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Abstract

Monte Carlo Tree Search (MCTS) is an AI technique that has been success-
fully applied to many deterministic games of perfect information, leading to
large advances in a number of domains, such as Go and General Game Play-
ing. Imperfect information games are less well studied in the field of AT despite
being popular and of significant commercial interest, for example in the case of
computer and mobile adaptations of turn based board and card games. This is
largely because hidden information and uncertainty leads to a large increase in
complexity compared to perfect information games.

In this thesis MCTS is extended to games with hidden information and un-
certainty through the introduction of the Information Set MCTS (ISMCTS)
family of algorithms. It is demonstrated that ISMCTS can handle hidden in-
formation and uncertainty in a variety of complex board and card games. This
is achieved whilst preserving the general applicability of MCTS and using com-
putational budgets appropriate for use in a commercial game. The ISMCTS
algorithm is shown to outperform the existing approach of Perfect Information
Monte Carlo (PIMC) search. Additionally it is shown that ISMCTS can be
used to solve two known issues with PIMC search, namely strategy fusion and
non-locality. ISMCTS has been integrated into a commercial game, Spades by
AT Factory, with over 2.5 million downloads.

The Information Capture And ReUSe (ICARUS) framework is also intro-
duced in this thesis. The ICARUS framework generalises MCTS enhancements
in terms of information capture (from MCTS simulations) and reuse (to improve
MCTS tree and simulation policies). The ICARUS framework is used to express
existing enhancements, to provide a tool to design new ones, and to rigorously
define how MCTS enhancements can be combined. The ICARUS framework is
tested across a wide variety of games.
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Chapter 1

Introduction

The topic of this thesis is the application of Monte Carlo Tree Search (MCTS)
algorithms to games with hidden information and uncertainty. MCTS is a family
of algorithms in the field of artificial intelligence which first emerged in 2006 [2,
3, 4] most notably the UCT algorithm [2]. MCTS has contributed to advances
in the fields of computer Go [5, 6, 7], General Game Playing [8, 9] and many
other domains as well as attracting a substantial amount of interest in the
research community summarized in a survey by Browne et al [1]. The majority
of research to date on MCTS has focused on two player zero sum games with
perfect information. However many popular games (and real world problems
which can be modelled as games) have elements of imperfect information which
results in complex (large or infinite) implicitly defined state-action graphs. This
thesis focuses on the issue of information asymmetry between players, as might
arise in a card game for example.

Developing Al for games with imperfect information provides an important
testbed for the investigation of tree search algorithms in AI, as well as addressing
the needs of games developers particularly in the emerging market of adapting
traditional table top games and eurogames to mobile platforms. In order to
target these devices bespoke knowledge based systems are developed for each
game and often these agents ignore hidden information (i.e. cheat), which can
lead to unsatisfying player experiences. This thesis demonstrates how MCTS
can be adapted to games with imperfect information in order to take advantage
of the same useful properties of MCTS which have led to advances in complex
domains with perfect information. This leads to Information Set Monte Carlo
Tree Search (ISMCTS) family of algorithms, which can be used to create en-
gaging play in complex games with hidden information and uncertainty using a
computational budget appropriate for a commercial game (for example running
on a mobile device) and without utilizing domain knowledge (other than the
game rules).

Two main original contributions are presented in this thesis. Firstly the
information set MCTS (ISMCTS) family of algorithms is introduced, which
adapt the MCTS algorithm to search a tree of information sets rather than a



tree of states through the use of determinizations (randomized assignments of
hidden information). In an information set tree each node represents a set of
states a player believes the game may be in, rather than an explicit state. The
ISMCTS algorithm contributes a variety of different ways to share statistics
between information sets, by using nodes which represent many information
sets. This allows good decision making in large complex games where using a
unique node for each unique information set is intractable. ISMCTS represents a
significant advance over existing methods for games with imperfect information,
in particular ISMCTS addresses the issues of strategy fusion and non-locality.
Strategy fusion arises when the best decision to make may be different depending
on which state a game is in and the strategy for each state must be somehow
“fused” into a single strategy to each possible state. Non-locality arises when
the past decisions of players are not taken into account when determining which
states are likely (or even possible). ISMCTS is shown to produce a strong level of
play in several games without using any domain specific knowledge, preserving
the general game playing capability of MCTS for perfect information games
whilst using a small computational budget. Finally it is demonstrated that
ISMCTS can be adapted to exhibit bluffing and inference, which is not possible
in existing determinization based approaches.

Secondly the Information Set Capture and Re-Use (ICARUS) framework
is introduced, which facilitates the definition of enhancements to both MCTS
and ISMCTS. The ICARUS framework unifies the many different variations
of MCTS algorithms by defining MCTS as an algorithm which performs a se-
ries of simulations from which information is captured and then subsequently
re-used to improve future simulation in a process equivalent to reinforcement
learning. All existing MCTS enhancements can be expressed in the ICARUS
framework and it can be used to invent new ones. as well as to express new
ones. Furthermore the ICARUS framework defines combination operators on
enhancements, which provides the first mechanism for precisely specifying how
different enhancements are combined (without having to study implementation).
One significant application of this is a new and elegant MCTS algorithm which
uses bandit policy selection for all decisions in simulated games.

The work in presented in this thesis was carried out as part of an EPSRC
funded project “UCT for Games and Beyond”!'. To date the work on this
project has resulted in 9 publications in peer reviewed journals and conference
proceedings (listed in Table 1.1). with a further 5 submitted and under review
(listed in Table 1.2). Furthermore the ISMCTS algorithm has been integrated
into a commercial game, Spades by Al Factory which has had over 2.5 million
installs [10]. The ISMCTS algorithm offered a significant improvement over
the existing heuristic based Al in the game, particularly in the challenging
case of nil-bids. Recent ongoing work has focused on enhancing the ISMCTS
algorithm in order to produce more intuitive behaviour and improve the player
experience. Finally as part of the project MCTS was applied to a real-time
problem, the Physical Travelling Salesman (PTSP) competition. MCTS proved

'EPSRC Reference: EP/H048707/1 and EP/H048707/2



to be the leading approach winning the competitions in 2012 and 2013 as well
as the multiple objective PTSP competition in 2013. This work is not directly
relevant to the main subject of this thesis so is not described here.

This chapter is structured as follows. Firstly Section 1.1 introduces imperfect
information in games, Al in games, and areas the work presented in this thesis
advances. Section 1.1.1 introduces MCTS algorithms along with the research
and applications of MCTS. Section 1.2 presents an overview of the EPSRC
funded project “UCT for Games and Beyond”. The work presented in this thesis
formed part of the hidden information and uncertainty strand of this project.
Section 1.3 lists the outcomes of this project including the original contributions
presented in this thesis and other related work. Finally Section 1.4 presents an
overview the structure of this thesis and the content of each chapter.

1.1 Background

The problem of designing artificial intelligence (AI) agents for deterministic
games with perfect information is one of the oldest problems in Computer Sci-
ence, with seminal works by von Neumann [11], Turing [12] and Shannon [13]
among others. The most successful approach to artificial intelligence for games
is game tree search. Other techniques such as reinforcement learning and neural
networks have been used often in combination with tree search [14]. In a game
tree nodes correspond to states the game can be in, and edges correspond to ac-
tions made by players. The edges have direction and so the game tree is strictly
a directed acyclic graph where the nodes are in one-to-one correspondence with
the states of the game (in the game tree the same state may correspond to mul-
tiple nodes reached by different sequences of actions). The initial (or current)
state of the game is the root node and leaves correspond to states in which
terminal conditions are met (i.e. the game is over). A game tree is then a map
of possible future states and allows an agent to reason about the consequences
of decisions.

Much of the work on artificial intelligence has focused on combinatorial
games where no information is hidden and all actions are deterministic. This
includes games such as Go, Chess and Tic Tac Toe, as well as many others (in-
cluding single player puzzles). However many modern games feature elements
of hidden information and uncertainty (non-determinism). Hidden Information
occurs when a player cannot observe some information about the state of a
game, more precisely a player knows the game is in one of a set of many pos-
sible states called an Information Set. In a card game for example a player
may know an opponent holds 7 cards in hand, but not which 7 cards, instead
observing an information set whose states correspond to every possible set of
7 cards the opponent could legally hold in hand. Uncertainty occurs when a
player makes a decision which has a random outcome, or more precisely a player
makes a decision and the game transitions into one of several possible states ac-
cording to a probability distribution over those states. For example if a player
takes the action of rolling a six sided die, the state of the game transitions into



one of six possible rolls each with equal probability.

Hidden Information and Uncertainty introduce new decision making con-
cerns which do not exist in combinatorial games. Firstly when games are non-
deterministic (as in an action can lead to several potential outcomes), players
must apply probabilistic reasoning to maximize the probability they will win
a game (or maximize their expected reward). However the optimal decision
may not always produce the best possible reward. Secondly when information
is hidden, players may deduce that some states are more likely than others by
observing opponents’ actions in a process known as inference. Correspondingly,
if players are performing inference then other players can counter by bluffing
in order to trick other players into making incorrect deductions about which
states are likely. Consequently the opponent’s strategies may also be a source
of uncertainty, since they may vary decisions to avoid being predictable (known
as using a mixed strategy). Hidden Information and Uncertainty are used in
games to better model real-life decision-making and can also be used to create
a balance of luck and skill. For example in a combinatorial game such as chess
an expert player might always beat a novice, which is not entertaining for either
player but in a non-deterministic game such as poker, the novice player might
have a small chance to win, resulting in closer and more interesting game.

AT for imperfect information games is less studied than for combinatorial
games. This is in part because imperfect information adds a large amount of
complexity and because there are combinatorial games where humans are still
better than the best computer agents, for example Arimaa [15] and Go [7]. How-
ever many Al techniques for imperfect information games exist, some of which
are based on tree search for perfect information games. For example a large
class of algorithms (including the new methods described in this thesis) make
use of determinizations. A determinization is a state from an information set
assumed to be the state of the game. Existing Al techniques for combinatorial
games can then be applied to a determinization in order to make a decision.
Determinization based approaches have been hugely successful in games such as
Bridge [16] and Scrabble [17].

The goal of AT research has often been to produce optimal or human beat-
ing levels of performance in games. However in commercial games, the goals
for Al are substantially different. Firstly commercial games aim to entertain
players and thus Al agents must be fun to play with and cater to a range of
player abilities (not just performance at the highest level of skill). Additionally
AT agents are often designed to behave in a manner that is intuitive for human
players to understand. Finally Al in commercial games must be created within a
budget for implementation and testing time and utilize modest amounts of pro-
cessor and memory resources. Some games utilize techniques for combinatorial
games such minimax search. In imperfect information games it is not uncom-
mon for Al agents to “cheat” and know hidden information, which can lead to
an unsatisfying experience for players. To this end commercial Al for imperfect
information games is sometimes based upon bespoke rule based systems for a
particular game which can be made to run quickly and consume small amounts
of memory. This enables the behaviour of the Al to be precisely controlled by



a designer. The drawbacks of this approach are large development and testing
requirements, lack of re-usability between games, and strange behaviours in sit-
uations unforeseen by the rule designer. Furthermore the Al must be modified
and retested even when small changes are made to the game rules.

1.1.1 Monte Carlo Tree Search

Using Monte Carlo simulations to evaluate states was first proposed by Abram-
son in 1990 [18], but was not widely used (probably due to the large successes
of the minimax algorithm in widely studied domains such as Chess [19] and
Checkers [20]). Monte Carlo Tree Search (MCTS) is a family of tree search
algorithms which was not described until 2006 [4, 2] and greatly improves the
use of Monte Carlo simulations by applying the concepts of exploitation and
exploration to build a search tree which guides simulations. MCTS is most
notable for leading to large advances in the field of computer Go [5, 6, 7]. Fur-
thermore MCTS is the leading technique in many domains for example Hex [21]
and General Game Playing [8, 9]. MCTS has been applied to a wide variety
of domains and problems and has attracted a large amount of interest from
both researchers [1] and game developers [10]. One of the contributions of the
work done in this project was a comprehensive survey of MCTS research up
to 2011 [1] which covered different variations of and enhancements to MCTS
as well as a comprehensive list of problems to which MCTS has been applied.
More recently MCTS has been successfully applied to real-time games including
successes in Ms Pac Man [22, 23] and PTSP competitions [24, 25]. There has
also been work on the application of MCTS to games with hidden information
and uncertainty, including the work presented in this thesis. A survey of MCTS
research is presented in Chapter 3.

One of the most significant benefits of MCTS is the algorithm does not
require domain-specific knowledge beyond the rules of the game which specify
which actions are possible from each state and which states are terminal. This
makes MCTS readily applicable to any domain that may be modelled using
a decision tree (although adding domain-specific knowledge can be beneficial).
Therefore MCTS can be described as an aheuristic algorithm. MCTS is also an
iterative algorithm which means that all values are always up-to-date following
every iteration of the algorithm. In practice this means the MCTS algorithm is
able to return an action at effectively any moment in time since each iteration
is usually short compared to the overall run time of the algorithm. MCTS can
be run for additional iterations which often improves the result. MCTS can
therefore be described as an anytime algorithm. MCTS also builds a partial
subtree of a complete game tree, and the addition of nodes is biased towards
more promising states. This leads to an asymmetric sub-tree of the game tree
being built up over over time, in contrast to minimax search which expands an
entire subtree to a fixed depth. In other words, the building of the partial tree is
skewed towards more promising and thus more important regions and less time
is spent exploring less promising regions.



1.2 UCT for Games and Beyond

The work in this thesis was carried out as part of a 3-year EPSRC funded project
entitled “UCT for games and Beyond” (EPSRC Reference: EP/H048707/1).
This project commenced in 2010 and consisted of three strands:

e MCTS for games with Hidden Information and Uncertainty at the Uni-
versity of York

e MCTS for real-time games at the University of Essex
e MCTS for computational creativity at Goldsmiths, University of London

The work presented in this thesis was carried out as part of the MCTS for
games with Hidden Information and Uncertainty strand which was carried out
by myself, Dr. Edward Powley and Prof. Peter Cowling. Initially I was to work
mostly independently under supervision, but the project gravitated towards
more collaborative methods of working. The design of algorithms and experi-
ments as well the interpretation of results was discussed at weekly meetings, then
smaller tasks were assigned to each individual. Myself and Dr. Edward Pow-
ley shared responsibility for implementation and testing of all code. I actively
participated in discussions on all aspects of the project as well as introducing
a large number of the ideas. Additionally I co-authored every publication, and
shared approximately equal authorship responsibilities (regardless of the orders
in which authors are listed).

The aim of this project was to answer the question: How can MCTS deal
with uncertainty and hidden information? For the majority of problems
where decision tree models are appropriate, particularly real-time video games,
the tree is nondeterministic, with both hidden information and randomness.
In almost all of the games where MCTS has been used successfully so far,
the decision tree is deterministic, and all players have complete information
about the game state. The presence of chance nodes in the tree due to random
outcomes or hidden information adversely affect standard implementations of
MCTS, since the Monte Carlo selection mechanism will prefer lucky outcomes
to unlucky ones if it used to select chance outcomes. The decision which is
then propagated to the current position at the top of the tree is the one which
should be taken given best possible luck. However, for most games (and other
situations modelled by decision trees) this decision is hopelessly overoptimistic.
Consider playing Monopoly with the assumption that you never land on one of
your opponents properties, and they always land on yours. A more reasonable
approach (which is used in practice) would be to insist that all outcomes from a
chance node are sampled according to some sensible prior distribution. However,
this approach breaks down due to the massive increase in branching factor.
Consider playing a 2-player card game where the opponent holds 2 unseen cards
from a standard deck. A naive approach has a chance node with 52C, = 1326
outcomes (one for each pair of cards the opponent could be holding), so that
even for this simple situation the problem is 3 orders of magnitude harder than
the deterministic case.



In this thesis MCTS is shown to be a promising approach for games with
imperfect information, by exploiting the useful properties of MCTS to handle
different sources of uncertainty and hidden information. Imperfect information
leads to combinatorial explosions in the size of game trees, which is an issue
for fixed depth approaches since only a shallow search can be performed on
even a large computation budget. The asymmetric nature of MCTS provides
a mechanism for overcoming this limitation and additionally MCTS has shown
to be effective in large branching factor games such as Go. Given the large
combinatorial nature of imperfect information games, finding exact solutions is
intractable, however MCTS is shown to produce plausible playing strength given
practical amounts of computation resources in many different games. Finally
this project aimed to preserve as much as possible the aheuristic nature of MCTS
in applications to imperfect information games. In each of the games studied in
this thesis either little or no knowledge was used.

1.3 Research Hypothesis and Project Outcomes

In this section the outcomes of the imperfect information games strand of the
UCT for games and beyond project is summarized, with the goal of answering
the question how can MCTS deal with uncertainty and incomplete information?
The research presented in this thesis addresses the following four hypotheses:

Hypothesis 1: Uncertain outcomes and unknown states can be represented
using an MCTS tree In this thesis, the information set MCTS (ISMCTS) family
of algorithms [26, 27] is introduced which adapt the MCTS to search trees of in-
formation sets rather than trees of states. ISMCTS handles hidden information
through the use of determinizations of information sets, where a determinization
is a sampled state from an information set assumed to be the actual state of the
game. ISMCTS improves upon earlier determinization based approaches such
as perfect information Monte-Carlo search [28, 29, 30]. ISMCTS is extended
to handle partial observability with the MOISMCTS algorithm [27] (which is
equivalent to ISMCTS when there is no partial observability).

Hypothesis 2: The issues of strategy fusion and non-locality with deter-
minization based approaches can solved using MCTS Since the ISMCTS al-
gorithm is determinization based, issues with determinization such as strategy
fusion and non-locality must be addressed. Strategy fusion is an issue with
determinization based algorithms where it is incorrectly assumed a player can
alter their decisions with respect to information they cannot know. Non-locality
occurs when a state must be impossible if it is assumed players are behaving
rationally (for example taking moves which lead to an immediate win), but is
considered to be a possible determinization of an information set. In Chap-
ter 5 experiments estimated the impact of these problems for the card game
Dou Di Zhu and showed that strategy fusion in particular is a large problem.
Strategy fusion is handled by ISMCTS through the use of information set trees.



The problem of non-locality is addressed through the use of inference and op-
ponent modelling in Chapter 7. Whether non-locality is an important problem
varies from game to game, since experiments for Dou Di Zhu showed that infer-
ence is not hugely beneficial, whereas inference is a critical part of strategy in
the game The Resistance for example.

Hypothesis 3: Inference and bluffing can be modeled using MCTS It has
been demonstrated that inference is possible with ISMCTS through biasing the
distribution of determinizations sampled (See Chapter 7). However this requires
a good opponent model in order to be effective. In Chapter 7 it is explained
how ISMCTS can be used as an opponent model for inference in place of an
external model, preserving the aheuristic nature of ISMCTS. Furthermore it is
demonstrated that ISMCTS can learn bluffing behaviour when determinizations
of opponents information sets are searched. Experiments presented in Chapter 7
measured the effect of “perfect” inference in the card game Dou Di Zhu and
it was concluded that inference was not a significant barrier to good playing
strength in that particular game compared to overcoming strategy fusion. A
useful observation from this work is that a strong level of play can be achieved
in some imperfect information games without modelling inference or bluffing.

Hypothesis 4: Knowledge captured from simulations be exploited to create
better MCTS policies The second main outcome of the project is the Informa-
tion Capture and Re-Use (ICARUS) framework. The ICARUS framework en-
ables modifications to MCTS (and ISMCTS) algorithms to be explicitly defined
which facilitates the comparison and combination of different enhancements.
Enhancements to MCTS often “supercharge” the algorithm by making each it-
eration more expensive, but each iteration more powerful. Successful enhance-
ments improve the performance of MCTS when a fixed time budget is used for
decisions (rather than a fixed number of iterations). ICARUS has been used to
test combinations of both existing and new enhancements to investigate which
are the most effective. In particular the enhancement NAST-2 [31] appears to
be a good replacement for the default random simulation policy of the UCT
algorithm, improving performance in a wide variety of domains. This results in
an elegant formulation of MCTS in which the same algorithm (UCB1) is used
to select every action in a simulated game.

1.3.1 Additional Project Outcomes

Finally there are several outcomes of the project not discussed in this thesis:

e Firstly the ISMCTS has been integrated into a commercial game Spades
by AI Factory [10]. In order to satisfy the requirement of a mobile plat-
form, work was done to modify MCTS run run within a fixed memory limit
(but unlimited tie constraint). This work forms the basis of a submitted
paper (listed in Table 1.2). The unmodified ISMCTS algorithm outper-
formed the existing heuristic based Al in the game. Based upon feedback



from users components of the heuristic Al were integrated with ISMCTS
to make the behaviour of ISMCTS more intuitive. These modifications did
not improve the strength of ISMCTS, but make the behaviour more real-
istic (particularly in situations ISMCTS determined the game was won or
lost). Since integrating ISMCTS in the the product, it has risen to become
the most popular Spades application on the android market place.

e As part of this project an entry to the 2012-13 PTSP competitions was
developed using MCTS with macro actions, which won each competi-
tion [24, 25] as well as the multi-objective PTSP competition [32]. The
controller combines a high level planner responsible for long term decisions
and a low level planner, which uses MCTS to determine which granular
inputs to make. This architecture is highly effective for the PTSP domain
and it is a subject of ongoing work to adapt the architecture to other
domains.

Whilst working on this project I co-authored 9 publications in peer reviewed
journals and conference proceedings (listed in Table 1.1) with a further 5 in

preparation or under review (listed in Table 1.2).

Publication

Contributions

Location

E. J. Powley, Peter. 1. Cowl-
ing, and D. Whitehouse, “Informa-
tion capture and reuse strategies in
Monte Carlo Tree Search, with ap-
plications to games of hidden in-
formation”, Artificial Intelligence,
vol. 217, 2014, pp 92-116.

Contributed many ideas to the de-
sign of the ICARUS framework
and the notation. Implementa-
tion and testing of the differ-
ent enhancements. Initial de-
sign of the EPIC algorithm (for
Dou Di Zhu) and the use of UCB
for simulation policy. Analysis
and interpretation of results. Sig-
nificant writing contributions.

Chapter 8

P. I. Cowling, S. Devlin, E. J. Pow-
ley, D. Whitehouse, J. Rollason,
“Player Preference and Style in a
Leading Mobile Card Game”, to
appear in IEEE Trans. Comp. In-
tell. AI Games 2014.

Design and implementation of ex-
periments to measure the effect
of win rate on player retention.
Evaluation of star rating as a
grading of Al difficulty. Analysis
and interpretation of results. Sig-
nificant writing contributions.

Outside Thesis

D. Perez, E. J. Powley, D. White-
house, S. Samothrakis, S. M. Lu-
cas and P. I. Cowling, “The 2013
Multi-Objective Physical Travel-
ling Salesman Problem Competi-
tion”, Proc. IEEE Congr. on
Evol. Comput., Beijing, China,
2014, pp 2314-2321.

Contributions to writing the sec-
tion describing the Purofmovio
controller.

Outside Thesis

D. Perez, E. J. Powley, D. White-
house, P. Rohlfshagen, S. Samoth-
rakis, P. I. Cowling, S. M. Lucas
“Solving the Physical Travelling
Salesman Problem: tree search
and macro-actions” IEEE Trans.
Comp. Intell. AI Games.

Design of the Purofvio controller
and investigation of macro-action
techniques. Contributions to the
design of experiments and analy-
sis and interpretation of results.
Significant writing contributions.

Outside Thesis




Publication

Contributions

Location

D. Whitehouse, P. I. Cowling, E.
J. Powley, J. Rollason, “Integrat-
ing Monte Carlo Tree Search with
Knowledge-Based Methods to Cre-
ate Engaging Play in a Commer-
cial Mobile Game” Proc 9th AAAI
Conf. on Artificial Intelligence
and Interactive Digital Entertain-
ment, Boston, MA, 2013

Contributions to the implementa-
tion of ISMCTS in Spades and
porting to the AI Factory game
engine. Design, analysis and
implementation of enhancements.
Modifications to the implementa-
tion based on feedback from the
developer and customers. Signifi-
cant writing contributions.

Outside Thesis

E. J. Powley, D. Whitehouse, and
P. I. Cowling, “Monte Carlo Tree
Search with Macro-Actions and
Heuristic Route Planning for the
Multiobjective Physical Travelling
Salesman Problem” Proc. IEEE
Conf. Comput. Intell. Games, Ni-
agara Falls, Canada, 2013, pp 73-
80.

Ideas contributed to the design
of modifications to the controller
for the multi-objective problem.
Modifications to CMA-ES imple-
mentation for multiple objective
parameter tuning. Significant
writing contributions.

Outside Thesis

E. J. Powley, D. Whitehouse, and
P. I. Cowling, “Bandits all the
way down: UCB1 as a simula-
tion policy in Monte Carlo Tree
Search” Proc. IEEE Conf. Com-
put. Intell. Games, Niagara Falls,
Canada, 2013, pp. 81-88.

Implementation of the enhance-
ments used in experiments. De-
sign of experiments and analysis
and interpretation of results. De-
sign of the UCB simulation pol-
icy technique. Significant writing
contributions.

Chapter 8

E. J. Powley, D. Whitehouse,
and P. I. Cowling, “Monte Carlo
Tree Search with macro—actions
and heuristic route planning for
the Physical Travelling Salesman
Problem”, Proc. IEEE Conf.
Comput. Intell. Games, Granada,
Spain, 2012, pp 234-241.

Participated in the design and
implementation of the controller.
Design and implementation of the
steering component. Contributed
to testing and tuning of the con-
troller leading up to the competi-
tion. Significant writing contribu-
tions.

Outside Thesis

P. I. Cowling, E. J. Powley,
D. Whitehouse, “Information Set
Monte Carlo Tree Search”, IEEE
Trans. Comp. Intell. AI Games,
vol. 4, no. 2, pp. 120-143, 2012.

Lead the development and imple-
mentation of the ISMCTS algo-
rithms. Design and testing of the
LOTR:C implementation. Analy-
sis of the effect on branching fac-
tor on ISMCTS for Dou Di Zhu.
Significant writing contributions
including to the development of
notation.

Chapters 5 and 6

C. Browne, E. J. Powley, D.

Whitehouse, S. M. Lucas, P.
I. Cowling, P. Rohlfshagen, S.
Tavener, D. Perez, S. Samoth-

rakis, and S. Colton, “A Survey
of Monte Carlo Tree Search Meth-
ods”, IEEE Trans. Comp. Intell.
AI Games, vol. 4, no. 1, pp. 1-43,
2012.

Collecting and organising MCTS
publications. Initial writing of the
MCTS enhancements chapters as
well as writing contributions to
other chapters.

Outside Thesis
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Publication Contributions Location
D. Whitehouse, E. J. Powley, and | Design and testing of the informa- | Chapter 5
P. I. Cowling, “Determinization | tion set UCT algorithm. Exper-

and Information Set Monte Carlo | iments comparing determinzed

Tree Search for the Card Game | UCT and information set UCT.

Dou Di Zhu”, Proc. IEEE Conf. | Analysis and interpretation of re-

Comput. Intell. Games, Seoul, | sults. Significant writing contri-

South Korea, 2011, pp. 87-94. butions.

E. J. Powley, D. Whitehouse, and | Design and implementation of the | Chapter 5

P. I. Cowling, “Determinization in
Monte—Carlo Tree Search for the
card game Dou Di Zhu”, Proc. Ar-
tif. Intell. Simul. Behav., York,
United Kingdom, 2011, pp. 17-24.

Dou Di Zhu game rules. Litera-
ture review on search in hidden
information games. Contributed
to the design of experiments. Sig-
nificant writing contributions.

Table 1.1: A list of all accepted publications written as part of the hidden
information and uncertainty strand of the UCT for games and beyond project,
along with a summary of my personal contributions to each piece of work

Publication

Contributions

Location

P. I. Cowling, E. J. Powley and D.
Whitehouse, “Memory Bounded
Monte Carlo Tree Search”, unsub-
mitted.

Game implementations and test-
ing and running experiments.
Contributed ideas which went
into the new algorithm and the
selection of benchmark methods.
Analysis and interpretation of re-
sults. Significant writing contri-
butions.

Outside Thesis

D. Whitehouse, E. J. Powley, P. 1.
Cowling, “Inference and bluffing in
Monte Carlo Tree Search”, unsub-
mitted.

Game implementations for Scot-
land Yard and Saboteur. Con-
tributed many ideas to the de-
sign of self-determinizing MCTS

Chapter 7

and MCTS based opponent mod-
elling. Analysis and interpreta-
tion of results. Significant writing
contributions.

Table 1.2: A list of currently unpublished articles written as part of the hidden
information and uncertainty strand of the UCT for games and beyond project,
along with a summary of my personal contributions to each piece of work

1.4 Thesis Overview

In this section an overview of the structure of this thesis is presented. Firstly,
chapter 2 introduces notation used throughout this thesis (adapted from the
publications of this work) as well as definitions which are used in subsequent
chapters. Chapter 3 surveys the literature in more depth and introduces the
ideas from game theory, artificial intelligence and MCTS which the new re-
sults in this thesis are built upon as well describing other comparable tech-
niques. Chapter 4 describes the software framework which was developed for
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testing the new ideas in this thesis and implementing the domains which are
used in experiments. Additionally the rules of each domain is described along
with a summary of other research on Al in those domains. Chapter 5 covers
the integration of MCTS with the existing determinization based Perfect Infor-
mation Monte Carlo (PIMC) approach, discusses the flaws of PIMC and how
they can be overcome by using information set trees and ISMCTS. Chapter 6
shows how partial observability can be handled with ISMCTS by introducing
the MO-ISMCTS algorithm as well as experiments showing the limitations of
this approach. Chapter 7 investigates how bluffing and inference can be per-
formed using ISMCTS, overcoming the problems with MOSICMTS. This leads
towards a more theoretically sound version of the ISMCTS at the cost of large
computational requirements due grouping fewer information sets together Infer-
ence is introduced to ISMCTS, using ISMCTS as an opponent model. Finally
different methods of inducing bluffing behaviour and reducing exploitability are
tested. Chapter 8 introduces the ICARUS framework and shows how existing
enhancements can be described in the framework and a new class of enhance-
ments called EPIC is introduced. Experiments compares different combinations
of both new and existing enhancements as well as testing the most effective
selection methods for simulation policies. Finally Chapter 9 concludes the re-
search and discusses the significance of the new contributions of this work as
well as identifying interesting directions for future work.
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Chapter 2

Notation and Definitions

This chapter introduces the definitions and important concepts that are referred
to in subsequent chapters as well as the notation used to describe a game. This
notation is an extension of the notation used in the original paper describing
the ISMCTS algorithm [27]. The structure of this chapter is as follows. Firstly
Section 2.1 informally describes the concept of games and game trees as different
sources of hidden information and uncertainty. Section 2.2 precisely defines
the notion of a game and introduces the notation used throughout this thesis.
Section 2.3 introduces the idea of a policy for a game and several important
classes of policies. Finally Section 2.4 describes the methodology used to design
the majority of the the experiments presented in this thesis.

2.1 Games with Hidden Information and Uncer-
tainty

The class of games which are studied in this work are physical board and card
games which are usually played with a group of human players. Many modern
games such as collectable card games and eurogames feature a huge variety of
game mechanics and often high levels of complexity. In addition physical games
and other turn based games are played using a computer, with a mix of human
players and computer agents. This thesis is concerned with the development of
computer agents for playing games, which can produce engaging play for human
players and can run on the hardware constraints of a commercial game.
Games can be classified according to the following properties:

e Zero-sum: Whether the reward to all players sums to zero (or equivalently
some constant value) for all terminal states.

e Information: Whether the state of the game is fully or partially observable
to the players.
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e Determinism: Whether or not taking the same action from the same state
always results in the same outcome.

e Sequential: Whether actions are applied by players sequentially or simul-
taneously.

e Discrete: Whether actions are discrete or applied in real-time.

A game can be represented as a digraph, where nodes correspond to states
of the game and edges correspond to transitions between states. A game begins
in some initial state determined by the rules of the game and in each state a
player to act chooses an action which encodes a transition from that state. This
process continued until a terminal state is reached. In each state each player
may be awarded some utility value and typically each player aims to maximise
their cumulative utility over the course of the game. For simplicity it can be
assumed that the awarding of utility values is deferred until a terminal state.
If the sum of utility values for all players adds up to 0 a game is known as a
zero-sum game. In the 2-player case this means that one player’s reward is the
negative of the other player’s, i.e. what one player wins, the other must lose.

A game is played by one or more game players, who decide which actions
to take given their observation of the state of a game. Players of a game do
not always observe the exact state of a game, rather players know that the
current state must belong to a set of possible states known as an information
set (determined by the rules of a game). Furthermore actions taken by players
encode a set of state transitions, with one transition for each possible state
within the information set. Which transition occurs when the action is applied
depends on the actual state of the game. In games where information sets are
singletons which contain only the exact state of the game, this game is said to
have perfect information, otherwise a game is said to have imperfect information.

In some games state transitions are non-deterministic, in other words taking
the same action from the same state can have different outcomes. Games with
this property are known as stochastic games, or games with uncertainty. Games
with no uncertainty are known as deterministic games. One way of modelling
uncertainty is by inserting an extra state in which no player takes an action,
rather the game chooses a random transition from that state. This ensures that
actions always encode a single transition from a particular state. In the imple-
mentation of games in this thesis, the outcomes of random events are chosen by
an environment player “0” (the actual players being numbered 1,2,3...) that
always chooses randomly.

There are several well studied classes of games, for example Markov decision
processes (MDP) which are single player games of perfect information with un-
certainty and Partially observable Markov decision processes (POMDP) which
are MDPs with imperfect information. Another well studied class of games
is combinatorial games, which are two player, deterministic, zero sum, perfect
information games with a finite number of states. The work in this thesis is
concerned with classes of games which relax these constraints. In other words
games with any number of players, which may not be zero-sum as well as having
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imperfect information and uncertainty. In particular several sources of imperfect
information and uncertainty are considered:

e Hidden Information: Games in which some information is not visible to
some players and information sets contain many states. For example in a
card game, a player may not know the identities of cards in the hands of
other players.

e Opponent Strategy: Often the effectiveness of a strategy may depend on
the strategy chosen by another player and the strategy of other players
may be unknown, or unpredictable. For example in a game of rock, paper,
scissors always choosing rock will beat a player always choosing scissors,
but lose to a player always choosing paper.

e Partially Observable Actions: Players may not always observe the exact
action taken by another player, but rather a set of possible actions. For
example a player may observe another player look through a shuffled deck
and draw a card but not observe the identity of the drawn card.

e Simultaneous Actions: Games in which players make decisions simultane-
ously, for example the game rock, paper scissors. In addition some games
may have both sequential and simultaneous decisions. Simultaneous ac-
tions can be modelled as sequential partially observable actions.

e Stochastic: Some events in a game may be randomly determined. For
example dice rolls or deck shuffling. Stochastic outcomes can be considered
hidden information, for example if all dice rolls are fixed in advance but
hidden from players.

Finally, an imperfect information game can be converted to a perfect infor-
mation game through a process known as determinization. A determinization is
a state from an information set which is fixed as the true state of the game, then
the game is played out assuming everything is fully observable. For example in
a card game this could be equivalent to playing with all cards face up. Crucially,
the determinization process removes all sources of hidden information and un-
certainty, for example by fixing all future stochastic outcomes and making this
information visible to all players.

It should also be noted that partially observable actions are often regarded
as hidden information, since the result of any action is that players transition
from one information set to another. However in this work, observation of action
histories is used to generate and distinguish between information sets so it is im-
portant to take account each players observations of a transition. By taking this
approach, the ISMCTS algorithm can share information across information sets
and avoid to actually storing information sets (in order to distinguish between
them). The motivation for using this representation is that there is typically a
small amount of information contained in a move compared to an information
set, so choosing the correct edge in a tree (corresponding to an observation of a
move) is more computationally efficient than finding the correct information set.
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This enables a highly efficient implementation of the ISMCTS algorithm, but
comes at the cost of a significant increase in complexity of implementation. In
particular, care must be taken when information is revealed or hidden since this
can only be achieved through actions (corresponding to transitions in the MCTS
search tree). This is implemented by having the environment player make extra
actions which reveal (or conceal information) to players where necessary. This
would not be needed if a representation based on information sets was used.

2.2 Game Notation

In this section a game is precisely defined and game notation introduced. Firstly
a few useful notations need to be defined. For a set X, a sequence over X is
written as (x1,...,2,) for z; € X. The empty sequence is denoted (). The
set of all sequences over X is denoted X*. The concatenation of two sequences
T = <x1a"'axn> and Y= <y17"'7ym> is THY = <x17"'>x7uy17"'7yn>- The
concatenation operator can be used for prepending or appending single elements
to a sequence, for example & H# 11 = (T1,. .., Tn, Tpt1) for z,41 € X. Let X
be a set and let ~ be an equivalence relation on X. Then [z]™ is the ~-class of
x € X, and X/ ~ is the set of all ~-classes.

Now the terminology and notation for games is introduced. The notation was
introduced in [27] and is extended here. More detail on the concepts underlying
the definition of a game can be found in [33] or other standard textbooks on
game theory. A game is defined on a directed graph (S, A). The nodes in S are
called states of the game; the leaf nodes are called terminal states, and the other
nodes nonterminal states. A is the set of state transitions. A game has a positive
number x of players, numbered 1,2, ..., k. There is also an environment player
numbered 0. Each state s has associated with it a number p(s) € {0,...,k},
the player about to act. Each terminal state s has associated with it a vector
w(sT) € R¥, the reward vector.

The game is played as follows. At time ¢ = 0 the game begins in the initial
state sg. At time t = 0,1,2,..., if state s; is nonterminal, player p(s;) chooses
an edge (s, st+1) € A and the game transitions through that edge to state sy41.
This continues until a time ¢t = T when st is terminal. At this point, each
player receives a reward equal to the relevant entry in the vector p(sr), and the
game ends.

Players typically do not choose edges directly, but choose actions. Actions
are equivalence classes of edges, with the restriction that two edges starting from
the same node cannot be in the same action. It is also required that all edges
in an action have the same player about to act in their start nodes. Actions
capture the notion that different edges from different states can be in some sense
equivalent: for example, an action may consist of all edges leading from a state
where player 1 holds an ace (and some other cards) to the state where player
1 has just played the ace; such an action would be labelled “player 1 plays an
ace”. The set of actions from a state s is denoted A(s); this is simply the set of
action classes restricted to edges outgoing from s.

16



The transition function f (see Definition 3 below) maps a (state, action)
pair (s¢,a) to a resulting state s;1, by choosing an edge (s¢, st+1) € a. Note
that the domain of f does not include all (state, action) pairs, as not all actions
are available in each state.

A policy for player ¢ maps each state s with p(s) = i to a probability distri-
bution over A(s). This distribution specifies how likely the player is to choose
each action from that state. One way of stating the fundamental problem of
game Al (and indeed of game theory) is as finding the policy that leads to the
highest expected reward, given that all other players are trying to do the same.
The exception here is the environment player, whose policy is fixed as part of
the game definition and specifies the probabilities of outcomes for chance events.

This thesis studies games of imperfect information. In these games, each
player partitions the state set S into information sets. Note that in general, each
player’s partitioning is different. See Figure 5.10 (page 74) for example. The
players do not observe the actual state of the game, but rather the information
set containing the actual state. Essentially, the states in a player’s information
set are indistinguishable from that player’s point of view. In particular this
means that the player’s choices of actions must be predicated on information
sets, not on states.

This thesis also studies games with partially observable moves. Here each
player further partitions the actions into mowes. It is required that the partitions
for a player’s own actions are singletons, i.e. that players can fully observe their
own moves. When a player plays an action, the other players do not observe
that action directly but observe the move to which the action belongs. The set
of moves from player i’s point of view from a state s is denoted M;(s), and is
the set of move classes restricted to edges outgoing from s. In the case where
p(s) =i, let My, (s) = A(s).

It is required that two edges leading from states in a player i information
set and contained within the same move from player i’s point of view must lead
to states in the same player ¢ information set. In other words, all available
information about the game can be gathered by observing moves, without the
need to directly observe information sets. This also allows a transition func-
tion on (information set, move) pairs to be well defined. This property can be
achieved if necessary by addition of environment states, in which the environ-
ment player has exactly one action available; this action may depend upon (and
thus provide an observation of) the actual state, but different states in the same
information set from the point of view of some other player may have different
actions available. Environment states are necessary to enable Al player to dis-
tinguish between states in which different sets of information have been revealed
or hidden, without having to have an game specific encoding of information in
a game.

In summary, the following definitions describe a game:

Definition 1. A game of imperfect information is a 9-tuple

r= (SvAa*gO)HvMapﬂTOa(Nl)"'7NH)7(V15"W\/5)) (21)
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where:

e (S,A) is a finite nonempty directed graph, with S the set of states and A
the set of state transitions;

e so € S is the initial state;
e r € N is the number of players;

e 1 : S — R” is the utility function, where St C S is the set of leaf nodes
(terminal states);

e p:S—{0,1,...,k} defines the player about to act in each state;

o mo: Ao — [0,1], where Ag = {(r,s) € A: p(r) =0} and 3, . (, enny T0(7, 8) =
1 is the environment policy;

e ~; is an equivalence relation on S, whose classes are player i’s information
sets;

e —, is an equivalence relation on A, whose classes are moves as observed
by player i. Classes consisting of edges (s, u) with p(s) = 4 are also known
as player i’s actions.

In a game of imperfect information, players do not observe the current state
but observe the information set that contains it. Likewise they do not observe
state transitions or actions but moves. (Note the distinction between state
transitions, actions and moves: a player chooses an action, which induces a
state transition, and the other players observe a move.) An information set
consists of all states that are indistinguishable from the player’s point of view;
a move consists of all actions that are indistinguishable from the player’s point
of view. Thus a player’s choices of action can depend only on the information
sets and moves that he observes, not on the underlying states and actions.

Definition 2. Consider a game I', a state s and a player i. The set of legal
moves from state s from player ¢’s point of view is

M;(s) ={[(s,u)] " : (s,u) € A}. (2.2)

The set of all moves from player i’s point of view is the set of all moves legal
in at least one state:
M; =M/ —= | Mi(s). (2.3)
ses

The set of all moves is the set of all moves from all players’ points of view:

M= |J M. (2.4)

i=1,..,Kk
The set of legal actions from s is

A(s) = M5 (s), (2.5)



i.e. the set of legal moves from the point of view of the player about to act. The
set of all actions is the set of all actions legal in at least one state:

A=[JA@s). (2.6)

seS

Definition 3. Consider a game I'. Let B = {(s,a) : s € S,a € A(s)}, the set
of all pairs of states and their legal actions. The transition function for I is the
function f : B — S such that given s € S, Va € A(s), (s,s') € a= f(s,a) =¢'.
In other words: f(s,a) is the state reached by starting from s and traversing the
edge corresponding to a; f(s,a) is the state resulting from performing action a
in state s.

Definition 4. An action history! from state s is a sequence of actions (a1, . .., a,) €
A*, such that

a; € A(s) (2.7)
az € A(f(s,a1)) (2.8)
ag € A(f(f(s,a1), a2)) (2.9)

: (2.10)
an € A(f(...(f(s,a1), ... ) an-1)). (2.11)

Denote the set of all action histories from s by H(s). Extend the transition
function f to operate on action histories by defining

f(s,() =s (2.12)
f(s,{ar, ... an)) = f(f(s,{ar,...,an-1)),an). (2.13)

An action history h is terminal if f(s, h) is a terminal state. Denote the set of
terminal action histories from s by H(s).

