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Abstract 

The alarmingly increasing human population needs improved food production but this 

aim is hampered by different abiotic stresses. Osmotic stress and salt stress are the two 

prominent examples of abiotic stresses and affect up to 50% of the arable land. These 

stresses severely affect all plants, but glycophytes (e.g. rice) are especially sensitive. 

During stress, nutrient uptake, such as K
+
, is often disturbed. Thus, better K

+
 nutrition 

and distribution play a vital role in plant abiotic stress tolerance. To improve K
+
 

nutrition, the role of K
+
 transporters is likely to be essential. Loss of function and gain 

of function approaches could help establish the exact function of transporters involved 

in K
+
 nutrition.  

Rice TPKs and AKT1 are K
+
 channels which are localised to the tonoplast and plasma 

membrane respectively. The two TPK isoforms, TPKa and TPKb, are localised to the 

tonoplast of LV and SV respectively. They were characterized in a variety of abiotic 

stress conditions. The data showed better growth and higher K
+
 concentration for the 

TPKa and TPKb transgenic lines when grown in zero K
+
 and osmotic stress conditions 

suggesting their role in improving in K
+
 nutrition. TPKs have no direct involvement in 

the K
+
 uptake, but somehow influence K

+
 uptake and improve K

+
 nutrition. The higher 

K
+
 concentration in the leaves of overexpressor plants suggested the involvement of 

TPKs in the distribution of K
+
 within the plant body. TPKs play a role in the guard cells' 

movements and affect the stomatal conductance and therefore showed a better response 

to the osmotic stress conditions.  

The role of rice AKT1 was tested by comparing the knockout and overexpressing lines 

of AKT1 with the wild type plants. The data suggested that AKT1 is involved in the K
+
 

uptake in a range of external K
+
 concentrations and osmotic stress conditions. The role 

of AKT1 is obvious in the K
+
 deficient conditions where NH4

+
 is present. The leaf K

+
 

concentration suggested that AKT1 influences K
+
 transport into the leaves. The K

+
 

concentration in the leaf cells showed an effect on the stomatal conductance and in turn 

an effect on the growth phenotype under zero K
+
 and osmotic stress conditions. The 

data revealed that AKT1 is insensitive to NH4
+
 toxicity.   
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1 

Chapter 1 

1 General introduction 

K
+
 is an extremely important nutrient for all living organisms. K

+
 fulfils both 

biophysical and biochemical roles which affect many aspects such as plant growth, 

tolerance to biotic and abiotic stresses and movement of plant organs. Many of these 

functions depend on relatively high (~100 mM) concentrations of K
+
 and occur in all 

cells and all parts of the plant. Plants therefore need efficient systems to distribute K
+
 to 

various organs and tissues, often over long distances (Figure 1-4). Furthermore, the 

partitioning of K
+
 within cells, for example between cytoplasm and vacuole, also 

impacts on many of the above listed functions and this too is under strict control.   

Many of the functions that K
+
 plays are hampered by drought and salt stress as these 

tend to lower K
+
 acquisition from the surrounding. Therefore, improved K

+
 nutrition 

could help the plant to increase resistance against these abiotic stresses.  

 Plant abiotic stresses 1.1

Global food production needs to increase by about 50% by 2050 to support the 

alarmingly increasing human population. This aim is frustrated by a variety of biotic 

and abiotic stresses which decrease plant growth and productivity. Among the biotic 

stresses, plants face challenges from pathogens including bacteria, fungi, and viruses as 

well as from herbivores. Abiotic stress, in fact, is the principal cause of crop failure 

world-wide, reducing average yields for most major crops by more than 50% (Bray et 

al., 2000). These abiotic stresses include low temperature, salt, drought, flooding, heat, 

oxidative stress and heavy metal toxicity. All these stress factors are a menace for plants 

and prevent them from reaching their full genetic potential and limit the crop 

productivity worldwide.  

 Drought stress  1.1.1

Drought is a condition of soil where limited amounts of water are available for the 

absorption by plants. Drought may be physical when there is deficiency of water for the 

plants to absorb, for example meteorological drought, or it may be physiological 

drought where a plant is unable to absorb water because of certain conditions for 
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example, low temperature, frozen water, higher rate of transpiration than the absorption 

or available water is held to substances in solution which hinders its absorption by the 

plant.  In the latter case the osmotic stress may be created by salts like NaCl. 

Drought causes osmotic stress as caused by the salt stress and in response plants suffer 

from the difficulty to absorb water. It is estimated that about 30% of the world’s land is 

affected by drought (Chaves et al., 2009). In other words, we can say that only 16% of 

the world’s crops get enough water for absorption through irrigation or rainfall and the 

rest of the crops encounter drought either for short or long periods. Crops growing in 

sandy soils are more severely affected than those on clay soil because of the difference 

of water holding capacity. Severe drought in some parts of the world, especially in arid 

and semi-arid regions, in recent years drastically reduced crop yields and disrupted 

regional economies. Even in average years, however, many agricultural regions suffer 

from chronic moisture deficits. Cereal crops (mostly glycophytes) typically attain only 

about 25% of their potential yield due to the effects of environmental stress, with 

moisture stress the most important cause. Drought is considered similar to salt stress 

because responses to both salt and drought stress are related and the mechanisms 

overlap.  However the effects of drought stress are more widespread and damaging for 

crops (Boyer, 1982). 

 Salt stress 1.1.2

Salinity is a condition of soil where the concentration of ions of soluble salts (e.g. Na
+
, 

Ca
2+

, Cl
-
, SO4

2-
 and HCO3

-
) exceeds the normal limits. Salinity is measured as soil 

electrical conductivity and when it exceeds 4 dS/m (decisiemens per meter), the soil is 

said to be saline (Salinity Laboratory Staff report, 1954); 4 dS/m is equivalent to 

approximately 40 mM NaCl.  

Salinization of soil is either primary or secondary. The primary sources of salinization 

include natural ways, e.g. the weathering of rocks and oceanic salts brought by rains. In 

the coastal salt marshes and inland deserts, weathering of parental rock releases various 

types of salts, for example chlorides of sodium, calcium, and magnesium, and to a lesser 

extent, sulfates and carbonates to the soil (Szabolcs, 1989). However, these areas are not 

really important for agriculture.  

Another reason for salinization is the deposition of oceanic salts brought by wind and 

rain. Rainwater contains 6–50 mg/kg of sodium chloride; the concentration decreases 

http://thesciencedictionary.org/temperature/
http://thesciencedictionary.org/available/
http://thesciencedictionary.org/solution/
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with distance from the seashore. Rain containing 10 mg/kg of sodium chloride would 

deposit 10 kg/ha of salt for each 100 mm of rainfall per year (Flowers and Flowers, 

2005; Munns and Tester, 2008).  

Irrigation and deforestation are the causal agents of secondary salinization and is a 

substantial threat to farming. Excessive irrigation raises the water table and brings salts 

to the surface which, after evaporation of the water, leads to salts accumulating on the 

soil surface, causing salinization of the soil. Out of the approximately 1500 Mha non-

irrigated cultivated land, only 2% are affected by salinity whereas 20% of the 230 Mha 

irrigated, cultivated land is affected by salinity (Munns and Tester 2008). 

Every year, approximately 10 Mha land is taking over by salinity (Flowers and Yeo, 

1995) and increases in the sea level due to climatic change will also increase salinity. It 

is calculated that the ocean level will go up by 1 m in the next 500 years as a 

consequence of planetary warming (Gordon and O’Farrell et al., 1997). 

Different plants have different responses to saline conditions. Some are salt tolerant 

(halophytes), having extensive genetic diversity over a range of taxa (Flowers et al., 

1986; Greenway and Munns, 1980). Halophytes have the capacity to accommodate a 

range of salt concentrations for which they have special anatomical and morphological 

adaptations (Flowers et al., 1986). However, most species are salt sensitive 

(glycophytes) and many crops are included in this category. Extensive research through 

the years has shown that most of the strategies against salt stress for both the halophytes 

and glycophytes are similar.  

The role of Na
+
 in salt stress 

It has been repeatedly commented that Na
+
 (rather than Cl

-
) is a main player of the toxic 

effects of salinity inside the cells. Plants can keep low Na
+
 in the cytoplasm and a high 

K
+
: Na

+
 ratio and therefore, can alleviate the toxic effects of salinity. The reason for Na

+
 

being more toxic than Cl
-
 stems from the notion that Na

+
 inhibits enzyme activity, and 

this is particularly the case for many enzymes that require K
+
 for functioning (Maathuis, 

2009). For example, the K
+
 dependent pyruvate kinase has a Km (for K

+
 binding) of 

around 10 mM. Na
+
 can also bind but has only 5-10% of the stimulating effect of K

+
 

and thus severely inhibits kinase action.  
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The frequency and severity of such Na
+
 toxicity effects depends on the cytoplasmic Na

+
 

concentration ([Na
+
]cyt). Unfortunately, accurate measurements of [Na

+
]cyt are still 

relatively scarce and those that have been reported vary greatly. Carden et al., (2003) 

using microelectrodes, measured 10-30 mM steady state levels of Na
+
 in the cytoplasm 

of barley cells. Kronzucker et al., (2006), using flux analysis, reported [Na
+
]cyt values of 

over 300 mM while measurements with fluorescent dyes yielded estimates from 20-60 

mM (e.g. Anil et al., 2007). In all, it is likely that [Na
+
]cyt is in the tens of millimols and 

thus prone to negatively affect enzyme activity. 

 Effects of drought and salinity 1.2

Both drought and salinity lead to osmotic stress. Drought and salt stress can lead to 

higher ion and solute concentrations and then ion toxicity within plants. Salinity of soil 

and water affects the plants in two ways primarily. High concentrations of salts in the 

root environment make it difficult for the roots to absorb water so causing osmotic 

stress. Accumulation of toxic ions, either due to the absorption of NaCl from the 

surroundings or due to the loss of water from the cytoplasm, increases salt concentration 

that leads to detrimental effects. Salts on the outside of the roots have an immediate 

effect on cell growth and associated metabolism; toxic concentrations of salts take time 

to accumulate inside plants before they affect plant function. 

 Growth 1.2.1

Salinity and drought result in stunted growth of plants and this is primarily due to 

osmotic stress caused by drought and salinity. After an increase in osmotic stress cells 

lose water resulting in turgor loss, however this is temporary as cells resume their 

normal size after making some adjustments. Yeo et al., (1991) reported that an addition 

of 50 mM NaCl to the culture solution stops leaf elongation of rice genotypes IR2153 

and Pokkali for 20 min, but after 24h the elongation rate had returned to the non-

salinized control rate. Similar results were shown by Fricke et al., (2004) for barley.  

Drought causes impaired germination and seedling growth in some plants while in 

others it affects the vegetative stages of growth. Other than turgor effects, the lower 

growth might also be because of the slower elongation and division of the leaf cells 

which results in the slow appearance of new leaves and smaller final size. Under 

osmotic stress conditions, the water flow from the xylem to the neighbouring elongating 
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cells is interrupted and thus affects cell elongation (Nonami, 1998). Due to the changes 

in cell dimension, there is more reduction in leaf area as compared with the thickness so 

thicker leaves result. Drought affects many complex integrating physiological processes 

which are responsible for the yield of crops. Drought negatively affects the number of 

the tillers in barley and in wheat reduces the dry weight of the kernels (Wardlaw and 

Willenbrink, 2000).  Moderate osmotic stress initially affects the development of lateral 

shoots, but longer exposure ultimately affects the reproductive development, such as 

early flowering and reduced number of floral leaves. Osmotic stress also leads to 

barrenness of flowers thus affecting the productivity of the crops. Older leaves may die, 

but plants continue to produce younger leaves.  

 

 Photosynthesis and stomatal conductance 1.2.2

Drought and salinity cause a dramatic decrease in the stomatal pore aperture as a first 

response to these stresses. The immediate decrease in the stomatal conductance is 

through lower water availability and then via ABA synthesis (Fricke et al., 2004). 

Osmotic stress may not affect the rate of photosynthesis per unit leaf area, although the 

stomatal conductance is reduced (James et al., 2002). This is because osmotic stress 

results in changes in cell anatomy resulting in smaller and thicker leaves, thus resulting 

in a higher density of chloroplasts per unit leaf area (Munns and Tester, 2008). Salinity 

causes reduction in the total leaf area and this reduction always leads to the reduced rate 

of photosynthesis per plant. 

 

It is hard to explain whether the reduced rate of photosynthesis is the only reason for the 

lower growth under saline conditions. Salinity affects the leaf size and shape as 

described earlier and also causes an increase in the unused assimilates which increases 

storage of carbohydrates (Munns, 2000). Paul and Foyer, (2001) showed that after long 

exposure to salinity, plants can fine-tune photosynthesis according to demand. In a nut 

shell, long exposure to salinity reduces the rate of photosynthesis because of reduced 

demand for photosynthate. The reduced rate of photosynthesis is due to the decline in 

Rubisco activity (Bota et al., 2004). This reduced activity is because of the more 

viscous cytoplasm due to dehydration. Increased viscosity leads to an increase in 

protein-protein interaction, protein denaturation and toxicity having harmful effects on 

the enzymes including photosynthetic enzymes (Hoekstra et al., 2001). 
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 Oxidative stress  1.2.3

The biological and physiological effects of certain environmental stresses, including salt 

and drought, induce reduced water potential, ion imbalance, reduced CO2 assimilation 

and reduced rate of photosynthesis. The limited CO2 availability and reduced rate of 

photosynthesis leads to enhanced production of reactive oxygen species (ROS) 

including superoxide radical (O
2 −

), hydrogen peroxide (H2O2), hydroxyl radical (OH
−
) 

and singlet oxygen (
1
O2), leading to oxidative stress. Osmotic stress promotes the 

generation of superoxide in plant cells because of impaired electron transport in the 

chloroplasts (Price et al., 1989). The overproduction of ROS triggers toxic reactions 

such as degradation of lipids and proteins (Jiang and Zhang, 2001; Bor et al., 2003). In 

response to the production of ROS plant cells produce increasing amounts of enzymatic 

and non-enzymatic compounds to detoxify the ROS. Superoxide dismutase (SOD), 

peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione 

reductase (GR) are the enzymatic antioxidants while the non-enzymatic antioxidants 

include water soluble components like ascorbic acid, glutathione, flavonoids and the 

lipid soluble components such as carotenoids and α-tocopherol. A correlation between 

antioxidant capacity and osmotic stress has been demonstrated in several plant species 

(Broetto et al., 2002; Boret al., 2003; Agarwal and Pandey 2004; DiBaccioetal, 2004; 

Amor et al., 2005). 

Chawla et al., (2013) characterized the role of ROS scavenging systems in combating 

oxidative stress, such as enzymes and metabolites of the anti-oxidant system in leaves 

of salt-sensitive and salt-tolerant cultivars of rice. They showed that SOD activity 

increased progressively with increases in salinity in salt-tolerant cultivars but receded in 

the sensitive varieties. Increase in SOD activity upon salinization in leaves of all the 

tolerant cultivars could accelerate dismutation of superoxide ions generated upon salt-

treatment, which may allow such varieties to better survive oxidative stress (Desingh 

and Kanagaraj 2007). In salt-sensitive varieties, reduction in SOD activity would limit 

their metabolic capacity to withstand oxidative stress. Wang et al., (2005) reported that 

an increase of about 1.4-fold in total SOD activity in the pMnSOD transgenic rice plants 

was enough to increase oxidative stress resistance and drought tolerance. Indeed, 

transgenic rice overexpressing a yeast Mn SOD was shown to have improved salinity 

tolerance (Tanaka et al., 1999). 

http://www.sciencedirect.com/science/article/pii/S0176161704002391#bib34
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 Nutritional imbalance 1.2.4

Water deficit, either due to drought or salinity, results in limited nutrient uptake and 

transport to the shoots and thus lowers nutrient concentrations in the tissues. Drought 

affects the stomatal aperture and lowers the transpiration rate and ultimately absorption 

of water by the roots. Less water absorption can affect the uptake of nutrients directly 

but drought can also affect nutrient uptake due to limited availability of energy. Under 

lower moisture availability, N and K
+
 uptake is inhibited (McWilliams, 2003) and P and 

PO4
3-

 contents are decreased in the plant tissues (Peuke and Rennenberg, 2004).  

As far as the effects of salinity are concerned, osmotic stress is followed by the 

accumulation of toxic ions. The later causes imbalance of cellular metabolism (Munns 

et al., 2006), nutritional imbalance and oxidative stress (Alscher et al., 1997). Ion 

uptake is directly affected when excess Na
+
 and Cl

-
 accumulate and hence increases the 

ratios of Na
+
: K

+
, Ca

2+
: Mg

2+ 
and Cl

-
: NO3

-
. Among these ions, Na

+
 is generally 

considered to be the most toxic. Na
+
 is believed to enter cells passively, but the 

mechanism is not yet completely known. Among the large number of toxic effects of 

salinity, ionic imbalance is particularly important where K
+
 is concerned. Potassium 

activity is reduced and it becomes less available for plants because Na
+
 directly 

competes with K
+
. This occurs partly because both ions can be transported by the same 

ion channels on the plasma membrane (Shabala et al., 2005, Demidchik and Maathuis, 

2007). 

 Strategies to cope with drought and salinity  1.3

Plants have certain morphological, physiological and biochemical mechanisms helping 

them against drought and salt stress conditions. Plants respond to water stress by 

complex mechanisms, from changes in expression of genes, biochemical metabolism 

through to individual plant physiological processes to ecosystem levels (Chaves et 

al.,2003; Izanloo et al., 2008; Xu et al., 2009) which may mainly include six aspects: 

(1) drought escape via completing the plant life cycle before severe water deficit e.g. 

earlier flowering in annual species before the onset of severe drought (Geber and 

Dawson, 1990); (2) drought avoidance via enhancing capacity of getting water, e.g., 

developing root systems or water conservation via reduction of stomata and leaf 

area/canopy cover (Schulze, 1986; Jackson et al., 2000); (3) drought tolerance, mainly 

via improving osmotic adjustment ability and increasing cell wall elasticity to maintain 
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tissue turgidity (Morgan, 1984); (4) drought resistance via altering metabolic pathways 

to survive under severe stress (e.g., increased antioxidant metabolism) (Bartoli et al., 

1999; Penueles et al., 2004); (5) drought abandon by removing a part of the individual, 

e.g., shedding older leaves under water stress (Chaves et al., 2003); (6) drought-prone 

biochemical-physiological traits for plant evolution under long-term drought via genetic 

mutation and genetic modification (Hoffmann and Merila, 1999; Maherali et al., 2010).  

Many biochemical and physiological processes are induced by osmotic stress in plants 

such as stomatal closure, repression of cell growth and photosynthesis, and activation of 

respiration. Plants store specifically those proteins and osmolytes which are involved in 

stress resistance as a response to osmotic stress (Shinozaki et al., 2003; Bartels and 

Sunkar, 2005; Yamaguchi-Shinozaki and Shinozaki, 2005). In the past 10-15 years a 

number of stress-inducible genes has been identified in Arabidopsis and rice. Most of 

the gene products may function in stress response and tolerance at the cellular level 

(Zhang et al., 2004; Umezawa et al., 2006a). The products of stress inducible genes are 

classified into two groups in rice and Arabidopsis. The first group contains proteins 

which may function in abiotic stress tolerance for example water channel proteins and 

sugar and proline transporters. The second group contains regulatory proteins for 

example transcription factors and protein kinases (Shinozaki and Yamaguchi-Shinozaki 

2007). These proteins are involved in a variety of processes and help in abiotic stress 

resistance. For example protein kinases and enzymes involved in ABA biosynthesis, are 

useful for improving stress tolerance by regulating multiple stress-related genes in 

transgenic plants. ABA is synthesized de novo primarily in response to drought and 

high salinity stress. Genes involved in ABA biosynthesis and catabolism were identified 

based on genetic and genomics analyses (Nambara and Marion-Poll, 2005). 

 Osmotic adjustments 1.3.1

Plants survive under osmotic stress by decreasing their osmotic potential and thus 

maintaining turgor of the cells. Accumulation of solutes helps to keep the osmotic 

potential low and to attract more water to enter the cells.  

The overexpression of genes responsible for the synthesis of organic osmolytes e.g. 

proline, mannitol, sorbitol and glycine betaine is an important strategy to improve 

osmotic stress tolerance. Organic osmolytes can accumulate in the cytosol in high 

http://jxb.oxfordjournals.org/content/58/2/221.full#ref-31
http://jxb.oxfordjournals.org/content/58/2/221.full#ref-3
http://jxb.oxfordjournals.org/content/58/2/221.full#ref-3
http://jxb.oxfordjournals.org/content/58/2/221.full#ref-41
http://jxb.oxfordjournals.org/content/58/2/221.full#ref-43
http://jxb.oxfordjournals.org/content/58/2/221.full#ref-35
http://jxb.oxfordjournals.org/content/58/2/221.full#ref-22
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quantities and are not interfering with the cell metabolic processes. These osmolytes are 

involved in cell osmotic adjustments and osmoprotection of various membrane 

structures and proteins.  Recent advances in molecular biology have made the osmolytes 

production toward osmotic stress tolerance more central and convincing. This is largely 

because of the fact that osmolytes accumulation is often controlled by one gene (Serraj 

and Sinclair, 2002) so easy to manipulate. Many reports show a positive correlation 

between osmolytes accumulation and salt tolerance. However other studies do not 

support this idea especially those using transgenic plants where differences between the 

wild type and transgenic plants are either small or restricted to a special growth period. 

There are several other drawbacks in this approach for example high energy 

consumption, increased susceptibility to fungal diseases etc. (Shabala and Cuin, 2007). 

Thus the practical applications of this approach are limited (Bajaj et al., 1999) and 

hardly effective under field conditions (Flowers, 2004). Other than these organic 

osmolytes, some inorganic ions for example K
+
 and Na

+
 can also play a role to maintain 

water potential and help plants to absorb and maintain water within the cells.  

 Regulation of aquaporins water channels 1.3.2

Transpiration is the driving force for the water absorption especially through the 

apoplastic pathway (Horie et al., 2011) but osmotic stress leads to reduction in water 

uptake due to the closure of stomata. However symplastic and vacuolar pathways are 

under the influence of differential water potentials between the outer and inner 

environments. Plants minimize the efflux of water upon osmotic stress by lowering the 

hydraulic permeability (Lpr) of root cells. This lower efflux of water is achieved either 

by the accumulation of solutes or due to changes in the expression of relevant genes. 

The latter process is relatively quick and operates within hours.  

Reductions in Lpr were recorded upon salt stress in Arabidopsis and maize (at 100 mM 

NaCl) and in barley (at 200 mM NaCl) (see review Horie et al., 2012).  

Water permeability of the membranes is highly dependent on water channels, 

aquaporins or major intrinsic proteins (MIPs). Plasma membrane intrinsic proteins 

(PIPs) and tonoplast intrinsic proteins (TIPs) are two common groups of aquaporins. 

They are represented by large number of isoforms in plants. PIPs are the most abundant 

members of the aquaporins and help in water absorption. PIPs are a predominant 

component of Lpr. Down regulation of PIPs was reported in the root cells of maize and 
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Arabidopsis (Maurel et al. 2008) and barley (Horie et al., 2011) under salt stress 

conditions. Boursiac et al., (2008) suggested that salinity stimulates the accumulation of 

ROS. These ROS then redistribute PIP from the plasma membrane to internal 

compartments which could lead to the rapid down-regulation of the Lpr. Rice on the 

other hand showed no post-translational regulation of PIPs under salinity stress 

conditions, however reduced mRNA levels were detected for PIPs and TIPs in rice 

under osmotic stress conditions (Guo et al. 2006; Li et al. 2008). These results suggest 

that plant aquaporins could be involved in salt tolerant mechanisms by repressing the 

activity of water channels under salinity stress (Horie et al., 2012). 

 Biological membranes 1.3.3

Osmotic stress affects biological membranes therefore affecting many physiological 

processes. The exact mechanism of how osmotic stress leads to membrane disruption is 

not clear. However it can be argued that osmotic stress results in lowering the cell 

volume, congestion, more interaction of the chemicals inside the cell and denaturation 

of proteins. Wang and Huang, (2004) reported damage to the cell membrane of blue 

grass when exposed to drought and heat. Many compounds have been identified that 

can prevent damage to biological membranes during osmotic stress. Some of these 

compounds are proline, glutamic acid, mannitol, trehalose, etc. (Folk et al., 2001). 

Better K
+
 nutrition also improves the stability of the membranes and ultimately 

increases drought tolerance (Gnanasiri et al., 1991).  

 Control of Na
+
 transport 1.3.4

Over-accumulation of Na
+
 in the tissues during salinity stress negatively affects the 

essential processes of the plants e.g. protein synthesis, enzyme activity and, in the case 

of cells that compose the source organ, photosynthesis (Yeo and Flowers, 1986; Glenn 

et al., 1999; Tsugane et al., 1999; Blaha et al., 2000). The effective strategies for 

glycophytes to cope with salinity are to keep the cytoplasmic and tissue levels of Na
+
 

low. Exclusion of sodium from the root uptake (Munns et al., 1999) is not enough to 

solve the problem of osmotic stress caused by salinity. Water will still leak out of the 

plant due to higher osmotic potential outside.  

http://www.thericejournal.com/content/5/1/11#B162
http://www.thericejournal.com/content/5/1/11#B39
http://www.thericejournal.com/content/5/1/11#B145
http://www.thericejournal.com/content/5/1/11#B9
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Thus Na
+
 exclusion on its own would not be the best strategy to cope with salinity.  The 

conviction that the higher Na
+
 content is negatively correlated with salt tolerance 

(Munns, 2005; Tester and Davenport, 2003) is not true in many cases. For example 

halophytes are capable of accumulating large amounts of Na
+
, up to 50% of their dry 

weights, and still can survive. The argument that the higher content of Na
+
 in halophytes 

may depend on their growth for longer period under saline condition (Shabala and Cuin, 

2007) is challenged by the fact that halophytes are showing optimal growth at salinities 

ranging from 200 to 400 mM NaCl (Khan et al., 2005). 

1.3.4.1 Na
+
 Uptake and Distribution 

The cytoplasmic Na
+
 concentration needs to be kept low to avoid Na

+
 toxicity. A 

control system is required for this purpose. Na
+
 concentration could be kept low either 

by removing the excess of Na
+
 from the cells to the outer environment or distributing 

Na
+
 to other tissues of the plants. The observed values of cytoplasmic Na

+
 concentration 

are much lower than the thermodynamic equilibrium concentration. This shows that Na
+
 

extrusion is present. We can compare the Na
+
 intake by the roots and net Na

+
 

concentration within the root cells. A plant which contains ~200 mmol Na
+
 per kg FW 

and has a relative growth rate (RGR) of 10% day
-1

, requires only a net Na
+
 influx of 

around 800 nmol g
-1

 h
-1

 to stay at this level of cellular [Na
+
]. However, experimentally 

obtained unidirectional Na
+
 influx (e.g. measured in roots using radioactive Na

+
) is 

typically 10 times higher than the above (e.g. Maathuis and Sanders, 2001). This 

implies that ~90% of Na
+
 that initially entered the symplast is subsequently removed by 

Na
+
 extrusion into the external medium.   
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Figure 1-1: Overview of the main Na
+
 flux pathways that occur in terrestrial plants  

Some mechanisms are still debated such as recycling of Na+ from root to shoot via the phloem. Other 

mechanisms are anatomic adaptations found in a limited number of (halophytic) species only, such as 

extrusion via glands and hydathodes.  The size of the arrow provides a relative measure of various fluxes 

(Maathuis et al., 2014). 

 

Tight control of Na
+
 uptake from the soil is proven to be useful strategy against salt 

stress. Both channels and carriers are involved in the Na
+
 uptake from the soil.  

