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Abstract
One major limiting factor for wireless communication systems is the limited available

bandwidth for cellular networks. Current technologies like Long Term Evolution (LTE)

and LTE-Advanced (LTE-A) have standardised a frequency reuse factor of 1 to enable

more channel resources in each cell. Also multi-layer networks that consist of overlapping

macro cells and small cells like pico cells, micro cells and femto cells have also been used

to improve the capacity of the cellular network system. These multi-layer networks are

known as heterogeneous networks or HetNets while the single layer, traditional cellular

systems are referred to as homogeneous networks or HomoNets.

Several interference management systems and techniques have been proposed in the

past to deal with the effect of inter-cell interference (ICI) (i.e., the interference from

a macro cell base station (BS) to a macro cell user in another macro cell) and inter-

user interference (IUI) (i.e., the interference of another user’s data signal to a given user

within the same cell on the same time and frequency slot). Interference cancellation

techniques such as beamforming, uses transmit pre-coders and receive beam-formers

to limit the effect of interference. The interference alignment strategy ensures that

the interference is aligned into a given subspace and leaves a residual subspace free

for the desired signal. Coordinated scheduling/beamforming and coordinated multi-

point transmission (CoMP) have also been used to limit the interference within the

cellular network. For HetNets, interference avoidance techniques based on radio resource

management (RRM) have been used to limit the effect of interference within the network

and improve the attainable system capacity. This thesis investigates the challenges of

two main interference management techniques and proposes methods to alleviate these

issues without impeding the expected performance already attained. The main techniques

considered for HomoNets and HetNets are: CoMP transmission under the interference

cancellation technique and resource block allocation (RBA) under the interference

avoidance technique. The setbacks for the well known CoMP transmission strategy

are high data overhead, energy consumption and other associated costs to the network
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provider. Further investigations were carried out and a joint selection of transmit antennas

for the users was proposed with the main aim of preserving or exceeding the already

achieved gains but obtaining a further reduction in the data overhead.

Fully distributed RBA solutions are required, especially since future networks tend to

become self-organising networks (SON). Another major consideration in choosing the

resource blocks (RBs) for the users in each cell is the RBA metric. Since the capacity

of the cell is dependent on the sum-rate of the users, it is important to consider the

maximisation of the sum-rate or sum-SINR (i.e the sum signal to interference and noise

ratio) when assigning RBs to users. The RBA technique aims to choose the RBs such that

the interference within the cell is avoided. To achieve this, a RBA metric is required to

obtain the qualification matrix before allocating RBs to the users. Many authors in the

past have proposed several metrics for RBA but avoided any RBA metric that required a

direct estimation of the interference power on each RB for each user’s allocation. This

is because the SINR or interference power on each RB for any user can only be obtained

with pre-knowledge of already occupied RBs in neighbouring cells. In this thesis, two

distributed RBA solutions based on a direct interference estimation was proposed to

obtain the required qualification matrix for the RBA under the HomoNet and HetNet

system models. The gains and advantages obtained are shown and analysed using the

obtained simulation results.

The issue of interference coupled with limited available channels remains a major limiting

factor for HetNets. Therefore, it is very important to develop techniques that maximise

the utilisation of available bandwidth for each cell while minimising possible interference

from neighbouring cells. Finally, this thesis considers and investigates a possible joint

solution using both interference avoidance and interference mitigation techniques. Hence

two solutions are proposed: joint RBA plus beamforming and joint RBA plus CoMP

transmission, to further mitigate the high interference in HetNets. The simulation results

have shown significantly improved system performance especially for a highly dense

HetNet.
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Chapter 1

Introduction

1.1 Evolution of the Wireless Communication System

The mobile cellular system, as we know it today, has come a long way from the

first generation (1G), analog system using frequency division multiple access (FDMA)

(such as Advanced Mobile Phone System (AMPS), Total Access Communication System

(TACS) and Nordic Mobile Telephone (NMT)) to digital systems using time division

multiple access (TDMA), code division multiple access (CDMA) or orthogonal frequency

division multiple access (OFDMA) (such as Global System for Mobile Communication

(GSM) - a 2G system, Universal Mobile Telecommunications System (UMTS) - a 3G

system, Long-Term Evolution (LTE) - a 3.9G system and LTE-Advanced (LTE-A) - a 4G

system [2]). Some of the capabilities of the various types of systems are summarised in

Table 1.1. The third generation (3G) system is based on the packet switched network

and was developed by the International Telecommunications Union (ITU) under IMT-

2000 and UMTS. UMTS uses Wideband Code Division Multiple Access (W-CDMA) to

establish 3G wireless networks with high spectral efficiency for both voice and data users.

Release 8 (Rel-8) [6] defined the LTE standards for wireless communication and provided

data rates of 300 Mbps and 75Mbps in the downlink and uplink respectively. The LTE

system which evolved from the UMTS network, was standardised to provide better data



Chapter 1. Introduction 2

rates compared to the previous standards. LTE uses multiple bandwidths with both

frequency division duplex (FDD) and time division duplex (TDD).

Figure 1.1: Mobile network evolution [1].

LTE-A has been shown to improve the cell-edge performance and spectral efficiency

per unit area, provide better bandwidth scalability and decrease latency [1]. Some

network features considered under LTE-A include: improved power efficiency to ensure a

greener cellular network, reduced cost of infrastructure, intelligent resource allocation,

further interference avoidance and mitigation, self-organising capabilities in cellular

networks, and aggregation of several frequency bands. To achieve these targets, some

well-known technologies have been proposed such as multiple-input and multiple-

output (MIMO) systems, coordinated multipoint transmission (CoMP) and heterogeneous

networks (HetNets). These techniques will be further investigated in this thesis.
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System Channel

Spacing

Access Comments

AMPS

(1G)

30

KHz

FDMA Advanced Mobile Phone System, first developed in

the US.

NAMPS

(1G)

10

kHz

FDMA Narrowband AMPS, having 10 kHz carrier spacing

and used in US and Israel.

TACS

(1G)

25

kHz

FDMA Based on 900 MHz, used worldwide, Extended-TACS

was to improve the channel by adding more channels

to reduce congestion.

NMT

(1G)

25

kHz

FDMA Based on the 450 MHz and then 900 MHz frequency

band. First system to be widely used commercially.

NTT

(1G)

25

kHz

FDMA Nippon Telegraph and Telephone. Used in Japan,

operating at 900 MHz.

C450

(1G)

20

kHz

FDMA Operating on 450 MHz, used in Germany.

GSM

(2G)

200

kHz

TDMA Developed in Europe, originally called Groupe

Speciale Mobile then Global Systems for Mobile

communication. Operates on 900 MHz and some 850

MHz exists in USA.

DCS

1800

(2G)

200

kHz

TDMA Digital Cellular Service also known as GSM 1800,

operates on 1800 MHz.

PCS

1900

(2G)

200

kHz

TDMA Personal Communication Service also known as GSM

1900, operates on 1800 MHz.

US-

TDMA

(2G)

30

kHz

TDMA United States TDMA was designed to operate

alongside the AMPS. Also known by its standard IS-

54 and then updated to IS-136.
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PDC

(2G)

30

kHz

TDMA Pacific Digital Cellular similar to North America

TDMA. Only used in Japan.

GPRS

(2.5G)

200

kHz

TDMA General Packet Radio Service. It is a packet switched

network and provides data up to 114 kbps.

EDGE

(2.5/

3G)

200

kHz

TDMA Enhanced Data rates for GSM Evolution. Based on

packet switching and 8 PSK.

CDMA

One

(2G)

1.25

MHz

CDMA Also known as IS-95, this system had a widespread

use with data rates up to 115 kbps.

CDMA

2000

1X

(2.5G)

1.25

MHz

CDMA Supports high-speed data services. Peak data rates of

153 kbps are currently obtainable and up to 614 kbps

are expected with two channels.

CDMA

2000

1xEV-

DO

(3G)

1.25

MHz

CDMA EV-DO stands for Evolution Data Optimised.

Designed for only data use to provide data rates up

to 2.45 Mbps on the downlink. Aimed to reduce cost

per megabyte capability. Also allows charges based

on actual download rather than connection time.

CDMA

2000

1xEV-

DV

(3G)

1.25

MHz

CDMA EV-DV means Evolution Data and Voice. Able to

simultaneously transmit data and voice and achieves

up to 3.1 Mbps on the downlink.

UMTS

(3G)

5 MHz CDMA/

TDMA

Uses W-CDMA with one 5 MHz on the downlink for

both data and voice. Achieves up to 2 Mbps.
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TD-

SCDMA

(3G)

1.6

MHz

CDMA Time Division Synchronous CDMA. Developed in

China and uses TDD systems. Uses the same band

to transmit and receive. Allows different time slots

to be allocated for base stations and mobiles to

communicate.

LTE

(3.9G)

1.4

MHz-

20

MHz

OFDMA High speed downlink data transmission up to 100

Mbps. LTE supports both FDD and TDD systems.The

packet-switched approach in LTE allows support

for all services including voice through packet only

connections.

LTE-A

(4G)

40

MHz-

100

MHz

OFDMA High speed downlink data transmission up to 1

Gbps. LTE-A supports both FDD and TDD systems.

LTE-A significantly enhances the existing LTE and

supports much higher peak rates, higher throughput

and coverage, and lower latencies, resulting in a better

user experience.

Table 1.1: Main capabilities of the evolved cellular network system [2].

1.2 MIMO Systems

A MIMO system refers to a communication system which transmits and receives

information using multiple antennas at both ends of the communication system. MIMO

systems can be used for beamforming, spatial multiplexing and diversity combining. The

signal from a transmitter to a receiver travels through a wireless channel which undergoes

multipath fading. The wireless channel can be modelled as a Rician fading channel if there

exists a dominant line-of-sight (LOS) component from the transmitter to the receiver,

hence the mean of the random process will no longer be zero [7]. A Rayleigh fading
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channel occurs if no LOS component exists, hence the mean of the random process will

be zero[7]. Assuming the number of antennas at the transmitter is Mt and the number of

antennas at the receiver is Nr, then the input/output relationship, assuming a flat-fading

channel, is given as:

y = Hs + n, (1.2.1)

where H is the Nr ×Mt matrix whose elements are complex Gaussian random variables,

with zero-mean Gaussian real and imaginary parts, s is the transmitted signal vector with

dimension Mt × 1, n is the additive white Gaussian noise, whose elements are complex

random variables with zero mean and variance σ2
n and y is the received signal vector with

dimensions Nr × 1.

MIMO technology achieves an increase in the capacity and performance of the wireless

communication system, thus enhancing reliability. The capacity of a MIMO network

increases as the number of antennas increases, when compared to a single antenna

system. MIMO systems can be used to offer increased diversity and/or multiplexing gains.

Through spatial multiplexing, different multiple signals can be transmitted on multiple

antennas simultaneously, leading to an increase in capacity.

1.2.1 Channel State Information (CSI)

In wireless systems there are two types of channel state information:

• Channel State Information at the Receiver (CSIR)

• Channel State Information at the Transmitter (CSIT).

CSIR can be obtained at the receiver by using a training sequence or pilot bits known

at both the transmitter and receiver. The pilot bits are sent from the transmitter to the

receiver, and from the received information the receiver calculates the CSI [8]. CSIT

can be obtained at the transmitter using the feedback and reciprocity principle. The time
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varying channel makes it difficult and often costly to obtain CSIT. Mobile users with a

small coherence time suffer much degradation of CSIT due to scheduling lag, limited

feedback resources and feedback delays in a closed-loop method; antenna calibration

errors and turn-around time lags in an open-loop method. In MIMO systems, knowledge

of the CSIT can be used in adapting the modulation rate, power control and beamforming

to provide significant performance gain to the system.

Feedback Method

As shown in Fig. 1.2, CSI is estimated at the receiver using the pilot bits and then sent

back to the transmitter using a feedback channel. This is also called a closed-loop system

and is found mostly in FDD channels.

Figure 1.2: CSIT in a closed-loop system.

Due to the time lag (∆t) between acquiring the CSI at the receiver and transmitting it back

to the transmitter, the CSIT is not perfect. Although estimation and correction factors can

be used, it is desired that the coherence time Tc >> ∆t. For mobile links, feedback

methods are effective up to a certain mobile speed depending on the carrier frequency,

transmission frame length and feedback turn-around time. High feedback overhead results

from a fast changing channel. The feedback overhead can be reduced by sending a partial

channel information such as the channel quality indicator (CQI) [9, 10].
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Reciprocity Theorem

HA--B 

HB--A 

TX 

 

 

RX 

Figure 1.3: CSIT in an open-loop system.

The reciprocity principle states that the channel HA−B is identical to the transpose of

channel HB−A. Reciprocity approximately holds if between the transmitter and the

receiver [8]:

• The time lag is less than the coherence time (i.e. ∆t << Tc).

• The frequency lag is less than the coherence bandwidth (i.e. ∆f << Wc).

• The distance lag is less than the coherence distance (i.e. ∆d << Dc ).

1.2.2 Capacity of MIMO Systems

Consider a MIMO system with Mt transmit antennas, Nr receive antennas and a flat fading

channel (H) with CSI at the receiver, the capacity can be written as:

C = B log2

∣∣∣∣INr +
1

σ2
n

HPHH

∣∣∣∣ bps, (1.2.2)

where the total transmit power PT = tr(P), P = PT

Mt
IMt is the covariance matrix of s, Ij is a

j× j identity matrix, σ2
n is the noise variance and |A| is the determinant of A. The capacity

of the MIMO system can then be re-written as:

C = B
r∑
i=1

log2

(
1 +

(
Pi
σ2
n

)
λi

)
bps, (1.2.3)

where B is the channel bandwidth, r is the rank of H, λi are the eigenvalues of HHH and

Pi is the power equally allocated to the i-th eigenmode, Pi = PT/Mt [2].
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1.3 Multi-Cell MIMO Systems

Multi-cell MIMO systems are groups of multiple base stations (BSs) in a cellular system,

each serving a group of users. The cellular system has many cells and the frequency

channel on each cell can be reused at other cells, separated by sufficient distance to

avoid inter-cell interference (ICI). But due to the properties of wireless communication

systems, there are bound to be some inter-cell interference as transmissions from the BSs

are not limited to the cell. CoMP transmission is an interference mitigation technique

that improves the system performance by transforming the interference channel into a

desired channel. This is achieved by coordinating multiple transmit BSs from different

multi-cells to transmit the same data signal to a given user. The user then receives useful

signal from neighbouring BSs thereby improving the user’s performance. Currently, there

exists two main types of multi-cellular networks: Homogeneous Networks (HomoNets)

and heterogeneous networks. HomoNets are traditional cellular networks with each

cell having the same capabilities while HetNets are multi-layer cellular networks with

different cell types and capabilities. The HomoNets are transformed into HetNets by

overlaying the traditional cellular network with smaller cells to improve the system

performance in terms of coverage and capacity[1]. Both cell structures are prone to high

interference if the frequency re-use is 1, especially HetNets.

1.4 Research Objectives

This thesis is aimed at investigating current interference management techniques and

proposing new algorithms and techniques to solve existing issues. Two major forms of

interference management techniques are considered in this thesis.

1. Interference mitigation technique: The CoMP transmission in the multi-cell multi-

user MIMO systems is analysed for the homogeneous network which consists of

macro cells using the same antenna type and having the same capabilities. The
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macro cells cover long distances and transmit data signals with very high power.

However, at the cell-edge, users suffer high interference from neighbouring macro

cell BSs and also low signal power from the paired transmit BS. This causes low

signal-to-interference and noise ratio (SINR) and poor system performance. So

CoMP transmission was proposed to allow the neighbouring BSs to cooperate and

transmit data to a given user to improve its received signal power. The user’s

data signals are made available to the cooperating BSs at each macro cell, thereby

resulting in very high data signalling overhead in the backhaul link. This thesis

addresses and proposes solutions to the following challenges:

(a) The high data overhead in the backhaul link, which results in high latency,

poor synchronisation, backhaul bottleneck and high cost for the network

provider [11].

(b) Minimising the power consumption in the network, which would result in a

greener cellular network [12].

(c) Obtaining the best number of allowed transmit BSs per user for CoMP

transmission in a given communication system [13].

2. Interference avoidance technique: the radio resource management (RRM)

technique is analysed under homogeneous and heterogeneous networks. Several

resource block allocation (RBA) techniques under the homogeneous networks

have been proposed to avoid interference and improve the system performance.

However, several challenges still exist such as selecting the RBA metric and the

RBA mode (i.e. the mode of allocating the resource blocks (RBs) in the network).

The HetNet was proposed in order to expand netowrk coverage and increase

capacity. The interference in a heterogeneous network is a major setback and

better forms of RBA are required to manage the interference. Under heterogeneous

networks, very few solutions have been shown to effectively manage interference

and more research is currently being carried out. This thesis will address the

following challenges:
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(a) Obtaining a distributed RBA strategy such that each macro cell sector is

responsible for allocating RBs as opposed to a centralised or semi-centralised

approach which is unsuitable for current generation systems including 4G and

beyond.

(b) Obtaining a distributed RBA strategy for HetNets such that each macro cell

sector and each small cell sector are responsible for allocating RBs to their

users.

(c) Choosing an effective RBA metric that allows the interference within the

HomoNets and HetNets to be evaluated and used to implement a solution

leading to a better system performance.

(d) High interference remains a major setback especially for HetNets. For

this reason, this thesis investigates two joint interference management

techniques that will improve the performance obtained with only the proposed

interference avoidance (i.e. the RBA) technique.

1.5 Thesis Organisation

The rest of this thesis is organised as follows:

In Chapter 2, the interference mitigation techniques based on interference cancellation

using beamformers for multi-cell multi-user systems are presented. These techniques

paved way for the introduction of CoMP transmission in multi-cell multi-user networks.

A trade-off of system performance for a reduced data overhead reduction is investigated

in Chapter 2 and simulation results are used to analyse the obtained system performance.

Chapters 3 and 4 continue the study of the challenges faced in CoMP transmission. Both

chapters focus on obtaining a further reduction in the data overhead, power consumption

and improved performance under different optimisation strategies. A joint and adaptive

cooperating set (CS) selection algorithm is proposed to achieve the CSs for all users,
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where the minimum number of BS transmission can range from 1 to a pre-set maximum

value.

The interference avoidance strategy based on the RBA selection for homogeneous and

heterogeneous networks will be studied in Chapter 5. Two novel, distributed RBA

strategies are proposed for the homogeneous and heterogeneous cellular networks.

Chapter 6 continues to study the interference in heterogeneous networks and a joint

interference avoidance and mitigation strategy is proposed to further combat the high

interference in HetNets and obtain an increased system performance. Simulation results

show performance gains using the proposed interference avoidance strategy with different

interference mitigation strategies.

Finally, conclusions are drawn in Chapter 7, and future work for consideration is

presented.

1.6 List of Publications

Published Papers

• Chinazo Unachukwu, Li Zhang, Des McLernon and Mounir Ghogho, ‘Downlink

CoMP Transmission with Multiple Cooperating Sets’, 9th International Symposium

on Wireless Communication Systems (ISWCS), 2012.

• Chinazo Unachukwu, Li Zhang, Des McLernon and Mounir Ghogho, ‘Cooperating

Set Selection for Reduced Power Consumption and Data Overhead in Downlink

CoM’, 10th International Symposium on Wireless Communication Systems

(ISWCS), 2013.
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Chapter 2

Coordinated Multi-Point Transmission

The major focus in this chapter is on LTE downlink CoMP transmission for cell-edge

users in multi-cell networks. LTE downlink CoMP transmission is a technique used to

transmit data signals from multiple BSs to a given user, such that the cell-edge user’s

performance is optimised and improved. At the cell-edge, users experience low signal

strength and high interference from neighbouring cells. By transforming the ICI into

desired signals, LTE CoMP transmission can improve the cell-edge user’s performance.

LTE downlink CoMP requires cooperation and coordination between BSs to achieve

almost perfect synchronised transmission from all transmitting BSs to the desired users.

CoMP transmission requires the exchange of user’s data over the backhaul network.

This means a linear increase in backhaul demand as the number of transmit BSs

per user increases. This problem is a huge drawback for LTE CoMP transmission

and a major challenge for the network operators. Issues such as high latency,

poor synchronisation, backhaul congestion and high data overhead are currently being

investigated by researchers [11].

The contributions of this chapter are as follows: Firstly, to reduce the data overhead

required for CoMP transmission in the backhaul link. Secondly, two solutions based

on the network-centric and user-centric approach are proposed using a reduced number

of transmit BSs. Thirdly, simulation results are used to analyse the system performance
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and trade-off of performance to data overhead when using a lower number or size of

clusters/CoMP sets for data transmission.

The remaining parts of this chapter are organised as follows: Section 2.1 presents

the interference mitigation techniques. The introduction of CoMP transmission into

the wireless communication system is presented in Section 2.2. Sections 2.3 and 2.4

present the proposed data overhead reduction under the network-centric and user-centric

approach. The system performance is evaluated when a limited number of transmit BSs

per user is utilised for CoMP transmission and the effect on the performance is analysed.

This chapter concludes in Section 2.5.

2.1 Overview of Interference Mitigation Techniques

The major setback in LTE and beyond is ICI, especially for the cell-edge user, as

neighbouring BSs cause huge interference and reduction in the system performance.

CoMP transmission has been standardised in the Third Generation Partnership Project

(3GPP) LTE Release 11 (Rel-11) [14], as a key technology in improving the system

throughput. Some strategies used in CoMP transmission include: joint processing (CoMP

JP) and coordinated scheduling or beamforming. Users experiencing interference from

other cells are assigned the same RBs in time and frequency and a set of BSs that

coordinate to mitigate ICI is defined as a cooperating set or CoMP set. Joint processing is

further grouped into dynamic cell selection and joint transmission (JT). Fig. 2.1(a) shows

the operating principle of downlink joint transmission, where multiple coordinating BSs

are scheduled to transmit data to the same user simultaneously [15]. Fig. 2.1(b) shows the

operating principle behind dynamic cell selection (DCS), the cell with the minimum path

loss among the coordinating cells is scheduled for transmission to the user, while muting

transmission to the neighbouring users. The selection of the transmit BS is done through

fast scheduling at the centralised BS and fast switching. This allows the user to achieve its

maximum receive power and also prevents any interference from the neighbouring cells.
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Fig. 2.1(c) shows the transmit principle behind coordinated beamforming. Coordinated

beamforming allows the BSs to transmit data to the paired users at the same time, while

using precoding techniques to minimise interference to other users in neighbouring cells.

This thesis will focus on CoMP JT which requires both the sharing of data, CSIT and

precoding information. Under CoMP JT, the users’ data can be stored at all transmission

points, where the slave cells receive the scheduling information via the X2 interface from

the master cell. The X2 is a logical interface between neighbouring BSs (eNodeBs) that

enables the transfer or sharing of information [16, 17].

Figure 2.1: CoMP transmission in downlink: (a) CoMP joint transmission, (b) dynamic

cell selection and (c) coordinated beamforming.

.

Alternatively, the master cell centrally performs the precoding design, and then forwards

the data, scheduling and precoding information to the slave cells. While for coordinated
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scheduling, the BSs take turns at different time slots to transmit data to their paired users.

Coordinated scheduling does not require CSIT but only the channel information of the

direct link, while coordinated beamforming requires the CSIT for the pre-coder design.

CoMP JT has been shown to outperform other described techniques in terms of user

performance, but requires both CSIT and data sharing over the backhaul network, which

causes severe bottlenecks in a backhaul capacity-limited network [15, 18, 19]. This

setback reduces the potential for utilising CoMP transmission effectively and limits the

significant advantage of CoMP transmission.

2.1.1 Interference Mitigation for Multi-Cell Multi-User MIMO

System

One of the most critical issues of the multi-cell multi-user MIMO system is the large

amount of interference. In [20], a suboptimal precoding scheme was proposed to mitigate

interference for a multi-cell, multi-user MIMO system where the time and frequency

resources are shared between the users. In [21], a leakage based precoding scheme was

proposed for the multi-user MIMO downlink systems to mitigate other cell interference

(OCI) within the system. These strategies are used to cancel or mitigate the received

interference by the users from neighbouring BSs. Consider the multi-cell multi-user

MIMO system as shown in Fig. 2.2. Each user suffers inter-user interference (IUI)

(interference from transmitting multiple user’s data) and OCI (interference from other

neighbouring cells due to the broadcast nature of the wireless channel).

Interference mitigation can also be achieved using cooperation between the BSs. Multi-

cell cooperation between all the BSs in the cellular system was found to combat ICI

and improve the system performance especially at the cell-edge. Transmit and receive

beamforming techniques are used to improve the multi-cell network sum-rate with

cooperation between the BSs [22]. The use of an iterative algorithm to construct the

transmit pre-coders and receive beam-formers was shown to achieve improved sum-
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capacity in an interference channel [22].

CELL A 

User K 

User 2 

User 1 

User K 

User 2 

User 1 

CELL B 

Figure 2.2: A multi-cell multi-user system.

2.1.2 Beamformer Design Approach

This section presents the well-known interference mitigation technique using both the

transmit and receive beam-formers in the multi-cell multi-user MIMO system. Assuming

M macro cells and K users in each macro cell, the received signal at the k-th user within

the m-th macro cell is given by:

yk,m = H(m)
k,mvm,k

√
ρm,ksm,k︸ ︷︷ ︸

desired signal

+
K∑
p=1

p6=k

H(m)
k,mvm,p

√
ρm,psm,p

︸ ︷︷ ︸
IUI

+
M∑
n=1
n6=m

K∑
p=1

H(n)
k,mvn,p

√
ρn,psn,p

︸ ︷︷ ︸
OCI

+ nk,m,∀m ∈ [1, 2, · · · ,M], ∀k ∈ [1, 2, · · · ,K], (2.1.1)
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where sm,k is the data signal from the m-th BS to the k-th user and E {|sm,k|2} = 1. The

channel matrix between the k-th user in the m-th cell and the n-th BS is denoted by H(n)
k,m.

vm,k with dimension Mt × 1, is the vector used to precode the k-th user data signal at

the m-th BS, ρm,k the power allocated to transmit the k-th user data signal at the m-th BS

and nk is additive, zero-mean, white, complex Gaussian noise vector with variance σ2
k for

each element. At the receiver, the received signal (yk,m) is post-processed (um,k) as shown

below [23]:

uHm,kyk,m = uHm,kH(m)
k,mvm,k

√
ρm,ksm,k +

K∑
p=1

p 6=k

uHm,kH
(m)
k,mvm,p

√
ρm,psm,p

+
M∑
n=1
n6=m

K∑
p=1

uHm,kH
(n)
k,mvn,p

√
ρn,psn,p + uHm,knk,m,∀m ∈ [1, 2, · · · ,M], ∀k ∈ [1, 2, · · · ,K],

(2.1.2)

where um,k is the Nr × 1 receive beamforming vector used to cancel the received

interference at the the k-th user in the m-th macro cell.

Beam-former Design based on SLNR maximisation

The signal to leakage plus noise ratio (SLNR) maximisation technique aims to maximise

the SLNR at each BS by minimising the leakage caused by that BS to other users in the

system. This technique is iterative and uses both transmit and receive beam-formers on

the BSs and user equipment (UEs) respectively. Assuming the transmit beamforming

vectors
{
{vm,k}Kk=1 , m = 1, · · · ,M

}
with dimensions Mt × 1 are randomly selected for

each user k in the m-th macro cell. The receive beamforming vector um,k is selected such

that it zero-forces the received IUI and OCI from all the BSs as shown in (2.1.3). So what

we seek to achieve at the k-th user is:

M∑
n=1

K∑
p=1

p 6=k,ifn=m

|uHm,kH(n)
k,mvn,p|2 = 0, ∀m ∈ [1, 2, · · · ,M],∀ k ∈ [1, 2, · · · ,K]. (2.1.3)
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This is done by choosing um,k as the eigenvector corresponding to the minimum

eigenvalue of:

M∑
n=1

K∑
p=1

p 6=k,ifn=m

H(n)
k,mvn,pvHn,pH

(n)H
k,m . (2.1.4)

Subsequently, the transmit pre-coding vectors
{
{vm,k}Kk=1 ,m = 1, · · · ,M

}
are selected

such that the undesired signal leakage power to the users are zero-forced after post-

processing with the vector um,k as shown below [23]:

M∑
n=1

K∑
p=1

p 6=k,ifn=m

|uHn,pH(m)
p,n vm,k|2 = 0,∀m ∈ [1, 2, · · · ,M], ∀k ∈ [1, 2, · · · ,K]. (2.1.5)

From (2.1.6) it is easy to see that vm,k is chosen to be the eigenvector corresponding to

the minimum eigenvalue of [23]:

M∑
n=1

K∑
p=1

p 6=k,ifn=m

H(m)H
p,n un,puHn,pH

(m)
p,n . (2.1.6)

Pre-coder Design with SNR maximisation

For signal to noise ratio (SNR) maximisation, if only the CSIR is available, then

the precoding vectors and receive beam-formers can be designed at the receiver side

and only the pre-coder information are transmitted to the BSs. But if the CSI and

receive beam-formers are available at the transmitter, then the pre-coders can be

designed at the transmitter. Under the SNR maximisation strategy, the precoding vectors{
{vm,k}Kk=1 , m = 1, 2, · · · ,M

}
, required to transmit the k-th user’s data from the m-th

BS, are designed such that the SNR at each user is maximized as shown in (2.1.7):

vm,k = arg max
vm,k

|uHm,kH
(m)
k,mvm,k|2, ∀m ∈ [1, 2, · · · ,M], ∀k ∈ [1, 2, · · · ,K]. (2.1.7)

If um,k is known or given, the pre-coder vm,k, can be found as [24]:

vm,k ∝ max eigenvector (H(m)H
k,m um,kuHm,kH

(m)
k,m). (2.1.8)
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Now the receive beam-formers
{
{um,k}Kk=1 , m = 1, 2, · · · ,M

}
, are designed such that

the SNR is maximised as shown in (2.1.9):

um,k = arg max
um,k

|uHm,kH
(m)
k,mvm,k|2, ∀m ∈ [1, 2, · · · ,M], ∀k ∈ [1, 2, · · · ,K], (2.1.9)

so um,k can be chosen as [24]:

um,k ∝ max eigenvector (H(m)
k,mvm,kvHm,kH(m)H

k,m ). (2.1.10)

2.2 Existing CoMP transmission

CoMP transmission requires a group of BSs to transmit user information simultaneously

to a given user, such that the user’s performance is enhanced, especially for the cell-edge

users. The cooperation between the BSs was deemed practical since the BSs are fixed

in location and are interconnected through optical fibres or have very fast point-to-point

communication links. With cooperation, the network can be viewed as a single cell BS

with distributed antenna arrays. The downlink channel of a multi-cell MIMO system

with cooperation can then be treated as a single cell multi-user MIMO system and the

only drawback is that the average transmit power across all antennas is bounded [25].

Pre-specified BS clusters that do not change with time and channel conditions are known

as static clustering. Dynamic clustering adapts to the changing channel conditions and

system conditions and gives a better performance than static clustering [18, 26]. However

the gain which can be obtained by adaptive clustering is yet to be fully harnessed. In

3GPP LTE, there are three main types of cooperating area (CA): 1) Network centric CA:

the cells in a network are divided statistically into different clusters for all users in the

network. 2) User centric CA: CSs are assigned to users based on the strong channel links

to each user. 3) Network-centric user assisted CA: this is a hybrid of both CAs previously

stated, highlighting the benefits of both techniques [15].
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2.3 CoMP Transmission in a Network Centric

Cooperating Area

Figure 2.3: CoMP transmission within clusters, K = 4 BS-UE pairs and Mmax = 2 BS-UE

pairs per cluster.

The network centric CoMP transmission allows multiple transmission from BSs within a

cluster to the user equipments (UEs) within the same cluster. In Figs. 2.3 and 2.4, the

system models show a given set of four macro cells partitioned into two clusters, where

Mmax = 2 BSs are cooperating within a given cluster and all users share the same RB. In

Fig. 2.5, full coordination or full CoMP transmission exists within each cluster and all the

BSs in each cluster require the signal information of the user(s) for CoMP transmission.

The size of each cluster is pre-set by the network, and a large cluster size is known to cause

high data overhead in the backhaul [18]. However, this can be used as an advantage for

interference cancellation if the BSs act as a super BS with distributed antennas, thereby
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increasing the available degrees of freedom (DoF) for interference cancellation [19]. The

DoF is defined as the number of independent channels exploited by the transmitter which

can also be defined as the ratio of the sum capacity of the network to the log of the total

transmit power, in the limit that P → ∞, i.e. lim
P−→∞

C(P)

log2P
[27]. In [15], the authors

selected the CSs of the users based on the available backhaul capacity. In [26], the

authors suggested that the clusters performing CoMP transmission can be selected based

on a cost function, where the cost is proportional to the cluster cardinality and inversely

proportional to the channel characteristics.