Definition 5. A move history for player ¢ from state s is a sequence of moves
from player ¢’s point of view, ([a1] ™ *,...,[an] ") € M}, where (a1,...,a,)
is an action history from s. Denote the set of all move histories for player 4
from s by H;~(s), and the set of all move histories for all players by H ™~ (s). If
h ={as,...,a,) is an action history then the corresponding move history from
player i’s point of view is denoted [h]™%. Let p = p(f(s, (a1,...,an—-1))), so p is
the player who played the last action a,, in the history. Then the move history
from player p’s point of view is denoted by omission of the player number, i.e.
[h]—.

Definition 6. A game tree with root node r is formed from the action histories
H(s,) of aroot state s,. Each node in a game tree is labelled with a state s € S
and a history h € H(s,) in such that f(s,,h) = s. The root node is labelled

INote that a history from state s begins, not ends, at state s. If s is considered to be the
current point in time, a “history” could more correctly be called a “future”.
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with state s, and history h = (). The edge which connects a node n with its
parent node n is labelled with the last action in the history of n. In a complete
game tree, leaf nodes are members of H(S,). If a game tree is note complete,
it is said to be a partial game tree. Game trees have the following properties:

e Each node in the tree is labelled with exactly one state, but one state can
be the label of several nodes.

e The history of a node is precisely the sequence of moves or actions that
label the edges from the root to that node.

e The depth of the tree is the length of the longest history.

e The out-degree of a node is the branching factor of its state.

2.3 Solution concepts for games

Players of a game make decisions according to a policy m which maps every
information set where that player is to act to a probability distribution over the
set of legal actions.

Definition 7. Let 7; denote the policy of a player j where m; : M;(s) — [0,1]
and Yocn,(s)Tj(a) = 1), Vs € S such that p(s) = j

Definition 8. If 7;(s) € {0,1} Vs € S with p(s) = j then 7; is a pure policy
otherwise 7; is a mized policy

If a player has a pure policy, then all action choices are deterministic and the
policy will always choose the same action from the same state. In combinatorial
games, there is always at least one pure policy which is optimal [33] known as
a minimax strategy (there may be more than one, and there may be mixed
policies that are optimal too). Since the policy is deterministic the outcome of
the a game will always be the same if both players are using an optimal policy.
This means that combinatorial games can have two possible solutions since they
are zero sum, one in which one player wins and another loses (the rewards for
each player are not equal) and another in which the game is a draw (the rewards
for both players are equal to zero). The largest combinatorial game which has
been solved in this way is Checkers, which is a draw with optimal play [34].

For games with imperfect information, pure policies are often not optimal
and therefore the outcome of the game may be not deterministic. When com-
paring policies in imperfect information games, it is therefore natural to consider
the expected reward of a policy. For games with multiple players, the expected
reward of a policy will depend on the set of policies chosen for each player. The
aim of each player is typically to find a policy which maximises their expected
reward. However the expected reward of a policy depends on the policy chosen
by other players and it may be the case that a policy may be superior to some
policies and inferior to others. Therefore players may instead looks for policies
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that are robust against all possible policies chosen by other players, which leads
to the notion of an equilibrium of policies.

Definition 9. For a game, a set of policies forms an e-equilibrium if no player
could gain more than e in expected reward by unilaterally changing policy. If
€ = 0 then this is known as a Nash-FEquilibrium.

As previously discussed, in combinatorial games there always exists a pure
policy Nash-equilibirum [33] (known as the minimax solution). If all players
are playing a pure strategy this is an e-equilibrium where the € for this set of
strategies is the most any single player could gain in expected reward by playing
a different (possibly mixed) strategy. The best counter to a pure strategy can
be found by enumerating all counter strategies and choosing the one with the
highest reward (or playing a mixture of the counter strategies which yield the
same maximal reward).

Nash equilibria can be calculated precisely using iterated elimination of dom-
inated strategies [33] or linear programming [35], or approximated using tech-
niques such as counterfactual regret minimization [36, 37]. However computing
a Nash-Equilibirum is infeasible for most real games. Game theory often as-
sumes that all players are rational; that is, they always act to maximise their
own reward. Under this assumption when playing a game the policies chosen by
player should form a Nash equilibrium. However this assumption is often not
true in practice given the difficulty of computing Nash equilibria for nontrivial
games. If one player has already deviated from a Nash equilibrium then the
other players can exploit this by deviating themselves.

2.4 Statistical Analysis of Experiments

The experiments presented in this thesis mostly consist of a game where the
players are controlled using a set of Al methods. Since the policies produced
by the AI techniques are often mixed and most of the games are stochastic in
nature, it is natural to compare algorithms using the probability each algorithm
will win a game, which can be estimated by averaging the number of games won
across a large number of repeated games. That is, for a fixed set of ATl methods
playing a particular game, each algorithm has a probability p of winning the
game.

For each algorithm, a game can be considered a Bernoulli trial where the
algorithm has probability p to win the game and probability 1 —p of not winning
the game. Therefore the number of games won by an algorithm in a series of
repeated games is binomially distributed. The uncertainty in the estimation of
p can be calculated using Clopper-Pearson intervals [38]. Where error bars are
displayed on figures in this thesis they are 95% Clopper-Pearson intervals.
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Chapter 3

Literature Review

The main topic of this thesis is the application of Monte Carlo Tree Search to
imperfect information games. This chapter surveys the existing work that the
new ideas in this thesis are built upon. Firstly the multi-armed bandit problem
is introduced in Section 3.1, which is a key component of the MCTS algorithm.
Next Section 3.2 presents an overview of existing work on MCTS including with
how the MCTS family of algorithms is defined and what important variants and
applications of the algorithm exist. Finally Section 3.3 presents a summary of
existing work applying tree search algorithms to imperfect information games.

3.1 Multi-Armed Bandits

In the multi-armed bandit problem, a gambler has a choice of several bandit
machines each of which has a different probability of paying out. The goal
of the problem is to balance spending time evaluating which machine has the
highest probability with spending as much time as possible playing the best
machine. This is an example of the exploration versus exploitation dilemma. In
general a multi-armed bandit has a finite set of arms, each with an unknown
reward distribution and the problem is to define a policy which takes as input
all rewards received on all previous trials and determine which arm should be
selected next.

Regret is a term used to describe the loss incurred by playing sub-optimal
arms, which is the difference between the reward received and the expected
reward from the optimal arm. The cumulative regret is the sum of the regret
incurred on all previous trials. The standard way of evaluating the strength of a
policy for the multi-armed bandit problem is determine the expected value of the
cumulative regret after a fixed number of trials. In the case of the UCB policy
[39] the expected cumulative regret grows logarithmically with the number of
successive trials.

The multi-armed bandit problem has applications in many areas and interest
the problem pre-dates the application in MCTS, where the selection of an action
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in a game tree is be treated as a multi armed bandit problem. In this case
the arms correspond to the different actions and the rewards are generated by
simulating the outcome of the game. The UCT algorithm [2] builds a partial
game tree iteratively and the UCBI1 algorithm [39] us used to select actions
within the tree (and Monte-Carlo simulation is used to select actions from states
outside the tree). For a game of perfect information the optimal action will be
the action with the highest minimax value and the UCT algorithm converges to
this value as the number of iterations increases.

3.1.1 k-Armed Multi-Armed Bandit Problem

The bandit problem previously described is also known as the k-Armed Multi-
Armed Bandit Problem to distinguish it from other variants of the multi armed
bandit problem. The k-Armed Multi-Armed Bandit Problem is defined as fol-

lows:

Definition 10. A k-Armed Multi-Armed Bandit Problem consists of random
variables X;, for 1 < i < k and n > 1. This corresponds to the arms on k
gambling machines where ¢ denotes the index of each arm and n denotes the
reward received on the n'" play of an arm. In addition random variables Xin
satisfy the following two properties:

e Random Variables X, , for n > 0 are independent and identically dis-
tributed according to some distribution with expectation E[X; ] = p;.

e Random Variables X; ;, X;; are independent but not necessarily identi-
cally distributed for 1 <i < j <k and s,t > 1.

i.e. the arms may have different reward distributions, but (in this version of the
multi-armed bandit problem) the distribution for a given arm does not change
over time The term trial is used to describe the process of selecting an arm to
play and then receiving a reward. The number of times an arm ¢ was played
during the first n trials is denoted by T;(n).

3.1.2 Bandit Algorithms

There exists many different policies for the multi-armed bandit problem, also
known as bandit algorithms. A bandit algorithm decides which arm to pull on
a given iteration, given the history of previous pulls and rewards. In this work
UCBI1 [39] is the bandit algorithm used for action selection in MCTS which
select the arm which maximises

logn
Ti(n)

Xin+C (3.1)

where X, is the average reward obtained after Tj(n) trials of arm i (out of
n trials in total) and C is a numerical constant. The UCBI1-Tuned algorithm
is also used in some MCTS applications [40, 15], which removed the need to
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tune constant C and often leads to better performance. Additionally the EXP3
algorithm [41] has been applied to simultaneous action selection [42] and is
used for simultaneous action selection in this work. The EXP3 algorithm was
designed for a variant of the multi armed bandit problem where the rewards
are manipulated by an adversary, thus more accurately models the problem of
choosing simultaneous actions (where the action chosen by the opponent alters
the rewards).

3.2 Monte Carlo Tree Search

Monte Carlo Tree Search is a family of tree search algorithms which first emerged
in 2006. The idea of using monto carlo simulations in game Al was not new,
for example Abramson [18] demonstrated that many random games could be
used to estimate the game-theoretic value of a move. Flat Monte-Carlo Search
is a search algorithm which uses random games to evaluate moves and has been
applied to Go [43]. The innovation of Monte Carlo Tree Search (MCTS) was
to use random simulations as an estimator for the value of a move in combi-
nation with a search tree to guide simulations and balance the exploitation of
promising moves with the exploration of untried moves. This idea was proposed
by Coulom [4] as well as Kocsis and Szepesvri [2] which introduced the UCT
algorithm. Almost immediately MCTS led to great advances in the field of
computer Go [44, 45] and all of the top computer Go programs are now MCTS
based [7]. Additionally there has been a lot of research into the application of
MCTS to other domains [1] leading to advances in many different problems.

MCTS has mostly been applied to games of perfect information. This is
unsurprising given that the UCT algorithm converges to the minimax solution
to these games. MCTS has produced the strongest programs for games such
as Go [7] and Hex [46] and has shown to be highly scalable in parallel search
applications [47]. MCTS has also been applied to imperfect information games
in combination with determinization approaches such as perfect information
monte carlo search in domains such as Solitaire [48], Skat [49], Dou Di Zhu [50]
and Magic: The Gathering [51, 52]

3.2.1 Monte Carlo Tree Search Algorithms

There are many different variations of MCTS algorithms [1], however all MCTS
algorithms follow the same general structure. MCTS performs a large number
of simulated games and builds a partial game tree adding one node on each
iteration. MCTS makes a decision based on the outcomes of the simulations
which are stored in this tree. Each simulated game is referred to as an iteration
of the MCTS algorithm and consists of the following four steps:

1. Selection: Choose moves whilst balancing the exploitation of good moves
with the exploration of untried moves until a state is reached which is not
represented in the MCTS tree.
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2. Expansion: Add a new node to the MCTS tree corresponding to the
unvisited state encountered during selection.

3. Simulation: Play out the rest of the game using a randomised policy.

4. Backpropagation: Update nodes in the tree with the outcome of the game
in the simulation step.

Precisely how each step is performed varies between MCTS algorithms but
the major components of an MCTS algorithm are the policies used for selection
and simulation. In the case of the UCT algorithm [2] the selection policy is
UCBL [39] and the simulation policy is purely random. In Chapter 8 a general
framework for MCTS algorithms is introduced which makes this structure more
formal whilst allowing all existing MCTS algorithms to be defined within the
framework.

3.2.2 Properties of Monte Carlo Tree Search

MCTS has several useful properties in comparison to other search algorithms.
Firstly MCTS can be applied to any problem which is modelled by a decision
tree and can be applied without any domain knowledge (although inclusion of
domain knowledge provides benefits). Therefore MCTS can be characterized
as aheuristic. This is in contrast to the popular approach of minimax search,
where the quality of play depends significantly on the heuristic used to evaluate
the probable outcome non-leaf nodes. In games such as Chess where reliable
heuristics have emerged after decades of research, minimax performs well. In
cases such as Go, however, where branching factors are orders of magnitude
larger and useful heuristics are difficult to find (at least for minimax), the per-
formance of minimax degrades significantly. MCTS has been highly successful
in the domain of General Game Playing (GGP) [8] where the rules of games
used to evaluate techniques are not known in advance.

MCTS is also an anytime algorithm, in that it can be stopped at any point
and return a decision. This is in contrast to algorithms such as minimax search
which must complete a computation before a decision can be made. It is pos-
sible to have an anytime version of minimax search using iterative deepening.
Nevertheless, as an entire ply is added to the tree on each iteration, the gran-
ularity of progress is much coarser, even if techniques such as a-f pruning can
be used to improve efficiency.

Finally MCTS performs an asymmetric search, rather than a fixed depth
search. This enables MCTS to spend more time searching plausible future lines
of play in great depth and less time searching areas of the tree with sub-optimal
moves.

There are also weaknesses to MCTS algorithms. MCTS has been demon-
strated to be inferior to minimax search in domains where good heuristics are
known [53] (but heuristics can be used with MCTS too). In many implemen-
tations of MCTS a suite of enhancements and domain knowledge needed to be
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used in order to achieve good results [1]. However, the integration of heuris-
tic knowledge with MCTS is also not always guaranteed to lead to stronger
play and can even be detrimental [54]. Also many bandit algorithms used for
selection in MCTS have parameters which must be tuned for each domain (al-
though good default values exist), although typically MCTS algorithms have a
small number of tunable parameters compared to the sophisticated evaluation
functions developed for use with minimax search.

3.2.3 Enhancements and Applications

There are many different enhancements for MCTS [1] and they can be divided
into two classes. Firstly there are general purpose enhancements which im-
prove the performance of MCTS without utilizing any domain specific knowl-
edge and can potentially be used in any MCTS application. General purpose
enhancements typically add complexity to the MCTS algorithm by modifying
the tree selection (for example RAVE [54]) or simulation policies (for example
MAST [55]). Any benefit of the enhancement must outweigh the reduced num-
ber of simulations that can be performed in a given amount of time. General
purpose enhancements may only work in particular types of domains and be
detrimental in others: despite not being tailored to a specific game, they may
still rely on the game having certain characteristics (for example a notion of
certain moves being good or bad regardless of the current state). There are also
often additional tunable parameters introduced with general purpose enhance-
ments. Enhancements to MCTS which provide methods for exploiting domain
specific knowledge are also well studied, for example patterns in Go [44, 56, 7],
Hex [46] and Othello [57]. However the work in this thesis is concerned with
developing MCTS algorithms which can be applied to large classes of games, so
these enhancements were not used.

One thing most of these methods have in common is that they alter how
MCTS learns from simulated games and how this learned knowledge is used to
influence the tree selection and simulation policies. The ICARUS framework
introduced in Chapter 8 generalizes MCTS as an algorithm which captures in-
formation from simulated games and re-uses this information to build improved
tree selection and simulation policies as more iterations are performed. Chap-
ter 8 introduces several new enhancements and presents experiments studying
variations of the following enhancements:

e The all moves as first (AMAF) heuristic was introduced by Briigmann [43]
in the context of Monte Carlo methods for Go, and was first combined with
MCTS by Gelly and Silver [54] and independently by Drake and Uur-
tamo [58]. The underlying idea is that the value of an action is somewhat
independent of the time at which it is played. This time independence
is particularly true for games with pieces that rarely or never move once
played, such as Go and Hex. AMAF and its variants have proven highly
successful in these [7, 21] and other similar games. AMAF updates statis-
tics for each action in the playout not just at the point when that action
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was played, but also at all earlier points when the action could legally
have been played.

e Move-average sampling technique (MAST) was introduced by Finnsson
and Bjornsson [59] and used in their CADIAPLAYER general game player [8].
The idea is to maintain average reward statistics for each action indepen-
dently of where it occurs in the game tree, and use these statistics to bias
the simulation policy.

e Last good reply (LGR) is a simulation policy introduced by Drake [60].
When playing a game, each action can be thought of as a reply to the
opponent’s previous move. If the replying player goes on to win the game,
this provides some evidence that the reply was good. LGR records good
replies from MCTS playouts; during simulation, if a good reply is recorded
for the previous move then it is played deterministically. LGR has been
shown to improve the performance of MCTS for Go [60, 61], Havannah [62]
and General Game Playing [63].

Chapter 8.2.3 (page 147) surveys several additional enhancements and ex-
plains how they can be integrated into the ICARUS framework.

3.2.4 Simultaneous Moves

This section surveys existing work on the application of MCTS to games with
simultaneous moves. Simultaneous moves are a source of imperfect information
and occur in several of the games studied in this thesis. Simultaneous moves
are a special case of imperfect information, in which each player independently
chooses an action and these actions are applied at the same time. This can
occur as a decision in a larger game, where some decisions are made sequen-
tially and others simultaneously. Simultaneous actions occur in several of the
games studied in this thesis, In particular in the game Lord of the Rings: The
Confrontation [64] players take turns to move characters on a board. Occasion-
ally these characters enter combat, which is decided by players simultaneously
choosing from a set of cards to determine the outcome of combat.

Simultaneous moves can be modelled by having players choose their actions
sequentially, but hiding their choices from the other players, until finally an en-
vironment action reveals the chosen actions and resolves their effects. With this
in mind, any algorithm that can handle imperfect information in general can
handle simultaneous moves in particular. However, some of the new algorithms
in this thesis (particularly those not designed to handle partially observable
moves) perform poorly using this model. Under a simple determinization ap-
proach, the first player is overly pessimistic (assuming the opponent can observe
the chosen move and select the best response to it) while the second player is
overly optimistic (assuming the first player’s move is fixed at the point of the
second player’s decision, and thus determinizing it randomly).

When applying a tree search algorithm to a game with simultaneous actions,
it is important that the response of one player is not tailored to the action chosen

27



by another. For this reason, a mechanism must be added to search algorithms
to handle simultaneous moves. There are several existing techniques for making
simultaneous decisions. If the rewards for each outcome are known then it is
possible to compute a Nash equilibrium for the decision. When a simultaneous
decision occurs within a sequential decision tree, the expected rewards for each
outcome are not initially known. This means any tree search approach has to
first calculate the rewards (dependent on the decisions made in each sub-tree)
then use the rewards to produce a decision. One algorithm which can do this is
CFR [36].

The UCT algorithm has been applied to the simultaneous move game rock-
paper-scissors by Shafiei et al [65], using an approach where each player’s choice
of action is treated as a separate independent multi-armed bandit problem. In
other words, instead of selecting player 1’s move, descending the corresponding
tree branch, and selecting player 2’s move from the resulting child node, both
moves are selected independently from the same node and the tree branch corre-
sponding to the resulting pair of moves is descended. Shafiei et al [65] show that
this approach finds mixed policies, though not necessarily Nash policies. More
recently Lanctot et al [66] have introduced Online Outcome Sampling (OOS)
which approaches a nash-equilibrium over time. This technique has been demon-
strated to produce less exploitable strategies than MCTS in the simultaneous
move game Goofspiel.

In this thesis the approach proposed by Teyaud and Flory [42] is used to
handle simultaneous decisions. Teytaud and Flory [42] suggest a modification of
the UCT algorithm, in which the UCB bandit algorithm is replaced by the EXP3
algorithm [41] at nodes with simultaneous moves only (i.e. UCB is still used
elsewhere in the tree). As with the approach of Shafiei et al [65], simultaneous
moves are chosen using independent bandits. The justification for using EXP3
rather than UCB is that the optimal policy at a simultaneous move node is
often mixed; UCB is designed to converge to a pure policy, whereas EXP3
explicitly seeks a mixed policy. Teytaud and Flory [42] further strengthen this
justification by comparing the playing strength of UCB versus EXP3 for the
card game Urban Rivals, showing that EXP3 performs better and requires less
tuning.

In EXP3, the probability of selecting an arm a € A is

_ 0 Lt
)= T T 55, eem @

(3.2)

where s(a) is the sum of rewards from previously selecting arm a, each divided by
the probability of selecting a on that trial, and n and  are constant parameters.
This equation is of a different form to that given by Auer et al [41], but is
equivalent and more numerically stable.

Naturally the performance of EXP3 depends on the choice of coefficients.
After [41, Corollary 4.2] let

= min{ 1 1 33
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and

U (3.4)

_

K )
where K = |A] is the number of arms, n is the total number of trials, and e is
the base of the natural logarithm.

3.2.5 Multiplayer Games

Much of the existing work on applications of MCTS has focused on 2 player
zero-sum games However several of the domains studied in this thesis have
more than 2 players. One approach to multiplayer games is to use the max™
idea [67], where a vector of rewards is given to each player and each player
seeks to maximize their own reward. In the two-player zero-sum case, max™ is
equivalent to minimax: maximising one’s own reward is the same as minimising
your opponent’s reward. Max™ is not commonly used in minimax tree search as
it is not compatible with alpha-beta pruning (although a limited version known
as shallow alpha-beta pruning is possible [68] In MCTS there is no such reason
not to use it. Indeed, max™ has been used with MCTS be several authors [69, 70]
and is the approach used taken in this thesis. Cazenave [71] also considers how
to handle coalitions between players and Winands and Nijssen [72] consider
the effect of coalitions in the game Scotland Yard. Nijssen and Winands also
described a multiplayer version of their MCTS-Solver [73].

3.3 Search in Imperfect Information Games

In this section an overview of existing approaches to performing tree search in
imperfect information games is presented.

3.3.1 Determinization

For games of imperfect information, the states of a game are grouped together
into information sets. An information set is associated with a particular ob-
server, who cannot distinguish between states in the information set. Since the
utility of an action may depend on which state within an information set is the
actual state of the game, each player aims to maximize their expected utility
where expectation is taken over both states and opponent policies.

One approach to designing Al for games with stochasticity and/or imperfect
information is determinization, also known as Perfect Information Monte Carlo
(PIMC) [30]. For an instance of a stochastic game with imperfect information,
a determinization is an instance of the equivalent deterministic game of perfect
information, in which the current state is chosen from the Al agent’s current
information set, and the outcomes of all future chance events are fixed and
known. For example, a determinization of a card game is an instance of the
game where all players’ cards, and the shuffled deck, are visible to all players,
or in a dice game a determinization might fix the sequence of values a die will
roll. Determinizations can be samepled from the current game state, and each
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one analysed using Al techniques for deterministic games of perfect information.
The decisions made in each determinization can then be combined to yield a
decision for the original game. The term determinization refers to the process
of converting a game of imperfect information to an instance of a game of
perfect information. The AI technique of analysing multiple determinizations
to make a decision is often called Monte Carlo sampling (of determinizations).
In this work Monte Carlo sampling of determinizations is referred to simply
as determinization to avoid confusion with the Monte Carlo sampling of game
simulations used by MCTS algorithms.

Ginsberg’s GIB system [16] applies determinization to create an Al player
for the card game Bridge which plays at the level of human experts. GIB
begins by sampling a set D of card deals consistent with the current state of
the game. For each of these deals d € D and for each available action a, the
perfect information (“double dummy”) game is searched to find the score p(a, d)
resulting from playing action a in determinization d. The search uses a highly
optimised exhaustive search of the double dummy Bridge game tree. Finally,
GIB chooses the action a for which the sum ., p(a,d) is maximal.

Bjarnason et al [48] present a variant of UCT for stochastic games, called
Sparse UCT, and apply it to the single-player card game of Klondike Solitaire.
Bjarnason et al [48] also study an ensemble version of Sparse UCT, in which
several search trees are constructed independently and their results (the ex-
pected rewards of actions at the root) are averaged. They find that ensemble
variants of UCT often produce better results in less time than their single-tree
counterparts. A special case of ensemble Sparse UCT, which Bjarnason et al
call HOP-UCT, is equivalent to a straightforward application of determiniza-
tion (more specifically, hindsight optimization [74]) with UCT as deterministic
solver, in which the determinization is constructed lazily as UCT encounters
each chance event.

Bjarnason et al [48] treat Klondike Solitaire as a stochastic game of perfect
information: rather than being fixed from the start of the game, the values of
face down cards are determined as chance events at the moment they are re-
vealed. This works for single-player games where the hidden information does
not influence the game until it is revealed, but generally does not work for
multiplayer games where the hidden information influences the other players’
available and chosen actions from the beginning of the game. It is applicable in
some cases, e.g. if players draw cards from a shuffled deck, it can be assumed
that the next card is chosen randomly at the moment it is drawn rather than
fixing the order of the entire deck in advance. Nevertheless, the specific meth-
ods of Sparse UCT and lazy determinization are not immediately applicable
to multiplayer games, but the general ideas may be transferable. Bjarnason et
al [48] show that Sparse UCT is able to win around 35% of Klondike Solitaire
games, which more than doubles the estimated win rate for human players.
Determinization is also the state-of-the-art approach for card games such as
Bridge [16] and Skat [49, 75]. Determinized MCTS also shows promise in games
such as Phantom Go [76] and Phantom Chess (Kriegspiel) [77], as well as the
highly complex card game Magic: The Gathering [51, 52].
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Despite these successes, determinization is not without its critics. Russell
and Norvig [78] describe it (somewhat dismissively) as “averaging over clair-
voyance”. They point out that determinization will never choose to make an
information gathering play (i.e. a play that causes an opponent to reveal some
hidden information) nor will it make an information hiding play (i.e. a play
that avoids revealing some of the agent’s hidden information to an opponent).
Ginsberg [16] adds weight to this claim by making the same observations about
GIB specifically.

Russell and Norvig’s criticisms of determinization are valid but equally valid
are the experimental successes of determinization. Frank and Basin [28] identify
two key problems with determinization:

e Strategy fusion: An Al agent can obviously not make different decisions
from different states in the same information set (since, by definition, the
agent cannot distinguish such states); however, different decisions can be
made in different determinizations.

e Non-locality: Some determinizations may be vanishingly unlikely (render-
ing their solutions irrelevant to the overall decision process) due to the
other players’ abilities to direct play away from the corresponding states.

Strategy fusion may arise since a deterministic solver may make different
decisions in each of the states within an information set. In this situation the
issue is that the agent assumes a different decision can be made depending on
the state and this information is not known.

Building on the work of Frank and Basin, Long et al [30] identify three pa-
rameters of game trees and show that the effectiveness of determinization is
related to a game’s position in this parameter space. The parameters measure
the ability of a player to influence the outcome of a game in its late stages (leaf
correlation), the bias in the game towards a particular player (bias) and the
rate at which hidden information is revealed (disambiguation). Long et al [30]
demonstrate how these parameters can be used to predict whether determiniza-
tion is an appropriate method for a given game.

3.3.2 Minimax

The minimax algorithm [78](Ch. 6) is commonly used to search game trees
in combinatorial games and has been hugely successful such as producing the
first program to beat a chess grandmaster [19]. There are several algorithms
which extend minimax search to games with stochastic outcomes. Firstly there
is expectimax search [78] where the value of a chance node is the expected value
of a randomly chosen child (i.e. the sum of the values of its children weighted
by the probabilities of the corresponding chance outcomes). Additionally Bal-
lard introduced *-minimax trees [79] for handling chance events. There is also
miximax search [80] which is similar to single player expectimax, in which a
predefined strategy is used for opponent decisions allowing opponent decision
nodes to be treated as chance nodes. Smith and Nau [81] combined Hierarchical
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Task Networks (HTN) with Minimax search for the game of Bridge. The HTN
was used to restrict the search tree to nodes reached by choosing certain strate-
gies. This is similar to the idea used in the ISMCTS algorithm, of grouping
information sets in order to reduce the complexity of the search tree.

3.3.3 Monte Carlo Tree Search

There have been many examples of the MCTS algorithm being combined with
PIMC search as a technique for hidden information games. In this thesis, the
ISMCTS algorithm is introduced which extends the MCTS algorithm to trees
of information sets in order to overcome the problem of strategy fusion in PIMC
search. Several other algorithms for applying MCTS to imperfect information
games have been developed in addition to the ideas presented in this thesis. The
idea of constructing trees of information sets and sampling determinizations to
restrict the region to be searched is used by the ISMCTS algorithm. This
is similar to the Partially Observable UCT (PO-UCT) approach of Silver and
Veness [82] (which also samples from beliefs), although PO-UCT operates on the
domain of partially observable Markov decision problems (i.e. 1-player games of
imperfect information) rather than adversarial games. Schéfer [75] also applied
an information set tree approach for the game Skat using the UCB1 algorithm for
selection, where the information sets in the tree are from the point of view of the
player about to play. Furtak and Buro [83] introduced imperfect information
Monte Carlo search (IIMC) which improves upon PIMC search in the game
Skat. Heinrich and Silver have also demonstrated that a variant of the ISMCTS
algorithm using one node per information set can be modified to converge to a
Nash-Equilibrium in Kuhn Poker [84].

3.3.4 Counterfactual Regret Minimization

One popular approach to Al for imperfect information games is to compute
(or approximate) a Nash-equilibrium strategy; examples of this approach in-
clude Gala [85] and counterfactual regret (CFR) [36]. Approximating a Nash-
equilibrium is desirable in games where exploitability of strategies is an im-
portant factor. The CFR algorithm has been hugely successful in the domain
of computer poker. Versions of the CFR algorithm which make use of Monte
Carlo sampling have also been developed [37], which will converge to a Nash-
equilibrium.

To express a Nash equilibrium requires storing a mixed policy for every
information set, however in many games the number of information sets is too
large for this to be tractable and it is impossible to compute a Nash equilibrium.
One technique for dealing with this is to use abstractions, which is a smaller
game obtained by merging together information sets in a larger game. A policy
for the smaller game can be applied to the larger game by using the policy
from the smaller game in information sets that are merged together in the
abstraction. Abstraction has been successful Poker games [80]. The purpose of
this is to reduce the game to a smaller game for which computation methods
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are tractable. The drawbacks of this approach are that an abstraction must
be designed for each new domain and the Nash-equilibrium computed for the
abstraction may not be a Nash-equilibrium in the larger game [86].

Recently Lanctot et al [87] have developed an online sampling approach to
conterfactual regret minimiztion which is guaranteed to converge to a Nash-
equilibrium. Furthermore this method produces less exploitable strategies than
ISMCTS in the game Goofspiel. Approximating a nash-equilibrium will yield a
strategy that is robust against being exploited, but will not be able to exploit
another policy. This can be addressed with the CFR algorithm if an equilibrium
is computed using an opponent model. Shafiei et al [65] demonstrate that CFR
can learn to exploit MCTS. In both cases it appears that MCTS produces strate-
gies which are exploitable, however the ideas presented in Chapter 7 (and other
techniques such as Smooth UCT [84]) can reduce the exploitability of MCTS. If
closely approximating a Nash-equilibrium is important in an application of Al,
then counterfactual regret minimization is the best approach. However MCTS
scales excellently to large and complex problems and it well suited to learn-
ing robust pure strategies, which appear to exist in many popular imperfect
information games.

3.3.5 Inference

In games of imperfect information, it is often possible to infer hidden information
by observing the moves of the other players, according to some model of the
other players’ decision processes. One way of capturing this notion is via belief
distributions, probability distributions over states in the current information set
where the probabilities are inferred from the history of observed moves. This
type of inference has frequently been applied to the game of poker [88, 89,
but also to other games such as Scrabble [90] and the card game Skat [49, 75].
Chapter 7 investigates how inference can be performed by using MCTS as an
opponent model.
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Chapter 4

Software and Domains

4.1 MctsFramework

In this section an overview of the software framework used to conduct the re-
search in this thesis is presented. The MctsFramework was developed in collab-
oration with Dr. Edward Powley and used in a number of research projects in
addition to work in this thesis. MctsFramework is written mostly in C# with
additional components in C++ and python. The purpose of the framework is to
facilitate the development of new MCTS based algorithms and be able to per-
form large scale experiments across a wide variety of domains. The framework
accomplishes this by providing an interface between game logic and Al code and
a set of tools to automate playing particular games with particular AI players.

The framework uses a model of games based upon states, actions and players
which is very close to the model defined in Chapter 2. Adding a new game to
the framework requires four main components:

e A function to construct a initial state
e A function to generate legal actions for a given state
e A function to return a new state, given a state and a legal action

e A function to determine is a state is terminal and a function to calculate
the rewards for each player

AT players developed in the framework perform one function, choosing an action
given a state. Al players that do not have any game specific dependencies (for
example the UCT algorithm) can play any game implemented in the framework.

There were many advantages gained from developing MctsFramework for the
experiments in this thesis. Firstly it enabled a lot of code re-use (particularly
of game implementations) which increased the reliability of experiments since
most of the code is mature and well tested. Furthermore, for many of the later
experiments there was already a large collection of games implemented allowing
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more comprehensive experiments to be run. Similarly when implementing a new
game there are numerous generic Al players implemented which can be used to
test the game logic.

One disadvantage of using the framework is that it adds some performance
overhead (which is arguably offset by reduced development time) and makes no
attempt to manage memory usage. The framework is ideal for research pur-
poses, but would be unsuitable for direct application in a commercial product.
Furthermore there is some crossover between the game logic and Al code in
the handling of hidden information, in that games must add intermediate states
when information is revealed. The framework has no mechanism for enforcing
the sharing or hiding of information from AI players and these intermediate
states are used to create non cheating MCTS agents, which is discussed in
Chapter 6.

The framework will run a game with a set of Al players and control the
flow of the game, passing the state of the game to Al players and applying the
moves chosen. Additionally the move history for the game can be recorded and
a game can be wound back to an earlier state. When implementing a new game
the option exists to supply a text representation of states and actions, which
may make use of coloured letters and backgrounds. Similarly an Al player can
output text containing information about each decision. When running a game
this information is aggregated allowing an observer to follow the progress of a
game, or can be turned off to speed up the execution of games. The final major
component of the framework is integration with a BOINC [91] server used to
run large-scale experiments in a many-CPU cluster.

4.1.1 Components of MctsFramework

MctsFramework contains the following base classes:

e GameState: Holds all information about the current state of a game and
provides methods to generate the move list, apply moves, determine if the
state is terminal and calculate the rewards for each player. Additionally
there are methods to get generic information about the state of a game
such as the current player and number of players. There are also several
utility methods for use with MCTS including getting the result of a ran-
dom play-out of the game or generating a random move. These utility
methods may be overridden for a particular game allowing game specific
optimisations to used.

e GameMove: Contains information used to specify actions chosen by a
player. Also implements equality checks with other GameMove classes.

e GamePlayer: Provides an interface to an agent which will return a
GameMove given a GameState. Additionally there are methods which
instruct Al agents to initialize their internal state and update their inter-
nal state in response to actions taken by other players (if necessary).

35



e GameManager: Allows a game to be played out with an initial GameS-
tate and a set of GamePlayer implementations. Additionally has the op-
tion to output information about the game in progress to the console with
varying levels of verbosity.

4.1.2 Handling Hidden Information

In order to handle hidden information, the framework uses GamelnfoSet classes
to represent information sets. However it would be intractable to store all
possible states in an information set, so instead a GamelnfoSet stores the actual
state of the game, and provides a method to sample determinizations of this
state. Additionally a GamelnfoSet stores the owner of the information set,
so that determinizations can be correctly sampled for a particular observer.
The framework also handles partially observable actions, through the use of
GamelnfoMove classes which contain a GameMove and an owner.

These classes exist to facilitate the implementation of Al players which han-
dle sources of imperfect information, however the framework does not keep any
aspect of a state hidden, so Al players can be made to “cheat” if necessary.
This also leads to a complication when information is revealed, since the frame-
work does not have an interface for revealing information to Al players. If at
any point information is revealed to some players but not others, the GameS-
tate must enter a state in which the environment (labelled player 0) chooses
a GamelnfoMove. Simultaneous moves are also a special case, in which the
GameState must indicate that moves are simultaneous, then each player selects
a GameMove sequentially (which can be a null action if a player is not required
to make a choice) each of which is applied as a regular action, before entering a
state where the environment (player 0) plays a GameMove which corresponds
to the set of choices by each player. Chance events are also implemented by
having the environment (player 0) chose an action. In all experiments the Al
used for player 0 is a GamePlayer which chooses randomly amongst all legal
actions.

4.1.3 Card Games Framework

The Card Game Framework is a sub framework which provides a base for im-
plementing games which are played using a standard French deck of 52 cards.
A card game is represented as a finite set of collections of cards, each of which
has a list of players who can observe the contents. There are also container
classes for ordered, unordered and singleton sets of cards. Queries on sets of
cards can be made with these containers which do not depend on the underlying
representation. This greatly simplifies the implementation of game logic, whilst
taking advantage of the fact that operations on unordered sets of cards can be
performed extremely quickly.

The card game framework also provides an algorithm for generating de-
terminizations of a card game state which is based upon rejection sampling.
This algorithm can take into consideration hard constraints on which cards are
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allowed in which sets and which cards are visible to particular players. Addi-
tionally the card game framework provides a method for dealing cards, which
will ensure that a determinization will fix all future card deals.

4.1.4 Integration with BOINC

The majority of experiments in this thesis consist of a set of Al players playing
a number of games with various parameters. In order to run such experiments,
the individual games were created as a BOINC work units. Each work unit
contains the framework code and a JSON file from which the game and the
AT players with particular parameters can be constructed. The JSON file also
specifies where the result will be stored in a results database. A python script
can be written for each experiment, which creates the JSON files submits them
as work units on the BOINC server. Finally another python script can be
written to query results from the results database, perform any required data
processing and generate graphs. This process for automating experiments was
continuously developed and improved whilst conducting the research presented
in this thesis. In many cases experiments requiring CPU-years were run over a
weekend.

This chapter presents an overview of the software framework developed for
running the experiments presented in this thesis. Additionally an overview of
the rules for each of the domains tested is given, along with any important
implementation details.

4.2 Domains

This section describes each of the domains used for experimentation in this thesis
including an overview of the rules and any important implementation details.
In addition a summary of other work on developing AI for these domains is
provided where relevant.

4.2.1 Dou Di Zhu

Dou Di Zhu is a 3-player gambling card game which originated in China, which
falls into the class of ladder games (where players must play a “higher” ranked
set of cards on their turn or pass). The name Dou Di Zhu translates into
English as “Fight The Landlord” and is a reference to the class struggle during
the Cultural Revolution in China where peasants were authorized to violate the
human rights of their Landlords. In the original version of the game, studied in
this thesis, two players compete together against a third player, the Landlord.
There are other versions of the game involving four and five players but these
are less popular.

The game was only played in a few regions of China until quite recently, when
versions of the game on the internet have led to an increase in the popularity
of the game throughout the whole country. Today Dou Di Zhu is played by
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millions of people online, although almost exclusively in China, with one website
reporting 1450000 players per hour. In addition there have been several major
Dou Di Zhu tournaments including one in 2008 which attracted 200 000 players.

Dou Di Zhu is interesting from an Al perspective as it necessitates both
competition (between the Landlord and the other two players) and cooperation
(between the two non-Landlord players).

Rules

Dou Di Zhu uses a standard 52 card deck with the addition of a black joker and
a red joker. A brief description of the rules is given here; a complete description
can be found in [92]. Suit is irrelevant but the cards are ranked in ascending
order 3,4,...,T,J,Q, K, A,2. A bidding phase (which is not considered) desig-
nates one of the players as the Landlord. The Landlord receives 20 cards dealt
from a shuffled deck, while the other players receive 17 each. The goal of the
game is to be the first to get rid of all cards in hand. If the Landlord wins, the
other two players must each pay the stake to the Landlord. However if either
of the other two players wins, the Landlord pays the stake to both opponents.
This means the two non-Landlord players must cooperate to beat the Landlord.
The non-Landlord players do not see each other’s cards, so the game cannot be
reduced to a two-player game.

Card play takes place in a number of rounds until one player has no cards
left. The Landlord begins the game by making a leading play, which can be any
group of cards from their hand provided this group is a member of one of the
legal move categories (see Table 4.1). The next player can play a group of cards
from their hand provided this group is in the same category and has a higher
rank than the group played by the previous player, or may pass. A player who
holds no compatible group has no choice but to pass. This continues until two
players pass, at which point the next player may start a new round by making
a new leading play of any category.

One exception to the rule that successive plays are of the same type is that
a Bomb or a Nuke may be played at any point. Only a Bomb of higher rank
or a Nuke can follow a Bomb, and no move can follow a Nuke. Some categories
allow extra kicker cards to be played with the group which have no effect on the
rank of the move being played. If a move with kickers is played, the next player
must play a move in the same category with the same number of kickers.

Making a leading play is a good position to be in, allowing a player to choose
a move type where he holds multiple groups, or holds a high-ranking group that
opponents are unlikely to be able to follow. The two non-Landlord players also
need to work together since they either both win or both lose.

Implementation

The bidding phase is omitted from the implementation, instead assigning an
arbitrary player as the Landlord. This allows algorithms to be compared based
the strength of on card play alone. Also determinization is carried out in the
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Name | Description

Solo | Any individual card, for example A or 2. It is also possible to
play runs of sequential cards with length at least 5, for example
345678 or 89TJQKA.
Pair | Any pair of identically ranked cards for example 55 or 77. It is
possible to play runs of sequential pairs with length at least 3,
for example 334455 or TTJJQQKK.
Trio | Any three identically ranked cards for example AAA or 888.
It is possible to play runs of sequential trios of any length, for
example 444555 or TTTJJJQQQ.
Each trio may also be played with a single kicker (single card
or pair). In a sequence of trios kickers are either all pairs or all
single cards, with all (or none) of the trios having kickers. For
example 444555TJ (two single card kickers) or 999QQ (one pair
as a kicker).
Quadplex | Any four identically ranked cards with two kickers of differing
rank attached, for example 4444TJ or 999955KK.
Bomb | Any four identically ranked cards, for example 5555 or 2222.
Nuke | The red joker and the black joker together.

Table 4.1: Dou Di Zhu Move Categories

natural way, with all hidden cards from the point of view of a particular player
being randomly reassigned amongst opponents.

The branching factor for leading plays is typically around 40, and for non-
leading plays is much smaller. However, in situations where moves with kickers
are available each combination of move and kicker must be considered as a
separate move, leading to a combinatorial explosion in the branching factor for
leading plays. It should be noted that this is a problem specific to Dou Di Zhu
caused by the game mechanic of being able to attach kicker cards to a play. To
ameliorate this, an approach similar to the move grouping approach of Childs
et al [93] is used: the player first chooses the base move and then the kicker, as
two separate consecutive decision nodes in the tree. This adds an extra layer of
nodes to the tree (one for each base move), but reduces the branching factor at
each node.

4.2.2 Mini Dou Di Zhu

In one experiment a simplified version of Dou Di Zhu is used that removes
some of the complexity of the full game and is small enough to be solved with
exhaustive tree search techniques, while still retaining some of the strategic
depth of the full game. Mini Dou Di Zhu is a 2-player game, played with a
reduced deck of 18 cards (four ranks and two jokers). Each player receives
seven cards, and the four remaining cards are hidden from both players. There
are four move categories, consisting of 1, 2, 3 or 4 cards of the same rank. As
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with the full game, the aim is to be the first player to play all cards, but unlike
the full game there is no element of cooperation. The total number of distinct
deals in Mini Dou Di Zhu is 8832. The game trees for the perfect information
variant are small enough that minimax search can be used to exactly determine
the game theoretic value of each perfect information deal; when the non-uniform
probabilities of obtaining each deal by shuffling and dealing cards are taken into
account, approximately 70.7% of games are wins for player 1.

