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Abstract 

Defining bacterial species is still a debatable topic among bacteriologists. It has become 

clear that, periodic selection and recombination are two main drivers of bacterial 

species. 

Here, we are curious to study the diversity and structure of a local population. For 

which, we studied a population that was comprised of two symbiovars of                           

R. leguminosarum. The draft genomes of 72 isolates (36 viciae & 36 trifolii) from a 

square meter of soil were sequenced by Roche 454 sequencing and compared with the 

published genome of Rlv 3841. Chapter Two employs 305 core genes and genomic 

analysis to demonstrate the existence of five phenotypically indistinguishable (cryptic) 

genospecies in a local population. Most of the cryptic genospecies include both viciae 

and trifolii strains: the genospecies do not reflect the symbiovars. Chapter Three 

demonstrates that recombination plays a major role in shaping the chromosome of R. 

leguminosarum. Moreover, it demonstrates the preference of intra- genospecies 

recombination highlighting the occurrence of genetic isolation between genospecies that 

allows them to be represented as biological species. Chapter Four demonstrates the 

presence of core genes on different plasmids. The phylogenetic structure of Rlv 3841 

replicons resembles the structure of core genes phylogeny indicating lack of genes 

transfer between genospecies in each replicon. However, the phylogenetic networks 

suggest horizontal transfer of nod genes that allow species members to have different 

host specificity. Chapter Five displays the genetic diversity present between two major 

genospecies (B and C) of R. leguminosarum. 

Overall, our results provide direct evidence that core genes and genomic analysis such 

as ANI should be used to define bacterial species. Moreover, the host specific symbiotic 

genes are normal accessory genes that have no significant role in the demarcation of 

bacterial species. 
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Chapter 1.  Introduction 

 

 “Species are groups of actually or potentially interbreeding natural populations, which 

are reproductively isolated from other such groups” – Mayr, 1942: 120. 

This widely accepted species definition works well for eukaryotic organisms such as 

humans that exchange genetic material to reproduce, but does not define the species of 

asexual organisms such as bacteria. For the last thirty years, the standard concept for 

delineating a bacterial population into species is the phenotypic and genotypic similarity 

shared by members of the same species. This pragmatic “polyphasic” concept has been 

applied by many studies, but is not necessarily compatible with either of two major 

theoretical concepts: ecological and recombination. In the “ecological concept”, 

bacterial species consist of ecologically distinct populations driven by periodic selection 

(Atwood et al., 1951), whereas the cohesive force of recombination maintains species 

structure in the “recombination concept”, mirroring Mayr’s biological species concept. 

Although the recombination model is useful to define species in Helicobacter pylori 

(Falush et al., 2003), Neisseria (Hanage et al., 2005), Wolbachia (Ellegaard et al., 

2013), the ecological concept has attracted the attention of bacteriologists because 

sequence clusters display strong correlations with ecological species in, for example, 

recent studies of Agrobacterium tumefaciens (Lassalle et al., 2011) and Bacillus 

(Connor et al., 2010). 

Shapiro et al. (2012) demonstrated the occurrence of a selective sweep, with no 

recombination, in a recently diverged sympatric subpopulation of the bacterium Vibrio 

cyclotrophicus. Both ecological differentiation and genetic isolation (recombination 

barriers between species) has been reported for this recent speciation. Another 

interesting study of recent speciation (Cadillo-Quiroz et al., 2012) involves the 

sympatric population of the thermoacidophilic archaeon Sulpholobus islandicus, which 

has recently diverged into two incipient species that are maintained by ecological 

differentiation alone and lack interspecies genetic barriers.  
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Here, we propose that sequence clusters of sympatric isolates may have no relationship 

with historically defined ecological species. Also, recombination may play a significant 

role in the delineation of bacterial species that will accords with Mayr’s definition of 

species.   

The study begins with this introductory chapter that will introduce the distinctive 

features of bacterial genomes, gene transfer (homologous recombination and horizontal 

gene transfer), major species concepts, and Rhizobium leguminosarum as a model 

species. Subsequent chapters will include comprehensive analysis of coherent genomic 

clusters (genospecies) that are present in a local population. 

1.1. Bacterial genomes 

 

Fleischmann et al. (1995) sequenced the first bacterial genome (Haemophilus 

influenzae) and since then multiple bacterial genomes have been sequenced and 

observed. Modern developments in sequencing technologies and computational biology 

have greatly facilitated genome sequencing. Among the bacterial genomes sequenced so 

far, genome sizes range from 112 Kb for Nasuia deltocephalinicola (Bennett and 

Moran, 2013), an obligate bacterial symbiont that lives in phloem-feeding insects, to 

13.66 Mb for Ktedonobacter racemifer (Chang et al., 2011a), a heterotrophic soil 

bacterium. The genetic information in bacteria is carried on chromosomes, chromids, 

and plasmids.  

1.1.1. Chromosomes  

 

Unlike linear eukaryotic chromosomes, the typical bacterial chromosome is a circular 

replicon with no free ends that is not separated by a nuclear membrane. The bacterial 

chromosome harbors a set of essential (core) genes encoding essential metabolic and 

informational functions. The majority of bacterial genes is protein-coding and 

syntenically conserved, but might be located at different positions or replicons (Bentley 

and Parkhill, 2004). 
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The genome size and GC (percentage of guanine-cytosine) content in bacteria are 

correlated (Bentley and Parkhill, 2004; Nishida, 2012b; Wu et al., 2012), as high GC 

content tends to be associated with larger genomes and low GC content (AT-richness) 

tends to be associated with smaller genomes (Bentley and Parkhill, 2004; Nishida, 

2012a). There are two possible explanations for this hypothesis. First, the fact that 

synthesis of GTP and CTP nucleotides requires more energy than ATP and UTP, which 

could drive bacteria with small genome to shift toward AT-richness under limited 

resources (Rocha and Danchin, 2002). Second, absence of DNA repair genes in small 

genomes makes them more AT-rich (Moran, 2002). However, we must note that results 

reported in (Bentley and Parkhill, 2004; Nishida, 2012a) is a correlation found in most, 

but not all, bacteria such as Candidatus Hodgkinia cicadicola (144kb; 58.4% GC; 

McCutcheon et al., 2009) and Candidatus Tremblaya princeps (139kb; 58.8%; Lopez-

Madrigal et al., 2011) have GC-rich genome. The GC content in the chromosome is 

somewhat higher than that of the accompanying replicons. In order to identify the initial 

and end points of a chromosome, a measure known as a GC ((G-C)/(G+C)) skew is 

implemented (Bentley and Parkhill, 2004). A positive value of GC skew reflects the 

leading strand, whereas a negative value reflects lagging strands, so these values switch 

at the site of an origin or terminus of replication.  

Generally, a bacterial genome includes other replicons (chromids and plasmids) in 

addition to the chromosome, but some bacteria carry only a chromosome, for example, 

Streptococcus pneumoniae (Tettelin et al., 2001) and Porphyromonas gingivalis 

(Nelson et al., 2003). 

1.1.2. Chromids  

 

By performing systematic analysis, Harrison et al. (2010) suggested a convenient name 

for replicons that were previously known as ‘megaplasmids’ or ‘secondary 

chromosomes’. The authors used three main criteria to define chromids and 

discriminate them from the main chromosome and plasmids: A. Chromids should be 

based on plasmid type replication and maintenance systems. B. Nucleotide composition 

of chromids should be similar to the main chromosome. C. Chromids should carry a set 

of essential (core) genes that are conserved in the chromosome of other species. The 
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first chromid was observed in the genome of alphaproteobacterium Rhodobacter 

sphaeroides 2.4.1 (Suwanto and Kaplan, 1989a, Suwanto and Kaplan, 1989b), but 

described as a “secondary chromosome”. Since then, many genomes have been shown 

to have these characteristics. The size and composition of chromids varies in different 

bacteria. At the time of writing, the maximum number of chromids belongs to the 

Azospirillum lipoferum genome that harbors five chromids (Wisniewski-Dye et al., 

2011). Another interesting property of chromids is the presence of genes that are 

conserved in a particular genus, for example, Harrison et al. (2010) suggested that the 

chromids of all sequenced Burkholderia genomes have a set of conserved genes that are 

not conserved in the chromids of other bacteria.  

1.1.3. Plasmids  

 

Plasmids are the smallest functional replicons that can replicate independently from the 

primary chromosome (Frost et al., 2005). Generally, plasmids have low GC content and 

carry non-conserved ‘accessory’ genes that are critical ecological determinants (Prosser 

et al., 2007) and provide genomic flexibility to acquire advantageous properties such as 

virulence and multi-drug resistance. Due to HGT, bacterial strains often show variation 

in number and size of plasmid. However, some conserved genes, known as ‘backbone 

genes’, are also located in these replicons such as the replication system (repABC), 

which is ubiquitous in all plasmid possessing alpha-proteobacteria (Cevallos et al., 

2008).  

1.2. Gene exchange 

 

The most common form of reproduction in bacteria is binary fission, but bacterial 

genomes can also exchange genetic material in ways that may play a role analogous to 

that of sexual reproduction in eukaryotes. Unlike eukaryotes, bacterial genetic exchange 

is unidirectional from donor to recipient cell. There are two forms of gene exchange: 

1. Homologous recombination: This primarily occurs between strains of the same 

species that possess high nucleotide identity (Redfield, 2001). Instead of the 
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whole chromosome, a fragment of an advantageous part or gene is migrated 

from donor to recipient. Because this process involves transfer and integration of 

homologous DNA, core genes (shared by all isolates) are more affected by 

homologous recombination than accessory (variable) genes. Homologous 

recombination can play a crucial role in adaptation of some bacteria, for 

example, Streptococcus pneumoniae (Donati et al., 2010) and Helicobacter 

pylori (Falush et al., 2003).  

2. Horizontal Gene Transfer (HGT): HGT is a process by which a bacterium can 

acquire non-homologous genetic material (DNA) from the same or different 

species and is often known as lateral gene transfer (Goldenfeld and Woese, 

2007). This mechanism is the primary method that helps the host to acquire 

beneficial genes that encode specific properties such as antibiotic resistance or 

virulence (Furuya and Lowy, 2006) and is a key factor in bacterial evolution. 

Because this process involves transfer of nonhomologous DNA, accessory genes 

(present in some isolates) are more affected by HGT than core (conserved) 

genes that are generally maintained by homologous recombination. Analysis of 

different species (Narra and Ochman, 2006) has revealed that there is no clear 

relationship between the degree of HGT and homologous recombination by 

which genes within a species can be re-assorted.  Moreover, the genetic diversity 

introduced by HGT is different from the one produced by point mutation that 

involves alteration of existing genes. Acquisition of novel genetic material by 

HGT results in exploration of a new ecological niche. In contrast, accumulation 

of point mutations results in the modification of existing genes that may lead to 

niche expansion (Lawrence, 1999; Ochman et al., 2000). For example, Lawrence 

and Ochman (1998) provided evidence that phenotypic differentiation of two 

sister species, Escherichia coli and Salmonella enterica, can be explained by 

HGT, and not by point mutation. However, models of amelioration (Lawrence 

and Ochman, 1997) estimated that similar amount of variation were introduced 

through HGT and through point mutation. 
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These two key elements (homologous recombination and HGT) of gene transfer can be 

achieved by three different mechanisms: transformation, transduction, and conjugation.  

Transformation (Figure 1.1a) allows the recipient cell to acquire naked DNA fragments 

and its genetic traits directly from the environment. The main source of naked DNA is 

dead cells. Integrated DNA can be used for genetic diversity (new metabolic function, 

traits such as virulence, antibiotic resistance), DNA repair or as a source of energy 

(Chen and Dubnau, 2004). The bacteria following the transformation procedure are 

considered naturally competent bacteria, for example, the Haemophilus influenzae and 

Neisseria species.   

Transduction (Figure 1.1b) involves the movement of DNA fragments from a donor 

bacterium to a recipient bacterium with the use of bacterial virus or bacteriophage (Frost 

et al., 2005). It occurs when the bacteriophage contains fragments of bacterial DNA 

accidentally incorporated into its own DNA. Once this phage DNA is transferred into 

another bacterium, foreign DNA fragments integrate with the recipient bacterial 

genome.  Both transformation and transduction require integration of DNA, hence HGT 

through these processes is limited to isolates of the same species. 

Conjugation (Figure 1.1c) is the only process that requires cell-to-cell contact (Frost et 

al., 2005). In this process, a living donor bacterium transfers the plasmid or transposons 

(jumping genes) into the living recipient bacterium through a tube like structure. The 

efficiency of transferring plasmid between different species makes conjugation the 

primary reason for HGT in distantly related species. Conjugation can only be achieved 

by those plasmids that harbor conjugative or transfer (tra) genes responsible for a stable 

mating pair with the recipient genome and oriT (origin of transfer) sequences that 

initiate the transfer. These plasmids are known as conjugative plasmids and are self-

transmissible, but plasmids that lack tra genes and consist of oriT sequences are known 

as mobilizable plasmids and are transferred with the help of self-transmissible 

conjugative plasmids. 
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Figure 1.1 | Mechanisms of gene transfer between bacteria. (a) Transformation is the direct uptake of free 

DNA fragments. (b) Transduction involves fragment transfer through bacteriophage. (c) Conjugation: 

gene transfer by physical contact (Furuya and Lowy, 2006).  
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1.3. Bacterial species 
 

Here, we outline some of the major concepts of bacterial species delineation. 

1.3.1. The Polyphasic concept 

 

For decades, bacteriologists have suggested a combination of phenotypic, genotypic and 

phylogenetic information, also known as the polyphasic taxonomy approach (Colwell, 

1970; Stackebrandt et al., 2002; Vandamme et al., 1996), to discriminate bacterial 

species. According to this enhanced version of the numerical taxonomy approach 

(Sneath and Sokal, 1973), species members must have common phenotypic properties 

(morphological, biochemical), more than 70% DNA-DNA hybridization (DDH) 

(Wayne et al., 1987; Grimont, 1988) and similarity (>97%) in 16S ribosomal RNA 

(rRNA) sequences (Olsen and Woese, 1993; Stackebrandt and Goebel, 1994). Although 

DDH is a time-consuming process that is not suitable for unculturable bacteria and has 

an empirical cutoff (>70%), bacteriologists consider it the gold standard for delineating 

microbial species. Furthermore, the results of studies of new multilocus or whole 

genome data correspond with DDH. 

Cost-effective sequencing and the conserved nature of 16S rRNA sequences 

(Stackebrandt and Goebel, 1994) facilitate demarcating bacterial species in culturable as 

well as unculturable bacteria. However, strains with more than 97% 16S rRNA 

sequences identity must satisfy the 70% DDH criterion to get allocation of the same 

species (Gevers et al., 2005). The major drawback of 16S rRNA sequences is the lack of 

resolution in large populations of closely related strains (Gevers et al., 2005; Hanage et 

al., 2006). Alternatively, Konstantinidis and Tiedje (2005) proposed a new method of 

calculating average nucleotide identity (ANI), which is more robust than 16S rRNA 

sequences identity. ANI produces genetic coherent groups by performing pairwise 

genome comparison of all shared orthologs between two strains. A threshold of 95-96% 

ANI (Auch et al., 2010; Goris et al., 2007; Konstantinidis and Tiedje, 2005; Richter and 

Rossello-Mora, 2009) corresponds to the classic threshold of 70% DDH. 
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1.3.2. Role of the multilocus sequencing approach  

 

Any single bacterial gene, including the 16S rRNA gene, is subject to recombination 

(Boucher et al., 2004; Gogarten et al., 2002; Hanage et al., 2006). Thus, the multiple 

genes approach is a perfect alternative for 16S rRNA genes because it involves slowly-

evolving housekeeping genes (not slower than 16S rRNA genes) or loci and 

concatenation of multiple housekeeping genes buffers the effects of recombination. 

Based on this hypothesis, Maiden et al. (1998) proposed multilocus sequence typing 

(MLST) that categorize the bacterial strains at the infraspecific level based on the 

pairwise allelic mismatches of housekeeping genes (usually 7). To classify the strains of 

similiar species, MLST was modified to multilocus sequence analysis (MLSA; Gevers 

et al., 2005). This extended version employs phylogenetic procedures based on the 

nucleotide sequences of multiple housekeeping genes instead of the number of allelic 

mismatches.  

Overall, a simple MLSA involves the construction of a phylogenetic tree based on 

concatenated sequences of housekeeping or core genes that must be able to delineate the 

species in a genus. The robust method of MLSA has been supported by many species 

studies (Achtman and Wagner, 2008; Bishop et al., 2009). 

Surprisingly, Hanage et al. (2005) observed ‘fuzzy species’ in the MLSA of genus 

Neisseria (Figure 1.2). These fuzzy species were composed of strains from different 

predefined Neisseria species. However, the remaining three predefined Neisseria 

species were fully resolved and consisted of strains of related species. Moreover, 

phylogenetic trees based on a single core gene were unable to resolve any of the five 

species. Afterwards, clusters with strains of different traditionally named species were 

also observed in many other bacteria such as Bacillus cereus (Priest et al., 2004) and 

Helicobacter pylori (Linz et al., 2007).  
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Figure 1.2 | Two fuzzy species (A and B) in Neisseria. Bayesian tree based on seven housekeeping genes 

showing three clusters of predefined species clusters (N.meningitidis: red, N.lactamica: blue and 

N.gonorrhoeae: green) and two distinct clusters (A and B) composed of different species strains in 

Neisseria genus (Bennett et al., 2007; Hanage et al., 2005).  
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1.3.3. Core Genome Hypothesis (CGH) 

 

Lan and Reeves (1996) proposed a concept by refining the biological species concept 

for bacteria suggested by Dykhuizen and Green (1991). According to CGH, the 

bacterial genome is composed of two different sets of genes: core genes and accessory 

genes.  

Core genes:  These are housekeeping genes that encode essential functions and each 

member of a species possesses these genes. They are shared by the members of the 

same species via recombination and rarely transfer between species. Core gene 

divergence coevolves with species divergence and hinders the recombination between 

species. The characteristic of preferring intraspecific recombination in core genes is 

considered analogous to Mayr’s definition, thus, core genes could be used as powerful 

phylogenetic markers to demarcate bacterial species.  

Accessory genes: Apart from the core genes, another set of genes in the bacterial 

genome is accessory (non-essential) genes that may or may not be present in a member 

of a species. They provide genomic plasticity to the genome to survive in different 

ecological niches or enhance bacterial properties such as virulence or toxicity. They are 

chiefly driven by HGT within or between different species. Accessory genes have lower 

GC content than core genes. The prime locations of these genes are genomic islands or 

plasmids. Comparison of phylogenies of accessory genes with core genes phylogenies 

can lead to the identification of recombination via conflicting phylogenies. For example, 

the accessory genome of two non inter-recombining populations of V. cyclotrophicus 

was shaped by HGT (Shapiro et al., 2012), as the phylogeny of the accessory genome 

contradicted the species phylogeny. 

Using massive sequencing and bioinformatics tools, bacteriologists have applied the 

idea of core genes to define species in different bacteria. Recently, Chan et al. (2012) 

delineated the species of genus Acinetobacter using a phylogenetic tree based on 127 

core genes and ANI analysis. The results reflected the traditional classification. 

However, highly conserved 16s RNA gene sequences were not able to resolve the 

accepted species of this genus. Recently, another tool, specI (Mende et al., 2013), was 
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published to delineate bacterial species based on forty universal genes (Ciccarelli et al., 

2006 and Sorek et al., 2007) that are conserved in all three domains. We observed that 

these universal genes are included in the 305 core genes conserved in chromid- 

possessing bacteria that were identified by Harrison et al. (2010) and are used in this 

study. 

CGH was illustrated in a sympatric population of Campylobacter (Lefebure et al., 2010) 

that consisted of strains from two closely related species of this bacterium. The core 

genome of both species was shaped by recombination, but was almost free from 

interspecies recombination. However, Sheppard et al. (2008) showed the evidences of 

gene exchange between these two closely related species that lead to the process of 

‘despeciation’.  

1.3.4. Revolution in the Recombination model 

 

For a long time, the role of recombination (Dykhuizen and Green, 1991; Lan and 

Reeves, 1996;  Majewski et al., 2000; Roberts and Cohan, 1993; Zawadzki et al., 1995) 

was suggested for defining bacterial species. However, Fraser et al. (2007) proposed the 

most promising and robust measures that displayed a relationship between rate of 

recombination and genetic diversity in which the population was considered free from 

ecological or any other barriers. Robust analyses suggested the random occurrence of 

recombination throughout the genome and categorized species into two categories: 

‘clonal’ and ‘sexual’ species. Clonal species are the unstable result of a lower 

recombination rate than mutation rate in a population. On the other hand, sexual species 

are the outcome of an equal or higher recombination rate than mutation rate in a 

population. Closely related sexual species are characterized by high recombination rate 

within members of the same species, compared to between those species. Two years 

after creating this model, the same authors (Fraser et al., 2009) suggested that 

mechanisms such as geographical or ecological differentiation are responsible for 

maintaining the reduced rate of recombination between two ‘sexual’ species. Thus, the 

combined approach of ‘sexual’ species and ecological properties defining these species 

should be used to define populations. This model might shed some light on the fuzzy 

species of recombinogenic Neisseria (Hanage et al., 2005) or other genera. 
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Since then, many population studies have identified biological species using this 

concept. For example, Keymer and Boehm (2011) found recombination as a unifying 

force in the population of Vibrio cholerae, which are primarily known to be clonal 

species. Moreover, some specific genetic tools have been designed to calculate the 

recombination rate between recipient and donor. Some popular tools like ClonalFrame 

(Didelot and Falush, 2007), ClonalOrigin (Didelot et al., 2010) and Structure (Pritchard 

et al., 2000) have been used to reveal the dominating nature of interspecies 

recombination in a comparative analysis (Doroghazi and Buckley, 2010) of 

recombination rates (intra- and interspecies) between several pre-defined ecospecies of 

Streptomyces. Similarly, Didelot et al. (2011) revealed genetic isolation between five 

incipient species present in Salmonella enterica subspecies that are traditionally 

ecologically distinct.  

Further, comparative analyses including maximum likelihood, ClonalFrame and 

Structure have been used to identify bacterial ‘introgression’ - gene transfer between 

identified species that can occur between closely or distantly related species. For 

example, Vernikos et al. (2007) utilized whole genome phylogenetic analysis to identify 

horizontally transferred genes in the Salmonella lineage that were acquired from 

prophages, but these genes were absent in the sister lineage Escherichia coli and their 

common ancestor. Similarly, Sheppard et al. (2013) identified incidences of 

introgression between the closely related species Campylobacter coli and 

Campylobacter jejuni. Initially to investigate the introgressed genes, unusual 

characteristics of base compositions including GC content, and synonymous codon 

usage were used, since recently acquired genetic material may reflect the base 

compositions of the donor genome while older insertions may ameliorate with time to 

reflect the base compositions of the recipient genome (Lawrence and Ochman, 1997). In 

contrast to the comparative analyses, gene flow based on the base composition approach 

may miss the real number of HGT events, since new insertions from closely related 

species may not have unusual base compositions or ancient insertions may completely 

resembles the recipient genomes due to the amelioration process (Koski et al., 2001). 
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1.3.5. The Ecotype concept:  

 

Another theoretical species concept (Cohan and Perry, 2007; Cohan, 2002; Cohan, 

2001) is based on ecological and evolutionary properties. According to this, bacterial 

species can be categorized into multiple ecotypes. An ecotype is a distinct population 

within the bacterium that shares the same ecological niche. Rather than rare 

recombination, a cohesive force of periodic selection maintains the genetic similarity 

between members of the same ecotype. This cohesive force, first described by Atwood 

et al. (1951) and later supported by extensive experimental studies (Koch, 1974; Levin, 

1981), occurs when a rare beneficial mutation or gene arises in a population of asexual 

organisms. Selection on this gene leads to replacement of the whole population by the 

clonal descendants of this favored mutant. Even if there is rare recombination, exchange 

of the adaptive mutant between two populations of different genetic background will be 

restricted, and periodic selection will purge the genetic diversity within the population. 

In addition to the beneficial mutation, the entire genome of the mutant cell will be 

driven through the population by genetic hitchhiking. At some point, in the future, the 

population of the favored mutant will be replaced by another advanced adaptive mutant, 

and so on.  

In the ecotype model (Cohan, 2005; Cohan, 2002), different ecotypes evolve 

independently by their own private periodic selection events and do not hamper the 

evolution of each other. These distinct properties make ecotypes analogous to the 

eukaryotic species. Unlike eukaryotic species, the recombination force between 

ecotypes is inadequate for preventing their ecological divergence. Therefore, a bacterial 

species is more like a genus that involves multiple ecotypes. 

Different names have been given to ecotypes by bacteriologists based on their 

ecological properties, for example, biovars (biochemical variants) and serovars 

(antigenic distinct population). In phylogenetic analysis, the distinct monophyletic 

groups represent the ecotypes (Cohan, 2005; Ward et al., 2008) and these clusters have 

been widely used to identify the unknown ecotypes present in a particular species or a 

relative ecotype of a particular strain. For example, Haley et al. (2010) classified two 

novel ecospecies of the Vibrio genus that were misclassified as two strains of V. 
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cholerae. These two novel species are the core suppliers of genomic islands, including 

virulence, to the other pathogenic Vibrio species. Similarly, Lassalle et al. (2011) 

observed ecospecies in Agrobacterium tumefaciens species complex using DNA 

microarray technique. 