Channels:   Different channels are involved in the Na
+
 absorption from the 

environment (Figure 1-2). Non selective cation channels (NSCCs) play a significant 

role in root Na
+
 uptake (Amtmann et al., 1999; Tester and Davenport, 2003; Maathuis, 

2007). In addition, Golldack et al. (2003) reported that K
+
 inward rectifying channels 

(KIRCs) such as OsAKT1 (homologous to Arabidopsis K
+
 transporter) could mediate 

Na
+
 uptake in rice under saline conditions. Other channels that may play a role include 

glutamate like receptors (GLRs) (Davenport, 2002) and cyclic nucleotide gated 

channels (CNGCs) (Assmann, 1995; Bolwell, 1995; Newton and Smith, 2004; 

Trewavas, 1997). 
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Carrier transporters:  Carrier type transporters involved in Na
+
 transport include 

high affinity K
+
 transporters (HKTs) (Golldack et al., 2002; Horie et al., 2001; Mian et 

al., 2011) and K
+ 

uptake permease/ high-affinity K
+
 transporters (KUP/HAK/KT). 

HKT transporters contribute to the Na
+
 uptake from the soil (Figure 1-2). Rice contains 

nine HKT isoforms (Garciadeblas et al., 2003). Some of these isoforms have been 

studied extensively for example OsHKT2:1 in the Nipponbare rice (Horie et al., 2007), 

HKT2:2 in the Pokkali rice (Horie et al., 2001)  

HAK/KUP/KT transporters are high affinity K
+
 transporters and may transport Na

+
 with 

low affinity in the presence of high Na
+
:K

+
 ratios (Pardo and Quintero, 2002). (Santa-

Maria et al., 1997; Fu and Luan, 1998).  

1.3.4.2 Removal of Na
+
 from the cytoplasm 

Na
+
 present in the cytoplasm interferes with the cell metabolic processes so plants can 

either extrude Na
+
 into apoplast or store it in the vacuole. The removal of Na

+
 into the 

apoplast is driven by antiporters called Na
+
: H

+
 antiporter (NHA). SOS1 is a member of 

the NHA family and has been characterised in detail. SOS1 expression is prominent in 

root tip cells and also occurs in the xylem parenchyma (Wu et al., 1996). Root tip cells 

are predominantly evacuolate and hence incapable of vacuolar Na
+
 compartmentation. 

Such tissues therefore must entirely rely on extrusion of cytoplasmic Na
+
 into the 

apoplast which is mediated by SOS1. 

However, Na
+
 extrusion into the apoplast is assumed to take place in most plant tissues, 

particularly at the root-soil boundary. Many of these tissues do not show SOS1 

expression and it remains unclear which antiporters are involved. Other NHA isoforms 

may play a role but the NHA gene families in most plants only contain 1 or 2 isoforms. 

A further alternative is the CHX (cation H
+
 exchange) family (Figure 1.2) which 

probably includes both K
+
:H

+
 and Na

+
:H

+
 antiporters and some CHXs have been 

implied in salinity tolerance (Evans et al., 2012). 

Sequestration of Na
+
 in the vacuole could be a useful strategy for the cells for many 

reasons: 1. The cytoplasm gets rid of the toxic concentrations of Na
+
, 2. The vacuole 

does not contain Na
+
 sensitive metabolic machinery so is not affected by Na

+
, and 3. it 

lowers the cellular water potential and as such prevents water loss. 
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One of the studies on plant antiporters discovered NHX1 (Na
+
 H

+
 exchanger 1) as a 

major player in the vacuolar cation movement. AtNHX1 overexpression significantly 

improved salinity tolerance in Arabidopsis (Apse et al., 1999) whereas its loss of 

function yielded the opposite effect (Apse et al., 2003 and Bassil et al., 2011). 

Manipulation of the expression of NHX1 orthologs in other species such as wheat (Xue 

et al., 2004), rice (Fukuda et al., 2004) and tomato (Zhang and Blumwald, 2001) 

showed the fundamental role this protein plays in salt tolerance and explains why it is a 

major focus for genetic engineering. However, more recent work has thrown some 

doubt on the molecular details of NHX activity and thus its physiological role. Most 

NHX isoforms that have been characterised can transport both K
+
 and Na

+
 and either 

have a similar Km for these substrates or even prefer K
+
 (Jiang et al., 2010). This means 

that, unless the cytoplasmic Na
+
 concentration is considerably higher than that for K

+
, 

NHX exchangers mainly mediate K
+
:H

+
 exchange rather than Na

+
:H

+
 exchange (Zhang 

and Blumwald, 2001; Barragan et al., 2012). Indeed, loss of function of NHX1 and 

NHX2 in Arabidopsis led to impaired vacuolar K
+
 accumulation but enhanced vacuolar 

Na
+
 uptake (Barragan et al., 2012). Thus, it seems that the contribution of vacuolar 

NHX exchangers to salt tolerance is predominantly in maintaining K
+
 homeostasis 

rather than in actual sequestration of Na
+
 into the vacuole. Of course this leaves us with 

the important question how the latter process is catalysed!   
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Figure 1-2: overview of the main membrane transporters that contribute to Na
+
 and Cl

- 
uptake and 

distribution.  Not necessarily all depicted proteins are present in one cell 

AHA: H+ pump; AKT/KAT: K+ inward rectifying channel; AVP: vacuolar pyrophosphatase; CHX; 

cation-proton exchanger/antiport; CLC: chloride channel; CNGC: cyclic nucleotide gated channel; GRL: 

glutamate receptor like channel; HKT: K+:Na+:symporter; NHA: plasma membrane sodium-proton 

exchanger/antiport; NHX: tonoplast sodium exchanger/antiport; VoV1: tonoplast H+ ATPase (Maathuis et 

al., 2014). 

1.3.4.3 Long distance Na
+
 transport 

Translocation of Na
+
 from root to shoot (Figures 1-2 and 1-3) is one of the important 

strategies in salt stress physiology (Flowers et al., 1977; Epstein, 1998). Glycophytes 

are mostly classified as salt excluders because they prevent significant accumulation of 

salts in photosynthetic tissues while most halophytes are includers and actively transport 

Na
+
 from root to shoot (Flowers et al., 1977; Lauchli, 1984). This long distance 

transport has various points where the plant can exert control over salt distribution such 

as loading and translocation through the xylem and/or phloem mediated re-translocation 

from shoot to roots (Figure 1-1).  

The bypass flow     

Solutes and water can reach the xylem via a symplastic or apoplastic route. The latter 

catalyses movement of solutes through the cell walls and intercellular spaces to the 

xylem without crossing plasma membranes and is sometimes called the ‘bypass flow’ 

(Yeo et al., 1987; Anil et al., 2005; Krishnamurthy et al., 2009). Casparian strips and 

suberine layers in the root endodermal and exodermal layers provide morphological 
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Figure 2: Overview of the main membrane transporters that contribute to Na+ and Cl-
uptake and distribution. Not necessarily all depicted proteins are expressed in one cell. 
AHA: H+ pump; AKT/KAT: K+ inward rectifying channel; AVP: vacuolar pyrophosphatase; 
CHX: cation-proton exchanger/antiport; CLC: chloride channel; CNGC: cyclic nucleotide 
gated channel; GRL: glutamate receptor like channel; HKT: K+:Na+ and Na+:Na: 
symporters; NHA: plasma membrane sodium-proton exchanger/antiport; NHX: tonoplast 
sodium-proton exchanger/antiport; Vo/V1: tonoplast H+ ATPase.
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barriers to apoplastic transport but in young roots and initiation sites of lateral roots 

these structures can be lacking or only partially effective. The efficacy of these 

anatomical features heavily depends on growth conditions such as the presence of 

silicon (Yeo et al., 1987) and Ca
2+

 (Anil et al., 2005). In many plants the apoplastic 

pathway is relatively limited but in other species such as rice the bypass flow can be 

substantial and therefore is responsible for significant amounts of Na
+
 transport to the 

shoot.  

The exact entry site for the Na
+
 into the stele is not known. Yeo et al. (1987) proposed 

that the emerging sites of the lateral roots and cells walls near the root apices are the 

entry points. In rice, like other monocots, lateral roots arise from the pericycle through 

the endodermis breaking the casparian bands. Casparian bands are also often absent in 

the root tip regions. In contrast, Faiyue et al. (2010) showed that the bypass flow 

significantly increases in the absence of lateral roots, by using mutant lines incapable of 

making lateral roots. These authors suggested that the higher Na
+
 content in the xylem 

sap and shoots of the mutant lines was caused by the different anatomical architecture 

and reduced suberine deposition on the exodermal and endodermal walls of the mutant. 

Recent data from Krishnamurthy et al. (2011) suggested the involvement of lateral root 

emergence in the leakage of tracer (trisodium-8-hydroxy-1,3,6- pyrenetrisulphonic acid) 

into the primary roots through the break created by the emergence of lateral roots.  

1.3.4.4 Xylem loading of Na
+
 

Solutes delivered via the symplast have to cross the plasma membrane before they can 

be released into the xylem apoplast. Plasma membrane localised transporters are 

proposed to have a role in the xylem loading of Na
+
 (Lacan and Durand, 1996) a 

process that involves the endodermis and xylem parenchyma cell layers (Epstein, 1998). 

The transport systems located at the xylem-parenchyma boundary may mediate both 

passive loading via Na
+
 permeable channels and active loading through Na

+
:H

+
 

exchangers (Figure 1-3). An example of the latter is SOS1, a plasma membrane 

antiporter that is expressed in root epidermis and root xylem parenchyma. The exact 

function of SOS1 is likely to depend on the severity of salinity stress and may include 

both xylem loading (low or moderate levels of salinity) and removal of Na
+
 from the 

xylem (during high salinity). Members of CHX cation antiporter family are also 

implicated as playing a role in the loading of Na
+
 into the xylem. For example, 
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Arabidopsis CHX21 is mainly expressed in the root endodermis and loss of function in 

this protein reduced the level of Na
+
 in the xylem sap (Hall et al., 2006).  

The presences of non-selective ion channels (NSCs) in the plasma membrane of xylem 

parenchyma cells provide another pathway for Na
+
 entry into the xylem. NSCs have 

been studied in xylem parenchyma cells of barley roots (Wegner and De Boer, 1997). 

The molecular identity of these NSCs is as yet unknown but could include members of 

the glutamate receptor like channels (GLRs) or cyclic nucleotide gated channels 

(CNGCs) (Demidchik and Maathuis, 2007).  

 

Figure 1-3: Schematic of the xylem and xylem parenchyma 

The xylem parenchyma consists of living cells that unload Na+ across their plasma membrane into the 

apoplast and xylem lumen (non-living tissue). Once in the xylem, bulk flow under positive and negative 

pressure ensures transport of minerals to shoot tissues (Maathuis et al., 2014). 

 

1.3.4.5 Na
+
 retrieval  

Plants can reabsorb Na
+
 from the xylem into the root cells as a mechanism to prevent 

large accumulation of Na
+
 in the above-ground tissues (Läuchli 1984; Lacan and 

Durand 1996). This retrieval mechanism was originally postulated in the 1970s (Lessani 

and Marschner, 1970) but now has a molecular basis (Figure 1-3). In Arabidopsis, 

disruption of HKT1 leads to hypersensitivity to salinity of the mutant lines with more 

Na
+
 in the leaves (Mäser et al., 2002; Berthomieu et al., 2003; Davenport et al., 2007; 

Møller et al., 2009). The knockout lines showed higher Na
+
 in the shoots but a lower 
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Figure 3: Schematic of the xylem and xylem parenchyma anatomy. The xylem 
parenchyma consists of life cells that unload Na+ across their plasma membrane 
into the apoplast and xylem lumen (non living tissue). Once in the xylem, bulk flow 
under positive and negative pressure ensures transport of minerals to shoot 
tissues.
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level of K
+
. These results favour the hypothesis that AtHKT1 is responsible for the 

retrieval of Na
+
 from the xylem whilst directly stimulating K

+
 loading. This is an ideal 

mechanism for plants to achieve a higher K
+
/ Na

+
 ratio in shoots during salts stress 

(Hauser and Horie, 2010). Similar reabsorption mechanisms were also found in rice and 

wheat. In rice, OsHKT1:5 is a plasma membrane Na
+
 transporter expressed in xylem 

parenchyma cells that retrieves Na
+
 from the xylem sap (Ren et al., 2005). The activity 

of OsHKT1;5 was significantly more robust in salt tolerant rice cultivars. In wheat, the 

HKTs NAX1 and NAX2 fulfil similar roles (Lindsay et al., 2004). Shi et al., (2002) 

suggested a similar role in xylem Na
+
 reabsorption for the SOS1 transporter (depending 

on the level of salinity stress) but the evidence for this is less convincing.  

 Role of K
+
 under salt and drought stress  1.3.5

Abiotic stresses like drought and salinity affect K
+ 

availability to the plants. In response, 

plants suffer from K
+
 deficiencies and their growth and productivity is affected. 

Improving K
+
 nutrition could increase plants’ tolerance to these abiotic stresses.  Deep 

root systems, large absorbing areas and retention of water within the plants are 

considered effective strategies against osmotic stress (Wang et al., 2013). Provision of 

K
+
 fertilizers together with N and P deep in the soil could enhance deep rooting due to 

the signalling functions of these nutrients (Kirkby et al., 2011). Adequate K
+
 supply 

increases the surface area of the roots and increases the water uptake (Römheld and 

Kirkby, 2010). Improved K
+
 nutrition helps in water retention by keeping stomata 

closed under osmotic stress conditions. Low K
+
 concentrations under osmotic stress 

conditions could inhibit the action of ABA. The reduction in ABA then delays stomatal 

closure and results in greater water loss (Tanaka et al., 2006). Adequate K
+
 

concentration plays a role as inorganic osmoticum within the cells during osmotic stress 

conditions, maintaining higher turgor pressure. K
+
 also plays a role as a major 

osmoticum in the cytosol to balance the osmotic gradient between the cytosol and the 

vacuole (Wang et al., 2013).  

Considering the above important roles of K
+
 under different conditions, it is important 

to understand the K
+
 nutrition and distribution within the plant. 
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1.3.5.1 K
+
 uptake from the soil  

The uptake mechanism for the K
+
 involves low and high affinity K

+
 transport systems 

active at a range of external K
+
 concentrations (Maathuis and Sanders, 1996; Maathuis 

et al., 1997; Very and Sentenac, 2003; Rodriguez-Navarro and Rubio, 2006). K
+ 

channels can proceed through passive transport and is believed to be driven by 

membrane potential. High affinity K
+ 

transport systems require energy (Maathuis, 

2007). AKT1 is identified as the main contributor of the low affinity K
+
 system in 

Arabidopsis (Sentenac et al., 1992; Hirsch et al., 1998) while its homologues were also 

identified in rice (OsAKT1), potato (StSKT1), carrot (DcDKT1) and maize (ZmKZM1). 

AKT1 is predominantly expressed in root cortex and in the epidermal cells including the 

root hairs (Figure 1-5). Its selectivity for K
+
 is several times higher than Na

+
. AKT1 

plays a major role in K
+
 absorption at the root soil boundary (Hirch et al., 1998; 

Spalding et al., 1999; Gierth et al., 2005; Rubio et al., 2008; Alemán et al., 2011). 

AKT1 is activated by phosphorylation through the CIPK23-CBL1/9 complex (Li et al., 

2006; Xu et al., 2006). For instance cipk23 mutants showed less K
+
 uptake (Xu et al., 

2006) in agreement a role of AKT1 in K
+
 uptake at the root level.  

At very low external concentrations of K
+
, high affinity K

+
 transporters from the 

KT/HAK/KUP group are involved in the K
+
 uptake (Figure 1-5). For example, AtHAK5 

expression level is upregulated under K
+
 deficient conditions (Ahn et al., 2004; Gierth 

et al., 2005; Qi et al., 2008). Gierth et al., (2005) found that AtHAK5 shows strong and 

consistent upregulation when the plants are exposed to K
+
 starvation either for short 

time or long time. They found the high expression of AtHAK5 in the epidermal cells of 

the main root and lateral roots and suggested that AtHAK5 is involved in the K
+
 uptake. 

They also found that the athak5 homozygous mutant line showed less K
+
 over 96 hours 

K
+
 starvation. Nieves-Cordones et al., (2008) found that the membrane potential of the 

K
+
 starved plants is more negative than the K

+
-sufficient plants. They found a higher 

expression level of LeHAK5 when the membrane potential becomes more negative. 

When the K
+
 starved plants were treated with 100 μM K

+
, depolarization of the root 

plasma membrane and LeHAK5 expression level were observed.  Nieves-Cordones et 

al., (2009) showed increased AtHAK5 transcription under K
+
 starvation, however, the 

transcription was relatively lower when the same K
+
 starved plants were supplied with 

30 mM NaCl in the medium (see also Nieves Cordones et al., 2014)). The upregulation 

of HAK5 was also found in tomato (Wang et al., 2002), and barley (Santa-Maria et al., 

http://www.sciencedirect.com/science/article/pii/S0176161713004252#bib0365
http://www.sciencedirect.com/science/article/pii/S0176161713004252#bib0365
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1997) under K
+
 starvation. Some of the members of the KT/HAK/KUP family have a 

role in low affinity K
+
 transport helping other K

+
 transporters (Senn et al., 2001; 

Garciadables et al., 2002). For example OsHAK7 and OSHAK10 are involved in low 

affinity K
+
 transport (Banuelos et al., 2002). The transporters of KT/HAK/KUP family 

are involved in the K
+
 uptake as well as in the maintenance of K

+
 homeostasis. 

The non-selective cation channels (NSCCs) are present throughout in the plasma 

membrane and other membranes. They show high selectivity for cations but do not 

discriminate between K
+
 and Na

+
 (Demidchik and Maathuis, 2007). Their physiological 

role is to function in low affinity transport of K
+
. CNGCs are the types of NSCCs and 

are activated by cAMP and cGMP (Leng et al., 2002), widely present in plants with 20 

members in Arabidopsis (Maser et al., 2001) and are localised to the plasma membrane 

(Arzi et al., 1999) (Figure 1-5). All characterised CNGCs are capable of conducting K
+
 

(Shabala and Cuin, 2007). 

1.3.5.2 K
+
 transport in the root 

Plants absorb nutrients primarily at the peripheral tissues of the root such as the 

epidermis and hypodermis (or exodermis; Kochian and Lucas, 1983; see also Nieves-

Cordones et al., 2014). The root cortex functions less in direct nutrient absorption and 

mostly acts as a collection system for water and nutrients absorbed by the epidermis. 

After absorption, radial transport of water and nutrients follows with the ultimate aim of 

delivery to the root xylem. Radial transport can follow both apoplastic and symplastic 

pathways (Fig. 1-4). Water and solutes absorbed into the symplast can move from the 

periphery to the central part of the root (Taura et al., 1988). 

 

 

http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0190
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0240
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0240
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0330


21 
 

 

Figure 1-4: Overview of radial root tissues and symplastic and apoplastic pathways for solutes from 

the root periphery to the xylem 

Uptake of nutrients such as K+ primarily occurs at the root periphery by epidermis (EP) cells, especially 

those with root hairs (RH). Uptake into the root symplast (1) of K+ is mediated by diverse K+ channels 

(e.g. AKT1 and KAT1), carriers from the HAK/KUP family and possibly non-selective K+ channels (e.g. 

from the CNGC family). K+ is then radially moved within the symplast using interconnecting 

plasmodesmata (PM). K+ release into the stele apoplast occurs through K+ channels such as SKOR and 

less selective K+ channels that reside in the plasma membrane of xylem parenchyma (XP) cells. Energised 

exchangers from the CHX family may also contribute. Nutrients can also cross the outer layers of the root 

via the apoplast (2) but this pathway is blocked at the endodermis (EN) by the Casparian strip (CS) a 

highly suberised structure that prevents uncontrolled water and nutrient delivery to the stelar tissues. CO, 

cortex; XV, xylem vessel 

The interconnecting walls of the various root tissues form a highly porous continuum 

called the apoplast through which water and solutes can freely move (Katou and 

Furumoto, 1986a; Katou and Furumoto, 1986b). However, the apoplast is blocked at the 

endodermis, the cell layer that divides the stele from the other root tissues. Endodermal 

cells are surrounded by the Casparian strip, a highly suberized material which is 

impermeant to water and solutes. The endodermal block of the apoplast forces the water 

and dissolved substances to enter into the cytoplasm of the endodermal cells through the 

plasma membranes, endowing the plant with a high degree of control over the entry of 

the dissolved solutes into the stele. It also prevents solutes that leak out of the xylem 

from being lost into the rhizosphere. Some angiosperms also have Casparian strips in 

the hypodermis providing an additional control point for the entry of solutes. 

Overall radial transport is from root periphery towards the stele and then the xylem 

vessels. The main driving force for this process is transpiration, the evaporation of water 

from leaves, which reduces pressure in the xylem. This creates a tension that pulls 

xylem sap upward which is replenished by water and solutes provided by the roots. The 

other contributor is solute diffusion within the symplast which is facilitated by the 

plasmodesmata. 

http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0175
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0175
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0180
http://www.sciencedirect.com/science/article/pii/S0176161713004380#gr2
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1.3.5.3 Xylem loading of K
+
 

K
+
 uptake and subsequent radial transport through the root occurs through mechanisms 

discussed above. K
+
 distribution around the root symplast depends on bulk flow through 

interconnecting plasmodesmata. However, delivery to non-root tissues requires K
+
 

loading into the xylem, a process largely controlled by outward-rectifying K
+
 channels 

in the adjacent parenchyma cell membranes. Not all details are known but AtSKOR 

(stelar K
+
 outward rectifying channel), originally identified in Arabidopsis, appears a 

main player (Gaymard et al., 1998). SKOR is a Shaker type K
+
 channel activated when 

the membrane depolarises (Figure 1-5). A SKOR knockout mutant showed a reduced 

shoot K
+
 content and a reduced K

+
 content in the xylem sap confirming its significance 

as a crucial step in delivery of K
+
 to the xylem. SKOR transcription is inhibited by 

abscisic acid (ABA) (Gaymard et al., 1998). The latter is believed to ensure reduced K
+
 

loading into the xylem to maintain adequate root turgor when soils dry out. All these 

properties suggest an important role for SKOR in K
+
 xylem loading and hence its 

delivery to shoot tissue. However, using patch clamp studies on xylem parenchyma 

cells, several other outward rectifying K
+
 conducting channels have been observed 

which may also contribute to xylem K
+
 loading ( Roberts and Tester, 1995 and Wegner 

and De Boer, 1999) but further research is needed to establish the molecular identity of 

these transporters. 

1.3.5.4 Translocation of K
+
 

The movement of solutes from root to shoot is named ‘translocation’. The xylem is 

responsible for root to shoot translocation of K
+
. However, long distance K

+
 transport is 

by no means unidirectional and a large proportion of shoot K
+
 is recycled to the root 

through the phloem (Marschner et al., 1997). One reason for this apparently futile cycle 

is the role K
+
 plays as counter ion for root to shoot translocation of NO3

−
 in the xylem 

(which may require much of it to be recycled) while phloem K
+
 influx may also be 

necessary when photosynthetic assimilates are loaded. The amount of K
+
 re-translocated 

from the shoots to the roots via the phloem, also depends on the shoot growth rate and 

K
+
 availability. As such it may be part of a signal to control the amount of K

+
 secreted 

into the root xylem and, ultimately, to help tune root K
+
 absorption to the shoot demand 

for growth (Drew and Saker, 1984; Marschner et al., 1996; White, 1997). The overall 

http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0115
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0115
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0285
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0365
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0365
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0215
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0085
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0220
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0370
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K
+
 translocation is likely to be tightly controlled by many factors but it is clear that 

ABA is an important component. Studies on barley and maize (e.g. Cram and Pitman, 

1972; Schaefer et al., 1975; Behl and Dieter Jeschke, 1981; Bassiri Rad and Radin, 

1992) showed that the net efflux of K
+
 from the stelar parenchyma cells decreases after 

treatment with ABA. Roberts (1998), using patch clamp, directly demonstrated that K
+
 

channel activity in xylem parenchyma cells was reduced by ABA but ABA had no 

effect on similar channels in the cortical cells. Thus, ABA reduces the K
+
 permeability 

of the xylem parenchyma plasma membranes and as such reduces K
+
 translocation via 

the xylem. 

1.3.5.5 K
+
 transport and distribution in the shoot 

Xylem unloading 

The ascending xylem sap delivers soil derived nutrients to the above ground parts of the 

plant. Since K
+
 is important for turgor, and therefore expansive growth, large amounts 

of K
+
 need to be unloaded from the xylem sap and distributed across shoot tissues. 

Leaves have a limited number of major veins but an extensive network of minor veins. 

This means that effectively no cell is ever further away than a few hundred micrometres 

from a ‘delivery pipeline’ (Smillie et al., 2012) to supply the large amounts needed. For 

example, a 10 g shoot of a plant growing at 10% per day, would require around 

100 μmol of K
+
 each day, assuming an average K

+
 concentration of 100 mM. Because 

the requirements for K
+
 may vary greatly, for example between mature, transpiring 

leaves and rapidly growing young leaves, this is not a passive process but likely to be 

controlled by signals and hormones such as ABA, auxin, and cytokinins, many of which 

are present in the xylem sap itself (Wegner and De Boer, 1997). 

Just as they are in the root, the dead leaf xylem vessels are surrounded by xylem 

parenchyma cells. Many of the latter contain ‘pits’ (interruptions in the cell wall) which 

expose the parenchyma cell membrane directly to the xylem content. At the pits, xylem 

content can be unloaded into the apoplast and, after uptake in the parenchyma cells, this 

can be passed on (symplastically) to more distant cells and tissues (Botha et al., 2008; 

but see also Wigoda et al., 2014, for a discussion on the role of the leaf bundle sheath in 

this distribution process). There is no direct evidence about the molecular mechanisms 

that mediate this process but it is highly likely that K
+
 channels and carriers are 

http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0055
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0055
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0300
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0395
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0025
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0025
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0400
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0320
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0360
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0045
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0380
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responsible which are similar to those discussed previously: For example, if we assume 

an average [K
+
] in the xylem sap of around 10 mM (Enns et al., 1998), this would 

equilibrate with the apoplast [K
+
]. Passive uptake of xylem K

+
 into the parenchyma 

cells can then proceed through hyperpolarisation activated inward rectifying K
+
 

channels (e.g. of the Arabidopsis (Shaker type) K
+
 channel (AKT/KAT) family; s(ee 

Anschütz et al., 2014 and Véry et al., 2014) and/or non-selective cation channels 

(Wegner and De Boer, 1997; see also Demidchik, 2014 and Pottosin and 

Dobrovinskaya, 2014). Whenever xylem K
+
 would fall below 0.1–1 mM, active 

transport in the form of H
+
-coupled mechanisms may also contribute (e.g. from the high 

affinity K
+
 transporters (HAK/KUP) family; (see Nieves-Cordones et al., 

2014 and Véry et al., 2014). Some authors believe that the high number of membrane 

vesicles that is observed near the pit membrane suggests that endocytosis could also be 

important for xylem unloading (Botha et al., 2008). 

