solution. For this reason, these experiments were performed 
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using a minimal volume of solution, ensuring the cells and UHMWPE wear debris 

came into contact and therefore provide an environment where the production of 

reactive oxygen species could be determined.  

In order to culture PBMNCs with UHMWPE wear debris in a way that allowed for 

the imaging of cells using a fluorescence microscope, a novel technique for the 

seeding and incubation of PBMNCs with UHMWPE wear debris was developed. 

Initially, 16 well chamber slides with removable wells were used to incubate 

PBMNCs with UHMWPE wear debris, however the removal of the 16-well gasket 

proved difficult and often disrupted the cell monolayer on the slide. Therefore, the 

method was further developed. Rather than seeding the cells onto a 25 x 75 mm glass 

slide and using a coverslip, cells were instead seeded on to a coverslip, which could 

then be applied to a microscope slide following the incubation and staining. This 

provided a surface that the cells would attach to, and that was easier to manipulate 

than a 16-well chamber slide (prior to imaging). 

Circular glass coverslips with a diameter of 16 mm were wrapped in aluminium foil 

and sterilised prior to use by heating at 190ºC for 3 hours. To provide a surface that 

was favourable for attachment of cells, 16 mm diameter glass cover slips were 

incubated in 100% (v/v) bovine serum overnight at 4ºC. The presence of serum 

proteins on the coverslip allowed for cell attachment. Following incubation in serum, 

the coverslips were placed at an angle around the edge of a sterile petri dish and 

dried in a class II cabinet for 30 min.  

In order to create a well on each coverslip (which would capable of containing cells, 

wear debris and culture medium) and prevent the initial cell culture solution from 

running off the coverslip, an agarose ring was applied around the edge of the circular 

coverslip. Agarose gel was prepared at a concentration of 2% (w/v) and sterilised in 

an autoclave at 121ºC for 20 min, at 103 kPa, as described in section 2.4.1.3, and 

heated up in a microwave to provide agarose gel in liquid form. Using a 1000 µl 

pipette, agarose gel was carefully applied to the edge of the coverslip, leaving an 

area in the centre of the coverslip for cell culture, with an approximate diameter of 

10 mm. When this initial agarose ring had set and become solid, a second layer of 

agarose gel was then applied on top of the first layer. This provided an adequate 
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agarose gel ring to contain the cell culture solution and UHMWPE wear debris. The 

coverslips were then ready for cell culture. 

Using blood obtained from a healthy human donor, PBMNCs were isolated using the 

method outlined in section 2.4.4. Cells were then seeded onto the coverslip inside the 

agarose ring at a concentration of 1 x 10
5
 cells per well. Following this step, 

UHMWPE wear debris was added to the cell culture at a concentration of 100 µm³ 

per cell. A volume of warmed RPMI 1640 culture medium was then added to the 

coverslip to provide a final volume of 200 µl. This volume was sufficiently small 

enough to be contained within the agarose ring on the coverslip. Each coverslip was 

contained inside a well of a 6-well plate. Cells were then incubated for 4 hours at 

37ºC in 5% (v/v) CO2 in air. This incubation step allowed the macrophages in the 

PBMNC sample to attach to the coverslip. Following this incubation, 1000 µl RPMI 

1640 culture medium was added to each well of the 6-well plate that the coverslip 

was within, in order to fully submerge the coverslip. This larger volume of culture 

medium was deemed necessary to provide enough nutrition to the cells over the 48 

hour incubation step. The culture medium was added carefully and slowly so as not 

to disrupt the attached cells and also to cause minimal disruption and dispersal of the 

UHMWPE wear debris that had settled on the coverslip.  

Peripheral blood mononuclear cells were incubated with UHMWPE wear debris 

using the culture technique descibred above for a total of 48 hours at 37ºC in 5% 

(v/v) CO2 in air. Throughout this incubation, the 6-well plate housing the coverslips 

was handled very carefully so as not to disrupt the cells. The coverslips were 

routinely checked using a light microscope to ensure cell attachment, and halfway 

through the 48 hour incubation, a volume of 500 µl warmed RPMI 1640 culture 

medium was added to each well of the 6-well plate to compensate for evaporation of 

the media.  

The positive control provided with the detection kit was TBHP, a known inducer of 

oxidative stress in cells. Ninety minutes prior to the end of 48 hour incubation, the 

cell culture medium was aspirated from the well containing the positive control 

coverslip. A volume of 2 ml 100 µM TBHP was added to the well, completely 

submerging the coverslip. Cells were then incubated for 90 min at 37ºC in 5% (v/v) 

CO2 in air.  
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5.3.3 Detection of Reactive Oxygen Species in PBMNCs using the Image-

iT™ LIVE Detection Kit Following Incubation with UHMWPE Wear 

Debris 

The Image-iT™ LIVE Green Reactive Oxygen Species (ROS) Detection kit 

provides the reagents for the detection of ROS in live cells. The key component of 

the assay is 5-(and 6-)-carboxy-2’,7’-dichlorodohydrofluorescein diacetate (carboxy-

H2DCFDA), which acts as a fluorogenic marker for ROS. This non-fluorescent 

compound permeates the cells, and is deacetylated by cellular esterases. Reactive 

oxygen species present in the cell then oxidise the deacetylated compound, emitting 

bright green fluorescence which is detected using a fluorescence microscope. 

Following the 48 hour incubation period of PBMNCs with wear debris, and after the 

90 min positive control incubation, the RPMI 1640 culture medium within each well 

was carefully aspirated. Cells were washed once with 1000 µl warm HBSS, and the 

6-well plate was gently tilted to ensure complete coverage of the coverslip. The 

HBSS solution was aspirated, and cells were covered with 200 µl of 25 µM carboxy-

H2DCFDA. Cells were incubated with this compound for 30 min at 37ºC, protected 

from the light by wrapping the plates in aluminium foil.  

Five minutes prior to the completion of this incubation, 2 µl of 100 µM Hoechst was 

added to the carboxy-H2DCFDA: cell solution to provide a final concentration of 1 

µM Hoechst. Upon completion of this incubation, coverslips were gently washed 

three times in warm HBSS. Following these washes, the agarose gel ring was 

carefully peeled away from the coverslip using sterile tweezers. The coverslips were 

then removed from the wells, inverted, and mounted onto 25 x 75 mm glass 

microscope slides using RPMI 1640 culture medium. The mounted coverslips were 

protected from light and imaged immediately. 

 

5.3.4 Imaging and Quantification of Oxidative Stress in PBMNCs Using 

Fluorescence Microscopy 

An upright fluorescent Zeiss Axio Imager 2 microscope was used to determine the 

presence of reactive oxygen species in PBMNCs following incubation with 

UHMWPE wear debris. Images were captured using the 20x and 63x (oil) lenses, 
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with quantification of 20x captured images only. DAPI and FITC channels were 

selected, which operated at wavelengths of 405 nm and 488 nm, respectively. These 

channels allowed imaging of the blue cell nuclei (DAPI) and the green fluorescent 

ROS (FITC). Images were extracted and overlay images were produced using ZEN 

2009 software (Carl Zeiss Microscopy Ltd). Images were captured at random 

locations, and a minimum of four non-overlapping images from each treatment were 

captured for quantification (n=4). This number of images ensured over 100 cells per 

treatment were captured to then determine the mean ROS intensity for each 

treatment.   

Images were analysed using Image J image analysis software. Analysis was focused 

on the FITC image, which showed the presence of reactive oxygen species. In order 

to quantify the intensity of green fluorescence in each cell, the image was converted 

to grey scale and a mean grey scale intensity value was obtained for each cell. The 

area to be measured for each cell was selected manually using the software, using the 

DAPI filter to indicate where the cell nucleus was located for each cell. This 

prevented analysis of any background green fluorescence that was not inside a cell. 

For each treatment, four images were analysed in order to capture a minimum of 100 

cells. A mean intensity was determined for each image, and a final mean intensity 

was calculated from the four images to give an overall mean ROS intensity for each 

material. Values are shown as means ± 95% confidence level and analysed using 

one-way ANOVA. Differences between the treatment groups and the negative 

control were determined by calculating the minimum significant difference (MSD) 

value (p<0.05) using the Tukey-method (Sokal and Rohlf, 1981).  
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5.4. Results 

5.4.1 Generation of Sterile UHMWPE Wear Debris 

Two UHMWPE materials were selected to investigate the production of reactive 

oxygen species in PBMNCs in response to incubation with wear debris. The 

materials were vitamin E enhanced highly crosslinked UHMWPE (1050 Vit E 10) 

and highly crosslinked UHMWPE (1050 HXL). The samples of wear debris from 

each material were the same high concentration samples used in Test B in section 

4.3.3, and the concentrations of wear debris generated are shown in Table 4.8. The 

endotoxin levels for these samples are shown in section 4.3.3.1. Throughout this 

section, three donors were used in total (Donors 8,11,15), due to these donors being 

considered responsive to UHMWPE. In section 5.4.2, only PBMNCs from Donor 15 

were used to undertake the imaging of reactive oxygen species. PBMNCs from 

Donors 8 and 11 were used for the quantification of ROS production in PBMNCs. 

Due to ethical constraints on the time between blood donations; the present study 

was unable to include PBMNCs from Donor 15 in the quantification section of this 

study.  

 

5.4.2 Visualisation of Reactive Oxygen Species Following Treatment with 

UHMWPE Wear Debris 

Peripheral blood mononuclear cells were seeded at a density of 1 x 10
5
 cells per well, 

with UHMWPE wear debris at a concentration of 100 µm³ per cell for 48 hours at 

37ºC in 5% (v/v) CO2 in air. Cells were then stained for the presence of ROS, and 

the nucleus of the cells was stained with Hoechst.  

Images presented in this section depict the blue Hoechst-labelled nuclei of PBMNCs 

along with green fluorescently labelled reactive oxygen species. The final image 

represents an overlay of these two channels (labelled overlay). The reactive oxygen 

species production in peripheral blood mononuclear cells isolated from Donor 15 

following incubation with UHMWPE wear debris is shown in Figure 5.1-5.3. Higher 

magnification images of PBMNCs isolated from Donor 15 incubated with 1050 

HXL and 1050 Vit E 10 are shown in Figure 5.4-5.5. 
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The cells only negative control is shown in Figure 5.1, where a large group of cell 

nuclei, stained blue by the Hoechst can be observed, indicating a large population of 

cells. While some traces of high intensity green fluorescence were observed in the 

fluorescence microscopy image, using the overlay it was determined that these areas 

were not within cells and were considered to be background fluorescence. Using the 

overlay image to indicate the cell locations, low levels of ROS were observed across 

the cell population, indicated by faint green spots. This indicated that ROS were 

produced by healthy functioning cells, or at least produced in response to the cell 

culture conditions, and was not an indication of severe oxidative stress in the cells.  

In contrast, in PBMNCs incubated with 1050 HXL wear debris at a concentration of 

100 µm³ per cell, bright, intense areas of green fluorescence were observed in the 

cytoplasm around the cell nuclei (Figure 5.2). This indicated the presence of high 

levels of ROS in cells, located outside the nucleus. These are believed to represent 

cells experiencing oxidative stress due to the high intensity of ROS production. The 

orange arrows show the clear localisation of ROS outside the cell nucleus but inside 

the cell cytoplasm, displayed as bright green rings around the nucleus (Figure 5.2).  

In PBMNCs treated with 1050 Vit E 10 UHMWPE wear debris at a concentration of 

100 µm³ per cell, only a faint green fluorescence was observed. While this 

fluorescence appeared brighter than that observed in the cells only negative control, 

it appeared much less intense than that observed in the HXL wear debris treated 

cells. This suggested that lower levels of ROS were produced in cells incubated with 

1050 Vit E 10 wear debris compared to cells incubated with 1050 HXL wear debris 

not containing vitamin E.  

Higher magnification images with a magnification of 63x (oil immersion) are shown 

in Figure 5.4 and 5.5. In PBMNCs incubated with 1050 HXL UHMWPE wear debris 

at a concentration of 100 µm³, localised areas of reactive oxygen species were 

observed in the cytoplasm of the cell, external to the cell nucleus (Figure 5.4). The 

orange arrow indicates a cell with a high intensity of ROS, clearly localised in the 

cytoplasm of the cell. In comparison, PBMNCs incubated with 1050 Vit E 10 

UHMWPE wear debris at a concentration of 100 µm³ showed much less intense 

areas of ROS (Figure 5.5) The production of ROS in 1050 Vit E 10 wear debris 

treated cells was localised in the cytoplasm, however the levels of ROS were at a 
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lower intensity. These moderate levels of ROS production indicate a lower level of 

oxidative stress in the cell. The white arrow highlights a cell that appears to be 

undergoing mitosis, as indicated by its splitting nucleus.  

 

 

 

 

Figure 5.1 – Visualisation of the presence of ROS in PBMNCs (cells only negative control) 

following incubation for 48 hours at 37ºC in 5% (v/v) CO2. Blue signals represent cell nuclei 

stained with Hoechst, while green signals represent fluorescent ROS. Size bar: 20 µm, 20x Mag.  

Nuclei ROS 

Overlay 
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Figure 5.2– Visualisation of the presence of ROS in PBMNCs following incubation with 1050 

HXL UHMWPE wear debris at a concentration of 100 µm³ per cell, for 48 hours at 37ºC in 5% 

(v/v) CO2. Blue signals rep 

resent nuclei stained with Hoechst, while green signals represent fluorescent ROS. Size bar: 10 µm, 

40x Mag.  

Nuclei ROS 

Overlay 
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Figure 5.3– Visualisation of the presence of ROS in PBMNCs following incubation with 1050 

Vit E 10 UHMWPE wear debris at a concentration of 100 µm³ per cell, for 48 hours at 37ºC in 

5% (v/v) CO2. Blue signals represent nuclei stained with Hoechst, while green signals represent 

fluorescent ROS. Size bar: 10 µm, 20x Mag.  

 

Nuclei ROS 

Overlay 
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Higher Magnification Images 

 

Figure 5.4 – Visualisation of the presence of ROS in PBMNCs following incubation with 1050 

HXL UHMWPE wear debris at a concentration of 100 µm³ per cell, over 48 hours at 37ºC in 

5% (v/v) CO2. Blue signals represent nuclei stained with Hoechst, while green signals represent 

fluorescent ROS. The orange arrow indicates a cell with intense oxidative stress. Size bar: 5 µm, 63x 

(oil) Mag.  

 

 

Nuclei ROS 

Overlay 
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Figure 5.5 – Visualisation of the presence of ROS in PBMNCs following incubation with 1050 

Vit E 10 UHMWPE wear debris at a concentration of 100 µm³ per cell, for 48 hours at 37ºC in 

5% (v/v) CO2. Blue signals represent nuclei stained with Hoechst, while green signals represent 

fluorescent ROS. The white arrow shows a cell that appears to be undergoing cell division. Size bar: 5 

µm, 63x (oil) Mag.  

 

 

While the images presented above are selected representative examples that illustrate 

the production of ROS in macrophages incubated with UHMWPE wear debris, this 

trend of intense levels of ROS in cells incubated with 1050 HXL UHMWPE wear 

debris, and lower levels of ROS in cells incubated with 1050 Vit E 10 UHMWPE 

wear debris was observed across the cell population in samples from three different 

healthy donors. As with TNF-α release in response to UHMWPE wear debris, the 

response to wear debris in terms of production of reactive oxygen specie was also 

variable. Reactive oxygen species intensity in PBMNCs in response to UHMWPE 

wear debris was quantified in two donors (Donor 8 and Donor 11).  

 

 

Nuclei ROS 

Overlay 
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5.4.3 Quantification of ROS Intensity in PBMNCs Incubated with 

UHMWPE Wear Debris 

From each sample, four images from each UHMWPE treatment were captured for 

analysis. Cells with no additional particles or agents acted as the negative control for 

oxidative stress, while 100 µM TBHP was used as the positive control. 

Quantification of green fluorescence intensity was carried out using Image J image 

analysis software, and the mean grey scale intensity was measured for each cell, 

where a mean intensity value was determined for each image, as described in section 

5.4.3. Throughout these experiments, the positive control (TBHP) performed 

inconsistently. Despite this, the positive control has been included in the final mean 

intensity results from one donor, however no error bars are included as the TBHP 

only appeared to induce oxidative stress in one sample of cells. Despite this, an 

increase in production of ROS compared to the cells only negative control could still 

be determined 

The mean intensity of ROS in PBMNCs isolated from Donor 8 and treated with 

UHMWPE wear debris at a concentration of 100 µm³ per cell is shown in Figure 5.6. 

A significant increase in the mean intensity of ROS production was observed in 

PBMNCs incubated with 1050 HXL UHMWPE wear debris compared to the cells 

only negative control. In contrast, the mean intensity of ROS production in cells 

treated with 1050 Vit E 10 UHMWPE wear debris was significantly lower, with 

ROS intensity comparable to that recorded for the cells only negative control.  
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Figure 5.6 – Mean intensity of ROS in PBMNCs isolated from Donor 8 treated with 1050 HXL 

UHMWPE wear debris at a concentration of 100 µm³ over 48 hours at 37ºC in 5% (v/v) CO2 in air. 

Mean ROS within each cell was determined from the grey scale value in each cell, calculated using 

Image J. A mean ROS intensity for each sample was determined. 100 µM TBHP was used as a 

positive control for ROS production in cells. Error bars show 95% confidence level; n=4. * indicates a 

significant increase in the mean ROS intensity in PBMNCs compared to the cells only negative 

control (ANOVA; p<0.05).  

  

 

 

 

The experiment to determine the intensity of reactive oxygen species production in 

PBMNCs was repeated with Donor 11, and the mean ROS intensity is shown in 

Figure 5.7. A significant increase in the mean ROS intensity was observed in 

PBMNCs incubated with 1050 HXL at a dose of 100 µm³, compared to the cell only 

negative control (ANOVA; p<0.05). In comparison, PBMNCs incubated with 1050 

Vit E 10 had a significantly lower mean ROS intensity compared to the 1050 HXL-

treated cells. The mean ROS production in PBMNCs treated with 1050 Vit E 10 was 

higher than the ROS production in the cells only negative control, however this was 

not a statistically significant difference.  
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Figure 5.7 – Mean intensity of ROS in PBMNCs isolated from Donor 11 treated with 1050 Vit E 10 

UHMWPE wear debris at a concentration of 100 µm³ over 48 hours at 37ºC in 5% (v/v) CO2 in air. 

Mean ROS within each cell was determined from the grey scale value in each cell, calculated using 

Image J. A mean ROS intensity for each sample was determined. Error bars show 95% confidence 

level; n=4. * indicates a significant increase in the mean ROS intensity in PBMNCs compared to the 

cells only negative control (ANOVA; p<0.05).  
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5.5 Discussion 

Aerobic metabolism in mammalian cells is one of the most important processes that 

occur, with the generation of ATP being essential for the survival and proliferation 

of the cell. It is the energy within the electron transport chain that is harnessed to 

synthesise ATP, and at the end of this transport chain, molecular oxygen is reduced 

to form water as the end product. However, this final process is not completely 

efficient, and a proportion of molecular oxygen escapes reduction and is able to 

become partially reduced, forming reactive oxygen species. As a consequence, 

reactive oxygen species are produced in all healthy, metabolically active cells, with 

natural cellular antioxidants such as superoxide dismutase, glutathione, glutathione 

peroxidase and catalase present to deal with the natural production of reactive 

oxygen species and prevent cellular damage (Cerutti et al., 1994, Schumacker, 2006, 

Owusu-Ansah et al., 2008).  

It is, however, the overproduction of reactive oxygen species that can be harmful to a 

cell, creating an environment of oxidative stress. Several diseases have been 

associated with the overproduction of reactive oxygen species and subsequent 

oxidative stress, such as some cancers, cardiovascular diseases (for example 

atherosclerosis), and emphysema (Schumacker, 2006, Owusu-Ansah et al., 2008). 

Oxidative stress in cells has been associated with the uptake of CoCr wear particles 

by macrophages and osteoblasts, with ions from this material interfering with the 

redox cycle in cells (Fleury et al., 2006). The way in which these metal ions could 

interfere with a chemical process such as the redox cycle is fairly well understood. In 

contrast, the effect of clinically relevant UHMWPE wear debris on the oxidative 

state of cells has not been widely investigated and hence is not well understood. 

This study has demonstrated that PBMNCs successfully phagocytose both 

micrometre and nanometre sized UHMWPE wear debris. The phagocytosis of 

UHMWPE wear debris has also been demonstrated in a previous study by Liu 

(2012). Using this knowledge, a hypothesis could be generated that the intracellular 

response to UHMWPE wear debris following phagocytosis could cause a similar 

intracellular response to pathogens following phagocytosis of microbes. The 

production of microbicidal oxidants in response to phagocytosis of microbes has 

been demonstrated in macrophages, with the purpose theorised to be for the 
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destruction of phagocytosed pathogens (Babior, 2000). A similar oxidative response 

could therefore be hypothesised to occur following the phagocytosis of UHMWPE 

wear particles, and subsequently create an environment of oxidative stress in cells.   

The only previous study investigating oxidative stress in response to UHMWPE 

wear debris was performed by Bladen et al. (2010). In this study, the authors showed 

that virgin UHMWPE wear debris at a dose of 100 µm³ stimulated the production of 

reactive oxygen species in macrophages, compared to the background level of ROS 

production observed in cells only controls. While the previous study demonstrated 

an interesting result, this did not translate directly to the clinical situation, as virgin 

UHMWPE is rarely used as the bearing material in total hip replacements today. 

With the development of low wearing highly crosslinked UHMWPE bearing 

materials, it was necessary to investigate the production of ROS in response to 

clinically relevant highly crosslinked UHWMPE wear debris. In addition, 

antioxidant UHMWPE should also be investigated to determine if this UHMWPE 

material has an effect on the production of ROS and subsequent oxidative stress 

environment.  

The present study used a fluorogenic marker to detect the presence of reactive 

oxygen species in PBMNCs after culture with UHMWPE wear debris. The marker 

used was 5-(and 6-)-carboxy-2’,7’-dichlorodohydrofluorescein diacetate (carboxy-

H2DCFDA). Upon permeation into the cell, this compound undergoes deacetylation 

by cellular esterases. This cleaved compound is then oxidised in the presence of 

reactive oxygen species, after which the reduced marker emits green fluorescence 

which was detected using the FITC channel of a fluorescence microscope. The 

intensity of green fluorescence within cells was attributed to the intensity of ROS 

production in the cell. Hoechst counterstain was also performed to allow imaging of 

the cell nuclei. 

High quality images used in this chapter showing the production of ROS in cells are 

also available on the CD-ROM attached at the end of the thesis. These images show 

the presence of ROS in more detail and clearer than the printed images in this 

chapter. 
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Fluorescence microscopy images clearly showed the presence of a cell monolayer 

following 48 hours of incubation, identifiable by the presence of blue Hoechst-

stained nuclei. Using this image to locate cells, low levels of fluorescence were 

observed in PBMNCs in the cells only negative control. This low level of green 

fluorescence was attributed to the production of ROS in metabolically active cells. In 

contrast to the cells only negative control, intense levels of green fluorescence were 

observed in cells treated with 1050 HXL UHMWPE wear debris at a concentration 

of 100 µm³ per cell, indicating high levels of production of reactive oxygen species 

and oxidative stress. This oxidative stress was believed to be in response to HXL 

wear debris and the subsequent phagocytosis of these wear particles by the 

PBMNCs. Around 90% of ROS production occurs in the mitochondria in 

mammalian cells (Boveris and Chance, 1973), and the areas of intense ROS 

production were located outside of the nucleus. These intense areas of ROS were 

clearly shown on the overlay image as bright green rings around the nucleus of the 

cell. These images were similar to the images presented in a previous study by 

Bladen et al (2010) where the authors used the same method of ROS detection in 

PBMNCs in response to virgin UHMWPE wear debris. 

Finally, PBMNCs were incubated with vitamin E enhanced highly crosslinked 

UHMWPE wear debris at a concentration of 100 µm³ per cell. Low levels of green 

fluorescence were observed in cells, indicating low levels of ROS production. These 

levels of fluorescence appeared slightly more intense than in the cells only negative 

control, however no areas of intense fluorescence were observed in cells. This 

suggested that the presence of vitamin E in highly crosslinked UHMWPE wear 

debris led to lower levels of reactive oxygen species production in cells.  