Surprisingly, monophyletic groups for different ecospecies were not observed in the 

whole genome sequences of populations (Zwick et al., 2012) of predefined species of 

Bacillus cereus sensu lato species. These populations were clustered into several clades 

composed of strains of different species, which were maintained by low inter- and high 

intra-species recombination.  

1.3.6. Pangenome 

 

Tettelin et al. (2005) suggested the concept of the ‘Pan-genome’ during the comparison 

of 8 strains of Streptococcus agalactiae. According to them, bacterial pan-genomes can 

be divided into three sections: A. Core genes that are ubiquitous among all strains of a 

species. B. Dispensable genes that are shared by a subset of species isolates. C. Strain-

specific genes that are carried by a single strain only. Pan-genomic differences highlight 

the lifestyle of the organism and can be used to classify species in two categories: open 

and closed pan-genomes. An open pan-genome is characterized by the increase in 

dispensable or strain specific genes with the number of new sequenced strains and is 

primarily observed in the bacteria adapted to multiple niches or frequent gene 

exchangers like Propionibacterium acnes (Tomida et al., 2013), Streptococcus 

agalactiae (Tettelin et al., 2005), Streptococcus pneumoniae (Donati et al., 2010), and 

Haemophilus influenzae (Hogg et al., 2007). On the other hand, species like Bacillus 

anthracis (Medini et al., 2005), Campylobacter coli and C. jejuni (Lefebure et al., 2010) 

with restricted niche and genetic transfer have closed pan-genomes in which genome 

size will remain constant after the introduction of new strain.  
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1.4. Rhizobia and their taxonomy 
 

Diazotrophs are bacteria that have a distinct property of fixing atmospheric nitrogen. 

They are the biological producers of ammonia products from nitrogen and can be 

classified into two main categories: free-living and symbiotic. The major contributors to 

the terrestrial nitrogen cycle (Wagner, 2012) are rhizobia, which are symbiotic 

diazotrophs that form root nodules on leguminous plants like peas, clovers, and beans 

and exchange ammonia for energy products with legumes. This legume-rhizobium 

symbiosis is characterized by a high degree of host specificity. 

From the point of view of taxonomy (Figure 1.3), most rhizobia are in the five prime 

genera (Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and 

Bradyrhizobium) of the alpha-proteobacteria group (Masson-Boivin et al., 2009). 

Initially, all legume-symbionts were included in the genus Rhizobium, but several 

taxonomic studies have revealed the presence of different genera. For example, 

Bradyrhizobium, comprising slow growing species, was the second genus classified by 

Jordan (1982).  

 

 

 

 

 

 

 

Figure 1.3 | Distribution of selected rhizobia (bold font) in different classes of proteobacteria (α and β 

classes) in 16S rDNA sequence phylogeny (Masson-Boivin et al., 2009). 
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1.4.1. Symbiovars  

 

Based on legume (host) specific genes, rhizobial species are classified into different 

symbiovars (Rogel et al., 2011), which were previously known as biovars.  Symbiovars 

of a rhizobium species are distinct populations with the same symbiotic properties that 

differ from other populations. Because legume specific genes are capable of migrating 

from one species to another species or genus, the same symbiovars with diverged 

homologous legume-specific genes may exist in multiple species. Generally, 

symbiovars are characterized by rhizobia in the alpha-proteobacteria group.  Possession 

of a different numbers of symbiovars by a species reflects its adaptive nature in 

different niches (nodules), for example, R. leguminosarum has three symbiovars: viciae 

(nodulating vetches, peas, and lentils), trifolii (nodulating clover), and phaseoli 

(nodulating common bean), whereas its close relative, R. etli, with two symbiovars, 

interact with the common bean (shared symbiovar phaseoli of R. leguminosarum) and 

with Mimosa affinis (symbiovar mimosae). 

1.4.2. R. leguminosarum species complex 

 

The type species of the genus Rhizobium is R. leguminosarum and the type strain of this 

species (USDA 2370
T
) belongs to symbiovar viciae. Species studies based on 

Rhizobium (Ramirez-Bahena et al., 2008; Tian et al., 2008) have suggested the presence 

of a R. leguminosarum species complex composed of R. leguminosarum and its close 

relatives R. etli, R. pisi, R. fabae and R. phaseoli. The complete publicly available 

sequenced genomes in this complex are Rhizobium leguminosarum symbiovar viciae 

(Rlv) 3841 (Young et al., 2006), R. leguminosarum symbiovar trifolii (WSM1325: 

Reeve et al., 2010a and WSM2304: Reeve et al., 2010b), R. etli (CFN42
T
: Gonzalez et 

al., 2006) and R. elti CIAT652 (Gonzalez et al., 2010), which is now classified as R. 

phaseoli (Lopez-Guerrero et al., 2012). 
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1.4.3. Nodulation (nod) genes 

 

Among legume-specific elements, nodulation factors (lipochito-oligosaccharides) and 

related genes (nod genes) initiate the formation of nodules (Spaink et al., 1991). The 

genomic structure of nod genes explains the property of host specificity in symbiovars 

of rhizobia (Relic et al., 1994; Roche et al., 1996; Spaink, 1994; van Brussel et al., 

1990). Here, we discuss the genomic structure of nod genes in R. leguminosarum, 

which can be divided into three categories: (A) A regulatory gene, nodD, which 

interacts with flavonoids excreted by plants and activates the other nod genes. (B) The 

common nod operon (nodABCIJ), which is shared by all rhizobia. The nodABC genes 

are involved in the biosynthesis of nodulation factor. The nodIJ genes (Spaink et al., 

1995) have a role in secretion system of the nodulation factor. (C) The host specific 

genes (nodFELMNTO) are major determinants of legume specificity, for example, nodE 

gene (Bloemberg et al., 1995) play a dominant role in determining the host range of 

symbiovars trifolii and viciae. In addition, other specific nod genes have also been 

observed, such as the nodX gene that mediates an O-acetylation of the nodulation factor 

(Davis et al., 1988; Firmin et al., 1993) and is generally found in symbiovar trifolii 

strains, but not in viciae strains except Rlv TOM (Davis et al., 1988).  

Generally, symbiosis-associated genes involving nod genes are located on plasmids or 

within symbiosis islands (Bradyrhizobium) reflecting their ability to travel from one 

genus to another by HGT. Some studies have demonstrated the evolution of nod genes 

driven by homologous recombination or HGT (Bailly et al., 2007; Moulin et al., 2004). 

However, nod genes are not always necessary for nodulation, for example, Giraud et al. 

(2007) observed a symbiotic relationship in photosynthetic Bradyrhizobium strains that 

lack nod genes. 
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1.5. Aims and objectives 
 

The main objective of this thesis is to investigate the nature of bacterial species in a 

closely related population of R. leguminosarum using robust bioinformatics tools. 

Because R. leguminosarum symbiovar trifolii and viciae are more closely related to 

each other than to the remaining symbiovar phaseoli, display extreme host 

specialization (Jordan, 1984; Rogel et al., 2011; Young, 1996) and frequently occur 

together, they provide an ideal pair for understanding the relationship between the 

genetics and ecology of the bacterial species. The main objectives of this study are: 

Chapter 2: Phylogenomic analysis reveals cryptic genospecies in a local population of 

Rhizobium leguminosarum. 

 Determine the genetic diversity present in the population of R. leguminosarum 

(symbiovars viciae and trifolii) using core genes phylogeny. 

 Investigate the location of R. leguminosarum population in the genus Rhizobium. 

 Determine the genospecies of R. leguminosarum and compare them with 

ecotypes. 

 Investigate the cosmopolitan nature of localized genospecies. 

Chapter 3: Recombination and population structure of cryptic genospecies of              

R. leguminosarum. 

 Determine the phylogeny of 100 core genes that are represented in our data for 

all strains. 

 Investigate the role of recombination in the evolution of core genes. 

 Investigate the role of genetic isolation that maintains the structure of five 

genospecies. 

Chapter 4: Dominating influence of five genospecies on the composition and 

phylogeny of the accessory genome of R. leguminosarum. 

 Investigate the distribution of genes of reference genome in five genospecies. 
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 Investigate the consistency of reference-based chromosome, chromids and 

plasmid phylogenies. 

 Investigate the phylogenetic structure based on nod (host specific) genes. 

 Determine the population specific genes that are absent in reference genome.  

Chapter 5: Comparative genomics of two major genospecies of R. leguminosarum.  

 Investigate the genomic structure of genospecies C (the biggest cluster) based on 

a candidate strain. 

 Determine the genomic differences and similarities between genospecies C and 

reference related genospecies B.   
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Chapter 2.  Phylogenomic analysis reveals 
cryptic genospecies in a local population of 
Rhizobium leguminosarum. 

 

 

 

2.1 Abstract 
  

Rhizobium leguminosarum is a nitrogen-fixing bacterium that lives in soil and in the 

root nodules of leguminous plants. Here, we analyzed 72 strains of R. leguminosarum 

(36 of symbiovar viciae and 36 of symbiovar trifolii) using the fully sequenced genome 

of strain 3841 as reference. Phylogenetic analysis based on 305 core genes divided this 

population into five discrete clusters and each cluster is characterized by the co-

existence of symbiovars. Average Nucleotide Identity (ANI) analysis, a pairwise 

genome comparative analysis, indicates that these five phylogenetic clusters are 

sufficiently diverged to be regarded as species (genospecies). This chapter presents 

comparative analysis of genospecies (based on core genes) and ecotypes (based on 

ecological niche) in which ecotypes are not reflected by genospecies. Moreover, these 

genospecies were not confined to their isolated site (York, UK).  
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2.2 Introduction 
 

The co-speciation between symbiotic bacteria and their host is a historical separation 

that provides a physical barrier to gene flow between bacteria associated with different 

hosts (Funk et al., 2000). This physical barrier can be a major ecological adaptation with 

no other ecologically related property that allows host specific bacteria to diverge into 

discrete clusters and corresponds with ecotypes (Cohan, 2006; Normand et al., 1996; 

Smith et al., 2006). Similarly, symbiovars should diverge into discrete clusters because 

they definitely have important differences in at least one aspect of their niche (host-

specificity), and members of a symbiovar will meet each other on their host, and hence 

more often than they will meet other symbiovars.  

In this study, we investigated phylogenetic diversity in a local population of R. 

leguminosarum strains by using a reference genome, that of strain 3841. This 

population was isolated from a square metre near Wentworth College at the University 

of York, UK in 2007 by a former postdoc, Xavier Bailly. It includes 36 strains of 

symbiovar trifolii (represented as TRX_n, n is a strain number) isolated from Trifolium 

repens and 36 strains of symbiovar viciae (VSX_n) isolated from Vicia sativa. Draft 

genomes of this population were obtained using 454 sequencing.  

The seventy-two R. leguminosarum strains shared their location with a population of 

Sinorhizobium medicae strains. In a previous publication, we compared draft genomes 

of twelve strains from this population (MLX_1-MLX_12) with a fully sequenced 

genome of S. medicae WSM 419 (Bailly et al., 2011). Phylogenetic analysis of the 

chromosome (Figure 2.1) resulted in star-like phylogenies, indicating lower sequence 

divergence on the chromosome than other replicons.    
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Figure 2.1 | Chromosomal network showing divergence among S. medicae strains (MLX_1-MLX_12) 

using reference genome of WSM 419 (Taken from Bailly et al., 2011) 

 

Rhizobium leguminosarum symbiovar viciae (Rlv) 3841 that is taken as a reference 

genome in this study was isolated from a nodule on a pea (Pisum sativum) in Norfolk, 

England and fully sequenced in 2006 (Young et al., 2006). Rlv 3841 has a genome of 

7.75 Mb (Figure 2.2) that is distributed into one circular chromosome (5.05 Mb) and six 

circular plasmids (pRL12-pRL7). Like other bacteria, its genome has two components: 

a conserved ‘core’ genome and variable accessory genome.  Although most of the 

essential genes are present on the chromosome, plasmids have most of the functional 

genes such as the symbiosis genes on pRL10 only, ABC transporters on each plasmid, 

cell division proteins, etc. Harrison et al. (2010) suggested that plasmids pRL12 and 

pRL11 should be considered as two chromids of Rlv 3841. They also provided a list of 

305 genes that are conserved in all chromid-possessing bacteria, and this set of genes is 

used in the present study. 
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Figure 2.2 | Genomic structure of Rlv 3841: one chromosome and six plasmids (Taken from Young et al., 

2006) 
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A taxonomic revision  (Ramirez-Bahena et al., 2008) based on DNA-DNA 

hybridization experiments, phenotypic characteristics and phylogenetic analysis 

suggested true type strains of R. leguminosarum (USDA 2370
T
), R. pisi (DSM 30132

T
) 

and R. phaseoli (ATCC 14482
T
). USDA 2370

T
 and DSM 30132

T
 were isolated from the 

same host: Pisum sativum. ATCC 14482
T
 was isolated from Phaseolus vulgaris 

nodules. Tian et al. (2008) defined R. fabae CCBAU 33202
T
 as the type strain of R. 

fabae. 

For the rapid and accurate delineation of bacterial species, traditional methods (Gevers 

et al., 2005) such as DNA-DNA hybridization experiments (time-consuming and 

expensive), 16S rRNA sequences (not reliable for closely related strains) and MLST 

(based on seven core genes) are currently being replaced by the high resolution 

phylogenetic analysis based on several core genes and robust measures of Average 

Nucleotide Identity (Chan et al., 2012). ANI (Goris et al., 2007; Konstantinidis and 

Tiedje, 2005; Richter and Rossello-Mora, 2009) calculates the genomic similarity by 

performing pairwise comparison of all shared genes between two genomes, hence it is 

limited to the sequenced genomes. 

Apart from ecological specialization, geographical isolation is another mechanism by 

which bacterial species can be organized into dinstinct clusters. Whitaker (2006) 

discussed several studies that suggested the occurrence of geographical isolation in both 

local and global populations, while a pattern of ecological isolation was predominant in 

local populations. Moreover, some bacterial species are free from geographical barriers; 

for example, Linz et al. (2007) observed two distinct African ancestral populations of H. 

pylori. In R. leguminosarum, a few Chinese strains were clustered (Tian et al., 2010) 

with Western strains in the phylogenetic and Structure analysis based on three 

chromosomal housekeeping genes, indicating lack of geographical barriers. 
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2.2.1 Objectives 
 

The main objectives of this chapter are: 

 

A. De novo assembly of all unpublished Rhizobium genomes used in this study.  

B. Phylogenetic analysis of R. leguminosarum strains from a local population, 

based on universal core genes. 

C. Phylogenetic analysis of the R. leguminosarum species complex based on the 

same universal core genes. 

D. ANI analysis of strains from a local population of R. leguminosarum. 

E. Phylogenetic analysis of R. leguminosarum strains from different locations. 
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2.3 Material and methods 
 

2.3.1 Sequence data 
 

We obtained a list of 305 core genes (Appendix table I.I) based on the 3841 genome 

from Dr. Peter Harrison (Harrison et al., 2010) by personal communication. Fully 

sequenced Rhizobium genomes (Table 2.1) used in this study were downloaded from the 

National Center for Biotechnology Information (NCBI). BLASTn with cutoff e value of 

1e-05 and a Perl script with Bioperl (Stajich et al., 2002) module Bio::SearchIO were 

used to extract genetic information of 305 core genes from downloaded Rhizobium 

genomes.  

The type strains of different Rhizobium species used in this study are summarized in 

Table 2.2. In addition to the seventy-two R. leguminosarum, other R. leguminosarum 

strains obtained from Sweden (Dr Kerstin Huss-Danell) and Scotland (Dr Euan James) 

are summarized in Tables 2.3. The strains isolated from different places in Sweden 

include 5 strains of symbiovar viciae (represented as VCS_n) isolated from Vicia 

cracca and 2 strains of symbiovar trifolii (TPS_n) isolated from Trifolium pratense. The 

Scottish strains include one strain of symbiovar viciae (VCS_6) and symbiovar trifolii 

(TPS_6) isolated from Vicia cracca and Trifolium pratense respectively. 
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Table 2.1 | Fully sequenced genomes of Rhizobium genus used in this study other than Rlv 3841 

Strain 

 

Replicon  

     

Size 

(Mb) 

Accession 

Number 

    Rhizobium etli CFN42 Chromosome 6.53 NC_007761 

(Gonzalez et al., 2006) p42a 

 

NC_007762 

 

p42b 

 

NC_007763 

 

p42c 

 

NC_007764 

 

p42d 

 

NC_004041 

 

p42e 

 

NC_007765 

 

p42f 

 

NC_007766 

Rhizobium etli CIAT 652 Chromosome 6.44 NC_010994 

(Gonzalez et al., 2010) pA 

 

NC_010998 

 

pB 

 

NC_010996 

 

pC 

 

NC_010997 

Rhizobium leguminosarum 

symbiovar trifolii  WSM1325 

Chromosome 
7.41 NC_012850 

(Reeve et al., 2010a) pR132501 

 

NC_012848 

 

pR132502 

 

NC_012858 

 

pR132503 

 

NC_012853 

 

pR132504 

 

NC_012852 

 

pR132505 

 

NC_012854 

Rhizobium leguminosarum 

symbiovar trifolii WSM2304 

Chromosome 
6.87 NC_011369 

(Reeve et al., 2010b) pRLG201 

 

NC_011368 

 

pRLG202 

 

NC_011366 

 

pRLG203 

 

NC_011370 

 

pRLG204 

 

NC_011371 

 

 

Table 2.2 | Type strains sequenced in this study 

 

 

 

 

Strain Host Libraries 

Rhizobium leguminosarum USDA 2370
T
 Pisum sativum Single reads 

Rhizobium pisi DSM 30132
T
 Pisum sativum Paired ends 

Rhizobium fabae CCBAU 33202
T
 Vicia faba Paired ends 

Rhizobium phaseoli ATCC 14482
T
 

Phaseolus 

vulgaris Paired ends 
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Table 2.3 | Other R. leguminosarum strains sequenced in this study  

Strains Host Location 

KHDVB 646.3 (VCS_1) Vicia cracca Lappland, Sorsele, Ammarnäs meadow 

KHDVB 717.3 (TPS_1) Trifolium pratense Lappland, Sorsele, Ammarnäs meadow 

KHDVB 902.1 (VCS_2) Vicia cracca Lappland, Sorsele, Kraddsele meadow 

OYAVB 169.1 (VCS_3) Vicia cracca Västerbotten, Umeå, Ängersjö edge of field 

OYAVB 296.5 (VCS_4) Vicia cracca Västerbotten, Umeå, Ängersjö edge of field 

OYAVB 349.6 (VCS_5) Vicia cracca Västerbotten, Umeå, Ålidhem roadside 

OYAVB 371.3 (TPS_5) Trifolium pratense Västerbotten, Umeå, Ålidhem roadside 

S 273.16(VCS_6) Vicia cracca Tayport,  Shanwell Farm farm track 

S 272.1 (TPS_6) Trifolium pratense Tayport,  Shanwell Farm farm track 

 

2.3.2 GS De Novo Assembler 
 

We used a command line (runAssembly) option with 90% sequence identity and 40-bp 

minimum overlap as parameter to perform de novo assembly of all the unpublished 

Rhizobium genomes (seventy-two Wentworth R. leguminosarum, plus those listed in 

Tables 2.2 and 2.3). 

2.3.3 GS Reference Mapper 
 

We used a command line (runMapper) option with 90% sequence identity and 40-bp 

minimum overlap as parameter to perform reference-based assembly of all the 

unpublished Rhizobium genomes using 305 core genes as the reference genes. 

Nucleotide information of 305 core genes was extracted from every draft genome using 

extractSequence.pl (http://seqanswers.com/forums/showthread.php?t=9498), and the 

extracted information was merged with their respective genes present in fully sequenced 

studied Rhizobium genomes. 

 

 

http://seqanswers.com/forums/showthread.php?t=9498
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2.3.4 Multiple sequence alignment 
 

Each of the 305 files was aligned at nucleotide level by MUSCLE (multiple sequence 

comparison by log-expectation) created by Edgar, 2004 that was run locally on the 

University of York Biology Linux grid. MUSCLE is an open source bioinformatics tool 

used for multiple alignments and is meant to be a better alignment tool than ClustalW2 

(Larkin et al., 2007) or T-Coffee (Notredame et al., 2000) for speed and accuracy. Each 

alignment file was checked and gaps were added for strains that had no reads for a 

given gene. The final results of FASTA alignments were concatenated by strains to 

form a 305 core genes alignment using Galaxy (Goecks et al., 2010).  

2.3.5 Phylogenetic analysis 
 

Phylogenies were constructed using either neighbour-net or maximum likelihood 

methods. All neighbour-nets were generated using the uncorrected p distances function 

of SplitsTree version 4.11 (Huson and Bryant, 2006). All maximum likelihood analyses 

were performed by FastTree (Price et al., 2010) with settings: -gamma –gtr (most 

reliable and general model), run locally on the University of York Biology Linux grid.  

2.3.6 Average Nucleotide Identity analysis 
 

Average Nucleotide Identity (ANI) was calculated using the JSpecies package (Richter 

and Rossello-Mora, 2009). ANI can be calculated by two methods: BLAST (ANIb) and 

MUMmer (ANIm). The ANIm is designed to compare large DNA segments with high 

accuracy and in less time than ANIb, therefore, ANIm was used in this study. The 

cutoff for percent similarity between two genomes is 96% and is close to the DDH 

threshold value of 70% (Konstantinidis and Tiedje, 2005). This method was applied to 

representative strains that were selected based on coverage and to include at least one 

member from each of the five clusters (A-E) and subclusters present in the biggest 

cluster (cluster C) of the maximum likelihood tree based on 305 core genes.  
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2.3.7 Computational Resources 
 

The whole procedure was run on an Apple MacBook Pro Intel Core 2 Duo 2.4 GHz 

CPU with 4GB 667 MHz RAM running Mac OS X 10.8.4. 

Grid computing was used for computationally intensive jobs by using the local 

University of York Biology Linux grid, comprising of 27 quad core machines each with 

2GB RAM and three dedicated clusters each with 4 CPUs and 8GB RAM, controlled by 

Sun Microsystems Grid engine 6.1u2. Perl version 5.12.4 and R version 2.15.2 were 

used in this and subsequent chapters.  
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2.4 Results 
 

We analyzed 90 Rhizobium strains that belong to different species of the                        

R. leguminosarum species complex. 

2.4.1 Genome sequencing 
 

First, we performed a de novo assembly of 72 R. leguminosarum draft genomes (Figure 

2.3 and 2.4). Of 36 VSX strains, VSX_7 (6.13 fold) and VSX_3 (0.70 fold) have the 

highest and lowest sequence coverage respectively (Figure 2.3). Of 36 TRX strains, 

TRX_6 (10.06 fold) and TRX_31 (0.68 fold) have the highest and lowest sequence 

coverage respectively (Figure 2.4). TRX_6 has the highest amount of sequence 

coverage in this study. Therefore, this strain was selected for the additional genomic 

analyses described in Chapter 5. 

 

Figure 2.3 | Sequence coverage of 36 viciae (VSX) strains. X-axis represents strain number and Y-axis 

shows coverage of each strain.  
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Figure 2.4 | Sequence coverage of 36 trifolii (TRX) strains. X-axis represents strain number and Y-axis 

shows sequence coverage of each strain.  

 

The de novo assembly was performed for the type strains of USDA 2370
T
, R. pisi DSM 

30132
T
, R. fabae CCBAU 33202

T
, R. phaseoli ATCC 14482

T
 (Figure 2.5). The 

sequence coverage was in the range of 3.9–5 fold.  
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Figure 2.5 | Sequence coverage of 4 type strains. X-axis represents strain number and Y-axis shows 

sequence coverage of each strain.  

 

The Swedish and Scottish strains were assembled (Figure 2.6) and sequence coverage 

was revealed in the range of 1.53 and 4.87 fold. Out of the Swedish strains, TPS_5 has 

the highest (4.87), whereas VCS_3 and VCS_5 have the lowest (1.53) coverage. TPS_6 

and VCS_6 (Scottish strains) have sequence coverage of 2.3 fold and 2.25 fold 

respectively. 
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Figure 2.6 | Sequence coverage of 4 Swedish (VCS_1,TPS_1,VCS_2, VCS_3,VCS_4, VCS_5, TPS_5) 

and 2 Scottish (VCS_6, TPS_6) strains. X-axis represents strain number and Y-axis shows sequence 

coverage of each strain.  

 

2.4.2 Phylogenetic analysis of local population of R. leguminosarum 
 

A phylogenetic network of 72 R. leguminosarum strains was inferred based on 

concatenated alignment of 305 core genes using Rlv 3841 as a reference genome. This 

robust network (Figure 2.7 & Table 2.4) clearly separated this population into five 

discrete clusters: cluster A (purple ring) with 1 strain (TRX_34), cluster B (salmon ring) 

comprises 13 strains including Rlv 3841, cluster C (green ring) consisting of a 

maximum number of strains (52), cluster D (cyan ring) with 4 strains and cluster E 

(dark red ring) consisting of 3 strains. Cluster D is the only cluster that is niche specific. 