Phloem loading 

While the xylem is responsible for the unidirectional transport of water and solutes from 

root to shoot, primarily driven by transpiration, the phloem is essential for the transport 

of assimilates from source to sink. Phloem K
+
 concentrations tend to be significantly 

higher than xylem K
+
 and probably range from around 50 to 150 mM (Kallarackal et 

al., 2012). The reason for this relatively high K
+
 concentration is not clear and may be 

manifold. Loading of both sugars and amino acids is stimulated by apoplastic K
+
 (Peel 

and Rogers, 1982). Just as in the xylem, phloem K
+
 requirement may simply be a matter 

of charge balancing. Phloem sap can contain organic acids and large quantities of amino 

acids with negative charge (Hayashi and Chino, 1990). In low growth conditions, the 

amount of K
+
 that reaches the shoot through the transpiration stream can outstrip shoot 

demand and all or a fraction of this may be recycled to the roots via the phloem. Other 

reports suggest that phloem mediated sugar translocation requires K
+
 because of the 

way sucrose loading itself takes place. At the source, loading of sucrose into the phloem 

is largely via H
+
-coupled sucrose transporters. The influx of H

+
 could lead to large 

depolarisation of the phloem cell, thereby reducing the driving force for sucrose 

loading. Depolarisation is prevented by K
+
 selective channels such as AKT2/3 (Deeken 

et al., 2002), a shaker type K
+
 channel that can switch between inward and non-

rectifying states, that ‘clamps’ the phloem cell membrane potential at the K
+
 reversal 

http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0090
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0010
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0340
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0360
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0075
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0270
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0270
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0240
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0240
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0340
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0045
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0165
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0165
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0250
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0250
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0140
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0070
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0070
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potential. With several millimolar of K
+
 in the apoplast, such a mechanism can only 

polarise phloem cells effectively if the phloem [K
+
] is near or over 100 mM. Clamping 

is particularly potent when the channel is switched to the non-rectifying mode and when 

energy provision is compromised (Gajdanowicz et al., 2011). Indeed, this phloem based 

‘K
+
 battery’ may constitute a general decentralised energy store that can be used to 

overcome local energy limitations (Gajdanowicz et al., 2011). 

The absolute phloem K
+
 concentrations will vary in response to environmental 

conditions and it has been suggested there is a balance between sucrose and K
+
 to 

maintain the phloem sap osmolality. Thus, when photosynthesis is low and hence 

sucrose loading is diminished, in several species it was found that phloem K
+
 went up 

(Philippar et al., 2003). Because AKT2/3 is expressed in both source and sinks phloem 

tissues (Figure 1-5) and is potentially able to mediate both K
+
 influx and efflux owing to 

its weak rectification property, it has been suggested to be involved in both loading and 

unloading of phloem sap K
+
 in sources and sinks respectively (Lacombe et al., 

2000 and Marten et al., 1999). Interestingly, the drought hormone ABA reduces the 

level of SKOR mRNA in the xylem (see above) while it increases that of AKT2/3 in the 

phloem (Pilot et al., 2003). This dual effect is consistent with the role of ABA during 

water stress: a reduced K
+
 transport to the shoots, and increased delivery of K

+
 to the 

roots via the phloem, both will aid in maintaining a low osmotic potential in the water 

deprived roots. 

Photosynthetic versus non-photosynthetic tissues  

Within shoot tissues, K
+
 can vary greatly as borne out by several studies comparing K

+
 

in photosynthetic mesophyll and non-photosynthetic epidermal cells. This variation 

primarily reflects vacuolar K
+
 contents. Grown in control conditions Fricke et al., 

(1996) recorded around 200 mM K
+
 in vacuoles of both mesophyll and epidermal cells. 

However, growth conditions severely affected these patterns; in saline conditions [K
+
] 

reduced in both types of cells but considerably more so in epidermal cells (Fricke et al., 

1996). Another study on barley found considerably higher (∼260 mM) K
+
 levels in 

epidermal cells compared to mesophyll cells (∼120 mM), while a third paper on barley 

found the opposite with ∼300 mM in the mesophyll and ∼170 mM in the epidermis 

(Dietz et al., 1992). This suggests that partitioning patterns are not fixed and likely 

respond to growth conditions and developmental stage. For example, saline conditions 

http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0110
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0110
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0255
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0200
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0200
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0225
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0265
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0100
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0100
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typically lead to preferential deposition of Na
+
 in non-photosynthetic cell types (e.g. 

Fricke et al., 1996), effectively exchanging K
+
 for Na

+
 (for details on the physico-

chemical relationship of K
+
 and Na

+
 (see Benito et al., 2014). However, it is not clear 

which transport processes underpin this partitioning of K
+
. Some studies found that 

differential uptake of ions might partly explain cell type-specific ion accumulation (e.g. 

Dietz et al., 1992). For example, inward-rectifying currents are absent from the leaf 

mesophyll cells of several species (for refs see Karley et al., 2000) which could 

contribute to differential K
+
 uptake. Others found no evidence for differential uptake; 

Karley et al. (2000) measured comparable membrane potentials in mesophyll and 

epidermal cells and a much higher [K
+
] in epidermal protoplasts in spite of a slightly 

higher K
+
 current density in the mesophyll protoplasts. 

1.3.5.6 Cellular partitioning of K
+
 

Cellular K
+
 partitioning into the vacuole 

In both roots and shoots, K
+
 is normally present at high concentrations in all cellular 

compartments. In plants, the two major cellular compartments consist of the cytoplasm 

and the vacuole with the latter by far the largest in terms of volume. Thus, the majority 

of cellular K
+
 is deposited in the vacuole where it is one of the main turgor providers. 

To provide turgor, vacuoles need high concentrations of K
+
 which, depending on 

growth conditions and cell type, can reach over 500 mM. Vacuolar loading of K
+
 may 

to some extent be mediated by cation channels but must rely on energised mechanisms 

to reach K
+
 concentrations that are equal or higher than those in the cytoplasm, due to 

the membrane potential across the tonoplast which keeps the lumen at a potential of 

∼20 mV positive with respect to the cytoplasm. It is generally assumed that K
+
:H

+
 

exchangers, particularly from the cation: proton exchangers (CHX) and Na
+
 proton 

exchanger (NHX) family, drive such fluxes (Pardo et al., 2006, Chanroj et al., 

2012 and Mottaleb et al., 2013). Recent studies provide convincing evidence that in 

particular NHX1 and NHX2 function in vacuolar K
+
 accumulation. Double nhx1/nhx2 

loss of function mutants had reduced ability to create a vacuolar K
+
 pool, which in turn 

led to greater K
+
 retention in the cytosol. The mutants were also impaired in 

osmoregulation and turgor generation for cell expansion (Barragán et al., 2012). 
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http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0235
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0020
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The K
+
 that is sequestered in vacuoles is probably quite inert in most circumstances. 

However, it may need to be released in other conditions, for example when cytoplasmic 

K
+
 becomes deficient (Walker et al., 1996), when osmotic adjustment is necessary or 

when turgor driven movement is required such as during opening and closing of stomata 

or (nyctinastic) movement of leaves (for further details on the regulation of stomatal 

movement see Blatt et al., 2014). Release of vacuolar K
+
 is largely thermodynamically 

‘downhill’ and thus likely to be through ion channels. Particularly TPK (two pore K
+
 

channel) type channels are contributors to this process. TPKs show a four 

transmembrane/two pore structure, and one or two C-terminal EF hands, suggesting that 

Ca
2+

 signalling may be part of their regulation. TPK1 is expressed in most plant tissues 

where it forms homomeric channels (Voelker et al., 2006 and Gobert et al., 2007; see 

also Hamamoto and Uozumi, 2014). Its expression was shown to impact on overall K
+
 

homeostasis and on stomatal closure in particular giving credence to the notion that it 

constitutes a major pathway for vacuolar K
+
 release (Gobert et al., 2007). In seeds, 

TPK1 may also be involved in the release of K
+
 from protein storage vacuoles during 

the initial phases of germination (Gobert et al., 2007 and Isayenkov et al., 2011). 

Another K
+
 conducting tonoplast channel (the fast vacuolar (FV) channel) may also 

participate in intracellular K
+
 distribution. The FV channel has a K

+
/Na

+
 selectivity of 

around unity and was originally described in red beet storage tissue (Hedrich and Neher, 

1987). The gene(s) encoding the FV channel is not known and this frustrates in depth 

studies regarding its characteristics and in planta role. But, since both luminal and 

cytoplasmic K
+
 levels impact on FV channel open probability, it has been hypothesised 

that maintaining cellular K
+
 homeostasis is one of the physiological roles of this 

transporter (Pottosin and Martínez-Estévez, 2003; see also Pottosin and Dobrovinskaya, 

2014). 

During prolonged K
+
 starvation, vacuolar K

+
 concentrations may become significantly 

lower than those in the cytoplasm (Walker et al., 1996). In such conditions, vacuolar K
+
 

release cannot be passive and needs energised transport. The transporter(s) that is 

responsible for this process is unknown but interestingly, several proteomics studies 

show the presence HAK/KUP type transporters at the tonoplast (e.g. Jaquinod et al., 

2007 and Whiteman et al., 2008; see also Hamamoto and Uozumi, 2014) which are 

http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0355
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0040
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0345
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0120
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0125
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0120
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0120
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0155
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0145
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0145
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0275
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0270
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0270
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0355
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0160
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0160
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0375
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0125
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energised via coupling to the trans-tonoplast proton motive force. Such systems could 

facilitate ‘uphill’ K
+
 release from the vacuole into the cytoplasm. 

Other endo-compartments 

NHX and CHX type K
+
: H

+
 exchangers may also regulate K

+
 homeostasis of other 

endo-compartments. For example, the tomato LeNHX2 protein co-localises with pre-

vacuolar and Golgi markers in both yeast and plants (Rodríguez-Rosales et al., 2008) 

whereas a translational AtNHX5:GFP fusion localised to pre-vacuolar compartments of 

onion cells (Pardo et al., 2006). These systems are possibly responsible for loading and 

unloading of K
+
 in cellular endo-compartments and help maintain electrical and pH 

homeostasis. K
+
 provision of chloroplasts may rely on various antiporters: AtCHX23 

was found to be targeted to the chloroplast envelope and its K
+
: H

+
 exchange activity 

was hypothesised to impact on stromal pH and chloroplast development (Song et al., 

2004). More recently Aranda-Sicilia et al. (2012) showed that K
+
 efflux antiporter type 

exchangers may also be important for chloroplast K
+
 homeostasis. 

1.3.5.7 K
+
 delivery to seeds 

After flowering, seed development takes place which necessitates a large-scale 

redirection of metabolites and minerals from vegetative to reproductive tissues and thus 

a major change in source–sink relationships within the plant. In the seed, K
+
 fulfils 

similar roles as in other tissues, i.e. as an enzyme cofactor in metabolic processes and as 

an osmoticum to drive turgor driven cell expansion after germination. In addition, the 

protein storage vacuoles (PSVs) of seeds contain not only protein but also organic forms 

of phosphorous such as phytate which are complex with inorganic minerals such as Ca
2+

 

and K
+
. 

Delivery of both photosynthates and minerals to seeds occurs primarily through the 

phloem because seeds are largely non-transpiring tissues. Phloem in the pedicel, the 

stem that attaches the flower to the main stem (Figure 1-5), delivers water and solutes to 

the seed which itself consists of both maternal and filial tissues: the seed coat comprises 

maternal cell layers while the endosperm (storage reserve) and the embryo are 

composed of filial cells. Maternal and filial organs are isolated from each other through 

absence of any symplastic continuity which means not only that the main sink shifts 

http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0290
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0245
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0325
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0325
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0015
http://www.sciencedirect.com/science/article/pii/S0176161713004380#fig0015
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from initially being maternal to being filial in later stages, but also that the phloem-

delivered minerals (which move symplastically through the maternal cell layers) have to 

be unloaded into the seed apoplast and subsequently are taken up by the first filial cell 

layer, the aleurone cells. Virtually no data are available on the nature of transporters that 

are involved in mineral loading into developing seed. Phloem unloading of K
+
 is likely 

to be symplastically since the phloem is connected via a large number of 

plasmodesmata to the maternal seed tissue (Figure 1-5). Preliminary studies on bean 

seed coats using the patch clamp technique showed that non-selective ion channels 

might be responsible for K
+
 release from the maternal tissue into the seed apoplast 

(Zhang et al., 2007). The characteristics and function of these channels are analogous to 

those of non-selective cation channels in the xylem parenchyma (see above) and the 

genes that encode such channels have yet to be identified. In addition, aleurone (the first 

filial cell layer) protoplasts also contain AKT-type voltage dependent inward rectifying 

channels and non-selective cation channels of the cyclic nucleotide gated channel 

family (Schuurink et al., 1998) both of which may participate in uptake of K
+
 into the 

filial tissues. 

 Why rice? 1.4

Rice (Oryza sativa L.) is a staple food for about half of the world’s population. It has 

both diet and monetary value. About 70% of the world’s rice production is in Asia, 

especially in countries like Thailand, India and Pakistan (IRRI 2009). Currently, 

cultivated areas in those countries are affected by salinity. Recent studies have 

estimated that 2.8 Mha in Thailand (Yuvaniyama et al., 2008), 6.7 Mha in India (Singh 

2009) and 6.8 Mha in Pakistan (Awan et al. 2007) are salt affected. Rice is relatively 

sensitive to salt stress among the cereals. It tolerates salinities ranging between 1.9-

3dS/m (Grattan et al., 2002). Most of the salinity symptoms appear at seedling or 

panicle induction stage (Akbar et al., 1972). Salinity affects rice in different ways, 

however, primarily causing osmotic stress and ion disequilibrium (Hasegawa et al., 

2000; Zhu, 2001). 

There is much evidence that the effects of ion toxicity are more severe than the osmotic 

stress caused by salinity in rice (Flowers & Yeo 1981; Yeo & Flowers 1982, 1983; Yeo 

et al. 1985a). Yeo et al., (1985a) tested the rate of photosynthesis in the young and old 

leaves of the rice IR2153 and reported that the rate of photosynthesis was decreased in 

http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0385
http://www.sciencedirect.com/science/article/pii/S0176161713004380#bib0315
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the older leaf by 50% where more Na
+
 accumulated while no decrease was found in the 

younger leaf. They suggested that a reduction in photosynthesis is due to the 

accumulation of Na
+
 in the leaves 

 

Rice is a monocotyledonous plant with a comparatively small genome that has been 

sequenced (Goff et al., 2002; Yu et al., 2002). Therefore it serves as a model plant for 

the monocots. Rice, like other glycophytes, responds to salt stress by different 

mechanisms and strategies. At the whole plant level, tolerant cultivars control Na
+
 

absorption from the soil, retain more K
+
 in the tissue, and minimize Na

+
 delivery to the 

shoot (Kavitha et al., 2012).  

Research of more than 40 years confirmed that cellular Na
+
 homeostasis is crucial for 

plant salt tolerance. High external Na
+
 negatively affects K

+
 uptake. Salinity stress is 

always associated with interaction between different ions, i.e. Na
+
, Ca

2+
 and K

+
. Thus, 

salt tolerance requires not only the adaptation to Na
+
 toxicity, but also the acquisition of 

K
+
 as an essential nutrient. A high cytosolic K

+
/Na

+
 ratio is important for maintaining 

cellular homeostasis and proper functioning of the cell during salt stress. Since AKT 

and TPK channels play an important role in K
+
 uptake and homeostasis they may 

positively contribute to plant abiotic stress tolerance.  

 Objectives of the thesis 1.5

A large number of reports suggested that reducing Na
+
 transport into plants and 

improving K
+
 nutrition could improve plant salt tolerance. In other words, improving K

+
 

nutrition will restrict Na
+
 uptake and transport within the plants and will ultimately lead 

to better tolerance under salt and drought stress conditions. This study is aimed at 

improving K
+
 nutrition and thereby increasing tolerance of rice to abiotic stresses such 

as salt and drought stress. As it is mentioned above, maintaining comparatively high K
+
 

concentration in the roots and its distribution to the shoots is vital in the strategies 

against salinity. K
+
 channels are involved in the uptake and distribution of K

+
 in the 

whole plant and in the cells; and therefore it is hypothesized that the characterization of 

these channels may impact on rice resistance to abiotic stresses.  
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The objectives of this thesis were: 

1. To characterize rice TPKa channels in relation to salt and drought stress. The 

effects of the overexpression of TPKa were tested for growth, tissue ion 

concentration, stomatal conductance and rate of photosynthesis and distribution. 

2. To investigate and analyse the effects of the overexpression of TPKb on growth 

and a number of physiological parameters, under a variety of conditions.  

3. To investigate the effects of loss of function and overexpression of rice AKT1 

channels on the growth, tissue ion concentrations, xylem sap, stomatal 

conductance and rate of photosynthesis. 

 

Figure 1-5: Overview of transport processes and proteins that are involved in K
+
 uptake, efflux and 

distribution 

Overview of transport processes and proteins that are involved in K+ uptake, efflux and distribution; At 

the external soil:root interface transport functions are shown for passive [AKT1 and CNGC (cyclic 

nucleotide gated channel)] and energised (KUP/HAK) K+ uptake and channel mediated K+ release (guard 

cell outward rectifying K+ channel; GORK); Xylem loading mainly happens through K+ selective (SKOR) 

and non-selective (NCC) cation channels though energised systems may also play a role; Phloem loading 

of K+ for recycling and/or sucrose loading may involve the AKT2 channel; K+ flux to the seed is phloem 

mediated but K+ is unloaded into the seed apoplast (a) at the junction between maternal (m) and filial (f) 

tissues; vacuolar K+ accumulation is primarily driven by H+-coupled antiporters such as NHX while 

vacuolar K+ release is either passive through TPK type channels or, in K+ starvation conditions, active 

through H+ coupled KUP/HAK transporters. 
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Chapter 2 

2 Materials and Methods 

 Plant material 2.1

Mature seeds of rice (Oryza sativa L.) sub group Japonica cv. Nipponbare and cv. 

Dongjin were obtained from the International Rice Research Institute (IRRI; Laos 

Banos, Philippines). 

Independent transgenic lines of TPKa, TPKb and AKT1 were obtained in the Oryza 

sativa L. sub group Japonica cv. Nipponbare background by Agrobacterium 

transformation as mentioned in the relevant section. 

Three putative insertion lines of AKT1 were used in this study to analyse the 

disruptioonof this gene in rice under different conditions. The putative transposon 

insertion lines T14884T and NC0227 in the Nipponbare background were obtained 

from the Rice Genome Resource Centre of the National Institute of Agrobiological 

Sciences (RGRC-NIAS), Japan.  The seeds for the postech T-DNA insertion line 

PFG_1B-16021 in the Dongjing background were obtained from Crop Biotech Institute, 

Department of Plant Systems Biotech, Kyung Hee University, republic of Korea. As 

documented in the Signal database (http://signal.salk.edu/cgi-

bin/RiceGE?LOCATION=26121930&CHROMOSOME=chr01&INTERVAL=20) the 

transposon insertions were in the exon and intron of the T14884T and NC0227 lines 

respectively while the T-DNA is inserted in the 300UTR region of the line PFG_1B-

16021 (for the details see Figure 4-3).  

 Chemicals and consumables  2.2

The chemicals used in this study were purchased from different companies including 

Sigma (UK), Fischer Scientific (UK) and Macherey Nagel (UK) and the consumables 

were purchased from StarLab (UK), Eppendorf (UK). The RNA extraction kits, gel 

purification and miniprep kits were purchased from Qiagen (UK) and Fermentas (UK). 

http://signal.salk.edu/cgi-bin/RiceGE?LOCATION=26121930&CHROMOSOME=chr01&INTERVAL=20
http://signal.salk.edu/cgi-bin/RiceGE?LOCATION=26121930&CHROMOSOME=chr01&INTERVAL=20
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 Microorganisms 2.3

The Agrobacterium strain AGl1 was used for the transformation of rice with TPKa, 

TPKb and AKT1. For the amplification and purification of DNA, the E.coli strain DH5α 

was used as a recipient. 

 Plasmid vectors 2.4

The binary vectors pGreen and pSoup were used for rice transformation (Vain et al., 

2004) as shown in Figure 2-1. The pG0179 is a pGreen based vector which contains the 

cauliflower mosaic virus 35S promoter-driven gene encoding resistance to hygromycin 

for selection of the transformants. pGreen is a Ti binary vector which can replicate in 

Escherichia coli but is unable to replicate in Agrobacterium without the presence of 

another binary plasmid, pSoup, in the same strain. pSoup contains the tetracycline 

resistance gene for selection and has an oriV region which has a replication function in 

trans for pGreen-based vectors in Agrobacterium. 

 

Figure 2-1: pGreen/pSoup based vectors used for cloning of TPKa, TPKb and AKT1 and 

rice transformation 

  
Binary vectors used for cloning of TPKa, TPKb and AKT1 and rice transformation. pGreen and pSoup 

contain hygromycin and tetracycline as selectable markers respectively. 
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 Growth medium and growth conditions 2.5

Rice seeds were geminated on terra-green and kept for five days in the dark at 28
o
C and 

90% relative humidity. The germinated seedlings were transferred to hydroponics in 2 

or 3 litre boxes containing the growth medium. The growth medium consists of 

macronutrients and micronutrients as mentioned in Table 2-1. K2SO4 in the control 

medium was replaced with the equimolar quantity of Na2SO4 (53.48 g/l) for the Zero K
+
 

condition. The control medium was supplemented with additional KCl and NaCl to 

increase the concentration of Na
+
 and K

+
 up to 60 mM in the medium for the salt stress 

treatments, while for the osmotic stress treatment the control medium was supplemented 

with 5%, 10% and 15% PEG (Polyethylene glycol-4000). For zero K
+
 treatments, all 

potassium salts in the control medium were replaced with equimolar quantities of the 

corresponding sodium salts. 

 

Figure 2-2: Sowing and growth conditions of the rice 

a; Rice seeds were sown on terragreen in boxes and were kept in dark by putting a lid on the box, b; one-

week old seedlings on the terragreen, c; two- week old seedlings were transferred to hydroponics 

conditions in the box with 3 L growth medium, d; four-week old plantlets ready for exposure to different 

media conditions for physiological experiments. 
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Table 2-1: Composition of plant growth medium  

Stock solutions were prepared with deionised water. Micronutrients were dissolved 

separately, combined with 50 ml of conc. H2SO4 and volumes were then made up to 1l. The 

pH value was adjusted to 5.6 – 5.7 using appropriate amounts of HCl after all components 

were dissolved in deionised water (Yoshida et al., 1976). 

Serial 

No 

Element Macronutrients 

 

Preparation of 

stock solution 

(g/l) 

ml of stock 

solution/1l 

medium 

Concentration 

of element in 

medium (mM) 

1 N NH4NO3 91.4 1.25 2.9 

2 P NaH2PO4 ∙ 2 H2O 40.3 1.25 0.3 

3 K K2SO4 71.4 1.25 1.0 

4 Ca CaCl2 88.6 1.25 1.0 

5 Mg MgSO4 ∙ 7 H2O 324.0 1.25 1.6 

  Micronutrients    

1 Mn MnCl2 ∙ 4 H2O 1.5  

 

1.25 

0.01 

2 Mo (NH4)6 ∙ Mo7O24 ∙ 
4H2O 

0.074 0.001 

3 B H3BO3 0.934 0.2 

4 Zn ZnSO4 ∙ 7 H2O 0.035 0.0002 

5 Cu CuSO4 ∙ 5 H2O 0.031 0.0002 

6 Fe FeCl3 ∙ 6 H2O 7.7 0.04 

7 Silica Na2SiO3 0.18   

 

The hydroponics boxes were placed in the glass house in the following conditions: (16h 

light/8h dark; 28/24 
o
C day/ night; 60% relative humidity with light radiation of about 

160W/m
2
). The growth medium was changed every three days. Three to four week old 

seedlings were used for growth experiments under different Na
+
, K

+
 and osmotic stress 

conditions. At the end of the growth experiments, the exposed plants were used for ion 

concentration analysis. Non-treated plants were grown in parallel and harvested at the 

same time and served as a control.  The AKT1 transgenic plants and their corresponding 

wild types were also tested in different NH4
+
 concentrations as listed in Table 2-2. 

Table 2-2: Medium concentrations of K
+ 

and NH4
+
 to test the effect of NH4

+
 on 

AKT1 genotypes (chapter 5) 

Media NH4
+
 K

+
 NO3

-
 Na

+
 

Control 1.42 mM 1 mM 1.45 mM 0.3 mM 

0 K
+
 + 0 NH4

+
 0 0 1.45 mM 2.32 mM 

0 NH4
+
 0 1 mM 1.45 mM 1.35 mM 

0 K
+
 + 3 mM NH4

+
 3 mM 0 1.45 mM 1.3 mM 
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 DNA extraction from rice plants 2.6

DNA was extracted from rice plants according to the CTAB method. Plant material was 

ground to fine powder in liquid nitrogen and was quickly mixed with 450 µl pre-

warmed CTAB buffer and incubated at 65 °C for 50 minutes. After vortexing the 

mixture, 300 µl of chloroform: isoamylalcohol solution (24:1) was added. The mixture 

was vigorously shaken and centrifuged for 5 min in a microfuge. The top aqueous layer 

was transferred to clean, sterilized, Eppendorf tubes and DNA was precipitated by 

adding 2 volumes of 96 % ethanol and 4% 3 M NaAc (pH 5.2). The mixture was 

vortexed and left at room temperature for 30 minutes to precipitate the DNA. The 

mixture was then centrifuged for 10 min at 13000 rpm to obtain the DNA pellet. Finally, 

the pellet was rinsed in 70 % ethanol, dried for 10 min and resuspended in 100 µl 

sterilized water.  

 Total RNA isolation from rice tissues 2.7

Total RNA was extracted from the rice root and leaf tissues, using an RNase easy KIT 

(Qiagen, UK). Approximately 100 mg leaves were ground to fine powder in liquid 

nitrogen with the help of a grinder, while kept frozen. The tissue was transferred to 

RNase-free 2 ml tubes, allowing the liquid nitrogen to evaporate, but not letting the 

tissue to thaw. 450 µl of buffer RLT was added and vortexed vigorously. The lysate was 

added to a Q1Ashredder spin column placed in a 2 ml tube and was centrifuged for 2 

min on full speed. The supernatant was transferred to a clean 1.5 ml Eppendorf tube. 0.5 

ml of 96% ethanol was added to the lysate and was mixed immediately by pipette. The 

sample was then transferred to an RNeasy spin column and then centrifuged for 30 Sec 

at 10,000 RPM. The follow-through was discarded. To wash the RNeasy column 350 µl 

of buffer RW1 was added and centrifuged for 30 Sec. 10 µl of the DNase I stock 

solution was added to 70 µl of buffer RDD and was mixed by inverting the tube several 

times. 80 µl of DNAse I incubation mixture was directly poured over the RNeasy spin 

column membrane and left on the bench for 15 minutes. To wash the RNeasy column, 

350 µl of buffer RW1 was added and centrifuged for 30 Sec and the flow-through was 

discarded. To wash the RNeasy spin column 500 µl of buffer RPE was added and then 

centrifuged for 30 Sec at 10,000 RPM. 500 µl of buffer RPE was again added and then 

centrifuged for 2 minutes at 10,000 RPM. For avoiding any carryover of buffers and 

contaminations the RNeasy spin column was placed in a new 2 ml collection tube and 
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was centrifuged for 1 min at 10,000 RPM. The RNeasy spin column was removed and 

placed in a 1.5 ml Eppendorf tube. For eluting the RNA 50 µl of RNase free water was 

added to the RNeasy spin column and then centrifuged for 1 minute at 1000 RPM. 

 cDNA synthesis 2.8

The enzyme used for the synthesis of the first strand of cDNA was the Moloney murine 

leukemia virus Reverse transcriptase (M-MLV RT). Two micrograms of RNA and 0.5 

µg of oligo-dT primer per microgram of RNA was mixed and water was added to make 

the total volume up to 15 µl. The tube was heated to 70 
o
C for five minutes. Then the 

tube was cooled on ice to prevent secondary structures from reforming and M-MLV 5X 

reaction buffer (5 µl), dNTP mix (1.25 µl), recombinant Rnasin ribonuclease inhibitor 

(0.5 µl) and M-MLV RT (1 µl) were added and the final volume was adjusted to 25 µl 

by adding an appropriate amount of water. The sample was mixed gently by flicking and 

was incubated at 42 
o
C for 60 minutes.   