A closer, more detailed look at the levels of ROS production in PBMNCs incubated 

with 1050 HXL and 1050 Vit E 10 revealed that ROS were located outside of the 

cell nucleus in the cell cytoplasm. Reactive oxygen species production in PBMNCs 

incubated with 1050 HXL was intense, with punctate areas of ROS observed in some 

cells. These punctate areas may indicate that phagosomes containing UHMWPE 

wear particles fuse with lysosomes and could represent areas of accumulation of 

ROS, intended for the destruction of internalised pathogens. An alternative 

hypothesis is that these punctate areas of fluorescence were mitochondria; the 

organelle responsible for the vast majority of ROS production. In order to investigate 
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this further, a fluorescent marker for mitochondria could be included in these 

experiments, therefore enabling identification of this important organelle.  

In an attempt to quantify the results from this assay to allow statistical analysis, the 

intensity of the green fluorescence was quantified using image analysis software, and 

this intensity was directly attributed to the intensity of ROS in cells. The image 

analysis software Image J was used to measure the average grey scale value of green 

fluorescence in each cell. The area of each cell was outlined manually using the 

location of the nucleus as a guide. A mean ROS intensity was determined for each 

image, where finally a mean ROS intensity was determined for each treatment. 

This study, along with previous studies, has identified high levels of donor variation 

in terms of the biological response to UHMWPE wear particles (Matthews et al., 

2000, Liu, 2012). In some experiments, no production of ROS was observed. This 

could be due to errors during the experimental procedure, or more likely due to 

certain donors not responding to UHMWPE wear debris, as has been demonstrated 

in the previous chapter in terms of TNF-α response to UHMWPE wear debris.  

The mean ROS levels in PBMNCs isolated from Donor 8 and incubated with 

different UHMWPE wear debris treatments for 48 hours were significantly elevated 

compared to the cells only negative control (ANOVA, p<0.05). This elevated level 

of ROS production in 1050 HXL-treated cells was also significantly greater than the 

level of ROS intensity in PBMNCs incubated with 1050 Vit E 10. With the addition 

of vitamin E to the highly crosslinked UHWMPE wear debris representing the only 

variable in between these materials, it could be concluded that the presence of 

vitamin E reduced the levels of ROS in cells. 

A similar result was observed in PBMNCs isolated from Donor 11. A significantly 

elevated level of ROS intensity was observed in PBMNCs incubated with 1050 HXL 

UHMWPE wear debris compared to the cells only negative control and the 1050 Vit 

E UHMWPE wear debris treated PBMNCs (ANOVA, p<0.05). Once again, the 

difference in ROS intensity between 1050 HXL treated cells and 1050 Vit E 10 

treated cells was attributed to the presence of vitamin E in the highly crosslinked 

UHMWPE wear debris. 
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These results suggest that vitamin E could have an antioxidant effect intracellularly, 

and therefore quench the reactive oxygen species that are produced. In donating a 

hydrogen atom from the hydroxyl group on the aromatic ring of vitamin E, a radical 

species can then be reduced to form a stable molecule. This process could occur 

intracellularly, leading to reduced levels of ROS observed in PBMNCs. A study by 

Pathania et al. (1999) demonstrated that high doses of vitamin E supplementation to 

rats (250 mg.Kg) significantly reduced the production of ROS (H2O2, O2
-
) in alveolar 

macrophages  in response to lipopolysaccharide (LPS; 10 µg.ml) (Pathania et al., 

1999). While these were high doses relative to the size of the animal model, this 

study still demonstrated a reduced ROS response to LPS from primary macrophages 

pre-treated with vitamin E.  

An area of debate relating to the activity of vitamin E in highly crosslinked 

UHMWPE exists, whereby the leaching of vitamin E from UHMWPE following 

crosslinking is questioned. Studies investigating the grafting of vitamin E to 

UHMWPE following gamma irradiation have shown that increasing irradiation of 

the polymer, and the subsequent increase crosslinking of UHMWPE reduces the rate 

of elution of vitamin E from the polymer (Oral et al., 2013). This would suggest that 

in vitamin E enhanced highly crosslinked UHMWPE; vitamin E is not available 

outside the polymer as elution from the polymer does not occur. However, this study 

has shown that vitamin E enhanced highly crosslinked UHMWPE wear debris has 

altered the cytokine release and oxidative stress profiles in PBMNCs compared to 

the non-vitamin E highly crosslinked UHMWPE wear debris treated cells. It has not 

been shown that vitamin E elution from UHMWPE is necessary to elicit a biological 

effect. Through the production of micrometre and nanometre sized UHMWPE wear 

debris, where vitamin E is homogenous within the polymer, vitamin E may be 

available on the surface of these particles, where its antioxidant and anti-

inflammatory properties can still be exerted.  

Secondly, the very ‘hostile’ environment generated in the lysosomes of phagocytes 

may have the potential to encourage or cause leaching of vitamin E from the 

polymer. In previous experiments, boiling of the UHMWPE polymer in hexane has 

been used as a method for determination of the leaching of vitamin E, or lack of, 

from UHMWPE. Using this method, a previous study by Oral et al. (2013) showed a 

reduction in the elution of vitamin E from highly crosslinked UHMWPE following 
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crosslinking at elevated temperatures (Oral et al., 2013). Clinically, the bulk 

UHMWPE material in the form of the acetabular component will not encounter such 

harsh conditions as boiling in hexane, so it would be possible to conclude that 

vitamin E will not leach from the highly crosslinked bulk material. However, wear 

particles that have been phagocytosed and fused with the acidic, enzymatic lysosome 

may experience conditions that could lead to the elution of vitamin E. A lack of 

understanding about the availability of vitamin E in highly crosslinked UHMWPE is 

something that should stimulate future research, specifically the availability of 

vitamin E in clinically relevant wear particles as opposed to the thin sections used in 

previous studies (Oral et al., 2013). Research into this could lead to future advances 

in the area of antioxidant enhancement of UHMWPE for use in orthopaedics and 

other areas of medicine.  

 

5.6 Conclusion 

Highly crosslinked UHMWPE wear debris stimulated the production of oxidative 

stress in PBMNCs. In contrast, a significant reduction in the production of reactive 

oxygen species was observed in PBMNCs incubated with vitamin E enhanced highly 

crosslinked UHMWPE wear debris, indicating that vitamin E enhanced highly 

crosslinked UHMWPE had an antioxidant effect within cells, preventing the high 

levels of reactive oxygen species production observed in response to highly 

crosslinked UHMWPE wear debris.  
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Chapter 6 

Discussion 

 

Total hip replacements are considered one of the most successful surgical procedures 

in medicine, with over 76,000 primary hip replacements performed in the UK in 

2013; and an estimated 1 million procedures performed worldwide (National Joint 

Registry, 2013, American Academy of Orthopaedic Surgeons, 2013). Total hip 

replacements are used to treat conditions that cause chronic pain and disability in the 

hip joint, such as osteoarthritis, rheumatoid arthritis, avascular necrosis, and 

following trauma to the hip. Total hip replacements successfully restore mobility and 

eliminate pain. An implant comprised of a metal femoral prosthesis articulating 

against an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup is 

the most commonly used bearing, and is considered the gold standard for total hip 

arthroplasty (National Joint Registry, 2013).  

With the success of this procedure, there has been a gradual increase in the number 

of procedures per year, and in addition to this, an increase in the number of younger, 

more active patients requiring a total hip replacement. The National Joint Registry 

10
th

 Annual Report for England and Wales revealed that around 20% of all primary 

hip replacement procedures were performed on patients under the age of 60 years of 

age. With an average life expectancy of 81 years in the UK (according to World 

Bank), this represents a group of patients that will require a total hip replacement for 

a minimum of 20 years if they are to avoid implant failure and revision surgery. A 

revision rate of around 2% after 10 years has been reported across the range of 

metal-on-UHMWPE total hip replacement devices, with this revision rate increasing 

after 10 years (National Joint Registry, 2013), and it is the need for long-lasting hip 

replacements that is driving the current research in total hip replacements. 

One of the most crucial processes that occur in metal-on-UHMWPE hip 

replacements is the wear of the UHMWPE component; a normal process that occurs 

with the coupling of a hard-on-soft bearing. However, the wear of UHMWPE leads 
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to the generation of UHMWPE wear debris, and this UHMWPE wear debris 

stimulates macrophages in the tissues surrounding the implant, leading to an immune 

response involving the release of osteolytic cytokines such as TNF-α, IL-1β and IL-

6. This osteolytic immune response results in osteolysis around the implant, causing 

aseptic loosening and the subsequent failure of the joint replacement (Ingham and 

Fisher, 2000, Ingham et al., 2000).   

Alternative bearing materials have been used in an attempt to create the ideal hip 

replacement. Metal-on-metal bearings have been used due to their low wearing and 

high hardness properties, and were thought to be ideal for younger, more active 

patients (Delaunay et al., 2008). However, with some metal-on-metal bearings, an 

increased rate of wear has been documented, alongside adverse tissue reactions and 

pseudotumours, believed to be stimulated by both nanometre-sized and micrometre-

sized metal wear debris, in addition to the metal ions generated from the implant 

(Delaunay et al., 2008, Delaunay et al., 2010, Kwon et al., 2010). These problems 

have led to a steep decline in the use of metal-on-metal total hip replacements, while 

metal-on-UHMWPE has remained the bearing of choice (National Joint Registry, 

2013).   

A major advance in polymer technology for use in joint replacements was the 

introduction of high levels of irradiation to UHMWPE to increase the levels of 

crosslinking. This led to a significant improvement in the wear resistance of 

UHMWPE compared to non-crosslinked UHMWPE, and this improvement 

translated to an improved clinical bearing material (Rajadhyaksha et al., 2009, 

Galvin et al., 2006). Despite this improvement in the wear resistance observed with 

highly crosslinked UHMWPE, incidences of oxidation were reported. A 

consequence of high levels of irradiation energy is the generation of free radicals 

following scission of the carbon chains in polyethylene (Popoola et al., 2010). These 

free radicals are essential for the formation of crosslinks in the polymer. However, 

most free radicals do not reform but remain trapped in the polymer, and it is this free 

radical burden that can then cause oxidation of the polymer in vivo. Oxidation of 

UHMWPE reduces some mechanical properties, causing embrittlement of the 

polymer, and generally creates a material with less favourable properties for a 

bearing material in total joint replacment (Al-Ma'adeed et al., 2006).  
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Post-irradiation heat treatments of UHMWPE were implemented to quench the free 

radicals present and provide a stable polymer for implantation to the patient. 

However, these treatments were not completely effective. Remelting of UHMWPE 

provided sufficient energy for the radical species to recombine, therefore removing 

the free radical burden; however this process reduced some of the favourable 

mechanical properties of UHMWPE, such as fatigue crack propagation resistance 

(Oral et al., 2006b). Below-melt annealing was an alternative to remelting, and by 

not melting the polymer this process protected the mechanical properties of 

UHMWPE. However, this process was not successful in removing the free radical 

burden of the material, and oxidation could still occur (Wang, 2006). Alongside this 

mechanism of oxidation, an alternative mechanism of oxidation was believed to 

occur, which was independent of irradiation-induced radicals (Wannomae et al., 

2006, Oral et al., 2010, Costa et al., 2001). This highlighted the importance of 

protecting the polymer against oxidation in order to achieve maximum performance 

from UHMWPE as a bearing material, and led to the introduction of an antioxidant 

compound into UHMWPE.  

Vitamin E enhanced highly crosslinked UHMWPE was introduced as a clinical 

bearing material in total hip replacements in 2007, with manufacturers offering their 

own versions of this novel antioxidant bearing (E1
® 

- Biomet; ECiMa™ - Corin; 

Vivacit-E
®
 - Zimmer). Vitamin E enhanced highly crosslinked UHMWPE has been 

shown to possess superior performance compared to remelted highly crosslinked 

UHMPWE in terms of its oxidative stability, with vitamin E enhanced UHMWPE 

showing improved wear resistance following two weeks accelerated aging, improved 

fatigue crack propagation resistance, and improved oxidative resistance (Oral et al., 

2006b, Kurtz et al., 2009).  

There has also been an increase in interest in alternative antioxidant UHMWPE 

materials for use in joint replacements. Some antioxidant compounds being 

researched for their use in UHMWPE include hindered phenols, polyphenols, 

nitroxides, lanthanides, and anthocyanins. While all these antioxidants have shown 

promising results in vitro in terms of their antioxidant properties in UHMWPE, a 

hindered phenol enhanced UHMWPE is the only alternative UHMWPE material 

currently available clinically (in the knee). AOX
® 

UHMWPE, manufactured by 

DePuy Synthes Joint Reconstruction, uses a hindered phenol compound; 
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Pentaerythritol tetrakis. This is a compound with four phenol groups, and has been 

shown to be a potent antioxidant compound. This hindered phenol enhanced highly 

crosslinked UHMWPE has been shown to possess oxidative stability far superior to 

remelted highly crosslinked UHMWPE, along with comparable wear performance 

(King et al., 2009).  

While the vast amount of literature on these antioxidant materials has focused on the 

mechanical performance and oxidative stability, there has been little research 

performed on the biological response to wear particles from these materials. When 

considering the importance of the immune response to UHMWPE wear debris in the 

failure mechanism of metal-on-UHMWPE joint replacements, it is surprising more 

focus is not placed on the biological response. Only one previous study investigated 

the cellular response to antioxidant wear debris, and this showed a significant 

reduction in osteolytic cytokine release from macrophages incubated with vitamin E 

enhanced UHMWPE compared to virgin UHMWPE (Bladen et al., 2013). The lack 

of crosslinking in these materials leaves a gap with respect to clinical relevance; with 

highly crosslinked UHMWPEs the most commonly used bearing materials in total 

hip replacements. However, this type of study, looking at clinically relevant wear 

debris, is important when predicting the biological response to wear debris at the site 

of the prosthesis.  

Other studies have investigated the bone remodelling response to UHMWPE wear 

particles implanted under the skin of animal models, and shown vitamin E enhanced 

highly crosslinked UHMWPE wear particles stimulated significantly reduced levels 

of osteolysis compared to virgin UHMWPE (Bichara et al., 2013). While this study 

appears promising in terms of the performance of vitamin E enhanced highly 

crosslinked UHMWPE, it is important to point out that this material used post-

irradiation diffusion of vitamin E, where the vitamin E may be available to elute 

from the material (Bichara et al., 2013). In addition, wear particles in the previous 

study were milled, as opposed to being generated aseptically using multidirectional 

articulation using kinematics associated with the hip joint. Clinically relevant wear 

particles have been shown to be critical to the subsequent biological response to 

UHMWPE wear debris, both in terms of their particle size distribution, and particle 

surface characteristics (Matthews et al., 2000b).  
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This study investigated the wear performance and biological response to antioxidant 

UHMWPEs. This involved wear testing of vitamin E enhanced highly crosslinked 

UHMWPE, hindered phenol enhanced highly crosslinked UHMWPE, along with 

experimental and clinical materials to determine the effect of antioxidant doping on 

the wear factor of UHMWPE. The study then went on to generate clinically relevant 

UHMWPE wear debris from  the vitamin E enhanced and hindered phenol enhanced 

highly crosslinked UHMWPEs, in addition to non-antioxidant highly crosslinked 

UHMWPE, in order to determine the biological response of PBMNCs to wear 

particles form these materials. The use of clinically relevant UHMWPE wear debris 

is vitally important for evaluating the biological response to a UHMWPE material 

with confidence. The present study was able to use multidirectional articulation of 

clinical materials, under kinematics shown to be representative of the hip joint and in 

the presence of serum proteins to generate UHMWPE wear debris that could 

confidently be termed as clinically relevant.    

In addition to determining the biological response to these UHMWPE materials, this 

clinically relevant wear debris was used to investigate the production of reactive 

oxygen species in cells following incubation with highly crosslinked UHMWPE 

wear debris, and investigate whether vitamin E enhancement had any effect on the 

production of reactive oxygen species and the subsequent oxidative stress in cells. 

 

6.1. Pin on Plate Wear Testing of Antioxidant UHMWPE Materials 

With and Without Crosslinking 

The first objective of the study was to conduct a wear test of nine UHMWPE 

materials to determine the wear factor of these materials, and determine the effect of 

crosslinking and antioxidant enhancement on the wear performance of UHMWPE. 

This section of the study used an accepted method of wear testing, using a six station 

simple configuration multidirectional pin-on-plate wear simulator. This method of 

wear testing has been used previously to determine the wear rate of UHMWPE 

materials against different counterface roughness conditions (Endo et al., 2001), in 

addition to determining the wear of UHMWPE under different kinematic conditions 

(Galvin et al., 2006). Different methods are available to determine the wear 

performance of materials in joint replacements, such as the hip joint simulator or pin-
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on-disk rig. However, pin-on-plate wear testing was considered the most appropriate 

for this study due to its ability to compare the wear performance of each UHMWPE 

material in replicate, while also being a low-cost and non-time consuming method. 

Pin-on-plate wear tests allow for the wear of the UHMWPE component to be 

determined gravimetrically at the end of the wear test, generating data to determine a 

mean wear factor for each material tested. Wear tests in this study were performed 

by articulating a UHMWPE pin (10 mm contact face) against a smooth (Ra ≤ 

0.01µm) high carbon (0.27% w/w) CoCr counterface. Tests were performed using a 

lubricant of 25% (v/v) bovine serum supplemented with 0.03% (w/v) sodium azide, 

with a stroke length of 25 mm, rotation of ±30º, under a load of 160N at a rate of 1 

Hz. Wear tests were performed for a minimum of 500,000 cycles over the course of 

two weeks. These parameters have been used previously to replicate the forces and 

kinematics of the hip joint (Tipper et al., 2000, Galvin et al., 2006).  

The nine UHMWPE materials tested in this section of the study were comprised of 

three non-antioxidant UHMWPEs (1050 Virgin, 1050 Marathon (5 MRad) and 1050 

HXL (10 MRad)), three vitamin E enhanced UHMWPEs (1050 Vit E, 1050 Vit E 5 

and 1050 Vit E 10), and three materials using a GUR1020 resin (1020 Virgin, 1020 

AOX and 1020 AOX 8 (8 MRad)). This matrix of materials allowed for the 

comparison of crosslinked and non crosslinked UHMWPE, along with antioxidant 

and non-antioxidant UHMWPE at different levels of crosslinking. 

The results from the wear tests indicated that with the GUR1050 UHMWPE 

materials, an increase in the level of crosslinking led to a significant reduction in the 

wear factor of UHMWPE. There was a significantly lower wear factor observed 

when 1050 HXL was compared to 1050 Virgin UHMWPE. Similarly, there was a 

significantly lower wear factor recorded for 1050 Vit E 10 compared to both 1050 

Vit E and 1050 Vit E 5. Previous studies have demonstrated a significant reduction 

in the wear factor as a result of high levels of crosslinking, both in pin-on-plate wear 

tests and using hip joint simulators (Affatato et al., 2012, Jedenmalm et al., 2009, 

Galvin et al., 2006, Endo et al., 2002). However, few studies have clearly 

demonstrated the effects that vitamin E has on the wear of highly crosslinked 

UHMWPE.  
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A previous study by Oral et al. (2006) compared the wear performance of a vitamin 

E enhanced (diffused) highly crosslinked UHMWPE acetabular cup to a virgin 

UHMWPE acetabular cup using a hip simulator. As expected, the highly crosslinked 

vitamin E enhanced UHMWPE component had a significantly lower level of wear 

compared to the virgin UHMWPE component. However, the vitamin E enhanced 

component was also highly irradiated (10 MRad) and therefore a direct comparison 

is inappropriate (Oral et al., 2006a). High levels of irradiation increase the levels of 

crosslinking in the material, improving the wear resistance of the polymer (Galvin et 

al., 2006). A separate study tested the wear performance of virgin UHMWPE and 

vitamin E enhanced (blended) UHMWPE, with neither material crosslinked. In this 

study, there was no significant difference in the wear volume of the materials until 5 

million cycles were reached, at which point the vitamin E enhanced UHMWPE had a 

significantly lower cumulative wear volume than the virgin UHMWPE (Teramura et 

al., 2008). This brings up the possibility that there may be differences in performance 

between the virgin and antioxidant materials at higher numbers of cycles. This is an 

area where the present study could potentially be improved by increasing the 

duration of the tests.  

In addition to the vitamin E enhanced highly crosslinked UHMWPE, an alternative 

antioxidant UHMWPE was also investigated in this study. Hindered phenols have 

recently been introduced into UHMWPE in the knee, and this hindered phenol 

enhanced UHMWPE material is being investigated for use in the hip. The material 

used in this study was the knee material, which was a GUR1020 highly crosslinked 

(8 MRad) UHMWPE material. Due to the difference in the resin of this material, 

GUR1020 virgin UHMWPE and GUR1020 AOX
™

 (non-crosslinked) UHMWPE 

materials were also included in the wear tests. There was no significant difference in 

the mean wear factor of these materials, despite the addition of high levels of 

crosslinking (ANOVA, p>0.05). With the addition of the hindered phenol 

antioxidant (AOX
™)

, and the addition of crosslinking, the mean wear factor 

decreased, however this decrease was not statistically significant. This lack of a 

statistically significant result could be due to the large error bars observed with these 

three GUR1020 materials. These large error bars could be due to inconsistencies 

with the pin-on-plate wear simulator causing varying degrees of wear, or potentially 

contamination with fragments of metal debris generated from the wear simulator 
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machinery, which would act as third body particles and possibly increase the levels 

of UHMWPE wear in individual stations.  Another possible reason for this lack of a 

reduction in the wear factor with increasing crosslinking was the fact that the mean 

wear factor for the GUR1020 Virgin UHMWPE material was also low compared to 

the GUR1050 Virgin UHMWPE material. A previous study showed comparable 

wear rates between GUR1050 and GUR1020 Virgin UHMWPE, which is in contrast 

with the results in this study (Tipper et al., 2005). This is an area where further 

testing would be beneficial, further investigating the difference in wear performance 

of these two resins. With the increase in the use of these AOX
™

 UHMWPE materials 

clinically; further research is required to evaluate the performance of these materials, 

using anatomical joint simulators to fully evaluate the performance of these materials 

in vitro.   

 

6.2 Particle Characterisation of Antioxidant UHMWPE Materials 

With and Without Crosslinking 

The second aim of this study was to determine the wear particle size distribution 

from a number of the nine materials in the study. The size distribution of wear debris 

generated from a UHMPWE material has been shown to be a crucial aspect of the 

biological response to the material. A study by Liu (2012) showed wear particles 

generated from virgin UHMWPE in the <0.1µm and >1.0 µm size ranges, when 

dosed at 100 µm³ per cell, did not stimulate a significant osteolytic cytokine response 

from PBMNCs following incubation. The only size range of UHMWPE wear 

particles to stimulate a statistically significant elevated release of TNF-α, when 

dosed at 100 µm³ per cell, compared to the cells only negative control, was the 0.1-

0.6 µm sized wear debris (Liu, 2012). This implicated that while the total volume of 

wear debris plays a part in stimulating a cellular response, the volume of this 

‘critically sized’ wear debris is more important in generating a cellular response than 

the overall total volume, with this also being shown in previous studies (Howie, 

1990, Howie et al., 1993, Revell et al., 1997, Green et al., 1998, Ingham and Fisher, 

2000). For this reason, it is therefore vital to determine the frequency and volume 

distribution of wear particles generated from each material, and to determine whether 
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crosslinking and/or antioxidant enhancement has a significant effect on the wear 

particle size distribution.  

In order to obtain high resolution images of the wear particles for sizing and 

analysis, serum lubricant samples were processed to remove proteins, lipids and salts 

from the sample, and lubricants were filtered through a series of three filters (10 µm, 

1 µm and 0.015 µm). These filters were then imaged using a FEGSEM and particles 

were sized manually using image analysis software, after which the size distribution 

was plotted for comparison. 

The frequency and volume distributions of wear debris from 1050 Virgin UHMWPE 

was compared to wear debris from 1050 Vit E 10 UHMWPE. There was no 

significant difference in the particle distribution between these two materials in 

terms of frequency and volume distribution. Both materials generated the majority of 

wear particles in the <0.1 µm and 0.1-1.0 µm size ranges, however these two size 

ranges contributed a relatively small volume of the total wear volume produced; 

around 30%. For both materials, the mode size range in terms of volume of wear 

debris was the 1.0-10 µm size range. Focusing specifically on the critical 0.1-1.0 size 

range, around 30% of the volume of wear debris was produced in this size range for 

both materials.  