Clusters B, C and E consist of a population of both symbiovars (viciae and trifolii) of R. 

leguminosarum. 
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Figure 2.7 | Neighbour-net phylogeny of R. leguminosarum strains based on concatenated alignment of 305 core genes. Strains of two symbiovars are shown with blue (TRX) and 

red circles (VSX). Rlv 3841 is shown by the red square. 
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Table 2.4 | List of strains of two symbiovars (trifolii: TRX_ and viciae: VSX_) of R. leguminosarum that 

are classified in the five clusters based on the 305 core genes 

Clusters TRX_ VSX_ 

A 34 none 

  2 15 

  12 18 

  13   

  15   

B 18   

  25   

  27   

  31   

  32   

  33   

  1 1 

  3 2 

  5 3 

  6 4 

  7 5 

  10 6 

  14 7 

  16 8 

  17 9 

  19 10 

  20 11 

  21 14 

  23 16 

C 24 17 

  26 19 

  28 21 

  30 22 

  35 23 

  36 24 

    25 

    26 

    27 

    28 

    29 

    30 

    31 

    32 

    34 

    35 

    36 

    37 

    38 

    39 

  4 none 

  8   

D 11   

  29   

E 9 33 

  22   
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2.4.3 Global Phylogeny of the R. leguminosarum species complex 
 

Figure 2.8 displays the phylogenetic network that indicates the positions of other 

rhizobium strains (USDA 2370
T
, R. pisi DSM 30132

T
, R. fabae CCBAU 33202

T
, R. 

phaseoli ATCC 14482
T
, Rlt WSM1325, Rlt WSM2304, R. etli CIAT 652 and R. etli 

CFN42
T
) relative to 73 R. leguminosarum strains analyzed above. Rlt WSM1325 and 

USDA 2370
T
 were closer to cluster A (TRX_34) than any other clusters. R. etli CIAT 

652 shared high similarity R. phaseoli ATCC 14482
T
 rather than with R. etli CFN42

T
, 

which is consistent with Lopez-Guerrero et al. (2012). R. pisi DSM 30132
T
 and R. fabae 

CCBAU 33202
T 

were closely related to each other.
 

A Maximum Likelihood tree (Figure 2.9) based on the same 305 core genes confirms 

the phylogenetic results of 75 R. leguminosarum strains (72 R. leguminosarum, USDA 

2370
T
, Rlt WSM1325 and Rlv 3841) and clarifies the sub-clusters present in Cluster B 

and C.
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Figure 2.8 | Neighbour-net phylogeny of R. leguminosarum species complex based on concatenated alignment of 305 core genes. The local population of R. leguminosarum is shown 

in the blue (TRX) and red circle (VSX). USDA 2370
T
, R. pisi DSM 30132

T
, R. fabae CCBAU 33202

T
, R. phaseoli ATCC 14482

T
 are in dark green circles. Rlt WSM1325 and Rlt 

WSM2304 are displayed by blue-green rectangle. R. etli CIAT 652 and R. etli CFN42
T
are represented by green rectangle. Rlv 3841 is shown by the red square. 
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Figure 2.9 | Maximum Likelihood tree of R. leguminosarum strains based on concatenated alignment of 305 core genes. Local population of R. leguminosarum is shown in the blue 

(TRX) and red circle (VSX). WSM1325 with white rectangle represents Rlt WSM1325. USDA 2370
T
 is shown in white circle. Rlv 3841 is shown by the red square. 
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2.4.4 Average Nucleotide Identity analysis 
 

As an alternative to the traditional DDH method (Gevers et al., 2005; Wayne et al., 

1987), a robust technique based on genomic similarity known as Average Nucleotide 

Identity (ANI) has been proposed to delineate bacterial species. In this technique, two 

genomes sharing ANI > 95-96% belong to the same species. Otherwise they belong to 

different species (Auch et al., 2010; Goris et al., 2007; Richter and Rossello-Mora, 

2009).   

Primarily, ANIm was performed on the selected strains of the local population, the 

percentage of average nucleotide identity ranges from 93.2% to 99.2% (Table 2.5). The 

ANIm between the members of Cluster C (TRX_1, TRX_3, TRX_6, TRX_23, VSX_4, 

VSX_5, VSX_7, VSX_9, VSX_25 and VSX_35) was in the range of 97-99%. The 

ANIm between the members of Cluster B (Rlv 3841 and TRX_2) was 98.5%. The 

ANIm between the members of Cluster D (TRX_4 and TRX_8) was 98.8%. The ANIm 

between the members of Cluster E (TRX_9 and TRX_22) was 99.1%. The ANIm 

between members of different clusters was less than 96%; for example, the ANIm 

between cluster B and any other cluster (A, C, D and E) is less than 94%. Based on 

these data, these clusters can be termed genospecies (A-E) because they are based on 

core genome phylogeny and genomic analysis (ANIm).  

ANI was also performed on the strains of R. leguminosarum species complex. The 

ANIm between USDA 2370
T
 and TRX_34 (genospecies A) was 96.01% (Table 2.6). 

The ANIm between Rlt WSM1325 and TRX_34 (genospecies A) was 94.92%, but Rlt 

WSM1325 shared less than 94% identity with other genospecies. These data suggested 

that Rlt WSM1325 and USDA 2370
T
 are the members of genospecies A from other 

geographic locations.  

The R. etli CIAT 652 and R. phaseoli ATCC 14482
T
 shared a high ANI value of 

97.47% that supported Lopez-Guerrero et al. (2012) for classifying the former strain as 

R. phaseoli. The high ANIm (97.69%.) between R. pisi DSM 30132
T
 and R. fabae 

CCBAU 33202
T
 suggested that they belong to single species.  
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Table 2.5 | Average nucleotide identity (ANIm) analysis of selected 72 R. leguminosarum strains. These strains were selected on the basis of genomic coverage and at least two 

strains from each cluster, where available. ANI values are in percentages. Black: Values above 96%, Red: Values below 96% 

 

 

 

 

 

 

	 	 A B B C C C C C C C C C C D D E E 

Species Strains TRX34 Rlv_3841 TRX2 TRX1 TRX3 TRX6 TRX23 VSX4 VSX5 VSX7 VSX9 VSX25 VSX35 TRX4 TRX11 TRX9 TRX22 

A TRX34 --- 94.35 94.56 94.36 94.35 94.23 94.54 94.46 94.33 94.21 94.33 94.34 94.62 94.68 94.48 94.27 94.26 

B 3841 94.36 --- 98.55 93.99 93.87 93.74 94.08 94 93.9 93.87 93.89 93.99 94.31 93.63 93.47 93.22 93.22 

B TRX2 94.58 98.51 --- 94.21 94.18 94.01 94.23 94.15 94.01 93.99 94.01 94.18 94.41 93.86 93.63 93.45 93.47 

C TRX1 94.37 93.98 94.21 --- 97.09 97.31 97.48 97.33 97.28 97.34 97.42 99.2 97.38 94.5 94.32 93.87 93.88 

C TRX3 94.36 93.86 94.19 97.09 --- 97.7 97.84 97.78 97.71 98.16 97.7 97.07 97.79 94.47 94.28 93.8 93.83 

C TRX6 94.26 93.74 94.03 97.34 97.72 --- 98.21 98.55 98.37 98.03 97.91 97.22 98.35 94.34 94.21 93.71 93.75 

C TRX23 94.54 94.06 94.22 97.48 97.82 98.15 --- 98.02 97.94 98.15 97.9 97.31 98.05 94.53 94.46 93.99 94.01 

C VSX4 94.47 93.99 94.15 97.35 97.79 98.54 98.02 --- 98.32 98.02 98 97.3 98.38 94.54 94.44 93.96 93.97 

C VSX5 94.35 93.89 94.02 97.3 97.72 98.36 97.96 98.33 --- 97.97 97.91 97.22 98.26 94.32 94.22 93.77 93.75 

C VSX7 94.22 93.85 94 97.37 98.17 98.02 98.18 98.03 97.97 --- 97.91 97.26 98.07 94.36 94.24 93.69 93.72 

C VSX9 94.34 93.88 94.02 97.44 97.71 97.89 97.92 98 97.9 97.9 --- 97.35 97.92 94.35 94.23 93.69 93.74 

C VSX25 94.35 93.98 94.17 99.19 97.07 97.21 97.31 97.29 97.22 97.24 97.35 --- 97.31 94.4 94.29 93.81 93.85 

C VSX35 94.62 94.31 94.41 97.38 97.77 98.31 98.04 98.37 98.24 98.05 97.91 97.3 --- 94.7 94.6 94.14 94.1 

D TRX4 94.7 93.62 93.87 94.5 94.46 94.32 94.53 94.54 94.32 94.36 94.34 94.41 94.7 --- 98.8 95.31 95.3 

D TRX11 94.51 93.47 93.62 94.32 94.28 94.2 94.48 94.44 94.21 94.23 94.23 94.3 94.61 98.8 --- 95.34 95.34 

E TRX9 94.28 93.2 93.46 93.87 93.8 93.7 93.99 93.96 93.76 93.69 93.7 93.8 94.16 95.32 95.33 --- 99.17 

E TRX22 94.27 93.21 93.47 93.88 93.84 93.75 94.01 93.97 93.75 93.72 93.74 93.86 94.11 95.3 95.34 99.18 --- 
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2.4.5 Phylogenetic analysis of Swedish and Scottish strains 
 

The phylogenetic network (Figure 2.10) indicated the positions of Swedish and Scottish 

strains related to the five genospecies (A-E) discovered in R. leguminosarum strains. 

Both Scottish strains (VCS_6 and TPS_6) were present in genospecies C. VCS_6 was 

clustered with VSX_1, VSX_3 and VSX_5, while TPS_6 was clustered with VSX_28, 

VSX_6, VSX_35 and TRX_26. On the other hand, Swedish strains were scattered in 

different clusters. TPS_5 and VCS_2 showed high similarity with genospecies D and 

genospecies E respectively.  

Other Swedish strains (VCS_1, VCS_3, VCS_4, VCS_5 and TPS_1) were observed in 

genospecies A. The 95.04-98.87% ANIm (Table 2.6) between these Swedish strains, 

USDA_2370
T
 and TRX_34 (genospecies A) indicated that these Swedish strains belong 

to genospecies A.  

Table 2.6 | Average nucleotide identity (ANIm) analysis of Swedish strains, TRX_34 (genospecies A) 

and USDA 2370
T 

(Figure 2.10). Selected Swedish strains were phylogenetically closer to TRX_34 and 

USDA 2370
T
. ANI values are in percentages.  

Strains TRX_34 

USDA 

2370
T
  VCS_1 TPS_1 VCS_3 VCS_4 VCS_5 

TRX_34 --- 96.13 96.79 97.05 98.09 98.23 96.73 

USDA 2370
T
  96.01 --- 97.12 97.23 95.54 95.04 97.95 

VCS_1 96.82 97.39 --- 98.37 96.76 96.66 98.87 

TPS_1 97.07 97.54 98.38 --- 96.63 96.73 98.31 

VCS_3 98.1 95.65 96.74 96.62 --- 97.8 96.68 

VCS_4 98.24 95.13 96.65 96.72 97.8 --- 96.65 

VCS_5 96.75 98.05 98.82 98.29 96.68 96.66 --- 
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Figure 2.10 | Neighbour-net phylogeny of R. leguminosarum strains based on concatenated alignment of 305 core genes. Local population of R. leguminosarum is shown in the blue 

(TRX) and red circle (VSX). Swedish and Scottish strains are represented by dark pink (VCS) and light blue circle (TPS). WSM1325 with white rectangle represents Rlt WSM1325. 

USDA 2370
T
 is shown in white circle. Rlv 3841 is shown by the red square.  
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2.5 Discussion 
 

Both core genome phylogenetic analysis and ANI have shown their ability to delineate 

the bacterial species (Chan et al., 2012; Scortichini et al., 2013). Although most of the 

population studies are based on whole genomes or high quality draft genomes, low 

coverage (averaging around 0.8 X) was sufficient to infer the genomic diversity in draft 

genomes of S. medicae (Bailly et al., 2011). Similarly, low coverage of our dataset 

(0.68-10 X) was sufficient to infer the taxonomic structure of this population using the 

methods discussed above. It was also sufficient to perform different genome analysis 

discussed in other chapters.  

2.5.1 Cryptic genospecies in a local population 
 

The phylogenetic analysis based on core genes and ANIm suggests the existence of five 

genospecies in a population of two symbiovars (36 trifolii and 36 viciae) of R. 

leguminosarum. These genospecies may be regarded as cryptic genospecies because 

they are phenotypically indistinguishable, based on our current knowledge of them. 

Genospecies A contained only one symbiovar trifolii strain. Genospecies B contained 

ten strains of symbiovar trifolii and three strains of symbiovar viciae including 

reference genome Rlv 3841. Genospecies C comprised thirty-three strains of symbiovar 

viciae and nineteen strains of symbiovar trifolii. Genospecies E included one symbiovar 

viciae and two symbiovar trifolii strains. A comparison between intra- and inter- 

genospecies ANI values reveals a gap (≥2%) between them (Table 2.5), so these 

genospecies are very clearly delineated. These genospecies consist mix strains of two 

symbiovars, which represent major ecological adaptations in R. leguminosarum. 

Some previous Rhizobium population studies (Santillana et al., 2008; Tian et al., 2010; 

Vinuesa et al., 2008) have been based on only three housekeeping genes (recA, glnII 

and atpD). Recently, the celC gene was suggested as a taxonomic marker for Rhizobium 

genomes (Robledo et al., 2011). However, our study provides more robust and reliable 

results because they are based on 305 housekeeping genes (Harrison et al., 2010) 

including recA, glnII, atpD, celC and 40 universal genes (Ciccarelli et al., 2006 and 
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Sorek et al., 2007). Phylogenetic diversity shows high levels of sequence divergence in 

this R. leguminosarum population, compared with the population (Figure 2.1) of S. 

medicae at the same location (Bailly et al., 2011). 

2.5.2 Phylogenetic structure of the R. leguminosarum species complex 
 

In order to observe phylogenetic structure at a broad level, closely related species can be 

compared with the species of interest (Clarridge, 2004; Fukushima et al., 2002; 

Tenaillon et al., 2010). The comparison of all five species of the R. leguminosarum 

species complex allowed us to observe the relatedness of our dataset with fully 

sequenced genomes of this complex. The relatedness of five genospecies with other R. 

leguminosarum (USDA 2370
T
, Rlt WSM1325 and Rlt WSM2304) suggested two 

additional members of genospecies A: USDA 2370
T
 (TRX_34: 96.01% ANIm) and Rlt 

WSM1325 (TRX_34: 94.92% ANIm). Rlt WSM2304 is a highly diverged strain and 

may belong to an unknown genospecies of R. leguminosarum (less than 90% ANI with 

genospecies A), or perhaps a new species altogether. On the other hand, ANIm and core 

gene phylogeny worked well for the other species of this complex. CIAT 652, formerly 

considered to be R. etli, belongs to R. phaseoli, which is consistent with Lopez-Guerrero 

et al. (2012). ANIm value (97.69%) greater than the threshold (96%) between R. pisi 

DSM 30132
T
 and R. fabae CCBAU 33202

T
 suggests the merger of these species into a 

single species, for which the name R. pisi would take precedence as it was published 

one month earlier than R. fabae (Ramirez-Bahena et al., 2008; Tian et al., 2008). 

2.5.3 Cosmopolitan nature of cryptic genospecies  
 

The phylogenetic network (Figure 2.10) based on 305 core genes suggests the existence 

of these cryptic genospecies in different parts of Sweden and Scotland and not confined 

to the Wentworth site (York, UK). Scottish strains (VCS_6 and TPS_6) are members of 

genospecies C. The Swedish strain, TPS_5, is a member of genospecies D. Another 

Swedish strain, VCS_2, belongs to genospecies E. The rest of the Swedish strains 

(VCS_1, VCS_3, VCS_4, VCS_5 and TPS_1) are closely clustered and showed high 

ANI value (>95%) with genospecies A (Table 2.6), thus, they are members of 

genospecies A. Interestingly, genospecies B (which includes the reference strain Rlv 
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3841) appears to include a lineage of R. leguminosarum comprising strains from China, 

Canada and Spain (Tian et al., 2010). This indicates the cosmopolitan nature of these 

genospecies, but these results were based on only three housekeeping genes.  

Phylogenetic networks (Huson and Bryant, 2006) can be useful to observe reticulate 

events such as horizontal gene transfer, recombination, etc. and conflicting signals 

present in the data. The phylogenetic network clearly shows conflicting signals 

(alternative phylogenetic history) within genospecies and long branches between 

genospecies indicating less recombination between two genospecies than within 

genospecies (Figure 2.7). In Chapter 3, we will undertake recombination analysis for 

100 core genes (reliable genes) in 75 R. leguminosarum strains (72 R. leguminosarum, 

USDA 2370
T
, Rlt WSM1325 and Rlv 3841) to infer the role of recombination in 

shaping the R. leguminosarum core genome and to compare inter- and intra- 

genospecies recombination. 

In conclusion, we have observed five cryptic genospecies in the sympatric isolates of 

two pre-defined symbiovars of R. leguminosarum. Normally, ecotypes (Cohan, 2002; 

Connor et al., 2010; Didelot et al., 2011; Ward et al., 2008) are reflected by distinct 

species clusters obtained from the genomic analysis of core genes, but these 

genospecies based on 305 core genes have no relationship with the pre-defined 

symbiovars, highlighting a lack of ecological barriers between bacterial species. In 

addition, members from different locations reveal the cosmopolitan nature of these 

genospecies. The R. leguminosarum species can be classified into many cryptic 

genospecies including the five genospecies observed in this study. We proposed to 

reclassify R. pisi DSM 30132
T
 and R. fabae CCBAU 33202

T
 into a new single species.  
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Chapter 3.  Recombination and population 
structure of cryptic genospecies of R. 
leguminosarum 

 

3.1 Abstract 
 

In the previous chapter, we observed five cryptic genospecies in a predefined species of 

R. leguminosarum. Recombination plays a cohesive force in bacterial species that 

decreases in strength with an increase in genetic diversity. In this chapter, we 

investigate the impact of recombination on the evolution of these five genospecies using 

core genes. First, we analyse the number of core genes that are affected by 

recombination. Secondly, we observe recombination between and within five 

genospecies. The results suggest that 89% of core genes were affected by 

recombination. Finally, we demonstrate that there is a low rate of recombination 

between genospecies reflecting that some level of genetic isolation exists among 

genospecies. 
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3.2 Introduction         
 

Recombination in bacteria is a unidirectional process by which small fragments of DNA 

are introduced into a recipient cell from a donor cell. Recombination plays an important 

role in introducing diversity to bacterial strains. Bacterial recombination may be 

mediated by any of three mechanisms: transformation, transduction and conjugation. 

Transformation involves uptake of DNA from the environment, transduction involves 

transfer of DNA from donor to recipient cell by bacteriophages, and conjugation is a 

process in which DNA transfer occurs between two cells that are in physical contact 

(Vos, 2009).  

Computer simulations (Fraser et al., 2007) showed the relationship between genetic 

divergence and recombination rate. They showed that change in recombination rate 

could lead to sexual speciation in bacteria and suggested three properties of bacterial 

species that arise due to recombination: high rates of recombination in the whole 

population, more gene transfer within a bacterial species, and reduced rate of gene 

transfer between two closely related species. Some bacterial studies support this 

hypothesis, while others do not (Vos and Didelot, 2009), which indicates that this 

hypothesis is not the sole explanation for all bacterial species. 

Bacterial core genomes often show variation in recombination. Numerous studies have 

revealed the variability of recombination rates in different bacterial species. For 

example, Didelot et al. (2011) observed the recombination in a population of 114 

isolates of Salmonella enterica that led to five incipient species within the S. enterica 

subspecies. Likewise, recombination plays a major role in the evolution of H. pylori 

populations (Falush et al., 2003), but not in Chlamydia trachomatis (Joseph et al., 

2012).  

Doroghazi and Buckley (2010) focused on the role of recombination in the evolution of 

Streptomyces species. They found that the rate of intraspecies recombination was more 

than 100 times that of interspecies recombination, and concluded that conjugation is 

responsible for gene transfer within these bacterial species. 
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Variability in recombination rate is also observed in Rhizobium species. Acosta et al. 

(2011) examined the role of recombination in R. etli by analysing six draft genomes 

isolated from different geographical locations and two complete genomes (R. etli 

CFN42 and R. etli CIAT652). They concluded that recombination plays a minor role in 

the evolution of R. etli genomes. Moreover, when 12 strains of Sinorhizobium medicae 

were compared using a fully sequenced genome of S. medicae WSM419, recombination 

was found more on the chromid and megaplasmid than on the chromosome (Bailly et 

al., 2011). 

In Chapter 2 we determined the presence of five cryptic genospecies (A-E) in the 

population of 75 R. leguminosarum strains using 305 core genes. This chapter will 

explore the role of recombination in shaping the core genome of R. leguminosarum. For 

this, we focused on a subset of the 305 core genes for which we have the best coverage. 

Statistical tests were implemented on these genes to find the number of genes that are 

strongly affected by recombination. Furthermore, these recombinant genes were 

scanned to observe horizontal gene transfer events within and between genospecies. 

Finally, this chapter includes the comparative analysis of recombination rates between 

and within genospecies using reliable core genes and different bioinformatics tools. 
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3.2.1 Objectives 

 

The main objectives of this chapter are: 

A. Identification of reliable core genes and construction of a Maximum Likelihood 

tree (100-gene tree) based on these core genes. 

B. Identification of core genes that are incongruent with the 100-gene tree.  

C. Analysis of each single gene using the Pairwise Homoplasy Index (PHI) test. 

D. Identification of core genes that are congruent with other core genes. 

E. Clanistic analysis of single gene trees using a matrix based on the 100-gene tree. 

F. ClonalFrame and Structure analysis of the core genome. 
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3.3 Material and Methods 
 

This study was based on 75 strains of R. leguminosarum described in Chapter 2. The 

gsMapper results based on 305 core genes (Appendix table I.I) suggested 100 of these 

genes that are represented in our data for all strains (minimum one read with minimum 

length of 100 nucleotides). 

FastTree (Price et al., 2010) with settings: -gamma -gtr (most reliable & general model) 

was run locally on the University of York Biology Linux grid to construct a Maximum 

Likelihood tree based on the 100-gene alignment. One hundred bootstrap replicates 

were generated. The tree was visualized using SplitsTree (Huson and Bryant, 2006). An 

individual maximum likelihood phylogeny of the 100 genes was constructed using 

PhyML (Guindon et al., 2010) with the best-fit model of nucleotide substitution (Table 

3.1) calculated from ModelTest embedded in TOPLAi v2 (Milne et al., 2009). 

To compare tree topologies (e.g. single gene trees with 100-gene tree), Shimodaira-

Hasegawa (SH) congruence tests implemented in Consel package (Shimodaira and 

Hasegawa, 2001) were performed (p < 0.05: incongruent). Heatmaps for displaying p-

values of SH test results were constructed with R package phylcon (Susko et al., 2006). 

Pairwise Homoplasy Index (PHI) test computed within SplitsTree (Huson and Bryant, 

2006) was applied to each of the 100 genes with 5% significance level.  

Clanistic analysis was performed using the getDiversity function of the Phangorn 

(Schliep, 2011) R package to compute perfect clans. ClonalFrame 1.2 (Didelot and 

Falush, 2007) was applied to our data. Two independent runs of ClonalFrame were 

performed each consisting of 100,000 MCMC iterations, and the first half was 

discarded as burn-in. Convergence and mixing of the MCMC were found to be 

satisfactory by manual comparison of the runs and using Gelman and Rubin’s (1992) 

method implemented in ClonalFrame. Structure v.2.3.4 (Pritchard et al., 2000) was used 

to identify the hypothetical ancestral populations of our isolates. Initially, ClonalFrame 

input (concatenated alignment of 100 core genes) was converted into Structure format 

using xmfa2struct (http://www.xavierdidelot.xtreemhost.com/clonalframe.htm). Four 

independent runs were performed for a number of populations K ranging from 3 to 9. 

http://www.xavierdidelot.xtreemhost.com/clonalframe.htm
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For each run, 10
5
 burn-in iterations were performed with 10

6
 follow-on iterations. Other 

parameters were used as default. The optimum K value was evaluated by the ΔK 

method (Evanno et al., 2005). Barplots for Structure results were constructed by R.  