The network is divided into different clusters and members of each cluster can be static

or dynamic. The cluster size and the selection of macro cells for each cluster can be

pre-set by the network or varied depending on the network conditions. Under dynamic

clustering, BSs are grouped into clusters based on the channel conditions of the users, the

proximity of users to the neighbouring BSs, or other factors. The BSs coordinate only

within the cluster to transmit data to the users served by that cluster. Each user receives

IUI and ICI from its supporting cluster and OCI from other clusters within the network.

The conventional clusterisation allowed large number of BSs to transmit data to users

within each cluster, thereby causing high data overhead in the backhaul links.

To alleviate the data overhead problem, this chapter analyses the possible trade-off in

performance to achieve a reduced data overhead. Intuitively, having a large number

of clusters within a network would lead to a reduced data overhead in exchanging

user’s signals and precoding information to each serving BS. In the following section,

a reduction in the cluster size is proposed using the proposed algorithm and the effect of

this strategy is analysed and discussed through simulation results.

2.3.1 System Model

As shown in Fig. 2.3, the downlink cell deployment considers only the cell-edge users.

The BS and UE pair are equipped with Mt transmit and Nr receive antennas respectively.

Assuming equal base station power (Pm,∀m) across all the BSs, let the power allocated
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tp the m-th BS for each user’s data within a cluster be ρm,k = Pm/Mmax. Note that

Mmax is the number of BS-UE pairs in a given cluster and for the full CoMP transmission

Mmax = K BS-UE pairs. Under full CoMP transmission as shown in Fig. 2.5, the direct

and interfering channels carry the desired and undesired signals to each UE. Each user

receives its desired signal and the undesired signals are cancelled using both transmit

precoders and receive beamformers.

BS4

BS1

BS3

BS2

UE1

UE3

UE4

UE2

Cluster A

Cluster B

s11, s12

s11, s12

s21, s22

s21, s22

s22

s21

s11

s12

H11

H22

H21

H12

H44

H33

H34

H43

Figure 2.4: CoMP transmission links with K = 4 BS-UE pairs and Mmax = 2 BS-UE pairs

in the cluster.

The dashed lines represent the interference channels as shown in Fig. 2.4 while the solid

lines represent the direct channel links as shown in Figs. 2.4 and 2.5. The channel matrix

between the k-th user and the m-th BS is a flat-fading channel, denoted by Hk,m ∈ CNr×Mt .

The coefficients of Hk,m are complex random variables, with zero-mean Gaussian real and

imaginary parts. The channel links experience large scale fading, with path loss exponent
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(α) and log-normal shadowing having zero-mean and variance σ2
s .
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s11, s12, s21, s22

s11, s12, s21, s22

Figure 2.5: Full CoMP transmission links with K = 4 BS-UE pairs and Mmax = 4 BS-UE

pairs in the cluster.

Assuming a single user is paired to a given BS and a single data stream is transmitted

from each BS to each user or groups of users. Let Hk = [Hk,1,Hk,2, ...,Hk,K], be the

channel matrix between the user k and all K transmit BSs. Let U = [u1, ...,uK], be

the matrix containing all the receive beamforming column vectors (uk) of user k. Let

V = [v1, v2, ..., vK], be the matrix containing all the unitary precoding vectors of user data

k, where vk = [vT1k, vT2k, ..., vTK,k]
T and vm,k is used to precode the data of the k-th user from

the m-th BS. In addition, ρm,k is the power allocated to the k-th user data at the selected

m-th BS in the j-th cluster. sk is the complex (scalar) data signal destined for the k-th user

(E {|sk|2} = 1) and nk is an additive, zero-mean, white, complex Gaussian noise vector
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with a variance of σ2
k.

Each cluster j, has Mmax BS-UE pairs and each BS in each cluster transmits multiple

streams of data containing a single data stream to each user in the cluster. The received

signal at the k-th user in the j-th cluster is given by (2.3.11):

y(j)
k =

K∑
m=1
m∈Tj

Hk,mvm,k
√
ρm,ksk +

K∑
m=1
m∈Tj

K∑
p=1,p 6=k
p∈Tj

Hk,mvm,p
√
ρm,psp

+
J∑
i=1
i 6=j

K∑
m=1
m∈Ti

K∑
p=1

p∈Ti

Hkmvm,p
√
ρm,psp + nk,

∀j ∈ [1, 2, · · · , J], ∀k ∈ [1, 2, · · · ,K], k ∈ Tj, (2.3.11)

where Tj is the set of all BS-user pairs in cluster j and J is the total number of clusters.

In (2.3.11), the second and third components respectively, are the IUI and ICI received

within the same CS and the OCI received from other CSs in the CoMP system. The SINR

of the k-th user is given by:

SINRk =

K∑
m=1
m∈Tj

∣∣uHk Hkmvmk
∣∣2 ρm,k

K∑
m=1
m∈Tj

K∑
p=1,p 6=k
p∈Tj

∣∣uHk Hk,mvm,p
∣∣2 ρm,p +

J∑
i=1
i 6=j

K∑
m=1
m∈Ti

K∑
p=1,p 6=k
p∈Tj

∣∣uHk Hk,mvm,p
∣∣2 ρm,p + σ2

k

,

(2.3.12)

Rk is the rate of user k and the sum-rate (RT ) is expressed as:

RT =
K∑
k= 1

log2 (1 + SINRk)︸ ︷︷ ︸
Rk

(2.3.13)

2.3.2 Proposed Clusterisation Algorithm

In this section, a new method is proposed to divide the given network into smaller cluster

in order to analyse the possible trade-off in performance when the number of transmit
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BSs are further limited. From the cell topology in Figs. 2.3 and 2.4, assuming a cluster

size of Mmax = 2. For easier clustering, BS#1 and BS#4 are not allowed to cooperate

within the CoMP system since they are further apart. Therefore BS#1 and BS#4 can only

cooperate with BS#2 or BS#3. The clusters of BS-UE pairs are selected based on the

channel conditions as shown below:

Step 1: Using the obtained CSIT, the channel norms from UE#1 and UE#4 are obtained

relative to BS#2 and BS#3 (i.e. ‖H12‖F , ‖H13‖F and ‖H42‖F , ‖H43‖F ) while the

channel norms for UE#2 and UE#3 are also obtained relative to BS#1 and BS#4 (i.e

‖H21‖F , ‖H24‖F and ‖H31‖F , ‖H34‖F ).

Step 2: Let X be defined as the set of values obtained from the sum of all interfering

channel norms in each possible cluster. The number and members of all possible clusters

is a combinatorial problem which can be easily obtained for small sizes of clusters. For

the given set-up in Figs. 2.4 and 2.5, X can be obtained as:

X = [X (1), X (2), X (3), X (4)] (2.3.14)

where

X (1) = ‖H12‖F + ‖H21‖F

X (2) = ‖H13‖F + ‖H31‖F

X (3) = ‖H42‖F + ‖H24‖F

X (4) = ‖H43‖F + ‖H34‖F
.

Step 3: Using the information obtained in Step 2, in a successive manner, the cluster

with the best interfering channel links is chosen. Each subsequent cluster chosen must be

exclusive and should not contain BSs already chosen for previous clusters.

For instance, if max(X ) = X (1) or X (4) then the scheduled cooperating sets will be

(BS#1, BS#2) and (BS#3, BS#4) otherwise the cooperating sets will be (BS#1, BS#3)

and (BS#2, BS#4).



Chapter 2. Coordinated Multi-Point Transmission 27

2.3.3 Simulation Results and Evaluation

In this section, simulation results are obtained for the network centric clusterisation

approach using the proposed algorithm. The performance metric used are the sum-rate

and bit error rate (BER). The BER performance is used to measure the number of errored

received bits transmitted through a given communication medium [28]. Consider the

system setup in Fig. 2.3, Fig. 2.4 (showing a cluster size of Mmax = 2) and Fig. 2.5

(showing a cluster size of Mmax = 4). The performance of the algorithm is evaluated for

K BS-UE pairs where each user k is served by Mk = Mmax number of BSs in each cluster.

The value of Mmax is varied to analyse the effect of the system performance against the

number of transmit BSs allowed for CoMP transmission. In this section the non-CoMP

system, which is based on a single downlink transmission between each BS-UE pair,

would be compared to the proposed (small size of clusters) and existing strategies (large

size of clusters). Also a random clusterisation, which randomly selects each clusters

without taking any network factors into consideration is evaluated and compared with

the static clusterisation method (where the clusters are fixed regardless of the changing

network conditions).

For the analysis required in this section, the following parameters are defined:

• ‘bernc’ and ‘rtnc’ represents the BER and sum-rate performance respectively under

non-CoMP transmission and {Mk}Kk=1 = Mmax = 1.

• ‘berrc’, and ‘rtrc’ represent the BER and sum-rate performance respectively under

a random clusterisation of the BS-UE pairs and {Mk}Kk=1 = Mmax = 2.

• ‘bersc’ and ‘rtsc’ represent the BER and sum-rate performance respectively under

a network preset clusterisation for the given BS-UE pairs and {Mk}Kk=1 = Mmax =

2.

• ‘berdc’ and ‘rtdc’ represent the BER and sum-rate performance respectively under

the proposed dynamic clusterisation of the BS-UE pairs based using the algorithm
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presented in Section 2.3.2 for K = 4 BS-UE pairs. The clusterisation is dynamic

and changes with the given channel conditions and {Mk}Kk=1 = Mmax = 2.

• ‘berfc’ and ‘rtfc’ represent the BER and sum-rate performance respectively under

full CoMP transmission. The users receive data from all K BSs and {Mk}Kk=1 =

Mmax = K = 4.
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Figure 2.6: BER performance with Mt = 4, Nr = 2 and K = 4 BS-UE pairs in a network

centric CA.

Figs. 2.6 and 2.7 show the BER performance and the sum-rate performance of the given

system, under the different clustering strategies. It can be observed from Fig. 2.6 that

‘bernc’ and ‘berrc’ achieve poor BER performance when compared to ‘bersc’, ‘berdc’

and ‘berfc’. It can also be observed from Fig. 2.7 that ‘rtnc’ and ‘rtrc’ achieve poor
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BER performance when compared to ‘rtsc’, ‘rtdc’ and ‘rtfc’. However the sum-rate

performance obtained with ‘rtnc’ exceeds that obtained with ‘rtrc’ as the SNR increases.

This shows that a random clusterisation approach does not provide any gain even with

CoMP transmission as compared to a non-CoMP transmission with a single BS-UE pair.
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Figure 2.7: Sum-rate performance with Mt = 4, Nr = 2 and K = 4 BS-UE pairs in a network

centric CA.

The proposed ‘rtdc’ is seen to achieve a higher sum-rate than ‘rtsc’, while ‘rtfc’ is seen

to have the best performance when compared to all other four strategies. The channel

characteristics of the wireless channel changes with time and the dynamic clusterisation

takes advantage of this unique characteristics unlike the static clustering approach. As

expected, the performance obtained under the dynamic method is seen to outperform

the static approach. This is because unlike static clustering, dynamic cluster takes into

account the changing channel conditions of the network during clustering. Dynamic

clustering approach re-clusters the users using the given strategy such that the best BSs
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are clustered together at every given time. This result validates the need for a dynamic

cluster selection as opposed to a static or random clusterisation of BS-UE pairs as well as

non-CoMP transmission.

The best BER and sum-rate performance is achieved under ‘berfc’ and ‘rtfc’ with Mk = 4

transmit BSs for the k-th user. However when compared to ‘berdc’ and ‘rtdc’ with only Mk

= 2 transmit BSs for the k-th user, a 50% reduction is expected in the backhaul overhead

using the proposed solution for only a slight decrease in the performance. For instance to

obtain a BER performance of 10−2, ‘berfc’ and ‘berdc’ requires an SNR of 20 dB and 22

dB. Also when the SNR is 25 dB, ’rtfc’ and ’rtdc’ obtains a sum-rate performance of 63

kbps/Hz and 61 kbps/Hz respectively. As observed, a considerable gain is not achieved

with full CoMP transmission when Mmax = 4 when compared to Mmax = 2, even though

the resulting data overhead is doubled. The backhaul link is limited and could potentially

cause poor synchronisation and high latency, if congested. It is therefore important to

avoid full CoMP transmission with a large number of transmit BSs per user. Hence, the

cluster size needs to be reduced and the members of each cluster needs to be properly

selected such that the system performance is maximised with limited backhaul overhead.

Using the same number of transmit and receive antennas, for K = 6 BS-UE pairs,

the simulation results show the BER and sum-rate performance in Figs. 2.8 and 2.9

respectively. The proposed dynamic clusterisation presented earlier in Section 2.3.2 is

applied for K = 6 BS-UE pairs. Note that to completely cancel the interference using

precoding and/or beamforming at the transmitter and/or receiver respectively, there has

to be available DoF at the transmitter and/or receiver. And so for the given set-up, the

constraints on the transmit and/or receive antennas respectively are Mt > (K − 1) and/or

Nr > (K−1)Mmax, which means either constraint or both constraints needs to be satisfied

for complete interference cancellation. If the number of transmit antennas do not meet

the constraint required to completely null the transmitted leakage to the users, the DoF at

the receive antennas can be used to also mitigate the received interference.

Now one can observe that ‘berfc’ and ‘rtfc’ achieve a better performance compared to all
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other four strategies when SNR ≤ 10 dB. But at higher SNR values, ‘berfc’ and ‘rtfc’ are

seen to achieve the worst performance. This is because for the given system set-up with

Mt = 4, Nr = 2, Mmax = 6 and K = 6 BS-UE, the condition for complete interference

zero-forcing is not met, thereby causing very poor mitigation of the received interference.
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Figure 2.8: BER performance with Mt = 4, Nr = 2 and K = 6 BS-UE pairs in a network

centric CA.

It can be seen from Fig. 2.8, that the BER performance flattens out at higher SNR values

due to unavailable DoF for complete interference cancellation. Again ‘berdc’ is seen to

exceed the BER performance obtained by ‘bernc’,‘berrc’ and ‘bersc’. Also from Fig.

2.9, ‘rtdc’ is seen to achieve a better sum-rate performance over 15 dB to 20 dB and

‘rtnc’ achieves a better performance from 30 dB upwards. This happens because under

the given system conditions, none of the solutions meet the transmit antenna constraints.
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However, ‘rtnc’ (with Mmax = 1) would obtain a less dominant interference since the

receive antenna conditions are less stringent as opposed to ‘rtdc’ (with Mmax = 2) and

‘rtfc’ (with Mmax = 6). So at higher SNR values ‘rtnc’ would experience a better SINR

and system performance due to lower level of interference compared to ‘rtdc’ and ‘rtfc’.
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Figure 2.9: Sum-rate performance with Mt = 4, Nr = 2 and K = 6 BS-UE pairs in a network

centric CA.

From these observations, one can see that the number of available transmit and receive

antennas can affect the performance of CoMP transmission with a large cluster size under

certain condition. In addition, the data overhead experienced in this case is three times

more than the data overhead required under the proposed clustering approach. Even at

low SNR values, the increase in performance is very trivial compared to the required

increase in the data overhead. For instance at 0 dB, ‘rtfc’ and ‘rtdc’ achieve a sum-rate

performance of 22 kbps/Hz with Mmax = 6 and 19 kbps/Hz with Mmax = 2.
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2.4 CoMP Transmission in a User Centric Cooperating

Area

BS1

BS2

BS3

BS4
UE1

UE2

UE3

UE4

Figure 2.10: CoMP transmission in a user centric CA, with K = 4, Mmax = 2.

The CS of a given user is defined as the set of BSs transmitting data to that given user.

The user centric approach shown in Fig. 2.10 allows a fixed number of BSs to be selected

for each user, based on the channel quality to that user. Therefore, the resulting CSs

are not exclusive unlike the network centric clusters. Network centric CS is defined as

exclusive since a BS-UE pair can only belong to one cluster. The clusters can also be

said to be symmetric since each BS in each cluster supports the same users. However

for user centric clustering, the clusters can be said to be asymmetric, since each BS can

support different number of users at a given time. The user centric approach aims to

limit the backhaul overhead by setting a fixed number of transmit BSs per user (Mmax).

The advantage of the asymmetric CS is that the users have more flexibility in choosing

BSs with good channel quality as opposed to the network centric clusterisation. The
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BSs selected for each user can be static or dynamic. Under the dynamic CS allocation,

BSs with good channel quality are assigned to users for CoMP transmission. Each user

receives IUI, ICI and OCI from other BSs within the network. Full coordination or full

CoMP transmission also exists where Mmax = K BSs are selected for CoMP transmission

as shown in Fig. 2.5. The disadvantages of using a large number of BSs for CoMP

transmission is the high data overhead which has already been highlighted in Section 2.3.

2.4.1 System Model

Figure 2.11: CoMP transmission links with K = 4 BS-UE pairs and Mmax = 2 BSs per

user, the dashed lines and solid lines represents the undesired and desired channel links

respectively.
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Consider the cell deployment in Fig. 2.11 where each BS-UE pair is equipped with Mt and

Nr transmit and receive antennas respectively and an equal base station power (Pm,∀m)

is assumed across the network. Let the power allocated on the m-th BS to each user’s data

within a cluster be ρm,k. Assuming equal power across all data signals from each BS, then

the power assigned to each user’s data signal is the total BS power divided equally across

all users’ data signals. Note that Mmax is the maximum number of allowed transmit BSs

per user and for the full CoMP transmission Mmax = K BS-UE pairs.

As shown in Fig. 2.11, the dashed black line represents the interference channel while the

blue solid line represents the direct channel. Also the users share the same RB, and the

channel matrix between the k-th user and the m-th BS is a flat-fading channel, denoted by

Hk,m ∈ CNr×Mt . The coefficients of Hk,m are complex random variables, with zero-mean

Gaussian real and imaginary parts. The channel links experience large scale fading, with

path loss exponent (α) and log-normal shadowing having zero-mean and variance σ2
s .

Let Hk = [Hk,1,Hk,2, ...,Hk,K], be the channel matrix between the user k and all K

transmit BSs. Let U = [u1, ...,uK], be the matrix containing all the receive beamforming

column vectors (uk) of user k. Let V = [v1, v2, ..., vK], be the matrix containing all the

unitary precoding vectors of user data k, where vk = [vT1k, vT2k, ..., vTK,k]
T and vm,k is used to

precode the data of the k-th user from the m-th BS. In addition, ρm,k is the power allocated

to the k-th user data at the selected m-th BS in the j-th cluster. sk is the complex (scalar)

data signal destined for the k-th user (E {|sk|2} = 1) and nk is an additive, zero-mean,

white, complex Gaussian noise vector with a variance of σ2
k. Each BS transmits multiple

streams of data containing a single data stream to each user in the cluster. The received

signal at the k-th user is given by (2.4.15):

yk =
K∑
m=1
m∈Lk

Hk,mvm,k
√
ρm,ksk +

K∑
p=1

p 6=k

K∑
m=1
m∈Lp

Hk,mvm,p
√
ρm,psp + nk

∀k ∈ [1, 2, · · · ,K], (2.4.15)

where Lj is the set of all BSs transmitting to user j. In (2.4.15), the first and second

components respectively, are the desired received signal and the IUI plus OCI received
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within the system.

From (2.4.15), after post-processing with uk at the receiver, the SINR at the k-th UE is

given by:

SINRk =

K∑
m=1
m∈Lk

∣∣uHk Hkmvmk
∣∣2 ρm,k

K∑
m=1
m∈Lp

K∑
p=1

p 6=k

∣∣uHk Hk,mvm,p
∣∣2 ρm,p + σ2

k

(2.4.16)

Rk for the k-th user and sum-rate (RT ) can be obtained using (2.3.13).

2.4.2 Proposed User Centric CS Algorithm

To limit the data overhead of the system under the user centric approach, the number of

allowed transmit BSs per user is reduced and the resulting BER and sum-rate performance

is obtained and analysed. For the purpose of analysing the objectives of this chapter, only

the channel gain would be considered in the proposed CS algorithm. However, this is not

optimal since the rate of the user is based on the SINR metric. In Chapters 3 and 4, the

interference within the network would be taken into account and the SINR would be the

ultimate metric used in the proposed CS selection algorithm.

The CSs of the UEs are selected as shown below:

Step 1: The CSIT of the network is obtained, and the channel norms from the

available neighbouring BSs (m) to each user (k) are calculated (i.e. ‖Hk,m‖F ,∀k, m,∈

[1, 2, · · · ,K]).

Step 2: Using the information obtained in Step 1, the CSs for the users are obtained by

assigning Mmax transmit BSs for each user. The BSs assigned to each user are BSs with

the best channel quality. These BSs perform CoMP transmission to the user.

Since the CS selection is user based, the number of users assigned to each BS at a given

time varies based on the changing channel conditions from each BS to each user.
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2.4.3 Simulation Results and Evaluation

In this section, the simulation results are obtained for the user centric clustering approach

using the proposed algorithm in Section 2.4.2 for dynamic clusterisation. Considering the

system set-up in Fig. 2.11 (showing a CS size of Mmax = 2) and Fig. 2.5 (showing

a CS size of Mmax = 4). The performance of the algorithm is evaluated for K BS-

UE pairs where each user k is served by Mk = Mmax BSs in each cluster. The value

of Mmax is further reduced and the trade-off between system performance and data

overhead is analysed. Also for the purpose of this work, the static approach to user

centric clusterisation is analysed. The users are assigned pre-set BSs depending on

the allowed BS size by the network. The obtained results are compared with the static

user centric clusterisation (‘berasc’), dynamic user centric clusterisation (‘beradc’), non-

CoMP transmission (‘bernc’), dynamic network centric clusterisation (‘berdc’) and full

CoMP transmission (‘berfc’).

For the analysis required in this section, the following additional parameters are defined:

• ‘berasc’ and ‘rtasc’ represent the BER and sum-rate performance respectively under

static pre-set CS selection for the users and {Mk}Kk=1 = Mmax = 2.

• ‘beradc’ and ‘rtadc’ represent the BER and sum-rate performance respectively

using the proposed dynamic user centric CS selection and {Mk}Kk=1 = Mmax =

2.

Figs. 2.12 and 2.13 show the BER performance and the sum-rate performance of the given

system, under the different clusterisation strategies. From Fig. 2.12, one can observe

that the use of multiple BSs improves the system performance. Now ‘berasc’ achieves

a similar BER performance with ‘berdc’, however the sum-rate performance for ‘rtdc’

is slightly better than ‘rtasc’ as shown in Fig. 2.13. This shows that even with a static

user centric CS selection, the performance obtained is comparable to the performance

achieved with a dynamic network centric clusterisation. It also shows that the user centric
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approach used to obtain the CSs for each user, allows more flexibility in choosing a better

interference channel for CoMP transmission using neighbouring BSs as opposed to the

network centric clusterisation, where the BSs in the clusters may not always have the best

channel link to all the users in the given cluster.
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Figure 2.12: BER performance with Mt = 4, Nr = 2 and K = 4 BS-UE pairs in a user

centric CA.

Again in Fig. 2.12, ‘beradc’ is seen to achieve a gain of 3 dB when compared to the

network centric clusterisation approach, ‘berdc’. Also the sum-rate performance of ‘rtadc’

slightly exceeds ‘rtdc’ as seen in Fig. 2.13. Now comparing ‘beradc’ to ‘berfc’, the

BER performance achieved is similar but ‘beradc’ uses only 2 transmit BSs per user as

opposed to 4 transmit BSs per user. This proves that CoMP transmission using a large

CS size may offer little or no considerable advantage when compared to a smaller CS
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size if the CSs with a smaller size are chosen to maximise the signal strength to each

user. However, the data overhead required for full CoMP transmission is twice the data

overhead required using the proposed user centric solution. In this case only the channel

gain was considered without the effect of interference and noise, but in Chapter 4 the

SINR would be considered in choosing the BSs of each user’s CS.
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Figure 2.13: Sum-rate performance with Mt = 4, Nr = 2 and K = 4 BS-UE pairs in a user

centric CA.

The observed advantage in the sum-rate is expected and can be explained intuitively. For

the given set-up in Fig. 2.10, let the number of transmit BSs per user equal to the number

of served users per BS for any given value of Mmax. Assuming an equal total transmit

power for each BS, an equal power allocation on each user’s data transmission from each

BS, zero interference, unit noise power and different channel gains from each BSs to each
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user. Then the received signal power when Mmax = 2 transmit BSs per user would be

higher than the received signal power for Mmax = 4 transmit BSs per user, since more

power is allocated to the channel gains with greater strength when Mmax = 2 and less

transmit powers are allocated to both the strong and weaker channel gains when Mmax =

4.
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Figure 2.14: BER performance with Mt = 4, Nr = 2 and K = 6 BS-UE pairs in a user

centric CA.

This validation can be seen again in Figs. 2.14 and 2.15 when K = 6, as ‘beradc’ and

‘rtadc’ offers better performance compared to all other strategies including the network

centric approach, non-CoMP transmission and full CoMP transmission. The BER is seen

to flatten out at higher SNR values because of unavailable DoF at the transmitter and/or

receiver to null the interference within the system. At 30 dB, the achieved sum-rates
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for ‘rtnc’, ‘rtdc’, ‘rtasc’, ‘rtadc’ and ‘rtfc’ respectively are 91 kbps/Hz, 86 kbps/Hz, 81

kbps/Hz, 97.5 kbps/Hz and 69 kbps/Hz.
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Figure 2.15: Sum-rate performance with Mt = 4, Nr = 2 and K = 6 BS-UE pairs in a user

centric CA.

Using a large number of CSs introduces more interference, especially when a limited

number of transmit and receive antennas are available for interference cancellation. This

can explain why full CoMP transmission is unable to achieve the required gains but rather

causes a huge data overhead in the backhaul. As seen in the previous section, ‘rtnc’ (non-

CoMP transmission, Mmax = 1) achieved a better sum-rate than ‘rtdc’ (proposed network

centric solution, Mmax = 2). But ‘rtadc’ can be seen to achieve a greater sum-rate than

‘rtnc’, using the proposed user centric CS selection for Mmax = 2. Therefore, a reduced

size of the CS for each user and a unique selection of the BSs in each user’s CS, allow the

users attain a better signal power in severe interference conditions such that the resulting
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performance surpasses that obtained with the non-CoMP solution or full CoMP solution.

2.5 Summary

Chapter 2 analysed the standard CoMP transmission technique which required all

neighbouring cells to perform CoMP transmission to the users. However, the gains

obtained by CoMP transmission is known to be limited by the huge amount of data

signalling overhead transfer required in the backhaul, low latency time and tight

synchronisation. To obtain a reduction in the data overhead, the number of cluster size

(under the network centric approach) and allowed transmit BSs per user (under the user

centric approach) was further reduced. Using the proposed clusterisation strategies the

size of the clusters or CSs was analysed for Mmax = 2. The results were compared with

the full CoMP transmission for Mmax = K.

The user centric clustering method allowed more flexibility in choosing the transmit BSs

for each user and was shown to outperform the network centric clusterisation method.

A significant data overhead reduction was obtained using the proposed user centric CS

selection and the sum-rate performance exceeded the performance obtained using full

CoMP transmission. The results show that certain conditions like the channel conditions,

number of transmit and receive antennas and the power constraints are important factors

that need to be considered when choosing the number of transmit BSs per user. This result

is significant, but due to the ever increasing growth in wireless devices, higher data rates,

real time streaming, amongst others, additional data overhead reduction will be desirable

especially if performance can be preserved or exceeded. The possibility of obtaining a

further reduction is presented and analysed in Chapter 3 and 4.



43

Chapter 3

Joint and Adaptive Cooperating Set

Selection

CoMP transmission is a fairly recent technology proposed to improve interference

mitigation and increase spectral efficiency in the wireless network. In this chapter,

the downlink CoMP JT is considered in a multi-cell, multi-user system where multiple

BSs transmit data streams to each user. CoMP JT is known to be accompanied by

huge requirements on the backhaul network architecture such as low latency, unlimited

backhaul capacity, perfect synchronization and low energy consumption. But satisfying

all of these conditions seems impossible as the number of BSs transmitting to each user

increases, and so the number of transmit BSs per user has to be limited in order to achieve

reduced overhead and affordable backhaul capability.

3.1 Introduction

CoMP transmission/reception has been proposed to increase cell-edge and average cell

throughputs in cellular network like LTE-A [29, 30, 31]. This technique has been

considered as an effective approach for inter-cell interference coordination (ICIC) in LTE-

A. The throughput gain promised by CoMP transmission is achieved by serving each
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user with a cluster or CS of BSs. A central unit (CU) performs the CS selection and

may be co-located with any BS within the network. As shown in the previous chapter,

CoMP JT uses multiple BSs simultaneously to transmit data to multiple users in the

network while performing IC to eliminate unwanted data signals to other users [32],

whereas coordinated beamforming/scheduling transmission uses beam-formers to avoid

interference or schedules transmission to only a single user at a given time hence requiring

no IC [33]. The selection of the CSs for each user in CoMP JT is mainly dependent

on the wireless channel characteristics and can be either static or dynamic [34, 18, 35].

In the case of static CS selection, a pre-set CS for each user is saved into the network

and does not adapt to the time-varying channel while in dynamic CS selection, the CS

for each user is selected based on the channel characteristics of the entire network and

automatically adapts using the configured scheduling algorithm as the channel varies with

time. To achieve the aforementioned gains using dynamic CSs for CoMP transmission,

the CSI, precoding information, coordination information, user signalling has to be

exchanged thereby causing an increased backhaul capacity requirement and a stringent

latency constraint which is almost impossible to attain with an increased number of

serving BSs per user. As shown in Chapter 2, as the number of BSs transmitting to a

given user increases, the system performance does not always improve in a linear fashion,

but the overhead does increase linearly. The trade-off of performance gain to increased

data overhead is very costly and so choosing an appropriate number of BSs to perform

CoMP transmission is necessary to reduce the overhead in the CoMP system [36]. But

finding the optimal maximum number of transmitting BSs in a CS, that would preserve

the performance advantage of CoMP transmission still remains a challenge [13].

The contributions of this chapter are as follows: Firstly, a joint and adaptive solution that

considers the dynamic nature of the channel conditions, QoS constraints and the location

of all users within the system, while simultaneously assigning CSs of different sizes to

each user and also limiting the maximum number of possible transmit BSs per user to

(Mmax) is proposed [37]. Secondly, the CS selection is obtained by optimising one of

the two criteria i.e., either a) maximization of sum rate with a total power constraint or
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b) minimization of total transmit power with a given target rate. Thirdly, by increasing

the maximum number of allowed BSs/user in a step-wise manner, from Mmax = 1 to

Mmax = K (i.e. non-CoMP transmission to full CoMP transmission), the total increase in

energy consumption and data overhead is analysed and the best value of Mmax that can

satisfy both optimization problems with lower cost implication is deduced, based on the

given system set-up.

The remaining parts of this chapter are organised as follows: The system model is shown

in Section 3.2. The beam-former design, power allocation and corresponding network

costs are presented in Section 3.3. The proposed joint and adaptive CS selection is

presented in Section 3.4 using two different optimisation strategies and the simulation

results are evaluated in Section 3.5. Finally this chapter is concluded in Section 3.6.

3.2 System Model

Consider a multi-cell, multi-user network with K BS-UE pairs as shown in Figs. 3.1 and

3.2. Each BS and cell-edge UE are equipped with Mt and Nr transmit and receive antennas

respectively and the number of BSs scheduled to transmit to user k is 1 ≤ Mk ≤ Mmax,

where Mmax is the maximum number of serving BS allowed per user and Mk is the number

of transmit BSs to user k.

Let Hk = [Hk,1,Hk,2, ...,Hk,K], be the flat-fading channel matrix between the user k

and all K transmit BSs. The coefficients of Hk,m,m = 1, · · ·K,∈ CNr×Mt are complex

random variables, with zero-mean Gaussian real and imaginary parts. The channel

links experience large scale fading, with path loss exponent (α). Let U = [u1, ...,uK]

be the matrix containing all the beamforming column vectors uk of user k. Let V =

[VT
1 , ...,V

T
K ]T be the matrix containing all the precoding matrices Vm = [vm,1, ..., vm,K] of

BS m where the column vector vm,k is used to precode the data of the k-th user from the m-

th BS. Also P = [pT1 , ...,pTK ]T is the power allocation matrix where pm = [ρm,1, ..., ρm,K]T

and ρm,k is the power allocated to the k-th user’s data at the m-th BS.
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Figure 3.1: CoMP transmission in a multi-cell multi-user network on a shared RB, K = 7

BS-UE pairs with Mmax = 2.