4.2.3 Hearts

Hearts is a four-player trick taking card game played with a standard 52-card
deck made popular through a version distributed with Microsoft Windows,
where players accumulate points and the goal of the game is to minimize the
number of points taken. Cards in the © suit have a point value of 1 each and the
Q& card has a point value of 13. The goal is to score as few points as possible,
i.e. to avoid winning tricks with those cards in them. There is one exception to
this goal: taking all thirteen © cards and Q)# in a round is called shooting the
moon, and causes every player to score 26 points except the player who shot the
moon. Shooting the moon is a risky strategy: the reward for success is high,
but so is the cost of failure. Another rules in Hearts is that at the start of each
round, players pass 3 cards from their hand to another player which shifts each
round (so that every fourth round no cards are passed). The passing of cards
introduces partially observable moves into Hearts. For a complete description
of the rules see [94].

Previous work on MCTS for Hearts [95, 69] has treated the game as one of
perfect information, i.e. played with all cards face up. In this thesis ISMCTS
is develop to handle the imperfect information explicitly.

Hearts is played over several rounds, the game ending when any player
reaches a score threshold (50 points in experiments). When simulating ran-
dom games of Hearts, it would be possible to simulate only to the end of the
current round and have players seek to minimise their per-round score. However
this removes some of the strategic richness from the game, as certain decisions
(such as whether to force Q# upon a certain player, or whether to attempt
shooting the moon) can depend on the overall game score. To capture this,
a large number of rounds (10000 for experiments) was simulated offline, and
construct a database of per-round scores. When performing simulated games
online, simulations run to the end of the current round as usual, and then sam-
ple round scores from this database are used until the score threshold is reached.
This is equivalent to simulating to the end of the game, but much more efficient.
At the end of the game a score of 1 is given for being first, 0 for being last and
% for placing second or third. This ensures that if winning is not possible, Al
agents are incentivized to not place last.

The tree structure of Hearts is very regular, since during card play there
are always 13 cards played by each player (so a depth of 52 moves) and the
branching factor can never exceed 13, although most of the time the number
of legal moves is smaller since players must follow suit. When deciding which
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cards to pass at the start of the round, rather than branching for all possible
selections of 3 cards from 13, players select the individual cards sequentially
(similar to move grouping [93]). The playing strength of ISMCTS (introduced
in Chapter 5) for Hearts it not significantly different to the AI in the Microsoft
version, winning approximately 25% of games.

4.2.4 Spades

Spades is a 4-player trick taking card game which originated in the United States
in the 1930s but has since spread worldwide [96]. Spades shares many similarities
with the game of Bridge, with equally deep strategy yet slightly simpler rules.
The players are named after the compass points, with North and South forming
a coalition against East and West. A game is played across multiple rounds
where each partnership receives a score at the end of each round. The winning
partnership has the highest score when one or both partnerships exceed 500
total points at the end of a round.

At the start of a round each player is dealt a 13 card hand from a standard
52 card deck. In turn, players provide a single bid which is an estimate of
how many tricks they expect to take from their hand that round. Each trick
consists of each player in turn playing a card out onto the table. One of the
players (rotating between rounds) is designated the leader and may play any
card (with the exception that # cards cannot be led until broken, i.e. until a
@ is played as a non-leading card). Subsequent players must match the suit of
that card if they can. If a player cannot follow suit, they may play any card.
The winning card is the one with the highest rank matching the suit played by
the leader, unless a # card was played in which case the & trumps the other
suit (and the highest ranked # wins the trick instead). The winner of the trick
becomes the leader of the next trick. Once a # card has been played (referred
to as breaking spades), players can lead with & cards for the remainder of the
round. The round ends when all players have played all their cards, so a round
consists of 13 tricks.

After all thirteen tricks have been played out, scores are calculated as follows
for a partnership with a total bid of b, which won a total of t tricks:

e If t > b then the partnership earns 10b points

e If t < b then the partnership loses 10b points

e If t > b then the partnership receives t — b bags

e If they have 10 or more bags, the partnerships loses 10 bags and 100 points

e If a player in the partnership bid 0 (“nil”) and personally took 0 tricks,
the partnership receives 100 points

e If a player in the partnership bid 0 and personally took at least 1 trick,
the partnership loses 100 points
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Simulated random games in Spades need only run up to end of the current
round. Simulating beyond the end of the current round is unnecessary since
future deals are unknown, however the current distribution of points may influ-
ence the strategy used. Simulated games are therefore terminated at the end of
the current round and the following value awarded to each partnership:

(s — 10b) — (s, — 10b,)
200

(4.1)

where s is the partnerships score and b is the number of bags the partnership has
taken (and s,, b, are the score and number of bags for the opposing partnership
respectively). The value 200 scales the evaluation for each player to an interval
of size approximately 1, which avoids the need to retune the UCB1 constant
when using MCTS. It is technically possible for the score difference to change
by more than 200 in a single round, but very unlikely. Since gaining 10 bags
incurs a penalty of 100 points, the value includes a penalty of 11—%0 = 10 points
for each bag. This value captures several important tactical ideas in Spades, for
example attempting to make your own bid and preventing your opponents from
making theirs.

The ISMCTS algorithm (introduced in Chapter 5) was tested against a com-
mercial ATl opponent developed by Al Factory Ltd for their popular Spades prod-
uct on Android mobile devices. The AI Factory Al opponent uses flat Monte
Carlo evaluation with a hand-crafted heuristic simulation policy. ISMCTS sig-
nificantly outperformed the commercial AI, winning 58.3% + 3.1% (95% confi-
dence) of games. ISMCTS is stronger than the AI Factory player at card play,
but weaker at bidding: a hybrid player using ISMCTS for card play and Al Fac-
tory’s heuristic approach for bidding wins 69.1% +2.9% of games against the Al
Factory player. Despite this, experiments in this thesis use ISMCTS both for
bidding and for card play. A version of ISMCTS enhanced with heuristic knowl-
edge is deployed in the current release of Al Factory Spades [10]. The heuristic
knowledge is primarily used to alter the playing style for a more enjoyable game;
in terms of pure playing strength, ISMCTS provides strong performance without
knowledge.

4.2.5 Lord of the Rings: The Confrontation

Lord of the Rings: The Confrontation (LOTR:C) [64] is a two-player strategy
board game themed on J. R. R. Tolkien’s “The Lord of the Rings” novels.. Each
player has nine character pieces, each with its own strength value and special
ability. Each player can see the identities and locations of his own pieces, but
only the locations of his opponent’s pieces. If a player moves a piece into a
square occupied by his opponent, combat ensues: the identities of the attacking
and defending pieces are revealed, and the players simultaneously choose a card
each which affects the outcome of combat. The two players have asymmetric
win conditions: the “Light” player wins by moving one of his pieces (Frodo)
into the opponent’s home square (Mordor), whereas the “Dark” player wins by
killing Frodo in combat.
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4.2.6 Rules

The game-play of LOTR:C has common features with Stratego [97], where iden-
tities (but not locations) of a player’s pieces are hidden from the opponent.
Furthermore, the identity of a piece specifies certain unique characteristics.
LOTR:C is an interesting game from an Al point of view since it features hidden
information, chance events, partially observable moves and simultaneous moves.
It is also asymmetric since both players have different win conditions and thus
require different tactics and strategies.

Game Structure

The game is played on a 4 x 4 grid, with the players’ home squares at opposite
corners. Most squares can be occupied by more than one piece simultaneously,
subject to restrictions. The players are designated Light and Dark, with Dark
playing first. Each player has nine character pieces, which they place on the
board at the start of the game subject to certain constraints. Each character has
an associated strength value between 0 and 9, and a special ability that changes
the rules of the game in certain situations. Light’s characters are different from
Dark’s. Generally characters move one space at a time towards the opponent’s
home square, although some characters and some squares on the board allow
for different moves.

The identities of a player’s characters are hidden from the opponent until
revealed in combat. This leads to a source of hidden information, where the
information set specifies the number of opponent pieces in each square and the
states in the information set specify the identity of all the pieces. When an
opponent moves one of their pieces, this move is partially observable since a
player knows a piece moved (and this leads to a new information set) but only
the opponent knows which piece moved. Knowledge about the locations of
opposing characters can decrease as well as increase. For example if a character
whose identity is known enters a square with an unknown character then later
exits the square, the identities of both the exiting character and the remaining
character are unknown. Since players must move pieces forwards (aside from
a few special rules), the LOTR:C game tree has very few cycles and random
games are almost always fairly short.

Objectives

LOTR:C has multiple win conditions, which differ for each player. For the Light
player there are three ways to win:

e Moving the character Frodo into Dark’s home square;
e Killing all Dark characters;

e The Dark player being unable to move any characters.
For the Dark player there are also three ways to win:

e Killing the character Frodo;
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e Moving any four characters into Light’s home square;

e The Light player being unable to move any characters.

Combat

When a character moves into a square that contains opponent characters, com-
bat is initiated. The moving character becomes the attacker and a randomly
chosen opponent character in the square is the defender, then both players si-
multaneously choose one of the combat cards from their hand. This leads to
simultaneous moves being a feature of the game. Fach player begins with nine
cards (which are removed once played) and each character has a strength value,
as do some of the cards. In combat the player whose combined character and
card strength is greatest wins the combat. Some characters and some cards fea-
ture text that can alter the outcome of the combat, by either offering a player
extra choices or altering the rules of combat. Typically the outcome of combat
is that one or both characters is defeated and removed from play.

Implementation

Character movement in LOTR:C is partially observable. Therefore actions are
defined such that they identify the character and the source and destination
squares (e.g. “move Frodo from Cardolan to Eregion”). The move observed
by the opponent does not identify the character (e.g. “move a character from
Cardolan to Eregion”).

Some care is needed to ensure the structure of the game tree, particularly
around combat, conforms to that described in Section 2.2. An environment
player is used to model actions taken by the game. Specifically the environment
player is responsible for deciding the outcome of chance events and for revealing
information to players. In the implementation, a typical instance of combat
consists of the following sequence of actions:

1. The attacking player moves a piece into a square occupied by an opponent
piece.

2. The environment player reveals the identities of the attacker and defender
pieces, choosing a defender at random if necessary (which leads to a source
of chance events).

3, 4. Both players simultaneously choose a card.
5. The environment player reveals the chosen cards and resolves the combat.

A skilled human player of LOTR:C remembers the information revealed
about the identities of characters. The implementation enforces perfect recall
for all players: information about which characters can possibly occupy which
squares based on previously revealed information is encoded in the game state.
In particular generated determinizations are always consistent with this infor-
mation.
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Initial setup

Before each game, players can place their characters on the board in any config-
uration subject to certain constraints. The choice of initial setup has important
strategic consequences, however tree search is not well-suited to solving this
problem: each player has a choice between % = 15120 possible initial setups
for their pieces, and both players choose simultaneously. Evaluating the effec-
tiveness of each configuration would require a large amount of computational
effort and then more computational effort would need to be spent finding a good
policy for selecting a configuration. This problem is not tackled, instead all ex-
periments were conducted on a single, hand-designed initial setup intended to
be typical of those that a pair of human players might choose. This re-use of the
same initial setup also has the effect of reducing the variance in experimental
results. No information persists between trials, so there is no danger of the
algorithms adapting themselves to this particular setup.

4.2.7 Phantom m,n, k-games

An m,n, k-game [98, 99] is a two-player game played on an m x n grid. Players
take alternating turns to mark a square. The winner is the first player to mark
k squares in a horizontal, vertical or diagonal row. For example, the well-
known game of Noughts and Crosses (or Tic-Tac-Toe) is the 3,3, 3-game, and
Go-Moku [100] is the 19, 19, 5-game.

A phantom m,n, k-game is an m, n, k-game in which neither player can see
the positions of the opponent’s marks. If a player tries to mark a square that is
already occupied by his opponent, the player is told that this is an invalid action
and is allowed to choose again. There is no penalty associated with playing an
invalid move. Indeed, playing invalid moves is the only mechanism by which
the phantom m,n, k-game player can gain information about his opponent’s
previous plays, so doing so is never detrimental and often beneficial. In terms of
the game tree, each player action is followed by an environment action specifying
whether the move is valid or invalid.

There appears not to be any previous study of phantom m,n, k-games in
the context of MCTS, although phantom Tic-Tac-Toe (i.e. the phantom 3,3, 3-
game) has been studied by Auger [101] and by Teytaud and Teytaud [102],
and other phantom games have been studied by Borsboom et al [76] as well
as Ciancarini and Favini [103, 77]. In this thesis experiments are perfomed on
the phantom 4,4, 4-game (which has just enough states that the algorithms do
not exhaustively search the full perfect information tree given the iterations
budget).

The perfect information 4, 4,4-game is known to be a draw [98]. However
this analysis does not carry over to the phantom version of the game: intuitively,
even a perfect (but non-cheating) player cannot block a line they cannot see.
There does not appear to be a theoretical analysis of the phantom 4, 4, 4-game;
but it appears based on empirical evidence is that the game has no forced result,
and while player 1 has a strategy that can lead to a fast win (create four in a
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row as quickly as possible, hoping that player 2 does not discover or block the
line) the game is somewhat balanced overall.

4.2.8 Checkers

Checkers (or English Draughts) is a two-player game of perfect information,
played on an 8 x8 board with 12 pieces per player. Pieces may be moved forwards
to a diagonally adjacent empty square, or may jump diagonally forwards by two
squares if the target square is empty and the intervening square contains an
opponent piece. Jumping over an opponent’s piece causes it to be captured,
and removed from the game. Captures may be chained together, if the jumping
piece can immediately capture another piece. Otherwise the turns alternate
between the two players after each move. In the variant of Checkers studied in
this thesis, captures are forced: if a capture move is available then it must be
played, although if more than one is available the player may choose which one
to take. If a piece moves onto the opponent’s home row, it becomes crowned and
may subsequently move and capture backwards as well as forwards. A player
wins by leaving their opponent with no legal moves, i.e. by blocking or capturing
all their pieces.

Draws (stalemates) are common in checkers; indeed, perfect play by both
sides will always lead to a draw [20]. Al programs capable of perfect play exist,
such as Chinook [20]. As Checkers was solved more than a decade before the
invention of MCTS, there has been little work on developing strong MCTS
players. However Checkers is often used as a test domain for enhancements in
General Game Playing systems [104, 63].

4.2.9 Othello

Othello (or Reversi) is a two player game with perfect information, played on an
8x8 board. The game starts with the centre four squares of the board containing
two black and two white pieces placed diagonally opposite each other. A move
consists of placing a piece on the board; for the move to be legal, it must
sandwich a horizontal, vertical or diagonal line of one or more opponent pieces
between the newly placed piece and an existing own piece. The sandwiched
pieces are captured, and converted to the colour of the player who moved. If
(and only if) a player has no legal moves, he must pass; when both players pass
consecutively, the game is over. The player with the most pieces on the board
wins the game.

Strong Othello programs exist which are capable of beating the strongest
human players, one of the first such programs being Logistello [105]. More
recently, MCTS has been combined with offline learning methods to produce
strong play [106, 107, 108].
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4.2.10 Backgammon

Backgammon is a two player game which has stochasticity in the form of dice
rolls, but otherwise has perfect information (i.e. there is no information hidden
from one player but visible to another). The board has 24 spaces, which are
numbered 1-24 in opposite directions for the two players. Each player begins
with 15 pieces in a standard initial setup. The aim of the game is to move all
of one’s pieces towards space 1 and off the end of the board. A player’s turn
begins with a roll of two dice. The player then takes two moves, one for each
of the two rolled numbers, moving a piece forward the given number of spaces.
The same piece can be moved twice in one turn. If the two dice have the same
number, the player makes four moves instead of two.

A piece cannot be moved to a space occupied by two or more opponent pieces.
However a piece can be moved to a space occupied by a single opponent piece,
in which case the opponent piece is captured and moved to the bar, equivalent
to space number 25. If a player has pieces on the bar, they must move them
back onto the board before they may move any other pieces. A common basic
strategy in Backgammon is to force the opponent to skip several turns, by
capturing a piece having blocked the spaces into which it could be moved back
onto the board. When all of a player’s pieces are on spaces 1-6, pieces may be
moved off the board (beyond point 1) and removed from the game. The first
player to remove all their pieces in this way is the winner.

Strong Al players for Backgammon, such as TD-Gammon [109], are capable
of beating the strongest human players. MCTS has also been demonstrated to
produce strong decisions in Backgammon [110].

4.2.11 The Resistance

The Resistance [111] is a game for 5 to 10 players where players play one of
two roles, spies and non-spies. The non-spies aim to successfully complete 3
out of 5 missions whereas the spies aim to sabotage 3 out of 5 missions. Each
mission is carried out by a team consisting of a subset of players in the game
which is chosen by a designated leader and then voted on by the rest of the
players. The key mechanic of the game is that the spies are aware of each
others’ identity but the non-spies are not. Bluffing and inference is therefore a
key aspect of the game, since non-spies need to infer the spies’ identities (and
choose teams without spies) and spies must bluff their way onto missions to
carry out sabotage. The game has hidden information, partially observable
actions and simultaneous actions.

The turn structure for The Resistance is shown in Algorithm 1. The non-
control-flow statements in this pseudocode correspond one-one with the plies
of the game tree. Team choice is treated as a single move: the decision node
has a branch for every possible team. Voting and mission card choice moves
are hidden from other players; all other moves are fully observable. The game
implementation keeps track of hard constraints by storing the set of possible spy
configurations (from the point of view of an outside observer): when a mission
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Algorithm 1 Turn structure for The Resistance.

1: while neither team has won three missions do

2 repeat

3 the leader chooses a team

4 if this is not the fifth attempt at choosing a team then
5: for each player simultaneously do

6 the player chooses a vote card

7 the vote cards for all players are revealed
8 until the vote passes or this is the fifth attempt
9: for each player on the team simultaneously do
10: the player chooses a mission card

11: the number of sabotage cards are revealed

ends with & > 0 sabotages, all configurations with fewer than k& spies on the
mission team are removed from the set.

The Resistance is a good game for testing how well MCTS works as an
opponent model for inference. Firstly because good performance can be achieved
with a feasible number of MCTS iterations. This is due to two factors, firstly the
small number of information sets (6 for the 5 player game with a small number
of states per information set) and both a low branching factor and shallow tree.
Secondly bluffing and inference are crucially important to good play in The
Resistance. Experiments on the resistance (Section 7.5.1) show MCTS players
which perform no bluffing or inference are easily exploitable, which matches the
recent results of Lanctot et al [87].

4.2.12 Scotland Yard

Scotland Yard [112] is a board game first published in 1983 (and winner of the
“Spiel des Jahres” award) where a team of players perform the role of detectives
trying to catch another player — a criminal known as Mr X. The game takes
place on a graph which represents the streets of London and is similar to the
class of hide and seek games on graphs. The detectives are referred to as seekers.
Edges on the graph are labelled with modes of transport (taxi, bus, underground
and boat) which must be paid for using tickets. Each player begins the game
with a number of each ticket type. The seekers do not know the location of
Mr X except on turn numbers 3, 8, 13 and 18 when Mr X “surfaces” (reveals his
location). The seekers know which type of ticket Mr X used each turn. The game
ends either when the seekers are unable to move given their remaining tickets
(in which case Mr X wins) or when a detective enters the location containing
Mr X (in which case the seekers win).

In Scotland Yard there is an information asymmetry since Mr X knows the
location of the seekers. The seekers can form a constraint set on the possible
locations of Mr X by observing the modes of transport used given the last
known location of Mr X. It has been shown that constructing this constraint set
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can be used to improve the performance of MCTS at Scotland Yard [72], and
the implementation only samples Mr X locations from this constraint set when
generating determinizations. The size of the information set changes throughout
the game and may contain between 1 and 199 states (depending on the set of
possible Mr X locations). The constraint set gives an opportunity for inference
and bluffing which is examined in Chapter 7, since it may be possible to infer
that some locations are more likely than others. Scotland Yard also provides
an opportunity to investigate how well MCTS scales as an opponent model in
games with larger numbers of states per information set.

Moves in Scotland Yard specify the destination node and the ticket type.
If a move is partially observable, the destination node is hidden but the ticket
type is visible. Seeker moves are always fully observable. The turn structure is
straightforward, with no environment moves: at times when Mr X surfaces, his
move is simply treated as fully observable. Scotland Yard can be thought of as
a two-player game, where one player controls Mr X and the other controls all
the seekers. When humans play Scotland Yard it is common for the seekers to
be a team, with each member controlling one seeker. This adds an enjoyable
social aspect to the game, but is not needed for Al-versus-Al play: the seekers
all have the same information and the same rewards, so a team of rational
players is equivalent to a single rational player. In all experiments the same
AT technique is used for all seeker decisions, thus treating the seeker team as
a single player. An alternative approach is called coalition reduction [113, 72
the seeker who captures Mr X is given a slightly higher reward than the others.
Suitably tuned, this increases the seekers’ win rate.

4.2.13 Saboteur

Saboteur [114] is a hidden identity card game with some similarities to The
Resistance in that players belong to teams: Saboteurs and Diggers. The Diggers
aim to dig a tunnel to a gold vein whilst the Saboteurs aim to prevent the Diggers
reaching gold. Unlike The Resistance however, the members of the subverting
team (the Saboteurs) are unaware of each others’ identity. The game is played
with cards, with each player holding a hand of six cards which are drawn from
a common stock. There are also three goal cards (only one of which contains
gold) placed in random locations and a ladder card representing the entrance to
the mine. The diggers hope to connect their ladder entrance to the gold. Some
cards enable players to place tunnels on the table. Other cards allow players to
remove sections of tunnel, prevent other players from placing tunnel cards, or
secretly look at the goal cards.

In Saboteur there are numerous sources of hidden information and uncer-
tainty. The identities of players are hidden and not revealed until the end of
the game, the cards are drawn from a shuffled deck, the location of the gold
is randomly determined at the start of the game and any cards discarded by
players are hidden. This creates a combinatorial explosion in the number of
states per information set.

Bluffing and inference are key aspects of the game, since Saboteurs can be
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prevented from influencing the game if they are too obvious in their attempts to
sabotage the game. Therefore good saboteurs will be careful not to give away
their identity. Despite the similarities, the game tree in Saboteur is significantly
more complex than The Resistance, with high branching factors at opponent
decision nodes due the large number of different cards they could hold and the
large number of ways each card can be used. Saboteur is included as an example
to test the scaling of MCTS as an opponent model for inference when the tree
search model may be weak due the complexity of the tree being searched and
as a game where players must actively bluff in order to be sucessful.

4.2.14 Other Implemented games

The following is a list of games currently implemented in the software framework
which were not used for experiments presented in this thesis.

e Arimaa (http://boardgamegeek.com/boardgame/4616/arimaa)

e Blob (http://boardgamegeek. com/boardgame/1116/0h-hell)

e Connect4 (http://boardgamegeek.com/boardgame/2719/connect-four)
e Goofpsiel (http://boardgamegeek.com/boardgame/16632/gops)

e Kuhn Poker (http://en.wikipedia.org/wiki/Kuhn_poker)

e Liar’s Coins (simplified version of Liar’s Dice) (http://boardgamegeek.
com/boardgame/45/1iars-dice)

e Nannon (http://boardgamegeek.com/boardgame/21346/nannon)
e Nim (http://boardgamegeek.com/boardgame/11753/nim)

e Rock, Paper, Scissors (http://boardgamegeek.com/boardgame/11863/
rock-paper-scissors)

e Urban Rivals (simplified version) (http://www.urban-rivals.com/)

e Stratego (http://boardgamegeek.com/boardgame/1917/stratego)
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Chapter 5

Hidden Information and
Strategy Fusion

This chapter describes work investigating how the MCTS algorithm can be
used for decision making in games with hidden information. Firstly work inves-
tigating the combination of MCTS with perfect information monte-carlo search
(PIMC) in the card game Dou Di Zhu [50] is presented. Then a new algorithm,
information set MCTS (ISMCTS) [26, 27] is introduced which addresses some
of the shortcomings of PIMC search by searching trees of information sets. Re-
call from Section 2.1 that hidden information is some aspect of the state of a
game which is unobservable from the point of view of at least one player. An
information set of a player is a collection of states, where the player knows the
game is in one of the states within the information set, but not which state. A
useful example of a game with hidden information (which is used throughout
this chapter), is a card game in which each player has been dealt a hand of
cards. The information set belonging to a player contains a state corresponding
to each possible distribution of unseen cards amongst the other players hands.

A card deal can be thought of as an action performed randomly by the
environment, selecting amongst all possible card deals. If the environment is
considered to be an extra player that behaves randomly as defined in Chap-
ter 2.2, then in a hidden information game all information is hidden or revealed
when players take actions. This is because actions encode a set of possible state
transitions from an information set, leading to a new information set. Revealing
information is sometimes described as disambiguation [30] and corresponds to
a reduction in the size of an information set. An example might be a player
revealing 8# from their hand. The other players may then conclude that they
are in a state in which that player was dealt 8# and can disregard any others.
Conversely information can be hidden, which corresponds to an increase in the
size of an information set. For example if the player who revealed 8# shuffles
a card from their hand into a deck and draws a new card, the other players no
longer know whether the hand contains 8.
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The dealing of cards can be thought of as a chance event which occurs at the
start of the game. If tree search is to be applied to such a game, including the
state before cards are dealt in the tree presents a problem. In a card game using
a standard French deck there are 52! ~ 8 x 1057 possible orderings (and deals
in the case the order of cards dealt matters), before even considering all of the
possible states for each deal. For comparison, this is larger than the estimated
number of states in Chess (10%7 [13]) and the state complexity of the largest
game ever solved, Checkers (102° [20]). Therefore even enumerating all possible
branches at the first node is intractable without performing any analysis of the
decision making for each deal. Even if a player cheats and knows the exact
state of the game, in some domains the resulting perfect information game may
still be highly complex and difficult to solve (although in some domains e.g.
Bridge the perfect information games can be solved [16]). At first it appears
that analysing every state is unnecessary since many will be impossible as the
number of possible states is reduced for a player once their hand has been dealt.
However in order to accurately model the decision making of the other players,
it must be considered that their information sets could contain potentially any
legal state, even those which are not in the decision making players information
set. As a consequence, exact solution methods for hidden information games
are currently limited to games small enough to enumerate.

In practice it is often the case for many games with hidden information, that
decisions must be made without an analysis of every possible state. However
it is often the case that learning about one state can tell us something about
another state. (The transfer of learning across states is discussed in depth in
Chapter 8.2). For example in a card game if there is a card which will win
the game, that is often a good card to play in any state where the card is in
a player’s hand. This property of games can be exploited in order to make
decisions without considering every possibility.

A popular technique for hidden information games is Perfect Information
Monte-Carlo search (PIMC), where sampled determinizations are analysed to
produce a decision for each determinization using any standard technique for
perfect information games. Then a decision is made based upon the decisions
made for each determinization, for example by taking the action most frequently
chosen across all sampled determinizations. Determinizations and PIMC search
are introduced in Chapter 3.3.1. This approach has been hugely successful for
domains such as Bridge [29, 16], Skat [49, 75], Solitaire [48], and Probabilistic
Planning [115]. However this method has many drawbacks and has been de-
scribed as “Averaging over clairvoyance” and is incapable of bluffing [78]. In
addition PIMC suffers from the problems of strategy fusion and non-locality [28].
These problems are described in more detail in Chapter 3.3.1. This thesis aims
to address each of these issues with MCTS based algorithms.

In this Chapter first the combination of PIMC with MCTS is investigated
in Section 5.1. Early work regarding the trade off between simulations and
determinizations is presented in Section 5.1.1. Next experiments to quantify
the effect of strategy fusion and non-locality in Dou Di Zhu are presented in
Section 5.1.2. Section 5.2 introduces one of the main contributions of this thesis,
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the ISMCTS algorithm. Experiments from comparing performance of ISMCTS
in comparison to PIMC are presented in Section 5.2.4. Finally a summary of
the results is presented in Section 5.3.

5.1 Perfect Information Monte Carlo Search

Perfect Information Monte Carlo search (PIMC) is a technique for decision
making in games with hidden information. As described in Section 3.3.1, PIMC
samples determinizations of the current state of the game, produces a decision
for each perfect information game, then combines the decisions for each deter-
minization into a final decision. This approach has been successfully applied to
a variety of games, producing world champion Bridge and Scrabble programs,
vastly outperforming human players in Solitaire games and has been successful
in Probabilistic Planning competitions.

However PIMC is not without flaws. Russel and Norvig describe the ap-
proach as “Averaging over Clairvoyance” [78] and Frank and Basin point out
two major issues, namely strategy fusion and non-locality [28]. PIMC is not ca-
pable of bluffing or making any information gathering or hiding plays, since each
determinization is a perfect information game there is no information to gather
or hide and it is assumed that players known each others hidden information.
All of these issues stem from the fact that PIMC is based on the assumptions
that actions which are good in particular determinizations will be good moves
in the hidden information game from which the determinizations are derived,
yet there are many types of situation in which this assumption is false.

Strategy fusion is the assumption that the player can choose different actions
depending on what state the game is in. In a determinization, there is only one
possible state but in the hidden information game there are many possible states.
When the utility of an action is not consistent across states, PIMC assumes that
the action can be selected when its utility is good and avoided when its utility
is bad. For example consider a game where a coin is flipped but kept hidden
and the player is offered the choice between a payment of 0.9 or a payment of
1 if the player can correctly guess the face up side of the coin and 0 otherwise.
The payment of 0.9 is the best, since the player has has an expected reward of
0.5 when guessing the face up side of the coin. However if PIMC is applied to
this game, in each determinization it is known which way up the coin is and the
guess the coin option always has a reward of 1.

Non-locality is an issue that arises since history can matter in a hidden in-
formation game. For example, if a player could have played a winning card
on their previous turn and is playing rationally, the player does not hold the
winning card otherwise the game would be over. However PIMC would include
determinizations in which that player held that card, which is in fact incompat-
ible with the assumption of rationality (which asserts that players do not choose
actions that offer strictly lower utility than other actions). In a perfect informa-
tion game the best strategy does not depend on history of previous actions that
led to a state, but in a hidden information game it can. Note that non-locality
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arises from the assumption that players are rational, which is subtly different to
the technique of inference where an opponent model is exploited to determine
which states are likely.

Finally since PIMC analyses perfect information games, there is never any
information to hide or gather. Therefore PIMC is blind to the utility of bluffing
or information gathering actions. In addition it is assumed the opponents cheat
since the only determinizations sampled are from the player’s own information
set. Experiments in this thesis show that this assumption is not a large problem
in games where knowledge of hidden information is not very important, in par-
ticular the results in Section 5.1.2 indicate that this is the case for Dou Di Zhu.
However in other types of games such as poker and hidden role games, the game
is degenerate if players are assumed to cheat. For example in the game The Re-
sistance, if the non-spies are assumed to know the identity of the spies, the spies
would conclude they cannot win.

MCTS is already well established as a search technique for perfect informa-
tion games and can be integrated into PIMC search in the obvious way, using
MCTS to search each determinization. This combination has been investigated
by a number of authors in in games such as Phantom Go [76], Phantom Chess
(Kriegspiel) [77], and Klondike Solitaire [48] among others. Long et al [30] use
MCTS with PIMC to try and address why PIMC is so successful despite the
clear problems with the technique. In this thesis the issues with PIMC are
addressed by developing new MCTS algorithms. The first question however, is
to establish to what extent strategy fusion and non-locality are detrimental to
the performance of PIMC. This question is investigated for the popular Chinese
card game Dou Di Zhu (which is described in Chapter 4.2.1) by comparing al-
gorithms which are allowed to “cheat” with PIMC and a variant of Expectimax
search (defined in Section 3.3.2).

5.1.1 Balancing Simulations and Determinizations

This section presents work done to tune PIMC with MCTS for optimal perfor-
mance in a particular game given a fixed computational budget (with results
taken from three publications [50, 26, 27]). When integrating MCTS into PIMC,
there are now two “Monte-Carlos”, the Monte-Carlo sampling of determiniza-
tions used by PIMC and the Monte-Carlo sampling of simulated games used by
MCTS. Let d denote the number of determinizations and s denote the number
of MCTS simulations performed per determinization. The runtime of the algo-
rithm is proportional to the product of these parameters ds, since the product
corresponds to the total number of games played out across all determiniza-
tions and it can be reasonably assumed that the run-times of each play-out are
independent and identically distributed random variables.

Since the ultimate aim of this work was to produce generic reusable Al for
deployment in commercial games, the algorithm must return a decision within a
fixed amount of time. Therefore the optimal ratio between determinizations and
MCTS iterations per determinzations must be discovered for a particular game.
For these initial experiments PIMC with UCT is used as a baseline algorithm to
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investigate the effect of varying s and d. The results indicate that the balance
of simulations and determinization is important and may differ between games.
The methodology used to find this balance could easily be adapted to any game.

Choosing a representative set of deals for Dou Di Zhu

Although the strength of decisions made by each player has a significant effect
on the outcome of a game of Dou Di Zhu, some random deals may favour one
player over another, whereas others may be much more sensitive to the player’s
decisions. In an effort to reduce the variance of subsequent results and thus
allow them to be compared more easily, a set of 1000 Dou Di Zhu deals was
chosen as a representative sample for the remainder of the experiments in this
chapter. The practice of specifying deck ordering in advance is common in
Bridge and Whist tournaments between human players, to minimise the effect
of luck when comparing players. It should be noted that experiments presented
for Dou Di Zhu were qualitatively identical when a larger set of deals was used
(see Section 5.2.4), suggesting that a set of 1000 deals is sufficiently large for
comparing algorithms.

This set of deals was chosen such that when players use PIMC search with
MCTS, the number of wins for a particular player is as close as possible to the
mean number of wins for 1000 random deals. In order to choose such a set,
the mean must first be determined. This was achieved by generating 100 sets
of 1000 random Dou Di Zhu deals and for each deal a single game was played,
using 50 determinizations and 250 MCTS iterations per determinization for each
player. For each set, it was recorded how many of the 1000 games were won by
player 1. Figure 5.1 shows a histogram of these numbers of wins. These results
indicate that the number of wins appears to be normally distributed. The mean
is u = 433.47 and the standard deviation is ¢ = 16.27 and so a 95% confidence
interval for the mean number of wins for player 1 is [433.37,433.57]. Therefore
a set of deals for which player 1 (the landlord player) achieved exactly 433 wins
was chosen as a representative set.

Varying Simulations and Determinizations for Dou Di Zhu

Now that a suitable set of deals has been chosen, the effect of varying the pa-
rameters d and s for PIMC with MCTS can be tested. Figures 5.2, 5.3 and 5.4
show the results of varying s and d for Dou Di Zhu. In these experiments, each
combination of s and d is tested across all 1000 deals from the representative
set. In each game, players 2 and 3 (the non-landlord players) use 40 deter-
minizations and 250 UCT iterations per determinization, whereas player 1 uses
d determinizations and s iterations per determinization, each game with a dif-
ferent value for d and/or s. For each combination of d and s, the number of
games out of the 1000 won by player 1 is counted.

In this first experiment values for s are chosen from the set: {50, 100, 250, 500}.
For each value of s, a number of values for d is tested, ranging from 1 to 100.
Figure 5.2 shows the number of wins for each value of s. The results indicate
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Frequency in 100 sets of games

400 408 416 424 432 440 448 456 464 472
Player 1 (landlord) wins in 1000 games

Figure 5.1: Histogram of win rates for the landlord player in 100 sets of 1000
Dou Di Zhu games. Each player used 50 determinizations with 250 MCTS
iterations for each decision.
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that playing strength increases rapidly with d < 20, with diminishing returns
for d > 20. However, there seems to be slightly more benefit to increasing the
number of determinizations beyond 30 when the number of UCT iterations is
low. Next the effect of varying s whilst d remains fixed was tested. The con-
ditions for this experiment were similar to those for the previous experiment,
with the exception that values of d were chosen from the set: {5,10, 25,40} and
s varied from 25 to 1000. The results are plotted in Figure 5.3. For s < 300
the playing strength increases approximately logarithmically with the number
of simulations, levelling off for s > 300.

Arguably the fairest comparison of the relative strength of different AI agents
is to allocate them the same length of time (or the same number of CPU cycles)
to make their decisions. The Dou Di Zhu implementation in C# used for exper-
iments uses around one second to make a decision using 10000 MCTS iterations.
Therefore using a budget of up to 15000 iteration is a good benchmark for a
player that would return decisions quickly enough to play against in a commer-
cial product without frustrating the user (accounting for the fact that a faster
rate of iterations could be achieved with a well optimised implementation). It
can also reasonable be assumed that the time taken for a single UCT iteration
is roughly constant and the overall decision time is roughly linear in the number
of iterations.

For PIMC with MCTS the total number of MCTS iterations across all de-
terminizations is the product ds. Therefore in the final experiment four total
iteration budgets b = ds are fixed: b € {2500, 5000, 10000, 15000}, and for each
b, d is varied from 1 to 100, with s = %. As in the preceding two experiments,
players 2 and 3 have d = 40, s = 250. Figure 5.4 plots the number of wins for
player 1 for different values of d and a fixed b. Given the results of the preceding
experiments, it is not surprising that performance is weaker when s or d is too
small, nor that performance is somewhat independent of these parameters when
both are sufficiently large. It is worth noting that for some iteration budgets,
the performance of PIMC has a peak as the number of determinizations varies.
This reinforces the need to tune the ratio of d to s for each games.

Varying Simulations and Determinizations for Lord of the Rings: The
Confrontation

In this section PIMC with MCTS is applied to the game Lord of the Rings: The
Confrontation (LOTR:C). A similar experiment to that in Section 5.1.1 was
conducted to determine the correct balance of simulations and determinzations,
but given the asymmetric nature of the game the experiment was conducted
separately for each player, Light and Dark. Results of this experiment for
LOTR:C are shown in Figure 5.5. Let d x s to refer to a player using PIMC
with UCT using d determinizations and s iterations per determinization.
Contrary to the results for Dou Di Zhu, for LOTR:C the playing strength
appears to worsen as the number of determinizations increases for a fixed value
of ds. For instance, a Light 1 x 10000 player significantly outperforms a 40 x 250
player by 22.9%. Against a 40 x 250 player a 40 x 10000 player achieved win
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Figure 5.5: Results of the determinization balancing experiment for LOTR:C.
Graph (a) shows the win rate for a Light player using PIMC with d deter-
minizations and [10000/d] MCTS iterations per determinization, against a Dark
opponent with 40 determinizations and 10000/40 = 250 MCTS iterations per
determinization. Graph (b) shows the same with Light and Dark exchanged (in
particular, win rates are for the Dark player).

60



rates of 73.2% for Light and 83.0% for Dark, which exceed significantly the
corresponding win rates for 1 x 10000. This is a consequence of the increased
number of iterations per determinization, rather than the reduced number of
determinizations: Naturally, the 40 x 10000 player also takes approximately 40
times longer to make each decision than a player using a total of 10000 iterations,
so when ds is fixed at 10000, 1 x 10000 is the best setting for the Light player.

For the 1 x 10000 player, the average depth of the tree constructed from the
initial game state is 8.6, and the average depth of a node is 4.0. For 40 x 250, the
average tree depth is 4.1 and the average node depth is 2.4. Given that a single
instance of combat in LOTR:C can account for five or more levels in the tree,
searching to a depth of 4.1 is simply insufficient to make an informed decision.
The effect of worsening playing strength as the number of determinizations is
increased is more pronounced for the Light player. One possible reason for this
is that Light’s primary win condition (moving Frodo into Mordor) requires more
long-term planning and thus deeper search than Dark’s primary win condition
(kill Frodo).

It can be concluded that in order to apply PIMC search with MCTS, it is
always necessary to find the correct balance of simulations and determinizations
since the best balance was different for both Dou Di Zhu and LOTR:C. More
determinizations allows for a more diverse sample of possible states, but allows
for less time to analyse each state given a fixed computational budget.

5.1.2 Quantifying the effect of strategy fusion and non-
locality

The effects of strategy fusion and non-locality can be estimated by comparing
PIMC search to a player that cheats to know the actual state of the game. If
each determinization is the actual state of the game, then there is no strategy
fusion since each determinization is the same and an action that is good in one
determinization is good in all others. Similarly cheating is not prone to the
effect of non-locality, since the determinizations used are always consistent with
observed opponent play.
There are three advantages of a cheating player over PIMC search:

1. Lack of non-locality and strategy fusion

2. Inference (knowledge of information that could conceivably be inferred
from the opponent decisions)

3. Clairvoyance (knowledge of information that could not possibly be in-
ferred).

Quantifying the effect of each of these benefits should indicate which aspect
of PIMC search offers the best potential for improvement. Clearly the third
of these advantages is unattainable for a player that does not cheat. If the
effect of knowing information that could be reasonably inferred is large, then
opponent modelling and inference techniques could improve PIMC (for example
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‘Cheating Determinized Difference

Player 1 49.9% 43.0% 6.9%
Player 2 65.6% 57.0% 8.6%
Player 3 68.9% 57.0% 11.9%
Player 2 & 3 78.0% 57.0% 21.0%

Table 5.1: Playing strength of players with perfect versus imperfect information.
Each row shows the win rate for the specified player(s) when they use cheating
UCT or determinized UCT and all other players use determinized UCT.

through the biasing of determinization sampling). If the effect of strategy fusion
is large, then developing algorithms which do not suffer from strategy fusion is
a promising approach to improve upon PIMC. Experimental evidence presented
in in this section suggests that the effect of the second is negligible for Dou Di
Zhu (this may be different for other games) and so addressing the first is the
most promising avenue to obtaining a strong imperfect information player.

Benefit of Cheating in Dou Di Zhu

In this experiment [50, 26] PIMC with UCT is tested with and without cheating
in varous combinations. The number of wins (playing one game from each of
the 1000 deals identified in Section 5.1.1) when each player uses PIMC with
MCTS is used as a baseline and the increase in numbers of wins when the
players are allowed to cheat is measured. Table 5.1 shows the results of this
experiment. As expected the cheating player outperforms PIMC search which
does not cheat. It is not surprising that the former outperforms the latter.
However, by considering a simplified version of the game, it can be argued that
the majority of this apparent advantage is not attributable to the difference in
information available to the two agents, but is instead a consequence of problems
with the method of determinization itself.

Algorithms for Mini Dou Di Zhu

The game tree for full Dou Di Zhu has a single chance node corresponding to
the dealing of cards to each player. However, even after fixing the root player’s
own cards, the branching factor at this node is of the order 10° so searching
this tree directly is impractical. Instead a simplified version of Dou Di Zhu
called Mini Dou Di Zhu was used for experiments, which is small enough to
be enumerable and solvable using minimax and expectimax algorithms. These
algorithms are deterministic and solve games exactly, which means that the
modelling assumptions behind the design of each algorithm can be compared
rather than the ability of the algorithm to solve Mini Dou Di Zhu.

Thus two classes of algorithm are tested. Firstly PIMC search which analyses
numerous determinizations separately. Then the Expectimax algorithm which
constructs and searches a tree of information sets, avoiding the strategy fusion
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problem with PIMC. In addition, cheating versions of the algorithms tested,
which are allowed to observe the true state of the game and thus search the
actual game tree.

Cheating minimax The minimax algorithm can easily search the entire
depth of the Mini Dou Di Zhu game tree. Minimax is optimal against a minimax
opponent for a perfect information game, but can occasionally make poor deci-
sions against other types of opponent. For example, suppose that the minimax
player has available two lines of play: one is a certain loss, while the other is
a loss only if the opponent plays optimally from that point. Both lines have a
minimax value of —1 so minimax chooses between them arbitrarily. However, if
there is any possibility that the opponent will make a mistake (i.e. deviate from
the minimax policy, which is not unlikely if the opponent is PIMC and does not
cheat since the game does not have perfect information ) then the second line is
clearly the better choice. To solve this problem, minimax is modified with the
following tie-breaking mechanism. Each state s is assigned a value m.(s) by

_ ZaeA(s) _m&‘(f(sv Cl))
mels) = o, ~me(f (s @)+ e

The first term is the standard Negamax formulation of the minimax value;
the second term is proportional to the average value of playing a random action
from state s. If two moves have the same minimax value, the tie will be broken
by choosing the move that gives the opponent more opportunities to make a
mistake. The constant e must be small enough that if mg(s) < mg(s’) (where
mo denotes the standard minimax value) then m.(s) < m.(s’), so that actions
that maximise m. also maximise m; in other words, the set of actions identified
as optimal by m. is a subset of those identified as optimal by m.