Table 3.1 | Models of nucleotide substitution for each of 100 core genes predicted by ModelTest 

embedded in TOPLAi v2 

Locus tag Functions 

Model of nucleotide 

substitution 

RL0012 DNA gyrase subunit B -a e -c 4 -m GTR 

RL0021 tryptophan synthase subunit beta -a e -c 4 -m TN93 

RL0024 

FolC bifunctional protein [Includes: 

folylpolyglutamate synthase (Folylpoly-gamma-

glutamate synthetase) (FPGS); dihydrofolate 

synthase] -a e -c 4 -v e -m TN93 

RL0042 

imidazole glycerol phosphate synthase subunit 

HisF -a e -c 4 -m HKY 

RL0106 30S ribosomal protein S1 -a e -c 4 -m TN93 

RL0120 polynucleotide phosphorylase/polyadenylase -a e -c 4 -m TN93 

RL0125 translation initiation factor IF-2 -a e -c 4 -m 012230 

RL0127 transcription elongation factor NusA -a e -c 4 -m TN93 

RL0134 DNA polymerase III subunits gamma and tau -a e -c 4 -m HKY 

RL0160 DNA polymerase I -a e -c 4 -m TN93 

RL0161 cell division DNA translocase protein -a e -c 4 -m GTR -v e 

RL0181 transmembrane component of ABC transporter -a e -c 4 -v e -m HKY 

RL0254 GTP-binding protein LepA -a e -c 4 -m TN93 

RL0270 phenylalanyl-tRNA synthetase subunit beta -a e -c 4 -m TN93 

RL0282 exodeoxyribonuclease VII large subunit -a e -c 4 -m HKY 

RL0315 GMP synthase -a e -c 4 -m HKY 

RL0326 4Fe-4S ferredoxin protein -m F81 -a e -c 4 

RL0357 

bifunctional phosphopantothenoylcysteine 

decarboxylase/phosphopantothenate synthase -m F81 -v e 

RL0375 chromosomal replication initiation protein -a e -c 4 -m HKY 

RL0377 coproporphyrinogen III oxidase -a e -c 4 -m HKY 

RL0389 S-adenosylmethionine synthetase -a e -c 4 -m TN93 

RL0394 phosphate starvation-induced protein -a e -c 4 -m HKY 

RL0404 

transmembrane mviN virulence factor 

homologue -v e -m HKY 

RL0406 DNA mismatch repair protein MutS -a e -c 4 -m HKY 

RL0611 

UDP-N-acetylglucosamine 1-

carboxyvinyltransferase -a e -c 4 -m TN93 

RL0613 histidinol dehydrogenase -a e -c 4 -m TN93 

RL0680 

bifunctional preprotein translocase subunit 

SecD/SecF -a e -c 4 -m HKY 

RL0877 histidyl-tRNA synthetase -a e -c 4 -m TN93 

RL0883 chaperonin GroEL -a e -c 4 -m TN93 

RL0886 

bifunctional riboflavin kinase/FMN 

adenylyltransferase -a e -c 4 -m HKY 

RL0889 isoleucyl-tRNA synthetase -a e -c 4 -v e -m TN93 

RL0892 ribosomal large subunit pseudouridine synthase -a e -c 4 -m GTR -v e 



 

 54 

B 

RL0910 DNA mismatch repair protein -a e -c 4 -v e -m 012210 

RL0969 23S rRNA (uracil-5-)-methyltransferase -a e -c 4 -m HKY 

RL0973 1-deoxy-D-xylulose-5-phosphate synthase -a e -c 4 -m HKY 

RL1543 cysteinyl-tRNA synthetase -a e -c 4 -m 012230 

RL1546 amidophosphoribosyltransferase -a e -c 4 -m TN93 

RL1548 DNA repair protein RadA -m F81 

RL1551 replicative DNA helicase -a e -c 4 -m TN93 

RL1605 aspartyl-tRNA synthetase -a e -c 4 -m TN93 

RL1620 serine hydroxymethyltransferase -a e -c 4 -m TN93 

RL1621 riboflavin biosynthesis protein -a e -c 4 -m 012314 

RL1723 DNA polymerase III subunit alpha -a e -c 4 -m TN93 

RL1735 DNA topoisomerase I -a e -c 4 -m TN93 

RL1767 DNA-directed RNA polymerase subunit beta' -a e -c 4 -m TN93 

RL1771 elongation factor G -a e -c 4 -m TN93 

RL1777 50S ribosomal protein L2 -a e -c 4 -m HKY 

RL2035 valyl-tRNA synthetase -a e -c 4 -v e -m TN93 

RL2041 arginyl-tRNA synthetase -a e -c 4 -m TN93 

RL2048 Sec-independent protein translocase protein -a e -c 4 -m HKY 

RL2049 seryl-tRNA synthetase -a e -c 4 -m HKY 

RL2055 

bifunctional preprotein translocase subunit 

SecD/SecF -a e -c 4 -m HKY 

RL2099 single-stranded-DNA-specific exonuclease -a e -c 4 -m TN93 

RL2288 siroheme synthase -a e -c 4 -m HKY 

RL2381 

bifunctional N-acetylglucosamine-1-phosphate 

uridyltransferase/glucosamine-1-phosphate 

acetyltransferase -a e -c 4 -m 010020 

RL2384 ATP-dependent DNA helicase RecG -a e -c 4 -m HKY 

RL2386 transcription-repair coupling factor -a e -c 4 -m TN93 

RL2392 glutamine synthetase I -a e -c 4 -v e -m TN93 

RL2398 excinuclease ABC subunit A -a e -c 4 -m 012230 

RL2401 DNA gyrase subunit A -a e -c 4 -v e -m TN93 

RL2511 CTP synthetase -a e -c 4 -m TN93 

RL2588 tyrosyl-tRNA synthetase -a e -c 4 -m TN93 

RL2636 alanyl-tRNA synthetase -a e -c 4 -m TN93 

RL2691 ATP-binding component of ABC transporter -a e -c 4 -v e -m 012210 

RL2957 excinuclease ABC subunit B -a e -c 4 -m HKY 

RL3245 acetolactate synthase 3 catalytic subunit -a e -c 4 -m TN93 

RL3276 ATP-dependent DNA helicase -a e -c 4 -m 012230 

RL3301 D-alanine--D-alanine ligase -a e -c 4 -m HKY 

RL3306 UDP-N-acetylmuramate--L-alanine ligase -a e -c 4 -m GTR 

RL3310 

phospho-N-acetylmuramoyl-pentapeptide-

transferase -a e -c 4 -m TN93 

RL3311 

UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D-

alanine ligase -a e -c 4 -m HKY 

RL3313 penicillin binding protein -a e -c 4 -m TN93 

RL3402 RNA polymerase sigma factor RpoD -a e -c 4 -m TN93 

RL3408 DNA primase -a e -c 4 -m TN93 

RL3419 carbamoyl phosphate synthase large subunit -a e -c 4 -m TN93 

RL3521 anthranilate synthase -a e -c 4 -m TN93 

RL3768 adenylosuccinate synthetase -a e -c 4 -m TN93 

RL3965 cell division protein FtsH -a e -c 4 -m TN93 
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RL3990 Holliday junction DNA helicase RuvB -a e -c 4 -m HKY 

RL4006 transketolase -a e -c 4 -m TN93 

RL4060 pyruvate kinase -a e -c 4 -v e -m TN93 

RL4085 glutamate synthase [NADPH] large chain -a e -c 4 -m TN93 

RL4184 glutamyl-tRNA synthetase -a e -c 4 -m HKY 

RL4279 chaperone ClpB (heat-shock protein) -a e -c 4 -m TN93 

RL4298 preprotein translocase subunit SecA -a e -c 4 -m TN93 

RL4412 primosome assembly protein PriA -a e -c 4 -v e -m HKY 

RL4506 

GTP-binding protein TypA/BipA (tyrosine 

phosphorylated protein A) -a e -c 4 -m TN93 

RL4507 peptidyl-dipeptidase -a e -c 4 -m 012230 

RL4515 argininosuccinate synthase -a e -c 4 -m TN93 

RL4563 transmembrane DNA translocase -a e -c 4 -m TN93 

RL4630 

4-hydroxy-3-methylbut-2-en-1-yl diphosphate 

synthase -a e -c 4 -m HKY 

RL4707 3-isopropylmalate dehydrogenase -a e -c 4 -m HKY 

RL4722 

bifunctional 

phosphoribosylaminoimidazolecarboxamide 

formyltransferase/IMP cyclohydrolase -a e -c 4 -m 012230 

RL4732 leucyl-tRNA synthetase -a e -c 4 -m HKY 

RL4736 chromosome partitioning protein -a e -c 4 -m 012345 

RL4739 tRNA modification GTPase TrmE -a e -c 4 -v e -m 010010 

pRL120279 putative exported tail-specific protease precursor -a e -c 4 -m HKY 

pRL120416 putative alanine racemase -a e -c 4 -m HKY 

pRL120642 chaperonin GroEL -a e -c 4 -v e -m TN93 

pRL110033 

putative ATP-binding component of ABC 

transporter -a e -c 4 -m HKY 
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3.4 Results 

 

3.4.1 Phylogenetic structure based on reliable core gene 

 

The Maximum Likelihood tree based on concatenated alignment of 100 core genes 

(Figure 3.1) displayed strong support (Appendix figure II.I), except for a few internal 

branches, for the same five genospecies (A-E) as discovered in the previous chapter. 

This tree is termed the 100-gene tree (Figure 3.1) and used for further analyses such as 

SH tests.  

3.4.2 Phylogenetic incongruence and Intragenic recombination  

 

We were curious to know the number of genes that are incongruent with the 100-gene 

tree. SH test was used to find the incongruent genes by comparing single gene ML trees 

with the 100-gene tree. SH tests discovered that 63% of the genes were incongruent 

with the 100-gene tree (Table 3.2). These are shown in blue, while green shows 

congruent genes.  

Meanwhile, PHI test was used to detect intragenic recombination in each of the 100 

gene sequences, which indicated that 72% of the genes were recombinant (Table 3.2, 

with the same color code of SH tests). Based on SH tests and PHI tests, we were 

surprised that most (89 of 100) of the reliable core genes showed significant evidence of 

recombination.  

Next, we examined 49 putative recombinant genes (in bold in Table 3.2) that failed the 

SH tests as well as identified by PHI tests. These genes were compared with each other 

using SH tests to observe the number of genes that are congruent with each other and 

share the same evolutionary history. SH tests results (p values) are displayed as a 

heatmap (Figure 3.2). In Figure 3.2, each column and row represent an individual gene 

marker and gene topology respectively. The diagonal line represents the P value of tree 

topologies with their corresponding gene markers. Most of the topologies were 
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incongruent with many gene markers, corresponding to the white color, indicating that 

these genes have a different evolutionary history. However, there are a few topologies 

that are congruent with many gene markers. These topologies were detected by 

performing hierarchical clustering (Figure 3.3) on the same dataset. Figure 3.3 

suggested the presence of four topologies (bottom of Figure 3.3) that are, between them, 

congruent with 30 gene markers.  
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Figure 3.1 | Maximum Likelihood tree based on 100-gene alignment showing the position of 75 R. leguminosarum strains (TRX: blue circle & VSX: red circle). WSM1325 (white 

square) represents Rlt WSM1325. USDA_2370
T
 is shown by white circle. Rlv 3841 is shown by red square. 
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Table 3.2 | Results from SH tests and PHI tests for 100 core genes. In both test, green: p > 0.05 and blue: 

p < 0.05. There are just 11 genes (highlighted in red) with no significant evidence for recombination. 

Genes that were incongruent with the 100-gene tree (SH test) and had evidence of intragenic 

recombination (PHI test) are shown in bold with asterisk.  

   

Locus tag SH tests PHI 

RL0012* 0.002 6.56E-07 

RL0021* 7.00E-05 6.44E-04 

RL0024* 0.023 6.21E-09 

RL0042 0.266 1.09E-04 

RL0106 0.121 3.61E-03 

RL0120 0.125 4.69E-01 

RL0125* 0 1.25E-36 

RL0127 0.037 2.17E-01 

RL0134* 0.001 3.02E-15 

RL0160* 0 1.46E-04 

RL0161 0 2.79E-01 

RL0181 0.013 1.52E-01 

RL0254 0.006 1.26E-01 

RL0270* 0.002 1.00E-03 

RL0282* 3.00E-05 2.03E-07 

RL0315 0.156 3.64E-11 

RL0326* 0 1.79E-03 

RL0357* 0 8.89E-23 

RL0375 0.42 3.36E-06 

RL0377* 0 3.88E-05 

RL0389 0.013 6.80E-01 

RL0394 0.021 2.02E-01 

RL0404 0.47 9.82E-01 

RL0406 0.092 1.57E-09 

RL0611* 0.021 6.05E-06 

RL0613 0 3.27E-01 

RL0680* 0.027 3.23E-04 

RL0877* 0 1.67E-07 

RL0883 0.084 8.74E-05 

RL0886 0.143 4.22E-01 

RL0889* 2.00E-04 5.35E-03 

RL0892 0.118 1.34E-05 

RL0910 0.232 7.21E-03 

RL0969 0.067 2.04E-03 

RL0973 0.079 4.26E-03 
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RL1543* 0.019 1.21E-02 

RL1546* 0 3.62E-06 

RL1548 1.00E-04 8.51E-01 

RL1551* 0.001 1.82E-24 

RL1605* 0 1.61E-10 

RL1620 0.096 3.09E-01 

RL1621 0.084 9.84E-01 

RL1723* 4.00E-04 2.51E-11 

RL1735* 0 1.50E-05 

RL1767* 0.004 9.48E-05 

RL1771 0.006 5.67E-02 

RL1777* 0.005 4.28E-02 

RL2035 0.238 1.23E-06 

RL2041 0.001 2.13E-01 

RL2048 0.11 3.57E-03 

RL2049 0.393 9.15E-02 

RL2055 0.061 8.34E-02 

RL2099* 0 4.43E-03 

RL2288* 0 4.12E-04 

RL2381* 0.002 4.70E-03 

RL2384 0.153 1.60E-14 

RL2386* 0 8.48E-19 

RL2392* 0 0.00E+00 

RL2398* 0 3.63E-02 

RL2401* 2.00E-05 0.00E+00 

RL2511* 1.00E-04 2.86E-04 

RL2588 0.332 5.27E-01 

RL2636 0.069 1.23E-18 

RL2691* 0.021 5.66E-05 

RL2957* 0 1.15E-08 

RL3245 0.241 2.45E-01 

RL3276 0.056 4.12E-16 

RL3301* 0 1.00E-02 

RL3306* 0.008 1.56E-06 

RL3310* 0 2.91E-03 

RL3311 0.093 3.07E-02 

RL3313* 0.011 2.83E-02 

RL3402 0.192 1.34E-03 

RL3408 0.2 3.01E-01 

RL3419* 0.015 3.00E-37 

RL3521 2.00E-04 2.15E-01 

RL3768* 0.022 5.62E-04 

RL3965 0.094 6.49E-02 

RL3990* 0.022 9.04E-03 
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RL4006 0.322 2.51E-01 

RL4060 0.074 7.41E-03 

RL4085 0.085 0.00E+00 

RL4184 0.418 8.50E-03 

RL4279* 2.00E-04 2.89E-09 

RL4298 0.277 9.94E-01 

RL4412* 0 6.03E-05 

RL4506 0.093 1.36E-08 

RL4507* 0 2.61E-07 

RL4515* 0 1.35E-10 

RL4563 0.218 6.16E-02 

RL4630 0 5.02E-01 

RL4707 0.045 5.63E-01 

RL4722 0.157 5.38E-11 

RL4732* 4.00E-04 6.19E-07 

RL4736 0.222 1.94E-03 

RL4739* 0.003 1.07E-03 

pRL120279* 0 1.77E-02 

pRL120416* 0 4.16E-08 

pRL120642 0 1.03E-01 

pRL110033* 0.002 6.17E-05 
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Figure 3.2 | Heatmap showing SH test results of 49 core genes that are highly recombinant. Columns: 

each gene, and rows: each topology. Significance level: 5%. The cells of the heatmap were colored 

according to the P values of the SH test (white: P < .05, other colours: P ≥ .05).   
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Figure 3.3 | Heatmap showing the hierarchical clustering (row and column) of SH test results of 49 core 

genes to obtain similarity in patterns of P values.  Columns: each gene, and rows: each topology. The 

same color-coding was used as in Figure 3.2 
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The four topologies (Figure 3.4–3.7) were mid-rooted using Dendroscope (Huson and 

Scornavacca, 2012) and examined to identify transfer events in putatively recombinant 

genes.  Reliable branches in each tree were detected using 100 bootstrap replicates. In 

every tree, strain nodes are colored according to their genospecies (A: purple, B: 

salmon, C: green, D: cyan and E: dark red) and branches with a bootstrap value greater 

than 70% are shown in red (compatible with the 100-gene tree in Appendix figure II.I) 

and blue (incompatible). The maximum number of reliable branches was observed in 

the RL2957 phylogeny (Figure 3.4). In comparison to the 100-gene tree, these 

phylogenies showed several reliable examples of horizontal gene transfer that occurred 

within genospecies (discussed below). The single reliable inter-genospecies event was 

observed in the RL2381 phylogeny (Figure 3.6). 

The RL2957 phylogeny (Figure 3.4) suggested many gene transfer events that occurred 

within genospecies. For example, a member of genospecies C, TRX_21, was observed 

in a different sub-cluster (VSX_23, TRX_10, TRX_5, VSX_32, TRX_7, TRX_16, 

TRX_20) of genospecies C. Also, this sub-cluster was grouped with a different sub-

cluster (VSX_7, VSX_8, VSX_39, VSX_17, and TRX_36) of genospecies C. 

A strongly supported sub-cluster (TRX_19, TRX_23, TRX_24, TRX_1, TRX_25) of 

genospecies C was observed with a strong cluster (TRX_18, VSX_18, TRX_27, 

TRX_12, TRX_33, TRX_2, TRX_25, TRX_15, TRX_13) of genospecies B, but these 

groups were poorly supported by bootstrap values.  

The RL0377 phylogeny (Figure 3.5) was able to delineate the five genospecies (A-E) 

observed in 100-gene tree, but without any strong bootstrap branch that conflicts with 

branches of 100-gene tree.  
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The phylogeny of RL2381 (Figure 3.6) indicated the occurrence of intra-species transfer 

in genospecies C. The inclusion of the closely related members (VSX_28, VSX_6, 

VSX_35) and TRX_35 into the sub-cluster comprised of TRX_36, VSX_7, VSX_8, 

VSX_39, VSX_17 and VSX_19 resulted into the formation of new sub-cluster in this 

gene tree. Interestingly, this phylogeny also provided an example of inter- genospecies 

transfer (supported by bootstrap value) that occurred between the genospecies B and 

genospecies A (TRX_34 and Rlt WSM1325).      

The phylogeny of RL1551 (Figure 3.7) suggested the evidences of intra- genospecies 

transfer in the members of genospecies B. For example, a group comprised of VSX_15, 

VSX_18, TRX_18 and Rlv 3841 (reference genome) was strongly supported.  
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Figure 3.4 | The Maximum Likelihood tree of RL2957. Strain nodes are colored on the basis of their genospecies (A: purple, B: salmon, C: dark green, D: cyan and E: dark red). 

Square boxes represent full sequenced genomes. Branches with bootstrap values > 70% are colored. Branches congruent with the 100-gene tree are in red. Incongruent branches are 

in dark blue. Branches in light blue are poorly supported in 100-gene tree. 
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Figure 3.5 | The Maximum Likelihood tree of RL0377. The same color-coding and symbols were used for strains as in Figure 3.4. 
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Figure 3.6 | The Maximum Likelihood tree of RL2381. The same color-coding and symbols were used for strains as in Figure 3.4. 



 

 69 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 | The Maximum Likelihood tree of RL1551. The same color-coding and symbols were used for strains as in Figure 3.4 
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3.4.3 Intra- and Inter- genospecies recombination 

 

Three different strategies (Clanistic analysis, ClonalFrame and Structure) were used to 

observe recombination between and within the five genospecies. Results of these three 

strategies are described below. 

3.4.3.1 Clanistic analysis 

 

This analysis calculates the number of occurrences of each of the five genospecies as a 

clan in the set of 100 single-gene ML trees. Three genospecies (B, D & E) were 

conserved in most of the gene trees (Table 3.3 and Fig. 3.8). Also, genospecies C was 

observed in half (approx.) of the gene trees. However, genospecies A was observed only 

in 29 gene trees suggesting these strains are highly diverged from each other. Moreover, 

we observed the number of occurrences of sub-clans present in genospecies C. Most of 

the sub-clans are conserved in fewer than 20 gene trees (Fig. 3.8) except for one sub-

clan (TRX_1 and VSX_25), which was conserved in 74 gene trees. 

Table 3.3 | Results of Clanistic analysis of five genospecies (gs). 

Clans Strains No of occurrences in 100 gene trees 

gsA 3 29 

gsB 13 72 

gsC 52 44 

gsD 4 86 

gsE 3 91 

 

 

 

 

 



 

 71 

 

 

 

 

 

 

 

 

 

 

 

gs: genospecies 

Figure 3.8 | Results of Clanistic analysis. Numbers on each branch reflect the number of occurrences of 

that clan in 100 ML gene trees. Rlt WSM1325 (W) is shown by white square and USDA_2370
T
 (T) is 

shown by white circle. Rlv 3841 is shown by salmon square. Strains are colored on the basis of their 

genospecies (A: purple, B: salmon, C: dark green, D: cyan and E: dark red). 
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3.4.3.2 ClonalFrame 

 

ClonalFrame identifies clonal relationships among isolates of a population and 

estimates a quantitative value for mutation and recombination events. ClonalFrame 

estimates two statistical values (ρ/θ & r/m), where ρ/θ is the ratio of rates at which 

recombination and mutation occur, whereas r/m calculates the relative impact of 

recombination relative to mutation. ClonalFrame produced the same five clades of 

genospecies as found in the 100-gene tree. The mean value of ρ/θ and the r/m ratio 

(Table 3.4) for the whole population are 1.32 and 5.9 respectively indicating that the 

population is highly affected by recombination (thresholds described by Vos and 

Didelot, 2009). To observe recombination within genospecies, we performed 

ClonalFrame on genospecies C and genospecies B (most of the strains are clustered in 

these groups). The high mean value of ρ/θ and the r/m value for genospecies C and 

genospecies B (Table 3.4) reflected that recombination occurred more frequently than 

mutation within these genospecies. 

Table 3.4 | Results of ClonalFrame analysis 

 

 

 

 

 

 

 

 

 Strains ρ/θ r/m 

Whole 75 1.32 5.92 

Genospecies C 52 0.787 4.29 

Genospecies B 13 26.59 102.93 
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3.4.3.3 Structure 

 

The population structure of R. leguminosarum was observed by Structure v.2.3.4. The 

optimal K value was evaluated by the ΔK method (Evanno et al., 2005). In Figure 3.9, 

different K (4-9) values are presented on the X-axis, while the Y-axis shows the values 

of Delta K at each K population. The K value with the highest peak is considered to be 

the optimal K value (our study: 5). These five hypothetical ancestral populations mirror 

the genospecies (A-E). A detailed Structure bar graph (Figure 3.10) was constructed in 

which strains are classified according to their respective genospecies (from left to right: 

genospecies A-E) to display the proportion of hypothetical ancestral population 

(different colors) present in each strain. Results indicated that there was little admixture 

in this population. 

Figure 3.10 demonstrates that genospecies A got foreign DNA from all other 

genospecies (B-E). Genospecies (B and C) got foreign DNA from genospecies A only. 

Genospecies D and E shared DNA with each other. Both of these species acquired some 

foreign DNA from genospecies A but not from genospecies B and C. Moreover, some 

strains were observed that are entirely from one ancestral population for example 

USDA_2370
T
 (genospecies A), TRX_2 (genospecies B), VSX_7 and VSX_9 both from 

genospecies C and TRX_11 (genospecies D), suggesting that these strains have never 

received DNA from another genospecies. The results suggest that the two large 

genospecies (genospecies B and C) have never exchanged DNA with each other. The 

K=6 (Figure 3.11) and K=7 (Figure 3.12) analyses continue to support the five strong 

clusters that echo genospecies (A-E) and the lack of mixture of B and C. They also 

suggest that the acquired genes in B and C are not actually from A, but from outside the 

five genospecies we have sampled. The TRX_2 (genospecies B), VSX_9 (genospecies 

C) and TRX_11 (genospecies D) still belonged to one Structure population. 
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Figure 3.9 | ΔK-values for different K; suggesting K = 5 as the most likely structure population according            

to Evanno et al. (2005) 
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Figure 3.10 | Bar graph showing results of Structure analysis with K = 5: Each vertical bar represents one of the 75 R. leguminosarum strains. The coloring of each bar is proportional 

to the ancestry of each strain from each of the 5 populations (Y-axis: purple, dark salmon, dark green, cyan and dark red respectively). 
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Figure 3.11 | Bar graph showing results of Structure analysis with K = 6: Each vertical bar represents one of the 75 R. leguminosarum strains. The coloring of each bar is proportional 

to the ancestry of each strain from each of the 6 populations (Y-axis: purple, dark salmon, dark green, cyan, dark red and black respectively). 
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Figure 3.12 | Bar graph showing results of Structure analysis with K = 7: Each vertical bar represents one of the 75 R. leguminosarum strains. The coloring of each bar is proportional 

to the ancestry of each strain from each of the 7 populations (Y-axis: purple, dark salmon, dark green, cyan, dark red, black and grey respectively). 
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3.5 Discussion 
 

We present a comprehensive analysis that shows recombination plays an important role 

in the evolution of the core genome of R. leguminosarum.  