Unfortunately, analysis of the GUR1050 series of materials was not completed due 

to multiple problems regarding contamination of the filters, in addition to technical 

problems with the SEM on separate occasions. This left a gap in the data in what 

would have been a complete matrix of materials for analysing the effect of 

crosslinking, and vitamin E enhancement with crosslinking, on particle size 

distributions of UHMWPE. Despite this, no significant difference was observed in 

the frequency or volume distribution of 1050 virgin of 1050 Vit E 10. In future 

experiments, it would be necessary to analyse a complete matrix to confidently 

determine the effect of variables such as crosslinking and/or antioxidant 

enhancement on the particle size distribution. 

The wear debris generated from two GUR1020 materials was also characterised. 

Using the same method, 1020 Virgin and 1020 AOX 8 UHMWPE wear debris was 

isolated and characterised to determine the volume and frequency distribution of the 

wear debris. No significant difference was determined between 1020 Virgin and 
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1020 AOX 8 in terms of both frequency and volume distribution. Unlike the 

GUR1050 materials, the mode size range in terms of particle numbers was the 0.1-

1.0 µm size range. However, in terms of volume of the wear debris, the 1.0-10 µm 

size range was the mode size range. For the particle analysis of GUR1020 materials, 

there was no GUR1020 8MRad crosslinked UHMWPE material to include in this 

section of the study to complete the matrix of materials. The closest UHMWPE 

material available was XLK UHMWPE. This is a GUR1020 material irradiated to 5 

MRad, and this difference in crosslinking was considered too large to be compared 

to the GUR1020 AOX 8 MRad UHMWPE material. However, as with the GUR1050 

UHMWPE materials, no significant difference in the particle size distribution was 

observed.  

This lack of variation in the particle size distribution of UHMWPE wear debris with 

different levels of crosslinking was also demonstrated in a previous study by Galvin 

(2003). Comparing GUR1050 Virgin, 5 MRad and 10 MRad UHMWPE wear debris 

generated on the six station pin-on-plate wear rig against a smooth counterface, the 

aforementioned study demonstrated no significant difference between the materials 

in terms of percentage frequency or volume distribution of wear particles (Galvin, 

2003). A separate study characterising wear particles from a highly crosslinked 

UHMPWE and virgin UHMWPE generated on a hip simulator also showed no 

significant difference in the mode size range of wear particles in terms of frequency 

(Illgen et al., 2008). These previous studies support the findings of the present study, 

that crosslinking, antioxidant enhancement, or the combination of both treatments on 

UHMWPE, have no significant on the wear particle size distribution.  

 

6.3 Biological Response of Peripheral Blood Mononuclear Cells to 

Antioxidant UHMWPE Wear Debris 

Wear debris generated from UHMWPE in a metal-on-UHMWPE total hip 

replacement stimulates an immune response in the tissue surrounding the implant, 

leading to the resorption of bone around the prosthesis, and loosening of the implant. 

A cell culture technique which had previously been developed to incubate peripheral 

blood mononuclear cells isolated from blood with UHMWPE wear debris generated 

aseptically on a pin-on-plate wear simulator was used to investigate the cellular 



Chapter 6 

255 

 

response to antioxidant UHMWPEs compared to conventional UHMWPE. Wear 

particles generated from UHMWPE have a low density, and therefore are buoyant in 

solution, and when incubated with cells in 2D normal cell culture, the cells would 

adhere to the tissue culture plastic well and no contact would occur with the buoyant 

UHMWPE wear particles. To address this problem, a technique was developed by 

Green et al. (1998) which used an agarose gel to suspend the UHMWPE wear 

particles, and allow for the culture of PBMNCs on this gel. This initial technique 

involved mixing UHMWPE wear debris with molten 0.3% agarose gel in the wells 

of a 48 well plate and immediately centrifuging the 48 well plate. Upon the agarose 

gel cooling and solidifying, this technique produced a superficial layer of UHMWPE 

wear debris near the surface of the agarose gel, upon which the PBNMNCs could 

then be seeded at a given density. This method was altered slightly in subsequent 

studies in that the concentration of agarose gel or cell seeding density was adjusted 

(Ingram et al., 2004, Richards, 2008).   

Most recently, Liu (2012) modified this technique to produce a 3D culture system, 

whereby the centrifugation step was removed, meaning the UHMWPE wear debris 

was distributed throughout the agarose gel. This technique required the migration of 

PBMNCs into the agarose gel to contact the UHMWPE wear debris. For the present 

study, the agarose gel technique developed by Liu (2012) was used. The author of 

the present study had difficulty maintaining a level surface of the agarose gel when 

centrifugation of the cell culture plates was conducted; and found an uneven surface 

to cause uneven distribution of cells following seeding. In addition, the use of highly 

crosslinked UHMWPE in the present study, and the lower wear rates of these 

materials, meant a large volume of lubricant was required per well to achieve the 

minimum dose of UHMWPE wear debris per well. This therefore didn’t allow for 

the use of a 48 well plate, as used previously by Green et al. (1998), and meant 

larger-well 24 well plates were required. This could have also contributed to the 

difficulties experiences when centrifuging the culture plates. For these reasons, the 

Liu (2012) agarose technique was used in this study. However, using this cell culture 

technique, there are several potential variables, such as cell seeding density, agarose 

gel volume and concentration, and particle concentration. As a result, different cell 

culture conditions were investigated to provide improved cell culture technique for 

this study.  
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In order to verify whether this 3D agarose cell culture technique facilitated the 

contact and phagocytosis of UHMWPE wear particles by PBMNCs, confocal 

microscopy was performed. Using fluorescently labelled UHMWPE wear particles 

in the micrometre or nanometre size range, the internalisation of UHMWPE wear 

particles in PBMNCs was observed. Wear particles were observed outside of the 

nucleus, as indicated by the green fluorescent particles being external to the blue 

Hoechst-stained nuclei of the cells. This confirmed that the agarose gel technique 

was not inhibiting the uptake of UHMWPE wear debris by PBMNCs, and added 

confidence to the previous studies that have drawn conclusions regarding the cellular 

response to UHMWPE using this technique, in addition to the present study. 

As a result of the various method development steps taken, it was hypothesised that 

cell culture conditions comprising a low agarose gel concentration (0.4% (v/v)) were 

required to allow penetration of cells. It was also hypothesised, although not 

demonstrated, that a lower concentration of agarose gel, in addition to adding the 

UHMWPE wear particles to the gel at a slightly higher temperature (and therefore 

lower viscosity), allowed the buoyant particles to float towards the surface of the gel 

at a greater rate prior to the gel setting than using a lower temperature gel. The 

presence of a higher concentration of UHMWPE particles near the surface of gel was 

observed using the light microscope when checking the gels; however this was not 

quantified and presented in the results.  

In order to generate clinically relevant UHMWPE wear particles, wear debris was 

generated using a serum-containing lubricant. A 25% (v/v) bovine serum lubricant 

supplemented with RPMI 1640 medium was used throughout the test, as it has 

previously been shown that the presence of serum proteins on the surface of the 

hydrophobic UHMWPE wear particles was required to stimulate a significant 

cytokine response in PBMNCs (Liu, 2012, Zolotarevova et al., 2010). The present 

study also generated sterile wear debris against a rough (Ra 0.7-0.9 µm) CoCr 

counterface in order to maximise the volume of wear debris generated in each test. 

The wear debris generated against a rough counterface was characterised to ensure 

the wear particle size distribution was not significantly different to the wear debris 

generated against smooth (Ra ≤ 0.01) CoCr counterfaces, and to validate that the 

wear debris generated in this aseptic wear test was clinically relevant. 
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The most important finding during the method development of the agarose gel cell 

culture technique was the importance of the effect of UHMWPE particle 

concentration on the cellular response. With UHMWPE wear particles dosed at a 

concentration of 100 µm³ per cell, there was no significant TNF-α release observed 

from PBMNCs from any of the donors tested compared to the cells only negative 

control. Significantly elevated levels of TNF-α release were consistently observed 

from PBMNCs treated with the LPS positive control compared to the cells only 

negative control, along with lower yet still statistically significant elevated levels of 

TNF-α release from PBMNCs in response to 200 nm Fluospheres at a concentration 

of 100 µm³ per cell. The positive controls indicated that the cells were responding in 

terms the release of pro-inflammatory cytokines. 

In a previous study by Liu (2012), it was demonstrated that the volume of 

UHMWPE wear debris within the critical size range was crucial to cytokine release 

after stimulation with wear debris. In the aforementioned study, wear particles in the 

0.1-0.6 µm size range dosed at a concentration of 100 µm³ per cell promoted higher 

levels of cytokine release from PBMNCs, compared to nanometre sized (<0.1 µm) 

and larger micrometre sized (1.0-10µm) wear particles. When comparing the dose of 

biologically active wear particles incubated with cells, the author of the present study 

noted a difference in terms of the dose per cell of wear particles within this critical 

size range. While the previous study was dosing 100 µm³ per cell of wear particles in 

the 0.1-0.6 µm size range, the present study had been dosing 100 µm³ per cell of the 

complete size range of wear debris. This equated to an actual dose of around 30 µm³ 

of biologically active wear debris per cell, significantly lower than the dose required 

to stimulate a cytokine response (Liu, 2012). As a result of this, the investigation was 

continued with UHMWPE wear debris at a higher concentration per cell. 

As a result of the required higher dose of wear debris, it was necessary to produce 

new samples of wear debris with higher concentrations of UHMWPE particles. A 10 

day wear test using the single station pin-on-plate wear simulator was conducted to 

generate a highly concentrated sample of wear debris from 1050 HXL, 1050 Vit E 

10 and 1020 AOX 8 UHMWPE. Following incubation of PBMNCs with 1050 HXL 

at doses of 100 µm³, 200 µm³ and 600 µm³, a significant TNF-α response was 

observed from PBMNCs incubated with the new, higher doses of 1050 HXL 

UHMWPE wear debris at 200 µm³ and 600 µm³ per cell, compared to the cells only 
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negative control. This was the first instance of a significantly elevated TNF-α release 

from PBMNCs in response to UHWMPE HXL wear debris in the study so far, and 

this was observed in PBMNCs from two donors. 

Following this, the TNF-α release in response to 1050 Vit E 10 and 1020 AOX 8 

was also investigated at a concentration of 500 µm³ per cell. This concentration of 

wear debris was chosen to provide the highest wear debris concentration possible 

from all three UHMWPE particle samples, at which point any significant differences 

in the biological responses could be determined. At a dose of 500 µm³ per cell, 1050 

HXL wear debris stimulated significantly elevated levels of TNF-α release from 

PBMNCs compared to the cells only control. In addition, a significantly reduced 

TNF-α release was observed in cells incubated with 1050 Vit E 10 and 1020 AOX 8 

at the same concentration compared to cells incubated with 1050 HXL UHMWPE 

wear debris. This indicated that the presence of vitamin E or a hindered phenol 

antioxidant in highly crosslinked UHMWPE had a significant effect on the cytokine 

release from PBMNCs in response to UHMWPE wear debris. These results indicate 

that the presence of one of these antioxidant compounds in highly crosslinked 

UHMWPE could have an effect on the inflammatory pathways involved in 

osteolysis, potentially reducing osteolysis and improving the longevity of the 

implant. 

There are few studies in the literature that have investigated the cellular response to 

antioxidant UHMWPE wear debris. A previous study by Bichara et al (2013) 

demonstrated a reduction in osteolysis of the calvaria following implantation with 

vitamin E enhanced highly crosslinked UHMWPE particles compared to 

implantation of virgin UHMWPE particles (Bichara et al., 2013). However, the 

mentioned study used a vitamin E diffused material, as opposed to the present study 

which used a vitamin E blended material. This could have an effect on the biological 

response in terms of the availability of vitamin E to cells, although a study by Oral et 

al (2006) indicated that there was no loss of vitamin E from vitamin E enhanced 

(diffused) highly crosslinked UHMWPE sections following incubation in 

isopropanol (concentration not given) (Oral et al., 2006c). The availability and 

potential leaching of vitamin E from highly crosslinked UHMWPE is an area where 

further research is required to provide a definitive answer to whether antioxidants 

can leach from the highly crosslinked material. Some studies have shown that 
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vitamin E does not leach from highly crosslinked UHMWPE sections, however the 

use of clinically relevant particles would provide a more accurate model to determine 

if there is any leaching of vitamin E, due to the hugely increased surface area of 

micrometre and nanometre sized particles compared to the 150 µm thick sections 

used in the previous studies (Oral et al., 2013). Despite this, the current study and the 

previous study by Bichara et al. (2013) both illustrate the anti-osteolytic potential of 

vitamin E enhanced highly crosslinked UHMWPE wear debris. 

In a similar study, and using a similar animal model to investigate osteolysis 

potential of antioxidant UHMWPE, AOX
™

 UHMWPE (hindered phenol enhanced) 

particles were implanted under the skin of a mouse to come in contact with the 

calvaria. The study investigated the effect UHMWPE particles have on the 

osteogenic/osteolytic mechanisms of the bone, using Micro-CT at day 0 and day 10. 

The study used particles milled from either GUR1050 Marathon (5 MRad), 

GUR1020 XLK (5 MRad) and AOX
™

 (8 MRad) UHMWPE. The study showed a 

more osteogenic response from AOX UHMWPE treated sites, compared to XLK and 

Marathon treated mice. While other variables were present, such as particle size 

distribution and irradiation dose, the study implicated the presence of the hindered 

phenol antioxidant to the reduced osteolytic response compared to non-antioxidant 

UHMWPE. Once again, however, this study used milled UHMWPE particles; 

therefore the wear debris implanted was not clinically relevant. The importance of 

particle volume distribution, along with concentration, has been highlighted in the 

present study and previous studies, and for that reason the use of clinically relevant 

UHMWPE wear debris should try to be adopted in all studies investigating the 

biological response to UHMWPE wear particles.  

Finally, this part of the study demonstrated the occurrence of donor variation, and 

specifically the heterogeneity of human individuals in terms of the biological 

response to UHMWPE wear particles. There were several incidences of variation 

between the TNF-α response to UHMWPE wear particles from different donors of 

the PBMNCs. This has been observed in previous studies investigating the cellular 

response to UHMWPE wear particles (Matthews et al., 2000a, Liu, 2012). 

Specifically in the present study, only two donors produced a significant elevation in 

the levels of TNF-α in response to 1050 HXL UHMWPE wear debris. Despite the 

lack of a significant TNF-α response to the same treatment in other donors, there 
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were areas of variation between the non-responders in terms of the TNF-α response 

to the LPS and Fluosphere positive controls.  

This is an occurrence that relates to the clinical situation, in that it could be 

hypothesised that some individuals with a metal-on-UHMWPE hip replacement 

would respond more aggressively to UHMWPE wear debris in terms of TNF-α 

release. A study by Wilkinson et al. (2003) investigated whether the carriage of a 

TNF-α allele could lead to an increased TNF-α response to UHMWPE, and 

subsequent increased risk of osteolysis following implantation of a metal-on-

UHMWPE prosthesis. The authors found that a variation at the -238A position in the 

TNF-α gene promoter region had a prevalence of 17.3% in the group of patients who 

had a history of osteolysis following a total hip replacement. This was in comparison 

to a prevalence of 8.8% in the background population. The study also showed an 

increase in prevalence (20.5%) in patients with more widespread osteolysis 

(Wilkinson et al., 2003). This study shows the importance of genetic factors in the 

biological response to UHMWPE wear debris, and specifically highlighted the 

importance of the -238 allele on the TNF-α gene promoter region.   

For this reason, further research should be carried out into donor variation in terms 

of the immune response to UHMWPE wear debris, whereby individuals who appear 

to produce a particularly ‘aggressive’ response (like donor 8 and 15 in this study) 

would be advised to have an alternative bearing implanted, such as a ceramic 

material.  

 

6.4 The Production of Reactive Oxygen Species in Peripheral Blood 

Mononuclear Cells in Response to UHMWPE Wear Particles 

The production of reactive oxygen species and subsequent oxidative stress in cells is 

an important process in terms of cell signalling, and cell survival. The link between 

oxidative stress in PBMNCs following phagocytosis of UHMWPE wear debris has 

been suggested, but has not been demonstrated in terms of the current clinical 

UHMWPE materials today; highly crosslinked UHMWPE and antioxidant highly 

crosslinked UHMPWE (Bladen et al., 2010). 
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The present study demonstrated that there was a significant increase in the levels of 

reactive oxygen species in cells following incubation with highly crosslinked 

UHMWPE wear debris at a dose of 100 µm³ per cell. The intensity of reactive 

oxygen species appeared to be very high in some cells, and this is believed to 

correlate to an environment of oxidative stress in cells. In contrast, the production of 

reactive oxygen species in response to vitamin E enhanced highly crosslinked 

UHMWPE wear debris was significantly lower than in response to highly 

crosslinked UHMWPE wear debris. This indicated that the presence of vitamin E in 

the highly crosslinked UHMWPE particles had an effect on the presence of reactive 

oxygen species in cells. 

The exact mechanism by which this reduction in oxidative stress occurs was not 

deduced in this study, and this is an obvious area for further research. Two possible 

hypotheses relate to the antioxidant and anti-inflammatory properties of vitamin E. It 

could be that the antioxidant action of vitamin E is quenching the radical species that 

would normally be produced in response to the UHMWPE wear debris, therefore 

reducing the overall burden of reactive oxygen species. Alternatively, the anti-

inflammatory properties of vitamin E could be reducing the production of reactive 

oxygen species. A study by Pathania et al (1999) showed vitamin E supplementation 

reduced the production of reactive oxygen species in rat macrophages in response to 

LPS and proinflammatory cytokines such as TNF-α and IL-6. This study failed to 

identify in which way vitamin E is reducing the burden of reactive oxygen species, 

and the author of the present study has failed to identify a study outlining this 

mechanism (Pathania et al., 1999). Research into the exact mechanism by which 

vitamin E is able to reduce the free radical production in macrophages would be 

valuable in terms of producing a bearing material from which wear particles with a 

reduced inflammatory potential are produced. 

 

6.5 Future Work 

In the present study, it was demonstrated that using a 3D agarose gel technique, 1050 

HXL UHMPWE wear debris at a concentration of 500 µm³ per cell stimulated 

significant release of TNF-α from PBMNCs compared to the cells only negative 

control, and that significantly lower TNF-α release was demonstrated in response to 
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1050 Vit E 10 UHMWPE wear debris. Due to time constraints during the method 

development of these experiments, there was insufficient time to then investigate the 

release of other cytokines in response to the wear debris from these materials. 

Previous studies have shown UHMWPE wear debris to stimulate the release of TNF-

α from PBMNCs, along with IL-1β, IL-6 and IL-8 (Green et al., 1998, Liu, 2012, 

Bladen et al., 2013), and this is an area where it would be obvious to include other 

cytokines. While it has been shown that vitamin E enhanced highly crosslinked 

UHMWPE wear debris produces lower TNF-α release than highly crosslinked 

UHMWPE wear debris, a more complex picture for osteolytic cytokine release 

would be beneficial.  

A second area for future work directly related to the present study is to continue to 

investigate the cellular responses to AOX enhanced UHMWPE wear debris. Due to 

time constraints, one complete experiment was performed to investigate the 

biological response to wear debris from this novel material. Further repeats are 

required with additional donors for this novel material, in order to add confidence to 

the findings of this study that AOX enhanced highly crosslinked UHMWPE 

produced a lower TNF-α response than non-antioxidant highly crosslinked 

UHMWPE wear debris. The AOX enhanced UHMWPE material could also be 

included in the oxidative stress investigation in to determine if hindered phenol 

UHMWPE wear debris has a significant effect on the production of reactive oxygen 

species and subsequent oxidative stress in PBMNCs.  

When considering the previous work conducted using the agarose gel technique, it 

would be of interest to repeat this work using the 2D agarose gel technique outlined 

by Green et al. (1998). The major difference between this initial technique and the 

technique used in the present study is the use of centrifugation of the gel by Green et 

al. (1998) to produce a superficial layer of UHMWPE wear debris, and therefore a 

2D layer culture system. The previous technique demonstrated the stimulation of 

TNF-α release from PBMNCs at UHMWPE doses as low as 10 µm³ per cell. The 

difficulty in using the previous technique with the highly crosslinked, low wearing 

materials used in this study is being able to accommodate the required doses of 

UHMWPE wear debris in the smaller wells of the 48 well plates. Given the 

buoyancy of UHMWPE, it is hypothesised that it would be difficult to concentrate 

the wear debris through centrifugation while still being able to accurately dose the 
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wear debris.  None the less, it would be of interest to use the original 2D technique at 

lower particle concentrations to determine any significant TNF-α release from 

PBMNCs in these conditions.   

One area where there is potential for a large body of research is the investigation of 

the cellular pathways that occur in response to UHMWPE wear debris. Numerous 

studies, including the present study, have demonstrated the cytokine response from 

PBMNCs in response to a range of clinical UHMWPE materials (virgin, different 

resins, highly crosslinked, and antioxidant). However, the cellular mechanisms that 

occur prior to these cytokine responses are not well understood. Future research in 

this area should bridge the knowledge gap between the UHMWPE particle being 

phagocytosed by the macrophage, and the resultant release of cytokines.  This would 

help in the understanding of the osteolysis process and could contribute to further 

improvements to attenuate this process and increase the longevity of UHMWPE 

bearings. 

Part of this cellular pathway has been demonstrated by Liu (2012) in a previous 

study, where the author showed both clathrin-mediated endocytosis and caveolae-

mediated endocytosis occurred during the uptake of UHMWPE wear particles, 

however this study was not able to show any specificity of uptake pathways for 

certain sizes of UHMWPE particles due to issues with separating nano- and 

micrometre-sized UHMWPE wear particles. It would also be valuable to image the 

uptake of UHMWPE cells in real time to determine the transport of wear debris once 

internalised by the cell. This would involve real time confocal imaging as performed 

in the present study. This could potentially be extended to determine a more precise 

location of the UHMWPE wear debris in the cell by labelling particular organelles, 

such as the early endosome, late endosome and lysosome, in addition to determining 

the proteins associated with these organelles during the phagocytosis of UHMWPE 

wear debris (Garin et al., 2001, Ip et al., 2010).  

This future experiment should include both antioxidant and non-antioxidant 

UHMWPE wear debris in order to determine the way in which antioxidant 

compounds such as vitamin E and pentaerythritol tetrakis (hindered phenol) reduce 

the osteolytic response when incorporated in UHMWPE, as shown in this study. 

Future work could also investigate the expression of certain genes in response to 
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UHMWPE wear debris, through determining the mRNA expressed following 

phagocytosis. This would allow for the investigation into certain cellular pathways 

and determine their expression following UHMWPE wear debris incubation.  

In addition to the investigations into the cellular response to UHMWPE wear debris, 

future studies could continue to investigate the biological response to UHMWPE in 

animal models. Previous studies have investigated the bone resorbing potential of 

UHMWPE particles and sections using microCT-scanning to determine osteolysis 

following implantation of UHMWPE particles under the skin of the calvarium in a 

mouse model (Wolf et al., 2006, Bichara et al., 2013). However, to date, no studies 

have conducted this experiment using clinically relevant UHMWPE wear debris 

generated using multidirectional wear simulators. The inclusion of clinically relevant 

wear debris, as used in the present study, would make this experiment a much more 

clinically relevant model for determining the osteolytic potential of an UHMWPE 

material. Furthermore, in addition to using microCT analysis to determine 

osteolysis/osteogenesis in response to UHMWPE wear debris, histological analysis 

of the particle treated tissue and immunohistochemistry to determine the cytokine 

response to the wear debris would enable a greater understanding of the biological 

mechanisms that occur in response to antioxidant UHMWPE wear debris in vivo.  
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6.6 Conclusion 

This study determined that vitamin E enhancement had no significant effect on the 

wear performance of highly UHMWPE, whether crosslinked or non- crosslinked. It 

was also determined that hindered phenol enhancement had no significant effect on 

wear under the same parameters. The level of crosslinking was the only factor to 

affect the wear performance of UHMWPE, with increasing levels of crosslinking 

producing significantly lower levels of wear from UHWMPE. The addition of 

antioxidant enhancement with high levels of crosslinking had no significant effect on 

the wear particle size distribution of UHMWPE.  

The study also determined that there was a threshold volume of wear debris required 

to stimulate significant TNF-α release from PBMNCs. Using wear debris comprised 

of the whole size range, a minimum volume of 200 µm³ per cell of GUR1050 highly 

crosslinked UHMWPE wear debris was required to stimulate significant TNF-α 

release from PBMNCs.  