PIMC Minimax A determinization approach similar to the approach Gins-
berg [16] uses for Bridge is applied, where PIMC is combined with an algorithm
to solve the perfect information game (minimax search in this case). In Mini
Dou Di Zhu, the maximum number of states in an information set is 66 (cal-
culated through enumeration), so it is feasible to iterate over all possible deter-
minizations. Each determinization is small enough to be solved exactly by the
minimax algorithm. The results of the individual minimax searches are com-
bined by weighted majority voting: the number of votes for an action is the sum
of probabilities of determinizations in which that action is chosen by minimax
and the action selected by the agent is one for which this sum is maximal. The
determinization process is illustrated in Figure 5.6(a). There is an initial branch
for each possible determinization for the current information set, each labelled
with its associated probability. Each determinization fixes the structure of the
tree that is then searched by minimax.

Information set expectimax This algorithm is as an analogue to the ISMCTS
algorithm (introduced later in this chapter), since instead of searching deter-
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Figure 5.6: Illustration of search trees for (a) determinization and (b) infor-
mation set expectimax. White triangles correspond to information sets, and
black triangles to individual states. Triangles pointing upwards denote nodes
belonging to the root (maximising) player, and triangles pointing downwards to
the opponent (minimising) player. Solid lines denote decisions, whereas dashed
lines denote decomposition of information sets into their constituent states. All
information sets are from the point of view of the root player.

minized trees of states, this algorithm searches a tree of information sets. This
avoid the strategy fusion problem with PIMC search since a single value is com-
puted for each action in an information set, rather than different values for each
state within an information set. To search a tree of information sets in Mini
Dou Di Zhu the Expectimax search algorithm [78] is used. As discussed in Sec-
tion 3.3.2, Expectimax extends the minimax algorithm to game trees containing
chance nodes: the value of a chance node is the expected value of choosing one
of its children at random. For trees of information sets the opponent’s decision
nodes are treated as chance nodes (branching for the states in the current infor-
mation set) followed by perfect information decision nodes. This is illustrated in
Figure 5.6(b). Each non-terminal information set [s]; is assigned a value v;([s];)
recursively by

v;([s];) = {maxaeA([s]j> v ([f (s, a)l;), if p([s];) = j
T Baeg, minaeacs v ([ (s, @)y), if p((s]) = 5

Terminal information sets assigned values of +1 for wins and losses in the
usual way. The agent selects a move to maximise the value of the resulting
information set.

Inference for Mini Dou Di Zhu Finally, in order to measure how much of
the benefit of cheating is due to inference (and clairvoyance) as opposed to lack
of strategy fusion, versions of each algorithm are tested which use an opponent
model. In games of hidden information, it is often possible to infer informa-
tion by observing the actions of the other players, according to some model
of the other players decision processes. This type of inference has frequently
been applied to the game of poker [116, 89], but also to other games such as
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Scrabble [90] and the card game Skat [49] which has similarities to Dou Di Zhu.
Performing inference with MCTS is discussed in more detail in Chapter 7.

In Mini Dou Di Zhu, inference can be performed by applying an opponent
model to all states in the current information set and comparing the observed
move from the current information set with the opponent model’s choice from
each state: if the moves for a particular state do not match, it can be concluded
that state is not the true state of the game. where the probability of playing
a move given a state is 0 or 1, similar to Richards and Amir [90] (which is the
case since the minimax and expectimax players tested for Mini Dou Di Zhu are
deterministic). This type of inference requires consideration of all states in the
current information set, which is infeasible for the full game of Dou Di Zhu, but
tractable for Mini Dou Dhi Zhu since there are only 8832 possible deals.

Effect of Cheating in Mini Dou Di Zhu

In this section an experiment is performed to compare the playing strength
of the different algorithms described earlier for Mini Dou Di Zhu, when they
cheat compared to when they do not cheat. Specifically, the agents are cheating
minimax, determinized minimax and information set Expectimax; for the latter
two, variants are tested with no inference model, Bayesian inference with an
incorrect opponent model and Bayesian inference with the correct opponent
model. Here the “correct” opponent model uses exactly the same algorithm as
the opponent, whereas the “incorrect” model uses a different algorithm to the
opponent. The former can be considered a best case for the effectiveness of
inference, whereas the latter is a more realistic test of its effectiveness when an
exact opponent model is not known.

In each case all 8832 deals are iterated through, playing a single game for
each combination of agents (a single game suffices as all agents are determinis-
tic). The measure of a particular agent’s strength against some opponent is the
probability that it wins a randomly dealt game, which is obtained by summing
the probabilities of those deals from the 8832 that it wins. The results of this
experiment are shown in Figure 5.7, indicating that the win rate for cheating
minimax is approximately 40% greater than that of determinized minimax al-
though the exact value depends on the opponent type. It should come as no
surprise that cheating outperforms determinization. The former has access to
information that the latter does not and so can make more informed decisions
and better anticipate its opponent’s responses.

Effect of Inference in Mini Dou Di Zhu

Inference improves the strength of determinized minimax, increasing the win
rate by around 10%, or 23% with a perfect opponent model. However, the
performance of determinized minimax with inference still falls short of expec-
timax without inference. The determinized minimax agent with inference and
the correct opponent model correctly identifies the actual state of the game (i.e.
assigns the actual state probability 1 and all other states probability 0) by the
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Figure 5.7: Performance of several agents in Mini Dou Di Zhu. For each group of
bars, player 2 uses the algorithm specified in the x-axis label; for each bar within
a group, player 1 uses the algorithm specified by the legend. The bars themselves
represent the win rate over all deals for player 1. Determinization with correct
inference was not tested against itself: while possible, it is not straightforward
to implement this in a way that does not require infinite nesting of opponent
models [26]. Error bars are not included since the players are deterministic and
win rates are exact across all deals.
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fourth turn in 48% of deals against an expectimax opponent; by the end of the
game, this proportion of deals increases to 74%. Inference significantly improves
the performance of determinized minimax; however the same cannot be said for
expectimax.

A variant of the expectimax player was tested in which the probabilities used
in calculating expected values at opponent nodes are determined by Bayesian
inference. The resulting increase in playing strength is negligible (less than
0.2%). (Since these results are almost identical to those for expectimax without
inference, they are omitted from Figure 5.7.) One explanation could be that in-
ferred information is generally not helpful in Mini Dou Di Zhu and the apparent
benefit of inference in determinized minimax arises by reducing the number of
determinizations to be searched, thus reducing the variance among the minimax
results and ameliorating the effects of strategy fusion.

Expectimax is a significant improvement over determinized minimax, out-
performing it by around 30% and achieving a win rate around 10% lower than
that of cheating minimax. This suggests that contrary to the intuition that
knowing hidden information should be greatly beneficial, approximately three
quarters of the apparent benefit of cheating in Mini Dou Di Zhu can actually
be attributed to the effects of strategy fusion, from which expectimax does not
suffer.

5.2 Information Set Monte Carlo Tree Search
(ISMCTS)

By studying the performance of deterministic algorithms (cheating minimax,
determinized minimax and expectimax) on Mini Dou Di Zhu, it appears that
a large proportion of the apparent benefit of cheating has less to do with gain-
ing access to hidden information and more to do with overcoming the inherent
shortcomings of determinization. Furthermore for mini Dou Di Zhu it appears
inference has little effect on the strength of an agent that does not use de-
terminization. Giving determinized minimax knowledge about the state of the
game provided little benefit. However for mini Dou Di Zhu, the algorithm which
does not suffer from strategy fusion performed well. Therefore it can be con-
cluded that much of the benefit of cheating for this game is due to a lack of
strategy fusion and that the potential benefit of inference is small for Dou Di
Zhu. For mini Dou Di Zhu it has been shown that strategy fusion is a sig-
nificant problem for PIMC. In this section Information Set Monte Carlo Tree
Search (ISMCTS) is introduced as an improvement upon PIMC with MCTS,
designed not to suffer the effects of strategy fusion.

When applying PIMC with MCTS, the strategy fusion problem arises since
the values of actions are learnt in the context of specific states. One solution to
this is to learn action values in the context of particular information sets instead.
These values can be stored in a single decision tree, where the nodes correspond
to information sets of the decision making player. However, if the same de-
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terminization is searched on many consecutive iterations, the values learnt will
have a strong amount of local bias towards actions which are good in the current
determinzation. Therefore ISMCTS is introduced which does not search a tree
of states, rather a tree where nodes correspond to information sets. Since build-
ing a tree with a unique node for every unique information set is intractable in
many large games, the ISMCTS algorithm utilizes different techniques to group
information sets into a single node in order to reduce the complexity of the tree.
In addition the ISMCTS algorithm uses a new determinization on each MCTS
iteration in order to ensure an unbiased mix of determinzations. The ISMCTS
algorithm is defined in Section 5.2.3, but first the issues of subset armed bandits
and chance nodes must be addressed.

ISMCTS offers numerous advantages over PIMC search with MCTS in addi-
tion to removing the effect of strategy fusion. PIMC does not transfer knowledge
between determinization except in the final step of making a decision. ISMCTS
constructs a single tree, so allowing information to be shared as the search pro-
gresses. ISMCTS also removes the need to find the correct balance between
determinizations and simulations. ISMCTS does not address any of the other
shortcomings of PIMC search particularly non-locality which is addressed in
Chapter 7.

5.2.1 Subset-armed Bandits

One issue with determinization is with decisions for players other than the ob-
server. Another player may be able to distinguish between states in an infor-
mation set and may wish to make different decisions in each case. This means
that in an information set tree at opponent nodes, the utility of each action
may depend on the current determinization. Furthermore in many games an
observer cannot predict the set of actions that will be available to another ob-
server in a particular information set. This leads to an action selection problem
at opponent information sets during tree search where a different set of actions
will be available depending on the current determinization.

One solution to this problem would be to search each tree corresponding to
each possible opponent information set independently (in addition to a players
own information set). Within each of these trees, the set of available actions
would remain constant and so would the utility associated with each action. For
many games of imperfect information there are a very large amount of possible
determinizations which would make such an approach infeasible. This is because
bandit algorithms applied to tree search rely on many trials of each state in the
tree in order to discover the best actions to choose. In practice it is preferable
to group together determinizations in which the opponent decision is likely to
be correlated. This allows the opponent to make different decisions in some
different states, but also allows each group to receive a reasonable amount of
trials. This would still lead to the overlapping of action sets which defines a
different problem to the multi-armed bandit problem.

Therefore ISMCTS introduces a new issue not present with PIMC search
when only one player’s information sets are searched; the subset armed bandit
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problem. In determinizations, the game is perfect information so at opponent
decisions it is known exactly what state the opponent is in. However with
ISMCTS, the same opponent decision node is used for many possible opponent
information sets. For example in a card game, at the decision making player’s
nodes it is known what information set the player will be in because the player
can see their cards. At opponent’s decision nodes however, there may be many
possible information sets corresponding to the different deals the opponent has
in each determinization. Therefore the set of legal actions at that decision node
may be different on each iteration, due to the opponent having a different set
of cards in hand.

The subset armed bandit problem

The subset armed bandit problem is defined as follows:

Definition 11. A k -Armed Subset-Armed Bandit Problem consists of a
k-Armed Multi-Armed Bandit Problem and a set of n random variables denoted
Ap. It I:={1,...,k} and P(I) is the power set of I then each A, € P(I) and
on trial n only arms in the set A,, are available for selection. Random variables
A,, are independent and identically distributed according to some distribution
where P(A4,, = 0) = 0 (which ensures that at least one arm is always available
for selection).

A policy for the multi armed bandit problem can be applied to the subset
armed bandit problem by treating each subset as a regular multi armed bandit
problem and applying the policy independently in each subset. However this
technique does not exploit the fact that the distribution of an arm may not
depend on the subset of arms available. Instead each arm must be considered
separately for each subset, but this leads to a large increase in the number of
arms and is not tractable for ISMCTS.

Handling subset armed bandits

Performing tree search using a method similar to that described in the previous
section may not be desirable in practice. The first issue is that a set of available
actions may not uniquely correspond to a state and that the optimal arm may
also depend on the state. If the number of possible states is large then it may
not be possible in practice to measure the utility of each action in each state.
Therefore it is convenient to assume that the optimal action remains unchanged
amongst all states which produce the same set of legal actions. In practice
this assumption does not cause problems for many games since it is often the
case that the utility of an action is somewhat consistent across states in an
information set (which happens to be the property that PIMC relies upon).
The second issue is that if sets of available actions overlap, then it is possible
that the value of an action in two different sets is the same. More specifically,
it may be that by averaging the utility of an action over two different sets does
not change which action is the optimal action in each set. By spending time
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measuring the utility of each action independently in both sets, more time is
spent exploring than is necessary. It would therefore be desirable to perform
only one exploration phase per action, but this would result in a sub-optimal
arm being exploited if averaging the utility across overlapping sets of actions
changed the optimality of arms.

Therefore the subset armed bandit problem introduces a few theoretical
problems with ISMCTS. Firstly, the value of an action for an opponent may be
different for each opponent information set. There may be a large number of
opponent information sets however (for example all possible opponent deals in
a card game), so learning the unique value for each opponent information set
can be intractable. For games with smaller numbers of information sets this is
possible (and discussed later in Chapter 7). In other cases, it is assumed the
average value across all opponent information sets can be used to measure the
utility of an opponent action. This leads to a problem which is the inverse of
strategy fusion, a strategy fission where the opponent is assumed not to be able
to choose different actions depending on which information set they are in. In
Chapter 6 it is shown how this strategy fission can be avoided in the case of
partially observable actions.

Finally the subset armed bandit problem can lead to unmanageable branch-
ing factors in games where the number of possible legal moves is large. For
example in Dou Di Zhu, moves consist of combinations of cards in hand and
substituting one card for another can lead to a large number of new unique
moves. At opponent nodes in ISMCTS, many iterations will be expanding a
new unseen legal move. In addition if using the UCB1 algorithm, rarely seen
moves will have a large exploration urgency. This can be alleviated by grow-
ing the exploration urgency in proportion to the number of times a move was
available for selection. Denote by T;(n) the number of times arm i was available
during the first n trials. If T; is the average reward received from arm i then
select randomly amongst any arms for which T;(n) = 0, and otherwise randomly
amongst any arm for which

(5.1)

is maximal, for some constant C. This is equivalent to the UCB algorithm
except the number of times an arm was available is substituted for number of
trials. This means that the exploration bonus for an arm only grows whilst it
is available for selection, meaning that arms that are infrequently available will
not be over-explored.

5.2.2 Handling Chance Events

As defined in Section 2.1 chance events (or stochastic outcomes) are actions
performed randomly by the environment player. Handling of chance events is
not a primary focus of this thesis. However, chance nodes do occur under certain
circumstances in several of the test domains (see Section 4.2), so they cannot
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be ignored completely. Note that in the games studied in this thesis chance
nodes typically have a small number of possible outcomes. Technically, card
games include a chance event with a large number of outcomes corresponding
to shuffling and dealing a deck of cards at the beginning of the game, but since
this occurs before any player has made a decision it never occurs as a chance
node in the search tree. Therefore it was sufficient to simply include chance
nodes in MCTS trees and sample outcomes evenly.

Consider a chance node with k branches, each of which is equally likely. To
ensure that each branch is explored approximately equally, the first k visits select
all outcomes in a random permutation, the second k visits select all outcomes
in another random permutation, and so on. This is almost trivial to implement
in UCT: since UCB with random tie-breaking is used for action selection, it
suffices to treat the environment player as a decision-making agent who has
perfect information and receives a reward of zero for all terminal states. The
UCB exploration term then ensures that the branches are visited in the manner
described above. This method only worked for uniformly random chance nodes,
but could be adapted to the non-uniform situation by changing the selection
policy. This approach was applied to most of the domains in this thesis with
the exception of Backgammon, where future dice rolls are treated as hidden
information (expressed through a seeded random number generator), so that
the same rolls occur on the same determinization.

5.2.3 The ISMCTS Algorithm

Now that the issues of chance node and subset armed bandits have been ad-
dressed, the ISMCTS algorithm can be defined. In summary, ISMCTS aims to
overcome the problems associated with the PIMC search, by searching a single
tree whose nodes correspond to information sets rather than states. In ISMCTS,
nodes in the tree correspond to information sets from the root player’s point of
view, and edges correspond to actions (i.e. moves from the point of view of the
player who plays them). The correspondence between nodes and information
sets is not one-one: partially observable opponent moves that are indistinguish-
able to the root player have separate edges in the tree, and thus the resulting
information set has several nodes in the tree. Partially observable actions are
treated in depth in Chapter 6.

The nodes in an ISMCTS tree represent unique histories from the point of
view of the root player. This means that nodes are distinguished only by the
observation the root player makes of the actions which lead to the node, so that
some nodes may correspond to many different information sets in the game
which are indistinguishable to the root player (but appear distinct to another
player). For example in a card game observing a sequence of cards being played
leads to a unique node in the ISMCTS tree, but there may be many possible
opponent information sets with this history of played cards (corresponding to
the different cards the opponent may hold). This is similar to the approach taken
by Nau et al [81] in Bridge where Minimax search was restricted to branches
corresponding to certain tactics or strategies in order to reduce branching factor
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(with ISMCTS restricting transitions to those observable by the root player).

Grouping together information sets which are indistinguishable to the root
player in this way (using only the observation of actions) dramatically reduces
the number of nodes in the search tree (in contrast to having a unique node
for every unique information set). This allows the ISMCTS algorithm to learn
faster by visiting opponent nodes more frequently and also avoids the need to
keep track of information sets which reduces the complexity of the algorithm.
The drawback of this approach is that the opponent model is weaker, since
the algorithm cannot learn a different policy for different opponent information
sets and introduces the issues of subset armed bandits which is dealt with in
this Chapter. In practice this will not be a problem in a game where the best
actions do not depend on the information set. One example is a card game
where playing a specific card which wins the game, the other cards in the hand
do not matter just the presence or absence of the winning card. In games such
as The Resistance, the best strategy depends on a piece of hidden information
(the secret role of the opponent) so grouping information sets in this manner is
detrimental to the performance of the algorithm. This problem is dealt with in
Chapter 7 but at the cost of massively increasing the number of nodes in the
ISMCTS tree (and slowing down the learning rate).

In order to help illustrate the tree structure used by ISMCTS, Figure 5.8
shows a game tree for a simple 1-player game of imperfect information. The
root information set contains two states, x and y. The player first selects one of
two actions, a; or as. Selecting as yields an immediate reward of +0.5 and ends
the game. If the player instead selects a1, they must then select an action ag or
a4. If the game began in state x, then a3 and a4 lead to rewards of —1 and +1
respectively (this information being revealed by means of environment action
€z,3 Or €5 4); if the game began in state y then the rewards are interchanged.

If states = and y are equally likely, action a; has an Expectimax value of
0: upon choosing ai, both a3 and a4 have an Expectimax value of 0. Thus the
optimal action from the root is as. However, a determinizing player searches
trees corresponding to each state x and y individually and assigns a; a minimax
value of +1 in each (by assuming that the correct choice of a3 or a4 can always
be made), thus believing a; to be optimal. This is an example of strategy fusion.

Figure 5.9 shows the tree searched by ISMCTS for this game. In this case
each node is in one-one correspondence with an information set. After a suffi-
ciently large number of iterations the algorithm assigns each environment node
an expected value of 0 and thus assigns the same value to action a;, thus over-
coming strategy fusion and correctly identifying as as the optimal move.

Figure 5.10 shows a game tree for a more complex, 2-player game. The
game starts in one of three states: x, y or z. These states are distinguishable
to player 2 but not to player 1. Player 1 first selects an action a; or as. If he
chooses a1, player 2 then selects an action by, by or b3. However only two of
these actions are available, and which two depends on the initial state. Player 1
then selects ag or a4, and both players receive rewards as shown. Note that if
player 2 chooses b; or b3 then the rewards do not depend on the initial state,
but if player 2 chooses by then the rewards do depend on the initial state.

72



Figure 5.8: An example game tree for a simple 1-player game. Nodes represent
game states. Nodes shaped A denote player 1 decision states, () environment
states, and [J terminal states labelled with reward values for player 1. Non-
terminal nodes in corresponding positions in the x and y sub-trees are in the
same player 1 information set; this is shown by a dashed line for the root nodes.
Adapted from [30, Figure 1].

Figure 5.9: An information set search tree for the game shown in Figure 5.8.
Here nodes shaped A denote information sets where player 1 is both the observer
and the player about to act.
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Figure 5.10: An example game tree for a simple 2-player game. Nodes shaped
A denote player 1 decision states, 7 player 2 decision states, (O environment
states, and [J terminal states labelled with reward values for player 1 (the game is
zero-sum, so player 2’s rewards are the negation of those for player 1). Player 1’s
information set relation is shown by dashed lines for selected nodes. The par-
titioning of the remaining nodes is determined by their positions in sub-trees:
if two nodes occupy the same position in two sub-trees, and the roots of those
sub-trees are in the same information set as each other, then the two nodes are
in the same information set as each other. the remaining nodes are partitioned
in the obvious way. Player 2 has perfect information, i.e. her information sets
are singletons.

Figure 5.11: An information set search tree for the game shown in Figure 5.10.
(a) shows the entire tree; (b) shows the restriction of the tree to determiniza-
tion z.
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Figure 5.11 (a) shows the tree searched by ISMCTS for this game. For an
information set [s]~* where the observer is not the player about to act, i.e.
p([s]™") # i, the set A(s) of available actions can differ for different states
s € [s]7". The set of legal actions may depend on information to which another
player does not have access.

When searching trees of information sets, this creates a problem at opponent
nodes. There must be a branch for every action that can possibly be available
from that information set; this is illustrated in Figure 5.11 (a), where the oppo-
nent decision node has branches for all three actions b1, by, b3 even though only
two of those three actions are available in each state f(x,a1), f(y,a1), f(z,a1)
in the corresponding player 1 information set. However, the exploitation and
exploration of actions must be balanced with how likely those actions are to be
available. For example, it is desirable to avoid over-exploiting an action that is
a certain win for the opponent but is only available with probability ﬁ (i.e. in
only one of 100 states in the information set).

ISMCTS addresses this problem, since at the beginning of each iteration
a random determinization is sampled, which restricts that iteration to those
regions of the information set tree that are consistent with that determinization.
Thus the branches at opponent nodes are available for selection precisely as often
as a determinization is chosen in which the corresponding action is available. In
other words, the probability of an action being available for selection on a given
iteration is precisely the probability of sampling a determinization in which that
action is available. The set of actions available at an opponent node can differ
between visits to that node, and thus action selection is a subset-armed bandit
problem. Figure 5.11 (b) demonstrates such a restriction of the search tree
shown in Figure 5.11 (a).

Consider the example tree in Figure 5.11 (b). Note that the restricted tree
is never explicitly constructed, but the tree policy is restricted as it descends
the tree by means of the determinization d. In turn, d is updated as the tree
is descended by applying the selected actions. Otherwise, selection works as in
plain UCT. Suppose that in determinization = the sequence of actions selected
is a1,b2,a3,e,23. Let us identify each of the visited nodes with its incoming
action (i.e. the label of the incoming edge). At nodes ez 3,as,b2,a; and the
root, the visit count n(v) and total reward r(v) is updated as usual. For these
nodes and for all siblings that were also available for selection, i.e. including
nodes as and by but not nodes bz and e, 23, the availability count n'(v) is
incremented by 1. The availability count replaces the parent node’s visit count
in the UCB formula in order to adapt UCB to the subset-armed bandit problem,
as discussed in Section 5.2.1.

Now that each component of ISMCTS has been explained, detailed pseudo-
code is given in Algorithm 2 (page 86) with enough detail to enable a reader
to implement the algorithm, whilst high-level pseudo-code for the SO-ISMCTS
algorithm is presented in Algorithm 3 (page 87). In this and other pseudo-code
in this thesis, it is assumed that player 1 is conducting the search. The pseudo-
code in Algorithm 3 does not specify which bandit algorithm is used during
selection, however the experiments in this thesis (and in Algorithm 2) UCB1
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is used (modified for subset-armed bandits as described in Section 5.2.1). The
following notation is used in this pseudo-code:

e ¢(v) = children of node v

e a(v) = incoming action at node v

e n(v) = visit count for node v

e n/(v) = availability count for node v
e 7(v) = total reward for node v

o c(v,d) ={u € c(v) : a(u) € A(d)}, the children of v compatible with de-

terminization d

e u(v,d) = {a € A(d) : Pc € c(v,d) with a(c) = a}, the actions from d for
which v does not have children in the current tree. Note that ¢(v,d) and
u(v, d) are defined only for v and d such that d is a determinization of (i.e.
a state contained in) the information set to which v corresponds

The idea of constructing trees of information sets and sampling determiniza-
tions to restrict the region to be searched is similar to the Partially Observable
UCT (PO-UCT) approach of Silver and Veness [82], although PO-UCT operates
on the domain of partially observable Markov decision problems (i.e. 1-player
games of imperfect information) rather than adversarial games. Schéafer [75] also
applied an information set tree approach for the game Skat using the UCB1 algo-
rithm for selection. The information sets are from the point of view of the player
about to play, rather than from the point of view of one player as in ISMCTS.
The fact that other authors have investigated single tree approaches, combined
with the wide range of good experimental results (including new results in this
thesis) suggest that ISMCTS is a significant advance beyond PIMC.

5.2.4 Evaluating ISMCTS

The principles behind the design of the ISMCTS algorithm have been discussed
and the algorithm has been defined. This section presents empirical evaluations
of ISMCTS for several domains. Many of the games ISMCTS is applied to in this
thesis involve more than two players and some involve coalitions. Non zero-sum
games and multi-player games introduce several new algorithm design problems
(See Section 3.2.5) which are beyond the scope of this thesis. All ISMCTS trees
are Max™ trees [117], although it is in theory possible to integrate different
solution concepts for multi-player games into ISMCTS.

Mini Dou Di Zhu

Firstly ISMCTS is evaluated for the game Mini Dou Dhi Zhu, where the experi-
ment [26] presented earlier (Section 5.1.2) motivated the design of ISMCTS. To
test the effectiveness of ISMCTS, it was played against PIMC with UCT. In all
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cases player 2 used PIMC with 20 determinizations and 200 UCT iterations per
determinization. Each of the 8832 deals was played 10 times with player 1 using
PIMC with 20 determinizations and 200 UCT iterations per determinization
and 10 times with player 1 using ISMCTS with 4000 iterations. ISMCTS per-
formed better with a 67.2% win rate versus 62.7% for PIMC. Clearly ISMCTS
was effective in addressing the strategy fusion issue present in mini Dou Di Zhu.
The next section investigates whether ISMCTS outperforms PIMC in the full
version of the game.

Dou Di Zhu

Experiments were run to determine the amount of exploration that should be
performed (i.e. the value of C in Equation 5.1) and the number of iterations
required for good performance with ISMCTS. Each of the 1000 selected deals
for Dou Di Zhu was played 5 times with the landlord player as ISMCTS, an
exploration constant of 0.44 and varying numbers of iterations (between 500 and
30000) against PIMC with UCT opponents using 40 trees and 250 iterations per
tree. The results indicated that the playing strength of ISMCTS increased up to
10000 iterations where it achieved a win rate of 40.8%. Increasing the number
of iterations further had no significant effect on playing strength. Similarly
each deal was played 5 times with the landlord player as ISMCTS using 10000
iterations and varying values for the UCT exploration constant (between 0.1 and
3). The results indicated that the algorithm performs poorly with exploration
less than 0.5 and achieves best performance with exploration greater than 1.
Increasing the exploration beyond 1 had little effect on playing strength.

To measure the difference between cheating UCT, PIMC with UCT and
information set UCT, each of the 1000 deals of Dou Di Zhu was played 40 times
with the landlord as cheating UCT, determinized UCT (PIMC with UCT) and
ISMCTS. In all cases 40 trees with 250 iterations per tree or 10000 iterations
in total were used and the exploration constant for information set UCT was
chosen to be 1.0. The opponents used determinized UCT. First of all this data
was used to calculate the average win rate for each player as the landlord.
The results indicate that there is no significant difference in playing strength
between ISMCTS (42.0%) and determinized UCT (42.4%). Cheating UCT was
much stronger, achieving a win rate of 54.0%.

The original aim of developing ISMCTS was to overcome strategy fusion
difficulties in the deals where the cheating player’s advantage is largest. To
investigate whether this has been achieved, the average win rate for each deal
was calculated for each player type. Then for each deal the difference in win rate
between cheating UCT and determinized UCT was calculated. By looking only
at deals in which this difference is above a certain threshold, it is possible to
compare the performance of information set UCT and determinized UCT in the
deals where knowing the hidden information is most beneficial to the cheating
player.

Similarly the difference between ISMCTS and determinized UCT can be
compared for the deals in which knowing the hidden information is not benefi-
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Threshold | PIMC win rate | ISMCTS win rate | Number of deals

None 42.4% 42.0% 1000
< 0% 53.0% 45.2% 133
=0% 44.9% 43.3% 138
> 0% 40.0% 41.1% 729
> 25% 31.6% 38.4% 166
> 50% 20.4% 35.0% 12

> 5% 15.0% 95.0% 1

Table 5.2: Win rates for PIMC and ISMCTS. Each row shows win rates for a
subset of the 1000 initial Dou Di Zhu deals, filtered by the difference in win rate
between cheating PIMC and PIMC (Threshold column).

cial. The results of this experiment are presented in Table 5.2. For deals where
the threshold in Table 5.2 is less than or equal to zero, cheating UCT does not
outperform determinized UCT and the advantage of knowing the opponent’s
cards is not significant. In this situation ISMCTS offers no advantage and per-
forms slightly worse than determinized UCT. When the threshold is greater
than zero there is an advantage to knowing opponent cards and ISMCTS is sig-
nificantly stronger than determinized UCT. Furthermore, as the gap between
cheating UCT and determinized UCT increases, the gap between ISMCTS and
determinized UCT increases also.

It should be noted that the structure of the trees searched by determinized
UCT and cheating UCT are the same on average (this is discussed further in the
next section). The most significant differences between the two are the access
to hidden information and the consistency due to each UCT tree in the cheating
player’s ensemble (of 40 trees) corresponding to the same perfect information
game. In deals where the cheating UCT player performed better than deter-
minized UCT, and hence where hidden information and consistency in decision
making had some impact, it was observed that ISMCTS performed better than
determinized UCT. Since ISMCTS has no access to hidden information, this
would suggest that the single tree approach is providing some of the same ben-
efit the cheating ensemble player gains through consistency of the UCT trees
searched. Indeed the results obtained for Mini Dou Di Zhu suggest that hidden
information is not often important in Dou Di Zhu and it is a highly unusual
feature of this game, that knowledge of information often has little impact on
players that use determinization.

Since the cards dealt are a significant deciding factor in the outcome of a
game of Dou Di Zhu, the observed results may have been influenced by the
small sample size of 1000 deals. This experiment was repeated with a larger
sample of 5000 new randomly chosen deals, where each of the three algorithms
played each deal 75 times. The overall win rate for determinized UCT was
43.6%, for ISMCTS it was 42.3% and for cheating UCT it was 56.5%, which
are approximately the same as those previously obtained for the original 1000
deals. This is unsurprising: the 1000 deals originally selected were chosen to
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be a good indicator of typical playing strength. Each deal was then put into
one of three categories according to the difference in win rate between cheating
UCT and determinized UCT. If cheating UCT outperformed determinized UCT
(with 95% significance) the deal was put into the category > 0. If determinized
UCT outperformed cheating UCT (also with 95% significance) the deal was put
into the category < 0. All other deals were put into the category ~ 0. There
are 1421 deals in category > 0, 3562 in category ~ 0 and the remaining 17 in
category < 0.

The win rates of ISMCTS and determinized UCT for the categories > 0
and = 0 are shown in Figure 5.12. Since being in category < 0 is such a rare
event, results for this category are not given. In the deals in which cheating
UCT is significantly better than determinized UCT (category > 0), the win
rate of ISMCTS is significantly better than that of determinized UCT. These
deals are arguably those where knowing hidden information has an impact on
the game and also deals where determinization may suffer from strategy fusion
issues. In deals where there is no significant difference between cheating and
determinization, it is observed that determinization is better than ISMCTS. It
is arguable that hidden information has little impact on these deals, for example
that one of the players has such a strong hand that a win is assured irrespective
of what other players hold.

Despite the fact that overall the strength of ISMCTS and determinized UCT
is approximately the same, there can be a great difference in the behaviour of
the two depending on which cards are dealt. In the 1421 deals where a cheating
UCT player outperforms determinized UCT, so does ISMCTS on average. This
suggests that ISMCTS may be benefiting from a lack of strategy fusion issues
along with the cheating player in these deals. It is an unusual feature of Dou Di
Zhu among hidden information games that having access to hidden information
only provides a strong advantage in a minority of deals, and has little effect in
the rest.

In 3562 deals there is no significant difference between cheating UCT and
determinized UCT. In these deals ISMCTS has a slightly lower win rate than
determinized UCT. In these deals some factors other than hidden information
and strategy fusion may be causing a detrimental effect on the performance of
ISMCTS, but not on determinized UCT. The most significant difference between
the two algorithms is the structure of the trees searched. The tree searched by
ISMCTS offers several advantages over the determinization approach in general,
but may be disadvantageous in certain deals. In the next section is it explained
how this difference can be accounted for by an increase in branching factor in
the ISMCTS algorithm, due to the nature of actions in Dou Di Zhu.

Influence of Branching Factor on Playing Strength The fact that there
are some deals in which determinization outperforms cheating and many in
which there is no difference between the two algorithms is a surprising feature of
Dou Di Zhu, since intuitively the cheating player should have a strong advantage.
One possible explanation for this is that branching factor has a large influence
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Figure 5.12: Playing strength of ISMCTS and Determinized UCT for Dou Di
Zhu. The playing strength is shown for deals in which cheating UCT is better
than determinized UCT (category > 0) or where the two algorithms perform
approximately equally (category =2 0).
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on the playing strength of these algorithms. In Dou Di Zhu, certain hands
may have a large total number of moves available when making a leading play
since there are many possible ways of choosing kicker cards to attach to a main
group. Another feature of the game is that every move a player makes in the
game is in the set of moves that player could make as a leading play from their
starting hand. This set therefore forms an upper bound on the number of moves
available in each state for a particular deal and if this set is large, there is likely
to be many more nodes in the tree than if this set is small.

In the case that determinizations produce hands with completely different
sets of moves, ISMCTS is at a disadvantage compared to determinized UCT.
This is because ISMCTS will spend a lot of time adding new nodes near the
root of the tree (since many determinizations will have unique moves that are
not common to other determinizations) and consequently the statistics in the
search tree will mostly be derived from random playouts near the root. On the
other hand, determinizing players will be able to perform a deeper search for
each determinization, since a large number of possible opponent moves will be
ignored.

The following measurements were made for each of the 5000 deals tested:

e The total number of moves the non-Landlord players would be able to
make as a leading play from their starting hand (using the actual cards
these players hold for this particular deal).

e The average of the above for 200 random determinizations of the deal
(where the cards held by the non-Landlord players are randomized).

e The average number of unique leading plays for non-Landlord players that
are discovered in 40, 250 and 1000 determinizations, i.e. after generating
a certain number of determinizations how many possible unique leading
plays have been seen for the non-Landlord players.

These measurements, averaged across all 5000 deals, are presented in Ta-
ble 5.3. It should be noted that these measurements are a function of the deal;
the first measurement is exact for each deal, while the second depends on the
sampled determinizations. These measurements were made only for the non-
Landlord players since the playing strength experiments were conducted from
the point of view of the Landlord player. This means the algorithms tested
always had the same number of branches at nodes where the Landlord makes a
move, since the Landlord can see his cards in hand. The first measurement is an
indicator for the number of branches that may be expected at opponent nodes
for the cheating UCT player as the Landlord. Similarly the second measurement
indicates the number of branches for opponent nodes with determinized UCT
as the Landlord. Both of these measurements are upper bounds, since if an
opponent has played any cards at all then the number of leading plays will be
smaller. The third, fourth and fifth measurements indicate how many expan-
sions ISMCTS will be making at opponent nodes after a certain number of visits,
since a new determinization is used on each iteration. Again this measurement
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Measurement Result (3 s.f.)
Total leading plays 87.7

Average leading plays per determinization 87.8

Average unique leading plays from 40 determinizations 754

Average unique leading plays from 250 determinizations 1230

Average unique leading plays from 1000 determinizations | 1500

Table 5.3: Averages of different measurements of leading plays for the opponents
in Dou Di Zhu across 5000 deals

is an upper bound since only one move is actually added per iteration and if
there were moves unique to a determinization which were never seen again, only
one of them would be added to the tree.

As seen in Table 5.3, from 1000 determinizations on average 1500 unique
leading plays are seen and yet there are only approximately 88 unique leading
plays for a particular determinization of a deal. What is apparent from these
measurements is that there are a lot of moves available within the information
set and only a small number of them are available within each state in the
information set. After just 40 determinizations, ISMCTS will on average have
seen nearly ten times as many unique moves as there are per determinization.
This means that at nodes in the information set tree where an opponent makes a
leading play, node expansion will happen for many more simulations than if the
moves were derived from one single determinization. At other nodes in the tree
where the opponent must play a certain move type, any move that either player
could play will appear as branches at nodes for both opponents. This suggests
that nodes in the tree corresponding to an opponent making a leading play act
as a bottleneck for ISMCTS; the algorithm very rarely explores beyond these
nodes with only 10000 simulations. With 250 simulations per determinization,
it is likely that determinized UCT reaches a similar depth in the tree, which
would explain why the overall performance of the two algorithms is broadly
similar.

Another observation that can be made from these results is that the av-
erage number of leading moves for the actual state of the game and for each
determinization is approximately the same. This is unsurprising since both
measurements are derived from states constructed by randomly dealing unseen
cards. This implies that cheating UCT and determinized UCT are searching
trees of approximately the same size on average. Results from experiments ear-
lier in this chapter suggest that the extra knowledge gained by cheating does
not always provide a strong advantage in Dou Di Zhu.

Later in Chapter 8.2 it is shown that ISMCTS can be greatly improved for
Dou Di Zhu by learning a simulation policy online (which would not be effective
in PIMC due to the low number of MCTS iterations in each determinization).
Dou Di Zhu also has many features which are unusual (and arguably patholog-
ical) for games of hidden information, for example quite often the precise cards
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chosen as kickers are not of particular strategic importance; indeed attaching
a card as a kicker is often a way of getting rid of a “useless” card that would
be difficult to play otherwise yet the number of permutations of kicker choices
contributes greatly to the branching factor of the game. In the next chapter
(Figure 6.3, page 96) it is shown that the performance of ISMCTS is better
than PIMC search in Lord of the Rings: The Confrontation, which lacks this
pathology.

Playing strength against a commercial AT

To assess the absolute strength of PIMC search and ISMCTS for Dou Di Zhu,
both were tested against a strong Al agent developed commercially by AI Fac-
tory Ltd [27] 2. This agent uses flat Monte Carlo evaluation coupled with hand-
designed heuristics. These results are presented in Figure 5.13. In addition the
ISMCTS algorithm was more recently compared against a heuristic based Al
developed by AI Factory Ltd for the game of Spades [10]. These results are
presented in Figure 5.14.

For implementation reasons the methodology of these experiments differed
from that of other experiments in this section. For Dou Di Zhu, the identity of
the Landlord player is decided by a bidding phase according to standard game
rules. All agents use the Al Factory agent’s Al for bidding. Three algorithms
are tested: the AI Factory agent, determinized UCT with 40 determinizations
and 250 iterations per determinization, and ISMCTS with 10000 iterations.
Each plays 1000 games against two copies of the AI Factory agent. When all
three agents are identical the expected number of wins for each is 500. A similar
experiment was also performed for the AT in the AlFactory game Spades. Here
ISMCTS was tested against the AI Factory Al at the normal and maximum
levels where the normal level was identical to the hardest difficulty available in
the product and the maximum level allows a very large amount of decision time.
In each both Dou Di Zhu and Spades, both members of a partnership use the
same AI (but do not “share” information).

Results of these experiments are shown in Figures 5.13 and 5.14, which
indicate that both PIMC and ISMCTS significantly outperform the AI Factory
players. In the case of Spades, ISMCTS is on par with the Al Factory Al even
when it is allowed a very large computational budget. It should also be noted
that in both games, the commercial Al includes many game specific heuristics,
yet ISMCTS yields stronger playing strength with no knowledge. Thus it can be
concluded in absolute terms that both PIMC and ISMCTS produce plausible,
and indeed strong, play for Dou Di Zhu and Spades.

5.3 Summary

In this chapter the combination of PIMC and MCTS was investigated for several
domains, primarily Dou Di Zhu and Lord of the Rings: The Confrontation. FEx-

2yww.aifactory.co.uk.
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Figure 5.13: Playing strengths of ISMCTS and PIMC (Determinized UCT)
against Al Factory Al for Dou Di Zhu.
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Figure 5.14: Playing strength of ISMCTS against Al Factory Al for spades at
the normal and maximum levels
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periments indicated that given a fixed computational budget, the performance
of PIMC with MCTS is sensitive to the ratio between determinizations and
MCTS iterations per determinization. Using more determinizations allows for a
more diverse sample of possible states, but allows for less time to analyse each
state given a fixed computational budget.

Experiments were performed in the game Mini Dou Di Zhu to quantify the
effects of strategy fusion and non-locality (or lack of inference), two known
issues with PIMC search. The results indicated that strategy fusion is a far
more significant problem for Mini Dou Di Zhu, and the benefits of inference
were comparatively small compared to overcoming strategy fusion. This lead to
the introduction of the ISMCTS algorithm, which extends MCTS to searching
trees of information sets and does not suffer from strategy fusion.

ISMCTS offers numerous advantages over PIMC search with MCTS in ad-
dition to removing the effect of strategy fusion. PIMC does not transfer knowl-
edge between determinizations except in the final step of making a decision.
ISMCTS constructs a single tree, so allowing information to be shared as the
search progresses. ISMCTS also removes the need to find the correct balance
between determinizations and simulations. The fact that other authors have
investigated single tree approaches, combined with the wide range of good ex-
perimental results (including new results in this thesis) suggest that ISMCTS
is a significant advance beyond PIMC.

When considering deals in which a cheating player outperforms a PIMC
player significantly (implying that hidden information is important in that spe-
cific deal), it was shown that ISMCTS does outperform PIMC search. It is an
unusual feature of Dou Di Zhu among hidden information games that having
access to hidden information only provides a strong advantage in a minority of
deals, and has little effect in the rest. Furthermore it was shown that Dou Di
Zhu has several pathologies which lead to large branching factors at opponent
nodes in ISMCTS trees, which do not affect PIMC search. When evaluating the
overall performance of ISMCTS for Dou Di Zhu, ISMCTS failed to outperform
PIMC search, however in the next chapter (Figure 6.3, page 96) it is shown that
the performance of ISMCTS is better than PIMC search in Lord of the Rings:
The Confrontation, which lacks this pathology.