Previously, core genes are considered to be stable (resistant to recombination) part of 

bacterial genome but several comparative studies suggested that some bacteria have a 

stable core genome (Acosta et al., 2011; Joseph et al., 2012; Shi and Falkowski, 2008) 

and others do not (Cadillo-Quiroz et al., 2012; Didelot et al., 2011). In this study, we 

observed that majority (89%) of core genes are affected by recombination, suggesting 

that core genome of R. leguminosarum is shaped by recombination. Moreover, these 

core genes were largely located on the chromosome, reflecting chromosomal 

recombination. On the other hand, sister species (R. etli) of R. leguminosarum has a 

genome of low recombination (Acosta et al., 2011). However, some strains (CIAT 652, 

BRAZIL 5, 8C-3) used in Acosta et al.’s study (2011) are actually R. phaseoli (Lopez-

Guerrero et al., 2012).   

The conserved nature of genospecies was observed in the phylogenetic results of four 

topologies (Figure 3.4-3.7) that were congruent with many putative recombinant genes. 

For example, the ML tree of RL0377 (Figure 3.5) produced same five genospecies (A-

E) observed in 100-gene tree (Figure 3.1). Moreover, some sub-clusters of genospecies 

C are well supported for example sub-cluster comprised of 8 symbiovar viciae strains 

(VSX_24, VSX_26, VSX_30, VSX_37, VSX_4, VSX_16, VSX_27, VSX_29) in 

Figure 3.6. The possible example of inter-genospecies was observed in the ML tree of 

RL2381 (Figure 3.6) where genospecies A members (TRX_34 and Rlt WSM1325) were 

located in a cluster that includes members of genospecies B indicating the presence of 

other genospecies B strains that are not sampled here. These results suggest the 

preference of intra- genospecies transfer in most of the recombinant genes. 

ML analysis, ClonalFrame and Structure strongly suggest the existence of 5 

genospecies in our dataset. Bacterial species may be regarded as biological species 

when recombination becomes the cohesive force in members of the same species and its 

strength decreases with an increase in genetic divergence (Fraser et al., 2007). Our data 
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strongly correlates with this hypothesis suggesting these genospecies may be regarded 

as biological species. Results from Clanistic analysis, ClonalFrame and Structure 

clearly show that more gene transfer or recombination has occurred within genospecies 

than between them. For example, ClonalFrame suggested that genospecies B (r/m: 

102.93) is more affected by recombination than the whole population (r/m: 5.92) or 

genospecies C (r/m: 4.29). These results suggest that these genospecies are biological 

species. 

Clanistic analysis is a fast way to compare multiple gene trees and 100-gene tree. 

Schliep et al. (2011) introduced this method by comparing 6901 unrooted gene trees. 

However, this method does not provide any statistical tests, so we decided to choose 

two different statistical methods: ClonalFrame and Structure. Although these tools are 

time consuming and computationally intensive, they have been used for identifying 

bacterial species (Cadillo-Quiroz et al., 2012; Didelot et al., 2011). 

In conclusion, this study employs phylogenetic and population genetics approach to 

understand the role of recombination in the genome evolution of R. leguminosarum and 

its five genospecies. Most of the core genes (63 of 100) display phylogenetic 

incongruence, while 72 of 100 genes are under the influence of intra-genic 

recombination. These findings confirm that core genome of R. leguminosarum is shaped 

by the force of recombination. Putative recombinant genes exhibit similar five 

genospecies structure and preferred intra- genospecies transfer. Results of ClonalFrame 

and Structure analyses support the idea that the rate of homologous recombination 

declines with sequence divergence (Fraser et al., 2007; Roberts and Cohan, 1993; 

Zawadzki et al., 1995), so that successful recombination is less likely between than 

within species. This facilitates understanding of processes that might lead to more 

recombination within species rather than between species. The most plausible reason for 

this observation could be the more frequent occurrence of conjugation among members 

of the same genospecies. This conclusion is strongly supported by the phylogenetic 

analyses based on each type of repABC replicon (Kim, 2012). Kim (2012) noted lack of 

movement for pRL12- and pRL11-type plasmids between genospecies as they have 

similar core gene phylogenetic structure. Moreover, the phylogenetic tree of other 

plasmid-types displayed the preference of intra- genospecies transfer, for example, 

movement is less likely between than within genospecies for pRL10-type plasmids.     
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Chapter 4.  Dominating influence of five 
genospecies on the composition and phylogeny 
of the accessory genome of R. leguminosarum  

 

4.1 Abstract 
 

The results of the previous chapters have demonstrated the presence of five cryptic 

genospecies (A-E) in R. leguminosarum based on the core genes. These species exhibit 

a high level of intra-species recombination that serves as a barrier to gene exchange 

between these species. This chapter focuses on the genetic diversity present in the 

accessory (variable) genome of R. leguminosarum. The genome of Rlv 3841 

(genospecies B) was used as reference to explore the diversity of accessory genes in 

other members of genospecies including genospecies B. The remarkable regions of 

genetic similarities were localized in the regions of chromosome, chromids and large 

plasmids. One of the smallest reference plasmids (pRL8) carries a set of five host-

specific genes known as Bvs (biovar viciae specific) genes, which is absent in strains of 

the other symbiovar (trifolii). The phylogenetic networks based on chromosome, 

chromids and large plasmids exhibit the same five genospecies observed in the core 

genes phylogeny. The nodulation (host specific) genes are introduced through 

horizontal gene transfer in these five genospecies. Finally, the specific accessory genes 

of the local population that differentiate it from reference genome indicated the adaptive 

nature of this population. 
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4.2 Introduction 
 

The accessory genome is the variable component of the bacterial genome that may or 

may not be present in a bacterial strain. Accessory genes may be located on genomic 

islands, bacteriophages, transposons, insertion sequences and integrons (Dobrindt et al., 

2004), but are most commonly carried on variable sized plasmids (Frost et al., 2005) 

that carry large amount of DNA. These genes provide genomic flexibility that helps in 

adaptation, antibiotic resistance, toxin production etc. Both horizontal gene transfer 

(HGT) and homologous recombination are responsible for shaping the accessory 

genomes (Vos, 2009). The accessory genome of Legionella pneumophila (Gomez-

Valero et al., 2011) was maintained by extensive homologous recombination as well as 

HGT.  

Studies based on the accessory genomes shed light on ecological adaptations in 

bacterial strains. Tenaillon et al. (2010) reviewed the population structure of commensal 

Escherichia coli strains to understand the ecological adaptations that convert useful 

bacteria into harmful pathogens. Comparative genomics of multiple strains of the 

Azospirillum (Wisniewski-Dye et al., 2012) identified the role of accessory genes in 

niche adaptations. Accessory genomic study of plant pathogen Erwinia amylovora 

(Mann et al., 2013) revealed host specific genes and metabolic pathways that are present 

in only one of the E. amylovora pathovars. 

The diversity in the accessory genomes of rhizobium strains is well studied. Bailly et al. 

(2011) compared phylogenetic networks of plasmids with chromosomal phylogeny 

(Figure 4.1). The comparison suggested that these phylogenies do not reflect each other. 

Moreover, some specific accessory genes such as rhizobitoxine synthesis genes were 

revealed in 12 strains of S. medicae population that are absent in S. medicae WSM 419 

(reference genome) suggesting that these genes might play a role in ecological 

adaptation.   
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Figure 4.1 | Neighbour-Nets showing divergence among S. medicae strains for each replicon (Taken from 

Bailly et al., 2011) 

Sugawara et al. (2013) analyzed genomic diversity in the accessory genome of the 

genus Sinorhizobium by comparing multiple strains of five Sinorhizobium genospecies. 

The results indicated a correlation between symbiotic efficiency and the presence of 

type IV secretion systems. Moreover, each clone has its own strategy to interact with 

the host plants and environments.    

Almost every rhizobium accessory genome harbors nodulation (nod) genes that are 

essential for nodulating leguminous plants (Rogel et al., 2011). The nod genes are host 

specific and are used to classify symbiovars of Rhizobium species. These accessory 

genes are widely used to observe diversity in the multiple strains of Rhizobium species. 

Alvarez-Martinez et al. (2009) observed the common origin of housekeeping genes and 

nodulation genes in the population of R. leguminosarum isolated from different 

locations. Interestingly, Chang et al. (2011b) analyzed multiple strains of rhizobia 
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isolated from different parts of Southern China and found that nod genes are transferred 

vertically in some strains, but some strains acquired these genes through HGT. 

The plasmid replication system genes (repABC) are another set of interesting genes that 

are located in the accessory genome of Rhizobium. RepA and B proteins are essential 

for plasmid partitioning, while RepC protein helps in replication. Kim (2012) 

investigated the distribution of repABC genes in 72 R. leguminosarum strains (Figure 

4.2) and their phylogenetic diversity. The replication system of two chromids (pRL12 

and pRL11) of Rlv 3841 was present in each of the Wentworth strains. 

In chapter 1, we observed five genospecies (A-E) present in R. leguminosarum species. 

A genospecies can include strains of two symbiovars, which represent a major and long-

term divergence in ecological adaptation (Jordan, 1984; Young, 1996). Chapter 2 

demonstrated that recombination is a major evolutionary force in shaping the core 

genome evolution and these five genospecies are maintained by recombination. In this 

chapter, we focus on the dynamic nature of the accessory genome of R. leguminosarum. 

Initially, the distribution of genomic data of Rlv 3841 was observed in the local 

population of R. leguminosarum by constructing presence/absence matrices based on 

the genes of Rlv 3841 replicons (chromosome, two chromids and four plasmids). These 

matrices are a convenient way that can be used to observe the distribution of Rlv 3841, 

host and genospecies specific genes in this dataset. Next, we constructed and compared 

the phylogenetic networks based on each Rlv 3841 replicon. In order to observe the 

relationship between core and nodulation genes, a phylogenetic network based on the 

nod genes was compared with the core gene phylogeny and further investigated. 

Finally, we identified accessory genes that are present only in the local population of R. 

leguminosarum, but absent in the reference genome of Rlv 3841. 
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Figure 4.2 | The phylogenetic tree based on all RepABC replicons in 72 R. leguminosarum strains (Taken 

from Kim, 2012). Each terminal cluster represents a distinct plasmid compatibility type, and the isolates 

that carry that type are indicated.     
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4.2.1 Objectives 

 

The main objectives of this chapter are: 

1. Distribution of Rlv 3841 genes in the local population of R. leguminosarum 

strains. 

2. Phylogenetic analyses of the R. leguminosarum strains based on Rlv 3841 

replicons (chromosome, chromids and plasmids). 

3. Phylogenetic analyses of the local population based on nodulation genes. 

4. Identification of specific genes that are presents only in the local population and 

absent in Rlv 3841. 
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4.3 Materials and Methods 
 

The strains studied in this chapter are: 72 R. leguminosarum strains, USDA 2370
T
, Rlt 

WSM1325 (Reeve et al., 2010a) and a reference genome of Rlv 3841 (Young et al., 

2006). The file (.fnn) of gene information for each Rlv 3841 replicons was downloaded 

from the National Center for Biotechnology Information (NCBI). These files were 

concatenated into one file and named the super gene file. 

4.3.1 Construction of presence/absence matrix based on Rlv 3841 

replicons 

 

The Newbler 2.5 software with 90% sequence identity and 40-bp minimum overlap as 

parameter was used from the command line to perform individual reference-based 

assembly of R. leguminosarum strains against the super gene file (file consisting of 

genetic information of all Rlv 3841 replicons). Linux “grep” command was used to 

extract information based on Rlv 3841 genes from the file 454RefStatus.txt (one of the 

outputs of Newbler that provides the statistical information on the number of mapping 

reads to each reference sequence). The extracted data was converted into binary format 

(1-present & 0-absent) based on at least one unique mapped read by Perl. In order to 

construct a presence/absence matrix of each Rlv 3841 replicon, the binary formatted 

files were combined on the basis of seven Rlv 3841 replicons. These seven 

presence/absence matrices were displayed as heat maps using R. 

4.3.2 Construction of phylogenetic networks based on reference 

replicons  

 

For this analysis, the genome Rlt WSM1325 (Reeve et al., 2010a) and draft genome of 

USDA 2370
T
 was also included. In order to construct phylogenies, we used the output 

file: 454AllContigs.fna (contigs larger than 100 bp) to extract the nucleotide 

information based on Rlv 3841 genes from the assembly results using 

extractSequence.pl (http://seqanswers.com/forums/showthread.php?t=9498), and the 

http://seqanswers.com/forums/showthread.php?t=9498
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extracted information was merged with their respective genes present in Rlt WSM1325. 

The gene files were merged according to their location in the seven replicons resulting 

in seven multi FASTA files. MAFFT (Katoh and Standley, 2013) with auto option was 

implemented to align each of the seven multi FASTA files. The alignment results were 

visualized as phylogenetic networks using SplitsTree version 4.11 (Huson and Bryant, 

2006). 

4.3.3 Construction of phylogenetic networks based on nod genes 

 

The genetic information of 13 nodulation genes (Young et al., 2006) of Rlv 3841 (Table 

4.1) in viciae strains was extracted from the above results of reference-based assembly. 

Similarly, this information was extracted for trifolii strains by performing reference-

based assembly using nod genes (Table 4.2) of pR132501 (Rlt WSM1325) as reference 

strains (Reeve et al., 2010a). The multiple alignment of each individual gene was 

performed by MUSCLE (Edgar, 2004). Each alignment was checked manually for 

sequence information. The sequence data for nodT and nodO genes was available for 

fewer of the isolates than other nod genes, thus they were not used in this study. The 

remaining nod gene alignments were concatenated into a super-alignment. The super-

alignment results were visualized as phylogenetic networks using SplitsTree version 

4.11 (Huson and Bryant, 2006). 
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Table 4.1 | The 13 nod genes and their position in pRL10 of Rlv 3841. Genes with an asterisk were used 

in the phylogenetic analysis.  

Locus tag Gene symbol Position Strand 

pRL100175 nodO 174948..175802 + 

pRL100178 nodT 177479..178927 - 

pRL100179* nodN 179095..179580 - 

pRL100180* nodM 179658..181484 - 

pRL100181* nodL 182056..182628 - 

pRL100182* nodE 183222..184433 - 

pRL100183* nodF 184434..184712 - 

pRL100184* nodD 185357..186289 - 

pRL100185* nodA 186548..187138 + 

pRL100186* nodB 187135..187785 + 

pRL100187* nodC 187808..189085 + 

pRL100188* nodI 189123..190157 + 

pRL100189* nodJ 190161..190940 + 

 

 

Table 4.2 | The 11 nod genes and their position in pR132501 of Rlt WSM1325.  

Locus tag Gene symbol Position Strand 

Rleg_4909 nodN 288676..289167 - 

Rleg_4910 nodM 289247..291073 - 

Rleg_4911 nodL 291504..292055 - 

Rleg_4913 nodE 292544..293752 - 

Rleg_4914 nodF 293752..294030 - 

Rleg_4915 nodD 294503..295450 - 

Rleg_4916 nodA 295685..296275 + 

Rleg_4917 nodB 296272..296910 + 

Rleg_4918 nodC 296931..298211 + 

Rleg_4919 nodI 298242..299270 + 

Rleg_4920 nodJ 299267..300055 + 

 

 

 



 

 89 

4.3.4 Population specific genes 

 

The methodology employed to identify population specific genes in Bailly et al. (2011) 

was used here to find accessory genes that were confined to the seventy-two R. 

leguminosarum strains. The Newbler 2.5 software with 90% sequence identity and 40-

bp minimum overlap as parameter was used from the command line to perform a 

reference-based assembly of all the seventy-two strains taken together against the Rlv 

3841 genome. From the output file 454ReadStatus.txt, unmapped reads were extracted 

and assembled de novo as described in 2.3.2. Contigs larger than 500 bp were annotated 

using the RAST server (Aziz et al., 2008) that resulted into 13,252 genes. The 

presence/absence matrix of these genes was constructed using the same strategy as 

described above. 
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4.4 Results 
 

4.4.1 Presence/Absence analysis:  

 

The presence/absence matrices (Figure 4.3-4.6) based on the genes of Rlv 3841 

replicons (chromosome, 2 chromids and 4 plasmids) displayed the distribution of the 

accessory genes in the local population of R. leguminosarum. In each matrix, genes are 

represented as columns, while rows represent strains of the population and organized 

according to their related genospecies (top to bottom: A to E). Genes that are present in 

individual strains are colored blue, whereas white indicates absent genes. Genomic 

islands of chromids and plasmids that are described in this study are highlighted in 

green. 

The chromosomal matrix (Figure 4.3) revealed the ubiquitous distribution of 

chromosomal genes in this population, but some genomic islands were observed in this 

population or in some individuals. For example, the known genomic island (RL0790-

RL0841: G1 in Figure 4.3) in Rlv 3841 (Young et al., 2006) was absent except TRX_9 

(a member of genospecies E). Other missing genomic island was comprised of around 

40 genes (RL2155- RL2195: G2 in Figure 4.3) with unknown functions.  

The Chromid matrices (Figure 4.4) displayed the conserved nature of genes of pRL12 

(Figure 4.4A) and pRL11 (Figure 4.4B) in this population. The pRL12 matrix (Figure 

4.4A) displayed a genomic island, which was mostly carried by the isolates of 

genospecies B (VSX_18, VSX_15, TRX_33, TRX_32, TRX_31, TRX_27, TRX_25, 

TRX_18, TRX_15, TRX_13, TRX_12 and TRX_2) and absent in the members of other 

genospecies. This region harbors many ABC transporter genes (Appendix table III.I). 

The enrichment of ABC transporter genes in this genomic island was confirmed by 

using the Pearson’s Chi-square test, which was performed by using 269 ABC 

transporter genes (total) of Rlv 3841 genome (13/269 genes, P value < 0.05).  

Interestingly, the genetic information of two large plasmids (Figure 4.5) was widely 

distributed in this population (especially in genospecies B). We observed that the 
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pRL10 matrix (Figure 4.5A) could be divided into two halves. The first half (around the 

first 200 genes) reflected the property of accessory genes (sporadically distributed) and 

the other half showed the property of core genes (highly conserved). The nodulation 

genes (shown in gold) are located in the accessory part or first half. These genes are 

highly diverged in trifolii strains, so are mostly shown as “absent” in this symbiovar. 

The genes of the other large plasmid (Figure 4.5B) were abundant in genospecies B. We 

observed four genomic islands that are specific to the genospecies B. These islands 

include many ABC transporter genes (Appendix table III.II-V). Collectively, the 

enrichment of ABC transporter genes in these genomic islands was confirmed by using 

the Pearson’s Chi-square test, which was performed by using total number of ABC 

transporter genes in Rlv 3841 genome (12/269 genes, P value < 0.05).  

The genetic information of the small plasmids (pRL8 and pRL7) was almost absent in 

this population (Figure 4.6). Interestingly, we found a set of five putative pRL8 genes 

(Table 4.3) that were present only in symbiovar viciae strains (except VSX_18) and 

absent in all trifolii strains (shown in brown in Figure 4.6A), thus these genes are called 

Bvs (biovar viciae specific) genes.  

Table 4.3 | Bvs (Symbiovar viciae specific) genes and their location in pRL8. 

Locus tag Position Annotated Function Strand 

pRL80073 76316..77521 putative cysteine desulfurase - 

pRL80074 77684..78604 LysR family transcriptional regulator - 

pRL80075 78784..79167 putative endoribonuclease L-PSP family protein + 

pRL80076 79231..80253 putative aliphatic nitrilase + 

pRL80077 80256..81245 putative molybdenum-binding oxidoreductase + 
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Figure 4.3 | Presence/Absence matrix obtained for 72 R. leguminosarum strains using Rlv 3841 

chromosomal genes. The presence of genes is shown in blue, and absent genes are in white. Rows 

represent 72 strains, and columns represent chromosome genes that are longer than 100 bp. Strains are 

arranged according to their respective genospecies (A-E). G1 and G2 represent two missing genomic 

islands of this population. 
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                                              A                                                                                                                B            

Figure 4.4 | Presence/Absence matrix obtained for 72 R. leguminosarum strains using Rlv 3841 chromid genes (A: pRL12, B: pRL11). In both matrices, the presence of genes is 

shown in blue, absent genes are in white. Rows represent 72 strains, and columns represent plasmid genes that are longer than 100 bp. Strains are arranged according to their 

respective genospecies (A-E). Studied genospecies B specific island in pRL12 (Appendix table III.I) is highlighted in green.  
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                                                       A                                                                                      B 

Figure 4.5 | Presence/Absence matrix obtained for 72 R. leguminosarum strains using Rlv 3841 large plasmid genes (A: pRL10, B: pRL9). In both matrices, the presence of genes is 

shown in blue, absent genes are in white. Rows represent 72 strains, and columns represent plasmid genes that are longer than 100 bp. Strains are arranged according to their 

respective genospecies (A-E). The nod genes in pRL10 are shown in gold. Studied genospecies B specific islands in pRL9 (Appendix table III.II-V) are highlighted in green. 
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                                                                       A                                                                           B 

Figure 4.6 | Presence/Absence matrix obtained for 72 R. leguminosarum strains using Rlv 3841 small plasmid genes (A: pRL8, B: pRL7). In both matrices, the presence of genes is 

shown in blue, absent genes are in white. Rows represent 72 strains, and columns represent plasmid genes that are longer than 100 bp. Strains are arranged according to their 

respective genospecies (A-E). The Bvs (symbiovar viciae specific) genes in pRL8 are in brown. 
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4.4.2 Phylogenetic analysis of reference replicons 

 

In order to investigate the phylogenetic diversity in the local population based on the 

observed genes, phylogenetic networks based on each replicon were constructed (Figure 

4.7 - 4.10). For this analysis, we also included the draft genome of USDA 2370
T
 and the 

Rlt WSM1325 genome to obtain a complete picture, but not for the analysis of pRL8 

and pRL7.  

The networks obtained from the chromosome (Figure 4.7), chromids (pRL12: Figure 

4.8A and pRL11: Figure 4.8B) and large plasmids (pRL10: Figure 4.9A and pRL9: 

Figure 4.9B) displayed the same five genospecies (A-E) observed in the core genes 

phylogeny (Figure 3.1). Most of the strains are clustered in two big genospecies (B and 

C). Small genospecies are in the same position observed in the core genes phylogeny. 

The reference genome is still located in genospecies B. Both USDA 2370
T
 and Rlt 

WSM1325 are still closely related to the strain of genospecies A (TRX_34).  Moreover, 

deep investigation of each network revealed the conserved nature of sub-clusters of 

genospecies C discovered in the 100-gene ML tree (Figure 3.1).  

The chromosomal network (Figure 4.7) displayed almost all the sub-clusters of 

genospecies C. For example, a mixed group contained ten viciae (VSX_38, VSX_14, 

VSX_ 22, VSX_2, VSX_21, VSX_9, VSX_10, VSX_31, VSX_36, VSX_34) and one 

trifolii (TRX_35) strains, a viciae cluster comprised of three viciae isolates: VSX_5, 

VSX_1, and VSX_3 and a hybrid cluster contained one trifolii (TRX_26) with three 

viciae (VSX_28, VSX_26 and VSX_35) members. 

Some of these clusters were also observed in the networks of chromids (Figure 4.8A 

and B) and large plasmids (Figure 4.9A and B). For instance, a viciae cluster (VSX_4, 

VSX_27, VSX_16, VSX_30, VSX_24, VSX_37, VSX_29 and VSX_26) was conserved 

in all the networks. The cluster comprised of TRX_1 and VSX_25 in the 100-gene ML 

tree (Figure 3.1) was located at the same position in pRL11 (Figure 4.8B), pRL10 

(Figure 4.9 A) and pRL9 (Figure 4.9 B) networks. 
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The network obtained from the smallest plasmid pRL8 (Figure 4.10 A) was based on 

less genetic information and was poorly resolved, but it differentiated the population 

into five genospecies (A-E) except for two strains (reference plasmid and VSX_15) of 

genospecies B that are clustered with genospecies C. The possible reason of different 

location of reference plasmid and VSX_15 is the presence of Bvs genes in the 

symbiovar viciae population. 

Finally, the phylogenetic network of pRL7 (Figure 4.10 B) was completely different 

from the core genes phylogeny (Figure 3.1). The network was not fully resolved and 

was based on limited information, but there are some clear groups that consisted of 

members of different genospecies such as one group that includes members of 

genospecies E (TRX_9, VSX_33 and TRX_22), C (TRX_3), B (TRX_12) and D 

(TRX_8 and TRX_4) were clustered into a single group and genes responsible for this 

group belong to one of the conjugative systems (Table 4.4) of pRL7. Intriguingly, this 

network (Figure 4.10 B; Appendix figure III.I) could be divided into two splits based on 

two symbiovars (trifolii and viciae) of R. leguminosarum. One half consists of all trifolii 

strains except TRX_14 and the other half includes all viciae strains except VSX_33 that 

indicate the presence of host specific genes of both symbiovars on this plasmids. 

. 

Table 4.4 | Genes responsible for one of the conjugative systems of pRL7.  