 PCR analyses for the screening of transgenic overexpressor lines 2.9

To analyse whether rice plants were transgenic the PCR method was used. DNA 

extracted from root and leaf tissues of the different lines was used as a template for the 

PCR. PCR mix was prepared in 2 ml Eppendorf tube by adding and mixing 5 µl Go-Taq 

flexi buffer (5X), 2 µl of MgCl2 (25 mM), 1 µl of dNTP (10 mM), 1 µl of each primer 

(10 µM), 0.1 µl of Go-Taq polymerase (5 units/µl, 2-3 µl of the template DNA (10-20 

ng) and the final volume was made to 25 µl (per reaction) by adding the required 

amount of water.  PCR conditions varied according to the requirement of the primer 

pairs (Table 2-3) and the size of the amplicon. The PCR products were resolved by 

electrophoresis in a 1% agarose gel. 

 Identification of homozygous lines and qRT-PCR analyses 2.10

Hygromycin resistant primary transformants were selfed and homozygous lines of 

TPKa, TPKb and AKT1 were identified in the T3 generation. The cDNA from the 

transgenic lines was prepared and used as a template for the qRT-PCR to analyse the 

transcript level of the respective genes. The quantitative analyses were carried out in 

triplicate using the SYBR Green master mix in an ABI 7300 sequence detection system. 

The amplicon of the rice histone gene was used as a control to normalise the data.  
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Table 2-3: Primers used to screen the transgenic lines and analyse the expression 

level of genes in the transgenic lines 

 Growth analyses of different rice genotypes in hydroponics 2.11

Rice plants were grown in different media conditions to study their growth. Plants were 

grown on terra green for one to two weeks week and were then transferred to 

hydroponics for two weeks. Three plants of each genotype were then transferred to 

Gene ID Primer Sequence Amplicon size  

αHistoneFOs06g0

4030.1 

CGAGAAGCGAAGAGGAGATG 465bp 

αHistone-R 

Os06g04030.1 

TCAACAAGTTGACCACGTCAC  465bp 

Hygromycin-F GGATATGTCCTGCGGGTAAA 794bp 

Hygromycin-R ATTTGTGTACGCCCGACAG 794bp 

35S promoter-F AAACCTCCTCGGATTCCATT 1600bp  

35S terminator-R GCTCAACACATGAGCGAAAC 1500bp  

TPKa SYBR-F 

Os03g54100 

CAAGGCCCCCCTGAAAAG 65bp 

TPKa SYBR-R 

Os03g54100 

CTTGGCCTCATCTCCTTGAATAA 65bp 

TPKb-F 

Os07g01810) 

 

GCTGCACTCGCACACGAT   70bp 

TPKb-R 

Os07g01810 

CCCCGCCGTGTAGAGCTT 70bp 

Actin-F 

Os05g36290.2 

ATGAAGCTCAGGCAAAAAGGG 322 bp on cDNA 

and 399 on gDNA 

Actin-R 

Os05g36290.2 

ACAGTGTGGCTCACACCATC 322bp on cDNA 

and 399 on gDNA 

Hygromycin- F TGAAAAAGCCTGAACTCACCG 735bp 

Hygromycin-R TCTGCTGCTCCATACAAGCC 735bp 

AKT1 cDNA-F 

Os01g45990 

ATAGTATTAATTAGGCTAGAGCCA 

 

758bp 

AKT1 cDNA-R 

Os01g45990 

TGAAGACCTTCTGAATCTGTC 758bp 

Transposons  

specific primer 

AGGTTGCAAGTTAGTTAAGA  

AKT1-R 

Os01g45990 

ACGTAGCGAATCCATAAGCTCC 1600bp for AKT1 

transgene 

AKT1-F 

Os01g45990 

ACCAACATGGCTTGTTCTTGAC 1002 on gDNA and 

638 on cDNA 

AKT1-R 

Os01g45990 

TGAAGACCTTCTGAATCTGTC 1002 on gDNA and 

638 on cDNA 
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different media conditions, i.e. Control condition, 0 mM K
+
, 60 mM K

+
, 60 mM Na

+
 

and osmotic stress i.e. 5%, 10% and 15% PEG and the fresh weight (Wi) of each plant 

was recorded. After two to three week exposure of the plants to the above mentioned 

media conditions, again the fresh weight (Wf) of each plant was recorded. The percent 

relative growth rate (RGR) was calculated according to the equation as mentioned here 

(
Wf−W𝑖

𝑁×W𝑖
) × 100 where         

Wf: fresh weight of the plant at the end of the experiment 

Wi: fresh weight of the plant at the start of the experiment 

N: total number of days to which the plants were exposed to different treatments.  

The equation is derived from Poorter and Garnier (1996). The experiments were 

repeated at least three times. The RGR relative to control conditions was calculated 

using the equation as mentioned here(
RGR in the tested condition

RGR in the control condition
) × 100.  

 Growth analyses of different genotypes in soil conditions 2.12

The plants of different genotypes in hydroponics were grown in hydroponics for four 

weeks. These plants were then transferred to the soil in pots and fresh weight was 

recorded. The pots were kept in trays and in the control conditions; plants were flooded 

with water while the drought stress was applied by watering plants twice a week with 

500 ml of water per tray. After 6 week exposure, the fresh weight of the plants was 

recorded and RGR was determined according to the equation as mentioned in the 

section 2.11. 

 Na
+
 and K

+
 tissue concentration analyses 2.13

Na
+ 

and K
+
 concentrations of roots and shoots were measured using flame photometry. 

All genotypes were grown and treated as described in 2.5. The plants were then 

separated into roots and shoots and were washed with 20 mM LaCl3 solution for 10 

minutes. Fresh weights of the samples from roots and shoots were noted after blotting 

with tissue papers. Samples were then dried at 80
o
C for 3 days. Dried samples were 

extracted with 10 ml of 20 mM LaCl3 for 24 hours and Na
+
 and K

+
 concentration of the 

samples were recorded using a flame photometer (Sherwood flame photometer-410,
 

Cambridge, UK). The root and shoot tissues of individual plant were used separately for 

the analysis.   
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 Relative water content analyses 2.14

The relative % water content in the tissues was determined by the difference between 

fresh weights and dry weight using the equation  

FW−DW

FW
∗ 100 where FW is the fresh weight and DW is the dry weight of the plant 

tissues. 

 Xylem sap analyses:  2.15

Six week old plants of different genotypes were treated with different media regimes (as 

mentioned above) for one week before collecting the xylem sap. Plants at their five-six 

leaf stage were transferred to a pressure chamber (Digital plant water potential 

apparatus, EL540-300), and the shoot was excised about 15-20 cm above the root/shoot 

junction. Pressure exceeding the osmotic pressure of the external solution was applied to 

the chamber. Xylem sap was collected for 10 minutes. Aliquots of 0.3 ml xylem sap 

were collected from 3 plants in parallel and immediately put on ice. Na
+
 and K

+
 

concentrations of the xylem sap were measured with a flame photometer (Sherwood 

flame photometer-410
 
Cambridge, UK). 

 Whole-Leaf Conductance Measurements 2.16

Four week old plants were grown in different media conditions for one week. Intact 

leaves of the different genotypes were used to measure leaf conductance and rate of 

photosynthesis by placing them in the measuring chamber of an Infrared Gas Analyser, 

Li-Cor 6400 (LI-COR, Cambridge, UK). For each genotype, three leaves (second, third 

and fourth) per plant (at six-leaf stage) were used and these were derived from three 

separate plants (n=9). The experiments were repeated three times.  

Whole leaf conductance and rate of photosynthesis were also analysed after ABA 

treatment. Initially, data were recorded in the control condition of the intact leaves of 

six-week old plants, then the roots were exposed to the contraol medium having 100 µM 

ABA concentration medium for one hour and data were recorded. Afterwards plants 

were put back in control conditions and a third set of data was recorded.  
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 K+
 uptake analyses  2.17

Wild type and TPKb overexpressor plants were grown in the control medium for four 

weeks and then were transferred to small hydroponics boxes containing 200 ml medium. 

The plants were exposed for 9 hours to low K
+
 (50 µM) medium conditions. The 

samples were collected from the medium after each hour and were analysed for the K
+
 

concentration using flame photometer as mentioned above. The observed K
+
 

concentration of the media at each time point was subtracted from the initial total K
+
 

concentration and was regarded as leaked-out/absorbed K
+
 by the plants. 

 Energy-dispersive X-ray spectroscopy (EDX or EDS) analysis 2.18

The distribution of K
+
 in the cytoplasm and vacuole in the wild type and the 

overexpressing lines of TPKa and TPKb was analysed using EDX method. Three week 

old rice plants were shifted to the control and osmotic stress (10% PEG) conditions for 

one week. The leaves of the plants were used to measure the distribution of K
+
 in the 

vacuole and cytoplasm using EDX techniques and these analyses were carried out by J 

Devonshire at the Rothamsted Research station in Harpenden. Tissue was cut from the 

4
th

 leaf of each plant 4 cm from the leaf tip. 2 sections of 2 x 3 mm were cut from this 

and mounted in slotted cryo pins using OCT compound (Agar Scientific). Samples were 

cryo-planed using a Leica UC6 cryo-ultramicrotome, with temperatures set for the 

sample -90
o
C / knife -120

o
C / chamber -120

o
C. For imaging, samples were examined 

for suitable sites of interest from which spectra were acquired inside and outside the cell 

vacuole. About 7-10 spectra of each (vacuole and cytoplasm) were collected for all 

samples from several sites along the planed surfaces. The EDS analysis was performed 

using the INCA Energy 350 (Oxford Instruments UK) system. 

 Statistical analyses 2.19

Data were obtained from a minimum of three replicates for all experiments and 

significance was analysed using unpaired two-tailed Student t-tests. Significance levels 

were at p<5% unless indicated otherwise. The error bars in the figures represent 

standard errors.        
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Chapter 3:  

3 Overexpression of TPKa and TPKb improves 

abiotic stress tolerance in rice 

 Introduction 3.1

Plant cell vacuoles are important organelles and comprise up to 90% of the cell volume 

in the mature cells of the woody parts of plants and in the herbaceous plants (Isayenkov 

and Maathuis, 2013: Raven, 1987). Vacuoles play vital roles in many crucial 

physiological processes such as turgor provision, storage of minerals and nutrients, 

cellular signalling, storage and inactivation of toxic compounds, participation in 

programmed cell death, accumulation of defence enzymes and thousands of secondary 

metabolites and storage proteins. It was believed that vacuoles store a variety of 

proteins; however, the low pH of vacuoles favours protein breakdown and the activity of 

proteases. This has brought about debate as to how it is possible that proteins and 

proteases are present in the same vacuoles (Nishimura and Beevers, 1979). Recent 

studies have now made it clear that plant cells may have two functionally distinct 

vacuoles, the central lytic vacuole (LV) and small  vacuoles (SVs) (Isayenkov et al., 

2010). The majority of the above mentioned processes has been associated with the LV. 

The low pH of the LV helps in the degradation of both exogenous and endogenous 

compounds (Echeverria and Jacqueline, 1989). SVs have some characteristics of protein 

storage vacuoles (PSVs) which are mainly found in reproductive tissues such as seeds, 

where large quantities of proteins and minerals are stored for the developing embryo. 

PSVs of the seeds store globulin and prolamin (Staswick, 1994) while in the leguminous 

plants they store lectins and its isoforms in the PSVs of the leaves and bark (Herman et 

al., 1988). All these proteins are deposited in the vacuoles by Golgi-mediated processes 

(Klauer and Franceschi, 1997).                 

The functions of PSV-like SVs are not entirely clear but they may be distinct from seed 

PSVs. SVs of vegetative cells store a variety of proteins in contrast to seed PSVs which 

store only specific proteins. The proteins in the seed PSV are regulated by 

developmental programming (Vitale and Hinz, 2005) whereas the storage of proteins in 

http://www.plantcell.org/content/11/4/601.full#ref-41
http://www.plantcell.org/content/11/4/601.full#ref-69
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the SVs of the vegetative cells is regulated by variety of factors, such as developmental 

and seasonal changes (Nsimba-Lubaki and Peumans, 1986; Wetzel et al., 1989). SVs 

might have a role as osmoregulatory structures of the cells rather than specific protein 

storage requirements. The tonoplast of SVs in the seeds and vegetative cells contain 

different proteins. The vegetative cells contain proteins which might have a role in 

osmoregulation while the PSVs of the seeds have protein which might be involved in 

the efflux /influx of water during the maturation and germination of seeds (Herman and 

Larkins, 1999). 

Membrane transporters involved in vacuolar functions   

Most of the physiological functions of the vacuoles rely on the presence of membrane 

transporters in the tonoplast. The tonoplast is energised by two types of proton pumps 

i.e. V-ATPase and P-Pase. A wide range of transporters is involved in the transport of 

substances across the tonoplast. Examples include the cation: H
+
 exchanger (CHX 

family), Ca
2+

: H
+
 exchanger (CAX family), heavy metal transporter (CDF family), 

aquaporins (TIPS), etc.  

The tonoplast contains various types of ion channels such as anion channels, ligand 

gated cation channels and vacuolar cation channels. The anion channels have not been 

characterised extensively but some of these may have a role in nutrient homeostasis 

during biotic and abiotic stresses. It has been reported by Pantoja et al., (1989) that 

anion channels are involved in Cl
-
 loading into the vacuole during salt stress, and in 

malate accumulation. AtALMT9 (Kovermann et al., 2007 and VvALMT9 (De Angeli et 

al., 2013) are reported to be localised in the tonoplast and involved in the malate 

transport to the vacuole. CLCs is another group of anion channels (Harada et al., 2004), 

but the picture is cloudy where functions are concerned. They have been suggested to 

have a role in chloride, nitrate, malate and citrate transport (Harada et al., 2004). Other 

studies suggested a role of AtCLCa as 2NO3
-
/1H

+
 antiporters (De Angeli et al., 2006).  

GLRs and CNGCs are the two families of the ligand gated cation channels in plants. 

The localisation of these channels in the tonoplast is not confirmed, however, there are 

reports which suggested the presence of these channels in the tonoplast (Isayenkov et 

al., 2010) where they may be involved in the Ca
2+

 release from the vacuole (Allen et al., 

1995).  

http://www.plantcell.org/content/11/4/601.full#ref-98
http://www.plantcell.org/content/11/4/601.full#ref-128
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Vacuolar cation channels are divided into three subgroups, the fast vacuolar (FV) 

channels, the slow vacuolar (SV) channels and vacuolar K
+
 (VK) channels.  

The FV channels have low selectivity with a K
+
: Na

+
 selectivity ratio of around one and 

other monovalent cations can also pass through these channels. Not much information is 

available about the divalent cation conductance of FV channels. FV channel activity 

decreases when the concentration of Ca
2+

 increases in the cytoplasm beyond 200 nM 

and its permeability does not depend upon the membrane potential. The genes coding 

for these channels are not yet known. FV channels have been reported in the storage 

tissues of red beet (Hedrich and Neher, 1987) and mesophyll tissues of barley 

(Tikhonova et al., 1997). These channels may be involved in the cellular K
+
 distribution 

between and vacuole and cytoplasm (Pottosin and Martinez-Estevez, 2003) 

Slow vacuolar (SV) channels are present in all plant species investigated so far. They 

can conduct both monovalent and divalent cations across the tonoplast and their activity 

is dependent on the membrane potential. Channel activity is regulated by cytoplasmic 

Ca
2+

, phosphorylation and 14-3-3 proteins (see review Isayenkov et al., 2010). Some 

reports suggested their role in preventing Na
+
 leakage from the vacuole during salt stress 

(Maathuis and Sanders, 1992). Peiter et al., (2005) identified AtTPC1 as the candidate 

gene that encodes the SV channel.  AtTPC1 has been characterised extensively, but so 

far contrasting results were achieved for AtTPC1 in different plants and in different 

conditions.  

Vacuolar K
+
 channels (VK) are K

+
 selective channels. They activate at much lower 

cytoplasmic Ca
2+

 than the SV channels and are not dependent on the membrane 

potential. TPKs are members of the VK channels and are characterised by a four 

transmembrane-two pore structure with GYGD motifs which are highly selective for K
+
 

and one or two EF hands. 14-3-3 proteins increase the activity of VK channels, and the 

interaction of 14-3-3 proteins were reported in Arabidopsis (Latz et al., 2007), barley 

(Sinnige et al., 2005) and rice (Isayenkov et al., 2011). These proteins bind to the N-

terminus of the TPK proteins. The Arabidopsis genome consists of five members of 

TPK isoforms of which four are localised to the tonoplast while one is localised to the 

plasma membrane. Arabidopsis TPK1 (an isoform of TPKs), localised to the tonoplast 

and is characterised in detail (Dunkel et al., 2008; Becker et al., 2004; Gobert et al., 

2007). It was found that this isoform is involved in K
+
 homeostasis especially in K

+
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deficient conditions, although not changing the overall K
+ 

concentration. TPK1 was 

found to be involved in stomatal closure (Gobert et al., 2007).  

Gobert et al., (2007) also found that the expression of TPK1 has a role in the 

germination of seeds. They found a comparatively better germination rate of the wild 

type and TPK1 overexpressor seeds as compared with the Attpk1 mutant, in control and 

ABA treated seeds.  After rupturing of the seed coat and endosperm layer, cellular 

turgidity is required for the elongation of the radical. This turgidity is achieved by the 

accumulation of more K
+
 in the vacuoles. TPK1 channels are supposed to be involved in 

this accumulation. This is supported by the increased expression level of TPK1 at this 

stage of germination. During radicle elongation, up to 10 fold increase in the expression 

level was observed. The accumulation of K
+
 in the vacuole through the TPK1 channels 

may depend on the vacuolar membrane potential and lower K
+
 concentration in the 

vacuole. The required K
+
 for the accumulation in the vacuoles may be available from 

the K
+
 sources in the form of complex molecules, such as potassium phytate, stored in 

the form of globoids in PSVs. During these conditions, these complex molecules are 

broken down and K
+
 is released in the form of ions. It is then stored in the vacuoles to 

provide turgor in the cell for the elongation of the radical and hence increased 

germination rate.  

The TPK family has five members in Arabidopsis thaliana and at least two members in 

rice. Out of five AtTPK channels, four are localised in the tonoplast and one, TPK4, is 

localised in the plasma membrane (Voelker et al., 2006; Schönknecht et al., 2002; 

Becker et al, 2004; Gobert et al., 2007; Dunkel et al, 2008). Only AtTPK1 has been 

shown to form functional ion channels. TPK1 activity is voltage independent, and it is 

regulated by intracellular Ca
2+

 (Gobert et al., 2007), cytoplasmic pH, phosphorylation, 

and 14-3-3 proteins (Gobert et al., 2007; Latz et al., 2007) whereas the activity of 

Nicotiana tabacum TPK1 is reported to be also sensitive to spermidine and spermine 

(Hamamoto et al., 2008). AtTPK1 has been functionally characterized using 

overexpression, loss-of-function, and heterologous expression analyses; it is 

ubiquitously expressed and has a role in cellular K
+
 homeostasis and K

+
 release during 

stomatal functioning (Gobert et al., 2007). AtTPK1 expression also affected seed 

germination, and its expression is high in embryonic tissues (Czempinski et al., 2002; 

Gobert et al., 2007). TPKs have a four-trans membrane domain (4-TMD) two pore 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077780/#bib11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077780/#bib11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077780/#bib26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077780/#bib12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077780/#bib11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077780/#bib5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077780/#bib11
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structure, and both pores contain the GYGD motif, (Voelker et al., 2006), responsible 

for K
+
 selectivity (Maathuis, 2007) as shown in Figure 3-1a. Most of the TPK channels 

have two clear ‘EF hand’ domains localized in the C terminus where Ca
2+ 

binds 

suggesting that Ca
2+ 

is involved in TPK regulation (Maathuis, 2007).  

The rice genome has two isoforms of TPK, i.e. TPKa and TPKb (Isayenkov et al., 

2011). Both isoforms are 63% identical to each other and 57% identical to AtTPK1. 

However, TPKa and TPKb are localised to different membranes: TPKa is localised to 

the tonoplast of LVs and TPKb to the tonoplast of SVs (Figure 3-1b, c and d). 

Isayenkov et al., (2011) showed that the C-terminal region of the TPKb protein is 

important for the localisation of this protein to the SVs. They changed the C-terminal 

region of the TPKa with the same region of TPKb and observed a shift of localisation 

for TPKa from LVs to PSVs. They suggested that TPKb trafficking to the PSVs follows 

the same model as proposed for α-TIP trafficking (Jiang and Rogers, 1998; Oufattole et 

al., 2005). The change in the TPKa C-terminus residues, i.e. valine, asparagine and 

lysine at the specific positions (303, 313 and 326) with three TPKb C-terminus residues, 

i.e. leucine, serine and asparagine respectively showed effects in the changes of 

localisation of TPKa from LVs to PSVs. Size of the side chain, charge and 

phosphorylation is affected in the C-terminus by these changes. Among these three 

mutations, the change in the asparagine residue of TPKa with the serine residue of the 

TPKb showed strongest effects in the changes of localisation of TPKa from LVs to 

PSVs. 
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Figure 3-1: Structure and localization of TPKa and TPKb channels in rice 

a; Proposed topology of the two pore K+ channel, showing four transmembrane domains (M1 – M4), the 

two pore regions (P1–P2), the predicted 14-3-3 binding site in the amino terminus, and two carboxy 

terminal Ca2+ binding EF-hands, (b); Vacuolar localization of TPKa and TPKb channels in the tonoplast 

of LV and SV respectively, (c and d); Fluorescence images of intact rice protoplasts and released vacuoles 

show TPKa:EYFP expression in the central LV (c) and TPKb:EYFP expression in multiple smaller SVs 

(d). Bars = 5 μm (reproduced from Isayenkov et al., 2011). 

 

This study is aimed at improving K
+
 nutrition and thereby increasing tolerance of rice to 

abiotic stresses such as salt and drought stress. As it is mentioned above, maintaining 

comparatively higher K
+
 concentration in the roots and its distribution to the shoots is 

vital in the strategies against salinity. TPKs are involved in the distribution of K
+
 in cells 

and K
+
 distribution within the plant body and therefore it is hypothesized that the 

overexpression of these channels may impact on rice resistance to abiotic stresses.  

 Results 3.2

PART A: CHARACTERIZATION OF RICE TPKa 

 PCR analysis to identify TPKa overexpressor rice plants 3.2.1

Two putative rice TPKa transgenic lines (line-133 and line-212) were screened by PCR 

at their T3 generation for OsTPKa transgene presence and overexpression. Different sets 

of primers were used; hygromycin primers to test the presence of the hygromycin 
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resistance marker gene (Figure 3-2a), 35S promoter region “forward” and terminator 

“reverse” primers (Figure 3-2b) and 35S promoter region “forward” and TPKa gene 

specific “reverse” primers (Figure 3-2c). All 20 plants (not all are represented in the 

Figure 3-2) of both the TPKa transgenic lines gave amplification with the three sets of 

primers which suggests that these lines are transgenic and homozygous for the TPKa 

transgene. These transgenic lines were then checked by semi quantitative RT-PCR and 

qPCR to check the level of TPKa expression relative to control plants (Figure 3-3 and 3-

4). The results showed approximately 5-20 times higher levels of TPKa expression in 

the transgenic lines as compared with the wild type plants. To obtain appropriate control 

lines for the transgenic lines, progenies of self-crossed heterozygous transgenic plants 

which lacked the transgene in the T3 generation were identified. These are called wild 

type throughout and were used as control in all experiments. 

In the following text TPKa overexpressor line-133 and line-212 are labelled as TPKa 

ox-1 and TPKa ox-2 respectively.  

 

Figure 3-2: Screening of the putative TPKa transgenic lines by PCR 

PCR results for TPKa ox-1 and TPKa ox-2; Putative overexpressor lines gave amplification with three 

sets of primers which suggests that these lines are homozygous transgenic for TPKa. Lane 1-7, TPKa ox-

1; Lane 8-13, TPKa ox-; Lane 14, construct (+ive control); Lane 15, wild type; Lane 16, water (-ive 

control); L is the 2-Log ladder. 

 

 

 

 

L         1        2         3          4         5         6         7          8         9         10         11       12  13         14       15         16      

(b) 35S promoter “F” and terminator “R” primer

1.6kb

(c) 35S promoter “F” and TPKa gene 

specific “R” primer

1.2kb

(a) Hygromycin primers 

734bp
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Figure 3-3: Analyses of the expression of TPKa in transgenic lines by RT-PCR 

RT-PCR results for TPKa ox-1 and TPKa ox-2. The results show high level of expression for TPKa in the 

overexpressor lines. Lane 1-2, wild type; Lane 3-4, TPKa ox-1; Lane 5-6, TPKa ox-2; Lane7, gDNA 

TPKa ox-1; Lane 8-9, water for both TPKa and actin primers.  

 

Figure 3-4: Analyses of the expression of TPKa in transgenic lines by q-PCR 

qPCR for rice TPKa ox-1 and TPKa ox-2, two plants of each line were tested compared to the wild type 

for TPKa gene expression relative to the actin gene. The results showed a high level of gene expression in 

both overexpressor lines as compared to the wild type. The error bars represent the standard error among 

the TPKa expression of different lines. 

 Growth analysis of wild type and rice TPKa overexpressing plants 3.2.2

To investigate the effect of OsTPKa overexpression on plant growth, relative growth 

rates (RGRs) were recorded for plants grown in control, 0 K
+
, 60 mM KCl, 60 mM 

NaCl and 10% PEG (osmotic stress) conditions. 

The results show (Figure 3-5) that both the overexpressor lines of TPKa showed 

significantly less growth as compared to the wild type in control conditions while no 

significant difference was noted in the rest of the media conditions (Figure 3-5a). 25% 

growth reduction was observed for the wild type plants in the 0K
+
 as compared to the 

control conditions while not so much reduction was observed for the overexpressing 

plants in both conditions. However when the data were normalized to control conditions 

(Figure 3-5b), the results varied between the genotypes. Both the overexpressing lines of 

TPKa showed higher growth as compared with the wild type in 0 mM K
+
 and osmotic 

stress conditions. Both the overexpressing lines of TPKa showed no significant 

L 1           2         3         4         5          6          7         8       9           L 1          2         3          4          5          6          7        8        9

TPKa primers Actin primers
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difference in the growth as compared to the wild type in 60 mM K
+
 and 60 mM Na

+
 

conditions.  

 

 

Figure 3-5: Relative growth rate for wild type and TPKa transgenic rice lines  in hydroponics 

exposed to different media conditions 

a; relative growth rate (RGR, % day-1)) absolute data, b; RGR relative to the growth in control condition 

(% day-1) after 14 days for the wild type plants and transgenic lines of TPKa. Plants were grown in 

hydroponics media using control medium, 0 mM K+, 60 mM K+, 60 mM Na+ and osmotic stress (10% 

PEG) conditions. Data are from three independent experiments, and the bars in the figures represent the 

standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between the 

wild type and overexpressor lines. 

 Overexpressing lines of TPKa showed better growth under drought 3.2.3

stress in soil conditions  

We observed a better growth phenotype for the hydroponically grown TPKa 

overexpressing plants as compared with the wild type plants in osmotic stress conditions 

(Figure 3-5). These results were tested in the more natural drought conditions in soil. 

Therefore, to study the effect of TPKa expression on drought stress rather than osmotic 

stress, plants were grown in soil conditions and were tested for growth as described in 

the method section. The overexpressing lines of TPKa showed lower growth as 

compared with the wild type plants in control conditions while no growth phenotype 

was observed in drought condition (Figure 3-6a). About3 fold decrease was observed in 

the growth of wild type plants in drought as compared to the control conditions. 

However the normalized data showed higher growth for the TPKa ox-1 line as 

compared with the wild type plants in drought condition (Figure 3-6b). 

(a) (b)

*
*

*

*

*
*

0 mM K+ 60 mM K+ 60 mM Na+Control 10% PEG 0 mM K+ 60 mM K+ 60 mM Na+Control 10% PEG
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Figure 3-6: Relative growth rate for wild type and TPKa transgenic rice lines  in soil exposed to 

drought and control conditions 

a; relative growth rate (RGR % day-1) absolute data, b; RGR relative to the growth in control condition (% 

day-1). Wild type plants and transgenic lines of TPKa were grown for 6 weeks in control and drought 

conditions in soil and growth was recorded then. Data are from three independent experiments, and the 

bars in the figures represent the standard errors. * denotes a significant differences by T-test at a 

probability level of p < 0.05 between the wild type and overexpressor line. 