Finally the playing strength of ISMCTS was established for the games Dou
Di Zhu and Spades by comparing against benchmark commercial Al players
developed by AI Factory Ltd (which are amongst the strongest available and
contain extensive heuristics and optimizations). In Dou Di Zhu, both ISMCTS
and PIMC search outperform the AI Factory Al In the case of Spades, ISMCTS
is on par with the AI Factory Al even when it is allowed a very large compu-
tational budget. Thus it can be concluded in absolute terms ISMCTS produces
strong play for Dou Di Zhu and Spades.
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Algorithm 2 Detailed psuedocode for the ISMCTS algorithm

1: function ISMCTS([so]™" ,n)
2 create a single-node tree with root vy corresponding to [so] ™"
3 for n iterations do

4: choose dy € [so]”" uniformly at random
5: (v,d) <= SELECT(vy, do)

6 if u(v,d) # () then

7 (v,d) < EXPAND(v, d)

8 r < SIMULATE(d)

9 BACKPROPAGATE(r, v)

10: return a(c) where ¢ € arg maxn(c)
c€c(vo)
11:
12: function SELECT(v, d)
13: while d is non-terminal and u(v,d) = 0 do
!

14: select! ¢ € arg max M@ +k log /(<)

c€c(v,d) n(c) n(c)
15: v ¢ d < f(d,a(c))
16: return (v, d)
17:
18: function EXPAND(v, d)
19: choose a from u(v,d) uniformly at random
20: add a child w to v with a(w) = a
21: v w; d <+ f(d,a)
22: return (v, d)
23:
24: function SIMULATE(d)
25: while d is non-terminal do
26: choose a from A(d) uniformly at random
27: d <+ f(d,a)
28: return u(d)
29:
30: function BACKPROPAGATE(r, v;)
31: for each node v from v; to vy do
32: increment n(v) by 1
33: r(v) < r(v) +r
34: let d, be the determinization when v was visited
35: for each sibling w of v compatible with d,,, including v itself do
36: increment n'(w) by 1
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Algorithm 3 High-level pseudo-code for the Information Set MCTS (ISMCTS)
algorithm.

1

2:

e

: function ISMCTS([so]™" , n)
create a single-node tree with root vy corresponding to the root infor-
mation set [sg]* (from player 1’s viewpoint)
for n iterations do
choose a determinization d at random from [so]”"', and use only
nodes/actions compatible with d this iteration

// Selection
repeat
descend the tree (restricted to nodes/actions compatible with d)
using the chosen bandit algorithm
until a node v is reached such that some action from v leads to a
player 1 information set which is not currently
in the tree or until v is terminal

10:

11:
12:
13:

14:

// Ezxpansion
if v is non-terminal then
choose at random an action a from node v that is compatible with
d and does not exist in the tree
add a child node to v corresponding to the player 1 information
set reached using action a and set it as the
new current node v

15:

16:
17:

// Simulation
run a simulation from v to the end of the game using determinization

18:

19:
20:
21:
22:

23:

// Back-propagation
for each node u visited during this iteration do
update u’s visit count and total simulation reward
for each sibling w of u that was available for selection when w
was selected, including w itself do
update w’s availability count

24:

25:

return an action from the root node vg such that the number of visits
to the corresponding child node is maximal
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Chapter 6

Partial Observability

This thesis investigates the application of Monte Carlo Tree Search to games
of imperfect information. In particular, games with three different types of
imperfect information:

e Information sets are collections of states, which appear in a game when
one player has knowledge about the state that another player does not.
For example, in a card game each player hides his own cards from his
opponents. In this example the information set contains all states which
correspond to all possible permutations of opponent cards. A player knows
which information set they are in, but not which state within that infor-
mation set.

e Partially observable actions appear in games where a player performs an
action but some detail of the action is hidden from an opponent. In
other words, the opponent observes that an action was taken from a set
of possible actions, but not which action. Partially observable actions can
also be taken by the environment player, for example to reveal a piece of
information to a subset of the players.

e Simultaneous moves arise when multiple players reveal decisions simulta-
neously without knowing what decision the other players have made. The
effect of the decisions is resolved simultaneously. The well known game
of Rock-Paper-Scissors is an example of this. This can be considered as
a special case of partially observable actions, where every player chooses
an action secretly (in any order), then it is revealed which actions were
chosen.

Chapter 5 introduced Information Set Monte Carlo Tree Search (ISMCTS),
that overcome some of the weaknesses of the Perfect Information Monte Carlo
(PIMC) seach approach to handling hidden information. Instead of search-
ing the minimax tree produced by a determinization, a tree where the nodes
represent information sets rather than states is constructed. This offers the ad-
vantage that statistics about moves are collected together in one tree, thus using
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the computational budget more efficiently, whereas PIMC search constructs sev-
eral trees and does not share any information between them. Furthermore this
approach offers an improved model of the decision making process compared to
determinization, since the search is able to exploit moves that are good in many
states in the information set and the effects of strategy fusion can be lessened
or eliminated entirely.

This chapter covers work investigating how ISMCTS can be adapted to
games with partially observable actions, where hidden information occurs in
an action (rather than a state). Partial observability can be considered as just
a special case of hidden information; indeed any information revealed or con-
cealed by partially observable actions is represented in a player’s information
set. However for games with large number of information sets it is intractable
to store all of them, which is why the ISMCTS algorithm groups together infor-
mation sets which cannot be distinguished just by the action history of a game.
The number of groups of information sets generated in this way is a manage-
able number, but introduces the problem of subset-armed bandits (discussed in
Chapter 5.2.1, page 68). This process of information set grouping works well in
practice for games where all actions are fully observable, however the grouping
process breaks down when actions are partially observable because each player
observes a different action history. In this chapter it is shown how this problem
can be remedied by building multiple ISMCTS trees, which correctly model the
observed action history for each player. This approach still has the benefit of
not storing every information set, at the cost of greater memory usage and more
groups of information sets compared to building a single ISMCTS tree. However
the benefit of correctly handling partially observable actions outweighs the cost
of building multiple trees. The experiments in this chapter focus on two games
with partially observable actions:

e Lord of the Rings: The Confrontation [64] is a board game with elements
similar to Stratego [97] and has several features which make it even more
challenging from an AI perspective. It has hidden information, partially
observable moves and simultaneous moves, all of which make the deci-
sion making process highly complex. The game also has an asymmetry
between the two players since they have different win conditions and dif-
ferent resources available to them, which necessitates different tactics and
strategies.

e m,n, k-games [98] are a generalization of games such as Noughts and
Crosses and Renju where players try to place k pieces in a row on a m X n
grid. In the phantom 4,4, 4-game, players cannot see each other’s pieces
and get feedback about the location of the other player’s piece only when
they attempt to play in an occupied square. This game is used as a test
domain with hidden information and partially observable moves but low
complexity.

Experiments in Section 5.2.4 showed that the relative performance of ISMCTS
versus determinized UCT varies across these three domains. In Lord of the
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Rings: The Confrontation a deep search is required for strong play, and so
ISMCTS has the advantage due to its more efficient use of the computational
budget. In the phantom 4,4, 4-game the effects of strategy fusion are particu-
larly detrimental, so again ISMCTS outperforms determinization. This chapter
introduces a new algorithm called Multiple Observer ISMCTS (MO-ISMCTS)
which is designed to handle partially observable actions by building multiple
ISMCTS trees.

6.1 ISMCTS and Partial Observability

In many games of imperfect information, pure policies can easily be exploited
and thus a strong player must find a mixed policy. Rock-paper-scissors and
Poker games are two examples where mixing strategies is important to achieving
a strong level of play against players capable of recognising and exploiting pure
policies. MCTS is not designed explicitly to seek mixed policies but often do so
anyway, in the sense of choosing different actions when presented with the same
state. This arises from the random nature of Monte Carlo simulation: the MCTS
algorithm is not deterministic and even when pure policy optimal strategies exist
MCTS is only guaranteed to find one of them. Shafiei et al [65] demonstrate
that the UCT algorithm finds a mixed policy for rock-paper-scissors.

Experiments run during the development of the ISMCTS indicated that
ISMCTS finds mixed ((non-equilibrium)) policies for the small, solved game of
Kuhn poker [118]. However MCTS often fails to find optimal (Nash) policies
for games of imperfect information. Ponsen et al [119] suggest that algorithms
such as MCCFR [120] are a better fit for approximating Nash equilibria in
games whose trees contain millions of nodes, whereas the strength of an MCTS
approach lies in finding a strong suboptimal policy but finding it in reasonable
CPU time for complex games with combinatorially large trees. More recently
Heinrich and Silver demonstrate than the UCT algorithm can be modified to
converge to a Nash-Equilibrium in Kuhn Poker [84].

The dealing of cards can be thought of as an action by an extra player (re-
ferred to as the environment) which always chooses actions randomly. Therefore
the environment player chooses a random deal from all possible deals, but the
players do not observe which deal was chosen by the environment (rather a set
of possible deals consistent with the cards they were dealt). This is an example
of a partially observable action, since all players observe that a deck ordering
was chosen (taking an action), but not what the ordering was. This is handled
in the ISMCTS algorithm essentially by considering all of these actions to be
the same and constructing a single search tree for all choices of deck ordering
that are consistent with the players observations of the game so far.

Applying the same method to partially observable actions taken by players
during the game creates a new problem. Suppose that in a card game one player
chooses a hidden card from their hand and places it face down on the table. The
other players do not know the identity of this card but in an ISMCTS tree each
different choice of card will lead to a unique branch, so in the sub-tree beneath
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each branch it is implicitly assumed that the identity of this card is known to
all players. ISMCTS makes the faulty assumption that the player can behave
differently depending on the choice of actions made by other players when the
player cannot observe which action was taken. In other words, partially observ-
able actions lead to strategy fusion in ISMCTS. Experiments in Section 6.3.2
show that this effect is damaging to the performance of ISMCTS when partially
observable moves occur, and the playing strength is weaker than the PIMC
search algorithm.

To resolve this problem a similar approach could be taken to how strategy
fusion was handled with ISMCTS, by merging together all branches where the
action corresponds to the same observation made by the player. However this
projects the issue onto the other players since now they cannot make different
future decisions depending on the action which was chosen. In this chapter it
is shown that the key to solving this problem is building a tree for each player,
where the nodes in each tree correspond to information sets from the point of
view of that player and branches correspond to the observation made by the
player about the action which was chosen. This algorithm is called multiple
observer ISMCTS (MO-ISMCTS) [27].

The advantage of the MO-ISMCTS algorithm over ISMCTS or PIMC search
is that strategy fusion is eliminated since partially observable actions lead to a
unique node in the search tree for the player making the action. Experiments
in Section 6.3.2 demonstrate that MO-ISMCTS significantly outperforms other
algorithms in the test domains. However the disadvantage is increased memory
use (linearly with the number of players) and complexity of the algorithm, re-
ducing the number of MCTS iteration that can be performed in a given time
period relative to ISMCTS. However, experiments later in this chapter show
that when a sufficiently large amount of CPU time is used for each decision,
MO-ISMCTS outperforms ISMCTS (and PIMC). It should be noted that by
creating multiple trees pre player, many of the nodes in each tree correspond
to non-decision states for the owner of the tree. These extra nodes exist to
facilitate the correct transition from one decision node to the next (depending
on the observation of other players actions), but the statistics in these nodes
are never used. It would be possible to reduce the memory footprint of the mul-
tiple tree algorithm significantly by removing these extra nodes, and instead
implementing a mechanism to correctly manage the transitions between deci-
sion nodes. However it would be difficult to achieve this without introducing
additional CPU overheads or changing the way in which the software frame-
work represents games. Therefore the multiple tree representation was used for
experiments in this, since it allows transitions between nodes to be managed
efficiently in the software framework and high memory use was not a problem.

6.2 Bandit algorithms for Simultaneous Actions

This section summarizes how simultaneous actions were handled in ISMCTS in
the various games used for experiments. There has been some existing work on
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applying sampling based methods and bandit algorithms to simultaneous action
selection which was surveyed in Chapter 3.2.4. This can be done by modelling
the selection of actions by each player as independent multi-arm bandit prob-
lems, The reward distribution of each arm depends on the policies of the other
players which may not be static, so this technique is not guaranteed to converge
to any particular policy.

When choosing a sampling methods for use with ISMCTS, numerous sam-
pling methods were investigated with mixed results, although the UCB1 algo-
rithm appeared stronger than EXP3 in some cases. This matches the results
of Perick et al [40], however the experiments in this Chapter used the EXP3
algorithm in an identical manner to Teytaud and Flory [42]. It is possible
that better performance could be achieved by improving the bandit algorithm
for simultaneous moves. Recent work by Lanctot [66] introduced the Online
Outcome Sampling algorithm which has convergence guarantees and better em-
pirical performance than the independent bandits algorithm. Integrating similar
techniques with ISMCTS is a good subject for future work in this area.

6.3 ISMCTS with Partially Observable Moves

In this section the MO-ISMCTS algorithm is described in detail and the results
of experiments are presented in Section 6.3.2. For clarity, ISMCTS is referred to
as Single Observer ISMCTS (SO-ISMCTS) in discussion to distinguish it from
MO-ISMCTS. Note that all variants of ISMCTS in this chapter are equivalent
for a game with fully observable moves (and also equivalent to MCTS in perfect
information games).

6.3.1 Algorithms

This section introduces two new algorithms which modify the ISMCTS algo-
rithm to handle partially observable moves.

Single observer information set MCTS with partially observable moves
(SO-ISMCTS+POM)

SO-ISMCTS does not completely avoid the problem of strategy fusion in games
with partially observable moves, as all opponent moves are treated as fully
observable. Suppose that the game in Figure 5.10 (page 74) is modified to
include partially observable moves, so that player 2 cannot distinguish a; from
as nor agz from a4 and player 1 cannot distinguish between by, b and b3. Here
the search assumes that different actions can be taken in response to opponent
actions by and b, for instance, whereas in fact these actions are indistinguishable
and lead to the same player 1 information set.

In SO-ISMCTS, edges correspond to actions, i.e. moves from the point of
view of the player who plays them. In single-observer information set MCTS
with partially observable moves (SO-ISMCTS+POM), edges correspond to moves
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Figure 6.1: Information set search trees for the game shown in Figure 5.10 with
partially observable moves, where player 2 cannot distinguish a; from as nor
as from a4 and player 1 cannot distinguish between by, by and b3. (a) shows
the tree searched by SO-ISMCTS+POM; (a) and (b) together show the pair of
trees searched by MO-ISMCTS, where (a) is from player 1’s point of view and
(b) from player 2’s point of view.

from the point of view of the root player. Thus actions that are indistinguish-
able from the root player’s point of view share a single edge in the tree. Fig-
ure 6.1 (a) shows the SO-ISMCTS+POM search tree for the game in Figure 5.10.
The branches from player 1’s decision nodes are unchanged; however, player 2’s
decision node now has a single branch corresponding to the single move from
player 1’s point of view, rather than one branch for each action.

As in SO-ISMCTS, each iteration is guided by a determinization. This raises
the problem of how to update the determinization d according to a selected
partially observable opponent move. For a determinization d and a move [a] ",
the set of compatible actions is & = A(d) N [a] ~". If v is a singleton then its
single element can simply be applied to d to obtain the determinization for the
next level in the tree. If || > 1 then an action from « is chosen uniformly
at random, since the tree does not store any data with which to make a more
informed choice. High level pseudocode for the SO-ISMCTS+POM is the same
as Algorithm 3 for SO-ISMCTS (page 87) if “action” is replaced by “move (from
player 1’s viewpoint)”.

Consider the example in Figure 6.1 (a). SO-ISMCTS+POM functions in
much the same way as SO-ISMCTS (recall the example at the end of Sec-
tion 5.2.3), except that branch b, is selected in place of by. When updating
the determinization while descending the tree, an action must be applied cor-
responding to the selection of b;. In this case, one of by, by or b3 is applied
depending on which are legal actions in the current determinization. For each
determinization, there are two possibilities, so one is chosen uniformly at ran-
dom.
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Multiple observer information set MCTS (MO-ISMCTS)

SO-ISMCTS+POM solves the strategy fusion problem of SO-ISMCTS (due to
the presence of partially observable moves), at the expense of significantly weak-
ening the opponent model: in particular, it is assumed that the opponent chooses
randomly between actions that are indistinguishable to the root player. In the
extreme case, when SO-ISMCTS+POM is applied to a phantom game (such as
the phantom 4,4, 4-game) all opponent actions are indistinguishable and so the
opponent model is essentially random.

To address this, multiple observer information set MCTS (MO-ISMCTS) is
introduced. This algorithm maintains a separate tree for each player, whose
nodes correspond to that player’s information sets and whose edges correspond
to moves from that player’s point of view. Each iteration of the algorithm uses
a specific determinization to descend all of the trees simultaneously. Each selec-
tion step uses statistics in the tree belonging to the player about to act in the
current determinization to select an action. Each tree is then descended by fol-
lowing the branch corresponding to the move obtained when the corresponding
player observes the selected action, adding new branches if necessary.

The information set trees can be seen as “projections” of the underlying
game tree. Each iteration induces a path through the game tree, which projects
onto a path through each information set tree. Figure 6.1 depicts these trees
for the simple game of Figure 5.10: Figure 6.1 (a) corresponds to information
sets and moves from player 1’s point of view, and Figure 6.1 (b) from player 2’s
point of view.

The MO-ISMCTS approach is similar to the MMCTS algorithm proposed by
Auger [101]. However there are several differences between MO-ISMCTS and
MMCTS, the most important being that MO-ISMCTS uses determinizations
to guide and restrict each search iteration whereas MMCTS does not. Also,
whereas Auger [101] describes use of MMCTS in an offline manner (running the
algorithm for a very large number of simulations and querying the resulting tree
for decisions during play), MO-ISMCTS is designed for the more conventional
online mode of play.

High level pseudocode for MO-ISMCTS is given in Algorithm 4 (page 109).
Consider the example in Figure 6.1. First the algorithm generates a random
determinization on each iteration. Then an action is selected from the root of
Figure 6.1 (a) (i.e. player 1’s tree), say a;. The trees are descended by following
the branch for the move corresponding to a;, namely a; for player 1’s tree and
ay for player 2’s tree. The state resulting from determinization d is updated by
applying action a;. Now have p(d) = 2 so Figure 6.1 (b) (player 2’s tree) is used
for selection, and an action legal in d is selected, say bs. The trees are descended
through b, and by respectively, and d is updated by applying b2. The selection
process continues in this way. Backpropagation works similarly to SO-ISMCTS
(as in the example at the end of Section 5.2.3, page 71), but updates all visited
nodes (and their available siblings) in each player’s tree.

94



Detailed Psuedocode

Detailed pseudocode for the MO-ISMCTS algorithm is presented in Algorithm 5
(page 110). This pseudocode uses the notation from Chapter 2, with the fol-
lowing additions:

e a(v) = incoming move from player 1’s point of view at node v

o c(v,d) = {u € c(v) : m(u) € My(d)}, the children of v compatible with
determinization d

e u(v,d) = {m € My(d) : Pc € c(v,d) with m(c) = m}, the moves from d
for which v does not have children

The notation used for Algorithm 2 (see page 76) is also used with the fol-
lowing additional notations:

e v’ = a node in player i’s tree

e a(v') = incoming move from player i’s point of view at node v*

6.3.2 Experiments

In this section experiments are presented which compare the performance of SO-
ISMCTS, PIMC and the new algorithms SO-ISMCTS+POM and MO-ISMCTS
in the games Lord of the Rings: The Confrontation (LOTR:C) and the phantom
4,4, 4-game, both of which feature partially observable moves.

Experimental results for Lord of the Rings: The Confrontation

In this experiment, the following algorithms play in a round-robin tournament:
cheating UCT, cheating PIMC search with UCT (referred to as dheating en-
semble UCT), PIMC search with UCT (referred to as determinized UCT), SO-
ISMCTS, SO-ISMCTS+POM and MO-ISMCTS. Each algorithm runs for 10 000
iterations per decision. Determinized UCT search uses 10 determinizations with
1000 iterations for the Dark player, and applies all 10000 iterations to a single
determinization for the Light. These values were chosen based on the results
presented in Section 5.1.1 (page 57). Cheating ensemble UCT uses 10 trees
with 1000 iterations each for both Light and Dark; devoting all iterations to a
single tree would be equivalent to cheating single-tree UCT. The results of this
experiment are shown in Figures 6.2 and 6.3.

Cheating single-tree UCT consistently outperforms the other algorithms by
a large margin. For the Dark player, cheating ensemble UCT outperforms
ISMCTS. However, for the Light player, cheating ensemble UCT and ISMCTS
are on a par. This is slightly surprising, and would seem to suggest that the
benefit of cheating is balanced by the increased depth to which ISMCTS is able
to explore the tree (due to devoting all of its iterations to a single tree). That
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Cheating UCT

Cheating ensemble UCT
Determinized UCT
SO-ISMCTS

SO-ISMCTS+POM

Light player algorithm

MO-ISMCTS

e Dark player algorithm

Figure 6.2: Heat map showing the results of the LOTR:C playing strength
experiment. A white square would indicate a 100% win rate for the specified
Light player algorithm against the specified Dark player algorithm, while a black
square would indicate a 100% win rate for Dark against Light. Shades of grey
interpolate between these two extremes.
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Figure 6.3: Results of the playing strength experiment for LOTR:C. In the
“Light” graph, each algorithm indicated on the z-axis plays an equal number of
games as the Light player against each algorithm as the Dark player, and the
proportion of wins averaged over all Dark algorithms is plotted. The “Dark”
graph is similar, with Light and Dark players interchanged. The “Light + Dark”
graph averages these results for each algorithm regardless of player identity. In
all cases, error bars show 95% confidence intervals.
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this only holds true for one of the players may shed some light on the differences
in approaches required for strong Light and Dark play in LOTR:C: as discussed
in Section 5.1.1, to Dark the locations of Light’s characters are the most im-
portant factor, but to Light it is equally important to be able to plan further
ahead.

For the Dark player, PIMC search with UCT is outperformed by the other
algorithms by a large margin. In particular, PIMC search with UCT is outper-
formed by all three ISMCTS variants. The success of ISMCTS here is probably
due to the reduction in the effects of strategy fusion caused by using a tree of
information sets, as well as the additional tree depth that arises by collecting
all simulations in a single tree. For the Light player PIMC search with UCT
is also worse than ISMCTS, but less dramatically so: the difference between
PIMC search with UCT and MO-ISMCTS is around 4.4%, which is significant
with 95% confidence. Since the Light player devotes all its computational re-
sources to a single determinization the tree depth argument does not hold, but
evidently there is still some benefit to the ISMCTS approach over PIMC search
with UCT, most likely the ability to consider multiple determinizations without
the impact of strategy fusion.

There is no significant difference in playing strength between the variants of
ISMCTS. SO-ISMCTS+POM seems to perform slightly worse than the other
variants of ISMCTS, but this difference is not statistically significant. That
there is no significant difference between the algorithms seems to imply that
the strategy fusion effects of assuming that opponent moves are fully observable
in SO-ISMCTS, and the assumption that the opponent values indistinguishable
actions equally in SO-ISMCTS+POM, are not as harmful as intuition may
suggest.

As noted above, each trial in this experiment starts from the same hand-
designed initial setup. The experiment was repeated with each game beginning
from a different randomly generated initial setup. This biases the game slightly
towards the Dark player, since a random initial setup is more likely to disadvan-
tage the Light player (e.g. by placing Frodo in a vulnerable starting position).
The same number of trials was carried out (750 for each combination of players)
in order to achieve similar confidence intervals. Similar results to those above
were observed, which support the same conclusions.

These experiments assess the relative playing strengths of several algorithms
for LOTR:C, but gives no indication of their absolute strength. There is cur-
rently no known existing AI, commercial or otherwise, for this game. To test
the playing strength of MO-ISMCTS, several games were played between an
MO-ISMCTS agent and a range of human opponents. The human opponents
can be characterised as experienced game players with two having significant
experience with LOTR:C and five less experienced players.

For this experiment, playing all games with the same initial setup would not
be a fair test: the Al agents cannot learn the opponent’s initial setup between
games, but a human player certainly can. Random initial setups were used, with
constraints to avoid generating particularly bad placements: three strategically
important characters (Frodo, Sam and the Balrog) are always placed in their
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player’s home cell. Since this information is known to the human player, it is
also made available to the Al agent by appropriate construction of the initial
information set.

When humans play LOTR:C, the game is partly a test of memory: one must
remember the identities of revealed enemy characters. Since this is trivial for the
AT agent, the graphical interface makes this information available to the human
player. This ensures that the human and AI players are compared solely on the
strength of their decisions, and not on the inherent advantage of a computer
player in a test of memory.

32 games were played with a human player as Dark and the MO-ISMCTS
player as Light, and 32 games with a human as Light and MO-ISMCTS as
Dark. MO-ISMCTS achieved 14 wins as Light and 16 as Dark. MO-ISMCTS
was evenly matched with intermediate to expert human players, so it may be
concluded that MO-ISMCTS achieved strong play in an absolute sense (if the
goal is to create an Al that is sufficiently challenging for humans to play against
without any domain knowledge).

The players observed anecdotally that MO-ISMCTS plays highly plausible
moves, and is particularly adept at engineering favourable endgame scenarios.
Its weakest aspect is card play during combat: for example, it has a tendency
to waste its more powerful cards in situations where less powerful cards would
suffice. Presumably this occurs when the agent does not search deeply enough
to see the value of holding onto a more powerful card until later in the game.

Experimental results for the phantom 4,4, 4-game

In this experiment, the six algorithms listed in Section 6.3.2 that were applied
to LOTR:C again play a round-robin tournament. Each algorithm uses a total
of 10000 iterations, with cheating ensemble UCT and determinized UCT using
40 trees with 250 iterations per tree.

Results of this experiment are shown in Figures 6.4 and 6.5. From the
“Players 1 + 2”7 graph in Figure 6.5 (¢) the algorithms can be ordered from best
to worst as follows, with statistical significance at 95% confidence in each case:

1. Cheating ensemble UCT;
2. Cheating UCT;

3. MO-ISMCTS;

4. Determinized UCT;

5. SO-ISMCTS;

6. SO-ISMCTS+POM.

Unsurprisingly, the cheating players perform best. The determinization ap-
proach appears to be strong for this game, although not as strong as MO-
ISMCTS.
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Cheating UCT
Cheating ensemble UCT
Determinized UCT

SO-ISMCTS

Player 1 algorithm

SO-ISMCTS+POM

MO-ISMCTS

e Player 2 algorithm

Figure 6.4: Heat map showing the results of the phantom 4,4, 4-game playing
strength experiment. A white square would indicate a 100% win rate for the
specified player 1 algorithm against the specified player 2 algorithm, while a
black square would indicate a 100% win rate for player 2 against player 1.
Shades of grey interpolate between these two extremes.

99



Versus cheating UCT Versus cheating ensemble UCT Versus cheating UCT Versus cheating ensemble UCT
1 1 1 1
08 08 08 0.8
206 2 06 L 06 206
s ® s s
< £ < £
2 04 2 04 2 04 2 04
0.2 0.2 0.2 02
8O ¢ s 0ot 5O o 0 N o 0 < o o o0 O o™
V@’a\\“g o & W O 90, PO W o“° S92 «“\“ \‘5"? W & 59 «\‘“\ S \‘5"? W
& c;@”“ ot o ® 00 g e 0o &
Versus determinized UCT Versus SO-ISMCTS Versus determinized UCT Versus SO-ISMCTS
1 1
0.8 08
2 06 2 06
e e
s g
S 04 £ 04

0 0
©° S N ° X X
e R oo 0@‘*“‘3@"&@& ESt
o oo &0 o o g
Versus SO-ISMCTS+POM - Versus SO-ISMCTS+POM Versus MO-ISMCTS
1

e°':,-,~?° W

5 5
“aa e“‘\g\e““\‘\ g,\e"’o ©
o°

Player 1 Player 2 Players 1 +2
1 1
0.8 0.8
2 0.6 206 2
e e c
£ £ £
2 04 S 04 =
0.2 0.2
0 0
220N oV ON 202 ¢ 00 A2 L0V N \\ A2 O A\
TS, SO e,o RN xS Lt x«‘%«\‘ LN
o 0@ N 06\ <O oe 0

Figure 6.5: Results of the playing strength experiment for the phantom 4,4, 4-
game. In (a), each graph compares the win rates of various player 1 algorithms
against the player 2 opponent algorithm specified above the graph. In (b), each
graph compares player 2 algorithms against a player 1 opponent. In (c), these
results are aggregated into single graphs, each bar giving the win rate for its
algorithm averaged over all tested opponent algorithms. In all cases, error bars
show 95% confidence intervals.
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There is some asymmetry between the two players in terms of the relative
strengths of the algorithms. For player 1, SO-ISMCTS and MO-ISMCTS are
on a par while SO-ISMCTS+POM underperforms. For player 2, SO-ISMCTS
is outperformed by SO-ISMCTS+POM which is in turn outperformed by MO-
ISMCTS. The three algorithms differ mainly in the assumptions they make
about future play. SO-ISMCTS assumes that all actions are fully observable,
which is both optimistic (T can respond optimally to my opponent’s actions) and
pessimistic (my opponent can respond optimally to my actions). SO-ISMCTS
hence suffers from strategy fusion, since it is assumed the agent can act dif-
ferently depending on information it cannot observe. In a phantom game, SO-
ISMCTS+POM optimistically assumes that the opponent plays randomly. MO-
ISMCTS’s opponent model is more realistic: each opponent action has its own
statistics in the opponent tree and so the decision process is properly modelled,
but whichever action is selected leads to the same node in the player’s own tree
thus preventing the player from tailoring its response to the selected action.
This addresses the strategy fusion problem which affects SO-ISMCTS.

Since player 1 has the advantage of moving first, it seems likely that these
optimistic and pessimistic assumptions will have varying degrees of benefit and
detriment to the two players. For example, a pessimistic player 2 algorithm may
conclude (incorrectly) that the game is a loss, and so make poor decisions from
that point. In short, it can be argued that solving the problem of strategy fusion
is the key to strong play in the phantom 4,4,4-game. Of the three ISMCTS
variants, MO-ISMCTS is the most successful in overcoming strategy fusion.
Indeed, the two SO-ISMCTS variants suffer more from the effects of strategy
fusion than does determinized UCT.

One weakness of a cheating player is that it is overly pessimistic regarding
the strength of its opponent. In particular, it assumes the opponent also cheats.
In the phantom 4,4,4-game, it often arises that the current state is a draw
in the perfect information game but the non-cheating player has insufficient
information reliably to force the draw. In other words, there are states where
a non-cheating opponent is likely to choose an action that a cheating player
would consider a mistake. If the cheating player could direct the game towards
these states it would often win, but it sees no incentive to aim for these states
in preference to any other state that leads to a draw. A non-cheating player
rarely suffers from this problem, as it generally lacks the information to identify
the state as a draw in the first place. It should be noted that this never causes
a cheating player to lose a game, only to draw a game that it could conceivably
have won. For this experiment the cheating algorithms played a total of 37 880
games, and did not lose a single game.

The above is a possible explanation for why cheating ensemble UCT out-
performs cheating single-tree UCT. The former searches less deeply, and so its
estimates for the game-theoretic values of states are less accurate. When the
values of states are influenced more by random simulations than by the tree
policy, there is a natural tendency to overestimate the value of states in which
the opponent has more opportunities to make a mistake. Similar observations
discussed in Section 5.1.2 were made on the propensity of non-cheating players
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to make mistakes, and the benefit to a cheating minimax player of a tie-breaking
mechanism that favours states from which the opponent has more suboptimal
moves available.

Computation Time

It has been demonstrated that SO-ISMCTS and MO-ISMCTS offer advantages
over PIMC search with UCT, however both of these algorithms are more com-
plex and computationally expensive. Experiments so far have performed a fixed
number of iterations without consideration of the algorithm used. It could be
that a simpler algorithm could perform more iterations in the same amount of
time as a more complex algorithm and achieve a better result. This sort of
comparison is dependent on the efficiency of the implementation of each algo-
rithm and may be difficult to test in practice. Instead, it has been observed
that MCTS algorithms can reach a point where additional simulations leads to
diminishing returns in terms of playing strength. If two MCTS based algorithms
reach this point (independent of the efficiency of implementations) and are using
the same amount of time to make decisions, then their relative strengths should
not change much as more time is used. In this section it is demonstrated that
with enough time per decision, the results obtained lead to the same conclusions
as in previous experiments.

First an experiment was conducted where determinized UCT, SO-ISMCTS
and MO-ISMCTS made the first decision for games of Dou Di Zhu, LOTR:C and
the phantom (4,4,4) game. Each algorithm used 10000 simulations (with 40
trees and 250 iterations per tree for determinized UCT) and the average time to
make a decision was recorded from 25 trials for each game. This was performed
on a desktop PC running Windows 7 with 6GB of RAM and a 2.53GHz Intel
Xeon E5630 processor. These results were used to calculate the number of
iterations each algorithm could perform in 1 second for each game. The results
are presented in Figure 6.6.

It is clear from Figure 6.6 that SO-ISMCTS and MO-ISMCTS are 2 to
4 times slower than determinized UCT and also that the game being played
has an impact on the amount of time it takes to perform an MCTS iteration.
In order to compare algorithms based on the amount of decision time, it was
important to remove factors which affect the execution time of the experiments:
experiments were run on a cluster of heterogeneous machines, all of which have
other processes running at the same time. The algorithms were tested with a
fixed number of iterations corresponding to a certain amount of decision time,
assuming the rate of iterations per second for each algorithm/game in Figure 6.6.
Approaches that build larger trees have increasing overheads per iteration, for
example due to MCTS selection being applied to more nodes in the tree. It is
reasonable to assume the rate of iterations per second from Figure 6.6, since
after a few hundred iterations the overheads increase slowly.

For the phantom 4, 4,4-game, the three algorithms already take less than
a second to execute 10000 MCTS iterations due to the simplicity of the game
logic. However for Dou Di Zhu and LOTR:C, it can be seen that in 1 second of
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decision time SO-ISMCTS and MO-ISMCTS execute around a third the number
of iterations that determinized UCT does. From Figure 6.6 is it clear that the
MO-ISMCTS implementation has some additional overheads, since it performed
fewer iterations per second for Dou Di Zhu than SO-ISMCTS, although the two
algorithms are equivalent for Dou Di Zhu, since it has no partially observable
moves.

The performance of these algorithms when decision time is a factor was in-
vestigated for all three games. For Dou Di Zhu, PIMC search with UCT was
compared to SO-ISMCTS with 0.25-8 seconds of decision time. In each case the
algorithms played as the Landlord, with the non-Landlord players using PIMC
search with UCT with 40 determinizations and 250 iterations per determiniza-
tion. Playing strength was measured across the 1000 deals chosen for previous
experiments in Dou Di Zhu. The number of trees and iterations for PIMC search
with UCT was chosen for each total number of iterations to preserve the ratio
of trees to iterations as 40/250. These results are shown in Figure 6.7. The
relative playing strength of each algorithm was not significantly different to the
results obtained in Section 5.2.4 for any amount of decision time (although SO-
ISMCTS appeared slightly weaker with less than 1 second of decision time). This
supports the conclusion from Section 5.2.4 that after reaching a certain depth,
SO-ISMCTS spends many simulations expanding opponent decision nodes near
the root of the tree and does not improve in playing strength.

For LOTR:C, MO-ISMCTS was compared to PIMC search with UCT for
1-30 seconds of decision time where PIMC search with UCT used 1 tree when
playing as the Light player and a ratio of trees to iterations of 10/1000 when
playing as the Dark player (these values were optimised in Section 5.1.1. The
two algorithms played each other as both the Dark player and the Light player
500 times. The results are presented in Figure 6.8. For 1 second of decision
time, MO-ISMCTS is slightly inferior to determinized UCT, but when at least
3 seconds of decision time is used MO-ISMCTS is significantly stronger than
determinized UCT. The results in Figure 6.8 indicate that with a sufficient
amount of decision time MO-ISMCTS offers a clear advantage over determinized
UCT, with the difference between the two algorithms diverging given more CPU
time.

For the phantom 4,4,4-game, PIMC search with UCT, SO-ISMCTS and
MO-ISMCTS were compared for 0.25-5 seconds of decision time per move. For
each pair of algorithms, 500 games were played with each algorithm playing as
player 1 and as player 2. The results are presented in Figure 6.9. When the
CPU time used is less than 1.5 seconds per move the results are not significantly
different to those for 10000 iterations presented in Section 6.3.2, with MO-
ISMCTS slightly stronger than determinized UCT and clearly stronger than SO-
ISMCTS. There is also a clear advantage of going first over going second. Above
1.5 seconds per move, the MO-ISMCTS algorithm continues to outperform SO-
ISMCTS, in terms of results of games between these algorithms and performance
against determinized UCT. However, both of these algorithms become relatively
weaker than determinized UCT with increasing CPU time.

PIMC search with UCT implicitly assumes perfect information for both play-
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ers. The SO-ISMCTS and MO-ISMCTS players do not assume knowledge of
hidden information. However, SO-ISMCTS does make the pessimistic assump-
tion that the opponent has perfect information. MO-ISMCTS improves on this,
supposing that the opponent knows the root state but not the moves made by
the MO-ISMCTS player. Two properties of the phantom 4,4,4-game are im-
portant here: the game is a loss if the opponent observes the game state at a
crucial moment, even if he does not cheat subsequently; and the game is simple
enough that MO-ISMCTS with more than 1.5 seconds can search a significant
proportion of the entire game tree. The pessimism of the assumption that the
opponent knows some or all of the hidden information often leads SO-ISMCTS
and MO-ISMCTS to conclude, incorrectly, that the game is a loss, and thus play
randomly since all lines of play have the same reward value. PIMC search with
UCT has the more balanced, although highly inaccurate, view that both players
can see all hidden information. This is consistent with the observations made
from the fixed iteration experiments in the phantom 4,4, 4-game presented in
Section 6.3.2.

Dou Di Zhu and LOTR:C are more complex than phantom 4,4,4 so that
it is not practical to search a substantial fraction of the whole tree within a
reasonable time. Furthermore both Dou Di Zhu and LOTR:C remain difficult
to win even when hidden information is known. Hence the reduction in playing
strength for SO-ISMCTS and MO-ISMCTS with increasing CPU time is not
seen. This is an inherent flaw in ISMCTS and prevents the algorithm from
converging to optimal policies. Chapter 7 shows how this limitation can be
overcome, by searching determinizations of every players information sets. In
domains small enough for this effect to be problematic, it is expected that MC-
CFR [120, 121] would produce better results given the convergence guarantees.

6.4 Summary

In this chapter variants of ISMCTS were introduced to improve the performance
of the algorithm relative to PIMC search in domains with partially observable ac-
tions. In particular, the MO-ISMCTS algorithm searches multiple trees, where
each tree is associated with a player. The SO-ISMCTS algorithm addresses
the issue of wrongly assuming the player can distinguish between two states
in an information set. The MO-ISMCTS algorithm additionally addresses the
issue of wrongly assuming the player can distinguish between different partially
observable moves made by an opponent.

MO-ISMCTS was investigated in two experimental domains: a complex
board game (Lord of the Rings: The Confrontation) and a simple phantom
game (the phantom 4,4, 4-game). In Lord of the Rings: The Confrontation
it was shown that ISMCTS significantly outperforms PIMC search with UCT.
Additionally it was shown that using a fixed CPU budget, the performance
strength of MO-ISMCTS against PIMC search increased with additional CPU
time. There was no significant difference in playing strength between the three
variants of ISMCTS for LOTR:C. This seems to suggest that strategy fusion is
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not a major factor in this game: the assumption that the identities of opponent
characters are revealed when they move (i.e. that actions are fully observable)
appears not to be exploited, or if it is exploited then this is not ultimately
detrimental.

However, in the phantom 4,4,4-game MO-ISMCTS significantly outper-
forms the other ISMCTS variants. This is unsurprising: in a phantom game,
SO-ISMCTS suffers from strategy fusion, and SO-ISMCTS+POM assumes ran-
dom opponent play. The gap between determinized UCT and MO-ISMCTS
is smaller than for LOTR:C, and indeed the SO-ISMCTS variants fail to out-
perform PIMC search with UCT. Compared to LOTR:C and Dou Di Zhu, the
phantom 4, 4, 4-game tree is relatively small, and the game is more tactical than
strategic, so issues such as search depth do not have such a dramatic effect on
playing strength.

It was shown that one limitation of MO-ISMCTS is that the opponents
have access to the player’s hidden information: when the player chooses a de-
terminization to use during the search, it does not determinize its own cards
or the locations of its own pieces. Essentially the searching player assumes a
cheating opponent, which is a worst case assumption but does mean that the
opponent’s lack of information can never be exploited. Furthermore, the as-
sumption will be particularly harmful in games where there are no strategies
that offer a chance of winning against a cheating opponent. This problem was
observed in Section 6.3.2 when larger amounts of CPU time were used for MO-
ISMCTS playing the phantom 4,4,4-game. However, the solution is not as
simple as merely randomising one’s own information during determinization, as
this destroys the player’s ability to plan ahead beyond its current move (the
searching player then assumes that it will forget its own information after the
current turn). Addressing this issue, and particularly striking a balance between
considering the actual situation and considering the other situations that the
opponent thinks are possible, is important in games where information hiding
is a significant part of successful play. This problem is addressed in Chapter 7.
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Algorithm 4 High-level pseudocode for the multi-observer information set
MCTS (MO-ISMCTS) algorithm.

1

2:

e

: function MO-ISMCTS([so] ™", n)

for each player i = 0,...,r, create a single-node tree with root v (rep-
resenting [sg]”" from player i’s viewpoint)

for n iterations do

choose a determinization d at random from [so]” "', and use only
nodes/actions compatible with d this iteration

// Selection

repeat

descend all trees in parallel using a bandit algorithm on player
p’s tree whenever player p is about to move
until nodes v°,...,v”,...,v" are reached in trees 0,...,s respec-
tively, player p is about to move at node v”, and
some action from v” leads to a player p information set which is
not currently in the player p tree or until v”
is terminal

10:

11:
12:
13:

14:
15:

// Expansion
if v” is nonterminal then
choose at random an action a from node v” that is compatible
with d and does not exist in the player p tree
for each player i =0,...,x do
if there is no node in player i’s tree corresponding to action a
at node v*, then add such a node

16:

17:
18:

// Simulation
run a simulation from v” to the end of the game using determinization
d, (starting with action a if v* is nonterminal)

19:

20:
21:
22:
23:

24:

// Backpropagation
for each node u’ visited during this iteration, for all players i do
update u?’s visit count and total simulation reward
for each sibling w® of u’ that was available for selection when u’
was selected, including u® itself do
update w’s availability count

25:

26:

return an action from A([sg]” ") such that the number of visits to the
corresponding child of v} is maximal
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Algorithm 5 Detailed pseudocode for the MO-ISMCTS algorithm

1: function MO-ISMCTS([so]™" , n)
2 for each player i do
3 create a single-node tree with root v},
4 for n iterations do
5: choose dy € [so]™" uniformly at random
6 (00,...,v",d) + SELECT(v], ..., v, do)
7 if u(vP@ d) # () then
8 (00,...,v%,d) + ExPAND(v?, ..., v", d)
9: 7 <= SIMULATE(d)
10: for each player ¢ do
11: BACKPROPAGATE(r, v*)
12: return a(c) where ¢ € arg maxn(c)
cec(vy)
13:
14: function SELECT(vY, ... v", d)
15: while d is nonterminal and u(v”?,d) = §§ do
r(c 1 !
16: select ¢ € argmax (©)p(@ + k M
cec(vP(d) d) n(c) TL(C)
17: for each player ¢ do
18: v' < FINDORCREATECHILD(v*, a(w))
19: d <« f(d,a(c))
20: return (v°,... 0%, d)
21:
22: function EXPAND(vY, ... v®, d)
23:  choose a from u(v”(?, d) uniformly at random
24: for each player ¢ do
25: v' <~ FINDORCREATECHILD(v', a)
26: d+ f(d,a)
27: return (v°,... 0%, d)
28:

29: function FINDORCREATECHILD(v?, a)
30: if 3c € c(v?) with a(c) = a/ —; then

31: return such a ¢
32: else
33: create and return such a ¢

110



Chapter 7

Bluffing and Inference

An important strategic aspect of hidden information games is the gathering and
hiding of information. In many games players can gather extra information by
extrapolating the likely information sets of other players based on actions they
have chosen in a process called Inference. For example in a card game, if a
player chooses not to play a winning card it is reasonable to assume they do not
hold it in their hand. However if players are making reasonable inferences, this
can be exploited by making moves that suggest a different information set to a
players actual information set in a technique called Bluffing. For example in a
poker game a player can make a large bet suggesting a strong hand when their
hand is actually weak.