Using the 3D agarose cell culture technique, wear debris from vitamin E enhanced 

highly crosslinked UHMWPE was shown to produce significantly lower levels of 

TNF-α release from PBMNCs compared to wear debris from highly crosslinked 

UHMWPE. This significant reduction in the TNF-α release compared to highly 

crosslinked UHMWPE wear debris treated cells was also observed in PBMNCs 

incubated with debris from hindered phenol enhanced highly crosslinked UHMWPE 

(AOX™). These results suggested that the presence of an antioxidant in highly 

crosslinked UHMWPE reduces the osteolytic response to wear debris. However, the 

significant TNF-α release in response to UHMWPE wear debris was only observed 

in PBMNCs from two donors. This therefore requires additional research with 

multiple responsive donors.  

Finally, this study demonstrated that reactive oxygen species production and 

oxidative stress stimulated in macrophages by highly crosslinked UHMWPE wear 

debris was significantly reduced when vitamin E was present in the highly 

crosslinked UHMWPE wear debris. This suggested that the presence of vitamin E 

had an antioxidant effect on the cells, therefore reducing the levels of reactive 

oxygen species.  
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From a clinical point of view, these findings indicate that antioxidant UHMWPE for 

use in total hip replacements could improve the lifetime of the prosthesis by being 

low wearing and producing low volumes of wear debris that produce a reduced 

osteolytic response compared to non-antioxidant UHMWPE.  

  



References 

267 

 

References 
 

ABRAHAM, L. J. & KROEGER, K. M. 1999. Impact of the -308 TNF promoter 

polymorphism on the transcriptional regulation of the TNF gene: relevance to 

disease. J Leukoc Biol, 66, 562-6. 

ABT , B., ALTEKRUSE, M. & BRINCKMANN, P. 1981. [Stress on the articular 

surface of the hip joint in persons with idiopathic coxarthrosis and healthy adults 

(author's transl)]. Z Orthop Ihre Grenzgeb, 119, 382-6. 

ABU-AMER, Y., DARWECH, I. & CLOHISY, J. C. 2007. Aseptic loosening of 

total joint replacements: mechanisms underlying osteolysis and potential therapies. 

Arthritis Res Ther, 9 Suppl 1, S6. 

AFFATATO, S., SPINELLI, M., ZAVALLONI, M., MAZZEGA-FABBRO, C. & 

VICECONTI, M. 2008. Tribology and total hip joint replacement: current concepts 

in mechanical simulation. Med Eng Phys, 30, 1305-17. 

AL-HAJJAR, M., LESLIE, I. J., TIPPER, J., WILLIAMS, S., FISHER, J. & 

JENNINGS, L. M. 2010. Effect of cup inclination angle during microseparation and 

rim loading on the wear of BIOLOX(R) delta ceramic-on-ceramic total hip 

replacement. J Biomed Mater Res B Appl Biomater, 95, 263-8. 

AL-MA'ADEED, M. A., AL-QARADAWI, I. Y., MADI, N. & AL-THANI, N. J. 

2006. The effect of gamma irradiation and shelf aging in air on the oxidation of 

ultra-high molecular weight polyethylene. Applied Surface Science, 252, 3316. 

ALAM, T. M., CELINA, M., COLLIER, J. P., CURRIER, B. H., CURRIER, J. H., 

JACKSON, S. K., KUETHE, D. O. & TIMMINS, G. S. 2004. y-irradiation of 

ultrahigh-molecular-weight polyethylene: Electron paramagnetic resonance and 

nuclear magnetic resonance spectroscopy and imaging studies of the mechanism of 

subsurface oxidation. . J Polym Sci: Part A Polym Chem 42, 5929-59. 

AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS 2013. Total Hip 

Replacement. http://orthoinfo.aaos.org/topic.cfm?topic=a00377. 

ANDERSON, L. C. & BLAKE, D. J. 1994. The anatomy and biomechanics of the 

hip joint. J Back Musculoskelet Rehabil, 4, 145-53. 

ARTHRITISUK. 2011-2012. Annual Report. 

http://www.arthritisresearchuk.org/about-us/annual-report-and-accounts.aspx. 

ASPENBERG, P. & HERBERTSSON, P. 1996. Periprosthetic bone resorption. 

Particles versus movement. J Bone Joint Surg Br, 78, 641-6. 



References 

268 

 

ATHRITISRESEARCHUK 2011. 

http://www.arthritisresearchuk.org/research/data_on_arthritis/data_on_oa.aspx. 

ATWOOD, S. A., VAN CITTERS, D. W., FURMANSKI, J., RIES, M. D. & 

PRUITT, L. A. 2010. Oxidative Stability and Fatigue Behaviour of Below-melt 

Annealed and Remelted Cross-linked UHMWPE. Transactions of the 56th 

Orthopaedic Research Society, New Orleans, USA. 

BARBOUR, P. S., STONE, M. H. & FISHER, J. 1999. A study of the wear 

resistance of three types of clinically applied UHMWPE for total replacement hip 

prostheses. Biomaterials, 20, 2101-6. 

BAXTER, R. M., STEINBECK, M. J., TIPPER, J. L., PARVIZI, J., 

MARCOLONGO, M. & KURTZ, S. M. 2009. Comparison of periprosthetic tissue 

digestion methods for ultra-high molecular weight polyethylene wear debris 

extraction. J Biomed Mater Res B Appl Biomater, 91, 409-18. 

BAYKAL, D., SISKEY, R. S., HAIDER, H., SAIKKO, V., AHLROOS, T. & 

KURTZ, S. M. 2014. Advances in tribological testing of artificial joint biomaterials 

using multidirectional pin-on-disk testers. Journal of the mechanical behavior of 

biomedical materials, 31, 117-34. 

BHATT, H. & GOSWAMI, T. 2008. Implant wear mechanisms--basic approach. 

Biomed Mater, 3, 042001. 

BHOSALE, A. M. & RICHARDSON, J. B. 2008. Articular cartilage: structure, 

injuries and review of management. Br Med Bull, 87, 77-95. 

BICHARA, D. A., MALCHAU, E., HYLLEHOLT, N., CAKMAK, S. & 

MURATOGLU, O. K. 2013. Particles from vitamin-E-diffused highly cross-linked 

UHMWPE induce less osteolysis compared to virgin highly 

cross-linked UHMWPE in a murine calvarial bone model. Proceedings of the 6th 

UHMWPE International Meeting - Turin. 

BLADEN, C. L., TERAMURA, S., RUSSELL, S. L., FUJIWARA, K., FISHER, J., 

INGHAM, E., TOMITA, N. & TIPPER, J. L. 2013a. Analysis of wear, wear 

particles, and reduced inflammatory potential of vitamin E ultrahigh-molecular-

weight polyethylene for use in total joint replacement. Journal of Biomedical 

Materials Research Part B: Applied Biomaterials, 101B, 458-466. 

BLADEN, C. L., TZU-YIN, L., FISHER, J. & TIPPER, J. L. 2013b. In vitro analysis 

of the cytotoxic and anti-inflammatory effects of antioxidant compounds used as 

additives in ultra high-molecular weight polyethylene in total joint replacement 

components. J Biomed Mater Res B Appl Biomater, 101, 407-13. 



References 

269 

 

BOREK, C., ONG, A., MASON, H., DONAHUE, L. & BIAGLOW, J. E. 1986. 

Selenium and vitamin E inhibit radiogenic and chemically induced transformation in 

vitro via different mechanisms. Proc Natl Acad Sci U S A, 83, 1490-4. 

BOUTIN, P., CHRISTEL, P., DORLOT, J. M., MEUNIER, A., DE 

ROQUANCOURT, A., BLANQUAERT, D., HERMAN, S., SEDEL, L. & 

WITVOET, J. 1988. The use of dense alumina-alumina ceramic combination in total 

hip replacement. J Biomed Mater Res, 22, 1203-32. 

BRADFORD, L., BAKER, D. A., GRAHAM, J., CHAWAN, A., RIES, M. D. & 

PRUITT, L. A. 2004. Wear and surface cracking in early retrieved highly cross-

linked polyethylene acetabular liners. J Bone Joint Surg Am, 86-A, 1271-82. 

BRAGDON, C. R., O'CONNOR, D. O., LOWENSTEIN, J. D., JASTY, M. & 

SYNIUTA, W. D. 1996. The importance of multidirectional motion on the wear of 

polyethylene. Proc Inst Mech Eng H, 210, 157-65. 

BROWN, C., WILLIAMS, S., TIPPER, J. L., FISHER, J. & INGHAM, E. 2007. 

Characterisation of wear particles produced by metal on metal and ceramic on metal 

hip prostheses under standard and microseparation simulation. J Mater Sci Mater 

Med, 18, 819-27. 

BUCKWALTER, J. A., KUETTNER, K. E. & THONAR, E. N. 1985. Age related 

changes in articular cartilage proteoglycans: Electromicroscopic studies. J Orthop 

Res, 3, 251-7. 

BUCKWALTER, J. A. & MANKIN, H. J. 1998. Articular cartilage: degeneration 

and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect, 47, 

487-504. 

BUCKWALTER, J. A., MANKIN, H. J. & GRODZINSKY, A. J. 2005. Articular 

cartilage and osteoarthritis. Instr Course Lect, 54, 465-80. 

CAMPBELL, P., EBRAMZADEH, E., NELSON, S., TAKAMURA, K., DE SMET, 

K. & AMSTUTZ, H. C. 2010. Histological features of pseudotumor-like tissues 

from metal-on-metal hips. Clin Orthop Relat Res, 468, 2321-7. 

CAMPBELL, P., SHEN, F. W. & MCKELLOP, H. 2004. Biologic and tribologic 

considerations of alternative bearing surfaces. Clin Orthop Relat Res, 98-111. 

CHARNLEY, J. 1973. Arthroplasty of the Hip: A New Operation*. Clinical 

Orthopaedics and Related Research, 95, 4-8. 

CHARNLEY, J. & HALLEY, D. K. 1975. Rate of wear in total hip replacement. 

Clin Orthop Relat Res, 170-9. 



References 

270 

 

CHIBA, J., RUBASH, H. E., KIM, K. J. & IWAKI, Y. 1994. The characterization of 

cytokines in the interface tissue obtained from failed cementless total hip 

arthroplasty with and without femoral osteolysis. Clin Orthop Relat Res, 304-12. 

CHO, H. J., WEI, W. J., KAO, H. C. & CHENG, C. K. 2004. Wear behaviour of 

UHMWPE sliding on artificial hip arthroplasty materials. Mater, Chem, Phys, 88, 9-

16. 

CLARKE, I. C., GOOD, V., WILLIAMS, P., SCHROEDER, D., ANISSIAN, L., 

STARK, A., OONISHI, H., SCHULDIES, J. & GUSTAFSON, G. 2000. Ultra-low 

wear rates for rigid-on-rigid bearings in total hip replacements. Proc Inst Mech Eng 

H, 214, 331-47. 

COSTA, L., BRACCO, P., DEL PREVER, E. B., LUDA, M. P. & TROSSARELLI, 

L. 2001. Analysis of products diffused into UHMWPE prosthetic components in 

vivo. Biomaterials, 22, 307-15. 

COSTA, L., LUDA, M. P., TROSSARELLI, L., BRACH DEL PREVER, E. M., 

CROVA, M. & GALLINARO, P. 1998. Oxidation in orthopaedic UHMWPE 

sterilized by gamma-radiation and ethylene oxide. Biomaterials, 19, 659-68. 

CRAWFORD, R. W. & MURRAY, D. W. 1997. Total hip replacement: indications 

for surgery and risk factors for failure. Ann Rheum Dis, 56, 455-7. 

CURRIER, B. H., CURRIER, J. H., COLLIER, J. P., MAYOR, M. B. & VAN 

CITTERS, D. W. 2010. In vivo oxidation of highly cross-linked UHMWPE bearings 

Transactions of the 55th Orthopaedic Research Society, New  

Orleans, USA. 

DANIEL, M., IGLIC, A. & KRALJ-IGLIC, V. 2005. The shape of acetabular 

cartilage optimizes hip contact stress distribution. J Anat, 207, 85-91. 

DE BANDT, M., GROSSIN, M., DRISS, F., PINCEMAIL, J., BABIN-CHEVAYE, 

C. & PASQUIER, C. 2002. Vitamin E uncouples joint destruction and clinical 

inflammation in a transgenic mouse model of rheumatoid arthritis. Arthritis Rheum, 

46, 522-32. 

DEKKER, K., B, B., VAN DER WOODE. L, H., V & BIJLSMA. J, W., J 1992. 

Pain and Disability in Osteoarthritis: A Review of Biobehavioural Mechanisms. 

Journal of Behavioural Medicine, 15. 

DELAUNAY, C., PETIT, I., LEARMONTH, I. D., OGER, P. & VENDITTOLI, P. 

A. 2010. Metal-on-metal bearings total hip arthroplasty: The cobalt and chromium 

ions release concern. Orthop Traumatol Surg Res. 



References 

271 

 

DEVARAJ, S., LI, D. & JIALAL, I. 1996. The effects of alpha tocopherol 

supplementation on monocyte function. Decreased lipid oxidation, interleukin 1 beta 

secretion, and monocyte adhesion to endothelium. J Clin Invest, 98, 756-63. 

DHAOUADI, T., SFAR, I., ABELMOULA, L., JENDOUBI-AYED, S., AOUADI, 

H., BEN ABDELLAH, T., AYED, K., ZOUARI, R. & GORGI, Y. 2007. Role of 

immune system, apoptosis and angiogenesis in pathogenesis of rheumatoid arthritis 

and joint destruction, a systematic review. Tunis Med, 85, 991-8. 

DIPLOCK, A. T. 1983. The role of vitamin E in biological membranes. Ciba Found 

Symp, 101, 45-55. 

DONALDSON, T., MASSIHI, A., BOWSHER, J. & CLARKE, I. 2005. Co-Cr 

Head Roughness and its Effect on Wear of UHMWPE and XLPE Cups. Bioceramics 

and Alternative Bearings in Joint Arthroplasty. Steinkopff. 

DORR, L. D., WAN, Z., LONGJOHN, D. B., DUBOIS, B. & MURKEN, R. 2000. 

Total hip arthroplasty with use of the Metasul metal-on-metal articulation. Four to 

seven-year results. J Bone Joint Surg Am, 82, 789-98. 

DORR, L. D., WAN, Z., SHAHRDAR, C., SIRIANNI, L., BOUTARY, M. & YUN, 

A. 2005. Clinical performance of a Durasul highly cross-linked polyethylene 

acetabular liner for total hip arthroplasty at five years. J Bone Joint Surg Am, 87, 

1816-21. 

DRAKE, R. L., VOGL, W. & MITCHELL, A. W. M. 2005. Regional Anatomy - 

Transition from Abdomen and Pelvis to Lower Limb. Grays Anatomy for Students 

Elsevier. 

DRUMMOND, J. C. & HOOVER, A. A. 1937. Studies on vitamin E (tocopherol). 

Biochem J, 31, 1852-60. 

DUPONT 1997. Synovial plicae of the knee: controversies and review. CLin Sports 

Med, 16, 87-122. 

EMERSON, O. H., EMERSON, G. A. & EVANS, H. M. 1936. The Isolation From 

Cottonseed Oil Of An Alcohol Resembling Alpha Tocopherol From Wheat Germ 

Oil. Science, 83, 421. 

ENDO, M. M., BARBOUR, P. S., BARTON, D. C., FISHER, J., TIPPER, J. L., 

INGHAM, E. & STONE, M. H. 2001. Comparative wear and wear debris under 

three different counterface conditions of crosslinked and non-crosslinked ultra high 

molecular weight polyethylene. Biomed Mater Eng, 11, 23-35. 

FELSON, D. T. & ZHANG, Y. 1998. An update on the epidemiology of knee and 

hip osteoarthritis with a view to prevention. Arthritis Rheum, 41, 1343-55. 



References 

272 

 

FIGGITT, M., NEWSON, R., LESLIE, I. J., FISHER, J., INGHAM, E. & CASE, C. 

P. 2010. The genotoxicity of physiological concentrations of chromium (Cr(III) and 

Cr(VI)) and cobalt (Co(II)): an in vitro study. Mutat Res, 688, 53-61. 

FISHER, J. & INGHAM, E. 2004. Wear Debris. Encyclopedia of Biomaterials and 

Biomedical Engineering, 1772 - 1779. 

FOURNIER, C. 2005. Where do T cells stand in rheumatoid arthritis? Joint Bone 

Spine, 72, 527-32. 

FUJITA, K., IWASAKI, M., OCHI, H., FUKUDA, T., MA, C., MIYAMOTO, T., 

TAKITANI, K., NEGISHI-KOGA, T., SUNAMURA, S., KODAMA, T., 

TAKAYANAGI, H., TAMAI, H., KATO, S., ARAI, H., SHINOMIYA, K., ITOH, 

H., OKAWA, A. & TAKEDA, S. 2012. Vitamin E decreases bone mass by 

stimulating osteoclast fusion. Nature Medicine, 18, 589-594. 

GALLO, J., KAMINEK, P., TICHA, V., RIHAKOVA, P. & DITMAR, R. 2002. 

Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. 

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 146, 21-8. 

GALVIN, A., KANG, L., TIPPER, J., STONE, M., INGHAM, E., JIN, Z. & 

FISHER, J. 2006. Wear of crosslinked polyethylene under different tribological 

conditions. J Mater Sci Mater Med, 17, 235-43. 

GETGOOD, A., BHULLAR, T. P. S. & RUSHTON, N. 2009. Current concepts in 

articular cartilage repair. Orthopaedics and Trauma, 23, 189-200. 

GUILAK, F. 1995. Compression-induced changes in the shape and volume of the 

chondrocyte nucleus. J Biomech, 28, 1529-41.GIJSMAN, P., SMELT, H. J. & 

SCHUMANN, D. 2010. Hindered amine light stabilizers: An alternative for 

radiation cross-linked UHMwPE implants. Biomaterials, 31, 6685-91. 

GLYN-JONES, S., PANDIT, H., KWON, Y. M., DOLL, H., GILL, H. S. & 

MURRAY, D. W. 2009. Risk factors for inflammatory pseudotumour formation 

following hip resurfacing. J Bone Joint Surg Br, 91, 1566-74. 

GOMEZ-BARRENA, E., PUERTOLAS, J. A., MUNUERA, L. & KONTTINEN, Y. 

T. 2008. Update on UHMWPE research: from the bench to the bedside. Acta Orthop, 

79, 832-40. 

GOMEZ, P. F. & MORCUENDE, J. A. 2005. Early attempts at hip arthroplasty--

1700s to 1950s. Iowa Orthop J, 25, 25-9. 

GRAY, H. 1918. Anatomy of the Human Body - Articulation of the Lower 

Extremity. www.Bartleby.com/107. 

GREEN, J. M., HALLAB, N. J., LIAO, Y. S., NARAYAN, V. S., SCHWARZ, E. 

M. & XIE, C. 2013. Anti-oxidation treatment of ultra high molecular weight 



References 

273 

 

polyethylene components to decrease periprosthetic osteolysis: evaluation of 

osteolytic and osteogenic properties of wear debris particles in a murine calvaria 

model. Current Rheumatology Reports, 15, 325. 

GREEN, T. R., FISHER, J., STONE, M., WROBLEWSKI, B. M. & INGHAM, E. 

1998. Polyethylene particles of a 'critical size' are necessary for the induction of 

cytokines by macrophages in vitro. Biomaterials, 19, 2297-2302. 

GRUPP, T. M., MEISEL, H. J., COTTON, J. A., SCHWIESAU, J., FRITZ, B., 

BLOMER, W. & JANSSON, V. 2010. Alternative bearing materials for 

intervertebral disc arthroplasty. Biomaterials, 31, 523-31. 

HALL, R. M., UNSWORTH, A., WROBLEWSKI, B. M. & BURGESS, I. C. 1994. 

Frictional characterisation of explanted Charnley hip prostheses. Wear, 175, 159. 

HART, A. J., BUDDHDEV, P., WINSHIP, P., FARIA, N., POWELL, J. J. & 

SKINNER, J. A. 2008. Cup inclination angle of greater than 50 degrees increases 

whole blood concentrations of cobalt and chromium ions after metal-on-metal hip 

resurfacing. Hip Int, 18, 212-9. 

HATFIELD, D. L. & GLADYSHEV, V. N. 2009. The Outcome of Selenium and 

Vitamin E Cancer Prevention Trial (SELECT) reveals the need for better 

understanding of selenium biology. Mol Interv, 9, 18-21. 

HAYASE, Y., MUGURUMA, Y. & LEE, M. Y. 1997. Osteoclast development from 

hematopoietic stem cells: apparent divergence of the osteoclast lineage prior to 

macrophage commitment. Exp Hematol, 25, 19-25. 

HILL, K. E., MONTINE, T. J., MOTLEY, A. K., LI, X., MAY, J. M. & BURK, R. 

F. 2003. Combined deficiency of vitamins E and C causes paralysis and death in 

guinea pigs. Am J Clin Nutr, 77, 1484-8. 

HILL, K. E., MOTLEY, A. K., LI, X., MAY, J. M. & BURK, R. F. 2001. Combined 

selenium and vitamin E deficiency causes fatal myopathy in guinea pigs. J Nutr, 131, 

1798-802. 

HOOTMAN, J., BOLEN, J. & HELMICK, C. 2006. Prevalence of doctor-diagnosed 

arthritis and arthritis-attributable activity limitation - United States, 2003-2005. 

MMWR, 55, 1089-1092. 

HOWIE, D. W. 1990. Tissue response in relation to type of wear particles around 

failed hip arthroplasties. J Arthroplasty, 5, 337-48. 

HOWIE, D. W., HAYNES, D. R., ROGERS, S. D., MCGEE, M. A. & PEARCY, M. 

J. 1993. The response to particulate debris. Orthop Clin North Am, 24, 571-81. 

HUKKANEN, M., CORBETT, S. A., BATTEN, J., KONTTINEN, Y. T., 

MCCARTHY, I. D., MACLOUF, J., SANTAVIRTA, S., HUGHES, S. P. & 



References 

274 

 

POLAK, J. M. 1997. Aseptic loosening of total hip replacement. Macrophage 

expression of inducible nitric oxide synthase and cyclo-oxygenase-2, together with 

peroxynitrite formation, as a possible mechanism for early prosthesis failure. J Bone 

Joint Surg Br, 79, 467-74. 

INGHAM, E. & FISHER, J. 2000. Biological reactions to wear debris in total joint 

replacement. Proceedings of the Institution of Mechanical Engineers Part H-Journal 

of Engineering in Medicine, 214, 21-37. 

INGHAM, E., GREEN, T. R., STONE, M. H., KOWALSKI, R., WATKINS, N. & 

FISHER, J. 2000. Production of TNF-alpha and bone resorbing activity by 

macrophages in response to different types of bone cement particles. Biomaterials, 

21, 1005-13. 

INSTITUTE OF MEDICINE, F. A. N. B. 2000. Dietary Reference Intakes: Vitamin 

C, Vitamin E, Selenium, and Carotenoids. . National Academy Press. 

ITO, H., MALONEY, C. M., CROWNINSHIELD, R. D., CLOHISY, J. C., 

MCDONALD, D. J. & MALONEY, W. J. 2010. In vivo femoral head damage and 

its effect on polyethylene wear. J Arthroplasty, 25, 302-8. 

JACOBS, J. J., SKIPOR, A. K., DOORN, P. F., CAMPBELL, P., SCHMALZRIED, 

T. P., BLACK, J. & AMSTUTZ, H. C. 1996. Cobalt and chromium concentrations 

in patients with metal on metal total hip replacements. Clin Orthop Relat Res, S256-

63. 

JOHNSTONE, B., ALINI, M., CUCCHIARINI, M., DODGE, G. R., EGLIN, D., 

GUILAK, F., MADRY, H., MATA, A., MAUCK, R. L., SEMINO, C. E. & 

STODDART, M. J. 2013. Tissue engineering for articular cartilage repair--the state 

of the art. Eur Cell Mater, 25, 248-67. 

JOYCE, T. J. 2010. Wear testing of a DJOA finger prosthesis in vitro. J Mater Sci 

Mater Med, 21, 2337-43. 

JOYCE, T. J. & UNSWORTH, A. 2004. Wear studies of all UHMWPE couples 

under various bio-tribological conditions. J Appl Biomater Biomech, 2, 29-34. 