 Tissue ion concentration analyses in rice TPKa overexpressor lines 3.2.4

and wild type plants 

The better growth of the TPKa transgenic lines in K
+
 deficient and osmotic stress 

conditions might be because of improved K
+
 nutrition as it is suggested that TPKa is 

involved in K
+
 homeostasis and distribution. To study the effects of TPKa on K

+
 

nutrition the Na
+
 and K

+
 concentration of the root and leaf tissues of the TPKa 

overexpressing lines and wild type plants were analysed using flame photometer as 

described in the method section. 

3.2.4.1 K
+
 concentration analyses 

The roots of both the overexpressing lines of TPKa showed (Figure 3-7a) higher K
+
 

concentration as compared to the wild type at control, and 0 mM K
+
 conditions. Both 

the overexpressor lines showed less K
+
 in roots as compared to the wild type when 

grown at high K
+
 and high Na

+
 conditions. TPKa ox-1 has more K

+
 while TPKa ox-2 

has less K
+
 as compared with the wild type in osmotic stress conditions. The leaves of 

both the overexpressor lines of TPKa showed (Figure 3-7b) higher K
+
 concentration as 

compared to the wild type plants at control, 0 mM K
+
 and 60 mM K

+
 conditions while 

no difference was found at high Na
+
 and osmotic stress conditions.  
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Figure 3-7: K
+
 concentration analyses for wild type and TPKa transgenic rice lines  in hydroponics 

exposed to different media conditions 

a; root K+ concentration and b; shoot K+ concentration of rice wild type and TPKa overexpressor plants. 

The plants were grown in different media conditions as mentioned in the Figure and root and shoot tissues 

were analysed for K+ concentration. Experiment was replicated three times and the bars in the figures 

represent the standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 

between the wild type and overexpressor lines. 

 

3.2.1.1. Na
+
 concentration analyses 

Both the overexpressing lines of TPKa showed higher Na
+
 concentration as compared 

with the wild type plants in the root tissues at 0 mM K
+ 

in the medium (Figure 3-8a). 

During higher Na
+
 exposure (60 mM) no difference was observed for TPKa ox-1 while 

TPKa ox-2 showed significantly less Na
+
 in the root tissues as compared with the wild 

type plants. At 0 mM K
+
 in the medium TPKa ox-1 showed less Na

+
 in the shoots as 

compared with the wild type plants while no difference was observed for the TPKa ox-

2.  At higher Na
+
 (60 mM), both the overexpressor lines of TPKa showed higher Na

+
 in 

the shoot tissues as compared with the wild type plants (Figure 3-8b). 
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Figure 3-8: Na+ concentration analyses for wild type and TPKa transgenic rice lines in hydroponics, 

exposed to different media conditions 

A; root Na+ concentration and b; shoot Na+ concentration of rice wild type and TPKa overexpressor 

plants. The plants were grown in 0 mM K+ and 60 mM Na+ conditions and root and shoot tissues were 

analysed for Na+ concentration. Experiment was replicated three times and the bars in the figures 

represent the standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 

between the wild type and overexpressor lines. 

 

 Tissue ion concentration analyses in rice wild type and TPKa 3.2.5

overexpressor plants grown in soil 

The root tissues showed no significant difference in the K
+
 concentration for wild type 

and TPKa ox-1 plants at control conditions while higher K
+
 concentration for TPKa 

overexpressing line as compared with the wild type plants in drought conditions (Figure 

3-9a). TPKa ox-1 showed higher K
+
 concentration as compared with the wild type 

plants in the leaf tissues at control and drought conditions (Figure 3-9b).  
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Figure 3-9: K
+
 concentration analyses for the wild type and TPKa transgenic rice lines exposed to 

drought stress in soil 

a; root K+ concentration and b; shoot K+ concentration of rice wild type and TPKa overexpressor plants. 

The plants were grown for six weeks in control and drought conditions in soil and root and shoot tissues 

were analysed for K+ concentration. Experiment was replicated three times and the bars in the figures 

represent the standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 

between the wild type and overexpressor line. 

 

The root tissues of the TPKa ox-1  showed less Na
+
 concentration as compared with the 

wild type plants in both conditions (Figure 3-10a) while there is no significant 

difference in the shoot tissues of TPKa ox-1 and wild type plants for the Na
+
 

concentration in both conditions (Figure 3-10b). 

 

Figure 3-10: Na
+
 concentration analyses for wild type and TPKa transgenic rice lines exposed to 

drought stress in soil 

a; root Na+ concentration and b; shoot Na+ concentration of rice wild type and TPKa overexpressor plants. 

The plants were grown for six weeks in control and drought conditions in soil and root and shoot tissues 

were analysed for Na+ concentration. Experiment was replicated three times and the bars in the figures 

represent the standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 

between the wild type and overexpressor line. 
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 Distribution of K
+
 in the cytoplasm and vacuole 3.2.6

The K
+
 distribution between vacuole and cytoplasm for TPKa transgenic and non-

transgenic rice plants was analyzed to see the function of TPKa channels in the influx 

and efflux of K
+
 from the vacuole in different media conditions. For this, energy 

dispersive X-ray (EDX) analysis was used which allows the analysis of the spatial 

distribution of elements such as K
+
 in plant tissues (Figure 3-11) as described in the 

method section. The leaves of the overexpressing lines of TPKa and wild type plants 

were analyzed by EDX using plants exposed to control and zero K
+
 conditions in 

hydroponics.The results showed that in both wild type and TPKa-ox-1 plants there was 

no difference in cytoplasmic K
+
 in control conditions and 0K

+
 conditions (Figure 3-

12a). In both genotypes, 0K
+
led to a reduction in vacuolar K

+
 but this was only 

significantly so in TPKa ox-1 (Figure 3-12b).   

 

 

Figure 3-11: EDX analyses for the distribution of K
+
 between cytoplasm and vacuole of the leaves 

of wild type and transgenic lines of TPKa 

a; K+ in cytoplasm, b; K+ in vacuoles of wild type and transgenic lines of TPKa. Plants were analysed 

after one-week exposure to the treatments as mentioned in the figures. The bars in the figures represent 

standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between the 

wild type and overexpressor line. 

 

 Greater water retention may be a reason for the higher growth of 3.2.7

TPKa overexpressing plants in drought  

The water content of the TPKa ox-1 plants was analyzed to see whether it was affected 

by a high K
+
 concentration in the root and shoot tissues and therefore could ameliorate 

drought stress. The data revealed that the TPKa overexpressing plants shows a lower 

water content in the roots at control conditions (Figure 3-13a) while no difference was 
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observed in root water content between the genotypes under drought conditions. 

However, the results showed a far more dramatic reduction in root water content in wild 

type plants when exposed to drought. In the leaves (Figure 3-13b) of the overexpressing 

plants, higher water content under drought stress was seen. Again, the relative reduction 

in water content in wild type plants was considerably larger than that in the transgenic 

plants. There is a significant reduction in the water content of the wild type while no 

difference was observed for the TPKa ox-1 plants in the two tested conditions. 

 

Figure 3-12: Water content analyses for wild type and TPKa transgenic rice plants exposed to 

drought stress in soil 

a; root water content and b; shoot water content of rice wild type and TPKa overexpressor plants. The 

plants were grown for six weeks in control and drought conditions in soil and root and shoot tissues were 

analysed for water content. Experiment was replicated three times and the bars in the figures represent the 

standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between the 

wild type and overexpressor line. 

 

 Xylem sap analysis for K
+
 and Na

+
 concentration in rice plants grown 3.2.8

in hydroponics 

Overexpression of TPKa leads to higher K
+
 concentration in the root and shoot tissues 

(Figure 3-7). An increase in shoot K
+
 is likely dependent on its delivery via the xylem. 

Xylem sap of all three genotypes was therefore analysed for K
+
 and Na

+ 
concentration in 

control, 0 mM K
+
 and 10% PEG conditions. No significant difference was observed for 

the K
+
 concentrations in either of the genotypes in control and 0 mM K

+
 conditions 

(Figure 3-14a). However TPKa ox-1 showed more K
+
 in the xylem sap at osmotic stress 

condition. No difference was recorded for the Na
+
 concentrations in the xylem sap for 

all the three genotypes in either of the media conditions (Figure 3-14b).  
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Figure 3-13: Xylem sap analyses for wild type and TPKa transgenic rice lines exposed to different 

media conditions in hydroponics 

a; K+ concentration and b; Na+ concentration in the xylem sap of rice wild type and TPKa overexpressor 

plants. The plants were grown for one week in different media conditions and xylem sap was analysed for 

K+ and Na+ concentration. Experiment was replicated three times and the bars in the figures represent the 

standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between the 

wild type and overexpressor line. 

 Analyses of the leaf conductance and rate of photosynthesis in TPKa 3.2.9

overexpressor plants 

Gobert et al (2007) showed that Arabidopsis TPK1 is involved in the release of K
+
 from 

the vacuoles in the guard cells and has a role in the stomatal movement. We therefore 

analyzed the effects of the TPKa and TPKb overexpression on rates of photosynthesis 

and stomatal conductance in rice intact leaves using an infra-red gas analyzer, Li-Cor 

6400 (LI-COR, Cambridge, UK). 

The data showed that both the overexpressing lines of TPKa have lower rates of 

photosynthesis as compared with the wild type at control conditions (Figure 3-15a). At 0 

mM K
+
 and osmotic stress conditions both the transgenic lines showed a higher rate of 

photosynthesis as compared with the wild type plants.  

The results for the leaf conductance revealed that both the overexpressing lines of TPKa 

showed lower conductance at control conditions and higher conductance at osmotic 

stress condition as compared with the wild type (Figure 3-15b). No difference was 

observed for both TPKa overexpressor lines as compared with the wild type at 0 mM K
+
 

conditions.  
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Figure 3-14: Rate of photosynthesis and stomatal conductance of wild type and TPKa transgenic 

rice lines exposed to different media conditions in hydroponics 

Rate of photosynthesis (a) and stomatal conductance (b) of wild type and transgenic lines of TPKa; the 

plants were grown for two weeks in different media conditions as mentioned in the figure and stomatal 

conductance was measured. Experiment was replicated three times and the bars in the figures represent 

the standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between 

the wild type and overexpressor lines. 

 

Rate of photosynthesis and stomatal conductance were further tested under ABA 

conditions as described in the method section. The results showed a lower rate of 

photosynthesis (Figure 3-16a) and conductance (Figure 3-16b) for the transgenic lines of 

TPKa as compared with the wild type plants under control conditions, while opposite 

results were observed when plants were treated with ABA for one hour.  

 

Figure 3-15: Rate of photosynthesis and Stomatal conductance of wild type and TPKa transgenic 

rice lines exposed to ABA in hydroponics 

Rate of photosynthesis (a) and stomatal conductance (b) of wild type and transgenic line of TPKa were 

recorded in 6 week old plants. Data were recorded when plants were in control conditions. Plants were 

then exposed to media containing 100 µM ABA for one hour and data were recorded. Plants were shifted 

back to control conditions and data were recorded after one hour. Experiment was replicated three times 

and the bars in the figures represent the standard errors. * denotes a significant differences by T-test at a 

probability level of p < 0.05 between the wild type and overexpressor line. 
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Part B: Characterization of rice TPKb 

 PCR analysis to identify TPKb overexpressor rice plants 3.2.10

Three putative rice TPKb transgenic lines (line-13, line-155 and ox-line) were screened 

by PCR at their T3 generation for the presence of the OsTPKb transgene and 

overexpression. Different sets of primers were used; hygromycin primers to test the 

presence of the hygromycin resistance marker gene (Figure 3-16b), 35S promoter region 

“forward” and TPKb gene specific “reverse” primers (Figure 3-16c) and 35S promoter 

region “forward” and terminator “reverse” primers (Figure 3-16d). All 20 plants (not all 

are represented in the Figure 3-16) of all the TPKb transgenic lines gave amplification 

with the three sets of primers which suggests that these lines are homozygous for the 

TPKb overexpressor transgene. The transgenic lines were then checked by semi 

quantitative RT-PCR and qPCR to check the level of TPKb expression relative to 

control plants (Figure 3-17 and 3-18). The results showed approximately 5-20 times 

higher levels of TPKb expression in the transgenic lines as compared with the wild type 

plants. Those progenies of the self-crossed heterozygous transgenic plants which were 

found with no transgene in T3 generation have been termed as wild type and were used 

as control plants for all experiments. 

In the following text TPKb overexpressor line-13, line-155 and ‘overexpressor lines’ are 

labelled as TPKb ox-1, TPKb ox-2 and TPKb ox-3 respectively. 
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Figure 3-16: Screening of putative TPKa transgenic line by PCR 

PCR results for TPKb overexpressor line-13; Putative overexpressor line gave amplification with three 

sets of primers which suggests that this line is homozygous transgenic for TPKb. Lane 1-12, TPKb 

overexpressor line-13; Lane 13, wild type; Lane 14, water (-ive control); L is the ladder. The DNA quality 

was fine for the transgenic and wild type as shown by the PCR with actin primers (a). The same PCRs 

were used for other putative overexpressing lines (TPKb ox-2 and TPKb ox-3) which were also found to 

be homozygous for the TPKb transgene (data not shown). 

 

Figure 3-17: Analyses of the expression level of TPKb in transgenic lines by RT-PCR 

RT-PCR results for TPKb ox-1. The results show high levels of expression for TPKb in the overexpressor 

line. Lane 1-2, wild type; Lane 3-6, TPK ox-1; Lane 7, water for both TPKb and actin primers, L is the 

ladder. Similar analyses were done for the two other TPKb transgenic lines (TPKb ox-2 and TPKb ox-3). 
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Figure 3-18: Analyses of the expression of TPKb in transgenic lines by q-PCR 

qPCR for TPKb ox-1,  TPKb ox-2 and TPKb ox-3. Three plants of each line were tested compared to the 

wild type for TPKb gene expression relative to the actin gene. The results showed a high level of gene 

expression in the three overexpressor lines as compared to the wild type.  

 

 Overexpression of TPKb has a positive effect on the growth of rice 3.2.11

plants in abiotic stress conditions grown in hydroponics 

To investigate the effect of OsTPKb overexpression on plant growth, RGRs were 

recorded for plants grown in control, 0 K
+
, 60 mM KCl, 60 mM NaCl and osmotic stress 

(5%, 10% and 15% PEG) conditions. 

All the three overexpressing lines of OsTPKb (ox-1, ox-2 and ox-3) showed varied 

growth in different media conditions except in the osmotic stress (5% and 10% PEG) 

conditions where all the three overexpressing lines showed higher growth as compared 

with the wild type plants (Figure 3-19a). Absence of K
+
 in the medium reduced the 

growth of all genotypes but a comapratively larger growth reduction (100%) was 

observed in the wild type plants as compared to the control conditions whild lower 

growth reduction (30-40%) for the TPKb overexpressing was observed. However, when 

the data were normalized to control conditions, all the three overexpressing lines of 

TPKb showed better growth, as compared with the wild type plants, in zero K
+
 

conditions while no growth phenotype was observed under salt stress conditions (60 

mM K
+
 and 60 mM Na

+
) (Figure 3-19b). 

The growth phenotype of rice TPKb overexpressor plants was also tested under different 

osmotic stress (5%, 10% and 15% PEG) conditions (Figure 4-4a). The three 

overexpressing lines showed better growth as compared with the wild type in 5% PEG 
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and 10% PEG condition while no difference was observed in the growth phenotypes for 

all the genotypes in 15% PEG conditions. At 10% PEG conditions, 4, 2, 3 folds 

increased growth was observed for TPKb ox-1, TPKb ox-2 and TPKb ox-3 respectively 

than the wild type plants (Figure 3-20a). The normalized data showed the same results 

for the overexpressor line in these media conditions (Figure 3-190b). 

 

 

Figure 3-19: Relative growth rate for transgenic rice lines and wild type in hydroponics exposed to 

different media conditions 

a; relative growth rate (RGR, % day-1) absolute data. b; RGR relative to the growth in control condition 

(% day-1) for the wild type plants and transgenic lines of TPKb. Plants were grown in hydroponics media 

for 14 days using control medium, 0 mM K+, 60 mM K+, 60 mM Na+ and osmotic stress (5%, 10% and 

15% PEG) conditions. Data are from three independent experiments, and the bars in the figures represent 

the standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between 

the wild type and overexpressor lines. 
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 Overexpressing lines of TPKb showed better growth under drought 3.2.12

stress in soil  

To study the effects of TPKb expression on drought stress in the soil rather than osmotic 

stress in hydroponics, plants were grown in soil conditions and were tested for growth as 

described in the method section.  

Both the overexpressing lines of TPKb showed no growth phenotype in the control 

conditions. However, better growth was observed for the overexpressing lines as 

compared with the wild type plants under drought stress conditions (Figure 3-20a). The 

same trend was observed in the normalized data. TPKb ox-1 showed 2 fold increase in 

the growth than the wild type in drought conditions (Figure 3-20b). 

 

Figure 3-20: Relative growth rate for transgenic and wild type rice plants in soil exposed to control 

and drought conditions 

a; relative growth rate (RGR % day-1) absolute data. b;, RGR relative to the growth in control condition 

(% day-1).  Wild type plants and transgenic lines of TPKb were grown for 6 weeks in control and drought 

conditions in soil and growth was recorded. Data are from three independent experiments, and the bars in 

the figures represent the standard errors. * denotes a significant differences by T-test at a probability level 

of p < 0.05 between the wild type and overexpressor lines. 

 

 Tissue ion concentration analyses in rice TPKb overexpressor lines 3.2.13

and wild type plants 

The overexpression of TPKb may be involved in better growth under stress conditions 

through the improvement of K
+ 

nutrition and homeostasis. Analyses of the K
+ 

and Na
+
 

concentration in the tissues of the rice plants could be important for determining the role 

of TPKb in K
+
 homeostasis under stress conditions. K
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and leaf tissues of the TPKb overexpressing lines and wild type plants was analysed 

using a flame photometer as described in the method section. 

3.2.13.1 K+
 concentration analyses 

The roots of all the tested transgenic lines of TPKb showed  higher K
+
 concentration 

under control, zero K
+ 

and, 60 mM Na
+
 and osmotic stress (5% and 10% PEG) 

conditions (fig 3-21a). However, no significant difference was observed in the root K
+
 

of all the genotypes in 60 mM K
+
 and 15% PEG conditions. The shoots of the different 

genotypes showed variable K
+
 concentration in different conditions (Figure 3-21b). In 

control conditions, no difference was observed in the leaf K
+
 concentration of TPKb ox-

1 and TPKb ox-2 as compared with the wild type plants, however TPKb ox-3 showed 

higher K
+
. All the tested transgenic lines of TPKb showed higher K

+
 in leaves as 

compared with the wild type plants at zero K
+
 conditions. No difference was observed in 

the K
+
 concentration of wild type and TPKb ox-2 at 60 mM K

+
 conditions however 

TPKb ox-3 showed lower K
+
 concentration but not significantly. No difference was 

observed for the K
+
 concentration in the shoots of transgenic and non-transgenic plants 

at high Na
+
 conditions. Osmotic stress (5% and 10% PEG in the medium) resulted in 

significantly higher K
+
 in transgenic shoots, and this was true for all the TPKb 

overexpressing lines. However, at a 15 % PEG this trend was not observed. 
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Figure 3-21: K
+
 concentration analyses for transgenic rice lines and wild type in hydroponics 

exposed to different media conditions 

a; root K+ concentration and b; shoot K+ concentration of rice wild type and TPKb overexpressor plants. 

The plants were grown in different media conditions as mentioned in the figures and root and shoot 

tissues were analysed for K+ concentration. TPKb ox-1 was not tested in 60 mM K+ and Na+ conditions. 

Experiment was replicated three times and the bars in the figures represent the standard errors. * denotes a 

significant differences by T-test at a probability level of p < 0.05 between the wild type and overexpressor 

lines. TPKb ox-1 plants were not tested for ion concentration analyses under 60 mM K+ and Na+ condition 

due to the shortage of plants.  

3.2.13.2 Na
+
 concentration analyses 

The root tissues of TPKb ox-1 and TPKb ox-3 showed higher Na
+
 as compared with the 

wild type plants while no difference was observed for TPKb ox-2. Interestingly, lower 

Na
+
 concentration were observed in the leaf tissues of TPKb ox-1 while no difference 

was observed for TPKb ox-2 and TPKb ox-3 as compared with the wild type plants. 

(Figure 3-22). 
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Figure 3-22: Na
+
 concentration analyses for transgenic rice lines and wild type in hydroponics 

exposed to different media conditions 

a; root Na+ concentration and b; shoot Na+ concentration of rice wild type and TPKb overexpressor plants. 

The plants were grown in 0 mM K+ conditions and root and shoot tissues were analysed for Na+ 

concentration. Experiment was replicated three times and the bars in the figure represent the standard 

errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between the wild type 

and overexpressor lines. 

 

 Tissue ion concentration analyses in rice wild type and TPKb 3.2.14

overexpressor plants grown in soil 

The soil grown wild type and TPKb overexpressing plants under control and drought 

conditions were tested for ion concentrations. In the control conditions, the roots and 

leaves of the wild type and TPKb overexpressor plants showed no differences with the 

wild type plants in their K
+
 concentrations (Figure 3-23). However, drought leads to a 

difference in the root and leaf K
+
 concentration of the transgenic and non-transgenic 

lines. Here both the TPKb overexpressing lines showed higher K
+
 concentration in the 

roots and leaves as compared to the wild type plants (3-23).  
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Figure 3-23: K
+
 concentration analyses of the wild type and transgenic rice lines exposed to drought 

stress in soil 

a; root K+ concentration and b; shoot K+ concentration of rice wild type and TPKb overexpressor plants. 

The plants were grown for six weeks in control and drought conditions in soil and root and shoot tissues 

were analysed for K+ concentrations. Experiment was replicated three times and the bars in the figures 

represent the standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 

between the wild type and overexpressor lines. 

 

In the control conditions, the roots and leaves of both the transgenic lines of TPKb 

showed lower Na
+
 as compared with the wild type (Figure 3-24). However, when the 

plants were grown in the drought, the roots of the overexpressing lines of TPKb showed 

lower Na
+
 concentrations as compared with the wild type plants while the leaves of the 

overexpressing lines showed higher Na
+
 as compared with the wild type plants (Figure 

3-24).  

 

Figure 3-24: Na
+
 concentration analyses of wild type and transgenic rice lines exposed to drought 

stress in soil 

a; root Na+ concentration and b; shoot Na+ concentration of rice wild type and TPKb overexpressor plants. 

The plants were grown for six weeks in control and drought conditions in soil and root and shoot tissues 

were analysed for Na+ concentration. Experiment was replicated three times and the bars in the figures 

represent the standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 

between the wild type and overexpressor lines.  
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 Distribution of K
+
 in the cytoplasm and vacuole 3.2.15

The K
+
 distribution between vacuole and cytoplasm of transgenic and non-transgenic 

rice plants was analyzed by EDX method to see the function of TPKb channels in the 

influx and efflux of K
+
 from the vacuole in different media conditions. The leaves on 

the overexpressing lines of TPKb and wild type plants were analyzed in plants exposed 

to control and zero K
+
 conditions. 

The results showed that the cytoplasm of TPKb ox-1 contains less K
+
 as compared with 

the wild type plants in control conditions. There was no difference in cytoplasmic K
+
 in 

zero K
+
 conditions (Figure 3-25a). No difference was observed in the vacuolar K

+
 

content of both the genotypes in control and zero K
+
 conditions (Figure 3-265b).  

 

Figure 3-25: EDX analyses for the distribution of K
+
 between cytoplasm and vacuole of the leaves 

of wild type and transgenic lines of TPKb 

 
a; K+ in cytoplasm, b; K+ in vacuoles of wild type and transgenic lines of TPKb. Plants were analysed 

after one-week exposure to the treatments as mentioned in the figures. The bars in the figures represent 

standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between the 

wild type and overexpressor lines. 

 

 Water content analyses of the rice TPKb overexpressor plants in soil 3.2.16

conditions 

The roots and leaves of the overexpressing lines of TPKb showed higher K
+
 

concentration as compared with the wild type plants under drought stress (Figure 3-23). 

Therefore the water content of these tissues was analyzed to see the effect of the higher 

K
+
 content on the water content. The data revealed that the root and leaf tissues of all 

the tested genotypes showed no difference in the water content under control conditions 
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(Figure 3-26). However, a higher water content in the root and shoot tissues of both the 

TPKb overexpressing plants was observed in drought conditions. About 1.5 and 2 folds 

higher water content was in the root tissues of TPKb ox-1 and TPKb ox-2 respectively as 

compared with the wild type plants.  

 

Figure 3-26: Water content analyses of wild type and transgenic rice plants exposed to drought 

stress in soil 

a; root water content and b; shoot water content of rice wild type and TPKb overexpressor plants. The 

plants were grown for six weeks in control and drought conditions in soil and root and shoot tissues were 

analysed for water content. Experiment was replicated three times and the bars in the figures represent the 

standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between the 

wild type and overexpressor lines. 

 

 Xylem sap analysis for K
+
 and Na

+
 concentration in rice plants grown 3.2.17

in hydroponics 

Our data showed higher K
+
 concentration in the root and shoot tissues of the TPKb 

overexpressing plants (Figure 3-21).  Xylem sap of the wild type and two 

overexpressing lines of TPKb was, therefore, analysed for K
+
 in control, 0 mM K

+
 and 

10% PEG conditions and for Na
+ 

concentrations under zero K
+
 conditions. The data 

showed variable results. A large, but non-significant difference was observed for the K
+
 

concentrations in all genotype in all conditions (Figure 3-27a) except for TPKb ox-2 in 

the zero K
+
 condition where less K

+
 in the xylem sap was found compared with the wild 

type plants. Both overexpressing lines showed a trend towards lower K
+
, although not 

significant, in the xylem sap during osmotic stress. 

Both the overexpressing lines of TPKb showed lower Na
+
 concentrations in the xylem 

sap as compared with the wild type plants under zero K
+
 conditions (Figure 3-27b). 
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Figure 3-27: Xylem sap analyses for wild type and transgenic rice lines exposed to different media 

conditions in hydroponics 

a; K+ concentration and b; Na+ concentration in the xylem sap of rice wild type and TPKb overexpressor 

plants. The plants were grown for one week in different media conditions as mentioned in the figure and 

xylem sap was analysed for K+ and Na+ concentrations. Experiment was replicated three times and the 

bars in the figures represent the standard errors. * denotes a significant differences by T-test at a 

probability level of p < 0.05 between the wild type and overexpressor lines. 

 

 Overexpression of TPKb improves K
+
 uptake from the root 3.2.18

environment 

The higher K
+
 concentration in the root and shoot tissues of TPKb overexpressing lines 

(Figure 3-21) as compared with the wild type plants in different media conditions 

suggested improved K
+
 uptake from the root environment. To analyze whether TPKb 

overexpression affects K
+
 uptake, wild type and one transgenic line (TPKb-ox1) were 

grown in 50 µM K
+ 

media solution and were analyzed as described in the method 

section. 

The results  revealed that when wild type and TPKb ox-1 plants were exposed to K
+
 

deficient (50 µM K
+
) medium, the roots of both the genotypes initially showed net 

leakage of K
+
 into the medium (Figure 3-28). However TPKb ox-1 showed less leakage 

as compared with the wild type plants. After an initial interval of 2-3 hours, both the 

genotypes showed net K
+
 uptake from the nutrient solution. However TPKb ox-1 

showed an earlier change from efflux to influx than the wild type plants. In addition, the 

uptake rate of K
+
 from the nutrient solution for the TPKb ox-1 was higher than that in 

wild type plants.  
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Figure 3-28: K+ uptake from the medium 

K+ uptake from the medium for rice wild type and TPKb overexpressor plants; the plants were kept for up 

to 9 hours in medium containing 50 µM K+. Medium samples were collected after each hour for nine 

hours and were analysed for the K+ concentration. The K+ concentration of the medium at each time point 

was subtracted from the initial total K+ concentration and was regarded as leaked-out/absorbed K+. The 

experiment was replicated three times and the bars in the figure represent the standard errors. * denotes a 

significant differences by T-test at a probability level of p < 0.05 between the wild type and overexpressor 

line. 