This chapter investigates how bluffing and inference can be achieved with
the ISMCTS algorithm. Inference does not happen in the ISMCTS algorithm
since the observed actions by other players do not influence the likelihood of
a particular determinization being chosen. Therefore ISMCTS suffers from the
non-locality problem with determinization, where states which are impossible
if players are behaving rationally are considered possible. Furthermore the
ISMCTS algorithm cannot exploit knowledge of another players information
set which arises from their play. This is important in the game The Resistance
(introduced in Chapter 4.2.11, page 47) which is studied in this chapter, where
players must deduce the identity of other players from the decisions they make.

Bluffing is impossible with the basic ISMCTS algorithm (both multi and
single observer), since all determinizations are from the searching players own
information set. This leads to the assumption that other players have perfect
information whilst the searching player does not. In many games this is a
worst case scenario (that other players have perfect inference) and ISMCTS
can still produce strong play when the opponents have limited opportunity to
exploit knowledge of hidden information. For example in card games such as
Dou Di Zhu and Spades where ISMCTS produces strong play, it is often the
case that strategies can be constructed which are robust to the choices of other
players (for example playing a long series of boss cards in Spades guarantees
each trick will be won). However in other games if players are assumed to have
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perfect inference, then there may be no winning strategies. This was seen for
the Phantom (4,4, 4) game, where the performance of MO-ISMCTS degrades if
there are enough iterations to allow the other player to exploit perfect inference.

Algorithms which approximate a Nash-equilibrium are capable of perform-
ing bluffing and inference, however a game theoretic approach to bluffing and
inference requires the states of a game to be enumerable (in order to compute
a policy at every information set) and for convergence guarantees, each unique
information set to have a unique node in a search tree. This is intractable for
many interesting hidden information games since the number of information sets
is very large. One solution to this is to reduce a game to a smaller sub-game
which is solvable then applying the sub-game strategy to the larger game in
a process known as abstraction. This approach has a great deal of success in
domains such as Poker [80], but requires a sub-game reduction to be designed
for each game.

One of the most useful properties of MCTS is generality and applicability
to large problems without needing significant domain knowledge, therefore the
issue of finding suitable sub-game reductions is not addressed in this work. The
main game studied is this chapter is The Resistance, which is small enough that
using a unique node for each information set is tractable with ISMCTS. This
representation is necessary in The Resistance to account for the fact that the
value of an action depends heavily on the hidden information (as in a move that
is good for Spy is bad for a member of the Resistance) in contrast to games
where the value of an action is correlated across information sets (as in the
opponent will play the winning card if they hold it and avoid the losing card
whether or not they hold it). Details of how this one node per information set
representation is generated are presented in Section 7.2.

It has been proven by Silver et al [82] that algorithms like ISMCTS will
propagate the correct beliefs through the search tree (assuming the correct
prior distribution is used). The approach to inference introduced in this chap-
ter takes advantage of this fact by calculating beliefs from statistics in the
ISMCTS tree, which are used as a prior in subsequent searches. In Section 7.4
bluffing behaviour is induced in the ISMCTS algorithm through the use of self-
determinizations, which are determinizations of the search players own hidden
information (from the opponents point of view). This prevents ISMCTS from
learning to exploit the root player’s own hidden information which was shown
to be an issue in Chapter 6, and allows ISMCTS to learn the utility of bluff-
ing moves. The approach to performing inference and bluffing with ISMCTS
developed in this chapter, improves the strategic performance of ISMCTS with-
out requiring domain knowledge. This approach does not converge to a Nash-
equilibrium, yet still offers a significant improvement over ISMCTS when bluff-
ing and inference are important aspects of a game.

The structure of this chapter is as follows. Firstly Section 7.1 introduces the
concepts of bluffing and inference in games and outlines how this can be achieved
using MCTS as an opponent model. Section 7.2 details the modifications made
to the MO-ISMCTS algorithm used for experiments in this chapter. In Sec-
tion 7.3 it is shown how MCTS can be used as an opponent model for inference,
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and Section 7.4 introduces several techniques that can induce bluffing behaviour
in the ISMCTS algorithm. Section 7.5 presents experiments which evaluate the
effectiveness of the modifications made to ISMCTS in this chapter in three
games, The Resistance, Scotland Yard and Saboteur. Finally Section 7.6 sum-
marizes the results of experiments and discusses how ISMCTS could be further
improved in these games.

7.1 Background

In this section it is discussed how bluffing and inference may be learned using
ISMCTS. Firstly the following terms are defined in the context of this work:

e Determinizaton: A selection of a state from an information set, which is
treated as a game of perfect information.

e Opponent Model: A mapping from the information sets belonging to an
opponent to a probability distribution over actions available in each infor-
mation set.

e Inference Model: A mapping from an opponent model and a set of ob-
served opponent actions to a probability distribution over states in an
information set.

e Feature: A mapping from states to elements of a finite set. For example
a feature could be the identity of the player holding the Ace of Spades, or
the number of Spades held by a particular player.

e Probabilistic Reasoning: Given a distribution over states within an infor-
mation set and a set of features, the values of features can be treated as
random variables. It can be useful to design rules which influence play
depending on the expected value of features (a process often described as
inference). Probabilistic reasoning does not need to be coupled with an
Inference Model. In the absence of an Inference Model, the expected value
of features can be estimated by assuming all states are equally likely.

A determinization of an information set is a selection of a state within an
information set, assumed to be the true state of a game and to be subject
to analysis. Determinization methods have been successful in a wide variety
of games with hidden information, but have several inherent flaws. Notably
Frank and Basin [28] identify the issues of strategy fusion and non-locality.
Previous work described in Chapter 5 has identified that the effect of strategy
fusion is more significant in Dou Di Zhu than the lack of a good opponent model.

However the ISMCTS algorithm still suffers from the problem of non-locality.
Determinizations are sampled uniformly from the set of all legal determiniza-
tions by ISMCTS, however this assumption of uniformity is incorrect. In the
worst case it may be deduced that some legal determinizations are actually im-
possible if it is assumed the opponents behave rationally in the game-theoretic
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sense, for example determinizations that are only possible if an opponent chose
not to play a move leading to an immediate win earlier in the game. In this
case it may be concluded that the true state of the game is restricted to an
information set where the winning move was unavailable to the opponent on
a previous decision. More generally if it is assumed that the opponents play
rationally, then some states within an information set may be more likely than
others.

This more general case can be described as applying inference, specifically
inference applied to an opponent model. An opponent model is any technique
which can be used to estimate the likelihood of an opponent taking a particular
action in a particular state. After observing an opponent take an action, an
opponent model can be used to determine which states are more or less likely,
producing a probability distribution over states within an information set. When
game players discuss strategy, the term “inference” sometimes takes on a wider
meaning and includes probabilistic reasoning independent of an opponent model,
for example the probability an opponent holds an Ace given that the other
three Aces have already been seen. However in this work inference is considered
specifically to be the process of exploiting an opponent model to deduce the
likelihood of certain states, rather than exploiting the likelihood of certain states
to improve decision making.

There is value to applying inference in a game when the following two criteria
can be satisfied:

e It can be deduced by some means that states within an information set
are more or less likely than each other, and this deduction is informed by
an assumption of rational play or by some other opponent model

e Knowing which states are more or less likely has some influence over which
decisions are made

When these conditions are satisfied often enough, applying inference enables a
player to exploit their opponent or force them to hide information more effec-
tively. For games where bluffing and inference are important tactics this should
lead to stronger play. Furthermore work applying inference to the game Spades
helped improve the plausibility of the AI decision making [10]. The methods
discussed in this work focus on satisfying the first criteria, since ISMCTS is
capable of altering decisions based on the distribution of determinations used.
That is ISMCTS is capable of probabilistic reasoning, since the random deter-
minization process ensures that the correct belief distribution is propagation to
every node in the tree [82]. This allows ISMCTS to exploit the distribution of
states at each node in order to improve decision making, therefore ISMCTS can
already alter decisions based upon an inference model if it is used to alter the
probability distribution determinizations are sampled from.

7.1.1 Existing Approaches

The most common theoretical framework for inference in games is Bayesian
inference. Consider a state s in the current information set. There is a prior
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belief P(s), the probability that s is the actual state of the game. Upon ob-
serving an opponent action a, the posterior belief P(s|a) is the probability that
s was the actual state of the game given that a was played from that state. If
it is assumed that the opponent’s (mixed) policy is known, then P(als) is the
probability that the opponent plays action a from state s. Given the prior belief
and the opponent policy, Bayes’ theorem can be applied to obtain the posterior
belief:

P(als)P(s)

P(sla) = Pla)

(7.1)

where

P(a) = Z P(a|u)P(u) (7.2)

u€[s]™1

is a normalising constant.

There exist several approaches to integrating inference (Bayesian or other-
wise) with MCTS for particular games. In practice the opponent’s policy is not
known, so it is approximated by an opponent model. Most existing approaches
for applying inference with MCTS use an opponent model which is computed
offline, but used to determine a distribution over states at runtime. One advan-
tage to this approach is that if the opponent model is accurate MCTS is capable
of learning to exploit it. For example Ponsen et al [89] learn an opponent model
for Poker which is used to influence the cards dealt and select actions for the
opponent. Buro et al [49] apply a similar method to the card game Skat, where
a learned opponent model is used to estimate the likely cards held by each
player. Previous work on Spades [10] uses a knowledge base of hard-coded rules
(parametrised by weights tuned offline) to influence the distribution of cards
dealt to players depending on factors such as their bid.

There has been less work on methods which compute an opponent model
online, though there is a natural synergy between this approach and MCTS since
MCTS already models the decisions of opponents. If it is assumed that MCTS is
a good opponent model, an inference model can be built by using tree statistics.
For example if every state in an information set is sampled sufficient times, it
is possible to measure the proportion of times each action was selected for an
opponent from each state and update the belief state using Bayes’ theorem.
However in practice the number of states is often too large for this approach to
be tractable and instead an approximate model must be used (which is beyond
the scope of this work). This approach has been successful in applications such
as Scrabble [90]. Silver and Veness [82] propose an approximate method using
a particle filter, which approaches a correct belief state as more particles are
used. One drawback of this method is that particle deprivation may occur as
the particles disperse in a large state space and a particle reinvigoration method
is needed. Particle filtering is discussed further in Section 7.3
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7.2 ISMCTS with multiple opponent trees

The version of ISMCTS used in this chapter is based on the MO-ISMCTS
algorithm described in Chapter 6. MO-ISMCTS models the differing viewpoints
of the players by constructing several trees (one per player) in parallel. This
idea can be extended by constructing several trees per player, with a tree for
each opponent information set). Each iteration samples a determinization from
the root information set, and selects the corresponding tree for each player. For
example in a hidden role game such as The Resistance or Saboteur, each player
has one tree for each possible role they may have, thus allowing ISMCTS to
model the different policies followed by the opponent depending on their role.
A determinization specifies the roles of the players, and the corresponding trees
are descended. Pseudocode for this variant of ISMCTS is given in Algorithm 6.

This tree representation ensures that there will be a unique node for every
unique information set. There will be also many other non-decision nodes in the
trees which exist to correctly transition between decision making nodes, given
each players observations of moves during a playout. Creating lots of extra nodes
which are not used to store useful statistics appears highly memory inefficient
and a more compact representation could avoid building trees by only storing the
decision nodes (corresponding to information sets). However in this case extra
logic must be introduced to calculate which information set node to transition
to after an action is chosen, which would require storing enough information
to distinguish between each information set the algorithm has stored statistics
about. The software framework used in this work only stores statistics in nodes
and no information about the states the nodes represent. There structure in
the trees which are generated by multi-tree ISMCTS and the non-decision nodes
allow the transitions between information sets to be calculated efficiently at run
time, by simply following the appropriate edges in the trees. This is exploiting
the fact that in most games, an action typically contains a small amount of
information compared to a full game state.

The drawback of utilising additional trees is that the ISMCTS learns slower,
since not every tree is updated on each iteration, but the additional trees improve
the opponent model of ISMCTS which is particularly important if the opponent
model is to be exploited for inference. Therefore the additional trees can be
seen as a trade-off between a fast learning rate and a better opponent model.
It is likely that the learning rate can be increased by utilising enhancements
that share knowledge between trees such as the information capture and reuse
enhancements introduced in Chapter 8.

For experiments in this Chapter the implementation of ISMCTS uses UCB-
Tuned [39] for selection, which has been shown to outperform UCBI in several
domains [44, 40] without requiring an exploration constant to be tuned, and thus
is arguably a better default choice of selection policy. Preliminary experiments
showed a marginal benefit (around a 3-4% increase in win rate) from using
UCB-Tuned instead of UCBI in the game The Resistance.
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Algorithm 6 The MO-ISMCTS algorithm extended to have multiple trees per

opponent
1: function ISMCTS([so] ™", n)
2: for each player i =0, ..., s and each possible determinization d create a
single-node tree with root uf}/, if a tree with this root does not already exist
3: for n iterations do
4: construct a random determinization d and use only nodes/actions
compatible with d this iteration
5: for this iteration, “the player i tree” is the tree rooted at u, and “all
trees” means the player ¢ trees for i =0,...,k
6:
7: // Selection
8: repeat
9: descend all trees in parallel using a bandit algorithm on player
p’s tree whenever player p is about to move
10: until nodes v°,...,v”,...,v" are reached in trees 0,...,s respec-
tively, player p is about to move at node v”, and some action from v” leads
to a player p information set which is not currently in the player p tree or
until v” is terminal
11:
12: // Ezpansion
13: if v” is nonterminal then
14: choose at random an action a from node v” that is compatible
with d and does not exist in the player p tree
15: for each player i =0,...,x do
16: if there is no node in player i’s tree corresponding to action a
at node v%, then add such a node
17:
18: // Simulation
19: run a simulation from v” to the end of the game using determinization
d, (starting with action a if v” is nonterminal)
20:
21: // Backpropagation
22: for each node u’ visited during this iteration, for all players i do
23: update u#’s visit count and total simulation reward
24: for each sibling w' of u’ that was available for selection when u*
was selected, including v’ itself do
25: update w'’s availability count
26:
27: return an action from A([so]™") such that the number of visits to the

is maximal

corresponding child of the node for [so]™"
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7.3 Inference using MCTS statistics

The idea of particle filtering in an ISMCTS-like algorithm was suggested by
Silver and Veness [82]. The idea is to record the frequency with which each
determinization (particle) reaches each node in the tree, and use this to update
the belief distribution in response to observed moves.

Consider a tree with root node u and a child v corresponding to action a.
Consider also a determinization d for the root information set where d is chosen
with probability P(d), the prior belief that the current state is d. Then the
number of visits to child v with determinization d as a fraction of the total
number of visits to v is an estimate of P(d|a): the probability that d was the
current determinization given that action a was selected from the root. Hence
this method allows the posterior belief to be sampled empirically without need
for Bayes’ rule (Equation 7.1).

In many games, there are too many states per information set to enumerate.
Silver and Veness [82] sample a small number of determinizations to use as
particles, and introduce a reinvigoration mechanism to counteract the depletion
of the particle set as the tree is descended. Another approach is to perform
inference on features of a state (similar to Buro et al [49]), but doing so would
require an assumption of independence between features. Depending on how
reasonable an assumption this is, the method may still give a good enough
approximation of the belief distribution over states. There are a small enough
number of information sets in The Resistance that no reduction was necessary
for the experiments in this chapter (likewise for the experiment on Scotland
Yard). In the game Saboteur, a reduction was made by ignoring the cards held
in each players hand (any set of cards in hand was considered to be in the same
information set), which is reasonable since inferring the identity of a player
(which is fixed) is more strategically important than learning the contents of
their hand (which changes rapidly).

Example 1. In The Resistance or Saboteur, determinizations are sampled from
the possible sets of spies or saboteurs; in Scotland Yard deteriminzations are
sampled from the possible locations of Mr X. In The Resistance and Scotland
Yard a determinization corresponds to a unique tree for each player. In Sabo-
teur this is not the case, as the state carries a lot more hidden information
than the player identities (the cards in players’ hands, the shuffled order of the
deck, and the location of the gold), so after determinizing the set of saboteurs
(and selecting the corresponding search trees) the other hidden information is
determinized.

To perform inference within ISMCTS particle filter inference is used where
the particles are determinizations. Recall Algorithm 6: the player’s decision tree
is rooted at node [sg]™" (assuming without loss of generality that player 1 is the
root player). For each node u! in this tree, a count c(u!,d) is maintained of the
iterations passing through that node for which the current determinization was
d. During backpropagation, at line 23, if i = 1 then c(u’, d) is incremented by
1 (where d is the determinization chosen on line 4).
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The player also maintains a belief distribution ¢, over determinizations, sep-
arate from the tree. At the beginning of the game, this distribution is chosen to
match the distribution of initial game states (which often means a uniform dis-
tribution). The belief distribution is updated as in Algorithm 7. The update has
two steps: a game-specific propagation step, and a game-independent inference
step. In Bayesian terms, the propagation step maps the posterior distribution
at time t to the prior at time t 4+ 1, which the inference step then maps to the
posterior at time ¢ + 1.

The propagation step is based on the following question: if a state has
some determinized hidden information, and move m is applied, what is the
value of the hidden information in the resulting state? In some games the
information never changes once fixed: for example in The Resistance, no move
ever changes the identities of the spies. In this case the propagation step leaves
¢1 unmodified. In Scotland Yard however, if move m is a move by Mr X, then
the hidden information (the location of Mr X) will change. Here ¢, is updated
by considering all actions in the partially observable move m to be equally
likely.

Example 2. Suppose that in Scotland Yard ¢;(11) = 1, ¢;(12) = 3, and m
is a Mr X move by taxi. (Recall that determinizations for Scotland Yard are
locations for Mr X, so ¢1(11) is the probability that Mr X is in location 11.)
From node 11, Mr X could have moved to node 3, 10 or 22. From node 12,
Mr X could have moved to node 3 or 23. Thus set:

1

#1(3) = 5o (1) + %¢1(12) —0.4583

¢1(10) = %fbl(n) =0.083

¢ (22) = %@(n) _ 0.083

$1(23) = %¢1(12) = 0.375

The propagation step also takes care of hard constraints: if move m is not
legal in determinization d, then ¢(d) is set to zero. For example in The Resis-
tance, if move m is the environment move “reveal that there was one sabotage
card on the mission”, and « is a set of spies that does not include any members
of the mission team, then set ¢(x) = 0. If any probabilities are set to zero, the
rest of the probabilities in ¢ are normalised.

The rest of Algorithm 7 describes the inference step. Initially u® is the root
of player 1’s most recent decision tree, i.e. [so]”*. The belief distribution is
shifted towards the frequency distribution of determinizations that visited the
node corresponding to m. This shift is weighted by w, the number of visits to
the node in question as a fraction of the total search iteration budget. The idea
here is that infrequently visited branches should not bias the distribution too
much, as otherwise the inference may become brittle. Also since w < 1 (unless
only a single move was available), the frequency distribution never completely
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Algorithm 7 Belief distribution update for particle filter inference.
1: function OBSERVEMOVE(m)
2: update ¢; uniformly according to m (propagation step) setting ¢1(d) = 0
if move m is not legal in determinization d

3: normalize ¢

4: let v!' be the child of u' corresponding to move m

5: if m was not played by player 1 or by the environment player, and was
not the only move available then

6: let w be the v! visit count divided by the total number of iterations

7: for each possible determinization d do )

8: update ¢1(z) « (1 —w)g1(z) + w%

9:

10: // Descend the tree
11: let ul « v!

replaces the belief distribution, so a determinization probability that starts as
nonzero will stay nonzero (unless explicitly set to zero during the propagation
step).

The belief distribution ¢; is used to sample determinizations for subse-
quent decisions. For The Resistance and Scotland Yard the sampling function
is straightforward: it simply clones the actual root state and overwrites the
spy identities or Mr X’s location with the appropriate value. In Saboteur the
sampling function chooses the identities of players according to ¢; as well as
additionally randomizing randomizing the location of hidden cards and the gold.

7.4 Self-determinization and bluffing

Bluffing (and information hiding) requires self-determinization: consideration of
states that are outside the player’s current information set but in an opponent’s
information set. This models the uncertainty an opponent has about the player’s
information and allows the player to exploit that uncertainty. ISMCTS can
use self-determinizations without affecting the player’s ability to plan ahead:
iterations using determinizations outside the player’s information set do not
descend or update the decision tree, but the fact that they descend and update
the opponents’ trees as usual means that they do factor into the opponent
model. However a significant amount of time is potentially “wasted” considering
lines of play that are known to be impossible, for the sake of more accurate
opponent modelling. Thus a balance must be struck between searching “true”
determinizations (in the root information set) and self-determinizations (not in
the root information set). This gives rise to a new problem: any bias towards
true determinizations will also influence the opponent trees, causing the hidden
information to “leak” into the modelled opponent policy and thus lessening the
effectiveness of self-determinization.

A self-determinizing player needs two belief distributions: the usual belief
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distribution ¢; used to select true determinizations, and a distribution v, used
to select self-determinizations. The latter is the player’s model of what the
opponent’s have inferred so far. Both are updated as in Algorithm 7, however 1,
is initialised and updated without knowledge of the player’s hidden information.
In The Resistance for example, ¢ is initialised by setting the probabilities of
spy configurations containing the player to 0 (if the player is not a spy) or
the probability of the actual spy configuration to 1 (if the player is a spy),
whereas 1 is initialised by setting all spy configurations to equal probability,
regardless of whether they contain the player and whether the player is a spy.
In Saboteur ¢; and v are initialized in the same way with regards to saboteur
configurations except if the player is a saboteur, all saboteur configurations
where the player is a saboteur have equal probability in ¢; (and 0 probability
otherwise). In Scotland Yard only Mr X needs to self-determinize, so ¢y is
initialised by setting the probability of the actual location of Mr X to 1 and v,
by giving each starting position for Mr X equal probability (although an expert
player may determine that some starting positions are less likely than others).

The distribution ¢ is updated according to the player’s decision tree. If
11 is updated using the decision tree, information about the player’s hidden
information would leak into 17 and the benefit of self-determinization would
be defeated. Instead 1, is updated by merging all the trees from the player’s
perspective, including the decision tree and all trees for self-determinizations.
The visit counts in the merged tree are obtained by summing the visit counts
across all trees. This can be thought of as a tree “averaged” across all self-
determinizations, or the hypothetical decision tree that would be built by a
player whose beliefs are captured by ; (an external observer who cannot see
any of the players’ hidden information).

In many games (including Resistance and Scotland Yard), bluffing is a strate-
gic decision. That a spy should conceal his identity or Mr X should conceal his
location seems obvious to a human player, but to discover this purely by tree
search is difficult, as the consequences of revealing the information are usually
not instantaneous. This suggests that game-specific knowledge is required to
encourage bluffing. Indeed, injecting such knowledge into MCTS was shown by
Nijssen and Winands [72] to be successful for Scotland Yard: there the moves
of Mr X are biased towards those which increase the number of his possible
locations from the seekers’ point of view.

One of the strengths of online approaches such as MCTS is that they exploit
the Markovian property of perfect information games to ignore parts of the game
tree that are not in the subtree rooted at the current state. The player can forget
not only the line of play that led to the current state, but also the alternate lines
of play that were available but not taken. In imperfect information games this
Markovian property breaks down, and bluffing explicitly requires consideration
of other parts of the game tree to avoid non-locality. Hence offline techniques
such as MCCFR [120, 121] or Multiple MCTS [101], which consider the whole
tree from the initial state of the game, may be better suited as a general-purpose
technique for games where bluffing is important — the major disadvantage being
that these techniques are not suitable for games with combinatorially large trees.
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This is discussed in more detail in Chapter 3.3.4 page 32. In this work it is shown
that bluffing behaviour can emerge from ISMCTS for the game The Resistance,
at the cost of a slower learning rate for ISMCTS. However it should be possible
to a achieve this result in larger combinatorial games using a combination of
increased computational resources and domain knowledge injection.

A number of approaches to self-determinization in ISMCTS are tested:

Pure. Simply run ISMCTS with determinizations sampled from 7, i.e. all
self-determinizations. Some of these determinizations will happen to be
true determinizations and thus update the decision tree, but otherwise no
special effort is made to search the decision tree.

Split. Perform two ISMCTS searches, one after the other, retaining all trees
from the first to the second. The first samples determinizations from 1,
the second from ¢;. The first search populates the trees with statistics
from self-determinizations, whereas the second searches only true deter-
minizations but carries the tree statistics over from the first step. The
second search has the potential problem that hidden information leaks
into the opponent trees during the second step.

Two-step. As the split method, but the second search does not update the
opponent trees, to counteract the leakage of information. To make the
tree policy nondeterministic, selection in opponent trees uses a mixed pol-
icy where the probability of selecting a child node is proportional to the
number of visits it received in the first step.

Bluffing. As the split method, but with a different mechanism for choosing
the move to play at the end of the search (rather than the convention
of choosing the most visited move). Denote the mean reward for a move
m from the root of the decision tree by p,, and the standard deviation
by op,. Choose m* with maximal number of visits from the root of the
decision tree, as usual. Let

M*={m : pm — pm < min(om,om)} , (7.3)

i.e. M* is the set of moves whose average reward is within one standard
deviation of the reward for the best move. Now for each move in M*, sum
the number of visits from the root across all the current player’s trees (i.e.
the decision tree and all trees corresponding to self-determinizations), and
play the move for which this sum is maximal. In other words, the chosen
move is the most visited move across all self-determinizations that is not
significantly worse than the most visited move in true determinizations;
the bluff that is not significantly worse than the best non-bluff.

The pure method is the most theoretically sound method and similar to
Smooth UCT, which can converge to a Nash-equilibrium [84]) since the player
models will not be able to learn to exploit inferences they have not made, how-
ever this method “wastes” most of its iterations by not updating the actual
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decision tree. The split method provides a compromise by spending at least
half its time searching true determinizations, but risks leaking information into
the opponent model. The two-step method prevents this leakage of information
by not updating the opponent model at the end of the first step, at the cost
of the opponent model being weakened due to having fewer iterations. Any
bluffing behaviour observed in these three methods is an emergent property of
the search. The bluffing approach explicitly integrates bluffing behaviour into
the move selection, by choosing a move which is plausible when the opponent
model “cheats” (searching true determinizations) but was preferred over other
moves when the opponent model does not “cheat”. In other words, amongst
the moves which are the most robust against opponent’s inference, choose the
move which best exploits their lack of knowledge.

7.5 Experiments

This section presents experiments which evaluate the effectiveness of the modi-
fications to ISMCTS described earlier in this chapter across three games: The
Resistance, Saboteur and Scotland Yard.

7.5.1 Inference and self-determinization methods for The
Resistance

In this section the performance of various ISMCTS players for The Resistance
is tested. Two non-spy players are tested: one sampling determinizations uni-
formly at random, and one using the particle filter inference mechanism de-
scribed in Section 7.3. Both of these players use 20000 iterations per decision,
and neither player uses self-determinizations. For the spies, a “True” player
without self-determinization (using 20000 iterations per decision) is tested,
as well as players using each of the variants of self-determinization in Sec-
tion 7.4. The self-determinizing players use 40000 iterations per decision; the
three players based on the “split” method perform 20000 iterations with self-
determinizations and 20 000 with true determinizations. For each tested config-
uration 1000 games were played, each with 5 players: each of the 10 possible
spy configurations was tested 100 times, each time with all the spy players using
one algorithm and all the non-spy players using another.

Results shown in Figure 7.1 indicate that inference is extremely powerful
against a non-self-determinizing player, reducing the latter player’s win rate by
66.4%. The pure, split and two-step methods are around twice as strong as the
non-self-determinizing player, with no significant difference between the three.
The most effective counter to the inference player is the bluffing player, with
an improvement of 31.7% over the non-self-determinizing player. This shows
that this bluffing method counteracts roughly half of the advantage gained by
the non-spy players performing inference, and results in a more evenly matched
game.
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Figure 7.1: Comparison of inference and self-determinization methods for The
Resistance. Each bar shows the win rate for algorithm playing as the Spy team
against non-spies using ISMCTS with or without particle filter inference.

7.5.2 Balancing true and self-determinizations

In the previous section, the split, two-step and bluffing players all used an
equal division of their iteration budgets between self-determinizations and true
determinizations. This section investigates the effect of this split on the player’s
performance. Once again the particle filter inference non-spy player using 20 000
iterations played against the split spy player using 40 000, but here the number of
iterations 77 used in the first (self-determinizing) search is varied between 0 and
40000, with T = 40000 — T} iterations for the second (true determinization)
phase. Note that 77 = 40000 is equivalent to pure self-determinization, and
T1 = 0 is equivalent to a player which uses only true determinizations.

Results are shown in Figure 7.2 and indicate an upward trend as the number
of self-determinizing iterations increases, with performance reaching a plateau
between 15000 and 35000 self-determinizing iterations and dropping off for
40000 iterations. There is a trade-off to be made between searching the decision
tree and searching other self-determinizations; these results suggest that devot-
ing anywhere between % and % of the total search budget to self-determinizations
yields reasonable performance. The experiment suggests that 5000 true deter-
minizaions is a sufficient amount and any additional determinizations sampled
should be self determinizations.
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Figure 7.2: Performance of the “split” spy player for The Resistance, devoting
various numbers of iterations to self-determinizations.

7.5.3 Emergence of bluffing

Figure 7.3 shows the performance of the true, pure, split and bluffing players
with varying numbers of ISMCTS iterations, for spy players in The Resistance.
In each case the non-spy players use inference but no self-determinization. All
players (spies and non-spies) use the specified number of iterations, with the
split and bluffing spy players using half the iterations for self-determinizations
and half for true determinizations. The four spy player types use the same
number of iterations in total, unlike the experiments in Section 7.5.1 where the
self-determinizing players have twice the budget of the pure player. Note that
the number of iterations varies for all players, so the spies’ win rate can fluctuate
up or down depending on which team is improving more quickly as the number
of iterations increases.

For small numbers of iterations the performance of the different spy players
is close, but the true and split players are stronger than the bluffing player by a
statistically significant margin (at 95% confidence). Between 5000 and 200 000
iterations, the bluffing player is much stronger than the other two. However for
very large numbers of iterations the split player overtakes the bluffing player
whilst performance of the true player remains poor. This suggests that the split
player with sufficiently many iterations can produce bluffing behaviour without
an explicit bluffing mechanism. However it should be noted that the compu-
tational resources required for this player might be infeasible for a commercial
application: an efficient C++ implementation of a player using 1000 000 iter-
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Figure 7.3: Performance of ISMCTS variants for The Resistance for varying
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ations takes around 10 seconds per decision on a desktop PC with a 2.53GHz
Intel Xeon processor and consumes around 1GB of memory.

An upward trend is visible in the win rate for the true player for more than
50000 iterations, albeit a slower one than for the split player. One possible
explanation for this is that the non-determinizing spy player may pessimistically
assumes that the game is lost, as it is assuming that the non-spies know that
it is a spy. MCTS tends to play randomly when its decisions do not affect the
result of the game. However, playing randomly reduces the ability of the non-
spies to perform inference, hence possibly leading to a situation where the spies
can win. It Chapter 6 it was observed that large numbers of ISMCTS iterations
can lead to overly pessimistic assumptions in the Phantom (4, 4,4) game.

7.5.4 Effect of inference on the belief distribution

Figure 7.4 shows, for The Resistance, how the non-spy player’s belief distribution
evolves over time when using particle filter inference. In particular, the plot
shows the probability assigned to the actual configuration of spies in the game.
For comparison, Figure 7.6 shows how the belief distribution evolves if the player
performs no inference and only keeps track of hard constraints. The inference
player displays an overall upward trend much steeper than that for the player
without inference and very rarely is the probability lower than the initial value
(which would imply that an incorrect inference was made).

Figure 7.4 suggests some correlation between the success of inference and
the outcome: in many of the games won by the spies, the non-spy players assign
a relatively low probability to the actual spy configuration. In this experiment
the spies are not using any self-determinizing techniques, so are not deliberately
trying to mislead the inference engine in this way. Figure 7.5 shows the results
when the spy players use the bluffing technique described in Section 7.4. Bluffing
results in the probability of the actual spy configuration being typically lower
and results in the spies winning more games. In particular, when the spies bluff
there was no instances where the actual configuration had probability 1 after
the first mission (which would happen if both spies were on the mission and
chose sabotage for example). There are also many games won by the spies on
the last mission whereas there are none when the spies do not bluff.

Figure 7.4 also demonstrates the overall strategy used by the ISMCTS play-
ers: the team choice for the first mission is almost always voted down four times
to allow the fifth player the final choice. This is visible in the plot as a sequence
of four distinct “steps” between x = 0 and x = 1. From these upward steps, it
can be seen that the non-spy players are able to infer useful information from
the team choices and votes in this first round. It is worth observing that, while
this strategy differs from that used by some groups of human players, the “best”
strategy for the first round is a frequently debated topic !.

In Figure 7.6 some trajectories reach a probability of 1 for the actual spy
configuration, meaning that the player knows the identity of the spies. If both

1See e.g. http://boardgamegeek. com/thread/640992/is-the-first-mission-pointless-
for-5-6-or-7-playe
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track of hard constraints. To show the density of overlapping lines, a small
random vertical offset has been added to each line.

spies are on a 2-person mission and both sabotage, this reveals their identities
to the other players. On a 3-person mission this potentially only reveals the
spies’ identities to the third player on the mission, with the other players not
knowing which of the three is not a spy. This information asymmetry between
non-spies explains why the spies do not always lose after revealing themselves to
another player in this way (if the spies are revealed to all players, the non-spies
can always force a win by refusing to choose spies for missions, and using their
majority to vote down any missions chosen by spies).

7.5.5 Application to other games

The Resistance is an ideal test case for the methods described in this chapter:
bluffing and inference are the main mechanics of the game, the number of states
per information set is small, and the game tree is too large to solve analytically
but small enough to be tractable to MCTS without knowledge-based enhance-
ments. The scalability of these methods to two more complex games: Scotland
Yard (see Chapter 4.2.12 page 48) and Saboteur (see Chapter 4.2.13 page 49)
is investigated in this section.

Figure 7.7 compares the performance of ISMCTS players for Scotland Yard.
The experimental conditions are as in Section 7.5.1, with the exception that
the “spy” player algorithms are now applied to Mr X, the “non-spy” algorithms
to the player controlling the seekers, and the initial conditions (the starting
locations of Mr X and the seekers) are chosen randomly for each game. The
benefit of inference for the seekers is more modest than for The Resistance, but
still statistically significant. The pure and split self-determinization methods
are similarly beneficial for Mr X, but two-step self-determinization and bluffing
are not.

The game tree for Scotland Yard is much larger than that for The Resistance
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Figure 7.7: Comparison of inference and self-determinization methods for Scot-
land Yard showing the win rate of each algorithm playing as Mr. X against
seekers using ISMCTS with or without particle filter inference

due to a higher branching factor. This makes it more difficult for MCTS to
find good moves without large numbers of iterations or heuristic knowledge.
Two-step bluffing devotes only half of its iterations to learning the opponent
policy, which is likely to impair the quality of the player’s own policy. Bluffing
potentially causes the player to play suboptimal moves, even if the search is able
to find the best move. Scotland Yard also has many more states per information
set than The Resistance (one for each possible Mr X location), and the strategy
in terms of information gathering and hiding has more to do with the degree
of uncertainty (i.e. the number of possible Mr X locations) than whether Mr X
is more likely to be in one location than in another. The work on Scotland
Yard by Nijssen and Winands [72] exploits this in designing heuristic knowledge
for Scotland Yard. In The Resistance, the degree of uncertainty is small and
more-or-less fixed: each player either is or is not a spy.

As in The Resistance, in Saboteur each player has a hidden role. In The
Resistance the hidden roles are the only source of hidden information, but in
Saboteur each player also has cards in hand, knowledge of which cards they
have discarded, and possibly knowledge of one or more goal cards. ISMCTS
players which “cheat” (have access to all hidden information except the other
players’ roles) were tested against ISMCTS players which do not, and found no
significant advantage to the former over the latter. This suggests that learning
the identities of other players and hiding your own is more strategically impor-
tant than trying to deduce the cards held by other players. Hence the inference
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model can safely ignore this extra hidden information and consider only the
player roles. In any case, it would be very difficult to arrive at meaningful
inferences for the cards in hand: each turn results in a card being played or
discarded and another being drawn from the deck, so the information is likely
to change faster than it can be inferred.

For Saboteur, ISMCTS constructs two trees per player: one for the player
as a gold-digger and one as a saboteur. Note that unlike for The Resistance
and Scotland Yard, this means that each tree covers several information sets for
that player with each tree collecting statistics for many possible hands of cards.
Saboteur is a good test case for the scalability of this approach, since the degree
of uncertainty in the player roles is small and fixed, inference and bluffing with
respect to these roles are key mechanics, and the game tree is very large and
stochastic.

For Saboteur, an ISMCTS player using inference was tested against four
players not using inference. The inference player’s seat was randomised as were
the identities of the saboteurs, so an evenly matched player would have an
expected win rate of 50%. Over 1000 trials, the inference player achieved a win
rate of 54.9% (£3.2% at 95% confidence). The benefit of inference is smaller
than for the Resistance but statistically significant. Examining plots of the
inferred probability for the actual saboteur identities (Figure 7.8; compare with
Figures 7.4), it can be seen that inference does often produce a bias towards
the correct configuration but that the effect is modest. The large branching
factor means that the iterations are spread more thinly amongst the available
moves, so the factor w in Algorithm 7 is typically small. A more aggressive
belief distribution update (for example with an artificially boosted value of w)
may produce a stronger effect, but also runs the risk of reinforcing erroneous
inferences when the number of iterations is insufficient.

Another reason for the relatively small benefit of inference in Saboteur is
that ISMCTS without knowledge injection and a sufficient number of iterations
is not very strong and so does not produce good opponent models for decision
nodes deeper in the tree. It is likely that heuristic knowledge would be required
to obtain plausible play: the branching factor is large, but many of the available
moves are quickly rejected by human players as being inconsequential or obvi-
ously bad. Given the small benefit of inference, self-determinization methods
were not tested for Saboteur: the goal of these methods is to reduce the advan-
tage to the opponent’s of inference, and the already small size of this advantage
would make it difficult to obtain statistically significant results. It is expected
that using a large number of iterations or injecting knowledge into ISMCTS
would improve the quality of the opponent models and produce results similar
to those for The Resistance and Scotland Yard. The information capture and
reuse methods introduced in Chapter 8 would likely improve the learning rate
of ISMCTS in these games.
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Figure 7.8: Plots of the inferred probability for the correct saboteur configura-
tion across 1000 games of Saboteur. Time moves left to right along the z-axis,
from the beginning to the end of the game. The left-hand plot shows games
won by the gold-diggers, and the right-hand plot those won by the saboteurs.
There are two distinct groups of lines in each plot because some saboteur con-
figurations are more likely than others (configurations with two saboteurs are
twice as likely as those with only one) and the initial belief distribution reflects
this.

7.6 Summary

In this chapter is has been demonstrated that the opponent model implicit in
ISMCTS can be re-used for inference. To address non-locality in ISMCTS, sev-
eral methods for injecting self-determinizations were tested and it was shown
that bluffing can be made to emerge from ISMCTS through the use of self-
determinizations. This was very effective in the game The Resistance, where
particle filter inference was able to significantly improve the ability of ISMCTS
to determine the identity of the spies. Additionally self-determinization tech-
niques were able to significantly mitigate against opponents using inference,
particularly the bluffing method which modifies move selection of ISMCTS to
select a robust move that may be a also be a good bluff.

However getting bluffing behaviour to emerge from search in more complex
games such as Scotland Yard and Saboteur is difficult without access to an
infeasible amount of computational resources. The larger number of states and
information sets in these games slows the learning rate of ISMCTS and many
more iterations (or injection of domain knowledge) would be required to achieve
good results. Successful bluffing takes different forms in different games. In The
Resistance and Saboteur is can be desirable to deliberately mislead other players
about your hidden information, but in Scotland Yard it is perhaps better to
concentrate on maximising the number of possibilities which can be more easily
achieved through heuristics [72]. ISMCTS could be significantly improved in
these domains by including heuristics which capture these strategic ideas, as
well as by sharing information between simulations to improve the learning
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rate. Techniques for capturing and reusing information from simulations are
considered in depth in Chapter 8.

It has been shown that as the complexity of a game increases and the num-
ber of information sets increases, the opponent model implicit in tree search
becomes poorer and results in weaker inference. This problem can be addressed
by reducing a game into a smaller game by grouping together information sets
in a process known as abstraction. In this chapter it has been demonstrated
that ISMCTS can perform inference and bluffing and this behaviour improves
with more computational resources. However algorithms which approximate a
Nash-equilibrium would be expected to less exploitable than ISMCTS. One of
the most useful features of ISMCTS is that it often quickly finds a good strategy,
However the results in this chapter indicate that when bluffing and inference
are strategically important, opponents information sets must be searched which
can hinder that ability of ISMCTS to quickly find a good strategy. A subject
for future work is to compare the performance and scaling of ISMCTS to other
techniques which converge to a Nash-equilibrium (see Chapter 3.3.4) (partic-
ularly online MCCFR [121] and Smooth UCT [84]) for complex games where
bluffing and inference are important.
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Chapter 8

Information Capture and

Reuse (ICARUS)

Chapters 5 and 6 introduced the ISMCTS algorithm, designed to handle differ-
ent sources of hidden information and uncertainty. A large body of work exists
which focuses on improving MCTS by extracting extra information from simu-
lations, such as the RAVE enhancement which is key to the success of MCTS in
Go and other domains. Enhancements to MCTS are often an effective way of
improving the rate at which an MCTS player improves with increased iterations.
This is discussed in detail in Chapter 3.2.3 (page 26). In particular many of
these enhancements can be described as general purpose enhancements, which
can improve the performance of MCTS without requiring any specific domain
knowledge. General purpose enhancements work using two distinct processes;
information capture (from MCTS simulations) and then reuse (to improve the
selection and simulation policies of MCTS). There already exists many differ-
ent approaches to both information capture and reuse. Increasing the learning
rate of MCTS is particularly important in many complex games of imperfect
information, for example in Chapter 7 it was shown that searching opponent
information sets is necessary when inference and bluffing is important, but in-
creases the amount of MCTS iterations needed to produce strong play.
Without experimentation it is difficult to determine which combination of
enhancements will work best in a particular domain and there may be many
valid ways of integrating a particular enhancement with a particular MCTS
based algorithm (especially when multiple enhancements are combined). In this
chapter a framework for information capture and reuse (ICARUS) is introduced,
which enables the integration of existing and new enhancements of MCTS and
ISMCTS to be easily defined. By separating the information capture and reuse
aspects of existing enhancements and their integration into MCTS, the ICARUS
framework is used to evaluate the effectiveness of a large number of permutation
of these elements. In particular, the effectiveness of an enhancement depends on
both the information capture method information reuse method. By separating
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the two, it is possible to find the best type of information to capture and the
most effective information reuse method for that information for a particular
domain. This is used to find new variants of MCTS enhancements which are
more effective for particular domains.