The optimisation problems considered in this chapter are based separately on two major

cost functions: i.) the sum-rate of the network and ii.) the power consumption of the

network. These two cost functions are important as they separately focus on the ouput

function (user focused) and the input function (network focused). In both cases, the major

aim is to find the CS selection matrix (∆) that meet the objectives of the optimisation

problems. The two optimisation problems considered in this chapter are: i) the sum-rate

maximisation problem as shown in (3.2.1) and ii) the total power minimisation with given

target rates as shown in (3.2.2). Considering the two optimisation problems separately,

the aim of the proposed CS selection strategy is to jointly obtain the CS of all users as well

as the corresponding beamforming, precoding and power allocation matrices that satisfy

either of the optimization problems:

max
∆,U,V,P

K∑
k = 1

Rk s.t.,
K∑

k = 1

K∑
m = 1

ρk,m = Pmax or (3.2.1)
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min
∆,U,V,P

K∑
k = 1

K∑
m = 1

ρk,m s.t., Rk ≥ φk, ∀k ∈ [1, 2, · · · ,K]. (3.2.2)

where Rk is the rate of user k and RT is the sum-rate (see (2.3.13)), Pmax is the total power

constraint and φk is the k-th user’s target rate.

So at user k, the received signal yk after post-processing by the receive beamforming

vector uk is given by:

uHk yk =
K∑

m= 1

uHk Hk,mvm,k
√
ρm,kδm,ksk +

K∑
m= 1

K∑
p= 1

p 6= k

uHk Hk,mvm,p
√
ρm,pδm,psp

+ uHk nk, ∀k ∈ [1, 2, · · · ,K]. (3.2.3)

Figure 3.2: The MIMO CoMP transmission system with K = 7 BS-UE pairs and Mmax =

2 (i.e., each user receives “wanted data” from a max. of 2 BSs).

where sk is the complex (scalar) data signal destined for the k-th user and E {|sk|2} = 1
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and nk is an additive, zero-mean, white, complex Gaussian noise vector with a variance

of σ2
k for each element. The CS of a user is defined as the subset of BSs scheduled to

simultaneously transmit data to that user. Finally, the “BS serving factor” (δm,k) and the

“CS selection matrix” (∆) are respectively defined as:

δm,k =

 1, if BS m serves user k

0, otherwise.
(3.2.4)

and ∆ =


δ1,1 δ1,2 · · · δ1,K

... . . . ...
...

δK,1 δK,2 · · · δK,K

 . (3.2.5)

In (3.2.3), the first term on the right hand side (RHS) is the useful signal while the second

term is the received co-channel interference (CCI) which needs to be eliminated by using

appropriate precoders and receive beamformer. The SINR at the k-th UE is derived as:

SINRk =

K∑
m = 1

∣∣uHk Hk,mvm,k
∣∣2 ρm,kδm,k

K∑
m = 1

K∑
p= 1

p 6= k

∣∣uHk Hk,mvm,p
∣∣2 ρm,pδm,p + σ2

k

. (3.2.6)

3.3 Beam-former Design, Power Allocation, Energy

Consumption and System Overhead

The main focus of this chapter is to obtain the CSs that meets the objectives as stated in

Section 3.1 and then analyse the obtained results. However to achieve this, the beam-

former design and power allocation are required. Firstly, a simple pre-coder design

and power allocation strategy are reviewed and then the energy consumption and system

overhead needed for analysis are defined.
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3.3.1 Beam-former Design

In (3.2.6), it can be observed that the SINR of each user k depends on all the precoding

vectors. Therefore using the SINR as an optimisation metric to obtain the precoding

vectors would lead to a coupled, complex, joint optimisation problem. This can be

avoided by selecting the precoding vectors based on the SLNR [38, 23, 39]. To obtain

the pre-coders and receive beam-formers required to maximise the SLNR, the leakage

power to other users needs to be minimised (refer to Section 2.1.2). Using the same

idea in Section 2.1.2, vm,k is chosen to be the eigenvector corresponding to the minimum

eigenvalue of:
K∑

p= 1

p 6= k

HH
p,mupuHp Hp,m, ∀ m, k ∈ [1, 2, · · · ,K], if δm,k = 1, (3.3.7)

and uk is chosen to be the eigenvector corresponding to the minimum eigenvalue of:
K∑

m= 1

K∑
p= 1

p 6= k

Hk,mvm,pδm,pvHm,pH
H
k,m, ∀ k ∈ [1, 2, · · · ,K]. (3.3.8)

3.3.2 Power Allocation

The power allocation shown below is obtained separately based on one of the two

optimisation problems.

• find {ρm,k}Km, k=1 that maximises
K∑

k=1

Rk, s.t.
K∑

m=1

K∑
k=1

ρm,k = Pmax

• find {ρm,k}Km, k=1 that minimises
K∑

m=1

K∑
k=1

ρm,k s.t Rk ≥ φk, where φk is the target rate

of user k.

Power allocation based on the sum-rate maximisation with power constraints

Consider the system model as described in Section 3.2, while assuming perfect CSI and

complete nulling of interference using the precoder design described in Section 3.3.1.
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From (3.2.6), let σ2
k = 1 and βm,k =

∣∣uHk Hk,mvm,k
∣∣2. The optimisation problem is to find

the power allocation matrix P, given a total power constraint, Pmax such that the sum rate

is maximised [40]. That is,

max
P

K∑
k = 1

log2

(
1 +

K∑
m=1

βm,kρm,k

)
s.t.,

K∑
m = 1

K∑
k = 1

ρm,k ≤ Pmax,

ρm,k 6= 0 if δm,k = 1. (3.3.9)

Finding the optimum P to solve (3.3.9) is complex. A simple, suboptimal approach is to

maximise the total sum rate as follows. Intuitively, assuming the total power (Pmax) is

used for transmission, then the individual power allocation can be obtained by allocating

Pmax across all the user data streams in proportion to the “effective gain” (βm,k) in (3.2.6)

to maximise the sum-rate (RT ) in (2.3.13). Following this approach, it is not difficult to

show that [41]:

ρm,k = Pmax

(
βm,k/

K∑
k = 1

K∑
m = 1

βm,k

)
,∀ m, k ∈ [1, 2, · · · ,K]. (3.3.10)

Power allocation based on total power minimisation with constraint on user rate

Here, the optimisation problem is to minimise the total transmit power subject to

achieving the target rate, (φk) for user k [40], where the target rate depends on the QoS

requirement of the given user. That is,

min
P

K∑
m = 1

K∑
k = 1

ρm,k s.t., Rk ≥ φk ∀k ∈ [1, 2, · · · ,K]. (3.3.11)

To achieve the user target rate in (3.3.11), then SINRk ≥ γ̄k where γ̄k = (2φk−1) becomes

the target SINR for user k. Again assuming complete interference zero-forcing, σ2
k = 1

and βm,k =
∣∣uHk Hk,mvm,k

∣∣2, the optimisation problem can be re-written as:

min
P

K∑
m = 1

K∑
k = 1

ρm,k s.t.,
K∑

m = 1

βm,kρm,k ≥ γ̄k and ρm,k > 0 (3.3.12)

Since this is a linear programming problem, interior point methods [40] can be used to

obtain {ρm,k}K
m, k = 1 that satisfy (3.3.11) and (3.3.12). Note that other linear optimisation
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solvers such as the dual-simplex, simplex and active-set methods can be used. However,

the interior point method was chosen since it is faster and uses less memory than the

simplex and active-set methods [42].

3.3.3 Energy Consumption

This section highlights the model used to estimate the energy consumption required to

transmit the user data signal using CoMP transmission. It takes into account the power

consumed by the BS (PBS), the power consumed in the backhaul through fiber optic data

transmission (Pbh) and the total transmit power in the given network (PT ). The power

consumption of a BS, (PBS) is given as [43]:

PBS = apPr + bp + cp. (3.3.13)

Here Pr is the average radiated power of a BS, ap is the power consumption that scales

with the BS transmit power due to the radio frequency amplifiers and feeder losses, bp

is the power due to signal processing and cooling while cp is the power consumption of

the small-form factor pluggable (SFP) used to transmit over the backhaul fiber [43]. The

total power consumed in the backhaul (Pbh) while transmitting data at a given rate Rbh is

proportionally dependent on the number of users served at each BS k. As the backhaul

traffic increases the backhaul power increases. In this chapter, for ease of analysis, Pbh in

[43] is simplified with:

Pbh =
K∑

k = 1

K∑
m = 1

δm,kPsw. (3.3.14)

where Psw is the maximum power consumption of the communication switch. Hence the

total energy consumption per BS, (ET ) in a unit of time is:

ET =
1

K
(KPBS + Pbh + PT ) , (3.3.15)

where PT can be obtained from finding P in (3.3.10) and (3.3.12):

PT =
K∑

k = 1

K∑
m = 1

ρm,k. (3.3.16)
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3.3.4 System Overhead

For the purpose of this work, the backhaul overhead is defined as the associated data

or backhaul load required in the backhaul network when performing data transmission

within a given network at a given time. This includes the data load required when sharing

users’ data signals and precoding information. Since the overhead increases linearly as the

number of transmit BSs per user increases, the overhead factor, (O), is a measure of the

observed backhaul load during CoMP transmission, which is dependent on the average

number of transmit BSs per user at a given time. The overhead factor is represented as

the following ratio:

O =
1

K

K∑
k=1

Mk. (3.3.17)

For non-CoMP transmission, the overhead factor obtained is 1, since each user is served

by one BS (Mk = 1, ∀k).

3.4 Cooperating Set Selection

From Chapter 2, it was shown under the user centric approach that reducing the number

of Mmax from 4 BSs/user to 2 BSs/user, with the proposed CS selection strategy, achieved

a 50% reduction in data overhead under the given system model, yet the obtained overall

performance was better than using Mmax = 4 BSs/user. Since the user’s location and

channel conditions are dynamic, this means that the user may experience good channel

conditions at different times and the QoS constraint may still be achieved with a single

data transmission (i.e. non-CoMP transmission). How can the size and BSs for each

user’s CS be identified, such that the optimisation problem or QoS constraints are met?

With this in mind, the objectives of this section are motivated and the proposed CS

selection is user centric. The CS of a user is defined as the subset of BSs scheduled

to simultaneously transmit data to that user. The proposed CS selection strategy allows

any BS to be included in as many CSs as possible while noting that each user is allowed
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a maximum of Mmax BSs in its CS. The two optimisation problems considered for the

purpose of this work are given in 3.2.1 and 3.2.2. This section proposes the CS selection

algorithm that would obtain a joint CS selection for all users; and using the beamforming

and power allocation solutions presented in Section 3.3, the corresponding transmit and

receive beam-formers as well as the power allocation solution would be obtained.

To obtain the optimum solution would require using a search algorithm over the total

number of possible solutions (NTS), where NTS is:

NTS =

(
Mmax∑
m= 1

(
K !

m ! (K−m) !

))K

. (3.4.18)

This search is NP-hard and therefore not solvable with practical complexity although

it can still be solved for smaller values of Mmax and K. For instance, if K = 7 and

Mmax = 4, 5, 6 and 7 respectively, NTS = [8.68, 33.8, 50.4, 53.3] × 1013 respectively.

In this chapter, the main focus is obtaining a joint CS selection for all the users’ data

transmission. It is important to measure the proposed algorithm against the hard search

algorithm to determine how effective and efficient the proposed solution is. Therefore, the

proposed solution which is heuristic and sub-optimal would be compared to the “optimum

CS selection” in Chapter 4. The proposed CS selection algorithm as summarised in Table

3.1, performs the CS selection to the optimisation problems in (3.2.1) and (3.2.2) with

much lower complexity and faster convergence. The optimum solution to the optimisation

problem in (3.2.1) and (3.2.2) requires a joint solution for ∆ (the CS selection matrix),

U and V (the receive and transmit beam-formers) and the power allocation matrix P.

To reduce the complexity, the proposed solution decouples the problems in (3.2.1) and

(3.2.2) into sub-problems to allow disjoint solutions to U, V and P to be obtained as shown

previously in Section 3.3. The proposed CS selection is presented in Section 3.4.1.

3.4.1 Proposed CS Selection Algorithm

The sub-optimal joint solution to ∆, that solves the given optimisation problem is obtained

by searching through a significantly reduced set of possible solutions. The proposed
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algorithm begins the search by assigning a single transmit BS with the best channel quality

to each user. Then the iterative algorithm aims to improve the obtained performance by

assigning more BSs to the users with lower performance than the given QoS constraint

(users’ sum-rate) or network set threshold (maximum power consumption threshold).

Table 3.1: CS selection algorithm (based on sum-rate maximization or total power

minimization).

Initialization: i = 0, R(i)
T = 0 (P(i)

T =∞),
{

g(i)
k

}K

k = 1
= −1, g(i)

avg = 0,
{

f(i)k
}K

k = 1
= 0, x(i) = 1.

while any (g(i)
k < g(i)

avg)

if x(i) 6= 0

1. Find ∆(i+1)

for k = 1 : K

if g(i)
k < g(i)

avg and f(i)k < Mmax

f(i+1)
k = f(i)k + 1,

δ
(i+1)
m,k = 1, if BS m has the best channel quality to user k and δ(i)

m,k = 0.

end if, end for

2. Find U(i+1), V(i+1) and P(i+1) using algorithms introduced in Section 3.3.

3. Find g(i+1)
k =

∑K
m = 1 β

(i+1)
m,k and R(i+1)

T (P(i+1)
T ) from (2.3.13)/(3.3.16).

if R(i+1)
T (−P(i+1)

T ) > R(i)
T (−P(i)

T )

∆← ∆(i+1), U← U(i+1), V← V(i+1), P← P(i+1), RT (PT )← R(i+1)
T (P(i+1)

T )

end if

g(i+1)
avg = 1

K(
∑K

k = 1 g(i+1)
k ), x(i+1) =

∑K
k = 1(f(i+1)

k − f(i)k ), f(i+1)
k = f(i)k ∀k, i++.

end if

end while.

4. Repeat steps 1-3 till convergence.
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The variables are initialised as shown in Table 3.1, where i is the iteration count, x(i) is

the convergence variable of the algorithm, fk is the number of assigned BSs to user k and

gavg is the average “effective gain”. Assign the BS with the best channel quality to each

user to obtain ∆(i+1) and find the corresponding solutions U(i+1),V(i+1) and P(i+1). At

each iteration, using the proposed scheduling algorithm, BSs are assigned to each user to

maximise the “effective gain” (gk =
∑K

m=1 βm,k). The “effective gain” of each user k (i.e.

gk) is maximised by assigning another BS to user k when gk < gavg. This can be explained

intuitively. In other to achieve a total power minimisation, the required transmit power

needed to achieve a given target rate reduces as the “effective gain” increases. Also, for

sum-rate maximisation, given a total power constraint, the achieved sum-rate increases

as the “effective gain” increases. This process is done iteratively until the maximum

number of transmit BSs per user is reached and no BS assignment is possible. The ∆ and

corresponding U, V and P that best solve each optimisation problem is selected as the CS

for the users required for CoMP transmission.

3.5 Simulation Results and Evaluation

Table 3.2: Summary of simulation parameters.

Parameters Value

Antenna layout Omnidirectional

Inter site distance (ISD)[3] 500m

Users per cell 1, distributed randomly

Reference distance (Do) 260 m

Distance of UE to BS pair Dk,k > Do

Path loss coefficient (α)[4] 2

Number of antennas (Mt,Nr) (7,2)

Transmission scheme CoMP (Mmax =1:K)

P̄sw[43] 300W
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P̄r[43] 43dBm (20W)

ap[43] 21.45W

bp[43] 354.44W

cp [43] 1W

In this section, a range of simulation results are used to evaluate the reduction achieved

in the data overhead and energy consumption under the given optimisation problems,

while taking into account the attained sum-rate performance or target user rate. This is

done by considering different maximum number of BSs per user (Mmax), i.e. Mmax =

[1, 2, · · · ,K]. Using the assumed parameters in Table 3.2, for K = 7, Mt = 7 and Nr

= 2, the obtained results are shown in Figs. 3.3 - 3.7. The CSs are obtained for all

users and each user is served with a maximum of Mmax BSs (i.e. M ≤ Mmax, M =

{M1, · · · ,MK}), using the proposed CS scheduling algorithm in Table 3.1. The proposed

CS scheduling algorithm is compared to a system which uses the conventional CoMP

transmission, where all users are served with Mmax BSs at any given time ( i.e. M =

Mmax). The following parameters: sum-rate (RT ), average energy consumption (ET ) and

the average overhead (O) are used to present the simulation results.

For the optimization problem in (3.2.1), the following values of Pmax are considered for

simulation: 0.07 kW, 0.7 kW and 7 kW. The results obtained for sum-rate performance,

energy consumption and data overhead are shown in Figs. 3.3, 3.4 and 3.5 respectively.

The results are obtained under the sum-rate maximisation problem with given total power

constraint. In Fig. 3.3, one can observe that the sum-rate performance of the proposed

strategy slightly exceeds the conventional solution for different values of Pmax, as the

number of Mmax increases. Although the maximum number of BSs is used for data

transmission, a better sum-rate performance under the conventional solution is not
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Figure 3.3: Sum-rate performance with K = 7, Mt = 7 and Nr = 2, under the sum-rate

maximisation problem.

guaranteed. This is because under the total power constraint, more power is given to

less number of BSs with larger “effective gain” as opposed to less power allocation

to a greater number of BSs with decreasing “effective gain”. Also, as seen in Fig.

3.4 for different values of Pmax, as Mmax increases the energy consumption under the

conventional solution (‘M = Mmax’), is seen to increase linearly. However the energy

consumption using the proposed strategy (‘M ≤ Mmax’) is seen to have an almost constant

value even for high values of Mmax.

In Fig. 3.5, the required data overhead can be analysed using the results obtained. As

the value of Mmax increases, the data overhead increases linearly under the conventional

solution for all values of Pmax. However, the data overhead results obtained using
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Figure 3.4: Average energy consumption with K = 7, Mt = 7 and Nr = 2, under the sum-

rate maximisation problem.

the proposed solution for different values of Pmax, is seen to increase then peak at

approximately 200% from Mmax = 3 to 7. For instance when Mmax = 3 and Pmax =

0.07 kW, the sum-rate performance obtained for a given RB is about 20 bps/Hz for both

the conventional and proposed strategy, however the data overhead required is 300%

and 200% respectively and the corresponding energy consumed is 1.7 kJ and 1.3 kJ

respectively.

Considering the total power minimisation problem with a given target user in (3.2.2), the

following values of φ are considered for simulation: 2 bps/Hz, 7 bps/Hz and 10 bps/Hz.

The same target rate (φk = φ, ∀k) is assumed for all users. The energy consumption and

data overhead are shown in Fig. 3.6 and Fig. 3.7 respectively.
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Figure 3.5: Average overhead with K = 7, Mt = 7 and Nr = 2, under the sum-rate

maximisation problem.

Now comparing the proposed solution (‘M ≤ Mmax’) to the conventional solution (‘M =

Mmax’), for different target rates one can observe an almost constant energy consumption

and data overhead for ‘M ≤ Mmax’ as opposed to a linear increase achieved with ‘M =

Mmax’. But when φ = 10 bps/Hz and Mmax = 1, a high energy consumption per BS is

observed and ET = 13kJ. This is because for the given target rate, the required transmission

power PT needed to achieve the desired rate is very high while using a single transmitting

BS to each user and since PT >> PBS + Psw the energy spike occurs for Mmax = 1.

However for Mmax ≥ 2, the average energy consumed per BS increases linearly for ‘Mk =

Mmax’, but the average energy flattens out for ‘Mk ≤ Mmax’.
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For example to achieve a given target rate of φ= 10 bps/Hz on a given RB, when Mmax

= 3, a data overhead of 300% is required using the conventional solution as opposed to

150% using the proposed CS selection. Also the corresponding energy consumption per

BS is 8 kJ as opposed to 5.4 kJ. This shows that under certain QoS constraints, the users

may not require full CoMP transmission to achieve the required targets even for a low

value of Mmax. Also if the CSs are chosen jointly, the best CS selection for each user

can be obtained such that the lowest cost to the network is required to achieve the best

performance.
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Figure 3.6: Average energy consumption with K = 7, Mt = 7 and Nr = 2, under the total

power minimisation problem.

Based on the results obtained under both optimisation problems, the best value of

Mmax that generally satisfies both optimisation problems presented in this chapter, with

minimum cost to the network operator is when Mmax is 2. At Mmax = 2, a better output
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sum-rate is achieved with a reduced input cost (i.e. the energy consumed and the overhead

required) compared to other values of Mmax.
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Figure 3.7: Average overhead with K = 7, Mt = 7 and Nr = 2, under the total power

minimisation problem.

3.6 Summary

This chapter has proposed a heuristic CS selection algorithm that achieves the joint CS

selection with a significant reduction in the complexity since the optimum joint solution is

known to be very complex and highly computational. In this chapter, a further reduction

in the overhead has been achieved in the backhaul network and this reduction has led to

a corresponding decrease in the consumed energy required for data transmission. The

achieved reduction obtained in the associated network costs is significant, it shows that
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a joint and adaptive CS selection for CoMP transmission enables different numbers of

transmit BSs to be allocated to each user based on the system conditions and the users’

demands.

Obtaining a green cellular network is very important for current and future wireless

communication networks, and this can be achieved by improving the power efficiency

of the cellular network. Also perfect synchronisation, low latency and improved

performance are all important factors for current and future wireless network systems.

This chapter has shown that the proposed technique under CoMP transmission is capable

of alleviating the problem of high data overhead in the network as well as energy

consumption without sacrificing the expected performance using full CoMP transmission,

but achieving an improved system performance. And as a result possible congestions in

the backhaul that could lead to poor synchronisation and high latency are mitigated.
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Chapter 4

Improved Cooperating Set Selection for

CoMP Transmission

The backhaul overhead still remains a challenge since the number of wireless devices

keeps growing exponentially, thereby increasing the high demand placed on the backhaul

network architecture which is very costly for the network provider. In addition to these

challenges caused by CoMP JT (i.e. adaptive CoMP clustering and high backhaul

requirements), achieving a green cellular network has become paramount. It is important

to the user and the environment, that the carbon emitted from operating a cellular network

is kept at its minimum. Therefore it is important to consider energy efficiency as a factor

during CoMP transmission. A reduction in the data overhead in CoMP transmission,

would bring about a reduction in the network power consumption, since less transmit BSs

per user would lead to an overall reduction in the power consumption. In Chapter 3, it was

shown that a fixed number of BS or full CoMP transmission for all users may not always

yield the best system performance at every given system condition. This is because less

power is given to more channels which may not all have good quality as opposed to giving

more power to less channels with good channel quality. So being able to determine if and

when CoMP transmission is needed, would lead to reduced data overhead.
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4.1 Introduction

CoMP transmission has been shown to boost the peak data rates by mitigating the ICI

from neighbouring cells [44, 45]. This is achieved by allowing neighbouring cells to

coordinate and transmit signals to the same user. In Chapter 2, the benefits of CoMP as

well as the associated challenge of high data overhead was presented. A reduced number

of BSs per user was proposed to limit the problem of high data overhead in the backhaul

as opposed to using full CoMP transmission from all neighbouring BSs.

In this chapter, the proposed work presented in Chapter 3 is extended and improved.

In Chapter 3, the idea of a joint CS selection was first conceived and was shown to

obtain a further reduction in the data overhead, by allowing a variable number of transmit

BSs per user but setting a maximum on the number of allowed transmit BS per user

for CoMP transmission, such that the number of transmit BSs for the k-th user’s data

transmission is Mk ≤ Mmax. To also effectively analyse the system performance of the

proposed method, and obtain a validation for the need of a variable number of transmit

BSs due to the changing system conditions as opposed to a fixed number of transmit

BSs for all users, Mmax = [1, 2, · · · ,K] was considered for K = 7 BS-UE pairs. The

result under the sum-rate maximisation problem showed that with Mmax = [3, 4, · · · , 7],

the proposed solution required only an average of 2 transmit BSs per user to achieve a

slightly higher performance as opposed to the conventional solution (‘Mk = Mmax’). Due

to the computational complexity involved in obtaining the “optimum CS selection” since

relatively high values of K and Mmax were considered, the proposed heuristic solution

could not be benchmarked against the “optimum CS selection” which is a combinatorial

optimisation problem known to be NP-hard. So in this chapter, the proposed joint and

adaptive CS selection would be improved and compared to the performance using the

“optimum CS selection” for a relatively small number of Mmax. This comparison is

important since the “optimum CS selection” is the global solution to obtaining ∆, but

is not scalable and attractive for implementation due to its complexity.
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The contributions of this chapter are as follows: Firstly, an improved joint solution

to obtain the CSs and corresponding solutions to the beamforming design and power

allocation are presented. Secondly, while taking into account the different factors that

may affect the CS size such as the QoS requirements and the power constraints, the CS

selection is obtained by optimising one of the two criteria, i.e., either a) minimisation of

the total transmit power with given target rate or b) the maximisation of the minimum

SINR (max-min SINR). For each optimisation problem, three different power constraints

are considered: total power constraint (TPC), per base station power constraint (PBPC)

and per antenna power constraint (PAPC). Thirdly, based on simulation results, the

achieved performance using the proposed CS selection algorithm is compared to the

“optimum CS selection” and the conventional solution.

The remaining parts of this chapter are organised as follows. The system model is shown

in Section 4.2. The main idea behind the “optimum CS selection” is presented in Section

4.3 and the proposed joint CS selection is presented in Section 4.4 using two different

optimisation strategies under three different power constraints. The solution to the total

power minimisation optimisation problems and the max-min SINR optimisation problems

are presented in Sections 4.5 and 4.6 respectively. Finally the conclusion is presented in

Section 4.7.

4.2 System Model

Fig. 4.1 illustrates CoMP transmission to multiple users on a shared RB, in a multi-cell

network with K = 10 BS-UE pairs. Each BS and UE are equipped with Mt and Nr transmit

and receive antennas respectively. The number of BSs scheduled to transmit to user k is

denoted by Mk and 1 ≤ Mk ≤ Mmax, where Mmax is the maximum number of serving BSs

allowed per user. Let Hk = [Hk,1,Hk,2, ...,Hk,K] be the flat-fading channel matrix between

the user k and all K transmit BSs. The coefficients of Hk,m,m = 1, · · ·K,∈ CNr×Mt

are complex random variables, with zero-mean Gaussian real and imaginary parts. The



Chapter 4. Improved Cooperating Set Selection for CoMP Transmission 66

channel links experience large scale fading, with path loss exponent (α) and log-normal

shadowing having zero-mean and variance η2
s . And the CSI are assumed to be known at

the transmitter. Let U = [u1, ...,uK], be the matrix containing all the receive beamforming

column vectors (uk) of user k. Let V = [v1, v2, ..., vK], be the matrix containing all the

unit norm precoding vector for user k’s data, where vk = [vT1,k, vT2,k, ..., vTK,k]
T and column

vector vm,k is used to precode the data of the k-th user from the m-th BS.

Figure 4.1: CoMP transmission in a multi-cell multi-user network on a shared RB, K =

10 BS-UE pairs, Mmax = 3 BSs/user.

In addition, p = [ρ1, ρ2, . . . , ρK]T and ρk is the power allocated to the k-th user’s data
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at each selected m-th BS in the k-th CS. The complex (scalar) data signal destined for

the k-th user is represented by sk (E {|sk|2} = 1) and nk is an additive, zero-mean, white,

complex Gaussian noise vector where each element has a variance of σ2
k.

In providing wireless communication to the user, certain health risks associated with radio

frequency electromagnetic energy (EME) should be taken into account. For each BS, it

is necessary to regulate the BS transmit power, to ensure the health and safety of the

environment and users. Another factor is the practical power implementation on each

transmit antenna. Since each antenna is equipped with its own power amplifier, the power

rating of each antenna must also be taken into account during power allocation. Based

on the aforementioned factors, this chapter aims to determine the CSs jointly (defined

by the matrix ∆), the corresponding receive beam-formers (U), transmit pre-coders (V)

and the transmit antenna power allocation (p) that solves either of the given optimisation

problems, subject to either the TPC, the PBPC or the PAPC as shown in (4.2.1), (4.2.2)

or (4.2.3) respectively.

Figure 4.2: Transformation of multi-cell BSs into single cell BSs with distributed antennas

K = 2 BS-UE pairs.

The total power consumed in the network (PT ) and at the m-th BS (Pm) are given in

(4.2.1) and (4.2.2) respectively where pTOT , pPBPCm (for the m − th transmit BS) and

pPAPCm,i (for the i − th antenna on the m − th transmit BS) are the respective power
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constraints under the TPC, PBPC and PAPC strategies. The power constraints are given

as:

C1 : PT =
K∑

k = 1

ρk ≤ pTOT , (4.2.1)

C2 : Pm =
K∑

k = 1
δm,k = 1

vHm,kvm,kρk ≤ pPBPCm , ∀m ∈ [1, 2, · · · ,K], (4.2.2)

C3 :

 K∑
k = 1
δm,k = 1

ρkvm,kvHm,k


i,i

≤ pPAPCm,i , ∀m ∈ [1, 2, · · · ,K], ∀i ∈ [1, 2, · · · ,Mt], (4.2.3)

where [.]i, i denotes a (i, i)-th entry of a matrix. The power constraint on a system can

affect the CS selection of the users. For instance, under a given BS power constraint, a

non-CoMP transmission can utilise the total BS power to transmit data to its given user

while ensuring interference cancellation to other users. But with CoMP transmission,

under the same BS power constraint, the power has to be shared between the data signals

of all the users supported by that BS. This means that the signal strength from a given

BS to its desired or paired user would be reduced. Now, if the desired user is still able

to achieve its QoS constraint, with a reduced power allocation, then there is no need to

assign a supporting BS to that user.

The subsets of BSs scheduled to simultaneously transmit data to the users are represented

by the “CS selection matrix” (∆) (see 3.2.4) and the “BS serving factor” (δm,k) (see 3.2.5).

The received signal (yk) for the k-th UE is post-processed by the receive beamforming

vector (uk) as in (4.2.4):

uHk yk = uHk H(k)
k v̄k
√
ρksk + uHk

K∑
p = 1

p 6= k

H(p)
k v̄p
√
ρpsp + uHk nk, ∀ k ∈ [1, 2, · · · ,K], (4.2.4)

where H(i)
k is the flat-fading channel from the i-th CS to the k-th user and v̄i is the

precoding vector on the i-th CS for user data i, H(i)
k ∈ CNr×

∑
j δj,iMt , v̄i ∈ C

∑
j δj,iMt×1,

H(i)
k = [Hk,j; δj,i = 1,∀j ∈ [1, 2, · · · ,K]] and v̄i = [vTj,i; δj,i = 1,∀j ∈ [1, 2, · · · ,K]]T . So
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the SINR at the k-th UE (SINR(dl)
k ), also denoted as γ(dl)

k in this chapter, is expressed as:

γ
(dl)
k =

∣∣∣uHk H(k)
k v̄k

∣∣∣2 ρk
K∑

p = 1

p 6= k

∣∣∣uHk H(p)
k v̄p

∣∣∣2 ρp + σ2
k

. (4.2.5)

Note that the rate of user k (Rk) and the sum-rate (RT ) can be obtained by (2.3.13).

4.3 The “Optimum CS Selection”

For LTE CoMP JT to be successful, one of the key requirements is very low latency.

When a large number of transmit BSs are used for CoMP transmission, a corresponding

high processing and transfer time is needed to obtain the required data and precoding

information at the BSs. Minimising the number of transmit BSs per user, whilst still

achieving the target performance would lead to better latency and reduced data overhead

on the backhaul link. It is important to note that obtaining the best CS for each user’s

CoMP transmission is dependent on the CS of other users, the channel conditions, the

QoS constraints and the system constraints. To obtain the optimum CS solution, means

selecting the CSs of the users simultaneously based on the system conditions. This

problem is computationally complex, especially for a very large network and can be

solved using a hard search through all possible combination of solutions.

The “optimum CS selection” to find ∆ is a combinatorial optimisation problem, which

would require using a search algorithm over the total number of (potentially very large)

possible solutions given by NTS (see (3.4.18)). This problem is NP-hard but it is solvable

for smaller values of Mmax and K, so there is a need to develop a solution strategy with

low complexity that can obtain ∆ jointly, while still ensuring meeting the objective of the

optimum CS solution. For example, considering K = 2 BS-UE pairs and Mmax = 2, then

the number of possible CS solutions using the equation in (3.4.18) is 9 and the possible

CS solutions for both users is given in Table 4.1. Now consider K = 4 BS-UE pairs and



Chapter 4. Improved Cooperating Set Selection for CoMP Transmission 70

Mmax = 4, the number of possible CS solutions is 50625. Also if K = 5 BS-UE pairs and

Mmax = 4, the number of possible CS solutions is 24.3× 106.