 

 Analysis of the rate of photosynthesis in wild type and TPKb 3.2.19

overexpressor plants 

AtTPK1 was shown to have a role in stomatal movements by releasing K
+
 from guard 

cell’s vacuole (Gobert et al., (2007), we therefore, analyzed the effects of TPKb 

overexpression on the rate of photosynthesis and stomatal conductance in rice intact 

leaves using an infra-red gas analyzer (LI-COR, Cambridge, UK).  

The results showed no difference in the rate of photosynthesis of the TPKb ox-1 and 

wild type plants while TPKb ox-2 showed a lower rate of photosynthesis in control 

conditions. At 0 mM K
+

, TPKb ox-1 showed a higher rate of photosynthesis while no 

difference was observed for the TPKb ox-2 as compared with the wild type plants. No 

difference was observed under osmotic stress conditions for wild type and 

overexpressing plants (Figure 3-29a). 
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No difference was observed in the rate of photosynthesis between genotypes when the 

plants were treated with ABA, and rates were also comparable when plants were put 

back in control medium after ABA treatment (Figure 3- 29b). 

 

Figure 3-29: Rate of photosynthesis of wild type and transgenic rice lines exposed to different 

media conditions in hydroponics 

Rate of photosynthesis of wild type and transgenic TPKb lines; a; the plants were grown for two weeks in 

different media conditions as mentioned in the figure. b; the rate of photosynthesis was measured at three 

time points;  In control conditions before ABA treatment (‘control’); after 1h  50 µM ABA treatment 

(‘ABA(1hr’) and 1h after plants were transferred back to control medium after ABA treatment 

(‘control(1hr)). Experiment was replicated three times and the bars in the figure represent the standard 

errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between the wild type 

and overexpressor lines. 

 

 Analyses of the stomatal conductance in wild type and TPKb 3.2.20

overexpressor plants 

The results showed lower stomatal conductance for both the overexpressing lines of 

TPKb as compared with the wild type plants in control conditions. In zero K
+
 

conditions, a higher stomatal conductance for TPKb ox-1 was recorded while no 

difference was observed for the TPKb ox-2. Both overexpressing lines showed higher 

stomatal conductance during osmotic stress (Figure 3-30a). ABA treatment had no 

significant effect on either genotype (Figure 3-30b) 
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Figure 3-30: Stomatal conductance of wild type and transgenic rice lines exposed to different media 

conditions in hydroponics 

Stomatal conductance of wild type and transgenic lines of and TPKb. a; the plants were grown for two 

weeks in different media conditions as mentioned in the figure. b; the stomatal conductance was measured 

at three time points; 1. In control conditions 2, Plants were shifted to media containing 50 µM ABA and 

were analysed after one hour and 3. When plants were shifted back to the control conditions and were 

analysed after one hour. Experiment was replicated three times and the bars in the figure represent the 

standard errors. * denotes a significant differences by T-test at a probability level of p < 0.05 between the 

wild type and overexpressor lines. 

 

 Discussion 3.3

 Plant vacuoles 3.3.1

 Plant vacuoles are important organelles. They store both beneficial and harmful 

compounds and many essential minerals such as K
+
 (Gobert et al., 2007). Excess K

+
 is 

stored in the vacuoles when it is in abundance and released into the cytoplasm when 

needed (Leigh and Wyn-Jones., 1984, Walker et al., 1996; Gobert et al., 2007). The 

movement of K
+
 is controlled and regulated by different membrane proteins e.g. Shaker 

like K
+ 

channels, K
+ 

inward rectifier Kir like channels and tandem pore channels 

(Lebaudy et al., 2007 ; Szczerba et al ., 2009). Among these proteins TPKs are 

important and highly selective for K
+
. There are two TPK isoforms in rice i.e. TPKa and 

TPKb. TPKa is localised in the lytic vacuole (LV) and TPKb in protein storage vacuole 

(PSVs) and small vegetative vacuoles (SVs), suggesting specific roles of these different 

homologues (Isayenkov et al., 2011). 
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 TPKa and TPKb overexpression causes increased growth and higher 3.3.2

K
+
 in the tissues 

Here the effects of TPKa and TPKb overexpression are shown on a number of 

physiological parameters. The data revealed that both lines of TPKa and one line of 

TPKb overexpressing plants showed less growth as compared with the wild type plants 

in standard conditions (Figure 3-5a and 3-19). The observation that some overexpressor 

lines showed slower growth agrees with Kurusu et al., (2004) who showed less growth 

of the OsTPC-1 transgenic lines. They suggested that the overexpression of stress 

relieving proteins in unstressed conditions might be the cause for reduced growth of 

transgenic plants 

When the data were normalized to the growth in control conditions, all the 

overexpressor lines of TPKa and TPKb showed higher growth rates as compared to the 

wild type plants in 0 mM K
+
 and osmotic stress conditions (Figure 3-5b and 3-19b). 

Gobert et al., (2007), showed the same phenotype for Arabidopsis AtTPK1 

overexpressor plants at 0 mM K
+
. These results suggest a positive role of TPKs in both 

low K
+
 and osmotic/drought stress conditions which may be due to changes in 

homeostasis of K
+
, K

+
 concentration and rates of photosynthesis.  

Efficient K
+
 homeostasis and K

+
 translocation within plants plays a positive role in plant 

tolerance to many abiotic stresses. Our results showed that the K
+
 concentration of the 

root and leaf tissues is higher in the TPKa  transgenic lines (Figure 3-7a, b and  3-21a, 

b) as compared with the wild type plants in several of the tested conditions. This 

increase in K
+
 concentration may be an important factor in the observed growth 

phenotypes and is likely a direct consequence of the overexpression of the TPKa and 

TPKb proteins. It is generally believed that the main function of TPKs is in vacuolar K
+
 

release (Latz et al., 2007, Gobert et al., 2007). Thus it is not immediately obvious how 

TPKa and TPKb overexpression would lead to increased tissue K
+
. However, the 

increased vacuolar K
+
 release is likely to raise the cytoplasmic K

+
 concentration. In turn 

the higher cytoplasmic K
+
 causes a hyperpolarisation of the plasma membrane (i.e. the 

membrane potential is more negative). The hyperpolarisation of the membrane increases 

the activity of the AKT1 channel while decreasing the activities of GORK and SKOR 

(refer to Figure 1-5). AKT1 is a hyperpolarization-activated, inward rectifying K
+
 

channel while SKOR and GORK are depolarization-activated outward rectifying K
+
 



75 
 

channels (Shabala and Cuin, 2008). Thus, TPK transgenic lines might have higher 

AKT1 activity and lower SKOR and GORK activities due to comparatively higher 

membrane polarisation. Enhanced AKT1 activity might be responsible for the increased 

uptake of K
+
 at the root soil boundary, while reduced activity of the GORK and SKOR 

channels might prevent the loss of K
+
 from the root to soil and xylem respectively. A 

combination of these factors may explain the observed higher K
+
 concentration in the 

root tissues. Further experiments are needed to see the effects of TPK overexpression on 

the membrane polarization and to see whether overexpression causes any relative 

increase in the K
+
 concentration of the cytoplasm. 

In shoot tissues too, the K
+
 concentration of transgenic lines was higher in most 

conditions. This means translocation is up-regulated. Xylem sap analyses (Figure 3-12a 

and Figure 3-28) show comparable K
+
 concentrations between transgenic and non-

transgenic plants. However, leaf conductance (and therefore transpiration) is generally 

higher in transgenics (Figure 3-13b and Figure 3-30a). The latter would increase K
+
 

loading to shoot tissues. The larger xylem K
+
 flux would need to be sustained by xylem 

loading systems. The activity of the SKOR channel, which is a main player in xylem K
+
 

loading, would be reduced if cells of the transgenic lines are generally more 

hyperpolarised. However, non-selective cation channels (NCCs) also might be involved 

in the loading of K
+
 into the xylem (Ahmad and Maathuis, 2014). Demidchik et al., 

(2002) reported that NCCs can be activated by a large number of factors including 

hyperpolarization. 

 TPK overexpression relieves K
+
 deficiency stress 3.3.3

Higher K
+
 concentration was observed in the root and shoot tissues of the transgenic 

lines of TPKa and TPKb as compared with the wild type plants in 0 mM K
+
 conditions. 

These results are different from Gobert et al., (2007) who showed no significant 

difference in the K
+
 concentration s of the transgenic lines and wild type plants at low 

K
+
 conditions.  The explanations given above for the higher K

+
 concentration in the root 

and shoot tissues of the transgenic lines may also be applicable here. The overall K
+
 

levels in this condition are lower in both genotypes because of the leaking out of the K
+
 

in to the surrounding medium. However, leaking of K
+
 for the non-transgenic lines 

might be higher as compared with the transgenic lines due to lower activity of outward 

rectifying K
+
 channels as explained above. Our K

+
 uptake data for the TPKb 
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overexpressing in the K
+
 deficient conditions confirm that the overexpressing lines 

showed more K
+
 uptake and less leakage (Figure 3-30). The net effect is a higher tissue 

K
+
 concentration in the transgenics which may help relieve K

+
 deficiency. This would 

especially help in maintaining cytoplasmic K
+
, one of the most important parts of K

+
 

homeostasis (Maathuis, 2006). The higher K
+
 in the vacuoles would help in increased 

turgidity. The lower level of K
+
 deficiency stress is borne out by the observed higher 

stomatal conductance and rate of photosynthesis in the transgenic lines at 0 mM K
+
 

conditions. Higher stomatal conductance in the transgenic lines also suggests a higher 

rate of transpiration which might be evidence for the higher K
+
 translocation in the 

transgenic lines as transpiration is one of the driving force the upward movements in the 

plant body.   
 

The higher Na
+
 concentration in the roots of the TPKa transgenic lines in the zero K

+
 

conditions may also help in relieving stress during K
+
 deficient conditions (Horie et al., 

2007). At 0 mM K
+
 conditions higher release of K

+
 might occur from the vacuoles in the 

transgenic lines through TPKa channels. This might have negative effects on the 

turgidity and growth of the roots. To overcome these adverse effects due to the loss of 

K
+
 from the vacuole, NHX antiporters might be involved to transport Na

+
 into the 

vacuoles to provide turgor and restore growth. On the other hand, at K
+
 deficient 

conditions, AKT1 channels might be involved in the uptake of Na
+
 from the medium 

(Buschmann et al., 2000) which contains mM concentrations of Na
+
. However no 

difference was observed in the shoot Na
+
 concentration of the transgenic and non-

transgenic genotypes which suggests a limited role of TPKs in the transport of Na
+
 and 

this also strengthens the idea that TPKs are highly selective for K
+
 (Gobert et al., 2007). 

It has been reported repeatedly that plants have the ability to tolerate Na
+
 toxicity by 

controlling its long distance transport (Gorham, 1990; Schachtman et al., 1992; Munns 

and James, 2003; Garthwaite et al., 2005; Munns and Tester, 2008). This might be a 

further reason for the better growth of the TPKa transgenic lines in the K
+
 deficient 

conditions where on one hand Na
+
 provides osmoticum for the better root growth while 

on the other hand limited distribution of Na
+
 to the shoot tissues prevents toxic effects of 

Na
+
. 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2009.04110.x/full#b27
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2009.04110.x/full#b50
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2009.04110.x/full#b42
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2009.04110.x/full#b42
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2009.04110.x/full#b25
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2009.04110.x/full#b43
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 Overexpression of TPKs has positive effects on growth during osmotic 3.3.4

and drought stress 

The overexpressing lines of TPKa and TPKb showed better growth, as compared to the 

wild type, at osmotic stress in hydroponics and drought stress in soil, suggesting a 

positive role of this vacuolar channel during osmotic stress whether it is during short 

term (hydroponics) or long term (soil) exposure. The root and shoot tissues of the 

transgenic lines contained more K
+
 during osmotic stress which would help lowering the 

cellular osmotic potential and thus reduce the drought stress. 

The higher K
+
 concentration in the roots of the transgenic lines in these conditions may 

result from factors discussed above. Nevertheless, there may be further aspects involved 

that are specific to water stress. For example, it has been reported that water stress and 

ABA modify the activity of K
+
 channels to favour enhanced K

+
 storage in roots and 

reduced K
+
 loading to xylem (Cram and Pitman, 1972; Roberts and Snowman, 2000). 

ABA signalling includes Ca
2+

 as a second messenger (McAinsh et al., 1990, 1992; 

Schroeder and Hagiwara, 1990; Gilroy et al., 1991; Irving et al., 1992; Allan et al., 

1994; Staxen et al., 1999)  and TPKa channel activity is sensitive to Ca
2+

 (Latz et al., 

2007; Isayenkov et al., 2011). Thus, ABA could directly increase TPKa activity. ABA 

signalling might also be involved in the regulation and activation of TPKs via kinases 

and 14-3-3 proteins such as GRF6, both of which have been shown to modulate TPK 

activity (Latz et al., 2007). With more TPK channels available, similar ABA stimuli 

could therefore cause more K
+
 release into the cytoplasm from root vacuoles. Increasing 

K
+
 concentrations in the cytoplasm during osmotic stress conditions is an important 

strategy of plants to maintain root growth (Sharp and Davies, 1979; Saab et al., 1990).  

Roberts and Snowman, (2000) reported that ABA increases the membrane potential of 

the maize root stelar cells and hyperpolarised membrane increases the driving force for 

the uptake of K
+
 from the medium.  It is reported that ABA lowers the transcription 

level of AtSKOR (Gaymard et al., 1998) while the expression level of AtAKT1 is not 

affected (Roberts, 1995) which means that on the one hand the absorption of K
+
 from 

the soil by AKT1 is not affected (however channel activity is increased by 

hyperpolarization of the membrane) while loading of K
+
 to the xylem through SKOR is 

reduced during osmotic stress conditions which might be a reason for the increased K
+
 

concentration in the roots. These different factors may explain the higher K
+
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concentration in the roots of the transgenic lines in osmotic and drought stress 

conditions. 

In most circumstances K
+
 of the vacuoles is metabolically inert. To fulfil the needs of 

the cytoplasm for metabolic activities, more K
+
 can be released from the vacuoles 

(Walker et al., 1996). The overexpression of TPKa might be loading more K
+
 into the 

cytoplasm increasing polarization of the plasma membrane and this activates Kin activity 

while decreasing Kout activity in the guard cells as discussed above. Release of K
+
 from 

the vacuole may activate other K
+
 channels and transporters (for example AKT, KAT, 

HAK and KUP) to transport more K
+
 to shoot. 

Higher concentrations of K
+
 in the shoot of the transgenic lines increases cell turgor 

which would include turgor in guard cells and hence could cause an increase in leaf 

conductance (Figure 3-14b and Figure3-30a). The data from the water content analyses 

(Figure 3-26) and stomatal conductance support the idea that the transgenic lines 

transport more water to keep the cells turgid and to maintain higher transpiration rates. 

Higher transpiration rates draw more K
+
 from the root tissues to shoot. Thus water stress 

induces increased K
+
 accumulation in the roots and shoots which maintains a water 

potential favouring the uptake of water and promoting cell turgor pressure necessary for 

growth. Indeed we can see the evidence for this in the form of increased water contents 

in TPKa overexpressors when plants were grown in soil. The higher water contents in 

the roots and leaves confirm that TPKa overexpression helps in accumulating 

comparatively higher K
+
 concentrations and thus helps to relieve water stress. These 

results are comparable to the results from the hydroponic media experiments. Public 

expression data (https://www.genevestigator.ethz.ch/at/index.php) show that OsTPKa is 

upregulated in osmotic stress conditions which agrees with our model. Similarly, 

Hamamoto et al., (2008) showed increased expression of the tobacco TPK1 channels 

during salt and osmotic stress conditions and suggested that the expression of NtTPK1 is 

involved in transporting K
+
 into the cytosol during osmotic stress conditions. 

 How can TPKb function in different environments? 3.3.5

TPKb is localised in the tonoplast of SVs (Isayenkov et al., 2011). SVs store a variety 

of organic and inorganic molecules and are distributed in different types of cells in the 

plant body. They may store K
+
 in the form of complex molecules such as potassium 

phytate in seeds. Under normal K
+
 conditions in the surrounding environment, plants 

https://www.genevestigator.ethz.ch/at/index.php
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absorb K
+
 and may store it in the ionic form as well as in the form of complex 

molecules. SVs may serve as repository to store K
+
 in the form of complex molecules. 

Storage of K
+
 in the form of complex molecules would be a good strategy as it is more 

stable. Plants could use this strategy to store excess of K
+
 for unfavourable conditions. 

Abiotic stresses may trigger enzymatic changes within the cells. This could result in the 

break-down of the complex molecules and release K
+
 in the ionic form. TPKb might be 

important in the subsequent K
+
 release. Other K

+
 transporters like TPKa or NHX may 

also transport K
+
 from the cytoplasm into the LV where it can provide turgidity to the 

guard cells. Gobert et al., 2007 suggested this role for AtTPK1 and reported up to 10 

fold increase in expression level of AtTPK1 in the embryonic and endosperm tissues.  
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Chapter 4 

4 The role of the inward rectifying K+ channel 

OsAKT1 in abiotic stresses 

 Introduction 4.1

Potassium is one of the most important nutrients and fourth among the most abundant 

minerals, making up about 2.5% of the lithosphere. The actual soil concentration of this 

nutrient varies between 0.04-3% (Sparks and Huang, 1985). Soil K
+
 is present in 

different pools, but plant available K
+
 is dissolved in the soil solution. The solution 

concentration ranges from 0.1 to 6 mM (Adams, 1971). All plants store considerable 

amounts of K
+ 

which constitutes 0.8% to 8% of the plant dry weight (Maathuis, 2009). 

The storage of K
+
 in the plant body is mostly in the cytosol and vacuoles (Szczerba et 

al., 2009). K
+
 is essential because it plays vital roles in many physiological and 

biochemical processes. It is involved in cellular osmo and turgor regulation, functions 

as an activator for about 50 metabolic enzymes that include those involved in 

photosynthesis, respiration, protein synthesis and other important metabolic processes 

(Marschner, 1995). It is important for charge balancing, plant cell movement, pH 

regulation (Cuin and Shabala, 2005) and cell and leaf expansion (Maathuis and Sanders, 

1996; Elumalai et al., 2002).  

 Potassium acquisition 4.1.1

According to Epstein (1961), K
+
 transport consists of two systems in plants, the low and 

high affinity systems. These activities are assigned to channels and carriers at the 

molecular level (Maathuis and Sanders, 1994, 1997). The functions of K
+
 transport 

proteins are diverse and the boundaries between carriers and channels are not clearly 

defined (Fu and Luman, 1998; Hirsch et al., 1998; Spalding et al., 1999). Channel 

mediated K
+
 transport has been studied in great detail because of the availability of 

advanced electrophysiological techniques and the relative ease with which channels can 

be expressed in heterologous systems (Ashley et al., 2006).  

Among the transport systems, Shaker-type K
+
 channels constitute important pathways 

for K
+
 influx and efflux in guard cells (Hosy et al. 2003, Lebaudy et al. 2008a). They are 
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similar in sequence and structure to the animal shaker type channels. The name shaker 

comes from the first member of this family initially identified in Drosophila. Ion 

channel activity can be dependent or insensitive to membrane polarization but shaker 

channels are sensitive to membrane polarization. The 4
th

 TMS of the α-subunit 

hydrophobic core contains basic amino acid residues (R and K) which allow it to act as 

voltage sensor. The secondary structure of Shaker channels has six trans-membrane 

domains and a pore domain between the 5
th

 and 6
th

 trans-membrane domains as shown 

in Figure 4-1. Movement of the voltage sensor in response to changes in the 

transmembrane potential results in conformational changes in the channel protein, 

leading to its activation. Shaker type channels are classified into three groups depending 

on the range of voltage where they show their activity. These groups are inward, weekly 

inward and outward rectifying channels. The inward rectifiers e.g. Arabidopsis K
+
 

transporter (AKT1) are activated by hyperpolarization while outward rectifiers (e.g. 

SKOR) are activated by depolarization of the membrane. Studies of their functional 

properties in heterologous systems suggest that Shakers are predominantly expressed in 

the plasma membrane (Schroeder et al., 1984; Moran and Satter, 1989; Maathuis and 

Sanders, 1995) where they are involved in K
+
 transport across the membrane.  

Shaker type K
+
 channels such as AKT1 (Sentenac et al., 1992) and KAT1 (Anderson et 

al., 1992) were the first K
+
 transporting proteins cloned from plants (Sentenac et al., 

1992). The inward rectifying K
+
 channels, of the AKT family, are present throughout 

the plant kingdom (Anderson et al., 1992; Sentenac et al., 1992; Lebaudy et al., 2007). 

AKT1 is involved in K
+
 uptake from the soil over a range of micro to millimolar 

concentrations (Golldack et al., 2003). 

 

 

 



82 
 

 

Figure 4-1: The proposed topology of Shaker type AKT1 channel  

The  structure comprises 6 TMD with a voltage sensing region in the S4 domain that controls channel 

gating, and a ‘GYGD’ motif (H5 region) that confers K+ selectivity; cNMP is Cyclic nucleotide-

monophosphate binding domain; N is N terminus; C is C terminus. 

 Regulation of AKT1 channels 4.1.2

Channel ion selectivity, sensitivity to voltage, pH, K
+
 or Ca

2+ 
are the prerequisites for a 

better understanding of the channel activity (Lebaudy et al., 2007).
 
Electrophysiological 

analysis using heterologous expression in animal systems is one of the sources to get 

such information (Lebaudy et al., 2007). Xenopus oocytes provide one of the active and 

suitable systems for such analyses. But not all the plant K
+
 channels are active in 

oocytes. For example, AKT1 channels cloned in this system did not show any activity. 

Recent studies have shown that the lack of AKT1 activity in Xenopus oocytes is due to 

the absence of regulators involved (Xu et al., 2006). The Arabidopsis genome contains 

a number of AKT1 regulators. These regulators belong to the calcineurin B-like calcium 

(CBL) sensor proteins and CBL -interacting protein kinases (CIPKs). CBL targets CIPK 

and forms a complex network of signalling. This signalling complex regulates many 

physiological processes in plants (Luan, 2009; Luan et al., 2009) such as channel 

activity. More than one CBLs may be involved in the regulation of one CIPK activities 

(Shi et al., 1999; Albrecht et al., 2003; Luan et al., 2002. Conversely there may be one 

CBL regulating more than one CIPKs. These observations indicate that CIPK-CBL 

interactions are both specific and overlapping.  

Xu et al., (2006) showed a regulatory pathway for AKT1 in Arabidopsis. In Xenopus 

oocytes, no AKT1 activity was recorded in the absence of either CIPK23 or CBL1 (or 

CBL9); however, in the presence of both CIPK23 and CBL1 (or CBL9) normal activity 

was recorded. According to these findings, it was suggested that CIPK23 

phosphorylates AtAKT1 and increases K
+
 uptake especially in K

+
 deficient conditions. 
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Six members of the CBL family showed interaction with CIPK23 but only two (CBL1 

and CBL9) showed strong interaction. The double mutants of cbl1 and cbl9 showed the 

same phenotypes as the mutant of akt1 at low external K
+
 concentrations. In addition, 

overexpression of CBL1 and CBL9 had the same growth phenotype and tissue K
+
 

concentration as the AKT1 overexpressor plants. Based on the above observations, Xu 

et al., (2006) concluded that the CIPK23 is a positive regulator for AKT1 and CBL1 

and CBL9 are positive regulators of CIPK23. Under low external K
+
 conditions, a 

cytosolic Ca
2+

 signal is triggered which activates the plasma membrane localised CBL1 

and CBL9. These two CBLs interact and bring CIPK23 to the plasma membrane. AKT1 

in the plasma membrane is phosphorylated by CIPK23 and as a result AKT1 is 

activated for more efficient K
+
 uptake from the external environment. Lee et al., (2007) 

showed that ankyrin repeat domains which are present in the cytoplasmic region of 

AKT1, serve as the site of attachment for the CIPK23 proteins. This part of AKT1 is 

sufficient for the interaction with CIPKs and then mediates AKT1 regulation (Figure 4-

2).  

When similar approaches were used to study AKT1 like channels in barley and 

grapevine, it was found that they are also activated by Arabidopsis CBL1 and CIPK23 

in Xenopus oocytes (Boscari et al., 2009; Cuellar et al., 2010). Furthermore, Li et al., 

(2014) showed that OsCBL1 and OsCIPK23 are involved in the regulation and 

activation of OsAKT1. They cotransfected HEK293 cells with OsCBL1 and OsCIPK23 

and OsAKT1 and found a remarkable increase in the AKT1 activity as compared with 

the cells transfected with only OsAKT1. Two other rice CIPKs (OsCIPK3 and 

OsCIPK19) were also found interacting with AKT1 but only CIPK19 was involved in 

the activation of AKT1 in the presence of CBL1 when tested in HEK293 cells. 

However, the activation was much weaker than the activation caused by CIPK23. Based 

upon their observations, Li et al., (2014) concluded that the OsAKT1 activity is 

regulated by OsCBL1 and CIPK23 in rice.  

AKT1 is activated by phosphorylation through the CBL-CIPK network after Ca
2+

 

signalling during K
+
 deprivation. This short term activation can be reversed by 

dephosphorylation. In search of the protein that dephosphorylates, Lee et al., (2007) 

focussed on PP2C (2C-type protein phosphatases) and found a member of the PP2C 
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family named as AIP1 which interacts with AKT1. Thus, AIP1 may be a negative 

regulator of AKT1 (Figure 4-2). 

  

Figure 4-2: A model for the regulation of the AKT1 

Under low external K+ conditions, a cytosolic Ca2+ signal is triggered which activates the plasma 

membrane localised CBL1 and CBL9. These two CBLs interact and bring CIPK23 to the plasma 

membrane. AKT1 in the plasma membrane is phosphorylated by CIPK23 and as a result AKT1 is 

activated for more efficient K+ uptake from the external environment. ANK is the ankyrin domain in the 

AKT1 protein and is the binding site for the CIPK23.  AIP1 is a type of PP2C proteins and 

dephosphorylate the AKT by binding to the ankyrin domain and inhibit the CIPK23 to bind to AKT1. “P” 

represents the phosphorylation, “OH” represents the dephosphorylation (adopted from Xu et al., 2006; 

Lan et al., 2011).  

 Functions of AKT1   4.1.3

Inward rectifying K
+
 channels were shown to be involved in K

+
 uptake into many types 

of plant cells (Maathuis and Sanders, 1995). AKT1 is highly expressed in epidermal and 

cortical cells of the root throughout the planta and is involved in the uptake of K
+
 from 

the external environment. Direct evidence for this was given by Hirsch et al., (1998) 

who used akt1 mutant lines and found that the knockout line has less K
+
 in its tissues 

and showed less growth as compared to the wild type plants. Hirsch et al., (1998) also 

suggested that AKT1 can significantly contribute to the K
+
 uptake at very low external 

K
+
 concentrations. They also found that AKT1 activity is essential when NH4

+
 is 

present in the medium because the non-AKT1 component of K
+
 absorption mediated by 

KUP/HAK transporters, is sensitive and inhibited by NH4
+
 (Santa-Maria et al., 2000). 