8.1 Motivation

Generally speaking, MCTS algorithms heuristically build an asymmetric partial
search tree by applying machine learning, using the weak reward signal given
by randomly simulating a playout to the end of the game from nodes repre-
senting intermediate positions. The tree is descended by recursively applying a
multi-armed bandit formula (such as UCB1 [39]) to each tree node’s counts of
simulation wins and visits.

While MCTS has provided effective and even state-of-the-art decision-making
in its “vanilla” form (particularly UCT [2]), it is often enhanced (for examples
see [1]). Some of these enhancements incorporate external knowledge into the
search, whereas others are general purpose enhancements which can be applied
to any domain without specific knowledge. In some cases these enhancements
are crucial aspects of successful MCTS programs, for example the RAVE en-
hancement [54] used in champion Go [5] and Hex [21] programs. In vanilla
MCTS, the only information retained from a playout is the terminal reward,
and the only use for that information is to update the nodes visited during the
playout. Many enhancements aim to extract more data from each playout and
spread the influence of that data across more of the search tree, thus increasing
the value of each playout.

This chapter is concerned with the use of general purpose enhancements to
improve the performance of MCTS. In some games a move that is good in one
state may be good in other similar states, and general purpose MCTS enhance-
ments can improve the performance of the algorithm by exploiting opportunities
for learning in these situations. In other words, these enhancements bootstrap
the learning of whether states and actions are good or bad by using analogy with
similar states and actions elsewhere in the search tree. A substantial contribu-
tion of this work is the development of the ICARUS framework which formalises
the correlation between states and actions, and the effects that this has on the
tree and default policies of MCTS. Furthermore, the ICARUS framework is used
develop and empirically investigate combination operators for MCTS enhance-
ments, and it is show and ICARUS and it’s operators to understand, categorise
and invent new enhancements. Hence the effectiveness of MCTS enhancements
can be explained by understanding how information is shared between states
and actions and how this information is used to improve the MCTS selection
and simulation policies.

The idea of enhancing an algorithm to better capture and reuse informa-
tion as it executes is used in a number of search and learning algorithms. The
efficiency of the a—f pruning strategy in minimax search is largely dependent
on the order in which actions are visited in the tree [122]. Enhancements such
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as the killer heuristic [123], history heuristic [124] and iterative deepening [125]
use information gathered during the search to refine this ordering as the search
progresses. Even a—f pruning itself can be seen as an information reuse en-
hancement, as it uses information gathered in one part of the tree to influence
the search in other parts (specifically, to prune other parts entirely). Machine
learning algorithms can also bootstrap learning through reuse. In transfer learn-
ing [126] or lifelong learning [127], the learner uses information learned from
previous problems to bootstrap learning for the present problem. In multitask
learning [128], the system learns to solve several problems in parallel. In both
cases the system can be thought of as “learning to learn”, thus these approaches
are often termed meta-learning [129]. Typically meta-learning systems work by
learning reusable features or representations, or by adjusting the parameters of
an underlying learning algorithm. Although the actual methods used are dif-
ferent, the idea of a learning system acquiring knowledge over its lifetime as it
is confronted by different problems is similar to the idea of a tree search algo-
rithm transferring knowledge from one part of the game tree to another over
the “lifetime” of a single search.

Most general purpose MCTS enhancements derive knowledge by compar-
ing and combining simulations from different states. In this chapter it is shown
that these general purpose enhancements do not always work and are sometimes
detrimental to the performance of MCTS (particularly the RAVE enhancement),
adding to existing observations that certain enhancements which are effective
in some domains fail to provide any benefit in other domains (e.g. [130, 15]).
The most effective enhancements correctly identify which states have correlated
action values. This suggests that even if a general purpose enhancement is
knowledge-free, there is implicit knowledge contained in the Al designer’s deci-
sion of whether or not to use that enhancement.

As well as informing the choice between existing enhancements, considera-
tion of correlated states allows entirely new enhancements to be designed. This
chapter presents a new enhancement, EPisodic Information Capture and reuse
(EPIC), that was designed by considering correlation between states in the card
game Dou Di Zhu. Dou Di Zhu has an episodic structure, where a game consists
of a sequence of somewhat independent rounds, and EPIC is designed to corre-
late states in analogous positions within different episodes. Many games have
an episodic structure, and it is demonstrated that EPIC is an effective general
purpose enhancement for other games.

Capturing information in the correct way is important, but reusing it in the
correct way is equally crucial. The ICARUS framework separates reuse from
capture, enableing the effectiveness of different information reuse techniques to
be studied. Experiments in this chapter show that the precise information reuse
method has an impact on the performance of an enhancement, and in particular
that the UCB1 algorithm for multi-armed bandits [39] produces strong simu-
lation policies. This leads to an elegant MCTS algorithm which uses a bandit
algorithm to select all moves in the playout, where in the MCT'S tree the action
value estimates correspond to information about a single state and in simula-
tions the action value estimates correspond to information reused between many
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states. Thus the only difference between the “in tree” (selection) and “out of
tree” (simulation) modes of MCTS is whether the context in which the bandit
algorithm executes is specific to a single state or general across a larger collection
of states.

The structure of this chapter is as follows. Section 8.2 introduces in detail the
idea of information capture and reuse strategies and the ICARUS framework
is defined along with example ICARUS specifications for several well known
MCTS enhancements. Additionally combination operators for ICARUSes are
defined and criteria are established for preserving the convergence properties
of the UCT algorithm in perfect information games when using ICARUS en-
hancements. Section 8.3 introduces a new class of enhancements (EPIC) which
exploits the episodic structure of games such as Dou Di Zhu. In Section 8.4 it
is shown how the ICARUS framework can be used to compare enhancements.
Section 8.5 details experiments run to test different enhancements. Firstly an
experiment is performed to test the effectiveness of all possible combinations of
three enhancements (RAVE, MAST and EPIC) across a wide variety of games.
Next experiments are presented which investigate the best selection policy for
simulation enhancements and the most effective N-gram lengths for learning sim-
ulation policies. Finally results are presented on the effectiveness of ICARUS
combinations with respect to computation time. Section 8.6 summarizes the
results of this chapter and suggests directions for further work.

8.2 Information Capture And ReUse Strategies
(ICARUSes)

An Information Capture And ReUse Strategy (ICARUS) is an enhancement to
MCTS that collects information from visits to one area of the game tree and
uses that information to inform the future play-out policy in other areas. The
ICARUS framework enables the definition and analysis of such enhancements
and their combinations in an instructive, formal and consistent way. Further-
more, the framework is generic enough to be able to express any kind of informa-
tion reuse enhancement (for example consulting an oracle of arbitrary complex-
ity is permitted), but imposes a structure on how information is captured and
used. This allows the structure of different enhancements to be easily compared,
and provides useful pointers towards the design of future enhancements.

8.2.1 Defining ICARUSes

The sharing of information between different parts of the tree is facilitated
by records. These can be any objects. During the search, each record has a
piece of information associated with it. The piece of information can also be
any object; for example, it may be a tuple of numbers representing rewards
and visit counts. The ICARUS defines three functions: the policy function
specifying how the information is used during each MCTS playout, the capture
function specifying which records are to be updated in response to the playout,
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and the backpropagation function specifying how each record’s information is
updated. This is similar to reinforcement learning, where the policy function
is to be optimised, playouts provide a performance measure and the capture
and backpropagation functions define a learning mechanism. Depending on the
enhancement, records can be updated for different reasons: for example some
records may be updated because they were selected, and others because they
were available for selection but not actually selected. Capture contexts are used
to communicate this between the capture function and the backpropagation
function.

Definition 12. Given a game as defined in Chapter 2, an information capture
and reuse strategy (ICARUS) is a T-tuple (R, O, Oinitial, @, ¥, £, w) where

1. R is a nonempty set of records. The elements of R can be any objects.

2. © is a nonempty set, the information domain. The elements of © can be
any objects.

3. Binitial : R — O is the initial information function, which maps each record
to a piece of information.

4. a: M*x (R — ©)x24 — (A — [0, 1]) is the policy function. This function
takes three arguments (the current move history, the current mapping of
records to information, and the legal action set for the current state) and
returns a probability distribution over the action set. The same function
« is used during selection and simulation phases of the playout.

5. U is a nonempty set of capture contexts. The elements of ¥ can be any
objects, and are used to communicate contextual information between &
and w defined below.

6. £: 5 x M* — (R x U)* is the capture function. This function takes two
arguments (the root game state and the current move history) and maps
them to a sequence of (record, capture context) pairs which are to be
updated following a playout.

7. w: 0O x V¥ xRY - O is the backpropagation function. This function
takes three arguments (the current information for a record, the capture
context specified by the capture function, and the reward vector from the
simulation) and returns the new information for the record following a
playout.

Algorithm 8 shows an ISMCTS algorithm using ICARUS to choose the best
action from information set I.,o;. The algorithm begins by initialising the in-
formation associated with each record (lines 2—4); however, a practical imple-
mentation might want to initialise these values lazily as and when they are
needed. Each iteration begins at the root node corresponding to the empty
history (line 7), and samples a determinization (state) oot from the root infor-
mation set (line 8) which becomes the current state s for this iteration (line 9).
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Each step of the playout uses the policy function « to choose an action a,
depending on the current move history [h]~#( for the player about to act from
state s, the current information mapping 0, and the set of available actions A(s)
(line 11). The current history h is updated by appending a, and the current
state s is updated by applying a.

After the playout has reached a terminal state, the capture function is ap-
plied to the root determinization s;,ot and the terminal history h to obtain
the sequence of (record, context) pairs to be updated (line 16). For each of
these pairs, the backpropagation function w is used to update the information
associated with the record (line 17).

Algorithm 8 The MCTS algorithm using ICARUS. The algorithm takes an
information set I.,ot as input and returns a legal action from that information
set.

1: function MCTS(T 00t € S/ ~;)

2: // Initialisation

3: for each record r do

4: 0(r) = Oinitiar (1)

5: for many iterations do

6: // Playout

7 h « <>

8: choose S0t € Iroot uniformly at random

9: S < Sroot

10: repeat

11: choose a € A(s) with probability a([h] =, 0, A(s))(a)
12: h+—h+a

13: s« f(s,a)

14: until s is terminal

15: // Backpropagation

16: for each (r,) € &(sroot, h) do

17: 0(r) <= w (0(r), v, u(s))

18: return the a € A(I,401) that was selected most often from the root

The experimental domains in this chapter are games of both perfect and im-
perfect information, thus Algorithm 8 is designed to handle imperfect informa-
tion using ISMCTS. Algorithm 8 is equivalent to a vanilla UCT implementation
in a perfect information game as the information set I oot is a singleton {s,oot }
(and line 8 can be omitted).
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RPs¢ = M (Base-1)

OPase — R* x Ny x Ny (Base-2)
elkzﬁi(fal(h> = (07 0) O) (Base—?))
ab®°(h,0,A,) =TU {arg max v(0([h + a}v))} (Base-4)
a€A;
2—}—0 Lg(m) ifn>0and m>0
Where U((qa n, m)) = n n
400 ifn=0o0rm=20

where g, is the component of g corresponding to the player about to act at the
end of h

U2 = {avail, Yuisit } (Base-5)
P (s (a1, ... a0)) = (([(a1, -, a)] ™, Yuisic) = 0<i <t.)
4 (([{a1,y .., ai—1, )], Yavanr) = 0 < i <t.,
a€ A(f(s,{a1,...,ai—1))),a #a;) (Base-6)
where t. is minimal such that 0([{a1,...,a:.)]™) = (q,0,m) for some q, m, or

t. = t if no such t. exists
ase q+“7n+17m+1 ifd]:wvisi
wb ((q,nam)ﬂ/%H) = ( ) . ‘
(q7 n,m-+ 1) if ¢ = wavail

where g denotes the total reward, n denotes the number of visits and m denotes
the availability count.

(Base-7)

Specification 1: The baseline ICARUS definition
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8.2.2 Baseline ICARUS definition

Specification 1 describes the baseline ICARUS definition used by an unenhanced
search algorithm, defining the functions used in Algorithm 8. The resulting
algorithm is equivalent to UCT [2] in the perfect information case and MO-
ISMCTS with the UCB1 selection policy in the imperfect information case. The
algorithm uses reward vectors and assumes that each player tries to maximise
his own reward in a max™ fashion [117, 131], thus the algorithm can handle
games with x > 2 players as well as single-player and two-player games.

Each history has its own record (Base-1), and the information associated
with a record is a total reward, a number of visits and an availability count
(Base-2, Base-3). The policy is defined to use the subset-armed UCB1 algo-
rithm (Base-4). During expansion all unexpanded actions have n = 0 and thus
UCBI value oo, and so the policy chooses between them uniformly. Similarly
during simulation, all actions have UCB1 value co and so the simulation policy is
uniform random. The capture function specifies that the records to be updated
during backpropagation are those that were selected, and those that were avail-
able to be selected due to being compatible with the current determinization;
this is restricted to the portion of the playout corresponding to selection and
expansion, i.e. the first ¢, actions (Base-6). These two collections of records are
labelled with contexts tyisit and ayai respectively (Base-5). Selected records
have their rewards, visits and availabilities updated in the natural way: the sim-
ulation reward is added to the record’s total reward, and the visit and availabil-
ity counts are incremented by 1. Available records have their availability count
incremented by 1, with reward and visit count remaining unchanged (Base-T7).

Many ICARUSes apply different policies during selection, expansion and
simulation. Let §22%¢ denote the visit count component of °2¢, i.e. §22¢([h]™)
denotes the number of visits to history [h]~. A history h with available action
set A, is said to be

e a selection node if 22¢([h]~) > 0 and 2*¢([h 4 a]~) > 0 for all a € Ay;

e an expansion node if 023°([h]~) > 0 but 622¢([h 4 a]~) = 0 for at least
one a € Ag;

e a simulation node if °*¢([h]~) = 0.

It is important to note that when this terminology is used in the definitions of
ICARUSes, it always relates to the baseline statistics and not to any information
maintained by the ICARUS itself.

8.2.3 Enhancements in the ICARUS framework

This section casts some well-known information reuse enhancements from the
literature into the ICARUS framework. These enhancements are introduced in
Chapter 3.2.3 (page 26).
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R=M* (AMAF-1)

© =R" x Ny (AMAF-2)
Oinitial (P) = (0,0) (AMAF-3)
alh,0,A,) =U [arg max v(0([h H a]v))} (AMAF-4)
a€Ag
q log (3, A, Ox([h 4 0]7))
where v((g,n)) = £+ CAMAF\/ < - ifn>0

where 65 denotes the component of 8 in Ny
U= {y} (AMAF-5)
£(s,(at,...,a)) = (((a1,...,ai-1,a;),¢) : 0<i<j<t,
a; € A(f(s,(a1,...,a;-1)))
and (a1, ...,a;) is a selection node) (AMAF-6)
w((g,n),¥,pu) = (g +p,n+1) (AMAF-7)

Specification 2: All moves as first (AMAF)

All moves as first (AMAF)

Specification 2 formulates AMAF in the ICARUS framework. Each history
has its own record (AMAF-1), and the information associated with a record is
a total reward and a number of visits (AMAF-2, AMAF-3). The policy uses
a UCBLI formula based on the AMAF information (AMAF-4), here using as
the number of trials the sum of visit counts for all currently available actions.
The capture function specifies that the nodes to be updated are those siblings
of nodes visited during tree descent that correspond to actions played later
in the playout (AMAF-6). This is the key property of the AMAF algorithm.
Backpropagation updates the rewards and visits in the natural way (AMAF-T7),
and does not require any contextual information (AMAF-5).
One well-known variant of AMAF is rapid action value estimation (RAVE) [54,

7], in which the influence of the AMAF value decays the more a node is visited.
In Section 8.2.4 composition operators on ICARUSes are defined, and express
RAVE as a composition of baseline and AMAF ICARUSes.

Move-average sampling technique (MAST)

MAST is defined in Specification 3. There is a record for each combination
of an action and a player who plays that action (MAST-1). The information
associated with a record is a total (scalar) reward and a visit count (MAST-
2, MAST-3). The policy selects actions according to a Gibbs distribution, using
the average reward calculated from the total reward and visit count (MAST-4).
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R=Ax{l,... K} (MAST-1)

© =R xNj (MAST-2)
Ginitial(a, Z) = (0,0) (MAST—g)
evla)/T

al{ar,...,a),0,A5)(a) = =——+— (MAST-4)

t ZbeAs ev(®)/T

q -
where v(a) = {” ?f n>0 for O(a, p,) = (¢,n)
1 ifn=0
where p; = p(f(s, (a1, ..., a:)))

U ={1,...,k} (MAST-5)
E(s, (a1, ap)) = {ai,pi) + i=1,...,t) (MAST-6)
w((g,n),p; (- i) = (4 + pp,m +1) (MAST-7)

Specification 3: Move-average sampling technique (MAST)

Backpropagation updates the records associated with the actions played during
the playout (MAST-6), with the player who played each action as contextual
information (MAST-5). The total reward and number of visits are updated in
the natural way (MAST-7). If the same (action, player) pair appears more than
once in the playout, it is updated more than once during backpropagation.

This formulation of MAST applies the same policy throughout the playout,
whereas [59] applies the Gibbs policy during expansion and simulation only.
This behaviour can be implemented within the ICARUS framework by use of
composition operators (Section 8.2.4).

In its original formulation, MAST uses a policy based on a Gibbs distribu-
tion. Tak et al [63] propose instead using an e-greedy policy, i.e. replacing the
policy function in Specification 3 with

al{al,...,a),0,A5)(a) =eU[As] + (1 —e)U {arbgerfrllax v(b)]

(MAST-e-greedy-4)

for a constant e. With probability € this policy chooses uniformly over all
available actions; with probability 1 — ¢ it chooses uniformly over the actions
whose average value is maximal.

Another possibility is to use a roulette wheel policy, in which the probability
for each move is proportional to its average reward:

I C) “Roulette-
al{ay,...,a),0,As)(a) = S o) (MAST-Roulette-4)
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Variants of MAST

Finnsson and Bjérnsson [104] describe a variant of MAST called tree-only MAST
(TO-MAST), in which only statistics for the actions played during selection
and expansion (i.e. not during simulation) are updated. This can be defined by
modifying the capture function of Specification 3:

&(s,{ar,...,ae)) = ((ai,pi) : i=1,...,t (TO-MAST-6)

and {(a1,...,a;) is a selection or expansion node)

Finnsson and Bjornsson [104] describe two refinements of MAST to enable
embedding of domain specific knowledge. In predicate-average sampling tech-
nique (PAST), states are labelled using a list of predicates; instead of maintain-
ing average rewards for actions, rewards are maintained for (predicate, action)
pairs consisting of a predicate that holds in a state and the action played from
that state. PAST can be represented in the ICARUS framework by modifying
Specification 3, including the predicate as an element of the record tuple and
modifying the policy and capture functions to take predicates into account.

The second refinement is features-to-action sampling technique (FAST). This
uses the T'D()) temporal difference learning algorithm to learn a value function
for actions, both offline before the search begins and online based on the MCTS
playouts. In the ICARUS framework, the values learned offline can be encoded
in the initial information function 6iyjtia1, and the online learning by embedding
TD(A) in the backpropagation function w.

Last good reply (LGR)

Specification 4 gives LGR as an ICARUS. Each record specifies a move to be
replied to, and the player making the reply (LGR-1). The information associated
with a record is the last good action played in reply to that move by that
player, or L ¢ A if no reply has yet been recorded (LGR-2, LGR-3). The policy
examines the most recent move [a;]#¢t from the point of view of the player
about to act p;. If a reply has been recorded, and that reply is compatible with
the current determinization, then it is played. Otherwise, a legal action is chosen
uniformly at random (LGR-4). During backpropagation, the records updated
are those corresponding to the actions in the playout, each action observed from
the point of view of the player immediately following it (LGR-6). The context
specifies the action with which that player replied, as well as the identity of the
player (LGR-5). If the player won the simulated game (i.e. achieved a reward
greater than zero), the action is recorded as the last good reply; if not, the
existing information is retained (LGR-T7).

Drake [60] only uses the reply information during simulation, whereas Spec-
ification 4 has it used for the entire playout. This is likely to be very weak.
However using this definition means that the stage at which the reply informa-
tion is used can be specified naturally by composition operators (Section 8.2.4)
rather than as a part of the ICARUS itself.
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R=Mx{1,... r} (LGR-1)

0=AU{l} (LGR-2)
Oinitial (M, 1) = L (LGR-3)
lf 9 ([at]v’” , pt) = L
VAL or g (jar = p0) ¢ A
a(<a’1a"'7at>793AS)(a’) = 1 if@([at]vpt’pt) —a (LGR—4)
0 otherwise

where p; = p(f(s,{a1,...,a;)))

U=Ax{l,... K} (LGR-5)
§(s,(ar, .- yar)) = ((([ai] 77, pi)s (@iv1, p0)) = i=1,...,t=1)
(LGR-6)

Gnew if >0
w(aolda (ancwa P)a /J,) - { IJ‘p (LGR—?)

aold  if p, <0

Specification 4: Last good reply (LGR)

Baier and Drake [61] describe a variant of LGR called last good reply with
forgetting (LGRF), in which replies that led to a loss are deleted from the reply
table. Specification 4 can be modified to describe LGRF simply by modifying
the backpropagation function:

Onew if ptp, >0
w(aolda (ancwa p)a H’) =41+ if Gold = Anew and Hp <0 (LGRF_7)
aolg  otherwise

N-Gram Average Sampling Technique (NAST)

N-gram average sampling technique (NAST) [31] is a new enhancement created
as part of the work presented in this thesis, which builds upon previous work by
Stankiewicz et al [62] and Tak et al [63]. NAST generalises the notion of MAST:
instead of learning values for single moves, NAST learns values for sequences
of consecutive moves (indeed, MAST can be thought of as the N = 1 case for
NAST). Experiments published in [32] and presented in Section 8.5.4 showed
that NAST is effective in three imperfect information games with n = 2 typically
giving the strongest performance.

In the context of games, an N-gram is a sequence of N consecutive actions.
In the same way that MAST maintains average reward statistics for actions,
N-gram-Average Sampling Technique (NAST) is introduced to maintain aver-
age reward statistics for N-grams. A 1-gram is simply an action, so MAST is
a special case of NAST with V = 1. NAST can also be thought of as a gener-
alisation of the last good reply principle [60]: the average reward for a 2-gram
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R=M"x{1,...,x} (NAST-1)

O =R x Ny (NAST-2)
Ginitial(ml, ey M, Z) = (O, 0) (NAST—g)
a((at,...,az),0,A5)(a) =TU {arg rzlaxv(O((at,nJrg, ce g, a) L pe))
ac€As
(NAST-4)
where pi = p(f(s, (a1, .- ai)))
q flog3 .
and v((q,n)) =< n + cNasT n ifn>0
+00 ifn=0
where X = Z 92(<at_n+2, N ) b>v)
beEA,
where 0y denotes the component of # in Ny
v =A{1,...,x} (NAST-5)
€5, a1, 1)) = {({Gir- 2 Gipnr)  pignn) © G= 1o b=t 1)
(NAST-6)
w((Qan)7p>H) = (Q+Hp,n+1) (NAST-?)

Specification 5: n-gram average sampling technique (NAST)

(a1, az) indicates whether action as is a good reply to action a1, and more gen-
erally the average reward for an N-gram (ay,...,an—_1,ay) indicates whether
action ay is a good reply to the sequence of consecutive actions {a,...,an—_1).
This sequence can contain actions played by several players, including the one
playing action ay.

Stankiewicz et al [62] apply N-grams of length 2 and 3 with an e-greedy
simulation policy to the game of Havannah, achieving a significant increase in
playing strength. Tak et al [63] suggest an enhancement similar to NAST which
uses a combination of 1-, 2- and 3-grams, and demonstrate its effectiveness in the
domain of General Game Playing. There are two key differences between these
approaches and NAST: first, NAST uses only a single N-gram length, allowing
the effectiveness of different lengths to be measured in isolation; second, NAST
allows for simulation policies other than e-greedy to be used, including UCBI.

NAST is defined in Specification 5. Each record is an n-gram, i.e. a sequence
of n moves (NAST-1). Note that n is a parameter here; Specification 5 defines
a family of enhancements for n = 1,2,3,... where n is the n-gram length. The
information associated with a record is the total reward and number of visits
(NAST-2, NAST-3). The policy uses these to select actions according to UCB1
(NAST-4), although it would be possible to use any of the selection policies
described in Section 8.2.3 for MAST. Backpropagation updates the records as-
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sociated with each sequence of n moves in the playout (NAST-6), with the player
who played the last move in the sequence as contextual information (NAST-5).
The total reward and number of visits are updated in the natural way (NAST-7).

Note that NAST with n = 1 is equivalent to MAST (Section 8.2.3) with the
UCBI policy. The idea of MAST is to measure the “goodness” of each available
move independent of context. NAST instead measures the “goodness” of moves
in the context of the N — 1 moves that preceded them. NAST is expected to
offer an improvement over MAST in domains where contextual information is
important to success and useful statistics about chains of moves can be learnt.
NAST should also be a robust enhancement: in games when there is no useful
information for NAST to learn, the N-gram values will be approximately equal
and the simulation policy will resemble random play. NAST is unlikely to bias
the playouts by reinforcing incorrect values.

Other examples

The literature contains many other examples of MCTS enhancements that in-
volve either using information from external sources or capturing and reusing
information within the search. All such approaches designed to date can be
represented in the ICARUS framework. AMAF, MAST and LGR were chosen
as examples because they capture and reuse information in significantly differ-
ent ways, whereas many enhancements are modifications of existing ones (for
example the different AMAF variants described in [132]). Furthermore, these
three enhancements have led to significant increases in the power of the MCTS
algorithm for diverse application domains. This section briefly describes how
some other enhancements from the literature can be defined within the ICARUS
framework.

Chaslot et al [133] introduce progressive bias and progressive unpruning,
which use a heuristic value function to bias selection and restrict expansion
respectively. In the ICARUS framework this can be achieved by encoding the
heuristic in the initial information function 6i,jtin1 and modifying the policy
function « appropriately.

Nijssen and Winands [73] propose a modification of progressive bias called
progressive history, which replaces the heuristic function with values extracted
from simulations. Within the ICARUS framework this is similar to progressive
bias, except that the information is updated by the backpropagation function
w instead of being initialised heuristically.

Rimmel and Teytaud [134] introduce contextual MCTS, which works by map-
ping each terminal history to several “tiles”, where a tile corresponds to a pair
of (not necessarily consecutive) actions played by the same player. During back-
propagation the average values of tiles are updated, and these values are used
to bias simulations. When contextual MCTS is encoded as an ICARUS, the
tiles become records and the policy and backpropagation functions are defined
in the natural way.

The MCTS-Solver enhancement introduced by Winands et al [135, 136]
works by backpropagating game theoretic values through the tree. A termi-
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R=R;UR,y (COMB—l)

©=06:U6, (COMB-2)
1 .
Oinitial (1) = ei;itial(r) ?f reh (COMB-3)
Oimitial (1) if 7 € Ry

ai(h,0,As) if h is a selection or expansion node

a(h,0,Ay) = {

as(h,0,As) if h is a simulation node.

(COMB®-4)

U=, LW, (COMB-5)

£(s,h) = €1(s, h) 4 &x(s, h) (COMB-6)
~Jwi(0,9,n) if0 €O, i

w(f,9, p) = {w(&%u) f0co, (COMB-7)

Specification 6: Sequential composition ()

nal state is always known to be a win or a loss; at a decision node for player p,
if one of the children is a known win then the node itself is a known win; if all
of the children are known losses then the node itself is a known loss. This can
be implemented by allowing nodes to take reward values of +0co and —oo to
represent known wins and losses respectively, and modifying backpropagation
to handle these values appropriately.

8.2.4 Combining ICARUSes

For a particular domain, the most effective information reuse approach is often
a combination of other approaches. Thus it is useful to have well-defined ways
to combine ICARUSes.

Three ways of combining ICARUSes are considered. The first is sequen-
tial combination. For two ICARUSes I; = (R1,01,0} .1, 1, V1, &, w1) and
Iy = (R, 09,02 .1, @2, V2, &2, wo), the combination I; > I, is defined in Specifi-
cation 6. Here U denotes disjoint union: the sets are assumed to be disjoint, by
relabelling elements if necessary. Each enhancement maintains its own records
and information; the policy functions are combined so that I; > I uses the
policy from I; during selection and expansion, and the policy from I5 during
simulation. Selection and expansion nodes are defined in Section 8.2.2.

The second way of combining enhancements is linear combination. For two
ICARUSes I; and Iy as above, and a function A : ©P%¢ — [0,1] (the mixing
coefficient, which is a function of the information for the baseline ICARUS as
defined in Specification 1), the combination AI; + (1 — A)I5 is defined as in
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Specification 6 with the exception of the policy function:

a(h,0,A,) = Xai(h,0, A,) 4+ (1 — Naz(h, 6, A,) (COMB*-4)
where A = \ (6" ([h] 7)) .

This can be generalized to define any convex combination of two or more en-
hancements in the natural way.

The third combination type is mazilinear combination. This is valid only for
ICARUSes where the policy function has the form

aULQVAQ::U{m§£fxvmﬂ (8.1)

for some function v : A — R. For two ICARUSes I; and I satisfying this
condition with functions v and v, respectively, and a function A : @b2% — [0, 1],
the combination A1 @ (1—\)Is is defined as in Specification 6 with the exception
of the policy function:

alh,0,A;) =T {ar{;gerzlax (Mi(a) + (1 — /\)Ug(a))] (COMB®-4)

where A = X (6" ([h] 7)) .
For example, this allows RAVE [54] to be defined as

Irave = Aravelamar @ (1 — AravEe)IBaseline (8.2)

where

k
3n+k

ARAVE(g,n,m) = (8.3)
for some constant k (which specifies the number of visits, i.e. the value of n,
for which Agavg = 0.5). Again, maxilinear combination can be generalised to
combine more than two ICARUSes.

All ways of combining ICARUSes make use of information from the baseline
definition (Section 8.2.2) in some way, whether to determine the current stage
(selection, expansion or simulation) of the playout or to vary the combination
coefficient. Thus for a combination to make sense, it must incorporate the
baseline ICARUS.

8.2.5 Convergence properties of ICARUSes

Kocsis and Szepesvéri [2] prove that, for games of perfect information, UCT
converges on the optimal move in the limit. That is, as the number of iterations
tends to infinity, the probability of selecting a suboptimal move tends to zero.

Definition 13. Consider a history h, which when applied to the initial game
state so gives a state f(sg,h) = s with legal actions A;. Let A* C A, be the
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set of optimal actions from state s. An ICARUS I with policy « is convergent
if, for all a € A, \ A,

lim a(h,0,A)(a) = 0. (8.4)
iterations— oo
That is, for every suboptimal action a, the probability assigned to a by the
playout policy tends to zero in the limit.

For the baseline ICARUS (Specification 1) applied to a game of perfect
information:

Lemma 1. The baseline ICARUS is convergent.

Proof. Tt follows immediately from [2, Theorem 5] that (8.4) holds for a@ =
abase. O
h

Lemma 2. There exists an iteration number ¢ such that, after ¢ iterations,
is a selection node.

Proof. From [2, Theorem 3|, there exists a constant k such that, after ¢ itera-
tions, the number of visits to h is at least [klogt]. In particular there is a ¢
such that [klogt] > 2, which implies that h is expanded and is now a selection
node. O

From these results, it can be shown that certain combinations of ICARUS
are convergent:

Theorem 1. Let I; and I, be ICARUSes such that I; is convergent. Let
A ©P3e 5 0,1] such that A(g,n,m) — 0 as n — co. Then the following
ICARUSes are convergent:

(i) Mz + (1 =XM1
(ii) A2 @ (1 — NIy (if defined);
(111) Il > 12.

Proof. The convergence of (i) and (ii) follows from the fact that A tends to 0 as
the number of visits to a node tends to infinity. This ensures that I; dominates
in the limit, so the combination inherits its convergent behaviour.

The convergence of (iii) follows from Lemma 2: after some finite number of
iterations, all nodes are selection nodes (recall Chapter 2 that “games” are de-
fined to have a finite number of states). At this point, I; > I behaves identically
to I; and thus converges. ]

It follows from Lemma 1 and Theorem 1 (ii) that RAVE (8.2) converges.
The ICARUS combinations used in the experiments in Section 8.5 (Table 8.1)
all have the form I > I5 for I} € {IBaseline, IRAVE }, and so also converge.

Note that these convergence results only apply to games of perfect informa-
tion. For games of imperfect information, no proof equivalent to that of Kocsis
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and Szepesvari [2] can be presented for ISMCTS. Indeed, in experiments which
are not detailed here it was observed that ISMCTS does not converge in the
sense of Definition 13, either oscillating between several policies or settling on a
policy which does not form part of a Nash equilibrium. Understanding the be-
haviour of ISMCTS for large number of iterations is an open problem. However
if convergence to a Nash equilibrium is important then other techniques such
as counterfactual regret minimization (introduced in Chapter 3.3.4 page 32)
are more appropriate, but may not converge to a good strategy as quickly as
ISMCTS. Nevertheless, designing enhancements that converge in the perfect
information case seems to be a useful way to obtain plausible play across all
domains.

8.3 Episodic Information Capture and Reuse

This section introduces EPisodic Information Capture and reuse (EPIC), an
enhancement designed within the ICARUS framework. The unique feature of
EPIC is how information is captured, i.e. which states are considered to be
correlated. A game can be be divided into a number of time windows called
episodes, and share information between states that correspond to the same
position in different episodes. That is, states reached by the same sequence of
actions from the beginning of their respective episodes, but where the starting
points of those episodes may be different. The aim of information capture and
reuse is to exploit the correlations between the values of nodes in different parts
of the game tree. EPIC is designed to exploit the correlation between subtrees
rather than individual nodes.

Many games are episodic in nature: multiplayer games have a sequence
of opponents’ turns; ladder games such as Dou Di Zhu [26], President and
Cheat [137] have a sequence of moves until a “reset” action occurs; strategic
board and card games such as Lord Of The Rings: The Confrontation [27] and
Magic: The Gathering [52] have compound turns consisting of several individual
decisions. If the episodes truly are independent, this implies that the strength
of a policy for a particular episode does not depend on the context of where
that episode occurs in the game. Thus strong play overall can be achieved
by constructing a good policy for each episode, and combining these policies
to obtain a policy for the full game. The fact that the same episode occurs in
several different parts of the game tree implies that a naive tree search algorithm
must rediscover the strong episode policy many times. EPIC aims to discover
the episode policy only once, and reapply it throughout the game tree.

The assumption that episodes are independent of context may be reasonable
but is never strictly true in real games. In experiments, EPIC is combined
with the baseline player, with EPIC used only as a simulation policy. This
ensures that the baseline tree policy can tailor itself to the context of the current
episode if that context matters, whilst the simulation policy that uses episode
information but ignores context is still likely to be much stronger than a random
policy.
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The idea of episodes is not specific to any particular game, but it is also
not universal. Games such as Chess and Go do not have a natural episodic
structure, or rather the highly spatial nature of these games means that a purely
temporal notion of episode does not make sense. However, even for these games,
notions such as combinations in Chess [138] and joseki or tesuji in Go [139, 140]
are a type of spatial episode. This work only considered temporal episodes,
consisting of consecutive game turns. Nevertheless, a spatially episodic nature
could conceivably be exploited by enhancements similar to EPIC.

8.3.1 Definition of EPIC

Although episodes do not feature in the formal definition of a game given in
Chapter 2 the division into episodes is usually highly intuitive when it exists,
for example identifying the start of a new round or hand in a card game or
a particular event happening such as a piece being captured. In other words,
it is a piece of domain knowledge which does not require expert insight into
the game. In most cases the episode information can be read directly from an
implementation’s representation of the game state.

Let E be a finite nonempty set of episode labels. Define e : S — E U {1},
the episode function. The element /7 ¢ E is the continuation label.

Consider a game I". An episode of I is a subtree of I'’'s game tree such that

1. for the subtree’s root node s,, e(s,) € E;

2. for all leaf nodes s; of the subtree, either e(s;) € F or s; is a terminal
state;

3. for all other nodes s, e(s) = 1.

If the initial state has episode label in E then the episodes partition the game
tree, as illustrated in Figure 8.1.
The position-in-episode of a history (as,...,a;) € A* is the pair

w({ay,...,as)) = (e(s:),{@it1,--.,at)) (8.5)

where s; = f(so,{a1,...,a;)) and ¢ is maximal such that e(s;) # /7. The
position-in-episode specifies the label of the current episode and the suffix of
the history restricted to that episode. See Figure 8.1 for an example. The
position-in-episode of a move history is defined similarly. Positions-in-episode
are always defined relative to the initial state sg of the game, regardless of the
current state.

Conceptually an episode should be somewhat independent of its context:
when episodes with the same root label appear in different parts of the game
tree, they should look similar and have similar outcomes for all players. In other
words, if two different histories have the same positions-in-episode, they should
have similar rewards. This statement is deliberately vague: the assignment of
episode labels to states is a decision to be made when designing the AI agent
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Figure 8.1: Example of a game tree where each node is labelled with its episode
label. The shaded regions show the partitioning of the tree into episodes. The
circled nodes have the same position-in-episode, namely (es, (bs, b5)).
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R=ExM* (EPIC-1)

© =R" x Ny x Ng (EPIC-2)
Oinitial (e, h) = (0,0,0) (EPIC-3)
alh,0,A,) =U {arg max v(f(m([h H a]v)))] (EPIC-4)
a€Ag
q, logm |

where v((q,n.m)) = { 5 T CEPIC\ 7 im0

~+o00 ifn=20
U= {wavaih d)visit} (EPIC—5)

E(sy{ary ... ae)) = (m([{ar, ..., ai)] ), Yyisit) = 0 < <t)
++ <(7T([<a1, sy Ai—1, a>]v)7wavail) : 0<e <t
a€A(f(s,(ar,...,ai-1))),a# a;)  (EPIC-6)

(Q+Nan+17m+1) ifw:'l/]visit

. (EPIC-7)
(q7 n,m-+ 1) if ’l/J = wavail

w((g,n,m), v, p) = {

Specification 7: Episodic information capture and reuse (EPIC)

rather than a part of the formal game definition. Examples of episode functions
for the experimental domains are given in Section 8.3.2.

Specification 7 defines EPIC with game specific episodes as an ICARUS. The
records used by EPIC are the positions-in-episode (EPIC-1), each of which has
the standard ISMCTS information of total reward, visit count and availability
count (EPIC-2, EPIC-3). The positions-in-episode for a particular episode label
can be organised into a tree structure. Each history is mapped to its position-
in-episode. If EPIC is combined with the baseline algorithm using sequential
combination then during simulation, subset-armed UCB1 selection is applied
according to the current position-in-episode (EPIC-4): effectively this means
that the simulation policy for the overall search is provided by the tree policy
in the episode trees. Rewards are backpropagated as in the baseline case, but
in the episode trees rather than the full tree (EPIC-5, EPIC-6, EPIC-7).

8.3.2 Episode functions for experimental domains

In this section the EPIC episode structure is defined for each test domain.
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Dou Di Zhu

The EPIC episode function for Dou Di Zhu is defined as follows. Set F =
{Ll, L27 Lg} and

(8.6)

(s) L; if player ¢ makes a leading play from state s
e(s) =
11 otherwise.

Here an episode is a stream from one leading play to the next. EPIC aims to
improve on a weakness of ISMCTS for Dou Di Zhu caused by the high branching
factor associated with leading plays (several hundred in some cases [26]). EPIC
helps to more accurately model the sequence of plays that follows each leading
play, and thus give a more accurate evaluation of each leading play, without
having to rediscover this sequence in several parts of the tree.

Hearts

To define the episode function for EPIC, set E = {D, Ly, Lo, L3, L4} and

D if s is the chance state for the deal in a new round
e(s) = { L; if player i begins a trick from state s (8.7)
/I otherwise.

The first episode in a game of Hearts encompasses the dealing and card passing
stages; subsequent episodes are single tricks. Here EPIC makes use of the fact
that similar tricks may appear in many different places in the search tree.

Lord of the Rings: The Confrontation
For EPIC’s episode function, set E = {M;, M3} and

e(s) = M; if there. is no combat in progress and p(s) =i (8.8)
1 otherwise.

An episode begins when a player moves a piece. If this movement does not result
in combat, the episode ends immediately. Otherwise, the episode continues until
combat is resolved. The benefit of EPIC here is twofold: it collects statistics
for each movement action in a manner similar to MAST, and it refines the
simulation policy for combat.

Checkers
To apply EPIC to Checkers, set E = {M;, M} and

e(s) =

{Mi if a non-chained capture move is available, and p(s) =i (8.9)

" otherwise.
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Here a “non-chained” capture is one which does not continue a chain of captures,
but may start one. An episode begins when a capture is made, and ends the
next time a capture is made (by either player) on a subsequent turn. The
episodes here are intended to exploit the notion that the value of moves changes
significantly when a capture is made.

Othello
The EPIC episode function is defined by F = {My, M>} and

e(s) =

M; if the previous move was on the edge of the board, and p(s) =i
" otherwise.

(8.10)
An episode begins on the turn after a player places a new piece on one of the 28
squares around the edge of the board. This captures the strategic notion that
controlling the edges of the board is important: pieces placed on the edge are
difficult to capture but create opportunities to capture opponent pieces.

Backgammon

The compound turns of Backgammon give a natural episode structure. Set
E ={R} and

if the di 11
e(s) = {R if the dice are about to be rolled (8.11)

/1 otherwise.

Thus an episode consists of a full turn: the dice roll and the two or four moves
that follow it.

8.4 Comparing ICARUSes

Having a common notation for information reuse enhancements provides a tool
for their analysis and comparison. Common themes that occur in several en-
hancements can be identified, it is easy to see which enhancements deviate from
them, and use them as building blocks to define new enhancements. For exam-
ple, consider the following observations from Specifications 1-4 and 7:

e Baseline, AMAF and EPIC all have records that are, or contain, move
histories (Base-1, AMAF-1, EPIC-1). This implies that their records have
a tree or forest structure. In contrast, MAST and LGR have a flat record
structure with one record per move or action (MAST-1, LGR-1).

e For all enhancements studied here with the exception of LGR, the informa-
tion associated with a record consists of a total reward (vector or scalar),
a visit count, and in some cases an availability count (Base-2, AMAF-2,
MAST-2, EPIC-2).
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e Baseline, AMAF and EPIC all use some variation on the UCB1 policy
(Base-4, AMAF-4, EPIC-4).

e LGR is the only enhancement whose policy explicitly sets the probabilities
of some moves to 1, giving a simulation policy that is more deterministic
than for other enhancements (LGR-4).

e Ignoring updates for availability, most of these ICARUSes update one
record per state visited in the playout (Base-6, MAST-6, LGR-6, EPIC-
6). The exception is AMAF, which potentially updates several records per
playout step (AMAF-6).

At a higher level, sets of nodes which share information can be identified.
There are two ways in which information can be shared between nodes via
records:

1. nodes use information from the same record during playout and update
that record during backpropagation; or

2. nodes use information from different records but a visit to one node causes
both records to be updated.

In other words, information can be shared by either writing to one record that
is read by many nodes, or writing to many records that are each read by one
node. MAST, LGR and EPIC are of the former type, whereas AMAF is of the
latter type.