Table 4.1: List of possible CSs solution for K = 2 BS-UE pairs.

Users

CSs User 1 User 2

1 {BS 1} {BS 1}

2 {BS 1} {BS 2}

3 {BS 1} {BS 1, BS 2}

4 {BS 2} {BS 1}

5 {BS 2} {BS 2}

6 {BS 2} {BS 1, BS2 }

7 {BS 1, BS 2} {BS 1}

8 {BS 1, BS 2} {BS 2}

9 {BS 1, BS 2} {BS 1, BS 2}

For this reason, a sub-optimum CS selection is presented in the next section, using

different optimisation problems to validate the advantages of the joint and adaptive

proposed solution as opposed to the conventional CoMP transmission strategy.

4.4 The “Sub-optimum CS Selection”

As seen from the joint and adaptive CS selection algorithm presented earlier in Chapter

3, further reductions in the data overhead and energy consumption was achieved, when

variable numbers of transmit BSs were allowed for each user’s data transmission. The

joint and adaptive solution to the optimisation problem required to obtain the CS selection

(∆), the corresponding receive beam-formers (U), transmit pre-coders (V) and the

transmit antenna power allocation (p) is very complex. In Chapter 3, the proposed
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iterative algorithm for the CS selection was based on maximising the “effective gain” of

the users while using a simple power allocation problem to solve the given optimisation

problems. However in this chapter, the proposed iterative algorithm is based on the SINR

of the users and a better power optimisation solution is used.

The proposed solution is considered for small values of K and Mmax, to enable the

performance of the proposed CS selection algorithm to be compared to the performance

of the “optimal CS selection” using the hard search, while still comparing both solutions

to the conventional full CoMP transmission. The proposed algorithm aims to achieve

the objectives of the “optimum solution”, which is obtaining a joint CS selection for the

given users and achieve a significant percentage of the gain expected with the “optimum

CS selection”.

The two optimisation strategies considered in this chapter are: i) the total power

minimisation with given target rates as in (4.4.6) and ii) the max-min SINR problem

as in (4.4.7):

min
∆,U,V,p

K∑
k = 1

ρk s.t., Rk ≥ φk, ∀k ∈ [1, 2, · · · ,K], conditions C1 or C2 or C3, (4.4.6)

max
∆,U, V, p

min
1≤k≤K

γ
(dl)
k s.t., conditions C1 or C2 or C3, (4.4.7)

These optimisation problems would be considered based on three separate power

constraint models: i.) C1 as shown in (4.2.1) (TPC), ii.) C2 as shown in (4.2.2) (PBPC)

and iii.) C3 as shown in (4.2.3) (PAPC). The CS selection, receive beam-former design,

transmit pre-coder design and power allocation will be carried out separately on the six

different scenarios. The problems in (4.4.6) and (4.4.7) are joint complex problems of

∆,U, V and p which can be transformed into simpler problems that allow ∆,U, V and p

to be solved separately in an iterative manner. The CS selection matrix (∆), can be found

by searching through a significantly reduced set of possible solutions using the algorithm

proposed in Tables 4.2 and 4.3. For each ∆ obtained, the corresponding solutions to U, V

and p are then determined as shown in the following sections. The joint corresponding

solutions to U, V and p are computationally complex to solve. To simplify the problem
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further, the multi-cell BSs are transformed into a super BS with distributed antennas as

seen in Fig. 4.2. This assumption is valid since the CoMP transmission from the BSs to

the user are done simultaneously.

4.4.1 System Output-to-Cost-Ratio (OCR)

For the purpose of this thesis, the output-to-cost ratio (OCR) of the system is measured.

The OCR is defined as the measure of the system performance, efficiency or productivity

based on a given cost factor. This is given as the ratio of the desired output to the cost of

production or performance. The cost can refer to either the overhead, CS allocation time

(CAT), BS power consumption or CS search complexity (NTS), while the output refers to

the obtained sum-rate. The CAT is the time taken to allocate CSs to all the users. The

different types of OCR measurements are given below:

OCRO =
sum-rate

Overhead factor
bps/Hz, (4.4.8)

OCRP =
sum-rate

Avg. BS Power
bits/JHz. (4.4.9)

The proposed OCR would be used in the simulation result analysis to measure the

performance achieved in the network, under the given optimisation problems and power

constraints defined earlier.

4.5 Total Power Minimisation Problem

Here the total power minimisation optimisation problem with given user target rate (see

4.4.6) is considered under three different power strategies: TPC (4.2.1), PBPC (4.2.2)

and PAPC (4.2.3). Before presenting the CS selection algorithm, the beamforming and

power optimisation strategies used to obtain the solutions to U, V and p are presented.

For a given solution to ∆(i+1), the corresponding solutions to U(i+1), V(i+1) and p(i+1) are

found iteratively. Begin the iteration by setting j = 1 and randomly choosing V(j) and p(j),
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then using the beamforming and power allocation solutions presented in Sections 4.5.1

and 4.5.2, U(j+1),V(j+1) and p(j+1) are obtained iteratively till max |p(j) − p(j+1)| < $,

and$ is the convergence constraint. So the solutions to U(i+1), V(i+1) and p(i+1) are given

by U(j+1), V(j+1) and p(j+1) respectively.

4.5.1 Beamforming Design

To solve the given optimisation problem, the respective solutions to U and V can be

found by maximising the SINR and the SLNR of the k-th user’s data. Now considering

the downlink SINR expression in (4.2.5) as the optimisation criteria in finding {uk}K
k=1,

the downlink SINR (γ(dl)
k ) expression in (4.2.5) can be re-written as:

γ
(dl)
k =

uHk
[
H(k)
k v̄kv̄Hk H(k)H

k ρk

]
uk

uHk

 K∑
p = 1

p 6= k

H(p)
k v̄pv̄Hp H(p)H

k ρp + Iσ2
k

uk

, ∀ k ∈ [1, 2, · · · ,K], (4.5.10)

where I is the identity matrix. From (4.5.10), it is easy to show that if {v̄k}Kk=1 and p are

fixed and given, then uk can be found as the eigenvector corresponding to the maximum

eigenvalue of:

(
K∑

p = 1

p 6= k

H(p)
k v̄pv̄Hp H(p)H

k ρp + Iσ2
k)
−1(H(k)

k v̄kv̄Hk H(k)H
k ρk)

 , ∀ k ∈ [1, 2, · · · ,K], (4.5.11)

and ‖uk‖ = 1.
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The SLNR of the k-th user’s data is expressed as:

SLNRk =
|uHk H(k)

k v̄k|2ρk
K∑

p = 1

p 6= k

|uHp H(k)
p v̄k|2ρk + σ2

,

=
v̄Hk
[
H(k)H
k ukuHk H(k)

k ρk

]
v̄k

v̄Hk

 K∑
p = 1

p 6= k

H(k)H
p upuHp H(k)

p ρk + Iσ2

 v̄k

, ∀ k ∈ [1, 2, · · · ,K]. (4.5.12)

If U and p are fixed and given, then from (4.5.12), v̄k can be found as the eigenvector

corresponding to the maximum eigenvalue of:(
K∑

p = 1

p 6= k

H(k)H
p upuHp H(k)

p + I(σ2/ρk))
−1(H(k)H

k ukuHk H(k)
k )

 , ∀ k ∈ [1, 2, · · · ,K],

(4.5.13)

where σ2 is the noise power and ‖v̄k‖ = 1.

4.5.2 Power Optimisation

The disjoint power optimisation problem to (4.2.5), based on the power constraints in

(4.2.1), (4.2.2) or (4.2.3) respectively is given in (4.5.14), (4.5.15) and (4.5.16). The

power allocation solution (p) can be found by solving the following power optimisation

problems:

min
p

K∑
k=1

ρk

s.t., {Rk ≥ φk}Kk= 1 ,

K∑
k=1

ρk ≤ pTOT , p � 0, (4.5.14)

or s.t., {Rk ≥ φk}Kk= 1 ,

K∑
k = 1
δm,k = 1

vHm,kvm,kρk ≤ pPBPCm ,m ∈ [1, 2, · · · ,K], p � 0, (4.5.15)
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or s.t., {Rk ≥ φk}Kk= 1 ,

 K∑
k = 1
δm,k = 1

ρkvm,kvHm,k


i,i

≤ pPAPCm,i , ∀m ∈ [1, 2, · · · ,K],

∀i ∈ [1, 2, · · · ,Mt], p � 0, (4.5.16)

where φk is the target rate of user k. The user-rate constraint (Rk) in (4.2.5), (4.5.14),

(4.5.15) and (4.5.16) can be re-written in its equivalent SINR constraint function as:

gk,kρk
K∑
p=1

p 6=k

gk,pρp + σ2
k

≥ γ̄k,∀k ∈ [1, 2, · · · ,K] (4.5.17)

where gi,j =
∣∣∣uHi H(j)

i v̄j
∣∣∣2, σ2

k = 1 and γ̄k = (2φk − 1) is the target SINR for user k. The

solutions to U and V can be found from (4.5.11) and (4.5.13) respectively. Now let

Bi,j =

 gi,j, ∀i, j ∈ [1, 2, · · · ,K]

0, i = j,
(4.5.18)

Ai,i =

 gi,i, ∀i ∈ [1, 2, · · · ,K]

0, i 6= j,
(4.5.19)

C = diag ([γ̄1, γ̄2, · · · , γ̄K ]) . (4.5.20)

The closed form expression of the power allocation problem based on the TPC, PBPC

and PAPC can now be expressed respectively as:

min
p

1Tp s.t. (A− CB)p � C1, 1Tp ≤ pTOT and p � 0, (4.5.21)

min
p

1Tp s.t. (A− CB)p � C1, Xp � pPBPC and p � 0, (4.5.22)

min
p

1Tp s.t. (A− CB)p � C1, Wp � pPAPC and p � 0, (4.5.23)

where 1T is a row vector having all elements set as 1,
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X =


‖v1,1‖2 ‖v1,2‖2 · · · ‖v1,K‖2

‖v2,1‖2 ‖v2,2‖2 · · · ‖v2,K‖2

...
... · · · ...

‖vK,1‖2 ‖vK,2‖2 · · · ‖vK,K‖2

 ,p
PBPC =

[
pPBPC1 , pPBPC2 , · · · , pPBPCK

]T
,

W =
[
|v1|2 |v2|2 · · · |vK |2

]
,

and pPAPC =
[
pPAPC1,1 , · · · , pPAPC1,Mt

, · · · , pPAPCK,1 , · · · , pPAPCK,Mt

]T
.

The power optimisation problems above can be easily solved as a constrained linear least

square optimisation problem.

4.5.3 CS Selection Algorithm under Total Power Minimisation

Optimisation Problem

In this section, the proposed algorithm in Section 3.4.1, Table 3.1 is improved by

considering the SINR (which is the global metric required to optimise any capacity-based

optimisation problem) as opposed to the “effective channlel”. This is because the rate of

the user is directly dependent on the SINR, so the SINR which is a standard metric should

be considered when optimising the network capacity. The sub-optimal joint CS selection

(∆), that achieves the given target rate for each user (i.e., satisfying the QoS constraint of

the users) with minimum total power, while complying with the power constraint C1 or

C2 or C3 (i.e., the network constraint), is obtained by searching through a significantly

reduced set of possible solutions. The proposed algorithm begins the search by assigning

a single transmit BS with the best channel quality to each user. Then the algorithm aims

to improve the obtained performance by assigning more BSs to the users with lower

performance than the given QoS constraint or network set threshold. The achievable

user rate at the cell edge, Rk, is limited by factors such as the power constraints, channel

conditions, number of antennas and other network conditions. Hence, the required target

rate, φk, may not be achieved at every given time. In such cases, the algorithm chooses
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the ∆ that achieves the best rate (i.e. closest performance to the target rate), which is

associated with the lowest error, η, as defined in Table 4.2(4).

Initialise the variables as shown in Table 4.2, where i is the iteration count, x(i) is

the convergence variable of the algorithm, fk is the number of assigned BSs to user k

and γavg is the SINR threshold. Then assign the BS with the best channel quality to

each user to obtain ∆(i+1) and find the corresponding solutions U(i+1),V(i+1) and p(i+1)

iteratively. At each iteration, using the proposed scheduling algorithm, the minimum

SINR is maximised. This is achieved by finding the downlink SINR at user k (SINRdl(i+1)
k

- i.e. γdl(i+1)
k as shown in (4.4.7)), the user rate (R(i+1)

k ), total power (P(i+1)
T ), error (η(i+1))

and the average SINR (γ(i+1)
avg = 1

K(
∑K

k = 1 γ
dl(i+1)
k )), which is the SINR threshold for the

next iteration. The SINR of each user k is maximised by assigning another BS to user k

when γ(dl)
k < γavg. This process is done iteratively until the maximum number of transmit

BSs per user is reached and no BS assignment is possible. The ∆ and corresponding U, V

and p that best satisfy the target rate of each user with minimum total power is selected

as the CS for the users required for CoMP transmission.

Table 4.2: Proposed CS selection algorithm based on total power (PT ) minimisation

Initialization: i = 0, P(i)
T =∞,

{
f(i)k
}K

k = 1
= 0, η(i) =∞,{

SINRdl(i)
k

}K

k = 1
= 0, γ

(i)
avg = 1, x(i) = 1, ∆(i) = 0.

while any (SINRdl(i)
k < γ

(i)
avg)

if x(i) 6= 0

1. From (3.2.5), find ∆(i+1)

for k = 1 : K

if SINRdl(i)
k < γ

(i)
avg and f(i)k < Mmax

f(i+1)
k = f(i)k + 1 and δ(i+1)

m,k = 1

(if BS m has the best channel quality to user k and δ(i)
m,k = 0).

end if, end for

2. Find U(i+1), V(i+1) and p(i+1) as shown in Sections 4.5.1 and 4.5.2.

3. Find SINRdl(i+1)
k , R(i+1)

k and P(i+1)
T from (4.2.5), (2.3.13) and (4.2.2) respectively.
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4. Find η(i+1) =
K∑
k=1

Rk<φk

∣∣∣φk − R(i+1)
k

∣∣∣2.

if R(i+1)
k ≥ φk, ∀ k ∈ [1, 2, · · · ,K]

if P(i+1)
T < P(i)

T

∆← ∆(i+1), U← U(i+1), V← V(i+1) and p← p(i+1)

else P(i+1)
T = P(i)

T

end if η(i+1) = η(i)

else

if η(i+1) < η(i)

∆← ∆(i+1), U← U(i+1), V← V(i+1) and p← p(i+1)

else η(i+1) = η(i)

end if P(i+1)
T = P(i)

T

γ
(i+1)
avg = 1

K(
∑K

k = 1 SINRdl(i+1)
k ), x(i+1) =

K∑
k = 1

(f(i+1)
k − f(i)k ), i++.

end if, end while.

5. repeat steps 1 - 4 until x(i+1) = 0 or f(i+1)
k = f(i)k , ∀k.

4.5.4 Simulation Results and Evaluation

Table 4.3: Summary of simulation parameters [3, 4, 5].

Parameters Value

Antenna type, Cell layout (K) Omnidirectional, 3 cell sites.

Time slot per RB, [α, ηs] 0.5msecs, [2, 8dB]

Inter site distance (ISD) 500m

cell-edge user distance ≥ 260m

Number of antennas (Mt, Nr) (4, 2)



Chapter 4. Improved Cooperating Set Selection for CoMP Transmission 79

pTOT , pPBPCm , pPAPCm,i [120W, 40W, 100W]

Note: PBPC annd PAPC parameter is selected as

in [46], set pTOT = KpPBPCm .
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Figure 4.3: CDF plot showing the probability of achieving the target rate under TPC.

For ease of implementation, perfect CSI, synchronization and no latency constraints are

assumed as well as the system parameters given in Table 4.3. For the given simulation

set-up, different values of Mmax are considered in a step-wise manner, i.e. Mmax =

2, 3, · · · ,K and the results obtained are presented in Table 4.4 and analysed, for K =

4, Mmax = 2, 3 and 4. The given parameters for the power constraints are: pPAPCm,i (∀m, i)

= 100 W, pPBPCm (∀m) = 40 W, pTOT = 160 W [46] and a target rate of 7 bps/Hz for all

users on the given RB. The following definitions are used for the purpose of this work:
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1.) The “optimum solution” (OS): The CS selection is determined using a hard search

through all possible combinations of transmitting BSs for all users, however U, V and p

are solved disjointly.

2.) The “proposed solution” (PS): The CS selection is obtained using the proposed

algorithm to obtain the CS for all users (i.e. Mk ≤ Mmax, ∀k). 3.) The “conventional

solution” (CnS): In this case, all users are served with Mmax BSs at any given time (i.e.

Mk = Mmax). It selects the best transmitting BSs to each user at every given time. Both

the OS and CnS will be used as a reference when comparing with the proposed solution.

Also note that the average BS power consumption is given by PABS .
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Figure 4.4: CDF plot showing the probability of achieving the target rate under PBPC.

As shown in Figs. 4.3, 4.4 and 4.5, the CDF plot for the obtained user rate is shown.

The expected target rate is 7 bps/Hz for each user on each RB. It can be observed that

the probability of achieving the required QoS contraint (i.e. 7 bps/Hz) on a given RB
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for each user is 0.3, 0.5 and 0.71 using CnS, PS and OS respectively under TPC, while

under the PBPC the probability of achieving the given QoS constraint is 0.3, 0.43 and

0.62 respectively and under PAPC is 0.58, 0.7 and 0.88 respectively. It can be seen that

the OS and PS using the joint CS selection strategy has a higher chance of achieving the

QoS constraint under the same conditions as opposed to CnS.
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Figure 4.5: CDF plot showing the probability of achieving the target rate under PAPC.

The sum-rate attained under the given set-up and system conditions can be seen in Table

4.4. Generally across the three solution types (i.e., CnS, PS and OS) and under the three

different power strategies, one can observe that the sum-rate increases only slightly as the

value of Mmax is increased. This proves that allowing a large number of transmit BSs

per user for CoMP transmission, especially for the cell-edge users, does not achieve a

significant increase in the sum-rate, especially under constrained power conditions.

In Table 4.4 under the PBPC for Mmax = 2, one can observe that CnS, PS and OS
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respectively achieve a sum-rate of 42.70 kbps/Hz, 46.33 kbps/Hz and 53.63 kbps/Hz

with an overhead factor of 2, 1.57 and 1.55. From the results, it is obvious that OS

which selects the CSs jointly is able to achieve the best sum-rate performance with

minimum overhead, using the hard search which is highly complex. CnS achieves the

lowest sum-rate and requires a 29% increase in overhead when compared to the OS.

The proposed approach (PS) achieves a better sum-rate performance and reduces the

demanded backhaul overhead by 21.5%, when compared to CnS.
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Figure 4.6: The achieved sum-rate per RB using CnS, PS and OS for different power

constraints and Mmax = 2, 3 and 4.

From Table 4.4 under the PAPC for Mmax = 3, the sum-rate achieved by CnS, PS and OS

are 50.91 kbps/Hz, 53.53 kbps/Hz and 56.82 kbps/Hz with a corresponding overhead

factor of 3, 1.97 and 1.66. Again, one can observe a reduction of 45% and 34%

respectively in the data overhead achieved by the OS and PS compared to CnS. This
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validates again that a joint selection of the CSs is necessary to further reduce the data

overhead in the backhaul. Now considering the CAT required to obtain the CSs of the

users, it can be seen that PS requires only 0.071 secs compared to 437 secs required by

the OS. Under PAPC when Mmax = 4, PS obtains the CSs in 0.094 secs compared to 625

secs required using the OS. The PS is shown to reduce the CAT by over 99 %. It is very

important to have a low CAT time to prevent very high latency and poor synchronisation

within the system. Even though OS is seen to achieve a better sum-rate than PS, the

CAT is very high even for a relatively small number of K and Mmax, making it very

unattractive for deployment in a network system. Note that the CAT in this simulation

was computed by a desktop computer (4GB RAM, Interl(R) Core(TM)2 Duo CPU E8400

@3GHz processor).
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Figure 4.7: Overhead of the given system under CnS, PS and OS for different power

constraints and Mmax = 2, 3 and 4.
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From (3.4.18), the search complexity to obtain the CSs for OS when Mmax = 2, 3 and

4 respectively is NTS = 10000, 38416 and 50625. This is the number of hard searches

through all possible CS solutions. From simulations the complexity obtained with PS is

given respectively as NTS = 4, 5 and 7 for Mmax = 2, 3 and 4, while the search complexity

for CnS is given by NTS = 1 for all values of Mmax. CnS has a complexity of 1 because the

system chooses Mmax BSs with the best channel quality, for CoMP transmission to each

user. However from previous observations the performance and data overhead obtained is

poor compared to the performance obtained with PS and OS.

Table 4.4: Simulation results under the total power minimization optimisation problem

given the user target rate and different power constraints.

Sum-rate (kbps/Hz)

TPC PBPC PAPC

Mmax 2 3 4 2 3 4 2 3 4

OS 55.06 55.02 55.06 53.63 54.02 54.04 56.79 56.84 56.82

PS 48.46 49.34 49.69 46.33 47.53 47.77 52.63 53.53 53.98

CnS 44.59 44.79 44.86 42.70 43.16 43.06 49.74 50.91 51.18

Overhead factor (O)

TPC PBPC PAPC

Mmax 2 3 4 2 3 4 2 3 4

OS 1.42 1.58 1.65 1.55 1.74 1.77 1.45 1.66 1.68

PS 1.51 1.94 2.25 1.57 1.96 2.20 1.55 1.97 2.42

CnS 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00
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CAT (secs)

TPC PBPC PAPC

Mmax 2 3 4 2 3 4 2 3 4

OS 68.12 300.29 412.02 71.92 322.99 448.43 88.49 437.37 625.82

PS 0.032 0.045 0.057 0.030 0.049 0.060 0.044 0.071 0.094

CnS 0.011 0.012 0.013 0.011 0.013 0.013 0.017 0.021 0.027

Average BS Power (W)

TPC PBPC PAPC

Mmax 2 3 4 2 3 4 2 3 4

OS 31.85 35.98 35.86 25.62 25.44 25.24 54.41 51.16 50.70

PS 37.60 37.58 37.73 28.81 31.60 32.43 90.98 106.23 119.20

CnS 40 39.82 40 33.95 38.65 40 115.96 148.60 168.25

Output-Cost Ratio based on Overhead (OCRO (bps/Hz))

TPC PBPC PAPC

Mmax 2 3 4 2 3 4 2 3 4

OS 19.39 17.41 16.68 17.30 15.52 15.27 19.58 17.12 16.91

PS 16.05 12.72 11.04 14.75 12.13 10.85 16.98 13.59 11.15

CnS 11.15 7.47 5.61 10.68 7.19 5.38 12.43 8.49 6.40

Output-Cost Ratio based on PABS (OCRP (bits/JHz))

TPC PBPC PAPC

Mmax 2 3 4 2 3 4 2 3 4

OS 1.73 1.53 1.54 2.09 2.12 2.14 1.04 1.11 1.12

PS 1.29 1.31 1.32 1.61 1.50 1.47 0.58 0.50 0.45

CnS 1.11 1.12 1.12 1.26 1.12 1.08 0.43 0.34 0.30
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4.6 Max-Min SINR Optimisation Problem

The max-min SINR optimisation problem is considered under three different power

strategies: TPC (4.2.1), PBPC (4.2.2) and PAPC (4.2.3). The CSs of the users are chosen

such that the minimum SINR is maximised. The joint optimisation problem presented in

(4.4.7) is very complex, but can be solved iteratively as a series of simpler sub-problems.

By exploiting the uplink and downlink SINR duality, the solutions to U, V and p can be

obtained for any given ∆.

SINR duality was introduced in [47] for single-cell MISO downlink channel, the authors

showed that the minimum sum power required to achieve a set of SINR values in the

downlink is equal to the minimum power required to achieve the same set of SINR values

in the uplink. In [48] and [49], the authors analysed the duality between the downlink

broadcast channel and the uplink multi access channel (MAC), and showed that the

downlink problem could be solved in the dual uplink since the analytical structure of

the uplink problem was simpler. The SINR duality theorem has been proven for single-

cell multi-user systems [47]. Since the BSs are cooperating, the BSs can be said to be

transmitting as a single unit, (i.e. a “super BS”) with distributed antennas and that the

power allocation per user data is same across all BSs. Hence for the purpose of this work,

the multi-cell multi-user system is converted to a single-cell multi-user system and the

SINR duality theorem can be directly applied.

Consider the reciprocal uplink model, the received signal (r) at the super-BS after post-

processing by the receive beamforming vector (v̄Hk ) is given by:

v̄Hk r = v̄Hk H(k)H
k uk

√
qksk +

K∑
p = 1

p 6= k

v̄Hk H(k)H
p up

√qpsp + v̄Hk n, ∀ k ∈ [1, 2, · · · ,K], (4.6.24)

where q = [q1, q2, · · · , qK ]T , qk is the uplink power allocated to the k-th user data, uk

is the transmit pre-coder at the k-th user, v̄k is the receive beam-former at the super-BS



Chapter 4. Improved Cooperating Set Selection for CoMP Transmission 87

used to obtain the k-th user data and n is an additive, zero-mean, white, complex Gaussian

noise vector where each element has a variance of σ2. The uplink SINR (γ(ul)
k ) of the k-th

user data can be derived as:

γulk =

∣∣∣v̄Hk H(k)H
k uk

∣∣∣2 qk
K∑

p = 1

p 6= k

∣∣v̄Hk H(k)H
p up

∣∣2 qp + σ2

, ∀ k ∈ [1, 2, · · · ,K]. (4.6.25)

Given ∆(i+1), the general approach in obtaining the corresponding solutions to U(i+1),

V(i+1) and p(i+1) in (4.4.7) is presented as follows.

1. Begin the iteration by setting j = 1 and randomly choosing V(j) and p(j).

2. Using the beamforming solution given in (4.6.26) obtain U(j+1). Then find the

downlink SINR (γdl(j+1)
k ,∀k) using (4.2.5). Set γ̄ulk = min(γ

dl(j+1)
k ,∀k), γ̄ulk is equal

for all k.

3. Find the uplink power allocation q(j+1) by solving the optimisation problem in

(4.6.28).

4. Find the precoding vector V(j+1) using the general precoding solution given

in (4.6.27). Then find the uplink SINR (γul(j+1)
k ) using (4.6.25). Set γ̄dlk =

min(γ
dl(j+1)
k ,∀k), γ̄dlk is equal for all k.

5. Find the power allocation p(j+1) by solving the optimisation problem in (4.6.29).

6. Calculate max |p(j) − p(j+1)| < $, where $ is the convergence constraint. If the

convergence constraint is satisfied then the solutions to U(i+1), V(i+1) and p(i+1) are

given by U(j+1), V(j+1) and p(j+1) respectively. Otherwise set j = j +1 and proceed

to number 2.

Note that the iterative method based on the virtual uplink and downlink is a virtual

technique and requires no communication between the BS and the users as the

iteration algorithm takes place at only the BS controller.
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4.6.1 Beamforming Design

The following lemmas are useful in finding the solution to U and V in (4.4.7) using the

well-known linear minimum mean square error (LMMSE) receiver [50]. Also the proof

to the solutions obtained below are shown in Appendix A.

Proposition 1

Consider the downlink channel in (4.2.4) where ∆,V and p are fixed and given. The

normalised set of beamformers U = [u1,u2, · · · ,uK ] that solves the optimisation problem

in (4.4.7) is given in (4.6.26):

uk = ûk/ ‖ûk‖2 , where

ûHk = (
K∑

p = 1

p 6= k

H(p)
k v̄pv̄Hp H(p)H

k ρp + Iσ2
k)
−1√ρkv̄Hk H(k)H

k . (4.6.26)

Proposition 2

Consider the virtual reciprocal (uplink) channel in (4.6.24) where ∆,U and q are fixed and

given. The normalised set of beam-formers {v̄k}Kk=1 that solves the optimisation problem

in (4.4.7) is given in (4.6.27):

v̄k = v̂k/ ‖v̂k‖2 , where

v̂Hk = (
K∑
p=1

p 6=k

H(k)H
p upuHp H(k)

p qp + Iσ2)−1√qkuHk H(k)
k . (4.6.27)

4.6.2 Power Optimisation

Proposition 3

Considering the virtual reciprocal (uplink) channel in (4.6.24) where ∆,U and V are

fixed and given. The power optimisation problem in the virtual uplink needed to find q
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can be expressed as function of ∆,U and V as shown in (4.6.28). The linear program is

formulated as:

max
q

min
1≤k≤K

∣∣∣v̄Hk H(k)H
k uk

∣∣∣2 qk
K∑

p = 1

p 6= k

∣∣v̄Hk H(k)H
p up

∣∣2 qp + σ2

,

s.t.,

∣∣∣v̄Hk H(k)H
k uk

∣∣∣2 qk
K∑

p = 1

p 6= k

∣∣v̄Hk H(k)H
p up

∣∣2 qp + σ2

≥ γ̄ulk ,

K∑
k=1

qk ≤ pTOT and q � 0, ∀k ∈ [1, 2, · · · ,K]. (4.6.28)

Also considering the downlink in (4.2.4) where ∆,U and V are fixed and given. The

power optimisation problems required to find the transmit power p, under TPC or PBPC

or PAPC can be expressed as:

max
p

min
1≤k≤K

∣∣∣uHk H(k)
k v̄k

∣∣∣2 ρk
K∑

p = 1

p 6= k

∣∣∣uHk H(p)
k v̄p

∣∣∣2 ρp + σ2
k

,

s.t.,

∣∣∣uHk H(k)
k v̄k

∣∣∣2 ρk
K∑

p = 1

p 6= k

∣∣∣uHk H(p)
k v̄p

∣∣∣2 ρp + σ2
k

≥ γ̄dlk , ∀k ∈ [1, 2, · · · ,K] and (4.6.29)

1Tp ≤ pTOT , p � 0, under TPC (4.6.30)

or
K∑

k = 1
δm,k = 1

vHm,kvm,kρk ≤ pPBPCm ,m ∈ [1, 2, · · · ,K], p � 0, under PBPC (4.6.31)

or

 K∑
k = 1
δm,k = 1

ρkvm,kvHm,k


i,i

≤ pPAPCm,i , ∀m ∈ [1, 2, · · · ,K],
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∀i ∈ [1, 2, · · · ,Mt], p � 0, under PAPC (4.6.32)

where σ2
k and σ2 are assumed to be 1, γ̄ulk and γ̄dlk are the minimum required SINR in the

uplink and downlink respectively for the k user’s data stream. The general approach used

to approximate the problems in (4.6.28) and (4.6.29) into a convex optimisation problem

is presented in [51], and can be solved by an optimisation solver. In the simulations, the

Yalmip solver is used to obtain the power optimisation solutions [52].

4.6.3 CS Selection Algorithm for Max-Min SINR Optimisation

Problem

The ∆ that maximises the minimum SINR optimisation problem in (4.4.7) subject to C1

or C2 or C3, is obtained using the algorithm below. The iterative solution is obtained

by searching through a significantly reduced set of possible solutions. First initialise the

variables, where i is the iteration count, x(i) is the convergence variable of the algorithm,

fk is the number of assigned BSs to user k and γ̄ = min({γdlk }Kk = 1) is the minimum SINR.

At each iteration, the minimum SINR is maximised among the users by assigning another

BS to user k when γdlk < γ̄. The iteration continues until the maximum number of allowed

transmit BSs per user (Mmax) is reached and BS assignment is no longer possible. The

∆ and corresponding U, V and p that achieves the highest minimum SINR, is selected

for CoMP transmission. The pseudo-code of the CS selection algorithm is given in Table

4.5).

Table 4.5: Proposed CS selection algorithm based on maximising the minimum SINR

Initialization: i = 0,
{

f(i)k
}K

k = 1
= 0,

{
SINRdl(i)

k

}K

k = 1
= 0, γ̄(i) = 1, x(i) = 1, ∆(i) = 0.

while any (SINRdl(i)
k < γ̄(i))

if x(i) 6= 0

1. From (3.2.5), find ∆(i+1).
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for k = 1 : K

if SINRdl(i)
k < γ̄(i) and f(i)k < Mmax

f(i+1)
k = f(i)k + 1 and δ(i+1)

m,k = 1

(if BS m has the best channel quality to user k and δ(i)
m,k = 0).

end if, end for

2. Find U(i+1), V(i+1) and p(i+1) as shown in Section 4.6.

3. Find SINRdl(i+1)
k (γdl(i+1)

k ), ∀k from (4.2.5).

if γ̄(i+1) > γ̄(i)

∆← ∆(i+1), U← U(i+1), V← V(i+1) and p← p(i+1).

else γ̄(i+1) = γ̄(i)

end if

x(i+1) =
∑K

k = 1(f(i+1)
k − f(i)k ), i++.

end if, end while.