Locus tag Gene symbol Position Strand 

pRL70084 traD 68791..69006 - 

pRL70085 traC 69011..69304 - 

pRL70086 traA 69560..72886 + 

pRL70087 traF 72883..73446 + 

pRL70088 traB 73436..74599 + 

pRL70089 traH 74616..75236 + 

pRL70091 traI 75784..76398 - 
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Figure 4.7 | Phylogenetic network obtained from the chromosomal genes of Rlv 3841 for 72 R. leguminosarum strains. Strain nodes are circled according to their genospecies (A: 

purple, B: salmon, C: green, D: cyan, E: dark red).  Rlv 3841 is shown by the salmon square, Rlt WSM1325 in the white square and USDA_2370
T
 in the white circle. 
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                                                                   A 

 

                                                                         B 

Figure 4.8 | Phylogenetic network obtained from the two chromid genes (A: pRL12, B: pRL11) of Rlv 

3841 for 72 R. leguminosarum strains. Strain nodes are circled according to their genospecies (A: purple, 

B: salmon, C: green, D: cyan, E: dark red).  Rlv 3841 is shown by the salmon square, Rlt WSM1325 in 

the white square and USDA_2370
T
 in the white circle. 
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Figure 4.9 | Phylogenetic network obtained from two large plasmids (A: pRL10, B: pRL9) of Rlv 3841 

for 72 R. leguminosarum strains. Strain nodes are circled according to their genospecies (A: purple, B: 

salmon, C: green, D: cyan, E: dark red).  Rlv 3841 is shown by the salmon square, Rlt WSM1325 in the 

white square and USDA_2370
T
 in the white circle. 
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Figure 4.10 | Phylogenetic network obtained from two small plasmids (A: pRL8, B: pRL7) of Rlv 3841 

for 72 R. leguminosarum strains. Strain nodes are circled according to their genospecies (A: purple, B: 

salmon, C: green, D: cyan, E: dark red).  Rlv 3841 is shown by the salmon square. 
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4.4.3 Phylogenetic analysis of nodulation (nod) genes 

 

In the presence/absence matrix of pRL10 (4.5A), the nod genes of Rlv 3841 were highly 

conserved in viciae strains, but not in trifolii strains. Therefore, a phylogenetic network 

(Figure 4.11) was constructed based on 11 nod genes of Rlv 3841 (Table 4.1) and Rlt 

WSM1325 (Table 4.2) in which strains are colored according to their genospecies (A: 

purple, B: salmon, C: dark green, D: cyan and E: dark red). The network (Figure 4.11) 

can be divided into two groups: trifolii group (consisted of all trifolii strains) on the left 

hand side with Rlt WSM1325 and viciae group (all viciae strains) on the right hand side 

with Rlv 3841 (pRL10). The separation between these two groups reflected the genetic 

diversity of nodulation genes between two symbiovars of R. leguminosarum. Moreover, 

these two groups are composed of several sub groups. In order to explore the 

mechanism of inheritance in nod genes, these two groups (trifolii and viciae) were 

compared individually with the core gene phylogeny (Figure 3.1). A detailed 

comparative analysis is described below: 

The phylogenetic network obtained from Rlv 3841 nod genes differentiates the viciae 

isolates except VSX_11, VSX_15 and VSX_18 into four clear clusters (Figure 4.12). 

The multiple strains of genospecies C with or without the strains of different 

genospecies are differentiated into these four groups: 1. A cluster consisted of sub 

cluster of genospecies C (VSX_34, VSX_22, VSX_2, VSX_31 and VSX_36) and one 

strain (reference plasmid pRL10) of genospecies B. 2. A cluster contained two strains of 

a subgroup of genospecies C (VSX_3, VSX_5) and genospecies E strain (VSX_33). 3. 

A cluster consisted of 4 isolates (VSX_25, VSX_9, VSX_10 and VSX_38) of 

genospecies C. The hybrid strain, VSX_1 of genospecies C, was located in the middle 

of two groups (2 and 3). 4. The remaining genospecies C strains were located in the last 

cluster (poorly resolved) 
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The phylogenetic network obtained from the nod genes of Rlt WSM1325 was based on 

the poor genomic alignment data (two of eleven genes have sequence information for all 

the isolates) that resulted into many reticulation events, but differentiates the trifolii 

members except Rlt WSM1325 (WSM1325) and TRX_17 into five clear groups (Figure 

4.13). The strains of genospecies B were clearly differentiated into two groups:  1. A 

cluster consisted of 4 members (TRX_27, TRX_32, TRX_18 and TRX_12) with the 

member of genospecies A (TRX_34). 2. A cluster consisted of 6 strains (TRX_31, 

TRX_25, TRX_13, TRX_2, TRX_33 and TRX_15). Similarly, most of the genospecies 

C strains were distributed into two major groups (not present in core genes phylogeny) 

except TRX_17 and TRX_3. The completely resolved group of genospecies C was 

comprised of four trifolii strains (TRX_1, TRX_28, TRX_14 and TRX_26). Finally, the 

last group consisted of strains from different genospecies:  genospecies D (TRX_4, 

TRX_8, TRX_11 and TRX_29), a strain of genospecies C (TRX_3) and two strains of 

genospecies E (TRX_9 and TRX_22). 
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Figure 4.11 | Phylogenetic network obtained from 11 nod genes of Rlv 3841 and Rlt WSM1325 for 36 R. 

leguminosarum viciae and 36 trifolii strains respectively. Strain nodes are colored according to their 

genospecies (A: purple, B: salmon, C: green, D: cyan, E: dark red). The pRL10 in the salmon square 

represents Rlv. 3841. Rlt WSM1325 is shown by white rectangle. 
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Figure 4.12 | Phylogenetic network obtained from 11 nod genes of Rlv 3841 for 36 R. leguminosarum 

viciae strains. Strain nodes are colored according to their genospecies (A: purple, B: salmon, C: green, D: 

cyan, E: dark red).  The pRL10 in the salmon square represents Rlv. 3841. 

 

 

 

 

 

 

 

Figure 4.13 | Phylogenetic network obtained from 11 nod genes of Rlt WSM1325 for 36 R. 

leguminosarum trifolii strains. Strain nodes are colored according to their genospecies (A: purple, B: 

salmon, C: green, D: cyan, E: dark red). Rlt WSM1325 is shown by white rectangle. 
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4.4.4 Population specific genes 

 

We obtained 8802 contigs with a total size of 11,250,877 bp from the de novo assembly 

of 454 reads that are confined to 72 R. leguminosarum strains from the Wentworth 

population. These contigs were automatically annotated by the RAST server (Aziz et 

al., 2008), which resulted in 13,252 CDS. They showed a close relationship of codon 

usage with the genes of Rlt WSM1325 (score: 521), CIAT 652 (score: 480) and 

Rlv_3841 (score: 478). Genes were functionally categorized under 181 subsystems. The 

maximum number of features in the subsystem was related to carbohydrate metabolism, 

amino acids and derivatives.   

In order to explore the genetic diversity of 13,252 genes in 72 isolates, a 

presence/absence matrix (Figure 4.15) was generated in which rows represent strains 

and columns represent genes. The matrix was clustered on the basis of both rows 

(strains) and columns (genes). The row clustering resulted in the arrangement of strains 

according to their genospecies (A-E) except A (TRX_34), which is clustered between 

the strains of genospecies B. The genes clustering resulted in the grouping of genes 

according to their distribution. This clustering reflected the genes that are shared by the 

members of a specific genospecies, two genospecies, all genospecies and genes that are 

strain specific. For example, genes located on the extreme right (Figure 4.15) were 

conserved in all the members of genospecies C. We examined the genes that are 

genospecies specific. The specific genes of genospecies B, D and E are based on 

conserved genes shared by all the members of the related species, whereas specific 

genes of genospecies C are those that may or may not be present in a strain of this 

genospecies. As expected, the maximum number of specific genes is located in the 

members of genospecies C (Table 4.5) and the genospecies B harbors minimum number 

of these genes (Table 4.5). The specific genes of genospecies A (one strain) were not 

considered for this analysis.  

The direct relationship of specific genes with the sequence coverage (Figure 4.14) 

suggested the presence of many other unique genes. The maximum numbers of unique 

genes were observed in TRX_6, which had highest sequence coverage (10.06 X), while 

strains of genospecies B (VSX_18: 1.08 X, TRX_27: 0.87 X, TRX_31: 0.68 X, 
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TRX_32: 0.86 X) and genospecies A (TRX_34: 0.73 X) had carried minimum number 

of specific genes (bottom left in Figure 4.14). 

 

Table 4.5 | Specific genes present in each genospecies (B-E)  

Genospecies Number of specific genes 

B 145 

C 4670 

D 355 

E 367 

 

 

 

 

 

 

 

Figure 4.14 | The direct relationship between the number of observed specfic genes and sequence 

coverage in each of 72 R. leguminosarum strains. 
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Figure 4.15 | Heatmap of population specific gene presence (blue) and absence (white) in 72 R. 

leguminosarum strains and absent in Rlv 3841. Both strains (rows) and genes (columns) were clustered.  

Strains are highlighted by their related genospecies (A: purple, B: salmon, C: green, D: cyan, E: dark red).
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4.5 Discussion 
 

The two standard approaches for genome assembly are: reference based assembly and 

de novo assembly. The reference-based assembly is based on a reference genome from 

the same organism or a closely related species that allow us to identify and align the 

reference genes that are present in the assembled genome. A major disadvantage of this 

approach is that accessory genes of assembled genome that are absent from the 

reference genome will be ignored. In contrast, de novo assembly assembles the genome 

without the aid of a reference genome. Unlike reference-based assembly, it assembles 

whole of the genome but is computationally intensive and unable to separate the long 

tandem repeats (Didelot et al., 2012a). In this chapter, we represented the detailed study 

of the accessory genome in the members of five genospecies (A-E) of R. 

leguminosarum based on the reference based assemblies  (4.3.1-4) using Rlv 3841 

genome as a reference and a de novo assembly (4.3.4). 

4.5.1 Presence/absence matrices 

 

The results of presence/absence matrices (Figure 4.3-4.6) suggested that the genes of 

each replicon (except pRL7 and pRL8) of Rlv 3841 are highly conserved in this 

population. The majority of reference genes were found in the strains of the related 

genospecies (genospecies B) of the reference genome. The chromosomal genes are 

highly conserved in this dataset (Figure 4.3), but a few missing genomic islands were 

observed. 

The conserved nature of chromids (Harrison et al., 2010) can be observed in the 

presence/absence matrices based on the genes of pRL12 and pRL11 replicons (Figure 

4.4). The presence of genomic islands in these matrices displayed evidences of HGT in 

chromid genes. For instance, ABC transporter enriched genomic island (green region) 

of pRL12 (Figure 4.4A) was located in the members of genospecies B only. Similarly, 

the genomic island of pRL11 (Figure 4.4B) was conserved in some members of 

genospecies (C and D), but absent in genospecies B.  
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Similarly, most of the genes in plasmids pRL10 and pRL9 are widely distributed in this 

dataset (Figure 4.5A and B). Young et al. (2006) proposed that the genomic region of 

pRL10 is divided into two compartments. The first compartment is an accessory 

compartment composed of the first 200 genes, including nodulation genes, while the 

other compartment consists of core genes. This structure of pRL10 was also reflected in 

the presence/absence matrix of pRL10: the first compartment of pRL10 is sporadically 

distributed, whereas the second compartment is highly conserved in this dataset. Also, 

the matrix shows the conserved nature of nod genes in viciae strains, which allowed us 

to conclude that viciae strains shared these genes with Rlv 3841, while the other 

symbiovar (trifolii) of R. leguminosarum harbors a diverged copy of these genes and 

acquired these genes from a different ancestor. 

Although most of the pRL7 and pRL8 genes are absent, the pRL8 presence/absence 

matrix (Figure 4.6A) helped us to identify five Bvs genes in this replicon that are 

specifically present in the population of one symbiovar (viciae) and absent in other 

symbiovar (trifolii). These genes might play a role in adaptation or have a specific 

function such as nitrogen fixation, but one that is needed only in certain host plants 

4.5.2 Phylogenetic analysis of reference replicons 

 

Because accessory genes are present in a subset of species strains, the chief mechanism 

that drives these genes is horizontal gene transfer (HGT). This mechanism allows gene 

exchange between the strains of same or different species, which results in the 

phylogenetic discordance between genes and species trees (Beiko et al., 2005; Eisen, 

2000; Maddison, 1997; Schliep et al., 2011; Tian et al., 2010). We observed that the 

replicon based phylogenies (except pRL8 and pRL7) showed a similar core gene 

phylogenetic structure, which indicates that most of the genes in each replicon share the 

core gene phylogeny. Also, it reflected that there is not much exchange between 

genospecies. Similarly, Mazur et al. (2011) compared multiple R. leguminosarum 

symbiovar trifolii strains in which the phylogenetic structure of core genes was 

observed in the phylogenies of the chromosome, chromids and plasmids. Mazur et al. 

(2011) hypothesize the presence of stable genes in each replicon for this phylogenetic 

similarity.  
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It is interesting to note that TRX_1 and VSX_25 are outliers in genospecies C in the 

phylogeny of chromosome (Figure 4.7), pRL11 (Figure 4.8B), pRL10 (Figure 4.9A) 

and pRL9 (Figure 4.9B). However, these strains were located at different positions in 

the network of pRL12 (Figure 4.8A). According to the analysis of pRL12-like repABC 

genes (Kim, 2012), the VSX_25 is still an outlier in genospecies, whereas TRX_1 is 

more typical, similar to VSX_39 (a member of genospecies C). These results suggest 

that largest chromid (pRL12) was conserved in VSX_25, but TRX_1 acquired this 

chromid from a more typical genospecies C strain.  

The phylogenetic network of pRL7 (Figure 4.10B) is the only plasmid network that 

showed no similarity with the core gene phylogeny. Surprisingly, it has strong 

phylogenetic signals that discriminate the two symbiovars (viciae and trifolii), 

indicating that a large number of pRL7 genes confer the host specificity. However, 

weak phylogenetic signals of individual genes were not able to discriminate the two 

symbiovars. Moreover, this network represents the perfect example of gene transfer 

between the members of five genospecies in the form of a cluster composed of isolates 

of genospecies E (TRX_9, VSX_33 and TRX_22), C (TRX_3), B (TRX_12) and D 

(TRX_8 and TRX_4).  

4.5.3 Phylogenetic analysis of nodulation (nod) genes 

 

Like other accessory genes, nodulation genes can be transferred vertically (Alvarez-

Martinez et al., 2009), horizontally (Laranjo et al., 2008; Tian et al., 2010) or both 

(Chang et al., 2011b; Menna and Hungria, 2011; Moulin et al., 2004) in different 

Rhizobium species.  However, most nod studies are based on less genetic information, 

but this study is based on the 11 nod genes of Rlv 3841 (pRL10) and Rlt WSM1325 

(pR132501) producing a more robust analysis. We observed that the five genospecies 

structure of the core gene phylogeny is disturbed in the nodulation genes network. 

Moreover, some distinct groups were revealed in the networks of the viciae strains 

(Figure 4.12) and trifolii strains (Figure 4.13). These groups showed the evidence of 

gene transfer events between genospecies such as a group in the viciae network (Figure 

4.12) composed of 5 strains (VSX_34, VSX_22, VSX_2, VSX_31 and VSX_36) of 



 

 112 

genospecies C and one strain (reference plasmid pRL10) of genospecies B. These 

results suggested the role of HGT in shaping the nod genes of this population. 

4.5.4 Population specific genes 

 

The identification of genes that are unique to the population can be useful to identify 

ecologically adaptive genes such as Bailly et al. (2011) found rhizobitoxine synthesis 

genes. In this population, there are 13,252 specific genes that are absent in the reference 

genome of Rlv 3841. The presence of specific genetic material in each genospecies, 

shared between genospecies, shared between two strains irrespective of genospecies and 

strain specific (Figure 4.15) reflects the plasticity of the accessory genome of R. 

leguminosarum and these genes might have an important role in specific ecological 

adaptations. The accessory genome of R. leguminosarum might have a wealth of 

additional specific genes (genospecies or symbiovars) that have been missed in this 

study because of limited sequence coverage (Figure 4.14). 

Recently, Lassalle et al. (2011) found genospecies specific genes and their associated 

functions that helped a genospecies of Agrobacterium tumefaciens to adapt into a new 

ecological niche. Interestingly, the unique genes present in the genospecies C, D and E 

included many ABC transporter genes. These genes were also enriched in the genomic 

islands of genospecies B that are observed in the presence/absence matrix of pRL12 

(Figure 4.4A) and pRL9 (Figure 4.5B). Although functional information of these unique 

genes is unknown at present, these results provided a clue that these genospecies are 

phenotypically distinguishable from each other and hence are not cryptic. 

In conclusion, this chapter explores the structure and diversity present in the accessory 

(variable) genome of R. leguminosarum. The core genome of the R. leguminosarum is 

not limited to the chromosome and chromids, but extends up to large plasmids. The 

presence of five Bvs (biovar viciae specific) genes located in pRL8 may play a major 

role in the ecological adaptation. The phylogenetic results of this study demonstrate the 

presence of five genospecies (A-E) of core gene phylogeny in most of the replicon 

networks, which describes a low level of gene transfer between genospecies in these 

replicons. On the other hand, the phylogeny of pRL7 suggests the property of host 
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specificity that allows pRL7 genes to cross the boundaries of genospecies. The 

difference between the phylogenetic structure of host specific (nod) genes and core 

genes suggest the occurrence of HGT that allows species members to have different 

host specificity. The variety of specific genes in this population indicates the presence 

of different adaptations strategies in R. leguminosarum. 
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Chapter 5.  Comparative genomics of two major 
genospecies of R. leguminosarum 

 

5.1 Abstract 

 

Advances in sequencing technologies reveal diversity among strains of bacterial 

species. In this chapter, we observed genetic diversity in two major genospecies of R. 

leguminosarum by comparing a draft genome of TRX_6 (a member of genospecies C) 

with the published genome of 3841 (a member of genospecies B). The draft genome of 

TRX_6 is based on 10.06-fold coverage (89.6 Mb reads), which is assembled into 7.8 

Mbp in size and distributed into one chromosome, two chromids and two plasmids. 

Comparative analyses displayed high similarity in the regions of chromosomes and 

chromids of 3841 and TRX_6 respectively. One of the TRX_6 plasmids is a unique 

self-transmissible plasmid with its own replication system. Another plasmid harbors 

homologous genes of pRL9 and pRL10 (3841 plasmids) with the replication system of 

pRL10. A well-conserved region of conjugative genes was identified in the chromids as 

well as plasmids. This comparative analysis reflects the genomic diversity present 

between two major genospecies of R. leguminosarum. 
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5.2 Introduction 

 

With the aid of sequencing technologies and bioinformatics tools, bacterial genomes 

can be compared conveniently at the genomic level. Comparative genomics shed light 

on the genetic variation present in the strains of a bacterial species (Pallen and Wren, 

2007) and often used to discover new plasmids or genomic islands in a population. 

There are numerous bioinformatics tools that aid in two basic steps (sequence alignment 

and visulization) of comparative genome analysis (Edwards and Holt, 2013). The most 

common tool for sequence alignment is BLAST followed by MUMmer (Delcher et al., 

2002) and Mauve (Darling et al., 2004). Sequence visualization can be represented in 

linear or circular layouts. Linear layouts can be produced by ACT (Carver et al., 2005), 

MUMmer (Delcher et al., 2002) and Mauve (Darling et al., 2004) and are useful to 

identify rearrangements. However, these layouts are not suitable for analyzing multiple 

datasets. For which, circular layouts are preferred and can be constructed by using 

CGView (Stothard and Wishart, 2005), Circos (Krzywinski et al., 2009), and BRIG 

(Alikhan et al., 2011).         

The results of the previous chapters revealed five cryptic genospecies (A-E) present in 

R. leguminosarum species that are shaped by recombination. Genospecies B and C are 

two major genospecies (Figure 2.7) in which most of the strains are clustered.  In this 

chapter, we studied the genetic differences between genospecies B and C for which we 

chose the draft genome of TRX_6 (strain with highest sequence coverage (Figure 2.4) 

among all the draft R. leguminosarum genomes used in this study) as a representative of 

genospecies C. The genomic data of TRX_6 was compared with the replicons of 3841 

(representative of genospecies B) using different bioinformatics tools. For example, a 

user-friendly Java application, CGView (Stothard, Wishart 2005), was used to visualize 

the genomic properties such as GC content, GC skew, annotation, Blast results etc. 

CONTIGuator (Galardini et al., 2011), a genome-finishing tool, was used for accurate 

assembly of TRX_6 based on a reference genome of 3841.  
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5.2.1 Objectives 

 

The main objectives of this chapter are: 

A. De novo and reference-based assembly of TRX_6 using a reference genome. 

B. Comparative analysis of TRX_6 scaffolds with 3841 replicons.  

C. Correct assembly of TRX_6 chromosomal related scaffolds using 

CONTIGuator. 

D. Annotation of TRX_6 genome using RAST annotation server. 
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5.3 Material and Methods 

 

In Chapter 2, we performed the de novo assembly of 72 R. leguminosarum strains 

(Figure 2.4 and 2.5) including the TRX_6 strain using Newbler 2.5 (Roche). In this 

chapter, we performed a reference-based assembly of TRX_6 strains with a reference 

genome of Rlv 3841 using Newbler 2.5 (Roche).  

A java application known as CGView (Stothard and Wishart, 2005) was used to 

visualize the alignments of TRX_6 scaffolds with 3841 replicons (Chromosome and 

pRL12-pRL7) using local blast (BLASTn) with cut off e value of 1e-05 (most general 

value) in a circular fashion. This was achieved by modifying the Perl scripts of 

get_cds.pl and local_blast_client.pl that were available at  

http://www.ualberta.ca/~stothard/software.html.  

The Perl script of cgview_xml_builder.pl (available in CGView) was used to construct 

the eleven XML files. Each XML file consisted of information for each scaffold and its 

blast results with 3841 replicons. The command line of CGView (java –jar cgview.jar -i 

input.xml –o output.png -f png) was used to produce circular maps of scaffolds from 

each of the 11 XML files. 

MUMmer 3.22 (Delcher et al., 2002) was used to align large the TRX_6 scaffolds 

(Scaffolds 1-8) with 3841 replicons. The following commands were used: 

1. ./nucmer -p output_name reference query 

2. ./mummerplot output.delta --layout --filter -t postscript 

CONTIGuator 1.1 (Galardini et al., 2011) was used to map the contigs of TRX_6 

chromosomal scaffolds (scaffolds that showed high synteny with the Rlv 3841 

chromosome) against the chromosomal sequence of 3841. The results of CONTIGuator 

were observed using MUMmer 3.22. The RAST (Rapid Annotations using Subsytems 

Technology) server provided by Aziz et al. (2008) was used for automatic annotation of 

the 690 contigs of the TRX_6 assembly. 
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5.4 Results  

5.4.1 De novo assembly of TRX_6 

 

The de novo assembly of the TRX_6 strain suggested the presence of eleven scaffolds 

that comprised 560 contigs (Table 5.1). Scaffold 1 contained the maximum number of 

contigs (261), while each scaffold (9, 10 and 11) was comprised of one contig only. 

However, some of the contigs (130) were not assembled in any of the scaffolds. 

Table 5.1 | The TRX_6 scaffolds with their length and related number of contigs.  

Scaffold Length (Mbp) No. of contigs 

1 3.240047 261 

2 0.927736 66 

3 0.784154 48 

4 0.714784 44 

5 0.648505 32 

6 0.574747 27 

7 0.510855 54 

8 0.423327 25 

9 0.003711 1 

10 0.002921 1 

11 0.002174 1 

 7.832961 560 

 

5.4.2 Reference-based assembly of the TRX_6 genome with 3841 

 

The reference-based assembly indicated that 72.55% of the TRX_6 reads were mapped 

to the 3841 genome, while 27.45% of genomic data was unmapped. The chromosome 

of 3841 was best covered (Table 5.2) by the TRX_6 reads, whereas the two small 

plasmids (pRL7 and pRL8) were least covered. 
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 Table 5.2 | Percentage coverage of 3841 replicons with TRX_6 genome. 

 

 

 

 

 

 

 

 

5.4.3 Comparative analysis of TRX_6 with 3841 using CGView and 

MUMmer 

 

CGView generated eleven circular maps (Figure 5.1-5.5) showing alignment of TRX_6 

scaffolds with each of the replicons of 3841. Multiple scaffolds (scaffold 1, 2, 6, 8, 9, 

10, 11) shared high similarity with the 3841 chromosome. Scaffold 3 exhibits high 

similarity with pRL12. Scaffold 4 displayed high resemblance with pRL11. A part of 

Scaffold 5 displayed similarity with half of the pRL10 genes (236/446), while another 

part reflects the genes of pRL9 (199/305). Scaffold 7 showed little similarity with any 

of the Rlv 3841 replicons. All the scaffolds were deficient in the genes of pRL7 and 

pRL8. 