Li et al., (2006) reported an upregulation of AKT1 at low external K
+
 concentrations via 

a calcium dependent phosphorylation event, further strengthening the role of the AKT1 
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channel in high affinity K
+
 transport. In wheat also, K

+
 starvation was shown to 

upregulate the mRNA level of the AKT1 ortholog TaAKT1 in roots (Buschmann et al., 

2000). Li et al., 2014 transformed the yeast mutant strain R5421 (defective in K
+
 

uptake) with rice AKT1 and tested growth on different external K
+
 concentrations (from 

50 mM to 50 µM). The wild type strain R757 and the OsAKT1 transformed strains 

showed better growth at lower external K
+
 concentration than the mutant strain R5421, 

while no difference was observed at higher external K
+
 concentration among these lines. 

These results suggest that OsAKT1 too absorbs K
+
 from a wide range of external K

+
 

like AtAKT1. Osakt1 mutant plants also showed a phenotype comparable to Atakt1 

(Hirsch et al., 1998; Spalding et al., 1999) in K
+
 deprived conditions. Like Arabidopsis 

akt1 mutants Osakt1 mutants showed significantly lower K
+
 concentration in the tissues. 

The inward K
+
 fluxes of the mutant lines were also reduced significantly as compared 

with the wild type plants. This lower K
+
 uptake might be responsible for the growth 

inhibition in the rice akt1 mutant lines (Li et al., 2014).  

These studies on the expression of K
+
 channels and knockout mutants emphasize the 

importance of K
+
 uptake channels in plant K

+ 
nutrition. There are contrasting reports 

about the dependence of AKT1 expression on external K
+
 concentration.  For example, 

Lagarde et al., (1996) reported that AKT1 expression is independent of external K
+
 

concentration in Brassica napus ranging from micro to mill molar concentrations. Pilot 

et al., (2003) reported unchanged expression of AtAKT1 in roots and shoots upon K
+
 

deprivation and salt stress. However Buschmann et al., (2000) reported that the 

expression of TaAKT1 increases upon K
+
 deprivation.  

All K
+
 channels studied so far are highly specific for K

+
 over other alkali cations, 

suggesting that K
+
 channels are not good candidates for significant sodium intrusion 

even at high Na
+
 to K

+
 ratios (Maathuis et al., 1997; Amtmann and Sanders, 1999). 

However, there are reports which suggested that AKT1 may play a role in Na
+
 uptake 

during high external Na
+
 concentrations (Amtmann and Sanders, 1999; Blumwald, 

2000). In Sueda maritima AKT1 type channels may be involved in Na
+
 uptake under 

high external Na
+
 concentrations (Wang et al., 2007). The mRNA levels of TaAKT1 

were upregulated in roots on K
+
 deprivation and also led to the enhancement of 

instantaneous Na
+
 currents, suggesting a role of these channels in Na

+
 uptake during K

+
 

depleted conditions (Buschmann et al., 2000). The animal shaker type K
+
 channels have 
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also been shown to transport considerable amounts of Na
+
 at positive potentials (Starkus 

et al., 2000; Wang et al., 2000). 

 The function of AKT1-type channels in plant Na
+
 uptake is uncertain  4.1.4

AtAKT1 has been shown to be a salt sensitive K
+
 channel, highly expressed in roots 

(Fuchs et al., 2005). Golldack et al., (2003) suggested that OsAKT1 could mediate Na
+
 

uptake in saline conditions. They analysed the expression level of AKT1 in three 

cultivars of rice (salt-sensitive rice cv. IR29, and salt-tolerant rice Pokkali and BK) 

under high salts conditions (150 mM Na) for 48 hours and found that the AKT1 

transcripts disappeared in the roots of Pokkali and BK cultivars while they remained 

present in IR29. They concluded that the expression of OsAKT1 is regulated differently 

in salt sensitive and salt tolerant cultivars of rice. OsAKT1 has also been shown to 

enhance salt tolerance in yeast (Perry et al., 2007).  

Aims of the study 

Better K
+
 nutrition and maintaining a higher K

+
: Na

+
 ratio have been shown to play a 

positive role in different abiotic stresses as discussed in chapter 1 in detail. AKT1 is an 

inward rectifier K
+
 channel and is expressed throughout the plant body but most highly 

in the roots. It plays a role in the acquisition and then distribution of K
+
 within the plant 

and so could improve plant K
+
 nutrition during different abiotic stress conditions. The 

aim of this study was to analyse the role of rice AKT1 channels under different stress 

conditions. Different parameter such as growth, K
+
 and Na

+
 concentrations in the tissues 

and in the xylem sap, stomatal conductance and rate of photosynthesis were recorded.  

 Results  4.2

 Testing of rice akt1 knockout mutant lines 4.2.1

The rice akt1 transposon insertion lines (i.e. line T14884T and NC0227) in the 

“Nipponbare” background and T-DNA insertion line PFG_1B-16021 in the “Dongjin” 

background (as shown in Figure 4-3) were characterised by PCR and RT-PCR using 

different sets of primers (see chapter 2). PCR results showed that line-T14484T (Figure 

4-4b and 4-4c) and line-PFG_1B-16021 (Figure not shown) were homozygous for the 

transposon and T-DNA insertion respectively while the line-NC0227 (Figure not 

shown) was heterozygous. Line T14884T (Figure 4-5) and line-PFG_1B-16021 (Figure 
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4.6) were subsequently analysed using RT-PCR and both lines showed absence of any 

AKT1 mRNA which confirms that these are genuine loss of function mutants. In the 

further discussion the line- T14884T and line-PFG_1B-16021 are named as akt1-1 and 

akt1-2 for convenience. 

 

Figure 4-3: Model showing the insertions in Os-AKT1 

The black boxes indicate exons and the lines represent introns. The T-DNA and transposon insertion site 

in the Os-akt1 mutant is shown using an arrow. 

 

Figure 4-4: Model of the primers positions and PCR for the akt1 knockout line 

a; Gene model showing transposon and primer positions for line T14484T, b; PCR screening of akt1 

knockout mutant line T14484T, with transposon primer and a gene specific primer. Amplification in the 

putative knockout mutants shows that a transposon is inserted in the gene, c; PCR using gene specific 

primers spanning the transposon insertion. The lack of amplification in the putative knockout line shows 

that the line is homozygous for transposon insertion. Lane 1-2, wild type; Lane 3-6, knockout mutants; 

Lane 7, water, L is the ladder for both b and c.  
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Figure 4-5: RT-PCR for akt1 knockout mutants line T14484T 

Lack of amplification in the knockout line suggests that the line is a genuine knockout line. Lane 1, 

cDNA from wild type; Lane 2-4, cDNA from the knockout mutants; Lane 5, gDNA from wild type; Lane 

6, water. L is the ladder. 

 

 

Figure 4-6: RT-PCR for akt1 knockout mutant line- PFG_1B-16021  

cDNA of the wild type and water were used as positive and negative control respectively. Actin primers 

were used as control for the quality of DNA. The lack of amplification for the knockout mutants shows 

that they are genuine mutants. Lane 1 & 2 wild type: Lane 3-6, akt1 knockout mutants; Lane 7, water. L 

is the ladder. 

 

 Screening of putative AKT1 overexpressing lines 4.2.2

The putative AKT1 overexpressor lines were tested by PCR. The amplification with 

hygromycin primers showed that the plants are transgenic (Figure 4-7). To further 

characterise, primer sets which are cDNA specific and spanning introns, were used . 

The PCR was expected to give us two bands on the genomic DNA of the AKT1 

putative transgenic plants (as shown in Figure 4-8a). The larger size amplicon was 

expected for the constitutive AKT1 gene while the smaller amplicon was for the AKT1 

transgene. All the 20 plants tested (not all shown) gave two bands which shows that the 

plants are transgenic for AKT1 (Figure 4-8b). gDNA and cDNa of the wild type plants 

were used as a positive control. To further investigate, PCR was carried out with 35S 

promoter region forward primer and AKT1 reverse primer (as shown in Figure 4.9ab). 

Again, all the plants gave amplification with the mentioned set of primers (Figure 4-9b) 

which shows that the AKT1 line 13-2 is a genuine transgenic line for the AKT1 

transgene. The same PCRs were carried out for one other line (AKT1 ox-line) and the 

results were the same as those for AKT1 overexpressor line 13-2. Both lines were tested 

with q-PCR to quantify the level of overexpression. The AKT1 ox 13-2 and AKT1 ox 

758bp 1      2        3       4         5         6         L

AKT1 primers

L          1            2          3           4        5           6          7          L 1         2           3          4             5         6            7         L

a. AKT1 primers b. Actin primers
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line were named as AKT1 ox-1 and AKT1 ox-2 respectively in the coming text for 

convenience.  

 

 

Figure 4-7: Characterization of AKT1 transgenic plants by PCR using hygromycin primers  

Lane 1-2, wild type; Lane 3-6, AKT1 transgenic plants; Lane 7, water (Negative control); L is the ladder. 

The amplification suggests that these plants are transgenic for hygromycin resistance. Size of amplicon is 

794 base pairs. Histone primers were used as a control for the quality of DNA. 

 

 

Figure 4-8: Model of the primers position and PCR for the AKT1 transgenic line 13-2 

a; Model of the PCR with AKT1 primers spanning intron where two bands are expected for the transgenic 

lines. b; Screening of putative AKT1 transgenic line 13-2 with AKT1 cDNA specific primers spanning 

introns, Lane 1-14 gDNA from the putative AKT1 transgenic plants; Lane 14 gDNA from WT and Lane 

15 cDNA from WT (as controls); Lane 16, water (negative control); L is the ladder. The results showed 

two bands for the putative AKT1 transgenic plants. The larger size band corresponds to the endogenous 

AKT1 gene, while the small band corresponds to the transgene AKT1.   
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Figure 4-9: Model of the primers positions and PCR for the AKT1 transgenic line 13-2 

a, model of the PCR with 35S forward primer and AKT1 gene specific reverse primer; The DNA is 

expected to give amplification in case the plants are genuinely transgenic. b, Screening of putative AKT1 

transgenic line with 35S forward primer and AKT1 reverse primer. Lane 1-14; cDNA from the AKT1 

Transgenic plants, Lane 15 Plasmid (as a positive control), Lane 16 gDNA from WT and Lane 17 water 

(as negative controls), L is the ladder. The results showed that the line is transgenic for AKT1 and 

homozygous.  

 

 Growth analysis of wild type, Osakt1 mutants, and AKT1 4.2.3

overexpressor rice plants 

Rice AKT1 is responsible for the uptake of K
+
 and may be important for the growth in a 

range of environmental conditions. To see the effects of AKT1 on growth, the knockout 

and overexpressing lines were analysed for growth against their corresponding wild 

type plants. 

The results showed no difference in the growth for all the tested genotypes in control 

conditions (Figure 4-11). At zero K
+
 conditions, both the akt1 knockout lines showed 

less growth as compared to their corresponding wild type plants while no growth 

phenotype was observed for both the overexpressing lines. When the zero K
+
 medium 

was supplemented with 100 µM K
+
, the growth phenotype of the akt1 knockout lines 

was lost, however, both the AKT1 overexpressing lines showed better growth as 

compared with the wild type plants. No growth phenotype was observed for all the 

genotypes when either of KCl or NaCl was present in the medium in higher (60 mM) 

concentrations. Both the knockout lines showed less growth while both the 

overexpressing lines showed better growth as compared to their corresponding wild 

type plants under mild osmotic stress (5% PEG). Under 10% PEG conditions, we 

observed a trend of lower growth, although not significant, for the knockout lines, 

however the overexpressor lines showed better growth as compared with the wild type 
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plants.  Higher osmotic stress (12% PEG) conditions led to a comparable growth 

phenotype for all the tested lines. 

 

Figure 4-10: Relative growth rate for wild type and transgenic rice lines exposed to different media 

conditions 

Relative growth rate (RGR, % day-1), after 14 days for the wild type, akt1 knockout and AKT1 

overexpressor lines. Plants were grown in hydroponics media using control medium, 0 mM K+, 60 mM 

K+, 60 mM Na+ and osmotic stress (5%, 10%, 12% PEG) conditions. Data are from three independent 

experiments, and the bars in the figure represent the standard errors. * denotes a significant differences by 

T-test at a probability level of p < 0.05 between the wild type and knockout lines or wild type and 

overexpressor lines. 

 

 Rice AKT1 plays important role in better growth under K
+
 deficient 4.2.4

conditions 

Hirsch et al., (1998) showed that the presence of AKT1 is essential for the K
+
 uptake in 

a K
+
 deficient medium where NH4

+
 is present. NH4

+ 
inhibits KUP/HAK K

+
 uptake 

transporters which become essential in the akt1 mutant in K
+
 deficient conditions 

(Figure 4-11). To see whether this pattern is similar in rice, plants were grown at 

different combinations of NH4
+ 

and K
+
 in the medium and were analysed for growth. 
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Figure 4-11: A model showing NH4
+
 toxicity to HAK/KUP transporters 

In the presence of NH4+, AKT1 channels are the only functional K+ transporters while the HAK/KUP 

transporters are inhibited by NH4+, especially in K+ deficient conditions. 

 

The akt1 knockout lines showed less growth while the overexpressing lines showed 

more growth as compared to their corresponding wild type in the absence of both NH4
+
 

and K
+
 in the medium. The knockout lines showed less growth while no difference was 

observed in the overexpressing line as compared to the wild type at 0 mM NH4
+
 in the 

medium. In the absence of K
+
 and presence of 3 mM NH4

+
 in the medium, the knockout 

plants showed less growth while the overexpressing plants showed higher growth as 

compared to the wild type plants (Figure 4-12).  
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Figure 4-12: Relative growth rate for rice wild type and transgenic lines exposed to different media 

conditions 

Relative growth rate (RGR, % day-1) after 14 days for the wild type, akt1 knockout and AKT1 

overexpressor lines. Plants were grown in hydroponic media using control medium, 0 mM K+ + 0 mM 

NH4
+, 0 mM NH4

+ and 0 mM K+ + 3 mM NH4
+ conditions. Data are from three independent experiments, 

and the bars in the figure represent the standard errors. * denotes the significant differences by T-test at a 

probability level of p < 0.05 between the wild type and knockout lines; and wild type and overexpressor 

lines. Refer to chapter 2 for the concentrations of NH4
+, K+, NO3

- and Na+ in the media used here.  

 

 AKT1 plays a positive role during drought stress 4.2.5

The growth phenotype observed during osmotic stress conditions in hydroponics was 

further analysed using soil grown plants  

In fully watered conditions, there was no significant difference between the growths of 

all the tested genotypes. However, both the knockout lines showed less growth while 

both the overexpressing lines showed better growth as compared to their corresponding 

wild type plants under drought stress conditions (Figure 4-13).  
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Figure 4-13: Relative growth rate for wild type and transgenic rice lines exposed to control and 

drought conditions 

Relative growth rate (RGR % day-1) of Wild type, akt1 knockout and AKT1 overexpressor lines which 

were grown for 6 weeks in control and drought conditions in soil. Data are from three independent 

experiments and the bars in the figure represent the standard errors. * denotes the significant differences 

by T-test at a probability level of p < 0.05 between the wild type and knockout lines; and wild type and 

overexpressor lines. 

 

 Tissues K
+
 concentration analyses of the transgenic and non-4.2.6

transgenic rice plants  

4.2.6.1 Root K
+
 concentration analyses 

AKT1 is involved in the K
+
 uptake in a range of external K

+
 concentrations, therefore 

the K
+
 concentration of the wild type and transgenic lines were analysed in the roots and 

leaves. The results showed no differences in the root K
+
 concentration of all the 

genotypes in control conditions. At zero K
+
 and 100 µM K

+
 conditions, both the akt1 

knockout lines contained less K
+
 while both the overexpressing lines showed a higher 

K
+
 concentration as compared with the wild types. The decrease in the root K

+
 

concentration was about 2 fold in both the knockout lines as compared with their wild 

type plants in the 0K
+
 conditions. At 60 mM K

+
, the akt1 knockout lines showed no 

difference with the wild type while the overexpressing lines showed higher K
+
 in the 

roots as compared with the wild type plants. At high Na
+
 in the medium, no significant 

difference was observed in all the genotypes for the K
+
 concentration, except for the 

akt1-1 which showed higher K
+
 in the roots as compared with the wild type plants. 

Under osmotic stress (5% PEG and 10% PEG) conditions, both the knockout lines 
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showed lower K
+
 while the overexpressing lines showed higher K

+
 in the roots as 

compared with the wild type plants (Figure 4-14). 

 

Figure 4-14: Root K+ concentration analyses for wild type and transgenic rice lines exposed to 

different media conditions 

Root K+ concentration of rice wild type, akt1 knockout and AKT1 overexpressor plants. The plants were 

grown in different media conditions as mentioned in the figure and root tissues were analysed for K+ 

concentrations. The experiment was replicated three times and the bars in the figure represent the standard 

errors. * denotes the significant differences by T-test at a probability level of p < 0.05 between the wild 

type and knockout lines; and wild type and overexpressor lines. 

 

4.2.6.2 Leaf K
+
 concentration analyses 

The shoot data showed no difference in the K
+
 concentration in the leaves of all the 

tested genotypes under control, 60 mM K
+
 and 10% PEG conditions. At zero K

+
 and 

100 µM K
+
 conditions, the knockout lines showed less K

+
 while the overexpressing 

lines showed higher K
+
 concentration in the leaves as compared with the corresponding 

wild type plants. The akt1-1 line showed higher K
+
 concentration in the leaves while no 

difference was observed for the akt1-2 line at 60 mM Na
+
 in the medium, however, both 

the overexpressing lines showed less K
+
 concentration in the leaves. Mild osmotic stress 

(5% PEG) led to lower K
+
 in the leaves of both the knockout lines while higher K

+
 in 

the leaves of both the AKT1 overexpressing lies as compared to the wild type plants. 

All the genotypes showed comparable K
+
 concentration in the leaves under higher 

osmotic stress (10% PEG) conditions (Figure 4-15).  
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Figure 4-15: Leaf K+ concentration analyses for wild type and transgenic rice lines exposed to 

different media conditions 

Shoot K+ concentration of rice wild type, akt1 knockout and AKT1 overexpressor plants. The plants were 

grown in different media conditions as mentioned in the figure and shoot tissues were analysed for K+ 

concentration. The experiment was replicated three times and the bars in the figure represent the standard 

errors. * denotes the significant differences by T-test at a probability level of p < 0.05 between the wild 

type and knockout lines; and wild type and overexpressor lines. 

 

4.2.6.3 Tissue ion concentration analyses of the wild type and transgenic plants 

grown in soil 

When plants were grown in fully watered soil, root K
+
 concentrations were similar in all 

the genotypes. However, under drought stress, the akt1 Knockout plants showed less K
+
 

in the roots while the AKT1 overexpressing plants had more K
+
 in the roots as 

compared to the wild type plants (Figure 4.16a). The leaves of the akt1 knockout plants 

showed no differences with the wild type while both the overexpressing lines contained 

more K
+
 in their leaf tissue in both control and drought stress conditions (Figure 4-16b).  
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Figure 4-16: K
+
 concentration analyses of the wild type and transgenic rice lines exposed to drought 

stress in soil 

a; root K+ concentration and b; shoot K+ concentration of rice wild type, akt1 knockout and AKT1 

overexpressor plants. The plants were grown for six weeks in control and drought conditions in soil and 

root and shoot tissues were analysed for K+ concentration. The experiment was replicated three times and 

the bars in the figure represent the standard errors. * denotes the significant differences by T-test at a 

probability level of p < 0.05 between the wild type and knockout lines; and wild type and overexpressor 

lines. 

 

 Tissues Na
+
 concentration of the transgenic and non-transgenic rice 4.2.7

plants  

It has been suggested that AKT1 plays a role in the Na
+ 

uptake (Maathuis, 2006) 

especially in K
+
 deprived conditions to provide turgor to the cells. We therefore 

analysed the Na
+
 concentration of the tissues to see the effect of AKT1 on the tissue Na

+
 

concentration. 

4.2.7.1 Root Na
+
 concentration 

The results showed that both the knockout lines showed less Na
+
 while both the 

overexpressor lines had more Na
+
 in the root tissues as compared with their 

corresponding wild type plants at zero K
+
 in the medium. All genotypes showed 

comparable Na
+
 concentration in the roots when grown at 60 mM Na

+
 in the medium 

(Figure 4-17a and b). 

4.2.7.2 Leaf Na
+
 concentration 

For plants grown at 0 K
+
, the leaves of the knockout lines showed less Na

+
 while that of 

overexpressor lines showed higher Na
+
 concentration as compared with the 

corresponding wild type plants. However, no difference was observed in the leaf Na
+
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concentration for all the genotypes when plants were grown at 60 mM Na
+
 in the 

medium (Figure 4-17c and d).   

 

Figure 4-17: Na
+
 concentration analyses for wild type and transgenic rice lines 

exposed to different media conditions 

a; root Na+ concentration of plants grown at zero K+ conditions, b; root Na+ concentration of plants grown 

at 60 mM Na+. c; leaf Na+ concentration from plants grown at zero K+ conditions, d; leaf Na+ 

concentration from plants grown at 60 mM Na+ conditions. The experiment was replicated three times and 

the bars in the figures represent the standard errors. * denotes the significant differences by T-test at a 

probability level of p < 0.05 between the wild type and knockout lines; and wild type and overexpressor 

lines. 

 

 Xylem sap analysis of the wild type and transgenic plants 4.2.8

4.2.8.1 K
+
 concentration analyses 

The xylem sap was analysed for the K
+
 concentration to see whether uptake through the 

AKT1 channels had any effect on the loading of K
+
 into the xylem. 

The data revealed that both the akt1 knockout lines showed less K
+
 while both the 

overexpressing lines showed higher K
+
 in the xylem sap as compared with the wild type 

plants in control, 0 mM K
+
 and 10% PEG conditions. At 60 mM K

+
 conditions, no 

significant difference was observed among all the genotypes. The akt1-1 line showed no 

difference with the wild type while the akt1-2 line showed less K
+
 and the AKT1 
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overexpressor line showed higher K
+
 in the xylem at 60 mM K

+
 in the medium (Figure 

4-18). 

 

Figure 4-18: Xylem sap analyses for wild type and transgenic rice lines exposed in different media 

conditions 

K+ concentration in the xylem sap of rice wild type, akt1 knockout and AKT1 overexpressor plants; the 

plants were grown for one week in different media conditions as mentioned in the figure, and xylem sap 

was analysed for K+. Experiment was replicated three times and the bars in the figure represent the 

standard errors. * denotes the significant differences by T-test at a probability level of p < 0.05 between 

the wild type and knockout lines; and wild type and overexpressor lines. 

 

4.2.8.2 Na
+
 concentration in xylem sap 

The data showed varied results for the Na
+
 concentration in the xylem sap of different 

genotypes in various conditions. The akt1-1 line showed no difference in Na
+
 

concentration with the wild type while the akt1-2 showed less Na
+
 in the xylem sap as 

compared to the wild type plants in 0 mM K
+
 conditions in the medium. AKT1 ox-1 

showed higher Na
+
 while AKT1 ox-2 showed no difference with wild type plants in 0 

mM K conditions (Figure 4-19a). 

At 60 mM Na
+
 conditions, akt1-1 showed less Na

+
 concentration in the xylem sap while 

no difference was observed for the akt1-2 as compared to wild type. AKT1 ox-1 showed 

higher Na
+
 while AKT1 ox-2 showed no difference in the Na

+
 concentration of the 

xylem sap (Figure 4-19b). 
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Figure 4-19: Xylem sap analyses for wild type and transgenic rice lines exposed to different media 

conditions 

a; K+ concentration and b; Na+ concentration in the xylem sap of rice wild type, akt1 knockout and 

AKT1 overexpressor plants. The plants were grown for one week in different media conditions as 

mentioned in the figures and xylem sap was analysed for K+ and Na+ concentration s. The experiment 

was replicated three times and the bars in the figures represent the standard errors. 

 

 Analyses of the stomatal conductance and rate of photosynthesis 4.2.9

Rice AKT1 has a role in K
+
 uptake and distribution within the plant. But, AKT1 

channels are also expressed in guard cells, thus there is a possibility that these channels 

play a role in the guard cell movement and therefore affect the stomatal conductance 

and rate of photosynthesis. We analysed these two parameters to see the role of AKT1 

under different conditions. In control grown plants, the data showed no difference for all 

the genotypes except AKT1 ox-1 which showed higher stomatal conductance. At zero 

K
+
 and osmotic stress (10% PEG) conditions, both the knockout lines showed lower 

stomatal conductance while the overexpressing line showed higher stomatal 

conductance as compared to their corresponding wild type plants (Figure 4-20a). All the 

tested lines showed no significant difference in the rate of photosynthesis under any of 

the media conditions (Figure 4-20b). 
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Figure 4-20: Stomatal conductance and rate of photosynthesis of wild type and transgenic rice lines 

exposed to different media conditions  

The stomatal conductance (a) and rate of photosynthesis (b) of wild type, akt1 knockout and AKT1 

overexpressor lines; The plants were grown for two weeks in different media conditions as mentioned in 

the Figure and stomatal conductance and the rate of photosynthesis was measured. The experiment was 

replicated three times and the bars in the figures represent the standard errors. * denotes the significant 

differences by T-test at a probability level of p < 0.05 between the wild type and knockout lines; and wild 

type and overexpressor lines. 

 Discussion 4.3

Potassium is required for the growth and many other physiological processes of plants. 

Its deficiency may lead to low productivity of the plants. The trafficking of K
+
 into the 

plant and within the plant is controlled by transporter proteins. These proteins are 

localised in the plasma membrane, tonoplast of the vacuoles and other membranes. 

Transporter proteins like AKT1 play an important role in rice as well as in other plants.. 

AKT1 is localised in the plasma membrane and it is suggested that AKT1 plays a role in 

salt stress (Maathuis, 2006) and osmotic stress conditions (Nieves-Cordones et al., 

2011). To analyse the role of rice AKT1 channels in different abiotic stress conditions, 

rice wild type, akt1 knockout and AKT1 overexpressor lines were characterised for 

different parameters such as growth, ion concentrations in the tissues and xylem sap, 

stomatal conductance and rate of photosynthesis in different media conditions.  

The results showed that all the tested genotypes showed no growth phenotype in the 

control conditions (Figure 4-10), which suggests a limited role of rice AKT1 in the 

normal conditions. The K
+
 concentration in the root and leaf tissues of all the genotypes 

also showed no difference when plants were grown in control medium which suggests 

that other K
+
 transporters may be active and fulfil the K

+
 requirements of the plants.  
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 AKT1 is important during K
+
 deficient conditions 4.3.1

Rice akt1 knockout lines showed less growth as compared to the wild type in the 

absence of K
+
 in the medium (Figure 4-10). Spalding et al., (1999) reported similar 

reduced growth for Arabidopsis akt1 mutants in the absence of K
+
 in the medium.  The 

reduced growth of the knockout lines might be the effect of the loss of AKT1 activity. 

AKT1 is an important K
+
 uptake system in the root soil boundary and loss of the AKT 

activity could reduce K
+
 uptake. We observed a lower level of K

+
 in the roots of the 

akt1 knockout lines as compared with the wild type plants in K
+
 deprived conditions 

(Figure 4-14), which supports the above notion.  

AKT1 overexpressor lines showed comparable growth to the wild type plants in the 

zero K
+
 medium. Thus, at this very low level of K

+
, overexpression of AKT1 did not 

affect the growth. However, under the same conditions, the overexpressing plants did 

show higher concentrations of the K
+
 in their tissues as compared with the wild type 

plants (Figure 4-14). It is not straightforward to explain the higher K
+
 concentration 

since at these external K
+
 concentrations it is unlikely that AKT1 plays a major role in 

K
+
 uptake. Three scenarios can be suggested; 1. Before exposing the plants to the zero 

K
+
 condition, they were growing in the normal K

+
 conditions and the overexpressing 

plants may have absorbed more K
+
 during this phase 2. The roots of the AKT1 

overexpressor plants leak less K
+
 into the surrounding than the wild type plants. This 

could be true if the overexpressor plants have a more negative membrane potential 

because the latter would reduce open probability of outward rectifying channels such as 

GORK (Shabala and Cuin, 2008) 3. K
+
 leakage from the roots into the surrounding 

environment (shown in chapter 3 for TPKsb) could bring external K
+
 into the range 

where AKT1 can be active. Some studies suggested upregulation of AKT1 in the K
+
 

deficient conditions (Li et al., 2006; Buschmann et al., 2000; Li et al., 2014) which 

supports the idea that AKT1 can function as high affinity transport system and may be 

involved in the K
+
 uptake in a very low external K

+
 concentrations. 