4. repeat steps 1-3 until x(i+1) = 0 or f(i+1)
k = f(i)k , ∀k.

4.6.4 Simulation Results and Evaluation

Table 4.6: Summary of simulation parameters [3, 4, 5].

Parameters Value

Antenna type, Cell layout (K) Omnidirectional, 3 cell sites.

Time slot per RB, [α, ηs] 0.5msecs, [2, 8dB]

Inter site distance (ISD) 500m

cell-edge user distance ≥ 260m

Number of antennas (Mt, Nr) (4, 2)

PTOT , PPBPCm , PPAPCm,i [120W, 40W, 10W]



Chapter 4. Improved Cooperating Set Selection for CoMP Transmission 92

Note: PBPC parameter is selected as in [46], set

pTOT = KpPBPCm and pPAPCm,i = pPBPCm /Mt.
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Figure 4.8: The achieved sum-rate (RT ) (top) and overhead factor (O) (bottom), for the

max-min SINR problem according to three different power constraints (TPC, PBPC and

PAPC), and three different approaches (CnS, PS and OS) to a solution.

For different values of Mmax, under the given simulation parameters in Table 4.6,

the simulation results for the max-min SINR optimisation problem is obtained while
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considering different power constraints. In this section, “CnS” (i.e. Mk = Mmax, ∀k)

refers to the conventional solution with equal number of BSs per CS, “OS” refers to the

optimum CS solution based on the hard search and “PS” (i.e. Mk ≤ Mmax, ∀k) refers to

the CS solution using the proposed solution.

From Table 4.7 and Fig. 4.8, the minimum SINR achieved under the PBPC using the OS,

PS and CnS is 11.70 dB, 11.58 dB and 11.55 dB respectively for Mmax = 2 and 11.78

dB, 11.68 dB and 11.64 dB for Mmax = 3. The resulting sum-rate performance is given

by 16.80 kbps/Hz, 16.27 kbps/Hz and 15.88 kbps/Hz. The corresponding overhead factor

(O) of the backhaul demand is 1.78, 1.73 and 2 respectively when Mmax = 2, and 2.25,

2.25 and 3 when Mmax = 3.

From the results, one can see that the OS achieves the highest minimum SINR and sum-

rate, but its backhaul demand is 10.85% and 25% less for Mmax = 2 and 3 respectively,

when compared to the conventional solution. Also PS achieves almost similar output

performance to the OS, but with a 13.35% and 25% reduction in the backhaul overhead

for Mmax = 2 and 3 respectively, when compared to the CnS. Note that in this case PS

is sub-optimum and even though the data overhead reduction is more but the min-SINR

achieved is less than that achieved with the OS.

These results show that a joint and adaptive solution of the CSs is necessary to reduce

the backhaul demand required during CoMP transmission, while still achieving a better

system performance. As a result of this, an OCR of 9.42 bps/Hz, 9.39 bps/Hz and 7.94

bps/Hz is obtained for Mmax = 2 using OS, PS and CnS and 7.65 bps/Hz, 7.57 bps/Hz

and 5.56 bps/Hz for Mmax = 3. It is clear that the OS and PS solutions achieve the

best productivity with almost similar performance, while the CnS approach achieves the

lowest. The achieved sum-rates and overhead factor under PAPC when Mmax = 2 is 10.27

kbps/Hz and 1.83 with OS. The CnS achieves an almost similar sum-rate of 10.33 kbps/Hz

when Mmax = 3 but with an overhead factor of 3. Again without the complexity of OS, the

joint selection of the CSs is capable of achieving a given QoS constraint, while reducing

the data overhead by 64%.
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Table 4.7: Optimisation results

TPC PBPC PAPC

Sol.

Type

Mmax = 2 Mmax = 3 Mmax = 2 Mmax = 3 Mmax = 2 Mmax = 3

Sum-rate
OS 25.21 27.81 20.70 22.65 16.58 18.58

(kbps/Hz) PS 25.05 27.68 20.27 22.27 14.92 17.39

CnS 25.05 27.68 20.18 22.20 14.80 16.68

Overhead
OS 1.98 2.79 1.83 2.47 1.88 2.27

factor (O) PS 1.96 3.00 1.78 2.88 1.84 2.46

CnS 2.00 3.00 2.00 3.00 2.00 3.00

min SINR
OS 15.40 15.45 11.70 11.78 6.43 6.58

(dB) PS 15.32 15.45 11.58 11.68 6.17 6.30

CnS 15.26 15.45 11.55 11.64 6.11 6.18

CAT
OS 1022 2760 805 1765 468 1102

(secs) PS 16.0 25.7 12.6 18.5 5.6 9.3

CnS 1.8 2.0 3.9 3.9 5.4 7.0

OCRO

OS 11.24 8.33 9.42 7.65 5.60 5.02

PS 11.47 7.54 9.39 7.57 5.51 3.99

(bps/Hz) CnS 10.67 7.46 7.94 5.56 4.76 3.44

The results in Fig. 4.8 and Table 4.7 under the given power strategies, show that CnS

achieves the lowest sum-rate performance and CS allocation time (CAT), but has the

highest demand as regards to the backhaul load. The OS approach is seen to generally

achieve the best sum-rate and the lowest backhaul demand but requires a much longer

CAT. In Table 4.7 it can be seen that the CAT for OS is extremely high, ranging from 468
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- 1022 secs and 1102 - 2760 secs respectively for Mmax = 2 and 3, while for PS the CAT

ranges from 5.6 - 16 secs and 9.3 - 25.7 secs respectively.

Also the search complexity, NTS , for OS is 216 and 343, when Mmax = 2 and 3

respectively, and from simulations a corresponding search complexity of NTS = 4 and

5 respectively for PS is obtained. The advantage of an optimum joint CS selection for

users is undeniable. However, the complexity involved using hard-search and the CAT

taken to achieve this is very high and can lead to poor synchronisation and high latency.

The PS significantly reduces both the OS complexity and CAT by at least 98%, while still

maintaining the advantage offered by OS, and exceeding the CnS performance.

Intuitively, as the number of supporting BSs per user increases (i.e Mmax > 3), the

percentage increase in data rate diminishes while the data overhead increases. This

happens because the BSs with poorer signal strength will contribute no significant

improvement to the user’s performance but the inclusion of such BSs in the CSs will

increase the overhead. Hence for this optimisation problem, higher values of Mmax are

not considered for data overhead reduction.

Now to obtain the effective Mmax for this system, the OCR performance based on the

data overhead is considered. When Mmax = 3 the OCR performance with OS, under

TPC, PBPC and PAPC respectively, is 26%, 19% and 10% lower than when Mmax = 2

as seen in Table 4.7. This shows that when Mmax = 3, the productivity based on the

overhead demanded is significantly reduced. For instance, a 47% increase in the backhaul

data overhead is needed to obtain a 7% increase in sum-rate performance using PS under

PAPC. So in this case, Mmax = 2 is the system condition that achieves the best productivity.

4.7 Summary

This chapter analysed the challenges faced in CoMP transmission while improving the

system performance of cell-edge users. It also analysed previous proposed strategies

like the fixed cluster size or fixed number of BSs per user pre-set by the network for
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CoMP transmission. This strategy limits the data overhead in the backhaul, but further

improvement was required to obtain more reduction in the network costs and better system

performance. The improved CS selection introduced in this chapter shows that a further

reduction can be obtained in the backhaul data overhead while improving the system

performance, if the CSs of the users are chosen jointly. Using two different optimisation

strategies under three different power constraints, the proposed solution was presented and

compared to the optimum CS solution and the conventional “fixed” size solution. It was

shown that the proposed solution outperformed the conventional solution by achieving

a higher sum-rate performance as well as greatly reducing the required backhaul data

overhead demand. Also the proposed solution was shown to achieve the advantage of the

optimum solution but with reduced complexity and CS allocation time. This advantage

means that a joint CS selection is achievable and necessary to obtain a reduction in

the data overhead and energy consumption, in order to achieve low latency and better

synchronisation in the system during CoMP transmission.
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Chapter 5

Radio Resource Management for

Interference Coordination

5.1 Introduction

In this chapter, the challenges faced by existing RRM strategies for interference avoidance

in homogeneous and heterogeneous networks are analysed. One of the major forms of

RRM is the RBA of frequency and time slots to the users within the cellular network,

such that the interference is avoided. However, issues such as high data overhead, poor

synchronisation, high latency, poor channel utilisation, poor spectral efficiency, high

interference, and limited resources available for existing and future demands need to be

addressed in order to improve the existing system performance.

Several works have been proposed in the past to deal with interference in the

homogeneous network. Different RBA modes and metrics have been used to allocate

RBs to users, but several challenges are still to be solved. For instance most proposed

works have been based on the centralised RBA, semi-centralised RBA and very few on

distributed RBA. Also the RBA metric used is mostly based on the location of the user, the

SNR of each user and the path loss from the BSs to the user. So far no known technique

has been proposed which directly uses the SINR as a RBA metric to assign RBs in a
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centralised, semi-centralised or distributed approach. RBA metrics based on interference

estimation such as the SINR, have been avoided by most authors in the past since the pre-

knowledge of existing users on the RBs are required to obtain the SINR for each user on

all available RBs prior to resource allocation. The authors in [53, 54] stated that obtaining

the SINR is impossible, hence their preferred strategy is an approach which removes the

direct dependency on the SINR of the users during RBA.

The HetNet system model has been developed to cope with the ever increasing traffic,

but the multi-layers of the network leads to very high interference. An intelligent RRM

strategy is needed to limit the interference within the system. Considering both the

homogeneous and heterogeneous network model, this chapter aims to provide a solution

that achieves a distributed RBA such that each macro cell or small cell is responsible for

assigning RBs to its users and the overall system performance is improved.

The contributions of this chapter are as follows: Firstly, the RBA techniques used for

interference avoidance for the homogeneous network are considered. A distributed RBA

technique based on limiting the interference received by the users is proposed. The

proposed method under the homogeneous network, shows a distributed strategy that

assigns the RBs in a manner that allows the interference to be estimated and avoided while

maximising the sum-SINR within each cell. Note that this distributed RBA approach

using the sum-SINR as a RBA metric, can also be applied to HetNets.

Secondly, the proposed distributed technique using the SINR as a RBA metric is compared

to the traditional distributed RBA using SNR as a RBA metric. Also the proposed

distributed RBA strategy will be compared to other modes of RBA and the advantage

of the distributed strategy will be presented and analysed using simulation results.

Thirdly, another distributed RBA technique is proposed for the HetNets, such that a

further reduction in the interference within the system is achieved, thereby improving

the attainable system performance even in a high interference network. The proposed

distributed technique uses the signal to leakage plus interference and noise ratio (SLINR)

as a RBA metric.
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Fourthly, through obtained simulation results the proposed technique is analysed for the

HetNet system model and compared to other RBA metrics such as the proposed sum-

SINR maximisation strategy and the already existing sum-SNR maximisation strategy.

The rest of this chapter is organised as follows: Section 5.2 presents different forms of

RBA, Section 5.3 presents the associated costs on the network needed for RBA which

would be used to analyse the simulation results. The proposed interference avoidance

technique for the homogeneous network is presented in Section 5.4, and the interference

avoidance technique for the HetNet is proposed in Section 5.5. Finally the conclusion of

this chapter is found in Section 5.6.

5.2 Different Modes of RBA

Figure 5.1: Different modes of resource block allocation.

Several resource management techniques for ICIC have been investigated for the cellular

network, especially traditional homogeneous networks. Most works proposed in this
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area fall into static, semi-static and dynamic ICIC techniques, with different advantages

and challenges. The well known static ICIC is based on hard frequency partitioning

[55, 56, 57, 58], which is used for interference avoidance within a network. This includes

fractional frequency re-use (FFR), soft-frequency reuse (SFR) and partial frequency

reuse (PFR). In [59, 60], Alcatel proposed an ICIC technique that aggressively assigned

resources to the cell-edge users, thereby causing poor utilisation of resources at the

cell-centre area. Under semi-static frequency partition, signalling exchange is done

periodically, while taking the network load changes into consideration. In [61, 62, 63],

several semi-static frequency partition schemes such as semi-static fractional frequency

re-use (FFR), whispering approach, softer frequency re-use (SerFR) and adaptive FFR

were proposed. These proposed schemes faced setbacks such as poor frequency utilisation

at the cell-edge and/or cell-centre area. The frequency partition was partially adaptive, so

the varying traffic load and channel conditions were not fully taken into consideration.

Dynamic ICIC (D-ICIC) adapts to the changing network conditions and traffic loads,

hence frequency allocation can be more complex and challenging. D-ICIC techniques

require more frequent exchange of channel information, which comes with a high cost

of backhaul overhead especially for the centralised D-ICIC. Other types of D-ICIC

are: semi-centralised/partitioned coordination and de-centralised/distributed coordination

[64]. D-ICIC schemes offer better system performance, gain, spectral efficiency, user

diversity and frequency diversity compared to the static or semi-static methods. Although,

the challenges faced include very high backhaul overhead, frequent exchange of CSI and

user information, high latency, poor synchronisation and increased RBA time.

The following sections will present the advantages and drawback of the different modes

of RBA such as centralised RBA, semi-centralised/partitioned RBA, de-centralised/

distributed RBA under dynamic ICIC and frequency partitioned RBA under static ICIC.

The proposed RBA technique is based on the distributed RBA, which is now the

main strategy sought for current and future generation cellular network. The proposed

distributed RBA strategy will be compared with results obtained using the centralised

RBA, semi-centralised/partitioned RBA and frequency partitioned RBA to analyse and
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evaluate the advantages of the preferred and proposed approach to other forms of RBA.

5.2.1 Dynamic ICIC

Centralised RBA

As can be seen in Fig. 5.1(a), the centralised D-ICIC, requires all CSI and user

information to be fed from all BSs or eNodeBs (eNBs) in the network to the radio

network controller (RNC) which is situated with a BS. The Resource Block Allocation

Unit (RBAU) performs the RBA using the information gathered and then transmits the

assigned RBs back to the serving BSs for each user’s data transmission. The major

problem associated with the centralised approach is the high data load exchanged in the

backhaul network. This puts a strain on the network and increases the RBA time and

required overhead. The control function of the RNC is now embeded into the NodeB to

form the eNodeB in LTE-A. This makes the centralised D-ICIC technique impractical for

LTE-A as it has no RNC which is needed for the centralised RBA. However in [65, 66, 67],

the authors proposed the mobility management entity (MME) to enable the centralised

coordination and management of the radio resources.

Some authors have investigated this mode of resource allocation in [53, 54], where the

RBA was carried out centrally. The main challenge for the authors was performing the

RBA centrally based on the SINR of the users, so the RBA problem was approached and

solved in two steps. First, the interference level was managed using graph theory to match

users into clusters such that the interference seen by the users are minimised. Then the

resource allocation is performed on the clusters to leverage the CSI quality based on the

SNR values of the users in the clusters.
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Figure 5.2: Centralised RBA performed by the RNC.

In Fig. 5.2 the diagram shows the RBA overhead experienced in the backhaul in order

to obtain the CSI at the central RNC and also when transmitting allocated RBs to the

macro cell sectors. The RBA time is the time used to allocate resources and transmit the

information back to the BSs/eNBs for data transmission.

Semi-Centralised or Partitioned RBA

The semi-centralised or partitioned RBA approach divides the macro-cells within the

network into sub-groups or clusters as shown in Fig. 5.1(b). Each cluster is delegated

a RBAU, which is geographically located with a serving cell-site. In Table 5.1, different

possible partition types are proposed with different numbers and sizes of clusters, for W

= 19 macro cell sites. The macro cell site index number in the box is where the RBAU

is located, and other cell sites within the cluster transmit information to the RBAU for

resource management. This method is similar to the centralised D-ICIC but with smaller

groups of BSs. The smaller the number of partitions, the lower the interference and vice

versa. This is because as the number of partitions increase, possible interference from less

number of neighbouring cells are considered during RBA which results in an increased

interference within the network. In the simulation results, it can be observed that as the

number of partitions within the network increases, a corresponding decrease is observed in

the backhaul overhead and RBA time required to assign RBs to users within the network.



Chapter 5. Radio Resource Management for Interference Coordination 103

However, since the other clusters are not taken into account during the resource allocation,

an increase in the sum-interference power is expected within the network. Another form

of semi-centralised and frequency partitioned based RBA requires the RBs to be assigned

centrally to different macro cells, and then the macro cells assign RBs to their users based

on the allocation of RBs received [68].

Table 5.1: Proposed cell partition types.

Type Number of Partitions Partition Sets

Group A 2 {1, 2, 3 , 4, 8, 9, 10, 11, 12, 19},

{5, 6 , 7, 13, 14, 15, 16, 17, 18}

Group B 3 {1, 2 , 3, 8, 9, 10},{4, 5, 11, 12, 13 , 14},

{6, 7, 15 , 16, 17, 18, 19}

Group C 4 {1, 4 , 11, 12, 13},{2, 3, 8, 9 , 10},

{7, 17, 18 , 19}, {5, 6, 14, 15 , 16}

Group D 5 { 1 , 4, 6},{2, 8 , 9, 19},{3, 10, 11 , 12},

{5, 13, 14 , 15}, {7, 16, 17 , 18}

Group E 6 {1 2 , 8, 9},{3, 10, 11 },{4, 12, 13 },

{5, 14, 15 },{6, 16, 17 },{7, 18, 19 }

Intuitively, one can see that this approach is repetitive as the RBs need to be re-assigned or

re-evaluated at the RNC to minimise the interference. This could result in large overhead,

poor synchronisation, high latency and poor interference avoidance. These methods are

hybrids of centralised and distributed strategies, with the aim of trading off performance

with high data backhaul and complexity. The problem of high data overhead and latency

associated with RBA for interference management within the network is still a huge

challenge. The cell partition shown in “Group B” and “Group E” will be used later in

this chapter with the proposed RBA metric and compared to the proposed distributed

RBA strategy.

In Fig. 5.3 the diagram shows the CSI information collected centrally at each cell
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partition. The larger the number of partitions the lower the CSI overhead and RBA time.

The trade-off for lower RBA time and overhead in the system is a higher interference

level. Since the BSs in each cell partition does not communicate with the BSs in other

partitions, the interference is partially mitigated.
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Figure 5.3: Semi-centralised or partitioned RBA performed by the RBAU in each

partition.

Distributed or De-centralised RBA

The distributed or de-centralised RBA under D-ICIC, aims to reduce the backhaul

overhead by allowing the resource management techniques to be performed independently

by the macro cells for its users as shown in Fig. 5.1(c). This method is most suitable for

the LTE-A standard, since there is no provision for a central control unit (CCU) in the

LTE-A standards for 4G networks. Also this method is needed to ensure that current

and future cellular wireless networks are self-organising networks (SON). However, this

approach faces several challenges especially interference, since the allocation on each

cell is expected to be done simultaneously, hence the BSs have no prior information of

possible interference transmitted or received from neighbouring cells.
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To exploit the achievable rates, it became necessary to develop radio resource

management techniques that tend towards an adaptive and dynamic coordination, taking

into account the channel and user diversity in the time spectrum, frequency spectrum

or both. In [69], a non-cooperative distributed RB allocation strategy was proposed to

minimise the total transmit power in each cell, in order to achieve an efficient network.

The solution did not fully exploit the achievable throughput in each cell, since the effect

of interference was not taken into account. In [70], each BS was made to assign transmit

powers and RBs independently, while minimising the total transmit power with a given

minimum QoS constraint. The allocated RBs for the cell-edge users are then exchanged

so that the neighbouring BSs do not use high transmit powers on those selected RBs. In

reducing the transmit powers on the selected RBs, the user’s previous attainable rates are

reduced and may not meet the QoS requirements previously attained during the RBA.

Also in [62], the proposed distributed RBA approach is based on a limited feedback of

SNRs of the “best M-RBs” for each user, and the users are then assigned RBs on a first-

come, first-serve basis based on the available RBs and information on the best M-RBs for

that user. This method only reduces the feedback of information and is ineffective since

the effect of interference from neighbouring cells are not considered. The distributed RBA

approach proposed by other authors in the past, avoids using any RBA metric that requires

computing the interference for any user as this is very complex to achieve especially for

the distributed mode of RBA. This has resulted in methods that avoid the interference

entirely. But since the HomoNet is limited by high interference, and the achievable

rates are dependent on the SINR of the users, it is important to take the interference

into consideration during RBA for interference avoidance. The proposed work in Section

5.4 shows that this can be achieved in a distributed approach.

5.2.2 Static ICIC - Fractional Frequency Reuse

Earlier, the static and semi-static frequency partition techniques for ICIC were presented

for homogeneous networks. In Fig. 5.4, the FFR is shown using the cell sectors, m = [1,
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2, 3, 5, 6, 7, 8, 9, 10, 20]. The different areas of the cells are allowed some portions of

the available spectrum, thereby reducing the spectral efficiency and gains obtained from

frequency diversity. The frequency partitioning in ‘Type B’ achieves a better channel

diversity than ‘Type A’, since the channel may experience deep fading in some parts of

the frequency spectrum. The FFR has been shown using different strategies in order to

maximise the frequency utilisation and restrict any possible interference, but this strategy

still experiences poor spectral efficiency.

Figure 5.4: Frequency partitioned RBA.

For instance, as shown in Fig. 5.4, the macro cell sectors have access to only one-third

of the available spectrum. However, this approach has some advantages such as very low

RBA time, no overhead and less complexity. But the obtained rate does not meet the huge
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capacity demands especially as the traffic load of the network increases.

5.3 RBA Costs

The RBA costs analysed in this chapter include the time taken to allocate the RBs to

the users and the overhead required to obtain the RBs for each user based on the mode of

allocating the RBs such as centralised, semi-centralised (or partitioned) and distributed (or

de-centralised) RBA. The following definitions are defined: the macro cell site considered

are w = [1, 2, · · · ,W], where w is the macro cell site index and W is the number of macro

cell sites. Each macro cell site uses δ-sectored macro cell directional antennas resulting in

m = [1, 2, · · · ,M] macro cell sectors and M = Wδ, l = [1, 2, · · · , δ] where l is the macro

cell sector antenna index and δ is the number of directional antennas per macro cell site.

5.3.1 RBA Time

The RBA time is defined as the total time taken to perform the RBA centrally, semi-

centrally or de-centrally and then transmit the information back to the cells. The total

RBA time (tTRBA) for the centralised and semi-centralised RBA is given by (5.3.1) and

(5.3.2) respectively, while the distributed total RBA time is given by (5.3.3):

tcentTRBA = 2tprop +
W∑
w=1

tw + tCSItran + tpostran + tRBtran. (5.3.1)

ts−cent(i)TRBA = max{2tprop +
W∑

w=1,w∈Pi

tw + tCSItran + tpostran + tRBtran, i = [1, 2, · · · ,Ni]}. (5.3.2)

tdistTRBA =
δ∑
l=1

(tl + el). (5.3.3)

where tprop is the propagation delay time, tw is the RBA processing time for the w-th

macro cell site w, tCSItran is the time taken to transmit the CSI to the MME or RBAU, tpostran
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is the time taken to transmit the user’s position to the RBAU, and tRBtran is the time taken

to transmit the allocated RB information back to the macro cell BSs. Ni is the number of

clusters or partitions, Pi is the i-th cluster/partition in the network. Also, tl is the maximum

time taken to simultaneously assign RBs to all the users in all the macro cell sectors with

antenna index l and el is the maximum time taken to exchange RB information assigned

at time tl to neighbouring macro cell sites.

el = max{tprop +
ϕm
ζ
,∀w = [1, 2, · · · ,W],m = (w− 1)δ + l}, ∀l = [1, 2, · · · , δ],

(5.3.4)

where ϕm = αK̄m is the RB information data size from the m-th macro cell sector, K̄m

is the number of users in the m-th macro cell sector, α is the number of bits required to

transmit each RB information and ζ is the data rate through the backhaul link.

5.3.2 Overhead

The backhaul overhead is defined as the associated data or backhaul load required in

the backhaul network when performing RBA within a given network at a given time.

This includes the data load required when sharing users’ data CSI from the macro cell

to the central unit (MME or RBAU) for RBA. Assuming β, φ and α bits are required to

transmit the channel quality information (CQI), the user’s location to the MME (for the

case of centralised and semi-centralised RBA) and the allocated RB information from the

MME/RBAU to the macro cells respectively. So the total number of bits transmitted in

the backhaul under the centralised, semi-centralised and distributed RBA, per unit time,

is given by (5.3.5), (5.3.6) and (5.3.7) respectively:

Ocent =
W∑
w=2

δ∑
l=1

K̄m(βNRB(θm + 1) + φ+ α),m = (w− 1)δ + l, (5.3.5)

Osemi−cent =

Ni∑
i=1

W∑
w=1,w∈Pi

w 6=xi

δ∑
l=1

K̄m(βNRB(θm + 1) + φ+ α),m = (w− 1)δ + l, (5.3.6)
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Odist =
δ∑
l=1

W∑
w=1

αK̄mθm, m = (w− 1)δ + l. (5.3.7)

where xi is the macro cell site hosting the RBAU in each cell partition Pi, NRB is the

number of available RBs per time slot and θm is the number of macro cell sectors receiving

RB information from the m-th macro cell sector.

5.4 Interference Management in Homogeneous Network

Figure 5.5: Homogeneous network with W = 7 macro cell sites and δ = 3 sectors per site.

For several decades, the HomoNet has been the traditional approach for network

deployment. The HomoNet comprises of macro cell BSs which cover wide areas and

serve several users. The macro cell locations are carefully planned and located, so
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that maximum coverage and capacity is achieved. Each macro cell BS has the same

antenna patterns, transmit power capacity and backhaul connectivity. As the network user

demand increased, more BS deployment was needed. However, the cost of acquisition

and deployment of macro cell sites in dense urban areas became more difficult [71].

5.4.1 HomoNet System Model

For the homogeneous model, most of the variables used to present the work are defined in

Table 5.2. The HomoNet in Fig. 5.5 shows the deployment of W = 7 macro cell sites and

δ = 3 sectors for each macro cell site within the network. Each macro cell sector transmits

data on allocated RBs to the users within the macro cell sector. The homogeneous network

is OFDMA based and has a frequency reuse of 1. Based on the system in Fig. 5.5, the

signal received by the k-th user from the m-th macro cell BS on the r-th RB, is given by:

y(m)
k,r = H(m)

k,r

√
ρ

(m)
k,r s(m)

k,r +
M∑

d = 1, d 6=m

j∈[1,2,··· ,K̄d]

a(d)j,r =1

H(d)
k,r

√
ρ

(d)
j,r s(d)

j,r + n(m)
k,r , if a(m)

k,r = 1,

∀ k ∈ [1, 2, · · · , K̄m], ∀m ∈ [1, 2, · · · ,M], ∀r ∈ [1, 2, · · · ,NRB]. (5.4.8)

The coefficients of H(m)
k,r are complex random variables, with zero-mean Gaussian real

and imaginary parts. The channel links experience large scale fading, with path loss

exponent (α) and log-normal shadowing having zero-mean and variance σ2
s . s(d)

j,r is the

complex (scalar) data signal destined for the j-th user on the r-th RB in the d-th macro

cell (E
{
|s(d)
j,r |2

}
= 1), and n(m)

k,r is an additive, zero-mean, white, complex Gaussian noise

vector with a variance of (σ
(m)
k,r )2. The downlink SINR of the k-th UE on the r-th RB,

served by the m-th macro cell, is given below in (5.4.9):

γ
(m)
k,r =

g(m)
k,r ρ

(m)
k,r

M∑
d = 1, d∈ Tm

j∈[1,2,··· ,K̄d], a(d)j,r =1

g(d)
k,rρ

(d)
j,r + (σ

(m)
k,r )2

, if a(m)
k,r = 1,

∀ k ∈ [1, 2, · · · , K̄m], ∀m ∈ [1, 2, · · · ,M], ∀r ∈ [1, 2, · · · ,NRB], (5.4.9)
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where g(m)
k,r = ‖H(m)

k,r ‖2
F . The user-rate at the k-th UE on the r-th RB, served by the m-th

macro cell, is given by R(m)
k,r , while the sum-rate for the m-th macro cell sector is given by

R(m)
T , and the total rate in the network is given below (5.4.10) as:

RT =
M∑

m= 1

K̄m∑
k= 1

NRB∑
r= 1

a(m)
k,r log2

(
1 + γ

(m)
k,r

)
︸ ︷︷ ︸

R(m)
k,r︸ ︷︷ ︸

R(m)
T

. (5.4.10)

where a(m)
k,r = 1, if user k is served by macro cell m (i.e., the m-th macro cell BS) on the

r-th RB, otherwise a(m)
k,r = 0 and each RB is allocated to only one user in a macro cell

sector:

K̄m∑
k=1

a(m)
k,r ≤ 1, a(m)

k,r ∈ {0, 1}, ∀r ∈ [1, 2, · · · ,NRB] , ∀m ∈ [1, 2, · · · ,M] . (5.4.11)

Table 5.2: Summary of notations.

Notation Definition

δ Number of macro cell sectors and macro cell sector antennas in each

macro cell site.

NRB Number of available RBs at each time slot.

K̄m Number of users in a macro cell sector, m = 1: M.

W, M Number of macro cell sites and macro cell sectors respectively, w = 1 :

W and m = 1 : M

Tm Set of interfering macro cell sectors to the m-th macro cell sector.

a(m)
k,r The bit-wise element that indicates if the r-th RB is assigned to the k-th

UE in the m-th macro cell sector, a(m)
k,r ∈ {0, 1}.

s(m)
k,r The k-th user data transmitted on the r-th RB from the m-th macro cell

sector BS, k ∈ [1, 2, · · · ,K].

H(m)
k,r The flat-fading channel on the r-th RB, from the m-th macro cell sector

BS to the k-th UE.
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g(m)
k,r The channel gain on the r-th RB, from the m-th macro cell sector BS to

the k-th UE.

ρ
(m)
k,r The power allocation to the k-th user on the r-th RB in the m-th macro

cell sector.

n(m)
k,r The noise vector received by the k-th user on the r-th RB in the m-th

macro cell sector.

y(m)
k,r The received signal vector of the k-th user on the r-th RB in the m-th

macro cell sector.

γ
(m)
k,r The SINR of the k-th user on the r-th RB in the m-th macro cell sector.

R(m)
k,r The rate of the k-th user on the r-th RB in the m-th macro cell sector.

R(m)
T The sum-rate of the users in the m-th macro cell sector.

5.4.2 Proposed Distributed RBA for HomoNets

Problem Formulation

The proposed RBA optimisation problem is based on maximising the sum-SINR of the

users within each macro cell, while ensuring the effective interference experienced is at

its minimum. The optimisation problem can be formulated as:

max
a

NRB∑
r=1

K̄m∑
k

a(m)
k,r γ

(m)
k,r , ∀m ∈ [1, 2, · · · ,M] ,

s.t. γ
(m)
k,r =

g(m)
k,r ρ

(m)
k,r

M∑
d = 1, d∈Tm

j∈[1,2,··· ,K̄d], a(d)j,r =1

g(d)
k,rρ

(d)
j,r + (σ

(m)
k,r )2

,

Km∑
k=1

a(m)
k,r ≤ 1, ∀r, m, a(m)

k,r ∈ {0, 1}, ρ
(m)
k,r ≥ 0, if a(m)

k,r = 1,∀m, k, (5.4.12)

where a is the RBA solution to the given optimisation problem, and a = [a(m)
k,r ,∀m, k, r].
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The problem above is a constrained non-linear optimisation problem, which is very

complex to solve. The authors in [53, 54] stated that the calculation of the SINR values of

each user is not possible, since the SINR cannot be calculated without first allocating RBs.

The authors sought another approach that eliminated the use of interference estimation for

the users on each RB. A centralised strategy that assigned the users into different clusters

using interference weights was proposed, and each cluster was assigned a RB to maximise

the throughput. Although the strategy aims to avoid interference, the clusterisation

strategy does not take into account the full interference from the neighbouring cells on

individual users simultaneously. Subsequently, the RBs are allocated to each cluster to

maximise the sum-SNR of the users in the cluster. The centralised clustering approach

using interference weights and the maximisation of the sum-SNR over the clusters

does not effectively mitigate the interference in the network, it also does not seek to

maximise the sum-SINR in each macro cell sector and does not solve the challenges of

the centralised approach as explained in Section 5.2.1. For this reason, a step-by-step

algorithm under the distributed RBA approach that maximises the SINR of the users in

each macro cell sector, is proposed to solve the problem in (5.4.12).