Intriguingly, circular maps of scaffolds 3, 4, 5 and 7 reflected a homologous region 

present in them (black rectangle in Figure 5.2 [A, B], 5.3 [A] and 5.4 [A]). This 

homologous region displayed high similarity with the region of pRL12, pRL11, and 

pRL10 that includes genes such as conjugal transfer protein traA, putative mobilization 

Replicons of 3841  Percentage coverage 

Chromosome 84.77% 

pRL12 67.44% 

pRL11 70.46% 

pRL10 59.92% 

pRL9 63.57% 

pRL8 3.79% 

pRL7 5.60% 
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protein, putative transmembrane traG transfer-related protein and transcriptional 

regulators. A detailed description of the genes of pRL12, pRL11 and pRL10 that are 

allocated to this region is given in Table 5.3. The scaffold 7 carried almost all the 

essential conjugative genes (traA encoding Dtr system oriT relaxase, trbB, trbI, trbH 

and traG), and these showed sequence similarity with the conjugative system of the 

pR132503 (Reeve et al., 2010a) of Rlt WSM1325.  

The GC content of each scaffold revealed some potential genomic islands, such as 

various regions of low GC-content in scaffold 7 (Figure 5.4A). The GC skew is not 

clearly observed in any of the scaffolds.  

 



 

 121 

 

 

 

 

 

 

 

                                                                          A                                                                                                 B 

Figure 5.1 | The circular maps of Scaffolds 1 (A) and 2 (B) of TRX_6. From outside to centre: Alignments are shown in different ring colours: chromosome (blue-green), pRL12 

(cyan), pRL11 (gold), pRL10 (violet), pRL9 (red), pRL8 (blue) and pRL7 (olive green) of 3841 using BLASTn, GC content (black), GC skew (+: green, -: dark purple).   
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                                                                             A                                                                                          B 

Figure 5.2 | The circular maps of Scaffolds 3 (A) and 4 (B) of TRX_6. From outside to centre: Alignments are shown in different ring colours: chromosome (blue-green), pRL12 

(cyan), pRL11 (gold), pRL10 (violet), pRL9 (red), pRL8 (blue) and pRL7 (olive green) of 3841 using BLASTn, GC content (black), GC skew (+: green, -: dark purple). The 

conserved region is shown in the black rectangle in A and B.   

 



 

 123 

                                                                                     

 

 

  

 

 

 

                                                                        A                                   B 

Figure 5.3 | The circular maps of Scaffolds 5 (A) and 6 (B) of TRX_6. From outside to centre: Alignments are shown in different ring colours: chromosome (blue-green), pRL12 

(cyan), pRL11 (gold), pRL10 (violet), pRL9 (red), pRL8 (blue) and pRL7 (olive green) of 3841 using BLASTn, GC content (black), GC skew (+: green, -: dark purple). The 

conserved region is shown in the black rectangle in A.  
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                                                                       A                                                                                                B 

Figure 5.4 | The circular maps of Scaffolds 7 (A) and 8 (B) of TRX_6. From outside to centre: Alignments are shown in different ring colours: chromosome (blue-green), pRL12 

(cyan), pRL11 (gold), pRL10 (violet), pRL9 (red), pRL8 (blue) and pRL7 (olive green) of 3841 using BLASTn, GC content (black), GC skew (+: green, -: dark purple). The 

conserved region is shown in the black rectangle in A.  
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Figure 5.5 | The circular maps of Scaffolds 9, 10 and 11 of TRX_6. From outside to centre: Alignments 

are shown in different ring colours: chromosome (blue-green), pRL12 (cyan), pRL11 (gold), pRL10 

(violet), pRL9 (red), pRL8 (blue) and pRL7 (olive green) of 3841 using BLASTn, GC content (black), 

GC skew (+: green, -: dark purple).   
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Table 5.3 | Description of genes of pRL10, pRL11 and pRL12 that are allocated in the homologous region 

of scaffolds 3, 4, 5 and 7. 

 

 

 

 

 

 

 

Locus tag Strand Name Function 

pRL100214 + - LysR family transcriptional regulator 

pRL100215 + - putative DNA conjugation-related protein 

pRL100216 - - hypothetical protein 

pRL100217 - - putative conjugal transfer protein 

pRL100218 - - putative mobilization protein 

pRL100219 + traA conjugal transfer protein TraA 

    
pRL110270 + - putative ArdC antirestriction protein 

pRL110271 - - putative WGR-family protein 

pRL110272 + - putative HTH-type transcriptional regulator 

pRL110274 - - putative transmembrane traG transfer-related protein 

pRL110275 - - putative mobilization protein MobS 

pRL110276 + traA putative conjugal transfer protein TraA 

    
pRL120562 + - LysR family transcriptional regulator 

pRL120563 + ardC putative ArdC antirestriction protein 

pRL120564 - - hypothetical protein 

pRL120565 - - 
putative transmembrane traG homologue/component 

of type IV secretion system 

pRL120566 - mobC putative mobilization protein C 

pRL120567 + traA putative conjugal transfer protein TraA 
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Based on these BLAST results, the scaffolds were arranged into TRX_6 replicons 

(Table 5.4). The genes of the TRX_6 chromosome were scattered on four scaffolds (1, 

2, 6 and 8). Smaller and insignificant scaffolds (9-11) were ignored. Two chromids 

(scaffolds 3 and 4) and two plasmids (scaffolds 5 and 7) were other replicons of this 

genome.  

Table 5.4 | Eleven scaffolds of TRX_6 are arranged on the basis of their similarity with 3841 replicons.  

 

 

 

 

 

To determine the major rearrangements in the scaffolds, we performed whole genome 

alignment of scaffolds (1-8) against 3841 replicons (Figure 5.6). Each dot (red for the 

forward strand and blue denotes the reverse strand) in the figure represents a MUM 

(Maximal Unique Match). The replicons of 3841 are on the X-axis, while TRX_6 

scaffolds are located on the Y-axis. The results were mirrored by the BLAST results 

such as chromosomal genes are scattered on the four scaffolds 1, 2, 6 and 8. Some 

genomic rearrangements in the chromid and plasmids were detected such as insertion in 

pRL9, insertion in scaffold 5 and clear example of inversion in pRL12/scaffold3. 

 

TRX_6 3841 

Scaffold 1,2,6,8 Chromosome 

Scaffold 3 pRL12 

Scaffold 4 pRL11 

Scaffold 5 pRL9 & pRL10 

Scaffold 7 Absent 
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Figure 5.6 | The Nucmer plots of TRX_6 scaffolds and 3841 replicons highlighting synteny relationship 

between them. Each dot represents a MUM (Maximal Unique Match). Red dots: MUMs in forward 

direction. Blue dots: MUMs in reverse direction. 
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5.4.4 Correct assembly of TRX_6 chromosomal related scaffolds using 

CONTIGuator 

 

To assemble the chromosomal related scaffolds of TRX_6 in the correct order and 

orientation, we extracted and mapped the contigs of scaffolds 1, 2, 6 and 8-11 against 

the Rlv 3841 chromosome.  The CONTIGuator considered only contigs of the scaffolds 

1, 2, 6 and 8 to construct a whole sequence of the Chromosome. The CONTIGuator 

results were observed using MUMmer. In Figure 5.7, the TRX_6 chromosome and 

scaffolds 3, 4, 5 and 7 were aligned against 3841 replicons. Each dot (red for a forward 

strand and blue for a reverse strand) in the figure represents a MUM (Maximal Unique 

Match). The replicons of 3841 are on the X-axis, while the chromosome and scaffolds 

of TRX_6 were located on the Y-axis. Extensive synteny was observed between the 

TRX_6 chromosome and 3841, which is interrupted by two large clear as well as small 

hidden genomic islands.  
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Figure 5.7 | The Nucmer plots of TRX_6 and 3841 replicons highlighting synteny relationship between 

them and correct ordering of chromosomal related scaffolds. Each dot represents a MUM (Maximal 

Unique Match). Red dots: MUMs in forward direction. Blue dots: MUMs in reverse direction. 
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5.4.5 Automatic annotation of TRX_6 genome 

 

The functional annotation from the RAST server identified 7551 CDS. The genes were 

functionally categorized under 421 subsystems (Figure 5.8). In Figure 5.8, the 

histogram shows the coverage of subsystems (40%) determined by RAST server in this 

genome. The pie chart (Figure 5.8) obtained from RAST server reflects the distribution 

of predicted genes in different subsystems. There are many carbohydrate subsystems 

including central carbohydrate and monosaccharide metabolism. Another major 

subsystem feature is amino acids and derivatives, including lysine, threonine, 

methionine, and cysteine.  

The replication systems (repABC) were located in each of the chromid and plasmid 

scaffolds. The replication system of scaffold 3 (contig00360) showed high similarity 

with the pRL12 system. Scaffold 4 (contig00380) carried a replication system that 

shared high similarity with the pRL11 system. The replication system of scaffold 5 

(contig00423) shared high similarity with the pRL10 system. The replication system of 

scaffold 7 (contig00509) was absent in 3841 and displayed high similarity with 

pR132503 (Rlt WSM1325) system. 

The expected nodulation genes (nod N, M, L, E, F, D, A, B, C, I, J) were present in this 

genome. The coding sequences of eleven nodulation genes (nod A, B, C, D, E, F, I, J, L, 

M, N) were clustered on the contig 00484 of scaffold 7 (Figure 5.9). In addition to these 

nod genes, nodX (Davis et al., 1988) was also present on the same contig (Figure 5.9) of 

scaffold 7 with other nod genes. 

As found earlier in this chapter, the RAST server also suggested the presence of coding 

sequences of conjugation genes and mobilization genes on each chromid and plasmid 

related scaffold. Scaffold 3 harbors a sequence of putative conjugal transfer protein traA 

in contig00374 and putative mobilization protein C in contig00328. Scaffold 4 includes 

a sequence of putative conjugal transfer protein traA located in contig00400 and 

putative mobilization protein mobS, which is present on contig00402 adjacent to 

contig00400. Scaffold 5 includes a sequence of conjugal transfer protein and putative 

mobilization protein C. Both of them are located in contig00451. Scaffold 7 includes a 
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sequence of putative mobilization protein C in contig00517, while a conjugal transfer 

protein is located in contig00518 adjacent to contig00517. 

 

 

 

 

 

 

 

 

Figure 5.8 | The functional subsystems present in TRX_6 determined by the RAST server.  

 

 

 

Subsystem Coverage Subsystem Category Distribution Subsystem Feature Counts 

  

   Cofactors, Vitamins, Prosthetic Groups, Pigments (233) 

   Cell Wall and Capsule (142) 

   Virulence, Disease and Defense (100) 
   Potassium metabolism (17) 

   Photosynthesis (0) 

   Miscellaneous (44) 

   Phages, Prophages, Transposable elements, Plasmids (3) 

   Membrane Transport (178) 
   Iron acquisition and metabolism (44) 

   RNA Metabolism (113) 

   Nucleosides and Nucleotides (118) 

   Protein Metabolism (238) 

   Cell Division and Cell Cycle (17) 
   Motility and Chemotaxis (135) 

   Regulation and Cell signaling (149) 

   Secondary Metabolism (2) 

   DNA Metabolism (148) 

   Regulons (0) 
   Fatty Acids, Lipids, and Isoprenoids (187) 

   Nitrogen Metabolism (30) 

   Dormancy and Sporulation (1) 

   Respiration (196) 

   Stress Response (209) 
   Metabolism of Aromatic Compounds (126) 

   Amino Acids and Derivatives (628) 

   Sulfur Metabolism (101) 

   Phosphorus Metabolism (67) 

   Carbohydrates (801) 
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Figure 5.9 | The twelve nod genes of TRX_6 (symbiovar trifolii) are located in scaffold 7. The scale (x-

axis) describes the length of the related contig 00484. The Y-axis represents the codon phase information 

(GFF format). The symbiovar trifolii specific nod gene, X, is shown in red. 
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5.5 Discussion 

 

This chapter shows a comparative genomic analysis of two genospecies (B and C) by 

selecting one strain from each of the species as their representative (TRX_6: 

genospecies C and 3841: genospecies B) strain.  

The results (CGView and MUMmer) suggested that TRX_6 has one chromosome, two 

chromids (scaffolds 3 and 4) and two plasmids (scaffolds 5 and 7). A syntenic 

relationship between both chromosomes and chromids (pRL12: scaffold3, pRL11: 

scaffold4) indicates a common origin. These observations are confirmed by the 

similarity of the replication system (repABC) in chromid pairs (Figure 4.2).  

Interestingly, scaffold 5 is the integrated plasmid that contained homologous genes of 

pRL10 and pRL9, but replication system of pRL10 only indicating a common ancestor 

of pRL10 and scaffold 5. Although homologous genes of pRL9 were present in TRX_6 

and other members of genospecies C (Figure 4.5B), homologous replication system of 

pRL9 (Kim, 2012) was absent in members of genospecies C (Figure 4.2) including 

TRX_6. We conclude that all genospecies C members may have this type of cointegrate 

plasmid. On the other hand, all members of genospecies B possessed the homologous 

replication system of pRL9, which suggested the presence of separate pRL10-like and 

pRL9-like plasmids, like 3841, rather than a cointegrate like TRX_6.  

Another plasmid (scaffold 7) of TRX_6 shared its ancestry with pR132503 (Reeve et 

al., 2010a) of Rlt WSM1325 and was absent in Rlv 3841. The homologous genes of 

replication system of pR132503 were conserved in members of genospecies C except 

TRX_3, VSX_1, VSX_3 and VSX_5 (Figure 4.2), while only a few members of 

genospecies B (TRX_12, TRX_18, TRX_31, VSX_15, and VSX_18) had this 

replication system (Kim, 2012). Based on these results, we conclude that pR132503-

type plasmid has ubiquitously distributed in genospecies C, but rarely in members of 

genospecies B. 

Nodulation (nod) genes are essential for fixing nitrogen in leguminous plants. These 

genes are generally located on the plasmids known as symbiosis plasmids or within 
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genomic islands. Studies (Crossman et al., 2008; Gonzalez et al., 2010; Lozano et al., 

2010) suggest that symbiosis plasmids have a common origin. In TRX_6, these genes 

were located on scaffold 7 that shared its ancestry with the non-symbiosis plasmid 

(pR132503) of Rlt WSM1325 (Reeve et al., 2010a) not with the symbiosis plasmid 

(pR132501) of Rlt WSM1325 (Reeve et al., 2010a). These results allow us to conclude 

that nod genes are transferred between plasmids, so that symbiosis plasmids are not 

necessarily homologous outside the symbiosis gene region. 

Additionally, a symbiovar trifolii (host) specific gene known as nodX (Davis et al., 

1988) has been detected in TRX_6, which is absent in Rlv 3841. However, there are a 

few exceptional viciae strains such as Rlv TOM that harbor nodX genes and can 

nodulate Afghanistan peas (Davis et al., 1988). The sequence of nodX genes is found in 

all the draft genomes of the trifolii, but absent in viciae strains except VSX_1.  Based 

on these results, we conclude that nodX is a highly conserved gene in the symbiovar 

trifolii, but uncommon in symbiovar viciae strains.  

Conjugative plasmids are the key agents for the bacterial diversity and harbor 

specialized accessory genes. Conjugative plasmids are also observed in Rhizobium 

species such as R. etli CFN 42 that has two conjugative plasmids: p42a and p42d 

(Crossman et al., 2008; Tun-Garrido et al., 2003). The replication system (repABC) of 

two conjugative plasmids (pRL7 and pRL8) of 3841 (Young et al., 2006) is absent in 

the TRX_6 genome. Two chromids (scaffold 3 and 4) and a plasmid (scaffold 5) in 

TRX_6 displayed the presence of mobilisation genes related to those of non-self 

transmissible replicons (pRL12, pRL11, and pRL10) of 3841 (Ding et al., 2013; Young 

et al., 2006), whereas the presence of almost all the conjugative genes (traA encoding 

Dtr system oriT relaxase, trbB, trbI, trbH and traG) suggests the self-transmissible 

characteristic of scaffold 7.  

A further detailed comparative study could be useful to predict genomic islands that are 

present or absent in these two genomes. In order to explore genetic diversity, strains of 

different genospecies can be compared against the reference genome of TRX_6. 
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In conclusion, we report a significant similarity between genospecies C (TRX_6) and 

genospecies B (3841), which are two major genospecies of R. leguminosarum. The draft 

genome of TRX_6 includes one chromosome, two chromids and two plasmids. The two 

plasmids of TRX_6 are the main source of genetic differences. One of them is a unique 

self-transmissible plasmid that shares evolutionary history with the Rlt WSM1325 

plasmid and present in all members of genospecies C except TRX_3, VSX_1, VSX_3 

and VSX_5, but absent in 3841 and other members of genospecies B. However, another 

cointegrate plasmid is present in all members of genospecies C, but absent in members 

of genospecies B.  
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Chapter 6.  General Discussion 

 

The purpose of this study was to explore the nature of bacterial species and the role of 

recombination barriers, based on a set of population genomic data. The ecotype model 

is one of the most famous species models in which bacterial species are further 

classified into ecologically distinct populations (ecotypes) that are governed by the 

cohesive force of periodic selection, while the role of recombination in the divergence 

of these species is insignificant. Sequence clusters obtained by massive sequencing and 

new methodologies strongly correspond with bacterial ecotypes. However, this thesis 

has shown that genospecies based on core genes can be different from ecological 

clusters that are specialized for separate host plants. In contrast to periodic selection, 

recombination can have a significant role in the divergence of different genospecies. 
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6.1 Synopsis  
 

Chapter 2 described the presence of genospecies that are different from symbiotic 

ecotypes. It was found that a local population of R. leguminosarum falls into five 

discrete clusters that correspond to five cryptic genospecies (A-E) based on core genes 

and ANI analysis (a robust alternative to DDH) that did not seem to be congruent with 

bacterial species based on ecological properties, in which ecotypes would correspond to 

distinguishable genetic clusters (Cohan and Perry, 2007; Connor et al., 2010; Didelot et 

al., 2011; Ward et al., 2008). This finding is much the same for the species within 

Bacillus cereus sensu lato (Zwick et al., 2012) where plasmid-encoded pathogenic 

properties are used to classify three closely related species (B. cereus, B. anthracis, B. 

thuringiensis) of this group (Guinebretiere et al., 2008; Helgason et al., 2000). 

However, clusters of mixed strains of these species based on MLST (Priest et al., 2004) 

and whole genome sequencing (Zwick et al., 2012) indicated the presence of common 

core genomic backgrounds as well as evidence of HGT between these species that 

allows species members to have different pathogenic properties. For example, strains of 

B. cereus (Klee et al., 2010; Oh et al., 2011) that are closely related to B. anthracis have 

ability to cause anthrax because these B. cereus strains contained plasmids similar to the 

anthrax related plasmids present in B. anthracis (Okinaka et al., 1999). Similarly, the 

presence of insecticidal crystal toxin gene is the only genetic difference that 

differentiate B. thuringiensis from B. cereus. Another related study involves the 

Shigella bacterium (human pathogen) evolved from commnesal Escherichia coli (E. 

coli). Initially, Shigella was classified as a separate and closely related genus to 

Escherichia coli (Ewing, 1949), which is no longer valid because genomic evidences 

such as common chromosomal genes, acquistion of virulence plasmids and loss of 

virulence genes indicates that these are human-adapted pathovars of Escherichia coli 

that can invade the intestinal epithelium and cause dysentry (Holt et al., 2012; Pupo et 

al., 2000; Yang et al., 2005).  

It was observed that each genospecies was comprised of mixed symbiovars; for 

example, the reference genome was clustered with symbiovars in one of the 

genospecies. This genospecies has been observed in other regions of the world such as 
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Sweden, Scotland and China, indicating that this genospecies is not confined to this 

isolated site (Wentworth, York).  

Population genomics of the R. leguminosarum species complex (R. leguminosarum, R. 

etli, R. pisi, R. fabae and R. phaseoli) explored the relatedness of five genospecies with 

other R. leguminosarum strains and existence of different members of one of the 

genospecies that are isolated from different locations. Moreover, this study made 

significant contribution to the rhizobium taxonomy by endorsing a study (Lopez-

Guerrero et al., 2012) that suggests reclassifying CIAT652 as a strain of R. phaseoli and 

confirmed the classification of two novel species (R. pisi and R. fabae) into one single 

species as discussed by Alvarez-Martinez et al. (2009) based on a relatively small 

amount of data. 

Chapter 3 shed light on the role of recombination in the maintenance of five 

genospecies. We observed that most of the core genes were affected by recombination 

supporting the importance of chromosomal recombination in the evolution of R. 

leguminosarum; this is interesting because recombination in the chromid and plasmid 

was more frequent than the chromosome in a population of S. medicae (Bailly et al., 

2011). The results from ClonalFrame analysis supported the presence of five 

genospecies in our dataset and indicated higher rates of recombination between 

members of the same genospecies rather than between them. These data endorsed the 

theory of recombination (Fraser et al., 2009; Fraser et al., 2007; Majewski et al., 2000; 

Roberts and Cohan, 1993; Zawadzki et al., 1995) in which decline of recombination rate 

is associated with increase in sequence divergence. Moreover, the Structure analysis 

inferred five ancestral populations in our dataset that strongly correlated with these 

biological genospecies. ClonalFrame and Structure analysis have been widely used for 

detecting the population structure and bacterial species in different bacterial populations 

(Cadillo-Quiroz et al., 2012; Didelot et al., 2012b; Doroghazi and Buckley 2010; Joseph 

et al., 2012; Shapiro et al., 2012). The recently diverged populations observed in ocean 

bacteria (Shapiro et al., 2012) and a thermoacidophilic archaeon (Cadillo-Quiroz et al., 

2012) are compatible with the ecotype model, but our study involves a population of 

symbiovars, which is a much later stage in bacterial speciation and displays a lack of 

association between genetic clusters and ecological adaptation. 
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Chapter 4 investigated the genetic diversity and phylogenetic structure of five 

genospecies in the accessory genome of R. leguminosarum. The presence/absence 

matrices based on the genes of reference replicons indicated that core genes were not 

only located on the chromome and chromids, but also on large plasmids. Although 

genetic information of small plasmids was almost absent, symbiovar specialization of 

five specific (Bvs) genes in one of the smallest plasmids reflected genetic plasticity in 

symbiovar viciae isolates. In the context of phylogeny, reference based replicon 

phylogenies displayed the same five genospecies structure as observed in core genes 

phylogeny implies lack of transfer between genospecies in different replicons of R. 

leguminosarum. It is interesting to note that one of the reference based plasmid 

phylogenies showed clusters of mixed strains of different genospecies with signals of 

symbiotic properties. The nod genes are among the host specific symbiosis genes that 

are generally maintained by homologous recombination or HGT. Findings show that 

these genes were maintained by HGT, which allow them to cross the genospecies 

barriers. It was found that a pool of accessory genes was available in a local population, 

which is absent in reference genome. On the other hand, genetic variation in the shared 

population of S. medicae (Bailly et al., 2011) was very low. Remarkably, clusters of 

genes with unknown functions were able to differentiate five genospecies. Potentially, 

these genes could explain the phenotypic differences between these genospecies. This 

finding parallels the findings of Lassalle et al. (2011), where genes specific to a 

genospecies of Agrobacterium tumefaciens were identified, functionally annotated and 

experimentally confirmed. 

Chapter 5 described the genetic differences between two major genospecies (B and C) 

of R. leguminosarum based on the comparative analysis of two representative strains. 

Genospecies C is represented by the draft genome of TRX_6, which is classified into 

one chromosome, two chromids and two plasmids, whereas the fully sequenced genome 

of 3841 represents genospecies B. A significant similarity was observed in the regions 

of chromosomes and chromids between TRX_6 and 3841 strains. The majority of 

genetic differences were observed in the regions of plasmids. One of the TRX_6 

plasmids was present in other members of genospecies C, but was absent in 3841 and in 

most of the other members of genospecies B. Another plasmid of TRX_6 was a 

cointegrate plasmid comprised of homologous genes of two 3841 plasmids (pRL9 and 
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pRLl0), and shared its ancestry with pRL10. This type of plasmid was present in all 

members of genospecies C. On the other hand, all genospecies B members displayed the 

characteristics of two distinct plasmids like 3841. Based on these results, species 

members with different host specificity can share similar genomic strategies for 

adaptations that are important in the specific conditions of our sampling site. This 

reinforces an observation made many years ago, that both symbiovars had a common 

genetic background (Young, 1985).  

6.2 Direction for future research 
 

The results of the population genomics study have revealed true bacterial species in a 

closely related bacterial population. The construction of a genospecies based on core 

genes and ANI analysis as described in chapter 2 can be fruitful for the correct 

identification of bacterial species in different genera and was recently recommended by 

Chan et al. (2012). Inclusion of samples from different geographical locations can be 

useful to explore the global wide distribution of observed genospecies and identification 

of the rest of the genospecies in R. leguminosarum. Exploration of major donor and 

recipient genospecies using different computationally intensive tools such as 

ClonalOrigin could extend the work of chapter 3. A putative extension of the work of 

chapter 4 would be useful in determining the incongruent genes located on chromids 

and plasmids that highlight the evidence of HGT within and between genospecies. 

Moreover, phylogeny of one of the smallest plasmids (pRL7) reflected the signals of 

ecological species indicating the possibility of host specific genes on this plasmid. 