KANG, L., GALVIN, A. L., BROWN, T. D., FISHER, J. & JIN, Z. M. 2008. Wear 

simulation of ultra-high molecular weight polyethylene hip implants by 

incorporating the effects of cross-shear and contact pressure. Proc Inst Mech Eng H, 

222, 1049-64. 

KARLSON, E. W., MANDL, L. A., AWEH, G. N., SANGHA, O., LIANG, M. H. & 

GRODSTEIN, F. 2003. Total hip replacement due to osteoarthritis: The importance 

of age, obesity, and other modifiable risk factors. American Journal of Medicine, 

114, 93-98. 



References 

275 

 

KATZER, A., MARQUARDT, H., WESTENDORF, J., WENING, J. V. & VON 

FOERSTER, G. 2002. Polyetheretherketone--cytotoxicity and mutagenicity in vitro. 

Biomaterials, 23, 1749-59. 

KING, R. N., V. S. ERNSBERGER, C. HANES, M. 2010. Characterization of 

gamma-irradiated UHMWPE stabilized with a hindered-phenol antioxidant. 

Transactions of the 56th Orthopaedic Research Society, New  

Orleans, USA. 

KINOV, P., TZONCHEVA, A. & TIVCHEV, P. 2010. Evidence Linking Elevated 

Oxidative Stress And Aseptic Loosening Of Hip Arthroplasty. Comptes Rendus De 

L Academie Bulgare Des Sciences, 63, 1231-1238. 

KORDUBA, L. A. & WANG, A. 2011. The effect of cross-shear on the wear of 

virgin and highly-crosslinked polyethylene. Wear, 271, 1220-1223.KOVAL KJ, Z. J. 

2000. Chapter 1 - Anatomy. Hip Fractures, A practical guide to management, 1-8. 

KOVAL, K. J. & ZUCKERMAN, J. D. 2000. Anatomy in. "Hip Fractures, A 

practical guide to management", 1-8. 

KRESS, A. M., SCHMIDT, R., HOLZWARTH, U., FORST, R. & MUELLER, L. 

A. 2010. Excellent results with cementless total hip arthroplasty and alumina-on-

alumina pairing: minimum ten-year follow-up. Int Orthop. 

KURTZ, S. M. 2009a. In Vivo Oxidation of UHMWPE in. "UHMWPE Biomaterials 

Handbook" 2nd Edition, 325-339. 

KURTZ, S. M. 2009b. The origins of UHMWPE in total hip arthroplasty in. 

"UHMWPE Biomaterials Handbook", 31-41. 

KURTZ, S. M. 2009c. Packaging and Sterilization of UHMWPE in. "UHMWPE 

Biomaterials Handbook", 21-29. 

KURTZ, S. M. 2009d. A Primer on UHMWPE in. "UHMWPE Biomaterials 

Handbook" 2nd Edition, 1-6. 

KURTZ, S. M., MURATOGLU, O. K., EVANS, M. & EDIDIN, A. A. 1999. 

Advances in the processing, sterilization, and crosslinking of ultra-high molecular 

weight polyethylene for total joint arthroplasty. Biomaterials, 20, 1659-88. 

KURTZ, S. M. & ONG, K. 2009. Contempary total hip arthroplasty: Hard on hard 

bearings and highly crosslinked UHMWPE in. "UHMWPE Biomaterials Handbook" 

2nd Edition, 55-72. 

KWON, Y. M., GLYN-JONES, S., SIMPSON, D. J., KAMALI, A., MCLARDY-

SMITH, P., GILL, H. S. & MURRAY, D. W. 2010. Analysis of wear of retrieved 



References 

276 

 

metal-on-metal hip resurfacing implants revised due to pseudotumours. J Bone Joint 

Surg Br, 92, 356-61. 

LANGTON, D. J., JAMESON, S. S., JOYCE, T. J., HALLAB, N. J., NATU, S. & 

NARGOL, A. V. F. 2010. Early failure of metal-on-metal bearings in hip resurfacing 

and large-diameter total hip replacement: A CONSEQUENCE OF EXCESS WEAR. 

J Bone Joint Surg Br, 92, 38-46. 

LAURENT, P. M., GALLARDO, L. A., KUNZE, J. & WIMMER, M. A. 2010. 

Europium Stearate increases the oxidation resistance of UHMWPE Transactions of 

the 56th Orthopaedic Research Society, New  

Orleans, USA. 

LEARMONTH, I. D., YOUNG, C. & RORABECK, C. 2007. The operation of the 

century: total hip replacement. Lancet, 370, 1508-1519. 

LI-WEBER, M., GIAISI, M., TREIBER, M. K. & KRAMMER, P. H. 2002. Vitamin 

E inhibits IL-4 gene expression in peripheral blood T cells. Eur J Immunol, 32, 

2401-8. 

LIU, A. 2012. Determination of the Biological Response and Cellular Uptake 

Mechanisms of Nanometre-sized UHMWPE Wear Particles from Total Hip 

Replacements. Ph.D. University of Leeds. 

LODISH, H., BURK, A. & ZIPURSKY, S. L. 2000. 12.4. DNA Damage and Repair 

and Their Role in Carcinogenesis. Molecular Cell Biology 4th Edition. 

LOMBARDI, A. V., JR., MALLORY, T. H., DENNIS, D. A., KOMISTEK, R. D., 

FADA, R. A. & NORTHCUT, E. J. 2000. An in vivo determination of total hip 

arthroplasty pistoning during activity. J Arthroplasty, 15, 702-9. 

LORENZO, J. A., SOUSA, S. L., FONSECA, J. M., HOCK, J. M. & MEDLOCK, 

E. S. 1987. Colony-stimulating factors regulate the development of multinucleated 

osteoclasts from recently replicated cells in vitro. J Clin Invest, 80, 160-4. 

MACHLIN, L. J., FILIPSKI, R., NELSON, J., HORN, L. R. & BRIN, M. 1977. 

Effects of a prolonged vitamin E deficiency in the rat. J Nutr, 107, 1200-8. 

MACPHERSON, G. J. & BREUSCH, S. J. 2010. Metal-on-metal hip resurfacing: a 

critical review. Arch Orthop Trauma Surg. 

MALCHAU, H., HERBERTS, P. & AHNFELT, L. 1993. Prognosis of total hip 

replacement in Sweden. Follow-up of 92,675 operations performed 1978-1990. Acta 

Orthop Scand, 64, 497-506. 

MAQUET, P., G, J. 1985. Biomechanics of the Hip. Chapter 1 - Biomechanics of the 

Hip, 1-2. 



References 

277 

 

MCCARTHY, M., BROWN, T. E. & SALEH, K. J. 2009. Etiology of Hip Arthritis 

in. "Arthritis & Arthroplasty: The Hip", 3-9. 

MCCARTHY M, B. T., SALEH KJ 2009. Chapter 1 - Etiology of Hip Arthritis. 

Arthritis & Arthroplasty: The Hip, 3-9. 

MCDEVITT, C. A. 1973. Biochemistry of articular cartilage. Nature of 

proteoglycans and collagen of articular cartilage and their role in ageing and in 

osteoarthrosis. Ann Rheum Dis, 32, 364-78. 

MCKEE, G. K. & CHEN, S. C. 1973. The statistics of the McKee-Farrar method of 

total hip replacement. Clin Orthop Relat Res, 26-33. 

MCKEE, G. K. & WATSON-FARRAR, J. 1966. Replacement of arthritic hips by 

the McKee-Farrar prosthesis. J Bone Joint Surg Br, 48, 245-59. 

MENDENHALL, S. 2008. Hospital resources and implant cost management - a 

2007 update. Orthop Network News, 19, 13-19. 

MHRA 2010. Medical Device Alert: ASR™ hip replacement implants manufactured 

by DePuy International Ltd  

 

MOSELEY, J. B., O'MALLEY, K., PETERSEN, N. J., MENKE, T. J., BRODY, B. 

A., KUYKENDALL, D. H., HOLLINGSWORTH, J. C., ASHTON, C. M. & 

WRAY, N. P. 2002. A Controlled Trial of Arthroscopic Surgery for Osteoarthritis of 

the Knee. New England Journal of Medicine, 347, 81-88. 

MULLINS, M. M., NORBURY, W., DOWELL, J. K. & HEYWOOD-

WADDINGTON, M. 2007. Thirty-year results of a prospective study of Charnley 

total hip arthroplasty by the posterior approach. J Arthroplasty, 22, 833-9. 

MURATOGLU, O. K. 2009. Highly crosslinked and melted UHMWPE in. 

"UHMWPE Biomaterials Handbook" 2nd Edition, 197-203. 

MURATOGLU, O. K., BRAGDON, C. R., O'CONNOR, D. O., JASTY, M. & 

HARRIS, W. H. 2001. A novel method of cross-linking ultra-high-molecular-weight 

polyethylene to improve wear, reduce oxidation, and retain mechanical properties. 

Recipient of the 1999 HAP Paul Award. J Arthroplasty, 16, 149-60. 

MURRAY, D. W. & RUSHTON, N. 1990. Macrophages stimulate bone resorption 

when they phagocytose particles. J Bone Joint Surg Br, 72, 988-92. 

NARAYAN, V. S., KING, R., WARNER, D. & SHARP, M. 2010. Evaluation of 

antioxidant stabilized UHMWPE materials. Transactions of the 56th Orthopaedic 

Research Society, New  

Orleans, USA. 



References 

278 

 

NATIONAL JOINT REGISTRY 2013. Patient Characteristics for Hip Revision 

Procedures in 2013. National Joint Registry 10th Annual Report, 81. 

NEUMANN, D. A. 1999. Joint deformity and dysfunction: a basic review of 

underlying mechanisms. Arthritis Care Res, 12, 139-51. 

NOAMAN, E., ZAHRAN, A. M., KAMAL, A. M. & OMRAN, M. F. 2002. Vitamin 

E and selenium administration as a modulator of antioxidant defense system: 

biochemical assessment and modification. Biol Trace Elem Res, 86, 55-64. 

ORAL, E., CHRISTENSEN, S. D., MALHI, A. S., WANNOMAE, K. K. & 

MURATOGLU, O. K. 2006. Wear resistance and mechanical properties of highly 

cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J 

Arthroplasty, 21, 580-91. 

ORAL, E., GHALI, B. W., NEILS, A. & MURATOGLU, O. K. 2012. A new 

mechanism of oxidation in ultrahigh molecular weight polyethylene caused by 

squalene absorption. J Biomed Mater Res B Appl Biomater, 100, 742-51. 

ORAL, E., GREENBAUM, E. S., MALHI, A. S., HARRIS, W. H. & 

MURATOGLU, O. K. 2005. Characterization of irradiated blends of alpha-

tocopherol and UHMWPE. Biomaterials, 26, 6657-63. 

ORAL, E., WANNOMAE, K. K., HAWKINS, N., HARRIS, W. H. & 

MURATOGLU, O. K. O. K. 2004. [alpha]-Tocopherol-doped irradiated UHMWPE 

for high fatigue resistance and low wear. Biomaterials, 25, 5515. 

ORAL, E., WANNOMAE, K. K., ROWELL, S. L. & MURATOGLU, O. K. 2007. 

Diffusion of vitamin E in ultra-high molecular weight polyethylene. Biomaterials, 

28, 5225-37. 

OSTERUD, B. & BJORKLID, E. 2003. Role of monocytes in atherogenesis. Physiol 

Rev, 83, 1069-112. 

PANDIT, H., GLYN-JONES, S., MCLARDY-SMITH, P., GUNDLE, R., 

WHITWELL, D., GIBBONS, C. L., OSTLERE, S., ATHANASOU, N., GILL, H. S. 

& MURRAY, D. W. 2008. Pseudotumours associated with metal-on-metal hip 

resurfacings. J Bone Joint Surg Br, 90, 847-51. 

PARK, D. Y., MIN, B. H., KIM, D. W., SONG, B. R., KIM, M. & KIM, Y. J. 2013. 

Polyethylene wear particles play a role in development of osteoarthritis via 

detrimental effects on cartilage, meniscus, and synovium. Osteoarthritis and 

Cartilage. 

PAZZAGLIA, U. E., DELL'ORBO, C. & WILKINSON, M. J. 1987. The foreign 

body reaction in total hip arthroplasties. A correlated light-microscopy, SEM, and 

TEM study. Arch Orthop Trauma Surg, 106, 209-19. 



References 

279 

 

PELLICCI, P. M., WILSON, P. D., SLEDGE, C. B., SALVATI, E. A., RANAWAT, 

C. S., POSS, R. & CALLAGHAN, J. J. 1985. Long-Term Results of Revision Total 

Hip-Replacement - a Follow-up Report. Journal of Bone and Joint Surgery-

American Volume, 67A, 513-516. 

QUINN, P. J. 2004. Is the distribution of alpha-tocopherol in membranes consistent 

with its putative functions? Biochemistry (Mosc), 69, 58-66. 

RAMAKRISHNAN, P., HECHT, B. A., PEDERSEN, D. R., LAVERY, M. R., 

MAYNARD, J., BUCKWALTER, J. A. & MARTIN, J. A. 2010. Oxidant 

Conditioning Protects Cartilage from Mechanically Induced Damage. Journal Of 

Orthopaedic Research, 28, 914-920. 

REITER, E., JIANG, Q. & CHRISTEN, S. 2007. Anti-inflammatory properties of 

alpha- and gamma-tocopherol. Mol Aspects Med, 28, 668-91. 

RICCIARELLI, R., TASINATO, A., CLEMENT, S., OZER, N. K., 

BOSCOBOINIK, D. & AZZI, A. 1998. alpha-Tocopherol specifically inactivates 

cellular protein kinase C alpha by changing its phosphorylation state. Biochem J, 

334 ( Pt 1), 243-9. 

RICCIARELLI, R., ZINGG, J. M. & AZZI, A. 2000. Vitamin E reduces the uptake 

of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic 

smooth muscle cells. Circulation, 102, 82-7. 

ROCKWOOD, C. A., JR. & WIRTH, M. A. 2002. Observation on retrieved 

Hylamer glenoids in shoulder arthroplasty: problems associated with sterilization by 

gamma irradiation in air. J Shoulder Elbow Surg, 11, 191-7. 

ROGERS, M., BLOM, A. W., BARNETT, A., KARANTANA, A. & BANNISTER, 

G. C. 2009. Revision for recurrent dislocation of Total Hip Replacement. Hip 

International, 19, 109-113. 

ROSE, R. M., CIMINO, W. R., ELLIS, E. & CRUGNOLA, A. N. 1982. Exploratory 

investigations on the structure dependence of the wear resistance of polyethylene. 

Wear, 77, 89-104. 

ROWELL, S. L., YABANNAVAR, P. & MURATOGLU, O. K. 2010. Oxidative 

stability of simulator tested acetabular liners after 7 years shelf-aging in air. 

Transactions of the 56th Orthopaedic Research Society, New  

Orleans, USA. 

SABOKBAR, A., FUJIKAWA, Y., NEALE, S., MURRAY, D. W. & 

ATHANASOU, N. A. 1997. Human arthroplasty derived macrophages differentiate 

into osteoclastic bone resorbing cells. Annals Of The Rheumatic Diseases, 56, 414-

420. 



References 

280 

 

SAITO, S., ISHII, T., MORI, S., HOSAKA, K., OOTAKI, M. & TOKUHASHI, Y. 

2010. Long-term results of metasul metal-on-metal total hip arthroplasty. 

Orthopedics, 33. 

SANTAVIRTA, S., BOHLER, M., HARRIS, W. H., KONTTINEN, Y. T., 

LAPPALAINEN, R., MURATOGLU, O., RIEKER, C. & SALZER, M. 2003. 

Alternative materials to improve total hip replacement tribology. Acta Orthop Scand, 

74, 380-8. 

SCHEINECKER, C., MARC, C. H., MD, MPH, ALAN, J. S., MD, FRCP, JOSEF, 

S. S., MD, MICHAEL, E. W., MD, MICHAEL, H. W. & MD 2009. The Role of T 

Cells in Rheumatoid Arthritis. Rheumatoid Arthritis. Philadelphia: Mosby. 

SCHNEIDER, C. 2005. Chemistry and biology of vitamin E. Mol Nutr Food Res, 

49, 7-30. 

SCHOLES, S. C., INMAN, I. A., UNSWORTH, A. & JONES, E. 2008. Tribological 

assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular 

cup articulating against an alumina femoral head. Proc Inst Mech Eng H, 222, 273-

83. 

SCHOLES, S. C. & UNSWORTH, A. 2006. The effects of proteins on the friction 

and lubrication of artificial joints. Proc Inst Mech Eng H, 220, 687-93. 

SCHOLES, S. C., UNSWORTH, A. & GOLDSMITH, A. A. 2000. A frictional 

study of total hip joint replacements. Phys Med Biol, 45, 3721-35. 

SCHWARZ, E., BUKATA S, V., BENZ, E., ROSIER, R. N., PUZAS, J. E. & 

O'KEEFE, R., J. 1999. NFkB and TNF-alpha are stimulated by titanium particles and 

are essential for in vivo bone resorption. In Proceedings of the 45th annual Meeting 

of the Orthopaedic Research Society, p305. 

SEED, S. M., DUNICAN, K. C. & LYNCH, A. M. 2009. Osteoarthritis: a review of 

treatment options. Geriatrics, 64, 20-9. 

SHEPPARD, A. J., PENNINGTON, J. A. & WEIHRAUCH, J. L. 1993. Analysis 

and distribution of vitamin E in vegetable oils and foods. Vitamin E in health and 

disease, 9-31. 

SHIH, J. C., JONAS, R. H. & SCOTT, M. L. 1977. Oxidative deterioration of the 

muscle proteins during nutritional muscular dystrophy in chicks. J Nutr, 107, 1786-

91. 

SIEBER, H. P., RIEKER, C. B. & KOTTIG, P. 1999. Analysis of 118 second-

generation metal-on-metal retrieved hip implants. J Bone Joint Surg Br, 81, 46-50. 



References 

281 

 

SOBIERAJ, M. C. & RIMNAC, C. M. 2009. Ultra high molecular weight 

polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed 

Mater, 2, 433-43. 

SUTULA, L. C., COLLIER, J. P., SAUM, K. A., CURRIER, B. H., CURRIER, J. 

H., SANFORD, W. M., MAYOR, M. B., WOODING, R. E., SPERLING, D. K., 

WILLIAMS, I. R. & ET AL. 1995. The Otto Aufranc Award. Impact of gamma 

sterilization on clinical performance of polyethylene in the hip. Clin Orthop Relat 

Res, 28-40. 

TAI, Z., CHEN, Y., AN, Y., YAN, X. & XUE, Q. 2012. Tribological Behavior of 

UHMWPE Reinforced with Graphene Oxide Nanosheets. Tribology Letters, 46, 55-

63. 

TATEIWA, T., CLARKE, I. C., WILLIAMS, P. A., GARINO, J., MANAKA, M., 

SHISHIDO, T., YAMAMOTO, K. & IMAKIIRE, A. 2008. Ceramic total hip 

arthroplasty in the United States: safety and risk issues revisited. Am J Orthop (Belle 

Mead NJ), 37, E26-31. 

TERAMURA, S., RUSSEL, S., INGHAM, E., FISHER, J., TOMITA, N., 

FUJIWARA, K. & TIPPER, J. 2009. Reduced Biological Response to Wear 

Particles from UHMWPE containing Vitamin E. 

TERAMURA, S., SAKODA, H., TERAO, T., ENDO, M. M., FUJIWARA, K. & 

TOMITA, N. 2008. Reduction of wear volume from ultrahigh molecular weight 

polyethylene knee components by the addition of vitamin E. J Orthop Res, 26, 460-

4. 

TIPPER, J. L., GALVIN, A. L., WILLIAMS, S., MCEWEN, H. M., STONE, M. H., 

INGHAM, E. & FISHER, J. 2006. Isolation and characterization of UHMWPE wear 

particles down to ten nanometers in size from in vitro hip and knee joint simulators. 

J Biomed Mater Res A, 78, 473-80. 

TIPPER, J. L., HATTON, A., NEVELOS, J. E., INGHAM, E., DOYLE, C., 

STREICHER, R., NEVELOS, A. B. & FISHER, J. 2002. Alumina-alumina artificial 

hip joints. Part II: characterisation of the wear debris from in vitro hip joint 

simulations. Biomaterials, 23, 3441-8. 

TIPPER, J. L., INGHAM, E., HAILEY, J. L., BESONG, A. A., FISHER, J., 

WROBLEWSKI, B. M. & STONE, M. H. 2000. Quantitative analysis of 

polyethylene wear debris, wear rate and head damage in retrieved Charnley hip 

prostheses. J Mater Sci Mater Med, 11, 117-24. 

TIPPER, J. L., INGHAM, E., JIN, Z. M. & FISHER, J. 2005. The science of metal-

on-metal articulation. Current Orthopaedics, 19, 280-287. 



References 

282 

 

TIPPER, J. L., LIU, T.-Y. & BLADEN, C. L. 2011. Cytotoxicity of Anti-Oxidant 

Compounds in Human Macrophages Transactions of the 57th Orthopaedic Research 

Society, California, USA. 

TOLEDO-PEREYRA, L. H. 2004. John Charnley--father of modern total hip 

replacement. J Invest Surg, 17, 299-301. 

TOWHEED, T. E. & HOCHBERG, M. C. 1996. Health-related quality of life after 

total hip replacement. Semin Arthritis Rheum, 26, 483-91. 

TREUHAFT, P. S. & MCCARTY, D. J. 1971. Synovial fluid pH, lactate, oxygen 

and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum, 14, 

475-84. 

TURELL, M., WANG, A. & BELLARE, A. 2003. Quantification of the effect of 

cross-path motion on the wear rate of ultra-high molecular weight polyethylene. 

Wear, 255, 1034-1039. 

UTZSCHNEIDER, S., BECKER, F., GRUPP, T. M., SIEVERS, B., PAULUS, A., 

GOTTSCHALK, O. & JANSSON, V. 2010. Inflammatory response against different 

carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. 

Acta Biomater, 6, 4296-304. 

VISURI, T., PUKKALA, E., PAAVOLAINEN, P., PULKKINEN, P. & RISKA, E. 

B. 1996. Cancer risk after metal on metal and polyethylene on metal total hip 

arthroplasty. Clin Orthop Relat Res, S280-9. 

VISURI, T. I., PUKKALA, E., PULKKINEN, P. & PAAVOLAINEN, P. 2006. 

Cancer incidence and causes of death among total hip replacement patients: a review 

based on Nordic cohorts with a special emphasis on metal-on-metal bearings. Proc 

Inst Mech Eng H, 220, 399-407. 

WALKER, P. S., BLUNN, G. W. & LILLEY, P. A. 1996. Wear testing of materials 

and surfaces for total knee replacement. J Biomed Mater Res, 33, 159-75. 

WANG, A. 2006. Wear, oxidation and mechanical properties of a sequentially 

irradiated and annealed UHMWPE in total joint replacement. Journal of Physics D: 

Applied Physics, 39, 3213. 

WANG, A., POLINENI, V. K., ESSNER, A., SOKOL, M., SUN, D. C., STARK, C. 

& DUMBLETON, J. H. 1997. The significance of nonlinear motion in the wear 

screening of orthopaedic implant materials. American Society for Testing and 

Materials, 2, 239-245. 

WANNOMAE, K. K., CHRISTENSEN, S. D., MICHELI, B. R., ROWELL, S. L., 

SCHROEDER, D. W. & MURATOGLU, O. K. 2010. Delamination and adhesive 

wear behavior of alpha-tocopherol-stabilized irradiated ultrahigh-molecular-weight 

polyethylene. J Arthroplasty, 25, 635-43. 



References 

283 

 

WEBER, B. G. 1996. Experience with the Metasul total hip bearing system. Clin 

Orthop Relat Res, S69-77. 

WILES, P. 1957. The surgery of the osteoarthritic hip. Br J Surg, 45, 488-97. 

WILLMANN, G. 1996. Development in medical-grade alumina during the past two 

decades. Journal of Materials Processing Technology, 56, 168. 

WINTER, M., GRISS, P., SCHELLER, G. & MOSER, T. 1992. Ten- to 14-year 

results of a ceramic hip prosthesis. Clin Orthop Relat Res, 73-80. 

WOLF, C., LEDERER, K., PFRAGNER, R., SCHAUENSTEIN, K., INGOLIC, E. 