Problem Solution

The first and foremost objective of the proposed distributed RBA solution based on

maximising the sum-SINR within each macro cell, is obtained using a distributed

approach to allocate RBs within a cellular system, that would significantly reduce the

overhead resources and time required for jointly allocating RBs to the users. Secondly,

the proposed distributed RBA strategy aims to choose the RBs that maximise the sum-

SINR of the users within the given macro cell sector, while avoiding the reception of

high interference from neighbouring macro cells on the same RB. In order to achieve a

distributed RBA based on interference avoidance, and obtain the perceived SINR of each

user on every given RB in each macro cell, it is important to have pre-knowledge of the

RBs already allocated in the neighbouring cells.
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Figure 5.6: Proposed distributed or de-centralised RBA strategy for HomoNets.

Without this knowledge, the interference to each user cannot be properly taken into

consideration during the RBA process. It is easy to see why this metric for RBA proves



Chapter 5. Radio Resource Management for Interference Coordination 115

to be a challenge and is almost impossible to achieve, if the interfered RBs are not yet

known. The definition of the variables used in the flow charts and algorithms can be

found in Table 5.2.
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Figure 5.7: Flow chart of the proposed distributed RBA strategy for W macro cell (MC)

sites and δ sectors per cell site.

Algorithm 1

Figs. 5.6 and 5.7 present the proposed distributed RBA strategy using a round robin,

sector-by-sector approach, as described below:

Step 1: As shown in ‘Block A’ in Fig. 5.8, the RBA begins with the macro cell sectors
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with antenna index l = 1, for all macro cell sites w = 1, 2, · · · ,W. The perceived SINR for

the users on each RB is estimated while the interference received is considered as zero,

since the users in other neighbouring cell sectors with macro cell sector index l = 2 and

3 have not been assigned RBs. Then using the well-known Hungarian method [72], the

RBs are assigned to all the users to maximise the sum-SINR within the macro cell sector.

Figure 5.8: RBA based on sum-SINR maximisation
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Step 2: The assigned RB information are then passed to the neighbouring macro cell sites

of neighbouring and interfering BSs in the set Tm, where Tm is the set of neighbouring

and interfering BSs to the m-th macro cell sector.

Step 3: Now the macro cell sectors with antenna index l = 2 finds the SINR at each user on

each RB, while considering the interferers on the already assigned RBs in neighbouring

macro cell sectors with sector index l = 1, as shown in ‘Block B’ in Fig. 5.8. The

Hungarian method is used to assign the RBs to all users to maximise the sum-SINR within

each macro cell sector.

Step 4: The assigned RBs information are then passed to the neighbouring macro cell

sites of neighbouring and interfering BSs in the set Tm.

Step 5: Now the macro cell sites with macro cell sectors with antenna index l = 3 finds the

SINR at each user on each RB, while considering the interferers on the already assigned

RBs in neighbouring macro cell sectors with sector index l = 1 and 2, as shown in ‘Block

C’ in Fig. 5.8. The Hungarian method is used to assign the RBs to all the users to

maximise the sum-SINR within the macro cell sector.

Step 6: The assigned RBs information are then passed to the neighbouring macro cell

sites of neighbouring and interfering BSs in the set Tm.

Note that as the users enter and leave the network, the proposed RBA strategy enables RBs

to be assigned to new entrants while ensuring that the interference within the network is

managed. This continuous process leads to a distributed RBA strategy fit for a SON.

5.4.3 Performance Evaluation in HomoNet

Using the simulation parameters in Table 5.3, the following results are obtained and

analysed. In Fig. 5.9 and Fig. 5.10 respectively, the average sum-rate and average

sum-interference per macro cell is shown using the proposed distributed RBA based on

maximising the sum-SINR (represented by ‘dist-SINR’) and compared to the traditional

approach based on maximising the sum-SNR (represented by ‘dist-SNR’). The traditional
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RBA using SNR as the RBA metric is distributed since each macro cell can estimate the

SNR of all users within the cell and then allocate RBs to maximise the sum-SNR. Note

that the conventional distributed approach for ‘dist-SNR’ is not similar to the proposed

distributed RBA strategy using the SINR as a RBA metric.
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Figure 5.9: Sum-rate per macro cell using the proposed distributed RBA based on sum-

SINR maximisation.

However, for this simulation the RBs are allocated to maximise the sum-SINR in each

macro cell sector, using the proposed distributed RBA technique. While varying the

number of macro cell users (nMCUs) in the macro cell sector, the proposed ‘dist-SINR’

achieves a better performance than ‘dist-SNR’. For instance an increase of 0.03 Mbps/Hz

is achieved with the proposed ‘dist-SINR’ strategy as the number of users increases and

the interference within the cell increases. Also in Fig. 5.10, the proposed ‘dist-SINR’
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strategy achieves up to 50% reduction in the total interference power within the system.

For instance the total interference power experienced with ‘dist-SINR’ and ‘dist-SNR’

respectively, when the number of MCU is 40 are 0.31 kW and 0.58 kW respectively. The

interference is seen to be reduced by approximately 50%.
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Figure 5.10: Sum interference power per macro cell using the proposed distributed sum-

SINR maximisation.

Table 5.3: Summary of simulation parameters.

Parameter Value

Cell Type HomoNet

Number of macro cell sites 19

Number of sectors per macro cell site 3

Channel frequency 2.0 GHz
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Carrier bandwidth 10 MHz

Number of RBs 50

Bandwidth of RB 180 kHz

Sub-carrier spacing 15kHz

Bandwidth per RB 180kHz

Shadowing standard deviation, σs 8dB

Pathloss coefficient, α 2

Macro cell BS power 43 dBm

[Inter site distance (ISD), Do] [750m, 100m]

Macro cell radius 250m

Macro cell antenna type directional antennas

Number of antennas (Mt, Nr) (4, 2)

Backhaul link rate (ζ) 1 Gbps

(β, φ, α) (8, 8, 8) bits

To further evaluate the proposed distributed RBA strategy based on maximising the

sum-SINR, other forms of RBA such as the centralised, semi-centralised and frequency-

partitioned solutions are shown. For fair comparison, the centralised and semi-centralised

are implemented using the RBA metric based on the SINR and the SNR. The different

forms of RBA used for comparison are:

• The centralised RBA mode assigns the RBs centrally at the chosen RBAU. The

RBs are selected using the proposed sum-SINR maximisation strategy and the

existing sum-SNR maximisation approach, represented by ‘cent-SINR’ and ‘cent-

SNR’ respectively as shown in Fig. 5.11 and Fig. 5.12.

For the centralised approach, the RBAU begins with the first macro cell site w

= 1, the macro cell sectors with antenna index l = [1, 2, · · · δ] simultaneously
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assigns RBs to the users. This is valid with the assumption of no interference

between the macro cell sectors of the same macro cell site. The round-robin

approach subsequently assigns RBs in the same manner to the other macro cell sites

w = [2, · · · ,W], while avoiding the interference from previously assigned macro

cell sites on assigned RBs.

• The semi-centralised or partitioned RBA mode uses the partition types ‘Group B’

and ‘Group E’ as shown in Table. 5.1 to assign the RBs semi-centrally at the chosen

RBAUs. The RBs are selected using the proposed sum-SINR maximisation strategy

and the existing sum-SNR maximisation approach, which are represented by ‘part-

SINR Gp B’ and ‘part-SNR Gp B’ respectively for ‘Group B’ and ‘part-SINR Gp

E’ and ‘part-SNR Gp E’ respectively for ‘Group E’, as shown in Figs. 5.11 and

5.12.

The semi-centralised approach is similar to the centralised approach since the RBs

are assigned in the same manner within each sub-group. However, the partitions

or sub-groups assign the RBs independently without taking into consideration the

interference from the macro cell BSs in other sub-groups or partitions.

• The frequency partitioned RBA mode uses the sum-SINR maximisation strategy

and sum-SNR maximisation approach as a metric to schedule resources in each

macro cell sector and are represented by ‘freq-SINR’ and ‘freq-SNR’ as shown in

Figs. 5.11 and 5.12 respectively.

Note that the macro cells are already allocated subsets of the frequency resources

and for each time slot the macro cell is allowed to allocate only a single user

to a given RB. Considering NRB = 50 and δ = 3, each macro cell sector with

antenna index l = 1, 2 and 3 respectively are allotted 16 RBs, 17 RBs and 17 RBs

respectively using frequency partitioning ‘Type A’ as shown in Fig. 5.4 for the

simulations.

As seen in Fig. 5.11 for different density of users per macro cell sector using the

centralised, semi-centralised and distributed mode of allocation, the proposed RBA metric
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based on the sum-SINR of the users achieves a better system performance than the RBA

metric based on sum-SNR of the users, except for the frequency partitioned RBA strategy.

The RBA based on the proposed sum-SINR maximisation strategy and the existing sum-

SNR maximisation approach would yield the same result since the interference is zero.

The interference is zero because parts of the available RBs have been allotted and reserved

for certain macro cell sectors, hence interference is avoided completely. However, the

‘freq-SINR’ and ‘freq-SNR’ achieve poor performance due to unavailable RBs when the

density of users is high in each macro cell sector. Remember that multiple users in a given

macro cell sector cannot be assigned to the same RB.
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Figure 5.11: Sum-rate per macro cell on different modes of RBA based on the proposed

sum-SINR and existing sum-SNR maximisation when nMCUs = 10, 20, 30, 40 and 50.

Also it can be seen that the distributed approach ‘dist-SINR’ achieves very similar sum-
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rate performance with the centralised approach ‘cent-SINR’. Both strategies achieve the

best sum-rate performance compared to other strategies. The sum-rate performance under

the semi-centralised RBA reduces as the number of sub-groups or partition increases.

This is a result of an increase in the interference within the system, since the interference

from other clusters/sub-groups was not considered during RBA. The performance under

the frequency partition RBA strategy is seen to achieve the worst sum-rate performance

especially as the density of users in the cell increases. It shows that hard frequency

partition diminishes the available frequency spectrum, which can cause very poor system

efficiency within the network during peak times or in a high user density area.
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Figure 5.12: Sum interference power per macro cell on different modes of RBA based on

the proposed sum-SINR and existing sum-SNR maximisation when nMCUs = 10, 20, 30,

40 and 50.

Fig. 5.12 shows the interference power within the system under the different RBA
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strategies. It can be seen that the centralised and distributed approach based on

maximising the sum-SINR results in better interference management compared to other

strategies. Also the ‘part-SINR Gp B’ is seen to have less interference than ‘part-SINR

Gp E’, which has more sub-groups within the network. The benefits of the fractional

frequency re-use strategy as mentioned earlier is the ease of interference control, fast

RBA time and no overheads. It can be observed that no interference is experienced under

the frequency partition RBA strategy, since each macro cell only assigns the RBs allocated

to it and only one user is assigned to any RB at any time.
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Figure 5.13: RBA time obtained for different modes of RBA based on the proposed sum-

SINR maximisation when nMCUs = 10, 20, 30, 40 and 50.

In Figs. 5.13 and 5.14 respectively, the RBA time and RBA overhead for different modes

of RBA using the proposed RBA metric based on the sum-SINR maximisation are shown.

From Figs. 5.13 and 5.14, it can be observed that as the density of the users within
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the macro cell increases, the ‘cent-SINR’ requires the longest time for its RBA and also

demands the highest overhead resources compared to other strategies. For example, when

the number of users K̄m = 50, ∀m, the ‘cent-SINR’ requires an overhead of 3.46 Mbits

compared to the ‘dist-SINR’, ‘part-SINR Gp B’ and ‘part-SINR Gp E’ which requires

0.05 Mbits, 2.98 Mbits and 2.25 Mbits respectively. Also, the RBA time used under

the ‘cent-SINR’ is 561 msecs compared to the ‘dist-SINR’, ‘part-SINR Gp B’, ‘part-

SINR Gp E’ and ‘freq-SINR’ which requires 87 msecs, 540 msecs, 266 msecs and 44

msecs respectively. It can be observed that the frequency partitioned strategy has no

overhead and has the quickest RBA time. From these results, it can be concluded that the

proposed distributed strategy based on the sum-SINR maximisation, obtains the overall

best performance compared to other strategies.
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Figure 5.14: Data overhead obtained for different modes of RBA based on the proposed

sum-SINR maximisation.
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5.5 Interference Management in Heterogeneous

Network

Previously, cellular network system were mainly homogeneous and macro cells having

the same transmit power were deployed for network coverage. But over the years

massive reductions occurred in costs and improvements in micro-chips technology, semi-

conductor devices and advanced digital signal processing. This resulted in an explosion

of user equipments and programs that require real-time applications and high data speeds.

Over the past few years, more user devices have been introduced into the network,

resulting in competition for network resources in a frequency limited cellular network.

Other major challenges faced in HomoNets are poor cell coverage and performance at

the macro cell edge area, high call drops and network resource contention in densely

populated areas. These challenges were the drivers to evolve the existing homogeneous

networks into heterogeneous networks, popularly called HetNets [73].

To achieve better coverage and improve capacity, small cells with low transmission

power were deployed over existing macro cells [74]. The type of heterogeneous network

considered in this chapter is the macro cell and pico cell network operating over the same

frequency band. The major challenge for the HetNet is the intra-cell interference (IaCI)

and the ICI. The IaCI is the interference within the same macro cell sector area, from

the macro cell BS to the pico cell UE or from the pico cell BS to the macro cell UE.

While the ICI is the interference from a macro cell BS to the pico cell and macro cell

UEs in another macro cell sector area. The interference experienced in HetNets limits the

predicted performance in HetNets. Another challenge seen in the HetNet is the loading

of users to the small cells, such that the small cells are not under utilised since the UEs

would mostly prefer service from the high power macro cell eNB [74], but this is not the

focus for the work. For this work, the users are assumed to be already associated to a

given macro or pico cell area.
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Figure 5.15: HetNet with W = 19 macro cell sites, δ = 3 macro cell sector per cell site,

nPC = 4 pico cells per macro cell sector.
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3GPP LTE HetNet systems are based on OFDMA and both macro and small cells have

access to the same frequency band. As discussed previously, more focus is on D-ICIC

techniques, since it has been shown to achieve more performance gain and improved

spectral efficiency as opposed to the traditional static and semi-static approach used in

2G system for frequency partitions between cells. HetNets are more complex systems

and interference management techniques are more challenging. So it is important to have

an effective D-ICIC strategy that associates RBs to users such that each user is allocated

a RB with good SINR. Some techniques such as almost blank sub-frames (ABS) which

uses time domain ICIC have been proposed, to allow subframes on the macro cell sectors

to be reserved for small cell users prone to high interference, especially the cell-edge

users. Depending on the number of cell-edge users, this resource reservation can cause

low spectral efficiency for the macro cells especially in a dense network [74]. For this

reason, the proposed distributed RBA strategy allows both macro and small cells detect

and avoid RBs with high interference without pre-allotting RBs for specific users. This

allows the available subframes and RBs both in the time and frequency domain to be

available to all cell-types.

5.5.1 HetNet System Model

The HetNet system model in Fig. 5.15 shows the deployment of pico and macro cells

within the network. The system model shown has W = 19 macro cell-sites and M =

57 macro cell sectors. There exist 5 cells within each macro cell sector, i.e., 1 macro

cell and 4 pico cells. The macro cell sector BSs use directional antennas while the pico

cell BSs use omni-directional antennas. Each macro cell sector consists of: a macro

cell denoted by c = 1; two (2) cell-edge pico cells (CEPCs) strategically positioned to

improve the coverage at the macro cell-edge, denoted by c = 2 and 3 respectively; and

two (2) hotspot pico cells (HSPCs) strategically placed to cover the hotspot areas in the

cell-centre, denoted by c = 4 and 5 respectively. The variables used in this section and

subsequent sections are defined in Table 5.4.
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Table 5.4: Summary of notations.

Notation Definition

δ Number of macro cell sectors in each macro cell site.

NRB Number of available RBs at each time slot.

K̄(m,c) Number of users served by the c-th eNB in the m-th macro cell sector,

m = 1: M.

K̄m Total number of users in the m-th macro cell sector, m = 1: M.

K̃w Total number of users in the w-th macro cell site, w = 1: W.

W, M Number of macro cell sites and macro cell sectors respectively, w = 1 :

W and m = 1 : M

C Number of transmitting eNBs in each macro cell sector, c = 1 : C, c = 1

indicates a macro cell, otherwise a pico cell.

Tm Set of interfering macro cell sectors on the m-th macro cell sector.

(m,c) The c-th cell in the m-th macro cell sector.

a(m,c)
k,r The bit-wise element that indicates if the r-th RB is assigned to the k-th

UE on (m, c), a(m,c)
k,r ∈ {0, 1} .

s(m,c)
k,r The k-th user data transmitted on the r-th RB from the eNB in (m,c).

H(m,c)
k,r The flat-fading channel on the r-th RB, from the eNB in (m,c) to the

k-th UE.

H̄(m,c,o)
k,r The flat-fading channel on the r-th RB, from the o-th interfering macro

cell sector eNB to the k-th UE in (m,c).

g(m,c)
k,r The channel gain on the r-th RB, from the eNB in (m,c) to the k-th UE.

ḡ(m,c,o)
k,r The channel gain on the r-th RB, from the o-th interfering macro cell

sector eNB to the k-th UE in (m,c).

ρ
(m,c)
k,r The power allocation from eNB in (m,c) to the k-th user on the r-th RB.

n(m,c)
k,r The noise vector received by the k-th user on the r-th RB in (m,c).

y(m,c)
k,r The received signal vector of the k-th user on the r-th RB in (m,c).

γ
(m,c)
k,r The SINR of the k-th user on the r-th RB in (m,c).
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R(m,c)
k,r The rate of the k-th user on the r-th RB in (m,c).

R(m)
T , R(m,c)

T The sum-rate of the users in the m-th macro cell sector and in (m,c)

respectively.

Based on the system in Fig. 5.15, the k-th user in the m-th macro cell-sector, served by

the c-th BS on the r-th RB, is given by:

y(m,c)
k,r = H(m,c)

k,r

√
ρ

(m,c)
k,r s(m,c)

k,r +
C∑

d = 1, d 6= c,

j∈[1,2,··· ,K̄(m,d)],

a(m,d)
j,r =1.

H(m,d)
k,r

√
ρ

(m,d)
j,r s(m,d)

j,r

+
M∑

o = 1, o∈ Tm,

q∈[1,2,··· ,K̄(o,1)],

a(o,1)q,r =1.

H̄(m,c,o)
k,r

√
ρ

(o,1)
q,r s(o,1)

q,r + n(m,c)
k,r , if a(m,c)

k,r = 1, ∀ k ∈ [1, 2, · · · , K̄(m,c)],

∀c ∈ [1, 2, · · · ,C], ∀m ∈ [1, 2, · · · ,M], ∀r ∈ [1, 2, · · · ,NRB]. (5.5.13)

The coefficients of H(m,c)
k,r are complex random variables, with zero-mean Gaussian real

and imaginary parts. The channel links experience large scale fading, with path loss

exponent (α) and log-normal shadowing having zero-mean and variance σ2
s . s(m,c)

k,r is

the complex (scalar) data signal on the r-th RB, destined for the k-th user in (m,c),

(E
{
|s(m,c)
k,r |2

}
= 1) and n(m,c)

k,r is an additive, zero-mean, white, complex Gaussian noise

vector with a variance of (σ
(m,c)
k,r )2. The downlink SINR of the k-th UE on the r-th RB,

served by the c-th BS in the m-th macro cell, is given below in (5.5.14):

γ
(m,c)
k,r =

g(m,c)
k,r ρ

(m,c)
k,r

C∑
d = 1, d 6= c,

j∈[1,2,··· ,K̄(m,d)],

a(m,d)
j,r =1.

g(m,d)
k,r ρ

(m,d)
j,r +

M∑
o = 1, o∈ Tm,

q∈[1,2,··· ,K̄(o,1)],

a(o,1)q,r =1.

ḡ(m,c,o)
k,r ρ(o,1)

q,r + (σ
(m,c)
k,r )2

, if a(m,c)
k,r = 1,
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∀ k ∈ [1, 2, · · · , K̄(m,c)], ∀c ∈ [1, 2, · · · ,C], ∀m ∈ [1, 2, · · · ,M], ∀r ∈ [1, 2, · · · ,NRB].

(5.5.14)

where g(m,c)
k,r = ‖H(m,c)

k,r ‖2
F . The sum-rate (R(m)

T ) of all the users in the m-th macro cell

sector is given in (5.5.15):

RT =
M∑

m= 1

C∑
c= 1

K̄(m,c)∑
k= 1

N̄RB∑
r= 1

a(m,c)
k,r log2

(
1 + γ

(m,c)
k,r

)
︸ ︷︷ ︸

R(m,c)
k,r︸ ︷︷ ︸

R(m,c)
T︸ ︷︷ ︸

R(m)
T

, (5.5.15)

where a(m,c)
k,r = 1, if user k is served by the eNB in (m,c) (i.e., the c-th eNB in the m-th

macro cell sector) using the r-th RB, otherwise a(m,c)
k,r = 0. Each RB is assumed to be

allocated to only one user in a given pico or macro cell sector and

K̄(m,c)∑
k=1

a(m,c)
k,r ≤ 1, a(m,c)

k,r ∈ {0, 1}, ∀c ∈ [1, 2, · · · ,C], ∀m ∈ [1, 2, · · · ,M],

∀r ∈ [1, 2, · · · ,NRB]. (5.5.16)

The Shannon capacity is used as a measure of the achievable rate by user k on RB r from

the c-th eNB in the m-th macro cell in (5.5.15). The user-rate at the k-th UE on the r-th

RB, served by the c-th eNB in the m-th macro cell is R(m,c)
k,r , R(m,c)

T is the sum-rate of all

the users in the m-th macro cell sector served by the c-th eNB.

5.5.2 Proposed Distributed RBA for Heterogeneous Networks

One important factor required in 4G LTE-A and beyond is the ability for HetNets to be

SONs. SONs need to be able to manage self-discovery, self-configuration, self-healing,

dynamic interference management and so on. Also perfect synchronisation, low latency,

fast RBA time, and very limited overhead are all important factors in the RBA strategy

used in HetNets for interference management. In Section 5.4.2, the proposed distributed
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RBA strategy was shown to obtain the best performance in terms of RBA time, overhead

and performance compared to other D-ICIC modes of RBA. For this reason the proposed

distributed method shown in Section 5.4.2 would be used in obtaining the RB assignment

de-centrally for the HetNets.

The proposed strategy under LTE-A for HetNets is based on interference avoidance. As

can be seen in Fig. 5.15, the network supports different cell types: pico cells and macro

cells. The different cell types cover different distance ranges and also use different BS

transmit powers for data transmission. However, in this case we assume that the entire

channel bandwidth is available to both cell types. This creates a complete overlap of the

cells which causes greater interference within the HetNet as opposed to the homogeneous

networks. In LTE-A, coordination between the pico cells and macro cells are achieved

through the X2 interface. ABS was proposed to limit the severe interference for the cell-

edge users in the small cell, by reserving blank subframes in the macro cell, to allow the

cell-edge users utilise the in-active subframes [75]. This makes the macro cell spectrally

inefficient over the time domain, especially in a very dense network. The proposed RBA

strategy is based on assigning RBs in each cell to maximise the SINR of the users in

each cell type, while ensuring that the interference is avoided and each cell maximises its

potential throughput, by having access to all available frequency channels. The proposed

strategy aims to achieve the following objectives:

• Ensure that the utilisation efficiency of the available channels in every cell type is

maximised.

• Develop a novel interference management strategy that aggressively minimises the

interference within the HetNet especially during peak times.

• Obtain a further interference reduction within the HetNets, which in turn allows the

total system capacity to be maximised.
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Obtain the channel and user 

location information on each 

MC and PC sector. Set l = 0. 

Start 

End 

Find the ICI (Irec) received from 

previously active macro cell sectors 

in Tm, m = (w-1)*δ + l, on already 

assigned RBs.  

Find the SLINR of all MC users across all 

RBs. Using the Hungarian method, 

assign RBs to users to maximise the 

sum-SLINR in each macro cell sector. 

Find the possible interference (Itra) 

from the active macro cell sectors to 

the users with already assigned RBs 

in Tm, m = (w-1)*δ + l.   

Also find the possible IaIC (Itra) transmitted from the pico cells to 

the MC users in active macro cell sector on already assigned RBs. 

For all w = 1 : W MC 

sites, set l = l + 1. 

Is l = δ? 

For each PC in all active macro cell sectors, 

find the Irec (i.e. ICI + IaCI) on all PC users 

across all RBs, from serving MC eNB, m = 

(w-1)*δ + l and previously active macro 

cell sectors in Tm.  

No Yes 

Find the SLINR of all PCUs across all RBs. Using the 

Hungarian method, assign RBs to the PC users to 

maximise the sum-SLINR in each pico cell sector. 

Figure 5.16: Proposed distributed RBA based on maximisation of the sum-SLINR for

each cell type.
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Assumptions

The following assumptions are considered for the purpose of this study:

1.) Interference between a macro cell sector to the macro cell and pico cell users of

neighbouring macro cell sectors. No pico cell to pico cell user interference. No macro

cell sector to macro cell sector interference within the same macro cell site.

2.) For each macro cell sector, intra-cell interference is assumed (i.e. macro cell BS to

pico cell user interference and pico cell BS to macro cell user interference within the same

macro cell sector).

3.) Every user (i.e. the pico cell and macro cell user) within a macro cell sector is

susceptible to interference from 4 (four) neighbouring macro cell sectors namely the left-

side macro cell sector (LSMCS), left-top macro cell sector (LTMCS), right-top macro cell

sector (RTMCS) and right-side macro cell sector (RSMCS) as shown in Fig. 5.15. For

instance, users in the macro cell sector m = 1 receives interference from cell sectors m =

20 (LSMCS), m = 6 (LTMCS), m = 5 (RTMCS) and m = 9 (RSMCS).

4.) No adjacent co-channel interference between any two physcial resource blocks

(PRBs).

5.) Full frequency reuse of 1 in both macro and pico cells. This means the whole spectrum

is available to all cell types.

6.) The HetNet has pico cells deployed for coverage at macro cell-edge areas and for hot

spot areas.

7.) All the pico cells in each macro cell are connected to the macro cell through optical

fibre or a dedicated super-fast wireless link. The macro cell serves as a controller and

gateway for the pico cells, to the cellular network.

8.) For the purpose of this work, each user requires a single RB allocation, in the

frequency domain at every transmission time, to meet its QoS constraint. Note that this
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solution can be extended to assign multiple RBs in the time and frequency domain, to

meet each user’s QoS constraints.

9.) Each pico-cell and macro-cell maintains a neighbour list of all interfering BSs and

exchanges information updates at a fixed interval, to ensure a SON.

10.) Equal power allocation on each RB is assumed. Note that this work can be extended

to consider power optimisation to enhanced network performance. But this is not the main

focus of this chapter.

To tackle the interference problem in HetNets, as well as obtaining a distributed resource

management strategy, the solution to this problem is presented in two parts. The first part

is based on obtaining a distributed RBA strategy for the HetNet, using a similar strategy

of the round robin sector-by-sector strategy presented earlier in Figs. 5.7 and 5.8. This

strategy however also considers the RBA to the pico cell users. Since the pico cells are

associated with their serving macro cell sector, the round robin sector-by-sector approach

shown earlier can be easily applied to the HetNet system as shown in Fig. 5.16.

The second part of the proposed work is creating the RBA metric used in developing the

qualification matrix needed for matching the RBs to the users. For this case the proposed

RBA metric is based on the signal to leakage and interference plus noise ratio (SLINR).

The transmitted interference is the leaked interference from the active BSs to the users

already assigned RBs. The received interference (Irec) is the interference received from

previously active macro cell sectors to the users currently being assigned RBs by the

active macro cell sectors and the noise power is given by σ2. The proposed RBA metric

is given by:

SLINR =
Received Signal Power(Ps)

Trans. Int Power(Itra) + Recvd Int Power(Irec) + σ2
. (5.5.17)

The RBA optimisation problem is based on maximising the sum-SLINR of the users in

each cell type within each macro cell sector, while avoiding high transmitted and received

interference. The optimisation problem can be expressed as:
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max
a

K̄(m,c)∑
k

Nr∑
r

a(m,c)
k,r γ

(m,c)
k,r , ∀c ∈ [1, 2, · · · ,C], ∀m ∈ [1, 2, · · · ,M] ,

s.t. γ
(m,c)
k,r =

g(m,c)
k,r ρ

(m,c)
k,r

C∑
d = 1, d 6= c,

j∈[1,2,··· ,K̄(m,d)],

a(m,d)
j,r =1.

g(m,d)
k,r ρ

(m,d)
j,r +

M∑
o = 1, o∈Tm,

q∈[1,2,··· ,K̄(o,1)],

a(m,o)
q,r =1.

ḡ(m,o)
q,r ρ(m,o)

q,r + (σ
(m,c)
k,r )2

,

K̄m,c∑
k=1

a(m,c)
k,r ≤ 1, ∀r, m, c, a(m,c)

k,r ∈ {0, 1}, ρ(m,c)
k,r ≥ 0, if a(m,c)

k,r = 1,∀m, c, k, (5.5.18)

where a is the RBA solution to the given optimisation problem, and a =

[a(m,c)
k,r , ∀m, c, k, r]. The constrained non-linear optimisation problem in (5.5.18) is very

complex to solve. However, the step-by-step algorithm in Fig. 5.16 is proposed to solve

the optimisation problem using a distributed approach and based on the sum-SLINR

maximisation in each cell. Based on the same distributed RBA strategy proposed for the

HomoNet, RBs are assigned to the macro cell sectors with sector index l = [1, 2, · · · , δ]

in a round-robin approach. For each macro cell sector index, the macro cell sectors assign

RBs to its users while taking into account the transmitted and received interference on

each given RB for each user. The SLINR is obtained for all users on every RB and using

the Hungarian method the RBs are allocated to the users to maximise the sum-SLINR of

the macro cell sector. Subsequently the pico cells allocate RBs to their users while taking

into account the interference received from the neighbouring macro cell sectors including

its serving macro cell sector and the interference transmitted to the macro cell users within

its serving macro cell sector. The SLINR for the pico cell users are obtained and the RBA

chooses RBs for all users to maximise the sum-SLINR of the cell.

To further explain the concept of interference avoidance behind the proposed algorithm

based on maximising the sum-SLINR for each cell, the given cell set-up in Fig. 5.17

is considered, with two macro cells (MC 1 and MC 2) and two users per cell, using all

available channels (i.e. RBs (a) - (e)) across all time slots.
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Figure 5.17: Cell set-up with two macro cells and 4 macro cell users.

In Fig. 5.18, the values of the signal power and interference power (transmitted and

received interference) across all RBs are given for each user in each cell. Using the

round-robin sector-by-sector distributed approach, the users in MC 1 are assigned RBs

first. Since there has been no previously, active macro cells, the interference received and

transmitted is zero (i.e., Irec = 0 and Itra = 0). Assuming a unit noise power, the RBs

(a) and (b) are assigned to users 1 and 2 respectively, to maximise the sum-SLINR. The

information on the assigned RBs and the MC 1 users is made known to MC 2. At MC 2,

the interference transmitted and received to the users on RBs (a) and (b) can be estimated.

The SLINR for users 3 and 4 can be obtained across all RBs as shown in Table E. RBs (d)

and (e) are assigned to users 3 and 4 respectively, to maximise the sum-SLINR. The RB

allocation based on sum-SINR (proposed earlier for the homogeneous network in section

5.5.1) and sum-SNR are shown in Tables F and G respectively. Both strategies assign RBs

(a) and (e) to users 3 and 4 respectively.
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Table D: Interference (Itra) power (W) from 
MC 2 to UEs on occupied RBs in MC 1. 

 a b c d e 

User 3 0.7 0.1 0 0 0 

User 4 0.4 0.6 0 0 0 

Table A: Received Signal Power (W) in MC 1 

 a b c d e 

User 1 4.1 1.8 1.9 2.8 3.5 

User 2 5.7 5.2 0.9 2.5 4.1 

Table B: Received Signal Power (W) in MC 2 

 a b c d e 

User 3 4.1 1.8 1.2 3.0 3.0 

User 4 3.5 2.5 3.5 3.5 4.9 

Table C: Interference (Irec) power (W) from 
MC 1 to UEs in MC 2 on assigned RBs  

 a b c d e 

User 3 0.3 0.1 0.0 0.0 0.0 

User 4 0.4 0.2 0.0 0.0 0.0 

Table E: RBA based on biased SLINR = 
Ps/(Irec + Itra + σ2), σ2 = 1.  

 a b c d e 

User 3 2.05 1.5 1.2 3.0 3.0 

User 4 1.94 1.38 3.5 3.5 4.9 

Table F: RBA based on SINR = Ps / (Irec + σ2).  

 a b c d e 

User 3 3.15 1.63 1.2 3.0 3.0 

User 4 2.5 2.08 3.5 3.5 4.9 

Table G: RBA based on SNR = Ps / σ2. 

 a b c d e 

User 3 4.1 1.8 1.2 3.0 3.0 

User 4 3.5 2.5 3.5 3.5 4.9 

Firstly, find the SLINR for all users on RBs (a) - 

(e) in MC1, using the proposed SLINR as a RBA 

metric. Irec = 0, Itra = 0 and let the noise power, σ2 

=1. RBs (a) and (b) are chosen for users 1 and 2 

respectively to maximise the sum-SLINR in MC1. 