However, these signals were weak in the individual pRL7 gene trees and could be 

identified with high sequence information in another study. Further research could be 

completed with high sequencing information involving the identification of more 

population specific genes that are present in our dataset, but absent in the reference 

genome. The number of these genes will increase with additional genomic data and this 

could be useful to identify the distinct phenotypic traits of a local population. It would 

be interesting to explore the genetic properties such as nod genes in the other plasmids 

present in this population, and this would reflect the genomic plasticity in each member 

of the population.  



 

 142 

Finally, in terms of bacterial fitness, the observed population could be analyzed to 

determine the population fitness, species competitiveness and beneficial role of 

homologous recombination. It has been inferred (Muller, 1932) that homologous 

recombination reduces the competition between beneficial mutations (clonal 

interference) by incorporating beneficial mutations together that will eventually speed 

up adaptation. Moreover, recombination facilitates natural selection by breaking the 

negative disequilibrium generated by epistasis (interaction between mutations) (Vos, 

2009; Barton and Otto, 2005). Future work will be required to characterize the effects of 

homologous recombination in five genospecies of R. leguminosarum. 

6.3 Conclusions 
 

The main objective of this thesis was to explore the nature of bacterial species by 

performing a population genomics of symbiovars of a bacterium isolated from the same 

location. In summary, this work has demonstrated that species based on core gene 

sequences are completely different from major ecological clusters that have been 

diverged from each other a long time ago. Instead, it is the core genes that delineate the 

bacterial species and the species members are grouped together by the cohesive force of 

recombination. The cosmopolitan nature is another characteristic of bacterial species 

observed in this study. This study also demonstrated that core genes are not restricted to 

the chromosome or chromids, but can be located on plasmids. The structure of core 

genes phylogeny was reflected in the phylogenies of replicons indicates the occurrence 

of low inter- genospecies recombination in many replicons. Furthermore, the host 

specific symbiotic genes (nod genes) are one of the accessory genes that are maintained 

by inter- genospecies HGT and have an insignificant role in defining bacterial species. 

Although we are in the sequencing era, the theoretical definition of prokaryotic species 

is still debatable (Cohan, 2002; Cohan and Perry, 2007; Fraser et al., 2007; Fraser et al., 

2009; Shapiro et al., 2012). A universal species concept for bacteria is essential in the 

fields of medicine, veterinary medicine, agriculture, and industry and requires correct 

identification of species, for example, identification of pathogenic bacteria and their 

associated diseases. Since gene transfer is more likely within than between genospecies, 

it is our belief that the most appropriate model produced to date for microbial species is 
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the model (Fraser et al., 2009) that utilizes the combination of genomic clusters and 

ecological diversity. Hopefully, this study will make a significant contribution to the 

construction of a theoretical definition of bacterial species. 
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Appendix I 
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Table I.I | The 305 core genes held by all chromid-possessing bacteria (Harrison et al., 2010). Locus tags 

and other information are based on Rlv 3841. The 100 genes with best coverage have bold Locus tags and 

are used in Chapter 3. 

Locus tag Gene symbol Location Position 

RL0003 aroE Chromosome 1921..2778 

RL0004 coaE Chromosome 2778..3389 

RL0012 gyrB Chromosome 8285..10720 

RL0021 trpB Chromosome 17640..18860 

RL0022 trpA Chromosome 18864..19703 

RL0024 folC Chromosome 20778..22130 

RL0025 - Chromosome 22203..22523 

RL0029 - Chromosome 30083..31600 

RL0042 hisF Chromosome 44389..45177 

RL0043 hisA Chromosome 45178..45924 

RL0046 hisH Chromosome 46921..47571 

RL0048 hisB Chromosome 48082..48690 

RL0106 rpsA Chromosome 135131..136834 

RL0108 aroA Chromosome 137731..139089 

RL0120 pnp Chromosome 147985..150123 
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RL0123 truB Chromosome 151863..152795 

RL0125 infB Chromosome 153364..156117 

RL0127 nusA Chromosome 156908..158509 

RL0131A recR Chromosome 162809..163414 

RL0134 dnaX Chromosome 164470..166347 

RL0139 - Chromosome 169654..170508 

RL0151 dnaJ Chromosome 180070..181197 

RL0152 dnaK Chromosome 181283..183199 

RL0160 polA Chromosome 192994..196044 

RL0161 - Chromosome 196319..198664 

RL0181 - Chromosome 215180..216967 

RL0254 lepA Chromosome 290983..292815 

RL0268 rplT Chromosome 302898..303302 

RL0269 pheS Chromosome 303453..304535 

RL0270 pheT Chromosome 304552..306975 

RL0282 xseA Chromosome 317593..319173 

RL0315 guaA Chromosome 348345..349907 

RL0326 - Chromosome 360897..362054 
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RL0328 - Chromosome 362992..363789 

RL0334 dnaN Chromosome 367988..369106 

RL0335 - Chromosome 369366..370283 

RL0357 coaBC Chromosome 390460..391665 

RL0371 ubiE Chromosome 406332..407108 

RL0375 dnaA Chromosome 410392..411840 

RL0377 hemN Chromosome 413129..414331 

RL0378 - Chromosome 414341..414985 

RL0382 - Chromosome 417455..418087 

RL0388 trmB Chromosome 421197..421898 

RL0389 metK Chromosome 421907..423145 

RL0393 - Chromosome 426720..427235 

RL0394 phoH Chromosome 427235..428284 

RL0395 miaB Chromosome 428303..429724 

RL0404 mviN Chromosome 436353..437933 

RL0406 mutS Chromosome 441335..444061 

RL0421 - Chromosome 457817..458617 

RL0433 fmt Chromosome 470957..471916 
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RL0445 argB Chromosome 483090..483977 

RL0504 pgi Chromosome 541877..543559 

RL0550 argF Chromosome 594964..595878 

RL0572 - Chromosome 616769..617857 

RL0611 murA Chromosome 662438..663730 

RL0613 hisD Chromosome 664326..665624 

RL0616 infA Chromosome 666708..666926 

RL0680 - Chromosome 729689..732250 

RL0743 - Chromosome 791485..792384 

RL0847 guaB Chromosome 915252..916736 

RL0877 hisS Chromosome 944612..946183 

RL0883 groEL Chromosome 950963..952606 

RL0884 groES Chromosome 952679..952975 

RL0886 ribF Chromosome 954249..955232 

RL0889 ileS Chromosome 956316..959264 

RL0891 - Chromosome 960076..960531 

RL0892 - Chromosome 960604..962709 

RL0910 mutL Chromosome 979136..980938 
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RL0920 - Chromosome 990927..992087 

RL0930 rnhB Chromosome 1000331..1001020 

RL0937 ispB Chromosome 1007149..1008165 

RL0945 aroA Chromosome 1013898..1015160 

RL0947 purD Chromosome 1017197..1018474 

RL0956 ubiA Chromosome 1029958..1030917 

RL0960 - Chromosome 1036681..1037655 

RL0969 rumA Chromosome 1046331..1047581 

RL0973 dxs Chromosome 1051866..1053782 

RL1007 aroC Chromosome 1088479..1089576 

RL1014 pdxH Chromosome 1097268..1097888 

RL1030 ispH Chromosome 1111897..1112898 

RL1078 mutY Chromosome 1158581..1159684 

RL1262 - Chromosome 1328143..1328901 

RL1370 msrB Chromosome 1434172..1434585 

RL1412 groEL Chromosome 1470011..1471645 

RL1503 smpB Chromosome 1573100..1573555 

RL1510 sipS Chromosome 1579124..1579867 
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RL1543 cysS Chromosome 1609853..1611244 

RL1546 purF Chromosome 1613195..1614685 

RL1548 radA Chromosome 1615550..1616953 

RL1550 - Chromosome 1617758..1618927 

RL1551 dnaC Chromosome 1619016..1620551 

RL1552 rplI Chromosome 1620888..1621466 

RL1554 rpsR Chromosome 1622632..1622880 

RL1558 fabG Chromosome 1625930..1626667 

RL1564 ksgA Chromosome 1631562..1632389 

RL1580 ndk Chromosome 1650820..1651242 

RL1595 purN Chromosome 1664648..1665319 

RL1596 purM Chromosome 1665316..1666389 

RL1605 aspS Chromosome 1678144..1679934 

RL1616 hemB Chromosome 1689408..1690421 

RL1620 glyA Chromosome 1693675..1694973 

RL1621 ribD Chromosome 1695463..1696809 

RL1632 ribH Chromosome 1706382..1706837 

RL1668 argC Chromosome 1747476..1748408 
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RL1672 rpsI Chromosome 1751149..1751616 

RL1673 rplM Chromosome 1751618..1752082 

RL1688 clpP Chromosome 1768136..1768765 

RL1723 dnaE Chromosome 1807797..1811294 

RL1735 topA Chromosome 1822923..1825577 

RL1736 smf Chromosome 1825826..1826968 

RL1737 - Chromosome 1826968..1827588 

RL1739 pyrB Chromosome 1828951..1829907 

RL1760 nusG Chromosome 1859388..1859918 

RL1761 rplK Chromosome 1860096..1860527 

RL1762 rplA Chromosome 1860532..1861233 

RL1764 rplJ Chromosome 1861563..1862081 

RL1765 rplL Chromosome 1862140..1862517 

RL1767 rpoC Chromosome 1867111..1871319 

RL1770 rpsG Chromosome 1872701..1873171 

RL1771 fus Chromosome 1873201..1875300 

RL1774 rplC Chromosome 1877047..1877688 

RL1775 rplD Chromosome 1877702..1878322 
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RL1776 rplW Chromosome 1878319..1878612 

RL1777 rplB Chromosome 1878624..1879460 

RL1778 rpsS Chromosome 1879476..1879754 

RL1779 rplV Chromosome 1879757..1880146 

RL1780 rpsC Chromosome 1880146..1880877 

RL1781 rplP Chromosome 1880914..1881327 

RL1783 rpsQ Chromosome 1881552..1881791 

RL1784 rplN Chromosome 1882050..1882418 

RL1785 rplX Chromosome 1882430..1882738 

RL1786 rplE Chromosome 1882731..1883288 

RL1788 rpsH Chromosome 1883639..1884037 

RL1789 rplF Chromosome 1884080..1884613 

RL1790 rplR Chromosome 1884626..1884988 

RL1791 rpsE Chromosome 1885120..1885689 

RL1793 rplO Chromosome 1885930..1886406 

RL1794 secY Chromosome 1886641..1887981 

RL1795 adk Chromosome 1887978..1888628 

RL1797 rpsK Chromosome 1889353..1889742 



 

 153 

RL1798 rpoA Chromosome 1889840..1890850 

RL1799 rplQ Chromosome 1890974..1891396 

RL1803 ilvD Chromosome 1893842..1895680 

RL2035 valS Chromosome 2142990..2145833 

RL2041 argS Chromosome 2151831..2153588 

RL2043 nagZ Chromosome 2157013..2158026 

RL2048 tatC Chromosome 2160649..2161476 

RL2049 serS Chromosome 2161677..2162960 

RL2050 surE Chromosome 2162965..2163738 

RL2055 secD Chromosome 2167972..2170512 

RL2069 map Chromosome 2186377..2187213 

RL2099 recJ Chromosome 2210649..2212409 

RL2221 rpsB Chromosome 2340782..2341549 

RL2222 tsf Chromosome 2341791..2342717 

RL2223 pyrH Chromosome 2342814..2343536 

RL2224 frr Chromosome 2343701..2344261 

RL2225 uppS Chromosome 2344299..2345042 

RL2227 ecfE Chromosome 2345901..2347034 
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RL2238 kdsA Chromosome 2359852..2360697 

RL2239 eno Chromosome 2360835..2362109 

RL2249 - Chromosome 2369909..2370880 

RL2254 ispDF Chromosome 2373263..2374480 

RL2255 dus Chromosome 2374626..2375642 

RL2288 cysG2 Chromosome 2410570..2412012 

RL2381 glmU Chromosome 2503587..2504948 

RL2382 glmS Chromosome 2505058..2506884 

RL2384 recG Chromosome 2507724..2509829 

RL2386 mfd Chromosome 2510224..2513724 

RL2392 glnA Chromosome 2518499..2519908 

RL2393 glnB Chromosome 2519987..2520325 

RL2398 uvrA Chromosome 2524791..2527712 

RL2399 ssb Chromosome 2527975..2528484 

RL2401 gyrA Chromosome 2529493..2532330 

RL2403 coaD Chromosome 2533660..2534154 

RL2406 queA Chromosome 2535384..2536469 

RL2407 tgt Chromosome 2536466..2537596 
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RL2442 ilvI Chromosome 2573933..2575639 

RL2472 - Chromosome 2607249..2608031 

RL2473 metG Chromosome 2608036..2609586 

RL2476 tmk Chromosome 2611683..2612363 

RL2493 trpD Chromosome 2628498..2629514 

RL2494 trpC Chromosome 2629524..2630336 

RL2511 pyrG Chromosome 2648019..2649647 

RL2528 thrS Chromosome 2666110..2668095 

RL2532 hisI Chromosome 2670560..2671012 

RL2555 lipB Chromosome 2691150..2691836 

RL2588 tyrS Chromosome 2723170..2724426 

RL2598 rpe Chromosome 2735612..2736289 

RL2612 purL Chromosome 2749632..2751866 

RL2624 rpsD Chromosome 2762956..2763573 

RL2627 murI Chromosome 2766794..2767597 

RL2636 alaS Chromosome 2775464..2778118 

RL2637 recA Chromosome 2778272..2779366 

RL2648 - Chromosome 2791538..2792056 
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RL2650 folC Chromosome 2792411..2793280 

RL2691 - Chromosome 2846841..2848568 

RL2798 leuS Chromosome 2959236..2961752 

RL2801 ddl Chromosome 2963872..2964948 

RL2824 cobA Chromosome 2983476..2984315 

RL2957 uvrB Chromosome 3122747..3125776 

RL2987 argG Chromosome 3152923..3154134 

RL2990 ubiA Chromosome 3155285..3156199 

RL3013 tyrS Chromosome 3175005..3176270 

RL3071 ftsZ Chromosome 3233697..3234716 

RL3170 - Chromosome 3326081..3326611 

RL3205 ilvC Chromosome 3356982..3358001 

RL3244 ilvH Chromosome 3391354..3391926 

RL3245 ilvI Chromosome 3391949..3393739 

RL3249 miaA Chromosome 3399304..3400197 

RL3276 pcrA Chromosome 3433255..3435744 

RL3293 ligA Chromosome 3449396..3451552 

RL3295 recN Chromosome 3452287..3453960 
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RL3298 ftsZ Chromosome 3456313..3458031 

RL3301 ddl Chromosome 3460336..3461262 

RL3306 murC Chromosome 3465824..3467239 

RL3307 murG Chromosome 3467236..3468360 

RL3309 murD Chromosome 3469523..3470935 

RL3310 mraY Chromosome 3470943..3472043 

RL3311 murF Chromosome 3472066..3473499 

RL3312 murE Chromosome 3473496..3474965 

RL3313 - Chromosome 3475023..3476783 

RL3315 mraW Chromosome 3477309..3478334 

RL3402 rpoD Chromosome 3568480..3570537 

RL3408 dnaG Chromosome 3576509..3578518 

RL3411 carA Chromosome 3580808..3582013 

RL3419 carB Chromosome 3589727..3593215 

RL3460 proC Chromosome 3632148..3632975 

RL3465 - Chromosome 3636408..3637202 

RL3468 prs Chromosome 3639378..3640310 

RL3471 - Chromosome 3644565..3645173 
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RL3474 pth Chromosome 3648639..3649370 

RL3479 ychF Chromosome 3651075..3652190 

RL3521 trpE Chromosome 3693219..3695408 

RL3553 engA Chromosome 3733251..3734672 

RL3765 rLuD Chromosome 3965270..3966295 

RL3768 purA Chromosome 3970117..3971415 

RL3957 mnmA Chromosome 4180678..4181904 

RL3965 ftsH Chromosome 4191430..4193361 

RL3983 - Chromosome 4209142..4209888 

RL3986 ruvC Chromosome 4213671..4214180 

RL3989 ruvA Chromosome 4214909..4215523 

RL3990 ruvB Chromosome 4215607..4216647 

RL4006 cbbT Chromosome 4232574..4234547 

RL4007 gap Chromosome 4234629..4235639 

RL4017 rpmE Chromosome 4245616..4245837 

RL4044 purE Chromosome 4273781..4274275 

RL4060 pykA Chromosome 4288486..4289925 

RL4085 gltA Chromosome 4316437..4321158 
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RL4184 gltX Chromosome 4436061..4437527 

RL4203 talB Chromosome 4454319..4455290 

RL4207 - Chromosome 4458217..4459023 

RL4265 msrB Chromosome 4523218..4523703 

RL4279 clpB Chromosome 4549225..4551825 

RL4281 hemK Chromosome 4553188..4554048 

RL4282 prfA Chromosome 4554045..4555124 

RL4298 secA Chromosome 4567724..4570441 

RL4323 argH Chromosome 4592706..4594070 

RL4325 lysA Chromosome 4594453..4595721 

RL4352 aroB Chromosome 4621118..4622248 

RL4353 aroK Chromosome 4622245..4622802 

RL4412 priA Chromosome 4690057..4692273 

RL4436 sucD Chromosome 4718517..4719419 

RL4438 sucC Chromosome 4719933..4721126 

RL4493 gpsA Chromosome 4775166..4776149 

RL4494 gcp Chromosome 4776146..4777243 

RL4495 hemC Chromosome 4777316..4778245 
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RL4506 typA Chromosome 4786672..4788492 

RL4507 dcp Chromosome 4788651..4790738 

RL4515 argG Chromosome 4797133..4798356 

RL4522 - Chromosome 4803714..4804940 

RL4550 rimM Chromosome 4830168..4830749 

RL4551 trmD Chromosome 4830746..4831480 

RL4552 rplS Chromosome 4831767..4832306 

RL4555 - Chromosome 4834364..4835773 

RL4563 - Chromosome 4841412..4844102 

RL4565 glnB Chromosome 4845808..4846146 

RL4630 ispG Chromosome 4921382..4922632 

RL4677 rpmA Chromosome 4981224..4981493 

RL4681 obgE Chromosome 4983849..4984943 

RL4682 proB Chromosome 4984897..4986099 

RL4683 proA Chromosome 4986092..4987375 

RL4689 - Chromosome 4991923..4992372 

RL4692 ctpA Chromosome 4994535..4995857 

RL4705 leuD Chromosome 5007551..5008159 
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RL4707 leuB Chromosome 5009319..5010431 

RL4722 purH Chromosome 5030574..5032190 

RL4727 acs Chromosome 5037147..5039102 

RL4731 - Chromosome 5043305..5043964 

RL4732 leuS Chromosome 5044165..5046795 

RL4735 parB Chromosome 5048439..5049320 

RL4736 parA Chromosome 5049353..5050147 

RL4738 gidA Chromosome 5050809..5052686 

RL4739 trmE Chromosome 5052759..5054078 

pRL120279 prC pRL12 294782..296896 

pRL120359 panC pRL12 388343..389254 

pRL120360 panB pRL12 389251..390072 

pRL120416 dadX pRL12 450216..451349 

pRL120642 groEL pRL12 696038..697666 

pRL120643 groS pRL12 697820..698134 

pRL110033 - pRL11 40088..42031 

pRL110442 thiE pRL11 475772..476407 

pRL100453 - pRL10 467953..469989 
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pRL90212 - pRL9 231444..231953 

pRL80044 acsA pRL8 48652..50592 
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Figure II.I | Maximum Likelihood tree based on 100-gene alignment showing the position of 75 R. 

leguminosarum strains.  Strain nodes are colored on the basis of their genospecies (A: purple, B: salmon, 

C: green, D: cyan and E: dark red). WSM1325 (white square) represents Rlt WSM1325. USDA_2370
T
 is 

shown by white circle. Rlv 3841 is shown by red square. Branches with bootstrap values > 70% are 

colored. 
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Figure III.I | Phylogenetic network obtained from a small plasmid (pRL7) of Rlv 3841 for 72 R. 

leguminosarum strains. Strain nodes are circled according to their symbiovars (red: viciae and blue 

trifolii).  Rlv 3841 is shown by the salmon square. 
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Table III.I | The genospecies B specific-island in Chromid (pRL12). Locus tags and other informations of 

46 genes of pRL12 held by all 12 members of genospecies B.  

Locus tag Strand Function 

pRL120118 + putative aldo-keto reductase/oxidoreductase 

pRL120119 - putative short-chain dehydrogenase 

pRL120120 - putative short-chain dehydrogenase 

pRL120121 - putative dihydroorotase 

pRL120122 - hypothetical protein 

pRL120123 - putative polysaccharide deacetylase 

pRL120124 - putative NAD-dependent epimerase/dehydratase 

pRL120125 - putative short-chain dehydrogenase 

pRL120126 - putative D-hydantoinase 

pRL120127 - MFS family transporter 

pRL120128 - putative ATP-binding component of ABC transporter 

pRL120129 - putative permease component of ABC transporter 

pRL120130 - putative permease component of ABC transporter 

pRL120131 - putative substrate binding component of ABC transporter 

pRL120132 - AraC family transcriptional regulator 

pRL120133 - putative plasmid stability protein 
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pRL120134 - putative plasmid stability protein 

pRL120135 - putative cyclase 

pRL120136 - hypothetical protein 

pRL120137 - hypothetical protein 

pRL120138 - cobW family cobalimin synthesis protein 

pRL120139 - hypothetical protein 

pRL120140 - putative imidase 

pRL120141 - putative ATP-binding component of ABC transporter 

pRL120142 - putative substrate-binding component of ABC transporter 

pRL120143 - putative short-chain dehydrogenase/reductase 

pRL120144 - 

putative 3-oxoacyl-[acyl-carrier-protein] reductase (3-

ketoacyl-acyl carrier protein reductase) 

pRL120145 - putative permease component of ABC transporter 

pRL120146 - putative permease component of ABC transporter 

pRL120147 - putative ATP-binding component of ABC transporter 

pRL120148 + hypothetical protein 

pRL120149 + GntR family transcriptional regulator 

pRL120150 - putative urea amidolyase related protein 

pRL120151 - putative urea amidohydrolyase homologue 
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pRL120152 - acetyl-CoA carboxylase biotin carboxylase subunit 

pRL120154 - hypothetical protein 

pRL120155 + LysR family transcriptional regulator 

pRL120157 - hypothetical protein 

pRL120158 - hypothetical protein 

pRL120159 - allantoate amidohydrolase 

pRL120160 - DeoR family transcriptional regulator 

pRL120161 - putative substrate-binding component of ABC transporter 

pRL120162 - putative permease component of ABC transporter 

pRL120163 - putative permease component of ABC transporter 

pRL120164 - putative component of ABC transporter 
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Table III.II | The first genospecies B specific-island in large plasmid (pRL9). Locus tags and other 

informations of 9 genes held by all 12 members of genospecies B.  

Locus tag Strand Function 

pRL90119 - LysR family transcriptional regulator 

pRL90120 + putative 4-carboxymuconolactone decarboxylase 

pRL90121 - hypothetical protein 

pRL90122 - putative LacI/HTH-type transcriptional regulator 

pRL90123 + putative lactose transport ATP-binding protein 

pRL90124 + putative transmembrane binding-protein-dependent transporter 

pRL90125 + putative permease transporter component 

pRL90126 + putative solute binding-protein component of transporter 

pRL90127 + putative glycosyl hydrolase 
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Table III.III | The second genospecies B specific-island in pRL9.  Locus tags and other informations of 7 

genes held by all 12 members of genospecies B.  

 

 

 

 

 

 

 

 

 

Locus tag Strand Function 

pRL90035 - putative ATP_binding protein of ABC transporter,pseudogene 

pRL90036 - putative attachment-related protein 

pRL90039 + hypothetical protein 

pRL90041 - chaperonin GroEL 

pRL90043 + putative transmembrane transport protein 

pRL90044 + putative transmembrane ABC transporter 

pRL90045 + putative ABC transporter permease component 
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Table III.IV | The third genospecies B specific-island in pRL9.  Locus tags and other informations of 8 

genes held by all 12 members of genospecies B.  

Locus tag Strand Function 

pRL90088 + hypothetical protein 

pRL90089 + hypothetical protein 

pRL90090 + putative ATP-binding component of ABC transporter 

pRL90091 + putative permease component of ABC transporter 

pRL90092 - hypothetical protein 

pRL90093 + hypothetical protein 

pRL90094 + hypothetical protein 

pRL90095 - putative plasmid stability protein 
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Table III.V | The fourth genospecies B specific-island in pRL9. Locus tags and other informations of 8 

genes held by all 12 members of genospecies B.  

Locus tag Strand Function 

pRL90255 - 

putative glycine cleavage 

protein/aminomethyltransferase 

pRL90256 - putative 5,10-methylenetetrahydrofolate reductase 

pRL90257 + GntR family transcriptional regulator 

pRL90258 + putative substrate-binding ABC transporter protein 

pRL90259 + putative permease component of ABC transporter 

pRL90260 + putative permease component of ABC transporter 

pRL90261 + putative ATP-binding ABC transporter 

pRL90262 + putative ATP-binding component of ABC transporter 
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