& SIEGL, V. 2007. Biocompatibility of ultra-high molecular weight polyethylene 

(UHMW-PE) stabilized with alpha-tocopherol used for joint endoprostheses 

assessed in vitro. J Mater Sci Mater Med, 18, 1247-52. 

WROBLEWSKI, B. M., SINEY, P. D. & FLEMING, P. A. 2005. Low-friction 

arthroplasty of the hip using alumina ceramic and cross-linked polyethylene. A 17-

year follow-up report. J Bone Joint Surg Br, 87, 1220-1. 

YAMAMOTO, K., CLARKE, I. C., MASAOKA, T., OONISHI, H., WILLIAMS, P. 

A., GOOD, V. D. & IMAKIIRE, A. 2001. Microwear phenomena of ultrahigh 

molecular weight polyethylene cups and debris morphology related to gamma 

radiation dose in simulator study. J Biomed Mater Res, 56, 65-73. 

YAMAMOTO, K., IMAKIIRE, A., MASAOKA, T., SHISHIDO, T., MIZOUE, T., 

CLARKE, I. C., SHOJI, H., KAWANABE, K. & TAMURA, J. 2003. Wear mode 

and wear mechanism of retrieved acetabular cups. Int Orthop, 27, 286-90. 

YUB, S. & DENISOV, E. T. 1974. Mechanism of the inhibiting activity of iminoxyl 

radicals during oxidation of polypropylene and polyethylene. Vysokomol Soyed, 

A14, 2313-2316. 

ZHANG, C., TANG, T., REN, W., ZHANG, X. & DAI, K. 2008. Influence of 

mouse genetic background on wear particle-induced in vivo inflammatory osteolysis. 

Inflamm Res, 57, 211-5. 

 

ABU-AMER, Y., DARWECH, I. & CLOHISY, J. C. 2007. Aseptic loosening of 

total joint replacements: mechanisms underlying osteolysis and potential therapies. 

Arthritis Res Ther, 9 Suppl 1, S6. 

AFFATATO, S., SPINELLI, M., ZAVALLONI, M., MAZZEGA-FABBRO, C. & 

VICECONTI, M. 2008. Tribology and total hip joint replacement: current concepts 

in mechanical simulation. Med Eng Phys, 30, 1305-17. 



References 

284 

 

AFFATATO, S., BRACCO, P., COSTA, L., VILLA, T., QUAGLINI, V. & TONI, 

A. 2012. In vitro wear performance of standard, crosslinked, and vitamin-E-blended 

UHMWPE. J Biomed Mater Res A, 100, 554-60. 

AL-HAJJAR, M., LESLIE, I. J., TIPPER, J., WILLIAMS, S., FISHER, J. & 

JENNINGS, L. M. 2010. Effect of cup inclination angle during microseparation and 

rim loading on the wear of BIOLOX(R) delta ceramic-on-ceramic total hip 

replacement. J Biomed Mater Res B Appl Biomater, 95, 263-8. 

AL-MA'ADEED, M. A., AL-QARADAWI, I. Y., MADI, N. & AL-THANI, N. J. 

2006. The effect of gamma irradiation and shelf aging in air on the oxidation of 

ultra-high molecular weight polyethylene. Applied Surface Science, 252, 3316. 

ALAM, T. M., CELINA, M., COLLIER, J. P., CURRIER, B. H., CURRIER, J. H., 

JACKSON, S. K., KUETHE, D. O. & TIMMINS, G. S. 2004. y-irradiation of 

ultrahigh-molecular-weight polyethylene: Electron paramagnetic resonance and 

nuclear magnetic resonance spectroscopy and imaging studies of the mechanism of 

subsurface oxidation. . J Polym Sci: Part A Polym Chem 42, 5929-59. 

AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS 2013. Total Hip 

Replacement. http://orthoinfo.aaos.org/topic.cfm?topic=a00377. 

ANDERSON, L. C. & BLAKE, D. J. 1994. The anatomy and biomechanics of the 

hip joint. J Back Musculoskelet Rehabil, 4, 145-53.ARTHRITISUK. 2011-2012. 

Annual Report. http://www.arthritisresearchuk.org/about-us/annual-report-and-

accounts.aspx. 

AMSTUTZ, H. C., CAMPBELL, P., KOSSOVSKY, N. & CLARKE, I. C. 1992. 

Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop 

Relat Res, 7-18. 

ASPENBERG, P. & HERBERTSSON, P. 1996. Periprosthetic bone resorption. 

Particles versus movement. J Bone Joint Surg Br, 78, 641-6. 

ATHRITIS RESEARCH UK 2011. 

http://www.arthritisresearchuk.org/research/data_on_arthritis/data_on_oa.aspx. 

ATWOOD, S. A., VAN CITTERS, D. W., FURMANSKI, J., RIES, M. D. & 

PRUITT, L. A. 2010. Oxidative Stability and Fatigue Behaviour of Below-melt 

Annealed and Remelted Cross-linked UHMWPE. Transactions of the 56th 

Orthopaedic Research Society, New Orleans, USA. 

BABIOR, B. M. 2000. Phagocytes and oxidative stress. The American Journal of 

Medicine, 109, 33-44. 

BAKER, D. A., BELLARE, A. & PRUITT, L. 2003. The effects of degree of 

crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-

grade polyethylene. J Biomed Mater Res A, 66, 146-54. 



References 

285 

 

BALABAN, R. S., NEMOTO, S. & FINKEL, T. 2005. Mitochondria, oxidants, and 

aging. Cell, 120, 483-95. 

BAXTER, R. M., STEINBECK, M. J., TIPPER, J. L., PARVIZI, J., 

MARCOLONGO, M. & KURTZ, S. M. 2009. Comparison of periprosthetic tissue 

digestion methods for ultra-high molecular weight polyethylene wear debris 

extraction. J Biomed Mater Res B Appl Biomater, 91, 409-18. 

BERTOLINI, D. R., NEDWIN, G. E., BRINGMAN, T. S., SMITH, D. D. & 

MUNDY, G. R. 1986. Stimulation of bone resorption and inhibition of bone 

formation in vitro by human tumour necrosis factors. Nature, 319, 516-8. 

BHATT, H. & GOSWAMI, T. 2008. Implant wear mechanisms--basic approach. 

Biomed Mater, 3, 042001. 

BHATTACHARYA, A. & MISRA, B. N. 2004. Grafting: a versatile means to 

modify polymers: Techniques, factors and applications. Progress in Polymer 

Science, 29, 767-814. 

BHOSALE, A. M. & RICHARDSON, J. B. 2008. Articular cartilage: structure, 

injuries and review of management. Br Med Bull, 87, 77-95. 

BICHARA, D. A., MALCHAU, E., HYLLEHOLT, N., CAKMAK, S. & 

MURATOGLU, O. K. 2013. Particles from vitamin-E-diffused highly cross-linked 

UHMWPE induce less osteolysis compared to virgin highly cross-linked UHMWPE 

in a murine calvarial bone model. Proceedings of the 6th UHMWPE International 

Meeting - Turin. 

BIOMET, C. A. 2011. http://www.nomagicjusttechnology.com/biolox-delta.html. 

BLADEN, C. L., FISHER, J., INGHAM, E. & TIPPER, J. 2011. The anti-

inflammatory properties of Vitamin E significantly reduce TNF-α release from 

primary human monocytes after stimulation with UHMWPE wear particles. 

Transactions of the 57th Orthopaedic Research Society, California, USA. 

BLADEN, C. L., TERAMURA, S., RUSSELL, S. L., FUJIWARA, K., FISHER, J., 

INGHAM, E., TOMITA, N. & TIPPER, J. L. 2013. Analysis of wear, wear particles, 

and reduced inflammatory potential of vitamin E ultrahigh-molecular-weight 

polyethylene for use in total joint replacement. Journal of Biomedical Materials 

Research Part B: Applied Biomaterials, 101B, 458-466. 

BLADEN, C. L., BROWN, C., FISHER, J., INGHAM, E. & TIPPER, J. 2010. 

Oxidative Stress in Primary Human Monocytes Due to Exposure to Clinically 

Relevant UHMWPE and CoCr Wear Particles. 56th Annual Meeting of the 

Orthopaedic Research Society, New Orleans, USA 



References 

286 

 

BOREK, C., ONG, A., MASON, H., DONAHUE, L. & BIAGLOW, J. E. 1986. 

Selenium and vitamin E inhibit radiogenic and chemically induced transformation in 

vitro via different mechanisms. Proc Natl Acad Sci U S A, 83, 1490-4. 

BOUTIN, P., CHRISTEL, P., DORLOT, J. M., MEUNIER, A., DE 

ROQUANCOURT, A., BLANQUAERT, D., HERMAN, S., SEDEL, L. & 

WITVOET, J. 1988. The use of dense alumina-alumina ceramic combination in total 

hip replacement. J Biomed Mater Res, 22, 1203-32. 

BOVERIS, A. & CHANCE, B. 1973. The mitochondrial generation of hydrogen 

peroxide. General properties and effect of hyperbaric oxygen. Biochem J, 134, 707-

16. 

BRADFORD, L., BAKER, D. A., GRAHAM, J., CHAWAN, A., RIES, M. D. & 

PRUITT, L. A. 2004. Wear and surface cracking in early retrieved highly cross-

linked polyethylene acetabular liners. J Bone Joint Surg Am, 86-A, 1271-82. 

BRAGDON, C. R., O'CONNOR, D. O., LOWENSTEIN, J. D., JASTY, M. & 

SYNIUTA, W. D. 1996. The importance of multidirectional motion on the wear of 

polyethylene. Proc Inst Mech Eng H, 210, 157-65. 

BROWN, C., WILLIAMS, S., TIPPER, J. L., FISHER, J. & INGHAM, E. 2007. 

Characterisation of wear particles produced by metal on metal and ceramic on metal 

hip prostheses under standard and microseparation simulation. J Mater Sci Mater 

Med 

BUCKWALTER, J. A., KUETTNER, K. E. & THONAR, E. N. 1985. Age related 

changes in articular cartilage proteoglycans: Electromicroscopic studies. J Orthop 

Res, 3, 251-7. 

BUCKWALTER, J. A. & MANKIN, H. J. 1998. Articular cartilage: degeneration 

and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect, 47, 

487-504. 

BUCKWALTER, J. A., MANKIN, H. J. & GRODZINSKY, A. J. 2005. Articular 

cartilage and osteoarthritis. Instr Course Lect, 54, 465-80. 

CAMPBELL, P., EBRAMZADEH, E., NELSON, S., TAKAMURA, K., DE SMET, 

K. & AMSTUTZ, H. C. 2010. Histological features of pseudotumor-like tissues 

from metal-on-metal hips. Clin Orthop Relat Res, 468, 2321-7. 

CAMPBELL, P., SHEN, F. W. & MCKELLOP, H. 2004. Biologic and tribologic 

considerations of alternative bearing surfaces. Clin Orthop Relat Res, 98-111. 

CERUTTI, P., GHOSH, R., OYA, Y. & AMSTAD, P. 1994. The role of the cellular 

antioxidant defense in oxidant carcinogenesis. Environ Health Perspect, 102 Suppl 

10, 123-9. 



References 

287 

 

CHARNLEY, J. 1973. Arthroplasty of the Hip: A New Operation*. Clinical 

Orthopaedics and Related Research, 95, 4-8. 

CHARNLEY, J. & HALLEY, D. K. 1975. Rate of wear in total hip replacement. 

Clin Orthop Relat Res, 170-9. 

CHIBA, J., RUBASH, H. E., KIM, K. J. & IWAKI, Y. 1994. The characterization of 

cytokines in the interface tissue obtained from failed cementless total hip 

arthroplasty with and without femoral osteolysis. Clin Orthop Relat Res, 304-12 

CHIESA, R., TANZI, M. C., ALFONSI, S., PARACCHINI, L., MOSCATELLI, M. 

& CIGADA, A. 2000. Enhanced wear performance of highly crosslinked UHMWPE 

for artificial joints. J Biomed Mater Res, 50, 381-7.. 

CHO, H. J., WEI, W. J., KAO, H. C. & CHENG, C. K. 2004. Wear behaviour of 

UHMWPE sliding on artificial hip arthroplasty materials. Mater, Chem, Phys, 88, 9-

16. 

CLARKE, I. C., GOOD, V., WILLIAMS, P., SCHROEDER, D., ANISSIAN, L., 

STARK, A., OONISHI, H., SCHULDIES, J. & GUSTAFSON, G. 2000. Ultra-low 

wear rates for rigid-on-rigid bearings in total hip replacements. Proc Inst Mech Eng 

H, 214, 331-47. 

COSTA, L., BRACCO, P., DEL PREVER, E. B., LUDA, M. P. & TROSSARELLI, 

L. 2001. Analysis of products diffused into UHMWPE prosthetic components in 

vivo. Biomaterials, 22, 307-15. 

COSTA, L., LUDA, M. P., TROSSARELLI, L., BRACH DEL PREVER, E. M., 

CROVA, M. & GALLINARO, P. 1998. Oxidation in orthopaedic UHMWPE 

sterilized by gamma-radiation and ethylene oxide. Biomaterials, 19, 659-68. 

 

CRAWFORD, R. W. & MURRAY, D. W. 1997. Total hip replacement: indications 

for surgery and risk factors for failure. Ann Rheum Dis, 56, 455-7. 

CURRIER, B. H., CURRIER, J. H., COLLIER, J. P., MAYOR, M. B. & VAN 

CITTERS, D. W. 2010. In vivo oxidation of highly cross-linked UHMWPE bearings 

Transactions of the 55th Orthopaedic Research Society, New Orleans, USA. 

DE BANDT, M., GROSSIN, M., DRISS, F., PINCEMAIL, J., BABIN-CHEVAYE, 

C. & PASQUIER, C. 2002. Vitamin E uncouples joint destruction and clinical 

inflammation in a transgenic mouse model of rheumatoid arthritis. Arthritis Rheum, 

46, 522-32. 

DEKKER, K., B, B., VAN DER WOODE. L, H., V & BIJLSMA. J, W., J 1992. 

Pain and Disability in Osteoarthritis: A Review of Biobehavioural Mechanisms. 

Journal of Behavioural Medicine, 15. 



References 

288 

 

DELAUNAY, C., PETIT, I., LEARMONTH, I. D., OGER, P. & VENDITTOLI, P. 

A. 2010. Metal-on-metal bearings total hip arthroplasty: The cobalt and chromium 

ions release concern. Orthop Traumatol Surg Res. 

DELAUNAY, C. P., BONNOMET, F., CLAVERT, P., LAFFARGUE, P. & 

MIGAUD, H. 2008. THA using metal-on-metal articulation in active patients 

younger than 50 years. Clin Orthop Relat Res, 466, 340-6. 

DEVARAJ, S., LI, D. & JIALAL, I. 1996. The effects of alpha tocopherol 

supplementation on monocyte function. Decreased lipid oxidation, interleukin 1 beta 

secretion, and monocyte adhesion to endothelium. J Clin Invest, 98, 756-63. 

DHAOUADI, T., SFAR, I., ABELMOULA, L., JENDOUBI-AYED, S., AOUADI, 

H., BEN ABDELLAH, T., AYED, K., ZOUARI, R. & GORGI, Y. 2007. Role of 

immune system, apoptosis and angiogenesis in pathogenesis of rheumatoid arthritis 

and joint destruction, a systematic review. Tunis Med, 85, 991-8. 

DIPLOCK, A. T. 1983. The role of vitamin E in biological membranes. Ciba Found 

Symp, 101, 45-55. 

DONALDSON, T., MASSIHI, A., BOWSHER, J. & CLARKE, I. 2005. Co-Cr 

Head Roughness and its Effect on Wear of UHMWPE and XLPE Cups. Bioceramics 

and Alternative Bearings in Joint Arthroplasty. Steinkopff. 

DORR, L. D., WAN, Z., LONGJOHN, D. B., DUBOIS, B. & MURKEN, R. 2000. 

Total hip arthroplasty with use of the Metasul metal-on-metal articulation. Four to 

seven-year results. J Bone Joint Surg Am, 82, 789-98. 

DORR, L. D., WAN, Z., SHAHRDAR, C., SIRIANNI, L., BOUTARY, M. & YUN, 

A. 2005. Clinical performance of a Durasul highly cross-linked polyethylene 

acetabular liner for total hip arthroplasty at five years. J Bone Joint Surg Am, 87, 

1816-21. 

DRAKE, R. L., VOGL, W. & MITCHELL, A. W. M. 2005. Regional Anatomy - 

Transition from Abdomen and Pelvis to Lower Limb. Grays Anatomy for Students 

Elsevier. 

DRUMMOND, J. C. & HOOVER, A. A. 1937. Studies on vitamin E (tocopherol). 

Biochem J, 31, 1852-60. 

DUPONT 1997. Synovial plicae of the knee: controversies and review. CLin Sports 

Med, 16, 87-122. 

EBERHARDT, A., W., MCKEE, R., T., CUCKLER, J., M., PETERSON, D., W., 

BECK, P., R. & LEMONS, J., E. 2009. Surface Roughness of CoCr and ZrO2 

Femoral Heads with Metal Transfer: A Retrieval and Wear Simulator Study. 

International Journal of Biomaterials, 2009. 



References 

289 

 

EMERSON, O. H., EMERSON, G. A. & EVANS, H. M. 1936. The Isolation From 

Cottonseed Oil Of An Alcohol Resembling Alpha Tocopherol From Wheat Germ 

Oil. Science, 83, 421. 

ENDO, M. M., BARBOUR, P. S., BARTON, D. C., FISHER, J., TIPPER, J. L., 

INGHAM, E. & STONE, M. H. 2001. Comparative wear and wear debris under 

three different counterface conditions of crosslinked and non-crosslinked ultra high 

molecular weight polyethylene. Biomed Mater Eng, 11, 23-35. 

ENDO, M., TIPPER, J. L., BARTON, D. C., STONE, M. H., INGHAM, E. & 

FISHER, J. 2002. Comparison of wear, wear debris and functional biological activity 

of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses. Proc 

Inst Mech Eng H, 216, 111-22. 

FELSON, D. T. & ZHANG, Y. 1998. An update on the epidemiology of knee and 

hip osteoarthritis with a view to prevention. Arthritis Rheum, 41, 1343-55. 

FERRONI, D. & QUAGLINI, V. 2010. Thermal stabilization of highly crosslinked 

UHMWPE: a comparative study between annealed and remelted resins. J Appl 

Biomater Biomech, 8, 82-8. 

FIGGITT, M., NEWSON, R., LESLIE, I. J., FISHER, J., INGHAM, E. & CASE, C. 

P. 2010. The genotoxicity of physiological concentrations of chromium (Cr(III) and 

Cr(VI)) and cobalt (Co(II)): an in vitro study. Mutat Res, 688, 53-61. 

FISHER, J. & INGHAM, E. 2004. Wear Debris. Encyclopedia of Biomaterials and 

Biomedical Engineering, 1772 - 1779. 

FLEURY, C., PETIT, A., MWALE, F., ANTONIOU, J., ZUKOR, D. J., 

TABRIZIAN, M. & HUK, O. L. 2006. Effect of cobalt and chromium ions on 

human MG-63 osteoblasts in vitro: Morphology, cytotoxicity, and oxidative stress. 

Biomaterials, 27, 3351-3360. 

FOURNIER, C. 2005. Where do T cells stand in rheumatoid arthritis? Joint Bone 

Spine, 72, 527-32. 

FUJITA, K., IWASAKI, M., OCHI, H., FUKUDA, T., MA, C., MIYAMOTO, T., 

TAKITANI, K., NEGISHI-KOGA, T., SUNAMURA, S., KODAMA, T., 

TAKAYANAGI, H., TAMAI, H., KATO, S., ARAI, H., SHINOMIYA, K., ITOH, 

H., OKAWA, A. & TAKEDA, S. 2012. Vitamin E decreases bone mass by 

stimulating osteoclast fusion. Nature Medicine, 18, 589-594. 

GALLO, J., KAMINEK, P., TICHA, V., RIHAKOVA, P. & DITMAR, R. 2002. 

Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. 

Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 146, 21-8. 



References 

290 

 

GALVIN, A., KANG, L., TIPPER, J., STONE, M., INGHAM, E., JIN, Z. & 

FISHER, J. 2006. Wear of crosslinked polyethylene under different tribological 

conditions. J Mater Sci Mater Med, 17, 235-43. 

GALVIN, A. 2003. Interactive Influences of Crosslinking, Counterface Roughness 

and Kinematics on the Wear of Crosslinked UHMWPE. Ph.D. University of Leeds. 

GARIN, J., DIEZ, R., KIEFFER, S., DERMINE, J. F., DUCLOS, S., GAGNON, E., 

SADOUL, R., RONDEAU, C. & DESJARDINS, M. 2001. The phagosome 

proteome: insight into phagosome functions. J Cell Biol, 152, 165-80. 

GETGOOD, A., BHULLAR, T. P. S. & RUSHTON, N. 2009. Current concepts in 

articular cartilage repair. Orthopaedics and Trauma, 23, 189-200. 

GIJSMAN, P., SMELT, H. J. & SCHUMANN, D. 2010. Hindered amine light 

stabilizers: An alternative for radiation cross-linked UHMwPE implants. 

Biomaterials, 31, 6685-91. 

GLYN-JONES, S., PANDIT, H., KWON, Y. M., DOLL, H., GILL, H. S. & 

MURRAY, D. W. 2009. Risk factors for inflammatory pseudotumour formation 

following hip resurfacing. J Bone Joint Surg Br, 91, 1566-74. 

GOMEZ-BARRENA, E., PUERTOLAS, J. A., MUNUERA, L. & KONTTINEN, Y. 

T. 2008. Update on UHMWPE research: from the bench to the bedside. Acta Orthop, 

79, 832-40. 

GOMEZ, P. F. & MORCUENDE, J. A. 2005. Early attempts at hip arthroplasty--

1700s to 1950s. Iowa Orthop J, 25, 25-9. 

GRAY, H. 1918. Anatomy of the Human Body - Articulation of the Lower 

Extremity. www.Bartleby.com/107. 

GREEN, J. M., HALLAB, N. J., LIAO, Y. S., NARAYAN, V. S., SCHWARZ, E. 

M. & XIE, C. 2013. Anti-oxidation treatment of ultra high molecular weight 

polyethylene components to decrease periprosthetic osteolysis: evaluation of 

osteolytic and osteogenic properties of wear debris particles in a murine calvaria 

model. Current Rheumatology Reports, 15, 325. 

GREEN, T. R., FISHER, J., STONE, M., WROBLEWSKI, B. M. & INGHAM, E. 

1998. Polyethylene particles of a 'critical size' are necessary for the induction of 

cytokines by macrophages in vitro. Biomaterials, 19, 2297-2302. 

GRUPP, T. M., MEISEL, H. J., COTTON, J. A., SCHWIESAU, J., FRITZ, B., 

BLOMER, W. & JANSSON, V. 2010. Alternative bearing materials for 

intervertebral disc arthroplasty. Biomaterials, 31, 523-31. 

HAIDER, H., WEISENBURGER, J. N., KURTZ, S. M., RIMNAC, C. M., 

FREEDMAN, J., SCHROEDER, D. W. & GARVIN, K. L. 2012. Does vitamin E-



References 

291 

 

stabilized ultrahigh-molecular-weight polyethylene address concerns of cross-linked 

polyethylene in total knee arthroplasty? J Arthroplasty, 27, 461-9. 

HALL, R. M., UNSWORTH, A., WROBLEWSKI, B. M. & BURGESS, I. C. 1994. 

Frictional characterisation of explanted Charnley hip prostheses. Wear, 175, 159. 

HART, A. J., BUDDHDEV, P., WINSHIP, P., FARIA, N., POWELL, J. J. & 

SKINNER, J. A. 2008. Cup inclination angle of greater than 50 degrees increases 

whole blood concentrations of cobalt and chromium ions after metal-on-metal hip 

resurfacing. Hip Int, 18, 212-9. 

HATFIELD, D. L. & GLADYSHEV, V. N. 2009. The Outcome of Selenium and 

Vitamin E Cancer Prevention Trial (SELECT) reveals the need for better 

understanding of selenium biology. Mol Interv, 9, 18-21. 

HAYASE, Y., MUGURUMA, Y. & LEE, M. Y. 1997. Osteoclast development from 

hematopoietic stem cells: apparent divergence of the osteoclast lineage prior to 

macrophage commitment. Exp Hematol, 25, 19-25. 

HILL, K. E., MONTINE, T. J., MOTLEY, A. K., LI, X., MAY, J. M. & BURK, R. 