Figure 8.2 illustrates this information sharing. In each tree, information is
shared between the nodes connected by a dotted line. Comparing these types
of pictures with natural intuition about the game, particularly which states
are expected to be correlated, gives insight into which enhancements are likely
to work well for which games. Looking at Figure 8.2 and the corresponding
ICARUS definitions, the following observations can be made about the type of
games for which each enhancement should be effective:

o AMAF: Works well for games where the strength of an action is often
independent of time. This has shown to be true in games such as Go [7]
and Hex [21], where the RAVE enhancement works well. Both of these
games are characterized by moves which, with a few exceptions, are fixed
in place once made.

e MAST: Effective when the quality of an action is independent of the state
from which it is played. This is effective in General Game Playing where
little is known about the state and it is somewhat true for most games.
(Arguably any interesting game that people would play will at least slightly
satisfy this property, as it would otherwise be difficult for human players
to develop an intuition of strategy). This is similar to AMAF, but assumes
even less about the dependence of action value on context.

e LGR: Works well for games with a notion of “sente” (such as Go), where
some moves imply a certain reply is necessary.
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AMAF

LGR

Figure 8.2: A pictorial representation of node correlation for various information
capture and reuse strategies. In each case, the strategy is based on the notion
that the values of the nodes connected by a dotted line are correlated, and thus
sharing information between those nodes is beneficial.

e EPIC: Useful in games with an episodic nature (e.g. ladder-based card
games) or complex compound turns (such as LOTR:C), where contextual
information can be learned from these episodes.

The information capture methods of MAST, LGR and EPIC all belong to
a class which learns the value of actions given some episode preceding the ac-
tion. In the case of MAST and LGR the episodes are of fixed length (1 and
2 respectively) whereas EPIC uses episodes that are aligned to the natural
episodic structure of a particular game. Fixed length episodes require no do-
main knowledge to implement and can be represented as N-grams (a sequence of
N consecutive moves). N-grams have already been demonstrated as effective in
capturing information with MCTS search in Havannah [62] and General Game
Playing [63]. Hence as for MAST and LGR, EPIC does not absolutely require
game-specific information about the nature of episodes, and may be seen as a
generalisation of MAST and LGR.
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There are also possibilities for other new types of enhancement that can
be built with the ICARUS framework. Figure 8.2 illustrates enhancements
which exploit a particular type of correlation between states in a game, but
any other type of correlation can be encoded as an information capture en-
hancement within the ICARUS framework. Similarly there are many ways of
injecting knowledge into the MCTS algorithm, with tree selection biasing and
heavy playouts being amongst the most common [1, 141]. New techniques for
injecting knowledge into MCTS can be combined with any existing information
reuse enhancement. One potential application for the ICARUS framework could
be to use techniques from machine learning (for example genetic programming)
to automatically search the space of possible enhancements to discover new ones
which work for a particular game. There are currently no widely used enhance-
ments to MCTS which deal explicitly with hidden information and uncertainty
in games. ICARUS provides a framework for exploring new enhancements in
this area, for example considering information asymmetry when performing in-
formation capture.

8.5 Experiments

In this section experiments are presented which test the effectivness of different
ICARUS combinations across a wide variety of games.

8.5.1 Strength of ICARUS combinations

A wide range of experiments were conducted to compare ICARUSes and com-
binations of ICARUSes for the six domains listed in Section 8.3.2, with aim
to compare the performance of enhancements for games of perfect and imper-
fect information, and investigate whether combinations of enhancements can be
greater than the sum of their parts.

In each experiment the opponent was an unenhanced player using MO-
ISMCTS (for games of imperfect information) or UCT (for games of perfect
information), with 5000 playouts per decision in all cases. Comparing the effec-
tiveness of enhancements if the games were being played randomly would not
allow for any useful conclusions to be made, so performance of MO-ISMCTS
was evaluated for each game. Previous work [27] presented in Chapter 5.2.4
(page 83) showed the ISMCTS player was on a par with the strongest setting of
a commercial Dou Di Zhu Al developed by Al Factory Ltd!. It was also shown
in Chapter 6.3.2 (page 95) that MO-ISMCTS is on a par with intermediate-
to-expert level human players for LOTR:C. For Hearts a trial of MO-ISMCTS
against the Al for Hearts which ships with the Microsoft Windows 7 operating
system was conducted, again showing strength parity. For Checkers, Othello and
Backgammon, unenhanced UCT is significantly worse than state-of-the-art Al
players, but largely because the state-of-the-art is so advanced for these games.

Lyww.aifactory.co.uk.
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Name | EPIC RAVE MAST LGRF | ICARUS specification
- IBaseline
E o IBaseline > IEPIC
R IravE
ER . . Irave > IepPIC
M o IBaseline > IMAST
EM . . IBasetine > 3 (ImasT + IepIC)
RM . Irave > ImasT
ERM . . Irave > 5 (Iuast + Iepic)
L . IBaseline > ILGRF
EL . . IBasetine > 3 (ILarF + IgpIC)
RL . IravE > ILGRF
ERL o e | Irave > 5(ILgrr + Iepic)
ML . . Ipaseline & 5 (ImasT + ILGRF)
EML o o o IBaseline > 3 (ImasT + ILgrF + IEPIC)
RML o o Irave > 3 (Ivast + ILGrr)
ERML| e . e | Irave > 5(Ivast + Ierr + IEpPiC)

Table 8.1: A list of ICARUS combinations tested and their abbreviated names

Anecdotally, unenhanced UCT appears to be around the level of a novice human
player for these games, making plausible choices and avoiding obvious mistakes.

Sixteen combinations of ICARUSes listed in Table 8.1 are compared, for
the six games EPIC episodes were defined for in Section 8.3.2. The component
enhancements used are:

e the baseline ICARUS (Section 8.2.2);

RAVE (Section 8.2.4), itself based on AMAF (Section 8.2.3);

MAST (Section 8.2.3);
e LGRF, i.e. LGR with forgetting (Section 8.2.3);

EPIC (Section 8.3) using the episode functions for each game described
in Section 8.3.2.

Where the enhancements use parameters, an initial round of parameter tuning
experiments was performed to set the values for the main experiment. The
parameter values are ¢ = 0.7 for the exploration constant in both the baseline
player and EPIC, k = 250 for RAVE, and 7 = 1 for MAST. These values give
consistently good performance (relative to other parameter settings) across all
games.

The ICARUSes listed in Table 8.1 cover all subsets of the four enhancements
tested here. Each enhancement was originally designed for a specific phase of
the MCTS iteration: RAVE [54] for selection, and MAST [59], LGR [60] and
EPIC (Section 8.3) for simulation. The sequential combinations, using the >
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operator, are defined to use each enhancement only for the appropriate phase.
Where more than one enhancement is used for one of the phases, they were
combined using linear combination (as described in Section 8.2.4) with equal
weights. Equivalently, at each step in the simulation one of the enhancements
was chosen at random and then the action chosen according to that enhance-
ment’s policy. For example if the simulation enhancement is %(ILGRF + Igpic),
the simulation plays according to LGRF with probability % and according to
EPIC with probability 3. The definition (Equation 8.2) of Irave as a maxilin-
ear combination of Ianar and Ipaseline With decaying weight Agavg is as used
by Gelly and Silver [54].

For a k-player game, one instance of the ICARUS combination in question
was played against k£ — 1 instances of the baseline player (unenhanced MO-
ISMCTS). Each algorithm (enhanced and baseline) uses 5000 MCTS iterations
per decision. For Dou Di Zhu the ICARUS player plays as the Landlord against
two non-Landlord baseline players. For Hearts the ICARUS player plays against
three baseline players. For LOTR:C the ICARUS player plays as both Light
and Dark against a baseline player (and due to the asymmetry of the game
the results for each player are presented separately). For Checkers, Othello
and Backgammon the ICARUS player plays against a baseline player, playing
half the games as white and half as black. Each experiment played a large
number of games (between 1000 and 2500) across a cluster of PCs, using just
over one CPU-year in total. Win rates are calculated with Clopper-Pearson
intervals [38] at the 95% confidence level. Each game of Dou Di Zhu, LOTR:C
and Backgammon has a clear winner with no possibility of a draw. In Hearts
finishing in first or equal first place is counted as a win, and any other outcome
as a loss. In Checkers (where draws are common) and Othello (where draws are
possible but rare), only the number of wins are counted; draws are counted as
losses.

Average results for each enhancement are presented in Figure 8.3. For each
enhancement, aggregate results for those combinations are presented in Table 8.1
which feature the given enhancement, and compare with the results for those
combinations which do not. For example in the pairs of bars labelled “RAVE”,
the left-hand (diagonally shaded) bar sums the results for the eight combinations
in Table 8.1 for which the RAVE column is blank, and the right-hand (solid
shaded) bar for the eight combinations where the RAVE column is marked e.
Where each combination in Table 8.1 was tested for 1000 trials, each of the bars
in Figure 8.3 represents 8000 trials.

Results for individual combinations are shown in Figure 8.4. The dotted lines
indicate 95% confidence intervals for evenly-matched UCT (perfect information)
or MO-ISMCTS (imperfect information) players. Any AT with results above this
band is significantly better than an unenhanced player.

Figure 8.3 shows that EPIC provides a significant improvement for all games
(not quite reaching 95% significance for LOTR:C as Light). Analysis of variance
(ANOVA) over all results shows that EPIC yields an improvement significant
at the 99.9% level. The improvement is particularly marked for Dou Di Zhu,
which has a strongly episodic nature, since during an episode (a ladder) many
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(a) Dou Di Zhu (b) Hearts

/o . 55% .
EPIC RAVE MAST LGRF EPIC RAVE MAST LGRF

(g) Backgammon

Figure 8.3: Average playing strength results for four ICARUSes tested in six
different games. In each pair of bars, the left-hand bar is the average win rate
over the eight combinations (out of the 16 listed in Table 8.1) not featuring the
enhancement in question, and the right-hand bar the average over the combi-
nations that do feature the enhancement.
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(a) Dou Di Zhu (b) Hearts

Win rate
Win rate

Win rate
Win rate

45%

40%

Win rate
Win rate

Win rate

50%
45%

40% L

Figure 8.4: Playing strength results for ICARUS combinations (the names are
listed in Table 8.1). For each ICARUS the percentage of games won is presented
along with 95% confidence intervals. In each experiment 5000 MCTS iteration
were used and the opponents were all baseline players (—). Dashed lines show
the empirically measured 95% confidence interval for evenly-matched UCT or
MO-ISMCTS players; any player with results above this baseline is significantly
stronger than unenhanced UCT or MO-ISMCTS.
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cards cannot be played, but these unplayable cards will be played in future
episodes. Furthermore, the order of episodes is not often important for Dou Di
Zhu. There is also some independence between tricks in Hearts and between
turns in LOTR:C and Backgammon, though less than between ladders in Dou
Di Zhu, so that the improvements due to EPIC, while significant, are not so
marked. Checkers and Othello lack a natural episodic structure, so instead
basic notions of strategically important moves (captures in Checkers and edge
piece placement in Othello) are used to to delimit episodes. This works in both
games, and for Othello is particularly effective.

Figure 8.3 also shows that RAVE is not effective in the imperfect information
games. It is actually detrimental to performance in Hearts, and as the Dark
player in LOTR:C, where the order in which moves are played is important to
the strategy of the game. This makes intuitive sense: for example in Hearts
the value of a particular card is very much dependent on when that card is
played. For example, leading a trick with K & will be either a reasonably good
or a terribly bad idea, depending whether the high-scoring Q# has already been
played, so that AMAF/RAVE will fail to correctly learn whether K & is a good
move. For Dou Di Zhu and LOTR:C as the Light player, RAVE did not make
matters worse, but nor did it significantly improve playing strength. The only
game where RAVE is significantly beneficial in experiments is Checkers.

MAST, LGRF and EPIC are more robust enhancements than RAVE: they
are sometimes beneficial, and never detrimental to a statistically significant de-
gree. As observed by Tom and Miiller [130], RAVE performs poorly in situations
where relative ordering of moves is important. However MAST is based on a
similar principle, and is more robust. One intuition for this is that RAVE alters
the tree policy in a way that can reinforce the assumption that move ordering
is not important in situations where this assumption is false. MAST on the
other hand learns whether a move is good or bad on average. This implies that
if move ordering is not important to the goodness of a move, MAST will rein-
force selection of this move, whereas if move ordering is important MAST will
enforce no preference over selecting the move, falling back to the behaviour of
the default random policy of MCTS. Thus the potential for MAST to learn the
wrong thing, as opposed to learning nothing at all, is much less than for RAVE.

Figure 8.4 shows that linear combinations of the enhancements are often
greater than the sum of their parts. LGRF produced limited improvements on
its own, but it enhanced other techniques (e.g. consider EL beat both E and
L for Dou Di Zhu, despite L being significantly worse than —, and ML beat
both M and L for LOTR:C as Dark despite no significant difference between —
and L). MAST was generally effective across all games, but proved even more
effective in combination (e.g. consider RML beat all of R, M and L for LOTR:C
as Light and ML beat both M and L for LOTR:C as Dark). EPIC performed
strongly across all games, but was most effective in combination for Dou Di Zhu
(EL beat both E and L) and LOTR:C as Light (ERM beat all of E, R and M).
From Figure 8.4 (g) it appears that ERL is a particularly strong combination
for Backgammon, yet analysis of variance (ANOVA) does not show this to be
statistically significant.

164



Analysis of the MCTS trees shows that the final number of visits for the
chosen action is significantly (often 10-30%) higher for EPIC than for the base-
line and LGRF, RAVE or MAST. Hence EPIC is converging more quickly to
an action which is generally stronger. The average reward assigned by EPIC
to the chosen action is also markedly different from that in trees using other
enhancements, and presumably this value is more accurate given the increased
playing strength due to EPIC. Of the enhancements tested here, only RAVE has
a significant impact on the depth of the MCTS tree. RAVE tends to construct
deeper trees, with the deepest node being on average one ply deeper than for
the other algorithms. That RAVE is detrimental despite this suggests that it is
expanding too deeply the “wrong” areas of the tree, although the fact that the
degree of exploitation at the root is the same as without RAVE suggests that
this mostly occurs at levels in the tree below the root.

8.5.2 EPIC compared to NAST

EPIC requires a game-specific episode function. To determine whether this
domain knowledge is strictly necessary, EPIC was tested against NAST with
n = 2. Both enhancements use UCB1 as a simulation policy, the difference
being the context in which the multi-armed bandit statistics are collected: for
EPIC the context is game-specific, whereas for n = 2 NAST the context is the
previous move in the game (similar to LGRF). Results are shown in Figure 8.5.
In Othello, it was found that NAST is significantly better than EPIC; in all other
cases, NAST and EPIC have the same performance within 95% significance. As
a corollary to this, it can be concluded that NAST is at least as robust as EPIC
for the games studied.

EPIC remains an interesting method for injecting knowledge into search in
other game domains, but for these games it is clear that the episodes do not need
to be so carefully chosen. Both EPIC and NAST are methods for learning useful
lines of play for the playout policy; EPIC achieves this by learning fragments of
lines delimited by game-specific episodes, whereas NAST with N = 2 essentially
learns a Markov model. For the games tested here the Markov model is rich
enough to capture useful information, but for other games a more sophisticated
model such as EPIC may be required. The experiment presented in Section 8.5.1
was repeated with NAST instead of EPIC, but the results were not significantly
different (in terms of which combinations were and were not effective).

8.5.3 Simulation policies for MAST

This experiment compares the four simulation policies for MAST described
in Section 8.2.3: Gibbs distribution, e-greedy, roulette wheel and UCB1 for
the games Dou Di Zhu, Hearts, and Lord of the Rings: The Confrontation
(LOTR:C).

To tune the parameters for the policies, between 500 and 1000 games were
played for each of the domains and each of several parameter settings. For Gibbs
sampling values of 7 € {0.05,0.1,0.15,0.2,0.25,0.5,1,1.5, 2,4} were tested, and
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(a) Dou Di Zhu (b) Hearts
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Figure 8.5: Playing strengths for a baseline player (Ipascline); & player using
EPIC for simulations (Igaseline > IEpic), and a player using NAST with n-gram
length 2 (Ipaseline™INAsT2, With InagT2 as defined in Specification 5 with n = 2).
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Dou Di Zhu Hearts

60% - 34% -

55% - 32% -

50% | 30%
28%

45% -
26% -

40%

0% 24% -

35% 22% |

30% 20%

No MAST Gibbs e-greedy  Roulette wheel ucB1 No MAST Gibbs e-greedy  Roulette wheel ucB1
distribution distribution
c d.
LOTR:C (Light player) LOTR:C (Dark player)
65% 65%

55% 55% -

50% 50%

45% 45% m m
40% 40%

No MAST Gibbs e-greedy  Roulette wheel ucel No MAST Gibbs e-greedy  Roulette wheel ucel
distribution distribution

Figure 8.6: Comparison of simulation policies used by the MAST enhancement,
showing percentage of games won with 95% confidence intervals. The win rate
for a player not using MAST is included for reference.

7 = 1 gave the strongest play across all three games. For e-greedy, ¢ €
{0,0.1,0.2,0.3,0.4,0.5,0.6} was tested and € = 0.2 found to be best. For UCB1
¢ €40.2,0.5,0.7,1.0} was tested and ¢ = 0.7 found to give the best performance
overall. Roulette wheel sampling has no parameters to tune.

For a k-player game, one instance of the algorithm in question is played
against k — 1 instances of the baseline player (unenhanced MO-ISMCTS). Each
algorithm uses 5000 iterations per decision. For Dou Di Zhu the MAST player
plays as the Landlord against two non-Landlord baseline players; for Hearts
the MAST player plays against three baseline players; for LOTR:C the MAST
player plays as both Light and Dark (in separate experiments) against a baseline
player. Each experiment played between 500 and 2500 games.

The results of this experiment are shown in Figure 8.6. The relative strengths
of the policies varies between games, but UCB1 and e-greedy perform consis-
tently well across all domains. UCBI is significantly better than all other poli-
cies for Dou Di Zhu and is within experimental error of the best policies for the
other games, while e-greedy is amongst the best policies for all domains except
Dou Di Zhu. Gibbs distribution sampling is significantly worse than the other
policies for LOTR:C as Dark, and indeed shows no benefit over the player not
using MAST in this domain. Gibbs distribution sampling does outperform the
baseline in Dou Di Zhu, but does not reach the performance level of MAST
with UCB1. Roulette wheel sampling performs well in LOTR:C, but fails to
outperform the baseline for Dou Di Zhu and Hearts.
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For Hearts, MAST has no effect on the simulation policy used for the root
player’s own moves: all of the cards in the player’s hand must be played at
some point, so every playout updates the same set of actions. Thus the average
reward for an action is the average reward for all playouts, which is the same
for all actions. This is not true for opponent decisions, as the opponent’s cards
vary between determinizations; here the average reward for an action is the
average reward for all playouts on determinized hands that contain that card.
This has the effect that if dealing a particular card to an opponent gives them
an advantage, the opponent will be more likely to play that card earlier in
subsequent playouts. The weakness of this strategy coupled with the lack of
influence on the root player’s strategy may explain why MAST, independent of
simulation policy, is less beneficial for Hearts than for the other games. Indeed
there was no statistically significant benefit to MAST for Hearts, although the
fact that three of the four policies give a win rate higher than 25% suggests that
significance is likely to be achieved with more trials. This argument does not
apply to Dou Di Zhu and LOTR:C, where the set of all available moves is far
larger than the set of moves in a particular playout.

Several authors (e.g. [142, 56, 61]) have observed that the simulation policy
used by MCTS must preserve diversity: that is, it must strike a balance of
playing plausible moves but not doing so too deterministically. A strong but
deterministic simulation policy can often lead to weaker play than a less strong
policy that incorporates randomness. Although it is not always phrased as
such, this is an exploitation-exploration tradeoff. All of the policies considered
here achieve this to some extent, but the best performing policies are those
explicitly designed to mix determinism and randomness (e-greedy) or to handle
the exploitation-exploration tradeoff in multi-armed bandits (UCB1). Tak et
al [63] have previously noted the strong performance of an e-greedy policy for
MAST; it has been shown that UCBI is not significantly worse than e-greedy,
and in Dou Di Zhu is significantly better.

8.5.4 N-gram lengths

This experiment tests the strength of the NAST enhancement (Section 8.2.3)
for different N-gram lengths. Having established UCBL1 as a consistently strong
simulation policy for MAST in the previous section, it is used exclusively in this
section. The NAST player was tested under the same conditions as Section 8.5.3.
The results are shown in Figure 8.7.

For LOTR:C as Dark, there is a sharp drop-off in performance between
N =2and N = 3. For N =2, NAST is maintaining average rewards for each
pair consisting of an opponent move and a root player action in reply. This is
a similar principle to the Last-Good-Reply Policy [60]. These results suggest
that this principle is useful for LOTR:C as Dark, but longer N-grams dilute the
statistics beyond the point of usefulness. This effect is not seen for LOTR:C as
Light. This is in keeping with the observation in [27] that Dark must use a more
reactive play style whilst Light must plan further ahead. For Hearts, N = 2
and N = 3 give significantly better performance than the baseline, whereas
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Figure 8.7: Comparison of N-gram lengths for the NAST enhancement, showing
percentage of games won with 95% confidence intervals. The win rate for a
player not using NAST is included for reference.

other values do not. The limited usefulness of N = 1 (MAST) for Hearts was
discussed in Section 8.5.3. These results suggest that there is value in applying
a Last Good Reply like principle, or more generally in learning the values of
moves in the context of the last move or pair of moves (which in many cases
means the card or pair of cards most recently played in the current trick). For
Dou Di Zhu and LOTR:C as Light the performance of NAST decreases as N
increases, with NV = 1 performing best or equal best.

The main disadvantage of longer N-grams is that more iterations are re-
quired to accumulate reliable average rewards. This is illustrated in Figure 8.8:
the average number of visits to each N-gram decreases exponentially as N in-
creases. Not only does this mean that the value estimates for N-grams are less
accurate for larger N, it also indicates a lower chance of encountering an N-gram
that has previously been seen during simulation, thus limiting the influence of
NAST. Additionally, N = 2 already produces a rich and expressive model for
learning a simulation policy, which was as effective as the EPIC model tailored
to the episodic structure of each game.

Longer N-grams may be more beneficial when the computational budget
is increased. Figure 8.9 plots the playing strength of NAST for Dou Di Zhu,
varying both the N-gram length and the number of iterations. The experimen-
tal conditions are as in the previous experiments, except that the unenhanced
opponents use 25000 iterations per decision. The results indicate that shorter
N-grams perform better than longer ones. However Figure 8.9 also plots a line
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Figure 8.8: For NAST with varying N-gram lengths, these graphs plot the
average number of trials accumulated for each N-gram (including only those N-
grams that receive at least one trial), averaged over all decisions by one player
in 500 games.
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Figure 8.9: Performance of different N-gram lengths as the number of simula-
tions varies for Dou Di Zhu as well baseline algorithm (with a random simulation
policy). Also shown is the line of best fit for each N-Gram Length (using linear
regression).

of best fit for each N-gram. There is a clear pattern: the rate of improvement is
faster for longer N-grams than shorter ones. This is illustrated in Figure 8.10,
which plots the gradient of the lines of best fit with respect to N-gram length.

These results suggests that shorter N-grams learn faster, which would be
expected since they get updated more frequently, however they quickly reach a
cap on performance with respect to number of iterations. Using longer N-grams
resulted in strictly worse performance, but better improvement with respect to
number of iterations. This suggests that the longer N-grams are continuing to
learn as the number of iterations increase. It is not clear whether the longer N-
grams will eventually perform better or reach the same performance limit and
it would most likely require an intractably large number of MCTS iterations to
reach this point (many millions of iterations would result in minutes per decision
on modern hardware). If this was the case, there may be some promise in an
enhancement which dynamically alters the N-gram length.

8.5.5 Computation time

The experiments in Section 8.5.1 show that certain ICARUS combinations sig-
nificantly improve the playing strength of ISMCTS. However there is a compu-
tational overhead associated with the more complex policies these enhancements
use. When the computational budget is specified in terms of time, the decision
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Figure 8.10: This graph shows the gradient of the lines of best fit from Figure 8.9,
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of whether to use an enhancement is a trade-off between the value and the cost
it adds to each iteration.

It was investigated whether the computational overheads are justified by
the gains in playing strength for the ICARUS combinations which significantly
improved the baseline algorithm in Section 8.5. This was done by allocating
each agent, including the baseline opponents, a fixed budget of computational
time in the range of 1 to 15 seconds per decision, rather than a fixed number of
MCTS iterations.

For Dou Di Zhu it was observed that EPIC outperforms the baseline al-
gorithm when both use 2.5 seconds or more per decision. Here 2.5 seconds
corresponds to an average of 3034 iterations per decision for the baseline player
and 2447 iterations per decision for EPIC. For other games and ICARUS combi-
nations there was no benefit, but the results are obscured by the efficiency of the
implementation of the algorithm. There is much more room for optimisation in
the complex simulation policies of MAST, LGRF and EPIC than in the simple
baseline policy of purely random moves, so the benefit of enhancements would
likely be clearer in an implementation where speed was a design goal.

8.6 Summary
In this chapter the ICARUS framework was introduced, a tool for expressing

information capture and reuse enhancements in MCTS. The ICARUS frame-
work is expressive enough to enable all existing MCTS enhancements to be
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defined and provides a new tool for discovery of novel types of enhancement.
ICARUS provide a consistent method for expressing how an MCTS enhance-
ment captures and reuses information, enabling easy analysis of similarities and
differences between enhancements and define composition operators which are
compatible with all ICARUSes. Information capture and reuse have been pre-
sented as the principles upon which all general purpose enhancements to MCTS
are based, and the mechanisms for capture and reuse have been separated as
a tool for understanding existing enhancements and designing new ones. The
UCBI1 algorithm was found to be particularly effective at balancing the ex-
ploration and exploitation of moves during MCTS simulations, leading to an
elegant formulation of MCTS where UCBI1 is used to select moves throughout
the entire playout.

Considering which states map to which records during playout and backprop-
agation gives a clear indication as to which parts of the tree share information.
It is likely that the effectiveness of information capture is determined by the de-
gree of correlation of state values in these regions of the underlying game tree.
In Section 8.4 it was discussed how the effectiveness of these enhancements can
be explained in the context of sharing information between states.

The EPIC enhancement was developed within the ICARUS framework by
considering the notion of episodes, which turns out to generalise readily to
several other games. Using episodes based on the episodic structure of each
game proved to be effective across each of the test domains. Many games have
a natural episodic nature and EPIC may prove to be useful in exploiting this.
MAST and LGR may be viewed as techniques which reuse information based on
short episodes, of length 1 for MAST and length 2 for LGR. EPIC suggests that
extending the notion of an episode is effective. It should be noted that NAST
(with N-grams of length 2) was just as effective as EPIC, without requiring an
episode structure to be defined for a particular game. This reinforces the result
that episodic learning is highly effective at improving MCTS, and suggests that
N-grams of length 2 are just as effective at capturing episodic information as
a more sophisticated structure tailored to a particular domain. Whether EPIC
out-scales NAST as more iterations are used is an open question.

The enhancements considered in this chapter are general purpose, in the
sense that they can be applied to any game without injection of knowledge.
RAVE, MAST and LGR are general purpose; strictly speaking EPIC is not,
but the degree of domain knowledge required is very small. General purpose
enhancements are useful tools for tackling new domains where expert knowledge
is not available, and essential for domains such as general game playing where
input of external knowledge is not possible. No general purpose enhancement
has yet been discovered that is beneficial in all domains, and the existence of
such an enhancement seems unlikely, but some are more robust than others;
that is, they may not always be beneficial but they are seldom detrimental.
Robustness is an essential criterion in choosing a general purpose enhancement.
It has been demonstrated that MAST, LGR and EPIC are robust (in the test
domains used in this chapter) while RAVE is not.

The ICARUS framework enables combination operators for enhancements
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to be defined, with the strongest play often coming from a combination of en-
hancements. One possible direction for future work is to develop more robust
composition operators, for example ones based on majority voting rather than
weighted sums, effectively adopting an ensemble approach to enhancement com-
bination.

One contribution of this chapter is the result that enhancements designed
for perfect information games can be effective in imperfect information games,
despite the increased level of uncertainty and sparsity of search (as well as the
presence of subset-armed bandits in the case of ISMCTS). Current MCTS en-
hancements do not explicitly address information asymmetry and stochasticity
in games. However new ICARUSes could be designed that consider information
asymmetry in information capture, for example by sharing information between
states that are distinguishable to a player but indistinguishable to their oppo-
nent. The MCTS algorithm is also easily parallelizable [143], which suggests a
new class of enhancements that capture information in one search thread and
reuse it in others running concurrently.

In future work it would be interesting to investigate the automation of de-
signing and choosing enhancements for a particular game, and ICARUS pro-
vides a framework for doing this. Alternately it may be possible to measure the
correlation between different areas of a game tree and use this information to
select the most appropriate enhancements from a predefined library. This could
be done offline before the search begins, or online to dynamically activate and
deactivate enhancements as the search progresses. This kind of dynamically
self-enhancing system combined with MCTS would take steps further towards
a truly general purpose Al system for acting in challenging games and complex
sequential decision problems.
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Chapter 9

Conclusion

This thesis addressed the question: How can Monte Carlo Tree Search
(MCTS) deal with uncertainty and hidden information? MCTS was
extended to games with imperfect information, in order to create MCTS based
algorithms which could be used to create Al players for complex board and card
games whilst exhibiting challenging levels of play and without utilizing signif-
icant domain knowledge (beyond the game rules) or more than a few seconds
of decision time on modern desktop hardware. The two main contribution of
this work are the introduction of the Information Set MCTS (ISMCTS) family
of algorithms, which search trees of information sets rather than trees of states
and the Information Capture and Re-Use (ICARUS) framework which redefines
MCTS algorithm in terms of exploiting knowledge learned from simulated games
to improve a tree selection policy and a simulation policy. It has been shown
that ISMCTS can address different sources of hidden information and uncer-
tainty and overcome the issues of non-locality and strategy fusion (described in
Chapter 3.3.1 page 3.3.1) which affect other determinization based algorithms.
Additionally the ICARUS framework has been used to precisely define the im-
plementation of both new and existing general purpose enhancements to MCTS
and the effectiveness of different enhancements tested across a wide variety of
games. This chapter summarizes how each of the original research hypotheses
has been addressed and reflects on how effective the new approaches are and
where there is scope for further work.

Hypothesis 1: Uncertain outcomes and unknown states can be represented
using an MCTS tree

One of the main challenges in imperfect information games is the combi-
natorial explosion of possible future states caused by uncertainty. There are
few popular games which have a small enough number of states to be solved
exactly. Instead algorithms can make simplifying assumptions which reduce
the number of states which need to be considered by a search algorithm. In a
wider context of search algorithms for imperfect information games a spectrum
of algorithms exist which differ according to which simplifying assumptions are
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made. One one end of this spectrum are algorithms such as Perfect Informa-
tion Monte Carlo Search (PIMC Search). PIMC search has been successful in a
number of domains and can be applied to almost any domain, but by searching
determinizations PIMC search suffers from the problems of strategy fusion and
non-locality which leads to suboptimal play in many game (and importantly for
commercial games, uninteresting play since information hiding and gathering
are not considered by these algorithms). At the other end of this spectrum are
approaches such as counterfactual regret minimization (CFR) which are guar-
anteed to converge to a Nash-equilibrium but require a policy to be stored for
every information set, so may only be applied to small games or an appropriate
reduction of a larger game.

ISMCTS bridges the gap between these two approaches, providing a new
approach for reducing the number of nodes in the search tree by merging to-
gether histories which are not distinguishable by the root player. This solves
the issue of strategy fusion in PIMC search, but learns a weaker model for op-
ponent decisions compared to using a unique node for each unique information
set. By constructing a less complex tree ISMCTS will learn faster at the cost
of potentially learning suboptimal strategies. It has been demonstrated that
in some games this weaker opponent model is not a hindrance to achieving a
strong level in play, especially in games with the property that the value of an
action is highly correlated across information sets where that action is legal.
In all cases however, the ISMCTS algorithms presented in this thesis are not
guaranteed to converge to a Nash-equilibrium. It is possible that ISMCTS could
be modified to converge to a Nash-equilibrium by taking an approach similar to
Heinrich and Silver [84], which would involve creating a unique node for each
unique information set and would likely slow the learning rate of the ISMCTS
algorithm.  However ISMCTS has been shown to improve playing strength
compared to existing approach of perfect information Monte Carlo search in
the games Dou Di Zhu, Lord of the Rings: The Confrontation (LOTR:C) and
the Phantom (4, 4,4) Game (see Chapters 5 and 6). Additionally ISMCTS has
demonstrated to be competitive with human players in LOTR:C and Spades
(see Chapters 5 and 6) and with commercially developed AI in Dou Di Zhu,
Spades (see Chapters 5 and 6) and Hearts (see Chapter 8).

Hypothesis 2: The issues of strategy fusion and non-locality with deter-
minization based approaches can solved using MCTS

A key contribution of this work is to address the main issues with deter-
minization based methods, namely strategy fusion and non-locality. ISMCTS
solves the problem of strategy fusion by design through the use of an information
set tree as described in Chapter 5. Chapter 7 investigated how the issue of non-
locality could be addressed in ISMCTS through the use of an inference model.
It is always possible to use any external inference model with ISMCTS to bias
the distribution of determinizations sampled. It was demonstrated in Chapter 7
that an inference model can be built where beliefs are calculated using ISMCTS
tree statistics, and the search tree is used to filter beliefs. Another issue with
determinization approaches such as PIMC search is that bluffing is impossible.
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This was addressed in Chapter 7 by using self-determinizations with ISMCTS.
Together the combination of inference and self-determinization with ISMCTS
solves the issue of non-locality whilst preserving the generality of ISMCTS.

Hypothesis 3: Inference and bluffing can be modeled using MCTS

In Chapter 7 ISMCTS was modified to exploit an opponent model, where
beliefs were drives from statistics in the ISMCTS tree which are subsequently
used to bias the sampling of determinizations. This contributes the first at-
tempt at building a belief model for MCTS directly from MCTS statistics, in
contrast to approaches based on particles [82] or offline fixed models [49]. This
technique allows inference to be performed automatically using ISMCTS and
it was demonstrated to be effective at guessing the identity of the Spies in
the game The Resistance. However in games such as The Resistance, players
attempt to conceal information through bluffing which determinization based
approaches cannot do (since there is no information to hide). To induce bluff-
ing behaviour, several methods for injecting self-determinizations were tested.
This was very effective in the game The Resistance, where self-determinization
techniques were able to significantly mitigate against opponents using infer-
ence. These techniques for inference and bluffing hinder the learning rate of
the ISMCTS algorithm. As a consequence, performing inference in the more
complex games Scotland Yard and Saboteur is difficult without access to an
infeasible amount of computational resources. ISMCTS could be significantly
improved in these domains by including heuristics which bucket together differ-
ent beliefs in order to improve the learning rate. It is also possible that sharing
information between simulations could be used to improve the learning of an
opponent model in a similar manner to the ICARUS framework.

Hypothesis 4: Knowledge captured from simulations be exploited to create
better MCTS policies

In Chapter 8 the ICARUS framework was introduced, a tool for express-
ing information capture and reuse enhancements in MCTS, where information
is captured from Monte Carlo simulations, and can be reused to improve the
MCTS tree selection and simulation policies. This contributes the first cohe-
sive framework for describing all of the common techniques used for modifying
MCTS implementations. The ICARUS framework is expressive enough to en-
able all existing MCTS enhancements to be defined and provides a new tool
for discovery of novel types of enhancement. Several new and existing enhance-
ments were tested in a variety of combinations across many domains. It was
observed that some enhancements are robust (as in they may not always be
beneficial but they are seldom detrimental). Choosing robust enhancements is
important when creating general purpose MCTS algorithms.
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9.1 Remarks on the Effectiveness of ISMCTS

ISMCTS achieves one of the main goals of this project, to make competitive
AT for complex board and card cards using a small amount of decision time
on modern hardware. Recently ISMCTS has been integrated into a commer-
cial game Spades by AI Factory [10] for the android mobile operating system.
The existing knowledge-based Al for Spades was already a market leader, and
generally recognised as strong. The ISMCTS-based player performs better by
a statistically significant margin, playing at or above a level for the previous
AT which consumed over 8 times as much computation time. ISMCTS play
is particularly strong in the challenging case of nil bid play. Additionally the
ISMCTS implementation now constitutes a ready-made AI module that can
simply be dropped into future projects and produce a strong level of play with
almost no modification. Indeed, AI Factory are already using the same code
for new games currently in development. The ISMCTS framework also provides
extensive hooks for game-specific knowledge injection to improve both objective
playing strength and subjective playing style.

ISMCTS does have a few drawbacks, most notably that ISMCTS has no con-
vergence guarantees and in some instances may converge to suboptimal policies
which has been noted by other authors [66, 87]. In Chapter 7 a version of
ISMCTS was tested which was designed to allow bluffing behavior to emerge
from search, by learning policies for all players information sets. This has the
effect of reducing the exploitability of ISMCTS. However a large number of it-
erations of the algorithm are required for this behaviour to emerge removing
one of the most useful properties of ISMCTS, that a strong level of performance
can be achieved with only a few seconds of decision time. It is possible to con-
sider a version of ISMCTS which accurately models the game being played, by
placing a bandit algorithm at every information set in the game. This algo-
rithm would not converge to a Nash-equilibrium due to the limitations of the
UCB algorithm and the lack of self-determinization (see-below). Bandit based
algorithms do not typically reach an equilibrium and may exhibit behaviour
such as oscillating between different strategies. However Heinrich and Silver
have shown that the UCB1 algorithm can be modified to converge towards a
Nash-equilibrium when applied to a tree which contains one unique node per
unique information set [84]. If approximating a Nash-equilibrium is necessary
for reasonable play in a game then ISMCTS could be modified in a similar way.
However ISMCTS is well suited to quickly finding robust pure strategies if they
exist using just the standard UCB1 algorithm for selection.

Another drawback of the ISMCTS algorithm is the lack of self-determinization,
that is the assumption that other players can observe the information set of the
searching player. This is akin to assuming other players can see your hand in
a card game. In Chapter 7 it is shown that very large number of iterations
are required for strong play to emerge when self-determinizations are included
in the search. It was also observed in Chapter 6 that the lack of self deter-
minization leads ISMCTS to be overly pessimistic when enough iterations are
used. This is one area where ISMCTS has the potential to improve with more

178



powerful hardware, which would enable a more accurate model of the game to
be searched which included self determinizations and different nodes for oppo-
nent information sets (to avoid the subset armed bandits at opponent nodes).
A version of ISMCTS could be developed which uses coarse groupings of in-
formation sets (as with single observer ISMCTS) when an information set has
been visited a small number of times but transition into fine grained grouping
of information sets (a node of every information set belonging to every player)
as the number of iterations increase. This would produce an algorithm which
continues to scale as larger number of iterations are used, but is as effective as
possible when smaller numbers of iterations are used. In addition a one node
per information set tree (like that used by Heinrich and Silver [84]) could be
updated in parallel to ISMCTS, then this tree used for selection once the nodes
have received a sufficiently large number of updates. This algorithm have the
best of both worlds: The fast learning and scaling properties of the information
set grouping techniques of ISMCTS, but with convergence to a Nash-equilibrium
given a sufficiently large amount of computation.

One key observation from the experiments presented in this thesis, is that
a competitive level of play can be achieved in many popular games, whilst ef-
fectively ignoring some aspects of uncertainty. For example consider the results
presented in Chapter 5 for the game Mini Dou Di Zhu. One experiment showed
that in many situations, a player knowing information that could not be reason-
ably deduced often does not give the player an advantage. In these situations
there are many states within an information set, but strategies exist which will
win the game regardless of the underlying state of the game. This suggests that
a strong level of play can be achieved in these games whilst making simplifying
assumption about the hidden information aspect of the game. In particular
such games are particularly suited to ISMCTS, which is well suited to exploited
a line of play which leads to a high probability of winning. It is likely that
the presence of effective pure strategies in many popular imperfect information
games is a consequence of game design and a human preference for games where
these types of strategy exist.

There are several ISMCTS algorithms in this thesis and they differ by how
information sets are mapped onto trees. Effectively each of these algorithms is
using a different structure to learn information from simulated games and guide
tree selection. The ICARUS framework was initially developed to generalise the
many different enhancements to MCTS by classifying them according to how
information is captured from simulated games and used to improve either the
tree selection policy or the simulation policy of MCTS. Therefore ISMCTS can
be thought of as a class of enhancements to MCTS for imperfect information
games. MCTS as a concept is hard to define, since nearly every application
of MCTS is different some way. However the concept of information capture
from simulated games and subsequent re-use in a tree selection policy and sim-
ulation policy defined in the ICARUS framework is shared between all MCTS
algorithms. Therefore it can be concluded that combination of those three com-
ponents, simulated games, a tree selection policy and a simulation policy are the
true essence of MCTS algorithm. The ICARUS framework therefore is a use-
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ful tool for describing MCTS algorithms, since the mechanism for information
capture and subsequent re-use in the algorithm is explicitly drawn out from the
definition of an MCTS algorithm.

In conclusion, ISMCTS is a new family of algorithms for search in games with
hidden information and uncertainty which has been demonstrated to be more
effective than existing approaches in a variety of domains. ISMCTS is a generic
algorithm like MCTS, and can be tailored to different games in order to balance
the accuracy of the model searched by ISMCTS with the rate at which ISMCTS
converges. ISMCTS is particularly suited to large complex games of imperfect
information where robust pure strategies exist and there is some evidence that
this is often the case (at least for the games studied in this thesis). Finally the
ICARUS framework defines MCTS algorithms in terms of information capture
from simulated games and subsequent reuse in tree and simulation policies. This
facilitates the comparison of different MCTS algorithms and enhancements and
was used to determine the most effective combination of enhancements across a
wide variety of domains.

9.2 Future Work

The following is a summary of interesting directions for extending this work.

e ISMCTS converges faster when searching a simpler model of the game,
but if more computational resources are available a more precise model
of the game can be searched where an independent multi-armed bandit
is used for every information set of every player which would produce
better strategies. Additionally ISMCTS could be improved by adjusting
the precision of the model as more iterations are performed, resulting in
an algorithm which produces the strongest possible level of play for any
number of iterations.

e Currently ISMCTS does not have any convergence guarantees. One di-
rection for future work is to understand what sort of strategy ISMCTS
does converge towards by characterising the equilibrium formed by bandit
algorithms in an adversarial setting. For example, a bandit algorithm is
capable of exploiting a dominating strategy (that receives a greater av-
erage reward than some other strategy regardless of opponent actions).
This can then be used to describe properties of games that will indicate
that ISMCTS will be successful (for example the existence of good pure
strategies).

e There is already some evidence that ISMCTS produces Al players which
humans enjoy playing against and that knowledge can be included with
ISMCTS to make AI players which appear plausible to human players.
Further work could investigate in more detail what sort of Al behaviour is
fun to play against and how to reproduce this behaviour within ISMCTS.
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It was observed when integrating ISMCTS into a commercial Spades en-
gine [10] that ISMCTS fails to play plausibly when losing (or sometimes
winning) a game, since all actions appear to have equal utility. Simi-
larly ISMCTS offers potentially infinitely tunable difficulty levels through
adjusting the number of iterations, but must appear to make plausible
mistakes for the best player experience.

There are many games which are too large and complex to produce plau-
sible behaviour using ISMCTS and no domain knowledge. However it is
often the case that knowledge exists or can be generated (through machine
learning for example). There is a large body of work describing methods of
integrating knowledge with MCTS [1]. However further work can be done
to investigate what sort of knowledge mostly effectively improves ISMCTS,
in particular knowledge pertaining to aspects of information asymmetry
and stochasticity which are not present in the perfect information games
previously studied with MCTS. ICARUS provides a framework for inves-
tigating the automation of designing and choosing enhancements for a
particular game. It would be interesting to explore extensions of ICARUS
which allow knowledge injection. Additionally, it may be possible to auto-
matically discover new enhancements using evolutionary techniques; the
ICARUS framework could give a compact yet expressive representation
for genetic programming or other evolutionary algorithms.
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