 

Begin with MC m = 1. Using the proposed 

algorithm based on SRTINR. Irec and Itra = 0 and 

let the noise power, σ2 =1. RBs (a) and (b) are 

chosen for users 1 and 2 respectively to 

maximise the sum-SRTINR. 

Secondly, find the SLINR for all users on RBs (a) 

- (e) in MC2, using the proposed SLINR as a RBA 

metric. Obtain Irec and Itra on already occupied 

RBs (i.e. RBs (a) and (b)). Calculate the SLINR 

for each user on each RB. The RBs (d) and (e) 

are chosen for users 3 and 4 respectively to 

maximise the sum-SLINR in MC2. 

 

The next step is to assign RBs to users in MC m = 

2. Obtain the interference received and possible 

interference transmitted if the users are 

assigned to already occupied RBs (Irec + Itra). RBs 

(d) and (e) are chosen for users 3 and 4 

respectively to maximise the sum-SRTINR. 

 To compare with the sum-SINR and sum-SNR 

maximisation approach. The RBs chosen for 

MC1 remains the same. Find the RBs that 

maximise the sum-SINR and sum-SNR in MC2 as 

shown in Table F and G respectively. 

Figure 5.18: Illustration to compare the performance of the proposed distributed RBA

based on sum-SLINR to the sum-SINR and sum-SNR maximisation approach.

Finally in Table H, based on the allocated RBs for each user, the resulting SINR, total

SINR and total interference are obtained for all users within the network, using the

proposed distributed RBA that maximises the sum-SLINR, sum-SINR and the distributed
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approach using sum-SNR maximisation. From Table H, it can be seen that the sum-SINR

obtained under the proposed SLINR RBA metric achieved a better system performance

than the proposed SINR RBA metric and the already known SNR RBA metric. From

Table F, the proposed RBA metric based on the SINR is seen to result in a different

qualification matrix after taking into account the received interference on RBs (a) and (b)

as opposed to using the SNR as a RBA metric. However since the Irec at user 3 (RB (a))

is small compared to the signal power received at user 3 (RB (a)), the resulting SINR for

user 3 (RB (a)) is still good compared to the other RBs, so RB (a) is assigned to user 3.

Now considering the proposed SLINR RBA metric, the obtained qualification matrix in

Table E shows that after taking Irec and Itra into account, the resulting SLINR for users 3

and 4 under RBs (a) and (b) is much lower than the SLINR obtained in other RBs. Hence,

RBs (d) and (e) are allocated to users 3 and 4 respectively and the interfered RBs are

avoided, resulting in less interference within the system.

Figure 5.19: SINR performance obtained after RBA using the proposed sum-SLINR,

proposed sum-SINR and sum-SNR maximisation.
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5.5.3 Performance Evaluation in HetNet

Table 5.5: Summary of simulation parameters.

Parameters Value

Cell layout HetNet

Number of macro cell sites 19

Number of sectors per macro cell site 3

Number of pico cells per macro cell sector 4

Channel frequency 2.0 GHz

Carrier bandwidth 10 MHz

Number of RBs 50

Bandwidth of RB 180 kHz

Sub-carrier spacing 15kHz

Bandwidth per RB 180kHz

Shadowing standard deviation, σs 8dB

Pathloss coefficient, α 2

Macro cell BS power 43 dBm

Pico cell BS power 30dBm

[Inter site distance (ISD), Do] [750m, 100m]

Macro cell radius 250m

CEPC, HSPC radius [70m, 50m]

Pico cell antenna type omnidirectional

Macro cell antenna type directional antennas

Number of transmit and receive antennas (Mt, Nr) (4, 2)

In this section, the proposed distributed RBA strategy based on maximising the sum-

SLINR of the users within a cell is evaluated using the obtained simulation results. The
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simulation considers the cell set-up in Fig. 5.15 with W = 19 macro cell sites and δ =

3 cell sectors per cell site giving a total of M = 57 macro cell sectors. Each macro cell

sector has two CEPC and two HSPC at the cell center and 20 MCUs are considered.

The following definitions are used in analysing the results: number of macro cell users

(nMCUs), number of pico cell users (nPCUs), macro cell users (MCUs), pico cell users

(PCUs), cell-edge pico cell users (CEPCUs), hotspot pico cell users (HSPCUs). ‘d-

SLINR MCU’, ‘d-SINR MCU’ and ‘d-SNR MCU’ respectively are used to represent the

proposed distributed RBA based on the proposed sum-SLINR, the proposed sum-SINR

and the existing sum-SNR maximisation within the macro cell. ‘d-SLINR PCU’, ‘d-SINR

PCU’ and ‘d-SNR PCU’ respectively are used to represent the proposed distributed RBA

based on the proposed sum-SLINR, the proposed sum-SINR and the existing sum-SNR

maximisation within the pico cell.

Figure 5.20: Average user rate per cell, with RBA based on sum-SLINR, sum-SINR and

sum-SNR maximisation when nMCU = 20.
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The average user rate for pico and macro cells can be observed in Fig. 5.20 using different

RBA metrics when nMCU = 20. As the number of PCUs increases the obtained rates for

the PCU and the MCU are seen to decrease due to increased level of interference within

the system. Using the proposed strategy, it can be observed that ‘d-SLINR MCU’ achieves

a user rate of 15.65 kbps/Hz, 14.1 kbps/Hz and 9.1 kbps/Hz respectively when the nPCUs

= 20, 30 and 40. The achieved performance shows a significant improvement compared

to 13.85 kbps/Hz, 12 kbps/Hz and 8.4 kbps/Hz achieved by ‘d-SINR MCU’ and 10.4

kbps/Hz, 8.4 kbps/Hz and 6.85 kbps/Hz achieved by ‘d-SNR MCU’. This shows that the

proposed distributed strategy for the HetNet (‘d-SLINR MCU’) is capable of obtaining a

better user performance when compared to the proposed ‘d-SINR MCU’ and the ‘d-SNR

MCU’ strategy.

Figure 5.21: Average sum-rate per cell, with RBA based on sum-SLINR, sum-SINR and

sum-SNR maximisation when nMCU = 20.

As expected, the average rate of the macro cell users decreases as the number of pico
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cell users increase. This is due to a reduced number of interference-free RBs for the pico

cell users, as the pico cell users begin utilising interfered RBs occupied by the macro cell

users. However, the proposed strategy is still able to achieve exceptional performance

compared to other strategies, as it aims to reduce the total interference introduced into the

network, by considering the possible interference transmitted to already assigned users if

the same RB is occupied.

Now consider the average-user rate and sum-rate performance for the pico cell, as shown

Figs. 5.20 and 5.21. The obtained result shows that ‘d-SLINR PCU’ achieves a user rate

of 19.58 kbps/Hz, 19.01 kbps/Hz and 18.03 kbps/Hz respectively when the nPCUs = 20,

30 and 40. This performance is significantly higher than 17.68 kbps/Hz, 17.58 kbps/Hz

and 17.30 kbps/Hz achieved by ‘d-SINR PCU’ and 15.85 kbps/Hz, 15.77 kbps/Hz and

15.66 kbps/Hz achieved by ‘d-SNR PCU’. As can be observed the MC and PC user

rate performance obtained under sum-SLINR exceeds the performance obtained under

sum-SINR and sum-SNR as the number of pico cell users increase. It also can be seen

that the pico cell user rate performance obtained using the proposed sum-SLINR strategy

when nPCUs is 40 (high interference) exceeds the performance obtained using the sum-

SINR and sum-SNR strategy when nPCUs = 20, 30 and 40 (low to high interference).

This shows that the strategy based on ‘dist-SLINR’ avoids more interference within

the network thereby achieving better MC and PC user rates. The obtained results are

achieved since for each RB, the leakage from the MC or PC BS and the interference from

neighbouring MCs and PCs are considered during RBA. The sum-rate obtained in Fig.

5.21 also shows that the proposed RBA based on sum-SLINR exceeds the performance

of the RBA based on sum-SINR and sum-SNR. When nPCUs = 30, ‘d-SLINR PCU’,

‘d-SINR PCU’ and ‘d-SNR PCU’ achieves a sum-rate of 570.5 kbps/Hz 527.5 kbps/Hz

and 473 kbps/Hz respectively.

Based on the results obtained in Fig. 5.22, the level of interference can be observed for

different RBA strategies. For instance, the sum-interference power per macro and pico

cell under the sum-SNR appraoch is very high, with a power of 2.9 kW, 4.3 kW and 5.7

kW in the macro cell and 7.8 kW 11.8 kW and 15.8 kW in the pico cell when nPCUs
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are 20, 30 and 40 respectively. The RBA based on the sum-SINR achieves a significant

reduction of the interference power to 1.4 kW, 2.3 kW and 4.3 kW respectively in the

macro cell and 3 kW, 4.1 kW and 4.7 kW respectively in the the pico cell when nPCUs

are 20, 30 and 40 respectively. However, using the proposed RBA strategy based on

maximising the sum-SLINR, the interference power is further reduced to 0.25 kW, 0.74

kW, 3.5 kW respectively in the macro cell and 0.3 kW, 0.6 kW and 1.4 kW respectively in

the pico cell. The proposed strategy based on SLINR achieves an interference reduction

of 82% and 90% respectively in the macro cell and pico cell, compared to the RBA based

on SINR when nPCUs is 20.

Figure 5.22: Sum interference power per cell, with RBA based on sum-SLINR, sum-

SINR and sum-SNR maximisation when nMCU = 20.

From the results obtained, it is clear that the distributed proposed RBA metric based on the

SLINR is able to address the problem of high interference in the HetNet system, through

strategically avoiding both the transmitted and received interference within the network,
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the resources are allocated in a more effective way compared to the other strategies, which

results in increased system performance even in dense network traffic. Another significant

advantage is derived from using the distributed round robin sector-by-sector approach.

The proposed method allows the macro and pico cells to take responsibility for their RB

allocation while still ensuring low RBA time and overhead when compared to other forms

of RBA. This assumption can be said to be true since the proposed distributed RBA mode

was shown for HomoNets to achieve the lowest RBA time and overhead, as opposed to

other D-ICIC RBA modes presented earlier. The same underlying technique from the

proposed distributed RBA was applied to the HetNet.

5.6 Summary

This chapter has considered the challenges faced with RRM for both homogeneous and

heterogeneous networks. A novel, distributed RBA mode based on a round-robin sector-

by-sector approach was proposed. This approach allowed the macro cell sectors of a given

sector index, on every macro cell site, to allocate RBs to their users simultaneously, while

considering the interference conditions within the network at that given time. In this way

the interference within the network can be avoided and the total SINR of each macro cell

sector can be maximised.

A self organising network is easily achieved using the proposed distributed mode of

RBA, since the loop is continuous and periodically updates itself to adapt to the channel

changes, entry of new users and terminated session of existing users. Apart from

achieving a self organising network, it is important to avoid single points of failure in

a system. Unlike the distributed mode of RBA, the centralised and semi-centralised

approach have a high risk of single point of failure within a network, which can have

huge sections of the network down at a given period of time. This means that if the

RBAU fails the entire network would be down.

The proposed distributed mode of RBA enabled the proposed RBA metrics based on the
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SINR and SLINR, to be used to solve the RBA optimisation problem and maximise the

capacity of the HomoNet and HetNet since estimating the interference within the given

network is now possible. The proposed SINR RBA metric was shown to also improve the

system performance in the HomoNet as opposed to the SNR RBA metric. The proposed

distributed RBA mode coupled with the proposed SLINR RBA metric was shown to

increase the system performance in the HetNet as opposed to the proposed SINR RBA

metric.

The proposed distributed RBA strategy was shown to give the best overall performance

when compared to other modes of RBA. The proposed distributed RBA scheme solves the

challenges faced with the centralised, semi-centralised and frequency partitioned RBA

approach by reducing the high backhaul overhead, latency and poor synchronisation

experienced during resource management, without affecting the maximum obtainable

performance. Both the centralised and semi-centralised RBA strategies are not scalable

in the LTE network, since the RNC is not part of the standardised network. However,

the proposed distributed round robin sector-by-sector approach achieves a localised RBA

strategy, since the LTE network has no provision for a central control unit.
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Chapter 6

Interference Avoidance and

Cancellation in Heterogeneous Network

6.1 Introduction

In this chapter, the interference problem faced in HetNet is further investigated. As

mentioned earlier, the HetNet model was proposed to meet the continuous increase in

capacity demand and obtain a better coverage especially for the cell-edge users. To

achieve this objective, the HomoNet was transformed into the HetNet by introducing

smaller cells within the macro cells to meet the high demands in hot spot areas and also

improve coverage at the cell edge. This scheme is known to be one of the important

drivers of LTE-A. However the HetNet suffers from very high interference which limits

the expected gains of this system [76].

The ICI between a macro cell BS and the macro cell users in a nearby macro cell has

been considered and several strategies to cancel and mitigate the interference has been

proposed. This includes coordinated scheduling or beamforming, CoMP transmission

and DCS. Also for cellular systems with a frequency reuse of 1, D-ICIC techniques

such as RBA has been proposed for RRM. Static ICIC techniques such as FFR, SFR

and adaptive frequency reuse have been proposed to tackle the problem of interference in
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HomoNets and HetNets by assigning RBs to users in order to avoid the interference within

the network. After the introduction of HetNets, some of the above mentioned technologies

and techniques have been applied to HetNets to achieve an interference reduction within

the system. RRM techniques such as RBA, power control, cell expansion, ABS have been

introduced for interference management [76, 77]. Interference management techniques

for HetNet such as cognitive sensing, cognitive beamforming, enhanced-ICIC (e-ICIC),

small cell beamforming, adaptive beamforming and CoMP, have been proposed to combat

the high level of interference in HetNets [78, 75].

The contributions of this chapter are as follows: Firstly, a joint interference avoidance

and interference mitigation strategy is proposed, the effect of using both strategies to

combat interference and improve the attainable capacity in the HetNet is investigated.

Secondly, the interference avoidance technique used for the required analysis is the

proposed distributed RBA technique presented in Chapter 5 based on maximising the

sum-SLINR for HetNets. This technique is used jointly with an interference mitigation

technique to achieve a further reduction in the interference, thereby improving the overall

system. The interference mitigation techniques considered with the proposed distributed

RBA strategy are: (i.) beamforming and (ii.) CoMP transmission. Thirdly, through

obtained simulation results the two proposed joint interference management systems are

analysed (i.e., (i.) the proposed distributed RBA and beamforming, (ii.) the proposed

distributed RBA and CoMP transmission and compared to the results obtained using only

the proposed distributed RBA strategy proposed in Chapter 5.

The rest of this chapter is presented as follows. The interference mitigation technique

using beamformers for a single-cell multi-user system is presented in Section 6.2. Section

6.3 presents the proposed joint interference management system. The proposed joint RBA

with beamforming is presented in Section 6.4 and the proposed joint RBA with CoMP

transmission is proposed in Section 6.5. The simulation results are presented in Section

6.6. Finally the conclusion to this chapter is reached in Section 6.7.
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6.2 Interference Mitigation for Single-Cell Multi-User

MIMO System

AP 
User K 

User 2 

User 1 

Figure 6.1: A single-cell multi-user system.

A single-cell multi-user MIMO system is shown in Fig. 6.1 with Mt antennas on the

access point (AP) and K UEs, each having Nr antennas. The AP transmits data signals

simultaneously to all users. Assuming a flat fading channel between the k-th user and

the AP is given by Hk, the coefficients of Hk are complex random variables, with zero-

mean Gaussian real and imaginary parts. The BS finds the precoding matrix for each

user’s data transmission and combines the precoding matrices and signals of each user as

a single signal before transmitting it to all K users.

The main aim is to choose the precoding matrix for each user’s data signal such that the

IUI is cancelled at the undesired UEs. IUI is the interference experienced at a desired user

caused by transmitting other user’s data signal simultaneously from the same AP at the

same time.
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Assuming perfect CSIT, the interference at each user can be minimized by designing

the precoding vectors at the transmitter that cancels the leakage interference to each

user. The leakage is the unwanted data signal or interference transmitted from a given

AP or BS to the users in the network [23]. In [79], the authors proposed a precoding

technique that chooses the precoding vectors to maximise the signal-to-leakage ratio

(SLR) simultaneously for all users. Several research in [80], [81], [82], [83] has been

shown to cancel ICI and IUI interference which resulted in an improved performance,

however antenna conditions at the transmitter need to be met for this gain to be achieved.

For instance, based on the use of only transmit precoders for interference cancellation and

a single data stream for each user, the number of transmit antennas (Mt) must be greater

than or equal to the sum of all the receive antennas (Nr) at the users. The constraint on the

number of antennas is required to provide enough degrees of freedom for CCI cancellation

at the receiver [84], [85].

The AP multiplies each precoding vector (vk) with dimension Mt× 1 and ‖vk‖2 = 1, with

a complex (scalar) data signal (sk) corresponding to the user k, E{‖sk‖2} = 1. The overall

transmitted data is given by:

x =
K∑
k=1

vksk (6.2.1)

The vector x with dimensions Mt×1 is transmitted to all the users in the cell. The received

signal yk with dimension Nr × 1 at any user k is given by:

yk = Hkvk
√
ρksk +

K∑
m=1,m 6=k

Hkvm
√
ρmsm + nk, k ∈ [1, 2, ...,K], (6.2.2)

where ρk is the power assigned to the k-th user’s data, the noise received at the k-th user is

given by nk, an additive, zero-mean, white, complex Gaussian noise vector with variance

σ2
k and the second term in equation (6.2.2) is the IUI. To find the vk for each user k, that

cancels the interference caused to other users, the constraint in equation (6.2.3) must be

met:
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Mt ≥
K∑

m=1;m6=k

Nr (6.2.3)

The SLNR at the k-th user is given by:

SLNRk =
‖Hkvk‖2 ρk

K∑
m=1,m 6=k

‖Hmvk‖2 ρk + σ2
k

,

=
vHk HH

k Hkvkρk
vHk Ĥ

H

k Ĥkvkρk + σ2
k

, k ∈ [1, 2, ...,K], (6.2.4)

where Ĥk = [HH
1 , · · · ,HH

k−1,H
H
k+1, · · · ,HH

K ]H .

The denominator in (6.2.4) contains both the received noise power and the leakage

power of other user’s data signal when transmitting simultaneously to the k-th user.

The beamforming vector vk for each user k can be obtained as there are K decoupled

optimization problems. The precoding vector vk for each user is obtained such that the

SLNR of each user can be maximized, using the Rayleigh-Ritz quotient result [86]. The

equations in (6.2.5) and (6.2.6) have been proven in [38]:

vk ∝ max gen eigenvector(HH
k Hk, (Ĥ

H

k Ĥk + (σ2
k/ρk)IMt)). (6.2.5)

Since (Ĥ
H

k Ĥk + σ2
kIMt) is invertible, then the generalised eigenvector problem in (6.2.5)

reduces to a standard eigenvector problem and vk is chosen as the eigenvector associated

with the maximum eigenvalue of:

((Ĥ
H

k Ĥk + (σ2
k/ρk)IMt)

−1HH
k Hk) (6.2.6)

where IMt is the identity matrix of dimension Mt.

6.3 RBA and Interference Mitigation Techniques

Cross-tier interference is defined as the interference between two different cell types,

while co-tier interference is defined as the interference between two similar cell types.
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In [87], the authors proposed a 2-step strategy to address the cross-tier and co-tier

downlink interference in the HetNet. To tackle this problem the interference alignment

(IA) strategy was used to mitigate the interference so that more small cells can transmit

data using the same time slot on a given channel. Then a link scheduling algorithm

was used to reschedule small cells to another time slot when the interference could not

be avoided. Also in [88], the authors proposed a radio resource management strategy

to avoid interference within the HetNet and a decision algorithm to determine whether

CoMP transmission was required for the user’s data transmission.

In Chapter 2, 3 and 4, CoMP transmission has been considered for interference mitigation

in interference limited networks, as a strategy to improve the performance of the users,

especially at the cell edge. CoMP transmission was shown to improve the overall

system performance (especially for the cell-edge users) by transmitting data signals

from neighbouring BSs to the users. Other forms of interference mitigation techniques

like adaptive beamforming were highlighted in Chapter 2. This form of interference

mitigation is used to cancel or minimise the unwanted interference to other users, by

designing precoders and/or receive beamformers. In Chapter 5, the RBA was analysed as

a technique for radio resource management based on an interference avoidance strategy

within the network, where RBs are assigned to users while avoiding the allocation of RBs

with high interference to the users, thereby improving the overall system capacity and

user data rate. Two distributed RBA techniques were proposed based on maximising the

sum-SINR and maximising the sum-SLINR and they were shown to improve the system

performance compared to other known strategies.

In this chapter, both forms of ICIC, i.e. interference mitigation or cancellation and

interference avoidance will be applied jointly to further reduce the high interference

observed in the HetNet especially during peak times, thereby improving the user’s

performance. Using the distributed RBA techniques based on maximising the sum-

SLINR as proposed in Chapter 5, the qualification matrix is obtained by estimating the

SLINR of each user’s data transmission and then allocating RBs to all users to maximise

the sum-SLINR within the macro cell or pico cell. Subsequently, using an interference
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mitigation scheme, the unavoidable interference is cancelled to obtain a further reduction

in the interference and an improved system performance. The two interference mitigation

techniques considered in this chapter are: Beamforming and CoMP transmission.

For the purpose of this work, cross-tier interference will be mitigated between the

macro cell sector and pico cell sector and co-tier interference will be mitigated between

interfering macro cell sectors. The cross-tier interference considered for each macro cell

sector includes: macro cell BS to pico cell user interference and pico cell BS to macro

cell user interference both within the same cell sector. It also includes the macro BS of

another cell sector to pico cell users in another macro cell sector. The co-tier interference

considered is the ICI from a macro cell sector to the macro cell users in a different cell

sector.

Table 6.1: Summary of variable notations and definitions

Notation Definition

δ Number of macro cell sectors in each macro cell site.

NRB Number of available RBs at each time slot.

K̄(m,c) Number of users served by the c-th eNB in the m-th macro cell sector,

m = [1, 2, · · · ,M].

K̄m Total number of users in the m-th macro cell sector, m = [1, 2, · · · ,M].

K̃w Total number of users in the w-th macro cell site, w = 1: W.

W, M Number of macro cell sites and macro cell sectors respectively, w =

[1, 2, · · · ,W] and m = [1, 2, · · · ,M], M = δW

C Number of transmitting eNBs in each macro cell sector, c = 1 indicates

a macro cell, otherwise a pico cell, c = [2, 3, · · · ,C].

Tm Set of interfering macro cell sectors on the m-th macro cell sector.

(m,c) The c-th cell in the m-th macro cell sector.

a(m,c)
k,r The bit-wise element that indicates if the r-th RB is assigned to the k-th

UE in (m, c).
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s(m,c)
k,r The k-th user data transmitted on the r-th RB from the eNB in (m,c),

E{||s(m,c)
k,r ||2} = 1.

v(m,c)
k,r The precoder used to transmit the k-th user’s data on the r-th RB from

the eNB in (m,c), ||v(m,c)
k,r ||2 = 1.

v̄(m,d)
k,r The precoder used to transmit the data to the k-th user in (m,d) on the r-

th RB from the eNB in (m, 1) (i.e. the m-th macro cell eNB), ||v̄(m,d)
k,r ||2

= 1.

u(m,c)
k,r The receiver beamformer used at the k-th user on the r-th RB in (m,c)

to cancel the received interference, ||u(m,c)
k,r ||2 = 1.

H(m,c)
k,r The flat-fading channel on the r-th RB, from the eNB in (m,c) to the

k-th UE.

H̄(m,c,o)
k,r The flat-fading channel on the r-th RB, from the o-th interfering macro

cell sector eNB to the k-th UE in (m,c).

g(m,c)
k,r The channel gain on the r-th RB, from the eNB in (m,c) to the k-th UE.

ḡ(m,c,o)
k,r The channel gain on the r-th RB, from the o-th interfering macro cell

sector eNB to the k-th UE in (m,c).

ρ
(m,c)
k,r The power allocation from eNB in (m,c) to the k-th user on the r-th RB.

ρ̄
(m,d)
k,r The power allocated to transmit data from the eNB in (m, 1) (i.e. the

m-th macro cell eNB) to the k-th user in (m,d) on the r-th RB.

n(m,c)
k,r The noise vector received by the k-th user on the r-th RB in (m,c),

elements are complex random Gaussian variable with zero mean and

variance (σ
(m,c)
k,r )2.

y(m,c)
k,r The received signal vector of the k-th user on the r-th RB in (m,c).

γ
(m,c)
k,r The SINR of the k-th user on the r-th RB in (m,c).

R(m,c)
k,r The rate of the k-th user on the r-th RB in (m,c).

R(m)
T , R(m,c)

T The sum-rate of the users in the m-th macro cell sector and in (m,c)

respectively.
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6.4 RBA with Beamforming
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Figure 6.2: Interference cancellation from a macro cell (MC) BS to the pico cell (PC)

users.

The joint RBA with beamforming uses the proposed distributed RBA strategy for HetNets

(proposed in Chapter 5) to assign the RBs. For the r-th RB assigned, transmit and receive

beam-formers are designed to further mitigate the interference within each cell type. The

HetNet system model in Fig. 5.15 is considered and each variable used subsequently is

defined in Table. 6.1.
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6.4.1 System Model

The received signal (y(m,c)
k,r ) at the k-th UE in (m,c) assigned to the r-th RB, is post-

processed by the receive beamforming vector (u(m,c)
k,r ) is shown in (6.4.7):

u(m,c)H
k,r y(m,c)

k,r = u(m,c)H
k,r H(m,c)

k,r v(m,c)
k,r

√
ρ

(m,c)
k,r s(m,c)

k,r (6.4.7a)

+
C∑

d = 1, d 6= c,

j∈[1,2,··· ,K̄(m,d)],

a(m,d)
j,r =1.

u(m,c)H
k,r H(m,d)

k,r v(m,d)
j,r

√
ρ

(m,d)
j,r s(m,d)

j,r (6.4.7b)

+
M∑

o = 1, o∈ Tm,

q∈[1,2,··· ,K̄(o,1)],

a(o,1)q,r =1.

u(m,c)H
k,r H̄(m,c,o)

k,r v(o,1)
q,r

√
ρ

(o,1)
q,r s(o,1)

q,r + u(m,c)H
k,r n(m,c)

k,r , (6.4.7c)

if a(m,c)
k,r = 1,∀ k ∈ [1, 2, · · · , K̄(m,c)],∀c ∈ [1, 2, · · · ,C], ∀m ∈ [1, 2, · · · ,M],

∀r ∈ [1, 2, · · · ,NRB]. (6.4.7d)

The coefficients of H(m,c)
k,r are complex random variables, with zero-mean Gaussian real

and imaginary parts. The channel links experience large scale fading, with path loss

exponent (α) and log-normal shadowing having zero-mean and variance σ2
s . The signal

received in (6.4.7a) is the desired signal from the associated pico cell or macro cell. The

interference received from the other cell type within the same macro cell sector is given

in (6.4.7b) while the interference from neighbouring macro cell sectors in Tm plus the

received noise is given in (6.4.7c). The SINR at the k-th UE in (m,c) on the r-th RB,

∀r ∈ [1, 2, · · · ,NRB], is given by(γ(m,c)
k,r ):

γ
(m,c)
k,r =

|u(m,c)H
k,r H(m,c)

k,r v(m,c)
k,r |2ρ

(m,c)
k,r

C∑
d = 1, d 6= c,

j∈[1,2,··· ,K̄(m,d)],

a(m,d)
j,r =1.

g(m,d)
k,r ρ

(m,d)
j,r +

M∑
o = 1, o∈ Tm,

q∈[1,2,··· ,K̄(o,1)],

a(o,1)q,r =1.

ḡ(m,c,o)
k,r ρ(o,1)

q,r + (σ
(m,c)
k,r )2

,

if a(m,c)
k,r = 1, ∀ k ∈ [1, 2, · · · , K̄(m,c)],∀c ∈ [1, 2, · · · ,C], ∀m ∈ [1, 2, · · · ,M]. (6.4.8)



Chapter 6. Interference Avoidance and Cancellation in Heterogeneous Network 157

where g(m,d)
k,r = |u(m,c)H

k,r H(m,d)
k,r v(m,d)

j,r |2 and ḡ(m,c,o)
k,r = |u(m,c)H

k,r H̄(m,c,o)
k,r v(o,1)

q,r |2,∀k, m, c, r.

The user-rate (R(m,c)
k,r ), cell sum-rate (R(m,c)

T ), macro cell sum-rate (R(m)
T ), and the network

sum-rate (RT ) is given in (5.4.10).

6.4.2 Beamforming Design

The macro cell sectors are autonomous since the RBA is distributed on each macro cell

sector and pico cells. The macro cell sector also acts as the gateway of the pico cells to

the core network, and is responsible for providing the data from the core network to the

pico cell BS. The RNC for LTE-A does not exist and since the RBA is distributed, it is

safe to assume that the beamforming design should also be distributed. First assuming

the receive beam-formers are designed for the users in each cell type using only the

channel information available. The receive beam-former for each user on each cell type

is designed to minimise the ICI from neighbouring macro cell sectors in Tm on each RB

r. So u(m,c)
k,r is chosen as the eigenvector of the minimum eigenvalue of:

M∑
o=1, o∈Tm

(H̄(m,c,o)H
k,r H̄(m,c,o)

(k,r) ), if a(m,c)
k,r = 1, k = [1, 2, · · · , K̄(m,c)],

m = [1, 2, · · · ,M], c = [1, 2, · · · ,C], r = [1, 2, · · · ,NRB]. (6.4.9)

Precoder Design based on max-SLNR

Assuming that the receive beam-former information is made available to the neighbouring

cells, the transmit pre-coders for each user’s data are designed to maximise the SLNR

using the known channel information and the obtained receive beam-former information.