When the medium was supplied with 100 µM K
+
, we observed better growth for the 

AKT1 overexpressor plants. The higher K
+
 concentration in the roots and shoot of the 

overexpressor lines may be a reason for the better growth of these plants. AKT1 may be 

responsible for the improved K nutrition. The leaves of the overexpressor plants also 

showed higher K
+
 concentration than the wild type plants (Figure 4-15). The presence 
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of more K
+
 in the xylem sap of the overexpressor plants suggests higher loading of K

+
 

into the xylem. It is difficult to argue about the loading of K into the xylem here. SKOR 

channels are the principle K
+
 loading channels in the xylem and they are depolarisation-

activated (Gaymard et al., 1998; Shabala and Cuin, 2008). The presence of more K
+
 in 

the roots cells could lead to plasma membrane hyperpolarisation. In that case, SKOR 

activity would be reduced rather than upregulated. Alternatively, non-selective K
+
 

channels might be responsible for augmented loading of K
+
 into the xylem. GORK are 

the depolarisation-activated outward rectifying K
+
 channels and may be less active in 

the cells of overexpressing plants. It is more likely that the overexpressing cells leak-out 

less K
+
 than the wild type plants and thus having more K

+
. The higher K

+
 

concentrations may be helpful in loading more K
+
 into the xylem.  

 AKT1 is insensitive to NH4
+
 toxicity 4.3.2

The reduced growth of the akt1 knockout lines in the zero K
+
 conditions might be due to 

NH4
+
 toxicity. The medium contained NH4

+
 and that may have toxic effects in the 

absence of K
+
. Dennison et al., (2001) reported better growth for the Arabidopsis akt1 

knockout mutants at low external K
+ 

concentration in the absence of NH4
+
,
 
however, by 

the addition of NH4
+
 into the same medium; the growth of the knockout mutants became 

reduced. NH4
+
 and K

+
 are both univalent cations and it is suggested that they share 

common transporters (Szczerba et al., 2008) and in the absence of K
+
, NH4

+
 causes 

toxicity (Wang et al., 1996; White, 1996; Howitt and Udvardi, 2000; Kronzucker et al., 

2001; Nielsen and Schjoerring, 1998; Hess et al., 2006; Szczerba et al., 2008 a,b). 

AKT1 is insensitive to NH4
+
 and is the only major K

+
 uptake system in the presence of 

NH4
+
as this cation is toxic to the K

+
 transporters of HAK/KUP family. Therefore, in the 

absence of AKT1 activity and toxification of HAK/KUP transporters, K uptake may be 

considerably hampered and so may a reason for the lower growth of akt1 knockout 

lines. In the absence of K
+
, more NH4

+
 enters into the roots passively (Sczebra et al., 

2006) for charge balancing. The increasing NH4
+
 may be toxic for the plants. Plants 

have the strategy to remove NH4
+
 from the cells actively by the expenditure of energy 

(Britto et al., 2001). The akt1 knockout lines may have more NH4
+
 and use more energy 

for the efflux of NH4
+
; therefore it is more likely that they are losing more metabolites, 

which may be a cause of lower growth rate as compared to the wild type plants.  
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The lower growth of the akt1 knockout lines observed at zero K
+
 conditions was 

eliminated when 100 uM K
+
 was added to the medium. This shows that the addition of 

K
+
 alleviates the toxic effects of NH4

+
. These results are in agreement with the notion 

that K
+
 can alleviate NH4

+
 toxicity (Barker et al., 1967; Cao et al., 1993). HAKs/KUPs 

are the high affinity K
+
 transporters and are involved in K

+
 uptake at micro molar 

concentrations. Many studies have shown that AtHAK5 is activated in K
+
 deficient 

conditions (Ahn et al., 2004; Armengaud et al., 2004; Hampton et al., 2004; Shin and 

Schachtman, 2004; Gierth et al., 2005). Elevation of the transcript level of the 

HAKs/KUPs may be transient (Shin and Schachtman, 2004) or may be for longer 

duration (Gierth et al., 2005). The activation and elevation of the HAKs/KUPs 

expression in the akt1 knockout lines may be involved to transport K
+
 enough for the 

alleviation of NH4
+
 toxicity and restoring growth. 

 AKT1 is involved in Na
+
 uptake 4.3.3

It has been suggested that AKT1 channels are involved in Na
+
 uptake from the root 

environment, especially in K
+
 deficient conditions (Amtmann and Sanders, 1999; 

Blumwald et al., 2000; Buschmann et al., 2000; Maathuis, 2006). The better growth of 

the wild type and overexpressor plants as compared with the knockout lines in the zero 

K
+
 conditions may be due to the presence of Na

+
 in the medium as the medium 

contained 1.3 mM Na
+
 to replace K

+
. Several studies have suggested that AKT1-type 

channels may contribute to Na
+
 uptake. For example, Buschmann et al (2000) reported 

that TaAKT1 might be involved in Na
+ 

absorption in K
+
 deficient conditions. Golldack 

et al., (2003); Obata et al., (2007); Wang et al., (2007) also suggested a role for AKT1 

in Na
+
 transport. Thus, the absence of AKT1 in the knockout mutants would reduce Na

+
 

uptake and hence growth. Indeed, the Na
+
 concentration in the roots of the wild type 

and overexpressor plants is higher than that in the knockout mutants (Figure 4.17a). 

This higher Na
+
 concentration might be the cause of the better growth of the wild type 

and overexpressor lines as compared with the knockout lines. Since many studies have 

shown that moderate level of Na
+
 promote plant growth in the absence of K

+
 in the 

medium (Horie et al., 2007). 

 AKT1 improves tolerance to water stress 4.3.4

Osmotic stress affects plant productivity due to many reasons (details in chapter 1). 

Osmotic stress considerably affects K
+
 acquisition from the soil (Shabala, 2000) and 
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therefore disturbs many of the biological processes within the plant in which K
+
 is 

involved. Therefore, it is important to develop strategies which can improve K
+
 

nutrition/ acquisition, especially pertaining to osmotic stress. Here we show a role for 

rice AKT1 during osmotic stress. The akt1 knockout lines showed less growth while the 

AKT1 overexpressor lines showed better growth as compared with their corresponding 

wild type plants in osmotic stress conditions (Figure 4-10) in both hydroponics and soil. 

K
+
 is a major osmoticum and its uptake often increases during osmotic stress (Wang et 

al., 2013). Thus increased uptake through AKT1 could reduce the negative effects 

caused by water stress. Our data showed lower K
+
 concentration in the akt1 knockout 

plants while it was higher in the AKT1 overexpressor plants as compared with the wild 

type plants (Figure 4.14). The same trend was observed for the ion concentrations in the 

root tissues for plants grown in the drought stress (Figure 4.16a). Together, these 

findings provide evidence that AKT1 is a major uptake route for K
+
 during water stress 

in spite of the fact that expression of the AKT1 channel in the roots is independent of 

ABA in Arabidopsis (Gaymard et al., 1998) and grapevine (Cuellar et al., 2010).  

The leaves of the knockout lines showed less K
+
 while that of the overexpressor lines 

showed higher K
+
 concentration in 5% PEG and drought stress conditions. The K

+
 

concentration in the roots may have an important effect on the loading of K
+
 into the 

xylem to translocate K
+
 into the leaves. The xylem sap data is in agreement with the K

+
 

concentration of the leaves. Cuellar et al., (2010) suggested an increase in the 

expression level of the VvK1 (a homolog of AKT1) in drought stress. This may also be 

a reason of higher level of K
+
 in the overexpressing lines. Nevertheless the differential 

stomatal conductance in the wild type, knockout and the overexpressing lines also 

supports the differences in the xylem K
+
 loading and leaves K

+
 concentration the tested 

genotypes. 

 AKT1 is functional in guard cells 4.3.5

Shaker type K
+
 channels are expressed throughout the plant including guard cells and 

are involved in influx and efflux of K
+
 in these cells (Hosy et al., 2003; Lebaudy et al., 

2008a). These channels play important roles in the stomatal movement, for example to 

reduce the water loss during osmotic stress. AKT1 is not only involved in the uptake of 

K
+
 in roots but also plays a role in the regulation of stomatal movements (Nieves-

Cordones et al., 2011). Our results showed lower stomatal conductance for the akt1 

http://jxb.oxfordjournals.org/content/51/350/1585.full#ref-23
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knockout lines while higher stomatal conductance for the AKT1 overexpressor lines as 

compared with the wild type plants in zero K
+
 and osmotic stress conditions (Figure 

4.20a). These results suggested that AKT1 plays a role in the stomatal movements 

during abiotic stress conditions by changing K
+
 concentration in the guard cells. Lack of 

akt1 activity in the knockout lines might be responsible for the comparatively flaccid 

guard cell and lower stomatal conductance while vice versa stomatal conductance in 

AKT1 overexpressor lines.  

The data from the xylem K
+
 loading (Figure 4-18) and leaf K

+
 concentration (Figure 4-

15) agreed to the differential K
+
 in the guard cells of the wild type, knockout and 

overexpressor lines. GORK channels may be more actively involved in the knockout 

lines in K
+
 efflux and may be responsible for the lower stomatal conductance. The 

higher stomatal conductance in the wild type and AKT1 overexpressor plants may 

enhance the diffusion of CO2 into the plants and therefore increasing the rate of 

photosynthesis. Although we did not observe any difference in the rate of 

photosynthesis of these genotypes under different conditions (Figure 4-20b). This may 

be because the rate of photosynthesis is not reduced per unit leaf area (James et al., 

2002) but at the whole plant level (as explained in chapter 1). Abiotic stresses may 

result in a higher density of chloroplasts as the leaves become thickened and this could 

be an explanation for why we observed no difference in the rate of photosynthesis 

(Munns and Tester 2008).  
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Chapter 5 

5 Final Conclusions 

 Abiotic stress  5.1

The productivity of most crops is affected by different types of biotic and abiotic 

stresses.  Drought, salinity, heat, cold and nutrient stresses are a few examples of abiotic 

stresses and they reduce the average yield of most crop plants by >50% (Wang et al., 

2003). Cereal crops (mostly glycophytes) typically attain only about 25% of their 

potential yield due to the effects of environmental stresses, such as osmotic and salt 

stress (Boyer, 1982). Osmotic and salt stresses have almost similar effects and therefore 

they evoke similar responses (Boyer, 1982). Potentially, a large number of strategies to 

cope with salinity and drought is available. Changing the plant’s surrounding, 

reclamation of the soil, provision of clean water, proper use of fertilizers, for example, 

could be used to deal with drought and salinity but all these are costly and may be 

operative only for a short time. Therefore, we need to apply more cost effective and 

longer lasting strategies. Genetic manipulation of plants and characterization of 

transporter proteins could be an effective approach to deal with salinity and drought 

because they are economical and durable (Epstein, 1983). Important to mention also is 

the range of responses that different species use to counter abiotic stress. From these we 

can identify the most appropriate to reduce stress sensitivity in various crops.   

Plants adopt a range of strategies to cope with the problems of drought and salinity.  

Improving plant nutrition could be one of the more effective strategies to reduce 

drought and salinity stress, especially K
+
 nutrition. K

+
 is one of the most abundant and 

an important nutrient for plants for different biochemical and physiological processes 

and increased K
+
 has been shown to relieve drought and salinity stress. To improve K

+
 

nutrition, uptake and distribution/translocation within the plants are important. The role 

of membrane transporters is obvious from various studies in plant responses to drought 

and salinity by controlling influx and efflux of Na
+
, and enhancing uptake and 

accumulation of K
+
 and water (Figure 5-1). Therefore, in this study, we focussed on K

+
 

channels (TPKa, TPKb and AKT1) which are localised to the tonoplast and plasma 

membrane and we found that these channels can improve K
+
 nutrition and growth.  

http://jxb.oxfordjournals.org/content/63/10/3523.full#ref-213
http://jxb.oxfordjournals.org/content/63/10/3523.full#ref-213
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 Growth during abiotic stresses and the role of K
+
 channels 5.2

Abiotic stresses such as drought and salinity negatively interfere in a plants’ nutrients 

uptake mechanisms especially of K
+
. Therefore, improving plant nutrition either by 

additional supply of nutrients or by improving the uptake could help plants in tolerance 

against these stresses. K
+
 transporters are involved in the uptake and distribution may be 

the main players (Figure 5-1). Our results showed a better growth phenotype for the 

TPKa, TPKb and AKT1 overexpressing plants as compared to their corresponding 

control plants while the akt1 knockout lines showed lower growth than the wild type 

plants at K
+
 deficient conditions. AKT1 is localised to the plasma membrane and highly 

expressed in the root epidermis and cortical cells where it is involved in K
+
 uptake 

(Figure 5-1). Hirsch et al., (1998) reported a role of AKT1 in K
+
 uptake in Arabidopsis. 

AKT1 absorbs K
+
 in a range of external K

+
 concentrations (Golldack et al., 2003) and 

there is a large number of further reports about the role and characterization of AKT1 

channels in different plants for example, Maathuis and Sanders, 1995; Lagarde et al., 

1996; Hirsch et al., 1998; Spalding et al., 1999; Buschmann et al., 2000; Pilot et al., 

2003; Li et al., 2014. These studies on the regulation, activation and expression of 

AKT1 channels emphasize the importance of K
+
 uptake channels in plant K

+ 
nutrition. 

Besides AKT1, other K
+
 channels like TPKa and TPKb may also have a role in the 

uptake and distribution of K
+
 in different stress conditions. TPKa and TPKb are 

localised to the tonoplast of LV and SV respectively (Figure 5-1; Isayenkov et al., 

2011), and mainly involved in the K
+
 release from the vacuoles. Gobert et al., 2007 

showed a better growth for Arabidopsis under K
+
 deficient conditions in the AtTPK1 

overexpressing plants. Hamamoto et al., (2008) and Isayenkov and Maathuis, (2013) 

transformed E. coli strain LB2003 with NtTPK1 and AtTPK1 respectively, and found 

better growth in the transformed lines as compared with the strain lacking the TPK1 

transgene. They concluded that the better growth of the transgenic E. coli was caused by 

improved K
+
 uptake. We also observed a better K

+
 uptake for the OsTPKb 

overexpressing lines in the K
+
 depleted conditions. 

Efficient K
+
 uptake and distribution through AKT1 and TPK channels and other 

transporters may be important for growth of rice, especially in stress conditions. This 

may be due to direct effects of these transporters but there is also the possibility that 

their overexpression alters the expression and/or the activities of other channels and 
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carriers (Figure 5-1). For example, TPKs are involved in the release of K
+
 from the 

vacuole and may cause higher K
+
 concentration in the cytoplasm. The higher K

+
 in the 

cytoplasm may cause hyperpolarization of the membrane and increase the activities of 

AKT1 because AKT1 is hyperpolarization-activated. To test this idea, it will be useful 

to carry out membrane potential measurements in the root cells of the TPK 

overexpressing lines. Analysing the transcript abundance and activities of other 

transporters, for example HAK, SKOR, GORK and NSCCs, (Figure 5-1) may also help 

to understand how TPK overexpression leads to increased K
+
 uptake. Furthermore, loss 

of function mutations in TPKa and TPKb would be informative in this respect.  

 K
+
 channels improve translocation of K

+
 in rice 5.3

Better K
+
 uptake can improve K

+
 translocation to the shoot. Our data showed a higher 

K
+
 in the shoot tissues of the overexpressing lines of TPKa, TPKb and AKT1 and less 

K
+
 in akt1 knockout lines as compared with the wild type plants during K

+
-deficient and 

osmotic stress condition. The better growth of the overexpressing lines for these 

channels could have resulted from this differential distribution of K
+
 to the shoot. It has 

been reported (Gobert et al., 2007) that improved K
+
 distribution could improve growth 

and tolerance to abiotic stresses. There is no evidence that TPKs and AKT1 directly 

enhance K
+
 loading to the xylem but several possibilities could explain indirect effects. 

For example, AKT1 or TPK overexpression may enhance the expression of the SKOR 

channel (Figure 5-1), the principle system for loading K
+
 into the xylem, and therefore 

increase translocation of K
+
. Other K

+
 channels, for example NSCCs, may also be 

involved in the loading of K
+
 into the xylem. Future study should test this idea by 

measuring expression levels of SKOR and NSCC type channels in AKT1 and TPKs 

overexpressing lines (Figure 5-1).  

Increased shoot K
+
 may also derive from altered water flux to the leaves. We observed a 

higher transpiration rate in the AKT1, TPKa and TPKb overexpressing lines in zero K
+
 

and osmotic stress conditions. Moreover, the overexpressing lines contained more K
+
 in 

the root tissues as compared with the wild type plants under the same conditions. The 

comparatively higher transpiration rate and higher root K
+
 concentration in the 

overexpressing lines may both positively affect loading of K
+
 into the xylem.  
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The differential K
+
 concentrations in the xylem sap of the wild type, akt1 knockout and 

AKT1 overexpressing lines support the above idea. However, no differences were 

observed in the xylem K
+
 concentration of the TPKs transgenic lines and wild type 

plants under various conditions. To analyse the xylem sap in case of TPKs transgenic 

plants, it would be informative to expose the plants for a brief duration to zero K
+
 and 

osmotic stress conditions and analyse the K
+
 concentration in the xylem sap. 

 Stomatal movement and K
+
 channels 5.4

We observed a higher stomatal conductance in the overexpressing lines of AKT1 and 

TPKs. It was reported that AtTPK1 (Gobert et al., 2007) and AtAKT1 (Nieves-

Cordones et al., 2011) are expressed in the guard cells (Figure 5-1) and are involved in 

the stomatal conductance under varied external conditions. The higher stomatal 

conductance in the TPKa, TPKb and AKT1 overexpression lines may be because of a 

generally higher K
+
 concentration in shoot tissue. AKT1 might be loading more K

+
 into 

the guard cells while NHX antiporters (Venema et al., 2002; Rodriguez-Rosales et al., 

2008) may be involved in accumulating more K
+
 in the vacuoles. The overexpression of 

one gene may change the activity or the abundance of other genes, so it is possible that 

the AKT1 or TPK overexpression may be responsible for altered expression or activity 

of NHX antiporters. Higher K
+
 concentration in the vacuole is helpful for the turgidity 

of the guard cells and will keep stomata open, ultimately resulting in higher 

transpiration rate.  

 AKT1 is important under NH4
+
 toxicity 5.5

We observed that lack of AKT1 activity in the akt1 knockout lines caused less growth 

as compared with the wild type plants in the zero K
+
 conditions. Lower growth rates 

may be due to a lack of K
+
 but also because of NH4

+
 toxicity which occurs especially in 

K
+
-depleted conditions. Improved K

+
 availability and nutrition can rescue plants from 

NH4
+
 toxicity. NH4

+ 
causes toxicity through different ways as described in chapter 4. 

The HAK/KUP (Figure 5-1) transporters are sensitive, but AKT1 is insensitive to NH4
+
 

toxicity. Addition of K
+
 resulted in comparable growth between the wild type and akt1 

knockout plants. These results confirmed that the presence of K
+
 may be helpful for the 

alleviation of NH4
+ 

toxicity.  
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NH4Cl and (NH4)2SO4 are commonly used fertilizer for rice. These fertilizers can 

increase the productivity of rice considerably. However, they increase the concentration 

of NH4
+
 in the root environment and may cause toxicity. The effects may be more 

severe for rice as rice is grown in the paddy fields and NH4
+
 could be released in the 

form of ions which are potentially more damaging. Therefore, it is beneficial for rice to 

be supplied with extra K
+
 when external NH4

+
 is high. Our results confirm the 

preceding statement because when the medium was supplied with extra K
+
 the AKT1 

overexpressor lines showed better growth as compared with the wild type plants. 

Measurement of NH4
+ 

fluxes and analyses of the nitrogen content in the roots of the 

akt1 knockout, AKT1 overexpressor and wild type plants would help to further clarify 

the picture. 

 K
+
 channels are involved in Na

+
 uptake 5.6

Our data revealed that the akt1 knockout lines showed lower growth and less Na
+
 

concentration and AKT1 overexpressing lines showed better growth and higher Na
+
 

concentration as compared with the wild type plants in the zero K
+
 conditions. The 

differences in the growth of the knockout and overexpressing genotypes might be 

because of the differences in the turgor or because of disturbance in the cations ratio in 

these genotypes. At zero K
+
 conditions, K

+
 was replaced by equimolar concentration of 

Na
+
. Provision of turgor and charge balancing are among the important functions of K

+
 

but other cations can also perform these functions, especially in the absence of K
+
. Na

+
 

uptake from the environment may be important in such conditions. There are many 

reports (Amtmann and sanders, 1999; Blumwald et al., 2000; Buschmann et al., 2000;; 

Golldack et al., 2003; Maathuis, 2006; Obata et al., 2007; Wang et al., 2007; Horie et 

al., 2007) which suggested a positive role of Na
+
 and the involvement of AKT1 in Na

+
 

uptake under K
+
-deficient conditions. Our data are in agreement with the previous 

reports about the role of AKT1 channels in Na
+
 uptake and the positive role of Na

+
 in 

the absence of K
+
. 

In summary, we found a significant role of TPKa, TPKb and AKT1 channels during 

various abiotic stress conditions for physiological parameters like growth, K
+ 

uptake 

and translocation, control of stomatal conductance, water content, etc. Interestingly, we 

observed almost similar phenotypes for these cation channels although they are different 

from each other on the basis of structure, regulation and localization. However, these 
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three K
+
 channels impact on K

+
 uptake and distribution. It appears that their 

overexpression improves overall K
+
 nutrition of rice plants and therefore improves 

tolerance to abiotic stresses. 

 Proposed model of the role of TPKs and AKT1 in rice under 5.7

various external conditions 

Rice TPKa, TPKb and AKT1 are K
+
 channels and are localised to the tonoplast and 

plasma membrane respectively. TPKa and TPKb are localised to the tonoplast of LV 

and SV respectively (Figure 5-1) and are involved in the release of K
+
 from the vacuole 

to the cytoplasm. This role may be highly important during K
+
 deficient conditions to 

maintain the K
+
 concentration in the  cytoplasmic.  Drought may affect K

+
 uptake from 

the soil and may cause K
+
 deficiency in the cytoplasm. Efficient K

+
 release from the 

vacuoles during osmotic stress may help the plants to tolerate K
+
 deficiency by 

maintaining K
+
 concentration in the cytoplasm. The comparatively higher K

+
 

concentration may affect the K
+
 loading into the xylem through other systems (Figure 5-

1) and therefore may improve K
+
 distribuition to the shoot.  

AKT1 is localised to the plasma membrane (Figure 5-1) and it has been reported that 

these channels are involved in K
+
 uptake from the surrounding medium from micro to 

milli molar concentrations. The increased AKT1 activities may improve K
+
 nutrition for 

the plants especially in abiotic stress conditions where K
+
 uptake is negatively affected. 

AKT1 may also play a role in the Na
+
 uptake during K

+
 deficient conditions. TPKs and 

AKT1 are expressed in the guard cells (Figure 5-1) and there they may play a role in the 

K
+
 transport, and thus there are chances they may affect the stomatal movement 

especially is the osmotic stress conditions. 
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Figure 5-1-1: Overview of transport processes and proteins that are involved in K
+
 uptake, efflux 

and distribution  

At the external soil: root interface transport functions are shown for passive [AKT1 and CNGC (cyclic 

nucleotide gated channel)] and energised (KUP/HAK) K+ uptake and channel mediated K+ release (guard 

cell outward rectifying K+ channel; GORK); Xylem loading mainly happens through K+ selective 

(SKOR) and non-selective (NCC) cation channels though energised systems may also play a role; Phloem 

loading of K+ for recycling and/or sucrose loading may involve the AKT2 channel; K+ flux to the seed is 

phloem mediated but K+ is unloaded into the seed apoplast (a) at the junction between maternal (m) and 

filial (f) tissues; vacuolar K+ accumulation is primarily driven by H+-coupled antiporters such as NHX 

while vacuolar K+ release is either passive through TPK1 type channels or, in K+ starvation conditions, 

active through H+ coupled KUP/HAK transporters. 
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  Future Work 5.8

We observed a range of phenotypes for the TPKa and TPKb overexpressing plants in 

comparison to the wild type plants in various growth conditions. It would be a good 

strategy to use the knockout lines of TPKa and TPKb in comparison to the wild type 

under various growth conditions. It will provide us with a clearer picture about the role 

these TPK proteins under various conditions. 

We suggested that TPKs might be releasing more K
+
 from the vacuole to the cytoplasm 

in the overexpressing lines and therefore may change the membrane potential of the 

cells. The hyperpolarized membrane potential may activate AKT1 channels and so 

AKT1 may efficiently absorb more K
+
 from the surrounding medium. To confirm the 

effect of the TPK overexpression on the membrane potential, it would be useful to 

measure the membrane potential of the TPKs overexpressing plants in comparison to 

the wild type. 

Overexpression of TPKs and AKT1 may affect the internal K
+
 concentration and 

therefore may affect the expression of other transporters. Analysing the expression of 

transporter proteins like HAK, AKT1, SKOR, GORK and NCC may give us an idea 

how TPKs influence the uptake and distribution process of the plant. 

Drought and salinity reduce crops yield severely by affecting seed setting. We observed 

a better growth for the overexpressing lines of TPKs and AKT1 under drought 

conditions. It will be useful to test these genotypes for seed setting and measure the 

effects of overexpression on the grain number and weight and the nutritional value of 

the grains.  
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Abbreviations 

2,4-D:   2,4-Dichlorophenoxyacetic acid 

ABA:   Abscisic acid  

AKT:   Arabidopsis K
+
 transporter 

ALMT: Aluminium-activated malate transporter  

At:  Arabidopsis thaliana 

Bp:  Base pair 

CBL:  Calcineurin B-like protein 

cDNA:  Complementary DNA 

CIPK:  CBL-interacting protein kinase 

CNGC: Cyclic nucleotide gated channels 

Cryo-SEM:  Cryo-scanning electron microscopy 

DNA:  Deoxyribonucleic acid 

dNTP:  Deoxyribonucleotide triphosphates 

E.coli:  Escherichia coil 

EDTA:  Ethylene diamine tetra acetic acid 

EDX:  Energy Dispersive X-Ray Analysis 

GLR:  Glutamate like receptors 

GORK:   Guard cells outward rectifying K channels 

HKTs:   High-affinity K
+
 transporters 

KIRC:  K
+
 inward rectifying channels 

KUP/HAK/KT: K
+
 uptake permease/high-affinity K

+
/K

+
 transporters 

Lpr:  Hydraulic permeability 

LV:  Lytic vacuoles 

Mha  Million hectares 

NHX:   Na
+
/H

+
 exchanger or Na

+
/H

+
 antiporter 

NSCC:  Non -selective cation channels 

P:   Probability level 

PCR:  Polymerase chain reaction 

http://en.wikipedia.org/wiki/Abscisic_acid
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PEG:   Polyethylene glycol 

PP2C:  Protein phosphatase 2C 

PSV:  Protein storage vacuoles 

qRT-PCR: Quantitative reverse transcriptase PCR 

RGR:  Relative growth rate 

RNA:  Ribonucleic acid 

ROS:  Reactive oxygen species 

SKOR:  Stelar K
+
 outward rectifier channels 

SOD:  Superoxide dismutase 

SV:  Storage vacuoles 

T-DNA: Transferred DNA 

TPC:  Two-pore K
+
 channels 

TPK:  Tandem pore K
+
 channels  

WT:  Wild type 
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