F. 2003. Combined deficiency of vitamins E and C causes paralysis and death in 

guinea pigs. Am J Clin Nutr, 77, 1484-8. 

HILL, K. E., MOTLEY, A. K., LI, X., MAY, J. M. & BURK, R. F. 2001. Combined 

selenium and vitamin E deficiency causes fatal myopathy in guinea pigs. J Nutr, 131, 

1798-802. 

HOOTMAN, J., BOLEN, J. & HELMICK, C. 2006. Prevalence of doctor-diagnosed 

arthritis and arthritis-attributable activity limitation - United States, 2003-2005. 

MMWR, 55, 1089-1092. 

HUKKANEN, M., CORBETT, S. A., BATTEN, J., KONTTINEN, Y. T., 

MCCARTHY, I. D., MACLOUF, J., SANTAVIRTA, S., HUGHES, S. P. & 

POLAK, J. M. 1997. Aseptic loosening of total hip replacement. Macrophage 

expression of inducible nitric oxide synthase and cyclo-oxygenase-2, together with 

peroxynitrite formation, as a possible mechanism for early prosthesis failure. J Bone 

Joint Surg Br, 79, 467-74. 

ILLGEN, R. L., 2ND, FORSYTHE, T. M., PIKE, J. W., LAURENT, M. P. & 

BLANCHARD, C. R. 2008. Highly crosslinked vs conventional polyethylene 

particles--an in vitro comparison of biologic activities. J Arthroplasty, 23, 721-31. 

INGHAM, E. & FISHER, J. 2000. Biological reactions to wear debris in total joint 

replacement. Proceedings of the Institution of Mechanical Engineers Part H-Journal 

of Engineering in Medicine, 214, 21-37. 

INGHAM, E., GREEN, T. R., STONE, M. H., KOWALSKI, R., WATKINS, N. & 

FISHER, J. 2000. Production of TNF-alpha and bone resorbing activity by 



References 

292 

 

macrophages in response to different types of bone cement particles. Biomaterials, 

21, 1005-13. 

INGRAM, J. H., STONE, M., FISHER, J. & INGHAM, E. 2004. The influence of 

molecular weight, crosslinking and counterface roughness on TNF-alpha production 

by macrophages in response to ultra high molecular weight polyethylene particles. 

Biomaterials, 25, 3511-22. 

INSTITUTE OF MEDICINE, F. A. N. B. 2000. Dietary Reference Intakes: Vitamin 

C, Vitamin E, Selenium, and Carotenoids. . National Academy Press. 

IP, W. K., SOKOLOVSKA, A., CHARRIERE, G. M., BOYER, L., DEJARDIN, S., 

CAPPILLINO, M. P., YANTOSCA, L. M., TAKAHASHI, K., MOORE, K. J., 

LACY-HULBERT, A. & STUART, L. M. 2010. Phagocytosis and phagosome 

acidification are required for pathogen processing and MyD88-dependent responses 

to Staphylococcus aureus. J Immunol, 184, 7071-81. 

ITO, H., MALONEY, C. M., CROWNINSHIELD, R. D., CLOHISY, J. C., 

MCDONALD, D. J. & MALONEY, W. J. 2010. In vivo femoral head damage and 

its effect on polyethylene wear. J Arthroplasty, 25, 302-8. 

JACOBS, J. J., SKIPOR, A. K., DOORN, P. F., CAMPBELL, P., SCHMALZRIED, 

T. P., BLACK, J. & AMSTUTZ, H. C. 1996. Cobalt and chromium concentrations 

in patients with metal on metal total hip replacements. Clin Orthop Relat Res, S256-

63. 

JEDENMALM, A., AFFATATO, S., TADDEI, P., LEARDINI, W., GEDDE, U. 

W., FAGNANO, C. & VICECONTI, M. 2009. Effect of head surface roughness and 

sterilization on wear of UHMWPE acetabular cups. J Biomed Mater Res A, 90, 

1032-42. 

JOHNSTONE, B., ALINI, M., CUCCHIARINI, M., DODGE, G. R., EGLIN, D., 

GUILAK, F., MADRY, H., MATA, A., MAUCK, R. L., SEMINO, C. E. & 

STODDART, M. J. 2013. Tissue engineering for articular cartilage repair--the state 

of the art. Eur Cell Mater, 25, 248-67. 

JOYCE, T. J. 2010. Wear testing of a DJOA finger prosthesis in vitro. J Mater Sci 

Mater Med, 21, 2337-43. 

JOYCE, T. J. & UNSWORTH, A. 2004. Wear studies of all UHMWPE couples 

under various bio-tribological conditions. J Appl Biomater Biomech, 2, 29-34. 

KANG, L., GALVIN, A. L., BROWN, T. D., FISHER, J. & JIN, Z. M. 2008. Wear 

simulation of ultra-high molecular weight polyethylene hip implants by 

incorporating the effects of cross-shear and contact pressure. Proc Inst Mech Eng H, 

222, 1049-64. 



References 

293 

 

KARLSON, E. W., MANDL, L. A., AWEH, G. N., SANGHA, O., LIANG, M. H. & 

GRODSTEIN, F. 2003. Total hip replacement due to osteoarthritis: The importance 

of age, obesity, and other modifiable risk factors. American Journal of Medicine, 

114, 93-98. 

KATZER, A., MARQUARDT, H., WESTENDORF, J., WENING, J. V. & VON 

FOERSTER, G. 2002. Polyetheretherketone--cytotoxicity and mutagenicity in vitro. 

Biomaterials, 23, 1749-59. 

KELLY, N. H., RAJADHYAKSHA, A. D., WRIGHT, T. M., MAHER, S. A. & 

WESTRICH, G. H. 2010. High stress conditions do not increase wear of thin highly 

crosslinked UHMWPE. Clin Orthop Relat Res, 468, 418-23. 

KING, R. N., V. S. ERNSBERGER, C. HANES, M. 2010. Characterization of 

gamma-irradiated UHMWPE stabilized with a hindered-phenol antioxidant. 

Transactions of the 56th Orthopaedic Research Society, New Orleans, USA. 

KINOV, P., TZONCHEVA, A. & TIVCHEV, P. 2010. Evidence Linking Elevated 

Oxidative Stress And Aseptic Loosening Of Hip Arthroplasty. Comptes Rendus De 

L Academie Bulgare Des Sciences, 63, 1231-1238. 

KOVAL KJ, Z. J. 2000. Chapter 1 - Anatomy. Hip Fractures, A practical guide to 

management, 1-8. 

KOVAL, K. J. & ZUCKERMAN, J. D. 2000. Anatomy in. "Hip Fractures, A 

practical guide to management", 1-8. 

KRESS, A. M., SCHMIDT, R., HOLZWARTH, U., FORST, R. & MUELLER, L. 

A. 2010. Excellent results with cementless total hip arthroplasty and alumina-on-

alumina pairing: minimum ten-year follow-up. Int Orthop. 

KURTZ, S. M. 2009a. In Vivo Oxidation of UHMWPE in. "UHMWPE Biomaterials 

Handbook" 2nd Edition, 325-339. 

KURTZ, S. M. 2009b. The origins of UHMWPE in total hip arthroplasty in. 

"UHMWPE Biomaterials Handbook", 31-41. 

KURTZ, S. M. 2009c. Packaging and Sterilization of UHMWPE in. "UHMWPE 

Biomaterials Handbook", 21-29. 

KURTZ, S. M. 2009d. A Primer on UHMWPE in. "UHMWPE Biomaterials 

Handbook" 2nd Edition, 1-6. 

KURTZ, S. M., DUMBLETON, J., SISKEY, R. S., WANG, A. & MANLEY, M. 

2009. Trace concentrations of vitamin E protect radiation crosslinked UHMWPE 

from oxidative degradation. 



References 

294 

 

KURTZ, S. M., MURATOGLU, O. K., EVANS, M. & EDIDIN, A. A. 1999. 

Advances in the processing, sterilization, and crosslinking of ultra-high molecular 

weight polyethylene for total joint arthroplasty. Biomaterials, 20, 1659-88. 

KURTZ, S. M. & ONG, K. 2009. Contempary total hip arthroplasty: Hard on hard 

bearings and highly crosslinked UHMWPE in. "UHMWPE Biomaterials Handbook" 

2nd Edition, 55-72. 

KWON, Y. M., GLYN-JONES, S., SIMPSON, D. J., KAMALI, A., MCLARDY-

SMITH, P., GILL, H. S. & MURRAY, D. W. 2010. Analysis of wear of retrieved 

metal-on-metal hip resurfacing implants revised due to pseudotumours. J Bone Joint 

Surg Br, 92, 356-61. 

LANCASTER, J. G., DOWSON, D., ISAAC, G. H. & FISHER, J. 1997. The wear 

of ultra-high molecular weight polyethylene sliding on metallic and ceramic 

counterfaces representative of current femoral surfaces in joint replacement. Proc 

Inst Mech Eng H, 211, 17-24. 

LANGTON, D. J., JAMESON, S. S., JOYCE, T. J., HALLAB, N. J., NATU, S. & 

NARGOL, A. V. F. 2010. Early failure of metal-on-metal bearings in hip resurfacing 

and large-diameter total hip replacement: A CONSEQUENCE OF EXCESS WEAR. 

J Bone Joint Surg Br, 92, 38-46. 

LAURENT, P. M., GALLARDO, L. A., KUNZE, J. & WIMMER, M. A. 2010. 

Europium Stearate increases the oxidation resistance of UHMWPE Transactions of 

the 56th Orthopaedic Research Society, New Orleans, USA. 

LEARMONTH, I. D., YOUNG, C. & RORABECK, C. 2007. The operation of the 

century: total hip replacement. Lancet, 370, 1508-1519. 

LI-WEBER, M., GIAISI, M., TREIBER, M. K. & KRAMMER, P. H. 2002. Vitamin 

E inhibits IL-4 gene expression in peripheral blood T cells. Eur J Immunol, 32, 

2401-8. 

LIU, A. 2012. Determination of the Biological Response and Cellular Uptake 

Mechanisms of Nanometre-sized UHMWPE Wear Particles from Total Hip 

Replacements. Ph.D. University of Leeds. 

LOMBARDI, A. V., JR., MALLORY, T. H., DENNIS, D. A., KOMISTEK, R. D., 

FADA, R. A. & NORTHCUT, E. J. 2000. An in vivo determination of total hip 

arthroplasty pistoning during activity. J Arthroplasty, 15, 702-9. 

LONGO, D., M., LOUIE, B. & CESANO, A. 2012. Inter-donor variation in cell 

subset specific immune signalling responses in healthy individuals. Am J Clin Exp 

Immunol, 1, 1-11. 



References 

295 

 

LORENZO, J. A., SOUSA, S. L., FONSECA, J. M., HOCK, J. M. & MEDLOCK, 

E. S. 1987. Colony-stimulating factors regulate the development of multinucleated 

osteoclasts from recently replicated cells in vitro. J Clin Invest, 80, 160-4. 

MACHLIN, L. J., FILIPSKI, R., NELSON, J., HORN, L. R. & BRIN, M. 1977. 

Effects of a prolonged vitamin E deficiency in the rat. J Nutr, 107, 1200-8. 

MACLENNAN, W. J. 1999. History of arthritis and bone rarefaction evidence from 

paleopathology onwards. Scott Med J, 44, 18-20. 

MACPHERSON, G. J. & BREUSCH, S. J. 2010. Metal-on-metal hip resurfacing: a 

critical review. Arch Orthop Trauma Surg. 

MALCHAU, H., HERBERTS, P. & AHNFELT, L. 1993. Prognosis of total hip 

replacement in Sweden. Follow-up of 92,675 operations performed 1978-1990. Acta 

Orthop Scand, 64, 497-506. 

MATTHEWS, J. B., GREEN, T. R., STONE, M. H., WROBLEWSKI, B. M., 

FISHER, J. & INGHAM, E. 2000. Comparison of the response of primary murine 

peritoneal macrophages and the U937 human histiocytic cell line to challenge with in 

vitro generated clinically relevant UHMWPE particles. Bio-Medical Materials and 

Engineering, 10, 229-240. 

MAQUET, P., G, J. 1985. Biomechanics of the Hip. Chapter 1 - Biomechanics of the 

Hip, 1-2.MCCARTHY, M., BROWN, T. E. & SALEH, K. J. 2009. Etiology of Hip 

Arthritis in. "Arthritis & Arthroplasty: The Hip", 3-9. 

MCCARTHY M, B. T., SALEH KJ 2009. Chapter 1 - Etiology of Hip Arthritis. 

Arthritis & Arthroplasty: The Hip, 3-9. 

MCDEVITT, C. A. 1973. Biochemistry of articular cartilage. Nature of 

proteoglycans and collagen of articular cartilage and their role in ageing and in 

osteoarthritis. Ann Rheum Dis, 32, 364-78. 

MCKEE, G. K. & CHEN, S. C. 1973. The statistics of the McKee-Farrar method of 

total hip replacement. Clin Orthop Relat Res, 26-33. 

MCKEE, G. K. & WATSON-FARRAR, J. 1966. Replacement of arthritic hips by 

the McKee-Farrar prosthesis. J Bone Joint Surg Br, 48, 245-59. 

MEDEL, F. J., PENA, P., CEGONINO, J., GOMEZ-BARRENA, E. & 

PUERTOLAS, J. A. 2007. Comparative fatigue behavior and toughness of remelted 

and annealed highly crosslinked polyethylenes. J Biomed Mater Res B Appl 

Biomater, 83, 380-90. 

MENDENHALL, S. 2008. Hospital resources and implant cost management - a 

2007 update. Orthop Network News, 19, 13-19. 



References 

296 

 

MHRA 2010. Medical Device Alert: ASR™ hip replacement implants manufactured 

by DePuy International Ltd  

MICHELI, B. R., WANNOMAE, K. K., LOZYNSKY, A. J., CHRISTENSEN, S. D. 

& MURATOGLU, O. K. 2012. Knee simulator wear of vitamin E stabilized 

irradiated ultrahigh molecular weight polyethylene. J Arthroplasty, 27, 95-104. 

MOSELEY, J. B., O'MALLEY, K., PETERSEN, N. J., MENKE, T. J., BRODY, B. 

A., KUYKENDALL, D. H., HOLLINGSWORTH, J. C., ASHTON, C. M. & 

WRAY, N. P. 2002. A Controlled Trial of Arthroscopic Surgery for Osteoarthritis of 

the Knee. New England Journal of Medicine, 347, 81-88. 

MUELLER, S., C., MARZ, R., SCHMOLZ, M. & DREWELOW, B. 2012. 

Intraindividual long term stability and response corridors of cytokines in healthy 

volunteers detected by a standardised whole-blood culture system for bed-side 

application. BMC Medical Research Methodology, 12. 

MULLINS, M. M., NORBURY, W., DOWELL, J. K. & HEYWOOD-

WADDINGTON, M. 2007. Thirty-year results of a prospective study of Charnley 

total hip arthroplasty by the posterior approach. J Arthroplasty, 22, 833-9. 

MURATOGLU, O. K. 2009. Highly crosslinked and melted UHMWPE in. 

"UHMWPE Biomaterials Handbook" 2nd Edition, 197-203. 

MURATOGLU, O. K., BRAGDON, C. R., O'CONNOR, D. O., JASTY, M. & 

HARRIS, W. H. 2001. A novel method of cross-linking ultra-high-molecular-weight 

polyethylene to improve wear, reduce oxidation, and retain mechanical properties. 

Recipient of the 1999 HAP Paul Award. J Arthroplasty, 16, 149-60. 

MURPHY, M. P. 2009. How mitochondria produce reactive oxygen species. 

Biochem J. , 417(Pt 1), 1-13. 

MURRAY, D. W. & RUSHTON, N. 1990. Macrophages stimulate bone resorption 

when they phagocytose particles. J Bone Joint Surg Br, 72, 988-92. 

NARAYAN, V. S. K., R. WARNER, D. SHARP, M. 2010. Evaluation of 

antioxidant stabilized UHMWPE materials. Transactions of the 56th Orthopaedic 

Research Society, New Orleans, USA. 

NATIONAL JOINT REGISTRY 2013. Patient Characteristics for Hip Revision 

Procedures in 2013. National Joint Registry 10th Annual Report, 81. 

NEUMANN, D. A. 1999. Joint deformity and dysfunction: a basic review of 

underlying mechanisms. Arthritis Care Res, 12, 139-51. 

NOAMAN, E., ZAHRAN, A. M., KAMAL, A. M. & OMRAN, M. F. 2002. Vitamin 

E and selenium administration as a modulator of antioxidant defense system: 

biochemical assessment and modification. Biol Trace Elem Res, 86, 55-64. 



References 

297 

 

ORAL, E., CHRISTENSEN, S. D., MALHI, A. S., WANNOMAE, K. K. & 

MURATOGLU, O. K. 2006. Wear resistance and mechanical properties of highly 

cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E. J 

Arthroplasty, 21, 580-91. 

ORAL, E., MALHI, A. S. & MURATOGLU, O. K. 2006b. Mechanisms of decrease 

in fatigue crack propagation resistance in irradiated and melted UHMWPE. 

Biomaterials, 27, 917-25. 

ORAL, E., GHALI, B. W., NEILS, A. & MURATOGLU, O. K. 2012. A new 

mechanism of oxidation in ultrahigh molecular weight polyethylene caused by 

squalene absorption. J Biomed Mater Res B Appl Biomater, 100, 742-51. 

ORAL, E., GREENBAUM, E. S., MALHI, A. S., HARRIS, W. H. & 

MURATOGLU, O. K. 2005. Characterization of irradiated blends of alpha-

tocopherol and UHMWPE. Biomaterials, 26, 6657-63. 

ORAL, E., MALHI, A. S., WANNOMAE, K. K. & MURATOGLU, O. K. 2008. 

Highly cross-linked ultrahigh molecular weight polyethylene with improved fatigue 

resistance for total joint arthroplasty: recipient of the 2006 Hap Paul Award. J 

Arthroplasty, 23, 1037-44. 

ORAL, E., NEILS, A. L., ROWELL, S. L., LOZYNSKY, A. J. & MURATOGLU, 

O. K. 2013. Increasing irradiation temperature maximizes vitamin E grafting and 

wear resistance of ultrahigh molecular weight polyethylene. Journal of Biomedical 

Materials Research Part B: Applied Biomaterials, 101B, 436-440. 

ORAL, E., WANNOMAE, K. K., HAWKINS, N., HARRIS, W. H. & 

MURATOGLU, O. K. O. K. 2004. [alpha]-Tocopherol-doped irradiated UHMWPE 

for high fatigue resistance and low wear. Biomaterials, 25, 5515. 

ORAL, E., WANNOMAE, K. K., ROWELL, S. L. & MURATOGLU, O. K. 2007. 

Diffusion of vitamin E in ultra-high molecular weight polyethylene. Biomaterials, 

28, 5225-37. 

OSTERUD, B. & BJORKLID, E. 2003. Role of monocytes in atherogenesis. Physiol 

Rev, 83, 1069-112. 

OWUSU-ANSAH, E., YAVARI, A. & BANERJEE, U. 2008. A protocol for in vivo 

detection of reactive oxygen species. 

PANDIT, H., GLYN-JONES, S., MCLARDY-SMITH, P., GUNDLE, R., 

WHITWELL, D., GIBBONS, C. L., OSTLERE, S., ATHANASOU, N., GILL, H. S. 

& MURRAY, D. W. 2008. Pseudotumours associated with metal-on-metal hip 

resurfacings. J Bone Joint Surg Br, 90, 847-51. 

PARK, D. Y., MIN, B. H., KIM, D. W., SONG, B. R., KIM, M. & KIM, Y. J. 2013. 

Polyethylene wear particles play a role in development of osteoarthritis via 



References 

298 

 

detrimental effects on cartilage, meniscus, and synovium. Osteoarthritis and 

Cartilage. 

PATHANIA, V., SYAL, N., PATHAK, C. M. & KHANDUJA, K. L. 1999. Vitamin 

E suppresses the induction of reactive oxygen species release by lipopolysaccharide, 

interleukin-1beta and tumor necrosis factor-alpha in rat alveolar macrophages. J Nutr 

Sci Vitaminol (Tokyo), 45, 675-86. 

PAZZAGLIA, U. E., DELL'ORBO, C. & WILKINSON, M. J. 1987. The foreign 

body reaction in total hip arthroplasties. A correlated light-microscopy, SEM, and 

TEM study. Arch Orthop Trauma Surg, 106, 209-19. 

PELLICCI, P. M., WILSON, P. D., SLEDGE, C. B., SALVATI, E. A., RANAWAT, 

C. S., POSS, R. & CALLAGHAN, J. J. 1985. Long-Term Results of Revision Total 

Hip-Replacement - a Follow-up Report. Journal of Bone and Joint Surgery-

American Volume, 67A, 513-516. 

POPOOLA, O. O., YAO, J. Q., JOHNSON, T. S. & BLANCHARD, C. R. 2010. 

Wear, delamination, and fatigue resistance of melt-annealed highly crosslinked 

UHMWPE cruciate-retaining knee inserts under activities of daily living. J Orthop 

Res, 28, 1120-6. 

QUINN, P. J. 2004. Is the distribution of alpha-tocopherol in membranes consistent 

with its putative functions? Biochemistry (Mosc), 69, 58-66. 

RAGHUNATHAN, V. K., DEVEY, M., HAWKINS, S., HAILS, L., DAVIS, S. A., 

MANN, S., CHANG, I. T., INGHAM, E., MALHAS, A., VAUX, D. J., LANE, J. D. 

& CASE, C. P. 2013. Influence of particle size and reactive oxygen species on cobalt 

chrome nanoparticle-mediated genotoxicity. Biomaterials, 34, 3559-3570. 

SCHUMACKER, P. T. 2006. Reactive oxygen species in cancer cells: Live by the 

sword, die by the sword. Cancer Cell, 10, 175-176. 

 

RAJADHYAKSHA, A. D., BROTEA, C., CHEUNG, Y., KUHN, C., 

RAMAKRISHNAN, R. & ZELICOF, S. B. 2009. Five-year comparative study of 

highly cross-linked (crossfire) and traditional polyethylene. J Arthroplasty, 24, 161-

7. 

RAMAKRISHNAN, P., HECHT, B. A., PEDERSEN, D. R., LAVERY, M. R., 

MAYNARD, J., BUCKWALTER, J. A. & MARTIN, J. A. 2010. Oxidant 

Conditioning Protects Cartilage from Mechanically Induced Damage. Journal Of 

Orthopaedic Research, 28, 914-920. 

REITER, E., JIANG, Q. & CHRISTEN, S. 2007. Anti-inflammatory properties of 

alpha- and gamma-tocopherol. Mol Aspects Med, 28, 668-91. 



References 

299 

 

RICCIARELLI, R., TASINATO, A., CLEMENT, S., OZER, N. K., 

BOSCOBOINIK, D. & AZZI, A. 1998. alpha-Tocopherol specifically inactivates 

cellular protein kinase C alpha by changing its phosphorylation state. Biochem J, 

334 ( Pt 1), 243-9. 

RICCIARELLI, R., ZINGG, J. M. & AZZI, A. 2000. Vitamin E reduces the uptake 

of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic 

smooth muscle cells. Circulation, 102, 82-7. 

RICHARDS, L. 2008. The biological activity of nanometre sized polymer particles. . 

Ph.D. University of Leeds. 

ROCKWOOD, C. A., JR. & WIRTH, M. A. 2002. Observation on retrieved 

Hylamer glenoids in shoulder arthroplasty: problems associated with sterilization by 

gamma irradiation in air. J Shoulder Elbow Surg, 11, 191-7. 

ROGERS, M., BLOM, A. W., BARNETT, A., KARANTANA, A. & BANNISTER, 

G. C. 2009. Revision for recurrent dislocation of Total Hip Replacement. Hip 

International, 19, 109-113. 

ROWELL, S. L., YABANNAVAR, P. & MURATOGLU, O. K. 2010. Oxidative 

stability of simulator tested acetabular liners after 7 years shelf-aging in air. 

Transactions of the 56th Orthopaedic Research Society, New  

Orleans, USA. 

SABOKBAR, A., FUJIKAWA, Y., NEALE, S., MURRAY, D. W. & 

ATHANASOU, N. A. 1997. Human arthroplasty derived macrophages differentiate 

into osteoclastic bone resorbing cells. Annals Of The Rheumatic Diseases, 56, 414-

420. 