For the r-th RB (r ∈ [1, 2, · · · ,NRB]), the transmit precoders for the pico cell users

are designed to minimise the leakage to the macro cell user in the same macro cell

sector, while maximising the desired signal to the pico cell user, v(m,c)
k,r is chosen as the

eigenvector corresponding to the maximum eigenvalue of (6.4.10a):
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(ϑ
(m,c)
k,r IMt + (H(m,c)H

j,r u(m,1)
j,r u(m,1)H

j,r H(m,c)
j,r ))−1(H(m,c)H

k,r u(m,c)
k,r u(m,c)H

k,r H(m,c)
k,r ), (6.4.10a)

if a(m,c)
k,r = 1, k = [1, 2, · · · , K̄(m,c)], m = [1, 2, · · · ,M], c = [2, · · · ,C], (6.4.10b)

r = [1, 2, · · · ,NRB], ϑ
(m,c)
k,r = ((σ

(m,c)
k,r )2/ρ

(m,c)
k,r ), j ∈ [1, 2, · · · , K̄(m,1)]. (6.4.10c)

The transmit precoder needed to transmit data to the macro cell sector user on each RB

(r = [1, 2, · · · ,NRB]), is designed to minimise the leakage to (i.) the macro cell users in

the neighbouring macro cell sectors in Tm, (see (6.4.11c)) (ii.) the pico cell served by the

left-side macro cell sector (LSMCS) and the other pico cell served by the right-side macro

cell sector (RSMCS) (see (6.4.11d)) (iii.) the four pico cell users in the same macro cell

sector (see (6.4.11e)). The leakage in (ii.) and (iii.) are shown in Fig. 6.2 and v(m,c)
k,r is

chosen as the eigenvector corresponding to the maximum eigenvalue of (6.4.11a):

(ϑ
(m,c)
k,r IMt + (Z(m,c)H

k,r Z(m,c)
k,r )−1(H(m,1)H

k,r u(m,c)
k,r u(m,c)H

k,r H(m,1)
k,r ), if a(m,1)

k,r = 1,

c = 1, k = [1, 2, · · · , K̄(m,c)], m = [1, 2, · · · ,M], r = [1, 2, · · · ,NRB],

ϑ
(m,c)
k,r = ((σ

(m,c)
k,r )2/ρ

(m,c)
k,r ). (6.4.11a)

Z(m,c)
k,r =


Z̄(m,c)
k,r

Ẑ
(m,c)

k,r

Z̃(m,c)

k,r

 , if a(m,1)
k,r = 1, (6.4.11b)

Z̄(m,c)
k,r = [[u(o,1)H

q,r H̄(o,1,m)
q,r ]T , a(o,1)

q,r = 1, o = [1, 2, · · · ,M]]T ,

q ∈ [1, 2, · · · , K̄(o,1)], o ∈ Tm, (6.4.11c)

Ẑ
(m,c)

k,r =

 u(Tm(1),2)H
q,r H̄(Tm(1),2,m)

q,r , a(Tm(1),2)
q,r = 1, q ∈ [1, 2, · · · , K̄(Tm(1),2)]

u(Tm(4),3)H
q,r H̄(Tm(4),3,m)

q,r , a(Tm(4),3)
q,r = 1, q ∈ [1, 2, · · · , K̄(Tm(4),3)]

 ,
(6.4.11d)

Z̃(m,c)

k,r = [[u(m,d)H
j,r H(m,1)

j,r ]T , a(m,d)
j,r = 1, d = [1, 2, · · · ,C]]T ,

j ∈ [1, 2, · · · , K̄(m,d)], d 6= c, (6.4.11e)

Z(m,c)
k,r , Z̄(m,c)

k,r , Ẑ
(m,c)

k,r and Z̃(m,c)

k,r all have Mt columns.
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6.4.3 Power Allocation

For the IC technique using transmit and receive beamformers, the power allocation

problem is based on the per-BS power constraint (PBPC). The PBPC for the pico cell

BS and macro cell BS is given by pPBPCpico and pPBPCmacro respectively. On the r-th RB, the

power allocation is assigned to satisfy the constraint in (6.4.12):

 ‖v
(m,c)
k,r ‖2ρ

(m,c)
k,r = pPBPCmacro , if a(m,c)

k,r = 1, c = 1

‖v(m,c)
k,r ‖2ρ

(m,c)
k,r = pPBPCpico , if a(m,c)

k,r = 1, c ∈ [2, 3, · · · ,C}
,

k = [1, 2, · · · , K̄(m,c)], m = [1, 2, · · · ,M], c = [1, 2, · · · ,C]. (6.4.12)

Assuming the full power transmission for all BSs types, then the macro and pico cell BS

transmits the user information such that the power constraints in (6.4.12) are met. It is

easy to see that for the macro and pico cell users, since ‖v(m,c)
k,r ‖2 = 1, the power allocated

for data transmission is given by:

ρ
(m,c)
k,r =

 pPBPCmacro c = 1

pPBPCpico c = [2, 3, · · · ,C]
, (6.4.13)

k = [1, 2, · · · , K̄(m,c)], m = [1, 2, · · · ,M].

6.5 RBA with CoMP

In this section, the proposed joint distributed RBA with CoMP transmission is investigated

as a tool to improve the capacity of the HetNet system in very high interference during

peak times. The CoMP transmission will be considered from only the macro cell sector

BSs (or eNBs) to the PC users within each macro cell sector. Beam-formers will be used

to mitigate interference from the pico cell BSs. The technique and idea behind CoMP

transmission has been investigated in Chapters 2, 3 and 4. The definition of variables

used subsequently can be found in Table 6.1
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Figure 6.3: CoMP transmission from the MC BS to the PC users.

6.5.1 Assumption

The following assumptions are made for this section:

1. CoMP transmission is only considered in each macro cell sector, from the macro

cell BS to the pico cell users on the same RB.

2. On each RB, each macro cell sector can only perform CoMP transmission to other

pico cells within the same macro cell sector if a macro cell user is assigned to that

RB.

3. No pico cell to pico cell user interference.

4. No interference between macro cell sectors of the same macro cell site.
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6.5.2 System Model

The received signal (y(m,c)
k,r ) at the k-th UE in (m,c) assigned to the r-th RB is post-

processed by the receive beamforming vector (u(m,c)
k,r ) as in (6.5.14). The desired signal is

shown in (6.5.14a), where $(m,c)
k,r is the received signal from the pico cell BS to the pico

cell user (see (6.5.14g)). The IUI (in the case of the macro cell user) and the cross-tier

interference (in the case of the pico cell user) within the same macro cell sector is seen

in (6.5.14b). The co-tier interference from neighbouring interfering macro cell sectors

to macro cell and pico cell users in a given macro cell sector is given by (6.5.14c). The

cross-tier interference received from the pico cell BSs to the macro cell user is given by

ξ
(m,c)
k,r as seen in (6.5.14d) and (6.5.14f).

u(m,c)H
k,r y(m,c)

k,r = $
(m,c)
k,r + u(m,c)H

k,r H(m,1)
k,r v̄(m,c)

k,r

√
ρ̄

(m,c)
k,r s(m,c)

k,r (6.5.14a)

+
C∑

d = 1, d 6= c,

j∈[1,2,··· ,K̄(m,d)],

a(m,d)
j,r =1.

u(m,c)H
k,r H(m,1)

k,r v̄(m,d)
j,r

√
ρ̄

(m,d)
j,r s(m,d)

j,r (6.5.14b)

+
M∑

o = 1, o∈ Tm

u(m,c)H
k,r H̄(m,c,o)

k,r

C∑
d = 1, a(o,d)q,r =1,

q∈[1,2,··· ,K̄(o,d)].

v̄(o,d)
q,r

√
ρ̄

(o,d)
q,r s(o,d)

q,r (6.5.14c)

+ ξ
(m,c)
k,r + u(m,c)H

k,r n(m,c)
k,r ,∀ k = [1, 2, · · · , K̄(m,c)], (6.5.14d)

∀ r = [1, 2, · · · ,NRB], ∀m = [1, 2, · · · ,M],∀c = [1, 2, · · · ,C]. (6.5.14e)

ξ
(m,c)
k,r =



C∑
d = 2, d 6= c,

j∈[1,2,··· ,K̄(m,d)],

a(m,d)
j,r =1.

u(m,c)H
k,r H(m,d)

k,r v(m,d)
j,r

√
ρ

(m,d)
j,r s(m,d)

j,r , c = 1 & a(m,c)
k,r = 1

0, c 6= 1

.

(6.5.14f)

$
(m,c)
k,r =

 u(m,c)H
k,r H(m,c)

k,r v(m,c)
k,r

√
ρ

(m,c)
k,r s(m,c)

k,r , if c 6= 1 and a(m,c)
k,r = 1

0, if c = 1 and a(m,c)
k,r = 1

, (6.5.14g)
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The SINR at the k-th UE in (m,c) on the r-th RB, is given by (γ(m,c)
k,r ) :

γ
(m,c)
k,r =

|$(m,c)
k,r |2 + |u(m,c)H

k,r H(m,1)
k,r v̄(m,c)

k,r |2ρ̄
(m,c)
k,r

η
(m,c)
k,r + τ

(m,c)
k,r + µ

(m,c)
k,r + (σ

(m,c)
k,r )2

, if a(m,c)
k,r = 1, (6.5.15a)

∀ k ∈ [1, 2, · · · , K̄(m,c)],∀c ∈ [1, 2, · · · ,C], ∀m ∈ [1, 2, · · · ,M], ∀r ∈ [1, 2, · · · ,NRB],

(6.5.15b)

η
(m,c)
k,r =

C∑
d = 1, d 6= c,

j∈[1,2,··· ,K̄(m,d)],

a(m,d)
j,r =1.

|u(m,c)H
k,r H(m,1)

k,r v̄(m,d)
j,r |2ρ̄

(m,d)
j,r , (6.5.15c)

τ
(m,c)
k,r =

M∑
o = 1, o∈ Tm

C∑
d = 1, a(o,d)q,r =1

q∈[1,2,··· ,K̄(o,d)]

|u(m,c)H
k,r H̄(m,c,o)

k,r v̄(o,d)
q,r |2ρ̄(o,d)

q,r , (6.5.15d)

µ
(m,c)
k,r =



C∑
d = 2, d 6= c

j∈[1,2,··· ,K̄(m,d)]

a(m,d)
j,r =1

|u(m,c)H
k,r H(m,d)

k,r v(m,d)
j,r |2ρ

(m,d)
j,r , if c = 1 and a(m,c)

k,r = 1

0, if c 6= 1

.

(6.5.15e)

6.5.3 Beamforming Design

The receive beam-former is designed to minimise the inter-cell interference from

neighbouring macro cell sectors on each RB r (see (6.4.9)).

Precoder Design based on max-SLNR

The transmit precoders for each user’s data are designed to maximise the SLNR. For the

r-th RB (r ∈ [1, 2, · · · ,NRB]), the transmit precoders for the pico cell users are designed

to minimise the leakage to the macro cell user in the same macro cell sector, while

maximising the desired signal to the pico cell user, v(m,c)
k,r is chosen as the eigenvector
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corresponding to the maximum eigenvalue of (6.5.16a):

(ϑ
(m,c)
k,r IMt + (H(m,1)H

k,r u(m,1)
j,r u(m,1)H

j,r H(m,1)
k,r ))−1(H(m,c)H

k,r u(m,c)
k,r u(m,c)H

k,r H(m,c)
k,r ), (6.5.16a)

if a(m,c)
k,r = 1, k = [1, 2, · · · , K̄(m,c)], m = [1, 2, · · · ,M], c = [2, · · · ,C], (6.5.16b)

, r = [1, 2, · · · ,NRB], ϑ
(m,c)
k,r = ((σ

(m,c)
k,r )2/ρ

(m,c)
k,r ). (6.5.16c)

The transmit pre-coder needed for CoMP transmission to the macro cell sector user and

other pico cell users on each RB (r = [1, 2, · · · ,NRB]), is designed to minimise the

leakage to (i.) the macro cell users in the neighbouring macro cell sectors in Tm, (see

(6.5.17c)) (ii.) the pico cell served by the LSMCS and the other pico cell served by the

RSMCS (see (6.5.17d)) (iii.) the undesired pico cell and macro cell users in the same

macro cell sector (i.e. the IUI, see (6.5.17e)). The leakage in (ii.) and (iii.) are shown in

Fig. 6.2 and v̄(m,c)
k,r is chosen as the eigenvector corresponding to the maximum eigenvalue

of (6.5.17a):

(ϑ
(m,c)
k,r IMt + (Z(m,c)H

k,r Z(m,c)
k,r )−1(H(m,1)H

k,r u(m,c)
k,r u(m,c)H

k,r H(m,1)
k,r ), if a(m,1)

k,r = 1,

c = [1, 2, · · · ,C], k = [1, 2, · · · , K̄(m,c)], m = [1, 2, · · · ,M], r = [1, 2, · · · ,NRB],

ϑ
(m,c)
k,r = ((σ

(m,c)
k,r )2/ρ̄

(m,c)
k,r ). (6.5.17a)

Z(m,c)
k,r =


Z̄(m,c)
k,r

Ẑ
(m,c)

k,r

Z̃(m,c)

k,r

 , if a(m,1)
k,r = 1, (6.5.17b)

Z̄(m,c)
k,r = [[u(o,1)H

q,r H̄(o,1,m)
q,r ]T , a(o,1)

q,r = 1, o = [1, 2, · · · ,M]]T ,

q ∈ [1, 2, · · · , K̄(o,1)], o ∈ Tm, (6.5.17c)

Ẑ
(m,c)

k,r =

 u(Tm(1),2)H
q,r H̄(Tm(1),2,m)

q,r , a(Tm(1),2)
q,r = 1, q ∈ [1, 2, · · · , K̄(Tm(1),2)]

u(Tm(4),3)H
q,r H̄(Tm(4),3,m)

q,r , a(Tm(4),3)
q,r = 1, q ∈ [1, 2, · · · , K̄(Tm(4),3)]

 ,
(6.5.17d)

Z̃(m,c)

k,r = [[u(m,d)H
j,r H(m,1)

j,r ]T , a(m,d)
j,r = 1, d = [1, 2, · · · ,C]]T ,

j ∈ [1, 2, · · · , K̄(m,d)], d 6= c, (6.5.17e)
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Z(m,c)
k,r , Z̄(m,c)

k,r , Ẑ
(m,c)

k,r and Z̃(m,c)

k,r all have Mt columns.

6.5.4 Power Allocation

The HetNet system model considered is Fig. 5.15 in Chapter 5 which has a multi-layer

of the pico cells and macro cells and different transmit power for each cell type. For the

purpose of this study, the per base station power constraint is considered for the power

optimisation problem. The PBPC power constraint is given below in (6.5.18):



C∑
d=1, a(m,d)

j,r =1

j∈[1,2,··· ,K̄(m,d)]

‖v̄(m,d)
j,r ‖2ρ̄

(m,d)
j,r = pPBPCmacro , if a(m,c)

k,r = 1, c = 1

‖v(m,c)
k,r ‖2ρ

(m,c)
k,r = pPBPCpico , if a(m,c)

k,r = 1, c = [2, 3, · · · ,C}

,

k = [1, 2, · · · , K̄(m,c)], m = [1, 2, · · · ,M], r = [1, 2, · · · ,NRB]. (6.5.18)

This section considers CoMP transmission for only the macro cell BS to pico cell users.

Assuming the full power transmission for all BSs types, then the pico cell BS transmit

power is given in (6.4.13) such that the pico cell power constraint in (6.5.18) is met. Now

for the macro cell BS, power allocation for each data transmission is required since the BS

transmits data to multiple users, however the macro cell power constraint in (6.5.18) needs

to be satisfied. Given a QoS constraint, in this case a target user rate for both pico and

macro cell user in the macro cell sector as φ(m,c)
k,r ,∀ k, m, c, r. The optimisation problem

considered aims to achieve the target rate while ensuring the macro cell PBPC is met.

Next generation systems (i.e, HetNets) need to have the capabilities of a SON and the

latency time before data transmission needs to be limited as much as possible. Hence

for this reason, the macro cell sector obtains the power allocation while considering only

the macro cell and pico cell users within the macro cell sector. The power optimisation
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problem can be expressed as:

|$(m,c)
k,r |2 + gc,cρ̄

(m,c)
k,r

K∑
d = 1, d6=c

a(m,d)
k,r =1

gc,dρ̄
(m,d)
k,r + 1

≥ γ̄
(m,c)
k,r , gc,d = |u(m,c)H

k,r H(m,1)
k,r v̄(m,d)

k,r |
2, (6.5.19a)

s.t.
C∑

d=1, a(m,d)
j,r =1

j∈[1,2,··· ,K(m,d)]

‖v̄(m,d)
j,r ‖2ρ̄

(m,d)
j,r = pPBPCmacro , ρ̄

(m,d)
j,r ≥ 0, (6.5.19b)

if a(m,1)
k,r = 1, ∀k = [1, 2, · · · , K̄(m,c)], m = [1, 2, · · · ,M], c = [1, 2, · · · ,C,

r = [1, 2, · · · ,NRB] and γ̄(m,c)
k,r = 2φ

(m,c)
k,r − 1, (6.5.19c)

where γ̄(m,c)
k,r is the SINR constraint for the k user’s data on the r-th RB in (m,c). The

problem in (6.5.19) can easily be solved as a constrained linear least square optimisation

problem.

6.6 Performance Evaluation

In this section, the performance obtained using a joint interference avoidance and

mitigation technique is evaluated using Fig. 6.4 and Fig. 6.5. The proposed distributed

RBA strategy based on maximising the sum-SLINR of the users within a cell is jointly

used with two separate interference mitigation techniques: beamforming and CoMP

transmission. The simulation considers the cell set-up in Fig. 5.15 with W = 7 macro

cell sites and δ = 3 cell sectors per cell site giving a total of M = 21 macro cell sectors and

the simulation parameters given in Table 6.2. Each macro cell sector has two CEPC and

two HSPC at the cell center and 40 MCU are considered in each macro cell sector.
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Figure 6.4: The sum-rate performance using the proposed joint interference management

scheme, nMCU = 40.

The sum-rate for the pico and macro cells can be observed in Fig. 6.4 when nMCU

= 40. As nPCU increases the obtained sum-rate for the macro cell is seen to decrease

as expected when using only the proposed distributed RBA solution. But when used in

conjunction with beamforming and CoMP transmission, the system performance is seen

to improve significantly. For instance using only the RBA when nPCU = 20, 30 and 40

respectively, the sum-rate per macro cell sector is 435 kbps/Hz, 334 kbps/Hz and 262

kbps/Hz. But when using the RBA with beamforming, the sum-rate increases to 658

kbps/Hz, 653 kbps/Hz and 647 kbps/Hz. Also for RBA with CoMP transmission the

sum-rate performance increases to 649 kbps/Hz, 628 kbps/Hz and 605 kbps/Hz. The

reduced sum-rate performance for the macro cell using CoMP transmission as opposed

to beamforming is a result of the reduced power allocation to the macro cell user’s data

transmission during CoMP transmission. The sum-rate of the pico cells when nPCU =
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Table 6.2: Network set-up and simulation parameters

Parameters Value

Cell layout HetNet

Number of macro cell sites 7

Number of sectors per macro cell site 3

Number of pico cells per macro cell sector 4

Channel frequency 2.0 GHz

Carrier bandwidth 10 MHz

Number of RBs 50

Bandwidth of RB 180 kHz

Sub-carrier spacing 15kHz

Bandwidth per RB 180kHz

Shadowing standard deviation, σs 8dB

Pathloss coefficient, α 2

Macro cell BS power 43 dBm

Pico cell BS power 30dBm

[Inter site distance (ISD), Do] [750m, 100m]

Macro cell radius 250m

CEPC, HSPC radius [70m, 50m]

Pico cell antenna type omnidirectional

Macro cell antenna type directional antennas

Number of transmit and receive antennas (Mt, Nr) (8, 4)

Target rate for pico cell and macro cell users respectively (16 kps/Hz, 20 kbps/Hz)
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20, 30 and 40 respectively using only the RBA solution are 1291 kbps/Hz, 1824 kbps/Hz

and 2311 kbps/Hz respectively while the proposed joint solution using both the RBA and

beamforming achieves a greater performance of 1471 kbps/Hz, 2173 kbps/Hz and 2863

kbps/Hz respectively and 1471 kbps/Hz, 2171 kbps/Hz and 2859 kbps/Hz respectively

when using the proposed joint RBA and CoMP transmission technique. The proposed

solutions clearly obtain a significant improved performance to both the pico cell users

and macro cell users even with high density of users in the HetNet.
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Figure 6.5: The CoMP model under a given macro cell sector showing CoMP

transmission from the MC BS to PC user.

The user-rate for the pico and macro cells can also be observed in Fig. 6.5 when nMCU

= 40. The target user rate considered for the simulation is 16 kbps/Hz and 20 kbps/Hz
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respectively for the pico cell and macro cell user. It can be clearly seen that as nPCU

increases, the obtained user-rate for the macro cell and pico cell users decreases. This

is expected as the RBs available for the user’s data transmission become prone to high

interference. When nMCU = 40 and nPCU = 40, the user rate for the pico cell and

macro cell respectively is 6.55 kbps/Hz and 14.44 kbps/Hz using only the proposed RBA

solution. However using a joint solution with beamforming the user rate increases to 16.2

kbps/Hz and 17.8 kbps/Hz and with CoMP transmission the achieved user rate is 15.1

kbps/Hz and 17.8 kbps/Hz. The target rate for the pico cell users was achieved using

both joint solutions but the target rate for the macro cell users was not achieved. This is

as a result of the power constraint of the BS and also a high QoS constraint. However,

the performance achieved was significantly improved compared to the performance using

only the RBA. Again the performance obtained by the macro cell users using RBA and

CoMP transmission is slightly lower when compared to the performance obtained using

RBA and beamforming. This is due to the decrease in the transmit power used for the

macro cell user’s data transmission under the given PBPC. The results in Figs. 6.4 and 6.5

evidently show that a significant improvement in performance can be obtained for highly

dense networks with high interference using the proposed joint solution of interference

avoidance and cancellation.

6.7 Summary

This chapter has considered the high interference expected in HetNets which have

multiple layers of different cell types and capabilities, but having access to the same

frequency channels, thereby increasing the interference within the system as opposed to a

homogeneous network. A joint interference management solution was proposed using the

proposed distributed RBA strategy with a round-robin sector-by-sector approach based on

maximising the sum-SLINR within each macro cell and pico cell in the HetNet downlink

cellular OFDMA systems, as a tool for interference avoidance. The proposed RBA

strategy was successively followed by an interference mitigation technique: beamforming
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or CoMP transmission. From Chapter 5, the proposed distributed RBA was seen to

offer the best performance compared to other interference avoidance strategy for HetNets.

However this chapter investigated and analysed the effect of coupling the RBA with an

interference mitigation technique. In this way the interference within the network can

be avoided and unavoidable interference can be further mitigated using beamforming or

CoMP transmission.

The proposed joint solution was compared with the interference avoidance using the

proposed RBA strategy. The results showed a significant improvement when using a

joint interference avoidance and mitigation technique. The RBA plus beamforming and

RBA plus CoMP transmission techniques showed that greater throughput can be achieved

especially in a high-density network where resources are in high demand especially during

peak times. This result is of great importance as it allows both small and macro cells to

have access to the full channel spectrum, thereby improving the frequency utilisation

efficiency as opposed to other solutions like almost blank subframe, carrier aggregation,

and other forms of resource partitioning that limits the available resources to each cell

type.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, the CoMP transmission technique has been investigated as an interference

management system in multi-cell multi-user MIMO systems. The setbacks associated

with this technique are the high data overhead demand on the backhaul network

architecture which results in huge costs to the network provider. In Section 2.3 and

2.4, the network centric and user centric approach to CoMP transmission was presented

and investigations which would reduce the data overhead for a trade-off in system

performance were carried out.

The network centric clustering approach was investigated to analyse the system

performance of the cell-edge users under CoMP transmission. The standard proposed

method required the network to form clusters of BSs and then allow multiple transmission

the BSs within each cluster to improve the overall system performance. The results

obtained showed that the linear increase in transmit BSs per user resulted in a linear

increase in the data overhead but the obtained increase in performance was not linear. It

was shown that reducing the data overhead significantly only resulted in very slight loss

in system performance under certain system conditions.
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The user centric approach was investigated as well and was shown to attain a better

performance when compared to the network centric clusterisation method. This is because

under the network centric approach the clusters are selected based on the quality of the

sum-interference channels to each user. Since this solution is not based on the individual

requirements of the users, this means that the users may be assigned very poor channels

for CoMP transmission which would not provide any significant improvement to the

cell-edge user’s performance. The user centric approach was studied in Section 2.4 and

the obtained performance was shown to outperform the network centric performance.

The chapter proposed a direct reduction of the data overhead by using a lesser number

of transmit BSs per user but allowing the transmit BSs to be chosen in such a way

to maximise the gain achieved by the user. The simulation results in Figs. 2.12 -

2.15 showed that a significant reduction in the data overhead was attainable without

sacrificing the BER and sum-rate performance. Also in some scenario where complete

interference cancellation was unobtainable, CoMP transmission with a reduced number of

BSs outperformed CoMP transmission with a larger number of transmit BSs. This is the

result of choosing the best channels for CoMP transmission and assigning the maximum

allowed transmit powers to these channels.

In Chapter 3, a proposed joint and adaptive selection of the BSs for each user’s data

transmission based on the user centric approach was investigated. The selected BSs for

each user’s data transmission form a CS. Since the QoS constraints, channel condition,

number of antennas, interference, amongst other factors affect the performance of the

user, it is important to avoid a network pre-set size of CSs for the users. Also some

users may achieve the QoS constraints using only a single BS, so it is important to

avoid increasing the ICI or IUI within the system by using CoMP transmission from

multiple BSs. To further improve the overall system performance with reduced data

overhead, a heuristic approach to obtaining the CS size and given BSs for each user’s

CS was proposed. The proposed joint and adaptive CS selection was shown to attain a

further reduction in the data overhead and energy consumption of the system with a slight

increase in the sum-rate.
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Chapter 4 proposed an improved joint and adaptive CS selection under the max-min SINR

optimisation problem and the total power minimisation problem using three different

power constraint types. Also in Chapter 4, the “optimum CS selection” based on a

hard search is shown using a limited number of cells. This was necessary in order to

evaluate and compare the obtained performance using the proposed joint CS selection

algorithm against both the “optimum CS selection” and the traditional pre-set number of

BSs per user (standard solution). The optimum performance is known to be NP-hard and

unachievable for a relatively small number of cells due to the very high computational

complexity involved but this can be achieved and shown with a very small number of BS-

user pairs. The advantages of the proposed method includes achieving a joint selection

of all CSs, a reduction in complexity and time as opposed to the “optimum solution” and

better overall system performance (i.e., data overhead, energy, OCR) when compared to

the conventional method.

The RBA techniques used for radio resource management have been investigated in

Chapter 5. Two distributed RBA techniques were proposed to manage the interference in

the HomoNet and HetNet. Studies showed that the RBA metric used in the past avoided

the direct estimation of interference in the network. Other techniques were proposed to

associate RBs to the users to maximise the sum-rate performance of the system. The

interference on each RB for the users cannot be obtained without pre-knowledge of RB

utilisation by the neighbouring BSs. Another important factor in RBA is the mode of

allocation. Several strategies have been proposed under static and dynamic ICIC for

RRM. The centralised or semi-centralised mode of RBA under the dynamic ICIC is

not scalable with the standards for LTE-A in 4G networks and static ICIC is set back

by poor frequency utilisation. However in Chapter 5, the RBA problem was solved in

two dimensions. Firstly, the proposed RBA mode is distributed and allows each cell

to allocate RBs to the users in a round-robin approach thereby making the proposed

RBA metrics based on interference estimation (i.e. the SINR and the SLINR) possible to

obtain. Secondly, based on the proposed RBA metric, an appropriate qualification matrix

is obtained for RB allocation to each user. The simulation result show the significant
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advantage compared to other modes of RBA and RBA metrics proposed in the past.

Finally in Chapter 6, a joint interference management strategy was proposed to further

improve the system performance of the HetNets. Using interference avoidance and

interference cancellation techniques, an additional gain was shown to be achievable

especially with a high density of users in each cell (during peak times). The interference

avoidance technique was based on the proposed distributed strategy based on maximising

the sum-SLINR shown in Chapter 5, Section 5.5.2 for the HetNet. This was coupled

separately with two interference mitigation techniques: Beamforming and CoMP

transmission. The simulation results showed that a joint interference management scheme

using an effective RBA technique coupled with beamforming or CoMP transmission is

capable of achieving an increased gain in the system performance, especially for very

high interference limited systems such as the HetNet with a frequency reuse factor of 1.

7.2 Future Work

Interference management techniques are very important features for current and future

wireless network technologies in order to attain the maximum possible performance and

meet the high demand of the users. Due to the continuous and exponential demand

in faster data rate and increased capacity, today’s techniques would need to be further

improved to meet the demands of tomorrow.

The following suggestions and investigations are proposed for future work, that could

lead to an improvement in the management of interference for both homogeneous and

heterogeneous networks.

1. A joint CS selection for CoMP transmission was proposed in Chapter 3 and

improved in Chapter 4. The heuristic solution was shown to achieve about

90% of the performance using the “optimal CS selection”, while reducing the

complexity and computation time by over 98%. A less complex, joint and adaptive
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solution capable of achieving a much closer performance to that obtained under the

“optimum CS selection” could be investigated. This would boost the possible gains

achieved with CoMP transmission without the setbacks of high data overhead and

energy consumption.

2. In Chapter 5 the RBA technique was considered for both HomoNets and HetNets.

The distributed RBA strategy and the proposed metric based on the sum-SINR

and sum-SLINR was considered with certain assumptions. Pico cell to pico

cell interference (under HetNets) can be considered and inter macro cell sector

interference within the same macro cell site can also be considered for future study.

The distributed RBA strategy can be improved to reduce the RBA time, overhead

and also satisfy additional criteria of the SON.

3. In Chapter 6, the joint interference avoidance and cancellation technique was

proposed to further reduce the effect of interference in the HetNet. The work in

Chapter 6 only considered a given portion of the interference model. Interference

avoidance using the proposed distributed RBA strategy was jointly used with

beamforming and CoMP transmission. CoMP transmission was considered only

for the macro cell to pico cell users in each macro cell sector. Future works should

consider CoMP transmission from the pico cell to the macro cell user. The HetNet,

especially high-density HetNet, is a more complex network and research is still

limited in this area. Investigations should be carried out to analyse the effect of co-

tier CoMP transmission, i.e. using neighbouring macro cells to support the macro

cell users, while comparing this to cross-tier CoMP transmission using pico cells to

support macro cells users in HetNets.
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Appendices

A Proof of Lemma 1 & 2

The linear least mean-square error (LLMSE) estimation is used to determine the solutions

obtained in (4.6.26) and (4.6.27) as shown below [50]:

Consider the received signal obtained in the downlink channel as shown in (4.4.7), which

can be written as:

ŝk = uHk H(k)
k v̄k
√
ρksk + uHk

K∑
p = 1

p 6= k

H(p)
k v̄p
√
ρpsp + uHk nk,∀ k ∈ [1, 2, · · · ,K], (A.1)

The MSE is given by:

J , E[|sk − ŝk|2] , E{(sk − ŝk)(sk − ŝk)H} (A.2)

, E[|sk − uHk
K∑

p = 1

H(p)
k v̄p
√
ρpsp − uHk nk|2]

, E{(sk − uHk
K∑

p = 1

H(p)
k v̄p
√
ρpsp − uHk nk)(sHk −

K∑
p = 1

sHp
√
ρpv̄Hp H(p)H

k uk − nHk uk)}

Note that E[sksHk ] = 1, E[sksHp ] = 0, p 6= k, E[sp] = 0, E[nknHk ] = σ2
kI. So from (A.2), J is

obtained as:
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J , 1−√ρkv̄kH(k)H
k uk − uHk H(k)

k v̄k
√
ρk + uHk (

K∑
p = 1

H(p)
k v̄pρpv̄Hp H(p)H

k )uk + σ2
kI (A.3)

Given V, the receive beam-former U is found by obtaining the gradient of the MSE w.r.t

uk and setting it to zero. The normalised linear beam-former is obtained by normalising

the resulting solution as shown below:

uk = ûk/ ‖ûk‖2 , where

ûHk = (
K∑

p = 1

p 6= k

H(p)
k v̄pv̄Hp H(p)H

k ρp + Iσ2
k)
−1√ρkvHk H̄(k)H

k ,∀ k ∈ [1, 2, · · · ,K]. (A.4)

To obtain the beamforming vector (V) at the transmitter, the virtual reciprocal (uplink)

channel as shown in (4.5.12) is considered. This can be written as

ŝk = v̄Hk H(k)H
k uk

√
qksk +

K∑
p = 1

p 6= k

v̄Hk H(k)H
p up

√qpsp + v̄Hk nk, ∀ k ∈ [1, 2, · · · ,K], (A.5)

The MSE is given by:

J , E[|sk − ŝk|2] , E{(sk − ŝk)(sk − ŝk)H} (A.6)

, E[|sk − v̄Hk
K∑

p = 1

H(k)H
p up

√qpsp − v̄Hk nk|2]

, E{(sk − v̄Hk
K∑

p = 1

H(k)H
p up

√qpsp − v̄Hk nk)(sHk −
K∑

p = 1

sHp
√qpu

H
p H(p)

k v̄k − nHk v̄k)}

Note that E[sksHk ] = 1, E[sksHp ] = 0, p 6= k, E[sp] = 0, E[nknHk ] = σ2
kI. So from (A.6), we

obtain

J , 1−√qkukH
(k)
k v̄k − vHk H(k)H

k uk
√

qk + v̄Hk (
K∑

p = 1

H(p)H
k upqpu

H
p H(p)

k )v̄k + σ2I (A.7)
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Given U, the receive beam-former V is found by obtaining the gradient of the MSE w.r.t

v̄k and setting it to zero. The normalised linear beam-former is obtained by normalising

the resulting solution as shown below:

v̄k = v̂k/ ‖v̂k‖2 , where

v̂Hk = (
K∑
p=1

p 6=k

H(k)H
p upuHp H(k)

p qp + Iσ2)−1√qkuHk H(k)
k . (A.8)
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