SAITO, S., ISHII, T., MORI, S., HOSAKA, K., OOTAKI, M. & TOKUHASHI, Y. 

2010. Long-term results of metasul metal-on-metal total hip arthroplasty. 

Orthopedics, 33. 

SANTAVIRTA, S., BOHLER, M., HARRIS, W. H., KONTTINEN, Y. T., 

LAPPALAINEN, R., MURATOGLU, O., RIEKER, C. & SALZER, M. 2003. 

Alternative materials to improve total hip replacement tribology. Acta Orthop Scand, 

74, 380-8. 

SCHEINECKER, C., MARC, C. H., MD, MPH, ALAN, J. S., MD, FRCP, JOSEF, 

S. S., MD, MICHAEL, E. W., MD, MICHAEL, H. W. & MD 2009. The Role of T 

Cells in Rheumatoid Arthritis. Rheumatoid Arthritis. Philadelphia: Mosby. 

SCHNEIDER, C. 2005. Chemistry and biology of vitamin E. Mol Nutr Food Res, 

49, 7-30. 



References 

300 

 

SCHOLES, S. C., INMAN, I. A., UNSWORTH, A. & JONES, E. 2008. Tribological 

assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular 

cup articulating against an alumina femoral head. Proc Inst Mech Eng H, 222, 273-

83. 

SCHOLES, S. C. & UNSWORTH, A. 2006. The effects of proteins on the friction 

and lubrication of artificial joints. Proc Inst Mech Eng H, 220, 687-93. 

SCHOLES, S. C., UNSWORTH, A. & GOLDSMITH, A. A. 2000. A frictional 

study of total hip joint replacements. Phys Med Biol, 45, 3721-35. 

SCHWARZ, E., BUKATA S, V., BENZ, E., ROSIER, R. N., PUZAS, J. E. & 

O'KEEFE, R., J. 1999. NFkB and TNF-alpha are stimulated by titanium particles and 

are essential for in vivo bone resorption. In Proceedings of the 45th annual Meeting 

of the Orthopaedic Research Society, p305. 

SEED, S. M., DUNICAN, K. C. & LYNCH, A. M. 2009. Osteoarthritis: a review of 

treatment options. Geriatrics, 64, 20-9. 

SHEPPARD, A. J., PENNINGTON, J. A. & WEIHRAUCH, J. L. 1993. Analysis 

and distribution of vitamin E in vegetable oils and foods. Vitamin E in health and 

disease, 9-31. 

SHIH, J. C., JONAS, R. H. & SCOTT, M. L. 1977. Oxidative deterioration of the 

muscle proteins during nutritional muscular dystrophy in chicks. J Nutr, 107, 1786-

91. 

SIEBER, H. P., RIEKER, C. B. & KOTTIG, P. 1999. Analysis of 118 second-

generation metal-on-metal retrieved hip implants. J Bone Joint Surg Br, 81, 46-50. 

SINGH, U. & JIALAL, I. 2004. Anti-inflammatory effects of alpha-tocopherol. Ann 

N Y Acad Sci, 1031, 195-203. 

SINGH, U., DEVARAJ, S. & JIALAL, I. 2005. Vitamin E, oxidative stress, and 

inflammation. Annu Rev Nutr, 25, 151-74. 

SMITH, S. L., DOWSON, D. & GOLDSMITH, A. A. 2001. The effect of femoral 

head diameter upon lubrication and wear of metal-on-metal total hip replacements. 

Proc Inst Mech Eng H, 215, 161-70. 

SOBIERAJ, M. C. & RIMNAC, C. M. 2009. Ultra high molecular weight 

polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed 

Mater, 2, 433-43. 

SOKAL, R. R. & ROHLF, J. F. 1981. Biometry: The principles and practice of 

statistics in biological research. In FREEMAN, W. H. (ed.) 2nd ed. San Francisco. 



References 

301 

 

SUTULA, L. C., COLLIER, J. P., SAUM, K. A., CURRIER, B. H., CURRIER, J. 

H., SANFORD, W. M., MAYOR, M. B., WOODING, R. E., SPERLING, D. K., 

WILLIAMS, I. R. & ET AL. 1995. The Otto Aufranc Award. Impact of gamma 

sterilization on clinical performance of polyethylene in the hip. Clin Orthop Relat 

Res, 28-40. 

TAI, Z., CHEN, Y., AN, Y., YAN, X. & XUE, Q. 2012. Tribological Behavior of 

UHMWPE Reinforced with Graphene Oxide Nanosheets. Tribology Letters, 46, 55-

63. 

TATEIWA, T., CLARKE, I. C., WILLIAMS, P. A., GARINO, J., MANAKA, M., 

SHISHIDO, T., YAMAMOTO, K. & IMAKIIRE, A. 2008. Ceramic total hip 

arthroplasty in the United States: safety and risk issues revisited. Am J Orthop (Belle 

Mead NJ), 37, E26-31. 

TERAMURA, S., RUSSEL, S., INGHAM, E., FISHER, J., TOMITA, N., 

FUJIWARA, K. & TIPPER, J. 2009. Reduced Biological Response to Wear 

Particles from UHMWPE containing Vitamin E. 

TERAMURA, S., SAKODA, H., TERAO, T., ENDO, M. M., FUJIWARA, K. & 

TOMITA, N. 2008. Reduction of wear volume from ultrahigh molecular weight 

polyethylene knee components by the addition of vitamin E. J Orthop Res, 26, 460-

4. 

TIPPER, J. L., GALVIN, A. L., WILLIAMS, S., MCEWEN, H. M., STONE, M. H., 

INGHAM, E. & FISHER, J. 2006. Isolation and characterization of UHMWPE wear 

particles down to ten nanometers in size from in vitro hip and knee joint simulators. 

J Biomed Mater Res A, 78, 473-80. 

TIPPER, J. L., HATTON, A., NEVELOS, J. E., INGHAM, E., DOYLE, C., 

STREICHER, R., NEVELOS, A. B. & FISHER, J. 2002. Alumina-alumina artificial 

hip joints. Part II: characterisation of the wear debris from in vitro hip joint 

simulations. Biomaterials, 23, 3441-8. 

TIPPER, J. L., GALVIN, A., INGHAM, E. & FISHER, J. 2005. Comparison of the 

Wear, Wear Debris and Functional Biological Activity of Non-crosslinked and 

Crosslinked GUR 1020 and GUR 1050 Polyethylenes used in Total Hip Prostheses. 

Trans. UHMWPE for arthroplasty: Degradation, stabilization, and crosslinking, 

http://www.uhmwpe.unito.it/. 

TIPPER, J. L., INGHAM, E., HAILEY, J. L., BESONG, A. A., FISHER, J., 

WROBLEWSKI, B. M. & STONE, M. H. 2000. Quantitative analysis of 

polyethylene wear debris, wear rate and head damage in retrieved Charnley hip 

prostheses. J Mater Sci Mater Med, 11, 117-24. 

TIPPER, J. L., INGHAM, E., JIN, Z. M. & FISHER, J. 2005. The science of metal-

on-metal articulation. Current Orthopaedics, 19, 280-287. 



References 

302 

 

TIPPER, J. L., LIU, T.-Y. & BLADEN, C. L. 2011. Cytotoxicity of Anti-Oxidant 

Compounds in Human Macrophages Transactions of the 57th Orthopaedic Research 

Society, California, USA. 

TOLEDO-PEREYRA, L. H. 2004. John Charnley--father of modern total hip 

replacement. J Invest Surg, 17, 299-301. 

TOWHEED, T. E. & HOCHBERG, M. C. 1996. Health-related quality of life after 

total hip replacement. Semin Arthritis Rheum, 26, 483-91. 

TREUHAFT, P. S. & MCCARTY, D. J. 1971. Synovial fluid pH, lactate, oxygen 

and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum, 14, 

475-84. 

UTZSCHNEIDER, S., BECKER, F., GRUPP, T. M., SIEVERS, B., PAULUS, A., 

GOTTSCHALK, O. & JANSSON, V. 2010. Inflammatory response against different 

carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. 

Acta Biomater, 6, 4296-304. 

VISURI, T., PUKKALA, E., PAAVOLAINEN, P., PULKKINEN, P. & RISKA, E. 

B. 1996. Cancer risk after metal on metal and polyethylene on metal total hip 

arthroplasty. Clin Orthop Relat Res, S280-9. 

VISURI, T. I., PUKKALA, E., PULKKINEN, P. & PAAVOLAINEN, P. 2006. 

Cancer incidence and causes of death among total hip replacement patients: a review 

based on Nordic cohorts with a special emphasis on metal-on-metal bearings. Proc 

Inst Mech Eng H, 220, 399-407. 

WANG, A. 2006. Wear, oxidation and mechanical properties of a sequentially 

irradiated and annealed UHMWPE in total joint replacement. Journal of Physics D: 

Applied Physics, 39, 3213. 

WANNOMAE, K. K., CHRISTENSEN, S. D., MICHELI, B. R., ROWELL, S. L., 

SCHROEDER, D. W. & MURATOGLU, O. K. 2010. Delamination and adhesive 

wear behavior of alpha-tocopherol-stabilized irradiated ultrahigh-molecular-weight 

polyethylene. J Arthroplasty, 25, 635-43. 

WANNOMAE, K. K., BHATTACHARYYA, S., FREIBERG, A., ESTOK, D., 

HARRIS, W. H. & MURATOGLU, O. 2006. In vivo oxidation of retrieved cross-

linked ultra-high-molecular-weight polyethylene acetabular components with 

residual free radicals. J Arthroplasty, 21, 1005-11. 

WEBER, B. G. 1996. Experience with the Metasul total hip bearing system. Clin 

Orthop Relat Res, S69-77. 

WILES, P. 1957. The surgery of the osteoarthritic hip. Br J Surg, 45, 488-97. 



References 

303 

 

WILKINSON, J. M., WILSON, A. G., STOCKLEY, I., SCOTT, I. R., 

MACDONALD, D. A., HAMER, A. J., DUFF, G. W. & EASTELL, R. 2003. 

Variation in the TNF gene promoter and risk of osteolysis after total hip arthroplasty. 

J Bone Miner Res, 18, 1995-2001. 

WILLMANN, G. 1996. Development in medical-grade alumina during the past two 

decades. Journal of Materials Processing Technology, 56, 168. 

WINTER, M., GRISS, P., SCHELLER, G. & MOSER, T. 1992. Ten- to 14-year 

results of a ceramic hip prosthesis. Clin Orthop Relat Res, 73-80. 

WOLF, C., LEDERER, K., PFRAGNER, R., SCHAUENSTEIN, K., INGOLIC, E. 

& SIEGL, V. 2007. Biocompatibility of ultra-high molecular weight polyethylene 

(UHMW-PE) stabilized with alpha-tocopherol used for joint endoprostheses 

assessed in vitro. J Mater Sci Mater Med, 18, 1247-52. 

WOLF, C., LEDERER, K., BERGMEISTER, H., LOSERT, U. & BOCK, P. 2006. 

Animal experiments with ultra-high molecular weight polyethylene (UHMW-PE) 

stabilised with alpha-tocopherol used for articulating surfaces in joint 

endoprostheses. J Mater Sci Mater Med, 17, 1341-7. 

WOO, C. H., EOM, Y. W., YOO, M. H., YOU, H. J., HAN, H. J., SONG, W. K., 

YOO, Y. J., CHUN, J. S. & KIM, J. H. 2000. Tumor necrosis factor-alpha generates 

reactive oxygen species via a cytosolic phospholipase A2-linked cascade. J Biol 

Chem, 275, 32357-62. 

WROBLEWSKI, B. M., SINEY, P. D. & FLEMING, P. A. 2005. Low-friction 

arthroplasty of the hip using alumina ceramic and cross-linked polyethylene. A 17-

year follow-up report. J Bone Joint Surg Br, 87, 1220-1. 

YAMAMOTO, K., CLARKE, I. C., MASAOKA, T., OONISHI, H., WILLIAMS, P. 

A., GOOD, V. D. & IMAKIIRE, A. 2001. Microwear phenomena of ultrahigh 

molecular weight polyethylene cups and debris morphology related to gamma 

radiation dose in simulator study. J Biomed Mater Res, 56, 65-73. 

YAMAMOTO, K., IMAKIIRE, A., MASAOKA, T., SHISHIDO, T., MIZOUE, T., 

CLARKE, I. C., SHOJI, H., KAWANABE, K. & TAMURA, J. 2003. Wear mode 

and wear mechanism of retrieved acetabular cups. Int Orthop, 27, 286-90. 

YOSHIDA, H., FAUST, A., WILCKENS, J., KITAGAWA, M., FETTO, J. & 

CHAO, E. Y. 2006. Three-dimensional dynamic hip contact area and pressure 

distribution during activities of daily living. J Biomech, 39, 1996-2004.YUB, S. & 

DENISOV, E. T. 1974. Mechanism of the inhibiting activity of iminoxyl radicals 

during oxidation of polypropylene and polyethylene. Vysokomol Soyed, A14, 2313-

2316. 



References 

304 

 

ZHANG, C., TANG, T., REN, W., ZHANG, X. & DAI, K. 2008. Influence of 

mouse genetic background on wear particle-induced in vivo inflammatory osteolysis. 

Inflamm Res, 57, 211-5. 

ZOLOTAREVOVA, E., HUDECEK, J., SPUNDOVA, M. & ENTLICHER, G. 

2010. Binding of proteins to ultra high molecular weight polyethylene wear particles 

as a possible mechanism of macrophage and lymphocyte activation. J Biomed Mater 

Res A, 95, 950-5. 

 



Appendix A 

i 

 

Appendix A 

General Materials 

General chemicals and reagents used in this study are shown in Table A- 1. 

Table A-1 – Chemicals and reagents used in this study 

Chemical/ Regents Supplier Storage and Preparation 

ATPlite™ ATP detection 

assay 

PerkinElmer, 

Massachusetts, USA 
Stored at 4˚C 

Bovine Serum Albumin 

(BSA) 

Sigma-Aldrich Ltd, 

Dorset, UK 
Stored at room temperature 

Carbon Paste 
Agar Scientific, 

Stanstead, Essex, UK 

Stored in the solvent 

cupboard, at room 

temperature 

Chloroform Genta Medical, York, UK 

Stored in the flammables 

cupboard, at room 

temperature 

ELISA kit (TNF-α) Diaclone, France Stored at 4˚C  

Ethanol VWR International, UK Stored at room temperature 

Fluospheres (200 nm, 40 

nm) 

Invitrogen Life 

Technologies Ltd, 

Paisley, UK 

Aliquoted and stored at -

20˚C 

Foetal Bovine Serum 

(FBS) 

Bio-Whittaker, Lonza, 

Verviers,  

Stored in the flammables 

cupboard, at room 

temperature 

Household Detergent 
Fairy liquid, Procter and 

Gamble, UK 

Purchased at a 

concentration of 200 

mM.ml
-1

. Solution was then 

aliquoted and stored at -

20˚C 

Image-iT™ LIVE green 

ROS detection kit 

Invitrogen Life 

Technologies Ltd, 

Paisley, UK 

Aliquoted and stored at -

20˚C 

Isopropan-2-ol 

Fisher Scientific, 

Loughborough, 

Leicestershire, UK 

Stored at 4˚C 

L-Glutamine 
Bio-Whittaker, Lonza, 

Verviers 
Stored at room temperature 

Lipopolysaccharide 

(LPS) 

Sigma Aldrich Ltd, 

Dorset, UK 
Stored at room temperature 
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Lymphoprep 

Fresenius Kabi Norge AS 

for 

Axis-Shield PoC AS, Oslo, 

Norway 

Stored in the chemicals 

cupboard, at room 

temperature 

N-(2-

hydroxyethyl)piperazine-

N'-(2-ethanulfonic 

acid)(HEPES) 

Bio- Whittaker, Lonza, 

Verviers, Belgium 
Stored at room temperature 

Potassium Hydroxide  
Sigma Aldrich Ltd, 

Dorset, UK 
Stored at room temperature 

Rosslyn Park Memorial 

Institute (RPMI) 1640 

medium 

Bio- Whittaker, Lonza, 

Verviers, Belgium 
Stored at 4˚C 

Silica Gel (0.7% w/v) 
MERCK, Darmstadt, 

Germany 
Stored at 4˚C 

Sodium Hypochlorite 

Solution 

BDH Laboratory 

Supplies, Poole, UK 

Purchased at a 

concentration of 1M. 

Stored at room temperature. 

Sterile Water Baxter Healthcare, UK Stored at room temperature 

Trigene 

Scientific Laboratory 

Supplies Ltd, 

Nottingham, UK 

Stored at room temperature 

Trypan Blue (0.4% v.v) 
Sigma Aldrich Ltd, 

Dorset, UK 
Stored at room temperature 

Trypsin 0.5% with EDTA 
Sigma Aldrich Ltd, 

Dorset, UK 
Stored at -20ºC 

Tween 20 
Sigma Aldrich Ltd, 

Dorset, UK 

Stored at 4˚C. Substrate 

solution was aliquoted and 

stored at -20˚C following 

reconstitution 

Ultra pure low melting 

point agarose 

Invitrogen Life 

Technologies Ltd, 

Paisley, UK 

Stored at 4˚C 

Vaseline Unilever PLC, UK 
Reconstituted at stored at -

20˚C 

Virkon 

Scientific Laboratory 

Suppliers Ltd, 

Nottingham, UK 

Stored at room temperature 
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The general equipment used in this study is shown in table A-2.  

Table A-2 – General equipment used in this study 

Equipment Supplier 

47 mm Glass Filtration Apparatus  Sartorius, Goettingen, Germany 

6 station pin-on-plate wear rig 

Built ‘in house’, School of Mechanical 

Engineering, University of Leeds, UK 

Stanley, Sheffield, UK 

Adjustable wrench A&D Instruments Ltd, Oxford, UK 

Automatic Pipetter (Fastpette v-2) Labnet International Inc, New Jersey, USA  

Balance (0.01g accuracy) Bassaire, Southampton, UK 

Balance AT21 Comparator - accurate 

to 1µg 
Mettler Toledo, Sartorius, Germany 

Balance GX-2000 EC - accurate to 

0.01g 
Jencons PLC, East Grinstead, UK 

Bassaire 06-HB laminar flow hood Bassaire, Southampton, UK 

Bench pump Hotpoint, UK 

Benchtop Centrifuge (Harrier) 
MSE Scientific Instruments, West Sussex, 

UK 

Bunsen Burner Camlab, UK  

Cell Culture Inverted Light 

Microscope (CK40) 
Olympus Optical Company, London, UK 

Class II Safety Cabinet (cell culture) Heraeus, Hanau, Germany 

Confocal Laser Scanning Upright 

Zeiss LSM510 
Carl Zeiss Ltd, UK 

Contacting Form Talysurf 

Profilometer 
Taylor Hobson Ltd, Leicester, UK 

Duran Glass bottles (2 L, 1 L, 500 ml, 

100ml) 
Sigma Aldrich Ltd, Dorset, UK 

Electronic Repeating Pipette Autorep 

E 
Mettler Toledo, Sartorius, Germany 

FEGSEM LEO-1530 
LEO Electron Microscopy Ltd, Cambridge, 

UK 

Finnpipette for cell culture work (1000 

µl, 200µl, 20µl) 
Thermo Scientific, Massachusetts, USA 
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Freezer (-20˚C) Jensons Plc, East Grinstead, UK 

Genlab Oven (hot air) Genlab Limited, Cheshire, UK 

Gilson Pipettes (1000 µl, 200µl, 20µl) Gilson, WI, USA 

Haemocytometer Marienfeld, Germany 

High Speed Sorvall SS-34 Evolution 

RC Centrifuge 

Kendro Laboratory Products Limited, 

Herts, UK 

Image Pro Plus Image Analysis 

Software version 4.5.1 
Media Cybernetics, Maryland, USA  

Incubator and CO2 Gas in Air (MCO-

20AIC) 5% (v/v) 
SANYA Biomedical Europe BV, UK 

Infra red lamps Infraphil, Phillips, Surrey, UK 

Ion Streamer (Stat Attack 1B-8) 
Amersham International Ltd, 

Buckinghamshire, UK  

KIMCARE® Medical Wipes Kimberley Clarke, Kent, UK 

Magnetic Stirrer 
Scientific Laboratory Supplies Ltd, 

Nottingham, UK 

Mistral 3000E bench centrifuge MSE Scientific Instruments, London, UK 

pH meter (Jenway 3510) VWR International Poole, UK 

Refrigerator  Jencons Plc, East Grinstead, UK 

Sonicator 
Fisher Scientific, Loughborough, 

Leicestershire, UK 

Spirit level Camlab, UK 

Sputter Coater (B7341) & film 

thickness monitor (B7348) 

Agar Scientific Limited, Stanstead, Essex, 

UK 

TopCount® (NXT) Dual Detector 

Luminometer 
Perkin Elmer, Massachusetts, USA 

Ultrasonic Water Bath Grant Instruments Ltd, Herts, UK 

Unstirred Water Bath (Clifton NE1-

56) 
Nickel Electro Ltd, UK 

Upright Fluoresence Microscope 

(AX10) 
Carl Zeiss Ltd, UK 

Water Purifier (PureLab)  Triple Red Limited, Buckinghamshire, UK 
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The general consumables and plasticware used in this study are shown in table A-3.  

Table A-3 – Consumables and plasticware used in this study 

Item Size Supplier 

Bijous 5 ml Scientific Laboratory 

Supplies, Nottingham, UK 

Cyclopore track 

etched membranes  

10 µm, 1 µm, 0.1 µm, 

0.015 µm 

BD Plastipak, BD, New 

Jersey, USA 

Disposable Combi 

Tips 

12.5 ml, 10 ml, 5 ml Eppendorf AG, Hamburg, 

Germany 

Glass Cover Slips 

(circular) 

22 mm  Menzel Gläser, Gerhard 

Menzel GmbH, Germany 

Glass Slides  76 x 26 mm Menzel Gläser, Gerhard 

Menzel GmbH, Germany 

Lab-Tek Chamber 

Slide 

16 well Fisher Scientific Limited, 

Leicester, UK 

Maxisorb™ Plate 96 well Scientific Laboratory 

Supllies, Nottingham, UK 

Microplate Adhesive 

Sealing Film 

96 well PerkinElmer, Berkshire, UK 

Optiplate 96 well PerkinElmer, Berkshire, UK 

Parafilm  N/A Pechiney Plastic Packaging 

Company, Chicago, USA 

Petri Dishes 30 mm diameter Bibby Sterilin, 

Staffordshire, UK 

Serological Pipettes 25 ml, 10 ml, 5 ml, 2 ml Sarstedt AG and Co, 

Numbrecht, Germany 
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Sterile Filter Pipette 

Tips (OneTip) 

1000 ml, 200 ml, 20 ml, 

2 ml 

Starlab UK, Milton Keynes, 

UK 

Sterile Pipette Tips 1000 ml, 200 ml, 20 ml, 

2 ml 

Starlab UK, Milton Keynes, 

UK 

Sterile Plastic 

Syringes 

50 ml, 10 ml, 5 ml, 2 

ml, 1 ml 

Scientific Laboratory 

Supplies, Nottingham, UK 

Sterile Screw-lid 

container 

250 ml, 150 ml, 60 ml Thermo Scientific, 

Massachusetts, USA 

Sterile Test Tubes 15 ml Scientific Laboratory 

Supplies, Nottingham, UK 

Universals 25 ml Scientific Laboratory 

Supllies, Nottingham, UK 

Well Plates, Flat 

Bottomed 

48 well, 12 well, 6 well Scientific Laboratory 

Supplies, Nottingham, UK 
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Nic Gowland, Sophie Williams, John Fisher, Joanne L Tipper (2012). The Wear and 

Biological Activity of Antioxidant UHMPWE for use in Total Hip Replacements. 

14
th

 Annual White Rose Work in Progress Meeting, York, UK. Poster Presentation. 

Nic Gowland, Sophie Williams, John Fisher, Joanne L Tipper (2013). The Wear of 

Crosslinked and Non-Crosslinked UHMWPE with and without Vitamin E. 

Orthopaedic Research Society (ORS) 2013 Annual Meeting, San Antonio, Texas, 

USA. Poster Presentation. 

Nic Gowland, Sophie Williams, John Fisher, Joanne L Tipper (2014). The Wear and 

Biological Activity of Antioxidant UHMWPE in Total Hip Replacements. The 26
th

 

Annual Conference of the European Society for Biomaterials (ESB), Liverpool, UK. 

Oral Presentation.  

 

 

 


